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Abstract

Conversational recommender systems have recently received much attention for addressing the
information asymmetry problem in information seeking, by eliciting the dynamic preferences
of users and taking actions based on their current needs through multi-turn & closed-loop in-
teractions. Despite recent advances in uni-modal conversational recommender systems that use
only natural-language interfaces for recommendations, leveraging both visual and textual infor-
mation effectively for multi-modal conversational recommender systems has not yet been fully
researched. In particular, multi-modal conversational recommender systems are expected to
leverage the multi-modal information (such as the natural-language feedback of users and tex-
tual/visual representations of recommendation items) during the communications between users
and recommender systems.

In this thesis, we aim to effectively track and estimate the users’ dynamic preferences from
the multi-modal conversational recommendations (in particular with vision-and-language-based
interactions), so as to develop realistic and effective multi-modal conversational recommender
systems. In particular, we are motivated to answer the following questions: (1) how to better
understand the users’ natural-language feedback and the corresponding recommendations with
the partial observability of the users’ preferences over time; (2) how to better track the users’
preferences over the sequences of the systems’ visual recommendations and the users’ natural-
language feedback; (3) how to decouple the recommendation policy (i.e. model) optimisation
and the multi-modal composition representation learning; (4) how to effectively incorporate the
users’ long-term and short-term interests for both cold-start and warm-start users; (5) how to
ensure the realism of simulated conversations, such as positive/negative natural-language feed-
back. To address these five challenges, we propose to leverage recent advanced techniques
(including multi-modal learning, deep learning, and reinforcement learning) for re-framing and
developing more effective multi-modal conversational recommender systems. In particular, we
introduce the framework of the multi-modal conversational recommendation task with cold-start
or warm-start users, as well as how to measure the success of the tasks. Note that we also refer
to multi-modal conversational recommendation as dialog-based interactive recommendation or
multi-modal interactive recommendation throughout this thesis.

The first challenge refers to the partial observability in natural-language feedback. For exam-
ple, the users’ feedback, which takes the form of natural-language critiques about the displayed
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ABSTRACT ii

recommendation at each iteration, can only allow the recommender system to obtain a partial
portrayal of the users’ preferences. To alleviate such a partial observation issue, we propose a
novel dialog-based recommendation model, the Estimator-Generator-Evaluator (EGE) model,
which uses Q-learning for a partially observable Markov decision process (POMDP), to effec-
tively incorporate the users’ preferences over time. Specifically, we leverage an Estimator to
track and estimate users’ preferences, a Generator to match the estimated preferences with the
candidate items to rank the next recommendations, and an Evaluator to judge the quality of the
estimated preferences considering the users’ historical feedback.

The second challenge refers to multi-modal sequence dependency issue in multi-modal dia-
log state tracking. For instance, multi-modal dialog sequences (i.e. turns consisting of the sys-
tem’s visual recommendations and the user’s natural-language feedback) make it challenging to
correctly incorporate the users’ preferences across multiple turns. Indeed, the existing formula-
tions of interactive recommender systems suffer from their inability to capture the multi-modal
sequential dependencies of textual feedback and visual recommendations because of their use of
recurrent neural network-based (i.e., RNN-based) or transformer-based models. To alleviate the
multi-modal sequence dependency issue, we propose a novel multi-modal recurrent attention
network (MMRAN) model to effectively incorporate the users’ preferences over the long visual
dialog sequences of the users’ natural-language feedback and the system’s visual recommenda-
tions.

The third challenge refers to the coupling issue of policy (i.e. recommendation model) op-
timisation and representation learning. For example, it is typically challenging and unstable to
optimise a recommendation agent to improve the recommendation quality associated with im-
plicit learning of multi-modal representations in an end-to-end fashion in deep reinforcement
learning (DRL). To address this coupling issue, we propose a novel goal-oriented multi-modal
interactive recommendation model (GOMMIR) that uses both verbal and non-verbal relevance
feedback to effectively incorporate the users’ preferences over time. Specifically, our GOM-
MIR model employs a multi-task learning approach (using goal-oriented reinforcement learning
(GORL)) to explicitly learn the multi-modal representations using a multi-modal composition
network when optimising the recommendation agent.

The fourth challenge refers to the personalisation for cold-start and warm-start users. For
instance, it can be challenging to make satisfactory personalised recommendations across mul-
tiple interactions due to the difficulty in balancing the users’ past interests and the current needs
for generating the users’ state (i.e. current preferences) representations over time. To perform
the personalisation for cold-start and warm-start users, we propose a novel personalised multi-
modal interactive recommendation model (PMMIR) using hierarchical reinforcement learning
(HRL) to more effectively incorporate the users’ preferences from both their past and real-time
interactions.

The final challenge refers to the realism of simulated conversations. In a real-world shop-
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ping scenario, users can express their natural-language feedback when communicating with a
shopping assistant by stating their satisfactions positively with “I like” or negatively with “I
dislike” according to the quality of the recommended fashion products. A multi-modal con-
versational recommender system (using text and images in particular) aims to replicate this
process by eliciting the dynamic preferences of users from their natural-language feedback and
updating the visual recommendations so as to satisfy the users’ current needs through multi-turn
interactions. However, the impact of positive and negative natural-language feedback on the
effectiveness of multi-modal conversational recommendation has not yet been fully explored.
To further explore the multi-modal conversational recommendation with positive and negative
natural-language feedback, we investigate the effectiveness of the recent multi-modal conver-
sational recommendation models for effectively incorporating the users’ preferences over time
from both positively and negatively natural-language oriented feedback corresponding to the
visual recommendations.

Overall, we contribute an effective multi-modal conversational recommendation framework
that make accurate recommendations by leveraging visual and textual information. This frame-
work includes models for tracking users’ preferences with partial observations, mitigating the
multi-modal sequence dependency issue, decoupling the composition representation learning
from policy optimisation, incorporating both the users’ long-term preferences and short-term
needs for personalisation, and ensuring the realism of simulated conversations. These con-
tributions make progress in the development of multi-modal conversational recommendation
techniques and could inspire future directions of research in recommendation systems.
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Chapter 1

Introduction

1.1 Introduction

Recommender systems are widely used as an essential information seeking tool in a vari-
ety of online services, including e-commerce (e.g., Amazon, Alibaba, Shein), social networking
(e.g., Facebook, Twitter, WeChat), and content sharing (e.g., TikTok, Instagram, YouTube). Typ-
ically, the main task of such recommender systems is to elicit the users’ preferences from their
historical interactions (e.g., clicks, ratings, purchases, and reviews) to make recommendations
with the users’ likely preferred items, thereby helping users find their desired information in sit-
uations of information overload (Ricci, Rokach, & Shapira, 2015). The existing recommender
systems (e.g., Matrix Factorisation (Koren, Bell, & Volinsky, 2009) and Neural Collaborative
Filtering (X. He et al., 2017)) typically adopt a static mode of user interaction modelling that
trains the recommendation models offline on the users’ historical behaviour data, while serving
users online following a fixed strategy. These static recommender systems cannot lead to a sat-
isfactory performance in that they limit the way in which user intention can be expressed and
offer no opportunities to communicate with users about their preferences. Despite their wide us-
age, they inevitably suffer from a fundamental information asymmetry problem (Gao, Lei, He,
de Rijke, & Chua, 2021) between users and systems: a recommender system will never know
precisely what a user likes (especially when the user’s preference drifts frequently) and why a

user likes an item (especially when there are many different factors affecting a user’s decision
in real life, such as curiosity, mood and season).

Conversational recommender systems (CRSs) have recently received much attention for ad-
dressing the information asymmetry problem (Gao et al., 2021) in information seeking, owing to
their flexible recommendation strategies and their natural multi-turn decision-making processes.
In particular, Gao et al. (2021) defines a CRS as: “A recommender system that can elicit the

1
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Figure 1.1: A diagram of the closed-loop interactions between users and recommender systems.

dynamic preferences of users and take actions based on their current needs through real-time

multi-turn interactions”. To this end, the conversational recommender systems can be generally
considered to form a closed loop system (from control theory (Simrock, 2011)) in which the
inputs (i.e. users’ feedback) of the recommender systems are fully or partially determined by the
outputs (i.e. recommended items). The conversational recommender systems can benefit from
such closed-loop interactions by tracking and capturing users’ current preferences across multi-
ple interactions, thus mitigating the information asymmetry. Figure 1.1 presents the closed-loop
interactions between users and recommender systems.

There are three typical forms of CRSs, namely interactive recommender systems (Zou et
al., 2020), critiquing-based recommender systems (Antognini & Faltings, 2021) and question-

based recommender systems (W. Lei et al., 2020; Y. Sun & Zhang, 2018). Specifically, the
interactive recommender systems leverage an item-level feedback signal indicating whether and
how much the user likes the corresponding recommendation (such as ratings or like/dislike), the
critiquing-based recommender systems leverage the users’ feedback on specific attributes of the
recommended items so as to narrow down candidate items quickly, and the question-based rec-
ommender systems leverage a conversation strategy to determine when to ask and recommend.
However, the existing formulations of CRSs have demonstrated their drawbacks. For instance,
the interactive recommendations suffer from low efficiency by leveraging the item-level feed-
back when there are too many items (Gao et al., 2021), the critiquing-based recommendations
are constrained by the limited attribute-based options for the attribute-level feedback (Gao et al.,
2021), and the question-based recommendations suffer from inefficient interactions by request-
ing users to answer multiple questions (Iovine, Narducci, & Semeraro, 2020; Jannach, Manzoor,
Cai, & Chen, 2021). To this end, we argue that developing the form of conversational recom-
mender systems is still an open problem.

On the other hand, the recent research on conversational recommender systems primarily
focuses on uni-modal interactions and information items, such as the question-based recom-
mender systems using pure natural-language interfaces for recommendations (Gao et al., 2021).
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However, it is widely known that human conversations are multi-modal, involving different ac-
tions from humans (e.g., word, speech, gesture, facial expression) and different representations
of items from machines (e.g., audio, text, image, video) (Deldjoo, Trippas, & Zamani, 2021).
In particular, vision-and-language-based interactions between users and recommender systems
can be effective for the benefits of both visual information from the recommendations’ images
and textual information from the users’ natural-language feedback (Guo et al., 2018; Uppal et
al., 2021; H. Wu et al., 2021; Yuan & Lam, 2021). For instance, the users’ natural-language
critiques about the visual recommendations can allow the recommender systems to correctly
track the users’ preferences over time and adapt the systems’ instant recommendations, thereby
satisfying the users’ information needs effectively (Guo et al., 2018). However, leveraging both
visual and textual information effectively for multi-modal conversational recommender systems
has not been fully researched. In this thesis, we aim to address the gap in effectively track-
ing and estimating the users’ dynamic preferences from the multi-modal conversational recom-
mendations, so as to develop realistic and effective multi-modal conversational recommender
systems.

In the remainder of this chapter, we start with a discussion of the motivations of this thesis
in Section 1.2. After that, we introduce the thesis statement in Section 1.3. In Section 1.4, we
describe the contributions of this thesis, followed by acknowledging the origins of materials in
Section 1.5.

1.2 Motivations

We aim to develop multi-modal conversational recommender systems by leveraging the
multi-modal interactions (including both visual and textual information) between users and rec-
ommender systems. This is initially motivated by the recent well-cited dialog-based interactive
image retrieval framework proposed by Guo et al. (2018) that allows for more natural and ef-
fective interactions by enabling users to provide feedback via natural language during the image
search process. Furthermore, the interactive recommender systems (Yu, Shen, & Jin, 2019,
2020; Yu, Shen, Zhang, Zeng, & Jin, 2019; R. Zhang, Yu, Shen, Jin, & Chen, 2019) adapted
the dialog-based interactive image retrieval framework for an interactive recommendation task
by considering the images as the visual representations of fashion products. The recommender
systems can better elicit the users’ preferences by incorporating the users’ natural-language
feedback and visual recommendations over time. However, these primary works relating to the
multi-modal conversational recommendation task have demonstrated their limitations with the
current formulations in correctly understanding the users’ natural-language feedback with the
partial observations of the users’ preferences over time, the multi-modal sequence dependency,
the coupling issue of multi-modal representation learning and policy optimisation (i.e. optimis-
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ing the recommendation models), the personalisation for both cold-start and warm-start users,
and the realism of simulated conversations across the multi-turn recommendation process (such
as positive and negative natural-language feedback). In addition, with the recent rapid develop-
ment of advanced technologies in multi-modal learning (such as TIRG (Vo et al., 2019)), large
foundation models (such as ViT (Dosovitskiy et al., 2020) for vision, BERT (Devlin, Chang, Lee,
& Toutanova, 2019a) for language, and CLIP (Radford et al., 2021) for vision and language),
dialog systems (such as ChatGPT (Y. Liu et al., 2023)), sequential recommender systems (such
as SASRec (Kang & McAuley, 2018) and BERT4Rec (Petrov & Macdonald, 2022; F. Sun et al.,
2019)) and reinforcement learning approaches (such as self-supervised reinforcement learning
(SRL) (Levine, 2022; Xin, Karatzoglou, Arapakis, & Jose, 2020), goal-oriented reinforcement
learning (GORL) (Colas, Karch, Sigaud, & Oudeyer, 2022; M. Liu, Zhu, & Zhang, 2022), and
hierarchical reinforcement learning (HRL) (Hutsebaut-Buysse, Mets, & Latré, 2022; Pateria,
Subagdja, Tan, & Quek, 2021)) provide more possibilities of reformulating and improving the
multi-modal conversational recommendation framework.

Overall, motivated by the limitations of the existing multi-modal conversational recommen-
dation framework and the development of advanced technologies in multiple domains, we pro-
pose to leverage those advanced techniques for re-framing and developing more effective multi-
modal conversational recommender systems. Hence, in this thesis, we are motivated to answer
the following questions: (1) How to better understand the users’ natural-language feedback
and the corresponding recommendations with the partial observations of the users’ preferences
over time; (2) How to better track the users’ preferences over the sequences of the systems’
visual recommendations and the users’ natural-language feedback; (3) How to decouple the rec-
ommendation policy (i.e. model) optimisation and the multi-modal composition representation
learning; (4) How to effectively incorporate the users’ long-term and short-term interests for
both cold-start and warm-start users; (5) how to ensure the realism of simulated conversations,
such as positive/negative natural-language feedback.

1.3 Thesis Statement

The statement of this thesis is that the tasks of modelling multi-modal conversational recom-
mendations can be effectively achieved by tracking users’ preferences with partial observations,
mitigating the multi-modal sequence dependency issue, decoupling the composition representa-
tion learning from policy optimisation, incorporating both the users’ long-term preferences and
short-term needs for personalisation, and ensuring the realism of simulated conversations.

Research Topic 1: By modelling the multi-modal conversational recommendation process
with (self-)supervised Q-learning in a partially observable environment, the multi-modal con-
versational recommender system can effectively incorporate the users’ preferences over time
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using the partial observations.
Research Topic 2: By mitigating the multi-modal sequence dependency issue in the multi-

modal conversational recommendation process, the multi-modal conversational recommender
system can effectively incorporate the users’ preferences over time with an RNN-enhanced
Transformer structure for state tracking.

Research Topic 3: By decoupling the policy optimisation and the multi-modal composition
representation learning with goal-oriented reinforcement learning, the multi-modal conversa-
tional recommender system can effectively incorporate the users’ preferences over time with a
composition network and a multi-task learning approach.

Research Topic 4: By modelling the multi-modal conversational recommendation process
with both the users’ interaction history and the users’ instant natural-language feedback, the
multi-modal conversational recommender system can effectively incorporate both the users’
long-term preferences and short-term needs into the personalised recommendations.

Research Topic 5: To make the multi-modal conversational recommendation task more real-
istic, we ensure the realism of simulated conversations by considering positive/negative natural-
language feedback.

1.4 Contributions & Thesis Outline

The contributions of this thesis have five groups corresponding to the five aspects of the
research topics in Section 1.3. Firstly, we propose a multi-modal conversational recommenda-
tion model, the Estimator-Generator-Evaluator (EGE) model, with Q-learning for POMDP, to
effectively incorporate the users’ preferences over time in the partial observable environment.
Secondly, we propose a multi-modal recurrent attention network (MMRAN) model to effec-
tively incorporate the users’ preferences over the long visual dialog sequences of the users’
natural-language feedback and the system’s visual recommendations for addressing the multi-
modal sequence dependency issue. Thirdly, we propose a goal-oriented multi-modal interactive
recommendation model (GOMMIR) using goal-oriented reinforcement learning for decoupling
the policy optimisation and representations learning by leveraging both verbal and non-verbal
relevance feedback. Then, we propose a personalised multi-modal interactive recommendation
model (PMMIR) using hierarchical reinforcement learning to more effectively incorporate the
users’ preferences from both their past and real-time interactions. Finally, we ensure the realism
of simulated conversations by considering positive/negative natural-language feedback.

This thesis is organised as follows:

• Chapter 1 introduces the multi-modal conversational recommendation task, the motiva-
tions of this thesis, our research topics, the contributions of this thesis, and the supporting
materials.



CHAPTER 1. INTRODUCTION 6

• Chapter 2 illustrates the background of developing multi-modal conversational recom-
mender systems (MMCRSs). We first introduce the general overview of recommender
systems, including a taxonomy of recommender systems, deep learning-based recom-
mender systems, and evaluation methods. Then, we discuss closed-loop systems, includ-
ing the definition of closed-loop systems, closed loops in recommender systems, and the
properties of closed loops. We also introduce different types of conversational recommen-
dation, including system-initiative vs user-initiative recommender systems, uni-modal vs
multi-modal conversational recommender systems, and retrieval-based and generation-
based conversational recommender systems. Finally, we describe the preliminaries of
deep reinforcement learning algorithms.

• Chapter 3 describes the multi-modal conversational recommendation framework. We first
discuss the related work in the literature, as well as five challenges, for addressing the
multi-modal conversational recommendation task. Then, we illustrate our multi-modal
conversational recommendation framework for leveraging the users’ natural-language feed-
back. We describe the user simulators for training and testing the multi-modal conversa-
tional recommender systems. Finally, we discuss the opportunities within the framework
from both recommender system and user sides.

