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1 Introduction

This thesis will define quantum equivariant Kostka numbers and then go on to look at some of the
different methods that exist to calculate them.

Ordinary Kostka numbers, Kλ,µ where λ and µ are partitions, count the number of semi-standard
Young tableaux of shape λ and weight µ. Here λ can be a skew partition. See the text books
[Ful97] and [Mac95] for details. This means that the tableaux have λi boxes in the ith row and µj
of its entries are j. Ordinary Kostka numbers also give the coefficients in the following sum

eµ1(x) · · · eµl(x)sν(x) =
∑
λ

Kλ/ν,µsλ′(x), (1.1)

where λ′ is the conjugate partition of λ, the er are the elementary symmetric polynomials, and
the sλ are the Schur polynomials in the ring of symmetric polynomials [Mac95], [Ful97]. The
Grassmannian is the variety of k-dimensional subspaces in an n-dimensional vector space, V , which
we will denote as Gr(k, n) or Grk(V ). The cohomology ring of the Grassmannian has a presentation
as a quotient of the ring of symmetric polynomials, and in this presentation Schur polynomials can
be identified with Schubert classes in the cohomology ring of the Grassmannian, [Ful97].

The ring of symmetric polynomials can be generalised to the ring of factorial symmetric polynomials,
and Schur polynomials can be generalised to factorial Schur polynomials [Mac92]. The equivariant
cohomology ring of the Grassmannian has a presentation as a quotient of the ring of factorial
symmetric polynomials due to Mihalcea [Mih08]. The factorial Schur polynomials can be identified
with Schubert classes in the T-equivariant cohomology ring of the Grassmannian, where T is a
maximal torus of Gl(n) for the Grassmannian Grk(Cn). There is, therefore, an analogous definition
for equivariant Kostka numbers which involve these factorial Schur polynomials.

The quantum equivariant cohomology ring of the Grassmannian also has a presentation as a quo-
tient of the ring of factorial symmetric polynomials. This quotient involves an extra parameter q,
which we may set to 0 to recover the T-equivariant cohomology ring of the Grassmannian. Once
again, the factorial Schur polynomials can be identified with the Schubert classes in the quantum
equivariant cohomology ring of the Grassmannian, and we can look at the analogous formula for
Kostka numbers. This is how we define the quantum equivariant Kostka numbers.

Several ways already exist in the literature to calculate the quantum equivariant Kostka numbers.
For example, Bertiger et al have a method in [BEMT22] involving Young diagrams which can be
used to calculate the quantum equivariant Kostka numbers. Gorbounov and Korff have a method in
[GK14] which utilises lattice models to calculate the quantum equivariant Kostka numbers. Knutson
and Tao defined puzzles in [KT03] which can be used to calculate the ordinary Kostka numbers and
the equivariant Kostka numbers. Buch has a method involving different puzzles in [Buc15] which
can be used to calculate the quantum equivariant Kostka numbers.

We will explore some of these methods before coming up with a new method of our own. This
method is combinatorially based on the method of Bertiger et al [BEMT22] but we have translated
it onto lattices and the Yang-Baxter algebra of Gorbounov and Korff [GK14]. Our method uses the
row-to-row transfer matrix for lattices (defined in Definition 4.1) and its expansion into factorial
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powers. This transfer matrix will be denoted by E(x) and the coefficient of (x|y)k−r in its expansion
into factorial powers will be denoted by Er. The main result of this masters thesis is the following
formula for calculating Er acting on a vector |µ〉.

Proposition 1.1.

Er|µ〉 =
∑
λ

wtr(Dµλ)|λ〉, (1.2)

where d = 0, 1 and the sum is over all partitions λ such that λ/d/µ is a vertical t-strip (defined in
Definition 2.41) with 0 ≤ t ≤ r.

The weights wtr(Dµλ) are calculated using statistics which we define on single row lattice diagrams
and are easy to compute by examination. This is Proposition 5.23 and can be found in Section
5.3.2. We can use this result to calculate quantum equivariant Kostka numbers by using the formula
by Gorbounov and Korff.

Corollary 1.2. [GK14, Corollary 6.27] Let Eα = Eα1 · · ·Eαn−k . Then we have

〈λ|Eα|µ〉 =
∑
d≥0

qdKλ′/d/µ′,α(y). (1.3)

We hope that this method simplifies the calculation of the quantum equivariant Kostka numbers.

We now give a brief overview of the structure of this masters thesis.

In Section 2 we give the definition of a factorial Schur polynomial and some relevant results involving
them due to Macdonald [Mac92] and Molev and Sagan [MS99]. We then give an isomorphism
between a quotient of a ring involving factorial symmetric polynomials and the quantum equivariant
cohomology ring of the Grassmannian, QH∗T (Gr(k, n)), which is due to Mihalcea [Mih08]. Finally
we examine the method that can be used for calculating quantum equivariant Kostka numbers by
Bertiger et al [BEMT22].

In Section 3 we give a solution to the Yang-Baxter equation which we wish to work with, followed
by an introduction to vertex models. We also give the vertex model of Gorbounov and Korff [GK14]
associated with the solution to the Yang-Baxter equation which we will use in the main result of
this masters thesis. We then introduce the Yang-Baxter algebra and some of its representations.

In Section 4 we compute the algebraic Bethe ansatz as Gorbounov and Korff do [GK14]. Then
we set up the multiplication operators on a subspace of a YB−module, and give the method for
calculating quantum equivariant Kostka numbers by Gorbounov and Korff [GK14], which we will
need for our result.

In Section 5 we introduce Knutson-Tao puzzles [KT03] and look at variations of these puzzles
which can be used to calculate quantum equivariant Kostka numbers. We then give the main
result. Finally we describe a bijection between our lattice diagrams and certain sets of puzzles.
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2 Symmetric Polynomials

We assume the reader is familiar with some of the basic combinatorics needed in the context of
symmetric polynomials and functions as can be found in, for example, the book by Macdonald
[Mac95, Chapter I].

2.1 Factorial Schur Polynomials

In this section we define factorial Schur polynomials as found in the 6th variation in the article
by Macdonald [Mac92] and introduce some of their basic properties. We then review some known
results utilising these polynomials such as Molev and Sagan’s formula for Littlewood-Richardson
type coefficients [MS99]. We also describe the specialisation of these polynomials to ordinary Schur
polynomials found in, for example, Macdonald’s book [Mac95, Chapter I].

Before we can define factorial Schur polynomials we must introduce the following:

Let R be a commutative ring, and let y = (yn)n∈Z be any (doubly infinite) sequence of elements
of R. For every r ≥ 0, define (x|y)r = (x − y1)(x − y2) · · · (x − yr), called the (generalised) falling
factorial power.

For each r ∈ Z, define τ ry to be the shifted sequence (τ ry)n = yn+r (so that the nth term of this
sequence is yn+r).

Definition 2.1. If λ is a partition of length ≤ n and δn = (n−1, . . . , 1, 0), then the factorial Schur
polynomial, sλ(x|y), is

sλ(x|y) =
det
(
(xi|y)(λ+δn)j

)
1≤i,j≤n

det
(
(xi|y)(δn)j

)
1≤i,j≤n

. (2.1)

It is interesting to note that denominator in Definition 2.1 is
∏
i<j(xi − xj), the Vandermonde

determinant, and is therefore independent of the sequence y. It is shown in the article by Macdonald
[Mac92] that these factorial Schur polynomials are symmetric in x1, . . . , xn, but not homogeneous.

Remark 2.2. We can recover the definition of Schur polynomials as found in, for example, the book
by Macdonald [Mac95, Chapter I] from Definition 2.1 by setting each element of the sequence y to
0. Due to this, there is an isomorphism between sλ(x) in the ring of symmetric polynomials and
sλ(x|y) in R[x]Sn , which makes the sλ(x|y) a basis for R[x]Sn .

It will be useful to introduce additional notation for the following special cases for λ:

s(1r)(x|y) = er(x|y) (0 ≤ r ≤ n), (2.2)

and
s(r)(x|y) = hr(x|y) (r ≥ 0). (2.3)

Remark 2.3. We once again note that by setting each element of the sequence y to 0 we recover
the elementary and complete symmetric polynomials as found in [Mac95, Chapter I].
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Hence we will refer to the polynomials defined in (2.2) as factorial elementary symmetric polyno-
mials, and the polynomials defined in (2.3) as factorial complete symmetric polynomials.

We now want to give analogues of the Jacobi-Trudi and Nägelsbach-Kostka determinant formulae
for factorial Schur polynomials. In order to do this we will need the following lemmata.

Lemma 2.4. Let t be another indeterminate and let f(t) =
∏n
i=1(t− xi), then

f(t) =

n∑
r=0

(−1)rer(x|y)(t|y)n−r. (2.4)

Proof. For this proof only, let x0 = t. We have

f(t) =

∏n
i=1(t− xi)

∏
1≤i<j≤n(xi − xj)∏

1≤i<j≤n(xi − xj)
=

n∏
i=1

(t− xi) =
det
(
(xi|y)(δn+1)j+1

)
0≤i,j≤n

det
(
(xi|y)(δn)j

)
1≤i,j≤n

. (2.5)

Then using the Laplace expansion to expand det
(
(xi|y)(δn+1)j+1

)
0≤i,j≤n along the top row we find

f(t) =

n∑
r=0

(−1)r(t|y)n−r
det
(
(xi|y)((1)r+δn)j

)
1≤i,j≤n

det
(
(xi|y)(δn)j

)
1≤i,j≤n

=

n∑
r=0

(−1)rer(x|y)(t|y)n−r, (2.6)

as required.

Lemma 2.5. Define:

H(x|y) =
(
hj−i

(
x|τ i+1y

))
i,j∈Z , (2.7)

E(x|y) =
(
(−1)j−iej−i

(
x|τ jy

))
i,j∈Z . (2.8)

Then E(x|y) = H(x|y)−1.

Proof. First note that h0 = e0 = 1 and hj−i = ej−i = 0 when i > j, and therefore both matrices
are upper unitriangular.

To show that EH = I, we need to show that∑
j

(−1)k−jek−j(x|τky)hj−i(x|τ i+1y) = δik ∀i, k. (2.9)

Now, ek−j = 0 when j > k and hj−i = 0 when i > j, so (2.9) = 0 when i > k.

When i = k we have only one non-zero term in the sum: (−1)0e0h0 = 1.

Assume i < k. Recall that f(t) =
∏n
i=1(t − xi), so f(xi) = 0. Then by using the second formula

we obtained for f(t) we find
∑n
r=0(−1)rer(x|y)(xi|y)n−r = 0.
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Since y is an arbitrary sequence, in the previous sum we may replace y with τs−1y for any s to
obtain:

n∑
r=0

(−1)rer(x|τs−1y)(xi|τs−1y)n−r = 0. (2.10)

Multiplying by (xi|y)s−1 gives:

n∑
r=0

(−1)rer(x|τs−1y)(xi|y)n−r+s−1 = 0. (2.11)

This holds for all s > 0 and 1 ≤ i ≤ n.

By expanding the determinant det
(
(xi|y)((m)+δ)j

)
down the first column we see that

hm(x|y) =

n∑
i=1

(xi|y)m+n−1ui(x), (2.12)

where ui(x) is a rational function in x1, . . . , xn.

Now (2.11) = 0 for all i, therefore the sum over i of (2.11) multiplied by ui(x) is 0. Hence

n∑
r=0

(−1)rer(x|τs−1y)hs−r(x|y) = 0. (2.13)

Since we assumed i < k, we have k − i > 0, so let s = k − i. We also replace y with τ i+1y and get

n∑
r=0

(−1)rer(x|τky)hk−i−r(x|τ i+1y) = 0. (2.14)

With a suitable substitution this becomes∑
i≤j≤k

(−1)k−jek−j(x|τky)hj−i(x|τ i+1y) = 0. (2.15)

Hence we have shown that (2.9) is true.

We can now give analogues of the Jacobi-Trudi and Nägelsbach-Kostka determinant formulae for
factorial Schur polynomials, taken from the 6th variation in [Mac92].

Lemma 2.6. If λ is a partition of length ≤ n, then

sλ(x|y) = det
(
hλi−i+j(x|τ1−jy)

)
= det

(
eλ′i−i+j(x|τ

j−1y)
)
.

(2.16)

Proof. Let α = (α1, . . . , αn) ∈ N. From the previous result we have

hαi−n+j(x|τ1−jy) =

n∑
k=1

(xk|τ1−jy)αi+j−1uk(x) =

n∑
k=1

(xk|y)αi(xk|τ1−jy)j−1uk(x). (2.17)

9



This shows that Hα := (hαi−n+j(x|τ1−jy))i,j is the product of the matrices ((xk|y)αi)i,k and

B :=
(
(xk|τ1−jy)j−1uk(x)

)
k,j

. Then if we take the determinant we have:

det(Hα) = det((xk|y)αi) det(B). (2.18)

By taking α = δ we have Hδ = (hj−i(x|τ1−jy))i,j . This matrix has 1s on the main diagonal and
0s everywhere below the main diagonal, hence det(Hδ) = 1. Thus det((xk|y)δi) det(B) = 1 and so
det(B) = 1

det((xk|y)δi )
which implies that

det(Hα) = det((xk|y)αi) det(B) =
det((xk|y)αi)

det((xk|y)δi)
. (2.19)

Taking α = λ + δ we find that det(Hλ+δ) = sλ(x|y) and hence we have the first formula. Lemma
2.5 implies the second formula.

Remark 2.7. By once again setting each element of the sequence y to 0 we obtain the Jacobi-Trudi
and Nägelsbach-Kostka determinant formulae for ordinary Schur polynomials, as given in [Mac95,
Chapter I].

There is also a combinatorial definition of the factorial Schur polynomials in terms of Young
tableaux, which we will now give. This definition is contained in the article by Molev and Sagan,
[MS99, Equation 4].

Proposition 2.8. The following is an analogous definition for factorial Schur polynomials.

sλ(x|y) =
∑
T

∏
α∈λ

(
xT (α) − yT (α)+c(α)

)
, (2.20)

where the sum is over all semistandard tableaux, T , of shape λ with entries in {1, . . . , n}, T (α) is
the entry of T in cell α ∈ λ, and c(α) = j − i is the content of the cell α = (i, j).

Remark 2.9. By setting all elements of the sequence y to 0 we obtain the tableaux definition of
Schur polynomials from [Ful97]. This definition can also be extended to include skew factorial Schur
polynomials, which is how the definition is given in variation 6 in [Mac92].

The article by Molev and Sagan [MS99] contains two results which we use later on in this thesis.
We now state those results.

Theorem 2.10. [MS99, Theorem 2.1] Let yρ = (yρ1+n, . . . , yρn+1). Given partitions λ, ρ with
l(λ), l(ρ) ≤ n

sλ(yρ|y) =

{
0 if λ * ρ,∏

(i,j)∈λ(yλi+n−i+1 − yn−λ′j+j) if λ = ρ.
(2.21)

Proof. Assuming that λ * ρ and examining the entries of
(
((yρ)j |y)(λ+δ)i

)
1≤i,j≤n shows that

det
(

((yρ)j |y)(λ+δ)i
)

1≤i,j≤n
= 0, (2.22)

10



as there is a rectangle of 0’s in the lower left corner of the matrix with a corner of the rectangle on
the diagonal. This proves the first part. To prove the second part, take λ = ρ. Then the ijth entry
of
(
((yλ)j |y)(λ+δ)i

)
1≤i,j≤n is (yλj+n−j+1 − y1) · · · (yλj+n−j+1 − yλi+n−i), which is 0 for i < j and

nonzero for i = j. Therefore
(
((yλ)j |y)(λ+δ)i

)
1≤i,j≤n is lower triangular with a nonzero diagonal.

Calculating sλ(yλ|y) then gives the result.

Definition 2.11. Define Littlewood-Richardson type coefficients, cλµ,ν(y), by the formula

sµ(x|y)sν(x|y) =
∑
λ

cλµ,ν(y)sλ(x|y), (2.23)

where µ, ν are partitions.

In later chapters we will devise a combinatorial method that can be used to calculate special cases
of these coefficients, but we should first examine the existing formula given in [MS99]. For this we
will need the following sequence of partitions ρ(i−1) ⊂ ρ(i):

P : ν = ρ(0) → ρ(1) → · · · → ρ(l−1) → ρ(l) = λ, (2.24)

where |ρ(i)/ρ(i−1)| = 1. Let ri be the row number of ρ(i)/ρ(i−1).

Remark 2.12. P is a standard Young tableau. It will later be more convenient for us to use this
definition, however.

We will also need the set T (µ, P ) of semistandard tableaux, T , of shape µ with entries from
{1, . . . , n} such that T contains cells α1, . . . , αl with α1 < · · · < αl and T (αi) = ri for 1 ≤ i ≤ l,
where < is column order (explained below). We mark the entries in cells α1, . . . , αl by barring
them. Let T (µ, λ/ν) = ]PT (µ, P ).

Remark 2.13. Here we explain what is meant by column order. Let λ be a partition with λ1 = h
and let βi be the cell in the Young diagram of λ which is labelled by i in the diagram below. The
largest cell in the column order is the one labelled by 1, β1, and the smallest is the one labelled by
λ′1 + · · ·+λ′h, βλ′1+···+λ′h . The cells decrease as we go up the column, and the lowermost cell in each
column is smaller than the topmost cell in the column immediately to the left.

