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Abstract

The evolution of wireless networks, from first-generation (1G) to fifth-generation (5G), has
facilitated real-time services and intelligent applications powered by artificial intelligence
(AI) and machine learning (ML). Nevertheless, prospective applications like autonomous
driving and haptic communications necessitate the exploration of beyond fifth-generation
(B5G) and sixth-generation (6G) networks, leveraging millimeter-wave (mmWave) and
terahertz (THz) technologies. However, these high-frequency bands experience significant
atmospheric attenuation, resulting in high signal propagation loss, which necessitates
a fundamental reconfiguration of network architectures and paves the way for the
emergence of ultra-dense networks (UDNs). Equipped with massive multiple-input
multiple-output (mMIMO) and beamforming technologies, UDNs mitigate propagation
losses by utilising narrow line-of-sight (LoS) beams to direct radio waves toward specific
receiving points, thereby enhancing signal quality. Despite these advancements, UDNs
face critical challenges, which include worsened mobility issues in dynamic UDNs due to
the susceptibility of LoS links to blockages, data privacy concerns at the network edge
when implementing centralised ML training, and power consumption challenges stemming
from the deployment of dense small base stations (SBSs) and the integration of cutting-
edge techniques like edge learning. In this context, this thesis begins by investigating
the prevailing issue of beam blockage in UDNs and introduces novel frameworks to
address this emerging challenge. The main theme of the first three contributions is to
tackle beam blockages and frequent handovers (HOs) through innovative sensing-aided
wireless communications. This approach seeks to enhance the situational awareness
of UDNs regarding their surroundings by using a variety of sensors commonly found
in urban areas, such as vision and radar sensors. While all these contributions share
the common goal of proposing sensing-aided proactive HO (PHO) frameworks that
intelligently predict blockage events in advance and performs PHO, each of them presents
distinctive framework features, contributing significantly to the improvement of UDN
operations. To provide further details, the first contribution adhered to conventional
centralised model training, while the other contributions employed federated learning
(FL), a decentralised collaborative training approach primarily designed to safeguard data
privacy. The utilisation of FL technology offers several advantages, including enhanced
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data privacy, scalability, and adaptability. Simulation results from all these frameworks
have demonstrated the remarkable performance of the proposed latency-aware frameworks
in improving UDNs’ reliability, maintaining user connectivity, and delivering high levels
of quality of experience (QoE) and throughput when compared to existing reactive HO
procedures lacking proactive blockage prediction. The fourth contribution is centred
on optimising energy management in UDNs and introduces FedraTrees, a lightweight
algorithm that integrates decision tree (DT)-based models into the FL setup. FedraTrees
challenges the conventional belief that FL is exclusively suited for Neural Network (NN)
models by enabling the incorporation of DT models within the FL context. While
FedraTrees offers versatility across various applications, this thesis specifically applies it
to energy forecasting tasks with the aim of achieving the energy efficiency requirement of
UDNs. Simulation results demonstrate that FedraTrees performs remarkably in predicting
short-term energy patterns and surpasses the state-of-the-art long short-term memory
(LSTM)-based federated averaging (FedAvg) algorithm in terms of reducing computational
and communication resources demands.



Acknowledgements

I want to begin by extending my profound gratitude to the Almighty God for preserving
my health and guiding me through the challenges of my PhD journey. I am forever
thankful for the inspiration, knowledge, strength, and His grace that allowed me to attain
this scholarship.

I want to express my heartfelt gratitude to my primary supervisor, Dr. Lina
Mohjazi, who accepted me as her Ph.D. student and provided invaluable mentorship,
encouragement, and support throughout my doctoral journey. Her unwavering passion for
academic research excellence has profoundly influenced both my academic development
and personal growth. Additionally, I extend my immense appreciation to my co-supervisor,
Dr. Ahmed Zoha, who has consistently offered strong support for my research endeavor.
I am deeply thankful for his enthusiasm, patience, and the valuable insights that have
sparked numerous intriguing research ideas and broadened my scholarly horizons.

I would also like to thank Dr. Anthony Centeno and Prof. Muhammad Ali Imran,
who have supported me in every way necessary to complete my Ph.D.

I appreciate the University of Glasgow for awarding me the UESTC scholarship, which
enabled me to undertake this Ph.D. research. I am also grateful to the Jordan University
of Science and Technology, Irbid, Jordan, for granting me a study leave from work to
pursue my PhD.

I would like to extend my deepest gratitude to my dear parents, Mahmoud and Amal,
as well as my siblings. Their unwavering love and sacrifices have empowered me to pursue
my dream. Their constant support and encouragement have been a continual source
of inspiration and motivation, without which I would not have reached this significant
milestone in my life.

My deepest appreciation goes to my wife, Najwa, and my children, Alma and Ayham,
for their patience, understanding, and support throughout this journey. Their love has
been my anchor, providing comfort and motivation in the face of challenges.

I also want to thank my friends and colleagues who provided intellectual stimulation
and emotional support during this challenging process.

Thank you to everyone who played a role, no matter how small, in bringing this research
to fruition.

iii



To my beloved children, Alma and Ayham,
the lights of my life

and the pillars of my inspiration.



University of Glasgow
College of Science & Engineering

Statement of Originality

Name: Mohammad Mahmoud Younes Alquraan 
Registration Number: XXXXXXXX

I certify that the thesis presented here for examination for a PhD degree of the
University of Glasgow is solely my own work other than where I have clearly indicated
that it is the work of others (in which case the extent of any work carried out jointly by
me and any other person is clearly identified in it) and that the thesis has not been edited
by a third party beyond what is permitted by the University’s PGR Code of Practice.

The copyright of this thesis rests with the author. No quotation from it is permitted
without full acknowledgement.

I declare that the thesis does not include work forming part of a thesis presented
successfully for another degree.

I declare that this thesis has been produced in accordance with the University of
Glasgow’s Code of Good Practice in Research.

I acknowledge that if any issues are raised regarding good research practice based
on review of the thesis, the examination may be postponed pending the outcome of any
investigation of the issues.

Signature:

Date:

v



Contents

Abstract i

Acknowledgements iii

Declaration v

List of Tables x

List of Figures xi

List of Abbreviations xiv

List of Symbols xviii

1 Introduction 1
1.1 Scope and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mobility management . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Energy management . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions and Research Outcome . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Research Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 12
2.1 Mobility Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Wireless Information-based Approaches . . . . . . . . . . . . . . . . 13
2.1.2 Sensing Information-based Approaches . . . . . . . . . . . . . . . . 15

2.2 Energy Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Local and Centralised Approaches . . . . . . . . . . . . . . . . . . . 18

vi



CONTENTS vii

2.2.2 FL-based Load Forecasting . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 FL Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 FL Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 FL Applications in Wireless Networks . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Proactive Beam Blockage Prediction in Vision-aided UDNs 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Proposed CV-assisted PHO Framework . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Schematic Diagram of the Proposed Framework . . . . . . . . . . . 40
3.4.2 Object Detection and Localisation . . . . . . . . . . . . . . . . . . . 42
3.4.3 Multivariate Regression: Learning and Prediction . . . . . . . . . . 44
3.4.4 Optimal HO Trigger Distance . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 Proactive Handover Mechanism . . . . . . . . . . . . . . . . . . . . 49

3.5 Performance Evaluation and Results . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Blockages Prediction in Dynamic Vision-aided UDNs with Distributed
Learning 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 CV-assisted Dynamic Blockage Prediction and PHO . . . . . . . . . . . . . 61

4.5.1 Key Idea and Schematic Diagram . . . . . . . . . . . . . . . . . . . 61
4.5.2 Objects Detection and Users/Obstacles Discrimination . . . . . . . 62
4.5.3 Model Training and Inference: FL Approach . . . . . . . . . . . . . 63
4.5.4 Optimal PHO Trigger Point . . . . . . . . . . . . . . . . . . . . . . 63
4.5.5 PHO Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Performance Evaluation and Results . . . . . . . . . . . . . . . . . . . . . 64
4.6.1 FL-based Multi-output Model Development . . . . . . . . . . . . . 65
4.6.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS viii

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Radar-aided Dynamic Blockages Recognition in UDNs with Distributed
Learning 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Channel and Blockage Models . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Radar Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . 77
5.5 The Proposed RaDaR Framework . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Overview and Schematic Diagram . . . . . . . . . . . . . . . . . . . 79
5.5.2 Radar Measurements Processing . . . . . . . . . . . . . . . . . . . . 82
5.5.3 FL Design for Model Training . . . . . . . . . . . . . . . . . . . . . 84
5.5.4 Optimal HO Trigger Point . . . . . . . . . . . . . . . . . . . . . . 89
5.5.5 PHO Procedure and Latency Minimisation . . . . . . . . . . . . . . 89

5.6 Performance Evaluation and Results . . . . . . . . . . . . . . . . . . . . . 90
5.6.1 Dual-output Model Development . . . . . . . . . . . . . . . . . . . 90
5.6.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Optimising Power Consumption in UDNs: Introducing FedraTrees for
Lightweight Distributed Learning 96
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Preliminaries and background . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Long Short-Term Memory Networks . . . . . . . . . . . . . . . . . 99
6.2.2 Light Gradient Boosting Model . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Federated Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Proposed FedraTrees Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.1 FedraTrees in LGBM-based FL . . . . . . . . . . . . . . . . . . . . 101
6.3.2 Delta-based FL Stopping . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Performance Evaluation and Results . . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Dataset Pre-processing and Evaluation Methods . . . . . . . . . . . 104
6.4.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



CONTENTS ix

7 Conclusions and Future Works 113
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 CV-aided PHO Frameworks Under Low-quality Imaging. . . . . . . 115
7.2.2 Exploring RIS and UAV Technologies as Alternatives for PHO . . . 116
7.2.3 Enhancing FedraTrees Through Adaptive Feature Selection . . . . . 117



List of Tables

2.1 Existing research about the challenge of beam blockage in high-frequency
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The most common camera resolutions with associated image transmission
times over 10 Gbps links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Considered camera properties. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Sample of the training dataset. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Hyperparameters of the NN model. . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Optimal trigger distance based on different user speeds. . . . . . . . . . . . 49

4.1 Hyperparameters of the NN model. . . . . . . . . . . . . . . . . . . . . . . 65
4.2 SPHO versus PShift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Radar system parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 The parameters adjusted in the testbed to reflect a practical wireless

communication system. The SBS is positioned at the Cartesian origin in
the middle of the street, and [ · , · ] indicates the range from which values
are chosen based on the corresponding distribution. . . . . . . . . . . . . . 86

5.3 Study of SPHO [%] versus PShift for different SBSs. . . . . . . . . . . . . . 91

6.1 Tetouan dataset features used for load forecasting . . . . . . . . . . . . . . 105
6.2 Performance comparison between LSTM and LGBM models when

performing centralised model training. . . . . . . . . . . . . . . . . . . . . 108

6.3 A study to determine the best values of delta and window size for LSTM-
based FedAvg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 A study to determine the best values of delta and window size for LGBM-
based FedraTrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Performance results of the FedraTrees compared to the FedAvg and the
Persistence model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Performance results of the FedraTrees compared to the FedAvg and
Persistence models when considering only the top four features. . . . . . . 111

x



List of Figures

2.1 Types of FL architecture (a) Classical FL in client-server architecture (b)
HFL in client-edge-server architecture. . . . . . . . . . . . . . . . . . . . . 21

2.2 Sequential operation steps of FL involving K participants. . . . . . . . . . 23
2.3 FL in various wireless networks; FL algorithm in the context of single or

multiple wireless networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The proposed system model: portion of an UDN including one MBS and
three SBSs each equipped with an RGB camera. . . . . . . . . . . . . . . . 37

3.2 Schematic diagram of the proposed framework. . . . . . . . . . . . . . . . . 41
3.3 Using ODL to detect objects and determine their locations. This

information is used to determine the speed of the moving object. . . . . . . 43
3.4 A two-hidden layer NN to perform regression. . . . . . . . . . . . . . . . . 45
3.5 Multivariate regression model training and validation loss versus number of

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Optimal trigger distance for a user with a speed of 30 mph. . . . . . . . . . 48
3.7 Locating the origin of the Cartesian coordinates in ViWi scenarios. . . . . 51
3.8 (a) Using ViWi information from colocated cameras direct view scenario to

model SBS2 in the system model, and (b) ViWi information from colocated
cameras blocked view scenario shows a similar RSS pattern when there is
no blockage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Determining the RSS from SBS2 at trajectory y= 9 using the curve fitting
tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Performance evaluation of the proposed framework. (a) RSS from SBS1 and
SBS2, (b) Using the CV-assisted PHO algorithm to detect BLOCK events
and trigger PHO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 The normalised RSSI as function of the user location when the user speed
is fixed at 30 mph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 Measuring the QoE with and without PHO. . . . . . . . . . . . . . . . . . 56

4.1 The proposed system model: portion of an UDN including one MBS and
two SBSs each equipped with a vision sensor. . . . . . . . . . . . . . . . . 60

xi



LIST OF FIGURES xii

4.2 Schematic diagram of the proposed framework. . . . . . . . . . . . . . . . . 62
4.3 Classification and regression model performance. . . . . . . . . . . . . . . . 65
4.4 The distribution of the TD offset of the samples with successful PHO. . . . 66
4.5 The impact of different relative speeds on the PHO success rate. . . . . . . 67
4.6 Comparison of the average latency between the reactive HO and the

proposed CV-aided PHO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 The RSS percentage drop due to performing reactive and PHO, and how

much this drop affects the QoE measured through MOS. . . . . . . . . . . 69

5.1 The proposed system model of the RaDaR framework. . . . . . . . . . . . 74
5.2 (a) Radar is used to gather situational information, (b) this information is

used to generate the localisation vector of the object. . . . . . . . . . . . . 77
5.3 Schematic diagram of the proposed framework. . . . . . . . . . . . . . . . . 81
5.4 Obstacle detection analysis: (a) the use of 3D line equation and y = yo

plane to determine the point of intersection. Assuming object’s height is
ho, then (b) ho > zI , means a blockage, (c) ho = zI , means a blockage (d)
ho < zI , means no blockage. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Diagram of time parameters and descriptions. . . . . . . . . . . . . . . . . 84
5.6 The structure of the developed dual-output NN model. . . . . . . . . . . . 85
5.7 Labeling user-object data samples: (a) blockage status of various cases, (b)

A case demonstrating the calculation of the Tb. . . . . . . . . . . . . . . . 87
5.8 The classification and regression performance of the dual-output NN model

(a) without and (b) with tuning. . . . . . . . . . . . . . . . . . . . . . . . . 88
5.9 The distribution of the TDO samples that lead to a successful PHO for

different SBSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.10 The normalised RSS, blockage events, and best beam index in a Reactive-

HO communication system. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.11 The impact of blockages on the user’s RSS and how RaDaR is able to detect

blockages and ensure seamless connectivity. . . . . . . . . . . . . . . . . . . 94
5.12 Latency and throughput study. . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 LSTM memory cell with gating units. . . . . . . . . . . . . . . . . . . . . . 99
6.2 Ensemble of DTs are combined to boost and form the LGBM model. . . . 100
6.3 FedraTrees sequential operation steps for the energy forecasting task

considering C SBSs as clients. . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Illustration of the delta-based FL stopping algorithm; the current j

communication round has a better model that replaces the previous one,
emptying the window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF FIGURES xiii

6.5 Tetouan dataset preparation generated hourly power consumption of the
three zones in addition to the aggregated power. . . . . . . . . . . . . . . . 105

6.6 The importance of each feature in forecasting power consumption. . . . . . 107
6.7 MAE as a function of different features that contribute to the prediction

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.8 MAE as a function of the communication rounds needed to train the global

model of FedAvg and FedraTrees. . . . . . . . . . . . . . . . . . . . . . . . 110
6.9 Forecasting power consumption for three days. . . . . . . . . . . . . . . . . 111
6.10 MAE as a function of the communication rounds needed to train the global

model of FedAvg and FedraTrees when considering only the top four features.111
6.11 Forecasting power consumption for three days when considering only the

top four features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



List of Abbreviations

1G First Generation
2D Two Dimension
3D Three Dimension
3G Third Generation
3GPP 3rd Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
6G Sixth Generation
Adam Adaptive Moment Estimation
ADC Analog-to-Digital Converter
AI Artificial Intelligence
AirComp Over-the-Air Computation
AMI Advanced Metering Infrastructure
AoA Angle of Arrival
AoI Area of Interest
AP Access Point
AR Autoregressive
AWGN Additive White Gaussian Noise
B5G Beyond Fifth Generation
BS Base Station
BW Bandwidth
C-RAN Cloud Radio Access Network
CDF Cumulative Distribution Function
CNN Convolutional Neural Network
CS Charging Station
CSIT Channel State Information at the Transmitter
CSI Channel State Information
CV Computer Vision
DC Dual Connectivity
DL Deep Learning

xiv



LIST OF ABBREVIATIONS xv

DNN Deep Neural Network
DoS Denial of Service
DPT Dynamic Positioning Table
DT Decision Tree
EFB Exclusive Feature Bundling
eMBB Enhanced Mobile Broadband
EV Electric Vehicle
F-RAN Fog Radio Access Network
F-RGB Flat Red-Green-Blue
FANET Flying Ad-Hoc Network
FedAvg Federated Averaging
FedBoost Federated Boosting
FedDist Federated Distance
FedProx Federated Proximal
FedraTrees Federated Trees
FedSGD Federated Stochastic Gradient Descent
FedSplit Federated Splitting
FedVoting Federated Voting
FEEL Federated Edge Learning
FFT Fast Fourier Transform
FL Federated Learning
FMCW Frequency-Modulated Continuous Wave
FoV Field of View
FTL Federated Transfer Learning
GBDT Gradient-Boosted Decision Tree
GD Gradient Descent
GOSS Gradient-Based One-Side Sampling
GPS Global Positioning System
HetNet Heterogeneous Network
HFL Hierarchical Federated Learning
HO Handover
IF Intermediate Frequency
IIoT Industrial Internet of Things
IoT Internet of Things
IoV Internet of Vehicles
IMT International Mobile Telecommunications
ITS Intelligent Transportation System
ITU International Telecommunication Union



LIST OF ABBREVIATIONS xvi

LGBM Light Gradient Boosting Model
LiDAR Light Detection and Ranging
LoS Line of Sight
LSTM Long Short-Term Memory
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBS Macro Base Station
MCS Mobile Crowd Sensing
MEC Multi-Access Edge Computing
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MLR Multiple Linear Regression
mMIMO Massive Multiple-Input Multiple-Output
mMTC Massive Machine-Type Communication
mmWave Millimetre Wave
MOS Mean Opinion Score
MSE Mean Square Error
NLoS Non Line of Sight
NN Neural Network
Non-IID Non-Independent and Identically Distributed
NP Non Polynomial
NR New Radio
ODL Object Detection and Localisation
OFDM Orthogonal Frequency Division Multiplexing
PHO Proactive Handover
PSO Particle Swarm Optimisation
QoE Quality of Experience
QoS Quality of Service
RaDaR Radar-Aided Dynamic Blockages Recognition
RadMAC Radar-Based Medium Access
RAN Radio Access Network
ReLU Rectified Linear Unit
ResNet Residual Network
RF Radio Frequency
RGB Red-Green-Blue
RIS Reconfigurable Intelligent Surface
RL Reinforcement Learning



LIST OF ABBREVIATIONS xvii

RNN Recurrent Neural Network
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RTP Real-Time Protocol
SBS Small Base Station
SD Standard Definition
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-Sampling Technique
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
THz Terahertz
UAV Unmanned Aerial Vehicle
UCA Uniform Circular Array
UDN Ultra-Dense Network
UE User Equipment
ULA Uniform Linear Array
URLLC Ultra-Reliable Low-Latency Communication
VEC Vehicular Edge Computing
ViWi Vision Wireless
XGBoost Extreme Gradient Boosting
XR Extended Reality



List of Symbols

(·)[t] Function at time instant t
(·)T Transpose of (·)
(·)H Hermitian transpose of (·)
αp Channel gain associated with the arrival of path p

β 3D line scalar parameter
⋎ Object movement direction
∆d Horizontal displacement of a moving user
ℓ(·) Pulse-shaping filter
ϵ Proportion of users who succesfully perfromed PHO
η Learning rate parameter
b̂ Predicted value of blockage
b̂u,o Predicted blockage status for a data sample containing a user u and an object o
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Chapter 1

Introduction

1.1 Scope and Motivation

Wireless communication systems have undergone a progressive series of improvements,
evolving from the first generation (1G) to the current fifth generation (5G) networks. As
per the International Telecommunication Union (ITU) and the 3rd generation partnership
project (3GPP), 5G wireless networks are designed to deliver enhanced quality of
experience (QoE) by offering improved data rate, reliability, capacity, and energy efficiency.
In light of this, 5G systems were mapped out based on three fundamental concepts, namely,
enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC),
and massive machine-type communication (mMTC) [1]. These concepts pave the way
for the emergence of novel technological trends as well as the evolution of connected
intelligence paradigms, promoting massive scale connectivity [2]. Notably, the number
of internet of things (IoT) devices per human was 1.84 in 2010, with a total of 12.5
billion devices, but by 2020, this figure had risen to 6.58 devices per human, reaching
nearly 50 billion devices [3]. With the remarkable revolutionary advancements in the
field of wireless communications, it is envisioned that these numbers will continue to
rise exponentially. This surge is driven not only by technological advancements but
also by the imperative to address societal challenges such as emergency response and
public safety, interconnected transportation, and healthcare enhancements through remote
patient monitoring. Moreover, the introduction of services like extended reality (XR) and
massive IoT, and the expected future applications such as holographic communications
and multi-sense experience, impose much more stringent requirements beyond what 5G
networks can currently provide and highlight the necessity for the next level of network
improvements. Consequently, research efforts will shift towards beyond fifth generation
(B5G) and sixth generation (6G) communication networks.

Millimetre wave (mmWave) and terahertz (THz) technologies play a crucial role in
enabling next-generation wireless networks. Embracing new high-frequency bands is

1
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essential to achieve the global connectivity vision, offering significant improvements in
terms of multi-Gbit/s throughput, supporting a massive number of devices, and delivering
ultra-low latency and reliable connections [4]. This transition to higher frequency bands
changes the paradigm of future wireless networks to small coverage cells, and thus, forming
the concept of ultra-dense networks (UDNs) [5].

High-frequency wireless networks are indispensable for meeting the ever-increasing
demands for broadband access and unlocking a wide range of revolutionary applications,
including intelligent healthcare, holographic telepresence, and autonomous driving.
Nevertheless, UDNs are accompanied by certain challenges that must be addressed before
their widespread deployment. One of the challenges arises from the need to accommodate
a massive number of connected devices, leading to an unprecedented surge in data traffic
that requires efficient storage and processing, giving rise to the concept of big data [6].
Artificial intelligence (AI), particularly machine learning (ML), emerges as a cutting-edge
technology to leverage big data for delivering pervasive smart services and applications [7].
Traditional ML algorithms perform model training centrally on cloud-based servers, where
datasets are collected, transmitted, and stored in a single location, then processed to
train ML models using one or multiple servers [8]. While this approach has proven
effective with advantages in terms of model convergence, consistency, and transparency,
its centralised nature comes with some limitations: (i) lack of built-in privacy, raising
concerns about security and data privacy. (ii) Network congestion and elevated
energy consumption due to increased communication overhead between end devices and
the cloud. (iii) Propagation delay experienced in centralised ML techniques, limiting
their scalability and suitability for real-time applications. These limitations necessitate
exploring distributed and decentralised training mechanisms, leading to the introduction
of federated learning (FL), a collaborative ML algorithm that leverages datasets from
distributed entities for local model training without the need to exchange raw data with
a central server. In the context of this thesis, FL serves as a pivotal investigative tool,
examining its potential to help address specific challenges related to mobility management
and energy optimisation within UDNs.

1.1.1 Mobility management

Mobility management presents a critical aspect that poses substantial challenges in UDNs.
High-frequency bands operating such networks suffer significant challenges stemming from
their electromagnetic properties, including atmospheric attenuation, propagation loss,
and susceptibility to blockages. Therefore, multiple-input multiple-output (MIMO) and
beamforming techniques are becoming indispensable enablers in next-generation wireless
networks. MIMO can compensate for the attenuation and propagation losses using large
antenna arrays to generate narrow line of sight (LoS) beams, which improve the quality of
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the received signal. Nevertheless, LoS links experience rapid and temporary fluctuations
in the received signal strength (RSS) when obstructed by obstacles, especially in dynamic
environments. This may lead to frequent handovers (HOs), which negatively impact the
network latency, reliability, and energy efficiency. HO is a fundamental mechanism in any
wireless network that transfers the ongoing call or data session from one base station (BS)
to another. The 3GPP organisation has introduced predefined measurement events; if one
occurred, HO must be conducted [9]. Typically, a user equipment (UE)-assisted network
for controlling HO receives a measurement report from the user with information about
the RSS/quality of a specific downlink reference signal from the serving BS and other
neighbouring BSs. Upon meeting specific event criteria, the network will trigger the HO
process and negotiations eventuate between the serving BS and the target BS to complete
handing the user to the new BS, thus ensuring user connectivity.

The structural downscaling of communication systems has considerably intensified the
complexities of addressing mobility-related issues, including beam blockage and frequent
handovers [10]. Unlike in third generation (3G) and fourth generation (4G) networks,
mobility management in B5G networks is accompanied with negative impacts at both
user and network levels. Specifically, frequent HOs lead to increased data transmission
delays and throughput degradation at the UE level, as well as higher power consumption
and poorer network quality of service (QoS), especially when the target BS rejects the
request due to full resource occupation. This problem is exacerbated in smart cities due
to the highly dynamic environment and the existence of blocking objects that can shade
the serving beam. For instance, a link budget undergoes a 20 dB or more power loss
when the connection is blocked by obstacles, such as human bodies or vehicles [11, 12].
Such a sudden drop in the received power affects the signal quality and degrades the
data rate of the communication link, making the network unreliable for time-sensitive
applications. Thus, it is crucial to comprehensively address the challenge of beam blockage
to fully exploit the potential of mmWave and THz bands and to develop reliable wireless
communication systems.

1.1.2 Energy management

Energy management is another essential aspect considered in this thesis to aid fulfilling
the stringent energy efficiency requirement of next generation wireless networks. The
study in [13] indicates that UDNs exhibit higher energy consumption in comparison to
their 4G network counterparts. This surge in energy utilisation is primarily attributed to
the massive deployment of small base stations (SBSs), a configuration that contributes
significantly to the network’s overall energy consumption, accounting for as much as 80%
of the total energy expenditure. Moreover, deploying edge learning across the extensive
number of SBSs and exploring novel research directions involving sensors integration, such
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as cameras and radars to aid UDN operations, significantly intensifies energy consumption.
Consequently, managing energy usage effectively becomes a paramount challenge in these
advanced networks.

1.2 Problem Statement and Objectives

For the efficient deployment of future UDNs and ensuring their readiness in delivering
anticipated services to a large number of heterogeneous users, irrespective of time
or location, it is essential to proactively tackle potential design intricacies and post-
deployment challenges that could arise. For example, with the utilisation of high-
frequency multiarray antennas that offer beamforming capabilities, UDNs are expected
to enjoy beam-based communications. Nonetheless, the reliance on high-frequency LoS
communications renders these systems more susceptible to the adverse impacts of blockage
and penetration losses. Beam blockage is a complicated challenge facing high-frequency
wireless networks that requires moving beyond mere network detection towards proactive
prediction and prevention strategies to ensure uninterrupted functionality. Diverse sensor
types, such as cameras, light detection and rangings (LiDARs), radars, ultrasonic sensors,
microphones, and global positioning system (GPS), hold the potential to enhance the
operational effectiveness of high-frequency communication systems. Hence, this thesis aims
to tackle the beam blockage challenge through the convergence of the emerging paradigm of
sensing-aided wireless communication and the application of AI techniques. Furthermore,
the introduction of new components into network operations and the implementation
of edge learning contribute to elevated energy consumption. This thesis also intends
to address this aspect by proposing an innovative solution that aids in predicting and
managing energy consumption in UDNs.