• Chapter 4 introduces our proposed Estimator-Generator-Evaluator (EGE) model with Q-
learning for POMDP that addresses the partial observations issue in the environment. We
train our EGE model by using a user simulator, which itself is trained to describe the
differences between the target users’ preferences and the recommended items in natural
language. We evaluate the effectiveness of our proposed EGE model by comparing to the
existing state-of-the-art baseline models on two recommendation datasets – addressing
images of fashion products (namely the Shoes and Fashion IQ Dresses datasets).

• Chapter 5 introduces our proposed multi-modal recurrent attention network (MMRAN)
model for addressing the multi-modal sequence dependency issue so as to effectively
incorporate the users’ preferences over the long visual dialog sequences of the users’
natural-language feedback and the system’s visual recommendations. We conduct exten-
sive experiments on the Fashion IQ Dresses, Shirts, and Tops & Tees datasets to assess the
effectiveness of our proposed model by using a vision-language transformer-based user
simulator as a surrogate for real human users.

• Chapter 6 introduces our proposed goal-oriented multi-modal interactive recommendation
model (GOMMIR) that uses both verbal and non-verbal relevance feedback for decou-
pling the policy optimisation and representation learning issue, thereby effectively incor-
porating the users’ preferences over time. We performed extensive experiments on four
well-known fashion datasets (Shoes, Fashion IQ Dresses, Shirts, and Tops & Tees) to
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evaluate the effectivenss of our proposed GOMMIR model in comparison to the existing
state-of-the-art baseline models.

• Chapter 7 introduces our proposed personalised multi-modal interactive recommendation
model (PMMIR) using hierarchical reinforcement learning to more effectively incorporate
the users’ preferences from both their past and real-time interactions. We evaluate the ef-
fectiveness of our proposed PMMIR model on two derived fashion datasets (i.e. Amazon-
Shoes and Amazon-Dresses) from two well-known public datasets (Amazon Review Data
2014 and 2018) in comparison to the existing state-of-the-art baseline models.

• Chapter 8 investigates the impact of positive and negative natural-language feedback in
multi-modal conversational recommendation. We propose an approach to generate both
positive and negative natural-language critiques about the recommendations within an
existing user simulator. We evaluate the two existing conversational recommendation
models by using the proposed user simulator on the Shoes dataset.

• Chapter 9 summarises our contributions of this thesis, describes the conclusions of each
chapter, and discuss some possible future work.

1.5 Supporting Papers

The thesis builds on the following papers:

• Yaxiong Wu, Craig Macdonald, and Iadh Ounis. “Partially Observable Reinforcement
Learning for Dialog-based Interactive Recommendation.” Proceedings of the 15th ACM
Conference on Recommender Systems. 2021. (RecSys 2021, Chapter 4)

• Yaxiong Wu, Craig Macdonald, and Iadh Ounis. “Multi-Modal Dialog State Tracking
for Interactive Fashion Recommendation.” Proceedings of the 16th ACM Conference on
Recommender Systems. 2022. (RecSys 2022, Chapter 5)

• Yaxiong Wu, Craig Macdonald, and Iadh Ounis. “Goal-Oriented Multi-Modal Interactive
Recommendation with Verbal and Non-Verbal Relevance Feedback.” Proceedings of the
17th ACM Conference on Recommender Systems. 2023. (RecSys 2023, Chapter 6)

• Yaxiong Wu, Craig Macdonald, and Iadh Ounis. “Personalised Multi-Modal Interactive
Recommendation with Hierarchical State Representations.” (TORS, Accepted, Chap-
ter 7)

• Yaxiong Wu, Craig Macdonald, and Iadh Ounis. “Multimodal Conversational Fashion
Recommendation with Positive and Negative Natural-Language Feedback.” Proceedings
of the 4th Conference on Conversational User Interfaces. 2022. (CUI 2022, Chapter 8)



Chapter 2

Background

In this chapter, we provide background and preliminaries on multi-modal conversational rec-
ommendations. In Section 2.1, we first introduce the general overview of recommender systems,
including a taxonomy of recommender systems, deep learning-based recommender systems, and
evaluation methods. In Section 2.2, we discuss about closed-loop systems, including the def-
inition of closed-loop systems, closed loops in recommender systems, and the properties of
closed loops. In Section 2.3, we introduce different types of conversational recommendation,
including system-initiative vs user-initiative conversational recommender systems, uni-modal
vs multi-modal conversational recommender systems, and retrieval-based vs generation-based
conversational recommender systems. Finally, in Section 2.4, we describe the preliminaries of
deep reinforcement learning algorithms.

2.1 Overview of Recommender Systems

The formulations of recommender systems have been greatly enriched over the last decades,
from the static preference estimation with historical interaction data to the dynamic preference
elicitation with real-time multi-turn interactions (S. Zhang, Yao, Sun, & Tay, 2019). In this
section, we describe different formulations of recommender systems, including a taxonomy of
recommender systems and the formulations of recommender systems with various deep learning
(DL) approaches. We also illustrate the evaluation methods.

2.1.1 Taxonomy of Recommender Systems

Recommender systems have been successfully applied in various online services (such as e-
commerce, social media, and entertainment) by addressing the information overload issue and
helping users find their preferred items (Ricci et al., 2015; S. Zhang et al., 2019). Recommender

8
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(a) Explicit Feedback (b) Implicit Feedback

Figure 2.1: Examples of (a) explicit feedback (such as ratings with a scale of 1-5) and (b)
implicit feedback (such as clicks). u and i denote users and items, respectively. “+” and “?”
denote positive implicit feedback (such as clicks) and unobserved feedback, respectively.

systems usually estimate the users’ preferences by modelling the users’ past behaviours offline,
using either the users’ explicit feedback (e.g., purchases, ratings, reviews and critiques) or im-
plicit feedback (e.g., clicks and skips). Figure 2.1 illustrates a representation of explicit feedback
(such as ratings) and implicit feedback (such as clicks). In particular, explicit feedback provides
direct and clear signals about the users’ preferences but can be sparse. On the other hand, im-
plicit feedback is usually more abundant but noisy so it requires careful modelling to infer the
users’ preferences.

Recommender systems have been defined as “a subclass of information filtering system that
seeks to predict the ‘rating’ or ‘preference’ a user would give to an item” (Ricci et al., 2015).
To this end, there are generally two types of recommendation tasks: (1) rating prediction and
(2) item ranking. In particular, the rating prediction task aims to predict the missing ratings on
the users’ unobserved items (i.e. “?” in Figure 2.1 (a)). Meanwhile, the item ranking task is
expected to provide a ranking list of unobserved items (i.e. “?” in Figure 2.1 (b)) and correctly
rank the users’ preferred items on top according to the estimated users’ preferences. In addition,
compared to the rating prediction task, recommender systems for the ranking task can leverage
richer information relating to the users’ preferences from different user-item interactions, using
both implicit feedback (such as clicks and skips) and explicit feedback (such as purchases, re-
views and critiques), thereby satisfying the users’ information needs with their more preferred
items. Figure 2.2 illustrates an example ranking list of items for recommendation. This the-
sis focuses on developing recommendation methods for ranking items since the item ranking
task is more realistic than the rating prediction task during the multi-turn information-seeking
processes.

Recommendation algorithms can be grouped into four categories: collaborative filtering
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Figure 2.2: An example ranking list of items for recommendation.

(CF), content-based recommender systems, knowledge-based recommender systems and se-
quential recommender systems.

Collaborative Filtering (CF) Collaborative filtering is based on the idea that users with simi-
lar preferences in the past will have similar preferences in the future (Ricci et al., 2015). Collab-
orative filtering approaches (Linden, Smith, & York, 2003), such as Matrix Factorisation (Koren
et al., 2009), make recommendations by leveraging the collective wisdom of users (C.-M. Chen,
Wang, Tsai, & Yang, 2019) and learning from either explicit or implicit feedback with the user-
item historical interactions. However, collaborative filtering can suffer from the “cold start”
problem when a user has a limited history of interactions or a new item is added to the system.

Content-based Recommender Systems Content-based recommender systems (Mooney &
Roy, 2000) learn to recommend items similar to the user liked items in the past. A content-based
recommender system typically involves encoding items’ representations with characteristics or
attributes, creating profiles of the users’ preferences based on their interactions, and comput-
ing the similarities between the users’ profiles and the representations of items. By leveraging
the properties (such as attributes) of items to make recommendations, the content-based rec-
ommender systems can effectively mitigate the "cold start" problem. However, if the items’
attributes are not well-defined, incomplete, or not representative of the users’ preferences, the
content-based recommendations may not be satisfactory to meet the users’ information needs.

Knowledge-based Recommender Systems Knowledge-based recommender systems (Ak-
erkar & Sajja, 2009) recommend items on the basis of user-specified requirements rather than
the historical interactions of the users. The knowledge-based methods rely on explicit domain
knowledge or rules to generate personalized recommendations, which are well suited to com-
plex domains (such as e-commerce) where users usually want to express their preferences ex-
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plicitly (e.g., “I prefer red high heels"). In particular, knowledge-based recommender systems
can handle situations where there is limited or no user interaction data, making them useful in
"cold start" scenarios. There are two primary types of knowledge-based recommender systems:
constraint-based recommender systems and case-based recommender systems. The constraint-
based systems (Felfernig, Friedrich, Jannach, & Zanker, 2015) typically allow users to specify
requirements or constraints (e.g., lower or upper limits) on the item attributes, while case-based
recommender systems (Smyth, 2007) allow users to specify critiques (L. Chen & Pu, 2012)
(e.g., “I would like to have a dress like this but with a lower price”) regarding the current rec-
ommended item. The interaction between a user and a recommender system may take the form
of conversational recommendations (Gao et al., 2021) by eliciting the users’ requirements and
preferences within the scope of a feedback loop (L. Chen et al., 2013), search-based recom-

mendations (Burke, 2000) by leveraging the users’ queries or answers to questions to find the
relevant items, or navigation-based recommendations (L. Chen & Pu, 2012) by using change
requests (such as critiques) on the attributes of items.

Sequential Recommender Systems Sequential recommender systems are a class of recom-
mender systems that make personalised recommendations by modelling the sequential depen-
dencies over the user-item interactions, such as a sequence of purchased/clicked items (S. Wang
et al., 2019). Different from the previously mentioned recommender systems (such as collabo-
rative filtering, content-based recommender systems, and knowledge-based recommender sys-
tems) that mainly focus on user-item interactions (e.g., ratings or purchase history), sequential
recommender systems take the temporal aspect of the users’ behaviours into account, such as the
order in which items are interacted with over time. Such a sequence modelling of the sequential
recommender systems is particularly useful in scenarios where user preferences and interests
evolve over time, and the order of interactions matters. The task of sequential recommendation
is usually formulated as a next item prediction task, where the recommender systems predict the
next user-item interaction by taking the sequence of the user’s past interactions as their inputs.

Thus far, we have demonstrated the taxonomy of various recommender systems, such as col-
laborative filtering, content-based recommender systems, knowledge-based recommender sys-
tems, and sequential recommender systems. Recently, deep learning has shown to be effective in
modelling complex patterns among data inputs, extracting high-level representations, and han-
dling large-scale data. Extensive recent research has been focused on recommendation systems
based on deep learning techniques. Therefore, in the next section, we describe various typical
deep learning techniques that were used to develop effective recommendation models.

2.1.2 DL-based Recommender Systems

Deep learning (DL) is increasingly applied in the recommendation domain (Batmaz, Yurekli,
Bilge, & Kaleli, 2019; S. Zhang et al., 2019) due to its expressive representation learning abilities
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Figure 2.3: An MLP with a hidden layer of 3 hidden units.

by effectively capturing nonlinear and nontrivial user/item relationships and dealing with various
types of data modalities (such as images and text). The deep learning techniques have been
changing the recommendation architectures dramatically and bringing opportunities to improve
the performances significantly. In the following, we discuss various representative deep neural
networks, such as Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Attention Mechanisms (AMs) and Transformers.

Multilayer Perceptrons (MLPs) A Multilayer Perceptron (MLP) is a fully connected class
of feed-forward neural networks and is also referred as the simplest deep network. An MLP
consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Fig-
ure 2.3 shows an MLP with a hidden layer of 3 hidden units. MLPs can easily model the nonlin-
ear interactions between users and items by incorporating multiple hidden layers and nonlinear
activation functions (e.g., Rectified Linear Unit (ReLU)). For instance, Neural Collaborative Fil-
tering (NCF) (X. He et al., 2017) improves the recommendation performance by leveraging both
the linearity of Matrix Factorisation (MF) and the nonlinearity of MLPs. Moreover, intuitively,
the elementary compoment of MLPs is the single-layer perceptron network (Taud & Mas, 2018).
In particular, the single-layer perceptron network can be formulated as follows:

y = σ(Wx+b) (2.1)

where the single-layer perceptron network computes the output y according to the summation of
the input data x, W is a randomly initialised vector and b is a bias term. In particular, σ(·) is an
activation function, such as ReLU (rectified linear unit), Sigmoid (logistic activation function),
Tanh (hyperbolic tangent activation function), that can introduce non-linearity into the neural
networks (Sharma, Sharma, & Athaiya, 2017). In this thesis, we adopt MLPs with a non-linear
transformation of the input data (such as ReLU, Sigmoid, or Tanh) to extract/generate abstractive
representations for the recommendation task.

Convolutional Neural Networks (CNNs) A Convolutional Neural Network (CNN) is a class
of neural networks used primarily for processing structured arrays of data such as images (T. Liu,
Fang, Zhao, Wang, & Zhang, 2015). A typical CNN consists of five parts: an input layer, con-
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Figure 2.4: An example of the CNN architecture diagram.

volutional layers, pooling layers, fully-connected layers and an output layer. Figure 2.4 shows
an example of the CNN architecture diagram. The convolutional layers extract features from the
input images with multiple learnable filters (also called kernels) that convolve or slide over the
input images to capture local patterns and relationships between pixels. The pooling layers re-
duce the spatial dimensions while retaining the essential information by down-sampling the fea-
ture maps. Then, the outputs are generated by flattening the feature maps into a one-dimensional
vector and passing the vector to one or more fully connected layers. A CNN is capable of ex-
tracting local and global features from data sources with different modalities, such as text and
images. For instance, Deep Cooperative Neural Networks (DeepCoNN) (L. Zheng, Noroozi, &
Yu, 2017) extracts rich semantic representations from review texts with CNNs, thereby allevi-
ating the sparsity problem and enhancing the model’s interpretability. In this thesis, we adopt
CNNs for processing the natural-language sentences and generating the abstractive representa-
tions for the textual modality.

Recurrent Neural Networks (RNNs) A Recurrent Neural Network (RNN) a class of neu-
ral networks where connections between nodes can create a cycle to capture the dynamics of
sequences by maintaining a hidden state or memory of the past information. There are two
RNN-variants, namely Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
and Gated Recurrent Unit (GRU) (Cho et al., 2014), for alleviating the so-called gradient vanish-
ing problem. LSTM introduces memory cells and gating mechanisms to selectively remember
or forget information over time. The memory cell is responsible for storing and updating the
memory state, and the gates (input gate, forget gate, and output gate) control the flow of infor-
mation into and out of the cell. LSTM’s ability to preserve information over long sequences
makes it effective in tasks involving longer-term dependencies, such as language modeling and
speech recognition. GRU combines the memory cell and hidden state into a single vector and
uses two gates (reset gate and update gate) to control the flow of information. The reset gate
determines how much of the past information should be forgotten, while the update gate decides
how much of the new information should be retained. GRU has been shown to be computation-
ally efficient and effective in various sequence-related tasks (Hidasi, Karatzoglou, Baltrunas,
& Tikk, 2016; Manotumruksa, Macdonald, & Ounis, 2018; Quadrana, Cremonesi, & Jannach,
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(a) RNN (b) LSTM (c) GRU

Figure 2.5: The architectures of RNNs from Dancker (2022).

2018). Figure 2.5 shows the architectures of typical RNNs from Dancker (2022). RNNs enable
the recommender systems to model the temporal dynamics and sequential evolution of the users’
preferences. For instance, a GRU-based model (GRU4Rec) (Hidasi et al., 2016) is proposed for
sequential recommendation to model the behaviour sequences and predict the next item in a
sequence given the last items the user has interacted with.

