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Abstract

Animal movement data play a crucial role in our endeavour to decode the wildlife dynamics
that unfold across the Earth’s varied terrains and waterways. Collecting animal movement
data involves employing a variety of modern technologies and techniques. One common
method is the use of Global Positioning System (GPS) devices that are attached to animals,
providing accurate location data at regular intervals. These devices allow us to track animals’
movements over time and space, giving us access to intricate details about their ranging
behaviours and daily routines.

These data provide insights into migration patterns, foraging strategies, habitat prefer-
ences, and responses to environmental changes and are therefore key to an improved under-
standing of the behaviours, habitats and ecological interactions of various species. There are
many challenges associated with the analysis of such datasets and movement ecologists have
been dilligently advancing state-of-the-art statistical methods for analysing animal movement
data. This effort is crucial because it enables us to extract meaningful information from the
complex, large-scale datasets generated by animal tracking studies. These advanced statisti-
cal techniques help uncover hidden patterns, such as the identification of significant stopover
sites during migrations or the characterisation of nuanced movement behaviours. Moreover,
they facilitate the integration of environmental variables, enhancing our ability to understand
how animals respond to changing landscapes and climate conditions. By refining our analyt-
ical tools, movement ecologists can provide more accurate and comprehensive insights into
wildlife behaviours, aiding conservation efforts and ecological research on a global scale.

Throughout this thesis, we will talk about models of animal movement and we will give
our contribution to expand the array of statistical methods that can be employed for the anal-
ysis of telemetry datasets. We will begin by reviewing some of the most commonly em-
ployed methods found in the literature. Then, we will focus on a simple one-dimensional
self-propelled particle model used to simulate the dynamics of a group of locusts placed
in a ring-shaped arena for an experiment, and we will leverage Gaussian processes to infer
microscale properties of the group from macroscale observed variables, without deriving a
formal mathematical link between the two scales, which is in many cases intractable.

Our focus will then shift to the problem of identifying different behavioural patterns from
relocation data. In the fourth chapter we will describe various methods that we have concep-
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tualised all aimed at simulating semi-Markov chains. This will be needed in the subsequent
chapter, where we will introduce a flexible model scalable to large datasets that finds its ap-
plications in solving the so-called switching problems. This will be achieved by modelling
the locations via an integrated OU process and by reconstructing the latent behavioural pat-
terns via a Monte Carlo Expectation-Maximisation algorithm, where the method introduced
in the previous chapter will be employed.

In Chapter 6 we will employ this method on a flock of sheep, specifically on a group-
level metric describing the changes in coordination of the group motion. This will enable
us to reconstruct the behavioural pattern of the flock. We end the thesis with a conclusion
chapter.
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Chapter 1

Introduction

The phenomenon of animal movement, ranging from the intricate aerial maneuvers of avian
species to the extensive migratory patterns exhibited by wildebeest, constitutes a subject of
profound scientific intrigue within the natural world. In epochs characterised by a celestial
backdrop that underscored the interconnectedness of the universe, the observation and analy-
sis of nature held intrinsic appeal and necessity. During these periods, an acute understanding
of animal locomotion was essential for subsistence, primarily in the context of hunting activ-
ities.

However, as time elapsed and societal dynamics evolved, our motivations for studying
animal movement underwent a discernible shift. Modern times have witnessed a departure
from the imperative of survival-driven inquiry to one marked by a more diversified and nu-
anced set of interests. While vestiges of traditional practices, such as bird-watching and, to a
diminishing extent, hunting, persist as niches of fascination, contemporary motivations have
expanded beyond the realm of leisurely observation.

Presently, the study of animal movement encompasses a multifaceted domain known as
movement ecology, characterised by a commitment to understanding and mitigating the hu-
man impact on the natural world. The driving force behind this shift lies in the recognition
of our responsibility towards safeguarding the welfare of non-human species. Nevertheless,
it is evident that, in certain instances, the study of animal movement serves as a pretext for
the development of advanced statistical methodologies. These methodological innovations,
although refined and rigorously tested within the scientific community, often lack immediate
applicability in practical, real-world contexts.

This need, or rather will, to create more sophisticated mathematical and statistical models
of animal movement is justified by the technological advances in the field of tracking devices,
such as GPS tags, that have been employed to track various animals across their habitats.
Indeed, more-lasting batteries and higher-precision devices have led to an increasing amount
of high-resolution animal tracking data being collected (Nathan et al., 2022, Cagnacci et al.,
2010), thus the increase of new statistical methodologies developed to tackle the challenges
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associated with the analysis of such large data sets.
When it comes to analysing a set of data, it is important to understand the type of data

that is collected. In this thesis we are mainly interested in telemetry datasets that contain the
positions of animals in space over a sequence of discrete points in time. The animals’ posi-
tions recorded via GPS are stored as latitude and longitude coordinates. Given the spherical
nature of these measurements, they are often projected onto the Universal Transverse Mer-
cador (UTM) grid so that Euclidean geometry applies. It is very important to define a metric
of movement that can be used during the analysis. In the movement ecology literature, one of
the most commonly employed movement metrics is the bivariate time series of step lengths
and turning angles. Step lengths are defined as the distance between two consecutive loca-
tions, whereas the turning angles are the change in the direction of movement considering
three consecutive locations. This is illustrated in Figure 1.1.

yt−1

yt

yt+1

yt+2

θt

θt+1

Figure 1.1: Illustration of step lengths and turning angles. The length of the red lines will be
the step lengths. The turning angles are θt+1 and θt .

However, other metrics of movement can be employed. As an example, a similar metric
makes use of step length and bearing, which is defined as tan−1 (yt − yt−1)/(xt − xt−1),
whereas in other cases the positions themselves are used as metrics of movement.

One other important choice that will impact the analysis is the choice of temporal do-
main, namely whether the model is defined in discrete-time or continuous-time. Clearly,
animal movement is a continuous-time continuous-space process, however this has been ap-
proximated by discrete-time discrete-space process in the literature. The topic of discrete- vs
continuous-time model has been analysed thoroughly in McClintock et al. (2014).

Contrarily to what many researchers believed, McClintock et al. (2014) showed that
modelling telemetry data in discrete-time and continuous-time are not merely two differ-
ent approaches used for the same end. Discrete-time models are generally preferred in the
movement ecology community because of their simpler mathematical structure and easier
interpretability of parameters, whereas continuous-time models may discourage practitioners
because of the perhaps more difficult biological interpretation of the parameters. Having said
that, in the work of McClintock et al. (2014) it is shown that these two models also differ in
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the formulation for step length and bearings distributions. In the continuous-time case, the
step length and bearings are correlated, specifically as the step length increases, the distribu-
tion of the bearings becomes more concentrated around the velocity bearing. Furthermore,
assuming that the movement parameters are fixed (namely the model is constant state), in
the continuous-time model step lengths are correlated via the auto-correlated speed process,
which implies that the model maintains directional persistence as well as persistence in speed.
This does not apply to discrete-time models.

As stated before, discrete-time models have been the preferred choice by the movement
ecologists in the past year, however such models have some disadvantages. One disadvan-
tage is that discrete-time models are not time scale-invariant (McClintock et al., 2014). This
means that the analysis must be preceded by the choice of the sampling interval, that is, the
time interval between observations. The sampling interval varies significantly across studies,
ranging from fractions of seconds to days. Thus, the choice of the sampling interval has a
significant impact on the types of inferences that can be drawn and the appropriate modelling
techniques. Hence, careful considerations about the animal’s behavioural dynamics and the
goals of the analysis need to be taken when selecting the sampling interval (Patterson et al.,
2017a). Additionally, in the case of missing or irregularly sampled data, discrete-time mod-
els need the movement path to be discretised into temporally-regular locations, which may
result in a greater computational cost than that associated with some continuous-time models
(McClintock et al., 2014).

Despite of the differences between discrete-time and continuous-time models, Gurarie
et al. (2017) proposed characteristic spatial and temporal scales to unify all models of animal
movement. Generally, movement can be characterised by two clearly distinct limits - a so
called ballistic limit, in which the correlation in movement is observed at high sampling rates,
and a diffusive limit, meaning at large scales the movement can be approximated by diffusion
processes. This motivated the conceptualisation of the characteristic time and spatial scales
to rigorously quantify the transitions between the two movement limits, that is the transitions
between correlated movements and uncorrelated movement. The characteristic time scale
will be explored in more details in Chapter 5, where we employ a diffusion process to model
animal movement.

In this work, we only focus on two-dimensional measurements consisting of latitude and
longitude, however there are also studies that consider three-dimensional observations or one-
dimensional observations, where in the latter case the observations may represent the diving
and emerging behaviours of air-breathing marine mammals. As we shall see, in Chapters 5
and 6 we will use the Easting-Northing positions themselves as movement metrics employed
in our method.
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1.1 Aim of the thesis

The animal movement discipline is vast and there are many models that can be used to anal-
yse location data, each depending on the scope of the analysis. In this thesis, we introduce
new models of animal movement that can be employed in various different analysis tasks.
Firstly, in Chapter 2 we give an overview of the background theory that is needed to under-
stand the material discussed in the later chapters. Specifically, since sampling of locations is
done at regular time intervals, we describe hidden Markov models (HMMs) and state-space
models (SSMs), which are particularly suitable for this type of analysis. We will see how
these methods may not be well-suited for observations irregularly spaced in time, and how
continuous-time approaches, such as those based on diffusion models, are more accommodat-
ing of irregular time intervals, whether intentional or due to limitations within the telemetry
devices.

In Chapter 3 the analysis takes a "top-down" approach, meaning that from group-level in-
formation our aim is to infer individual-level information. We study a one-dimensional self-
propelled particle (SPP) model to simulate the dynamics of locusts in a ring-shaped arena.
We employ Gaussian processes (GP) to link macroscale, group-level properties to the mi-
croscale, individual-level properties of the system without the need of a formal mathematical
equation. Specifically, we first assume the existence of an empirical Fokker-Planck equation
(FPE), namely a partial differential equation that describes the evolution in time of the proba-
bility density of a macroscale variable (which will be defined). Then, through the application
of sparse Gaussian process (GP) regression (Lázaro-Gredilla and Titsias, 2011, Saul et al.,
2016) we learn the drift and diffusion functions of the FPE, which allows us to estimate the
likelihood of microscale parameters given a set of empirical macroscale observations, thus
linking the two scales. We also introduce a novel, adaptive sampling algorithm that makes
use of a second Gaussian process to emulate the log-likelihood surface of the microscale
parameters, thus reducing the computational cost of the algorithm.

In the remaining chapters we shift focus to a different problem. We tackle the so-called
switching problems, where the animal’s dynamics are assumed to be dependent on quanti-
tatively different behaviours, or states, thus resulting in quantitatively different trajectories.
Generally speaking, these types of models are particularly useful to model the changes in
dynamics of an animal which are expected to occur over longer time-scales. Indeed, over
the hours and days, we would expect an animal to show different dynamics that could be
associated with different behaviours, such as an exploratory behaviour or a resting behaviour,
etc.

In Chapter 4 we introduce the different approaches we have taken in order to simulate
continuous-time semi-Markov chains. Simulating semi-Markov chains is a fundamental
block for our method developed and explained in the subsequent Chapter 5, aimed at re-
constructing the history of the behavioural transitions. In this chapter we introduce a novel,
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scalable, non-Markovian model of animal movement. The model assumes the dynamics of
the animal can be approximated by an integrated Ornstein-Uhlenbeck process whose param-
eters depend on an underlying (latent) semi-Markov process. We then employ a Monte-Carlo
Expectation-Maximisation algorithm to reconstruct the latent state sequences as well as to
optimise the model parameters. This method will be applied both to synthetic data as well as
data representing the locations of free-roaming Merino sheep in a large ( 400 Ha) paddock in
Patagonia.

In Chapter 6 we develop this method further to accommodate different waiting distribu-
tions for the semi-Markov process. From the sheep dataset we will derive an order parameter
from which we can measure the degree of cohesiveness in the group. Indeed, higher values of
the order parameter correspond to more ordered movement whereas lower values correspond
to low speeds or chaotic movement. We conclude with a general discussion in Chapter 7.



Chapter 2

Background theory

In this chapter we are going to review some of the fundamental theoretical results found in

the literature useful to get a better understanding of the material covered in the subsequent

chapters.

6
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2.1 Introduction

Complex systems exist in nature and throughout society. Examples of complex systems are
the coordinated movement of a bird flock, the spread of political ideas or that of a disease.
The common thread binding these different examples is that these emergent, global-scale
phenomena all arise from fine-scale interactions occurring at the individual level. In this
work we only focus on animal movement, one such example of a complex system. Under-
standing animal movement is important for conservation and management, especially in our
modern times that are characterised by heightened anthropogenic pressures on the environ-
ment. Understanding how animals react to new changes in the environment would provide
significant insights and guide the formulation of ecologically sensitive measures that mitigate
adverse impacts on animal well-being.

Simulation and inference are two powerful tools available to the movement ecologists (as
well as other disciplines) to study animal movement. In this introductory chapter, we will
go through some of the most common simulation and inference techniques used across this
domain that will be also employed in some of the following chapters. Through simulations
we are able to explore the underlying dynamics of movement, and through inference we are
able to recover the model parameters that best fit the movement data. We will explain in more
details the tools that played a major role in this thesis: Gaussian processes (GPs) and hidden
Markov models (HMMs). Many concepts introduced in Section 2.2, the material covered in
Section 2.3 as well as the HMMs machinery are based on the concept of Markov chain, or
at least benefit from the Markov property, hence we shall give a definition of Markov chain
before diving into the core part of this chapter.

A Markov chain is a stochastic process defined by a sequence of random events {Xn : n ∈
N}, often called states when applied to animal movement modelling, for which the Markov
property holds:

p(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1) = p(Xn = xn|Xn−1 = xn−1), (2.1)

that is, the probability of the chain taking a new value xn solely depends on the value of the
chain at the previous step.

A Markov chain can be formulated both in discrete-time and continuous-time. Discrete-
time Markov chains (DTMCs) are characterised by a transition probability matrix

PPP =

p11 ... p1n

... ... ...

pn1 ... pnn

 , (2.2)

where ∀i, j ∈ {0, . . . ,n}, pi j ≥ 0 and ∑ j pi j = 1. Here the parameters pi j represent the proba-
bilities of moving from state i to state j. The sojourn (or residence) times in each state follow
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a geometric distribution (Zucchini et al., 2009).
On the other hand, continuous-time Markov chains (CTMCs) are characterised by an

infinitesimal generator matrix (IGM):

ΛΛΛ =

−λ11 ... λ1n

... ... ...

λn1 ... −λnn

 , (2.3)

where ∀i, j ∈ {1, . . . ,n}, λii = ∑i ̸= j λi j. The parameters λi j represent the instantaneous rate at
which the state i transitions to state j. As a consequence of the Markov property, the sojourn
times of a state i is exponentially distributed with rate parameter λii (Hobolth and Stone,
2009).

2.2 Animal Movement Modelling

2.2.1 Random walks

Random walk theory finds its origins in the erratic movement of individual pollen particles,
famously explored by the botanist Brown in 1828, now called Brownian motion. The initial
rudimentary models of random walks were uncorrelated and unbiased. In this context, "un-
correlated" means that each movement’s direction is entirely unrelated to previous ones; the
location after each step in the random walk relies solely on the prior step’s location, that is the
process is Markovian (Weiss, 1994). "Unbiased" implies that there is no favoured direction;
each step’s direction is entirely random.

The equation of a simple discrete-space, one-dimensional random walk is the following:

xt = xt−1 + zt , (2.4)

where x is the position at time t and

zt =

1,with probability 1
2 ,

−1,with probability 1
2 .

(2.5)

Random walk models alone however are not suitable models to describe animal move-
ment as we know that most animals exhibit a tendency to move forward (persistence). This is
what lead to the conceptualisation of correlated random walks (CRWs), in that they introduce
a connection between consecutive step orientations, namely a persistence. This introduces a
localised directional tendency where each step leans towards the previous one’s direction.
However, the initial motion’s influence decreases over time, and in the long term, step orien-
tations become uniformly distributed, as explained by Benhamou (2006).
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A simple modification of Equation 2.5 leads to a simple equation of a correlated random
walk model introduced by Renshaw and Henderson (1981):

xt = xt−1 + εt , (2.6)

where in this case the random variable εt represents the probability that the step is taken in
the same direction as the previous step. For example, if εt follows a Bernoulli distribution
then the next step will be in the same direction as the previous step with probability p and in
the contrary direction with probability 1− p.

The CRWs models have been used extensively in the animal movement literature. Con-
trarily to random walks, some CRW processes are not Markovian as the position at a specific
time step depends on previous locations too. In Chapter 4, we will describe in greater details
a continuous-time correlated random walk (CTCRW) model based on a diffusion process
(Johnson et al., 2008) and show how the Markovian property is introduced so that the tools
from hidden Markov models and state-space models can be leveraged.

2.2.2 Diffusion processes

A diffusion process is a stochastic model widely used to describe the random movement of
particles over time. They provide a mathematical framework for characterising the spreading
and movement of particles within an environment influenced by both deterministic forces and
random fluctuations (Ito and McKean, 1967). Recall the simple random walk model intro-
duced in the previous section through Eqn. 2.4 and we extend it now to multiple dimensions:

xxx(ti) = xxx(ti−1)+ εεε(ti), (2.7)

where xxx(ti) represents the location of the "walker" at time ti and εεε(ti) ∼ N(0,∆iI), where
∆i = ti − ti−1.

Alternatively, we can write Eqn. 2.7 as a sum of step lengths beginning at the origin
xxx(t0) = 0, with t0 = 0 (Hooten et al., 2017a):

xxx(ti) =
i

∑
j=1

xxx(t j)− xxx(t j−1)

=
i

∑
j=1

εεε(t j).

(2.8)

Then, as the time difference approaches 0, the resulting model will be in continuous time:

xxx(ti) = lim
∆t→0

i

∑
j=1

εεε(t j), (2.9)
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and for all t, the resulting sequence is the Brownian motion (Hooten et al., 2017a), which is
an example of diffusion process. Using the notation used in stochastic calculus, the Brownian
motion is defined as:

x(t) =
∫ t

0
dx(τ), (2.10)

where dx(t) = lim
∆t→0

x(t)−x(t −∆t).
In the context of animal movement, diffusion processes offer valuable insights into the be-

haviour and ecological dynamics of species. By fitting diffusion models to observed move-
ment trajectories, it is possible to estimate important parameters like diffusion coefficients
and drift rates. These parameters are key to an understanding of the underlying move-
ment patterns, habitat preferences, and interactions between animals and their environment.
Through diffusion processes it is possible to differentiate between various movement strate-
gies, such as searching for resources or exploring new areas, which can have implications
for population dynamics, conservation efforts and spatial management, thus contributing to
a more comprehensive understanding of species’ movement behaviours and their ecological
roles.

One such example of diffusion process that is more complex than Brownian motion is
the Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930). The OU process is
mean-reverting, that is, the particle shows tendency to return to a point of attraction µ . The
equation for a one-dimensional OU process is the following:

dX(t) = β (µ −X(t))dt +σdW (t). (2.11)

Here, dX(t) represents the change in animal position over a short time interval dt, µ is the
center of attraction, σ quantifies the intensity of random movements represented by dW (t),
where dW (t) is the Weiner process, and β governs the strength of attraction towards µ (Uh-
lenbeck and Ornstein, 1930). In the context of animal movement, the OU process offers
insights into the interplay between deterministic behaviours and unpredictable environmen-
tal factors. For instance, consider an animal that has a favoured location it tends to return
to due to resource availability or safety. At the same time, the animal’s movement is influ-
enced by random factors like wind or momentary behaviour shifts, which is accounted for
by dW (t). A modified version of this model will be employed in Chapter 5 to model the
movement dynamics of a flock of sheep.

Other diffusion processes are employed in the context of animal movement, like the
Langevin equation (Coffey and Kalmykov, 2012). The equation is expressed as:

m
d2x
dt2 =−γ

dx
dt

+
√

2kBT γξ (t)+F(x) (2.12)

where m is the mass of the particle, x represents its position, t is time, γ is the friction co-
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efficient, kB is the Boltzmann constant, T is the temperature, ξ (t) is a Gaussian white noise
term representing random fluctuations, and F(x) is a potential force. The Langevin equation
introduces more flexibility as the process is not constrained to be mean-reverting. This model
will not be employed in this work.

2.2.3 Individual-based modelling

Individual-based modeling (IBM), also known as agent-based modelling, is a dynamic ap-
proach used to simulate complex systems by focusing on the behaviours and interactions of
individual entities within the system. Unlike traditional aggregate-level models, IBM seeks
to capture the intricate interplay between autonomous agents and their environment, allow-
ing for a deeper understanding of emergent phenomena. By representing each individual as a
distinct entity with its own set of characteristics, rules, and decision-making processes, IBM
offers a powerful tool to explore the complex dynamics that arise from simple local inter-
actions. Different IBMs therefore arise from different interaction rules. The Czirok model
(Czirók et al., 1999) is a simple one-dimensional self-propelled particle (SPP) model that was
used to simulate the motion of a group of locusts confined in a ring-shaped arena during an
experiment. This model is analysed further in Chapter 3 so we defer the details. The two-
dimensional extension of this model is known as the Vicsek model (Vicsek et al., 1995) and
it was originally used to describe flocking in a noisy environment. These two models define
an interaction radius within which individuals adjust their alignment according to the group
alignment. The Vicsek model is described by the following equations:

Θi(t +∆t) = ⟨Θ j⟩|ri−r j|<r +ηi(t)

ri(t +∆t) = ri(t)+ v∆t

[
cos(Θi(t))

sin(Θi(t))

]
, (2.13)

where ri(t) and Θi(t) are respectively the position and angle of particle i at time t, ⟨Θ j⟩|ri−r j|

denotes the average direction of the velocities of particles (including particle i) within a circle
of a given distance r, |ri − r j| < r, surrounding particle i, and ηi(t) is the noise uniformly
distributed on [−π,π].

Another example of IBM is found in Kerman et al. (2012). The model describes constant-
speed, two-dimensional movement within a periodic domain and three interaction zones are
explicitly defined: repulsion, orientation (or alignment) and attraction. The neighbours in
these zones are determined by the following equations (Kerman et al., 2012):

nr
i = { j : ||ri − r j||< Rr,ai j = 1},

no
i = { j : ||ri − r j||< Ro,ai j = 1},

na
i = { j : ||ri − r j||< Ra,ai j = 1},

(2.14)
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Figure 2.1: Illustration of the different behaviours arising from different combinations of
the zonal interaction model parameters (Kerman et al., 2012), for different parameter com-
binations of the orientation radius, Ro, and the attraction radius, Ra. Panel (A): swarm
(Ro = 0,Ra = 15). Panel (B): toroidal (Ro = 3,Ra = 15). Panel (C): dynamic parallel
(Ro = 10,Ra = 10). Panel (D): concentrated parallel (Ro = 20,Ra = 10). The plot was
taken from Gaskell et al. (2023)
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where Rr, Ro and Ra are respectively the radius of repulsion, orientation and alignment,
A(t) = ai j(t) is the sensory adjacency matrix (Kerman et al., 2012), where ai j(t) = 1 means
that agent j is visible to agent i at time t, and ri is the location of agent i. The quantities
nr

i , ni
o and ni

a are the sets of agent i’s neighbours in the regions of, respectively, repulsion,
orientation and attraction (Kerman et al., 2012). The model allows for overlapping regions of
repulsion, orientation and attraction.

The agent will then interact with the individuals within these three interaction zones dif-
ferently, and depending on the radius of the orientation zone, the model manifests both a
flock and a torus attractor (Kerman et al., 2012). This is illustrated in Fig. 2.1.

2.2.4 State-space models

State-space models (SSMs) are a wide class of time series models (Durbin and Koopman,
2012) employed in the context of estimating the dynamics of a phenomenon that cannot
be observed directly. State-space models can handle measurement error by defining two
processes; the first process is the observation process and is described by the observation
equation which relates the observations yt to the unknown true values zt :

yt = h(zt ,vt), (2.15)

where h() is any function (linear or non-linear) and vt is the observation noise. The second
equation is the system equation and defines the update rules of the unknown states, that is,
the noise-free locations:

zt = f (zt−1,wt ,ut), (2.16)

where f () can be any function, wt is the process noise and ut is the control input, which
represents an external signal or command that influences the system’s behaviour.