Towards achieving highly reliable, efficient, and seamlessly performing UDNs, this
thesis adopts a systematic approach, focusing on the examination of one framework at
a time. Specifically, the thesis begins with considering the beam blockage in vision-
aided UDNs and investigates the feasibility of adopting centralised learning techniques
in such problems. This deliberate starting point with a centralised approach establishes
a foundational step and offers thorough insights for subsequent studies, particularly
with more advanced approaches such as distributed learning in later contributions.
Subsequently, the investigation transitions towards the application of FL to resolve the
same problem, but within a more complex service environment. Next, the study explores
the benefits derived from the integration of radar sensors as an alternative to vision sensors
for the beam blockage problem, while also leveraging the FL mechanism. Lastly, the thesis
delves into methods aimed at enhancing energy management strategies to optimise energy
efficiency.
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1.2.1 Problem Statement

Beam Blockage Prediction in Sensing-aided UDNs

The issue of beam blockage is examined across three distinct scenarios, each designed to
reflect various practical environmental conditions.

Scenario 1) A single moving user with a stationary blocking object in vision-aided
UDNs. High-frequency wireless networks, exemplified by UDNs, are developed to serve
highly dynamic and ever-changing environments. Within such settings, LoS beams are
susceptible to obstruction by diverse objects, ranging from immobile structures like
buildings to mobile entities such as humans and vehicles. In the event of a blockage, the
network reactively detects it, but its options are confined to attempting user reconnection
via beam switching or HO. However, the reactive nature of blockage detection is
unfeasible and imposes numerous drawbacks on the network and users, including resource
consumption and poor QoE. As a result, there is a need to proactively predict blockages
and transition from reactiveness to proactiveness when detecting blockages. Such proactive
measures can be achieved using camera sensors capable of gathering environmental data,
thereby augmenting network awareness. While the collected visual data holds great
potential, careful processing is essential to extract the required information for training
a specially designed neural network (NN) model. Moreover, this scenario delves into the
feasibility of adopting a centralised learning methodology to execute the model training
process.

Scenario 2) Multiple moving users and dynamic/stationary blocking objects in vision-
aided UDNs. In this scenario, the beam blockage problem resembles that of the first
scenario, but with consideration of more complex environment characterised by the
presence of multiple mobile users and many stationary or moving blocking objects. Here,
the processing of visual data is more complex, necessitating the classification of each
object within the red-green-blue (RGB) images, differentiation between wireless users
and blocking objects, and the identification of the target user amidst other wireless users
depicted in the captured images. Moreover, due to the large size and volume of visual
data, transmitting this data to a centralised server for processing and training would lead
to significant depletion of network resources and raises privacy concerns. Consequently,
there is a need to move from conventional centralised learning paradigms to distributed
learning methodologies, specifically employing the FL approach.

Scenario 3) Stationary users and dynamic blocking objects in radar-aided UDNs.
Similar to the first and second scenarios, the third scenario considers the beam blockage
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problem in high-frequency wireless networks. However, the incorporation of vision
sensors introduces limitations that may hinder achieving an optimal solution for blockage
prediction and prevention. The deployment of vision sensors might not always be viable
due to regulatory and privacy constraints. Additionally, image quality can be compromised
under conditions of low-light and adverse weather. Hence, an exploration of alternative
sensor modalities that can provide greater enhancements to the beam blockage framework
becomes imperative. In light of their numerous advantages and inherent capacity to
address the limitations of vision sensors, radar sensors are considered in this scenario
to aid the network’s decision-making process. Moreover, this scenario also examines the
use of FL approach, offering noteworthy advantages. Alongside the core attribute of FL
in maintaining data privacy, which holds relatively less significance in the context of radar
data due to its inherently reduced privacy risk, FL yields three additional pivotal benefits:
scalability, knowledge sharing, and resource efficiency.

Optimisisng Power Consumption in UDNs

UDNs have emerged as a prominent network paradigm to fulfil the stringent requirements
of international mobile telecommunications (IMT)-2020 for 5G networks [14]. In
qualitative terms, UDN signifies a network characterised by considerably enhanced radio
resource density compared to prevailing networks. This, in turn, yields a notably
more compact configuration for small cell networks, wherein inter-site distances between
SBSs are reduced to a mere few meters [15]. The extensive deployment of SBSs and
their operational activities are inherently tied to an increase in energy consumption,
posing challenges in realising the envisioned energy efficiency objectives of future wireless
networks. Moreover, the new research concept of sensing-aided wireless communications,
coupled with the integration of diverse sensor types at the network edge, stands to
amplify power consumption at the network level. In addition, the execution of FL
mechanism at the network edge contributes to an elevated overall energy consumption
due to the communication between FL server and clients, alongside the computational
intensity inherent in the mathematical operations of ML models. As such, there is a
need to optimise the network’s power consumption by developing novel lightweight energy
forecasting frameworks that can help predict future power needs and effectively manage
power resources.

1.2.2 Objectives

In light of the previously mentioned technical problems, the aim of this thesis is outlined
within the following objectives:

O1: Conduct an in-depth exploration of the mobility and energy management approaches
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within UDNs. The discussion will explore diverse strategies addressing the challenge
of beam blockage, as well as frameworks predicting network energy consumption for
optimised network performance. Additionally, conduct a comprehensive review of
the FL concept, covering its architecture, categories, and operational principles.
Furthermore, provide an elaboration into the implementation of FL in state-of-the-
art wireless applications, highlighting its role in enhancing data privacy, network
efficiency, and collaborative learning across distributed entities within the wireless
domain.

O2 : Explore a new research direction known as vision-aided wireless communication
empowered with AI to tackle beam blockage problems inherent in high-frequency
wireless networks. Computer vision (CV) algorithms enable real-time environmental
perception, anticipating and navigating potential blockages caused by obstacles.
Moreover, the integration of AI facilitates adaptive learning for continuous
improvement in predicting and responding to blockage scenarios. Simultaneously,
investigate the feasibility of using both centralised and decentralised training
methodologies to develop vision-aided proactive blockage prediction frameworks.
Centralised models leverage cloud-based servers for unified processing, while
decentralised methods distribute the training process across local entities, promoting
adaptability to diverse environments.

O3 : Examine the advantages of integrating radar sensors instead of visual sensors to
tackle the beam blockage problem within UDNs. Assess the distinct benefits of radar
technology, such as enhanced accuracy in obstacle detection, operability in low-light
conditions, and resilience to adverse weather. Additionally, investigate the potential
of the FL approach in facilitating knowledge sharing among distributed entities,
enhancing scalability, and optimising resource efficiency. The adaptive nature of FL
aligns seamlessly with the dynamic conditions of UDNs, providing an intelligent and
self-improving mechanism for proactive blockage prediction. This exploration aims
to foster the development of radar-aided proactive blockage prediction frameworks.

O4 : Develop a new FL aggregation algorithm tailored to integrate decision tree
(DT)-based models within the FL framework. Then, explore its effectiveness
in smart energy application, assessing its potential to meet the energy-efficient
requirements of UDNs. Additionally, conduct a comparative analysis against modern
energy forecasting frameworks, evaluating both computational and communication
efficiency. This research objective aims to advance energy management strategies
within UDNs through the development and assessment of the proposed FL
aggregation algorithm.
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1.3 Contributions and Research Outcome

Based on the objectives outlined earlier, this research aims to propose innovative AI-
driven frameworks tailored to optimise the mobility and energy management facets of
next-generation wireless systems, thereby ensuring their seamless service provisioning.
This section highlights the main contributions and research outcomes of this thesis.

1.3.1 Contributions

The major contributions of this thesis are summarised and itemised as follows:

• A comprehensive conceptual foundation of the FL algorithm’s operational principles
is presented, encompassing a thorough elucidation of its architecture, categories,
operation, and optimisation strategies. Furthermore, an in-depth exploration of the
critical factors motivating the deployment of FL in modern wireless applications is
undertaken, considering relevant performance metrics and ongoing research efforts.
The outcome of this contribution is published in [J2].

• An innovative approach to addressing beam blockage and frequent HOs in next-
generation wireless networks is proposed through the integration of CV and
NN algorithms. The incorporation of CV enhances network awareness of the
surroundings, while the NN model predicts occurrences of blockages due to
stationary obstacles. Moreover, a new HO event, termed BLOCK, is introduced
as an extension to the standardised events defined by 3GPP. This event detects the
presence of obstacles and users moving towards blocked areas, making it applicable in
B5G and 6G networks. This contribution also includes an analysis to determine the
optimal HO triggering point to maintain a high level of user QoE once the BLOCK
event is detected. The outcome of this contribution is published in [J1].

• An advanced CV-aided blockage prediction for multi-user/objects UDNs is
formulated. This involves the development of a comprehensive end-to-end latency-
aware framework that leverages visual data to proactively predict blockages and
perform proactive handover (PHO), aiming to maximise users’ QoE. In addition, an
FL training mechanism is adopted as a distributed learning approach rather than
the conventional centralised learning method to train the model locally in each SBS
where the visual information resides. This strategy secures data privacy, reduces
communication overhead, and ensures secure data handling. The outcome of this
contribution is published in [C4].

• A novel radar-aided dynamic blockages recognition (RaDaR) framework is developed
to improve the reliability of federated UDNs by integrating radars for the anticipation



CHAPTER 1. INTRODUCTION 9

of LoS link blockages while considering latency and QoE metrics. RaDaR hinges
upon the utilisation of FL algorithm to perform collaborative model training at
each SBS by using information acquired from radar placed at the top of the SBS.
The FL approach provides the framework with vital features, including scalability,
knowledge sharing, and conserving network resources. The efficacy of the RaDaR
framework is evaluated using a large-scale real-world dataset comprising mmWave
channel information and radar data, collectively ensuring the framework’s validation
and effectiveness within real-world scenarios. The outcome of this contribution is
currently under review for publication, as indicated in [J5].

• A novel lightweight aggregation algorithm, named federated trees (FedraTrees), is
proposed with the purpose of optimising energy consumption in UDNs. FedraTrees
leverages DT-based models within the FL setup to enhance performance metrics,
particularly in energy forecasting scenarios, by reducing required communication
rounds and computation time. The FedraTrees approach incorporates a monitoring
mechanism that observes the progress of the FL training process and halts it when
further improvements are no longer attainable. Comparative results against the
commonly employed long short-term memory (LSTM)-based federated averaging
(FedAvg) technique demonstrate a significant enhancement in overall performance
through the implementation of the FedraTrees framework. The outcome of this
contribution is published in [J4].

1.3.2 Research Outcome

The outcomes of this thesis, along with collaborations with fellow research students, have
resulted in the following publications:
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1.4 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 evaluates the methodologies
discussed in the literature for mitigating mobility and energy management challenges
within high-frequency wireless networks and offers an in-depth overview of the FL concept.
Chapter 3 proposes a novel framework that employs vision-aided wireless communication
and centralised ML approaches to effectively address the beam blockage problem in UDNs.
Building upon this, Chapter 4 introduces a more advanced framework that addresses the
beam blockage problem within UDNs by considering complex scenarios involving multiple
users and blockages. This is accomplished through the application of collaborative FL
training mechanisms. In Chapter 5, a pioneering approach that combines radar technology
and the FL methodology is presented. This framework is designed to effectively address
beam blockage challenges in real-world scenarios within UDNs. Chapter 6 is dedicated to
proposing an energy-efficient framework that is tailored to fulfill the energy efficiency
requirements of next-generation wireless networks. Finally, Chapter 7 concludes the
dissertation and discusses potential future research extensions.
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Chapter 2

Literature Review

In this chapter, the complexities of mobility management within high-frequency
communications systems are introduced, with a specific spotlight on the beam blockage
problem. Various adopted approaches aimed at mitigating this issue are presented.
Afterwards, the focus shifts towards discussing the energy management issue, which holds
the potential to impact the energy efficiency of next-generation wireless networks. It also
delves into the techniques adopted in the literature for predicting energy consumption,
thereby facilitating the formulation of enhanced energy management strategies. Finally,
a brief exploration of the fundamental aspects of FL is presented. This includes an
examination of its architectural underpinnings, categorical classifications, operational
mechanisms, and strategies employed for model aggregation. Then, it delves into an
extensive exposition of the diverse applications of FL within wireless communication
systems. This comprehensive review aligns with the objectives outlined in O1 .

2.1 Mobility Management

Despite the numerous benefits gained when shifting the operational frequencies of next-
generation communication systems from lower bands (sub-6GHz) to the higher bands
(mmWave and THz), reliance on high-frequency bands introduces critical mobility
challenges, such as link blockage and frequent HOs. To this end, many attempts
have been made to provide solutions to address the connectivity issue in high-frequency
wireless networks. This section presents a comprehensive review of state-of-the-art studies
that have proposed solutions to mitigate the issue of beam blockage in high-frequency
communication systems. These works can be categorised into two main strategies in
terms of data acquisition for training the ML models: (i) wireless information-based
approaches and (ii) sensing information-based approaches. Table 2.1 briefly outlines the
key techniques, including their advantages and limitations.

12
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2.1.1 Wireless Information-based Approaches

These studies are further classified into three distinct groups: those designed for indoor
environments [16–19], those designed for outdoor environments [20–22], and those that
are suitable for use in both indoor and outdoor settings [23, 24]. In order to predict the
quality of multi-directional links in mmWave systems, the paper [16] proposed utilising an
LSTM network to capture the long-term signal-to-noise ratio (SNR) dependencies across
mmWave links and predict the fluctuations in received power for one or more links in the
next time instant. Accurate anticipation of link quality can facilitate the communication
system in predicting link failure and choosing alternative robust channels to maintain
system connectivity. Nevertheless, the study did not allocate adequate time for resource
optimisation to address changes in link quality. The contribution in [17] was characterised
by the development of a recurrent neural network (RNN) predictor trained according to
the meta-learning concept and capable of predicting mmWave link blockages in indoor
industrial environments. Shared initialisation parameters are optimised based on SNR
observations from distinct deployments to decrease the necessary dataset size required
for any new deployment. Although meta-learning has shown promise in training models
to adapt to a variety of tasks, the risk of overfitting poses a significant challenge for
generalisation to unseen data.

The study described in [18] explored an online learning-based method for predicting
beam blockages in indoor hotspot scenarios using deep learning (DL). This approach
includes an offline learning phase, where a deep neural network (DNN) model is trained
on a fingerprinting database containing user positions, data traffic demands, and blockage
statuses. During the online prediction phase, the model predicts blockage statuses based
on the user’s location and traffic requirements. However, this approach has limited
scalability, as it is designed for a specific scenario. Additionally, it fails to proactively
predict blockages, leading to service interruptions and frequent HO issues. The proposed
work in [19] presented an online blockage detection and beam recovery algorithm for
mmWave indoor networks in Industry 4.0. The method uses a DNN model trained solely on
beam measurement reports to predict future beam states and the length of blockage events,
enabling the system to switch to alternative beams in advance, thereby reducing handover
delay and enabling a stable link quality with minimal reduction in data transmission rate.
However, the proposed framework has not been evaluated for speeds greater than 2 m/s,
which limits its applicability in real-world scenarios with faster-moving obstacles.

Moving to the outdoor methodologies, the contribution in [20] relied on controlling
the mmWave propagation channel by adopting reconfigurable intelligent surface (RIS)
technology to avoid blockages and facilitate beam management. By integrating
environmental awareness and users’ motion information into a DNN model, the network
can effectively select the optimal RIS among those deployed around the base station,
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maintaining link connectivity and optimising beam management while reducing network
operation overhead. One challenge associated with this approach is the increased
complexity in network design and operation, particularly with regard to coordinating
multiple reflective surfaces within a single network. The authors in [21] utilised the uniform
circular array (UCA) geometry for beamformers at both mobile and base stations to take
advantage of the two-dimensional scanning capability required for the proposed beam
recovery scheme for standalone mmWave networks. They propose the use of an LSTM
model trained on previous optimal beamforming and combining vectors obtained from
blockage observations to predict future blockages and identify the best beam directions
for the next time frame. However, such techniques may be inefficient in practical scenarios
as they assume a highly scattering environment and do not consider the link quality of
alternative non line of sight (NLoS) links. The study in [22] categorised blockage types
that affect mmWave links’ stability into three classes: self, static, and dynamic blockages.
Furthermore, the study proposed the use of convolutional neural network (CNN) with
Kalman filters to estimate channel state information (CSI) and reduce the interference
caused by the deployment of many base stations. The blockages are addressed through
different approaches, including optimal handover, connecting the user to the nearest BS,
and utilising drones as a BS while taking into account the CSI. However, implementing
these techniques increases network complexity, and the study lacks a clear strategy for
identifying blockages.

Based on dual band network operation, the authors in [23] exploited the sub-6GHz
uplink channel information to improve the reliability of mmWave downlink channels. The
decision is motivated by the spatial correlation between the two frequency bands. A DL
model is trained to determine if the LoS link is blocked or not by using a tuple of sub-6GHz
channel information and blocking status. However, this approach may not be practical
in real-world scenarios as it only classifies the channel status as blocked or unblocked
and cannot avoid mmWave link blockages. The contribution in [24] relied on utilising
the diffraction properties of signal propagation to provide an early warning of potential
obstructions in the hybrid sub-6 GHz and mmWave communication system. Diffraction
causes a significant amount of jitter in the received signal power just before a blockage
occurs. Furthermore, it has been observed that the lower the frequency, the earlier the
jitter sample appears. As a result, this study employs the diffraction characteristics of the
signals in sub-6GHz uplink channels to predict blockages by training an LSTM model.
However, incorporating both frequency bands increase the complexity and cost of the
communication system.
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2.1.2 Sensing Information-based Approaches

Similarly, while some of the sensing-aided works presented here are tailored for indoor
networks [25], the majority of them are designed for outdoor systems [26–30]. Notably,
the emerging research direction of exploiting CV for developing wireless communications
and tackling complicated problems in UDNs has gained much interest recently. For
example, the studies presented in [25] and [26] both harnessed LiDAR sensory information
to enhance the reliability of high-frequency networks. This was achieved by establishing an
understanding of the communication environment and proactively predicting potential link
blockages. In the methodology outlined by [25], two ML techniques were employed: a three
dimensional (3D) convolutional network and a gradient-boosting regression tree, to capture
the spatiotemporal features of the acquired time series point clouds. The experimental
outcomes reveal that the proposed approach can anticipate substantial attenuation in link
quality up to 1000 ms ahead. Conversely, the approach described in [26] involved the
collection of LiDAR point cloud sequencies, followed by the removal of static clusters.
The data was subsequently transformed into heat maps, which were then employed to
train a CNN architecture for link quality prediction. However, while LiDAR sensors have
showcased their effectiveness, certain limitations exist. Their coverage area is constrained,
and real-world scenarios often involve the fact that not every object within the environment
results in a blockage. The act of blocking a link is intricately tied to factors like the
locations/heights of users and base stations, as well as the dimensions of the detected
objects. Hence, the practical applicability of these studies may possess limitations.

Moving to camera-based approaches, the authors in [27] proposed a framework for
supporting blockage prediction in mmWave networks using the concept of semantic
communication. The framework extracts environment semantics from visual information
and serves two purposes: first, it protects user privacy and reduces system overhead
by retaining only the class and layout information of the data; and second, it aids in
channel-related downstream tasks such as blockage prediction. The developed network
architecture consists of an environment semantics extraction network, a feature selection
technique, a task-oriented encoder, and a decision network to predict the blockage state.
However, semantic communication relies on accurately understanding the visual scene
and extracting relevant information. Complex scenes with multiple objects and dynamic
changes can make scene understanding challenging, leading to errors in predicting beam
blockages. In [28] and [29], camera imagery and DL were leveraged to tackle the beam
blockage problem in mmWave systems. The proposed techniques predict the time series
of the mmWave received power to several hundred milliseconds in advance based on the
depth images of the served area, allowing for sufficient time to perform HO. However,
predicting the received power in advance does not necessarily suit HO decision problems.
Furthermore, it requires large quantities of training datasets and computational resources
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to prepare a model for accurate prediction. The authors in [30] utilised the visual sensory
information collected from the served area to train a DL model and predict beam blockages.
RGB images captured by a camera installed on each BS are labelled with the beam
blockage status and used to fine-tune the ResNet18 model to classify images based on
blockage status. However, the proposed technique does not predict in advance, so service
disconnection cannot be avoided.

The reviewed approaches in the domain of sensing-aided solutions for wireless
communications in UDNs showcase both notable benefits and drawbacks. The integration
of CV in addressing challenges within UDNs stands out as a promising avenue of research.
For instance, studies leveraging LiDAR sensors ( [25], [26]) demonstrate enhanced
reliability by proactively predicting link blockages. Nevertheless, these approaches face
limitations, such as restricted coverage area and the challenge of precisly determining the
objects causing blockages. Meanwhile, camera-based methods ( [27], [28], [29], [30]) offer an
alternative, employing CV and semantic communication to protect user privacy and aiding
in blockage prediction. However, challenges arise in accurately understanding complex
visual scenes, leading to potential errors in blockage prediction. While some techniques
predict mmWave received power in advance, ensuring time for HO, they require extensive
datasets and computational resources. Notably, certain camera-based approaches do not
predict in advance, posing challenges in avoiding service disconnection. This critical review
highlights the advancements made by these approaches while identifying gaps related
to coverage limitations, object-specific blockages, scene complexity, and the trade-offs
between prediction accuracy and real-time applicability.
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2.2 Energy Management

Energy efficiency in UDNs has been explored in the literature through diverse network-
related techniques, encompassing infrastructure optimisation [31], spectrum and resource
management [32], and innovative approaches like network slicing [33]. Complementing
these methodologies, this thesis aims to enhance energy efficiency by proposing a
lightweight energy forecasting framework. By accurately predicting future power needs,
the proposed framework enables proactive and strategic allocation of energy resources,
contributing to a more efficient and sustainable operation of the network. Importantly,
the existing literature lacks studies incorporating energy forecasting to achieve energy
efficiency in UDNs. Consequently, and taking into account that energy forecasting requires
load profiles regardless of the domain or area under investigation, this thesis examines
energy forecasting approaches within the context of smart grids. Subsequently, the thesis
examines local and central load forecasting methodologies before delving into cutting-edge
research leveraging FL frameworks for load forecasting.

2.2.1 Local and Centralised Approaches

Load profiles store energy/power consumption information in time-series data, which can
be predicted using several approaches, such as statistical and computational intelligence
methods. Statistical methods have been used in the literature for the short and medium-
term forecasting ranges, demonstrating favorable performance. For instance, the study
in [34] used the multiple linear regression (MLR) technique to verify its reliability in
forecasting energy demand, whereas the traditional autoregressive (AR) methodology was
used to predict electrical energy in [35]. Moreover, the studies in [36–38] benefited from
the combination of AR and moving average (MA) to improve the forecasting process.
Later, the focus on ML methods became dominant owing to the advantages of AI in
analysing substantial data volume. The contribution in [39] highlighted the use of the
support vector machine (SVM) to forecast the monthly electrical load of Taiwan. On the
other hand, numerous studies exploited NNs in the energy forecasting domain by virtue
of their impressive performance in various domains [40, 41]. RNN is also widely used in
smart energy, particularly LSTM and its variants [42,43].

Apart from NNs, DTs have also been used in the energy forecasting task. While
the DT approach is simple, it exhibits favorable performance when predicting future
energy consumption [44,45]. However, DTs alone have not seen widespread adoption due
to several limitations, including instability, susceptibility to overfitting, and performing
poorly with noisy and nonlinear data. Later, ensemble-based algorithms gained popularity
and were explored in the energy research domain. In general, ensemble techniques possess
attractive features that draw the research community’s attention, such as simplicity,
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usability, interpretability, and computational efficiency. For instance, the forecasting
performance of random forest was compared with NN in [46], demonstrating the
feasibility and effectiveness of both approaches in building energy applications. Gradient-
boosted decision tree (GBDT) and extreme gradient boosting (XGBoost) algorithms
were harnessed to predict future electricity loads and demonstrated their effecacy in [47]
and [48], respectively.

The proposed studies and frameworks mentioned above are generally based on a
centralised model training, where energy consumption information is transmitted across
the network and combined in a central location. However, this training scheme raises
privacy concerns. Load profiles hold sensitive information that can be used in various
dimensions like inferring operation patterns of networks, unauthorised data use, and data
selling, among others.

2.2.2 FL-based Load Forecasting

Few studies have begun to consider employing FL in the context of smart energy. For
example, [49] demonstrated the potential of using federated settings to predict electrical
load consumption patterns, assist load monitoring, and enable energy demand response.
The FedAvg technique was applied to aggregate LSTM models parameters and produce
a generalised global model. Similarly, FedAvg and LSTM were adopted in [50] to provide
a generalised electrical load forecasting model. The authors incorporated complementary
features related to calendar and weather conditions, in addition to sequences of previous
electrical loads, to improve the forecast model.

The study described in [51] investigated the significance of employing smart meters
in residential areas for short-term forecasting tasks using LSTM-based FL. Similarly,
the contribution in [52] evaluated the performance of FL versus centralised and local
training methods when using LSTM models for electrical load forecasting. The study
concluded that local learning is better suited to predict individual energy consumption
than FL. However, FL is necessary when a generalised forecasting model is required
and access to aggregated data is impossible. Very recently, the research in [53] adopted
the LSTM algorithm under the FL setting to forecast energy profiles. Two strategies
are considered: federated stochastic gradient descent (FedSGD) and FedAvg to perform
parameters aggregation. Experimental results demonstrated that FedAvg achieves better
accuracy and requires fewer communication rounds.

The aforementioned FL-based energy forecasting studies rely on DL algorithms,
specifically LSTM networks. Although LSTMs have been shown to achieve excellent
prediction accuracy, they require intensive processing duties that yield a heavy
computational burden.
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2.3 FL Background

2.3.1 FL Fundamentals

The concept of FL has attracted significant attention in academia and industry [54]. The
key principle of FL is to construct a generalised global model by performing distributed
model training. The recent advancement in edge devices’ communication and computation
capabilities and the large amount of data generated and stored locally on the devices
facilitate the spread of this emerging technology widely. This section presents the
fundamentals, architecture, categories, operation principles, and aggregation schemes of
FL algorithms.

FL Architecture

Based on the nature of the network, the architecture of FL can be categorised into classical
and hierarchical federated learning (HFL). The classical FL approach consists of two
main parts: the server and the participating clients [55], as illustrated in Fig. 2.1(a). At
the beginning of the FL process, the server initiates the training procedure by sharing
a new or pretrained model with the participating clients. After that, the clients will
personalise the received model by training it based on their local data, and then share
their local models with the server for aggregation and global model update. On the
other hand, HFL framework [56], depicted in Fig. 2.1(b), optimally fits in heterogeneous
networks that include different cell coverage. This architecture is introduced to alleviate
the bandwidth (BW) overhead at the FL servers, resulting from the large number of model
updates communicated from the clients. Furthermore, HFL can reduce the communication
latency experienced between the clients and the server by reducing the link distance. The
HFL framework consists of two stages; in the first one, the clients send and receive the
model parameters by communicating with a server located at the SBS, i.e., the edge server,
and the server performs local model aggregation. Meanwhile, in the second stage, the edge
servers send the aggregated models to a central server that can be located at the macro
base station (MBS) or in the cloud, in which the server performs edge model aggregation
for global model update and sends it back to the edge servers.

It is noteworthy that the FL server must have certain specifications to orchestrate the
FL process efficiently. These specifications are drawn from the considered ML technique
and the number of clients. For instance, training a DL model through many clients requires
a high server capacity, a huge computation capability, high-speed interfaces, and locating
the server in close proximity to the clients. On the other hand, the specifications may be
less stringent when considering simpler models of NNs and a few clients.
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Figure 2.1: Types of FL architecture (a) Classical FL in client-server architecture (b) HFL
in client-edge-server architecture.