Attention Mechanisms (AMs) & Transformers The attention mechanism (AM) is a funda-
mental component in many deep learning models for sequence modeling, particularly in Trans-
former and the Transformer-based models (such as BERT (Devlin et al., 2019a), GPT-1 (Rad-
ford, Narasimhan, Salimans, Sutskever, et al., 2018), GPT-2 (Radford et al., 2019)). The atten-
tion mechanisms allows a model to selectively process and weigh different parts of the input
sequence during the sequence modelling. There are several popular attention mechanisms, such
as additive attention (Bahdanau, Cho, & Bengio, 2014), dot-product attention (Luong, Pham,
& Manning, 2015), and scaled dot-product attention (or also called self-attention) (Vaswani et
al., 2017). In particular, a Transformer is entirely rely on the self-attention mechanism to draw
global dependencies between input and output without using sequence-aligned recurrent archi-
tecture. The major component in the Transformer is the unit of multi-head attention mechanism
that adopts the scaled dot-product attention. Figure 2.6 shows a diagram of the Transformer ar-
chitecture with the multi-head attention mechanism and the scaled dot-product attention (Weng,
2018). The input sequence is first transformed into three vectors (known as queries Q, keys
K, and values V ) that are typically obtained by linearly projecting the input embeddings into a
higher-dimensional space. The output of the scaled dot-product attention is a weighted sum of
the values, where the weight assigned to each value is determined by the scaled dot-product of
the query with all the keys:

Attention(Q,K,V ) = so f tmax(
QKT
√

n
)V (2.2)
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Figure 2.6: A diagram of the Transformer architecture with the multi-head attention mechanism
and the scaled dot-product attention from Weng (2018).

where n is the input sequence length. In addition, the multi-head attention mechanism performs
the scaled dot-product attention multiple times in parallel and ensembles the multiple outputs
with a concatenation to improve the model’s performance (Vaswani et al., 2017). The multi-head
attention mechanism can be formulated as the following equations:

MultiHead(Q,K,V ) = [head1; ...;headh]W O

where headi = Attention(QW Q
i ,KW K

i ,VWV
i )

(2.3)

and W Q
i , W K

i , WV
i , and W O are the learned parameter matrices. h is the number of the parallel

attention layers (or called heads).
Transformers have been successfully applied to sequential recommendations. For instance,

SASRec (Kang & McAuley, 2018) is the first sequential recommender system based on self-
attentive mechanism. SASRec models the item sequences as a sequence of embeddings, which
are then processed by the multiple self-attention layers to capture long-term dependencies. By
attending to different positions within the sequence, SASRec can learn contextual representa-
tions that effectively capture user preferences and item relationships. In addition, BERT4Rec (Petrov
& Macdonald, 2022; F. Sun et al., 2019) adapts the BERT (Devlin, Chang, Lee, & Toutanova,
2019b) (Bidirectional Encoder Representations from Transformers) model for sequential recom-
mendations. BERT4Rec formulates the sequential recommendation task as a masked language
modelling problem, where the goal is to predict the masked items in a sequence based on the
surrounding context.
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2.1.3 Evaluation of Recommender Systems

The general goals in evaluating recommender systems include factors such as accuracy, diver-

sity, serendipity, novelty, robustness, and scalability (Aggarwal et al., 2016). In particular, the
accuracy metrics are used to evaluate either the prediction accuracy of estimating the ratings
of specific user-item combinations or the accuracy of the top-k ranking predicted by a recom-
mender system. For the ranking-based recommendation task, the recommender systems aim to
ranked the users’ preferred items on top according to the estimated preferences from the users’
past user-item interactions (Cremonesi, Koren, & Turrin, 2010). Figure 2.2 illustrates an exam-
ple ranking list of items for recommendation. The goal of a ranking-based recommender system
is to prioritise the users’ preferred items by assigning them higher scores, thereby placing these
items at the top of the list of recommended items. These are various evaluation metrics that
can be used for examining the performance of a ranking-based recommender system, such as
Precision, Recall, Mean Average Precision (MAP), Mean Reciprocal Rank (MRR) (Shi et al.,
2012) and Normalised Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002).
Assessing a ranking-based recommendation model becomes crucial when considering the per-
formance of the suggested items at various ranking positions. To this end, we mainly evaluate
the ranking-based recommender systems with MRR and NDCG:

• MRR: The MRR metric measures how well the recommender system ranks relevant (i.e.,
the user preferred/target) items in response to the users’ estimated preferences. The recip-
rocal rank is the reciprocal of the position (i.e., ranku for a user u ∈U) of the first relevant
item in the ranked list. MRR takes the average of the reciprocal ranks over a set of users
U , as follows:

MRR =
1
|U |

|U |

∑
u=1

1
ranku

(2.4)

• NDCG: The NDCG metric takes into account the relevance of the ranked items and their
positions in the list, providing a more comprehensive evaluation of the ranking quality
than simpler metrics like Precision or Recall. NDCG is formulated as:

NDCG@N =
DCG@N
IDCG@N

(2.5)

DCG@N =
N

∑
i=1

2reli −1
log2(i+1)

(2.6)

IDCG@N =
|RELN |

∑
i=1

2reli −1
log2(i+1)

(2.7)

where reli is the graded relevance of the item at position i. DCG@N is discounted cu-
mulative gain and it penalises highly relevant documents that appear lower in the search
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result list. IDCG@N is ideal discounted cumulative gain, and RELN represents the list of
relevant items (ordered by their relevance) in the candidate pool up to position N.

Recommender systems can be evaluated either online or offline (Aggarwal et al., 2016). In
the online evaluation of a recommender system, the users’ feedback is usually measured with
respect to the presented recommendations, such as the conversion rate of users clicking on
recommended items. For instance, the evaluation of recommender systems based on deep rein-
forcement learning, such as a news recommendation model named DRN (G. Zheng et al., 2018),
are generally conducted in an online production environment of a commercial recommendation
application. However, since online evaluations require active user participation, it is often not
feasible to use them in research. On the other hand, testing over multiple datasets from multiple
domains (e.g., music, movies, news) is particularly important for assuring greater generalisation
power of the recommender systems (Aggarwal et al., 2016). In such cases, offline evaluations
with historical datasets are used. In recent years, online user-item interaction simulators, which
are trained on users’ feedback logs, have been deployed to simulate the online environment and
evaluate the recommender systems offline in the RL community, such as DEERS (X. Zhao,
Zhang, et al., 2018), DeepPage (X. Zhao, Xia, et al., 2018), and LIRD (X. Zhao et al., 2017).

Thus far, we have shown the overview of recommender systems, including the taxonomy of
recommender systems, deep learning based recommender systems, and the evaluation of rec-
ommender systems. The existing formulations of the recommendation task usually consider the
recommendation process as a static process by estimating the users’ preferences from their past
user-item interactions and predict their next preferred items. However, the users’ information
seeking process is actually dynamic by involving closed loops with multiple interaction turns
between users and recommender systems. In the following section, we will illustrate how/why
a recommender system is a closed-loop system, as well as the challenges of a closed-loop rec-
ommender system.

2.2 Overview of Closed-Loop Systems

The recommendation process is usually a dynamic process with continuous interactions between
users and recommender systems. As we mentioned in Section 1.1, conversational recommender
systems can be generally considered to form a closed loop system (from control theory (Sim-
rock, 2011)) in which the inputs (i.e. users’ feedback) of the recommender systems are fully
or partially determined by the outputs (i.e. recommended items). In particular, conversational
recommender systems can benefit from such closed-loop interactions by tracking and capturing
users’ current preferences across multiple interactions, thus mitigating the information asymme-
try. In this part, we will illustrate the concept of closed loops in the recommendation processes.
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(a) A closed loop (b) A block diagram of a closed-loop control system

Figure 2.7: The architecture of a closed loop system.

2.2.1 Closed Loops

A closed-loop system, also known as a feedback control system, is a system in which the output
of the system is used to self-regulate and adapt to changes or disturbances in its environment.
Figure 2.7 (a) shows the formulation of a closed loop where the inputs of a closed loop system
are determined, at least in part, by the outputs of the system (Simrock, 2011). Figure 2.7 (b)
shows a block diagram of a closed-loop control system (Stefani, Shahian, Savant, & Hostetter,
2002) where the system continuously receives feedback about its output with a sensor and uses
that information to make adjustments or corrections to its input. The output of the system is
compared to a desired reference, and the difference is used to generate an error signal. This
error signal is then applied in a controller to initiate a corrective action, adjusting the system’s
input to reduce or eliminate the error. By continuously monitoring the output and making ad-
justments, a closed-loop system can maintain stability, accuracy, and desired performance even
in the presence of uncertainties or disturbances (Doyle, Francis, & Tannenbaum, 2013). For
this reason, closed-loop systems have been widely used in various fields, including engineering,
electronics, control systems, automation, and robotics.

2.2.2 Closed Loops in Recommender Systems

A recommender system is a typical closed-loop system in which the inputs (i.e., users’ feed-
back) of the recommendation models are fully or partially determined by the outputs (i.e., re-
ommendations). Figure 2.8 (a) presents a diagram of a closed loop involving a user’s feedback
and a recommender system’s recommendations. In such a closed loop, a user interacts with
the recommender systems by clicking or purchasing the recommended items, while a recom-
mender system receives the user’s feedback to adjust the recommendation strategies and update
the recommendation list of items (Jadidinejad, Macdonald, & Ounis, 2020). Indeed, the users’
feedback can be affected by the evolution of the users’ internal interests and the disturbances
from the environment (such as weathers, seasons, and temperatures). The users’ interaction logs
can be usually stored offline where the logged behaviour data can be further used for optimis-
ing the recommender systems. To this end, there are three major components involved in the
closed loops: models, users, and data. Figure 2.8 (b) shows the relationship between the three
components.
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(a) A diagram of closed loops in recommendations (b) Components in closed loops

Figure 2.8: The closed loops between users and recommender systems.

Figure 2.9: Decoupling of data generation and model optimisation.

2.2.3 Properties of Closed Loops

As a widely adopted type of real-world application, recommender systems usually suffer from
delays and uncertainties in the real-world closed loops, which can greatly hinder the recom-
mender systems from understanding and satisfying the users’ information needs.

Delays According to the architectures of recommender systems as described in Figure 2.8
(a), delays can appear in data and model updating. Data is usually collected from the users’
feedback, which can indicate the users’ past preferences estimated from the interaction history
or the real-time information needs expressed/indicated by the users’ explicit/implicit feedback.
In particular, a delay in data updating describes the effect that the instant users’ feedback is
not immediately considered in the next prediction. In real-world scenarios, users can be un-
willing/unable to provide intermediate feedback when they receive recommendations, such as
recommendations for restaurants. In this situation, the systems have to wait for the users’ feed-
back corresponding to the current recommendations until the users have checked the recom-
mendations (such as restaurants). In addition, the delay in updating the recommendation model
is mainly caused by the decoupling of data generation and model optimisation in the closed
loops. Figure 2.9 presents the decoupling of data generation and model optimisation in a closed
loop. Concurrently, various recommendation models have different capabilities of modelling
the users’ sequential behaviours across multi-turn interactions. For instance, non-sequential rec-
ommendation models, such as Matrix Factorisation (Section 2.1), make recommendations for
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the next item regardless of the users’ latest feedback. Meanwhile, sequential recommendation
models, such as GRU4Rec, SASRec, and BERT4Rec (Section 2.1), can continuously predict the
next item using the last user-item interactions as inputs, in order to make up-to-date recommen-
dations.

Uncertainties Uncertainties of the users’ feedback can be caused by changes of the users’
temporal interests in the closed loops of recommender systems. Uncertainties in the closed loops
include the evolution of users’ internal preferences and the environmental disturbances on the
users’ interests, e.g., contextual information. During the recommendation process, the users’
information needs or preferences are either expressed by explicit feedback (such as ratings,
critiques, or reviews) or implicit feedback (such as clicks, skips, or add-to-cart). Although the
recommender systems estimate users’ preferences on items and produce recommendations to
assist the users in the decision-making process, the users’ temporal interests can be continuously
changing during the recommendation process. For instance, a user may click different types of
products when browsing an e-commerce website. Meanwhile, environmental disturbances, such
as weathers, seasons, temperatures, can also greatly influence the user’s choices on the items.
For instance, the users are more likely to buy a coat than a t-shirt in winter from an e-commerce
website.

Therefore, the tasks of modelling and evaluating closed loop interactions in recommender
systems mainly focus on mitigating the delays and uncertainties in the closed loops to improve
the quality of recommendations. To this end, a conversational recommender system is a typical
type of systems that can address the delays by continuously updating the recommendation strat-
egy with the latest users’ feedback/request and mitigate uncertainties by allowing the users to
express their preferences or needs explicitly, such as natural-language feedback. In this thesis,
we mainly focus on modelling and evaluating various conversational recommendation models
for effectively mitigating the delay and uncertainty issues in the closed loops.

2.3 Overview of Conversational Recommender Systems

The existing traditional/DL-based recommender systems, such as those described in Sec-
tion 2.1, usually suffer from a fundamental information asymmetry problem (Gao et al., 2021),
where a recommender system will never know precisely what a user likes and why a user likes

an item. On one hand, the users’ sparse and noisy historical interaction data make it difficult to
precisely model the users’ preferences, especially when the users’ preferences drift frequently.
On the other hand, the users’ decisions can also be affected by various reason, such as cu-
riosity, mood, and season. Conversational recommendation enables the recommender systems
to directly communicate with the engaged users by either asking clarification questions or re-
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(a) User-initiative conversational recommendation (b) System-initiative conversational recommendation

Figure 2.10: An example of user-initiative and system-initiative conversational recommenda-
tion.

ceiving natural-language feedback from users, thereby addressing the information asymmetry

problem (Gao et al., 2021) in information seeking. Developing the form of conversational rec-
ommender systems is still an open problem. There are different categories of conversational
recommender systems (CRSs), such as system-initiative vs. user-initiative CRSs(Zamani, Trip-
pas, Dalton, & Radlinski, 2022), uni-modal vs. multi-modal CRSs (Deldjoo et al., 2021), and
retrieval-based vs. generation-based CRSs (Manzoor & Jannach, 2021).

2.3.1 System-Initiative vs. User-Initiative CRSs

The conversations can be roughly divided into three types based on the initiatives: system-

initiative, user-initiative, and mixed-initiative. Here, we mainly focus on system-initiative and
user-initiative conversations since the mixed-initiative conversation can be considered as a mix-
ture of system-initiative and user-initiative conversations. Figure 2.10 shows an example of
user-initiative and system-initiative conversational recommendation. To this end, user-initiative
conversational recommendation typically allows users to actively initiate a conversation with a
textual query and provide natural-language feedback with more preferred attributes considering
the current recommendations through multi-turn interactions, such as interactive recommender

systems (Zou et al., 2020) and critiquing-based recommender systems (Antognini & Faltings,
2021). Specifically, the interactive recommender system leverages a feedback signal indicat-
ing whether and how much the user likes the corresponding recommendation (such as ratings or
like/dislike), the critiquing-based recommender system leverages the users’ feedback on specific
attributes of the recommended items so as to narrow down candidate items quickly. Meanwhile,
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system-initiative conversational recommendation generally adopts a question-based preference
elicitation process by deciding when and what to ask, such as question-based recommender sys-

tems (W. Lei et al., 2020; Y. Sun & Zhang, 2018). Specifically, a question-based recommender
system leverages a conversation strategy to determine when to ask and recommend.

However, the existing formulations of CRSs have demonstrated their drawbacks. For in-
stance, the interactive recommendations suffer from low efficiency when there are too many
items (Gao et al., 2021), the critiquing-based recommendations are constrained by the limited
attribute-based options for feedback (Gao et al., 2021), and the question-based recommenda-
tions (i.e. using pure natural-language interfaces) suffer from less efficient interactions (Iovine
et al., 2020; Jannach et al., 2021). To this end, we argue that developing the form of conver-
sational recommender systems is still an open problem. Next, we will describe conversational
recommender systems considering different modalities.

2.3.2 Uni-modal vs. Multi-Modal CRSs

The recent research on conversational recommender systems primarily focuses on uni-modal

interactions and information items, such as the question-based recommender systems using pure
natural-language interfaces for recommendations. However, it is widely known that human con-
versations are multi-modal, involving different actions from humans (e.g., word, speech, gesture,
facial expression) and different representations of items from machines (e.g., audio, text, image,
video) (Deldjoo et al., 2021). In particular, vision-and-language-based interactions between
users and recommender systems can be effective for the benefits of both visual information
from the recommendations’ images and textual information from the users’ natural-language
feedback (Guo et al., 2018; Uppal et al., 2021; H. Wu et al., 2021; Yuan & Lam, 2021). For
instance, the users’ natural-language critiques about the visual recommendations can allow the
recommender systems to correctly track the users’ preferences over time and adapt the systems’
instant recommendations, thereby satisfying the users’ information needs effectively. In this
thesis, we mainly focus on effectively tracking and estimating the users’ dynamic preferences
from the multi-modal conversational recommendations, so as to develop realistic and effective
multi-modal conversational recommender systems.

2.3.3 Retrieval-based vs. Generation-based CRSs

Conversational recommender systems, as a type of conversational system, can be formulated
as either retrieval-based and generation-based conversational recommender systems (CRSs). In
particular, the retrieval-based systems create responses by either matching items from a candi-
date pool as a recommendation list or selecting attributes from an attribute pool to formulate
clarification questions according to similarity metrics or rules. Retrieval-based CRSs provide
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(a) Uni-modal conversational recommendation (b) Multi-modal conversational recommendation

Figure 2.11: An example of uni-modal and multi-modal conversational recommendation.

accurate and attribute-based responses, but they are limited to the information available in their
predefined candidate and attribute sets. Meanwhile, generation-based conversational recom-
mender systems generate responses from scratch instead of selecting pre-defined responses.
These systems employ techniques such as sequence-to-sequence (Seq2Seq) models or Trans-
formers to generate coherent and contextually relevant responses. Generation-based CRSs have
the advantage of being able to generate novel responses, which allows them to handle a wider
range of inputs. However, generating responses from scratch can be challenging, and the gen-
erated output may sometimes be less accurate or coherent than in retrieval-based CRSs. In this
thesis, we mainly focus on retrieval-based conversational recommender systems by ranking the
recommendations based on the estimated users’ preferences across multiple interaction turns.

Moreover, in the following, we formulate a conversational recommendation process as a
decision making process using deep reinforcement learning.

2.4 Preliminaries of Deep Reinforcement Learning

Deep reinforcement learning (DRL) aims to train an agent that can learn from the interaction
trajectories provided by the environment by combining the power of deep learning and rein-
forcement learning. DRL is especially suitable for learning from the closed-loop interactions,
such as in CRSs, since it actively learns from the users’ real-time feedback. In this section, we
describe the essential formulations of decision processes in closed-loop systems, DRL training
approaches and recent deep reinforcement learning approaches.
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Figure 2.12: An example of reinforcement learning.

2.4.1 Formulations of Decision Making Processes

Deep reinforcement learning provides various formualtion approches for the closed loop sys-
tems, such as Markov decision prcesses (MDPs) when the environment is fully observable and
partially observable Markov decision processes (POMDPs) when the environment is partially
observable. In particular, observability refers to the extent to which an agent (i.e. a recom-
mender system) can perceive and obtain information about its environment (i.e. the users). In a
fully observable environment, the agent has access to complete and accurate information about
the current state of the environment (i.e. the current preferences of a user). Meanwhile, in a
partially observable environment, the agent does not have direct access to the true state of the
environment. Instead, it receives partial and often noisy observations (such as the users’ explicit
or implicit feedback), making it challenging to determine the exact state (i.e. the estimation of
the users’ preferences). Figure 2.12 shows an example of deep reinforcement learning with the
closed-loop interactions between an agent and an environment. Deep reinforcement learning
(DRL) enables the recommender systems to continuously update recommendation strategies ac-
cording to users’ latest feedback, and maximise the expected cumulative long-term reward from
users (Li, Chu, Langford, & Schapire, 2010; X. Zhao, Xia, et al., 2018; X. Zhao, Zhang, et al.,
2018; X. Zhao et al., 2017; G. Zheng et al., 2018).