A widely used state-space model in the movement ecology literature is the Kalman filter
(Kalman, 1960). The Kalman filter was originally employed by control engineers and phys-
ical scientists in areas such as signal processing in aerospace tracking and underwater sonar.
As an example, the Kalman filter could be employed in the estimation of the position and
speed of a satellite (zt) given our distance and relative angle to the satellite (yt). The Kalman
filter is based on two main assumptions: the state transitions (system equations) as well as
the observation equation are assumed to be linear, and the observation noise and the system
noise are Gaussian (Meinhold and Singpurwalla, 1983). This means that the equations of the
Kalman filter become:

yt = Ftzt +vt , (2.17)

where the quantity Ft is assumed to be known and represents the observation model (how the
latent state is mapped to the observations) and vt ∼N(0,Vt) is the observation noise, whereas
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the second equation:
zt = Gtzt−1 +wt , (2.18)

where Gt is the transition density matrix (assumed to be known) and wt ∼ N(0,Wt). Note
that contrarily to Eqn. 2.16, we have not included the control input ut , following the work of
Meinhold and Singpurwalla (1983).

The Kalman filter may be easily understood if it is seen as inference about zt using the
Bayes’ rule (Meinhold and Singpurwalla, 1983). For the sake of simplicity in the illustration
of the algorithm, let’s take into consideration scalar zt and observed data yt = {y1, . . . ,yt}.
Then, the Bayes’ rule states:

p(zt |yt) ∝ p(yt |zt ,yt−1)× p(zt |yt−1), (2.19)

where p(A|B) indicates the probability of event A conditional on the fact that event B has
occurred. We defer the details of the Bayes’ rule and Bayesian inference until Section 2.3.

Inference about zt is carried out through a recursive algorithm. To illustrate the algorithm,
we will focus on time point t − 1, for t = 1,2, . . ., and the observed data until time t − 1,
yt−1 = {yt−1, . . . ,y1} (Meinhold and Singpurwalla, 1983). At time t − 1, the distribution of
zt−1 will follow a normal distribution with expectation and variance, respectively, ẑt−1 and
ΣΣΣt−1:

(zt−1|yt−1)∼ N(ẑt−1,ΣΣΣt−1). (2.20)

The recursive scheme begins by choosing initial conditions for ẑ0 and ΣΣΣ0. Then at time t, we
update the values of the expectation and variance of the state in two stages, prior to observing
yt and after observing yt .

Before observing yt , our best knowledge of zt is given by Eqn. 2.16; given that we know
the value of zt−1 from Eqn. 2.20, we conclude that, prior to observing yt , our state knowledge
is (Meinhold and Singpurwalla, 1983):

(zt |yt−1)∼ N(Gt ẑt−1,GtΣΣΣt−1G
′
t +Wt). (2.21)

Once we observe yt , we want to calculate the probability distribution in Eqn. 2.19. This
is however possible only if we know the distribution p(yt |zt ,yt−1); to calculate it, we shall
proceed as follows. Let et be the prediction error from time point t −1:

et = yt − ŷt = yt −FtGt ẑt−1

= Ft(zt −Gt ẑt−1)+ vt ,
(2.22)

where we have used the relation described in the observation equation, Eqn. 2.17. Note that
upon observation of yt , et becomes known. Hence, we can rewrite Eqn. 2.19 as follows
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(Meinhold and Singpurwalla, 1983):

p(zt |et ,yt−1) ∝ p(et |zt ,yt−1)× p(zt |Yt−1). (2.23)

Since vt ∼ N(0,Vt), it follows that

(et |zt ,yt−1)∼ N(Ft(zt −Gt ẑt−1),Vt) (2.24)

and that we can use Bayes’ theorem to obtain (Meinhold and Singpurwalla, 1983):

p(zt |yt ,yt−1) =
p(et |zt ,yt−1)× p(zt |Yt−1)∫

zt
p(et |zt ,yt−1)dzt

. (2.25)

We conclude this section by stating that hidden Markov models are a sublcass of state-
space models whereby the state space is assumed to be discrete. Since HMMs have become
a popular tool amongst the movement ecologists, and because HMMs will play an important
role in Chapters 4 and 5, we dedicate a more thorough review of the subject in Section 2.6.

2.3 Bayesian statistics

Bayesian statistics is a formulation of statistics based on probability distributions. The main
idea of Bayesian statistics revolves around the application of Bayes’ rule. Consider the sce-
nario where we have some observed data D and we have a model that describes the data
which depends on some model parameters θθθ . The end goal is to leverage the data to acquire
knowledge of the model parameters and this is done through the application of Bayes’ rule:

p(θθθ |D) =
p(D|θθθ)p(θθθ)

p(D)
=

p(D|θθθ)p(θθθ)∫
p(D|θθθ)p(θθθ)dθθθ

. (2.26)

We define the following quantities:

1) p(D|θθθ) - this is the likelihood function. Assuming that θθθ is true, the likelihood expresses
how likely θθθ is to have generated the observed data D.

2) p(θθθ) - this is the prior distribution. As the name suggests, it reflects our prior beliefs about
the parameters θθθ .

3) p(θθθ |D) - this is the posterior distribution. It describes how confident or certain we are
about the values of θθθ given the observed data D. In Bayesian statistics, calculating the pos-
terior distribution is the end goal.
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4) p(D) =
∫

p(D|θθθ)p(θθθ)dθθθ - this is called the evidence, or marginal likelihood. It is a nor-
malising constant that ensures the posterior distribution is a proper probability distribution.
If the probability distributions are discrete, then integration is replaced by summation.

The power of Bayesian statistics is that whenever we have access to more data, our "be-
liefs" are updated through the likelihood function and we become more confident on the true
values of θθθ . The Bayesian inference framework can also be used to make predictions on
unseen data, specifically we can calculate the probability distribution of possible unobserved
values conditional on the observed values, known as the posterior predictive distribution:

p(D̃|D) =
∫

p(D̃,θθθ |D)dθθθ =
∫

p(D̃|θθθ)p(θθθ |D)dθθθ , (2.27)

where D̃ is the new unobserved data. As we can see, making predictions on observed data is
based on the posterior distribution.

The evidence, however, may become intractable when considering high-dimensional dis-
tributions. In that case, the most commonly employed techniques that are used to get esti-
mates of the posterior distribution (or more generally any distribution that is hard to sample
from directly) are the Markov chain Monte Carlo (MCMC) techniques and variational infer-
ence (VI).

2.3.1 Markov chain Monte Carlo techniques

Markov chain Monte Carlo (MCMC) techniques are powerful computational methods used
for generating samples from complex probability distributions that are challenging to sample
directly. The idea is to generate samples by constructing a Markov chain on the state space X

whose stationary distribution is the target distribution π(x) that we want to sample from, for
x ∈X . Essentially, this means that we define a random walk on the state space X (Murphy,
2012). Applying this to the Bayesian inference problem, the target distribution of interest
will be the posterior distribution p(θθθ |D), whereas the state space will be the parameter space
ΘΘΘ ∋ θθθ .

To ensure that the Markov chain has as its stationary distribution the target distribution,
the detailed balance condition must be met. Consider a state space X and let ρ(a,b) =

p(Xn+1 = b|Xn = a), with a,b ∈ X , be the transition density of the Markov chain, with
Xn+1 and Xn being two successive realisation of the Markov chain. Then detailed balance is
satisfied if there exists a probability distribution κ such that

ρ(a,b)κ(a) = ρ(b,a)κ(b), ∀a,b ∈ X . (2.28)

If detailed balance is satisfied, then the probability distribution κ is the stationary distribution
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(Kelly and Yudovina, 2012). This condition will ensure that the constructed Markov chain
will have as stationary distribution the target distribution of interest. We are constructing a
Markov chain that will reach its stationary distribution, however we don’t know how quickly
it will converge to it, hence it is common to discard the influence of the starting values of the
chain. This is called the burn-in phase. Furthermore, since successive Markov samples are
correlated, depending on the applications it is sometimes useful to keep every nth sample so
that they are independent.

We will see how we can construct such Markov chains in two of the most commonly
employed MCMC algorithms, the Gibbs sampling algorithm and the Metropolis-Hastings
algorithm.

Gibbs sampling

Gibbs sampling is an MCMC technique used to sample from complex multivariate joint prob-
ability distributions where the conditional distributions of each variable is known (Robert and
Casella, 2005). Consider a joint distribution p(x1,x2, . . . ,xn). Gibbs sampling iteratively gen-
erates samples from the conditional distributions p(xi|x1, . . . ,xi−1,xi+1, . . . ,xn). Starting with
an initial estimate {x(0)1 , . . . ,x(0)n }, the algorithm updates each variable sequentially according
to:

x(t+1)
1 ∼ p(x1|x

(t)
2 ,x(t)3 , . . . ,x(t)n )

x(t+1)
2 ∼ p(x2|x

(t+1)
1 ,x(t)3 , . . . ,x(t)n )

...

x(t+1)
n ∼ p(xn|x(t+1)

1 ,x(t+1)
2 , . . . ,x(t+1)

n−1 )

(2.29)

where t represents the iteration number. As t approaches infinity, the samples {x(t)1 , . . . ,x(t)n }
converge to the true joint distribution p(x1, . . . ,xn). We can show this by making the following
definition.

Let x ∼ j y if xi ̸= yi, ∀i ̸= j and g be the desired target distribution. Then the transition
probabilities are defined as (Murphy, 2012):

ρ(x,y) =


1
n

g(y)
∑z∼ jx g(z) , x ∼ j y

0, otherwise.
(2.30)

Hence,

g(x)ρ(x,y) =
1
n

g(x)g(y)
∑z∼ jx g(z)

=
1
n

g(y)g(x)
∑z∼ jx g(z)

= g(y)ρ(y,x), (2.31)

that is, detailed balance is satisfied and therefore g is the stationary distribution.
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Metropolis-Hastings

Another widely employed MCMC algorithm is the Metropolis-Hastings (MH) algorithm
(Hastings, 1970), which will be extensively employed in Chapters 3 and 5. Given a target
distribution π(x) = 1

Z π̃(x), that is impossible to sample from directly due to the intractability
of the normalisation constant Z, in the MH algorithm we proceed by defining a proposal dis-
tribution, that is a distribution through which we can generate candidate samples to construct
the Markov chain that has as its stationary distribution π(x). Let Q(x′|x) be the proposal
distribution that expresses the probability to generate sample x′ from a current sample x. At
each iteration of the algorithm, we first propose a new sample through Q, then this sample is
either accepted or rejected based on an acceptance probability defined as follows (Hastings,
1970):

α(x′,x) = min
{

1,
π(x′)
π(x)

Q(x|x′)
Q(x′|x)

}
= min

{
1,

π̃(x′)
π̃(x)

Q(x|x′)
Q(x′|x)

}
, (2.32)

where α(x′,x) is the probability of accepting x′ and we can see that we avoid computing the
normalising constant Z since it cancels out in the acceptance ratio. The ratio of proposal
probabilities is called Hastings ratio. For symmetric proposal Q, the Hastings ratio is 1 and
the acceptance probability simplifies to

min
{

1,
π(x′)
π(x)

}
. (2.33)

The Hastings ratio will play a crucial role in Chapter 4 and Chapter 5.
The reason why a Markov chain built through such an acceptance probability will con-

verge in distribution to π is because α(x′,x) is constructed in such a way that it satisfies
detailed balance. To see this, let’s define the transition probability matrix for this chain as
follows (Hastings, 1970, Murphy, 2012):

Pxx′ = p(x′|x) =

Q(x′|x)α(x′,x), if x′ ̸= x,

Q(x′|x)+∑x′ ̸=x Q(x′|x)(1−α(x′,x)), otherwise.
(2.34)

Assume without loss of generality that α(x′,x) = 1 and α(x,x′) = π̃(x)Q(x′|x)
π̃(x′)Q(x|x′) . Then (Murphy,

2012):
π̃(x′)Q(x|x′)α(x,x′) = π̃(x)Q(x′|x)α(x′,x) (2.35)

which implies
π(x′)Px′x = π(x)Pxx′, (2.36)

that is, detailed balance is satisfied. It can be shown that the Gibbs sampling algorithm
is a special case of the Metropolis-Hastings algorithm, whereby all samples are accepted
(Murphy, 2012).
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Reversible jump MCMC

MCMC techniques are often used for the inference on mixture models. Inference on mix-
ture models can be broadly categorised into two groups: one group tackles inference with
fixed k, whereas the other group treats k as unknown. The latter is more mathematically
involved. Concerning this matter, pioneering study on the topic is found in Richardson and
Green (1997) and Robert et al. (2000). The theoretical framework from which they devel-
oped their work is based on that from Green (1995). There, inference on HMMs parameters
employs reversible jump Markov chain Monte Carlo (RJMCMC) routines. This method was
developed to overcome limitations of standard MH scheme and enable the sampler to "jump"
to parameter subspaces of different dimensions, all respecting detailed balance. Generally,
given a vector of parameters θθθ , a target posterior distribution π , a countable family of move
types m = 1,2, ... and an arbitrary proposal distribution qm(x,x′), a proposed sample θθθ

′ is
accepted with probability

α(θθθ ,θθθ ′) = min
{

1,
π(θθθ ′)qm(θθθ

′,θθθ)

π(θθθ)qm(θθθ ,θθθ
′)

}
. (2.37)

If the move does not change the dimension of the parameter then the above expression coin-
cides with a standard MH acceptance probability. If the move is dimension-changing, then
suppose that θθθ

′ lies in a higher-dimensional space. As suggested in Richardson and Green
(1997), the move is usually implemented by drawing a vector of continuous random variables
uuu, independent of θθθ , and setting θθθ

′ by using an invertible deterministic function f (θθθ ,uuu). The
reverse of the move then is accomplished by using the inverse transformation, so that the
proposal is deterministic. The acceptance probability then becomes

min
{

1,
p(θθθ ′|y)rm(θθθ

′)

p(θθθ |y)rm(θθθ)q(uuu)

∣∣∣∣ ∂dθθθ
′

∂d(θθθ ,uuu)

∣∣∣∣}, (2.38)

where rm(θθθ) is the probability of choosing move type m when in θθθ , and q(uuu) is the density
function of u. The last term is the Jacobian associated with the change of variable from (θθθ ,uuu)

to θθθ
′.
There are four standard dimension-changing moves: split and combine moves and birth

and death moves. Key is their reversibility: such moves are constructed in tandem, that is, in
a reversible pair. Without going into the details, the combine move combines two adjacent
components into a new component, reducing the total number of components by 1; on the
contrary, from a randomly chosen components the split move creates two new components,
increasing the number of components by 1. The birth and death move are involved with
empty components, i.e. components to which no observation is associated. As the names
suggest, the birth move creates a new empty component whereas the death move deletes an
existing empty component. At every step of the sampler, split-combine and birth-death are
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all implemented with probability bk, dk = 1−bk, with bkmax = 0, d0 = 0. The parameter kmax,
chosen a priori, is fixed and represents the total number of components. The mathematically
involved part is the derivation of the acceptance probability for these moves. We will omit the
details, but they can be found in Green (1995) and Richardson and Green (1997). In Robert
et al. (2000) an application to HMMs inference is given.

In the future chapter we will perform inference on a hidden semi-Markov model of animal
movement. Given that the number of states will be kept fixed, we will not need the RJMCMC
framework.

2.3.2 Variational inference

Variational inference (VI) is a different approach to MCMC techniques and is used to get
approximations to an intractable probability distribution. In the context of Bayesian infer-
ence, it can be exploited to approximate posterior distributions that are intractable due to the
intractability of the marginal likelihood. The idea behind variational inference is to introduce
a variational distribution q from a family of tractable parameterised distributions that can ap-
proximate the true posterior. The implementation of VI revolves around finding the best such
variational distribution.

Let’s start from the same settings as in Section 2.3. Suppose that p(θθθ |D) is the intractable
posterior distribution. Let q(θθθ))) be a distribution taken from a family of tractable, parame-
terised distributions F . In order to find the best approximation to p(θθθ |D), we need q(θθθ) to
be "close" to p(θθθ |D). To do so, we will use the Kullback-Leibler (KL) divergence, which is
a measure of similarity between two distributions. For the distributions q(θθθ) and p(θθθ |D), the
KL divergence is (Kullback and Leibler, 1951):

KL(q(θθθ)||p(θθθ |D)) = ∑
θθθ

q(θθθ)ln
(

q(θθθ)
p(θθθ |D)

)
. (2.39)

The KL divergence is asymmetric and non-negative, with equality to 0 if and only if q(θ) =

p(θ |D).
Then, the best distribution q(θθθ) from the family F is found by solving the following

optimisation task (Murphy, 2012):

q∗(θθθ) = argmin
q(θθθ)∈F

KL(q(θθθ)||p(θθθ |D))

= argmin
q(θθθ)∈F

∑
θθθ

q(θθθ)ln
(

q(θθθ)
p(θθθ |D)

)
.

However, this form is still unpractical as the intractable evidence appears in the denominator
of Eqn. 2.40 via the posterior distribution that we want to approximate in the first place.
To overcome this issue, we can consider the unnormalised posterior distribution p̃(θθθ |D) =
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p(θθθ |D)p(D), where p(D) is the evidence. Then we can optimise the following objective
function (Murphy, 2012):

KL(q(θθθ)|| ˜p(θθθ |D)) = ∑
θθθ

q(θθθ)ln
(

q(θθθ)
p̃(θθθ |D)

)
= ∑

θθθ

q(θθθ)ln
(

q(θθθ)
p(D)p(θθθ |D)

)
= ∑

θθθ

q(θθθ)ln
(

q(θθθ)
p(θθθ |D)

)
− ln(p(D))

= KL(q(θθθ)||p(θθθ)|D))− ln(p(D)).

Then by minimising the objective function in Eqn. 2.40, the negative log marginal likelihood
will cancel out since it is constant with respect to θθθ . Alternatively, we can turn this into
a maximisation task by optimising the negative objective function of Eqn. 2.40 (Murphy,
2012):

q∗(θθθ) = argmax
q(θθθ)∈F

ln(p(D))−KL(q(θθθ)||p(θθθ)|D)). (2.40)

Because the KL divergence is nonnegative, we can see that

ln(p(D))−KL(q(θθθ)||p(θθθ)|D))≤ ln(p(D)), (2.41)

and this quantity is a lower bound for the log marginal likelihood. By pushing the lower
bound to the log marginal likelihood, we can find the best approximation to the posterior
distribution p(θθθ |D).

2.4 Classical statistics

The classical, or frequentist, approach to statistics is based on the fundamental concept of
probability as the long-term relative frequency of events in repeated, identical experiments.
That is, the statement "the probability of observing the number 1 after rolling a die is 1

6"
means that after rolling the die infinitely many times we will observe the number 1 1

6 of
the times. In this framework, a parameter estimate θ̂θθ is computed by applying an estimator
δ to some data D: θ̂θθ = δ (D) (Murphy, 2012). In this statistical paradigm, the parameter is
viewed as fixed and the data as random. The uncertainty in the parameter estimate can then be
measured by computing the sampling distribution of the estimator, which is the distribution
that an estimator has when applied to multiple data sets sampled from the true but unknown
distribution (more details on this can be found in Murphy (2012), Young (2005)). We will
now describe two powerful methods that are used in the frequentist paradigm of statistics, the
Maximum Likelihood Estimation (MLE) and the Expectation-Maximisation (EM) algorithm.
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2.4.1 Maximum likelihood estimation

One of the most commonly employed methods for the inference of parameters θθθ in the con-
text of frequentist statistics is the Maximum Likelihood Estimation method. This method
is based on the concept of likelihood (which also plays an important role in the Bayesian
paradigm of statistics, Section 2.3). Given a set of data Y = {y1, . . . ,yN}, where N is the size
of the dataset, and a probability distribution of the data given the parameters p(D|θθθ), then
the likelihood is defined as (Hastie et al., 2009):

L(θθθ ,Y) =
N

∏
i=1

p(yi|θθθ), (2.42)

where the underlying assumption is that the data {y1, . . . ,yN are independent and identically
distributed.

The MLE then seeks the parameters that maximise the likelihood, meaning that the MLE
ultimately amounts to an optimisation routine:

θθθ MLE = argmax
θθθ∈ΘΘΘ

L(θθθ ,Y), (2.43)

where ΘΘΘ is the parameter space.

2.4.2 Expectation-Maximisation algorithm

For many models, computing MLE of the parameters can be straightforward, provided that
the data is "complete", meaning the data is fully observable. This however may not be the
case in the presence of missing data or latent variable models, such as state-space models
or hidden Markov models, as we shall see in Section 2.6. In these cases, we can employ
the Expectation-Maximisation algorithm. The EM algorithm is a two-step iterative algorithm
that continuously iterates between the Expectation step (E-step) and the Maximisation step
(M-step). We will now give the details.

As before, let Y represent the observed data and let Z be the missing or impossible to ob-
serve data. For example, in the study of animal movement Y may represent the location of an
animal and Z may represent some missing fixes due to some GPS error. In another example,
Z may represent the "state" in which the animal is at the time of observation, meaning what
behavioural activity (for example, foraging or resting) was the animal engaged with when its
position Y was recorded. We shall denote the set {Y,Z} the complete data and the set Y the
incomplete data.

Consider the log-likelihood of the model:

ln p(Y|θθθ) = ln ∑
ZZZ

p(YYY ,ZZZ|θθθ), (2.44)
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that is, if we were given knowledge of the complete data set we could use it to find the
likelihood of the model. Knowledge of the missing or latent data is contained in the following
distribution:

p(Z|Y,θθθ). (2.45)

Having set the preliminaries, we proceed as follows. Consider a function on the latent vari-
ables q(Z) (this is a very similar approach to the VI method, in fact, the EM algorithm is a
special case of the VI framework), then the log-likelihood can be decomposed in the follow-
ing way (Bishop, 2006):

ln p(Y|θθθ) = L (q(Z),θθθ)+KL(q(Z)||p(Z|Y,θθθ)), (2.46)

where
L (q(Z),θθθ) = ∑

ZZZ
q(Z)ln

(
p(YYY ,ZZZ|θθθ)

q(Z)

)
(2.47)

is a lower bound for p(Y|θθθ) (Bishop, 2006) and

KL(q(Z)||p(Z|Y,θθθ)) = ∑
ZZZ

q(Z)ln
(

p(ZZZ|YYY ,θθθ)
q(Z)

)
(2.48)

is the Kullback-Leibler divergence between q(Z) and the posterior distribution p(Z|Y,θθθ).
To illustrate the EM algorithm, suppose that the current parameter is θθθ

−. In the E-step,
the lower bound L (q(Z),θθθ−) is maximised with respect to q(Z) while holding θθθ

− fixed.
This is obtained if the KL divergence vanishes (Bishop, 2006), which occurs if

q(Z) = p(Z|Y,θθθ−). (2.49)

This means that during the E-step the lower bound is

L (q(Z),θθθ) = ∑
ZZZ

p(Z|Y,θθθ−)ln p(Y,Z|θθθ)+ const., (2.50)

which is the expectation of the complete data log-likelihood with respect to the distribution
of Z conditioned on the incomplete data and the current parameter θθθ

−.
In the M-step, the lower bound is then maximised with respect to θθθ to give a new value

θθθ
+, this time holding q(Z) fixed. This will cause the lower bound to increase, which will in

turn increase the log-likelihood. Because q(Z) is held fixed during the M-step and because it
is determined using θθθ

−, once the M-step is complete the distribution will not equal the new
distribution p(Z|Y,θθθ+), thus the KL divergence will be non-zero (Bishop, 2006).

In some cases, however, the conditional expectation required in the E-step of the al-
gorithm may be intractable and therefore it is replaced by some stochastic approximation
(Nielsen, 2000) or Monte Carlo approximation (Levine and Casella, 2001). We will see in
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Chapter 5 how we have introduced a Monte Carlo approximation of the conditional expecta-
tion for a model of animal movement.

2.5 Gaussian processes

Gaussian processes are stochastic processes {Xt}t≥0 for which any finite collection of random
variables follows a multivariate normal (MVN) distribution. For {X1, . . . ,XN}= (x1, . . . ,xN),
we have

(x1, . . . ,xN)∼ N(mmm,ΣΣΣ). (2.51)

Gaussian processes are therefore determined by a mean function m and a covariance matrix
ΣΣΣ, which is often defined through a kernel function Σi j = k(xi,x j), that is a function of the
location of the random variables. The kernel function is a measure of similarity between the
locations xi and x j (Murphy, 2012, Bishop, 2006). There exist different kernels that because
of their properties may be more suitable for some applications than others. Below we review
some of the most common kernels: the absolute exponential kernel, the radial basis function
(RBF) kernel and the Matern family of kernels.

The absolute exponential kernel depends on two parameters and is defined as:

k(xi,x j) = τ
2exp

(
−

||xi − x j||
ϑ

)
, (2.52)

where the τ2 and ϑ kernel hyperparameters represent the scale, or amplitude, of the process
and its lengthscale and ||xi − x j|| is the Euclidean distance between xi and x j.

The RBF kernel is a similar kernel and is defined as follows (Rasmussen and Williams,
2006):

k(xi,x j) = τ
2exp

(
−

||xi − x j||2

ϑ

)
, (2.53)

where the kernel hyperparameters τ2 and ϑ represent again the scale and lengthscale of the
process. This kernel will be employed in Chapter 3.