λ′1 λ′1+λ′2 · · · λ′1+···
+λ′h

...
...

. . .
...

3 λ′1+2
λ′1+···

+λ′h−1+1

2 λ′1+1

1
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where the ordering of the cells is β1 > · · · > βλ′1 > βλ′1+1 > · · · > βλ′1+λ′2
> · · · > βλ′1+···+λ′h .

Example 2.14. Let n = 2, λ = (3, 3), ν = (2, 2), and µ = (2, 1). Then

P : ν = (2, 2)→ (3, 2)→ (3, 3) = λ. (2.25)

The first box is added to the first row, so r1 = 1, and the second box is added to the second row,
so r2 = 2. Therefore r1r2 = 12. The ways to bar entries 1 and 2 in the tableaux of µ such that the
cell containing 1 is greater than the cell containing 2 in the ordering described by the above remark
are given below.

T (µ, P ) =

{
1̄ 1

2̄
, 1 1̄

2̄
, 1̄ 2

2̄

}
.

For each cell α such that αi < α < αi+1 for 1 ≤ i ≤ l − 1 we set ρ(α) = ρ(i), for α < α1 we set
ρ(α) = ρ(0), and for αl < α we set ρ(α) = ρ(l).

Example 2.15. We use T (µ, P ) from Example 2.14 to demonstrate how to assign ρ(α) to a cell
α in a Young tableau. For this example α1 contains the entry 1̄ and α2 contains the entry 2̄. For
the first tableau we have α < α1, for the second tableau we have α1 < α < α2, and for the third
tableau we have α < α1 again. Therefore, labelling the cells in the tableaux from Example 2.14 we
find that

α1 α

α2

α α1

α2

α1 α

α2

ρ(α) = ρ(0), ρ(α) = ρ(1), ρ(α) = ρ(0).

In this example we have yρ(0) = y(2,2) = (y4, y3) and yρ(1) = y(3,2) = (y5, y3).

Theorem 2.16. [MS99, Theorem 3.1] The coefficient cλµ,ν(y) is 0 unless ν ⊆ λ. If ν ⊆ λ then

cλµ,ν(y) =
∑

T∈T (µ,λ/ν)

∏
α∈ν

T (α) unbarred

(
(yρ(α))T (α) − yT (α)+c(α)

)
. (2.26)

Sketch of Proof. That the coefficient cλµ,ν(y) is 0 unless ν ⊆ λ is proved using Theorem 2.10. The
remainder is proven by Molev and Sagan by a chain of propositions and can be found in [MS99].

They first prove a formula for sν(yλ|y)
sλ(yλ|y) involving a sum of fractions. They then prove a formula for

cλµν(y) involving similar sums. Next they prove a recurrence relation for the cλµν(y). They then give
definitions for sums of products similar to the formula in this theorem and give another formula
for cλµν(y) involving them. To prove this formula they give two more propositions involving various
sums of these new sums of products that they just defined.
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Example 2.17. We calculate cλµ,ν(y) using Examples 2.14 and 2.15. There is only one term in the
product from each tableau as there is only one unbarred cell in each. Therefore we have

c
(3,3)
(2,1),(2,2)(y) =

((
y(2,2)

)
1
− y1+1

)
+
((
y(3,2)

)
1
− y1+0

)
+
((
y(2,2)

)
2
− y2+1

)
= (y4 − y2) + (y5 − y1) + (y3 − y3).

(2.27)

The special case of these coefficients which interests us is an analogue to the Pieri rules for the
non-factorial Schur polynomials. We now state this special case as a corollary of Theorem 2.16.

Corollary 2.18. The coefficients cλ(1t),ν(y) and cλ(t),ν(y) for t ∈ N are given by

cλ(1t),ν(y) =
∑

T∈T ((1t),P )

∏
α∈ν

T (α) unbarred

(
(yρ(α))T (α) − yT (α)+c(α)

)
, (2.28)

and
cλ(t),ν(y) =

∑
T∈T ((t),P )

∏
α∈ν

T (α) unbarred

(
(yρ(α))T (α) − yT (α)+c(α)

)
, (2.29)

where we note that in each case there is only one possible sequence P for which T (µ, P ) 6= ∅. For
cλ(1t),ν(y) this sequence has r1 < · · · < rl and for cλ(t),ν(y) this sequence has r1 ≥ · · · ≥ rl.

Lemma 2.19. We can simplify the definition of ρ(α) slightly in each case. For cλ(1t),ν(y) we have

ρ(α) = ρ(i) for ri < T (α) < ri+1 and for cλ(t),ν(y) we have ρ(α) = ρ(i) for ri ≥ T (α) ≥ ri+1 where
in both cases 0 ≤ i ≤ l ignoring the half of the inequality involving r0 and rl+1.

Proof. For cλ(1t),ν(y) the Young diagram of µ = (1t) is a vertical t-strip. Therefore, since we are
using semistandard tableaux which have entries which increase strictly down the columns, to have
r1, . . . , rl such that αl > · · · > α1 we must have r1 < · · · < rl, as notes in Corollary 2.18. Hence
for any cell α with an unbarred entry in the tableau to be such that αi < α < αi+1 for some i, we
must also have ri < T (α) < ri+1, due to the strictly increasing entries down the single column of
T . Thus we must have ρ(α) = ρ(i) for ri < T (α) < ri+1.

For cλ(t),ν(y) the Young diagram of µ = (t) is a horizontal t-strip. Therefore, since we are using
semistandard tableaux which have entries which increase weakly from left to right across the rows,
to have r1, . . . , rl such that αl > · · · > α1 we must have r1 ≥ · · · ≥ rl, as notes in Corollary 2.18.
Hence for any cell α with an unbarred entry in the tableau to be such that αi < α < αi+1 for some
i, we must also have ri ≥ T (α) ≥ ri+1, due to the weakly increasing entries across the single row of
T . Thus we must have ρ(α) = ρ(i) for ri ≥ T (α) ≥ ri+1.

2.2 Quantum Cohomology as a Frobenius Algebra

We now consider a quotient of a ring involving factorial symmetric polynomials and show that it is
a Frobenius algebra. We then state an isomorphism between this ring and the quantum equivariant
cohomology ring of the Grassmannian due to Mihalcea [Mih08]. We will be working with the
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Grassmannian Gr(k, n), the variety of k-dimensional subspaces in an n-dimensional ambient space.
We do this because many of the objects we are interested in within this thesis have a natural
interpretation in the quantum equivariant cohomology ring of the Grassmannian as a Frobenius
algebra. We first define Frobenius algebras.

Definition 2.20. A Frobenius algebra is a finite-dimensional, unital, associative algebra A defined
over a field f and equipped with a nondegenerate bilinear form 〈·|·〉 : A ⊗ A → f such that
〈ab|c〉 = 〈a|bc〉.

We now define the algebra in which we are interested in terms of factorial symmetric polynomials.

Definition 2.21. Let k ≤ n be positive integers. Let Λ = Z[y1, . . . , yn]. Then we define an algebra

J = Λ[q][ẽ1, . . . , ẽk]/〈h̃n−k+1, . . . , h̃n−1, h̃n + (−1)kq〉, (2.30)

where ẽr = er(x1, . . . , xk|y) and h̃r = det
(
e1+j−i(x|τ j−1y)

)
1≤i,j≤r.

Lemma 2.22. Let (k, n − k) denote the set of partitions whose Young diagrams are contained
within a bounding box of height k and width n − k. Then the factorial Schur polynomials sλ(x|y)
with λ ∈ (k, n− k) are a Λ[q]-basis for J.

Proof. This was proved by Mihalcea during the proof of Theorem 4.2 in [Mih08].

Before we can show that J is a Frobenius algebra we must first introduce some results by Gorbounov
and Korff [GK14] involving specialisations of factorial Schur polynomials.

Let z = (z1, . . . , zk) be a set of indeterminates which satisfy the following equations

n∏
j=1

(zi − yj) + (−1)n−kq = 0, i = 1, . . . , n− k. (2.31)

Remark 2.23. We will often set q = 1 through the remainder of this thesis. We can do this because
it is possible to recover the equations involving q via a rescaling of the z and y indeterminates,
provided q±

1
n exist. Setting q = 1, the equation (2.31) becomes

n∏
j=1

(zi − yj) + (−1)n−k = 0, (2.32)

and if we then take q−1/nzi instead of zi and q−1/nyi instead of yi we recover equation (2.31).

Remark 2.24. In order to find all solutions to (2.31), we must consider z ∈ Fq = C[q±1/n]⊗̂F,
where F := C{{y1, . . . , yn}} is the algebraically closed field of Puiseux series, which is the field of
all formal power series allowing for negative and fractional powers.

Remark 2.25. There are
(
n
k

)
k-tuples of solutions, z ∈ Fq, to (2.31). This is the same as the number

of partitions α contained within the bounding box of height k and width n − k. It will be useful
to parametrise these k-tuples, z, of solutions to (2.31) in terms of partitions α ∈ (k, n − k), as
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Gorbounov and Korff do in [GK14, Section 5.3]. The solutions to (2.31) when q = 0 are explicitly
known; z can be any k-tuple of y1, . . . , yn. So we fix a numbering of the n solutions to (2.31) by
mapping them onto the known solutions when q = 0. Let zj = zj(q) be the solution which has
zj(0) = yj for j = 1, . . . , n. Then we denote by zα the k-tuple whose ith entry is zαk+1−i+i. For any
α ∈ (k, n − k) the αk+1−i + i will be unique for i = 1, . . . k, and we will have 1 ≤ αk+1−i + i ≤ n.
We can therefore take an indexing set I(α) ⊂ {1, . . . , n} for each zα, and hence each indexing set
has a complement, I(α∗), in {1, . . . , n}.

Let λ∨ = (n− k − λk, . . . , n− k − λ1) and λ∗ = (λ∨)′.

Proposition 2.26. It can be shown that I(α∗) is indeed the complement of I(α) in {1, . . . , n}.

Proof. First note that α∗ ∈ (n− k, k). The number of parts of α∗ which are equal to 0 is αk. For
i = 1, . . . , k, the number of parts of α∗ which are equal to i is αk−i − αk−i+1. Therefore we can
express the set {1, . . . , n} as{

α∗n−k + 1, . . . , α∗n−k+1−αk + αk, αk + 1, α∗n−k+1−(αk+1) + αk + 1, . . .

. . . , α∗n−k+1−αk−1
+ αk−1, αk−1 + 2, . . . etc

}
.

(2.33)

The first result from [GK14] which we need is the following orthogonality identity for factorial Schur
polynomials evaluated at the zα.

Proposition 2.27. [GK14, Corollary 5.12] Let Yi := yn−i+1. For all λ, µ ∈ (k, n− k) we have the
identity ∑

α∈(k,n−k)

sλ∨(zα|Y )sµ(zα|y)

e(zα)
= δλµ, (2.34)

where e(zα) =
∏

i∈I(α)
j∈I(α∗)

(zi − zj) with I(α) being the indexing set of zα and I(α∗) its complement.

Proposition 2.28. For all α, β ∈ (k, n− k), we have∑
λ∈(k,n−k)

sλ(zα|Y )sλ∨(zβ |y)

e(zα)
= δαβ . (2.35)

We prove the above propositions in a later chapter of this thesis.

Corollary 2.29. [GK14, Corollary 6.6] Define coefficients Cλ,dµν (y) by

Cλ,dµν (y) =
∑

α∈(k,n−k)

sµ(zα|y)sν(zα|y)sλ∨(zα|Y )

e(zα)
. (2.36)

Then
sµ(zα|y)sν(zα|y) =

∑
λ∈(k,n−k)

Cλ,dµν (y)sλ(zα|y). (2.37)

15



Proof. Multiplying both sides of (2.37) by
sη∨ (zα|Y )

e(zα) and taking the sum over α gives

∑
α∈(k,n−k)

sµ(zα|y)sν(zα|y)sη∨(zα|Y )

e(zα)
=

∑
λ∈(k,n−k)

Cλ,dµν (y)
∑

α∈(k,n−k)

sλ(zα|y)sη∨(zα|Y )

e(zα)
. (2.38)

Then applying Proposition 2.27 gives the result.

Remark 2.30. Equation (2.36) is known as the Bertram-Vafa-Intriligator formula [Ber97], [Vaf92],
[Int91].

Let Funck,n(Fq) be the set of functions f : (k, n − k) → Fq. Fq has a natural algebra structure
using pointwise addition and multiplication.

Proposition 2.31 (Mihalcea). The map ι : Jq ↪→ Funck,n(Fq) defined via sλ(x|y) 7→ s̃λ where
s̃λ : α 7→ sλ(zα|y) is an injective algebra homomorphism.

In what follows we will often identify Jq with its image under ι.

We can now prove that J⊗ Fq is a Frobenius algebra.

Proposition 2.32. [GK14, Prop 6.22] Jq := J⊗ Fq with bilinear form

〈sλ|sµ〉 =
∑

α∈(k,n−k)

sλ(zα|Y )sµ(zα|Y )

e(zα)
, (2.39)

is a commutative Frobenius algebra.

Proof. The bilinear form is non-degenerate since the sλ are a basis for J, and are therefore linearly
independent. So we just need to show that 〈sλ|sµsν〉 = 〈sλsµ|sν〉. We have

〈sλ|sµsν〉 =
∑

ρ∈(k,n−k)

Cρ,dµν (Y )
∑

α∈(k,n−k)

sλ(zα|Y )sρ(zα|Y )

e(zα)

=
∑

α,β,ρ∈(k,n−k)

sµ(zβ |Y )sν(zβ |Y )sρ∨(zβ |y)sλ(zα|Y )sρ(zα|Y )

e(zβ)e(zα)
.

(2.40)

By applying Proposition 2.28 to the last line above we eliminate the sum involving ρ and get a
factor of δαβ . Hence

〈sλ|sµsν〉 =
∑

α∈(k,n−k)

sµ(zα|Y )sν(zα|Y )sλ(zα|Y )

e(zα)
. (2.41)

We can deduce that 〈sλ|sµsν〉 = 〈sλsµ|sν〉 by noticing that the line above is invariant under
permutations of λ, µ, and ν.

We can also show what happens to sλ under the Frobenius coproduct.
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Lemma 2.33. [GK14, Lemma 6.23] The image of sλ under the Frobenius coproduct ∆ : Jq →
Jq ⊗ Jq is

∆sλ =
∑

µ∈(k,n−k)
d≥0

qdsλ/d/µ ⊗ sµ, (2.42)

where sλ/d/µ is a generalised skew factorial symmetric polynomial given by

sλ/d/µ(x|y) =
∑

ν∈(k,n−k)

Cλ
∨,d

µ∨ν∨(y)sν(x|y). (2.43)

Proof. Let Φ : Jq → J∗q denote the Frobenius isomorphism given by sλ 7→ 〈sλ|·〉 and m : Jq⊗Jq → Jq
the multiplication map. Since Jq is a Frobenius algebra, the following diagram must commute

Jq Jq ⊗ Jq

J∗q J∗q ⊗ J∗q

∆

Φ Φ⊗Φ

m∗

,

which means that m∗ ◦ Φ(sλ)(sµ ⊗ sν) = [Φ⊗ Φ(∆(sλ))](sµ ⊗ sν). This means that∑
α∈(k,n−k)

sµ(zα|Y )sν(zα|Y )sλ(zα|Y )

e(zα)
=

∑
ρ∈(k,n−k)

d≥0

qd〈sλ/d/ρ|sµ〉〈sρ|sν〉. (2.44)

Plugging in the definition given in the statement of the lemma for sλ/d/ρ into the equation above
and taking q = 1 shows that it holds.

Now that we have shown that Jq is a Frobenius algebra, we state the isomorphism between Jq and
QH∗T (Gr(k, n)), the quantum equivariant cohomology ring of the Grassmannian. This isomorphism
will be important for future chapters, and is the reason we look at Jq.

Corollary 2.34 (Mihalcea).

QH∗T (Gr(k, n)) ∼= Λ[q][ẽ1, . . . , ẽk]/〈h̃n−k+1, . . . , h̃n−1, h̃n + (−1)kq〉, (2.45)

where ẽr = det
(
h1+j−i(x|τ1−jy)

)
1≤i,j≤r and h̃r = det

(
e1+j−i(x|τ j−1y)

)
1≤i,j≤r.

Corollary 2.35. There is an analogous result for factorial Schur polynomials to the automorphism
which maps sλ to sλ′ in the ring of symmetric polynomials. Using that result we find that

QH∗T (Gr(k, n)) ∼= Λ[q][h̃1, . . . , h̃n−k]/〈ẽk+1, . . . , ẽn−1, ẽn + (−1)n−kq〉. (2.46)

Remark 2.36. It is shown by Mihalcea [Mih08] that the basis of factorial Schur polynomials for
the Jacobi algebra corresponds to the basis of Schubert classes for QH∗T (Gr(k, n)). Gorbounov and
Korff [GK14] use this result by Mihalcea to show that qdCλ,dµν (y) as defined above are the equivariant
Gromov-Witten invariants.
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Finally, we define the quantum equivariant Kostka numbers. These will be central to this thesis.
We first define

Definition 2.37. We define the equivariant Kostka numbers, Kλ/d/µ,α(y), to be 0 unless nd =
|λ| − |µ| − |α|, in which case

hα(x|y)sµ(x|y) =
∑

λ∈(k,n−k)

qdKλ/d/µ,α(y)sλ(x|y), (2.47)

or equivalently

eα(x|y)sµ(x|y) =
∑

λ∈(k,n−k)

qdKλ′/d/µ′,α(y)sλ′(x|y), (2.48)

where hα = hα1hα2 · · ·hαm and eα = eα1eα2 · · · eαm .