Markov Decision Process (MDP)

Reinforcement learning (RL) deals with how agents ought to take actions in an environment

with certain states in order to maximise the notion of cumulative rewards. Basic reinforce-
ment learning is modelled as a Markov decision process (MDP) with an assumption that the
complete information of the environment is fully observable. Figure 2.13 (a) shows an exam-
ple of an Markov decision process (MDP). There are many variants of RL algorithms, such as
Q-learning, SARSA, Policy Gradient, Actor-Critic, and many others (Hasselt, 2010; Konda &
Tsitsiklis, 2000; Silver et al., 2014; Sutton & Barto, 2018). A Markov decision process, a clas-
sical formalisation of sequential decision making, is used by models, such as DRN (G. Zheng
et al., 2018), DEERS (X. Zhao, Zhang, et al., 2018), DeepPage (X. Zhao, Xia, et al., 2018),
and LIRD (X. Zhao et al., 2017), for capturing users’ dynamic preferences. Deep reinforcement
learning with both value-based approaches (such as DQN (Mnih et al., 2013; X. Zhao, Zhang,
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(a) MDP (b) POMDP

Figure 2.13: An example of decision making processes from X. Chen et al. (2021).

et al., 2018)) and policy-based approaches (such as REINFORCE (M. Chen et al., 2019)) has
been widely applied in various recommendation tasks, such as interactive recommedation (Zou
et al., 2020), sequential recommendation (Xin et al., 2020), and conversational recommenda-
tion (Y. Sun & Zhang, 2018).

Partially Observable Markov Decision Process (POMDP)

When complete information about the environment is not available, a deep reinforcement learn-
ing problem can be modelled as a partially observable Markov decision process (POMDP) (Sut-
ton & Barto, 2018). Figure 2.13 (b) shows an example of a partially observable Markov decision
process (POMDP). For instance, given only a single game screen, the game of Pong is a POMDP
because a single observation does not reveal the velocity of the ball while it only reveals the lo-
cation of the paddles and the ball (Hausknecht & Stone, 2015). The estimated states, which
characterise the distribution over the latent states in a POMDP, are typically modelled using re-
current neural networks (RNNs), and have been shown to be effective for reinforcement learning
in POMDP scenarios (Hausknecht & Stone, 2015; Igl, Zintgraf, Le, Wood, & Whiteson, 2018).
For example, a Deep Recurrent Q-Network (DRQN) (Hausknecht & Stone, 2015) was proposed
to successfully integrate information (i.e. the location of the paddles and the ball) through time
in Pong to detect the ball’s velocity, although it was capable of seeing only a single screen at
each timestep. The POMDP formulation approach has been shown to be suitable for sequential
recommendations (Lu & Yang, 2016) and conversational recommendations (Y. Sun & Zhang,
2018) where it is not possible to fully observe a user’s actions on all items in a recommender
system, as well as all the desired features expressed by the users’ natural-language feedback. For
the same reason, the POMDP formulation approach is typically also applicable for multi-modal
conversational recommendations.

2.4.2 DRL Training Approaches

There are usually three types of DRL training approaches (Levine et al., 2020): on-policy, off-
policy, and offline. Figure 2.14 shows an example of DRL training approaches. Figure 2.14 (a)



CHAPTER 2. BACKGROUND 26

(a) On-Policy DRL (b) Off-Policy DRL (c) Offline DRL

Figure 2.14: An example of DRL training approaches from Levine et al. (2020).

shows a training framework of on-policy (or online) DRL, where the policy πk is updated with
streaming data collected by πk itself. Examples of on-policy algorithms include Sarsa, REIN-
FORCE, and Proximal Policy Optimization (PPO). Figure 2.14 (b) shows a training framework
of off-policy DRL, where the new policy πk+1 learns from data generated by a different policy
or behavior policy πk. In particular, the agent’s experience with all previous policies (π0, π1,
..., πk) is appended to a data buffer (or called replay buffer) D for updating a new policy πk+1.
Examples of off-policy algorithms include Q-learning, Deep Q-Networks (DQN), and Twin De-
layed DDPG (TD3). Different from on-policy and off-policy algorithms that are able to explore
during the training processes, offline DRL (Figure 2.14 (c)) employs a dataset D collected by
some (potentially unknown) behaviour policy πβ . The training process does not interact with
the MDP at all, and the policy is only deployed after being full trained. The offline DRL al-
gorithms are data-driven approaches and can use large previously collected datasets. Examples
of offline DRL algorithms include Batch Q-learning, Batch-Constrained Q-learning (BCQ) and
Soft Actor-Critic Offline (SAC Offline).

2.4.3 Recent Reinforcement Learning Approaches

There are various reinforcement learning approaches, such as self-supervised reinforcement
learning (SSRL), goal-oriented reinforcement learning (GORL), and hierarchical reinforcement
learning (HRL).

Self-Supervised Reinforcement Learning (SSRL)

Self-supervised reinforcement learning (SSRL) is a combination of self-supervised learning and
reinforcement learning (RL) techniques. In self-supervised reinforcement learning, the agent
leverages self-supervised learning methods to learn useful representations or features from raw
or partially observed sensory input. These learned representations serve as a knowledge base
for the RL agent to make informed decisions and solve tasks more efficiently. Self-supervised
reinforcement learning approaches, such as the Supervised Q-learning (SQN) framework (Xin
et al., 2020), have demonstrated a generally better performance compared to neural recommen-
dation models using supervised learning, such as GRU4Rec (Hidasi et al., 2016), Caser (Tang
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& Wang, 2018) and SASRec (Kang & McAuley, 2018). In particular, the SQN framework (Xin
et al., 2020) extends existing sequential recommendation models (Hidasi et al., 2016; Kang &
McAuley, 2018) with a Q-learning layer to introduce reward-driven properties to the recom-
mendation process.

Goal-Oriented Reinforcement Learning (GORL)

Compared to the standard RL algorithms that learn a policy solely based on the states or obser-
vations, goal-oriented reinforcement learning (GORL) additionally requires the agent to make
decisions according to different goals (M. Liu et al., 2022). A goal is defined as “a cognitive
representation of a future object" (Colas et al., 2022), which the agent is committed to achieve
or maintain. The goal-oriented reinforcement learning approaches have been shown to improve
sample efficiency by learning from self-generated rewards (i.e. intrinsic rewards) when the ex-
ternal rewards are sparse. For example, GoalRec (K. Wang et al., 2021), a novel model-based
model based on a Dueling Deep Q-Network (DDQN), designed a disentangled universal value
function with the users’ desired future trajectory (i.e. goal). In addition, a novel multi-goals
abstraction-based deep hierarchical reinforcement learning algorithm (MaHRL) (D. Zhao et al.,
2020) generated multiple goals with the high-level agent so as to reduce the difficulty for the
low-level agent to approach the high-level goals. The high-level agent catches long-term sparse
conversion signals, while the low-level agent captures short-term click signals.

Hierarchical Reinforcement Learning (HRL)

Common approaches to reinforcement learning are seriously challenged by large-scale applica-
tions involving huge state/action spaces and sparse delayed reward feedback (Rafati & Noelle,
2019). Hierarchical reinforcement learning provides a solution for decomposing a complex
task into a hierarchy of easily addressed subtasks as semi-Markov decision processes (SMDPs)
with various frameworks, such as Options (Sutton, Precup, & Singh, 1999), Hierarchical of
Abstract Machines (HAMs) (Parr & Russell, 1997), and MAXQ value function decomposi-
tion (Dietterich, 2000). The existing recommender systems with HRL (Greco, Suglia, Basile, &
Semeraro, 2017; Y. Lin et al., 2022; Xie, Zhang, Wang, Xia, & Lin, 2021; D. Zhao et al., 2020)
typically formulate the recommendation task with two levels of hierarchies where a high-level
agent (the so-called meta-controller) determines the subtasks and a low-level agent (the so-called
controller) addresses the subtasks. For instance, CEI (Greco et al., 2017) formulates the con-
versational recommendation task with the Options framework using a meta-controller to select
a type of subtasks (chitchat or recommendation) and a controller to provide subtask-specific
actions (i.e. response for chitchat or candidate items for recommendation).
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2.5 Conclusions

In this chapter, we have provided a comprehensive overview of recommender systems in the
literature. We illustrated various types of recommender systems, including traditional recom-
mender systems and deep learning-based recommender systems. We also introduced how a
recommender system is evaluated. Then, we discussed about the closed-loop systems, includ-
ing the definition and properties of closed-loop systems, closed loops in recommender systems,
delay and uncertainty issues in closed loops. Then, we introduced different types of conversa-
tional recommendation, including system-initiative vs user-initiative recommender systems, uni-
modal vs multi-modal conversational recommender systems, and retrieval-based vs generation-
based conversational recommender systems. Finally, we also describe the preliminaries of deep
reinforcement learning algorithms, including formuations of decision making processes, DRL
training approaches, and recent reinforcement learning approaches (such as self-supervised rein-
forcement learning, goal-oriented reinforcement learning and hierarchical reinforcement learn-
ing). In the next chapter, we describe our proposed multi-modal conversational recommendation
framework and discuss the challenges to address within each framework component. In partic-
ular, we leverages the recent reinforcement learning approaches (Section 2.4), such as SSRL,
GORL, and HRL, to effectively formulate the conversational recommendation task.



Chapter 3

A Multi-Modal Conversational
Recommendation Framework

As discussed in Section 1.1, this thesis aims to leverage multi-modal interactions between
users and recommender systems (including both visual and textual information) effectively for
tracking and estimating the users’ dynamic preferences, so as to develop realistic and effective
multi-modal conversational recommender systems. Indeed, as we mentioned in Section 2.3, the
formulation of conversational recommender systems is still an open problem. In this chapter,
in Section 3.1, we first explore the conversational recommendation techniques in the literature
to distinguish our main contributions from existing work. Next, in Section 3.2, we introduce
our framework for multi-modal conversational recommendations. In particular, we consider two
different scenarios about recommendation tasks: cold-start users and warm-start users. We also
introduce the methodology for evaluating the success of recommender systems for these tasks.
Then, in Section 3.3, we illustrate the users simulator for training and evaluating the multi-modal
conversational recommender systems, including the formulation of user simulators, datasets, and
evaluation metrics. Finally, in Section 3.4, we discuss the opportunities within the framework
for enhancing the performance of multi-modal conversational recommender systems.

3.1 Related Work

Multi-modal conversational recommendation is an emerging topic in recent years and has
been intensively investigated in the literature, as it can satisfy the users’ information needs
by effectively eliciting the users’ preferences from the visual recommendations (e.g., images
of fashion products) and the corresponding verbal and/or non-verbal relevance feedback (e.g.,
natural-language feedback and likes/dislikes) (Chakraborty et al., 2021; Deldjoo et al., 2022;
Guo et al., 2018; Liao, Long, Zhang, Huang, & Chua, 2021; Yu et al., 2020). Figure 3.1 il-

29
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Figure 3.1: A developing process of multi-modal conversational recommender systems in two
different routes: (1) enhancing uni-modal (i.e. text-based) conversational recommender systems
with multi-modal (i.e. both textual and visual) information, (2) enhancing image retrieval models
with multi-turn interactions. * denotes under-review. Red denotes our work.

lustrates a timeline of development of multi-modal conversational recommender systems. In
particular, there are two primitive technical routes for developing multi-modal conversational
recommender systems: (1) enhancing uni-modal (i.e. text-based) conversational recommender
systems with multi-modal (i.e. both textual and visual) information, (2) enhancing image re-
trieval models with multi-turn interactions. The first route usually follows the generation-based
conversational recommender systems (mentioned in Section 2.3.3) by considering multi-modal
information in the conversations and generating natural-language responses, while the second
route usually follows the retrieval-based conversational recommender systems (mentioned in
Section 2.3.3) by matching items from a candidate pool as a recommendation list.

Both routes start from a simplified task to reduce the complexity of the models. In particular,
the first route starts with combining recommender systems and conversational systems together.
For instance, Y. Sun and Zhang (2018) proposed a unified framework (called CRM) to inte-
grate recommender systems (Factorization Machine (FM)) and dialogue system technologies (a
LSTM-based Belief Tracker to understand the user’s intention correctly and a MLP-based Pol-
icy Network to make sequential decisions and take appropriate actions in each turn) together
for building an intelligent conversational recommender system. KBRD (Q. Chen et al., 2019)
bridged the gap between recommender system and dialog system via knowledge propagation.
Dialog information (such as the users’ responses to the system’s clarification questions) is ef-
fective for the recommender system especially in the setting of cold start, and the introduc-
tion of knowledge can strengthen the recommendation performance significantly. In addition,
information from the recommender system that contains the user preference and the relevant
knowledge can enhance the consistency and diversity of the generated dialogs. EAR (W. Lei
et al., 2020) formulated the conversational recommendation task into three stages, i.e. Estima-
tion–Action–Reflection, to better converse with users. Specifically, Estimation builds predictive
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models to estimate user preference on both items and item attributes; Action learns a dialogue
policy to determine whether to ask attributes or recommend items, based on Estimation stage
and conversation history; and Reflection updates the recommender model when a user rejects
the recommendations made by the Action stage. There are also many other conversational rec-
ommendation models (Gao et al., 2021; Jannach et al., 2021; Xu et al., 2021) to further im-
prove the recommendation performance based on the previously mentioned formulations (i.e.
CRM (Y. Sun & Zhang, 2018), KBRD (Q. Chen et al., 2019), and EAR (W. Lei et al., 2020)).
However, all of them are uni-modal conversational models that leverage text only. The real
breakthrough of conversational recommender systems has largely been blocked by a compre-
hensive multi-modal conversational search environment for facilitating the corresponding re-
search tasks. To this end, a Multimodal Multi-domain Conversational dataset (MMConv) (Liao
et al., 2021), specifically a fully annotated collection of human-to-human role-playing dialogues
spanning over multiple domains and tasks (including multi-modal conversational recommenda-
tions), has been introduced recently. By leveraging the MMCov environment, a State Graph-
based Reasoning model (SGR) (Y. Wu, Liao, et al., 2022) was proposed to explicitly model the
users’ dynamic preferences and integrate with a multi-modal knowledge graph for better state
representation. Although MMConv provides a good foundation for the research in multi-modal
conversational recommendations across different domains (such as food, hotel, nightlife, mall,
and sightseeing), MMConv is constrained with limited dialogues and turns. In addition, it is also
time-consuming and unrealistic to extend to other domains (such as books, music, movies, and
e-commerce) by collecting conversations from real human directly. To this end, the development
of the route beginning with uni-modal conversational recommender systems is mainly hindered
by the limited availablility of multi-modal conversational recommendation datasets (Liao et al.,
2021). We are still optimistic in such a technical route by expecting more research on MMConv
and more multi-modal conversational recommendation datasets in the future.

Meanwhile, the other technical route from image retrieval is more realistic and easier to
progress than the previous technical route. In particular, the task of image retrieval can be for-
mulated as a critiquing-based search process, where the input query is specified in the form of
an image plus some text that describes desired modifications to the input image. The target of
the critiquing-based search process is to find the target item(s) with less effort by users, such as
fewer interaction turns. The recommender systems guide the users toward the users’ target items
by recommending items with users’ preferred attributes according to both the users’ critiques
and the systems’ previously recommended items. In particular, TIRG (called Text Image Resid-
ual Gating) (Vo et al., 2019) was proposed to address the composition of image and text in the
context of image retrieval. Parallel to this work, MBPI (model-based policy improvement) (Guo
et al., 2018) firstly extended the critiquing-based image retrieval task with multi-turn interac-
tions and focused on modeling the interactions between users and the agent. MBPI formulated
the task of dialog-based interactive image retrieval as a reinforcement learning problem, where
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Figure 3.2: An example of multi-modal conversational recommendations with MBPI.

the dialog system is rewarded for improving the rank of the target image during each dialog
turn. Figure 3.2 illustrates an example of multi-modal conversational recommendations with
MBPI (Guo et al., 2018). A relative captioner was also proposed to act as a surrogate for real
human users by automatically generating sentences that can describe the prominent visual dif-
ferences between any pair of target and candidate images. Such a natural-language feedback
generation process with the user simulator is very similar to a scenario of a shopping conver-
sation session between a shopping assistant and a customer. The relative captioner was well-
trained with crowdsourced datasets and carefully evaluated with real human users. Such a user
simulator enables to train and test the interactive system actively across multi-turn interactions.
Following the MBPI (Guo et al., 2018) work, various vision-language interactive recommender
systems based on GRU/LSTM were proposed to further improve the performance by leverag-
ing cascading bandit (VDACB (visual dialog augmented cascading bandit) (Yu, Shen, & Jin,
2019)), actor-critic with visual attributes (VAARL (visual attribute augmented reinforcement
learning) (Yu, Shen, Zhang, et al., 2019)), constrained reinforcement learning (RCR (reward-
constrained recommendation) (R. Zhang et al., 2019)), pairwise ranking bandit (SPR bandit) (Yu
et al., 2020), offline reinforcement learning (OIR (offline interactive recommendation (R. Zhang,
Yu, Shen, & Jin, 2022))). Furthermore, MMT (multi-modal Transformer) (H. Wu et al., 2021)
leverages a Transformer encoder for fusing the visual and textual sequences (including images,
natural-language feedback, and attributes) to better elicit the users’ preferences cross multi-turn
interactions. CFIR (conversational fashion image retrieval) (Yuan & Lam, 2021) leveraged three
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modules for compositing visual and textual feature representations, comparing the difference be-
tween the reference image and the candidate image, and exploiting the attribute information of
the candidate image for calculating the mutual attention between candidate image and feedback
texts.