The Matern kernel class, an extension of the RBF kernel, introduces a parameter ν deter-
mining the function’s smoothness; lower ν values yield rougher approximations. As ν → ∞,
the kernel is equivalent to the RBF kernel. For ν = 1

2 , it matches the absolute exponential
kernel. Other important values include ν = 3

2 (once differentiable functions) and ν = 5
2 (twice

differentiable functions). The equation is

k(xi,x j) =
1

Γ(ν)2ν−1

(√
2ν

ϑ
||xi,x j||

)ν

Kν

(√
2ν

ϑ
||xi,x j||

)
, (2.54)

where Γ(·) is the gamma function and Kν(·) is a modified Bessel function.
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Figure 2.2: Example of GP regression on a simple 1-dimensional model. The observations
were generated by a sine function with additive Gaussian noise.

2.5.1 Gaussian process regression

Gaussian processes are widely used in a regression task. The regression settings are the
following. Given observed data y = {y1, . . . ,yN} and corresponding explanatory variables
x = {x1, . . . ,xN}, the data are assumed to be generated by an unknown function and additive
Gaussian white noise:

yi = f (xi)+ ε, (2.55)

where ε ∼ N(0,σ2) (Murphy, 2012). The latent function f is seen as a realisation of a GP,
that is, we place a GP prior on the functions:

p(f|x)∼ N (mmm,KKK). (2.56)

This is possible because we only need to evaluate the functions at an arbitrary, finite set of
locations, in this case x (Murphy, 2012, Bishop, 2006).

Consider now some test locations x∗ = {x1
∗, . . . ,x

N∗∗ }, that is, we want to predict the values
of f at some new location: f∗ = { f (x1

∗), . . . , f (xN∗∗ )}. Then

p(f∗|x∗,x,y)∼ N (mmm∗,ΣΣΣ∗), (2.57)

where

mmm∗ = K(x∗,x)(K(x,x)+σ
2I)−1y

ΣΣΣ∗ = K(x∗,x∗)

−K(x∗,x)(K(x,x)+σ
2I)−1K(x∗,x)T

(2.58)

Here I is the identity matrix and K(x,x) is the covariance matrix defined at all pairs of train
points (an N ×N matrix), K(x∗,x∗) is the covariance functions specified at all pairs of test
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points (an N∗×N∗ matrix) and K(x∗,x) is the covariance matrix defined at all pairs of train
and test points (an N∗×N matrix). As these two equations suggest, inference of the latent
function defined on the test set, f∗, only depends on the kernel function and the data. An
example of GP regression is found in Fig. 2.2, where the observations were generated by a
sine function with additive Gaussian noise. The regression was performed by specifying an
RBF kernel.

2.5.2 Sparse Gaussian process regression

One of the major drawbacks of GP regression is the O(N3) computational cost associated
with inverting the covariance matrix. An alternative method to reduce the computational cost
is sparse GP regression (Snelson and Ghahramani, 2005); here the idea is to define so called
inducing locations z, with corresponding latent function values fz which can summarise the
training set. By doing so, the computational cost reduces to O(N|z|2), where |z| is the number
of inducing points. The key assumption is that the latent function f∗ at any test inputs and
the latent function at the training locations f are conditionally independent given fz (Titsias,
2009), that is,

p(f∗|f, fz) = p(f∗|fz).

Given this assumption the posterior distribution of the latent function at any test locations
given y is

p(f∗, fz|y) = p(f∗|fz)p(fz|y).

We will give more details on this in Chapter 3, where the sparse GP regression framework
will be used extensively.

2.6 Hidden Markov models

Hidden Markov models have become very popular in the animal movement community.
They find their major applications in the context of switching problems, that is, a canoni-
cal challenge whereby the aim is to partition an animal’s trajectory based on the associated
behavioural state. By behaviour, in this context we refer to those behaviours that can be
linked to different movement dynamics, for example an exploratory behaviour or a resting
behaviour. As stated in Patterson et al. (2017a), care must be placed when considering many
states as in some cases a state could have no biological meaning but be a statistical nuance.

Hidden Markov models can be specified either in discrete- or in continuous-time. In the
first case, state transitions can only occur at the time of the observations. This implies that
the time step needs to be specified a priori, so that it matches the time scale at which changes
in the animals’ behaviour occur (Patterson et al., 2017a). In the latter case, the transitions
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can occur at any point in time and are not tied to the observation times, thus granting more
flexibility to the model.

2.6.1 Discrete-time hidden Markov models

A hidden Markov model (HMM) is a class of generative models composed of two stochastic
processes, a latent stochastic process that is unobserved (hidden) and an observable process
(the observations). A discrete-time hidden Markov model is specified by the following quan-
tities:

1. a set of n states {1, . . . ,n};

2. a transition probability matrix P, with pi j ≥ 0 and ∑ j pi j = 1, where each pi j is the
probability of transitioning from state i to state j;

3. a sequence of observations y = {y1, . . . ,yT};

4. a sequence of observed likelihoods, also called emission probabilities and denoted as
ei(yt), that represent the probability of an observation yt being generated by a state i.
These values are stored in the emission probability matrix E.

Given that each observation is associated with a latent hidden state, we introduce the state
sequence as z = {z1, . . . ,zT}, where at each time point the sequence can take one value from
the set of states, zt = i, for i ∈ {1, . . . ,n}. From the definition, we can see how HMMs are a
special case of SSMs with discrete state space.

yt−1 yt yt+1

zt−1 zt zt+1

Figure 2.3: Illustration of the structure of a discrete-time hidden Markov model.

There are two underlying assumptions with HMM. The first assumption is that the state
sequence forms a first-order Markov chain (Zucchini et al., 2009):

p(zi|z1, . . . ,zi−1) = p(zi|zi−1). (2.59)

The second assumption is called output independence, whereby the probability of an obser-
vation is dependent only on the state that has produced the observation:

p(yi|z,y) = p(yi|zi). (2.60)



CHAPTER 2. BACKGROUND THEORY 28

In the context of animal movement modelling, the observations are often taken to be the
bivariate time series of step lengths and turning angles (Morales et al., 2004), yt = (ℓt ,φt). In
what follows, we shall continue using the notation introduced above.

There are three fundamental inference tasks associated with hidden Markov models. The
first two tasks are central part of what will be covered in the subsequent chapters and we will
describe them in details. Specifically, given an HMM H = (P,E) and observations y, what
is the likelihood of the data being generated by the HMM, p(y|H )? Furthermore, what is the
hidden sequence z that can best explain the observations? This task is called global decoding.
Decoding routine limited to infer the most likely state sequence at each point in time is called
local decoding.

The third task concerns simulating from the joint posterior distribution of the states using
the forward filtering-backward sampling algorithm, which is not tackled in this thesis and
more details can be found in Zucchini et al. (2009).

The forward algorithm

The forward algorithm is used to calculate the likelihood of the data being generated by a
hidden Markov model. Suppose we want to calculate the probability of the observations -
this would require marginalising out the hidden state sequences from the joint probability
distribution of the data and the state sequences (Zucchini et al., 2009), that is, summation
over all possible state sequences:

p(y) = ∑
z

p(y,z) = ∑
z

p(y|z)p(z) = ∑
z

T

∏
t=1

p(yt |zt)
T

∏
t=2

p(zt |zt−1), (2.61)

where we have used the output independence assumption. The cost of such calculations are
nT , for n the number of states and T the length of observations. The computational cost
can be reduced by employing the forward algorithm, an example of dynamic programming
algorithm that stores intermediate values as it calculates the probability of the observation
sequence (Zucchini et al., 2009).

The idea is the following. Let αt( j) be the probability that after seeing t observations, the
state sequences takes value j, given the HMM model:

αt( j) = p(y1, . . . ,yt ,zt = j|H ). (2.62)

The α is called a forward trellis. This probability can be calculated recursively from α at
previous time steps, which are stored in a table thus avoiding expensive calculations:

αt( j) =
n

∑
i=1

αt−1(i)pi je j(yt). (2.63)



CHAPTER 2. BACKGROUND THEORY 29

Then the probability of the observed data given the HMM model is found by employing the
forward trellis associated with the last time step and summing over all state configurations:

p(y|H ) =
n

∑
i=1

αT (i). (2.64)

Through the forward algorithm, the computational cost is reduced to O(n2T ).

Viterbi algorithm

The Viterbi algorithm is another example of dynamic programming algorithm based on the
forward algorithm and is employed in the decoding task, that is, finding the optimal state
sequence to explain the observed data. It is very similar to the forward algorithm but here
summation over the previous forward trellis is replaced by maximisation. Let vt( j) be the
Viterbi trellis, namely the probability that the hidden sequence is in state j after passing
through the most probable hidden state sequence:

vt( j) = max
z1,...,zt−1

p(y1, . . . ,yt ,z1, . . . ,zt−1,zt = j|H ). (2.65)

This probability is defined recursively using the Viterbi trellis at the previous time step:

vt( j) =
n

max
i=1

vt−1(i)pi je j(yt). (2.66)

Given that the algorithm finds the optimal state sequence, at every step of the algorithm the
best state is saved in the so-called Viterbi backpointers:

bpt( j) =
n

argmax
i=1

vt−1(i)pi je j(yt). (2.67)

Finally, the most probable hidden state sequence along with the associated probability are
found by the Viterbi trellis calculated at the last time point:

best path:
n

argmax
i=1

vT (i)pi je j(yT ),

probability:
n

max
i=1

vT (i)pi je j(yT ).

(2.68)

2.6.2 Continuous-time hidden Markov models

A continuous-time HMM has the same dependence structure as a discrete-time HMM but
the state process is defined by a continuous-time Markov chain, that is, it is defined by an
IGM as in Eqn. 2.3. The structure of a continuous-time HMM is illustrated in Fig. 2.4.
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We can see that the distribution of an observation only depends on the current value of the
state, as in discrete-time HMM, however in a continuous-time HMM, the times of transitions
(τ − 1,τ,τ + 1) and the times of observation (t − 1, t, t + 1) do not need to match, and both
may be irregularly spaced (Glennie et al., 2023).

yt−1 yt yt+1

zt−1 zt zt+1

τ −1 τ τ +1

Figure 2.4: Illustration of the structure of a continuous-time hidden Markov model.

The forward algorithm and the Viterbi algorithm can also be used in continuous time
(Glennie et al., 2023). One major difference between the two model formulations is related
to output independence assumption, also known as the snapshot property. In discrete time,
this is a well-understood assumption (Glennie et al., 2023); however, in continuous time, state
transitions are not constrained to occur at the time of observations. Continuous-time HMMs
are therefore only suitable when the distribution of each observation does not depend on the
switches that have occurred between any two consecutive observations. However, when this
is not the case, the snapshot property may still be a reasonable approximation in cases where
observations occur at a high temporal resolution relative to the scale of state switching, that
is, if the number of switches occurring within observation intervals is small (Glennie et al.,
2023).

We have given an overview on the theoretical background needed to understand the ma-
terial covered in the subsequent chapters. The Gaussian processes machinery as well as the
variational inference approach will be crucial in Chapter 3, whereas hidden Markov models
and the EM algorithm will be greatly relevant for Chapters 4-6.



Chapter 3

Inferring microscale properties of
interacting systems from macroscale
observations

The material of this chapter was developed during the course of two accepted publications.

The first paper was accepted in the proceedings of ICSTA 2020 (Campioni et al., 2020) and

was essentially the preliminary work that has lead to the second publication in the Physical

Review Research journal (Campioni et al., 2021). Here we report the second publication.

31
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3.1 Abstract

Emergent dynamics of complex systems are observed throughout nature and society. The
coordinated motion of bird flocks, the spread of opinions, fashions and fads, or the dynamics
of an epidemic, are all examples of complex macroscale phenomena that arise from fine-
scale interactions at the individual level. In many scenarios, observations of the system can
only be made at the macroscale, while we are interested in creating and fitting models of
the microscale dynamics. This creates a challenge for inference as a formal mathematical
link between the micro and macro scale is rarely available. Here, we develop an inferential
framework that bypasses the need for a formal link between scales and instead uses sparse
Gaussian process regression to learn the drift and diffusion terms of an empirical Fokker-
Planck equation which describes the time evolution of the probability density of a macroscale
variable. This gives us access to the likelihood of the microscale properties of the physical
system and a second Gaussian process is then used to emulate the log-likelihood surface,
allowing us to define a fast, adaptive MCMC sampler which iteratively refines the emulator
when needed. We illustrate the performance of our method by applying it to a simple model
of collective motion.

3.2 Introduction

Complex systems are characterised by multiscale dynamics, with a high-dimensional mi-
crostate that describes the state of the individual components, and a reduced dimension
macrostate that emerges from interactions at the lower level (Anderson, 1972, Sethna, 2006).
Connecting these two scales is the canonical challenge of complex systems science (Shal-
izi, 2006, Prokopenko et al., 2009). In certain cases a formal mathematical derivation of
equations describing the macrostate may be obtained based on the properties of the lower
level components (Demirel et al., 2014, Bellomo et al., 2015, Toner and Tu, 1998), however
this often requires simplifying assumptions that cannot be justified in most scenarios. In
the absence of a formal mathematical link between scales, the inference of microscale dy-
namics from macroscale observations is challenging. While forward simulations of complex
computer models are able to link microscale parameters with coarse grained observables,
the inverse problem of statistical inference remains largely intractable (Nguyen et al., 2017).
This is due to the unavailability of the probability density, or likelihood, for an observation.
Several simulation-based approaches have been proposed that approximate the intractable
likelihood but these are often computationally expensive and lack a formal quantification of
uncertainty (Cranmer et al., 2020b, Wood, 2010, Wilkinson, 2014).

Here, we approach the problem of multiscale inference by assuming the existence of an
empirical Fokker-Planck equation (FPE) that describes the changes with time of the probabil-
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ity density of a macroscale variable. We consider a scenario where we are able to efficiently
run forward simulations of the model but do not have access to a likelihood function that
provides the probability density of the empirical observations for a given parameter set i.e.
we cannot derive the drift and diffusion functions of the FPE from the microscale parameters.
Instead through the application of sparse Gaussian process (GP) regression (Lázaro-Gredilla
and Titsias, 2011, Saul et al., 2016) we learn the drift and diffusion functions of the FPE from
simulations. This allows us to estimate the likelihood of microscale parameters given a set of
empirical macroscale observations.

Our approach presents several advances over existing methods for inference in complex
systems. Firstly, we incorporate several concepts from equation-free modelling (Kevrekidis
et al., 2003) into the inference process. Equation-free modelling offers an efficient numeri-
cal method for investigating the macroscale dynamics of microscale models. By integrating
aspects of this approach with sparse Gaussian process regression of the drift and diffusion
functions we are able to formally quantify the uncertainty inherent in simulations of stochas-
tic microscale models. This allows us to connect the equation-free framework with an MCMC
sampler that directs simulation effort to refining regions of parameter space with high likeli-
hood.

A conceptual overview of our framework is provided in Fig. 3.1. This figure illustrates
the three main components of our framework. Firstly, we employ a microscale simulator to
generate the macroscale dynamics of our physical model for a given microscale parameter
set. Secondly, we use sparse GP regression to link the two scales and learn the macroscale
drift and diffusion functions from simulation output. This allows us to estimate the likeli-
hood of the microscale parameters given the observed data, and further provides a formal
quantification of the uncertainty in the estimate. Finally, the likelihood estimate and its asso-
ciated uncertainty are passed to an adaptive MCMC algorithm that samples from the posterior
distribution of the microscale parameters. The adaptive MCMC sampler employs a second,
independent implementation of sparse GP regression to emulate the log-likelihood surface of
the microscale parameters and uses the emulated surface when uncertainty is low but triggers
further forward simulations when uncertainty is high.

The remainder of this paper is structured as follows. In Section 3.3, our simulation model
is introduced. Section 3.4 describes the theoretical foundation for our framework which is
explained in detail in Section 3.5. In Section 3.6 we give details about the parameter settings
we adopt to produce the results presented in Section 3.7. Lastly, we discuss the effectiveness
and potential applications of our method in Section 3.8.
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Figure 3.1: Graphical summary of the proposed inference scheme. If the microstates, cor-
responding to the particles’ positions xi(t) and velocities ui(t) in Eqn. (3.1), were observ-
able, we could infer the parameters of the physical model directly from the corresponding
microstate data (arrows 1a and 1b). However, such high-resolution data is usually not avail-
able, and the challenge therefore is to infer the physical model parameters from macroscale
features - the distribution of average velocities U in our case (arrows 2a and 2b). This distri-
bution is in principle defined by the physical model and its parameters via Eqn. (3.7), giving
rise to the likelihood of the physical model given the macroscale data (Eqn. (3.8)). However,
the mathematical expression of this physical model likelihood depends on two functions -
the diffusion function D and the drift function F - which are not analytically tractable. We
therefore approximate these functions by two Gaussian process models fitted to simulated
macroscale output, based on Eqns. (3.12–3.14) (arrows 3-5). Note that the inference of these
Gaussian processes is based on the probability of the simulation output given the Gaussian
process, which is independent of the physical model. Inserting the Gaussian process approxi-
mations of F and D back into Eqn. (3.7) then leads to an approximation of the physical model
likelihood (Eqn. (3.8)), which is used for inference of the physical model parameters. Note
that in order to make the inference computationally efficient, the physical model likelihood
is approximated (or emulated) by another Gaussian processes, which is not included in the
present figure.
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3.3 The model

We demonstrate our framework on a simple model of collective animal movement adapted
from Buhl et al. (2006), Czirók et al. (1999). The model is a one-dimensional, self-propelled
particles (SPPs) model with the following equations describing the evolution of the positions
xi(t) and velocities ui(t) of an individual that moves along a line of dimensionless length with
periodic boundary conditions,

xi(t +∆t) = xi(t) +∆t v0 ui(t),

ui(t +∆t) = ui(t)+α(G(ūi(t,δ ))−ui(t))+ξi, (3.1)

where v0 is a constant scaling of each particle’s velocity, the quantity ūi(t,δ ) is the average
velocity of all individuals, excluding individual i, within a metric interaction range of length
δ , the parameter α represents the relative weight that an individual assigns to its own velocity
and those of its neighbours when updating its velocity, ξi is a random noise term taken from
a normal distribution N (0,η2∆t), and the function G represents a social interaction term
which causes an individual to adopt a similar velocity to its observed neighbours,

G(z) =

(z+1)/2, z > 0

(z−1)/2, z < 0.
(3.2)

The model was developed for the study of locust moving in an annular arena (Buhl et al.,
2006, Yates et al., 2009) and is characterised by a double-well potential with intermittent
switches occurring between metastable states representing clockwise and counterclockwise
motion (see Fig. 3.2a for an example time series). The dynamics of the model are governed
by three parameters; the interaction radius, the strength of the social force, and the noise level
which we define as our microscale parameter vector,

θθθ = (α,δ ,η). (3.3)

Ideally, we would like to infer these parameters from detailed measurements or observa-
tions of the microstates {xi(t),ui(t)}. However, such high-resolution data are rarely available.
In the present paper we therefore pursue an approach that focuses on the emergent macroscale
properties of the system using equation-free modelling, to be explained in Section 3.5.

As in Yates et al. (2009) our coarse macroscale variable is taken to be the global average
velocity

U(t) =
1
N

N

∑
i=1

ui(t). (3.4)
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Yates et al. (2009) show that in the case of infinite interaction radius δ the evolution of U can
be described by a stochastic differential equation (SDE) of the following form

dU = F(U,θθθ)dt +
√

D(U,θθθ)dWt , (3.5)

where dWt is a Wiener process, F(U,θθθ) is the drift function and D(U,θθθ) is the diffusion
function, both of which are available in closed form. Following Yates et al. (2009) we as-
sume that for finite interaction radius δ , an FPE of the same form can be assumed to exist.
However, in that case, F(U,θθθ) and D(U,θθθ) are no longer available analytically and have to
be empirically inferred from the data.

Eqn. (3.5) gives rise to an associated FPE (Gardiner, 2009) that describes the evolution
of ρ(U, t) the probability density function of U(t),

∂ρ

∂ t
=

1
2

∂ 2(D(U,θθθ)ρ)

∂U2 − ∂ (F(U,θθθ)ρ)

∂U
. (3.6)

For known drift and diffusion functions, the stationary probability density (SPD) ρs(U |θθθ)
can be calculated as (Risken, 2012)

ρs(U |θθθ) = 1
Z

exp
(

2
∫ U

0

F(s,θθθ)
D(s,θθθ)

ds− ln(D(U,θθθ))

)
(3.7)

where Z is a normalising constant.
Hence if the drift and diffusion functions can be derived from the microscale parameters,

Eqn. (3.7) gives us access to

L (θθθ ;Udata) := ρs(Udata|θθθ) (3.8)

the likelihood of model parameters θθθ given empirical observations of the group average ve-
locity Udata = {U1,U2, . . . ,Un}. With this likelihood, one can pursue parameter inference
in a classical sense via maximum likelihood estimation or within a Bayesian framework by
sampling from the θθθ posterior distribution, after defining an appropriate prior distribution.

However in most scenarios, the drift and diffusion functions are intractable and cannot
be derived from microscale parameters. A variety of likelihood-free methods have been de-
veloped recently, see e.g. King et al. (2016), Cranmer et al. (2020a), Owen et al. (2015), but
they are intrinsically approximate and depend on various heuristics and intuition. To over-
come this difficulty, we propose to employ sparse Gaussian process regression to learn these
functions from fine-scale simulations of the model.
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3.4 Background

In this section we summarise the inferential machinery which forms the foundation of our
framework. Specifically, we review the concepts of Gaussian process regression (Rasmussen
and Williams, 2006) and sparse Gaussian process regression (Snelson and Ghahramani, 2005,
Opper and Archambeau, 2009, Titsias, 2009). We use the letter x to denote the input or
explanatory variable of the function of interest, and the letter y to denote the response or
output variable. Depending on the application, x may represent the macroscale velocity U ,
with y representing the corresponding outputs of F(U,θθθ) and D(U,θθθ), or x may represent the
microscale parameter vector θθθ , with y representing the corresponding log-likelihood. Please
note that x is not to be confused with the spatial coordinate in Eqn. (3.1).

Gaussian processes are stochastic processes for which any finite collection of random
variables follows a multivariate normal (MVN) distribution. Gaussian processes are therefore
determined by a mean function mmm and a covariance matrix KKK, often defined as a covariance
kernel Ki j = k(xi,x j) that is a function of the location of the random variables. In Gaussian
process regression we seek to learn a latent function f based on a set of N observations
y = {yi}N

i=1 at locations x = {xi}N
i=1, where

yi = f (xi)+ν , (3.9)

and ν is an additive Gaussian white noise term. The latent function f is a realisation of a
Gaussian process and is modelled with a GP prior,

p(f|x)∼ N (mmm,KKK).

GP regression may also be extended to consider the case of heteroscedastic noise where the
variance of the observation noise ν is itself a function of x (Goldberg et al., 1998). GPs
inherit all properties from MVNs; hence, performing GP regression when the likelihood is
also Gaussian involves calculating the conditional distribution of a joint MVN. Given a set of
training observations y at locations x, and assuming a zero-mean process, it follows that the
posterior distribution of f∗ at a set of N∗ test locations x∗ is given by (Murphy, 2012)

p(f∗|x∗,x,y)∼ N (µµµ∗,ΣΣΣ∗),

where

µµµ
∗ = K(x∗,x)(K(x,x)+σ

2I)−1y

ΣΣΣ
∗ = K(x∗,x∗)

−K(x∗,x)(K(x,x)+σ
2I)−1K(x∗,x)T
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Here I is the identity matrix and K(x∗,x) is the covariance matrix defined at all pairs of train
and test points (i.e. an N∗×N matrix) with similar definitions for the other covariance terms.
As these two equations suggest, inference of the latent function defined on the test set, f∗,
only depends on the kernel function and the data. The kernel function defines the correlation
structure of the GP. In our work we employ one of the most commonly used kernels, the
Exponentiated Quadratic kernel, also known as the Radial Basis Function (RBF) kernel,

k(xi,x j) = τ
2exp

(
−

||xi − x j||2

ϑ

)
.

The τ2 and ϑ kernel hyperparameters represent the scale, or amplitude, of the process and
its lengthscale and ||·, ·|| is the Euclidean norm. For a review of alternative kernels, see
Rasmussen and Williams (2006).

One of the major drawbacks of GP regression is the O(N3) computational cost associated
with inverting the covariance matrix. The idea behind sparse GP regression (Snelson and
Ghahramani, 2005) is to define so called inducing locations z, with corresponding latent
function values fz which can summarise the training set. The key assumption is that the latent
function f∗ at any test inputs and the latent function at the training locations f are conditionally
independent given fz (Titsias, 2009), i.e.

p(f∗|f, fz) = p(f∗|fz).