FL Categories

Given the significant role of local datasets in realising efficient training and assuming
the data is structured in a two dimension (2D) matrix format where rows correspond to
data samples and columns represent features, FL systems can be classified based on the
data distribution characteristics between different parties into horizontal, vertical, and
federated transfer learning (FTL) [57].

1) Horizontal FL: This is the most common category of FL, also known as sample-
based FL. The distinctive characteristic of this category lies in the fact that various
parties’ datasets share an identical feature space while diverging in the sample space.
For example, consider two regional educational institutions with comparable interests
in monitoring research outcomes, which constitutes the feature space. However, these
institutions maintain distinct research groups, reflecting the sample space. This category
facilitates the adoption of a unified ML model with the same architecture for all datasets.
Therefore, the global model can be derived through the averaging of all local updates.
FedAvg technique [58] is an example of this type of FL system.

2) Vertical FL: This category, referred to as feature-based FL, comes into play when
multiple datasets share the same sample space, yet their feature spaces differ. For instance,
consider two different parties within the same city: a healthcare institute and an e-
commerce company that records customers’ purchasing behaviors. Their user sets likely
comprise local residents, creating a shared sample space. The objective here is to exploit
the diverse features from these two parties to construct a model predicting residents’
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future health statuses based on their buying patterns. When implementing vertical FL,
the participating parties may be curious to know each other’s data. In such cases, a
trusted third-party coordinator can ensure data confidentiality throughout the training
process. Alternatively, if a certain level of trust exists between the participating parties,
the necessity for a third party can be obviated, allowing one of the parties to take on the
role of coordinator.

3) FTL: When the dataset of different clients exhibits partial overlap in both feature
and sample spaces, FTL, also known as hybrid learning, emerges as the optimal choice.
FTL facilitates the transference of knowledge from one domain to another, enhancing the
learning outcomes. More specifically, a locally trained model from one party is conveyed
to another party, enabling the utilisation of insights gleaned from non-overlapping regions
to enhance the model training at the other party. The most common example of transfer
learning is evident in image classification. Various models are tailored for classifying
specific datasets, and with minor tuning, they can be repurposed to classify other dataset
types.

FL Operation

FL protocol consists of three main phases [59] detailed as the following:
1) Clients selection: While large-scale deployment stands as an appealing facet of FL,

in contrast to classical ML, the number of participating clients in model training can swiftly
escalate to thousands or even millions of devices. This enormous number of endpoints
reflects the capacity enhancements envisaged within B5G (1 million/km2) and 6G networks
(100/m3). As a result, end-device onboard capabilities and data distribution will vary
considerably among the participants, rendering client selection a critical design aspect
in FL. To address this challenge, various methods have been proposed, as exemplified
by [60]. In this work, the authors propose a technique that improves the time-to-accuracy
training performance by guiding FL developers in selecting participants even at the scale
of millions of clients.

2) Configuration: In this phase, the selected participants receive the initial model
parameters and proceed to train their local models using their respective datasets.
Specifically, upon the selection of participating devices, K edge nodes are ready to begin
the training process. Fig. 2.2 illustrates the FL’s architecture and the operation steps.
Each device, denoted as κ ∈ 1, 2, ...,K, has a local dataset, Dκ ∈ D1, D2, ..., DK consisting
of input-output pairs of samples (xi, yi), where xi, yi ∈ R. In step 1⃝, the FL server
initiatialises the global model designed for a specific task and shares it with the choosen
participants. Next, at the t-th iteration, each participating node obtains the model weights
Wt−1 and begins the model training by exploiting data samples stored locally. The training
objective is to minimise the loss function Lκ(W κ

t ) across all data samples in the training
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Figure 2.2: Sequential operation steps of FL involving K participants.

dataset. Mathematically, Lκ(W κ
t ) = 1

Dκ

∑
i∈Dκ

li(W κ
t ), with the aim of determining the

optimal model parameters W κ
t that minimise the loss function in each round of training.

This can be represented as, arg minWκ
t ∈R Lκ(W κ

t ). Here li(W κ
t ) signifies the loss associated

with data sample i given the parametrisation W κ
t , (steps 2⃝, 3⃝).

3) Reporting: At this point, participants share the local model updates with the
central server, either synchronously or asynchronously [61]. The synchronous strategy
yields a highly precise and rapidly converging model in the absence of stragglers, which
are instances arising from inadequate hardware or network resources that can hinder
the training process. Stragglers threaten the scalability of FL by slowing down the
training process. Conversely, the asynchronous mechanism naturally handles stragglers
by incorporating participants’ updates as they become available. However, it comes with
the risk of compromising model quality and insecure aggregation, resulting in a suboptimal
level of privacy. Several works have tackled this concern by suggesting different schemes,
such as implementing a secure buffer as seen in FedBuff [62], introducing staleness-
awareness as in FedSA [63], and employing semi-asynchronous techniques like SAFA [64].
Finally, the server aggregates the shared parameters to update the global model. This
involves performing model aggregation and computation of global model parameters at
the server, executed as the follows: Wt = ∑K

κ=1
Dκ

D
W κ
t , where D represents the entire

dataset of all clients, i.e., D = ∑K
κ=1 Dκ, (steps 4⃝, 5⃝). The steps from 2⃝ to 5⃝ are

repeated until the global model converges to a desired accuracy.
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FL Aggregation Schemes

Gradient descent (GD) is an algorithm commonly used in various ML techniques,
particularly NN models [15], to locate the minimum of a differentiable function. However,
as the dataset size grows, the computational complexity of GD increases, rendering it
unsuitable for FL systems due to its slow convergence rate. Stochastic gradient descent
(SGD) provides an alternative to GD, allowing gradient calculations to be performed
over subsets of data, significantly accelerating the convergence rate. In the FL setting,
FedSGD is exploited as a method to quantify how frequently the global FL model needs to
be updated [58]. Nevertheless, the FedSGD technique mandates numerous communication
rounds, proportionate to the volume of nodes’ datasets, which can impose strain on
communication links and consume BW.

To address the above problem, the FedAvg strategy has been introduced as a means
to alleviate the strain on communication resources [58]. FedAvg is a generalisation of
FedSGD, where each node repeatedly conducts SGD on different local data subsets,
subsequently determining optimal model parameters through an average of locally
computed gradients. The performance of FedAvg hinges on three key parameters: (i)
the fraction of selected nodes performing computations in each round, (ii) the size of
data subsets, and (iii) the number of epochs a node traverses through its dataset during
each round. In FedAvg, as opposed to transmitting computed gradients, each node solely
transmits model parameters. Consequently, in contrast to FedSGD, the FedAvg algorithm
involves more local computation and less communication with the server.

However, in real-world scenarios characterised by network devices of varying
capabilities and non-identically distributed local datasets, FedAvg encounters challenges
in terms of convergence behavior. Therefore, some variants of the FedAvg algorithm have
been introduced to develop faster aggregation techniques. One such variant is federated
proximal (FedProx), which was proposed to solve the heterogeneity issue in federated
networks [65]. The FedProx principle resembles that of FedAvg, albeit with a small critical
modification that improves performance. Instead of forcing every node to perform the same
computation work, FedProx accommodates the system’s heterogeneity by allowing each
node to undertake a level of local computation proportional to its resources. Accordingly,
enabling parameter aggregation across a diverse set of nodes with varying capabilities.

Another extension to the FedAvg scheme is the federated splitting (FedSplit) algorithm
[66], which relies on the operator splitting procedure for convex optimisation problems.
Operator splitting is an efficient method for solving large-scale convex problems by
performing iterations of simple and computationally inexpensive operations. This
technique transforms the primary problem into more manageable sub-problems, advancing
their resolution separately. Motivated by the inability of FedAvg and FedProx to
maintain the fixed points of the original optimisation problem, FedSplit introduces
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itself as a splitting algorithm for federated optimisation, designed to achieve rapid
convergence. Moreover, the work in [67] applies adaptive optimisers—namely ADAGRAD,
ADAM, and YOGI—in the FL context, yielding FedAdaGrad, FedAdam, and FedYogi.
Thorough experimental assessments compare these algorithms to the FedAvg approach.
Furthermore, the Qsparse-local-SGD algorithm [68] tackles both local computation and
communication reduction with distributed settings. Convergence analysis is undertaken
for both synchronous and asynchronous FL scenarios, showing that the Qsparse-local-SGD
algorithm achieves the same convergence rate as FedSGD.

The previously outlined approaches are primarily tailored for NN models, wherein the
central elements for global model updates are the parameters—weights and biases. Despite
numerous endeavors to refine the aggregation process, NN and DL models still incur
substantial communication and computation costs. Therefore, a surge of investigations
has been directed towards exploring alternative low-complexity techniques within the FL
framework. Notably, ensemble learning strategies have gained traction in this regard,
exemplified by federated boosting (FedBoost) [69] and FedraTrees [70]. It has been
demonstrated in [69] and [70] that when the federated model is trained according to these
algorithms, excellent performance is achieved in terms of accuracy, computation time, and
communication rounds. This paves the way for exploring other ML techniques in the FL
environment.

2.3.2 FL Applications in Wireless Networks

Since the inception of FL by Google in 2016, a substantial body of research has been
dedicated to advancing, refining, and identifying optimal applications for this decentralised
learning algorithm. Wireless networks are one of the forerunners to adopt FL in their
architectures, as depicted in Fig. 2.3. This section will thoroughly present the key driving
applications of FL within a range of diverse wireless networks.

Cellular Networks

The rollout of 5G in late 2020 has enabled operators to launch a plethora of commercial
services leveraging the enhanced capabilities offered by this new technology [71]. In
addition, the incorporation of FL in these networks has led to diverse applications across
various domains, as detailed below.

a) Homogeneous Cellular Networks: This category refers to low-frequency wireless
networks with macrocells, denoting their wide coverage. Two main concerns for FL at the
network edge are heterogeneous devices with different computation and communication
capabilities and securing local model updates. The work in [72] presented a blockchain-
enabled FL framework to ensure security in a trustless environment. This approach utilises
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Figure 2.3: FL in various wireless networks; FL algorithm in the context of single or
multiple wireless networks.

a distributed ledger between entities, positioning blockchain as an intermediary between
the FL server and edge nodes to verify model parameters through a consensus process.
Also, FL finds applications within network function virtualisation, an innovative concept
that enables adaptive resource allocation for future wireless networks. The study in [73]
leveraged the FL technique to build a model capable of proactively predicting auto-scaling
settings for multi-access edge computing (MEC) virtual services. This approach ensures
compliance with data protection policies while optimising resource allocation.

b) Heterogeneous Cellular Networks: Heterogeneous networks (HetNets), characterised
by a variety of cell types, expand wireless networks’ coverage and capacity. FL can be
implemented in HetNets for resource allocation purposes. It was demonstrated in [56] that
applying HFL by grouping the users and assigning the needed resources for transmission
can reduce the end-to-end communication latency in HetNets. This optimisation is realised
by clustering users and assigning each cluster to the closest SBS. On the other hand,
5G HetNets are vulnerable to attacks, like denial of service (DoS), evil twinning, and
port scanning. The work in [74] proposed a node-edge-cloud framework empowered by
HFL to detect attacks throughout the 5G HetNets. Specifically, multiple dedicated nodes
are distributed inside the network, each of which performs model training by employing
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reinforcement learning (RL) technique to facilitate adaptive learning that can capture
the rapidly changing nature of the HetNets environment. In addition, [75] proposed an
FL-empowered MEC framework to tackle the communication overhead and delay between
the edge server and clients in FL to enhance the training efficiency.

c) MIMO: FL has many applications intertwined with MIMO technology. Given
the dynamic nature of mmWave systems, the study in [76] enhanced the performance
of massive multiple-input multiple-output (mMIMO) systems by estimating channel
state information. FL is leveraged to conduct decentralised learning on the user
side, utilising local pilot signals to predict channel matrix. This prediction aids
in optimising beamforming design, consequently augmenting the system’s overall
performance. Moreover, the work in [77] presented an energy-efficient solution that
supports multiple FL groups in future wireless systems. The approach involves employing
mMIMO to facilitate model updates and ensure stable operation of various FL processes
concurrently executed within the same coherence time.

d) Fog-Cloud radio access network (RAN): The ever-increasing number of connected
devices in 5G and beyond networks has compelled a shift towards an ultra-efficient air
interface. This transition has fostered the development of two distinct air interface
structures: cloud radio access network (C-RAN) and fog radio access network (F-RAN).
A notable observation from the literature survey is the prevalence of FL applications
in F-RAN networks, whereas the utilisation of FL in C-RAN networks remains limited.
For example, the study in [78] optimised the latency and BW resources when deploying
FL in RIS-aided C-RAN systems. The RIS controls channel propagation conditions and
supports over-the-air computation (AirComp) technique for coherent on-air aggregation
of local models. This is achieved by allowing clients to transmit simultaneously to the
parameter server. On the other hand, the F-RAN paradigm fully uses edge networks and
endows crucial features such as content caching for optimal application performance and
user experience. In similar vein, the authors of [79] proposed an FL-based mobility-aware
content-caching framework in F-RAN-based networks. Mobility and content demand
statistics are exploited to improve users’ QoE by predicting and caching the most likely
future content.

e) 5G-new radio (NR): 5G-NR stands as a new radio interface standard designed by
3GPP to satisfy the growing demands of 5G mobile networks. This pioneering radio access
technology allows user equipment to dynamically switch between different resource blocks,
each characterised by distinct BWs. Nonetheless, this technique raises resource allocation
challenges in B5G networks. FL has many applications in resource allocation in terms of
computation, communication, and energy efficiency. For example, [80] employed FL to
formulate an ML model that facilitates distributed resource management across cellular
networks, simultaneously reducing transmit power during uplink transmission.
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Internet of Vehicular Networks

Internet of vehicles (IoV) has recently emerged as a key enabler for intelligent
transportation systems (ITSs), combining two key concepts, namely, vehicle networking
and AI [81]. Within this context, the IoV paradigm strives to attain intelligent information
exchange between vehicles and all network entities. This objective is accomplished by
harnessing vehicle computation capabilities, which leverage DL algorithms, cloud and
edge computing, as well as big data analytics, to materialise vehicular intelligence.

a) FL in ITS: Communication reliability and latency are of particular significance in
the area of ITS, owing to the severe consequences that might affect human safety. The
work proposed in [82] capitalised on the integration of FL with blockchain technology to
realise a distributed, privacy-aware, and efficient model designed for autonomous vehicular
networks. The heterogeneous nature of the vehicles in ITSs is particularly appealing for
FL applications. The varied data generated contributes to enhanced model accuracy by
encompassing all network scenarios encountered by different vehicles. However, in addition
to addressing latency, FL has shortcomings in terms of server centralisation. The process of
exchanging large updates between participants and the server imposes a high overhead on
the server itself. To overcome this challenge, [82] employed the blockchain technique. This
approach entails a distributed ledger shared with each vehicle, thereby upholding copies
of both the global and private models. This strategy, verified by each vehicle, alleviates
the strain imposed on the central server. Similarly, [83] studied the use of FL setting
within the context of URLLC in vehicular networks. The primary focus revolves around
proposing a distributed framework for joint transmit power and resource allocation. This
framework aims to reduce the power consumption of vehicular users while ensuring the
facilitation of low-latency communications.

b) Vehicular edge computing (VEC): In line with the MEC concept, VEC exploits
the communication and computation capabilities at the network edge. The authors
in [84] implemented FL with VEC to perform image classification to support diverse
applications in ITSs. A model-selective strategy is proposed to identify clients with the
highest computational capabilities and select models that give the best image quality for
aggregation. In an asymmetric FL setting, the server has no information about clients’
data and resources. To this end, a two-dimensional contract mechanism was proposed
in [84], in which the server designs contract bundles encompassing diverse attributes such
as data quality, computation capability, and rewards. Clients, in turn, opt for bundles
that optimise their utility. As part of IoV networks, electric vehicle (EV) networks are
becoming more popular as the number of EVs increases; such networks are expected to
take over from traditional vehicles in the coming years. In this context, [85] studied
energy efficiency and profit maximisation at charging stations (CSs). It introduces an FL-
driven economically efficient framework that investigates historical energy transactions to
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increase CSs profit. Concretely, FL is used to train localised models using CSs’ private
data, predicting the energy demands of EVs. After that, these localised models from
various CSs are aggregated and shared, facilitating information exchange and yielding
more accurate results.

c) Traffic Prediction: Traffic prediction in smart cities brings up many benefits for
ITSs, such as road safety, congestion avoidance, and shortest route selection. These gains
are pronounced when exploiting edge-derived information in conjunction with FL. A
noteworthy avenue for enhancing FL involves the selection of optimal hyperparameters
for local models within edge devices. While a significant portion of existing literature
has been directed toward FL’s global optimisation, privacy concerns, and communication
efficiencies, relatively few have delved into the optimisation of model parameters. The
study in [86] introduced a technique rooted in particle swarm optimisation (PSO) for
optimising local hyperparameters at the edge devices. Specifically, PSO optimises the
local NN parameters, including the number of layers, neurons per layer, and epochs. The
efficacy of this optimisation method is showcased within the domain of traffic prediction.
The findings underscore a marked reduction in the number of client-server communication
rounds required to find the optimal parameters. This technique is attractive due to its
implementation’s low complexity. However, it should be noted that its drawback lies in
its reliance on random searches for the best initial parameters. This aspect entails an
unpredictable time requirement, potentially impacting the whole learning process.

UAV Networks

The flying vehicles in unmanned aerial vehicle (UAV) networks have several appealing
attributes, such as low cost, flexible mobility, and ease of deployment. These qualities
enable them to engage in tasks that were previously considered challenging. The
application of AI algorithms and the recent advancements in UAV technology have greatly
broadened the scope of use cases for UAV networks [87].

a) AI-Empowered UAV: The interplay between AI and UAV networks opens new
horizons for exploiting UAVs in more complicated tasks; however, data security and
privacy remain a significant challenge. In UAV-enabled mobile crowd sensing (MCS)
applications, FL is particularly appealing in maintaining the privacy of sensed data. In
this regard, the authors in [88] integrated an FL-based UAV network with blockchain
technology to eliminate the need for a central server. Moreover, blockchain enhances FL
network security by excluding adversarial clients and facilitating secure model updates
exchange among clients. On the other hand, the work in [89] proposed an FL-enabled
framework for air quality monitoring in MCS, ensuring security. A swarm of UAVs is
deployed to measure the air quality, with the gathered data utilised to train a lightweight
model for predicting the air quality index. FL emerges as a promising candidate capable
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of capitalising on the data silos collected by different agencies, thereby generating a global
model while safeguarding data privacy.

Following the MEC concept, federated edge learning (FEEL) can potentially reduce the
end-to-end latency and communication overhead in UAV networks. Yet, as demonstrated
in [90], the efficient implementation of FEEL in UAV-based IoT networks is restrained
by the battery lifespan of UAVs. In this respect, [42] has formulated optimisation of
computation resources and bandwidth allocation to enhance FEEL performance within
UAV networks. Also, [91] had harnessed FL as a supporting technique to reduce the
communication cost between multiple UAVs and a ground fusion center. This application
takes place within the context of image classification for remote area exploration missions.

b) Flying ad-hoc networks (FANETs): With the interest of accomplishing complex
tasks in UAV networks, UAVs are ad-hoc grouped to establish a local network, facilitating
cooperative efforts to tackle joint tasks. Recent advancements in trajectory design and
remote monitoring predominantly rely on ML algorithms [92]. To recall, such classical
algorithms do not align well with the context of UAV networks due to their high mobility
and limited energy resources. FL is proposed to reduce the communication overhead as
an efficient paradigm for FANETs. In this setup, all participating UAVs collaborate to
estimate the initial model parameters. Then, initial model parameters from all UAVs are
shared and leveraged for local model training. To facilitate model aggregation and foster
the development of an improved global model, a FEEL server is deployed to capitalise on
the potential of local models.

Attributed to the inherent decentralised nature of FANETs, these networks are
vulnerable to several security threats that intend to disrupt their functionality, such as
impersonation and jamming attacks [93]. Centralised attack detection and mitigation
strategies are unfeasible due to the highly dynamic topology of FANETs. Thus,
decentralised approaches become imperative for these network types. To this end, in [94],
an FL-based device jamming detection for UAVs in FANETs was proposed. In addition to
enhanced security, the framework outlined in [94] addressed the issue of data heterogeneity
among different UAVs. In particular, a Dempster-Shafer technique classifies UAV clients
into groups based on their data quality. Then, the FEEL server selects high-quality data
group(s) for model training, contributing to both security enhancement and data quality
considerations.

RIS-Assisted Networks

The emergence of numerous mmWave and THz applications has raised several concerns
attributed to the vulnerability of such applications to signal blockage and shadowing
effects. Motivated by this and with the recent advancements in the solid-state industry,
RISs have emerged as enablers of future wireless networks [95]. An RIS, composed of
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several reflective elements, can be artificially engineered to control the electromagnetic
properties of wireless signals and enable diverse functionalities, including wave splitting,
reflection, and absorption. Leveraging an RIS is particularly beneficial in AirComp-
enabled FL scenarios, in which some clients may experience blockage or weak channel
conditions, affecting the quality of global model training [96–98]. AirComp is a technique
that exploits the superposition nature of the wireless channel to transmit simultaneous
model updates from multiple clients. The authors in [96] used the AirComp technique
assisted by RIS to expedite global model aggregation, which reduces the required radio
spectrum for parameter transmission since the clients collectively send their updates using
the same channel. Additionally, to further enhance and boost the quality of global model
aggregation, an RIS is used to reduce aggregation errors by strengthening the quality
of combined signals. In this respect, aiming to unlock the full potential of RIS in FL
settings, the work in [97] formulated a joint communication and learning optimisation
problem, considering device selection, transceiver design, and RIS parameters.

The aforementioned contributions have assumed perfect CSI at the server and clients’
sides. However, acquiring channel state information at the transmitter (CSIT) is not
always attainable due to dynamic channel conditions, leading to a significant delay in
receiving the CSI information. This delay curbs the convergence of the FEEL global model.
The proposed work in [98] investigated the CSIT-free over-the-air model aggregation based
on RIS-assisted FEEL. The CSI at the transmitter side is assumed to be unavailable, while
perfect CSI is assumed at the server side. Besides, the RIS adjusts and aligns the channel
coefficients with the model aggregation weights. To this end, the successive channel
coefficients are constrained as a function of RIS phase shifts, making them proportional
to the weights of the local models. Moreover, the received scaling factor is optimised
by minimising the aggregation mean square error. To solve this optimisation problem, a
difference-of-convex algorithm is adopted. Furthermore, the RIS has proven its efficiency
in converting wireless channels into a smart electromagnetic environment. To realise
high-speed RIS-based communication, the authors in [99] proposed two FL-based RIS
optimisation schemes: RIS-assisted outdoor and indoor IoT mmWave communications.
In the former scenario, the RIS controller acts as the FL server, while the UE functions
as a client. The clients’ data represents the CSI corresponding to their location and
the optimal RIS configuration. The trained model aims to optimise the achievable rate
to enable high-speed mmWave communications. The latter scenario considers an access
point (AP) connected to multiple IoT devices assisted by RISs, where the AP acts as an
FL server, while the RIS and IoT devices act as clients. The FL model is trained based
on location information and optimal RIS configuration. As a result, the trained FL model
can achieve high transmission sum rates in IoT networks.
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IoT Networks

High-dimensional data analytics will shift traditional IoT paradigms from simply
connected things to connected intelligence. It is envisaged that FL will become an
indispensable tool in intelligent IoT-based applications, which are spreading across diverse
fields [100, 101]. This section outlines the usage of FL in various sectors associated with
IoT networks.

a) Industrial internet of things ( IIoT): The fourth industrial revolution, often
referred to as Industry 4.0, is triggered by advancements in automation and manufacturing
industries, coinciding with the emergence of IIoT devices. Despite the promising features
of FL that benefit IIoT networks, the upsurge number of nodes participating in the training
process may generate significant traffic that burdens the network. Implementing reliable
participant selection schemes can reduce network overhead and alleviate communication
costs. The work in [102] presented a budgeted client selection algorithm that enhances
the global model accuracy by identifying the best clients. This algorithm finds random set
of clients with the best test accuracy based on the secretary problem. More specifically,
clients are interviewed sequentially, marked as selected or rejected, and then ranked from
best to worst to streamline the selection process. Another critical design aspect in FL-
empowered IIoT networks revolves around potential edge device failures, which can lead
to severe fluctuations in production quality. Addressing this concern, the authors in [103]
shed light on such aspects and proposed an anomaly detection framework that uses FL
to train edge devices to predict abnormalities, thereby enabling enhanced communication
efficiency.

b) Healthcare Applications: FL has become very popular in the field of healthcare
applications [104]. Pandemics exert detrimental effects on human health and also cast
shadows on the economy. A recent example is the global Covid-19 pandemic, which
has resulted in health issues and fatalities. Covid-19 primarily manifests as pneumonia,
detectable through X-ray scans. ML can play a pivotal role in such medical scenarios,
utilising collected data to train an ML model capable of predicting infection states.
Given the sensitivity of patient data across various medical institutions, the FL approach
naturally emerges as a suitable solution for these applications. Therefore, the study in [105]
applied FL on datasets of various clinical centers. FL clients exploit the local X-ray images
of Covid-19 cases from each hospital to train a model aiding practitioners in determining
a patient’s infection status, all while preserving the privacy of personal information.

c) Financial Perspective: The financial sector plays a central role in every society.
In particular, the reliance on credit cards has exponentially increased in recent years,
facilitating day-to-day life. Security attacks constitute a major threat to credit card
systems, resulting in critical information leakage and financial losses. At present, banks
independently utilise their datasets to develop centralised ML algorithms for fraud
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detection to mitigate such threats. However, this approach has proven ineffective due to
the insufficiency of the datasets in creating accurate models. To overcome this challenge,
the work in [106] presented a framework that leverages FL to build a collaborative fraud
detection system by using datasets from multiple banks. A noteworthy challenge in this
domain is the scarcity of fraudulent transactions in comparison to legitimate ones, which
can hinder the performance of FL. To this end, the synthetic minority over-sampling
technique (SMOTE) is used to oversample the minority class, generating synthetic datasets
that bolster the training of the FL model and lead to improved model inference.

2.4 Summary

This chapter commenced with a thorough review of techniques proposed to tackle
the blockage issue in UDNs. This spanned from traditional methods to cutting-edge,
innovative-driven sensing-aided approaches. Subsequently, the discussion extended to
cover the energy management issue in UDNs, involving the best energy forecasting
solutions provided in the literature, whether based on centralised or decentralised
approaches. Furthermore, the chapter delved into an introduction to the FL technique,
explaining its core principles. This encompassed a detailed exploration of its architecture,
diverse categorisations, operational mechanisms, and the commonly used aggregation
algorithms. Following this, a comprehensive discussion unfolded, shedding light on the
versatile applications of FL across a spectrum of wireless networks. The knowledge
offered in this chapter is strategically positioned to equip readers with a comprehensive
foundation, setting the stage for the subsequent chapters to seamlessly comprehend the
novel contributions presented within this thesis.



Chapter 3

Proactive Beam Blockage Prediction
in Vision-aided UDNs

In this chapter, the attention is focused on enhancing the reliability of UDNs by ensuring
uninterrupted communication links. The primary objective, aligned with O2 , is to
anticipate potential blockages that pose a high risk of obstructing LoS links and disrupting
ongoing communications. This improvement is facilitated through vision-aided wireless
communication, where visual information captured by vision sensors equips UDNs with
awareness of the surrounding environment. The incorporation of CV and ML plays a
crucial role in predicting the status and timing of forthcoming blockages. This intelligent
approach empowers the network to proactively identify and avoid blockages through
performing PHO at an optimal point so that maintaining the QoE for a user at high
levels.