Remark 2.38. In the cases where d = 0, by setting the sequence y to 0 we recover the definition of
the ordinary Kostka numbers.

2.3 Combinatorial Description of Quantum Equivariant Kostka Num-
bers

There are several ways of calculating quantum equivariant Kostka numbers already in the literature.
We look at the one given by Gorbounov and Korff in [GK14] in more detail in subsequent chapters.
Here we give an overview of the combinatorial description of the quantum equivariant Pieri rule on
cylindric shapes given by Bertiger et al in [BEMT22], which will be useful for later work. All of the
following section comes from [BEMT22].

We first describe what is meant by a cylindric shape. These were introduced by Gessel and Krat-
tenthaler [GK97].

Definition 2.39. Let Ckn := Z2/(−k, n − k)Z be the cylinder, λ = (λ1, . . . , λk) be a partition
whose Young diagram is contained within a bounding box of height k and width n − k. In Z2 we
use coordinates (i, j) which follow the convention of matrix coordinates. Define a doubly infinite
integer sequence λ[0] = (. . . , l−1, l0, l1, . . . ) by λ[0]j = λj for 1 ≤ j ≤ k and li+k = li − (n− k). By
plotting (j, lj) in Z2 for j ∈ Z we obtain a closed loop on the cylinder which outlines the Young
diagram of λ inside the k by n−k bounding box with northwest corner at the origin. Finally, define
the cylindric loop λ[d] by λ[d]j = lj−d + d for j ∈ Z. Plotting this gives the outline of the Young
diagram of λ shifted southeast by d steps.

Definition 2.40. Let λ, µ ∈ (k, n − k) and 0 ≤ d ∈ Z such that λ[d]i ≥ µi for 1 ≤ i ≤ m. Then
the cylindric diagram λ/d/µ is given by the boxes of Ckn which are located between λ[d] and µ[0].

Definition 2.41. A vertical r-strip is a (skew) Young diagram containing exactly r boxes, no 2 of
which are in the same row.

Example 2.42. This example, which is very similar to Figure 2.1 in [BEMT22], demonstrates the
definitions above.
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(0, 0)

(3,−2)

λ[0] µ[0]

λ[1]

(0, 0)

(3,−2)

µ[0]

λ[0]

On the left we have µ = (3, 1) and λ = (3, 2), with the red line tracing the cylindric loop µ[0] and
the green line tracing λ[0], and λ/0/µ indicated by the green boxes. On the right we have µ = (2, 1)
and λ = (1, 0), with the red line tracing the cylindric loop µ[0] and the green lines tracing λ[0] and
λ[1] respectively, and λ/1/µ indicated by the green boxes.

Bertiger et al [BEMT22] use statistics defined on cylindric diagrams in their Pieri rule. We now
give their statistics and preliminary definitions. For brevity we omit the case for horizontal strips.

Definition 2.43. [BEMT22, Definition 2.6] Let λ, µ ∈ (k, n − k) and 0 ≤ d ∈ Z. Let λ/d/µ be a
vertical r-strip, vr for some 0 ≤ r ≤ k. Fix r ≤ p ≤ k. We say vr is extendable to a vertical p-strip
if we can make a vertical p-strip vp by adding p− r boxes from µ to λ/d/µ, each of which shares a
vertical edge with the boundary of λ/d/µ. These are called addable boxes, and the extension of vr

to vp is denoted vr → vp.

Definition 2.44. [BEMT22, Definition 2.8, Definition 2.9] Given a partition µ within the usual
bounding box, number all of the edges in the path tracing the boundary of µ starting in the lower
left corner of the k by n−k box. Define U(µ) to be the up-steps of µ; the set of numbers which index
vertical edges. Now consider λ/d/µ = vr, an extension vr → vp, and an addable box a ∈ vp/vr.

• Define the up-step of a, u(a), to be the index of the vertical edge of the box a from U(µ).

• Define the row number of a, r(a), to be the row of µ which contains a, where we number the
rows starting from the bottom of the k by n− k box.

• Define the number of boxes below a, b(a), to be the number of boxes in vp which are in rows
strictly below a.

Example 2.45. We calculate the above statistics for λ = (3, 2), µ = (3, 2), d = 0, n = 5, k = 2,
and p = 2. We can see that λ/µ is a vertical 0-strip. Here is the diagram of µ with the edges
labelled. The labels are above the horizontal edges and to the right of the vertical edges.

4 5

1 2 3
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Then we have U(µ) = {3, 5}. The addable boxes, a1 and a2 are shown below.

a1

a2

The statistics for a1 and a2 are as follows.

By examining the above Young diagrams we can see the upstep of each box is

u(a1) = 5, u(a2) = 3. (2.49)

There are 2 rows in our bounding box. The box a2 is in the first row from the bottom, and a1 is
on the second, therefore the row number of each box is

r(a1) = 2, r(a2) = 1. (2.50)

There are 2 boxes in the extension v0 → v2, just a1 and a2. Therefore there are no boxes below a2

and there is one box below a1, namely a2, and so

b(a1) = 1, b(a2) = 0. (2.51)

We now use these statistics to define the weight of an addable box.

Definition 2.46. [BEMT22, Definition 2.10] Let λ, µ ∈ (k, n − k) and 0 ≤ d ∈ Z. Suppose
λ/d/µ = vr. The weight of an addable box a ∈ vp/vr is

wt(a) := yu(a) − yr(a)−b(a). (2.52)

Example 2.47. We calculate the weight for each addable box in Example 2.45

wt(a1) = yu(a1) − yr(a1)−b(a1) = y5 − y2−1 = y5 − y1, (2.53)

wt(a2) = yu(a2) − yr(a2)−b(a2) = y3 − y1−0 = y3 − y1. (2.54)

We now have all of the definitions necessary to state the quantum equivariant Pieri rule by Bertiger
et al.

Theorem 2.48. [BEMT22, Theorem 1.1] For any integer 1 ≤ p ≤ k and any partition µ inside
the usual bounding box we have

s(1)p ∗ sµ =
∑

0≤r≤p

∑
λ/d/µ=vr

vr→vp

qd
∏

a∈vp/vr
wt(a)sλ, (2.55)

where sλ is the Schubert class indexed by λ in QH∗T (Gr(k, n)).

Remark 2.49. In the theorem above is it worth noting that s(1)p is ẽp in Definition 2.21.

Example 2.50. Using Examples 2.45 and 2.47 we find the coefficient of s(3,2) in s(1)2 ∗ s(3,2) is
(y5 − y1)(y3 − y1) by applying Theorem 2.48.

Remark 2.51. The equivariant parameters used here have a factor of −1 compared to the ones used
later on in this thesis.

Remark 2.52. This quantum equivariant Pieri rule is manifestly positive, by which we mean that
the coefficients of sλ in Theorem 2.48 are polynomials in (yi − yi−1) with coefficients in Z≥0.
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3 Yang-Baxter Algebras

3.1 Lattice Models

We want to look at Gorbounov’s and Korff’s [GK14] method of calculating the quantum equivariant
Kostka numbers using solutions to the quantum Yang-Baxter equation and lattice models that are
associated with them. We first give a description of the solution to the Quantum Yang-Baxter
equation that we will be working with and then give an introduction to vertex models. At the end
of this section we explain the Yang-Baxter equation in terms of lattice paths.

3.1.1 Solutions of the Quantum Yang-Baxter Equation

Let V be a vector space isomorphic to C2 and let V (x) be C(x) ⊗ V , in which we will denote
elements by f(x)v with f(x) ∈ C(x) and v ∈ V . Let R(x, y) : V (x) ⊗ V (y) → V (x) ⊗ V (y), we
can also say that R(x, y) is a rational function in x, y with values in End(V ⊗ V ). We will use 1 to
denote the identity matrix.

If R =
∑
i,j Ai ⊗Bj for Ai, Bj ∈ End(V ), then we introduce the notation:

R12 =
∑
i,j

Ai ⊗Bj ⊗ 1 R13 =
∑
i,j

Ai ⊗ 1⊗Bj R23 =
∑
i,j

1⊗Ai ⊗Bj .

The R-matrix we will be looking at will only depend on the difference x− y; so R(x, y) = R(x− y),
a rational function in x − y. Due to this, we only use a single argument in the R-matrix in the
following definition.

Definition 3.1. The Quantum Yang-Baxter Equation is:

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (3.1)

Let {Eij}i,j be the standard basis for n × n matrices. It follows that {Eij ⊗ Ekl}0≤i,j,k,l≤n−1 is a
basis for the space of n2 × n2 matrices. In the proof of the following lemma, and indeed usually
throughout the rest of these notes, we set n = 2 so that the Eij are 2× 2 matrices.

Definition 3.2. Let R(u) =
∑
g,h=0,1Egh ⊗ Ehg + uE00 ⊗ E11.

Lemma 3.3. R(u) satisfies the QYBE.
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Proof. The proof is a simple calculation.

R12(u− v)R13(u)R23(v) =

 ∑
k,l=0,1

Ekl ⊗ Elk ⊗ 1+ (u− v)E00 ⊗ E11 ⊗ 1

 ·
·

 ∑
g,h=0,1

Egh ⊗ 1⊗ Ehg + uE00 ⊗ 1⊗ E11

 ∑
i,j=0,1

1⊗ Eij ⊗ Eji + v1⊗ E00 ⊗ E11

 =

=
∑

g,h,k=0,1

Ekh ⊗ Egg ⊗ Ehk + v
∑
h=0,1

E0h ⊗ E10 ⊗ Eh1 + u
∑
i=0,1

Ei0 ⊗ E01 ⊗ E1i+

+ uvE00 ⊗ E00 ⊗ E11 + (u− v)
∑
h=0,1

E0h ⊗ E10 ⊗ Eh1 + (u− v)uE00 ⊗ E11 ⊗ E11. (3.2)

Also

R23(v)R13(u)R12(u− v) =

 ∑
i,j=0,1

1⊗ Eij ⊗ Eji + v1⊗ E00 ⊗ E11

 ·
·

 ∑
g,h=0,1

Egh ⊗ 1⊗ Ehg + uE00 ⊗ 1⊗ E11

 ∑
k,l=0,1

Ekl ⊗ Elk ⊗ 1+ (u− v)E00 ⊗ E11 ⊗ 1

 =

=
∑

g,h,l=0,1

Egl ⊗ Ehh ⊗ Elg + (u− v)
∑
g=0,1

Eg0 ⊗ E01 ⊗ E1g + u
∑
l=0,1

E0l ⊗ E10 ⊗ El1+

+ (u− v)uE00 ⊗ E11 ⊗ E11 + v
∑
g=0,1

Eg0 ⊗ E01 ⊗ E1g + uvE00 ⊗ E00 ⊗ E11. (3.3)

We can rearrange (3.2) to get (3.3), hence we have the result.

If we notice that V (u)⊗V (v) ∼= C4(u, v), we can write R(u) as a 4× 4 matrix as follows (using the
Kronecker product).

R(u) =


1 0 0 0
0 u 1 0
0 1 0 0
0 0 0 1

 . (3.4)

3.1.2 Introduction to Vertex Models

Here we give an introduction to lattice models. These will provide a graphical calculus which will
help us to calculate the quantum equivariant Kostka numbers.

The following definitions are taken from the Classical and Quantum Integrable Systems SMSTC
course 2020. [FOSK+20].
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Let G be an n×k square lattice. Denote by Ed(G) the set of its edges and denote by V (G) the set of
its vertices v = 〈i, j〉 with i labelling the rows and j labelling the columns. Given a vertex v = 〈i, j〉
let N〈i,j〉, E〈i,j〉, S〈i,j〉,W〈i,j〉 denote its incident north, east, south, and west edges respectively. We
are careful to ensure the east vertex always contains the 〈〉 brackets in the subscript, so as not to
be confused with the basis matrices. A lattice configuration is a map γ : Ed(G) → {0, 1}. Let Γ
denote the set of all lattice configurations.

We want to assign a weight to each possible lattice configuration.

Let {e0, e1} be the standard basis for V , then {eg ⊗ eh}g,h=0,1 is a basis for V ⊗ V . We can
think of the vertex 〈i, j〉 in our lattice as corresponding to R(xi, yj) acting on the tensor product
V (xi)⊗ V (yj) as follows.

Definition 3.4. Let γ
(
W〈i,j〉

)
= σ, γ

(
N〈i,j〉

)
= σ′, γ

(
E〈i,j〉

)
= τ , and γ

(
S〈i,j〉

)
= τ ′ where

σ, σ′, τ, τ ′ ∈ {0, 1}. The weight of a vertex is defined via

R(xi, yj)eσ ⊗ eσ′ =
∑

τ,τ ′=0,1

wt

σ τ

τ ′

σ′
 eτ ⊗ eτ ′ . (3.5)

To each lattice configuration we can now assign a weight via a function wt : Γ→ C[x1, . . . , xk, y1, . . . , yn].

This maps γ to wt(γ) =
∏
〈i,j〉∈V (G) wt

W〈i,j〉 E〈i,j〉

S〈i,j〉

N〈i,j〉
. The weight of the vertex is an element

of C[xi, yj ]. Since wt(γ) factorises into the weights associated to each of the vertices, we can see
why it makes sense to call these vertex models.

Definition 3.5. The partition function is the weighted sum over all lattice configurations:

Z(x, y) =
∑
γ∈Γ

wt(γ). (3.6)

In the following model we use blue lines to indicate where an edge has the value 1, and the absence
of a blue line to indicate where an edge has the value 0.

We can deduce that the vertex model for R(xi − yj) is as follows (using u = xi − yj in Definition
3.2 and Eabec = δcbea):

with weights: 1 1 1 1 xi − yj ,
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All other possible vertex configurations have weight 0. These weights are called Boltzmann weights
in statistical mechanics. This lattice model and its R-matrix are equivalent to the ones used by
Gorbounov and Korff in [GK14] for their osculating walkers. Their later article, [GK17], uses
the same weights and R-matrix as we do here. We choose this version because it requires less
rearranging to express the partition function in terms of factorial Schur polynomials.

We will demonstrate in later sections that the partition function for this vertex model can be used
to find the quantum equivariant Kostka numbers, as Gorbounov and Korff do in [GK14].

3.2 The Yang-Baxter Algebra

3.2.1 What is the Yang-Baxter Algebra?

We now define the Yang-Baxter Algebra for a general R-matrix.

Definition 3.6. The Yang-Baxter algebra, YB(R), is the unital associative algebra with generators

{t(k)
ij }i,j=0,1, k ∈ N, and relations given by

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v), (3.7)

with the T matrices defined below. This is called the RTT -relation.

Let R(u, v) : V (u)⊗V (v)→ V (u)⊗V (v) with V ∼= C2 satisfy the QYBE, and let T (u) =
∑
i,j Eij⊗

tij(u) be a matrix with non-commutative entries tij(u) =
∑
k≥0 t

(k)
ij u

k ∈ YB[[u]] = YB⊗C[[u]]. We
need T1(u) =

∑
i,j=0,1Eij ⊗ 1 ⊗ tij(u) and T2(v) =

∑
k,l=0,1 1 ⊗ Ekl ⊗ tkl(v). As the specific

R-matrix defined previously which we need to use later on only depends on the difference of the
spectral parameters, we will only use one argument in the R-matrix in the general definition of the
Yang-Baxter algebra.

Remark 3.7. YB(R) is well-defined due to the QYBE. To check this we need to check associativity;
that (T1(u)T2(v))T3(w) = T1(u)(T2(v)T3(w)). This is the same as saying that it doesn’t matter
which 2 T -matrices we exchange first using (3.7). We will need to use that R12(u − v)R13(u −
w)R23(v − w) = R23(v − w)R13(u − w)R12(u − v) since R satisfies (3.1). Then, noting that
RijTk = TkRij , where ijk is some permutation of 123, since they do not act on the same tensor
components, and repeatedly applying (3.7) we have

R12(u− v)R13(u− w)R23(v − w)T1(u)T2(v)T3(w)

= R12(u− v)R13(u− w)T1(u)T3(w)T2(v)R23(v − w)

= R12(u− v)T3(w)T1(u)T2(v)R13(u− w)R23(v − w)

= T3(w)T2(v)T1(u)R12(u− v)R13(u− w)R23(v − w).

(3.8)

Similarly we have

R23(v − w)R13(u− w)R12(u− v)T1(u)T2(v)T3(w)

= R23(v − w)R13(u− w)T2(v)T1(u)T3(w)R12(u− v)

= R23(v − w)T2(v)T3(w)T1(u)R13(u− w)R12(u− v)

= T3(w)T2(v)T1(u)R23(v − w)R13(u− w)R12(u− v).

(3.9)
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Then using using R12(u − v)R13(u − w)R23(v − w) = R23(v − w)R13(u − w)R12(u − v) since R
satisfies (3.1) we find that (3.8) = (3.9).

Proposition 3.8. The triple (YB(R),∆, ε), is a well-defined bialgebra with the following algebra
homomorphisms:

coproduct ∆ : YB(R)→ YB(R)⊗YB(R), given by tij(u) 7→
∑
k=0,1

tkj(u)⊗ tik(u),

counit ε : YB(R)→ C, given by tij(u) 7→ δi,j .