Given this assumption the posterior distribution of the latent function at any test locations
given y is

p(f∗, fz|y) = p(f∗|fz)p(fz|y).

Variational inference proceeds by introducing a variational approximation to this posterior,

q(f∗, fz) = p(f∗|fz)φ(fz),

where φ(fz) is a Gaussian distribution with mean µµµq and covariance ΣΣΣq. To determine the
optimal variational parameters, µµµq and ΣΣΣq, we can maximise a lower bound on the marginal
log-likelihood, which is equivalent to minimising the Kullback-Leibler (KL) divergence be-
tween the true posterior and the variational distribution. Following Saul et al. (2016), the
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evidence lower bound can be obtained via Jensen’s inequality,

log p(y) = log
∫ ∫

p(y|f, fz)p(f, fz)dfdfz

= log
∫ ∫

p(y|f)p(f, fz)
q(f, fz)

q(f, fz)
dfdfz

≥
∫ ∫

log
(

p(y|f)p(f, fz)

q(f, fz)

)
q(f, fz)dfdfz

≥
∫

log p(y|f)q(f)df−KL(φ(fz)∥p(fz)) (3.10)

where q(f) =
∫

q(f, fz)dfz and the KL term denotes the KL divergence between the prior
distribution over fz and the variational posterior.

Since φ(fz) is a multivariate Gaussian, q(f) and the KL term in Eqn. (3.10) are available
in closed form. As the likelihood factorises across the data, i.e.

p(y|f) =
N

∏
i=1

p(yi| fi),

the integral
∫

log p(y|f)q(f)df can be decomposed into N one dimensional integrals that are
tractable when the likelihood is Gaussian (Hensman et al., 2013).

In Saul et al. (2016) the sparse variational method is extended to incorporate likelihoods
that depend on multiple latent functions, this is termed a chained, or multi-latent GP. Consid-
ering the case when the likelihood depends on two latent functions, f and g, the lower bound
on the marginal log-likelihood is now (Saul et al., 2016)

log p(y)≥
∫ ∫

log p(y|f,g)q(f)q(g)dfdg

−KL(φ(fz)∥p(fz))−KL(φ(gz)∥p(gz)) (3.11)

where q(g) =
∫

p(g|gz)φ(gz)dgz and we have introduced two Gaussian distributions that are
variational approximations to the posterior at the inducing point locations, φ(fz)∼N (µµµ

f
q ,ΣΣΣ

f
q)

and φ(gz)∼ N (µµµg
q,ΣΣΣ

g
q).

In this work we consider the case where the second latent GP determines an input depen-
dent heteroscedastic noise term, such that

yi ∼ N ( f (xi),eg(xi))

p(f|x)∼ N (mmm f ,KKK f )

p(g|x)∼ N (mmmg,KKKg).

Hence, the latent function f determines the mean of yi at location xi, while the latent function
g is exponentiated so that it is constrained positive and is then the location dependent variance
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in yi. In this case the integral in Eqn. (3.11) is analytic (Lázaro-Gredilla and Titsias, 2011)
and a closed-form lower bound can be obtained. This lower bound can then be maximised
using stochastic optimisation (Hensman et al., 2013) in order to find the optimal variational
distributions φ(fz) and φ(gz).

3.5 Methods

3.5.1 Microscale simulations

Simulations of the microscale model are implemented in Python using the machine learning
library TensorFlow (Abadi et al., 2016) and run in parallel on a GPU. Using this approach,
we are able to run multiple independent instances of the model for each set of values of the
parameter vector θθθ .

In equation-free modelling (Kevrekidis et al., 2003) short bursts of simulations are run
and used to learn about the macroscale dynamics. The approach involves moving from the
microscale to the macroscale, termed restriction, and moving from the macroscale to the
microscale, termed lifting. The first process, restriction, is straightforward and for our model
involves applying Eqn. (3.4) to calculate the macrostate variable from the microstate. The
lifting process is more involved and requires mapping a macrostate to a specific microstate.
Initialising a microstate at random with a defined macrostate will introduce a lifting error as
not all configurations with the same macrostate variable are equally likely.

In our application we seek to obtain values of Ut+∆t −Ut from simulations that are dis-
tributed evenly across the domain of U . If we allow the microstate to evolve and record
Ut throughout the simulations we will inevitably end up with simulation outputs focused in
regions of high probability density, and few measurements from areas of low probability
density, which in our model corresponds to Ut ≃ 0.

To overcome this issue, we simulate the dynamics for an initial period of time and then
successively perturb the microstates of each parallel simulation to a desired set of macrostate
locations. We then run several time steps of the simulations from the perturbed microstates
and record the output to use in estimating the drift and diffusion functions. For example, if
we are running 1000 simulations in parallel, we run the simulations for an initial number of
timesteps. Next, we define a desired set of 1000 macrostate variables Ut that are uniformly
distributed across the domain. We then map each desired macrostate to the microscale sim-
ulation with the closest macrostate variable. Each simulation is subsequently perturbed by
altering the velocity of each individual, so that the macrostate of the simulation matches the
desired macrostate, and run forward for a number of time steps. By repeating these steps, we
are able to accelerate the coverage of the whole configuration space without having to wait
for the system to evolve to particular locations.
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Figure 3.2: a) Sample time series from the simulation model for 20 individuals moving along
a line of dimensionless length 36 with parameters v0 = 1 and ∆t = 1. The switches between
the two metastable states U = 1, U = −1 represent cohesive movement in clockwise or
counterclockwise direction. b) Inferred diffusion function D(U) (dark blue line) and 95%
posterior credible interval (light blue shaded region) learnt from simulation results using
sparse GP regression, as a function of the average velocity U . c) Idem for the drift function
F(U). d) Stationary probability density mean and uncertainty calculated based on 50,000
simulation outputs. e) Stationary probability density from 500,000 simulation outputs. Note,
by increasing the number of simulations the uncertainty has greatly reduced.
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3.5.2 Inferring the drift and diffusion functions

As closed-form expressions for the drift and diffusion functions are unavailable in our appli-
cation, we employ sparse Gaussian process regression to learn these functions from fine-scale
simulations of the model. For notational simplicity, we will omit the explicit dependence on
θθθ and from here on use F(U), D(U) and ρs(U) to indicate respectively the drift and diffusion
functions and the SPD.

Following Batz et al. (2018), we define an analogous, discretised version of Eqn. (3.5) as
a stochastic difference equation

Ut+∆t −Ut = F(Ut)∆t + ε
√

D(Ut)∆t, (3.12)

where ∆t is a discrete time step and ε ∼ N (0,1). By comparing Eqns. (3.9) and (3.12) we
can observe that learning the drift and diffusion functions is an example of heteroscedastic
Gaussian process regression where

y =
Ut+∆t −Ut

∆t
, (3.13)

F(Ut) is the latent function, and the variance of the heteroscedastic noise term is

σ
2 =

D(Ut)

∆t
. (3.14)

It is possible to learn the drift and diffusion functions sequentially from measurements of
Ut+∆t −Ut as in Campioni et al. (2020), Batz et al. (2018) by employing the following
equation to infer D(U),

D(U) = lim
∆t→0

1
∆t

E[(Ut+∆t −Ut)
2|Ut =U ]. (3.15)

However, this approach leads to a systematic bias for finite ∆t (Ragwitz and Kantz, 2001). To
overcome this issue, we employ sparse GP regression within a variational framework (Saul
et al., 2016). This allows the drift and the diffusion functions to be learnt simultaneously from
simulations of Ut+∆t −Ut and enables us to deal with large numbers of simulation outputs
(N ∼ 105). Note that inferring the drift and diffusion functions involves maximising a lower
bound on a second, different likelihood that depends on simulation output and not empirical
observations. This second likelihood is a standard GP likelihood as defined in Eqn. (3.10) and
is separate from the physical model likelihood defined in Eqn. (3.8). Hence, the variational
approximation to the posterior for the drift and diffusion functions, along with the kernel
parameters and inducing point locations, are optimised by maximising a variational lower
bound on the marginal GP log-likelihood extended to multiple latent functions (Saul et al.,
2016) given in Eqn. (3.11).
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Our implementation uses the GPflow library (Matthews et al., 2017), a package for build-
ing Gaussian process models using TensorFlow (Abadi et al., 2016, Dillon et al., 2017). We
specify Gaussian process priors on the latent drift and diffusion functions F(U) and D(U)

with separate independent RBF kernels.
Once optimised, we obtain the diffusion function posterior distribution, shown in Fig. 3.2b,

and the drift function posterior, shown in Fig. 3.2c. These distributions capture the inherent
uncertainty in the functions due to the finite number of microscale simulations that can be
performed. By drawing multiple samples from the posterior drift and diffusion functions
we are able to propagate this uncertainty into the stationary probability density function of
the macroscale observations Udata by calculating Eqn. (3.7) for each sample using numerical
quadrature. Thus, given a sequence of empirical macroscale observations, we are able to
calculate an estimate of the data likelihood L (θθθ ;Udata) as well as formally quantifying the
uncertainty in the estimate.

Figs. 3.2d and 3.2e show ρs(U), the steady state probability density of the global aver-
age velocity U calculated for different numbers of simulation outputs. As we would expect,
increasing the number of simulation outputs decreases the uncertainty in ρs(U) and will sub-
sequently lead to reduced uncertainty in the likelihood L (θθθ ;Udata).

The uncertainty in the likelihood is propagated from the uncertainty in the drift and dif-
fusion functions; as our model is stochastic, this variability is intrinsic. Indeed, in the context
of our framework, where simulations are stochastic and closed-form expressions for F(U)

and D(U) are unavailable, this variability will be present for any finite number of simulation
outputs.

3.5.3 The sampling algorithm

The stationary probability density defined by Eqn. (3.7) is of central importance in our frame-
work as it provides the tools to access the likelihood of microscale parameters θθθ given obser-
vations of our macroscale variable U . We perform inference of θθθ in a Bayesian framework
and aim to sample from the posterior distribution of the microscale parameters through an
adaptive MCMC sampler based on the method proposed in Conrad et al. (2016).

In a standard Metropolis-Hastings (MH) framework (Hastings, 1970), a candidate sample
θθθ
+ is generated from an initial point in parameter space θθθ

− through a specified transition
kernel. The sampler evaluates the likelihood L and priors π of the two points and then ei-
ther accepts or rejects the candidate location via an acceptance function. For a symmetric
transition kernel, a commonly used acceptance function is

a = min
{

1,
L(θθθ+)π(θθθ+)

L(θθθ−)π(θθθ−)

}
(3.16)
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and the candidate location is accepted with probability a. A naive implementation of the
MH sampler would involve a computationally expensive forward simulation at each step and
would base acceptance on a point estimate of the data likelihood. Instead, we accelerate
the sampling using a sparse GP emulator (Gardner et al., 2018) that approximates the log-
likelihood surface. Note, we therefore introduce sparse Gaussian process regression at two
points in our framework, firstly to learn a drift and diffusion function from microscale simu-
lations, then secondly to emulate the log-likelihood surface when running the sampler.

For our sampling procedure, we need to choose a design for the locations of a set of points
to initialise the emulator. The aim is pick input parameters to cover the whole parameter do-
main efficiently. Naive designs include specifying a regular grid of parameter values, which
suffers from the curse of dimensionality, or drawing samples from a uniform distribution in
the parameter domain, which is inefficient due to random clustering of points and large gaps.
As our initial set of points needs to span a high-dimensional microscale parameter space, we
employ a space-filling design, which is a computationally efficient way to place points in a
high-dimensional space such that there is a measure of uniformity in how they fill the space,
i.e. they do not leave large gaps. In our work, we use a Sobol sequence (Santner et al., 2003)
to create an initial log-likelihood map over a pre-specified region. For each set of initial
values, we run forward simulations that yield a distribution over the drift and diffusion func-
tions. We then generate k samples of the log-likelihood given empirical observations Udata

by sampling the drift and diffusion functions and inserting them into Eqn. (3.7), effectively
yielding k log-likelihood evaluations for the same parameter values. The initial points form
a training set for the emulator used by the sampler.

Starting from the highest log-likelihood initial location, the sampler then uses the emu-
lated log-likelihood surface as a surrogate for the full forward simulations (Gramacy, 2020).
We employ sparse GP regression again using the GPflow package (Matthews et al., 2017). We
maximise the lower bound on the marginal GP log-likelihood from Eqn. (3.10) to optimise
the variational approximation and the GP hyperparameters. As we have intrinsic stochastic-
ity in the simulation outputs and k samples of the log-likelihood at each simulation location,
this is mathematically equivalent to fitting a Gaussian process with observation noise, or
non-zero nugget term (Rasmussen and Williams, 2006). By letting the GP learn the nugget
parameter and covariance kernel lengthscale, the sampler is able to accurately estimate the
log-likelihood surface at a candidate location along with its associated uncertainty.

At each step of the sampler, a candidate location θθθ
+ is generated. The sampler assesses

the uncertainty in the log-likelihood surface at the proposal location θθθ
+ and the current lo-

cation θθθ
−. If the uncertainty is sufficiently low then the candidate is accepted according

to Eqn. (3.16), otherwise further forward simulations are triggered to refine the emulator
(Conrad et al., 2016).

The refinement criterion is based on the uncertainty associated with the log-likelihood
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surface. Given proposed and current locations with log-likelihoods l+ and l− and associated
uncertainties σ+,σ−, we define an uncertainty indicator P± as

P± =

P(ζ+ ≤ ζ−) if l+ ≤ l−

P(ζ+ > ζ−) otherwise,

where ζ+ and ζ− are random variables drawn from N (l+,σ+2) and N (l−,σ−2) respec-
tively.

The uncertainty in the log-likelihood is therefore quantified by comparing the expected
relationship between two random samples from the emulator surface with the mean values.
P± ranges from 0.5, meaning there is no discernible difference between the two locations, to
1, indicating complete certainty in the relationship between l+ and l−.

The refinement probability is then defined as

γ = 2γ̄(s)(1−P±)

where s is the number of steps since the last refinement and γ̄(s) is a logistic function with a
specified slope and midpoint that acts as a memory and prevents refinement at every step. As
there is intrinsic uncertainty in the likelihood (unlike in Conrad et al. (2016)) forward simula-
tions could in principle be triggered at every step, hence our refinement probability takes on
smaller values whenever a microscale simulation has just been triggered and increases with
the number of steps taken since refinement. If refinement is triggered, forward simulations
are run at the location with largest uncertainty. Along with triggered refinement, we also
include random refinement at each step for ensuring asymptotic convergence and note that
our uncertainty indicator is invariant to relabelling of θθθ

+ and θθθ
− meaning the refinement

process does not impact the reversibility of the transition kernel (Conrad et al., 2016). When
refinement occurs, the log-likelihood samples are added to the emulator GP training set and
further optimisation is performed.

Our final comment concerns the theoretical guarantee of convergence to the true posterior
distribution. A related proof is provided in Conrad et al. (2016), but for deterministic systems.
Our system is stochastic, and the likelihood of Eqns. (3.7–3.8), estimated by fitting GPs for
F(U) and D(U) to finite numbers of forward simulations from Eqn. (3.1), is itself subject to
uncertainty. However, convergence to the true posterior distribution is guaranteed by com-
bining the proof in Conrad et al. (2016) with the following three well-established facts (all
subject to adequate regulatory conditions): (i) that a neural network with a sufficiently large
number of hidden nodes is a universal approximator and, thus, unbiased (Cybenko, 1989,
Hornik, 1991); (ii) that a Gaussian process is the limiting case of a neural network with an
infinite number of hidden nodes (Neal, 1996); and that (iii) replacing the true likelihood by
an unbiased estimate does not affect the limiting distribution of an MCMC sampling scheme
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(Andrieu and Roberts, 2009, Andrieu et al., 2010).

3.6 Empirical study

The drift and diffusion functions inference is performed using sparse GP regression and we
specify M = 20 inducing points, which we found to provide an appropriate trade-off between
accuracy and computational costs.

For the inference of model parameters θθθ , we first create synthetic data by running mul-
tiple parallel simulations of the model with the given parameter set. After relaxation of
transients, we randomly select 200 simulated macroscale outputs as our empirical data. De-
noting the synthetic data set as Udata = {U1,U2, . . . ,U200}, a sample of the log-likelihood of
the parameter set given the data is given by

lk =
200

∑
n=1

logρ
k
s (Un)

where ρk
s (Un) is the stationary probability density from Eqn. (3.7), calculated from the k-th

sample from the posterior of the drift and diffusion functions.
Next, we employ sparse GP regression to build our surrogate log-likelihood surface. We

arrange the M inducing points in a fixed uniform grid and set M = 16 per parameter dimen-
sion; this reduction in the number of inducing points reflects the additional computational
burden arising from performing GP regression in more dimensions.

Lastly, for our MCMC scheme we choose uniform priors π ∼U(0,10) on all parameters
to infer and we set the random refinement criterion to 10−4.

3.7 Results

We demonstrate the performance of our method for both two-dimensional and three-dimensional
inference using three parameter sets and show that we can accurately infer the interaction ra-
dius δ of the model, along with the interaction strength α and, in 3-dimensions, the level of
noise η .

The first parameter set is defined on a group of N = 20 individuals with parameter values
α = 0.3, δ = 2 and a fixed (assumed known) value of η = 0.25. The second parameter set is
specified on a group of N = 100 individuals with parameters α = 0.8, δ = 1, η = 1 (again
η is held fixed). For the third parameter set we infer all three parameters for a group size of
N = 30. The true parameters are α = 0.6, δ = 1.5 and η = 0.5.

We then use our framework to infer the posterior distributions for α and δ , which are
shown in Figs. 3.3a and 3.3b and Figs. 3.4a and 3.4b as well as for all three parameters α , δ

and η , shown in Figs. 3.5a, 3.5b and 3.5d. The refined, surrogate log-likelihood surface for
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Figure 3.3: Inference results for N = 20, α = 0.3, δ = 2. Results shown for 10,000 samples
after burn-in of 40,000 (Geweke’s diagnostic (Geweke, 1991) was used to test convergence:
highest absolute z-score was 0.73 for α and 0.89 for δ ). a) Posterior distribution of the
weighting given to social cues (α). Vertical bar represents the true parameter value. b)
Posterior distribution for the interaction range (δ ). Vertical bar represents the true parameter
value. c) Refined surrogate log-likelihood; the true parameter value is indicated by the red,
full circle. d) Variance associated with the refined surrogate log-likelihood. Black crosses
show the first initial points from our space-filling design; black open circles show every tenth
refinement. The more explored regions have lower uncertainty.
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Figure 3.4: Inference results for N = 100, α = 0.8, δ = 1. Results shown for 10,000 samples
after burn-in of 20,000 (Geweke’s diagnostic (Geweke, 1991) was used to test convergence:
highest absolute z-score was 0.43 for α and 0.34 for δ ). a) Posterior distribution of the
weighting given to social cues (α). Vertical bar represents the true parameter value. b)
Posterior distribution for the interaction range (δ ). Vertical bar represents the true parameter
value. c) Refined surrogate log-likelihood; the true parameter value is indicated by the red,
full circle. d) Variance associated with the refined surrogate log-likelihood. Black crosses
show the first initial points from our space-filling design; black open circles show every tenth
refinement. For larger population size there is lower uncertainty in the simulation output so
less refinement is required.
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Figure 3.5: Inference results for N = 30, α = 0.6, δ = 1.5 and η = 0.5. Results shown for
20,000 samples after burn-in of 30,000 (Geweke’s diagnostic (Geweke, 1991) was used to
test convergence: highest absolute z-score was 0.67 for α , 0.59 for δ and 0.39 for η). a)
Posterior distribution of the weighting given to social cues (α). b) Posterior distribution for
the interaction range (δ ). c) Posterior distribution for the noise term (η). The vertical bars
show the true parameter values.

the parameter sets is shown in Figs. 3.3c and 3.4c and the associated uncertainty in Figs. 3.3d
and 3.4d. By incorporating the uncertainty in the log-likelihood into the emulator the sampler
is able to run forward simulations only where needed and focus on refinement in regions of
high likelihood.

3.8 Discussion

We have presented a new statistical framework for inference of microscale parameters from
macroscale measurements of interacting systems. By employing sparse Gaussian process
regression we have by-passed the need for a formal link between scales and obtained approx-
imations of the probability density of macroscale observations, simultaneously calculating
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the associated uncertainty caused by the use of a finite number of microscale simulations.
This allows us to construct a fast, adaptive MCMC sampler that employs a second Gaussian
process to emulate the log-likelihood surface.

While Gaussian process regression has been shown to be an effective method for learn-
ing drift and diffusion functions of stochastic differential equations (Batz et al., 2018), our
approach presents a novel application of multi-latent Gaussian processes (Saul et al., 2016)
in this context. Previous work in this area (Batz et al., 2018, Campioni et al., 2020) has em-
ployed a separate Gaussian process to learn the diffusion function directly from simulation
outputs as specified in Eqn. (3.15), or by using a parametric function for the diffusion (Batz
et al., 2018). As stated earlier, the first approach leads to a bias in the posterior distribution
of the diffusion function due to finite sampling rates, while the second approach neglects un-
certainty. As the diffusion function appears in the denominator of the stationary probability
density defined in Eqn. (3.7), both these effects will significantly impair the estimate of the
likelihood of microscale parameters given macroscale observations. We have overcome these
issues by employing a multi-latent variational approach (Saul et al., 2016) that learns the drift
and diffusion functions simultaneously and is able to quantify uncertainty in the diffusion as
well as providing an unbiased estimator of both functions.

For effective sampling from the posterior, we employ an adaptive Metropolis-Hastings
algorithm that is based on Conrad et al. (2016) with several modifications. Notably, we
replace the local Gaussian process approximation with a sparse Gaussian process that allows
us to use multiple samples from the SPD posterior for each parameter set where microscale
simulations are run. By passing these multiple samples into the algorithm, the emulator GP
is able to learn an effective observation noise in the simulator that arises due to the stochastic
nature of the microscale model.

While we have applied our framework to a simple 1-dimensional simulation model, our
approach can be applied to any multiscale system that can be modelled at the microscale but
can only be easily observed at the macroscale. Collective animal movement presents one
example of such a system, where individual trajectories are often difficult to observe while
microscale models are straightforward to simulate (Vicsek and Zafeiris, 2012). However,
many models of complex systems, such as models of voter behaviour (Sood et al., 2008),
opinion dynamics (Torney et al., 2013) or epidemics (Pokharel and Deardon, 2016), share
these characteristics and their microscale dynamics could be inferred from static observations
using our proposed method. As for the physical sciences, our method can find applications
in the context of ferromagnetism e.g. inverse Ising problem, where the aim is to infer the
coupling strength between spins given observed spin correlations, magnetisations or other
data (Nguyen et al., 2017), as well as fluid dynamics e.g. the inverse problem of identifying
unknown flow conditions from an observed response of the free surface (Sellier, 2016) or the
non-invasive estimation of physiological parameters determining the systemic and pulmonary
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blood flow (Colebank et al., 2019, Paun et al., 2020). Modelling molecular, cellular and
auto-catalytic pattern formation (Meinhardt, 1982) is another application area of the method
proposed in the present work.

Future work will extend the framework to higher-dimensional macroscale systems, for
which the presented ideas of using GPs to approximate the unavailable stationary probability
density of interacting systems should in principle hold.



Chapter 4

State sequence proposal mechanisms for
hidden Markov and semi-Markov models

In this chapter, we present various methods aimed at simulating semi-Markov chains. We

conceptualised three different proposal mechanisms for semi-Markov chains and we discuss

their validity, advantages and drawbacks below. The proposal mechanism will be a funda-

mental block in the algorithm described in the next chapter.

52
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4.1 Introduction

Hidden Markov models (HMMs) have come to be a reliable and versatile method employed
in the behavioural ecology and animal movement community. This is due to the mixture
components nature of such models (Zucchini et al., 2009, Robert et al., 2000) through which
modelling behaviours becomes relatively simple (with all due modifications that each study
may require). For telemetry data covering long time-scales, qualitatively different dynamics
will emerge due to changes in the animal behaviour (for example, a change from a resting
behaviour to an exploratory behaviour). Thus, it is convenient to assume that observations
are dependent on a latent (hidden) behavioural process, called state process, which is de-
scribed by a Markov process. From here on, states will be used as proxies for biological
behaviours. By augmenting the framework with a behaviour-dependent observational pro-
cess and by leveraging the machinery introduced back in Chapter 2, it is now possible to
answer inferential questions concerning the movement parameters, the behavioural process
parameters and consequently the history of changes in behaviour.