3.1 Introduction

Next-generation wireless networks undergo a substantial design change when operating
in high-frequency bands. The quest for high data rate services using mmWave and
THz technologies demands a downscaled communication system, giving rise to a new
network paradigm known as UDNs [5]. Moreover, the use of beamforming enhances
the RSS by creating LoS beams. Nevertheless, UDNs encounter critical challenges due
to the sensitivity of high-frequency beams to blockages. These signals experience high
penetration loss and attenuation, leading to a sharp drop in RSS whenever an obstacle
intercepts the LoS communication link.

In the literature, several techniques have been adopted to overcome the connectivity
issue. For instance, researchers had examined the geometry of mmWave channels and
the diffraction characteristics of signals in comparison to sub-6GHz frequencies to predict
potential blockages in mmWave LoS connections [107, 108]. Other solutions relied on

34
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ML and dual connectivity (DC) to maintain wireless communication and meet the
required QoE for users [109, 110]. However, these solutions exhibit varying limitations
in practicality, often leading to the inefficient use of network resources. Most importantly,
they fail to completely mitigate the issue of link blockages, as the switching between links
remains reactive in nature.

To effectively solve this problem, UDNs require a sense of the surrounding environment
to move from reactive to proactive blockage measures. The direct view is essential for
UDN communications and is equally important to CV, where visual information captures
only direct and visible objects in the scene, enabling proactive detection of obstructing
objects. Therefore, leveraging vision information collected from the served environment is
envisioned to aid the operation of the network, moving beyond reliance solely on wireless
information, which fails to address this problem [107–110]. Images are rich in detail that
can effectively contribute to solving the blockage problem in UDNs. For example, in [28],
depth images and a DL model were used to predict a user’s RSS in the next few hundred
milliseconds to assist in HO decisions. Further, [30] exploited RGB images to train a
ResNet-18 model and then classify the images based on the blockage status. However,
the approaches detailed in [28] and [30] fail to account for the associated latency until
a successful HO is completed, thus rendering them unable to prevent link blockages—a
critical concern in highly dynamic UDNs.

The previously mentioned studies have different assumptions that limit their
applicability in real practical scenarios. The vision for B5G and 6G networks centers
around meeting stringent requirements for sustaining high levels of QoS and QoE,
ensuring consistent user connectivity to realise real-time services and applications. In
response, a newly emerging research direction focuses on harnessing CV to enhance the
performance of mmWave communication systems is envisioned to assist the operation
of such systems, satisfy the stringent demands, and encourage their widespread
implementation. Furthermore, the proliferation of next-generation high-frequency wireless
networks is anticipated within smart cities, where video surveillance systems are widely
available—particularly in densely populated areas, the main target of deploying UDNs.
Given that future BSs will be miniaturised and installed on lampposts, the combination
of wireless and vision information is recognised as an attractive approach to optimise the
operation of high-frequency wireless networks [30,111]. Nevertheless, the integration of CV
into the operation of UDNs is still in its early stages and necessitates dedicated research
endeavors to extract its full potential. Hence, this study plays a leading role in this research
domain, distinguishing itself from existing works in the literature by proactively predicting
blockages and executing optimal PHOs. The study gives comprehensive attention to the
framework’s end-to-end latency, a critical factor ensuring effective PHO and seamless user
transition to another stable connection.
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3.2 Contributions

This chapter presents a novel CV-assisted PHO mechanism that integrates two modes
of information: wireless and imagery information. The goal is to predict possible beam
blockages in advance, enabling the network to perform HOs at a time that maximises
the overall QoE and thus optimises network performance. An object detection and
localisation (ODL) algorithm is employed to analyse RGB images captured by vision
sensors. This algorithm detects obstacles and users, as well as determines their respective
locations and speeds. Additionally, a simple NN model is trained using the multivariate
regression method to predict the remaining time until a user becomes blocked by an
obstacle. This study introduces a new HO event referred to as “blocking event” (BLOCK).
This event is characterised by the presence of a blocking object and a user moving towards
the blocked area. Once a BLOCK event is identified, the proposed framework calculates
the optimal timing to trigger HO, seamlessly transitioning the user to another BS and
thereby improving network reliability. the primary contributions and results of this work
are outlined as follows:

• A novel solution to the problem of beam blockage and frequent HO in next-generation
wireless networks is proposed through the utilisation of CV and NN algorithms. The
application of CV enhances the network’s understanding of its surroundings, while
the NN model predicts instances of sudden RSS drops caused by stationary obstacles,
which is a very common challenge in high-frequency networks.

• A new HO event termed "BLOCK" is introduced, which can be considered in B5G
and 6G networks besides the standardised events defined by the 3GPP [9]. The
BLOCK event is defined by detecting the presence of an obstacle and a user moving
toward the blocked area.

• In order to ascertain the optimal timing for initiating and completing a HO once the
BLOCK event is detected, this study conducts an analysis aimed at identifying the
ideal handover trigger point. The objective is to maintain the user’s QoE at a high
level.

• The accuracy of the proposed framework is validated using state-of-the-art
simulation tools. The results underscore the significance of this solution in ensuring
uninterrupted connectivity.

3.3 System and Channel Models

This section offers a detailed description of the system and channel models and discusses
the scenario under study.
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MBS

Figure 3.1: The proposed system model: portion of an UDN including one MBS and three
SBSs each equipped with an RGB camera.

3.3.1 System Model

UDNs represent a paradigm shift in wireless communications, characterised by an
exceptionally high deployment density of small cells. These networks aim to meet the
escalating demands for data rates, low latency, and connectivity in densely populated
urban areas. In UDNs, the traditional macrocell-centric approach is complemented by a
multitude of small cells, such as SBSs, strategically positioned to enhance coverage and
capacity. The increased spatial density of these cells allows for improved spectral efficiency
and reduced path loss. The system model of this study encompasses one MBS and three
SBSs1, covering a 90×15m street, as illustrated in Fig. 3.1. The system adopts orthogonal
frequency division multiplexing (OFDM) with K subcarriers and cyclic prefix of length
Q, operating at 60 GHz [112]. Each SBS is equipped with a mmWave uniform linear
array (ULA) composed of M antenna elements that enable beamforming technology to
create LoS beams that can achieve high RSS at a single-antenna user. To minimise costs
and power consumption, this study assumes an analog beamforming architecture with M
phase shifters and a single radio frequency (RF) chain [113]. Further, to simplify the
network operation, each SBS adopts a predefined beam codebook F = {fi}Bi=1, where
fi ∈ CM×1 and B is the total number of beams in the codebook. Each beamforming vector
fi can be expressed as [114]:

1It is worth noting that: (i) extending this proposed framework to include a larger number of SBSs is
straightforward, and (ii) the adoption of the three SBSs model is for the sake of simplicity.
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fi = 1√
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M

is the normalisation factor, d is the inter-element distance of the antenna array,
λ is the wavelength corresponding to the carrier frequency, and ψi ∈ {2πi

B
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steering angle.
To determine the best beam vector that maximises received power, the mmWave user

will send a pilot message to the SBS. This pilot message is utilised to train the B beams
in order to find the optimal beam f⋆. Once f⋆ is determined, the received downlink signal
at the user’s receiver for the kth subcarrier can be expressed as follows:

yk = hTk f⋆sk + nk, (3.2)

where h ∈ CM×K represents the mmWave channel between the SBS and the user, s is the
transmitted symbol, and n ∼ N

(
0, σ2

)
is the additive white Gaussian noise (AWGN).

In addition to the ULA, each SBS is equipped with a vision sensor – an RGB camera
featuring standard definition (SD) resolution. This integration of cameras is aligned with
the smaller coverage area of UDNs, ensuring their visual coverage coincides with the radio
coverage area of the SBSs. By capturing real-time visual data from the targeted vehicular
environment, this integration enhances situational awareness, enabling proactive decision-
making, predictive analytics, and optimised resource allocation. The vision information
is transmitted to a central server located at the MBS through 10Gbps point-to-point
mmWave backhaul links [115]. The role of the central server is to collect, process, and
use the visual information to train an ML model that can proactively predict possible
beam blockages. This study revolves around Scenario (1) from Section 1.2.1, involving
a single moving user (car) with a stationary blocking object (bus) that blocks the LoS
communication between the SBS and the user in vision-aided UDNs.

3.3.2 Channel Model

This study adopts the geometric mmWave channel model for several reasons: i) it
accurately represents the physical characteristics of signal propagation, and ii) it enables
the direct use of accurate channel simulation tools, such as ray tracing, the tool selected
to generate the wireless data used to validate this work. The mmWave channel model at
the kth subcarrier can be written as [113]:

hk =
Q−1∑
q=0

P∑
p=1

αpe
−j 2πk

K
qℓ
(
qTs − τp

)
a
(
θp, ϕp

)
, (3.3)

where P denotes the number of channel paths, αp, τp, θp, ϕp are the gain, delay, azimuth
and elevation angles of the arrival of path p, respectively. Also, Ts represents the sampling
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time.

Optimal Beam and RSS: The maximum RSS value at any x location is associated
with finding the optimal beamforming vector f⋆x that can achieve this value. In other
words, determining f⋆x means obtaining the maximum RSS and vice versa. As a result,
these can be mathematically expressed as:

f⋆x = argmax
f∈F

1
K

K∑
k=1

E
[∥∥∥∥(hk,x)T f

∥∥∥∥2

2

]
, (3.4)

and

Prx = 1
K

K∑
k=1

E
[∥∥∥∥(hk,x)T f⋆x

∥∥∥∥2

2

]
, (3.5)

where hk,x is the kth subcarrier’s mmWave channel between the SBS and the user at the
location x.

3.4 Proposed CV-assisted PHO Framework

The core concept of this work is to anticipate future beam blockage using CV and NN
to facilitate timely PHO. Predicting beam blockage is a very challenging task due to
its reliance on identifying the position of a mobile user and possible sources of blockage
within a realistic wireless scenario. In CV, ODL is used to identify an object’s class and
its corresponding spatial coordinates. However, object detection alone does not suffice
for predicting future blockages. This requirement demands two fundamental components.
Firstly, an efficient system that can detect mobile users (wireless users) and potential
source of blockage. Secondly, extracting augmented information, including speed, time,
and distance from the blocked area. Guided by the above notions, the task of beam
blockage prediction is divided into two sub-tasks. The first sub-task involves ODL to
identify object types and their coordinates, aiding in speed calculation. The second sub-
task employs a multivariate regression model to predict the remaining time until a user
reaches the blocked area based on the information extracted from the RGB images. Before
delving into a detailed discussion of the various components of the proposed framework,
the assumptions made in this study are highlighed as follows:

1. It is assumed the availability of vision sensors integrated with SBSs. Moreover, the
sensors can provide flat RGB images that exhibit uniform pixel widths for both the
upper and lower segments of the street.

2. The vision sensors remain unaffected by the time of the day (day/night) and
prevailing weather conditions.



CHAPTER 3. BEAM BLOCKAGE PREDICTION IN VISION-AIDED UDNS 40

3. The MBS has local processing units where optimisation and localised decision-
making take place. In addition, the ODL consistently provides high performance
in object prediction and bounding box determination, all within an acceptable level
of precision.

4. The wireless user is identified in the image, and if necessary, the network correctly
performs PHO for that user.

In the worst-case scenario where the assumptions are not fulfilled, the wireless network
would lose the advantage of vision assistance in solving the beam blockage problem and
would revert to functioning as a basic wireless network devoid of proactive blockage
prediction capabilities.

3.4.1 Schematic Diagram of the Proposed Framework

This study aims to establish a mechanism for predicting blockages, enabling the network
to proactively initiate HO procedures well in advance of a user entering a blocked area.
Once a BLOCK event is spotted out in the camera’s field of view, the framework’s
main task is to predict the time required for the user to reach the shadowed region,
denoted as Tb. Determining this time interval enables the identification of the optimal
moment for initiating HO, thus preventing service disruption that could occur if the user
enters a blocked region. Fig. 3.2 demonstrates the schematic diagram of the proposed
technique. Given that wireless networks frequently operate in dynamic and unpredictable
environments like urban areas and smart cities, a heuristic approach is adopted. Moreover,
increasing the network complexity usually leads to non polynomial (NP)-hard optimisation
problems. Such problems demand a very high computation time, which is intolerable
and challenges latency-sensitive applications, such as intelligent transportation systems.
Therefore, the nature of the considered problem motivates the use of heuristic models
[116, 117]. Multivariate regression is used to predict the Tb by modelling and training a
two-hidden layer NN. Initially, the server compiles a complete view of the covered area
(i.e., the street), detailing the exact coordinates and locations of each SBS. RGB cameras
continually2 capture images from the covered area, then every SBS adds its identification
number and timestamp to each image before sending it to the central server through the
mmWave backhaul link. Once received, the server performs the following tasks:

• First, it uses the ODL algorithm to detect blockages and users, consequently
updating its view. If a BLOCK event is detected, the server proceeds to the next
step; otherwise, it reverts to the detection phase.

2Note that certain cameras have a motion detection feature that can be activated to reduce the volume
of visual data transmitted to the server [118].



CHAPTER 3. BEAM BLOCKAGE PREDICTION IN VISION-AIDED UDNS 41

𝑇𝑡𝑜𝐵𝐿𝐾

SBS1_camera SBS2_camera SBSN_camera

Images grouped 

based on SBS 

number

B
a

se
 

st
a

ti
o

n
s

C
e

n
tr

a
l 
se

rv
e

r

…

Detect possible 

obstacles/users 

using ODL

Update street’s 

view with 

respect to each 

SBS 

No

Yes

Multivariate 

regression model 

predicts 𝑇𝑏

Store data for 

multivariate 

regression model 

training/retraining

Wait for 

𝑇𝐷 , then trigger 

handover

Extract user’s 

location and speed

No

Yes

𝑇𝑏 > 𝑇𝐹 ?

BLOCK event 

exists?

Figure 3.2: Schematic diagram of the proposed framework.

• Subsequent to that, the server identifies the user’s exact location, thereby updating
its view. By utilising the user’s location information and calculating the time
difference between consecutive images, the user’s speed is determined.

• Following this, the server stores both the location and speed information for model
training or retraining purposes. This collected data is also used to predict the Tb.

• Finally, if the Tb exceeds the execution time of the proposed framework (TF ), the
server enters a waiting period before sending a HO trigger event to the network in
order to HO the user to another SBS. Conversely, if this condition is not met, the
server reverts to the initial detection phase.

The value of TF is defined as the time taken by the proposed framework to be completed,
starting from the initial capture of RGB images to the finalisation of the HO process. It’s
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expressed in (3.6) and can be calculated through the summation of four distinct time
components: (i) The time required to send two consecutive RGB images to the central
server (TRGB), (ii) the duration taken for ODL on these images (TODL), (iii) regression
model inference time (TInf ), and (iv) PHO implementation time (TPHO).

TF = TRGB + TODL + TInf + TPHO. (3.6)

In addition, a new time parameter is defined, denoted as (TD), representing the interval
between the completion of regression inference and the initiation of the HO triggering.
The value of TD is adaptable and dependent on the establishment of the optimal trigger
region, a topic detailed in Section 3.4.4. However, it’s essential to note that there exists
an upper limit for TD, as elaborated below:

TmaxD = Tb − TF . (3.7)

It’s important to highlight that the values of all parameters specified in (3.6) remain
constant, while the value of TD varies based on the user’s location and speed. Determining
the values of TRGB, TODL, TInf , and TPHO relies on factors such as the capacity of the
mmWave backhaul links, the chosen model type, and the specifications of the central
server. While choosing the value of TD is tied to the definition of the optimal HO trigger
region where the framework identifies the most appropriate timing for executing the HO
process.

3.4.2 Object Detection and Localisation

The central server necessitates the reception of a minimum of two consecutive images
(frames) from each SBS to detect the objects’ presence, position, and speed. Table
3.1 lists the most common camera resolutions for surveillance applications, alongside the
corresponding image transmission times over 10 Gbps mmWave backhaul links. Notably,
Table 3.1 illustrates that higher camera resolutions incur longer transmission times due to
the production of larger image sizes. Since this study considers an SD camera resolution,
TRGB is equals the time required for transmitting two SD images plus 38.5 ms. This extra
time accounts for the temporal gap between capturing consecutive RGB images, assuming
an imaging rate of 26 frames per second for each camera [119]. Hence, the time required
to transmit these images from the SBS to the server, TRGB, approximately amounts to 40
ms.



CHAPTER 3. BEAM BLOCKAGE PREDICTION IN VISION-AIDED UDNS 43

YOLO ODL

+
bus

car

(𝑥1, 𝑦1)

𝑡1

𝑡2

𝑡1

𝑡2x

y

car

+

Δ𝑑

bus

30m

(𝑥2, 𝑦2)

Figure 3.3: Using ODL to detect objects and determine their locations. This information
is used to determine the speed of the moving object.

Table 3.1: The most common camera resolutions with associated image transmission times
over 10 Gbps links.

Term Resolution Transmission time (ms)
2CIF 704×240 0.4
SD 640×480 0.7

4CIF 704×480 0.8
HD 1280×720 2.2

FHD 1920×1080 5

Once the server receives the visual information, the first step involves processing the
data to obtain the location of the objects. This study adopts a state-of-the-art detection
model “you only look once” version 3 (YOLOv3), renowned for its rapid and accurate
real-time object detection capabilities [120]. Instead of developing and training an object
detection model from scratch, YOLO models can be used directly without the need for
any modification. Furthermore, the main objective of ODL is to identify if a BLOCK
event exists and determine the objects’ locations in the pixel-scale. This information is
then converted to the meter-scale units for deducing the objects’ speeds. The server feeds
the RGB images to the object detection algorithm, which, in turn, detects the objects
within the image by drawing bounding boxes around them and adding tags denoting their
respective categories, as illustrated in Fig. 3.3. Moreover, this algorithm will provide the
location information of the objects by determining the coordinates of the upper-left and
lower-right corners of the bounding boxes. This information is utilised to determine the
centre of the moving user, as shown in Fig. 3.3.

The location information obtained from the YOLOv3 model is in pixel units. However,
to compute the user’s speed, it’s imperative to convert this information into a metric
measurements. The cameras’ field of view is set to 100 degrees, ensuring comprehensive
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Table 3.2: Considered camera properties.
Parameter Value
Resolution standard definition (SD)

Field of view 100 degree
Frame rate 26 fps

coverage of the entire street while minimising any overlap. Given that the cameras
capture images in two dimensions only, it is assumed that the image is flat and its
width corresponds to a distance of 30m3. Therefore, the following formula can be used to
determine the user’s displacement in metres:

Travelled_distance = Wm

Wp

×∆d, (3.8)

where Wm is the image width in meters, Wp denotes the image width in pixels, and
∆d = |x1 − x2| signifies the user’s x-axis displacement in the pixel scale, assuming the
user is moving in a straight trajectory, as demonstrated in Fig. 3.3. For example, if a
camera produces images with a resolution of 640×480, approximately every 21 pixels are
equal to a distance of one meter. After evaluating the travelled distance, it is necessary
to determine the associated travel time, which can be easily measured by exploiting the
timestamp information of each image. Since the camera’s frame rate is 26 fps, the time
difference between two consecutive images will be about 38.5 ms. Now, the following speed
formula can be used to deduce the speed of the moving user:

Speed = Distance

T ime
. (3.9)

Since the proposed solution depends on the TF to determine the feasibility of initiating
PHO, as demonstrated in Fig. 3.2, it becomes imperative to find out the detection time of
the YOLOv3 model (TODL). Benefiting from the high performance of MEC servers, the
TODL can be reduced significantly to mere tens of ms, particularly when using the MEC
server as a central server. Based on the analysis presented in [120], it is assumed that that
the TODL requires 102 ms for detecting objects in two images. Table 3.2 summarises the
camera properties considered for this study.

3.4.3 Multivariate Regression: Learning and Prediction

In this section, the reasons for selecting ML techniques to predict the value of Tb will be
explored, along with an overview of the training and inferencing procedures employed for

3For practical implementation in real-world systems, determining image width and height in metric
units can be easily accomplished by capturing an image from the camera and measuring its actual
dimensions using image corners.
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Figure 3.4: A two-hidden layer NN to perform regression.

the selected model. Using analytical methods can fulfil the task of determining the Tb
in general. However, the primary aim of this work is to propose a flexible, scalable, and
transferable framework that can be employed in complex and ever-changing environments.
Therefore, a NN model has been utilised for the following reasons:

1. Analytical solutions generally perform very well in static systems, where the model’s
assumptions do not change. However, this study targets high-frequency wireless
networks that are notably dynamic and unpredictable. For instance, predicting Tb
greatly depends on the cameras resolution, which varies in practical wireless systems
and provides diverse data. ML models learn from problem-specific data to automate
the process of an analytical model and solve the associated tasks [121]. Therefore,
NN is used to provide a more generalised and scalable solution.

2. Given the dynamicity and complexity of the targeted environment, a model that
can scale well under these conditions is needed. NNs are flexible and adapt to the
dynamics of the problem by learning from diverse data. Moreover, the transfer
learning feature allows these models to be transferable, providing the proposed
solution a new dimension to perform distributed learning.

DL algorithms have achieved breakthroughs in various areas but at the expense of
high computing and energy consumption. Combining CV with DL to assist the operation
of UDNs amplifies the computational complexity of the models, rendering this fusion
inefficient [122]. Since this study depends mainly on vision information, the selection of
an appropriate ML model is cruical, one that minimises training duration while achieving
anticipated outcomes. In the previous section, the utilisation of the pretrained YOLOv3
ODL model is explored. This off-the-shelf solution can be used directly, eliminating the
need for additional training efforts. Furthermore, for predicting the Tb, a simple NN
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Table 3.3: Sample of the training dataset.

68.47 9 1.5 60.00

74.21 10 5 1166.00

81.22 9 10 1284.00

71.88 10.5 12 291.67

75.92 9.5 15 502.67

81.22 10 18 713.33

86.91 11 20 926.50

𝑇𝑏(𝑚𝑠)𝑆𝑝𝑒𝑒𝑑 (𝑚/𝑠)𝑥 (𝑚) 𝑦 (𝑚)

model has been chosen to conduct multivariate regression, as shown in Fig. 3.4. The
multivariate regression technique is a statistical approach that measures the relationship
between dependent variables (i.e., Tb) and multiple independent variables (i.e., x, y, speed).
Besides, instead of using information-rich RGB images in model training or inferencing,
the proposed technique only requires extracting the user’s location and speed to be fed
into the NN model. This yields to significant savings in time.

Training Phase: The operations of the proposed regression model entail centralised
model training and inference; both require the availability of data samples. For training
the initial model, training datasets are readily generated using random (x, y) coordinates
confined to the dimensions of the system model’s street and using several speed values
that reflect the expected vehicle speed in urban areas. The dependent variable Tb is
derived by fixing the location of the obstacle (e.g, a bus) at an arbitrary location, for
example at x = 68.38m as illustrated in Fig. 3.1, and using the speed formula given in
(3.9). Table 3.3 shows a small sample of nearly ten thousand generated data samples
that are divided into 70% training, 20% validation, and 10% testing. Moreover, Table 3.4
shows the selected model structure and the selected hyperparameters, where the adaptive
moment estimation (Adam) is used as the optimiser in the training process. Moreover,
other model hyperparameters, such as the number of epochs, batch size, metric, and
activation function, are set to 50, 20, mean square error (MSE), and linear activation
function, respectively. Fig. 3.5 shows the training and validation loss for the model in
each epoch. This figure underscores the effectiveness of this model, as the loss consistently
approaches zero with an increasing number of epochs. It is worth mentioning that the
number of epochs depends on the number of data samples used for model training. A
small dataset and a large number of epochs can lead to model overfitting, an unwanted
behaviour for predictive modelling. To assess the model’s performance, the coefficient of
determination (R-squared) metric is employed. This metric measures the linear correlation
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Table 3.4: Hyperparameters of the NN model.
Parameter Value

Layers information

Input layer: 3 features
1st Hidden layer: 128 neurons, ReLU
2nd Hidden layer: 64 neurons, ReLU

Output layer: 1 neuron, Linear
Loss functions MSE

Optimiser Adam
Batch size 20

Epochs 50
Data split 70% training - 20% validation - 10% testing

Figure 3.5: Multivariate regression model training and validation loss versus number of
epochs.

between predicted and actual values using the test dataset, with values ranging between
0 and 1, where 1 signifies optimal alignment. Using the test dataset, the proposed model
achieves 0.9998, highlighting its superb performance. Finally, based on the generated
dataset and the hyperparameters delineated above, training the proposed regression model
consumes about 20 seconds when utilising standard personal computer resources. However,
leveraging the MEC server expedites the training time to under one second [123].

Inference Phase: With the trained regression model in place, the framework is now
ready to predict Tb for users detected in images received from the cameras. Upon
completing the street view and updating the blockage status, whenever the server receives
RGB images from the SBSs, it will use the ODL to extract the location and speed of the
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Figure 3.6: Optimal trigger distance for a user with a speed of 30 mph.

moving user as discussed in Sec. 3.4.2. The user’s information is now ready to be fed to
the input layer of the regression model, enabling the inference of the the anticipated time
remaining until the user reaches the obstructed area. Furthermore, by using the same
MEC server resources, the value of TInf is estimated at approximately 1 ms.

3.4.4 Optimal HO Trigger Distance

After attaining all requisite parameters, encompassing user location, speed, and Tb, the
final step is to determine the optimal HO trigger location, aiming to maintain the user’s
QoS/QoE at their highest possible levels. This optimal location signifies the distance at
which the central server initiates the HO request after detecting the BLOCK event, and
the PHO is performed with minimum performance degradation. In this work, a threshold
distance-based configuration is adopted, wherein the central server determines the optimal
trigger distance using the following equation:

Λopt = v × TmaxD , (3.10)

where v is the speed of the user, which is already known from ODL. From equations (3.7)
and (3.10), the variable trigger distance Λ can be inferred as:

Λ ≤ v(T̂b − TF ), (3.11)

where TF is the sum of the four sub times i.e., TRGB is 40 ms, TODL 102 ms and TInf is
1 ms whereas the TPHO is 80 ms as will be discussed in the next section. The formula in
(3.11) can be used to differentiate between early and optimal HO decisions.

To determine Λopt, the initial step involves identifying the detection region. This
region is defined as the area within which the proposed framework is assigned the role
of monitoring and detecting the presence of a wireless user. The detection region is
confined within two boundaries, i.e. the user detection boundary and the optimal trigger
boundary. This region is followed by the failure region located between the optimal trigger
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Table 3.5: Optimal trigger distance based on different user speeds.

v (mph) Tb (sec) TD (sec) Λopt (m)
5 9.85 9.63 21.52
10 4.92 4.70 21.01
15 3.28 3.06 20.52
20 2.46 2.24 20.03
25 1.97 1.75 19.56
30 1.64 1.42 19.04
35 1.40 1.18 18.46

boundary and the blocked area, as shown in Fig. 3.6. The user detection boundary
signifies the starting point of the algorithm’s detection process for any potential BLOCK
event. On the other hand, the optimal trigger boundary, denoted as Λopt, represents the
minimal distance from the blocked area where a successful optimal HO can be executed.
For instance, any HO undertaken prior to reaching the optimal trigger boundary, the
user will experience undesirable performance degradation due to wireless channel path
loss. Whereas, performing the HO beyond the optimal trigger boundary risks a LoS link
being obstructed by the blocking object, owing to insufficient time for executing the PHO
algorithm.

Therefore, the algorithm must determine the best TD value to facilitate the seamless
transition of the user to another SBS at the optimal point, thereby avoiding service
disconnection. To successfully perform HO, the TF is found to be equals 223 ms as
discussed earlier. The formula in (3.11) serves as a tool to determine the optimal point
for performing optimal HO, while also study the effects of early HO execution on overall
system performance. For extensive analysis, optimal trigger distances based on different
speeds are given in Table 3.5. For example, if a car is detected at x = 90m and is moving
at 30 mph, the optimal trigger distance to perform PHO is 19.04 m, as shown in Fig.
3.6. Once a BLOCK event is detected, the optimal trigger distance can be calculated
using (3.11). With v is already known, Tb is obtained using regression analysis, and TF is
also known, the potential for executing PHO within the detection region becomes viable.
However, it’s worth noting that early HO, while feasible within the detection region, can
compromise the RSS value, an undesirable situation. Therefore, in the proposed model,
the central server waits for TmaxD until the user reaches the optimal distance to complete
the PHO request.