Proof. We know that YB(R) is a unital associative algebra by definition, so we now just need to show
that ∆ and ε are algebra homomorphisms and that the coalgebra axioms hold for (YB(R),∆, ε).
We denote by id the identity map.

We first show the coalgebra axioms:

(∆⊗ id) ∆tij(u) = (∆⊗ id)
∑
k=0,1

tkj(u)⊗ tik(u) =
∑

k,l=0,1

tlj(u)⊗ tkl(u)⊗ tik(u),

(id⊗∆) ∆tij(u) = (id⊗∆)
∑
k=0,1

tkj(u)⊗ tik(u) =
∑

k,l=0,1

tkj(u)⊗ tlk(u)⊗ til(u).

Therefore (∆⊗ id) ∆tij(u) = (id⊗∆) ∆tij(u) as required.

(id⊗ ε) ∆tij(u) =
∑
k=0,1

tkj(u)⊗δi,k = tij(u)⊗1 and (ε⊗ id) ∆tij(u) =
∑
k=0,1

δk,j⊗tik(u) = 1⊗tij(u).

Thus the coalgebra axioms hold. More information on coalgebras can be found in [CP95, Chapter
4].

We can see that ε is an algebra homomorphism since ε(T (u)) is the identity matrix, which is the
trivial solution of the RTT relation, (3.7).

So we are left to show that ∆ is an algebra homomorphism which we will do by showing that ∆T (u)
is a solution of (3.7).

Applying the coproduct, (3.7) becomes

R12(u− v)T13(u)T14(u)T23(v)T24(v) = T23(v)T24(v)T13(u)T14(u)R12(u− v), (3.10)

where T13(u) =
∑
i,j,k=0,1Eij ⊗ 1 ⊗ tkj(u) ⊗ 1, T14(u) =

∑
i,j,k=0,1Eij ⊗ 1 ⊗ 1 ⊗ tik(u), T23(v) =∑

i,j,k=0,1 1⊗Eji ⊗ tkj(v)⊗ 1, and T24(v) =
∑
i,j,k=0,1 1⊗Eji ⊗ 1⊗ tik(v). We need to show that

(3.10) does indeed hold.

From these definitions, we can see that T14(u)T23(v) = T23(v)T14(u) and that T13(u)T24(v) =
T24(v)T13(u). Hence we have

R12(u− v)T13(u)T14(u)T23(v)T24(v) = R12(u− v)T13(u)T23(v)T14(u)T24(v).
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We can now apply (3.7) to R12(u− v)T13(u)T23(v) to obtain

R12(u− v)T13(u)T14(u)T23(v)T24(v) = T23(v)T13(u)R12(u− v)T14(u)T24(v),

and then by applying (3.7) to R12(u− v)T14(u)T24(v) we end with

R12(u− v)T13(u)T14(u)T23(v)T24(v) = T23(v)T13(u)T24(v)T14(u)R12(u− v).

Then using that T13(u)T24(v) = T24(v)T13(u) we obtain (3.10).

Thus ∆ is an algebra homomorphism. This completes the proof.

3.2.2 Representations of the Yang-Baxter Algebra

We shall now give some representations of the Yang-Baxter algebra.

Lemma 3.9. We express the R-matrix defined in Definition 3.2 as R(u) =
∑
i,j=0,1Eij ⊗ rij(u)

for ease. The map YB⊗C[[u]] → C[[u]] ⊗ End(V (y)) which sends tij(u) to rij(u − y), y a formal

variable, is an algebra homomorphism. If we restrict this homomorphism to the coefficients, t
(k)
ij ,

we get a representation of YB from YB→ End(V (y)).

Proof. We can see that this maps the matrix T (u) to the matrix R(u− y). This means that (3.7)
under this map becomes

R12(u− v)R13(u− y)R23(v − y) = R23(v − y)R13(u− y)R12(u− v). (3.11)

This is the QYBE which we know to hold for R(u). Hence this map is an algebra homomorphism.

Under the representation in Lemma 3.9 it can be seen that all but finitely many of the t
(k)
ij are

mapped to 0, and the rest are mapped to elements of End(V (y)). Therefore we have our first well
defined YB−module: V (y). We call V (y) the evaluation module.

We can use this representation and the coproduct to find another, which will be more useful with
the lattice model that we have introduced earlier.

Some notation first: if R =
∑
i,j Ai ⊗ Bj ∈ End(V (xi) ⊗ V (yj)), then let Rg,k+h =

∑
i,j 1 ⊗ · · · ⊗

1⊗Ai⊗1⊗· · ·⊗1⊗Bj⊗1⊗· · ·⊗1 ∈ End(V (x1)⊗· · ·⊗V (xk)⊗V (y1)⊗· · ·⊗V (yn)), where Ai is
in component g of the tensor and Bj is in component k+h. We do this because to each lattice row
and each lattice column we wish to assign an evaluation module. The ones for the rows are labelled
V (x1), . . . , V (xk) and the ones for the columns are labelled V (y1), . . . , V (yn) as shown below.
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V (x1)

⊗

⊗

V (xk)

⊗
V (y1) ⊗ ⊗ V (yn)

We use k rows and n columns because we want to describe the Grassmannian of k-planes in an
n-dimensional ambient space.

Now we can give the second representation.

Lemma 3.10. The map which takes T (xi) to Ri,k+n(xi − yn) · · ·Ri,k+1(xi − y1) ∈ End(V (xi) ⊗
V (y1) ⊗ · · · ⊗ V (yn)) gives a representation of the Yang-Baxter algebra upon the same restriction
as used for the previous representation. This means that V (y1)⊗ · · · ⊗ V (yn) is also a YB-module.

Proof. To show that V (y1) ⊗ · · · ⊗ V (yn) is a YB-module, all we need to do is show that the
tensor product of 2 YB-modules is also a YB-module. Then we can apply this result repeatedly to
complete the proof.

So, consider the evaluation module V (y) and let M be another YB-module. We consider V (y)⊗M .
We know under the representation in Lemma 3.9 that tij(u) is mapped to rij(u−y) ∈ End(C[[u]]⊗
V (y)). This map takes T (u) to R(u−y). Let mij(u) ∈ End(C[[u]]⊗M) be what tij(u) is mapped to
under the representation which gives rise to the YB-module M . Let m(u) =

∑
i,j=0,1Eij ⊗mij(u).

This map takes T (u) to m(u).

Define a map YB⊗C[[u]]→ C[[u]]⊗End(V (y)⊗M) by tij(u) 7→
∑
a=0,1 raj(u− y)⊗mia(u). This

map takes T (u) to R(u− y)⊗m(u). Since we already know that R(u− y) and m(u) satisfy (3.7)
because V (y) and M are YB-modules, we can deduce that R(u− y)⊗m(u) also satisfies (3.7) via
a similar calculation to the one used to prove that ∆T (u) = T (u)⊗ T (u) satisfies (3.7). Therefore
V (y)⊗M is another YB-module.

Noting that the map defined in this proof is the same as the one defined in the statement of the
lemma, we can apply this result repeatedly to complete the proof.
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3.3 The RTT Relation on the Square Lattice

So how do these representations relate to the lattice models we introduced previously?

We can think of row i in our n × k lattice as being Ri,k+n(xi − yn) · · ·Ri,k+1(xi − y1) acting on
V (x1)⊗ · · · ⊗ V (xk)⊗ V (y1)⊗ · · · ⊗ V (yn). Here is a diagram of row i of the n× k lattice to help
with visualisation, where the rows which are omitted correspond to the 1’s in the tensor product.

V (xi)

⊗
V (y1) ⊗ ⊗ V (yn)

Under the representation in Lemma 3.9 we can think of tab(x) as being a map from the north edge
of a vertex to the south edge such that the east edge has value b and the west edge has value a:

b a

Under the representation in Lemma 3.10 we can think of tab(x) as being a map from the set of
north edges to the set of south edges in a row of our lattice such that the east edge has value b and
the west edge has value a:

b a

In this case T (x) is known as a row monodromy matrix, and the RTT -relation can be thought of
way to braid the lattice rows. The RTT -relation for rows i and i+ 1, for 1 ≤ i ≤ k − 1, is

Ri,i+1(xi − xi+1)Ti(xi)Ti+1(xi+1) = Ti+1(xi+1)Ti(xi)Ri,i+1(xi − xi+1), (3.12)

or
Ri+1,i(xi+1 − xi)Ti+1(xi+1)Ti(xi) = Ti(xi)Ti+1(xi+1)Ri+1,i(xi+1 − xi). (3.13)

Ri,i+1 and Ri+1,i swap rows i and i+ 1, so Ti and Ti+1 must swap places when Ri,i+1 or Ri+1,i is
on the other side of them:
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Ti+1

Ti

Ri,i+1 or Ri+1,i

Whether we use (3.12) or (3.13) depends on whether we work up or down the lattice rows. It makes
more sense with the graphical calculus to work down, i.e. applying Ti first then Ti+1 and then
swapping the rows. In this case the above diagram depicts the LHS of (3.13). For the RHS, we
would put Ri+1,i on the left of the rows, and then working down we would have Ti+1 then Ti (since
the rows have swapped places).

We now have a nice graphical calculus for working out matrix elements of T (x) applied to any basis
vector of our YB-modules.

Throughout the rest of this thesis we will use the following expression for T :

T (x) = E00 ⊗A(x) + E01 ⊗B(x) + E10 ⊗ C(x) + E11 ⊗D(x) =

(
A(x) B(x)
C(x) D(x)

)
. (3.14)

From now on we assume that T (x) = Ri,k+n(xi− yn) · · ·Ri,k+1(xi− y1), so that A(x), B(x), C(x),
and D(x) are operators acting on f(y1, . . . , yn)v1 ⊗ · · · ⊗ vn ∈ V (y1)⊗ · · · ⊗ V (yn).

Proposition 3.11. For R(u) the relation (3.7) is equivalent to the following commutation relations
for A(x), B(x), C(x), and D(x).

A(u)A(v) = A(v)A(u), B(u)B(v) = B(v)B(u),

C(u)C(v) = C(v)C(u), D(u)D(v) = D(v)D(u),

A(u)C(v) = A(v)C(u), B(u)C(v) = B(v)C(u),

D(u)C(v) = D(v)C(u), B(u)A(v) = B(v)A(u),

B(u)D(v) = B(v)D(u), D(v)A(u) = (u− v)B(u)C(v) +D(u)A(v),

D(v)B(u) = (u− v)B(u)D(v) +D(u)B(v), C(v)A(u) = (u− v)A(u)C(v) + C(u)A(v),

A(u)B(v) = (u− v)B(v)A(u) +A(v)B(u), A(u)D(v) = (u− v)B(v)C(u) +A(v)D(u),

C(u)D(v) = (u− v)D(v)C(u) + C(v)D(u), C(u)B(v)− C(v)B(u) = (u− v) (D(v)A(u)−A(u)D(v)) .

The proof is a simple calculation and can be done by expanding both sides of the RTT -relation
and comparing terms in the resulting matrix.
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4 Bethe Vectors and Quantum Cohomology

In this section we define the row-to-row transfer matrix for lattices with quasi-periodic boundary
conditions and then find its eigenvectors via the Bethe ansatz, as Gorbounov and Korff do in
[GK14]. Then we look at a subspace, Vk, of the YB-module V (y1) ⊗ · · · ⊗ V (yn) and describe a
ring structure on it in order to see that it is isomorphic to the quantum equivariant cohomology
ring of the Grassmannian, QH∗T (Gr(k, n)). This ring structure is also due to Gorbounov and Korff
[GK14].

4.1 The Bethe Ansatz

We now define the row-to-row transfer matrix using the operators A(x) and D(x) from (3.14).

Definition 4.1. The row-to-row transfer matrix is defined to be:

E(x) = A(x) + qD(x). (4.1)

We will need to express E(x) in terms of factorial powers shortly, so we define the operator Er ∈
End(V (y1)⊗ · · · ⊗ V (yn)) via

E(x) =

k∑
r=0

(x|y)k−rEr. (4.2)

We will need the following Bethe vectors and Bethe ansatz equations. We then show how they were
obtained via a method of Faddeev [Fad96], and found in [GK14].

Lemma 4.2. Let α ∈ (k, n−k). We use α to index the Bethe vectors similarly to what is described
in Remark 2.25. The eigenvectors of E(x) are

Ω = e1 ⊗ · · · ⊗ e1 (with n tensor components), (4.3)

and
|zα〉 = C

(
zα∗n−k+1

)
· · ·C

(
zα∗n−k+1−i+i

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω, (4.4)

subject to the Bethe ansatz equations

(zα∗n−k+1−i+i
|y)n + (−1)n−kq = 0, for i = 1, . . . , n− k. (4.5)

It will be convenient to introduce the notation zα for
(
zα∗n−k+1, . . . , zα∗

n−k+1−(n−k)+n−k

)
, where

(zα)i = zα∗n−k+1−i+i
.

We will consider the cases for q = 0 and q 6= 0 separately. First we give the proof for q = 0.

Proof. For q = 0. First we recall from the previous section that, for Ω ∈ V (y1)⊗ · · · ⊗V (yn), when

we write T (x)Ω we mean

(
A(x)Ω B(x)Ω
C(x)Ω D(x)Ω

)
. We will introduce some notation to make clear which
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component of the tensor product Ri,k+j is acting on. Using the R-matrix defined in Definition 3.2,

we have Ri,k+j(xi − yj) =


(

1 0
0 xi − yj

)
j

(
0 0
1 0

)
j(

0 1
0 0

)
j

(
0 0
0 1

)
j

, where the subscript j indicates that the

matrix acts on component j. Note that if we are considering R as a 2×2 matrix with 2×2 matrices
as entries, then when we multiply Ri,k+g and Ri,k+h for g 6= h as matrices, the products of their
entries ( )g( )h is not matrix multiplication as they do not act on the same tensor position.

We will need the following commutation relations from Proposition 3.11.

C(u)C(v) = C(v)C(u), (4.6)

A(u)C(v) =
1

u− v
(C(v)A(u)− C(u)A(v)) . (4.7)

We will look for Ω ∈ V (y1) ⊗ · · · ⊗ V (yn) such that B(x)Ω = 0. As T (x) = Ri,k+n(x −
yn) · · ·Ri,k+1(x− y1), we will find such an Ω by looking for a vj ∈ V (yj) such that Ri,k+j(x− yj)vj
is lower triangular, and then taking the tensor product of vj with itself n times. We have that(

0 0
1 0

)
j

(
0
1

)
j

= 0, (4.8)

therefore we take vj = e1. Hence Ω = e1 ⊗ · · · ⊗ e1 with n components in the tensor product. Let
∗ denote operators we do not care about. We have

Ri,k+j(x− yj)e1 =

(
x− yj 0
∗ 1

)
e1, and T (x)Ω =

(
(x|y)n 0
∗ 1

)
Ω. (4.9)

Hence Ω is an eigenvector of A(x) with eigenvalue (x|y)n.

We look for other eigenvectors of the form

|zα〉 = C
(
zα∗n−k+1

)
· · ·C

(
zα∗n−k+1−i+i

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω, (4.10)

and expect to find constraints on the zα∗n−k+1−i+i
. Using (4.6), (4.7), and (4.16), we find that

A(x)C
(
zα∗n−k+1

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω

=

n−k∏
j=1

1

x− zα∗n−k+1−j+j
(x|y)nC

(
zα∗n−k+1

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω

+

n−k∑
j=1

Mj (x, zα)C
(
zα∗n−k+1

)
· · ·C

(
zα∗

n−k+1−(j−1)
+j−1

)
C
(
zα∗

n−k+1−(j+1)
+j+1

)
· · ·

· · ·C
(
zα∗

n−k+1−(n−k)+n−k

)
C(x)Ω. (4.11)

Finding Mj directly involves lots of computation, however finding M1 is fairly simple. We have

M1 (x, zα) = − 1

x− zα∗n−k+1
(zα∗n−k+1|y)n

n−k∏
j=2

1

zα∗n−k+1 − zα∗n−k+1−j+j
. (4.12)
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Notice that by using (4.6) we can exchange the position of C(zα∗n−k+1) and C(zα∗n−k+1−h+h) in |zα〉.
Therefore we can find Mh by exchanging 1 and h in M1. Thus

Mh (x, zα) = − 1

x− zα∗n−k+1−h+h
(zα∗n−k+1−h+h|y)n

n−k∏
j=1
j 6=h

1

zα∗n−k+1−h+h − zα∗n−k+1−j+j
. (4.13)

For |zα〉 to be an eigenvector of A(x) we need all the terms containing C(x) in A(x)|zα〉 to cancel.
Therefore we need Mh = 0. We have

Mh (x, zα) =
1

zα∗n−k+1−h+h − x

(zα∗n−k+1−h+h|y)n
n−k∏
j=1
j 6=h

1

zα∗n−k+1−h+h − zα∗n−k+1−j+j

 = 0. (4.14)

Thus
(zα∗n−k+1−h+h|y)n = 0, (4.15)

for h = 1, . . . , n− k, as required.