However, the existing multi-modal conversational recommender systems have demonstrated
their limitations, as follows:

• Partial observations: Despite the expressiveness of natural-language feedback in multi-
modal conversational recommendations, the users’ feedback can only allow the recom-
mender system to obtain a partial portrayal of the users’ preferences. Such partial ob-
servations of the users’ preferences from their natural-language feedback can drive the
recommender system towards a degenerate preference estimation that ignores certain fea-
tures in the historical observations (Gangwani, Lehman, Liu, & Peng, 2020), i.e. historical
natural-language feedback and historical recommendations. For instance, recommenda-
tions by the MBPI model can violate the users’ preferences from previous natural language
feedback and can also be repeated. We provide more detailed analysis in Chapter 4.

• Multi-modal sequence dependency: The multi-modal conversational recommendation task
has been previously modelled using recurrent neural networks (RNNs, using a gated re-
current unit (GRU) (Guo et al., 2018; Yu et al., 2020) or a long short-term memory
(LSTM) (R. Zhang et al., 2019)) or using a transformer (H. Wu et al., 2021) as a state

tracker for both multi-modal sequence combination (Beard et al., 2018; Gkoumas, Li, Li-
oma, Yu, & Song, 2021) (i.e. combining the users’ natural-language feedback sequence
and the systems’ visual recommendation sequence) and dialog state tracking (Fu, Xian,
Zhang, & Zhang, 2020; Liao et al., 2021; Y. Sun & Zhang, 2018) (i.e. eliciting the users’
preferences over time). However, the actual neural networks adopted as the state trackers
(such as GRUs (Chung, Gulcehre, Cho, & Bengio, 2014), LSTMs (Hochreiter & Schmid-
huber, 1997) or transformers (Vaswani et al., 2017)) are all originally designed for single-

modal sequence modelling tasks (such as natural language processing (Otter, Medina, &
Kalita, 2020)). These GRU/LSTM-based and transformer-based models suffer from an
inability to capture multi-modal sequence dependencies, because of their limitations in ei-
ther combining multi-modal sequences with a concatenation operation or tracking dialog

states by inferring directly from all the concatenated textual and visual representations at
all turns instead of the multi-modal abstract representations of the past interactions. We
give more detailed analysis in Chapter 5.

• Coupling of representation learning and policy optimisation: The representations of vi-
sual candidate items and natural-language feedback are initially generated with pre-trained
models (such as ResNet (K. He, Zhang, Ren, & Sun, 2016) for image encoding and
BERT (Devlin et al., 2019a)/GloVe (Pennington, Socher, & Manning, 2014) for text en-
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coding), and are then implicitly further tuned along with the recommendation policy op-
timisation. Most existing multi-modal conversational recommendation models adopt a
simple concatenation operation for feature composition. However, learning representa-
tions in an end-to-end fashion in DRL is usually unstable (Eysenbach, Zhang, Salakhut-
dinov, & Levine, 2022; Laskin, Lee, et al., 2020; Yarats, Kostrikov, & Fergus, 2020) due
to the so-called “coupling” of the policy optimisation (for improving the quality of the
recommendations) and representation learning (for understanding the visual and textual
information) (Eysenbach et al., 2022). Meanwhile, the DRL algorithms require good rep-
resentations to drive the policy learning in a multi-modal interactive recommendation task.
This so-called coupling issue has not been fully explored in the multi-modal interactive
recommendation scenario. We provide more detailed analysis in Chapter 6.

• Personalisation: Despite the recent advances in incorporating the users’ current needs
(i.e. the target items) from the informative multi-modal information across the multi-turn
interactions, we argue that it is typically challenging to make satisfactory personalised rec-
ommendations due to the difficulty in balancing the users’ past interests and the current
needs for generating the users’ state (i.e. their current preferences) representations over
time. Indeed, the existing multi-modal conversational recommendation models typically
simplify the multi-modal conversational recommendation task by initiating conversations
using randomly sampled recommendations irrespective of the users’ interaction histories
(i.e. the past interests), thereby only focusing on seeking the target item (i.e. the cur-
rent needs) across real-time interactions. Although providing next-item recommendations
from sequential user-item interaction history is one of the most common use cases in the
recommender system domain, the existing sequential and session-aware recommendation
models (Hidasi & Karatzoglou, 2018; Hidasi et al., 2016; Kang & McAuley, 2018; F. Sun
et al., 2019) currently only consider the explicit/implicit past user-item interactions (such
as purchases and clicks) in the sequence modelling. We give more detailed analysis in
Chapter 7.

• The realism of simulated conversations with positive/negative feedback: Despite the gen-
erally good performances in the multi-modal conversational recommendation task, these
research only focus on positive natural-language feedback with the users’ preferred at-
tributes in the top-K (in particular K = 1) recommendation task. However, the users in the
real-world shopping scenario can freely express their satisfaction over the top-K (K ≥ 1)
recommendations positively or negatively. Therefore, both positive and negative natural-
language feedback should be directly incorporated into the multi-modal conversational
recommendation models to ensure the realism of simulated conversations. We will give a
more detailed analysis in Chapter 8.

In summary, we have categorised multi-modal conversational recommendation approaches
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into two technical routes: either enhancing uni-modal conversational recommender systems with
multi-modal information or enhancing image retrieval models with multi-turn interactions. The
first route with uni-modal CRSs can be hindered by the limited available multi-modal recom-
mendation datasets, while the second route is more realistic and easier to proceed based on the
existing formulations. However, we argue that there are several limitations in the existing multi-
modal conversational recommender systems in terms of the partial observations of the users’
preferences over time, the multi-modal sequence dependency, a coupling of multi-modal com-
position representation learning and recommendation policy optimisation, the personalisation
with the users’ long-term and short-term interests, and the realism of simulated conversations
with positive/negative natural-language feedback. Therefore, in this thesis, we aim to address
and mitigate the above-mentioned limitations in the literature. In the next section, we illustrate
the overall framework of the multi-modal conversational recommendation task, including the
task formulations with cold-start and warm-start users, as well as how we measure the success
of the multi-modal conversational recommendation task.

3.2 Framework Overview

The multi-modal conversational recommendation task has been usually formulated as a con-
versation process between a user and a recommender system (as we have shown in Section 3.1
with MBPI (Guo et al., 2018)). In this thesis, we follow such a formulation of the multi-modal
conversational recommendation task, while we assume that the users can be cold-start users
and/or warm-start users and we measure the success of multi-modal conversational recommen-
dations in terms of both higher ranking performance (such as NDCG and MRR in Section 2.1)
and less interaction turns (called Success Rate (SR)).

3.2.1 Task Formulations

A multi-modal conversational recommendation task is where users can express natural-language
feedback as critiques about the visual recommendations when interacting with the recommender
system according to the task formulation in MBPI (Guo et al., 2018). In the real-world scenario,
a user can be a cold-start user without any interaction history or a warm-start user with many
past interactions. To this end, we adapt the existing formulation of the multi-modal conver-
sational recommendation task into such two different scenarios (i.e. cold-start and warm-start
users). Figure 3.3 shows two different multi-modal conversational recommendation tasks with
two different assumptions:

• Task 1 (as shown in Figure 3.3 (a)): These users are cold-start users, without interaction

history, while keeping a target item in their minds. The interactive recommendation pro-



CHAPTER 3. A MULTI-MODAL CONVERSATIONAL RECOMMENDATION FRAMEWORK36

(a) Task 1 with cold-start users (b) Task 2 with warm-start users

Figure 3.3: Multi-modal conversational recommendation task with cold-start users and warm-
start users.

cess starts with an initial random recommendation. The users give natural-language cri-
tiques about the visual recommendation at each interaction turn, while the recommender
systems track and capture the users’ preferences based on their natural-language feedback
and give next recommendations.

• Task 2 (as shown in Figure 3.3 (b)): These users are warm-start users with interaction

history and keep a target item in their minds. The recommender systems estimate the
users’ general preferences based on their interaction history and start the recommendation
process with a personalised initial recommendation. During the recommendation process,
the recommender systems need to consider both the users’ general preferences (estimated
with their interaction history) and their current needs (i.e. the target item) in the next
recommendations.

3.2.2 Measurements

The success of the above tasks (i.e. Task 1 with cold-start users and Task 2 with warm-start
users) is measured by the number of interaction turns to obtain the target item(s) and the rank
of the target item(s) in each interaction turn. Figure 3.4 shows an example of a recommendation
scenario to illustrate how the users can obtain their target items through interactions with the rec-
ommender systems in the top-1 recommendation scenario. In particular, the users are cold-start
users without interaction history and receive an randomly sampled item as a recommendation
at the initial turn (i.e. turn=0). In addition, Figure 3.5 shows an example of top-K recommen-
dations when more items are exposed to the users at each turn. In particular, a cold-start user
receives an randomly sampled item as a recommendation at the initial turn (i.e. turn=0), while a
warm-start user perceives a list of personalised recommendations at the initial turn.

The recommender system ranks items based on the ranking scores (i.e. the similarities be-
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Figure 3.4: A successful top-1 multi-modal conversational recommendation procedure for
Task 1.

Figure 3.5: An example of top-K multi-modal conversational recommendations for both Task 1
and Task 2.

tween the estimated preferences and all items), while the users give feedback on the single
top-ranked recommendation presented to them. Hence, the effectiveness can be measured by
the percentage of user sessions for which the target item is presented at the top rank by interac-
tion turn M. Furthermore, it is possible that the user may view more of the ranking of items at
each interaction turn, down to rank N. Therefore, we define success in the multi-modal conver-
sational recommendation task as higher values in top-heavy metrics such as NDCG@N with a
truncation at rank N calculated at the M-th turn, or Success Rate (SR) at the M-th turn.

So far, we have formulated the multi-modal conversational recommendation task with both
cold-start and warm-start users. We also measure the success of the multi-modal conversational
recommendation task considering both the ranking performance at each turn, as well as the
efforts (i.e. turns) needed to get the target items. Next, we will illustrate how we train and
evaluate the multi-modal conversational recommendation models by leveraging user simulators.
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3.3 User Simulators

Training and evaluating the multi-modal conversational recommender systems with real hu-
man users are usually expensive, time-consuming, and do not scale (Gao et al., 2021; S. Zhang &
Balog, 2020). User simulators for relative captioning can act as a reasonable proxy of real users
for training and evaluation by simulating the users’ natural-language feedback for multi-modal
conversational recommendations. In the following, we illustrate the detailed implementations
of the user simulators, as well as use cases with different user simulators for relative captioning.
Then, we demonstrate the datasets available for enabling our research in multi-modal conver-
sational recommendations. The advantages of the user simulators for relative captioning are
demonstrated to support our research, while their limitations are illustrated to provide directions
for future work. While real human evaluation can provide valuable insights and feedback, we
have chosen to leave it as a part of our future work due to considerations such as cost, time
constraints, and scalability.

3.3.1 Architecture of User Simulators

The multi-modal conversational recommendation task (in Section 3.2) is specifically concerned
with a goal-oriented sequence of interactions between users and recommender systems, where
users can continuously receive visual recommendations (i.e. the items’ images) and express fine-
grained natural-language critiques about the recommendations in terms of their preferences. In
particular, such users’ natural-language feedback corresponding to the visual recommendations
allows a multi-modal conversational recommender system to obtain richer information relat-
ing to users’ current preferences, thereby leading to a more suitable recommendation compared
to clickthrough data and ratings (R. Zhang et al., 2019). However, it is challenging to train
and evaluate the multi-modal conversational recommender systems by either getting real human
users involved in the interaction processes or collecting and annotating entire multi-modal con-
versations which are expensive, time-consuming, and do not scale (Gao et al., 2021; S. Zhang
& Balog, 2020). Indeed, multi-modal conversational recommender systems can be generally
considered to form closed loop systems (in Section 2.2), in which the inputs (i.e. the users’
natural-language feedback) of the recommender systems are fully or partially determined by
the outputs (i.e. the visual recommendations). Nevertheless, the sequences of the recommended
items in the collected conversations are usually not aligned with the sequences of recommenda-
tions generated by the multi-modal conversational recommender systems, which results in less
usefulness of the annotated users’ natural-language feedback from the collected conversations.

To learn satisfactory multi-modal conversational recommender systems, user simulators based
on vision and language have been considered as a surrogate for real human users in the optimi-
sation and evaluation processes (Guo et al., 2018; H. Wu et al., 2021; Yu, Shen, & Jin, 2019;
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Figure 3.6: Multi-modal conversational recommendation diagram with a user simulator and a
recommender system.

Figure 3.7: Architecture of a user simulator.
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Table 3.1: Statistics of Shoes, Fashion IQ Dresses, Shirts, and Tops & Tees.
Shoes Dresses Shirts Tops & Tees

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

Relative Captioning Triplets 10,751 - - 11,970 4,034 - 11,976 4,076 - 12,054 3,924 -
Imagescaption - - - 7,182 2,454 - 8,555 2,966 - 8,387 2,808 -
Imagesorigin 10,000 - 4,658 11,452 3,817 3,818 19,036 6,346 6,346 16,121 5,374 5,374

Yu et al., 2020; R. Zhang et al., 2019). Such user simulators have been generally formulated as
relative captioners for fashion recommendation (Guo et al., 2018; H. Wu et al., 2021) that can
automatically generate descriptions of the prominent visual differences between any pair of tar-
get and candidate images (i.e. targets as users’ preferences and candidate as recommendations).
In Figure 3.6, the simulated user (i.e. user simulator) is formulated as a relative captioner with an
encoder-decoder structure to generate natural-language feedback given both the target and can-
didate images. Both the LSTM-based and Transformer-based encoder-decoder approaches for
relative captioning have been explored (Guo et al., 2018; Yu, Shen, & Jin, 2019; R. Zhang et al.,
2019). Figure 3.7 illustrates the inputs and outputs of a relative captioner. For instance, Guo et
al. (2018) applied long short-term memory network (LSTM) based models (Rennie, Marcheret,
Mroueh, Ross, & Goel, 2017), such as Show, Tell (Vinyals, Toshev, Bengio, & Erhan, 2015),
to generate the relative captions as natural-language critiques about the recommendations. Fur-
thermore, H. Wu et al. (2021) proposed a vision-language Transformer-based model for relative
captioning (denoted as VL-Transformer), which has shown a better performance in generat-
ing relative captions compared to the previous LSTM-based models. Such a natural-language
feedback generation process with the user simulator is very similar to a scenario of a shopping
conversation session between a shopping assistant and a customer. Such a user simulator can
be used for both training and evaluating the multi-modal conversational recommendation mod-
els. The success of the relative captioning task is defined as the higher quality of the generated
natural language critiques given a pair of images compared to the ground truths (i.e. relative
captions) that are collected by crowdsourcing.

3.3.2 Datasets

Fashion is a typical domain that involves multiple modalities, such as images and textual de-
scriptions of products. In the fashion scenario, there are mainly two relative captioning datasets,
namely Shoes1 (Berg, Berg, & Shih, 2010; Guo et al., 2018) and Fashion IQ2 (H. Wu et al.,
2021), for optimising the user simulators to generate expressive natural-language feedback close
to the real users’ behaviours. In particular, the Fashion IQ dataset includes three subsets con-
taining different fashion categories, i.e. Dresses, Shirts, Tops & Tees. Indeed, both datasets are
among the few that provide relative captions (created by human assessors) of image pairs that

1 https://github.com/XiaoxiaoGuo/fashion-retrieval 2 https://sites.google.com/view/cvcreative2020/fashion-iq
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can be used for training and testing the user simulator, as well as the images of the fashion prod-
ucts for training and testing the recommendation models. The Shoes and Fashion IQ datasets
have previously been used by Guo et al. (2018); Yu, Shen, and Jin (2019); R. Zhang et al. (2019)
and H. Wu et al. (2021), respectively, for the multi-modal conversational recommendation task,
and we replicate their setup (relative captioner, user simulator, etc.). All datasets provide triples
(i.e. ⟨atarget , acandidate, ocaption⟩) for training/testing the user simulators. In particular, ocaption

denotes a relative caption that encapsulates the differences between the target (atarget) and can-
didate (acandidate) images. The relative captions of the image pairs have been collected from real
users via crowd-sourcing.

Indeed, these datasets are among the few that provide well pre-processed relative captions

of image pairs that can be used for training and testing the user simulator, as well as the images
of the fashion products for training and testing the recommendation models. For instance, in
the Shoes dataset, there are 10,751 relative captions (with one caption per pair of images about
their visual differences) and 3,600 discriminative captions (with one caption per image about
their discriminative visual features) for training a user simulator. The Shoes dataset also provides
10,000 images for training the recommender systems, and 4,658 images for testing. Meanwhile,
in the Dresses dataset, there are 7,347 pairs of accessible images with two captions per pair. In
particular, the relative captions of the 5,478 pairs from the Dresses dataset are used for training
a user simulator, and the relative captions of the 1,869 pairs for testing. We also extract 7,182
unique images from the 5,478 pairs for training the recommender systems, and 2,454 unique
images from the 1,869 pairs for testing. Here we denote the extracted datasets as Imagescaption,
while the original datasets as Imagesorigin. The recommendation models are evaluated when
recommending target images from the test sets, starting from a randomly selected candidate
image for the initial dialog turn. Each target image from the test sets represents a user session
with the system.