As far as discrete-time HMMs are concerned, significant contributions in this domain are
attributed to Morales et al. (2004). In their publication, they assumed that the movement
path of one individual was composed of a pre-specified number k of random walks so that
different behavioural patterns could be captured by the quantitatively different random walks
(contrary to what was described in Chapter 2 where the movement path of one individual was
modelled via one random walk). Each random walk was characterised by an ordered series
of step lengths and turning angles [rt ,φt ]; step lengths and turning angles follow, respectively,
a Weibull distribution and a wrapped Cauchy distribution. Here the movement parameters
are represented by the Weibull and wrapped Cauchy parameters of each random walk, (ai,bi)

and (µi,ρi), where the subscript i = 0, . . . ,k represent a different state. Let y denote the full
dataset, then the model likelihood as formulated in Morales et al. (2004) is

p(y|a,b,µ,ρ) =
T

∏
t=0

W (rt |ait ,bit )C(φt |µit ,ρit ), (4.1)

where W and C indicate, respectively, the Weibull distribution and the wrapped Cauchy dis-
tribution and the notation it indicates that the state varies in time. They then estimated the
movement parameters by employing MCMC sampling techniques to explore different com-
binations of (ai,bi,µi,ρi) and selected the ones associated with the highest likelihood.

Since then, the animal movement community has extensively applied discrete-time HMMs
to analyse animal telemetry data. These models split observations into two data streams -
step lengths and turning angles - and through applications of the forward algorithm and the
Viterbi algorithm (Chapter 2) the model is fit and the most likely behavioural sequence is
found. Great effort has been dedicated to the creation of user-friendly packages that perform
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inference under HMM assumptions, such as the R packages "moveHMM" (Michelot et al.,
2016) and its latest extension "momentuHMM" (McClintock and Michelot, 2018), each able
to tackle the inferential problems just discussed and much more (for example, prediction of
behavioural sequences at future times).

Working with discrete time is advantageous as the mathematics involved is simpler and
easier to implement, however, this formulation comes with limitations. In particular, HMMs
are not well-suited for situations involving irregularly sampled data and non-negligible mea-
surement error (Michelot and Blackwell, 2019, Hooten et al., 2017b, Patterson et al., 2017a).
At the expense of some computational efficiency, using a continuous-time model offers an
effective solution to the problem. In this chapter, we are mainly interested in the applica-
tion of diffusion processes to model in continuous time the dynamics underlying the animal
movement and employing semi-Markov chains to model the behavioural process (more on
those in the subsequent section).

An example of using diffusion processes to model telemetry data can be found in Black-
well (1997, 2003). Here locations are modelled via a d-dimensional Ornstein-Uhlenbeck
(OU) process. Let YYY t = {Y1,t , . . . ,Yd,t}, then the distribution of its location at time t + s given
location at time s is

YYY t+s|YYY s = yyys ∼ N(µµµ + eBBBt(yyys −µµµ),ΣΣΣ− eBBBt
ΣΣΣeBBB′t), (4.2)

where µµµ is a d-vector and ΣΣΣ and BBB are d × d matrices; the matrix B controls the strength
and form of the centralising tendency. Since it is assumed that B is stable, that is, eBBBt → 0
as t → ∞, often regarded as part of the definition of OU process (Blackwell, 1997), then the
limiting distribution of the location is a normal distribution with mean location vector µµµ and
covariance matrix ΣΣΣ:

Yt ∼ N(µµµ,ΣΣΣ). (4.3)

Throughout the chapter, we will restrict our focus on scalar OU model parameters. While this
process is Markovian, it does not however account for persistence in speed and direction of
the movement; given that animals have inertia and therefore move at a similar rate over suc-
cessive time steps, a more natural representation for animal movement involves continuous-
time correlated random walks (CTCRWs), as introduced by Johnson et al. (2008), in that they
account for autocorrelation of movement.

In their publication, they presented a novel modelling framework that integrates a CTCRW
model with a state-space model. For the CTCRW model, the velocity vvv(t) is modelled via a
2-dimensional OU process defined as (Johnson et al., 2008)

vc(t +∆) = γc + e−β∆(vc(t)− γc)+ζc(∆), (4.4)

where the subscript c = 1,2 represents the coordinate axes, γc is the mean velocity, β is an
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autocorrelation (scalar) parameter and ζ is a zero mean normal error with variance

σ
2(1− e−2β∆)/2β . (4.5)

The location process is then derived from the velocity process by integration. This formula-
tion of the model is also referred to as an integrated OU process, to emphasise that observa-
tions are modelled through velocities. Hence the location µµµ is

µµµ(t) = µµµ(0)+
∫ t

0
v(u)du. (4.6)

Johnson et al. (2008) integrate the CTCRW model in a state-space formulation so that
measurement error is included and standard methods such as the Kalman filter can be applied
to recover the OU process parameters. A general state-space model requires two equations to
be defined - the observation equation and the system equation (Chapter 2). For observation
yyyti = [y1ti,y2ti] and true location µµµ(t) = [µx(t),µy(t)], the observation equation is straightfor-
ward (Johnson et al., 2008)

yc(t) = µc(t)+ εc, εc ∼ N(0,Hc), (4.7)

where Hc is the measurement error variance.
On the other hand, the system (true) process presents a problem: because the location

is an integrated process, the location process lacks the Markov property as it depends on
all previous velocities, contrarily to the velocity process which is Markovian (by definition,
Eqn. 4.4). Consequently, the true location process is constructed by combining the velocity
process with the location process to form a Markov process. By using Eqn. 4.4, the true
location process is defined in terms of the true location µµµ(t) and the velocity vvv(t) (Johnson
et al., 2008):

µc(t +∆) = µc(t)+ vc(t)
(

1− e−β∆

β

)
+ξc, (4.8)

where ∆ is the time interval, ξc are zero-mean normal errors with variance (Johnson et al.,
2008)

σ2

β 2

(
∆− 2

β
(1− e−β∆)+

1
2β

(1− e−2β∆)

)
. (4.9)

For SSM specification, the covariance between the true location error ξc and the velocity
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yt−1 yt yt+1

µt−1 µt µt+1

zt−1 zt zt+1

observation process

true location process

state process

Figure 4.1: Illustration of the structure of the three-layer process introduced in Michelot and
Blackwell (2019). Note that because the transitions occur in continuous-time, they are not
restricted to occur at the time of observations.

error ζc is needed (Johnson et al., 2008):

C[ξc,ζc] =
σ2

2β 2

(
1−2e−β∆ + e−2β∆

)
. (4.10)

This state-space model presents two layers, the hidden one being the true location com-
bined with the velocity process and the observed one being the location together with mea-
surement error. This framework has been extended to incorporate a multi-state model by
Michelot and Blackwell (2019). A third, hidden layer representing a state process is added
and the observations are now assumed to be state-dependent. The state process is governed
by a continuous-time Markov chain characterised by an infinitesimal generator matrix (IGM)
ΛΛΛ; switches can occur at any point in time but each state can only take one discrete value
0, . . . ,k per time. A graph of the structure is illustrated in Fig. 4.1

Because this is a state-space model, the likelihood conditional on the hidden state se-
quences (Chapter 2) is readily available using the Kalman filter. However, the OU process
parameters are state-dependent and knowledge of state needs to be inferred. Michelot and
Blackwell (2019) adopt the following inferential strategy, based on that found in Blackwell
(2003). They employ a Metropolis-within-Gibbs sampling scheme (Blackwell, 2003, Mich-
elot and Blackwell, 2019); each iteration of the algorithm consists of an update for three
groups: the first update concerns the underlying state sequence, which is used in the second
update for the OU parameters βi and σi, for i = 0, . . . ,k, and the final update concerns the
transition rates of the IGM. The first two groups make use of the likelihood of the model,
given by the Kalman filter, conditioned on the state sequence S and the OU parameters θθθ ,
p(yyy|θθθ ,S). For the first group, a new state sequence S+ is generated from the current state
sequence S− and either accepted or rejected based on the ratio of the likelihoods (Blackwell,
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2003):

min
{

1,
p(yyy|θθθ ,S+)

p(yyy|θθθ ,S−)

}
; (4.11)

the second group uses the accepted state sequence S∗ and through a proposal density Q(·|·)
new OU parameters θθθ

+ are proposed. These are either accepted or rejected based on the
following Metropolis-Hastings acceptance rate:

min
{

1,
p(yyy|θθθ+,S∗)p(θθθ+)Q(θθθ−|θθθ+)

p(yyy|θθθ−,S∗)p(θθθ−)Q(θθθ+|θθθ−)

}
, (4.12)

where p(θθθ) is the OU parameters prior.
The third group makes use of conjugate priors as in Blackwell (2003) to recover the

transition rates, leveraging the fact that the residence times in each state are exponentially
distributed.

To propose new state sequences, Michelot and Blackwell (2019) employ the endpoint-
conditioned methods from Hobolth and Stone (2009). Such methods are usually used to
modify existing sequences by generating new Markov chains between known initial and end
points while the remaining part of the sequence is unaltered. In Hobolth and Stone (2009),
three algorithms are analysed that ensure that transitions occur between the selected initial
and end points. The first algorithm is the modified rejection sampling. This follows a sim-
ple algorithm called the forward algorithm, which involves sampling switch times from an
exponential distribution and allowing constant state sequences. Specifically, given a chain
{X(t) : 0 ≤ t ≤ T} conditional on X(0) = a and X(T ) = b and its corresponding IG matrix
ΛΛΛ, a switch time τ ∼ Exp(1/λa) is sampled and:if τ ≥ T, X(t) = a ∀t ∈ [0,T ]

if τ < T, X(τ) = c with probabilityλac/λa; repeat.
(4.13)

The modified rejection sampling algorithm ensures that whenever the ending state is dif-
ferent to the initial state, a least one switch occurs with the following density

f (τ) =
λae−τλa

1− e−T λa
, (4.14)

so as to avoid large sample rejection rate due to the forward sampling scheme being bound to
fail for small time intervals (Hobolth and Stone, 2009).

The second algorithm is called direct sampling and it is based on the assumption that the
infinitesimal generator matrix admits an eigenvalue decomposition. From this assumption, it
is possible to recover the probabilities of switching to a specific state i, as well as the time of
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the switch, in the case of a switch occurring between X(0) and X(T ). We omit the expressions
and invite the reader to consult the original manuscript (Hobolth and Stone, 2009).

The third algorithm is called uniformisation and it begins by sampling the number of
changes uniformly on the time interval [0,T ]. If the number is either 0 or 1 with X(0) = X(T )

then it is going to be a constant path; if it’s 1 with X(0) ̸= X(T ), the waiting time is sampled
from a uniform distribution on [0,T ]. For any number n of switch points n ≥ 2, n points
are sampled uniformly on [0,T ] and a discrete Markov chain is employed to simulate the
transitions between the sampled switch points conditioned on X(0) = a, X(T ) = b. The
transition probability matrix characterising the discrete Markov chain is obtained through the
infinitesimal generator matrix via the following equation (Hobolth and Stone, 2009):

PPP = I+
1

λmax
ΛΛΛ, (4.15)

where λmax = maxc λc, for state c.

4.2 Introducing non-Markovian switching times

Thus far we have given an overview on some of the methods found in the literature that
are used in the context of switching behaviour problems in continuous-time. Specifically,
we have restricted our focus on continuous-time correlated random walk models that model
telemetry data as an integrated OU process whose parameters are dependent on an underlying
continuous-time behavioural process modelled via a hidden Markov model.

However, the Markov property implies underlying assumptions on the behavioural pro-
cess that are non-realistic. In the absence of external variables that influence the switching
behaviour, the residence (or sojourn, dwell) time in each behavioural state follows an ex-
ponential distribution (or geometric, in the discrete-time counterpart), for which short and
frequent state changes are favoured. This implies that the behavioural process inherits the
"memoryless" property of the exponential distribution. Let s be the time spent in a state and
let t be the further time that the chain will remain in the same state. Then if X is the random
variable representing the time at which the chain leaves the current state, the "memoryless"
property implies

p(X > t + s|X > s) = p(X > t), (4.16)

meaning the sojourn times are independent of the amount of time spent in a state. Thus, when
using HMMs it is assumed that the amount of time an animal will remain in a behaviour of,
say, resting does not depend on how long the animal has already rested for.

It is also worth adding that current approaches described above are not scalable to large
datasets due to the computational burden of standard schemes such as Markov chain Monte
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Carlo sampling for which evaluation of the full dataset is required at every step of the sam-
pler. These methods therefore become prohibitively expensive to apply to long-term, high-
frequency telemetry datasets.

Therefore, our goal has been to propose an alternative method to analyse telemetry data
that can overcome the intrinsic limitations of standard HMMs models. Similarly to Miche-
lot and Blackwell (2019), in our framework telemetry data are modelled via two processes.
The first process is an integrated OU process (Johnson et al., 2008, Michelot and Blackwell,
2019) that models the evolution of the location dynamics; the second process is an underlying
continuous-time process included to extend the framework to a multi-state model. However,
contrary to Michelot and Blackwell (2019), hidden states are not modelled via a continuous-
time Markov chain but we instead employ a continuous-time semi-Markov chain that enables
us to control the sojourn times. In particular, in our study we model the residence times with
a gamma distribution parameterised via a shape parameter α and a mean residence time pa-
rameter m, Γ

(
α, α

m

)
. We believe that this choice makes the model more biologically realistic

for two reasons. Firstly, we have now effectively introduced a memory in the process: the
more an animal spends time in a behavioural state, the more likely it is to change. Secondly,
as shown in Fig. 4.3, shorter sojourn times are now more likely to be rejected.

Figure 4.2: Exponential distribution for different rate values. Note how quickly the function
decays regardless of the rate values.
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Figure 4.3: Gamma distribution for different shape and mean values. For α = 1, the gamma
distribution is an exponential distribution with rate α

m .

While our method offers a different inferential algorithm that differentiates it from the
methods explained above, which is based on a Monte Carlo Expectation-Maximisation (MCEM)
algorithm, we defer the details until Chapter 5 and here we focus instead on the semi-Markov
chains proposal mechanism. Indeed, we cannot use the endpoint-conditioned methods out-
lined in Hobolth and Stone (2009) as they rely on exponentially distributed residence times.
The scope of this chapter is to illustrate the different algorithms that we have created to sim-
ulate continuous-time semi-Markov chains - this algorithm is the fundamental block for the
methodology that we introduce in the next chapter. The main challenges that we have faced
during this project concern both the computational efficiency of the algorithm and the require-
ments to satisfy detailed-balance. To make the algorithm efficient, we needed to introduce a
degree of similarity between successive samples in order to avoid exploration high rejection
rates. As for the second challenge, detailed-balance is ensured either by using a symmetric
proposal mechanism or by including the Hastings factor in the acceptance rate. As we will
see throughout this chapter, these two conditions were not trivial to meet. We have stud-
ied three different continuous-time semi-Markov chains generating mechanisms: below is a
description of each method.
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4.3 Semi-Markov state sequence proposal mechanisms

As stated before, the dwell-time distribution of a semi-Markov chain is arbitrarily defined
and it is not restricted to follow an exponential distribution as in the case for Markov chains.
Specifically, a semi-Markov chain is approximated by an embedded Markov chain {Xn;n ≥
0} with a finite or countably infinite state space, a transition probability matrix PPP and a
sequence {Un;n ≥ 1} of holding intervals between state transitions (Zucchini et al., 2009).
The times at which state transitions occur are then given, for n ≥ 1, as

Sn =
n

∑
j=1

U j. (4.17)

The semi-Markov process is then the continuous-time process {X(t); t ≥ 0} where, for each
n ≥ 0, X(t) = Xn for t ∈ [Sn ≤ Xn < Sn+1].

This approximation of semi-Markov chains through an embedded Markov chain is par-
ticularly useful in the application of hidden semi-Markov models (HSMMs), in that it allows
to employ the well-established methods for HMMs (Zucchini et al., 2009) (Chapter 2). In
particular, the (approximate) likelihood of a sequence of observations x1, . . . ,xT is given by
(Zucchini et al., 2009):

LT = δΩΩΩ(x1)PΩΩΩ(x2)P . . .PΩΩΩ(xT−1)PΩΩΩ(xT )1′, (4.18)

where δ is the initial distribution of the approximating Markov chain and

ΩΩΩ(x) = diag(p1(x), . . .︸︷︷︸
k1 times

, p1(x), . . . , pn(x), . . .︸︷︷︸
kn times

, pn(x)), (4.19)

where, for i = 1, . . . ,n, pi is the state-dependent distribution and ki > 0 is the number of
successive observations in the same state (for example, given the sequence 111223333 we
have k1 = 3, k2 = 2 and k3 = 4).

A question of interest regards the initial distribution δ of the embedded Markov chain.
A standard approach is to assume that the first time point of the considered time series cor-
responds to a switchpoint, so that it is easier to model the distribution of the first dwell
time (Zucchini et al., 2009). While this assumption is not expected to significantly impact
parameter estimation, except for short series, its validity varies across applications. More im-
portantly, the compelled state transition at the series’ outset poses a challenge to the overall
stationarity of the HSMM (Zucchini et al., 2009).

However, we can circumvent the assumption of a state switch at the series’ outset by
allowing non-zero initial state probabilities δ . Furthermore, we could fit stationary HSMMs
by taking the initial distribution δ to be the solution to the linear equation δ = δP (for more
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specific details, refer to Zucchini et al. (2009)).
Having said that, we are now going to describe the semi-Markov chain sequence gener-

ating methods that we have conceptualised. As aforementioned, for every method we need
to take into account detailed-balance and reversibility of any move. From a computational
efficiency prospective, it is also important to introduce a degree of similarity between any two
consecutive samples, as in Hobolth and Stone (2009). Throughout the chapter, we assume
as prior belief that the residence time in each state follows a gamma distribution Γ

(
α, α

m

)
,

where α is the shape parameter and m is the mean residence time. However, the residence
time distribution can be chosen by the practitioner.

4.3.1 Virtual state method

In this first method, given an n−state model we introduce a virtual state that copies previous
states so that a degree of similarity is introduced to avoid exploration of the whole sample
space. Given that we rely on the TensorFlow package HMM, and hence as with all packages
the output will be a Markov chain, introducing the virtual state also allows us to increase
the duration of the sojourn times in the effort to create semi-Markov chains. Introducing a
virtual state is achieved by specifying an infinitesimal generator matrix ΛΛΛ at every point in
the time series and augmenting it with a virtual state that does not affect the total number of
observable states in the original state-space model configuration. Before expanding this point
further and diving into the mathematical details, it may be better to give an example.

Let’s assume the observations can be described by a two-state model where we label the
states as 0 and 1. We begin our sampling routine by constructing an initial state sequence
over a given time series T by defining its associated 2× 2 IGM ΛΛΛ at every point in T . We
then employ the HMM TensorFlow package to generate the first state sequence sample, S0.
In order to generate a candidate state sequence sample S∗, from S0, we augment ΛΛΛ as follows.
It is important to note that the augmentation process is applied at every time point.

Suppose that at time t = k the observations are in state 0 and that the corresponding IGM
for S0 is described by the following transition rates diagram:

0 1

λ01

λ10

−λ00 −λ11.

We denote the additional virtual state as 2 and we define the new transition rates so that at
time k it can be transitioned to from any state but it can only transition to state 0 with rate ∆s.
The corresponding transition rates diagram will look like this:



CHAPTER 4. PROPOSAL MECHANISMS 63

0

12

λ
01 ∆s

λ
10 ∆s

−∆s

−λ00

−λ11

(1
−∆

s)λ
00

∆
s

(1−∆s)λ11

Similarly, if the observations lie in state 1 at time t = j the corresponding augmented IG
matrix will be:

0

12

λ
01 ∆s

λ
10

∆
s

(1
−

∆
s)

λ
00

(1−∆s)λ11

∆s

−∆s

−λ00

−λ11

Having specified an augmented ΛΛΛ over the whole time domain, we can employ the HMM
package to generate S∗. If the new chain is in the virtual state at time t, then we copy the
state value from S0 at time t. This copying mechanism is what ensures a degree of similarity
between samples. We illustrate the generating state mechanism in Fig. 4.4.

For the mathematical details, the augmentation process can be described as a two-step
process: the first step is to specify the rates into the virtual state, the second step is to add the
rates out of the virtual state. Given a general n×n IGM

ΛΛΛ =

−λ00 ... λ0(n−1)

... ... ...

λn0 ... −λ(n−1)(n−1)

 , (4.20)

where ∀i ∈ 0, ...,n−1, λii = ∑i ̸= j λi j with associated state sequence S0, a step size variable δ

transformed to be in the interval (0,1), ∆s = 1− exp(−δ ), and a time point t we modify the
existing rates through the following equation:

ΛΛΛ◦ (III(1−∆s)+∆s), (4.21)
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Figure 4.4: Illustration of an example state sequence generated from our augmented Markov
chain. The virtual state copies values from the original state sequence.

where the symbol ◦ stands for element-wise multiplication. We define the rates into the
virtual state as a n×1 vector  λ00(1−∆s)

...

λ(n−1)(n−1)(1−∆s)

 (4.22)

which is then appended to ΛΛΛ; this is the first step and we have created an n× (n+1) matrix.
The rates out of the virtual state are ∆s and are stored in a 1×n+1 vector(

c0 ... cn−1 −∆s
)
, (4.23)

where, for i = 0, ...,n−1,

ci =

∆s, if S0(t) = i,

0, otherwise.
(4.24)

Once the vector is concatenated to ΛΛΛ, we obtain the full (n+1)× (n+1) matrix.
Now that an overview of the method has been given, there are two caveats to discuss.

The first thing to notice is that the HMM package is built on discrete time and therefore
must be given a probability transition matrix PPP to work with. Given that we have defined a
continuous-time model, we employ a first order approximation given by Bogdan Doytchinov
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and Rachel Irby (2010):

PPP = III +dddtttΛΛΛ, (4.25)

where III is the identity matrix and dddttt is the vector of time differences.
The second matter concerns the Hastings ratio. Our proposal mechanism is not symmet-

ric, therefore the Hastings ratio must be included in the acceptance ratio. The proof is the
following example.

Suppose we start from an initial state sequence S− = [0 1 0] with associated IGM ΛΛΛ =(
− 1

m
1
m

1
m − 1

m

)
. We begin our augmentation routine by first defining an initial distribution

π0 = (∆s
2 ,

∆s
2 ,1−∆s); then the IG matrices for time t = 1,2 are

t = 1,

− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s − 1

m
1
m(1−∆s)

0 ∆s −∆s

 ,

t = 2,

− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s − 1

m
1
m(1−∆s)

∆s 0 −∆s

 .

(4.26)

By employing Eqn. 4.25 with constant dt = 1, the approximate probability transition matrices
are

t = 1,

1− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s 1− 1

m
1
m(1−∆s)

0 ∆s 1−∆s

 ,

t = 2,

1− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s 1− 1

m
1
m(1−∆s)

∆s 0 1−∆s

 .

(4.27)

Let’s assume that the generated sequence is S∗ = [1 1 0]. From the IG matrices, we can read
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that the transition rates, from which the transition probabilities can be extracted, are:

P(S− → S∗) = P([0 1 0]→ [1 1 0])+P([0 1 0]→ [1 2 2])+

P([0 1 0]→ [1 1 2])+P([0 1 0]→ [1 2 0]) =
∆s
2

(
1− 1

m

) 1
m

∆s+
∆s
2

1
m
(1−∆s) (1−∆s)+

∆s
2

(
1− 1

m

) 1
m
(1−∆s)+

∆s
2

1
m
(1−∆s) ∆s =

∆s
2m

(
2−∆s− 1

m

)
.

(4.28)

Now we’ll calculate the backward rates. Starting from S∗ = [1 1 0], and assuming the same
initial distribution, the probability transition matrices for time t = 1, 2 are the same as before:

t = 1,

1− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s 1− 1

m
1
m(1−∆s)

0 ∆s 1−∆s

 ,

t = 2,

1− 1
m

1
m∆s 1

m(1−∆s)
1
m∆s 1− 1

m
1
m(1−∆s)

∆s 0 1−∆s

 .

(4.29)

Then

P(S∗ → S−) = P([1 1 0]→ [0 1 0])+P([1 1 0]→ [0 2 2])+

P([1 1 0]→ [0 1 2])+P([1 1 0]→ [0 2 0]) =
∆s
2

1
m

∆s
1
m
(1−∆s)+

∆s
2

1
m
(1−∆s)(1−∆s)+

∆s
2

1
m

∆s
1
m
(1−∆s)+

∆s
2

1
m
(1−∆s) ∆s =

∆s
2

(
∆s
(

2(1−∆s)
m

−1
)
+1
)
.

(4.30)

As we can see, the probability of generating a sequence S∗ given an existing sequence S−

is not the same as the backward probability of generating S− given S∗, thus the proposal is not
symmetric. Given the challenge that the calculation of the Hastings factor for this proposal
posed, we decided to take a different approach.