Remark 4.3. For the case where q = 0 we can solve the Bethe ansatz equations explicitly. We see
that zα∗n−k+1−i+i

= yj for i = 1, . . . , n − k and j = 1, . . . , n is a solution to (4.15). Therefore, to
obtain a set of solutions zα∗n−k+1, . . . , zα∗

n−k+1−(n−k)+n−k, we can take a subset of size n − k from

{y1, . . . , yn}. Note that for (4.13) to be well defined we must have zα∗n−k+1−i+i
6= zα∗n−k+1−j+j

for
i 6= j.

We now prove the case where q 6= 0.

Proof. For q 6= 0. We will need the additional commutation relation from Proposition 3.11.

D(v)C(u) =
1

u− v
(C(u)D(v)− C(v)D(u)) . (4.16)

We can deduce from the proof for the case where q = 0 that Ω is also an eigenvector of A(x)+qD(x)
with eigenvalue (x|y)n + q.

For the other eigenvectors of the form

|zα〉 = C
(
zα∗n−k+1

)
· · ·C

(
zα∗n−k+1−i+i

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω, (4.17)
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we also find for D(x)|zα〉

D(x)C
(
zα∗n−k+1

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω

=

n−k∏
j=1

1

zα∗n−k+1−j+j
− x

C
(
zα∗n−k+1

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
Ω

+

n−k∑
j=1

Nj

(
x, zα∗n−k+1, . . . , zα∗

n−k+1−(n−k)+n−k

)
C
(
zα∗n−k+1

)
· · ·

· · ·C
(
zα∗

n−k+1−(j−1)
+j−1

)
C
(
zα∗

n−k+1−(j+1)
+j+1

)
· · ·C

(
zα∗

n−k+1−(n−k)+n−k

)
C(x)Ω. (4.18)

In order to find Nj , we first find N1 below

N1 (x, zα) = − 1

zα∗n−k+1 − x

n−k∏
j=2

1

zα∗n−k+1−j+j
− zα∗n−k+1

. (4.19)

Now, similarly to the way we found Mh in the proof for the case where q = 0, we find Nh by using
(4.6) to exchange the position of C(zα∗n−k+1) and C(zα∗n−k+1−h+h) in |zα〉, therefore exchanging 1
and h in N1. Thus

Nh (x, zα) = − 1

zα∗n−k+1−h+h − x

n−k∏
j=1
j 6=h

1

zα∗n−k+1−j+j
− zα∗n−k+1−h+h

. (4.20)

For |zα〉 to be an eigenvector of A(x) + qD(x) we need all the terms containing C(x) in (A(x) +
qD(x))|zα〉 to cancel. Therefore we need Mh + qNh = 0. We have

Mh (x, zα) + qNh (x, zα) =
1

x− zα∗n−k+1−h+h

(
q

n−k∏
j=1
j 6=h

1

zα∗n−k+1−j+j
− zα∗n−k+1−h+h

− (zα∗n−k+1−h+h|y)n
n−k∏
j=1
j 6=h

1

zα∗n−k+1−h+h − zα∗n−k+1−j+j

)
. (4.21)

So we need

(zα∗n−k+1−h+h|y)n = q

n−k∏
j=1
j 6=h

zα∗n−k+1−h+h − zα∗n−k+1−j+j

zα∗n−k+1−j+j
− zα∗n−k+1−h+h

= q(−1)n−k−1. (4.22)

Thus
(zα∗n−k+1−h+h|y)n + (−1)n−kq = 0, (4.23)

for h = 1, . . . , n− k, as required.

Remark 4.4. Unlike the case where q = 0, we cannot easily find explicit solutions to (4.5). In order
to find all solutions to (4.5), we must consider z ∈ Fq = C[q±1/n]⊗̂F, where F := C{{y1, . . . , yn}},
the algebraically closed field of Puiseux series, which is the field of all formal power series allowing
for negative and fractional powers.
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4.2 Bethe Vectors and Lattice Models

The Bethe ansatz in the previous section will work for any choice of k such that 0 ≤ k ≤ n. We
now want to fix k and look at a particular subspace of V (y1)⊗ · · · ⊗ V (yn).

Let Vk be the subspace of V (y1)⊗· · ·⊗V (yn) which has a basis {ei1⊗· · ·⊗ein}ij=0,1 where exactly
k of the ij are equal to 1, with the other n − k equal to 0. For convenience we now use bra-ket
notation for vectors vλ ∈ Vk, i.e. vλ = ei1 ⊗ · · · ⊗ ein = |λ〉 where ij = 1 for j = λk+1−h + h,
h = 1, . . . , k and ij = 0 otherwise. We also introduce the dual basis of the {|λ〉}λ∈(k,n−k) vectors
denoted by {〈λ|} ⊂ V∗k .

The following 2 propositions are taken from the article by Gorbounov and Korff [GK14].

Proposition 4.5. [GK14, Prop 5.1] Recall that λ∗ = (λ∨)′ from Section 2.2. We can express |zα〉
in terms of the |λ〉 as follows

|zα〉 =
∑

λ∈(k,n−k)

sλ∗(zα|y)|λ〉. (4.24)

Proof. We can prove this by looking at what the C(zi) do to Ω on the lattice, as Gorbounov and
Korff did in [GK14], and then establishing a bijection between n by n − k lattices with paths
according to our vertex model in the previous section and tableaux whose shape is in (n − k, k).
We know that

|zα〉 = C
(
zα∗n−k+1

)
· · ·C

(
zα∗n−k+1−i+i

)
e1 ⊗ · · · ⊗ e1

= C
(
zα∗n−k+1−i+i

)
· · ·C

(
zα∗n−k+1

)
e1 ⊗ · · · ⊗ e1,

(4.25)

using (4.6). Therefore we may apply C
(
zα∗n−k+1

)
first so that the first row of the lattice corresponds

to zα∗n−k+1. Each C(zα∗i ) operator removes an e1 from the end of the row above thereby increasing

the number of e0 in the row below by one, therefore C
(
zα∗n−k+1−i+i

)
· · ·C

(
zα∗n−k+1

)
e1⊗· · ·⊗e1 ∈

Vk. We show how to obtain a tableaux of shape λ∗ from a lattice whose first row is Ω and last row
is |λ〉, and vice versa, and then that the term contributed by the lattice to the coefficient of |λ〉 in
(4.24) is the same as the term contributed by the corresponding tableau to sλ∗ .

Consider the path that begins at the top of column j of the lattice, for some 0 ≤ j ≤ k. This
path will end in column λk+1−j + j. Therefore there are λk+1−j rows of the path which do not
contain a straight vertical line, and n − k − λk+1−j which do. There are n − k − λk+1−j boxes
in the jth column of the tableaux of λ∗. Therefore we can map between this lattice and tableau.
By examining the allowed vertex configurations, we can deduce that the ith straight line in the jth

path must be in a row lower than or equal to the ith straight line in the (j − 1)st path. Hence if we
put the row numbers of the straight lines in the jth path in the lattice into the jth column of the
Young diagram of λ∗ for each 0 ≤ j ≤ k we obtain a valid tableau.

Since the positions of the straight lines uniquely determine each lattice configuration, we can reverse
this process given a tableau and obtain a unique lattice configuration. Therefore we have a bijection.
It only remains to check that the weights contributing to the respective coefficients match.
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Each box, (a, b) in the tableau, T , of shape λ∗ contributes ((zα)T (a,b) − yT (a,b)+b−a) to sλ∗(zα|y),
where (zα)i = zα∗n−k+1−i+i

as defined after Lemma 4.2. Each straight line, in position (i, k), in the

lattice contributes ((zα)i − yk) in the coefficient of |λ〉. Now, by construction, we have i = T (a, b)
for the ath straight line in path b, and, by examination, k = b + i − a. Hence these contributions
are the same. Since we calculate both sλ∗(zα|y) and the coefficient of |λ〉 by taking the product of
all the contributions from the boxes and straight lines respectively, and then taking the sum over
all possible tableaux of shape λ∗ and lattices whose first row is Ω and last row is |λ〉 respectively,
we have completed the proof.

We want to give an example to illustrate the proof above, but we first need another definition.

Definition 4.6. A Maya diagram is a sequence of n black and white go-stones arranged in a
horizontal line. We can think of the black go-stones as being “1” and the white go-stones as being
“0” to obtain a bijection with binary strings. The weight of a Maya diagram λ is the number of
black go-stones, or equivalently ||λ|| :=

∑n
i=1 λi = k.

Example 4.7. An example of a Maya diagram µ: • • ◦ • • ◦ •. Equivalently µ = 1101101. Here
n = 7 and ||µ|| = 5.

Example 4.8. We can now give an example to illustrate the proof of Proposition 4.5.

Let n = 5 and k = 3. Take λ = (2, 1, 1) and therefore λ∗ = (2). Below is the lattice configuration

which corresponds to the tableau 1 2 .

The first path starts in column 1 and ends in column λ3+1−1 + 1 = λ3 + 1 = 1 + 1 = 2. There is one
row which contains a vertical line: row 1. Therefore we put a 1 in the only box in the first column
of λ∗.

The second path starts in column 2 and ends in column λ3+1−2 + 2 = λ2 + 2 = 1 + 2 = 3. There is
one row which contains a vertical line: row 2. Therefore we put a 2 in the only box in the second
column of λ∗.

The third path starts in column 3 and ends in column λ3+1−3 + 3 = λ1 + 3 = 2 + 3 = 5.
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Proposition 4.9. [GK14, Prop 5.10]

〈zα| =
∑

λ∈(k,n−k)

sλ′(zα|Y )

e(zα)
〈λ|, (4.26)

where e(zα) =
∏

i∈I(α)
j∈I(α∗)

(zi − zj) with I(α) being the indexing set of zα and I(α∗) its complement

as defined in Remark 2.25.

Proof. This is proved by Gorbounov and Korff in [GK14].

We are now able to give proofs of Propositions 2.27 and 2.28.

Proof of Proposition 2.27.

Proof. Since the Bethe vectors |zα〉 and 〈zα| are eigenbases, we can sum over all α ∈ (k, n− k) to
get a resolution of the identity 1 =

∑
α∈(k,n−k) |zα〉〈zα|. Hence we have

1 =
∑

α∈(k,n−k)

|zα〉〈zα| =
∑

α∈(k,n−k)

∑
λ∈(k,n−k)

sλ∗(zα|y)|λ〉
∑

µ∈(k,n−k)

sµ′(zα|Y )

e(zα)
〈µ|. (4.27)

In order for this to be true, we need all terms for which µ 6= λ to be 0, and all terms for which
µ = λ to be 1. Hence we have ∑

α∈(k,n−k)

sλ∗(zα|y)sµ′(zα|Y )

e(zα)
= δλµ. (4.28)

This is equivalent to the statement in the proposition, hence it is proved.

Proof of Proposition 2.28.

Proof. Since by Proposition 4.9 we know that 〈zα|zβ〉 = δαβ we have

δαβ = 〈zα|zβ〉 =
∑

λ∈(k,n−k)

sλ′(zα|Y )

e(zα)
〈λ|

∑
µ∈(k,n−k)

sµ∗(zβ |y)|µ〉

=
∑

λ∈(k,n−k)

∑
µ∈(k,n−k)

sλ′(zα|Y )sµ∗(zβ |y)

e(zα)
〈λ|µ〉 =

∑
λ∈(k,n−k)

sµ′(zα|Y )sµ∗(zβ |y)

e(zα)
,

(4.29)

using that 〈λ|µ〉 = δλµ since they are dual. This is equivalent to the statement in the proposition,
hence the proof is complete.

We can now express |λ〉 in terms of the Bethe vectors, |zα〉, which will be of use to us in the following
subsection.
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Lemma 4.10. We have

|λ〉 =
∑

α∈(k,n−k)

sλ′(zα|Y )

e(zα)
|zα〉. (4.30)

Proof. We know that |zα〉 =
∑
µ∈(k,n−k) sµ∗(zα|y)|µ〉. If we use this definition to expand the Bethe

vectors in (4.30) we get∑
α∈(k,n−k)

sλ′(zα|Y )

e(zα)
|zα〉 =

∑
µ,α∈(k,n−k)

sλ′(zα|Y )sµ∗(zα|y)

e(zα)
|µ〉 =

∑
µ∈(k,n−k)

δλµ|µ〉 = |λ〉, (4.31)

where we have used Proposition 2.27, as required.

4.3 Multiplication Operators Using the Transfer Matrix

We now define operators on Vk which correspond to multiplication by a Schubert class inQH∗T (Grk(Cn)).

Definition 4.11. Define an operator Sλ : Vk → Vk by

Sλ := det
(
τ j−1Eλ′i−i+j

)
1≤i,j≤n−k . (4.32)

We want to show that the matrix elements 〈ν|Sλ|µ〉 are Gromov-Witten invariants. We will need
the following lemma from [GK14].

Lemma 4.12. [GK14, Lemma 6.2] Consider the (unique) extension of Sλ to VFq
k := Vk ⊗ Fq. (i)

The Bethe vectors, |zα〉, are eigenvectors of Sλ and on each VFq
k we have the eigenvalue equation

Sλ|zα〉 = sλ′(zα|Y )|zα〉. (ii) Let |∅〉 = v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ · · · ⊗ v0 ∈ Vk be the unique basis vector
which corresponds to the empty partition. Then Sλ|∅〉 = |λ〉.

Proof. Proof of part (i) can be found within [GK14] using a result from [Mac92]. Part (ii) can be
seen using (4.30):

Sλ|∅〉 =
∑

α∈(k,n−k)

s∅′(zα|Y )

e(zα)
Sλ|zα〉 =

∑
α∈(k,n−k)

sλ′(zα|Y )

e(zα)
|zα〉 = |λ〉. (4.33)

In order to make Vk a ring, we must define a product.

Theorem 4.13. [GK14, Theorem 6.5] Define a product on Vk by setting

|λ〉~ |µ〉 = Sλ|µ〉. (4.34)

Then (Vk,~) is a commutative ring.
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Proof. Consider again the extension of Sλ to Vk ⊗ Fq. Then we have

Sλ|µ〉 =
∑

α∈(k,n−k)

sµ′(zα|Y )

e(zα)
Sλ|zα〉 =

∑
α∈(k,n−k)

sµ′(zα|Y )sλ′(zα|Y )

e(zα)
|zα〉

=
∑

ν,α∈(k,n−k)

sµ′(zα|Y )sλ′(zα|Y )sν∗(zα|y)

e(zα)
|ν〉.

(4.35)

The last line of the equation above is symmetric in λ and µ, hence the product must be commutative.
It remains to check associativity. Since (4.1) is commutative by Proposition 3.11, we must have
that SλSµ = SµSλ. Hence

|λ〉~(|µ〉~|ν〉) = |λ〉~(|ν〉~|µ〉) = SλSν |µ〉 = SνSλ|µ〉 = |ν〉~(|λ〉~|µ〉) = (|λ〉~|µ〉)~|ν〉. (4.36)

We now want to show that there is an isomorphism between Vk and our Frobenius algebra defined
in an earlier section. Gorbounov and Korff prove the following result in [GK14].

Theorem 4.14. [GK14, Theorem 6.13] The map from Vk → Jq which maps |λ〉 → sλ(x|y) for all
λ ∈ (k, n − k) is an algebra isomorphism. In particular, the Bethe vectors with a renormalisation

factor, |zα〉e(zα)−1 are mapped onto the idempotents of Jq, and the matrix elements qdCν,dλµ (y) =
〈ν|Sλ|µ〉 with dn = |λ|+ |µ| − |ν| are the equivariant Gromov-Witten invariants.

Remark 4.15. This proves there is an isomorphism between Vk ⊗ Fq and the quantum cohomology
ring of the Grassmannian, QH∗T (Gr(k, n)), as we already know from Corollary 2.34 that Jq is
isomorphic to QH∗T (Gr(k, n)). Corollary 6.14 in [GK14] defines an isomorphism that takes Sλ ∈
End(Vk) to the Schubert class σλ ∈ QH∗T (Gr(k, n)).

This gives us a way to directly calculate the quantum equivariant Kostka numbers as defined in
Definition 2.37 earlier. The following results are again due to Gorbounov and Korff [GK14].

Proposition 4.16. [GK14, Proposition 6.25] The partition function for lattices with periodic
boundary conditions is related to the coproduct of QH∗T (Gr(k, n)) as a Frobenius algebra.

〈λ|E(x1) · · ·E(xk)|µ〉 =
∑
d≥0

qdsλ∗/d/µ∗(x|y). (4.37)

Remark 4.17. 〈λ|E(x1) · · ·E(xk)|µ〉 is the partition function for lattice configurations which have
the 01-word taken from the indices in |µ〉 = vi1 ⊗ · · · vin along the top and the 01-word taken from
the indices in |λ〉 along the bottom.

Corollary 4.18. [GK14, Corollary 6.27] Let Eα = Eα1
· · ·Eαn−k . Then we have

〈λ|Eα|µ〉 =
∑
d≥0

qdKλ′/d/µ′,α(y). (4.38)
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Sketch of Proof. From (2.43) we know that sλ∗/d/µ∗(x|y) =
∑
ν∈(n−k,k) C

λ′,d
µ′ν′(y)sν∗(x|y). We also

know from (2.37) that Cλ
′,d

µ′ν′(y) is the coefficient of sλ′(x|y) in the expansion of sν′(x|y)sµ′(x|y).