3.4.5 Proactive Handover Mechanism

TPHO stands as a pivotal parameter within the proposed CV-aided PHO framework, acting
as a determining factor in assessing the feasibility of performing HO while avoiding radio
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links failures. Conventionally, in cases of user link disconnection, a series of steps precedes
reconnecting the user to the same or an alternate SBS. This sequence entails beam failure
detection, beam failure recovery, cell search, and contention-based/free random access
[124]. Supposing the network employs proactive blockage prediction, the first two steps
can be avoided, whereas the cell search can be performed while the user is still connected
to the serving SBS. Therefore, TPHO boils down to the latency accompanied by performing
contention-based or contention-free random access. This study considers contention-based
random access, which requires 80 ms according to the 3GPP specifications [124,125]. Since
the values of all parameters in (3.6) are determined, the central server possesses knowledge
of the time needed to execute the proposed algorithm—TF equals 223 ms. If the central
server detects a BLOCK event in the received RGB images, the server will predict the
time needed until the user reaches the blocked area (Tb). If Tb is greater than TF , then the
algorithm has a high probability of successfully triggering and completing HO. Whereas
when Tb is less than TF , the time needed to complete the HO process and avoid radio link
failure is insufficient, which means that the user undergoes a service interruption.

3.5 Performance Evaluation and Results

To investigate the effectiveness of the proposed CV-based PHO framework, the publicly
available dataset known as vision wireless (ViWi) [126] is utilised. The ViWi dataset
combines visual and wireless information generated using Wireless InSite ray-tracing
software and 3D game modelling for mmWave wireless systems. It encompasses four
distinct scenarios, categorised by camera location (collocated and distributed) and view
(direct and blocked). Each data sample represents 4-tuple of user location, RGB image,
depth image, and wireless channel. The distinctive feature of ViWi is that it is a
parametric, systematic, and scalable data generation framework that can be used to
produce data based on different scenario requirements. In the performance evaluation,
the focus is to track the strength of the signal received by the moving user and test the
value of the proposed framework in maintaining a strong received signal during movement
compared to traditional mmWave systems (i.e., those lacking Proactive blockage prediction
capabilities).

3.5.1 Simulation Setup

In the simulation, an environment containing a blocking object located near the SBS1

and a single user moving at a speed of 30 mph is considered, as illustrated in Fig. 3.1.
The user’s trajectory is from left to right, with SBS1 selected as the serving BS since
the RSS from that BS is higher than other SBSs. Moreover, the static obstacle blocks
the LoS communication between the SBS1 and the user when it reaches the obstacle’s



CHAPTER 3. BEAM BLOCKAGE PREDICTION IN VISION-AIDED UDNS 51

Figure 3.7: Locating the origin of the Cartesian coordinates in ViWi scenarios.

(a) (b)

Figure 3.8: (a) Using ViWi information from colocated cameras direct view scenario to
model SBS2 in the system model, and (b) ViWi information from colocated cameras
blocked view scenario shows a similar RSS pattern when there is no blockage.
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𝑅𝑆𝑆𝐼(𝑥) = 

𝑚=0
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𝑎𝑚𝑥
𝑚

Curve fitted formula:

Coefficients:

𝑎0 3.69140438e-11 𝑎8 -4.79406833e-18

𝑎1 2.38244809e-11 𝑎9 9.59204806e-20

𝑎2 -1.50142337e-11 𝑎10 -1.33887437e-21

𝑎3 4.42903748e-12 𝑎11 1.28057711e-23

𝑎4 -6.95624681e-13 𝑎12 -8.04694410e-26

𝑎5 6.59641831e-14 𝑎13 3.04183473e-28

𝑎6 -4.04638010e-15 𝑎14 -5.62049872e-31

𝑎7 1.67495163e-16 𝑎15 2.23997329e-34

Figure 3.9: Determining the RSS from SBS2 at trajectory y= 9 using the curve fitting
tool.

blocked region. The system model is different from any of the scenarios introduced with
the ViWi dataset. Nevertheless, visual and wireless data pertinent to this model were
generated by merging two scenarios involving collocated cameras, direct and blocked views.
Figures 3.7 and 3.8 show the analysis performed to construct the system model. The
analysis begins by examining the information provided in the ViWi dataset to determine
the place of origin of the Cartesian coordinate system, which is not explicitly stated. The
ViWi trajectories (y= 9 to 11) were utilised to identify the origin’s location and other
trajectories, as shown in Fig. 3.7. Then, the RSS is plotted against the vehicle location
for each trajectory considered in ViWi, as illustrated in Fig. 3.8 (a) and (b). These figures
indicate a consistent signal pattern (bell shape) for each SBS across various trajectories,
with the highest signal strength occurring at the same x-location of the respective SBS.
The RSS modelling of SBS2 involved using the information from Fig. 3.8(a) and applying
curve fitting to establish a mathematical formula. First, RSS values were predicted for
each other trajectory (y= -1 to y= 8) at each user location. Subsequently, a curve fitting
process is employed to formulate the mathematical relationship between RSS and vehicle
location (x). Fig. 3.9 illustrates the resulting mathematical formula and RSS from SBS2

at y=9, which is the trajectory used in the evaluation. Finally, Python programs are used
to conduct the simulations.

3.5.2 Simulation Results

In what follows, the usefulness of the proposed framework is examined in terms of
maintaining physical link connectivity and ensuring a timely and seamless transition
between SBSs. The received signal strength indicator (RSSI) is used as a metric to measure
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the quality of signals received from nearby SBSs. Fig. 3.10(a) plots the RSSI received
from SBS1 and SBS2 along the y=9 trajectory on the street. It is noticed that the signal
drops from SBS1 when the user enters the area behind the blocking object, owing to severe
signal attenuation. In contrast, the signal received from SBS2 remains unaffected, as there
are no interruptions in the LoS path between the user and SBS2. In a traditional wireless
network, which does not utilise the PHO algorithm, the user experiences connectivity
disruptions when entering the blocking area. Such interruptions may lead to service drops
and necessitate establishing new connections, resulting in delay and poor QoE. This
contradicts the vision of 5G/6G wireless networks of providing URLLC. Fig. 3.10(b)
demonstrates the capability of the proposed PHO algorithm in proactively predicting
beam blockages. This figure reveals the efficiency of the proposed algorithm in identifying
BLOCK events in advance and triggering a timely HO. The merit of determining the
optimal point of triggering HO in the proposed algorithm is vital to maintain the QoE at
high levels and avoid early HO, which could lead to bad system performance. The points
of triggering HO and HO completion are also shown in the figure, which illustrates how
this framework is QoE-aware.

Fig. 3.11 shows the results of the early/optimal HO trigger distance for the user
moving at the speed of 30 mph. The optimal trigger boundary is the minimum distance
where the central server can perform successful HO while minimising the degradation of
performance, quantified by the percentage drop in normalised RSSI. In this specific case,
the optimal distance for a user moving at a speed of 30 mph is found to be around 70 m
from the origin. Upon detecting a BLOCK event, the central server performs HO, causing
the user’s connection resources to transition from SBS1 to SBS2. During the HO process,
the user experiences a drop in RSSI due to path loss. For instance, if the central server
performs an early HO, occurring 5 meters before the optimal trigger boundary, there is a
power drop of approximately 20 %, as shown in Fig. 3.11. therefore, the optimal trigger
distance provides the trade-off between the PHO success rate and the drop in RSSI to
maintain the seamless connectivity.

Next, the investigation delves into the effectiveness of the PHO algorithm in improving
the reliability of high-frequency wireless networks by considering a real-time application
sensitive to service interruption and network latency. A moving user that is running a video
call is considered, and the mean opinion score (MOS) is employed as a metric for QoE.
MOS quantifies the overall perceived quality of media services, rated on a scale from 1 to
5 (1-bad, 2-poor, 3-fair, 4-good, 5-excellent) [127]. In Fig. 3.12, the relationship between
MOS values and user location is depicted, capturing the variation in RSS due to different
distances from the SBS and the presence of obstacles. To translate the values of RSS to the
corresponding values of MOS, the mapping table in [128] is adopted. Fig. 3.12 reveals that
without the PHO algorithm, service interruption occurs as the user enters the blocked area,
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(a)

(b)

Figure 3.10: Performance evaluation of the proposed framework. (a) RSS from SBS1 and
SBS2, (b) Using the CV-assisted PHO algorithm to detect BLOCK events and trigger
PHO.



CHAPTER 3. BEAM BLOCKAGE PREDICTION IN VISION-AIDED UDNS 55

Power drop

N
o
rm

al
is
ed

R
SS
I

Figure 3.11: The normalised RSSI as function of the user location when the user speed is
fixed at 30 mph.

causing a 40% drop in call quality, placing it within the poor MOS range. The call quality
remains poor until the user disconnects from the serving SBS and connects to a new one.
Conversely, leveraging the PHO technique, the algorithm intelligently detects blockage
presence and countermeasures the possible signal blockage by triggering HO in advance.
As a result, the perceived MOS remains excellent. This work enhances the reliability of
UDNs that will facilitate the realisation of future latency-sensitive applications.

3.6 Summary

In this chapter, a novel CV-assisted PHO framework is introduced to address the challenge
of beam blockage and frequent HO in next-generation wireless networks. The core
concept revolves around enhancing network awareness of the surrounding environment
by leveraging visual information and using CV to predict BLOCK events and facilitate
PHO operations. The framework adopts a centralised training approach, utilising datasets
gathered at the central server to conduct model training. Moreover, the framework
employs a pretrained object detection model alongside a multivariate regression model to
predict obstacle/user location and estimate the time remaining before the user reaches a
blocked area. Additionally, the framework exhibits a QoE-awareness, featuring an analysis
of optimal location and timing for HO execution while minimising QoE degradation.
Evaluation results demonstrated that this framework is able to avoid 40% service reduction
and maintain a high level of perceived QoE. Accordingly, this work improves the
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Handover completion point

Figure 3.12: Measuring the QoE with and without PHO.

performance of UDNs rendering them more responsive to their environment, aligning
with the vision of achieving low-latency and time-sensitive applications in B5G and 6G
networks. The following chapter aims to further enhance the proposed CV-based PHO
framework by embracing the FL training mechanism as an alternative to the centralised
approach. This shift in training methodology is intended to address the challenges
associated with the conventional training methods. Furthermore, the forthcoming chapters
seeks to investigate more complex environments that encompass diverse users and multiple
blocking objects.



Chapter 4

Blockages Prediction in Dynamic
Vision-aided UDNs with Distributed
Learning

After investigating the beam blockage problem and introducing a novel CV-aided PHO
framework that enhances the reliability of UDNs, as discussed in the previous chapter,
this chapter further improves this framework by considering complex communication
environments. These environments may involve multiple static or dynamic objects and
users. In this scenario, dynamic positioning table (DPT) is introduced to distinguish
between wireless users and differentiate them from other objects in the captured vision
information. Moreover, a distributed learning approach is embraced rather than the
centralised learning technique, aligning with the aims specified in O2 . This shift helps
alleviate the pressure on communication channels, as it avoids sending large-sized and
voluminous visual information to a central server, therby preserving the privacy of this
data. The performance of the framework is evaluated based on critical parameters,
including the speed of users and objects, average HO latency, and users’ QoE.

4.1 Introduction

The challenge of beam blockage and frequent HOs becomes significantly more pronounced
in highly dynamic environments characterised by a dense presence of users and obstacles,
whether these elements are in motion or stationary. In these complex settings, wireless
users can be blocked by other active wireless users or various passive objects. Building
upon the previous study, this work takes a step forward by introducing an enhanced
and more comprehensive FL-based CV-aided PHO framework, specifically developed to
address the persistent issues of beam blockage and HO in scenarios involving multiple
users and obstacles. By harnessing the power of FL and designating the MBS server

57
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as the orchestrator for the FL process, this new framework incorporates collaborative
model training at the network’s edge, where SBSs are situated. The images captured by
the cameras positioned at the SBSs are stored locally to be used for training a model
designed to aid in predicting possible forthcoming blockages and assisting the operation
of the networks. This approach offers numerous advantages, including safeguarding data
privacy, efficient utilisation of network transmission resources, latency reduction, lower
energy consumption, and eliminating the need for high storage capacity at a central
server. Furthermore, the incorporation of CV equips the network with a comprehensive
understanding of its surrounding environment, aiding in analysing the environment using
the wealth of information derived from the captured RGB images. Nonetheless, this hinges
on two key factors: detecting objects within the environment and identifying their mobility
patterns, as elaborated in the previous chapter. Additionally, the need to distinguish
wireless users from other passive objects in still images as will be discussed in detail in
the subsequent sections.

4.2 Contributions

The following points summarise the main contributions of this chapter:

• The CV-aided blockage prediction problem is formulated for multi-user/object
UDNs, and an end-to-end latency-aware framework is developed to leverage RGB
images for proactive blockage prediction and PHO. This ensures that the QoE of
users remains as high as possible.

• The framework incorporates FL as a distributed learning approach rather than the
conventional centralised learning method. This approach involves training the model
locally at each SBS where the visual information is stored, ensuring data privacy,
and reducing communication overhead.

• Finally, the accuracy of the proposed framework is validated using modern simulation
tools. The simulation results underpin the significance of this solution in maintaining
seamless connectivity for highly dynamic UDNs.

4.3 Network Model

This study targets UDNs prevalent in smart cities, where the environment is challenging
due to numerous mobile users and obstacles. The outdoor mmWave system in
consideration comprises an MBS and many SBSs, as depicted in Fig. 4.1. For clarity, this
figure shows only two SBSs and a segment of a street as a small portion of a UDN. OFDM
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with K subcarriers is adopted as the modulation scheme based on 28GHz. Each SBS has
a camera that monitors objects within its field of view. Moreover, it has an M -element
antenna array that enables beamforming to serve single-antenna mobile users with beams
selected from a predefined beam steering codebook F = {fi}Bi=1, where fi ∈ CM×1 and B

denotes the total number of beams.
The network’s primary focus is to identify the optimal beam that achieves the highest

RSS at the user end (f⋆). Given this, an area of interest (AoI) is defined as the coverage
area that achieves the optimal RSS when the users are connected to the corresponding SBS.
QoE serves as the key performance metric that this study aims to maximise. Consequently,
the study assumes that the network will perform HOs when users cross the boundaries of
AoIs. Moreover, the chosen channel model for the mmWave environment is the geometric
model, as it effectively captures the geometrical distribution of the environment and is
commonly used in practical mmWave systems [129]. Therefore, the downlink received
signal at subcarrier k is:

yk = hTk f⋆sk + nk, (4.1)

where hT is the transpose of the downlink channel, s is the transmitted symbol, and n

represents the AWGN. In addition, the received power at the user side can be determined
as follows:

Pr = 1
K

K∑
k=1

∣∣∣hTk f⋆
∣∣∣2 . (4.2)

4.4 Problem Formulation

The beam blockage problem can be formally defined as follows. The camera captures
frames of RGB images, and image processing is applied to produce flat red-green-blue
(F-RGB)1 images focused on the AoI. Each F-RGB image is assumed to contain O

objects, and every object o ∈ O will be monitored until it leaves the SBS’s AoI. The
F-RGBs are fed into an ODL algorithm to obtain boundary-boxes information about
every object. This information is then converted into a 6-dimensional metric vector
[xul, yul, xc, yc, xlr, ylr], where the subscripts ul, c, and lr indicate the upper left, center,
and lower right coordinates of the boundary boxes, respectively. The complete mobility
vector (L) of any object o is shaped by adding its movement direction (d⃗ ) and speed (v),
as follows: Lo = [xulo , yulo , xco , yco , xlro , ylro , d⃗o, vo]Oo=1.

Assuming the number of wireless users in any F-RGB is U , U ⊆ O, and a user u ∈ U is
identified from one of all objects (as will be discussed in Section 4.5.2), then the L vector
for that user is represented as Lu = [xcu , ycu , d⃗u, vu], given that the UE is located in the

1The term "Flat" is used to indicate a 2D image that has uniform metric width throughout.
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Figure 4.1: The proposed system model: portion of an UDN including one MBS and two
SBSs each equipped with a vision sensor.

middle of the object, and other objects are potential blockages. Let Su,o represents the
combination of the wireless user and a single object, Su,o = {Lu,Lo}, u ∈ U, o ∈ O\{u}.
Therefore, the goal is to classify whether this sample leads to a possible future blockage
b ∈ {0, 1}, where 0,1 indicate beam non-blockage or blockage, respectively. Moreover, the
study predicts the remaining time until the user gets blocked if a link blockage is expected,
denoted as Tb, which could be defined as:

Tb =
 i , b = 1, ∀i ∈ R+

-1, b = 0
(4.3)

where -1 means not applicable when the sample Su,o does not lead to a future blockage.
Thus, su,o = {bu,o, Tbu,o} is defined as the labels associated with each data sample Su,o.

The objective of this study is achieved by using an ML model denoted as ΨΘ(S),
which is capable of performing both classification and regression in parallel. This model
takes in the user-obstacle vectors S as input and produces predictions ŝ. The model’s
predictions are governed by a set of parameters Θ, which are adapted based on dataset of
labelled samples D = {Su,o, su,o}, u ∈ U, o ∈ O\{u}. This dataset is used to train the ML
model to reach high accuracy in blockage status classification and accurate time prediction
for blockage events. The following mathematical formulas represent the purpose of the
model, which aims to maximise the probability of link status prediction while minimising
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the prediction error for blockage time.

max
fΘ(S)

U∏
u=1

P
(
b̂u,o = bu,o | Su,o

)
, ∀o ∈ O\{u} (4.4)

min
fΘ(S)

U∑
u=1

(|T̂bu,o − Tbu,o|), ∀o ∈ O\{u} (4.5)

4.5 CV-assisted Dynamic Blockage Prediction and
PHO

4.5.1 Key Idea and Schematic Diagram

This study focuses on a more practical scenario that considers multiple dynamic users
and objects, extending the previous work that considers a single user and a stationary
blocking object. The framework is divided into several subtasks, as illustrated in the
schematic diagram in Fig. 4.2. Initially, the camera at each SBS captures sequences of
time-tagged RGB images, which are processed to focus on the respective AoI. Then, one
of the leading-edge ODL algorithms is used to recognise objects and extract the necessary
augmented information. Next, it becomes essential to differentiate the wireless users from
other obstacles to form Su,o data samples. At this point, the data samples are labelled2

based on blockage status and time. The complete dataset is then stored to train the
multi-output model using FL. Once the model is ready, the unlabelled data samples are
directly fed into the model for inference. If the predicted Tb (T̂b) is greater than the time
required by the proposed framework (TF ), it is highly possible to avoid such blockages
by requesting a PHO. The following formulas illustrate the main time parameters of the
proposed solution:

TF = TODL + TInf + TPHO, (4.6)

TD ≤ Tb − TF , (4.7)

where TODL is the time associated with using the ODL algorithm on two successive F-RGB
images. TInf is the model’s inference time. TPHO is the time required for performing PHO,
and TD is the time defined to delay triggering the PHO to the point that yields the best
QoE.

2Labels of data samples can be obtained analytically in the absence of prior information, or through
observation by monitoring and recording the users blocking status and time.
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Figure 4.2: Schematic diagram of the proposed framework.

4.5.2 Objects Detection and Users/Obstacles Discrimination

ODL algorithms have recently undergone many advancements, enabling super-fast, real-
time, and accurate detection. In this study, a state-of-the-art YOLOv3 algorithm is
adopted to detect various objects in the F-RGB images and produce boundary boxes
indicating the positions of the objects in pixel scale [130]. These boundary boxes are
then converted to metric scale using the conversion ratio Wm : Wp, where Wm and Wp

refer to the width of F-RGB images in meters and pixels, respectively. This process is
followed by extracting objects’ speed and direction to build the L vector for every object.
Performing ODL on two successive F-RGB images is essential to determine the speed
and direction. The direction is determined by noting the displacement in the x location,
whether to the left or the right. This offset distance is divided by the time difference
between corresponding timestamps to calculate the object’s speed. The study in Chapter
3 shows that performing ODL on two F-RGB images requires 102ms, i.e. TODL = 102ms.
This time can be reduced if edge computing resources are utilised in SBSs.

Identifying wireless users: Moving from a single-user scenario to a multi-user
environment necessitates distinguishing each particular user from other objects present
in the F-RGB image. This study uses a mapping technique wherein the exact location
of the wireless user in the environment is reflected onto the F-RGB images and then
compared with all boundary boxes. The object possessing a boundary box with a centre
closest to the user’s location is identified as the wireless user within the F-RGB. Several
techniques have been employed to obtain the user’s position in the wireless environment,
such as GPS and RSS triangulation. However, these methods often fail to provide an
accurate localisation. The shift to higher operating frequency is foreseen to improve the
positioning accuracy based on the cellular networks [131]. Moreover, several studies have
explored this research direction, proposing innovative techniques that offer highly accurate
user localisation [132, 133]. Given these developments, this work assumes that the radio
access network adopts one of these highly accurate methods to provide the location and
track the users. Therefore, this study proposes the DPT within each SBS to continuously
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track user locations, which are also converted and reflected on the pixel scale. With DPT
tables, it is now possible to differentiate wireless users from other objects and generate
the necessary user-obstacle data samples, Su,o.

4.5.3 Model Training and Inference: FL Approach

The nature of the defined problem is best solved by a model capable of simultaneously
performing both classification and regression tasks. Hence, this work develops a multi-
output two-hidden layer NN model. This model is fed by user-obstacle samples to predict
both blockage status and time. In addition, this study adopts FL rather than centralised
learning to protect the privacy of the data and relieve the pressure on communication
channels.

Training Phase: The proposed framework requires a well-trained model before
execution. During the FL process, the NN model is used as the base model for training
across SBSs. The number of participating clients is set to three, although the framework
can be easily extended to incorporate a larger number of SBSs if needed. A parameter
server situated in the MBS orchestrates the training process by selecting the number of
SBSs participating in each round and sends them the model to start the training. Each SBS
then utilises its respective dataset to conduct local model training. Subsequently, each SBS
then sends the model’s parameters to the parameter server for aggregation. Furthermore,
an early stopping patience technique is developed to avoid suboptimal performance or
excessive rounds of unnecessary training.

Inference Phase: Once the model has been trained in the FL environment, it becomes
prepared for inference. The user-obstacle data samples that have been generated can then
be input into the trained model to predict blockage status and time. Furthermore, the
time associated with model inferencing requires approximately 1 ms, i.e., TInf = 1ms.

4.5.4 Optimal PHO Trigger Point

The proposed framework alerts the network to initiate PHO when a blockage is anticipated.
The principal question revolves around determining when and at what distance the PHO
should be triggered. Similar to the previous study, this work identifies two key regions: the
detection region and the failure region. The detection region is defined as the region where
the proposed framework actively monitors and detects objects. In this system model, this
region is the same as the AoI. On the other hand, the failure region marks the area where
there is minimal possibility of avoiding link interruption, primarily due to insufficient time
remaining to complete the PHO. The failure region is located just before the blocked
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region. Its width and location vary because of the environment’s dynamicity and the
user’s speed. Fig. 4.1 illustrates these regions.

Determining the optimal distance at which to trigger a PHO is closely tied to ensuring
high levels of the user’s QoE. If a BLOCK event is detected, the optimal strategy involves
waiting for the maximum delay (TmaxD ) obtained from equation (4.7) before executing the
PHO. Translating this time value into a distance gives the optimal distance (Λopt) defined
as follows:

Λopt = v × TmaxD . (4.8)

In other words, the optimal PHO must be triggered just before reaching the failure
region in the boundary between the detection and failure regions. While triggering
the PHO anywhere within the detection region and before the optimal PHO boundary
could potentially avoid the link blockage, it might come at the expense of compromising
the perceived QoE. In addition, doing an early PHO may impact the balance and the
allocation of network resources. Hence, the objective of the proposed framework is to
always trigger the PHO within the vicinity of the optimal PHO boundary.

4.5.5 PHO Latency

The final essential parameter for the proposed framework is TPHO. In a conventional
network employing beamforming, when a user loses the connection with the SBS, several
steps are taken to reestablish the connection. These steps are beam failure detection, beam
failure recovery, cell search, and contention-based/free random access [114]. According to
the 3GPP specifications, each step is associated with a time duration until completion.
The cumulative delay time is ∼312.2 ms, indicating the time associated with performing
reactive HO when contention-based random access is assumed. By employing proactive
blockage prediction, this time can be significantly reduced. For instance, in the context of
this study targeting urban areas with dynamic wireless environments, where contention-
based radio access is assumed, the TPHO is estimated to be 80ms [134]. Consequently,
the proposed framework’s TF is now determined and equals 183ms. If the predicted Tb

is greater than 183ms, the framework has a high chance of avoiding link interruption.
Otherwise, a link interruption will happen.

4.6 Performance Evaluation and Results

This section first discusses how the NN model is developed and then delves into describing
the simulation setup, followed by a discussion of the simulation results.
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Table 4.1: Hyperparameters of the NN model.

1) Actual 𝑇𝑏 < 𝑇𝐹 230 ✓

2) Predicted 𝑇𝑏 <= Actual 𝑇𝑏 2695 ✖

3) Predicted 𝑇𝑏 > Actual 𝑇𝑏 2075 ✓

𝑇𝑏 categories

Samples Blockage?Category

Figure 4.3: Classification and regression model performance.

4.6.1 FL-based Multi-output Model Development

The NN model is trained under the FL setup using the FedAvg algorithm. The complete
information about the model structure and the selected hyperparameters can be found in
Table 4.1. Model performance is tested using ten thousand samples forming 50% blocking
and 50% nonblocking. Fig. 4.3 displays the testing results in which the confusion matrix
demonstrates the near-optimal classification accuracy of the model. Additionally, the table
divides the Tb into three categories, providing the corresponding blockage status for each
category.

To give a better understanding, the PHO success rate is defined as SPHO = NS/NT ,
where NS denotes the number of samples with successful PHO, and NT indicates the total
number of blocking samples. Therefore, it can be concluded from the table in Fig. 4.3
that the success rate is unsatisfactory at 54%. However, this result can be improved by
making a trade-off between the SPHO and the QoE. To achieve this, a new parameter
called percent shift (PShift) is introduced. The PShift is defined to reduce the predicted
Tb by this percent. This parameter aims to move as many samples as feasible from the
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𝑇𝐷𝑂 %

Figure 4.4: The distribution of the TD offset of the samples with successful PHO.

Table 4.2: SPHO versus PShift.
PShift % 0 1 3 5 7 9 11 13 15
SPHO % 54 77.1 91 93.4 93.6 93.3 92.8 92.4 92

third to the second category, thereby improving the SPHO at the cost of a slight decrease
in the QoE. Table 4.2 provides insight into how altering the values of the PShift influences
the SPHO, with the best value being identified as 7%. Accordingly, Fig. 4.4 illustrates the
cumulative distribution function (CDF) of the samples with successful PHO in relation to
TD offset, desfined as (TDO). This offset indicates the disparity between the predicted TD
(T̂D = T̂b − TF ) and the actual one, defined as:

TDO = TmaxD − T̂D
TmaxD

× 100%, ∀T̂D ≤ TmaxD . (4.9)

The optimal PHO point occurs when the TDO equals zero. The closer the samples
to this point signifies improved performance. Moreover, deviating from this point means
initiating PHO earlier, which could potentially affect the QoE. However, performing earlier
PHO with some QoE reduction is preferable to experiencing a complete loss of connection
followed by re-establishment. The later scenario would incur much overhead and increase
network latency. Finally, the framework is now ready to be used under the considered
scenario that will be discussed subsequently.