4.3.2 Reversible rescaling method

The second method takes a different approach to the first one. As one of the reasons that
discouraged us from pursuing the first approach was the complex Hastings factor calculation,
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we defined a proposal mechanism that is symmetric that generates state sequences based on
three reversible moves.

1) Random sequence. Through this move, the residence times in each state are sampled from
a gamma distribution with variable parameters Γ

(
α, α

m

)
.

2) Random segment stretch. Here, a randomly chosen segment, defined as the length be-
tween two consecutive switches, is multiplied by a random number sampled from N(0,ε).
The length of the time series is kept fixed.

3) Shuffle. Through this move, all segments are shuffled, meaning that each state is set to a
different state randomly.

Note that the main feature of the second move is its reversibility, whereas the third move is
necessary for ergodicity. This is a much more simplistic method than the previous one but its
strength relies on the use of gamma-distributed residence times for each state.

To prove the reversibility of the second move, consider z ∼ N(0,ε). Then from a current
segment length ℓ, a new segment length ℓ′ is proposed via

ℓ′ = ℓ exp(z), (4.31)

whereas ℓ is proposed from ℓ′ via:

ℓ= ℓ′ exp(−z). (4.32)

From symmetry of the normal distribution we have that p(z) = p(−z), thus we conclude that
the probabilities associated with the proposals in Eqns. 4.31 and 4.32 are:

p(ℓ|ℓ′) = p(−z) = p(z) = p(ℓ′|ℓ), (4.33)

therefore the Hastings factor for the second move is 1. Given that the first and third moves
are both random, we can state that the this proposal generating mechanism is symmetric and
therefore the Hastings factor needs not be taken into account for the acceptance rate.

4.3.3 Reversible mutation method

This latest method is an extension of the reversible rescaling method and presents three moves
that alter state sequences in the following manner. Firstly, we generate an initial state se-
quence randomly by sampling the residence times for each state from a gamma distribution
Γ

(
α, α

m

)
. This is reversible as the switch points are randomly sampled. Then the three moves
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are the following.

1) Move. A transition point is selected at random and shifted either to the left or to the right.

2) Add. New transition points are added.

3) Remove. Transition points are removed.

The first move is analogous to the random segment stretch move from the reversible
rescaling method. We restrict the new transition to occur at the times of observations. Hav-
ing selected a switchpoint r at random with probability 1

f , where f is the total number of
switchpoints, and identifying the immediately before and after switchpoints as, respectively,
a and b, the new transition point r′ is selected with discrete uniform probability 1

f ·
1

na,b
obs

, where

na,b
obs is the number of observations between a and b. Hence, for any interval [a,b], for a, b

transition points,

p(r′|r) = 1
f
· 1

na,b
obs

= p(r|r′), (4.34)

that is, move 1 is symmetric and the Hastings factor is 1. We use a discrete uniform prob-
ability to account for irregularly spaced data, so that every time of observation has equal
probability of being selected. If a continuous uniform distribution were to be used, denser
observations would become more likely to be chosen.

Before exploring move 2 and move 3, we shall make the following definition. Let’s
consider two ordered transition points, say a and b, so that the state before a is the state after
b. Then any two transition points that satisfy this condition and do not contain in between
any other nested transition points satisfying the same condition are called a "pair".

Now, for the remove move, we begin by selecting a time point r continuously uniformly
on the total time interval [0,T ], r ∼U(0,T ). Then we choose a pair Q such that:

dist(Q,r) ≤ dist(P,r), ∀ pairs P, (4.35)

where the distance function is:

dist(P,r) = (xP − r)2 +(yP − r)2, (4.36)

for xP and yP, respectively, the startpoint and endpoint of P.
The add move is constructed so that it constitutes the remove reverse move. As for the

previous move, we select a time point r from r ∼ U(0,T ) and the startpoint and endpoint
of the segment containing r are found. We sample the number of states to add, k, from the
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interval [1,n−1], for n total number of states. Let L be the segment length; we need to sample
k+1 switchpoints and place them on the segment. Therefore, k+1 switchpoints are selected
with probability

k

∏
i=0

(L− i)−1. (4.37)

Furthermore, the probability of selecting a specific state is given by

k−1

∏
i=0

((k−1)− i)−1. (4.38)

By including these probabilities in the Hastings factor, we are now satisfying detailed-
balance and have built a valid sampler.

4.4 Simulation study

We will now give a demonstration of the performance of each method. We apply the methods
on a simple mixture model where at every time point the position is sampled from a normal
distribution N(0,σ). We define two very distinct states corresponding respectively to higher
and lower values of σ : σσσ = [1,5]; the duration of each state is sampled from a gamma distri-
bution with concentration α = 10 and mean m = 250. We optimise the movement parameter
σσσ as well as the gamma tuning parameters.
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Figure 4.5: Trajectories from a simple mixture model. The states are the orange lines.

4.4.1 Virtual state method

In Fig. 4.6 we show the optimised model parameters and in Fig. 4.7 we report the recon-
structed state sequence for the virtual state method. The sampler was run for 5000 steps and
we only show the last 1000 samples in the plot. Note how the concentration parameter is
optimised to 1 and the sampler was unable to reconstruct the true state sequence.
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Figure 4.6: Optimised parameters from the virtual state proposal.
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Figure 4.7: Reconstructed state sequences from the virtual state proposal.

4.4.2 Reversible rescaling method

In Figs. 4.8 and 4.9 we report the results from the reversible rescaling method. The chain
was run for 5000 steps and only the last 1000 samples are shown in the reconstructed state
sequence plot. The reconstructed state sequence was stuck in a sub-optimal configuration.
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Figure 4.8: Optimised parameters from the reversible rescaling method proposal.
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Figure 4.9: Reconstructed state sequences from the reversible rescaling method proposal.

4.4.3 Reversible mutation method

In Figs. 4.10 and 4.11 we show the results from the latest method. Then chain was run for
5000 steps and only the last 1000 samples are shown. As we can see from comparing the
reconstructed state sequence to the true state sequence, the reversible mutation method was
the most successful method.
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Figure 4.10: Optimised parameters from the reversible mutation proposal.
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Figure 4.11: Reconstructed state sequences from the reversible mutation proposal.

4.5 Discussion

We have presented three different generating mechanisms to construct semi-Markov chains.
All of the methods above come with advantages and disadvantages. Our objective was to exit
the well established HMM framework and go beyond the use of exponentially distributed
residence times. In a sense, our aim was to generalise the HMM framework by constructing
a hidden semi-Markov model that employs a gamma distribution instead. From this perspec-
tive, it’s understandably easy to identify the major drawback associated with the virtual state
method.
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Indeed, the main issue with the virtual state method was the reliance on packages whose
built-in functions employ an exponential distribution, given that the residence times in each
state in a continuous-time HMM follow this distribution. This is in direct contrast with our
prior assumption that the duration of each state follows a gamma distribution. Although we
augmented the state-space model with a virtual state that copied previous states to increase
the duration of the sojourn times, we found that this discordance lead to problematic results.
Indeed, the reconstruction of the most likely state sequence was never successful. In the ap-
plication of this method to data representing the location of sheep, we found that new samples
would feature short segments, a feature inherited from the exponential distribution. Although
we included a gamma prior to promote rejection of short segments, the sampler couldn’t quite
recover the true state sequence. This was most likely due to the measurement error and weak
signal from the dataset, and as a consequence the sampler tried to associate each observation
to a different state. On the contrary, when the method was applied to synthetic data gener-
ated by a simple mixture model showing a strong signal, the increase of the sojourn times
lead to rejection of short segments and acceptance of too large residence times, with a mean
residence time fluctuating between 500 and 1200 minutes, as shown in Figs. 4.6 and 4.7.

Furthermore, this leads to a second issue concerning the optimisation of the gamma prior.
Indeed, in the maximisation step of our MCEM framework, the concentration gamma prior
parameter α was always optimised to 1, which is the limiting case of an exponential distribu-
tion. Hence, this encouraged acceptance of short segments, nullifying the use of our gamma
prior. These issues lead us to the conceptualisation of the reversible rescaling method.

For the reversible rescaling method, the choice for such specific moves was driven by
the desire to build a simple model that can efficiently reconstruct the most probable hidden
state sequence and that satisfies the following two criteria: it does not rely on existing HMM
packages leveraging exponential distributions; the proposal mechanism is mathematically
simple, so as to avoid calculation of a possibly expensive Hastings factor. In that sense,
the second method was successful. However, two issues were found. Firstly, the gamma
parameters optimisation did not work effectively. Secondly, the random segment stretch move
did not allow to stretch a segment length to 0. This created issues as the sampler couldn’t
explore all sequences configurations and it was in some cases found to be stuck in sequences
that were not matching the true sequence. Because of this, we did not investigate as to why
the optimisation did not work properly and we opted to create a new method.

The reversible mutation method was born as an effort to go beyond the limitations intrin-
sic to the reversible rescaling method, hence the add/remove moves. These two moves are
defined in tandem but contrary to the birth and death moves described in the Chapter 2, they
do not affect the total number of states. However, this came at the expense of sacrificing the
mathematical simplicity of the second method and ensuring detailed-balance was found to
be a challenging task given the probability of generating sequences for the add and remove
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Figure 4.12: Importance of the Hastings factor. The orange line represents the prior function
that we have sampled from. On the left - the sampler was run without the Hastings factor. On
the right - the Hastings factor was included in the acceptance probability. Down below - the
Hastings factor was included for a 10-state model.
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move were not trivial. As we show in Fig. 4.12, calculation of the Hastings factor was es-
sential for constructing a valid sampler. Here we simply sampled from the prior to verify
that the Hastings factor was correct. For the first two plots we used 2 states and for the last
plot 10 states were used. Once the Hastings factor was included, the sampler was found to
outperform the previous methods (Figs. 4.10, 4.11).

Another drawback of the reversible mutation method is the add move is likely to create
short state segments, although these sequences will be rejected by the prior. In Chapter 5, we
used a modified reversible mutation proposal where at every add or remove step, only one
behavioural segment was either added or removed. This was done to simplify the Hastings
factor on the one hand, and to avoid generating multiple short segments on the other hand.



Chapter 5

Scalable non-Markovian state switching
models for animal movement

The following material is currently under review for publication in the Methods in Ecology

and Evolution journal.
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5.1 Abstract

Observed animal movement trajectories are often the result of a latent process whereby an
animal transitions between discrete behavioural states such as foraging or resting. The stan-
dard approach for analysing multi-state movement data is to employ hidden Markov models
(HMMs) and these models have been used in a wide array of animal movement studies. Re-
cent developments have enabled HMMs to be applied to irregularly sampled data, as well as
providing uncertainty quantification in the inferred latent states. However, all such models
rely on the unrealistic underlying assumption that sojourn times in each behavioural state are
exponentially distributed, meaning there is always a constant probability of leaving a state.

Here, we propose a hidden semi-Markov model where movement is modelled as a continuous-
time integrated Ornstein-Uhlenbeck process and behavioural state transitions are governed by
an arbitrary distribution of sojourn times. We employ a Monte Carlo Expectation-Maximisation
(MCEM) algorithm to reconstruct the hidden state sequences as well as to optimise the pa-
rameters of the movement and state switching dynamics. We apply our framework both to
synthetic data and to telemetry data from free-roaming Merino sheep in Patagonia.

Our method efficiently optimises all parameters of the model, is scalable to large datasets,
and provides a posterior distribution of latent state sequences. Due to our novel inference
methodology we are able to employ a gamma distribution for sojourn times, leading to a
more realistic model of animal behaviour since the probability of leaving a state depends on
the amount of time spent in that state.

Our proposed method builds upon multistate state-space models from the literature but
it is more flexible than standard hidden Markov models approaches in that it allows the user
to choose the distribution of the residence time in each state on a case-by-case basis. By
employing highly optimised machine learning libraries, this methodology is a suitable tool to
efficiently deal with high-volume datasets and will facilitate the analysis of high-resolution
telemetry data which have become more available to movement ecologists in recent years.

5.2 Introduction

The technological advances in the field of movement ecology in recent years have led to
an increasing amount of high-resolution animal tracking data being collected (Nathan et al.,
2022, Cagnacci et al., 2010). As a result, there has been an array of new statistical method-
ologies developed to tackle the challenges associated with the analysis of such large data sets.
A common task in the study of animal movement is identifying changes in movement pat-
terns that can be associated with different behavioural states. Here the canonical challenge
is to segment the data into “states” based on quantitatively different statistical properties of
segments of the full movement trajectory and to reconstruct the sequence of state switches.
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The term state is used as a proxy for a distinct animal behaviour; while movement data pro-
vides high-frequency locations, different behaviours are expected to show as a consequence
of changes in the animals’ activities over longer time-scales, for example a change from an
exploratory behaviour to a resting behaviour.

In the recent years, the task of identifying underlying behavioural states has been tack-
led by employing hidden Markov models (HMMs) (Zucchini et al., 2009), whereby the data
are assumed to be generated by a movement process that is dependent on a latent (there-
fore hidden) behavioural process represented by a Markov chain. HMMs are formulated
either in discrete time or in continuous time and both formulations have their advantages and
disadvantages. Discrete-time HMMs are currently the preferred model due to their mathe-
matical simplicity and easily interpreted parameters. The standard discrete-time formulation
requires the transformation of trajectories into a sequence of steps and turns in polar coordi-
nates (Morales et al., 2004) and modelling the dynamics as an ordered series of step lengths
and turn angles drawn from defined probability distributions. Extensive effort has been put
in the development of user-friendly packages for the researcher designed to tackle switching
problems for telemetry data analysis (Michelot et al., 2016, McClintock and Michelot, 2018).
However, discrete-time models are not ideal tools for the analysis of irregularly-spaced data
or in the presence of non-negligible measurement error (Patterson et al., 2017b, Hooten et al.,
2017b, Michelot and Blackwell, 2019). In particular, they require partitioning of the time do-
main into temporally-regular time steps that must be specified a priori and that are assumed to
match the scale at which behavioural decisions are made (McClintock et al., 2014, Turchin,
1998).

At the expense of some mathematical simplicity, a natural extension of discrete-time
HMMs are models where movement is defined using a continuous-time location process and
the observation process is represented by adding measurement error to the true, noise-free
locations. In a recent work by Michelot and Blackwell (2019), this approach was extended
to a multi-state framework to address switching problems by introducing a hidden process
representing the behavioural process, on which the location dynamics are dependent. The
location process is described by a continuous-time correlated random walk (CTCRW) to
account for autocorrelation of movement; specifically, the location is modeled through an
integrated Ornstein-Uhlenbeck (OU) process (Michelot and Blackwell, 2019, Johnson et al.,
2008), whereas the behavioural process is described by a continuous-time Markov chain.
Continuous-time models don’t require specification of a time scale a priori and can therefore
handle irregularly-spaced data as well as different temporal scales (Patterson et al., 2017b).
This can overcome issues arising from missing data or limitations within the telemetry de-
vices.

While HMMs have seen an increase in popularity in the animal movement community
and have been widely used in switching problems, the Markov property implies underlying
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assumptions on the behavioural process that are non-realistic. In the absence of external
variables that influence the switching behaviour, the residence (or sojourn, dwell) time in
each behavioural state follows an exponential distribution (or geometric, in the discrete-time
counterpart), for which short and frequent state changes are favoured. This implies that
the behavioural process inherits the “memoryless” property of the exponential distribution,
meaning the sojourn times are independent of the amount of time spent in a state. Thus, when
using HMMs it is assumed that the amount of time an animal will remain in a behaviour of,
say, resting does not depend on how long the animal has already rested for. Another drawback
of using the exponential distribution lies in the application of HMMs in an unsupervised
context, whereby the number of states is not defined a priori and is learnt during model
fitting. If the distribution of the residence times is not exponential (or geometric), in other
words if the underlying structure of the model is non-Markovian, as we would typically
expect in most animal movement studies and has been shown empirically in the case of
the distribution of foraging times of beaked whales (Langrock et al., 2013), using model
selection to define the number of states in HMMs is unreliable and expected to favour models
having more behavioural states than there are in reality (Pohle et al., 2017). This can be
avoided by including a non-Markovian structure into the model by using hidden semi-Markov
models which allow for the informed specification of a dwell-time distribution thus relaxing
the assumption of exponentially distributed waiting times (Ruiz-Suarez et al., 2022). For a
comprehensive examination of the pitfalls associated with HMMs, see Glennie et al. (2023).

It is also worth adding that current approaches are not scalable to large datasets due to the
computational burden of standard schemes such as Markov chain Monte Carlo (MCMC) sam-
pling for which evaluation of the full dataset is required at every step of the sampler. These
methods therefore become prohibitively expensive to apply to long-term, high-frequency
telemetry datasets.

Here we propose a novel method scalable to large datasets that can be employed in the
context of switching problems and addresses the intrinsic assumptions of standard HMMs
by introducing a memory in the process. In particular, similarly to Michelot and Blackwell
(2019) we employ a multi-state, CTCRW model where the location process is described by
an integrated OU process, however a continuous-time semi-Markov chain is employed to
describe the behavioural process, thus allowing us to have control over the residence times.
We employ a gamma distribution to model the residence times, nonetheless arbitrary distri-
butions, or mixtures of distributions may be used within our framework. By employing the
gamma distribution, we favour longer sojourn times and effectively introduce a memory in
the switching process by ensuring that the more time spent in a state, the more likely to switch
behaviour.

Our framework is intended to solve two inferential tasks; the first task aims at reconstruct-
ing the most probable hidden state sequence given observed trajectories, whereas the second
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task addresses the recovering of both the behavioural and the location process parameters.
This is done by employing a Monte Carlo Expectation-Maximisation (MCEM) algorithm
that performs the two tasks sequentially, the Expectation step and the Maximisation step. In
the E-step, a Metropolis-Hastings (MH) scheme is used to sample over the distribution of the
latent state sequences to approximate the expectation of the model likelihood. The validity
of the sampler is ensured by introducing a novel state sequence proposal mechanism based
on three different reversible mutation steps that are designed to ensure detailed-balance is
satisfied. In the M-step, the expectation is optimised with respect to the model parameters
which are then updated and used in the subsequent iteration of the algorithm.

The remainder of the paper is structured as follows: in Section 5.3.1 we present the model
formulation for both the movement and the switching processes; in Section 5.3.3 we explain
the inferential algorithm and a pseudocode is given. In Section 5.4 we show the results of the
method applied to both synthetic data and data of Merino sheep free roaming in Patagonia.
We conclude with a discussion of our method.

5.3 Materials and Methods

5.3.1 State-switching movement model

In this paper, we employ a three-layer state-space model where the first layer is the un-
derlying, hidden switching state/behaviour process, the second layer is the location process
which depends on the first layer and the third and final layer is the observation process which
accounts for measurement error. Here we focus on a continuous-time formulation of the
switching process with a discrete state space. In a standard implementation of an HMM, the
switching process is assumed to be described by a Markov chain, for which state changes are
dependent only on the state at the previous time point. For an n-state model, the continuous-
time Markov chain governing the state switches is described by an infinitesimal generator
matrix (IGM)

ΛΛΛ =

−λ11 ... λ1n

... ... ...

λn1 ... −λnn

 , (5.1)

where ∀i, j ∈ {1, . . . ,n}, λii = ∑i̸= j λi j. The parameters λi j represent the rate at which the
state i transitions to state j. As a consequence of the Markov property, the sojourn time
of a state is exponentially distributed with rate parameter λii. Our objective is to relax this
assumption and present a more flexible behavioural process that can take into account bio-
logical factors that reflect on the duration of specific animals’ activities. Therefore, we make
use of a continuous-time semi-Markov chain and we choose to model the sojourn time with
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a gamma distribution parameterised as follows

Gamma
(

α,
α

m

)
, (5.2)

where α is the shape parameter and m is the mean parameter, representing the mean residence
time in a state.

The location process is modeled via an integrated OU process (Michelot and Blackwell,
2019, Johnson et al., 2008), meaning that the velocity is modeled with an OU process and
the position is derived by integration of the velocity model. By equipping the location pro-
cess with an explicit state dependency, the location µµµ(t) and the velocity v(t) are updated
according to the following 2-dimensional stochastic differential equations (SDEs) (Michelot
and Blackwell, 2019),

dµµµ(t) = vvv(t)dt,

dvvv(t) = βi(γγγ i − vvv(t))dt +σidwww(t),
(5.3)

where the parameter βi measures the persistence in the speed and direction of the movement,
σi measures the variability in velocity, www(t) is a Wiener process and γγγ i is the mean veloc-
ity parameter which we take to be zero in all that follows. The subscript i represents the
dependency on state i, meaning different movement characteristics are associated with dif-
ferent state values. For example, lower values of β result into longer-term persistence in the
direction and speed of the movement. Thus, we introduce the vector of model parameters

θθθ = [βββ ,σσσ ,α,m,ω], (5.4)

where

βββ = [β1, ...,βn],

σσσ = [σ1, ...,σn].
(5.5)

The last layer is represented by the observation process, i.e. the observed locations; this is
obtained straightforwardly by augmenting the location process with noise:

y(t) = µµµ(t)+χχχ(t)

χc ∼ N(0,ω2),
(5.6)

where c = x,y represents coordinate axes.



CHAPTER 5. NON-MARKOVIAN STATE SWITCHING 86

5.3.2 Conditional log-likelihood

Let Y = {y1, . . . ,yd} be a trajectory, that is, a set of observed locations, where d is the di-
mension of the set. We refer to Y as the incomplete data set. If knowledge of the hidden
states Z = {z1, . . . ,zd} was available, with zt ∈ {1, . . . ,n}, then we could access the complete
data set {Y,Z}. The hidden states provide a segmentation of the locations into M contiguous
blocks of behaviours. Let {Yi,1, . . . ,Y j,M} be the partitioned trajectory, where superscript
i indicates state dependency. Assuming independency of the segments, it follows that the
conditional likelihood of the trajectory given the hidden states is

p(Y|Z,θθθ) =
M

∏
k=1

p(Yi,k|σi,βi,ω). (5.7)

Since locations are modelled via an integrated OU process, for each segment the likeli-
hood conditional on the behavioural state i

p(Yi,k|βi,σi,ω) (5.8)

follows a multivariate normal distribution N(µµµ0,ΣΣΣ) where µµµ0 is the initial locations and the
covariance matrix is given by (Gardiner, 2009, Paun et al., 2022)

Σst =
σ2

i

2β 3
i

(
2βimin(s, t)−1− e−βi|t−s|+ e−βis + e−βit

)
+ωδst , (5.9)

where s and t are time points of the observations and δst is the Kronecker delta. In application,
we use the conditional log-likelihood

ℓcond = ln p(Y|Z,θθθ). (5.10)

Unlike the incomplete data log-likelihood, the conditional likelihood is tractable. This
will be exploited in our MCEM algorithm to approximately maximise the incomplete log-
likelihood, as explained in the next section.

5.3.3 Monte Carlo EM algorithm

We are faced with the task of reconstructing the history of the hidden behavioural states as
well as recovering the state-dependent movement parameters of the model together with the
measurement error parameters from the telemetry data. For this task, we employ a Monte
Carlo Expectation-Maximisation algorithm (Wei and Tanner, 1990) that enables us to com-
bine a sampler with an efficient stochastic gradient descent (Robbins and Monro, 1951) algo-
rithm.

The Expectation-Maximisation (EM) algorithm is employed for finding maximum likeli-
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hood solutions for probabilistic models having latent variables (Dempster et al., 1977, Bishop,
2006). The algorithm is a two-step iterative algorithm; in the first step, the E-step, the expec-
tation of the complete data log-likelihood is taken with respect to the posterior distribution of
the hidden state sequences, given the current model parameters.

In the second step, the M-step, the expectation is optimised with respect to the model
parameters which are then updated and used during the next E-step. This process is repeated
until convergence. In our settings, the goal is to find maximum likelihood estimates for the
parameter set θ̂θθ as well as the posterior distribution of the hidden state sequence given the
trajectories and θ̂θθ , p(Z|Y, θ̂θθ). To obtain θ̂θθ , we need to maximise the incomplete data log-
likelihood

ln p(Y|θθθ) = ln
(

∑
Z

p(Y|Z,θθθ)p(Z|θθθ)
)

(5.11)

which is generally intractable due to the fact that the number of possible state sequences
increases exponentially with the trajectory length. To estimate ln p(Y|θθθ), we proceed as
follows.