3.3.3 User Simulator Comparison

To demonstrate how close the VL-Transfomer user simulator behaves in comparison to real
human captions, we provide a quantitative analysis of the VL-Transformer user simulator for
relative image captioning. We evaluate the relative captioning models (i.e. user simulators)
on the validation set due to the fact that the test sets for relative captioning are not released
in the Fashion IQ datasets. Table 3.2 shows the relative captioning effectiveness of the VL-
Transformer model and another existing state-of-the-art baseline user simulator model, Show
Tell (Guo et al., 2018; Vinyals et al., 2015), for generating natural-language critiques given a
pair of images. Effectiveness is measured in terms of Recall-Oriented Understudy for Gist-
ing Evaluation (ROUGE) (C.-Y. Lin, 2004) for measuring the overlap of n-grams (contiguous
sequences of n words) between the generated text and the reference summaries and Consensus-



CHAPTER 3. A MULTI-MODAL CONVERSATIONAL RECOMMENDATION FRAMEWORK42

Table 3.2: The relative captioning effectiveness of the VL-Transformer relative captioning
model compared to the Show Tell baseline model on the Fashion IQ Dresses, Shirts and Tops &
Tees datasets. The best results for each dataset and measure are in bold. * denotes a significant
difference compared to the VL-Transformer in terms of a paired t-test (p < 0.05).

Simulators Dresses Shirts Tops & Tees
ROUGE CIDEr ROUGE CIDEr ROUGE CIDEr

Show Tell 0.3105* 0.5165* 0.3030* 0.5640* 0.3074* 0.5801*
VL-Transformer 0.3225 0.6346 0.3198 0.6489 0.3266 0.7006

(a) Dresses (b) Shirts (c) Tops & Tees

Figure 3.8: Examples of different user simulators.

based Image Description Evaluation (CIDEr) (Vedantam, Lawrence Zitnick, & Parikh, 2015)
for computing a consensus-based similarity score that considers both n-gram matching and the
diversity of the generated captions, on the Dresseses, Shirts, and Tops & Tees datasets. The best
overall performing results for each dataset are highlighted in bold in Table 3.2. Comparing the
results in the table, we observe that, overall, the VL-Transformer model achieves significantly
better performances than the LSTM-based model (i.e. Show Tell) across all metrics on all the
Fashion IQ datasets. The superior performance of the VL-Transformer model indicates that the
Transformer-based model (i.e. VL-Transformer) aligns more closely with the behaviours of real
human users than the LSTM-based model (i.e. Show Tell).

Figure 3.8 presents an example of the generated natural-language critiques given a target
image and a candidate image on each dataset: (a) Dresses, (b) Shirts, and (c) Tops & Tees. There
are two shown ground truths3 (i.e. GT-1 and GT-2) for each pair of images, each followed by
the generated captions by Show Tell and VL-Transformer. From the generated captions on each
dataset, it can be observed that the relative caption generated by the VL-Transformer model is
more expressive and more close to the ground truths compared to the other model. These results
demonstrate that the VL-Transformer user simulator can generate expressive natural-language
feedback via relative captioning that is close to the ground truths. Therefore, the use of the
VL-Transformer for relative captioning can act as a reasonable surrogate for real human users
in generating natural-language feedback.

3 https://github.com/XiaoxiaoGuo/fashion-iq
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3.3.4 Pros & Cons of User Simulators

Here, we summarise the advantages and limitations of the user simulators with relative caption-
ing for training and evaluating the multi-modal conversational recommender systems, as well as
possible future directions to improve the rigour and usefulness of the user simulators.

Pros Compared to the real human users and the annotated entire multi-modal conversation
datasets, user simulators are more flexible, cheap, and time-saving to use. In particular, the
user simulators for relative captioning can generate natural-language feedback automatically
that is close to real users’ responses corresponding to the recommendations. Such immediate
responses with the simulated users can leverage the performances of the closed-loop systems
without real human users. Furthermore, the simulated users enable us to make a fair comparison
of multiple multi-modal conversational recommender systems using reproducible experiments,
as well as to analyse the behaviours of the users during the conversational recommendation
processes, to augment the training data for conversational recommender systems, and to train the
reinforcement learning algorithms (Guo et al., 2018; H. Wu et al., 2021; R. Zhang et al., 2019).
In particular, the user simulator can generate virtual rewards, such as the ranking percentile

reward (Guo et al., 2018) (i.e. the percentage of items with a rank lower than the target item
among all items) and the visual reward (Y. Wu, Macdonald, & Ounis, 2021) (i.e. the Euclidean
distance between the target and candidate image representations). Such virtual rewards are
important for the success of training the RL-based multi-modal conversational recommender
systems (Guo et al., 2018; R. Zhang et al., 2019).

Cons The previous formulations of user simulators for relative captioning in multi-modal con-
versational recommendations assumed that all the users are cold-start and only consider the de-
sired features of a single target item in the natural-language feedback (Guo et al., 2018; H. Wu et
al., 2021). Such assumptions limit the realism of user simulators compared to a real interaction
process. In particular, such user simulators have demonstrated their limitations as shown in the
use cases, such as repetitive feedback without memory, incorrect natural-language descriptions,
limited type of feedback with only preferred features, a single preferred item, a single domain of
fashion products. For instance, previous researchers have shown that the recommender systems
might present repeated/violated recommendations (R. Zhang et al., 2019) to the same users.
Due to the assumptions of the user simulators for relative captioning, simulated users might give
repetitive feedback while forgetting about what have been expressed in the previous interaction
turns. However, the real users would get annoyed and say something different, rather than re-
peating the same feedback. Therefore, further research on the user simulators are needed to
improve the rigor and usefulness of the user simulation.
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Possible Future Directions Here we elicit some possible directions for user simulators in the
future to address the above limitations, such as positive/negative feedback, verbal/non-verbal
relevance feedback, user initiatives, memory, personalisation, and multi-interests:
• Positive/Negative Feedback. The user simulators only consider the users’ preferred features in
the target items as positive feedback, other than the undesired features in the recommendations
as negative feedback. It is necessary to capture the users’ negative feedback that contains the
explicit dislikes of the users and to avoid recommending items with those undesired features in
the future recommendation processes.
• Verbal and Non-Verbal Relevance Feedback. The user simulators only consider the users’ ver-
bal relevance feedback (i.e. critiques) by describing the preferred features. The user simulators
should be able to express their preferences explicitly with verbal feedback (such as natural-
language critiques) or implicitly with non-verbal feedback (such as likes/dislikes).
• User Initiative. The user simulators take a passive-initiative to respond to the recommenda-
tions. However, the users are usually actively ask questions when they are unclear about the
recommendations rather than giving critiques only.
• Memory. The user simulator should be capable of memorising the previous natural-language
feedback and avoiding repeating the same expressions.
• Personalisation. Both the Show-Tell and VL-Transformer user simulators consider the simu-
lated users as cold-start users. However, a personalised initial recommendation based on users’
interaction histories might leverage the users’ experience during the conversational recommen-
dation processes by considering the users’ long-term preferences and short-term interests.
• Multi-Interests. The user simulators consider the simulated users as cold-start users with only
a single target item. However, real human users usually have different needs by keeping many
different target items in their minds (such as an outfit of fashion products).

Therefore, we argue that the user simulators for relative captioning can act as a reasonable
proxy of real human users by simulating the users’ natural-language feedback for training and
evaluating the cross-modal interactive recommender systems. We first presented implementa-
tions of the existing user simulators with an encoder-decoder structure to demonstrate that the
user simulator for relative captioning are suited for the multi-modal conversational recommenda-
tion task in fashion. In addition, the use cases for both relative captioning with different user sim-
ulators, i.e. Show-Tell and VL-Transformer, on the Fashion IQ datasets was presented to demon-
strate the effectiveness and appropriateness of the user simulators. For future work, it is worth
exploring the simulation of users’ natural-language feedback considering positive/negative feed-
back, verbal and non-verbal relevance feedback, user initiatives, memory, personalisation, and
multi-interests in the multi-modal conversational recommendation processes. In the next section,
we describe the opportunities in the multi-modal conversational recommendation scenarios.
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3.4 Opportunities Within the Framework

After describing the functionality of each component of our multi-modal conversational recom-
mendation framework, we now discuss the main opportunities within the framework. Recall
that in Section 3.1, we have identified five limitations in the literature: partial observations,
multi-modal sequence dependency, coupling of representation learning and policy optimisation,
personalisation, and the realism of simulated conversations with positive/negative feedback. In
this section, we seek for opportunities from either a recommender system side or a user side
for addressing the above mentioned limitations. In Section 3.4.1, we discuss the architecture
of recommendation models and the formulation of optimising the recommendation model. In
Section 3.4.2, we describe the opportunities of different user behaviours.

3.4.1 Recommender System Side

In this thesis, one of the main targets of our proposed framework is to effectively capture
the users’ preferences cross multiple interaction turns from both the users’ natural-language
feedback and the systems’ visual recommendations. The effectiveness of the recommendation
models can be improved by either modifying the models’ architectures, or applying more ad-
vanced optimisation approaches.

Model Architectures The architecture of the recommendation model can be further divided
into three parts: multi-modal encoding, multi-modal composition and state tracking.

• Multi-modal encoding: Due to the multi-modal nature of the task, it is necessary to have
a good understanding of the text and image contents. In particular, in Chapter 4, we first
follow MBPI (Guo et al., 2018) to encode the textual sentence with a one-hot encoding
and a 1D convolutional layer (1D-CNN), and encode the image based on the ImageNet
pre-trained ResNet101 (K. He et al., 2016). Then, we improve the textual representations
with a pre-trained language model BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2019b) in Chapters 5 & 8. Further, in Chapters 6 & 7, we
leverage a pre-trained vision and language model, called CLIP (Radford et al., 2021), for
both image encoding and text encoding. Different from ResNet and BERT for image and
text encoding, CLIP can provide unified representation vectors for each modality (i.e./
both text and images) with the same dimensionality.

• Multi-modal composition: Both images of products and users’ textual feedback can con-
tain the users’ preferred attributes. To this end, the encoded text and image representa-
tions are usually fused with a concatenatation operation and/or a followed linear layer (in
Chapter 4). We also adopted an advanced representative composition network (Text Image
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Residual Gating (TIRG) (Vo et al., 2019)) to better combine image and text representaions
in Chapter 6.

• State tracking: Multi-modal conversational recommendation involves multiple interac-
tion turns. To this end, it is necessary to capture the evolving of the users’ preferences
over time. The existing conversational recommender systems usually directly adopt the
GRU/LSTM or Transformer models as a state tracker. In Chapter 5, we leverage a RNN-
enhanced Transformer structure to better track the dialog states.

Optimisation Approaches As mentioned in Section 2.4, there are various recent reinforce-
ment learning approaches that can be adapted to better formulate and optimise the multi-modal
conversational recommendation task.

• Self-Supervised Reinforcement Learning (SSRL): In Chapter 4, we formulate the multi-
modal conversational recommendation task with the Supervised Q-learning (SQN) frame-
work (Xin et al., 2020) by taking Q-learning as a regulariser that can examine the quality
of the estimated states with the users’ historical feedback and improve the quality of the
following recommendations.

• Goal-Oriented Reinforcement Learning (GORL): In Chapter 6, we formulate the multi-
modal conversational recommendation task with goal-oriented reinforcement learning to
effectively optimise the recommendation policy via goal-oriented rewards for pursing the
textual and visual goals.

• Hierarchical Reinforcement Learning (HRL): In Chapter 7, we propose a personalised
multi-modal conversational recommendation model based on HRL with the Options frame-
work to more effectively incorporate the users’ preferences from both their past and real-
time interactions.

3.4.2 User Side

In addition to the improvements from the recommender system side, user simulators with
more various behaviours can make the multi-modal conversational recommendation task more
realistic. In this thesis, we only focus on three different types of user behaviours in addition to
the default positive natural-language feedback, such as positive & negative feedback, verbal &
non-verbal relevance feedback, and past preferences & current needs. We leave the other types
of user behaviours, such as memory and multiple interests (Section 3.3), as interesting future
work.
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• Verbal & Non-Verbal Relevance Feedback: In Chapter 6, we leverage both verbal and
non-verbal relevance feedback to further improve the performance of the multi-modal
conversational recommendation model.

• Past Preferences & Current Needs: In Chapter 7, we explore how the more effectively
incorporate the users’ preferences from both their past and real-time interactions.

• Positive & Negative Feedback: In Chapter 8, we investigate the impact of positive and
negative natural-language feedback on the peformance of the multi-modal conversational
recommendation models.

Indeed, different user behaviours can also change the architecture of the recommendation
models, as well as their optimisation approaches. To this end, it is worthy but challenging to
consider more types of user behaviours and make the multi-modal conversational recommenda-
tion task more realistic. We believe that our thesis can enlighten the exploration in multi-modal
conversational recommendations.

3.5 Conclusions

In this chapter, we first investigated the multi-modal conversational recommendation techniques
in the literature in Section 3.1. In particular, we described two routes for developing multi-modal
conversational recommender systems, by either enhancing uni-modal systems with multi-modal
information or enhancing the image retrieval models with multi-turn interactions. We also il-
lustrated the limitations of the existing multi-modal conversational recommendation models and
distinguish our main contributions from the existing work. Then, in Section 3.2, we introduced
the framework of the multi-modal conversational recommendation task with cold-start or warm-
start users, as well as how to measure the success of the tasks. Moreover, in Section 3.3, we
illustrated the users simulators for training and evaluating the multi-modal conversational rec-
ommender systems, including the formulation of user simulators, datasets, evaluation metrics,
and pros & cons. Finally, we discussed the main opportunities within the framework from both
the recommender system side and the user side. Next, starting from Chapter 4, we discuss
the studies for addressing the challenges described in Section 3.1 and taking the opportunities
described in Section 3.4.



Chapter 4

Partial Observability in Natural-Language
Feedback

In our thesis statement (as stated in Section 1.3), we postulated that we can effectively in-
corporate the users’ preferences over time, in the form of partial observations, by modelling the
multi-modal conversational recommendation process with (self-)supervised Q-learning. There-
fore, in this chapter, we propose a novel multi-modal conversational recommendation model,
called the Estimator-Generator-Evaluator (EGE) model based on its three distinctive functional
components, which apply partially observable reinforcement learning (i.e. Q-learning for POMDP)
for multi-modal conversational recommendations. This chapter is mainly based on our work (Y. Wu
et al., 2021) “Partially Observable Reinforcement Learning for Dialog-based Interactive Rec-
ommendation” published in the proceedings of the 15th ACM Conference on Recommender
Systems (RecSys 2021)1. Note that we also refer to multi-modal conversational recommen-
dation as dialog-based interactive recommendation or multi-modal interactive recommendation
throughout this thesis.

A dialog-based interactive recommendation task is where users can express natural-language
feedback when interacting with the recommender system. However, the users’ feedback, which
takes the form of natural-language critiques about the displayed recommendation at each itera-
tion, can only allow the recommender system to obtain a partial portrayal of the users’ prefer-
ences, as argued in Section 3.1. Indeed, such partial observations of the users’ preferences from
their natural-language feedback make it challenging to correctly track the users’ preferences over
time, which can result in poor recommendation performances and a less effective satisfaction of
the users’ information needs when in presence of limited iterations. Reinforcement learning,
in the form of a partially observable Markov decision process (POMDP, see Section 2.4), can
simulate the interactions between a partially observable environment (i.e. a user) and an agent
(i.e. a recommender system). To alleviate such a partial observation issue, we propose a novel

1 DOI: https://doi.org/10.1145/3460231.3474256
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dialog-based recommendation model, the Estimator-Generator-Evaluator (EGE) model, with Q-
learning for POMDP, to effectively incorporate the users’ preferences over time. Specifically,
we leverage an Estimator to track and estimate users’ preferences, a Generator to match the
estimated preferences with the candidate items to rank the next recommendations, and an Eval-
uator to judge the quality of the estimated preferences considering the users’ historical feedback.
Following previous work (see Section 3.1), we train our EGE model by using a user simulator
(described in Section 3.3) which itself is trained to describe the differences between the target
users’ preferences and the recommended items in natural language. Thorough and extensive ex-
periments conducted on two recommendation datasets – addressing images of fashion products
(namely Dresses and Shoes, introduced in Section 3.3) – demonstrate that our proposed EGE
model yields significant improvements in comparison to the existing state-of-the-art baseline
models. The results conform with our thesis statement with Research Topic 1 in Section 1.3.

4.1 Motivations

Recently, interactive recommender systems (IRS) have received much attention due to their
flexible recommendation strategies and their natural multi-step decision-making processes. A
typical interactive recommender system continuously recommends items to users and receives
various types of users’ feedback, such as clicks, ratings, or textual replies (see Sections 2.1
& 2.3). In particular, natural-language feedback allows an interactive recommender system to
obtain richer information relating to the users’ current preferences, thereby leading to a more
suitable recommendation compared to clickthrough data and ratings. Figure 4.1 shows an ex-
ample of interactive recommendation based on natural-language feedback, i.e. dialog-based in-
teractive recommendations. In this use case, the user gives natural-language critiques about the
system’s recommendation at each interaction turn and aims to quickly find the target item, while
the system recommends the top-1 item according to the user’s natural-language feedback.