4.6.2 Simulation Setup

The overall performance of the proposed framework is evaluated by considering a practical
outdoor environment. The scenario considered in this study is inspired by the ViWi ASU
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Figure 4.5: The impact of different relative speeds on the PHO success rate.

downtown scenario (ASUDT1) [135], which closely resembles the system model adopted
for this study. ASUDT1 comprises two mmWave SBSs operating at 28GHz and located 60
m apart on opposite sides of the street. Each has an antenna array that forms LoS beams
to serve 60 users moving in straight trajectories. Users are UEs placed in the center of
vehicles of different sizes, such as cars, buses, and trucks. These vehicles move at different
speeds and directions, and each can be seen as a potential obstacle for other users. At
each time instance, referred to as a scene, ASUDT1 provides raw data for every user u
consisting of a 4-tuple of concurrent information including user location, RGB images,
mmWave channel, and link status from each SBS. This dataset helps in the evaluation of
proposed solution’s performance. The simulation experiments are conducted using Python
programs, with the key performance metrics are the PHO success rate, network latency,
and the perceived QoE.

4.6.3 Simulation Results

Several aspects are considered to examine the efficacy of the proposed framework. First,
given the dynamic nature of the considered environment, the impact of vehicles’ speed on
performing a successful PHO is studied. The speed of the vehicles is set within the range
of 1.5 to 20 mph. In this context, a new parameter called relative speed is introduced. For
every blocking sample in Su,o, the relative speed parameter is defined as follows: if the
user and the obstacle are moving towards each other, the relative speed is computed as
the sum of their speeds; if they are moving in the same direction, it is calculated as the
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Figure 4.6: Comparison of the average latency between the reactive HO and the proposed
CV-aided PHO.

difference in their speeds. This parameter essentially quantifies how fast a blockage occurs
and will be used to investigate its impact on performing successful PHO. Consequently,
the relative speed derived from all blocking samples within the testing dataset is divided
into three groups: slow, medium, and fast based on their mean and standard deviation.
Samples with a relative speed below 10 mph are classified as slow, those with a relative
speed between 10 mph and 29 mph are categorized as medium, and those exceeding 29
mph are labeled as fast. Fig. 4.5 demonstrates the results of this study. It can be observed
that the PHO success rate is high when the relative speed is low and medium. Conversely,
the success rate decreases as the relative speed increases. This outcome is in line with
expectations, given that higher relative speeds lead to reduced Tb values for blockages,
consequently diminishing the likelihood of a successful PHO.

Next, the latency associated with performing HO on both reactive- and proactive-based
HO approaches is investigated. Section 4.5.5 delves into this analysis, revealing that the
latency linked with reactive HO amounts to approximately 312.2 ms. In contrast, the
PHO entails a mere 80 ms, assuming contention-based random access. Following a similar
approach from [114], the average HO latency for 5000 users is calculated as:

ζ = {ϵ× U} × 80 + {(1− ϵ)× U} × 312.2
U

, (4.10)
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Figure 4.7: The RSS percentage drop due to performing reactive and PHO, and how much
this drop affects the QoE measured through MOS.

where U signifies the total number of users, and ϵ ∈ [0, 1] is the proportion of users who
successfully performed PHO. Fig. 4.6 shows the average latency improvement achieved
by the proposed PHO framework compared to the reactive mechanism. The calculated
average latency is 94.8 ms for the proposed CV-aided PHO solution, which outperforms
the reactive HO approach by a factor of 3.3. This improvement is pivotal for maintaining
uninterrupted connectivity in real-time applications.

The final study adopts a similar approach from the previous work of considering moving
users running an real-time protocol (RTP)-based application and measures the average
QoE/MOS of a group of users with prospect blockages. This study takes advantage of the
mmWave channel information provided by the ASUDT1 scenario. Since ASUDT1 provides
plentiful information represented as scenes for every location point, this study spotlights
on the portion of the street between the two SBSs and only focuses on the blockages within
the scene interval from 680 to 980. For every blocking, the RSS percentage drop when a
user is handed over to another SBS is recorded and is done for all users who encounter
blockages in between the two SBSs. Then, the average percentage drop of the RSS is
calculated and mapped to the corresponding value of the MOS. However, in the case of
the reactive-HO approach, no proactive measures are undertaken. In this scenario, the
percentage drop in RSS is measured to find the average RSS percentage drop. Fig. 4.7
illustrates the outcome of this study in which the proposed framework can keep the MOS
at a high level despite the small drop in the average RSS. On the contrary, the reactive
HO fails to keep users at high MOS during interruption time. This result confirms the
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potential of the proposed framework for improving the reliability of high-frequency wireless
networks, rendering them more suitable for latency-sensitive applications.

4.7 Summary

This study explored the potential of leveraging vision information to improve the reliability
of high-frequency networks by predicting dynamic blockages in advance and taking
measures to perform PHO. A NN multi-output model is developed that, combined with
CV technology, propose a novel framework capable of accurately predicting blockages
and the time needed before the user reaches the blocked region. Moreover, the model is
trained using FL to protect data privacy and conserve bandwidth resources. Simulation
results indicated that the proposed framework achieves a high PHO success rate of 93.6%,
outperforms the reactive-HO approaches by a factor of 3.3 in terms of latency, and
maintains the QoE at higher levels. These results highlight a promising solution for beam
blockages in multi-user mmWave/THz networks. However, it is important to note that the
performance of CV-aided PHO frameworks may be impacted by low-light conditions and
adverse weather. Therefore, the subsequent chapter will explore an alternative approach
involving radar sensors to provide more enhanced proactive beam blockage solution.



Chapter 5

Radar-aided Dynamic Blockages
Recognition in UDNs with
Distributed Learning

The preceding two chapters have effectively addressed the beam blockage problem by
proposing CV-aided PHO frameworks applicable in diverse environments. However,
the deployment of vision sensors faces challenges, including regulatory constraints and
compromised image quality in low-light or adverse weather conditions. This chapter
addresses these issues by proposing RaDaR, a framework that leverages radar sensors to
monitor the surrounding environment and identify potential blocking objects in advance.
Moreover, the FL distributed learning approach is employed, providing the framework with
advantages such as scalability, knowledge sharing, and resource efficiency. This aligns with
the aims specified in O3 . Considering critical metrics like RSS, latency, and throughput in
UDNs, simulation results affirm that RaDaR, with its blockage-aware approach, enhances
the QoE for users in highly dynamic environments with low-latency requirements.

5.1 Introduction

Incorporating CV technology to predict the forthcoming beam blockages has introduced
innovative frameworks that significantly enhance the operation of high-frequency networks.
Nevertheless, deploying vision sensors may not always be feasible due to regulatory and
privacy concerns. Moreover, image quality may be affected by low-light and adverse
weather conditions. These restrictions have spurred a new research direction that involves
the adoption of radar technology for predicting link blockages, achieved by detecting
obstacles through radar fingerprints. The reasons for this shift to radar-based solutions
are due to their low cost, ability to capture useful object features like range, velocity, and
direction. In addition, radar technology offers lower privacy risk and, most importantly,

71
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enables low-latency transmissions as it operates at high-frequency bands. To date, few
studies have considered the use of radars to address beam blockages problem in high-
frequency networks [136,137]. The work in [136] is leading in harnessing radar sensors to
enhance the reliability of mmWave communication systems in indoor environments. The
study proposed a concept, called radar-based medium access (RadMAC), which leverages
reflected radar signals to enable intelligent beam-steering decisions based on blockage
prediction and avoidance. Likewise, in [137], a mmWave BS was integrated with a low-
cost frequency-modulated continuous wave (FMCW) radar to gather information such
as range and velocity for obstacle prediction. To enhance the network’s intelligence and
enable it to anticipate possible beam blockages up to one second ahead, a combination of
CNN and LSTM models were trained based on radar range-angle maps. However, these
studies are preliminary and did not adequately consider the dimensions of obstacles, which
are crucial factors in determining the potential blockage of an LoS link. Additionally,
existing studies overlooked the significance of the height of both the BS and the UE,
which significantly influence the status of the mmWave channel. Consequently, further
research is required to fully explore the potential of using radars to proactively predict
blockages and achieve promising reliability and latency gains for the practical realisation
of next-generation networks.

5.2 Contributions

This chapter introduces a novel framework named radar-aided dynamic blockages
recognition (RaDaR), developed to handle the challenge of frequent beam blockages in
high-frequency outdoor networks. RaDaR employs radar sensors to enhance the network’s
situational awareness by monitoring and tracking the movement of objects to generate
range-angle and range-velocity maps. These maps are useful for analysing the scene and
making accurate blockage predictions. Unlike previous related works, RaDaR leverages
radar information to predict the height of objects, a critical factor in determining whether
an object will obstruct the LoS link or not. Additionally, the framework’s end-to-end
execution time is measured to provide the network with a proactiveness merit in predicting
blockages and performing PHO, to avoid link interruption and ensure high QoE. In
addition, RaDaR incorporates the FL training mechanism, which brings three important
benefits: scalability, knowledge sharing, and resource efficiency. As a result, RaDaR
supports network expansion to new development areas and consolidates knowledge from
multiple SBSs by performing distributed learning rather than centralised learning. This
consequently reduces the overhead on the network’s transmission resources. Benefiting
from the real-world DeepSense dataset [138], a set of non-independent and identically
distributed (non-IID) features is extracted to collaboratively train a dual-output NN model
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offline using a group of SBSs. The trained model is then used online at each SBS to predict
the occurrence of BLOCK events and the remaining time before obstacles obstruct the link.
With this information, RaDaR can preemptively decide the optimal instant to switch the
beam or initiate PHO to maintain the users’ QoE as high as possible. The contributions
of this work can be summarised as follows.

• A novel framework, called RaDaR, is presented, aiming to improve the reliability of
federated mmWave networks by integrating radars for the anticipation of LoS link
blockages while considering latency and QoE metrics.

• The FL algorithm is employed to facilitate collaborative model training at each
SBS by using information acquired from radars placed at the top of the SBSs. FL
provides the framework with vital features, including scalability, knowledge sharing,
and conserving network resources.

• The effectiveness of the proposed framework is evaluated using the large-scale real-
world DeepSense dataset. In particular, Scenario 30 is augmented, and diverse
environments are created to reflect practical scenarios.

5.3 System Model

The considered system comprises several SBSs and stationary1 users in a vehicular
environment, as shown in Fig. 5.1. The SBS and users are equipped with a GPS that
is supported by a real-time kinematic network. This enables accurate three-dimensional
geolocation with sub-centimetre precision [139]. Moreover, the SBS is equipped with two
primary components: (i) a phased array antenna that produces LoS beams to serve the
user and (ii) an FMCW radar mounted at the SBS to detect and track mobile objects in
the operating vicinity. In the following subsections, the signalling models are explained
for the network and radar components.

5.3.1 Channel and Blockage Models

The considered system operates at 60 GHz using OFDM with K subcarriers and a cyclic
prefix of length Q. Each SBS is equipped with a ULA consisting of M antenna elements.
These elements are utilised to produce narrow directive beams that maximise the receive
beamforming gain at single-antenna UEs. Moreover, it is assumed that each SBS has a
predefined beamforming codebook F = {fi}Bi=1, fi ∈ CM×1, where B denotes the total

1The term ‘stationary’ is used to indicate that the user will remain within the effective coverage range
of the beam.
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Figure 5.1: The proposed system model of the RaDaR framework.

number of beams in the codebook. Any beamforming vector can be represented as:

fi = 1√
M

[
1 ej 2π

λ
d sin(ψi) . . . ej

2π
λ

(M−1)d sin(ψi)
]T
, (5.1)

where 1√
M

represents the normalisation factor, d denotes the distance between adjacent
antenna elements, λ is the wavelength of the carrier frequency, ψi ∈ {2πi

B
}B−1
i=0 is the steering

angle, and T indicates the transpose notation.
The objective of the network is to determine the optimal beam f⋆ that yields the

highest RSS at the UE. To accomplish this, the SBS acquires a pilot message from the
UE and uses it to train all the beams in the codebook to identify the best beam. Once
selected, the received signal at the UE side on the kth subcarrier can be represented as:

yk =
√
EkhHk f⋆sk + nk, (5.2)

where
√
E is the transmitter gain, h ∈ CM×K indicates the narrow band channel between

the SBS and the UE, (·)H denotes the Hermitian transpose, s is the transmitted data
symbol, and n ∼ CN

(
0, σ2

)
is AWGN with zero mean and σ2 variance.

Assuming that the multi-path components of the signal arrive at the receiver through
P distinct paths. The shortest path is the LoS path, which is the path of interest in this
study and is denoted by p⋆, and the other paths represent the NLoS components. Hence,
the channel between the transmitter and the receiver can be mathematically expressed as:

hk = hLoS
k + hNLoS

k , (5.3)
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where the LoS and NLoS channels are given respectively as follows [140]:

hLoS
k =

Q−1∑
q=0

αp⋆e−j 2πk
K
qℓ
(
qTs − τp⋆

)
a
(
θp⋆ , ϕp⋆

)
, (5.4)

hNLoS
k =

Q−1∑
q=0

P\{p⋆}∑
p=1

αpe
−j 2πk

K
qℓ
(
qTs − τp

)
a
(
θp, ϕp

)
, (5.5)

where αp, τp, θp, ϕp are the gain, delay, azimuth, and elevation angles of the arrival of
path p, respectively. Here, ℓ(·) represents the pulse-shaping filter. Ts is used to denote the
sampling time, and a is the receiver array steering vector [141].

This study employs a blockage fading channel model to include the impact of blockages
on the communication system. Let b denote the LoS blockage status and is defined as:

b[t] =
 1, LoS path is blocked

0, LoS path is not blocked.
(5.6)

Therefore, the mmWave channel for any subcarrier k at the time instant t ∈ Z+ can be
updated as follows:

hk[t] = (1− b[t]) hLOS
k [t] + hNLOS

k [t]. (5.7)

It is noteworthy that, in practical scenarios, NLoS signals exhibit a relatively negligible
impact on high-frequency communication systems due to their considerably lower signal-
to-interference-plus-noise ratio (SINR), rendering them less desirable for robust and
reliable communications [142, 143]. Furthermore, these systems naturally have few NLoS
links with significantly inferior channel gains compared to LoS counterparts, even in the
presence of blockages [144]. Thus, it is reasonable to assume that wireless networks in
mmWave and THz bands predominantly hinge on LoS beam communications for the
delivery of reliable and highly efficient data transmission.

5.3.2 Radar Model

In this system, an FMCW radar is installed in each SBS to obtain measurements of
the surrounding environment and leverage them to develop a proactive mechanism for
predicting potential network blockages. In each measurement, the radar transmits a frame
of C frequency-modulated chirps that represent continuous waves of radio signals separated
by pause time τP . Each chirp (a.k.a. ramp) has a linearly varying frequency that starts
from fc and ends with fc + µt, given as [137]:

Xchirp(t) = At exp
(
j
(
2πfct+ πµt2

))
, 0 ≤ t ≤ τc (5.8)
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where At denotes the transmitter gain, µ = Bc/τc is the slope of the chirp signal, which has
bandwidth Bc and duration τc. Upon transmitting all chirps, the radar system remains
inactive until the initiation of a new frame. However, during the frame time, the radar
receives the signals that are reflected by the target objects. The received signals are
subsequently directed to a quadrature mixer, which combines the transmitted and reflected
chirps to generate in-phase and quadrature components. The mixed signals are then
processed by a low pass filter to produce intermediate frequency (IF) signals. The IF
signal captures the variations in frequency (a.k.a. beat frequency) and the phase between
the transmitted and reflected signals. The IF signal can be mathematically represented
as [145]:

YIF (t) = AtAr exp
(
j (2πfcτrt + 2πµτrtt)

)
, 0 ≤ t ≤ τc (5.9)

where Ar is the receiver gain, τrt = 2r/c is the round-trip delay of the radar signal reflected
from the object, which depends on the distance r between the object and the radar, as
well as the speed of light c.

The IF signal then undergoes analog-to-digital converter (ADC) and is subsequently
sampled at a rate of fs, producing S samples per chirp. Assuming the radar is fitted
with Mr receive antennas, the number of samples per measurement will be Mr · S · C.
These samples are represented as R ∈ CMr×S×C , and they constitute the fundamental
information used to infer object-related information in RaDaR.

Range and velocity calculation: Suppose an object has a time-varying distance r(t) =
r0 +x(t), where x(t) = vt is a function denotes the distance variation of an object moving
at v velocity. Thus, the round-trip time can be written as:

τrt = 2r0 + 2vt
c

. (5.10)

After substituting (5.10) in (5.9) and performing some mathematical manipulations, the
IF signal can be written as follows:

YIF (t) = AtAr exp
(

j
4π

c

(
µvt2 + µr0t + v

λR
t + r0

λR

))
, (5.11)

where λR denotes the wavelength that corresponds to the operating frequency of the radar.
Note that the first and last terms of the exponent have limited usefulness in extracting
range and velocity information. The first term is very small, and the last term remains
constant. In contrast, the second term provides valuable range information, while the
third term enables the extraction of velocity information.

After sampling the IF signal with the ADC converter, a fast Fourier transform (FFT) is
applied along the time samples direction, referred to as Range-FFT, to determine the range
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Figure 5.2: (a) Radar is used to gather situational information, (b) this information is
used to generate the localisation vector of the object.

of the object2. The peak of the power spectral density output reveals the range information
of the target object. Additionally, performing a second FFT on the chirp samples, known
as Velocity-FFT, helps determining the target object’s velocity by observing the peak of
the output spectrum.

Angle and direction estimation: The utilisation of MIMO antennas in radar systems
enables the estimation of the angle of arrival (AoA). By implementing an additional FFT
in the direction of the receive antenna samples, referred to as Angle-FFT, the angular
information can be extracted. Specifically, the variation in distance between the object
and each receiving antenna causes a phase shift in the FFT peak, which corresponds to
angular information. On the other hand, the object movement direction can be easily
identified by observing changes in the AoA, or alternatively by checking which of the in-
phase or quadrature components of the complex beat signal is leading in phase. Finally,
performing range, velocity, and angle FFTs would result in radar cube, which can be
viewed as the stack of range-angle maps of each velocity value.

5.4 Problem Description and Formulation

The main objective is to utilise radar measurements R for detecting objects and predicting
forthcoming LoS beam blockages. This decision is facilitated by knowing the location
information of the users and the potential obstacles. Once a stationary user u is connected
to the network, the SBS activates the radar sensor to monitor the surrounding area.
Assuming that a number of objects denoted as O are detected in the ith measurement
Ri. Each object o ∈ O will be continuously monitored until it exits the radar’s field of

2Multiple ranges can be obtained for an object, but typically, the shortest one, often generated by the
nearest upper edge, is considered
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view (FoV). During this monitoring process, the object’s situational parameters, which
include its range ρ, velocity υ, AoA φ, and direction ⋎ described in Fig. 5.2(a) are
extracted. Based on the height of the radar H and the height of the object ho, which
will be discussed in Section 5.5.1, the situational information is utilised to construct a
six-dimensional localisation vector L for the object, given by Lo = [ro, xo, yo, θo, vo, d⃗o],
where:

ro =
√(
ρ2 − (H − ho)2)

xo = ro sin(φ)
yo = ro cos(φ)
θo = tan−1 yo/xo

vo = υ

d⃗o = ⋎.

(5.12)

These features are derived by placing the SBS at the Cartesian origin and considering
the x-y plane. Specifically, ro is defined as the distance from the SBS to the object,
and xo and yo as the object’s x and y coordinates, respectively. Additionally, θo is used
to represent the angle between the positive x-axis and the line passing through (xo,yo)
and the origin. The object’s speed is denoted by vo, and d⃗o signifies the direction of its
movement, which can be either "left" or "right". Please refer to Fig. 5.2(b) for further
illustration.

Given a set of stationary users U , each user u ∈ U is assigned a four-dimensional
localisation vector denoted as Lu = [ru, xu, yu, θu]. These features are similar in their
definition to those related to the detected object and are obtained by converting the user’s
GPS information to Cartesian using the universal transverse Mercator tool [146]. Then,
for each user u, Su,o = {Lu,Lo} is generated, with the objective of classifying whether
this data sample results in a future blockage b ∈ {0, 1}. 0,1 denote beam non-blockage or
blockage, respectively. Moreover, the remaining time until the obstacle obstructs the LoS
connection is estimated and denoted as Tb and is defined as:

Tb =
 i , b = 1, ∀i ∈ R+

−1, b = 0,
(5.13)

where−1 indicates that the value is not applicable due to the absence of potential blockage.
Therefore, su,o = {bu,o, Tbu,0} is defined as the labels associated with each data sample Su,o.

The user/object localisation information could be leveraged to intelligently handle
channel disruptions and enhance network reliability. To formulate that, the objective is
to design an ML model, denoted as ΨΘ(S), that can simultaneously perform classification
and regression. This model takes in user-object data samples S and generates prediction
ŝ. These predictions are governed by a set of parameters Θ adapted based on a labeled
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dataset D = {Su,o, su,o}. The model aims to maximise the probability of accurately
predicting link disconnections while minimising the error associated with predicting the
blockage remaining time, as given below:

max
ΨΘ(S)

U∏
u=1

P
(
b̂u,o = bu,o | Su,o

)
, ∀u ∈ U, ∀o ∈ O (5.14)

min
ΨΘ(S)

U∑
u=1

(|T̂bu,o − Tbu,o|), ∀u ∈ U, ∀o ∈ O (5.15)

5.5 The Proposed RaDaR Framework

This section presents RaDaR, an ML-based approach for predicting beam blockages in
B5G and 6G networks using radar data. RaDaR utilises a dual-output NN model trained
on bundles of radar measurements to provide the system with real-time blockage handling
intelligence, thereby improving the performance of next-generation networks. In the next
subsections, an in-depth explanation of the proposed solution is provided.

5.5.1 Overview and Schematic Diagram

This study focuses on practical communication systems, particularly in the context
of UDNs. UDNs densify SBSs and LoS links per unit area. However, downscaling
communication systems have complicated the challenge of mobility, particularly in
dynamic areas like smart cities. SBSs use narrow directive beams to connect users to
the network, making the UE’s position relative to the SBS critical for service continuity.
However, the presence of mobile objects can obstruct LoS links, leading to fluctuations
in data rates. Conventional wireless networks can only detect the presence of blockages
when the user’s throughput fluctuates or when the link is disconnected. This concludes
that the network is reactive to blockage events, resulting in poor performance. To overcome
this challenge, wireless networks must shift from reactiveness to proactiveness by having
a sense of their surroundings. Proactiveness must be integrated as a key dimension
using existing sensing modalities to improve wireless networks. Hence, radar sensors are
deployed, with each SBS equipped with an FMCW radar to monitor the coverage area. The
information obtained from radars is vital in dealing with link blockages and controlling the
communication system. Fig. 5.3 illustrates the proposed framework’s schematic diagram,
which consists of three main phases: obstacles detection phase, training and inferencing
phase, and PHO decision phase.
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The obstacles detection phase

Not every object detected by the radar will necessarily act as a blockage disrupting the
communication channel. The occurrence of a blockage event in the system model is highly
dependent on the position of the antenna array, the UE, and nearby objects, the direction
of object movement, and the dimensions of the objects, especially their height. Therefore,
it is imperative to accurately identify actual obstacles to prevent unnecessary HOs. To
achieve this, when a stationary user is connected to the network, the serving SBS uses
the 3D location information of the user (xu, yu, zu) and the antenna array (xA, yA, zA) to
determine the formula of a 3D line crossing them. This equation can be expressed as a
vector equation in mathematical terms as follows:

< x, y, z >=< xA, yA, zA > +β < κ, ι, ς >

(κ, ι, ς) = (xu − xA, yu − yA, zu − zA)
(5.16)

where β is a parameter describing a particular point on the line, and < κ, ι, ς > is the
direction vector. At the same time, the SBS activates the radar. The radar collects and
forwards the reflected signals to a processing unit, where the FFT process is executed
to generate a radar cube. Upon detecting an object, the framework utilises the radar
cube information to determine the object’s range, velocity, AoA, and movement direction.
Subsequently, the framework must establish the object’s localisation vector. However, the
object’s height remains unknown, a key parameter for constructing the object’s localisation
vector, as highlighted in (5.12).

To determine the height of a detected object, one of the several studies available in the
literature that tackled this issue through radar technology is employed [147,148]. The most
appropriate technique involves using radar fingerprints and residual networks (ResNets)
to classify objects in real time. Then, this technique determines the objects’ heights by
referencing a predefined table that includes the dimensions of each classified object [148].
This study is primarily concerned with predicting the timing of LoS link blockage, a
task that can be accomplished by knowing the range and height of an object. While
comprehensive object dimensions, such as length and width, are of lesser importance for
this purpose, they will become crucial for estimating the duration of link blockages [149].
Investigating these full object dimensions represents a potential area of research expansion
in the future, building upon this work. It is assumed that the framework adopts the
aforementioned approach to determine the height of the detected object, which, in turn, is
used to generate the object’s localisation vector. Subsequently, the framework generates
the plane y = yo and calculates the point of intersection between the 3D line equation
and the plane, denoted as (xI , yI , zI) as illustrated in Fig. 5.4(a). If the direction of
the object’s movement is toward the 3D line, the framework compares zI with the ho to
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Figure 5.3: Schematic diagram of the proposed framework.
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Figure 5.4: Obstacle detection analysis: (a) the use of 3D line equation and y = yo plane
to determine the point of intersection. Assuming object’s height is ho, then (b) ho > zI ,
means a blockage, (c) ho = zI , means a blockage (d) ho < zI , means no blockage.
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assess the potential for obstructing the LoS link. When ho is greater than or equal to
zI , this means the object will block the connection, as demonstrated in Fig. 5.4(b) and
5.4(c). Conversely, if ho is less than zI , this means the object most likely will not block
the connection, as shown in Fig. 5.4(d).

Training and inferencing phase

The next phase involves sampling the surrounding environment and collecting the
necessary data samples for supervised model training. The framework acquires the
requisite dataset to train the NN model for predicting the status and time of blockages
by localising users and objects. The training process is performed offline using the FL
algorithm, in which each SBS contributes its collected datasets to collaborate on model
training. Afterward, the trained model is deployed online to perform inferencing.

PHO decision phase

If a blocking event is anticipated, the primary objective of the framework is to prevent user
shadowing and maintain the connection by proactively deciding to perform a HO. This
decision is supported by predicting the remaining time until the obstacle blocks the LoS
links T̂b. Knowing this time enables better planning for the optimal time to perform HO
and maintain the QoE at its highest possible level. However, it is important to measure
the total time required by the proposed framework, denoted as TF , which comprises three
main sub-time parameters as follows:

TF = TR + TInf + TPHO, (5.17)

where TR is the time duration that begins when the radar is activated and continues
until the radar cube information for a single measurement is processed, including the
classification of the detected objects. TInf represents the model inferencing time, and TPHO
indicates the time required to switch the user to another stable connection. Moreover,
picking the optimal time instant for initiating proactive HO is facilitated by introducing a
new time parameter called the delay time (TD). This parameter represents the idle time
between the completion of inferencing and the triggering of HO, and is defined as follows:

TD ≤ T̂b − TF . (5.18)

5.5.2 Radar Measurements Processing

The TR parameter entails several sub-processes that the framework executes to prepare for
the next stage of generating the data samples. Table 5.1 presents the typical radar system
parameters considered in this study [138]. Initially, the duration of each measurement,
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Table 5.1: Radar system parameters.
Parameter Value
No. of transmitters 1
No. of receivers 4
No. of chirps 128
Start frequency (fc) 77 GHz
Chirp slope (µ) 15015 GHz/s
Chirp duration (τc) 60 µs
Chirps pause time (τP ) 5 µs
No. of samples per chirp 256
Sampling rate 5 MHz
Max range 100 m

denoted as Tm, is determined. This measurement involves transmitting 128 chirps, with
each chirp lasting for 60 µs, totaling 8.3 ms. Next, the maximum time a radar signal
can remain in the air is calculated, given that the maximum radar range is set to 100
meters. This time is expressed in microseconds; however, it can be disregarded since the
framework’s timescale is in the millisecond range. Then, the sampling time Ts required to
perform ADC and sampling of the received reflected signals is measured. Ts is calculated
by dividing the number of samples per measurement by the sampling rate and is found to
be 26.2 ms.