Given any proper probability distribution over the latent variables q(Z), the following
decomposition holds (Bishop, 2006)

ln p(Y|θθθ) = L (q(Z),θθθ)+KL(q(Z)||p(Z|Y,θθθ)), (5.12)

where the quantity

L (q(Z),θθθ) = ∑
Z

q(Z)ln
(

p(Y,Z|θθθ)
q(Z)

)
(5.13)

acts as a lower bound for the incomplete data log-likelihood and

KL(q(Z)||p(Z|Y,θθθ)) =−∑
Z

q(Z)ln
(

p(Z|Y,θθθ)

q(Z)

)
(5.14)

is the Kullback-Leibler divergence between q(Z) and p(Z|Y,θθθ), where KL ≥ 0 and KL = 0
if and only if q(Z) = p(Z|Y,θθθ). Considering a general E-step and supposing the current
parameter value is θθθ

−, the arbitrary q(Z) distribution is set to the posterior distribution of the
latent variables, giving (Bishop, 2006)

L (q(Z),θθθ) =∑
Z

p(Z|Y,θθθ−)ln (p(Y|Z,θθθ)p(Z|θθθ))−∑
Z

p(Z|Y,θθθ−)ln p(Z|Y,θθθ−) (5.15)

that is, the expectation of the complete data log-likelihood with respect to the posterior dis-
tribution of the latent variables given the current parameter estimate θθθ

−. In the M-step, this
quantity is maximised with respect to θθθ

− to give a new parameter value θθθ
+ which is used

in the next E-M cycle. Since the M-step maximises the lower bound (Equation 5.13) and
the E-step pushes the lower bound to the incomplete data log-likelihood because of Equation
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5.14, every single cycle is guaranteed to increase the log-likelihood in Equation 5.12 and
it can be shown (Dempster et al., 1977) that this converges to a zero-gradient point in the
log-likelihood.

In our framework, we replace Equation 5.15 with a numerical approximation using a
Monte Carlo estimate

L (q(Z),θθθ)≈ 1
S

S

∑
i=1

ln (p(Y|Zi,θθθ)p(Zi|θθθ))+ const (5.16)

where the second term in Equation (5.15) is constant with respect to θθθ , Zi ∼ p(Z|Y,θθθ−)

and S is the number of Monte Carlo samples. As this approximation uses samples from the
posterior distribution of Z we are able to direct the Monte Carlo sum towards regions of
higher likelihood; this is akin to importance sampling (refer to Bishop (2006), Section 23.4)
and results in substantially reduced computational cost. This wouldn’t be feasible by using
Equation 5.11 directly, via the Monte Carlo approximation

ln p(Y|θθθ)≈ ln
(

1
S

S

∑
i=1

p(Y|Zi,θθθ)

)
(5.17)

with Zi ∼ p(Z|θθθ), as a finite sample from the prior distribution is very unlikely to include
state sequences Zi for which the argument of the Monte Carlo sum has significant weight,
leading to slow convergence and high estimation variance.

To efficiently optimise the parameter set θθθ , we gather the observations into equally-sized
batches with each batch containing a pre-specified number of trajectories, where this number
could represent the number of trajectories of different animals, the number of trajectories
of the same animal over days or a mixture of both: B = {Y1, . . . ,Yb}, hence we assume
movement parameters are shared across individuals. Then during the E-step we implement
a Metropolis-Hastings step to sample in parallel from the posterior distributions p(Z|Y j,θθθ),
for j = 1, . . . ,b; specifically, only one state sequence (S = 1) is sampled per trajectory, leading
to b samples per E-step. Finally, in the M-step model parameters are optimised based on this
set of samples. To further reduce the computational cost of the algorithm, we don’t run the
optimisation routine until convergence but rather take a single optimisation step based on the
current set of samples. In the next Sections, the Metropolis-Hastings step and the M-step will
be described in detail. A pseudocode of the full MCEM algorithm is given in Algorithm 1.

Metropolis-Hastings sampler

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo algorithm used to obtain
samples for high dimensional target distributions which would otherwise be difficult to sam-
ple from (Hastings, 1970). A new sample x′ is generated via a proposal distribution Q(x′|x)
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and the new sample is accepted according to an acceptance probability. This probability is
specified so that the Markov chain satisfies the detailed-balance condition (Hastings, 1970)
and the stationary distribution of the Markov chain is the target posterior distribution.

In our application, the Metropolis-Hastings sampler is employed to sample from the pos-
terior distribution p(Z|Y,θθθ), needed to estimate Equation 5.16. Let Z− be the current state
sequence sample and ℓ−cond its conditional log-likelihood. At every step of the sampler a new
state sequence sample Z+ is proposed via a generating proposal mechanism Q(·, ·) (a descrip-
tion of the proposal mechanism is found in Section 5.3.3) and it is either accepted or rejected
via the following acceptance ratio

a = min
{

1,
exp(ℓ+cond)p(Z+|θθθ−)

exp(ℓ−cond)p(Z−|θθθ−)

Q(Z−|Z+)

Q(Z+|Z−)

}
, (5.18)

where Q(x′|x) is the probability of generating x′ from x through the proposal mechanism.
p(Z+|θθθ−) and p(Z−|θθθ−) the probabilities associated with the state sequences Z+ and Z−.
These probabilities are calculated by extracting the residence times (namely the segment
length of a partitioned trajectory which is a sufficient statistic) and employing the gamma
distribution in Equation 5.2 as the prior, in accordance with our assumptions on the distribu-
tion of the residence times of the hidden semi-Markov process.

Proposal generating algorithm

A key component of the E-step is drawing samples from the posterior distribution p(Z|Y,θθθ)

which are then accepted or rejected by the MH sampler. Therefore, a proposal mechanism to
generate hidden state sequences samples is needed and a degree of similarity between suc-
cessive samples must be introduced to ensure the efficacy of the sampler. In our algorithm the
first sample is randomly generated by sampling the sojourn times of each state from a gamma
distribution Gamma

(
α, α

m

)
and assuming that for n > 2 each state has equal probability 1

n−1

of being transitioned to. To generate a new proposal based on an existing state sequence, we
construct a proposal generating algorithm based on the following three moves that allow for
a reversible mutation of state sequences:
1) Shift. A transition (switching) point is selected at random and shifted to a new location.
2) Add. One behavioural segment is added.
3) Remove. One behavioural segment is removed.

While the underlying behavioural transitions occur in continuous-time, data observations
are made at discrete intervals and we assume that the sampling frequency is sufficiently high
such that multiple behavioural transitions are very unlikely to occur in the time between
observations. We also assume that residence times can be approximated by considering the
scenario where transitions occur at the time of the first observation of a behavioural segment.

For the shift move, let f be the total number of transition points. Then after selecting a
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transition point s at random with probability 1
f , the transition points immediately before and

after are identified. Let a and b be the two such switchpoints; the new transition point s′ is
selected with discrete uniform probability

1
f
· 1

na,b
obs

, (5.19)

where na,b
obs is the number of observations between a and b. Hence, for any interval [a,b], for

transition points a, b,

p(s′|s) = 1
f
· 1

na,b
obs

= p(s|s′), (5.20)

that is, the shift move is symmetric. We use a discrete uniform probability to account for irreg-
ularly spaced data, so that every time of observation has equal probability of being selected,
whereas a continuous uniform distribution would favour selection of denser observations.

For the add move, a time point r is selected uniformly r ∼ U(0,T ), where T is the last
time point, and the startpoint and endpoint of the behavioural segment (the segment between
two consecutive transition points) containing r are identified; as before, let those points be,
respectively, a and b. The state to add is selected from the n−1 available states and we sample
two switchpoints that define the startpoint and endpoint of the new behavioural segment. To
avoid the situation where an add move becomes equivalent to a shift move, we explore the two
following possible scenarios (see SI for further details). In the first scenario, with probability
n−2
n−1 , the new state is different from the state after b, hence we allow b to define the endpoint
of the new behavioural segment. In this case, two switchpoints are selected from a segment
of length |a−b|= L. In the second scenario, with probability 1

n−1 the selected state is equal
to the state after the switchpoint b. Then the new segment endpoint is not allowed to be b and
the two switchpoints are selected from a segment of length L−1. Thence, the probability of
adding a behavioural segment is given by

L
|Z|

·2
(

1
n−1

1
L−1

1
L−2

+
n−2
n−1

1
L

1
L−1

)
, (5.21)

where |Z| is the sample length. While our proposal scheme may produce very short segments,
these will effectively be filtered out by our gamma prior on the sojourn times (Equation 5.2).

For the remove move, if k is the total number of behavioural segments then the segment to
be removed is selected with probability 1

k . Then the behaviour associated with the removed
segment is set with equal probability either to the behaviour in the next segment or to the
behaviour in the previous segment.

We conclude with a discussion on the validity of our sampler. From Section 5.3.3, we
examine the Hastings ratio

Q(Z−|Z+)

Q(Z+|Z−)
. (5.22)
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In case of a symmetric proposal mechanism, this ratio is 1 and therefore the acceptance ra-
tio in Equation 5.18 simplifies to the ratio of the products of the likelihoods with the priors.
Although the shift move is symmetric, the reversible mutation proposal is overall asymmet-
ric due to asymmetry arising from the add and remove moves. However, these moves are
constructed in tandem and therefore are reversible. This means that if the forward probabil-
ity of generating a new sequence Z+ from an existing sequence Z− through an add move
is given by QA(Z+|Z−), then the reverse probability of generating Z− from Z+ is given by
QR(Z−|Z+), where QA(·|·) and QR(·|·) are the probabilities of proposing samples through,
respectively, an add move and a remove move. Thus, by incorporating these probabilities in
the acceptance ratio, the detailed-balance condition is satisfied.

Optimiser

In the E-step, the expectation of the complete data log-likelihood in Equation 5.15 is approx-
imated with a Monte Carlo estimate for b different trajectories

ζ =
b

∑
j=1

ln (p(Y j|Zi,θθθ)p(Zi|θθθ)), (5.23)

where Zi ∼ p(Z|Y j,θθθ
−). In the M-step, maximisation of ζ with respect to θθθ

− is carried out.
The covariance structure in Equation 5.9, however, presents identifiability issues arising

from weak identifiability of σ and strong identifiability of the ratio σ

β
for larger time values.

To avoid mixture of strongly and weakly identifiable parameters, we reparameterise Equation
5.9 as follows

Σst = σ̃
2
i

τi

2

(
2
τi

min(s, t)−1− e−
|t−s|

τi + e−
s
τi + e−

t
τi

)
, (5.24)

where the new parameters are

σ̃ =
σ

β
, τ =

1
β
. (5.25)

The parameter τ represents the autocorrelation time of the velocity process (Gurarie et al.,
2017), whereas σ̃2 is the long-term (t >> τ) slope of the increase in the expected squared
displacement over time.

We equip the optimiser with a convergence criterion to avoid expenditure of computa-
tional time with no return in improved model likelihood. We specify a minimum improve-
ment threshold ε and a tolerance parameter that controls the number of log-likelihood values
below the threshold that can be accepted. Once the optimisation is stopped, we continue sam-
pling from the latent state sequence posterior distribution with fixed model parameters, thus
treating the optimisation routine as burn-in phase for the sampler. We note that given that we
store the optimisation results for the model parameters at every step, we could also estimate
their uncertainty by calculating the variance of the optimisation outputs.
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Algorithm 1 Pseudo-code for MCEM algorithm
w = 0
opt = True
Set tolerance and minimum threshold ε

Initialise model parameter θθθ
0

Sample initial state sequence Z0 from Eq. 5.2
Calculate initial prior and conditional log-likelihood p(Z0|θθθ 0), ℓ0

cond
while k < steps do

▷ E-step
Propose one sample per trajectory, Zk

Accept Zk with probability a
Update every accepted batch
if opt = True then

if ζ k < ε ∗ζ k−1 then
w+= 1

else
w = 0

end if
▷ M-step

if w < tolerance then
Optimise ζ k with respect to θθθ

k−1

Update parameters
else

opt = False
end if

end if
if opt = False then

k+= 1
end if

end while
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5.3.4 Synthetic data generation

In order to evaluate our framework, we generate synthetic data that matches the movement
model used for inference. We simulate multiple individuals following an integrated OU pro-
cess random walk with behavioural switching occurring at random intervals and the sojourn
times in each behaviour following a gamma distribution. State transitions are equally likely
for all states. For simulations of dynamics we do not numerically integrate Equation 5.3 but
use the exact solutions described in Michelot and Blackwell (2019), Johnson et al. (2008):

vc(t +δ ) = e−βδ vc(t)+ζc(δ )

ζc(δ )∼ N
(
0,σ2(1− e−2βδ )/2β )

(5.26)

and

µc(t +δ ) = µc(t)+ vc(t)
(

1− e−βδ

β

)
+ξc(δ )

ξc(δ )∼ N
(

0,
σ2

β 2

(
δ − 2

β
(1− e−βδ )+

1
2β

(1− e−2βδ )

))
,

(5.27)

where the subscript c = x,y represents Easting and Northing and δ is the time interval. Ob-
servations were fixed at every five minutes and we used additive, independent and identically
distributed zero-mean isotropic Gaussian error for the measurement error.

5.3.5 Empirical data collection

As an example case study for our method, we analyse data collected from a long-term study
of 58 Merino sheep allowed to roam freely in a paddock of 700 hectares. Fieldwork was
conducted at the “Campo Anexo Pilcaniyeu” from INTA (National Institute of Agricultural
Technology) Bariloche, Patagonia, Argentina. The sheep were equipped with collars con-
taining a GPS (CatLog-B, Perthold Engineering www.perthold.de), that was programmed
to record location every five minutes from February 2019 to December 2019, resulting in
approximately 3 million measurements.

5.4 Results

5.4.1 Synthetic data study

In the simulation study, we simulated 8 independent trajectories with 3 latent behavioural
states consisting of 512 observations each with a fixed 5-minute time interval to simulate a
high frequency GPS collar sampling rate. The model parameter vector therefore consisted of
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9 parameters:
θθθ = [τ1,τ2,τ3, σ̃1, σ̃2, σ̃3,α,m,ω] (5.28)

and the true values are displayed in Table 5.1.

Symbol Description True value
τττ Autocorrelation time (60,10,10)
σ̃σσ Long-term RMS displacement (10,299.4,50)
α Gamma shape 10
m Mean residence time 500
ω Measurement error std 0.1

Table 5.1: Table of true model parameter values.

For the early stopping criterion, the minimum improvement threshold ε was set to 0.01%
and the tolerance was set to accept 2000 log-likelihood values below ε , while the sampler
was run for 5000 steps after the optimiser had been stopped. We saved every 10th sample
and used these to calculate the probability of being in each state for each individual and this
is reported in Figure 5.1. In Figure 5.2 we plotted the optimised model parameters.

The sampler was able to reconstruct the underlying state sequences for all trajectories.
Only in the bottom left panel a discrepancy between the true state sequence and the recon-
structed state sequence is shown. As for the optimiser, all parameters were optimised to the
true values except for the gamma shape parameter. This is probably due to the small effective
data size in terms of number of switches (70 switches), hence with a sufficiently large data
set, we expect the maximum likelihood estimations to be asymptotically unbiased (Cramer,
1946).

5.4.2 Merino sheep case study

For the analysis of the telemetry data we selected three sheep and considered their trajectories
from May 1st to May 8th 2019. The trajectories were split into two; the first half contains
data from midnight of May 1st to around 4pm of May 4th, and the second half contains
the remaining locations until approximately 7am of May 8th. This yielded 6 independent
trajectories storing 1024 data points each, equalling a total of 6144 observations.

We considered a model with 2 behavioural states for a total of 7 parameters to optimise,

θθθ = [τ1,τ2, σ̃1, σ̃2,α,m,ω]; (5.29)

we placed a peaked gamma prior on the measurement error to reflect our knowledge on the
GPS factory error of approximately 50 metres. Initial values are shown in Table 5.2.

The first state sequence was constructed by sampling the residence times from Gamma(α0,m0),
then the MCEM algorithm was run by specifying a minimum improvement threshold ε =
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Figure 5.1: Blue solid line: Probability of being in a state. Black dashed line: Ground truth
probability of being in a state.

0.001% and a tolerance of 2000 log-likelihood values below ε for the early stopping crite-
rion. After early stopping the optimiser, the sampler was run for 50000 steps saving every
100th state sequence sample. We used the Adam optimiser (Kingma and Ba, 2017) with
initial learning rate 0.1. We analysed the state sequence samples over a 24-hour window and
reported it in Figure 5.3, whereas in Figure 5.4 the optimised model parameters are plotted.

In our 2-state model, the mean residence time was found to be about 12h, indicating that
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Figure 5.2: Optimised model parameters and associated log-likelihood summed across indi-
viduals. A-B) Optimised τττ and σ̃σσ (solid lines) with corresponding true values (dashed dotted
lines). C-D) Solid lines: optimised gamma parameters α and m; dashed dotted line: true
values. E) Solid line: optimised measurement error standard deviation; dashed dotted line:
true value. F) Total expected complete log-likelihood per optimisation step.

what we see are the daily activity patterns of the sheep; state 1 (red) may be associated with
a foraging or moving behaviour, with an autocorrelation function that decays faster and a
higher speed, whereas state 2 (blue) represents a resting state, with lower speeds and longer
correlated movement. Our results show agreement with a previous analysis that revealed
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Symbol Description Initial value
τττ Autocorrelation time (0.1,2.0)
σ̃σσ Long-term RMS displacement (0.2,2.0)
α Gamma shape 100
m Mean residence time 20
ω Measurement error std 0.045

Table 5.2: Table of initial model parameter values.

Figure 5.3: The 24-hour cycle of activity pattern of the sheep. The black lines represent the
thinned samples for each trajectory. The red line represents the average cyclic pattern across
all individuals over the total time period from May 1st to May 8th. The y-axis shows the state
in which the sheep are throughout a day.

regular daily activity patterns in the sheep behaviour (Torney et al., 2021). These results also
show the daily activity patterns of the sheep, suggesting two clear activity peaks with higher
speeds between 09:00 and 21:00 as shown in Figure 5.3.

To check the convergence of the state sequence samples we ran multiple Geweke con-
vergence tests (Geweke, 1991). Firstly, we considered the Geweke statistic for the full state
sequences, thereby treating the behavioural state at each observation time as a parameter and
comparing the first half of the chain with the second half. We excluded all observation times
for which the chain contained only a single state value throughout, leaving 456 observation
times and associated Geweke statistics. As we found all scores to be well within two standard
deviations of zero (the maximum absolute z-score was 0.89) the diagnostic did not indicate a
lack of convergence (see Fig. S1 for a plot of the values). Secondly, we ran a test on a sum-
mary statistic for the full state sequence, specifically we calculated the average time that the
individual spent in each state for each MCMC sample. This gave 6 Geweke diagnostic val-
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Figure 5.4: Optimised model parameters and associated log-likelihood summed across indi-
viduals. A-B) Optimised τττ and σ̃σσ . C-D) optimised gamma parameters α and m. E) Optimised
measurement error standard deviation. F) Expected complete log-likelihood summed across
trajectories per optimisation step.

ues based on the summary statistic for each trajectory considered and the maximum absolute
z-score was 0.4. Thus there was again no evidence that the chain had failed to converge.
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5.5 Discussion

We have presented a new framework that can infer latent behavioural states as well as recover
the model parameters from a continuous-time, multi-state model of animal movement. The
model is described by a latent continuous-time behavioural process and an observation pro-
cess consisting of a location process augmented with measurement error. A novel degree of
flexibility is introduced in the behavioural process by making use of a continuous-time hid-
den semi-Markov model so that the dwell times are not constrained to follow an exponential
distribution, thus avoiding making unrealistic assumptions on the animals’ state-switching
behaviour. The specification of the residence time distribution is arbitrary and we have used
a gamma distribution in our work as its properties make up for more realistic assumptions
on the animals’ behaviour - thus our method may be regarded as a generalisation of standard
hidden Markov models. However this specification can be changed on a case-by-case basis to
accommodate the ecologist’s prior assumptions. For example, in this work we have assumed
that the residence time in each behavioural state follows the same distribution, however in or-
der to introduce heterogeneity in the sojourn times each state could be assigned to a different
distribution, or a bimodal distribution could be employed instead.

Our inference scheme was developed to overcome the computational limitations of ex-
isting methods. This was achieved by employing an MCEM algorithm whereby the non-
analytical E-step was approximated by a Monte Carlo sum and the non-analytical M-step by
a stochastic gradient descent scheme. Existing state-of-the-art methods that use continuous-
time models perform inference of model parameters via maximum likelihood estimation us-
ing the Kalman filter (Michelot and Blackwell, 2019, Johnson et al., 2008) in combination
with a hybrid MCMC scheme aimed at reconstructing the latent state sequence (Michelot
and Blackwell, 2019, Blackwell, 2003). The scheme is a Metropolis-within-Gibbs sampling
scheme and each iteration of the algorithm consists of an update for three groups, respectively
an update for the underlying state sequence, an update for the movement parameters and an
update for the transition rates of the IGM. Although such methods benefit from a proper un-
certainty quantification in the parameter estimations, MCMC sampling schemes notoriously
perform slowly with large datasets and calculation of the likelihood requires utilisation of
the whole dataset. Given the increasing availability of high-frequency data and the improve-
ments in the machine learning field, we believe that putting effort in the creation of an animal
movement model that can leverage highly optimised machine learning libraries to fully make
use of large datasets should be prioritised.

These innovations expand the array of methodologies available to the ecologists and we
believe this method will positively impact new telemetry analyses as leveraging the informa-
tion of big data is key to an increased understanding of animal movement.



Chapter 6

Applications to collective movement

In this chapter, we will revisit a concept introduced back in Chapter 3 and we will address

the question of identifying the behavioural switches occurring at the group level applying the

method developed in Chapter 5.
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6.1 Introduction

In Chapter 3 we introduced a one-dimensional, self-propelled particle (SPP) model that was
used to model the dynamics of desert locusts placed in a ring-shaped arena during an ex-
periment (Buhl et al., 2006). By simulating the micro-level dynamics, we were then able to
extract macro-level information about the group, specifically the group average velocity, and
we showed how the group dynamics manifested two metastable states representing respec-
tively ordered movement towards the left and ordered movement towards the right (Campioni
et al., 2020). The group average velocity was therefore an indicator of the degree of order
in the locusts’ group: values approaching |1| were an indicator of ordered, cohesive motion,
namely the locusts moved in the same direction, whereas values around 0 were indicative of
chaotic, disordered movement.

In Chapter 5 we developed a model aimed at reconstructing the history of changes in the
behaviour of the animal, where in this context the word behaviour is synonym with different
movement patterns. Starting from relocation data, we were able to individually reconstruct
the daily activity patterns of three sheep during the first 8 days in May, and we showed how
the three sheep were consistently active between 9am and 9pm and resting overnight. Follow-
ing the idea introduced in Chapter 3, it would then be interesting to extract an order parameter
(that is, the group-level metric) from the individual trajectories of the sheep flock and use it
with the non-Markovian model described in Chapter 5 to identify the different group-level be-
haviours to see whether the behaviours that we identified with the three sheep were irregular
patterns or whether the whole group adheres to those specific movement patterns.

In the subsequent sections we describe the dataset that we have used as well as the method
employed for the analysis.

6.2 Materials and methods

In this section we are going to describe the dataset that we have used, we show how we extract
the order parameter from the group and we describe the methodological framework that we
employed for the analysis.

6.2.1 Data and data pre-processing

The data was collected from a long-term study of 58 female Merino sheep allowed to roam
freely in a paddock of 700 hectares. Fieldwork was conducted at the “Campo Anexo Pil-
caniyeu” from INTA (National Institute of Agricultural Technology) Bariloche, Patagonia,
Argentina. All sheep were equipped with collars containing a GPS (CatLog-B, Perthold En-
gineering www.perthold.de), that was programmed to record location every five minutes
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from February 2019 to December 2019, resulting in approximately 4 million measurements.
Age and physical health were also recorded.

Some tags were faulty and did not work for the whole time span. In the effort to estab-
lish whether the movement patterns identified in Chapter 5 are characteristic of the whole
sheep flock, we scanned the dataset and looked for a time window containing the most in-
dividuals. This was found to be in the first weeks of March, where we have records of 53
individuals out of the 58 total. We disregarded observations with associated HDOP>2 as well
as consecutive observations that were associated with step lengths greater than 1 kilometer
over a 5-minute interval. We selected the first 4096 fixes for each sheep, equalling 217088
observations ranging from March 1st to March 17th.

6.2.2 Order parameter

The scope of employing an order parameter is to extract group-level information that we can
use to detect the group’s different movement patterns. Given that the dataset contains the
individual locations of 53 individuals belonging to the same sheep flock, to extract group-
level information we take a bottom-up approach (Patterson et al., 2017a), that is, we extract
an order parameter from the individual-level measurements. This group-level metric will be
used for characterising and quantifying the degree of order or coordination within the group.
We proceed as follows.

We start by calculating the velocity for each individual using numerical differentiation.
Then, we establish a 5-minute time window, effectively creating a discrete moving average
filter. Within this window, we group together all the individual velocities and their corre-
sponding time points, a process applied to all the time series.