Such an interactive recommendation task has been formulated and modelled using rein-
forcement learning (RL) approaches (see Section 2.4 & 3.1). In the reinforcement learning
framework, the interactive recommendation task is usually formulated as a Markov decision
process (MDP, see Section 2.4.1) with an assumption that the environment’s states (i.e. the
users’ preferences) are fully observable. Such RL-based interactive recommender systems have
demonstrated their benefits in fitting the users’ dynamic preferences and maximising the ex-
pected long-term cumulative rewards from users when achieving the optimal strategies. For
instance, the Supervised Q-learning (SQN) framework (Xin et al., 2020) (i.e. a joint learning
framework with both a supervised learning layer and a Q-learning layer) was shown to outper-
form neural recommendation models using supervised learning, such as GRU4Rec (Hidasi et
al., 2016), Caser (Tang & Wang, 2018) and SASRec (Kang & McAuley, 2018), by taking the
Q-learning layer as a regulariser to introduce reward-driven properties (such as long-term user
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Figure 4.1: An example of dialog-based interactive recommendations. The first image is the
target item desired by the user (labeled with “Target”), while the second image (labeled with
“Initial”) is the initial recommendation proposed by the system randomly. Then, the user gives
natural-language critiques about the recommendation at each turn, while the recommender sys-
tem updates the ranking list and recommends the top-1 item according to the user’s comments.
The rank of the target item is also presented above the images at each turn. When the target item
is recommended, the user will give a comment as “are the same” and the rank is 1.

engagement (Zou et al., 2019)) to the recommendation process.
Despite the expressiveness of natural-language feedback in dialog-based interactive recom-

mendations, the users’ feedback can only allow the recommender system to obtain a partial
portrayal of the users’ preferences. For instance, Figure 4.1 shows an example of a dialog-
based interactive recommendation process between the user (simulator, see Section 3.3) and
the system generated by a RL-based interactive recommender system (called Model-based Pol-
icy Improvement (MBPI)) (Guo et al., 2018). Each natural-language comment in terms of the
current recommendation only contains partial visual features of the target item, such as “blue
slides” at the initial turn and “red with floral flowers” at the 6th turn. Such partial observa-
tions of the users’ preferences from their natural-language feedback can drive the recommender
system towards a degenerate preference estimation that ignores certain features in the histori-
cal observations (Gangwani et al., 2020), i.e. historical natural-language feedback and historical
recommendations. For instance, in Figure 4.1, “red” clogs are recommended due to the last
comment “red with floral flowers” at the 7th interaction turn, while the single “red” colour in
the recommended image does not address the initial user comment “blue slides on clogs” and
the other comments with “floral”. In addition to this so-called violated recommendation issue,
repeated recommendations can also be observed in the example IRS in Figure 4.1. Although
the rank of the actual target shoe in the ranking list indicated above each suggested image is
increasing from the 2nd turn to the 5th turn, the top-1 recommendation remains the same and
hence receives identical feedback from the user (simulator). Both these violated and repeated
recommendations can hurt the users’ experience thereby increasing their disappointment in the
interaction processes with the recommender system. Indeed, such partial observations of the
users’ preferences from their natural-language feedback make it challenging to correctly track
the users’ preferences over time, which can result in a poor performance of the recommender
system in satisfying the users’ information needs when in the presence of limited iterations (as
can be observed from the literature (Guo et al., 2018)). Although R. Zhang et al. (2019) proposed
a reward-constrained recommendation (RCR) model with constraint-augmented reinforcement
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learning that can effectively mitigate the aforementioned violation issue, the utility of their RCR
model was limited by the issue that extra rounds of resampling and violated recommendation
detection are needed when the previous samplings are detected as violated recommendations.

In this chapter, we formulate the dialog-based interactive recommendation task as a partially
observable Markov decision process (POMDP, see Section 2.4.1) to simulate the interactions
between a partially observable environment (i.e. a user) and an agent (i.e. a recommender sys-
tem). To correctly estimate the users’ preferences from such partially observable situations, we
extend the SQN framework (Xin et al., 2020) from a MDP to a POMDP and judge/optimise
the quality of the estimated users’ preferences with the Q-learning layer (also called an Evalua-
tor). To this end, we propose a novel dialog-based interactive recommendation model, called the
Estimator-Generator-Evaluator (EGE) model named after its three distinctive functional compo-
nents, which apply partially observable reinforcement learning (i.e. Q-learning for POMDP) for
dialog-based interactive recommendation to effectively incorporate the users’ preferences over
time. Specifically, we leverage an Estimator to track and estimate the users’ preferences, a Gen-
erator to match the estimated preferences with the candidate items to rank the next recommen-
dations, and an Evaluator to judge the quality of the estimated preferences considering the users’
historical feedback. To mitigate the impact of repeated recommendations, a post-filter is adopted
to remove the repeated recommended items from the ranking list based on the recommendation
history. Following previous work (Guo et al., 2018; R. Zhang et al., 2019), we train our EGE
model by using a user simulator (see Section 3.3), which itself is trained to describe the dif-
ferences between the target users’ preferences and the recommended items in natural language.
Thorough and extensive experiments conducted on two recommendation datasets – addressing
images of fashion products (namely dresses and shoes) – demonstrate that our proposed EGE
model yields significant improvements in comparison to the existing state-of-the-art baseline
models (i.e. a sequential recommendation model (denoted iGRU) with supervised learning and
the Model-based Policy Improvement (MBPI) model).

The main contributions of this chapter are summarised as follows:

• We propose a novel dialog-based interactive recommendation model, the Estimator-Generator-
Evaluator (EGE) model, which formulates the dialog-based interactive recommendation
task as a partially observable Markov decision process (POMDP) to address the partial
observations issue in the users’ feedback. Our proposed EGE model differs from the
existing MBPI (Guo et al., 2018) and RCR (R. Zhang et al., 2019) models as follows:
EGE judges and optimises the quality of the estimated user preferences with a Q-learning
layer (i.e. Evaluator) for POMDP based on the users’ history feedback, while the MBPI
model (with only the Estimator and Generator components) is not able to do so and the
RCR model needs to repeatedly sample recommendations and detect violations with extra
well-categorised visual attributes of items.

• The EGE model extends the SQN (Xin et al., 2020) framework from a MDP to a POMDP
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and is trained with a combination of a supervised learning classification loss and a Q-
learning prediction loss.

• Extensive empirical evaluations are performed on the dialog-based interactive recom-
mendation task, demonstrating significant improvements over existing state-of-the-art ap-
proaches while providing directions for future work.

4.2 Methodology

In this section, we introduce our notations and formulate the problem of the dialog-based inter-
active recommendation task via partially observable reinforcement learning. Next, we propose
an Estimator-Generator-Evaluator (EGE) model and describe each of its components. Finally,
we describe training the model using the interactions with simulated users.

4.2.1 Problem Statement

We study the dialog-based interactive recommendation task in a partially observable reinforce-
ment learning formulation, using user feedback in the form of natural language. We consider
the dialog-based interactive recommendation process as a partially observable Markov decision
process (POMDP) with a tuple of seven elements (S ,A ,O,R,T ,U ,γ), where S is a set of
states (i.e. the users’ preferences), A is a set of actions (i.e. the items for recommendation), O

is a set of observations (i.e. the users’ natural-language feedback), R is the reward function, T

is a set of conditional transition probabilities between states, U is a set of conditional observa-
tion probabilities, and γ ∈ [0,1] is the discount factor for future rewards. We denote by st ∈ S

the estimated user preferences at time t. When an item at ∈ A is recommended, the estimated
preferences change according to the transition distribution, st+1 ∼ T (st+1|st ,at). Subsequently,
the recommender agent receives a partial observation ot+1 ∈ O according to the distribution
ot+1 ∼U(ot+1|st+1,at), and a reward rt+1 ∈ R according to the distribution rt+1 ∼ R(st+1,at).

A recommender agent acts according to its policy π(at |o≤t ,a<t), which returns the prob-
ability of taking action at at time t, and where o≤t = (o1, ...,ot) and a<t = (a0, ...,at−1) are
the observation and action histories, respectively. The recommender agent’s goal is to learn a
policy π that maximises the expected future return J = Ep(τ)[∑

T
t=1 γ t−1rt ] over trajectories τ =

(s0,a0, ...,aT−1,sT ) induced by its policy. In general, a dialog-based interactive recommender
system via a POMDP must condition its actions on the entire history ht = (o≤t ,a<t) ∈ H . The
users’ preferences are represented by a target image representation ximg

+,0. The inputs of a rec-
ommender agent at time t are the previously recommended items (i.e. action history a<t =

(a0, ...,at−1)) and the corresponding users’ feedback (i.e. the observation o≤t = (o1, ...,ot)).



CHAPTER 4. PARTIAL OBSERVABILITY IN NATURAL-LANGUAGE FEEDBACK 53

4.2.2 The Model Architecture

In dialog-based interactive recommendations, a recommender agent recommends an item (in
particular, an image) and a user provides natural-language feedback. Figure 4.2 shows our pro-
posed end-to-end Estimator-Generator-Evaluator (EGE) model with partially observable rein-
forcement learning for dialog-based interactive recommendations to effectively incorporate the
user’s preferences over time. The user views the recommended item (a single item at each inter-
action) and gives natural-language feedback by describing their desired features that the current
recommended item lacks. The system then incorporates the user’s natural-language feedback
and recommends (ideally) more-suitable items, until the desired item is found.

Estimator The goal of the Estimator is to track and estimate the user’s preferences (i.e. states)
from both the user’s natural-language feedback and the latest recommended visual item. The
Estimator consists of a text encoder, an image encoder and a gated recurrent unit (GRU) (Chung
et al., 2014) as in (Guo et al., 2018). In particular, the text encoder extracts the textual sentence
representations of the user’s preferences from the current user’s natural-language feedback. In
the textual sentence representations, each word is represented by a one-hot vector. Similarly,
the image encoder extracts image feature representations based on the ImageNet pre-trained
ResNet101 model (K. He et al., 2016) as in (Guo et al., 2018). Then, both the image feature
representations and the textual representations are concatenated as input to a following linear
mapping (i.e. a multilayer perceptron (MLP)) and a GRU to obtain the estimated user’s prefer-
ences. Given a candidate image at−1 and a user’s corresponding natural-language feedback ot at
the t-th dialog turn, the encoded textual representation is denoted by xtxt

t and the encoded image
representation is denoted by:

ximg
t−1 = ResNet(at−1). (4.1)

The estimated user’s preferences can be achieved with:

st = Linear(GRU(Linear([xtxt
t ,ximg

t−1]),st−1)). (4.2)

The GRU component of the Estimator allows our EGE model to sequentially aggregate the par-
tially observable information from the user’s natural-language feedback to the estimated prefer-
ences.

Generator The goal of the Generator is to recommend a candidate item for the next action
according to the estimated state. Considering the large amount of candidate images in the image
database, all images are projected into the feature space (ResNet). If K items are recommended
at each time t, we select the top K closest images to the estimated state st under the Euclidean
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Figure 4.2: The proposed Estimator-Generator-Evaluator (EGE) model for dialog-based inter-
active recommendations.

distance in the image feature (ResNet) space:

at,≤K ∼ KNNs(st), (4.3)

where KNNs() is a softmax distribution over the top-K nearest neighbours of st and at,≤K =

(at,1, ...,at,K). Furthermore, based on the interaction history ht = (o≤t ,a<t), a post-filter is
adopted to remove any candidate items from the ranking list that have previously occurred in the
recommendation history a<t .

Evaluator The Evaluator is proposed to judge the quality of the estimated state st at time
t based on Q-learning. It performs the judgement process with the user’s historical natural-
language feedback o≤t = (o1, ...,ot) to regularise the Estimator. Given an estimated state st and
the textual features xtxt

≤t = (xtxt
1 , ...,xtxt

t ) from the user’s historical natural-language feedback, the
state values in terms of the user’s historical natural-language feedback are computed with:

V (st ,oi) = Linear(Linear(st ,xtxt
i )), (4.4)

where i ≤ t. The final state value is computed using V (st ,o≤t) = Mean(V (st ,oi)), where i ≤ t

and Mean() is the average function.
To summarise, in the EGE model architecture, we maintain the GRU for the state estimation

in the Estimator and the KNNs for the candidate matching in the Generator as in the state-of-
the-art RL-based approach (Guo et al., 2018), while we propose a Q-learning layer with the
historical feedback as an Evaluator to optimise the quality of the estimated state.
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4.2.3 The Learning Algorithm

In this work, we adopt a multi-task learning (Goodfellow, Bengio, & Courville, 2016) approach
for POMDP to optimise the networks with a combination of a supervised learning classification
loss and a Q-learning prediction loss.

Given an estimated state st , a target image representation ximg
+,0 (i.e. a positive sample) and

several representations of randomly sampled images ximg
−,1, ...,x

img
−,J (i.e. negative samples), the

supervised training loss can be defined as the cross-entropy over the classification distribution:

Ls =− log(
ey0

ey0 +∑
J
j=1 ey j

) (4.5)

where y denotes the L2-norm: y0 = ||st − ximg
+,0||2 and y j = ||st − ximg

−, j||2. We define the RL loss
for the training of the Estimator component based on one-step Temporal Difference (TD) error
(i.e. error = |V (st ,o≤t)− (rt + γV (st+1,o≤t+1))|) using a Smooth L1 Loss2:

Lq =

0.5(V (st ,o≤t)− (rt + γV (st+1,o≤t+1)))
2, if error < 1

|V (st ,o≤t)− (rt + γV (st+1,o≤t+1))|−0.5, otherwise
(4.6)

It is desired that the visual appearance of the recommended item becomes more similar to
that of the desired item with increasing user interactions. Thus, at time t, given the recommended
item at and the desired item representation ximg

+,0, we want to minimise the Euclidean distance.
That is, we maximise the following visual reward: rvis

t = −||ResNet(at)− ximg
+,0||2. In addition,

we expect that the desired item will be placed at higher ranks with more user interactions. Thus,
we also model the ranking percentile (Guo et al., 2018) (i.e. the percentage of items with a rank
lower than the target item among all items) as a reward rper

t in terms of ranking. We define the
reward rt at time t as rt = αrvis

t +(1−α)rper
t , where α ∈ [0,1] is a reward weighting factor. A

higher value of the reward weighting factor places more emphases on the visual rewawrd.
We jointly train the supervised loss and the RL loss by taking the latter one as a regulariser to

introduce reward-driven properties to the recommendation process, in a similar manner to Xin
et al. (2020):

LEGE = Ls +Lq (4.7)

To train our proposed EGE model, we adopt a user simulator (see Section 3.3) as a surrogate
for real human users in the training processes. Further details about the used user simulator
are provided in Section 4.3.3. When we start to train the proposed framework, the network
parameters are randomly initialised. To facilitate an efficient exploration during the following
reinforcement learning process, we first pre-train the model with a triplet loss objective, Ltri,

2 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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similar to (Guo et al., 2018):

Ltri = max(0, ||st − ximg
+ ||2 −||st − ximg

− ||2 +m) (4.8)

where ximg
+ and ximg

− are respectively the representations of the target image and of a randomly
sampled image, m is a constant for the margin and ||.||2 denotes the L2-norm. Both the em-
bedded representations of state st and item ximg are encoded as vectors within a shared space.
||st − ximg||2 measures the distance between the estimated state st (i.e. the user’s estimated pref-
erences) and an item representation (such as a target item ximg

+ or a randomly sampled item ximg
− ).

Indeed, the rank of the target image can be improved compared to a random initialisation after
the appropriate initial supervised learning process with Ltri. Based on the pre-trained model
obtained with Ltri, the joint loss objective LEGE can further ensure proximity between the target
and candidate image representations (Ls), as well as maximise the expected future rewards (Lq),
while applying smaller learning rates, resulting in better recommendation performances.

4.3 Experimental Setup

In this section, we evaluate the effectiveness of our proposed EGE model for dialog-based inter-
active recommendations in comparison to the existing approaches from the literature. Figure 3.5
in Section 3.2.2 shows an example of a recommendation scenario to illustrate how the users can
obtain their target items through interaction with the recommender system in the dialog-based in-
teractive recommendation scenario. In particular, the recommender system ranks items based on
the ranking scores (i.e. the similarities between the estimated preferences and all items), while
the user gives feedback on the single top-ranked recommendation presented to them. Hence,
effectiveness can be measured by the percentage of user sessions for which the target item is
presented at the top rank by interaction turn M. Furthermore, it is possible that the user may
view more of the ranking of items at each interaction turn, down to rank N. Therefore, we de-
fine success in the dialog-based interactive recommendation task as higher values in top-heavy
metrics such as NDCG@N with a truncation at rank N calculated at the M-th turn, or Success
Rate (SR) at the M-th turn. In our experiments, we address three research questions, which are
concerned with ascertaining how the Q-learning for POMDP (i.e. the Evaluator) can help the
GRU (i.e. the Estimator) to better incorporate the users’ accurate preferences over time with the
partial observable preferences from the users’ natural-language feedback, so as to make better
recommendations with KNNs (i.e. the Generator). In particular, our three research questions re-
late to the Q-learning for POMDP, the historical information and the rewards in the EGE model –
namely, how useful the Q-learning for POMDP is, how much historical information is required,
and how the rewards are applied:
• RQ4.1: Can our proposed EGE model with Q-learning for POMDP outperform the existing
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state-of-the-art baseline models in the visually-grounded dialog-based interactive recommenda-
tion task?
• RQ4.2: What are the impacts of the historical information in the EGE model on its perfor-
mance, such as the historical natural-language feedback and the historical recommendations?
• RQ4.3: What are the impacts of the reward-related hyper-parameters of the EGE model on its
performance, such as the reward discount factor γ and the reward weighting factor α?

4.3.1 Datasets & Measures

Datasets We perform our experiments on two datasets, namely the Shoes and Dresses datasets
(introduced in Section 3.3.2). In particular, the Shoes dataset has previously been used by (Guo
et al., 2018) for a dialog-based interactive recommendation task, and we replicate their setup
(relative captioner, user simulator, etc.). On both datasets, we apply the same training and test-
ing data split for all recommendation models. In this chapter, we leverage Shoes and Dresses

(see Section 3.3.2) for training and testing the recommender systems. Note that we leverage
Shoes with the Imagesorigin version that provides 10,000 images for training the recommender
systems, and 4,658 images for testing and Dresses with the Imagescaption version that extracts
7,182 unique images from the 5,478 relevative captioning triplets for training the recommender
systems, and 2,454 unique images from the 1,869 relevative captioning triplets for testing (see
Section 3.3.2). The relevative captioning triplets on both datasets are used for training and
testing a user simulator on each dataset. The recommendation models are evaluated when rec-
ommending target images from the test sets, starting from a randomly selected candidate image
for the initial dialog turn. Each target image from the test sets represents a user session with the
system. Moreover, following Guo et al. (2018), as a user simulator, we adopt a relative captioner

to simulate the user in generating natural-language feedback (described in Section 4.3.3), which
has been shown to mimic an actual user behaviour/feedback (Guo et al., 2018).

Metrics The performances of the dialog-based interactive recommender systems are evaluated
with metrics including Normalised Discounted Cumulative Gain (i.e. NDCG@N truncated at
rank N = {5,10} calculated at the M-th interaction, see Section 2.1.3), Mean Reciprocal Rank
(i.e. MRR@N truncated at rank N = 10 at the M-th interaction, see Section 2.1.3) and Success
Rate (SR, see Section 3.2.2) at the M-th interaction. In particular, SR is the percentage of
users for which the target image was retrieved within M turns among all the users with top-1
recommendation. We use all the evaluation metrics (i.e. NDCG@5, NDCG@10, MRR@10 and
SR) at the 10th interaction turn for significance testing.