After acquiring the radar measurements in the form of samples, the next step is to
measure the time taken to perform FFT and generate the radar cube, represented as
TFFT . Assuming an FFT process has a complexity of O(m logm), and a single token
m requires one nanosecond to execute, it is estimated that generating a radar cube per
measurement requires performing three FFTs, resulting in a processing time of 6 ms [150].
Furthermore, the time required to classify the detected object, denoted as Tc, within
the adopted work, is identified. To ensure real-time object classification, the previous
study [151] demonstrates that the ResNet-50 model’s inference time will be 26 ms, which
is considered near real-time. Therefore, it is assumed that the adopted work requires a
similar time to classify the detected object. In summary, the following equation defines
the sub-processes times covered under TR:

TR = Tm + Ts + TFFT + Tc. (5.19)

Based on the above assumptions and discussion, TR is calculated to be around 66.5 ms
for the illustrative realistic scenario. Fig. 5.5 provides a summary of the defined time
parameters in the RaDaR framework and their respective roles.
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Figure 5.5: Diagram of time parameters and descriptions.

5.5.3 FL Design for Model Training

This study aims to select a model that meets various requirements, including
high prediction accuracy, low inference latency, collaborative training capability, and
simultaneous classification and regression ability. Through careful investigation, a three-
hidden layer NN model is designed to process user-object data samples and produce
dual predictions of blockage status and time, as depicted in Fig. 5.6. Furthermore,
this study aligns with the current research trend of using the FL approach instead of
the centralised learning mechanism to provide several benefits, such as safeguarding data
privacy, improving bandwidth efficiency, and promoting scalability and knowledge sharing.
This approach enables the framework to be generalised by learning from different scenarios,
facilitating its deployment in new development areas.

Offline learning phase

The proposed dual-output NN model is trained offline using the FL mechanism. The model
comprises an input layer that receives ten features {fi}10

i=1 of user-object data samples,
followed by three hidden layers with 128, 64, 32 neurons, respectively. The model has two
output layers: a classification layer with two neurons activated by the softmax function
and a regression layer with a single neuron activated by the linear function. The model’s
architecture is depicted in Fig. 5.6. The loss functions used are mean absolute error (MAE)
and sparse categorical crossentropy. Additionally, the model’s optimiser, learning rate,
batch size, and epochs are set to Nadam, 0.001, 100, 10, respectively. The training process
involves SBSs acting as clients participating in model training. This study usees five
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Figure 5.6: The structure of the developed dual-output NN model.

clients, but the framework is scalable and can accommodate large number of clients. Each
SBS utilises its user-object data samples to iteratively train the NN model and reports the
model updates to a central server located, for example, in a MBS or the cloud. Moreover,
the server follows the FedAvg method [58] to aggregate the shared model parameters
by computing their weighted average. The weight of each update is proportional to the
number of data points of each client. In addition, the number of FL communication rounds
is controlled using a stopping technique to avoid suboptimal or unnecessary communication
rounds.

Development dataset The NN model is trained and evaluated by exploiting the real-
world data from scenario 30 of the DeepSense 6G testbed [138]. This testbed closely
resembles the adopted system model, wherein a transmitter and receiver located on
opposite sides of a two-way city street. The scenario offers diverse data modalities,
including radar measurements and blockage information with associated timestamps. By
computing the difference between timestamps, user-object samples can be labelled and
determine when the detected object will obstruct the LoS link. However, in scenario
30, every object is blocking the LoS link due to the low height of the BS, which does
not necessarily reflect practical network deployments. In contrast, the proposed system
considers more practical communication systems, where the detected objects may or may
not cause blockages depending on the height of the SBS. Additionally, scenario 30 only
involves a single BS communicating with a single stationary user, whereas this study
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Table 5.2: The parameters adjusted in the testbed to reflect a practical wireless
communication system. The SBS is positioned at the Cartesian origin in the middle
of the street, and [ · , · ] indicates the range from which values are chosen based on the
corresponding distribution.

SBS Distrib. Street
width(m) H(m) (xu, yu)(m) (xo, yo)(m) ho(m) vo(mps) No. of

samples Block: Non-block

SBS1 Uniform 40 3 ([-20, 20], 12) ([-20, 20], [1, 11]) [1, 4.5] [3, 9] 10,000 10% : 90%
SBS2 Gaussian 60 4 ([-30, 30], 13) ([-30, 30], [1, 12]) [1, 4.5] [3, 11] 15,000 25% : 75%
SBS3 Gamma 80 5 ([-40, 40], 14) ([-40, 40], [1, 13]) [1, 4.5] [3, 13] 30,000 50% : 50%
SBS4 Binomial 100 6 ([-50, 50], 15) ([-50, 50], [1, 14]) [1, 4.5] [3, 15] 25,000 75% : 25%
SBS5 Poisson 120 7 ([-60, 60], 16) ([-60, 60], [1, 15]) [1, 4.5] [3, 17] 20,000 90% : 10%
SBS6 Beta 100 5 ([-50, 50], 13) ([-50, 50], [1, 12]) [1, 4.5] [3, 9] 2,000 50%: 50%

targets wireless networks that involve multiple SBSs and users.
To overcome these limitations, scenario 30 is analysed and augmented with the

objective of generating multiple distinct environments featuring diverse datasets that
replicate the complexity found in real-world data distributions. More specifically, in real-
world context, data collected from distinct endpoints often exhibit substantial variations in
data characteristics, class distributions, and statistical properties. Non-IID datasets offer a
more accurate representation of these real-world data distributions. Therefore, the goal is
to deliberately introduce the non-IID attribute in the developed wireless environments
by generating diverse datasets for each SBS participating in the FL process. The
augmentation process commences with the comprehensive examination and understanding
of all parameters within scenario 30 testbed, especially those contributing to suboptimal
user link connectivity with the BS. Subsequently, new and distinct wireless networks are
thoroughly constructed using programming tools. For each augmented network, various
testbed parameters are adjusted, including users and objects positions, objects heights, and
objects speeds. These adjustments are based on different distributions to encapsulate the
non-IID characteristic, which is further validated by ensuring that the mean and variance
of each parameter differ across the SBSs. Other constant parameters, such as street width,
H, and yu, are also given different values across different networks to foster environmental
diversity. Using the programming tool, user-object datasets S are then generated for each
SBS, with varying numbers of data samples and blockage-to-non-blockage ratios. Table 5.2
provides a summary of the modified parameters employed to generate these new non-IID
datasets.

Through these modifications and augmentations, a more realistic communication
system is established with six SBSs, each having its own user-object data samples. If
ho ≥ zI , [⋎, yo, yu, θo, θu] is used as a set of features to assess blockage status. The table in
Fig. 5.7(a) presents all possible cases, from which it can be observed that only two cases
will result in blockages. Fig. 5.7(a) also depicts one of the blockage cases. Similarly, to
determine the Tb, the position information, movement direction, and speed are important.
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Figure 5.7: Labeling user-object data samples: (a) blockage status of various cases, (b) A
case demonstrating the calculation of the Tb.

Using trigonometry, Tb can be determined, as shown in Fig. 5.7(b).

Model evaluation After preparing the data samples with their respective labels for
each SBS, 2000 samples were allocated for model evaluation, while the remainder were
reserved for training. From the evaluation dataset, a small dataset is randomly selected
to form a total of 5000 samples used for evaluating the model’s performance at the server.
Fig. 5.8(a) displays the classification and regression performance of the dual-output NN
model at the SBSs and the server after 30 communication rounds of training using FL.
While the classification accuracy was near optimal for all SBS, there were variations in
the MAE values, which is attributed to the non-IID properties of the training datasets,
where each dataset was obtained from a different distribution representing a distinct
environment. To further enhance the performance, each SBS was permitted to personalise
the model by utilising 500 data samples and performing a few rounds of tuning. Fig. 5.8(b)
illustrates the final performance of the trained models, depicting a further enhancement
in the prediction accuracy of the model for each SBS as a result of personalisation.

Knowledge transfer case study During the augmentation process, an additional
environment named SBS6 has been created, representing a new deployment area with
a limited number of data samples, as outlined in Table 5.2. The purpose is to assess
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Figure 5.8: The classification and regression performance of the dual-output NN model
(a) without and (b) with tuning.

the generalisation and scalability of the proposed framework for supporting knowledge
transfer and the rapid deployment of new SBSs. SBS6 did not participate in the FL
training process, and the server pushed the latest version of the trained NN model to
this SBS to initiate its operation. The performance of SBS6 is presented in Fig. 5.8,
showing that the regression accuracy is inferior to that of the first four SBSs, though it
is better than SBS5, which was part of the training process. Notably, the classification
accuracy is remarkable and can be attributed to the transferability, generalisation, and
robustness features of the NN model. These features demonstrate the model’s ability to
capture fundamental relationships and universally applicable patterns, enabling accurate
predictions even in new deployment areas. After tuning, the regression performance is
significantly improved by a percent of 53%. These results demonstrate that the proposed
framework is scalable and can support the rapid deployment and operation of new network
sites.

Online inference phase

After training and personalising the models, each SBS is ready to use its personalised
model to predict the occurrence of blockages and, hence, the stability of the LoS beams.
When a stationary user is connected to the network, the SBS creates samples of user-object
data and feeds them to the model for inference. The model then predicts the status of the
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blockages and the time until the object blocks the link. Given that the dual-output NN
model is much simpler than ResNet-50, the TInf should be much lower than the 26 ms
inference time of ResNet-50. The TInf is measured using a standard personal computer
and found it to be around 1 ms. Although it should be even lower, for the sake of analysis,
it is assumed that TInf equals 1 ms.

5.5.4 Optimal HO Trigger Point

After detecting an obstacle and determining the blockage time, the framework must notify
the network to perform a HO and ensure user connectivity. The crucial question is, what
is the best time instant or distance point to trigger the HO process and switch the user
to alternative stable links? Defining the TD parameter in equation (5.18) should help in
finding such instant/point by introducing the following formula:

Λ ≤ v × TD (5.20)

where Λ represents the points at which the network can trigger PHO and maintain stable
connections for the user each time an obstacle crosses that points. Since the proposed
framework is QoE-aware, it aims to delay the HO process until reaching the optimal point
(Λopt), which corresponds to the maximum tolerable TD and is given by:

Λopt = v × TmaxD . (5.21)

By adopting this approach, the proposed framework ensures a seamless user experience
while avoiding obstacle’s disruption.

5.5.5 PHO Procedure and Latency Minimisation

In conventional wireless networks, when there is a degradation in the signal quality of a
user’s connection, a HO mechanism is initiated based on predetermined events detected
through measurement reports [152]. If beamforming technology is being utilised and
the LoS beam is disconnected, then several steps must be taken to re-establish a stable
connection. The steps are beam failure detection, beam failure recovery, cell search, and
contention-based or free random access. Each of these steps requires execution time
that combined would result in high latency ∼ 312.2 ms, affecting the reliability of the
communication system.

In this study, if a BLOCK event is detected, the network should take preemptive
measures to prevent channel interruption. The proposed framework is proactive in nature,
eliminating the first two steps of the HO process and performing the cell search step in
advance while the user is still connected. Therefore, the HO latency boils down to the
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latency associated with experiencing either contention-based or free random access. This
framework considers the worst-case of contention-based random access that requires about
80 ms [153]. As a result, the last parameter of equation (5.17), i.e., TPHO equals to 80 ms.
Now that all the values of the parameters in equation (5.17) have been determined, the
total is 147.5 ms, representing the execution time of the proposed framework. Finally, it
is important to note that the performance of RaDaR framework depends heavily on the
hardware specifications of the radar, server, and network. As hardware specifications
improve, the framework’s execution time will reduce, resulting in a further enhanced
framework.

5.6 Performance Evaluation and Results

This section examines the efficacy of the proposed RaDaR framework in improving the
operation of high-frequency communication systems, such as UDNs, by effectively and
preemptively predicting the occurrence of beam blockages and implementing appropriate
measures to guarantee uninterrupted connectivity for users while preserving high levels of
QoE.

5.6.1 Dual-output Model Development

After training the dual-output NN model in an FL environment and performing
personalisation, the resulting models are now ready to be tested in practical scenarios.
To further evaluate the models, a new parameter called the PHO success rate (SPHO)
is defined, representing the percentage of successfully detecting beam blockages and
performing PHO. SPHO is calculated by dividing the number of samples successfully
performing PHO by the total number of samples. Using the same evaluation dataset of
the SBSs, the SPHO results for each SBS are presented in the 0% column of Table 5.3. The
figures reveal variations in the results, where the SPHO of some SBSs is unsatisfactory,
while others exhibit better performance. After careful investigation, it was discovered
that the inconsistent behavior is due to the inaccurate prediction of the blockage time
T̂b. Occasionally, the proposed model predicts the value of T̂b greater than the actual
blockage time. Considering the QoE-aware nature of the RaDaR framework, it waits for
the maximum T̂maxD (T̂maxD = T̂b − TF ) before initiating a PHO. As a result, the value
of T̂maxD may exceed the actual TmaxD , leading to a scenario where the user encounters a
blockage by a vehicle before completing the PHO process.

To address this issue, a new parameter named “percent shift” (PShift) is introduced and
designed to mitigate the impact of blockages that occur when a model predicts T̂b larger
than the actual blockage time. The utilisation of PShift involves reducing all predicted
T̂b values for all samples by a specific percentage, determined the value of PShift. For
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Table 5.3: Study of SPHO [%] versus PShift for different SBSs.

SBS PShift
0% 2% 4% 6% 8% 10%

SBS1 55.4 69.6 80.1 87.2 91.4 93
SBS2 36.9 66.5 81.5 87.4 89.8 90.6
SBS3 70 82.4 85.6 86.7 87.7 88.2
SBS4 96.9 99.1 99.1 99.1 99.3 99.3
SBS5 41.1 87.9 96.6 98.2 98.8 98.8
SBS6 30.5 62.3 85.3 93.2 95.7 97.3

example, when the PShift is set to 10% and the predicted T̂b is 100ms, applying the PShift
parameter will reduce the T̂b value to 90ms. This may result in slightly reduced QoE
for the user due to earlier PHO. However, maintaining a stable connection with slightly
reduced QoE is believed to be preferable to losing the connection and having to reestablish
it. The findings show that the introduction of PShift has significantly improved the SPHO
for all SBSs, as shown in Table 5.3. Nevertheless, there exists a trade-off between selecting
the values of PShift and the perceived QoE. It is imperative to note that higher values of
PShift can yield further improvements. However, such improvements may necessitate even
earlier PHOs, thereby potentially degrading the user’s QoE. Hence, the value of 10% has
been selected for SBS1, 2, 3, and 6, and the value of 8% for SBS4 and SBS5.

To investigate the effect of the PShift parameter, Fig. 5.9 plots the CDF for every
sample i ∈ D results in successful PHO, with respect to time delay offset TDO. Here, TDO
is defined as:

TDOi
=
TmaxDi

− T̂Di

TmaxDi

× 100%, ∀T̂Di
≤ TmaxDi

, i ∈ D (5.22)

where TmaxD is the maximum actual delay time before triggering PHO, and T̂D is the
predicted time delay given as T̂D = T̂b − TF . TDO indicates how far the T̂D from the
actual one; the closer the values to zero, the better the performance. Fig. 5.9 illustrates
the overall performance of the SBSs in predicting blockages and successfully executing
PHO, with only small variations in the values of the TDO. All SBS have more than 80% of
their samples with TDO is less than 20%, which highlights the superiority of the proposed
framework in proactively predicting blockages and performing PHO at the time/point that
maintains the user’s QoE as high as possible. Thus, the framework of each SBS is now
ready for deployment and further investigation.

5.6.2 Simulation Setup

A hybrid approach is employed that integrates real-world and simulated environments
to assess the overall performance of the proposed RaDaR framework. The simulated
environments are derived from scenario 30 to reflect more practical wireless networks and
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Figure 5.9: The distribution of the TDO samples that lead to a successful PHO for different
SBSs.

generate multiple distinct environments. The simulation experiments are implemented
based on Python installed on a Windows operating system with an Intel Xeon CPU
E5-2620 @ 2GHz and 16GB RAM. The key performance metrics are the RSS, network
latency, and throughput.

5.6.3 Performance Analysis

This section reveals the effectiveness of the proposed RaDaR framework in comparison to
a conventional wireless network that lacks proactive blockage prediction techniques and
only responds reactively to blockage events, referred to as Reactive-HO. Initially, the
effect of blockages on the RSS at the user’s end in Reactive-HO communication systems
is analysed, using the diverse information available in the DeepSense scenario 30 testbed.
Fig. 5.10 illustrates the normalised RSS of a stationary user, blockage events, and the
best beam index at each data sample. The results demonstrate unstable performance, as
the RSS deteriorates each time an obstacle obstructs the LoS beam serving the user. This
performance is unsuitable for time-sensitive services and data-intensive applications, such
as high-definition video streaming, which require fast and reliable wireless connections
to guarantee an uninterrupted and smooth user experience. Furthermore, the figure
demonstrates that in the absence of obstacles, the best-serving beam is consistently limited
to a few fixed beams. However, when the communication channel is blocked, the best beam
index varies and can be any beam from the beamforming codebook, determined by the
beam that gives the highest received power after reflection from the environment. These
findings highlight the importance of proactive blockage prediction techniques in achieving
reliable and stable wireless communication performance.
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Figure 5.10: The normalised RSS, blockage events, and best beam index in a Reactive-HO
communication system.

Next, the efficacy of the proposed RaDaR framework is examined by augmenting the
scenario 30 testbed using Wireless InSite ray-tracing software. Specifically, a new SBS
(SBS2) with the same specifications as the existing SBS1 is introduced, placed 80 meters
apart on the opposite side of the street. Fig. 5.11 depicts the normalised RSS from both
SBS and the SBS that serves the wireless user at different time instances. Once the user is
connected, the RaDaR framework begins to function by monitoring the surrounding area
using radar sensors. Prior to the first blockage event, the user is connected to SBS1 since
it is within the SBS’s coverage area and receives a higher RSS from SBS1 than SBS2.
When an obstacle enters the FoV of the radar, the framework detects the object, and the
communication system becomes aware of this potential blockage. The framework classifies
the object as a blockage and predicts the blockage time. It then determines the optimal
time to perform PHO. The figure reveals how the RaDaR framework can detect blocking
objects and switch the user to SBS2, which offers a more stable communication channel.
It is essential to note that the QoE of the user when served by SBS1 is better than that
when connected to SBS2. However, scarifying the perceived QoE slightly is preferable to
experiencing disconnection and engaging in undesired network operation to resume the
connection, which impacts network latency and affects its reliability.

Finally, two key performance metrics for wireless networks are examined, namely the
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Figure 5.11: The impact of blockages on the user’s RSS and how RaDaR is able to detect
blockages and ensure seamless connectivity.

network latency associated with performing handovers and average user throughput for
Reactive-HO and radar-aided PHO networks. The proposed study involves monitoring
the evaluation environments over a certain period of time and considering multi-users by
treating the stationary user as a new user whenever a new obstacle is detected. Fig. 5.12
shows the normalised results of average latency and throughput for both Reactive-HO and
radar-aided PHO networks, represented by SBS1-SBS6. In terms of average latency, as
discussed in Section 5.5.5, Reactive-HO communication systems must perform four steps
that take 312.2 ms each time a link is disconnected and a user needs to be switched
to another SBS. In contrast, the proposed framework eliminates the first three steps,
reducing PHO latency to 80 ms. Making use of SPHO, the average PHO latency per user
is measured as follows:

ζ = {SPHO × U} × 80 + {(1− SPHO)× U} × 312.2
U

. (5.23)

Overall, SBSs adopting the RaDaR framework outperform Reactive-HO networks lacking
proactiveness in detecting blockages. Moreover, the average latency decreased with an
increase in SPHO as the probability of detecting blockages and performing successful PHO
increased. The variations in the average latency values across SBSs are attributed to the
differences in the SPHO, which heavily depend on the serving environment of the SBS.

Regarding average throughput, this study is performed by monitoring the environments
for a specific period of time and recording the user’s throughput at every time instant,
irrespective of the presence of obstacles. Reactive-HO networks experienced a significant
drop in user throughput due to LoS beam disconnection, which required users to switch to
other reflected beams with reduced throughput. However, radar-aided PHO systems have
a higher probability of predicting obstacles in advance and switching users to an SBS,
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Figure 5.12: Latency and throughput study.

offering a stable connection, thereby maintaining high throughput levels.

5.7 Summary

In this chapter, a radar-aided dynamic blockage recognition framework called RaDaR
is proposed. The main objective is to increase high-frequency networks’ awareness of
their surrounding environment and improve network reliability. Radar measurements
are utilised for training a dual-output NN model using FL to predict forthcoming
link blockages and determine the optimal time to perform PHO, thereby avoiding link
disruption. To compare the effectiveness of RaDaR, a conventional wireless network
lacking proactive blockage prediction mechanisms, named Reactive-HO, is considered.
The performance of the suggested framework is assessed by utilising co-existing modalities
derived from both real-world and simulated environments. The simulation results
confirmed that RaDaR, with its blockage-aware approach, enhances the QoE for users
who require low latency and operate in extremely dynamic environments. Compared
to Reactive-HO networks, evaluation results indicated that the framework significantly
improves the operation of next-generation wireless networks by offering high RSS,
maintaining high throughput levels, and reducing network latency, enabling future latency-
sensitive applications. Moving forward, the thesis shifts its focus to energy management
in UDNs. The next study aims to establish more sustainable energy management plans
by introducing an efficient framework capable of improving energy forecasting.



Chapter 6

Optimising Power Consumption in
UDNs: Introducing FedraTrees for
Lightweight Distributed Learning

The previous three chapters have addressed a critical challenge related to mobility
management in UDNs, specifically the beam blockage problem. However, the dense
deployment of SBSs, coupled with the adoption of sensing-aided wireless communication
concept and ML methods, results in increased power consumption in these networks,
exacerbating energy management issues. Therefore, this chapter focuses on the energy
management aspect, specifically aiming to achieve the energy efficiency requirement of
next-generation wireless networks, aligning with the objectives outlined in O4 . This
chapter introduces FedraTrees, a novel lightweight framework designed to facilitate the
use of DT-based models within the FL setting. While FedraTrees is developed for energy
forecasting tasks, its applicability extends to various applications. Using real-world power
consumption datasets, FedraTrees demonstrates remarkable performance in predicting
short-term power usage with significantly fewer communication and computation resources
compared to the commonly used FedAvg algorithm.

6.1 Introduction

In UDNs, energy efficiency is crucial due to surging wireless service demands, making
sustainable network operation paramount. Thus, energy forecasting becomes a strategic
approach to achieving optimal energy efficiency within UDNs. While various categories
of methodologies, such as infrastructure optimisation, spectrum management, and power-
saving techniques, play pivotal roles in mitigating energy consumption, the integration of
energy forecasting adds a layer of proactive adaptability. By leveraging predictive analytics
and advanced ML techniques, energy forecasting empowers UDN to anticipate future

96
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energy demands accurately. Accurate short-, mid-, or long-term energy forecasting enables
network operators to orchestrate energy resources, fine-tune operational parameters, and
allocate resources judiciously, thereby averting unnecessary energy wastage. The synergy
between energy forecasting and the broader array of energy-efficient strategies paves the
way for smarter UDN, where proactive management ensures not only seamless connectivity
but also a substantial reduction in the network’s carbon footprint.

Various techniques have been considered for efficient and reliable load forecasting.
Statistical forecasting methods, such as MLR, AR, and MA, have been used to project
past and present load profiles into future predictions. Later, the introduction of smart
metering and the evolution of AI technology paved the way for replacing traditional
prediction techniques with various ML algorithms due to their ability in analysing large
datasets in short periods of time while providing impressive accuracy levels [154]. advanced
metering infrastructure (AMI), a system of smart meters connected to a communication
network, represents the first step toward smart energy, enabling the collection and analysis
of smart-meter data. However, collecting load profiles into a central entity to conduct
energy forecasting raises privacy and security concerns [155]. Load profiles hold sensitive
information that can be used in various dimensions like inferring operation patterns of
networks, unauthorised data use, and data selling, among others [156]. Moreover, sending
massive amounts of constantly generated power consumption data to a central location
burdens communications resources and is costly.

To address these issues, FL has emerged as the best choice for handling enormous
datasets and developing efficient and scalable systems. The use of FL in energy forecasting
is still in very early stages, and few studies have considered this approach [49–53]. In these
studies, the authors focused on utilising LSTM architectures, a type of RNN used in the
field of DL, due to their remarkable performance in predicting time-series data sequences.
However, these works overlooked a critical issue: DL models are extremely resource-
intensive (energy, memory, processor, etc.), and the lengthy and extensive underlying
mathematical operations demand resource-rich hardware. Considering such schemes of
combining FL with LSTM models requires extended computation time to reach the desired
precision and impedes their scalability.

6.1.1 Contributions

In this chapter, FedraTrees, a novel light aggregation algorithm developed to utilise
DTs under the FL setting, is proposed. Specifically, the light gradient boosting model
(LGBM) model [157] is used, one of the boosting techniques in ensemble learning, to
be sent and trained across the clients of the FL framework. The main reasons for
considering LGBM models are their rapid training speed, lower memory consumption,
higher efficiency, and accurate predictions. FedraTrees aims to minimise computations
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and the number of communication rounds while guaranteeing high training performance;
hence, it is envisioned to play a crucial role in a wide range of FL-based applications
in several fields, such as smart energy. Moreover, this work considers the common
challenge of optimising the number of communication rounds that may lead to suboptimal
performance or excessive rounds of unnecessary training, thus consuming computation and
communication resources. Therefore, a delta-based FL stopping technique is developed,
a dynamic algorithm that monitors the FL training process and stops it when no further
enhancement is possible. Furthermore, this work examines the importance of each feature
used in the training process and offers a study of the effect of using a different number
of features on the final training performance. Additionally, the performance of the
FedraTrees algorithm is benchmarked against the popular LSTM-based FedAvg and the
naïve Persistence model. Finally, the proposed framework is evaluated based on state-of-
the-art metrics and by conducting extensive simulations. The main contributions of this
study are summarised as follows:

• FedraTrees, a novel, light algorithm that employs DT-based models within the FL
setup, is introduced. Using LGBM models, FedraTrees shows improved performance
in terms of the required number of communication rounds and computation time
compared to LSTM-based FedAvg aggregation scheme when applied to energy
forecasting.

• Unlike other FL-based energy forecasting frameworks that rely on fixing the
number of communication rounds, this study develops a delta-based FL stopping
technique to reach the best possible accuracy while reducing the computation and
communications costs.

• A feature importance evaluation study is conducted on load profiles to achieve
optimal forecasting performance.

• Finally, the performance of FedraTrees is compared with LSTM-based FedAvg and
a naïve Persistence model as benchmarks, using state-of-the-art metrics. The results
demonstrate a significant improvement in overall performance when utilising the
FedraTrees framework.

6.2 Preliminaries and background

This section provides an overview of the fundamentals of LSTM, LGBM, and FedAvg
necessary for a better understanding of the study conducted in this chapter.
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Figure 6.1: LSTM memory cell with gating units.