From Definition 2.37 we know that qdKλ′/d/µ′,α(y) is the coefficient of sλ′(x|y) in the expansion

of eα(x|y)sµ(x|y). Note that er(x|y) = s(1r)(x|y). Therefore to obtain Kλ′/d/µ′,α(y) from Cλ
′,d

µ′ν′(y)

we can repeatedly apply the result for Cλ
′,d

µ′(1αi )(y) to build Kλ′/d/µ′,α(y) recursively. Noting that

Cλ
′,d

µ′(1αi )(y) = 〈λ|Eαi |µ〉, we can deduce the result.
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5 Calculating Quantum Equivariant Kostka Numbers

In this section we detail several ways to calculate quantum equivariant Kostka numbers and give a
method of our own. This new method is the main result of this masters thesis. It is unpublished.

5.1 Using Lattices and the Yang-Baxter Algebra to Calculate Quantum
Equivariant Kostka Numbers - an Example

We now give an example to explain exactly how to use the graphical calculus method on lattices
of Gorbounov and Korff [GK14] to calculate quantum equivariant Kostka numbers. We will give
the complete example for Er in Gr(2, 5). First we will give their combinatorial formula to calculate
E(x)|µ〉.

Proposition 5.1. [GK14, Proposition 4.6] Let µ ∈ (k, n−k). We have the following combinatorial
action of the transfer matrix.

E(x)|µ〉 =
∑
d=0,1

qd
∑

λ′/d/µ′ hor strip

∏
j∈Jλ′/d/µ′

(x− Yj)|λ〉, (5.1)

where λ′ and µ′ are conjugate partitions, Yj = yn+1−j and Jλ′/d/µ′ consists of the diagonals j− i+
n− k of the bottom square (i, j) in each column of the diagram of µ with λ′/d/µ′ added which does
not intersect with λ′/d/µ′. If a column contains no boxes add j + n− k to Jλ′/d/µ′ .

Example 5.2. Recall that E(x) = A(x) + qD(x) =
∑k
r=0(x|y)k−rEr. We will use lattices to

calculate Er|λ〉 for 0 ≤ r ≤ 2 and λ ∈ (k, n − k) = (2, 3), from which we can then calculate any
quantum equivariant Kostka number for Gr(2, 5).

For E(x)|∅〉 we have:

Using the Boltzmann weights for vertices from Section 3 we can determine the weights of the lattice
configurations above.

In the first lattice configuration there are 2 vertical blue lines in positions 1 and 2. The Boltzmann
weight of a vertex with a vertical blue line is xi− yj where i is the row number and j is the column
number. Therefore the first configuration above has weight (x1 − y1)(x1 − y2).

In the second configuration there is one vertex with a vertical blue line in position 1, so this
configuration has weight (x1 − y1).
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The third configuration above has no vertices with vertical blue lines, therefore this configuration
has weight 1.

Therefore, from the lattice configurations above we have calculated that

E(x)|∅〉 = (x− y1)(x− y2)|∅〉+ (x− y1)|(1)〉+ |(1, 1)〉. (5.2)

To find Er|∅〉 for r = 0, 1, 2 we must look at the coefficients of the factorial powers (x|y)r in the
expression for E(x) above. Thus we deduce that

E0|∅〉 = |∅〉, (5.3)

E1|∅〉 = |(1)〉, (5.4)

E2|∅〉 = |(1, 1)〉. (5.5)

For E(x)|(1)〉 we have:

From the lattice configurations above we calculate that

E(x)|(1)〉 = (x− y1)(x− y3)|(1)〉+ (x− y1)|(2)〉+ (x− y3)|(1, 1)〉+ |(2, 1)〉
= (x|y)2|(1)〉+ (x|y) ((y2 − y3)|(1)〉+ |(2)〉+ |(1, 1)〉) + (y1 − y3)|(1, 1)〉+ |(2, 1)〉,

(5.6)

from which we deduce that

E0|(1)〉 = |(1)〉, (5.7)

E1|(1)〉 = (y2 − y3)|(1)〉+ |(2)〉+ |(1, 1)〉, (5.8)

E2|(1)〉 = (y1 − y3)|(1, 1)〉+ |(2, 1)〉. (5.9)

For E(x)|(2)〉 we have:

From the lattice configurations above we calculate that

E(x)|(2)〉 = (x− y1)(x− y4)|(2)〉+ (x− y1)|(3)〉+ (x− y4)|(2, 1)〉+ |(3, 1)〉
= (x|y)2|(2)〉+ (x|y) ((y2 − y4)|(2)〉+ |(3)〉+ |(2, 1)〉) + (y1 − y4)|(2, 1)〉+ |(3, 1)〉,

(5.10)

41



from which we deduce that

E0|(2)〉 = |(2)〉, (5.11)

E1|(2)〉 = (y2 − y4)|(2)〉+ |(3)〉+ |(2, 1)〉, (5.12)

E2|(2)〉 = (y1 − y4)|(2, 1)〉+ |(3, 1)〉. (5.13)

For E(x)|(3)〉 we have:

From the lattice configurations above we calculate that

E(x)|(3)〉 = (x− y1)(x− y5)|(3)〉+ (x− y5)|(3, 1)〉+ q|∅〉
= (x|y)2|(3)〉+ (x|y) ((y2 − y5)|(3)〉+ |(3, 1)〉) + (y1 − y5)|(3, 1)〉+ q|∅〉,

(5.14)

from which we deduce that

E0|(3)〉 = |(3)〉, (5.15)

E1|(3)〉 = (y2 − y5)|(3)〉+ |(3, 1)〉, (5.16)

E2|(3)〉 = (y1 − y5)|(3, 1)〉+ q|∅〉. (5.17)

For E(x)|(1, 1)〉 we have:

From the lattice configurations above we calculate that

E(x)|(1, 1)〉 = (x− y2)(x− y3)|(1, 1)〉+ (x− y2)|(2, 1)〉+ |(2, 2)〉
= (x|y)2|(1, 1)〉+ (x|y) ((y1 − y3)|(1, 1)〉+ |(2, 1)〉)

+ (y1 − y2)(y1 − y3)|(1, 1)〉+ (y1 − y2)|(2, 1)〉+ |(2, 2)〉,
(5.18)

from which we deduce that

E0|(1, 1)〉 = |(1, 1)〉, (5.19)

E1|(1, 1)〉 = (y1 − y3)|(1, 1)〉+ |(2, 1)〉, (5.20)

E2|(1, 1)〉 = (y1 − y2)(y1 − y3)|(1, 1)〉+ (y1 − y2)|(2, 1)〉+ |(2, 2)〉. (5.21)
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For E(x)|(2, 1)〉 we have:

From the lattice configurations above we calculate that

E(x)|(2, 1)〉 = (x− y2)(x− y4)|(2, 1)〉+ (x− y2)|(3, 1)〉+ (x− y4)|(2, 2)〉+ |(3, 2)〉
= (x|y)2|(2, 1)〉+ (x|y) ((y1 − y4)|(2, 1)〉+ |(3, 1)〉+ |(2, 2)〉)

+ (y1 − y2)(y1 − y4)|(2, 1)〉+ (y1 − y2)|(3, 1)〉+ (y1 − y4)|(2, 2)〉+ |(3, 2)〉,
(5.22)

from which we deduce that

E0|(2, 1)〉 = |(2, 1)〉, (5.23)

E1|(2, 1)〉 = (y1 − y4)|(2, 1)〉+ |(3, 1)〉+ |(2, 2)〉, (5.24)

E2|(2, 1)〉 = (y1 − y2)(y1 − y4)|(2, 1)〉+ (y1 − y2)|(3, 1)〉+ (y1 − y4)|(2, 2)〉+ |(3, 2)〉. (5.25)

For E(x)|(3, 1)〉 we have:

From the lattice configurations above we calculate that

E(x)|(3, 1)〉 = (x− y2)(x− y5)|(3, 1)〉+ (x− y5)|(3, 2)〉+ q(x− y2)|∅〉+ q|(1)〉
= (x|y)2|(3, 1)〉+ (x|y) ((y1 − y5)|(3, 1)〉+ |(3, 2)〉+ q|∅〉)

+ (y1 − y2)(y1 − y5)|(3, 1)〉+ (y1 − y5)|(3, 2)〉+ q(y1 − y2)|∅〉+ q|(1)〉,
(5.26)

from which we deduce that

E0|(3, 1)〉 = |(3, 1)〉, (5.27)

E1|(3, 1)〉 = (y1 − y5)|(3, 1)〉+ |(3, 2)〉+ q|∅〉, (5.28)

E2|(3, 1)〉 = (y1 − y2)(y1 − y5)|(3, 1)〉+ (y1 − y5)|(3, 2)〉+ q(y1 − y2)|∅〉+ q|(1)〉. (5.29)

For E(x)|(2, 2)〉 we have:
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From the lattice configurations above we calculate that

E(x)|(2, 2)〉 = (x− y3)(x− y4)|(2, 2)〉+ (x− y3)|(3, 2)〉+ |(3, 3)〉
= (x|y)2|(2, 2)〉+ (x|y) ((y1 − y3 + y2 − y4)|(2, 2)〉+ |(3, 2)〉)

+ (y1 − y3)(y1 − y4)|(2, 2)〉+ (y1 − y3)|(3, 2)〉+ |(3, 3)〉,
(5.30)

from which we deduce that

E0|(2, 2)〉 = |(2, 2)〉, (5.31)

E1|(2, 2)〉 = (y1 − y3 + y2 − y4)|(2, 2)〉+ |(3, 2)〉, (5.32)

E2|(2, 2)〉 = (y1 − y3)(y1 − y4)|(2, 2)〉+ (y1 − y3)|(3, 2)〉+ |(3, 3)〉. (5.33)

For E(x)|(3, 2)〉 we have:

From the lattice configurations above we calculate that

E(x)|(3, 2)〉 = (x− y3)(x− y5)|(3, 2)〉+ (x− y5)|(3, 3)〉+ q(x− y3)|(1)〉+ q|(2)〉
= (x|y)2|(3, 2)〉+ (x|y) ((y1 − y3 + y2 − y5)|(3, 2)〉+ |(3, 3)〉+ q|(1)〉)

+ (y1 − y3)(y1 − y5)|(3, 2)〉+ (y1 − y5)|(3, 3)〉+ q(y1 − y3)|(1)〉+ q|(2)〉,
(5.34)

from which we deduce that

E0|(3, 2)〉 = |(3, 2)〉, (5.35)

E1|(3, 2)〉 = (y1 − y3 + y2 − y5)|(3, 2)〉+ |(3, 3)〉+ q|(1)〉, (5.36)

E2|(3, 2)〉 = (y1 − y3)(y1 − y5)|(3, 2)〉+ (y1 − y5)|(3, 3)〉+ q(y1 − y3)|(1)〉+ q|(2)〉. (5.37)

For E(x)|(3, 3)〉 we have:
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From the lattice configurations above we calculate that

E(x)|(3, 3)〉 = (x− y4)(x− y5)|(3, 3)〉+ q(x− y4)|(2)〉+ q|(3)〉
= (x|y)2|(3, 3)〉+ (x|y) ((y1 − y4 + y2 − y5)|(3, 3)〉+ q|(2)〉)

+ (y1 − y4)(y1 − y5)|(3, 3)〉+ q(y1 − y4)|(2)〉+ q|(3)〉,
(5.38)

from which we deduce that

E0|(3, 3)〉 = |(3, 2)〉, (5.39)

E1|(3, 3)〉 = (y1 − y4 + y2 − y5)|(3, 3)〉+ q|(2)〉, (5.40)

E2|(3, 3)〉 = (y1 − y4)(y1 − y5)|(3, 3)〉+ q(y1 − y4)|(2)〉+ q|(3)〉. (5.41)

We will now give a brief example to demonstrate the calculation of the quantum equivariant Kostka
numbers.

Example 5.3. We will calculate 〈(2, 1)|E2E1|(1, 1)〉 = K(2,1)/0/(2),(2,1)(y). The lattices we need to
do this, which have the 01-word for (1, 1) labelling the top and the 01-word for (2, 1) labelling the
bottom are

We need to find E1 for the first row and E2 for the second row of both lattices.

The first row of the first lattice is 〈(1, 1)|E1|(1, 1)〉 which we calculated in the previous example
to be y1 − y3. The second row of the first lattice is 〈(1, 1)|E2|(2, 1)〉 which we calculated in the
previous example to be y1 − y2. Hence the weight of this lattice is (y1 − y3)(y1 − y2).

The first row of the second lattice is 〈(1, 1)|E1|(2, 1)〉 which we calculated in the previous example
to be 1. The second row of the second lattice is 〈(2, 1)|E2|(2, 1)〉 which we calculated in the previous
example to be (y1 − y2)(y1 − y4). Hence the weight of this lattice is (y1 − y2)(y1 − y4).

Thus we have K(2,1)/0/(2),(2,1)(y) = (y1 − y3)(y1 − y2) + (y1 − y2)(y1 − y4).
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Remark 5.4. If we take −yi instead of yi, it is not clear that this method would yield a manifestly
positive result.

We summarise Example 5.2 in the table below. We use Young diagrams to depict Er|µ〉

Er|µ〉 Result

∅ ~ ∅ ∅

~ ∅

~ ∅

∅ ~

~ (y2 − y3) + +

~ (y1 − y3) +

∅ ~

~ (y2 − y4) + +

~ (y1 − y4) +

∅ ~

~ (y2 − y5) +

~ (y1 − y5) + q∅

∅ ~

~ (y1 − y3) +
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~ (y1 − y2)(y1 − y3) + (y1 − y2) +

∅ ~

~ (y1 − y4) + +

~ (y1 − y2)(y1 − y4) + (y1 − y2) + (y1 − y4) +

∅ ~

~ (y1 − y5) + + q∅

~ (y1 − y2)(y1 − y5) + (y1 − y5) + q(y1 − y2)∅ + q

∅ ~

~ (y1 − y3 + y2 − y4) +

~ (y1 − y3)(y1 − y4) + (y1 − y3) +

∅ ~

~ (y1 − y3 + y2 − y5) + + q

~ (y1 − y3)(y1 − y5) + (y1 − y5) + q(y1 − y3) + q

∅ ~
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~ (y1 − y4 + y2 − y5) + q

~ (y1 − y4)(y1 − y5) + q(y1 − y4) + q

5.2 Knutson-Tao Puzzles

This section will introduce Knutson-Tao puzzles [KT03]. We start with a description of the ordinary
puzzles and then go on to a description of the equivariant puzzles.

5.2.1 Ordinary Knutson-Tao Puzzles

These puzzles are interesting combinatorial objects as counting these puzzles with fixed edges
gives the Littlewood-Richardson coefficients. We should first recall the definition of Littlewood-
Richardson coefficients and then give the definition of the puzzles that count them.

Definition 5.5. [Mac95, Chapter I, (5.2)] Let sλ be the Schur polynomial indexed by the partition
λ. The Littlewood-Richardson coefficients are given by

sµsλ =
∑
ν

cνµ,λsν . (5.42)

Definition 5.6. [KT03, Section 1.1] A puzzle is an equilateral triangle with 01-words along its
outer edges and a filling using the following puzzle pieces:

0 0

0

1

1

1 1

1

1

1
1

1

1

0

00
0 0

0

0

0

0

1

1

Before we describe how to use these puzzles to calculate the Littlewood Richardson coefficients,
we must first recall how to convert between 01-words and partitions. If λ is the partition which
corresponds to a 01-word, then λ1 is the number of 0’s to the left of the final (kth) 1, λ2 is the
number of 0’s to the left of the k − 1st 1, and so on.

The following theorem was proved by Knutson and Tao [KT03]
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Theorem 5.7. [KT03, Theorem 1] The Littlewood-Richardson coefficient cνλ,µ is the number of
puzzles such that the 01-word for µ is along the NW side, the 01-word for λ is along the NE side,
and the 01-word for ν is along the bottom side as follows:

λµ

ν

Remark 5.8. This theorem is significant because it proves that the Littlewood-Richardson coeffi-
cients are positive integers.

We can use these puzzles together with an extra puzzle piece, the equivariant piece, to obtain puzzles
which calculate equivariant Littlewood-Richardson coefficients. These puzzles are described below.

5.2.2 Equivariant Knutson-Tao Puzzles

Some of these puzzles will later be seen to be in bijection with our A operator from the Yang-
Baxter algebra. To motivate the definition of these puzzles recall the definition of factorial Schur
polynomials, sλ(x|y), from the article by MacDonald [Mac92] as described in Section 2.1.

Definition 5.9. [MS99, Section 3, (8)] The factorial Littlewood-Richardson coefficients cνµ,λ(y),
which are polynomials in y1, . . . , yn, are given by

sµ(x|y)sλ(x|y) =
∑
ν

cνµ,λ(y)sν(x|y). (5.43)

The puzzles which need to be counted to find this type of Littlewood-Richardson coefficient involve
an additional piece. This piece is called the equivariant piece as the geometric interpretation involves
the T-equivariant cohomology of the Grassmannian.

Definition 5.10. [KT03, Section 1.2] An equivariant puzzle is an equilateral triangle with 01-
words along its outer edges and a filling using the same puzzle pieces as in Definition 5.6, with the
following additional piece also allowed.

1

1

0

0

Knutson and Tao prove in Theorem 2 of [KT03] that equivariant puzzles as described above can be
used to calculate equivariant Littlewood-Richardson coefficients.