Once we have collected these grouped observations, we compute the average velocity
over each 5-minute interval and consider its modulus, thus our order parameter is defined by
the following equation:

φt =

∣∣∣∣ 1
N̄t

N̄t

∑
i=1

vi,t

∣∣∣∣, (6.1)

where the time index t is taken over evey five minutes and N̄t represents the total number of
individuals measured at time t, which may vary due to potential missing data.

By taking the absolute value of the group’s average velocity, we gain insight into the
degree of cohesiveness in the group. Indeed, higher values of φt correspond to more ordered
movement, meaning the group moves together in the same direction (Vicsek et al., 1995).
Conversely lower values of φt are related to more chaotic, disordered movement, where each
individual moves independently of one another. We plot the order parameter in Fig. 6.1,
where we can see that the group tends to move quite slowly during the first weeks of March,
never exceeding a speed of 2km/h. Note that lower values of φt may indicate either chaotic
movement or absence of movement.
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Figure 6.1: The extracted order parameter. This is the modulus of the group average velocity
calculated over fixed five-minute intervals, Eqn. 6.1.

6.2.3 Flexible MCEM

In Chapter 5 we introduced a novel model of animal movement based on a movement process
described, by continuous-time correlated random walk (CTCRW) model, and a latent non-
Markovian process on which the movement parameters are dependent. A novel flexibility
of the model was introduced by modelling the distribution of the sojourn times of each state
with an arbitrary distribution chosen by the practitioner on case-to-case basis. However,
the underlying assumptions of that model are firstly that each state is identically distributed,
and secondly that the residence time in each state is the same. This might not be ideal in
certain scenarios, for example in the study of air-breathing marine mammals in which case
we know that the residence time of the dive-in behaviour is different to the residence time of
the breathing behaviour.

For this chapter, we introduce a further layer of flexibility in the model introduced in
Chapter 5 by modelling the sojourn time in each state by its own probability distribution. That
means that for an n-state model we will define n prior distributions on the residence times of
each state and optimise their parameters independently. Although this implies that we are now
optimising more parameters and therefore we could potentially increase the computational
cost of the algorithm, by doing do we efficiently augment the model with a greater degree of
flexibility which we believe will be also beneficial to the general practitioner.

6.3 Results

Given that our aim is to identify the switches between ordered and disordered movement
identified by higher and lower values of φt , respectively, we employ a two-state model and
we specify a gamma distribution for each state to model the residence times in each state



CHAPTER 6. APPLICATIONS TO COLLECTIVE MOVEMENT 104

Figure 6.2: QQ plot to check whether our assumption that a log-normal distribution for the
order parameter is consistent with the data is true. The data distribution and the log-normal
distribution agree except for one outlier. This may be due to the noisy nature of the data.

independently. Furthermore, given that the values of the order parameter are positive, we
employ a log-normal distribution Lognormal(µ,σ) for the conditional likelihood, where if a
random variable X ∼ Lognormal(µ,σ) then the parameters µ and σ represent the mean and
standard deviation of ln(X). As we can see in the QQ plot in Fig. 6.2, our assumption that a
log-normal distribution is consistent with the data is verified except for one outlier.

In Fig. 6.3 we plot the order parameter together with the probability of being in state
2 across the first weeks of March. We divided the trajectory into 4 subplots that contain,
respectively, the values of the order parameter from March 1st to March 5th, from March 5th
to March 9th, from March 9th to March 12th and from March 12th to March 15th. In in Fig.
6.4 we report the optimised model parameters. Similarly to what we did in Chapter 5, we ran
the sampler by specifying an early stopping criterion with a 0.001% improvement threshold.

As we can see, the sheep flock exhibits similar dynamics to the individual dynamics found
in Fig. 5.3: the group is more active during daytime (state 1) and less active during nighttime
(state 2), represented by different parameter combinations for the log-normal distribution.
Specifically, lower standard deviation values and higher mean values are associated with the
active state and higher standard deviation values and lower mean values are associated with
the resting state. However, given the additional flexibility that this model has, through which
each state is modelled by a different distribution, we can see how the sheep are not always
active between 9am and 9pm but also rest in between. This is reflected by the optimised
sojourn time prior distribution parameters. Indeed, the gamma parameters for state 1 were
α = 15, mean = 4h, whereas the values for state 2 were α = 2 and mean = 9h, which can be
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Figure 6.3: Order parameter (orange) together with the probability of being in state 2 (blue).

seen in Fig. 6.3, where in some cases the sojourn in state 2 is longer than the sojourn in state
1 and we can also see how the group alternates between the resting state and the active state
between 9am and 9pm, but it consistently rests overnight. We plot a kernel density estimation
for the distribution of the residence times in each state in Figs. 6.5 and 6.6.

6.4 Discussion

In this chapter, we extracted an order parameter from the dataset containing the positions
of sheep belonging to the same flock. We then modified the non-Markovian method from
Chapter 5 by defining a prior distribution for each state and applied it to the order parameter.
The results were in agreement with the results from Chapter 5, however the latest results may
be indicative that the previous method may have lacked enough flexibility to capture the state
switches occurring between the sheep active hours.

This immediately suggests a future route for this work: we could apply the more flexible
method to the individual trajectories and compare the new results with the old results from
Chapter 5. Furthermore, given the availability of individual trajectories, we could leverage
both the individual analysis of the sheep and the group-level analysis to investigate the be-
havioural ecology of the group. Specifically, we could answer questions concerning the driv-
ing intra-group relationship of the group, meaning we could investigate whether the sheep
flock manifests leader-follower dynamics or whether the sheep move randomly.
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Figure 6.4: Optimised model parameters for the order parameter analysis. A-B) optimised
log-normal distribution parameters µ and σ ; C-D) optimised gamma parameters for each
state; E) total log-likelihood; F) total log-likelihood without the first 100 values for a better
visualisation.

Generally speaking, delving into the intricacies of leadership in animal groups is far from
a straightforward endeavour. The path is fraught with challenges - technological, analytical
and conceptual (Strandburg-Peshkin et al., 2018) - that have always posed a challenge to
our quest to understand this central aspect of social living. However, we believe that by
leveraging the availability of our high-frequency dataset, which stands as a doorway to the
minute-to-minute life activities of the sheep, and the scalable, flexible non-Markovian model
that we have developed, we could be in the position to perform more thorough analyses and
address more profound questions regarding the behavioural ecology of the sheep flock.

In the literature we find different methods that are aimed at assessing whether a group of
animals present a leader (Strandburg-Peshkin et al., 2018). One way to identify the presence
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Figure 6.5: Kernel density estimation for the distribution of the residence times in state 1.

Figure 6.6: Kernel density estimation for the distribution of the residence times in state 2.

of a leader is to consider the intra-group spatial position of individuals. In particular, accord-
ing to this criterion, a leader is associated with the individual that is placed in front of the
group during transitions. This is an easy way to establish the presence of a leader, and it has
been employed in many studies, such as in a study of spotted hyenas (Smith et al., 2015).
However, the disadvantage of this method is that being at the front-most position does not
necessarily imply influence or leadership. A second method takes into account the changes
in direction; specifically, time-lagged correlation between any two individuals’ headings (or
some other metric of direction) is calculated and used to recreate a leader-follower network
(Nagy et al., 2010). However, this approach requires that the animals are continuously on
the move so that their directional changes have significance. If the animals aren’t well-
coordinated in their movements, it becomes challenging to reliably measure correlations in
their travel directions because they might be mistaken for random noise (Strandburg-Peshkin
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et al., 2018).
Another method assesses leadership in a complementary way (Strandburg-Peshkin et al.,

2018) - from the outcome of decision. That means, given that the group has reached the
destination, what individuals have benefited from this decision the most? This method, how-
ever, presents many drawbacks as knowing the preferred locations of each individual is not
always possible, and even if it was, in the scenario where the group has reached a location
preferred by two or more individuals, it is not possible to infer which animal has exerted the
most influence.

Given the nature of the data and the applicability of our method, we believe that the best
approach to identifying a leader in the sheep flock would be to identify a potential movement-
initiator. In the studies that used this criterion, they labelled as leader who initiated movement
at the departure from either sleeping locations (Stueckle and Zinner, 2008) or foraging sites
(Tokuyama and Furuichi, 2017). Thus, as a step forward for our research, we could apply
the method to the individual trajectories and then, by comparing the reconstructed individual
switches to the reconstructed group-level switches, we would be in the position to assess
whether the movement is repeatedly initiated by the same individual, or individuals, or not.



Chapter 7

Conclusions

This thesis has been focused on statistical modelling of animal movement. The methodolog-
ical contributions that we have given are found in Chapters 3-5, and in Chapter 6 we have
analysed telemetry data representing the location of Merino sheep with the method introduced
in Chapter 5.

In Chapter 3, we have introduced a novel statistical framework in the context of multi-
scale inference, that is, inference that links macroscale properties to microscale properties.
Specifically, our method performs inference of microscale parameters from macroscale mea-
surements of interacting systems. We have used concepts from equation-free modelling
(Kevrekidis et al., 2003) and augmented those ideas with sparse Gaussian process regres-
sion (Gardner et al., 2018), which has enabled us to get approximations of the probability
density of macroscale observations, while simultaneously calculating the associated uncer-
tainty caused by the use of a finite number of microscale simulations coming from the lift

equation-free move. This has allowed us to construct a fast, adaptive MCMC sampler that
employs a second Gaussian process to emulate the log-likelihood surface. In particular, we
have employed an adaptive Metropolis-Hastings algorithm that was based on Conrad et al.
(2016) with several modifications. Notably, the local Gaussian process approximation was
replaced with a sparse Gaussian process that allowed us to use multiple samples from the
stationary probability posterior distribution for each parameter set, saving us from spending
computational effort to run microscale simulations at each step of the sampler. By passing
these multiple samples into the algorithm, the emulator GP was able to learn an effective
observation noise in the simulator that arises due to the stochastic nature of the microscale
model.

Although we have applied our framework to a simple one-dimensional simulation model,
our approach can be applied to any multiscale system that can be modelled at the microscale
but can only be easily observed at the macroscale. Hence, an interesting future development
of the method could extend the framework to those higher-dimensional macroscale systems
for which the presented ideas of using GPs to approximate the unavailable stationary proba-
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bility density of interacting systems would hold.
The novel statistical framework presented in Chapter 5 tackles a different inferential task.

The aim was indeed to create a statistical framework that could solve the so-called switching
problem, that is, assigning each observation to a different state, which is a proxy of an animal
behaviour, based on quantitatively different characteristic of the observations. In the litera-
ture, hidden Markov models are the standard tool employed in this context. This model is
formulated in discrete-time and is intuitive to apply, however lacks of flexibility as the dwell
times in the states are constrained to follow a geometric distribution. Our aim has therefore
been to create a flexible model that allowed for different distributions to be used and that was
scalable to large datasets.

This was achieved by employing a latent continuous-time semi-Markov model to model
the behavioural process and an integrated OU process to model the location process, which
was then augmented with measurement error. Employing a semi-Markov process allowed us
to introduce a novel degree of flexibility; we were able to reconstruct the history of the state
switches as well as optimise the model parameters by employing a Monte Carlo Expectation-
Maximisation (MCEM) algorithm. To this end, a semi-Markov chains generator was needed
as we proposed new state sequences at each step of the algorithm. Chapter 4 was dedicated
to illustrating the different strategies we adopted as proposal mechanisms, and that were not
successful. The algorithms therein presented were the virtual state method, which tended to
propose short-segments state sequences, the reversible rescaling method, that was equipped
with 3 moved that didn’t allow the algorithm to explore all state sequence configurations, and
the reversible mutation method, which was the method that was employed in the MCEM al-
gorithm. Our MCEM based method was also able to overcome the computational limitations
of existing methods. Indeed, state-of-the-art methods rely on MCMC sampling techniques
that notoriously perform slowly with large datasets given the need to use the whole dataset to
calculate the model likelihood.

The MCEM framework was further expanded in Chapter 6, where the residence time for
each state was modelled by a different probability distribution. This method was used to
analyse a group-level metric described by the modulus of the group average velocity taken
every five minutes. This order parameter was indicative of the degree of cohesiveness in the
movement of the sheep, and we therefore defined a 2-state model for identifying the switches
between higher values of the order parameter (associated with more ordered movement) and
lower values of the order parameter (associated with more disordered movement).

As discussed in Chapter 6, future work could investigate the behavioural ecology of the
sheep flock by comparing the individual switches to the order parameter switches in the
effort to identify a leader. Another nice future investment on this project could lead to the
creation of a user-friendly package to incentivise the movement ecologists to use the powerful
machine learning libraries from TensorFlow, which make handling large dataset relatively
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straightforward by constructing data input pipelines. This would enrich future research as we
believe leveraging the information of big data is key to an increased understanding of animal
movement.



Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. Tensorflow: A system for large-scale machine learning. In
12th {USENIX} symposium on operating systems design and implementation ({OSDI}
16), pages 265–283, 2016.

Anderson, P. W. More is different. Science, 177(4047):393–396, 1972.

Andrieu, C. and Roberts, G. O. Particle Markov chain Monte Carlo methods. The Annals

of Statistics, 37(2):697 – 725, 2009. doi: 10.1214/07-AOS574. URL https://doi.

org/10.1214/07-AOS574.

Andrieu, C., Doucet, A., and Holenstein, R. The pseudo-marginal approach for efficient
Monte Carlo computations. Journal of the Royal Statistical Society, Series B, 37(72):269–
342, 2010.

Batz, P., Ruttor, A., and Opper, M. Approximate Bayes learning of stochastic differential
equations. Physical Review E, 98(2):022109, 2018.

Bellomo, N., Bellouquid, A., Tao, Y., and Winkler, M. Toward a mathematical theory of
Keller–Segel models of pattern formation in biological tissues. Mathematical Models and

Methods in Applied Sciences, 25(09):1663–1763, 2015.

Benhamou, S. Detecting an Orientation Component in Animal Paths when the Preferred
Direction is Individual-dependent. Ecology, 87(2):518–528, 2006. doi: https://doi.org/10.
1890/05-0495.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Blackwell, P. G. Bayesian Inference for Markov Processes with Diffusion and Discrete Com-
ponents. Biometrika, 90(3):613–627, 2003.

Blackwell, P. Random diffusion models for animal movement. Ecological Modelling, 100
(1):87–102, 1997. ISSN 0304-3800.

112

https://doi.org/10.1214/07-AOS574
https://doi.org/10.1214/07-AOS574


BIBLIOGRAPHY 113

Bogdan Doytchinov and Rachel Irby. Time Discretization of Markov Chains. Pi Mu Epsilon

Journal, 13:69–82, 2010.

Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., and Simpson,
S. J. From Disorder to Order in marching locusts. Science, 312(5778):1402–1406, 2006.
doi: 10.1126/science.1125142.

Cagnacci, F., Boitani, L., Powell, R. A., and Boyce, M. S. Animal ecology meets GPS-based
radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transac-

tions of the Royal Society B: Biological Sciences, 365:2157–2162, 2010.

Campioni, N., Husmeier, D., Morales, J. M., Gaskell, J., and Torney, C. J. Modelling
multiscale collective behavior with Gaussian processes. Proceedings of the Second In-

ternational Conference on Statistics: Theory and Applications (ICSTA’20), 2020. doi:
10.11159/icsta20.124.

Campioni, N., Husmeier, D., Morales, J., Gaskell, J., and Torney, C. J. Inferring microscale
properties of interacting systems from macroscale observations. Phys. Rev. Res., 3:043074,
Oct 2021. doi: 10.1103/PhysRevResearch.3.043074.

Coffey, W. T. and Kalmykov, Y. P. The Langevin Equation. WORLD SCIENTIFIC, 3rd
edition, 2012. doi: 10.1142/8195.

Colebank, M. J., Paun, L. M., Qureshi, M. U., Chesler, N., Husmeier, D., Olufsen, M. S., and
Fix, L. E. Influence of image segmentation on one-dimensional fluid dynamics predictions
in the mouse pulmonary arteries. Journal of The Royal Society Interface, 16(159), 2019.

Conrad, P. R., Marzouk, Y. M., Pillai, N. S., and Smith, A. Accelerating asymptotically exact
MCMC for computationally intensive models via local approximations. J Am Stat Assoc,
111(516):1591–1607, 2016.

Cramer, H. Mathematical methods of statistics. Princeton University Press Princeton, 1946.

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of simulation-based inference. Pro-

ceedings of the National Academy of Sciences, 117(48):30055–30062, 2020a. ISSN 0027-
8424. doi: 10.1073/pnas.1912789117.

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of simulation-based inference. Pro-

ceedings of the National Academy of Sciences, 2020b.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2:303–314, 1989.



BIBLIOGRAPHY 114

Czirók, A., Barabási, A.-L., and Vicsek, T. Collective Motion of Self-Propelled Particles:
Kinetic Phase Transition in One Dimension. Phys. Rev. Lett., 82:209–212, Jan 1999.

Demirel, G., Vazquez, F., Böhme, G., and Gross, T. Moment-closure approximations for
discrete adaptive networks. Physica D: Nonlinear Phenomena, 267:68–80, 2014.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data
via the EM algorithm. Journal Of The Royal Statistical Society, Series B, 39:1–38, 1977.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B.,
Alemi, A., Hoffman, M., and Saurous, R. A. Tensorflow distributions. arXiv preprint

arXiv:1711.10604, 2017.

Durbin, J. and Koopman, S. J. Time Series Analysis by State Space Methods. Oxford Univer-
sity Press, 2012.

Gardiner, C. Stochastic methods, volume 4. Springer Berlin, 2009.

Gardner, P., Rogers, T. J., Lord, C., and Barthorpe, R. J. Sparse Gaussian Process Emulators
for Surrogate Design Modelling. In Applied Mechanics and Materials, volume 885, pages
18–31. Trans Tech Publ, 2018.

Gaskell, J., Campioni, N., Morales, J. M., Husmeier, D., and Torney, C. J. Inferring the inter-
action rules of complex systems with graph neural networks and approximate Bayesian
computation. Journal of The Royal Society Interface, 20(198):20220676, 2023. doi:
10.1098/rsif.2022.0676.

Geweke, J. F. Evaluating the accuracy of sampling-based approaches to the calculation of
posterior moments. Technical Report 148, Federal Reserve Bank of Minneapolis, 11 1991.

Glennie, R., Adam, T., Leos-Barajas, V., Michelot, T., Photopoulou, T., and McClintock,
B. T. Hidden Markov models: Pitfalls and opportunities in ecology. Methods in Ecology

and Evolution, 14(1):43–56, 2023. doi: https://doi.org/10.1111/2041-210X.13801.

Goldberg, P. W., Williams, C. K., and Bishop, C. M. Regression with input-dependent noise:
A Gaussian process treatment. In Advances in neural information processing systems,
pages 493–499, 1998.

Gramacy, R. B. Surrogates: Gaussian Process Modeling, Design, and Optimization for the

Applied Sciences. CRC Press, 2020.

Green, P. J. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model
Determination. Biometrika, 82(4):711–732, 1995.



BIBLIOGRAPHY 115

Gurarie, E., Fleming, C. H., Fagan, W. F., Laidre, K. L., Hernandez-Pliego, J., and
Ovaskainen, O. Correlated velocity models as a fundamental unit of animal movement:
synthesis and applications. Movement Ecology, 5, 2017. doi: 10.1186/s40462-017-0103-3.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning.
Springer New York, NY, 2 edition, 2 2009. ISBN 978-0-387-84857-0. doi: 10.1007/
978-0-387-84858-7.

Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 04 1970.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian Processes for Big Data. ArXiv,
abs/1309.6835, 2013.

Hobolth, A. and Stone, E. A. Simulation from Endpoint-Conditioned, Continuous-Time
Markov Chains on a Finite State Space, with Applications to Molecular Evolution. The

Annals of Applied Statistics, 3(3):1204–1231, 2009. ISSN 19326157, 19417330.

Hooten, M., Johnson, D., McClintock, B., and Morales, J. Animal Movement: Statistical

Models for Telemetry Data. CRC Press, 2017a. ISBN 9781466582156.

Hooten, M., King, R., and Langrock, R. Guest Editor’s Introduction to the Special Issue on
“Animal Movement Modeling". Journal of Agricultural, Biological, and Environmental

Statistics, 22:224–231, 2017b.

Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Net-

works, 4:251–257, 1991.

Ito, K. and McKean, H. P. Diffusion Processes and their Sample Paths. Journal of the London

Mathematical Society, s1-42(1):186–187, 1967. doi: https://doi.org/10.1112/jlms/s1-42.1.
186b.

Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. Continuous-time Correlated
Random Walk Model for Animal Telemetry Data. Ecology, 89:1208–1215, 2008.

Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems. Transactions

of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

Kelly, F. and Yudovina, E. Stochastic networks. Stochastic Networks, 01 2012.

Kerman, S., Brown, D., and Goodrich, M. A. Supporting human interaction with robust
robot swarms. In 2012 5th International Symposium on Resilient Control Systems, pages
197–202, 2012.



BIBLIOGRAPHY 116

Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidid, P. G., Runborg, O., Theodoropou-
los, C., et al. Equation-free, coarse-grained multiscale computation: Enabling mocroscopic
simulators to perform system-level analysis. Communications in Mathematical Sciences,
1(4):715–762, 2003.

King, A. A., Nguyen, D., and Ionides, E. L. Statistical Inference for Partially Observed
Markov Processes via the R Package pomp. Journal of Statistical Software, Articles, 69
(12):1–43, 2016. ISSN 1548-7660. doi: 10.18637/jss.v069.i12. URL https://www.

jstatsoft.org/v069/i12.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv, 2017.

Kullback, S. and Leibler, R. A. On Information and Sufficiency. The Annals of Mathematical

Statistics, 22(1):79 – 86, 1951. doi: 10.1214/aoms/1177729694.

Langrock, R., Marques, T., Baird, R., and Thomas, L. Modeling the Diving Behavior of
Whales: A Latent-Variable Approach with Feedback and Semi-Markovian Components.
Journal of Agricultural, Biological, and Environmental Statistics, 19:82–100, 03 2013.
doi: 10.1007/s13253-013-0158-6.

Lázaro-Gredilla, M. and Titsias, M. K. Variational heteroscedastic Gaussian process regres-
sion. In ICML, 2011.

Levine, R. A. and Casella, G. Implementations of the monte carlo em algorithm. Journal of

Computational and Graphical Statistics, 10:422–439, 2001.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-
Villagrá, P., Ghahramani, Z., and Hensman, J. GPflow: A Gaussian process library using
TensorFlow. Journal of Machine Learning Research, 18(40):1–6, apr 2017.

McClintock, B., Johnson, D., Hooten, M., Ver Hoef, J., and Morales, J. When to be dis-
crete: the importance of time formulation in understanding animal movement. Movement

Ecology, 2:21, 10 2014. doi: 10.1186/s40462-014-0021-6.

McClintock, B. T. and Michelot, T. momentuHMM: R package for generalized hidden
Markov models of animal movement. Methods in Ecology and Evolution, 9(6):1518–1530,
2018. doi: 10.1111/2041-210X.12995.

Meinhardt, H. Models of Biological Pattern Formation. Academic Press, 1982.

Meinhold, R. J. and Singpurwalla, N. D. Understanding the Kalman Filter. The American

Statistician, 37(2):123–127, 1983. ISSN 00031305.

https://www.jstatsoft.org/v069/i12
https://www.jstatsoft.org/v069/i12


BIBLIOGRAPHY 117

Michelot, T., Langrock, R., and Patterson, T. A. moveHMM: an R package for the statistical
modelling of animal movement data using hidden Markov models. Methods in Ecology

and Evolution, 7(11):1308–1315, 2016.

Michelot, T. and Blackwell, P. G. State-switching continuous-time correlated random walks.
Methods in Ecology and Evolution, 10:637–649, 2019.

Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. Extracting more
out of relocation data: Building movement models as mixtures of random walks. Ecology,
85:2436–2445, 2004.

Murphy, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.

Nagy, M., Akos, Z., Biro, D., and Vicsek, T. Hierarchical group dynamics in pigeon flocks.
Nature, 464:890–3, 04 2010. doi: 10.1038/nature08891.

Nathan, R., Monk, C. T., Arlinghaus, R., Adam, T., Alós, J., Assaf, M., Baktoft, H.,
Beardsworth, C. E., Bertram, M. G., Bijleveld, A. I., Brodin, T., Brooks, J. L., Campos-
Candela, A., Cooke, S. J., Gjelland, K. , Gupte, P. R., Harel, R., Hellström, G., Jeltsch, F.,
Killen, S. S., Klefoth, T., Langrock, R., Lennox, R. J., Lourie, E., Madden, J. R., Orchan,
Y., Pauwels, I. S., Říha, M., Roeleke, M., Schlägel, U. E., Shohami, D., Signer, J., Toledo,
S., Vilk, O., Westrelin, S., Whiteside, M. A., and Jarić, I. Big-data approaches lead to an
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