6.2.1 Long Short-Term Memory Networks

An RNN is a class of artificial neural networks designed to process sequential data,
recognising patterns, understands temporal dynamic behaviours, and making predictions
based on previous states [158]. Like NNs, RNNs are gradient-based learning algorithms
that rely on the backpropagation mechanism to update the weights of neurons. However,
RNNs face two main challenges related to performing partial derivatives across the network
to find model weights: vanishing and exploding gradients. These problems can prevent
the network from further training, causing the network to struggle to learn long-term
dependencies. Therefore, LSTM networks were introduced as more robust models without
being affected by the unstable gradients problem by improving the gradient flow [158].
This was achieved by introducing artificial memory (cell state) and three gates: a forget
gate, an input gate, and an output gate. The three gates can be thought of as filters
that regulate the flow of information into and out of the cell to help predict the output
sequence. A visual representation of an LSTM unit is given in Fig. 6.1.

6.2.2 Light Gradient Boosting Model

DTs are supervised ML algorithms that can perform regression and classification tasks by
iteratively splitting data according to specific rules. The simplicity of DTs has contributed
to their popularity, and they have been applied in many applications. However, DTs suffer
from several challenges that limit their use in more complex situations, such as overfitting,
instability, and bias. Therefore, the concept of ensemble learning was adopted with the
aim of combining many weaker learners (i.e., DTs) to produce a more robust ensemble.
Ensemble learning includes three main classes: bagging, stacking, and boosting. For more
details on ensemble learning, readers are referred to [159].

In 2017, Microsoft introduced one of the most powerful boosting models named LGBM
[157], as depicted in Fig. 6.2. What distinguishes LGBM from other boosting models is
its efficiency, fast processing, and scalability. These highly desirable features are gained
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Figure 6.2: Ensemble of DTs are combined to boost and form the LGBM model.

through the incorporation of two techniques: gradient-based one-side sampling (GOSS)
and exclusive feature bundling (EFB). GOSS selectively downsamples data instances
with small absolute gradients while keeping those with higher absolute gradients, as they
contribute more to the training process. At the same time, EFB reduces the number
of data features by bundling mutually exclusive ones. These characteristics, including
reduced computations, lower memory consumption, fast training, the ability to handle
large-scale data, and scalability, position LGBM algorithms as powerful tools for solving
numerous real-world problems.

6.2.3 Federated Averaging

ML is a data-driven approach that relies on several quantities of datasets to train a model
for specific tasks. Conventionally, model training occurs centrally by collecting the required
datasets in a central location. However, centralised training methods threaten data privacy
and security, and contradict the legislation in data protection laws. Therefore, FL has
emerged as a promising solution that addresses privacy concerns by pushing the model to
the locations where the data is generated and resides [160]. Several aggregation algorithms
have been introduced, such as FedAvg [161] and federated distance (FedDist) [162].
However, these algorithms are designed to aggregate the parameters of NNs models and
cannot be used with other ML algorithms, like DTs. Furthermore, the FL framework
heavily relies on the resources of clients and networks, and using NN models under the
FL framework can lead to substantial resource consumption. Therefore, developing new
efficient aggregation schemes is imperative. To tackle this problem, this study proposes
a novel DTs-based FL framework termed FedraTrees, which will be discussed in detail in
the next section. FedraTrees performance is compared with FedAvg, the most widely used
aggregation algorithm in the literature.

The FedAvg algorithm is best suited for NNs, where network parameters (weights
and biases) can be extracted and aggregated to form updated parameters. FedAvg is
characterised by three main parameters: a subset of total client count (C), breaking down
the dataset into small-sized mini-batches (B), and the number of epochs (E) through which
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Algorithm 1 Federated Averaging [161]
Require: Communications limit (Cl), Clients count (Cc), Number of mini-batches (Mb),

Epochs number (En)
Server executes:
w0 ← initialise weights
for t = 1, 2, ..., Cl do
Rs = Random set of Cc
for k = 1, 2, ..., Rs in parallel do
wkt ← ClientUpdate(k, wt−1)

wt ←
∑Rs
k=1

nk

n
wkt

ClientUpdate (k, w):
for e = 1, 2, ..., En do
batches← Split dataset into Mb batches
for b = 1, 2, ..., batches do
w ← w − η∇l(w; b) //Compute gradients and update weights

Return w to server

the client passes over its dataset per round. FedAvg allows each client to perform multiple
rounds of SGD locally on different subsets of its local data. Then, it derives the optimal
model parameters by averaging the locally computed gradients at the FL server. The
complete pseudo-code of FedAvg is given in Algorithm 1. In addition, LSTM networks
have been widely employed in predicting time-series datasets, making them suitable for
federated optimisation problems. In previous studies focusing on energy forecasting tasks
under the FL environment, LSTM networks were the predominant model choice. Although
LSTM models deliver accurate prediction performance, these studies often overlook crucial
problems associated with FL distributed learning: computational and communication
costs.

6.3 Proposed FedraTrees Algorithm

6.3.1 FedraTrees in LGBM-based FL

As mentioned earlier, in the federal environment, the use of NNs is becoming increasingly
popular. However, many other ML algorithms have not been explored in such an
environment, despite possessing desirable merits like simplicity and efficiency. Recently,
the research community has begun to investigate the use of alternative ML techniques,
such as DTs [163], [164]. This study follows a similar concept of employing DTs under
the FL setting, but it is the first research to explore the use of LGBM models with FL.
Additionally, this study pioneers LGBM-based FL within the context of smart energy.
Inspired by the federated voting (FedVoting) algorithm presented in [164], where the
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Figure 6.3: FedraTrees sequential operation steps for the energy forecasting task
considering C SBSs as clients.

authors construct a federated GBDT model for human mobility prediction, this study
introduces FedraTrees. The FedraTrees framework harnesses the capabilities of the LGBM
algorithm within the FL environment. What distinguishes FedraTrees from FedVoting is
that its simplicity and scalability. Specifically, FedVoting is developed for the cross-silo
setup and relies on cross-validations. To determine the optimal model for each training
round, each client must validate other clients’ trained local models, incurring additional
computation cost. Moreover, scalability is not by design of FedVoting since it is designed
to be performed on a limited number of clients. By contrast, FedraTrees is developed to
fulfil simplicity, efficiency, and scalability, accommodating both cross-device and cross-silo
settings. In FedraTrees, complexity is alleviated because there is no need for clients to
validate others’ models; instead, the central server validates the received models and selects
the best one to build upon in upcoming training rounds.

Fig. 6.3 demonstrates the structure of FedraTrees and its detailed training process.
FedraTrees is a batch-based aggregation algorithm that determines the number of DTs per
batch to be trained in each round and builds on it. In addition to determining the number
of trees per batch, constructing FedraTrees begins with choosing the best hyperparameters
of the LGBM model, like the number of leaves for each estimator/tree, boosting type, and
maximum depth. Once these parameters are determined, the central server broadcasts
them to all participating client. Upon receiving the model parameters, each client creates
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Algorithm 2 FedraTrees
Require: Communications limit (Cl), Clients count (Cc), Number of trees per batch (G)
Server executes:

for r = 1, 2, ..., Cl do
if r == 1 then

Broadcast LGBM parameters values to clients
Batch0 = {}

Broadcast Batchr−1

for k = 1, 2, ..., Cc in parallel do
Store Batchr−1 in memory
Batchrk ← ClientUpdate(k,∑r−1

i=0 Batch
i, r)

//Find the best Batch
Batchr ← Server validation {

∑r−1
i=0 Batchi + Batchrk}

Cc
k=1

ClientUpdate (k,∑r−1
i=0 Batch

i, r):
Modelrk ←

∑r−1
i=0 Batch

i +∑G
t=1 DTt

for t = 1, 2, ..., G do
Find the optimal split for each split node in the new batch trees and update Modelrk

Return ∑G
t=1 DTt

the LGBM model accordingly and starts the iterative model training process. At the end
of each training round, clients only send the last trained batch of trees to the central
server for evaluation. The server updates the global model by appending a single batch
of trees at a time, evaluating the model’s performance, and repeating this process until
all clients’ batches have been tested. The batch of trees that achieves the best evaluation
performance is retained to build upon in the subsequent communication rounds, while the
batches from other clients are discarded. The server broadcasts the newly elected batch of
trees to the clients, where it is appended to the previous version of the model, and a new
training round begins. This process is repeated until the global LGBM model reaches the
desired accuracy or no further improvement can be attained. The complete pseudo-code
for FedraTrees is presented in Algorithm 2.

6.3.2 Delta-based FL Stopping

The challenge of training an ML model in the federated setting lies in determining the
number of communication rounds. A large number of rounds can result in unnecessary
computations and resources wastage, potentially leading to overfitting. Whereas a small
number of rounds may lead to a suboptimal model suffering from underfitting. This study
also considers this challenge by developing a stopping algorithm that continuously monitors
the evaluation performance of the trained model at each iteration and halts the FL training
process when no further improvement is expected. This algorithm is inspired by the
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Figure 6.4: Illustration of the delta-based FL stopping algorithm; the current j
communication round has a better model that replaces the previous one, emptying the
window.

Scikit-Learn stopping criterion, originally developed to stop the training process within
the model [165]. Instead of fixing the number of communication rounds, the delta-based
FL stopping algorithm sets a threshold (delta) for comparing the currently trained model’s
performance with the best model from previous rounds, based on the validation dataset, as
depicted in Fig. 6.4. If the current model outperforms the previously best-stored model,
it replaces it; otherwise, the best model remains unchanged. This comparison runs for
several rounds, defined as a window size. If the window is filled in without a better model
being found, the training stops and returns the best model. This algorithm has been
implemented in both the FedAvg and FedraTrees frameworks after an extensive study to
determine the best delta and window size values. More details will be provided in the
following section.

6.4 Performance Evaluation and Results

6.4.1 Dataset Pre-processing and Evaluation Methods

Since this study aims to provide a practical framework capable of forecasting power
consumption, it is essential to find an excellent dataset to evaluate the performance
of FedraTrees versus FedAvg. Notably, there is a noticeable gap in the existing
literature concerning the integration of energy forecasting for enhancing energy efficiency
in UDNs. Consequently, and taking into account that energy forecasting requires load
profiles regardless of the domain or area under investigation, this study examines energy
forecasting approaches within the context of smart grids. In this regard, the Tetouan
power consumption dataset is selected for this purpose [166]. This dataset was collected
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Figure 6.5: Tetouan dataset preparation generated hourly power consumption of the three
zones in addition to the aggregated power.

Table 6.1: Tetouan dataset features used for load forecasting
Context Features

Calendar 1⃝ Month 2⃝ Day 3⃝ Hour

Weather 4⃝ Temperature 5⃝ Humidity 6⃝ Wind speed
7⃝ Diffuse flow 8⃝ General diffuse flow

Power 9⃝ PrevHourAgg

in 2017 at three different distribution substations from the zones: Quads, Boussafou, and
Smir in Tetouan, a city located in northern Morocco. In addition to providing information
on power consumption every 10 minutes, the Tetouan dataset offers complementary data
on the calendar and weather conditions. To prepare this dataset for this study, the time
scale is converted from 10 minutes to 60 minutes because the focus is on predicting short-
term loads for the next hour. Furthermore, two new dataset features are created; the
aggregation feature that aggregates the power consumption of the three zones for use
while performing centralised and distributed learning, and the previous hour aggregation
(PrevHourAgg) feature that gives the aggregated feature reading of the previous hour. Fig.
6.5 demonstrates the hourly aggregated load as well as zones-specific load information.
Moreover, Table. 6.1 shows the features considered for load forecasting.

Before commencing the training process, the default features scale is normalised using
MinMax scaler, bringing it into the range [0,1]. This ensures that all features have an equal
opportunity to contribute to model fitting while avoiding bias. For evaluation purposes,
the most popular metrics used are MAE and mean absolute percentage error (MAPE), as
defined in [167]:

MAE = 1
m

m∑
i=1
|yi − ŷi| , (6.1)
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MAPE = 1
m

m∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣ , (6.2)

where yi is the actual value, ŷi is the predicted value, and m represents the number of
data points.

6.4.2 Simulation Setup

To evaluate the effectiveness of the proposed FedraTrees framework in providing accurate
energy forecasting, a comparative analysis is conducted against the widely adopted LSTM-
based FedAvg algorithm. Furthermore, a comparison is made between both algorithms and
the Persistence approach, which predicts the current value to be identical to the preceding
actual value. The forecasting problem is converted to a multivariate regression problem
leveraging various calendar, weather, and power features to predict the power consumption
for the next hour. For this purpose, LSTM and LGBM models are constructed based on the
Random search strategy to discover the best combination of hyperparameters values. The
LSTM model consists of a single hidden layer with 64 LSTM units that use the rectified
linear unit (ReLU) activation function and a dense output layer with one neuron. Also,
it uses Adam optimiser for compilation, with the dataset divided into 80/20% train/test
split ratio, batch size equals 30, and the number of epochs equals 300. Whereas the
LGBM’s boosting type, the number of trees1, max_depth, learning rate, num_leaves, and
train/test split ratio are set to DART, 800, 12, 0.078, 30, and 80/20%, respectively. The
simulation experiments are based on Python programs installed on a Windows operating
system with Intel Xeon CPU E5-2620 @ 2GHz and 16GB RAM.

6.4.3 Numerical Results

The performance of the selected models in the conventional approach of centralised training
is initially investigated. Table 6.2 shows the results of the evaluation metrics and the
computation time required for each model. The MAE and MAPE for the LSTM model
are 0.02 and 3.04%, respectively, while they are improved when using the LGBM model
and reached 0.017 and 2.69%, respectively. Notably, the LGBM model’s computational
efficiency is confirmed in this table, as it converges in just two seconds, while the LSTM
model requires more than 97% additional computations compared to the LGBM model.

Furthermore, a study is conducted to explore the impact of each feature in predicting
the target value. The LGBM model is equipped with a feature importance tool that
can be used to find out what features contribute the most to the prediction of power
values. Fig. 6.6 demonstrates the results of the feature importance study, revealing

1This hyperparameter is replaced by batch in FedraTrees.
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Figure 6.6: The importance of each feature in forecasting power consumption.

Figure 6.7: MAE as a function of different features that contribute to the prediction
process.
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Table 6.2: Performance comparison between LSTM and LGBM models when performing
centralised model training.

ML model MAE MAPE Computation time
LSTM 0.019 3.04% 77 seconds
LGBM 0.017 2.69% 2 seconds

that Hour, PrevHourAgg, General diffuse flows, and Month have the most significant
impact in predicting the power consumption values. Other features also contribute to the
prediction, but their impact is less pronounced. Furthermore, another study is conducted
to examine the prediction performance when using several numbers of features for the
LSTM and LGBM models. Fig. 6.7 shows the best achieved MAE versus using different
numbers of features, ordered based on their rank in the feature importance study. This
figure indicates that, in general, multivariate prediction gives improved performance over
univariate. However, for both models, the best performance is obtained when the four
most important features are used.

Moving on to the FL setup, the FedraTrees and FedAvg comprise a central orchestrating
server and three clients representing the three zones of the Tetouan dataset. The number
of communication rounds is not fixed, as the delta-based FL stopping technique, discussed
in Section 6.3.2, is used to find the best round that produces the optimal trained model
while reducing the computation and communication costs. An extensive study is carried
out to determine the best delta and window size values for the stopping algorithm.
The findings of this study are given in Tables 6.3 and 6.4. From Table 6.3, the most
computationally efficient and the best MAE/MAPE for the LSTM model are obtained
when the delta and window size values are 0.00001 and 55, respectively. Regarding
LGBM, Table 6.4 demonstrates that the best values for the delta and window size
are 0.00001 and 10, respectively. Table 6.5 summarises the best results obtained for
each of the Persistence, FedAvg, and FedraTrees algorithms. The performance of the
Persistence model is poor compared to other algorithms, and the FedAvg has the best
performance, slightly outperforming FedraTrees. However, FedraTrees excels over the
FedAvg algorithm in terms of the communication rounds and the required computations.
FedraTrees only requires 65 rounds of communications that result in approximately 26
seconds of computations, while FedAvg requires a much higher number of communication
rounds and computation time by a factor of 7.6 and 52.2, respectively, to achieve the same
level of performance.

Furthermore, Fig. 6.8 displays the convergence curve of MAE for both algorithms
during the training of the global model. In addition, Fig. 6.9 shows the actual and
the predicted power consumption of both algorithms and the baseline Persistence model.
These figures indicate that FedraTrees converges faster and achieves an outstanding
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Table 6.3: A study to determine the best values of delta and window size for LSTM-based
FedAvg.

Table 6.4: A study to determine the best values of delta and window size for LGBM-based
FedraTrees.
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Figure 6.8: MAE as a function of the communication rounds needed to train the global
model of FedAvg and FedraTrees.

performance compared to FedAvg.
Another study is conducted, focusing solely on the four most important features to

assess the impact of using fewer features on the required number of communication rounds,
the computation time, and the model performance. Table 6.6 presents the outcomes
of this study and indicates that the performance of FedraTrees is improved when the
less important features are removed. However, this is not the case with FedAvg, as this
table shows that its performance is slightly degraded compared to using all the features.
The number of communication rounds is slightly less than that in the full feature study
for both algorithms. However, this study also highlights the outstanding performance
of FedraTrees, as it requires significantly fewer rounds of communications and reduced
computation costs. Similarly, Figs. 6.10 and 6.11 give the MAE convergence curve and
the actual and forecasted power consumption for both algorithms, respectively. Also, these
figures ensure the superb overall performance of FedraTrees.

Table 6.5: Performance results of the FedraTrees compared to the FedAvg and the
Persistence model.

Algorithm MAE MAPE% No. of rounds Computation time
Persistence 0.08 6.64 N/A N/A

FedAvg 0.0157 3.43 491 1356 seconds
FedraTrees 0.0173 3.69 65 26.2 seconds
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Figure 6.9: Forecasting power consumption for three days.

Table 6.6: Performance results of the FedraTrees compared to the FedAvg and Persistence
models when considering only the top four features.

Algorithm MAE MAPE% No. of rounds Computation time
Persistence 0.08 6.64 N/A N/A

FedAvg 0.0177 3.93 465 1293 seconds
FedraTrees 0.0168 3.54 50 8.8 seconds

Figure 6.10: MAE as a function of the communication rounds needed to train the global
model of FedAvg and FedraTrees when considering only the top four features.
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Figure 6.11: Forecasting power consumption for three days when considering only the top
four features.

6.5 Summary

This chapter aimed at developing FedraTrees, a novel framework that incorporates
ensemble learning, specifically the LGBM model, within the FL settings. Utilising
the LGBM model transforms the FL into a highly efficient, fast-processing, and
scalable framework. Furthermore, instead of following the conventional fixed number
of communication rounds method in FL, a delta-based FL stopping algorithm is
developed to monitor and stop the FL training process when no further enhancement
is possible, thus ensuring achieving the desired training accuracy with the minimal
use of computation and communication resources. FedraTrees is employed for the
energy demand forecasting problem and benchmarked against LSTM-based FedAvg and
Persistence model. The simulation results demonstrated that FedraTrees has a remarkable
performance in predicting short-term energy patterns and requires much less computation
and communication compared to FedAvg, with only 2% and 13%, respectively.



Chapter 7

Conclusions and Future Works

The conclusions drawn from each part of this thesis are summarised in this chapter. It
also highlights potential avenues for further exploration and expansion of this research.

7.1 Concluding Remarks

In Chapter 3, novel techniques have been explored to address the challenges associated with
beam blockages and frequent HOs in next-generation wireless networks, specifically within
the mmWave and THz bands. Within this chapter, a CV-assisted PHO framework has
been introduced, harnessing visual information to augment network awareness and predict
blocking events (BLOCKs) stemming from obstacles and users’ movements. Through the
combination of object detection and multivariate regression models, along with performing
a centralised training method, precise predictions have been shown for obstacle and user
locations, in addition to estimating the remaining time until users reach obstructed
areas. Furthermore, the chapter has undertaken an analysis aimed at prioritising QoE
by examining the optimal location and timing for performing HO, effectively mitigating
QoE degradation. Simulation results have demonstrated a significant improvement in
sustaining user connectivity and QoE, thus underscoring the effectiveness of the framework
in addressing these pivotal challenges. This research aligns with the vision of enabling low-
latency and time-sensitive applications in B5G and 6G networks, making future UDNs
more dynamic and responsive to their surroundings.

In Chapter 4, the research has also delved into the use of CV and ML to enhance
the reliability and latency within more complex high-frequency communication systems,
characterised by numerous dynamic users and obstacles. A novel framework, aided by CV
technology, has been developed to proactively identify potential blockage scenarios and
trigger PHOs at the optimal time and distance from the blocked area. This framework
leverages the ODL algorithm along with a NN model to accurately predict blockages
and estimate the time until users reach obstructed areas. Furthermore, the adoption
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of FL ensures decentralised and collaborative model training, safeguarding data privacy
and conserving BW resources. Simulation results have demonstrated the effectiveness of
this approach, achieving an impressive PHO success rate and outperforming reactive-HO
benchmarks in terms of latency, all while maintaining a high QoE for users. This research
has shown promising solutions for mitigating blockages in multi-user mmWave/THz
networks, paving the way for more reliable and efficient high-frequency communications.

In Chapter 5, a novel RaDaR framework has been developed to address the challenges
of frequent beam blockages in high-frequency outdoor networks. The framework employs
radar sensors to monitor object movement and generate range-angle and range-velocity
maps for scene analysis and predictions. Radar measurements and FL have been
utilised to train a dual-output NN model capable of predicting blockage status and
time simultaneously. This predictive capability allows for PHO or beam switching,
reducing latency and ensuring high-quality user experiences. FL brings advantages such
as privacy protection, resource efficiency, scalability, and knowledge sharing. Evaluation
results, based on a comprehensive real-world dataset, demonstrate RaDaR’s substantial
improvement in network reliability, achieving a higher average PHO success rate compared
to reactive HO procedures. RaDaR has been shown to maintain a superior quality of
experience by sustaining high throughput levels and minimising PHO latency, presenting
a promising solution for mmWave and THz network dependability in dynamic outdoor
environments.

In Chapter 6, a novel framework called FedraTrees has been developed to achieve the
energy efficiency requirement of next-generation wireless networks. FedraTrees leverages
ensemble learning, particularly the LGBM model, within the FL framework, resulting
in an efficient, fast-processing, and scalable solution. The delta-based FL stopping
algorithm has been introduced to monitor and optimise the training process, reducing
computational and communication costs while ensuring accurate energy forecasting.
Additionally, a feature importance evaluation study has been conducted to enhance
forecasting performance further. FedraTrees has been benchmarked against LSTM-
based FedAvg and the Persistence model, demonstrating superior performance with
significantly reduced computational and communication resource requirements, as shown
in the simulation results.

In conclusion, this thesis has focused on addressing two critical aspects of next-
generation high-frequency wireless networks: mobility and energy management. The
primary focus was on mitigating the beam blockage problem prevalent in these networks,
for which various frameworks were proposed. These frameworks leveraged sensing-
aided wireless communications, integrating multimodal information such as visual, radar
fingerprint, and wireless data to effectively address beam blockages. Moreover, the use
of ML models, trained through both centralised and decentralised mechanisms, provided
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valuable insights into the strengths and limitations of each training mechanism. Simulation
results underscored the efficacy of these frameworks in enhancing network reliability,
thereby enabling the support of latency-sensitive applications. Additionally, the thesis
delved into energy management aspects, proposing a lightweight FL aggregation algorithm
aimed at achieving the energy efficiency requirements of these networks. By predicting
power consumption and enabling proactive measures to avoid energy wastage, the proposed
algorithm contributes to the optimisation of network energy usage. Overall, the research
presented in this thesis contributes significantly to advancing the capabilities of next-
generation high-frequency wireless networks, making them more reliable, efficient, and
conducive to supporting a wide range of applications.

7.2 Future Work

The fields of mobility and energy management within UDNs offer extensive research
opportunities, with unexplored potential applications. The contributions outlined in this
thesis represent the first steps towards multiple research avenues aimed at enhancing
UDNs. In this section, a few interesting research topics are highlighted, all of which have
the potential to improve the performance of the various optimisation frameworks proposed
in this thesis.

7.2.1 CV-aided PHO Frameworks Under Low-quality Imaging.

The proposed PHO frameworks, which rely on visual information to augment the network’s
situational awareness, have demonstrated exceptional capabilities in detecting a wide range
of objects, including users and blockages. These frameworks effectively notify the network
of the potential need for a PHO following the detection of BLOCK events. However,
an implicit assumption in these frameworks is that vision cameras remain unaffected
by changes in ambient lighting conditions, including transitions between day and night,
as well as variations in weather conditions. This assumption is primarily based on the
ViWi datasets, which were predominantly generated under favorable lighting and weather
conditions. The vision-assisted frameworks presented in this thesis rely on YOLO object
detection and localisation models, and several studies have shown that such models
struggle to detect objects accurately under low-light and adverse weather [168,169]. Low-
light and adverse weather conditions pose imaging difficulties, resulting in increased image
noise. Fortunately, the literature offers several insightful solutions to address this issue.
For instance, the study in [169] achieved a remarkable improvement in image quality by
introducing a novel image processing pipeline, featuring a specially designed CNN model to
address the challenges of low-light photography. Additionally, the study in [170] presented
a patch-base image restoration algorithm based on diffusion probabilistic models.
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Incorporating such advanced image denoising approaches into the CV-assisted PHO
frameworks proposed in this thesis holds the potential to strengthen their resilience
under low-light and adverse weather. Therefore, a natural extension of this research
involves investigating the integration of such solutions into the proposed frameworks. This
exploration should also encompass an evaluation of their impact on framework timing, the
determination of the optimal PHO execution time, and their potential influence on the
overall PHO success rate and the QoE.

7.2.2 Exploring RIS and UAV Technologies as Alternatives for
PHO

In the proposed sensing-aided PHO frameworks, the main focus is on accurately predicting
BLOCK events to alert the network of the necessity for the performing PHO for wireless
users, transitioning them from the serving base station (S-BS) to the target base station
(T-BS). During HO, the T-BS might receive requests from multiple devices to access the
network simultaneously, leading to users competing for available resources. Consequently,
the proposed frameworks take into account the worst-case scenario of contention-based
random access, which demands approximately 70ms more execution time compared to
contention-free random access [114]. While the solutions presented in this thesis have
shown remarkable performance in supporting real-time applications and maintaining
high QoE levels, the latency associated with preparing for HO to another SBS can be
significantly reduced by leveraging RIS and UAV technologies. Instead of transferring
the user to another SBS, it would be much latency-conscious to retain the user under
the same S-BS while exploring novel methodologies to circumvent blockages and service
disconnection.

In light of this, adopting RIS and UAV technologies is anticipated to improve the
proposed frameworks. For instance, one or more RIS elements could be strategically
deployed within UDNs based on investigations to eliminate blocked regions by creating
virtual LoS links. When a blockage is detected, instead of switching the user to another
SBS, the S-BS could leverage the employed RIS(s) to establish a virtual LoS and continue
serving the user. Similarly, another research direction could involve the utilisation of
UAVs as relays to form virtual links and serve the user when reaching the shadowed area.
However, it is essential to carefully investigate the framework’s timing and how these
methodologies impact the success rate of switching to virtual links and, subsequently, how
they affect the QoE.
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7.2.3 Enhancing FedraTrees Through Adaptive Feature
Selection

An exciting research direction for improving FedraTrees framework is the development of
adaptive feature selection techniques. The nature of load profiles in energy forecasting can
exhibit temporal variations, causing certain features to become more or less relevant over
time. In this context, future research can explore the implementation of dynamic feature
selection mechanisms that automatically identify and select the most informative features
during the FL training process. This adaptability paves the way for more efficient models
that can seamlessly respond to changing data patterns, ensuring accurate forecasts even
in dynamic energy consumption scenarios. Furthermore, considering the computational
constraints frequently encountered on edge devices in FL setups, research can delve into
innovative feature engineering techniques designed to reduce the dimensionality of data
while preserving critical information. This extension to adaptive feature selection not only
promises to enhance the overall performance of FedraTrees but also holds the potential
to significantly reduce training times. By tackling the challenges posed by evolving load
profiles, adaptive feature selection emerges as a pivotal strategy for more precise and agile
energy forecasting.
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