Instead of counting the number of puzzles, we now have a weighted sum of puzzles with each
equivariant piece in a puzzle giving a factor of the form yi − yj . To find i, we look at the lower
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right diagonal edge of the equivariant piece and follow it down the diagonal column in the same
direction until we reach the bottom edge of the puzzle. Then i is the position we end up at in the
01-word from right to left. To find j, we look at the lower left diagonal edge of the equivariant
piece and follow it down the diagonal column in the same direction until we reach the bottom edge
of the puzzle. Then j is the position we end up at in the 01-word from right to left. Then, the
total weight of the puzzle is the product of the factors obtained from all its equivariant pieces. We
demonstrate this with an example.

Example 5.11. Here are the Knutson-Tao puzzles to calculate the coefficients for the product
s(1,1)s(1). We now know this corresponds to E2|(1)〉 in Example 5.2. We mark the equivariant
pieces with a circle to identify them more easily within the puzzle.

Looking at the first puzzle above, there is one equivariant piece. If we follow the lower right diagonal
side down to the bottom of the puzzle we end up in column 1. If we follow the lower left diagonal
side down to the bottom of the puzzle we end up in column 3. Therefore this piece contributes a
factor of y1 − y3 to the weight of the puzzle. Since there are no other equivariant pieces in either
puzzle, we conclude that s(1,1)s(1) = (y1 − y3)|(1, 1)〉+ |(2, 1)〉. Checking this against Example 5.2,
we see that this is as expected.

In order to calculate the quantum equivariant Kostka numbers, we must apply the puzzle rule
several times. To do Example 5.3 using puzzles we need one puzzle for each lattice row.

Example 5.12. We calculate K(2,1)/0/(2),(2,1)(y) using puzzles. The puzzles we need are below.
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For the top row we put the 01-word for (1, 1) on the NE edge and the 01-word for (1) on the NW
edge. The puzzles in the second row are the second application of the puzzle rule, multiplying the
factorial Schur polynomial corresponding to the 01 from the S edge of the puzzles above by e2, so
we put the 01-word which is on the south side of the puzzles above on the NE edge of a puzzle
in the second row with the 01-word for (2) on the NW edge. We are looking for the coefficient of
s(2,1), so we put the 01-word for (2, 1) on the S side of the puzzles in the bottom row.

To get the result we take the product of the weights of the top and bottom left puzzles, top middle
and bottom left puzzles, and top right and bottom right puzzles and then add them together.

The top left puzzle has weight y2 − y1. The top bottom left puzzle has weight y2 − y1.

The top middle puzzle has weight y3 − y2.

The top right puzzle has weight 1. The bottom right puzzle has weight (y4 − y1)(y2 − y1).

Therefore we find that K(2,1)/0/(2),(2,1)(y) = (y2 − y1)(y3 − y2 + y2 − y1) + (y4 − y1)(y2 − y1) =
(y2 − y1)(y3 − y1) + (y4 − y1)(y2 − y1).
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5.2.3 Quantum Equivariant Puzzles

The equivariant puzzles we have just described can only be used to find the Littlewood-Richardson
coefficients when q = 0. There are more general puzzles defined in the paper by Buch [Buc15]
which can be used for the case where q 6= 0. We will refer to these puzzles as quantum equivariant
puzzles.

The outer edges of quantum equivariant puzzles are 012-words, so before defining the puzzles we
will first explain how to convert 01-words we have previously obtained for partitions into these
012-words. The puzzles we will be considering here will always have a vertical strip on the NW
side, so we will give the conversion rule only for this case. It is slightly different for the general case,
which can be found in [Buc15]. As we are only interested in modified versions of these puzzles, we
omit the general case.

Definition 5.13. [Buc15, Section 2.3] Let wλ be the 01-word for a partition λ. Define a map
JNE,NW from the set of 01-words for partitions in (k, n − k) to the set of 012-words as follows.
JNE,NW (wλ) is wλ with all the 1’s replaced by 2’s, and then replacing the first 0 with a 1 and the
last 2 with a 1. Define a second map JS on the same sets as follows. JS(wλ) os wλ with all the 1’s
replaced by 2’s, and then replacing the last 0 with a 1 and the first 2 with a 1.

Definition 5.14. [Buc15, Section 2.2] A quantum equivariant puzzle is an equilateral triangle with
north-east and north-west edges given by JNE,NW (wλ) for certain partitions λ, and south edge give
by JS(wλ) for some partition λ, in the same directions as depicted in Theorem 5.7 and filled using
the triangular pieces, for which we allow rotation:

0

0

0 0

3

0 01 1

1

1 12 2

2

2 2 2 3

4

4

5 6 7

and the equivariant pieces, for which we do not allow rotation:

0

0

1

1

1

1

2

2 2

2 3

3 4

4 4

4

6

6

7

7

0

0

0

0

0

0

2 2

22

3

3

Buch proves in Corollary 2.4 of [Buc15] that these puzzles can be used to calculate the Gromov-
Witten invariants for the quantum equivariant cohomology ring of the Grassmannian. If we multiply
the yi’s by a factor of −1, then the way in which the Gromov-Witten invariants are calculated here
means that they are manifestly positive.

Remark 5.15. To reduce the puzzles defined above to the equivariant case we allow the pieces whose
sides are labelled with 0’s. 2’s and 5’s only, and disregard the remaining pieces. We must also use
02-words for the partitions obtained by converting the 1’s to 2’s in the first step described in the
maps in Definition 5.13, but omitting the second step of swapping one 0 and one 2 on each side
with 1’s. To then obtain the equivariant puzzles we change the 2’s to 1’s and omit any line which
is labelled by a 5.
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5.3 Statistics on Diagrams

We are now ready to give the main result of this thesis, so we will now define our statistics on
lattice diagrams. This result is new.

5.3.1 Definitions

Definition 5.16. A diagram Dµλ consists of a pair λ, µ of Maya diagrams (or equivalently binary

strings) of length n and an allowed lattice configuration using the vertices or . µ gives

the top values of the vertical edges and λ gives the bottom values. We call a connecting

line and we call an avoidance. We allow an avoidance to have any arrangement of black and
white go-stones, as long as stones connected by a line are the same colour. Define the position of a
go-stone in a diagram to be the column the go-stone occupies, numbering from left to right. When
discussing the position of a vertex, we mean the position of the go-stones on the vertical edges.
Define C (Dµλ) ⊂ N to be the set of positions of all connecting lines in the diagram Dµλ .

Remark 5.17. Our lattice diagrams here do not involve Boltzmann weights, but we can see that
they have the same allowed vertex configurations as the vertex model from section 1.

Example 5.18. An example of a diagram Dµλ :

1 2 4 5 73 6

where we have labelled the positions. Here C (Dµλ) = {1, 4, 7}. We will use this as our guiding
example in this section.

Definition 5.19. We call a connecting line in position i admissible if there is an avoidance

in position j with j < i in the lattice row. Define the admissible set A (Dµλ) ⊆ C (Dµλ) to be

the set of positions of admissible connecting lines in a given diagram Dµλ . Let P(A (Dµλ)) denote
the power set of A (Dµλ). Let S ∈ P(A (Dµλ)), then for s ∈ S define L(s) to be 1+ the number of
connecting lines a ∈ C (Dµλ) \ S, such that a < s.

Example 5.20. For the diagram in our guiding example, Example 5.18, we have n = 7. The
connecting lines in positions 4 and 7 are admissible. So A (Dµλ) = {4, 7}. Let S = {4}, then
L(4) = 1. If we instead take S = {7} we have L(7) = 2.

Definition 5.21. Fix an integer r ≥ 0 and let λ/d/µ be a vertical t-strip with 0 ≤ t ≤ r. This
means that |λ/d/µ| := |λ|+ dn− |µ| = t. The r-weight of Dµλ is defined as follows:

wtr(Dµλ) = qd
∑

S∈P(A (Dµλ))
|S|=r−t

∏
s∈S

(yL(s) − ys). (5.44)
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Example 5.22. Using our guiding example, Example 5.18, and taking r = 3 and t = 2, we find
that wt3(Dµλ) = y2 − y4 + y3 − y7.

We now have all the definitions we require.

5.3.2 The Main Result

We claim that we have the following.

Proposition 5.23. Recall the definition of the operator Er from (4.2) and let d = 0, 1. Then we
have:

Er|µ〉 =
∑
λ

wtr(Dµλ)|λ〉, (5.45)

where the sum is over all partitions λ such that λ/d/µ is a vertical t-strip with 0 ≤ t ≤ r.

Proof. Recall that E(x)|µ〉 =
∑
r(x|y)k−rEr|µ〉. If we expand this we get

E(x)|µ〉 =
∑
λ

k−|λ/d/µ|∑
s=0

(x|y)k−|λ/d/µ|−sfλ/d/µ(s)

 |λ〉, (5.46)

where the sum is over all partitions λ such that λ/d/µ is a vertical t-strip with 0 ≤ t ≤ r.

We would like to prove that wtr(Dµλ) = fλ/d/µ(r−t) where fλ/d/µ(r−t) is the coefficient of (x|y)k−r

in the expansion of the partition function 〈λ|E(x)|µ〉 of Dµλ into factorial powers.

For fixed λ and µ, let A (Dµλ) = {a1, . . . , al} with a1 < · · · < al be the set of positions of admissible
lines in Dµλ and let a0 be the position of the rightmost connecting line which is not admissible, if
there are no inadmissible connecting lines, take a0 = 0. Then the partition function for Dµλ is

〈λ|E(x)|µ〉 = qd(x|y)a0(x− ya1) · · · (x− yal). (5.47)

We expand this into factorial powers as follows. First we do the expansion:

〈λ|E(x)|µ〉 = qd(x|y)a0(x− ya0+1 + ya0+1 − ya1)(x− ya2) · · · (x− yal) =

qd(x|y)a0+1(x− ya2) · · · (x− yal) + (ya0+1 − ya1)qd(x|y)a0(x− ya2) · · · (x− yal). (5.48)

We then repeat this expansion process on the brackets (x− yai) for i = 2, . . . , l in increasing order
for the terms obtained in the previous expansion step. This process leaves only terms which are
factorial powers. We know from the definition of the partition function that each bracket (x− yai)
corresponds to an admissible line. We will now show that there is a bijection between the set of
coefficients qd

∏
i(ya0+jai

− yai) of the factorial powers in the final expansion and P(A (Dµλ)). Note
that jai = 1+ the number of ak with k < i such that the term (ya0+jak

− yak) is not contained in
the product. This is evident from the way we have constructed the expansion.
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Let S ∈ P(A (Dµλ)) be the subset corresponding to an arbitrary term under this bijection. If at the
first step of the expansion we choose (x− ya0+1) then a1 /∈ S, and if we choose (ya0+1 − ya1) then
a1 ∈ S. At each subsequent step we make the same choice for each ai. We see that this choice at
each step is exactly how P(A (Dµλ)) can be constructed, so the set of coefficients qd

∏
i(ya0+ji−yai)

and P(A (Dµλ)) are constructed identically, and hence the identification we have just described is
indeed a bijection. Let S = {s1, . . . , sr−t}. If |S| = r − t then the term which S corresponds to
under the bijection is of degree k − r. Hence

〈λ|E(x)|µ〉 = qd
∑
r

(x|y)k−r
∑

S∈P(A (Dµλ))
|S|=r−t

(ya0+js1
− ys1) · · · (ya0+jsr−t

− ysr−t). (5.49)

Noting that a0 + js = 1 + |{a ∈ C(Dµλ) \ S : a < s}| = L(s) proves the proposition.

Corollary 5.24. By using Corollary 4.18 we obtain a way to calculate the quantum equivariant
Kostka numbers via our statistics, using diagrams that can have more than one lattice row and then
calculating the statistics for each row.

Remark 5.25. When using this method to calculate the equivariant Gromov-Witten invariants, it
appears that we can account for the τ j−1 operator by adding j − 1 to the L statistic. In terms of
the lattice j will be the number of the row in the lattice that the operator τ j−1Eλ′−i+j is acting
on. If this is the case, it would make calculating the equivariant Gromov-Witten invariants using
this new method simpler than some of the others we have looked at. For the method of Gorbounov
and Korff [GK14] we would need to expand the lattice weight for each row separately into shifted
factorial powers, which is computation intensive. For the method of Bertiger et al [BEMT22] we
would need a series of Young diagrams as their method is only for the Pieri rule, which would need
to be applied repeatedly.

We now revisit Example 5.2 to compare our method with the method from [GK14].

Example 5.26. We will once again calculate E(x)|µ〉, this time using our statistics. When cal-
culating wt0 in this example we need a subset of 2 − t admissible lines, wt1 needs 1 − t, and wt2
needs 0− t. If the necessary size of the subset is negative, that means we did not have the condition
t ≤ r, so the weight is 0. Recall t is the height of the vertical strip λ/d/µ. For this example, q = 0
when the horizontal boundary of the lattice is labelled with a 0 and q = 1 when it is labelled with
a 1. We show how to calculate the statistics in detail for E(x)|(1, 1)〉.

For E(x)|∅〉 we have

D∅∅ D∅(1) D∅(1,1)
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For the first lattice above t = 0, for the second t = 1, and for the third t = 2.

The only non-zero weights in this case are

wt0

(
D∅∅
)

= 1, wt1

(
D∅(1)

)
= 1, wt2

(
D∅(1,1)

)
= 1. (5.50)

Therefore we find that E0|∅〉 = |∅〉, E1|∅〉 = |(1)〉, and E2|∅〉 = |(1, 1)〉.

We will also give this result using Young diagrams to depict Er|∅〉 as in the table at the end of
Section 5.1 in order to make it easier to see what is happening in terms of partitions.

∅ ~ ∅ = ∅,

~ ∅ = ,

~ ∅ = .

For E(x)|(1) we have

D(1)
(1) D(1)

(2) D(1)
(1,1) D(1)

(2,1)

For the first lattice above t = 0, for the second and third t = 1, and for the fourth t = 2.

The only non-zero weights in this case are

wt0

(
D(1)

(1)

)
= 1, wt1

(
D(1)

(1)

)
= y2 − y3, wt1

(
D(1)

(2)

)
= 1,

wt1

(
D(1)

(1,1)

)
= 1, wt2

(
D(1)

(1,1)

)
= y1 − y3, wt2

(
D(1)

(2,1)

)
= 1.

(5.51)

Therefore we find that E0|(1)〉 = |(1)〉, E1|(1)〉 = (y2 − y3)|(1)〉 + |(2)〉 + |(1, 1)〉, and E2|(1)〉 =
(y1 − y3)|(1, 1)〉+ |(2, 1)〉, and also

∅ ~ = ,

~ = (y2 − y3) + + ,

~ = (y1 − y3) + .
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For E(x)|(2) we have

D(2)
(2) D(2)

(3) D(2)
(2,1) D(2)

(3,1)

For the first lattice above t = 0, for the second and third t = 1, and for the fourth t = 2.

The only non-zero weights in this case are

wt0

(
D(2)

(2)

)
= 1, wt1

(
D(2)

(2)

)
= y2 − y4, wt1

(
D(2)

(3)

)
= 1,

wt1

(
D(2)

(2,1)

)
= 1, wt2

(
D(2)

(2,1)

)
= y1 − y4, wt2

(
D(1)

(3,1)

)
= 1.

(5.52)

Therefore we find that E0|(2)〉 = |(2)〉, E1|(2)〉 = (y2 − y4)|(2)〉 + |(3)〉 + |(2, 1)〉, and E2|(2)〉 =
(y1 − y4)|(2, 1)〉+ |(3, 1)〉, and also

∅ ~ = ,

~ = (y2 − y4) + + ,

~ = (y1 − y4) + .

For E(x)|(3) we have

D(3)
(3) D(3)

(3,1) D(3)
∅

For the first lattice above t = 0, for the second t = 1, and for the third t = 2.

The only non-zero weights in this case are

wt0

(
D(3)

(3)

)
= 1, wt1

(
D(3)

(3)

)
= y2 − y5, wt1

(
D(3)

(3,1)

)
= 1,

wt2

(
D(3)

(3,1)

)
= y1 − y5, wt2

(
D(3)
∅

)
= q.

(5.53)
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Therefore we find that E0|(3)〉 = |(3)〉, E1|(3)〉 = (y2 − y5)|(3)〉 + |(3, 1)〉, and E2|(3)〉 = (y1 −
y5)|(3, 1)〉+ q|∅〉, and also

∅ ~ = ,

~ = (y2 − y5) + ,

~ = (y1 − y5) + q∅.

For E(x)|(1, 1) we have

D(1,1)
(1,1) D(1,1)

(2,1) D(1,1)
(2,2)

For the first lattice above t = 0, for the second t = 1, and for the third t = 2. All of the connecting
lines in these diagrams are admissible.

For D(1,1)
(1,1) the set of admissible lines is A (D(1,1)

(1,1)) = {2, 3}. When r = 0 the size of the subset of

admissible lines, S, that we need is r− t = 0. When r = 1 the size of the subset of admissible lines,
S, that we need is r − t = 1 and so the possibilities for S are {2}, with L(2) = 1 and {3} with
L(3) = 2. When r = 2 the size of the subset of admissible lines, S, that we need is r − t = 2 and
so the only possibility for S is {2, 3} with L(2) = 1 and L(3) = 1.

For D(1,1)
(2,1) the set of admissible lines is A (D(1,1)

(2,1)) = {2}. When r = 0 we have r − t = −1 < 0

therefore the weight is 0. When r = 1 the size of the subset of admissible lines, S, that we need is
r− t = 0. When r = 2 the size the size of the subset of admissible lines, S, that we need is r− t = 1
and so S must be {2} with L(2) = 1.

For D(1,1)
(2,2) there are no connecting lines, so no admissible lines. When r = 0 and r = 1 we have

r− t < 0 and so these weights are 0. When r = 2 the size of the subset of admissible lines, S, that
we need is r − t = 0.

Therefore, the only non-zero weights in this case are

wt0

(
D(1,1)

(1,1)

)
= 1, wt1

(
D(1,1)

(1,1)

)
= y1 − y2 + y2 − y3, wt1

(
D(1,1)

(2,1)

)
= 1,

wt2

(
D(1,1)

(1,1)

)
= (y1 − y2)(y1 − y3), wt2

(
D(1,1)

(2,1)

)
= y1 − y2, wt2

(
D(1,1)

(2,2)

)
= 1.

(5.54)
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Therefore we find that E0|(1, 1)〉 = |(1, 1)〉, E1|(1, 1)〉 = (y1 − y3)|(1, 1)〉+ |(2, 1)〉, and E2|(1, 1)〉 =
(y1 − y2)(y1 − y3)|(1, 1)〉+ (y1 − y2)|(2, 1)〉+ |(2, 2)〉, and also

∅ ~ = ,

~ = (y1 − y3) + ,

~ = (y1 − y2)(y1 − y3) +(y1 − y2) + .

For E(x)|(2, 1) we have

D(2,1)
(2,1) D(2,1)

(3,1) D(2,1)
(2,2) D(2,1)

(3,2)

For the first lattice above t = 0, for the second and third t = 1, and for the fourth t = 2.

The only non-zero weights in this case are

wt0

(
D(2,1)

(2,1)

)
= 1, wt1

(
D(2,1)

(2,1)

)
= y1 − y2 + y2 − y4, wt1

(
D(2,1)

(3,1)

)
= 1,

wt1

(
D(2,1)

(2,2)

)
= 1, wt2

(
D(2,1)

(2,1)

)
= (y1 − y2)(y1 − y4), wt2

(
D(2,1)

(3,1)

)
= y1 − y2,

wt2

(
D(2,1)

(2,2)

)
= y1 − y4, wt2

(
D(2,1)

(3,2)

)
= 1.

(5.55)

Therefore we find that E0|(2, 1)〉 = |(2, 1)〉, E1|(2, 1)〉 = (y1 − y4)|(2, 1)〉 + |(3, 1)〉 + |(2, 2)〉, and
E2|(2, 1)〉 = (y1 − y2)(y1 − y4)|(2, 1)〉+ (y1 − y2)|(3, 1)〉+ (y1 − y4)|(2, 2)〉+ |(3, 2)〉, and also

∅ ~ = ,

~ = (y1 − y4) + + ,

~ = (y1 − y2)(y1 − y4) + (y1 − y2) + (y1 − y4) + .
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For E(x)|(3, 1) we have

D(3,1)
(3,1) D(3,1)

(3,2) D(3,1)
∅ D(3,1)

(1)

For the first lattice above t = 0, for the second and third t = 1, and for the fourth t = 2.

The only non-zero weights in this case are

wt0

(
D(3,1)

(3,1)

)
= 1, wt1

(
D(3,1)

(3,1)

)
= y1 − y2 + y2 − y5, wt1

(
D(3,1)

(3,2)

)
= 1,

wt1

(
D(3,1)
∅

)
= q, wt2

(
D(3,1)

(3,1)

)
= (y1 − y2)(y1 − y5), wt2

(
D(3,1)

(3,2)

)
= y1 − y5,

wt2

(
D(3,1)
∅

)
= q(y1 − y2), wt2

(
D(3,1)

(1)

)
= q.

(5.56)

Therefore we find that E0|(3, 1)〉 = |(3, 1)〉, E1|(3, 1)〉 = (y1 − y5)|(3, 1)〉 + |(3, 2)〉 + q|∅〉, and
E2|(3, 1)〉 = (y1 − y2)(y1 − y5)|(3, 1)〉+ (y1 − y5)|(3, 2)〉+ q(y1 − y2)|∅〉+ q|(1)〉, and also

∅ ~ = ,

~ = (y1 − y5) + + q∅,

~ = (y1 − y2)(y1 − y5) + (y1 − y5) + q(y1 − y2)∅ + q .

For E(x)|(2, 2) we have

D(2,2)
(2,2) D(2,2)

(3,2) D(2,2)
(3,3)

For the first lattice above t = 0, for the second t = 1, and for the third t = 2.
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The only non-zero weights in this case are

wt0

(
D(2,2)

(2,2)

)
= 1, wt1

(
D(2,2)

(2,2)

)
= y1 − y3 + y2 − y4, wt1

(
D(2,2)

(3,2)

)
= 1,

wt2

(
D(2,2)

(2,2)

)
= (y1 − y3)(y1 − y4), wt2

(
D(2,2)

(3,2)

)
= y1 − y3, wt2

(
D(2,2)

(3,3)

)
= 1.

(5.57)

Therefore we find that E0|(2, 2)〉 = |(2, 2)〉, E1|(2, 2)〉 = (y1 − y3 + y2 − y4)|(2, 2)〉 + |(3, 2)〉, and
E2|(2, 2)〉 = (y1 − y3)(y1 − y4)|(2, 2)〉+ (y1 − y3)|(3, 2)〉+ |(3, 3)〉, and also

∅ ~ = ,

~ = (y1 − y3 + y2 − y4) + ,

~ = (y1 − y3)(y1 − y4) + (y1 − y3) + .

For E(x)|(3, 2) we have

D(3,2)
(3,2) D(3,2)

(3,3) D(3,2)
(1) D(3,2)

(2)

For the first lattice above t = 0, for the second and third t = 1, and for the fourth t = 2.

The only non-zero weights in this case are

wt0

(
D(3,2)

(3,2)

)
= 1, wt1

(
D(3,2)

(3,2)

)
= y1 − y3 + y2 − y5, wt1

(
D(3,2)

(3,3)

)
= 1,

wt1

(
D(3,2)

(1)

)
= q, wt2

(
D(3,2)

(3,2)

)
= (y1 − y3)(y1 − y5), wt2

(
D(3,2)

(3,3)

)
= y1 − y5,

wt2

(
D(3,2)

(1)

)
= q(y1 − y3), wt2

(
D(3,2)

(2)

)
= q.

(5.58)

Therefore we find that E0|(3, 2)〉 = |(3, 2)〉, E1|(3, 2)〉 = (y1− y3 + y2− y5)|(3, 2)〉+ |(3, 3)〉+ q|(1)〉,
and E2|(3, 2)〉 = (y1 − y3)(y1 − y5)|(3, 2)〉+ (y1 − y5)|(3, 3)〉+ q(y1 − y3)|(1)〉+ q|(2)〉, and also

∅ ~ = ,
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~ = (y1 − y3 + y2 − y5) + + q ,

~ = (y1 − y3)(y1 − y5) + (y1 − y5) + q(y1 − y3) +

q .

For E(x)|(3, 3) we have

D(3,3)
(3,3) D(3,3)

(2) D(3,3)
(3)

For the first lattice above t = 0, for the second t = 1, and for the third t = 2.

The only non-zero weights in this case are

wt0

(
D(3,3)

(3,3)

)
= 1, wt1

(
D(3,3)

(3,3)

)
= y1 − y4 + y2 − y5, wt1

(
D(3,3)

(2)

)
= q,

wt2

(
D(3,3)

(3,3)

)
= (y1 − y4)(y1 − y5), wt2

(
D(3,3)

(2)

)
= q(y1 − y4), wt2

(
D(3,3)

(3)

)
= q.

(5.59)

Therefore we find that E0|(3, 3)〉 = |(3, 3)〉, E1|(3, 3)〉 = (y1 − y4 + y2 − y5)|(3, 3)〉 + q|(2)〉, and
E2|(3, 3)〉 = (y1 − y4)(y1 − y5)|(3, 3)〉+ q(y1 − y4)|(2)〉+ q|(3)〉, and also

∅ ~ = ,

~ = (y1 − y4 + y2 − y5) + q ,

~ = (y1 − y4)(y1 − y5) + q(y1 − y4) + q .

We will now revisit Example 5.3 with our statistics to calculate K(2,1)/0/(2),(2,1)(y).

Example 5.27. The necessary diagrams are
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We must calculate E1 for the first row and E2 for the second row of both diagrams.

Using the previous example we find that the first row of the first diagram has weight y1 − y3,
and the second row of the first diagram has weight y1 − y2. Hence the first diagram has weight
(y1 − y3)(y1 − y2).

Again, using the previous example we find that the first row of the second diagram has weight 1,
and the second row of the second diagram has weight (y1 − y2)(y1 − y4).

Thus we find that K(2,1)/0/(2),(2,1)(y) = (y1 − y3)(y1 − y2) + (y1 − y2)(y1 − y4).

Remark 5.28. By examination of the formula for the weight wtr, we can deduce that this method
will give manifestly positive coefficients for |λ〉, if we take −yi instead of yi, since we must have
L(s) ≤ s. However it is not clear that using this method for the quantum equivariant Littlewood-
Richardson coefficients would yield a manifestly positive result, due to the shift operator τ j−1.

5.4 Bijection Between Lattice Diagrams and Knutson-Tao Puzzles

For q = 0 we can prove directly that there is a bijection between the set of diagrams our method
produces and the equivariant Knutson-Tao puzzles.

Consider the following sets:

• The set of equivariant Knutson-Tao puzzles with sides of length n > 0 whose NW edges
correspond to a vertical strip of size r ≥ 0.

• The set of lattice diagrams Dµλ on n positions which have r − |λ/µ| admissible lines chosen.

Note that each distinct choice of r−|λ/µ| admissible lines in a diagram will give a different element
of the above set.

The aim is to prove a bijection between these sets. We will do this using the following lemmata.

Lemma 5.29. A puzzle can be split into the columns detailed below:
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0

0

01

1

1

1

0

0

0

0
0

0

1

11

1
1

1

1

1

0

0

0

0

0

0

Acon Aeq

0

0

11

1

11

1
1

1
1
1

1
1

1 1
1

1
1

1

1

1

1 1
1

0

0

0

0

0

0

11

1

11

1

1
1

1
1

1

1 1

11

1
1
1

1

1

1

1
1

0

0

0

0

1 1 1
1

1

1

1

11

1
1

0 0

1 1
1

1
1

1

1

1
0 0

1

1
0

11

1

1
1
1

10

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

11
1

0

0

0
0

0

0

11

1

1
1
1

1

11
1

0

1

0

0

0
0 0

0

0
0

0

0

0

0

0
0

0

Aav B C D

where we indicate the equivariant piece with a blue dot. The missing edges in the B, C, and D
type columns indicates that a diamond shaped piece has been cut in half to make the column. If two
columns are touching in a puzzle, the sides that are touching must have the 0’s, 1’s and missing
edges in exactly the same places.

Proof. We find this by examining all possible cases.

Lemma 5.30. If the NW edge of the puzzle corresponds to a vertical r-strip then there can be at
most one equivariant piece per column.

Proof. This is immediate from examination of the possible columns determined in Lemma 5.29, but
it is an important fact to note.

Lemma 5.31. Fix µ, λ, and r. Then in the equivariant puzzle
µ1r

λ
there are exactly r − |λ/µ|

equivariant pieces.

Proof. The NW edge of the puzzle will be 1 · · · 101 · · · 10 · · · 0 starting at the top of the puzzle and
reading downwards, with r 1’s in the second group.

Starting at the left side, each column eliminates one entry from the 01-string described above. More
specifically:

• Acon eliminates a 1 from the first group of 1’s.

• Aeq, B, and D eliminate a 1 from the second group of 1’s.

• Aav and C eliminate the last 0.

From this we deduce that there must be a total of r columns of type Aeq, B, and D combined.

If we now recall the paths on the puzzle columns, we can see that B and D together count the
number of 1’s which have moved one place to the left from µ to λ. If we convert µ and λ into Young
diagrams we see that this number is |λ/µ|. Therefore there must be exactly r − |λ/µ| columns of
type Aeq, each of which contain exactly one equivariant piece.
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Lemma 5.32. An equivariant puzzle which has a NW edge corresponding to a vertical r-strip is
uniquely determined by its edges and the positions of the equivariant pieces.

Proof. We can see that each column is determined by its NW edge and end values. By examining
the possible columns we see that the only columns which have the same values on the NW edge
and at the ends are Acon and Aeq. So for the puzzle to be uniquely determined by its edges we also
need to know the location of the equivariant pieces.

Lemma 5.33. There must be at least one occurrence of a pair of B and C type columns or a type
Aav column to the right of any Aeq type column.

Proof. There cannot be an equivariant piece in the rightmost column as it is a single triangle.

We will prove the general case by contradiction. It is already established that a column containing
an equivariant piece cannot occur between type B and C columns. So start with a single Acon

triangle. There cannot be a D type column immediately to the left of this triangle, so we assume
that we have p columns of type Acon to the right of an Aeq type column in position p + 1. By
inspection, we see that the NW side of the Acon type column in position p will only have 1’s in its
01-word. Thus we have a contradiction as the Aeq type column requires a 0 on its SE side. Hence
there must be at least one occurrence of a pair of B and C type columns or a type Aav column to
the right of any Aeq type column, as required.

Theorem 5.34. The map which takes the diagram Dµλ with chosen admissible lines in positions

a1, . . . , ar−|λ/µ| to the KT-puzzle
µ1r

λ
with equivariant pieces in the same positions is a bijection.

Proof. We must show that this map is well-defined, injective and surjective. An element in the set
of diagrams described at the start of this subsection is uniquely determined by µ, λ, r, and the
positions of the admissible lines chosen. Lemma 5.32 tells us the same thing for puzzles. Note that
not all possible choices will lead to a diagram that exists, this is also true for puzzles. Therefore
we must check that such a puzzle exists.

Lemma 5.33 is equivalent to the condition for lines to be admissible. We can see this by examining
the entries in µ and λ before the line in the diagram or column in the puzzle.

Lemma 5.30 ensures that we will not need to choose the same admissible line more than once to
obtain a puzzle via this map.

Lemma 5.31 ensures that there are the same number of equivariant pieces as there are chosen
admissible lines.

We have seen implicitly by looking at the Young diagrams for µ and λ that a puzzle only exists if the
1’s in µ either are in the same position or moved one place to the left in λ. This is equivalent to the
conditions imposed upon diagrams by the allowed lattice vertices from which they are constructed.
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All of this ensures that a diagram exists for µ, λ, r with chosen admissible lines in positions
a1, . . . , ar−|λ/µ| if and only if the puzzle for µ, λ, r with equivariant pieces in positions a1, . . . , ar−|λ/µ|
also exists. The map is therefore well-defined. Injectivity comes from the puzzles and diagrams
being uniquely defined by the aforementioned conditions. It is also now clear that the sets described
at the beginning of this subsection have the same cardinality, hence we also have surjectivity.

Thus this map is indeed a bijection.

Example 5.35. Here is an example of this bijection for the diagram D(1,1)
(1,1) with one chosen ad-

missible line.

We have |(1, 1)/(1, 1)| = 0, so with only one admissible line chosen we must have r = 1. Here are

D(1,1)
(1,1) and the puzzles which have (1) on the NW side, and (1, 1) on the NE and S sides.

When the chosen admissible line is the connecting line in position 2 of the lattice configuration, the

bijection maps D(1,1)
(1,1) to the puzzle on the left above, and when the chosen admissible line is the

connecting line in position 3 of the lattice configuration, the bijection maps D(1,1)
(1,1) to the puzzle on

the right above.
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6 Conclusion

We have now seen that there are many methods that exist or can be adapted to calculate the
quantum equivariant Kostka numbers.

The method of Bertiger et al [BEMT22], which involves statistics on Young diagrams, is used to
calculate the Pieri rule for Schubert classes of QH∗T (Gr(k, n)). Thus in order to obtain the quantum
equivariant Kostka numbers using this method we have to apply it repeatedly.

The method of Gorbounov and Korff [GK14], which uses Yang-Baxter algebras and lattice models,
can calculate the quantum equivariant Kostka numbers directly. However it requires the expansion
of the partition function of the lattice into factorial powers. If we then wanted to use it to find
the quantum equivariant Littlewood-Richardson coefficients (Gromov-Witten invariants) we would
need to expand the partition function for each row separately into shifted factorial powers, which
could be calculation intensive.

The puzzle method of Knutson and Tao [KT03] works very efficiently for the case where q = 0 and
can be generalised, by Buch [Buc15], to include the case where q 6= 0. However these generalised
puzzles involve far more pieces and the rule for inputting the partitions as 012-strings is slightly more
complicated, and we would still need to use this method repeatedly to find the quantum equivariant
Kostka numbers since the puzzles are used to compute quantum equivariant Littlewood-Richardson
coefficients. In order to get the quantum equivariant Kostka numbers we have to apply the method
repeatedly to account for the multiplication by each er(x|y).

The method that we introduce allows us to stack lattice rows and read the statistics from the
diagram. However we must keep track of which Er is acting on each row. If it can proved that
τ j−1Er acting on row j of the lattice affects the statistics by adding j − 1 to L, then this would
seem to be a simpler way to calculate the Gromov-Witten invariants than the other methods which
we have explored in this thesis.
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