4.3.2 Baselines

We compare our proposed EGE model with two existing state-of-the-art baseline models:
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• The sequential recommendation model (Guo et al., 2018) in a supervised-learning setup (which
we denote as iGRU, where “i” stands for “interactive”) is an approach where the recommender
agent (with only a GRU and KNNs) is trained with a triplet loss (Guo et al., 2018) to maximise
the short-term rewards. The iGRU model is close to the well-established GRU4Rec sequential
recommendation model (Hidasi et al., 2016) but using the users’ natural-language feedback and
the previous recommended images as the input of the model with an online setup, instead of the
logged clickthough data with an offline setup.
• The Model-Based Policy Improvement (MBPI) (Guo et al., 2018)) model is a RL-based ap-
proach where the recommender agent (with only a GRU and KNNs) is pre-trained with a triplet
loss, and then further trained with a cross entropy loss. In the second training stage, the MBPI
model is optimised by maximising the cumulative future rewards given a known environment
(i.e. the user simulator). In particular, the MBPI model explores all possible recommendation
trajectories in the future interaction turns with the help of the given user simulator and recom-
mends the items with the maximum cumulative future rewards at each turn during this training
process.

These two baseline models are two existing representative formulations of the dialog-based
interactive recommendation task for top-1 recommendation, which are formulated as a sequen-
tial modelling problem and a Markov decision process (MDP), respectively. Although there are
a few other models with different formulations for the dialog-based interactive recommendation
task – such as RCR (R. Zhang et al., 2019) which is formulated as a constrained Markov deci-
sion process (CMDP) (Altman, 1999), the augmented cascading bandit (ACB) (Yu, Shen, & Jin,
2019) or the sleeping pairwise ranking bandit (SPRB) (Yu et al., 2020), which are formulated
as a multi-armed bandit (MAB) problem (Sutton & Barto, 2018) – these models are not compa-
rable with our scenario due to either requiring extra well-categorised visual attributes of items
(RCR) or taking a category of the fashion products as the targets (ACB & SPRB).

4.3.3 Experimental Settings

User Simulator To tackle the challenge of training an interactive recommender system on-
line, we adopt a user simulator based on relative captioning (Rennie et al., 2017) as in (Guo
et al., 2018), which acts as a surrogate for real human users. The user simulator can automat-
ically generate descriptions of the prominent visual differences between any pair of target and
candidate images. Such a natural-language feedback generation process with the user simulator
is very similar to a scenario of a shopping conversation session between a shopping assistant
and a customer. A user simulator with the Shoes dataset was intensively and carefully trained
by (Guo et al., 2018) through crowdsourcing relative expressions about the visual differences
of the image pairs and manually removing erroneous annotations. Furthermore, the pre-trained
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user simulator has previously been thoroughly evaluated via both a quantitative evaluation and
a user study, thereby serving as a reasonable proxy for real users in our work. Following H. Wu
et al. (2021), we also train a user simulator for the Dresses dataset. The user simulator for the
Dresses dataset is selected with the best prediction performance of the relative captioning task
on the caption testing split. The pre-trained user simulators are used for both the training and
evaluation of the interactive recommendation models.

Setup for Training We first train our proposed EGE model with both user simulators on the
Shoes and Dresses datasets, separately. The network parameters are randomly initialised. Fol-
lowing (Guo et al., 2018), we adopt a two-stage training process to facilitate the efficient ex-
ploration during the training with a joint loss LEGE . At the initial stage (i.e. training with a
triplet loss objective Ltri) and the second stage (i.e. training with a joint loss LEGE) of training,
we use Adam (Kingma & Ba, 2014) as the optimiser on both datasets with an initial learning
rate 10−3 and 10−5 (Guo et al., 2018; R. Zhang et al., 2019), respectively. The embedding di-
mensionality of the feature space is set to 256 and the batch size is 128, following the setting
in (Guo et al., 2018). For each batch, we train our model with 10 turns. We consider the top-11
nearest neighbours (considering an initial random item and 10 items during the 10 interactions)
for removing the previously recommended items from the ranking list at each interaction with
a post-filter, and we pick the top-1 from the post-filtered nearest neighbour list. The number
of negative samples (i.e. J) is set at 5, which is considered as a reasonable number for negative
sampling, regardless of the dataset size (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).
For our proposed EGE model, if not mentioned otherwise, the reward discount factor γ is set
to 0.9 while the reward weighting factor α is set to 0.5 due to the EGE model’s general good
performances with γ,α ∈ [0,1] on both datasets (as shown in Section 4.4.3).

Setup for Evaluation We consider the top-1 nearest neighbour (i.e. K = 1) as a recommen-
dation at each interaction turn with or without a post-filter for testing. In particular, when a
post-filter is applied, we pick the top-1 item from the post-filtered nearest neighbour list. For
the evaluation metrics, we denote the interaction turn M ∈ [1,10]. In particular, we mainly com-
pare the performances of the tested models at the 10th turn (i.e. M = 10) with significance tests,
which is the maximum interaction number in our study. This is smaller than the values adopted
in (Xu et al., 2021; R. Zhang et al., 2019) and is more reasonable in the shopping scenario be-
cause the users are more likely to be disappointed if they do not find their desired items after
that many turns. If a user obtains the target item in less than 10 turns, we consider the ranking
metrics (i.e. NDCG@5, NDCG@10 and MRR@10) for that user to be equal to one for all turns
thereafter.
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(a) NDCG@5 (b) NDCG@10

(c) MRR@10 (d) SR

Figure 4.3: Recommendation effectiveness at various interaction turns with top-1 recommen-
dation on the Shoes dataset.

4.4 Experimental Results

In this section, we analyse the experimental results with respect to the three research ques-
tions stated in Section 4.3, concerning the recommendation effectiveness of our proposed EGE
model (Section 4.4.1), impact of the historical information including the historical natural-
language feedback and historical recommendations (Section 4.4.2), and the impact of hyper-
parameters related to the rewards (Section 4.4.3). We also demonstrate a use case from the
logged experimental results to consolidate our findings (Section 4.4.4).

4.4.1 EGE vs. Baselines (RQ4.1)

Figures 4.3 and 4.4 show the recommendation effectiveness of our proposed EGE model and
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(a) NDCG@5 (b) NDCG@10

(c) MRR@10 (d) SR

Figure 4.4: Recommendation effectiveness at various interaction turns with top-1 recommen-
dation on Dresses.

the existing state-of-the-art baseline models for top-1 recommendation in terms of NDCG@5
(Figure 4.3 (a) and Figure 4.4 (a)), NDCG@10 (Figure 4.3 (b) and Figure 4.4 (b)), MRR@10
(Figure 4.3 (c) and Figure 4.4 (c)) and Success Rate (SR) (Figure 4.3 (d) and Figure 4.4 (d)),
while varying the number of interaction turns on the Shoes and Dresses datasets, respectively.
The solid lines show the models’ performances without a post-filter (which prevents the already
recommended items from being recommended), while the dashed lines show performances
when a post-filter is applied. When a post-filter is applied, the model is labeled with "(Filter)".
Comparing the results in Figure 4.3 and Figure 4.4, we observe that our proposed EGE model
generally achieves a better overall performance in terms of NDCG@5, NDCG@10, MRR@10
and SR at various interaction turns (except for the initial turn) without/with a post-filter, respec-
tively. In the initial interaction turn, the performance of our proposed EGE model is marginally
lower than the iGRU model and marginally higher than the MBPI model on the Shoes dataset,
while it is marginally lower than the other two on the Dresses dataset. As the number of interac-
tion turns increases (≥ 2), the differences between the effectiveness of EGE and iGRU/MBPI on



CHAPTER 4. PARTIAL OBSERVABILITY IN NATURAL-LANGUAGE FEEDBACK 62

all metrics also increase. The better performance of EGE compared to iGRU can be attributed
to the fact that our RL-based EGE model is optimised to maximise the long-term rewards with
a Q-learning layer in the Evaluator, while the supervised learning approach (i.e. iGRU) aims
to maximise the instant reward (i.e. rt). Furthermore, by considering the historical information
with Q-learning for POMDP, our proposed EGE model can also outperform the MBPI model
with a better recommendation effectiveness, thereby mitigating the partial observation issue.

To quantify the improvements of our proposed EGE model compared to the other two base-
line models, we measure their performances at the 10th interaction turn with top-1 recommen-
dation. Table 4.1 shows the obtained recommendation performances of the models on the user
simulator with a test set at the 10th interaction turn. For top-1 recommendation, we compare
the performances of our proposed EGE model with the iGRU and MBPI models without/with
a post-filter on both the Shoes and Dresses datasets, respectively. More specifically, Table 4.1
contains two groups of rows for each dataset. The first group of rows reports the effectiveness
of the tested models without a post-filter and the improvements of EGE over the best base-
line model. The second group of rows reports the performances of the tested models with a
post-filter and shows the improvements, in the same way as the first group. The best overall per-
forming results across the two groups of rows in the table are highlighted in bold in Table 4.1.
* denotes a significant difference in terms of a paired t-test with a Holm-Bonferroni multiple
comparison correction (p < 0.05), compared to EGE/EGE (Filter) in each group, respectively.
Comparing the results in the first group of rows in the table, we observe that our proposed EGE
model achieves better performances of 6− 11% and 15− 23% at the 10th turn than the best
baseline model (i.e. MBPI) across all metrics without a post-filter on the Shoes and Dresses

datasets, respectively, while achieving improvements of 4−6% and 11−16% with a post-filter,
respectively. Indeed, the EGE model is significantly better than the iGRU and MBPI models
without/with a post-filter for each metric at the 10th turn with top-1 recommendation, except for
MBPI on the Dresses dataset in terms of MRR@10 and SR.

In answer to RQ4.1, the results demonstrate that our proposed EGE model can outperform
the state-of-the-art baseline models (i.e. iGRU and MBPI) overall after the first interaction turn.
In particular, it is significantly more effective than both the supervised-learning-based approach
(i.e. iGRU) and the RL-based approach (i.e. MBPI) without/with a post-filter at the 10th inter-
action turn with top-1 recommendation. Therefore, our proposed EGE model with Q-learning
for POMDP can effectively mitigate the partial observation issue.

4.4.2 Impact of Historical Information (RQ4.2)

To address RQ4.2, we investigate how historical information affects the performance of our
model by considering the users’ historical feedback and the agent’s historical recommendations.
In particular, recall from Section 4.2 that the users’ historical feedback is used as the input
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Table 4.1: Recommendation effectiveness of our proposed EGE model and the baseline models
at the 10th turn on both the Shoes and Dresses datasets. % Improv. indicates the improvements
by EGE/EGE (Filter) over the best baseline model. The best overall results are highlighted
in bold. * denotes a significant difference in terms of a paired t-test with a Holm-Bonferroni
multiple comparison correction (p < 0.05), compared to EGE/EGE (Filter) in each group, re-
spectively.

Models Post-Filter Shoes Dresses
Applied NDCG@5 NDCG@10 MRR@10 SR NDCG@5 NDCG@10 MRR@10 SR

iGRU No 0.1717* 0.1975* 0.1712* 0.1398* 0.0647* 0.0800* 0.0627* 0.0416*
MBPI No 0.2389* 0.2671* 0.2363* 0.1977* 0.0715* 0.0888* 0.0702 0.0489
EGE No 0.2580 0.2834 0.2547 0.2190 0.0852 0.1025 0.0829 0.0591
% Improv. - 8.00 6.10 7.79 10.77 19.16 15.43 18.09 22.87

iGRU (Filter) Yes 0.3574* 0.3807* 0.3544* 0.3201* 0.1802* 0.1994* 0.1777* 0.1487*
MBPI (Filter) Yes 0.4384* 0.4613* 0.4338* 0.3961* 0.1898* 0.2050* 0.1859* 0.1614*
EGE (Filter) Yes 0.4572 0.4807 0.4541 0.4182 0.2122 0.2284 0.2098 0.1858
% Improv. - 4.29 4.21 4.68 5.58 11.80 11.41 12.86 15.11

of the Evaluator in Figure 4.2 to judge the quality of the estimated state, while the agent’s
historical recommendations are used in a post-filter to remove the recommended items from the
recommendation list. In summary, compared to the MBPI model, our EGE model takes the
users’ historical feedback into consideration during the training process.

Considering the usefulness of the users’ historical natural-language feedback, we compare
the effectiveness of our proposed EGE model with the MBPI model on both used datasets. In
both Figures 4.3 and 4.4, we observe that EGE consistently outperforms MBPI in terms of
NDCG@5, NDCG@10, MRR@10 and Success Rate through the 2nd turn to the 10th turn. In
Table 4.1, we also observe that the EGE model is consistently and significantly better than the
MBPI model in each group for each metric at the 10th interaction turn for top-1 recommenda-
tion, except for MBPI on the Dresses dataset in terms of MRR@10 and SR. This suggests that
adopting the users’ historical feedback in the judgement of the estimated states can benefit the
interactive recommendation model.

Furthermore, we compare the performances of all the tested models (including our proposed
EGE model) considering the usefulness of the agent’s historical recommendations with a post-
filter. In Figures 4.3 and 4.4, we observe that all of the tested models that apply a post-filter can
consistently outperform those without a post-filter after the initial interaction turn. There is a
trend that the gap between a model with a post-filter and the one without a post-filter increases
at every interaction turn. Thus, this trend indicates that applying the post-filter on the recom-
mendation list using the agent’s historical recommendations demonstrates a cumulative effect.
This suggests that applying a post-filter with the agent’s historical recommendation can always
further improve the performances of the interactive recommendation models.

Overall, in response to research question RQ4.2, we find that our proposed EGE model can
benefit from both the users’ historical feedback and the agent’s historical recommendations.
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4.4.3 Impact of Hyper-Parameters (RQ4.3)

To address RQ4.3, Figure 4.5 depicts the effects of the reward discount factor γ and the
reward weighting factor α on our proposed EGE model while applying a post-filter (denoted
EGE (Filter)) in top-1 recommendation on the Shoes & Dresses datasets.

Effect of the reward discount factor γ Figure 4.5 (a) illustrates the NDCG@5 and SR of EGE
(Filter) at the 10th turn in top-1 recommendation with different reward discount factors on the
Shoes dataset. In particular, γ = 0 means that the models only consider immediate feedback,
while γ = 1 means that the model weights all future rewards equally. We can see that the
performance of EGE (Filter) improves when the reward discount factor γ increases from 0,
except for γ = 1. Figure 4.5 (b) demonstrates a similar increasing trend on the Dresses dataset
and both metrics reach a peak at γ = 0.7. The generally better performance of the model with
γ > 0.1 than the model with γ = 0 leads to the conclusion that the Evaluator component does
help to improve the overall recommendation effectiveness by considering long-term rewards.
On the other hand, the decreased performance of the model with γ = 1 on the Shoes dataset and
γ > 0.7 on the Dresses dataset shows that the reward discount factor should be set appropriately.

Effect of the reward weighting factor α Figure 4.5 (c) illustrates the NDCG@5 and SR of
EGE (Filter) at the 10th turn in top-1 recommendation on the Shoes dataset with different reward
weighting factors α , which weight the contributions of the visual reward rvis

t and the ranking per-
centile reward rper

t to the final rewards. In particular, α = 0 means that the model only considers
the ranking percentile reward rper

t , while α = 1 means that the model only takes the visual re-
ward rvis

t into consideration. We can see that the performance of EGE (Filter) improves when the
reward weigthing factor α increases from 0 to 0.5, and varies slightly with α > 0.5. Figure 4.5
(d) shows a distinctive trend on the Dresses dataset in that both the NDCG@5 and SR metrics
first increase and reach a peak at α = 0.3 and α = 0.1, respectively, and then decease when
α increases from 0.3 to 0.9. This trend shows that the visual reward rvis

t is more informative
than the ranking percentile reward rper

t in the EGE (Filter) model on the Shoes dataset, while
the ranking percentile reward rper

t is more important than the visual reward rvis
t on the Dresses

dataset. Such a difference can be attributed to a domain factor from the datasets in that the im-
ages from the Dresses dataset usually include a human model to display the clothing while the
images from the Shoes dataset only contain shoes without a model (as can be observed in the
image databases for shoes3 and dresses4). The visual features of the human models can confuse
the ResNet component when mapping the dress images to the image feature (ResNet) space.
Therefore, the generated dress image embeddings may be affected by the noises from the visual

3 http://tamaraberg.com/attributesDataset/attributedata.tar.gz 4 https://github.com/hongwang600/fashion-iq-
metadata/blob/master/image_url
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(a) γ for Shoes (b) γ for Dresses

(c) α for Shoes (d) α for Dresses

Figure 4.5: Effects of (a) & (b) the reward discount factor γ and (c) & (d) the reward weight-
ing factor α at the 10th turn in the top-1 recommendation scenario on the Shoes and Dresses
datasets.

features of the human models, thereby reducing the utility of the visual rewards from the user
simulator. To mitigate this issue, our future work will consider more advanced models (Z. Liu,
Luo, Qiu, Wang, & Tang, 2016; W. Wang, Xu, Shen, & Zhu, 2018) that aim for effective fashion
attribute detection for generating the dress image embeddings, or pre-trained vision and lan-
guage models, such as CLIP Radford et al. (2021), to provide unified representation verctors for
both image and text encodings (as described in the following Chapters 6 and 7).

Overall, in response to RQ4.3, we find that the ranking percentile reward rper
t and the visual

reward rvis
t can help our EGE model to improve the recommendation performance.

4.4.4 A Use Case

To consolidate the results observed in the above sections, we present a use case of the tested
models without/with a post-filter in Figure 4.6: (a) iGRU, (b) iGRU (Filter), (c) MBPI, (d)
MBPI (Filter), (e) EGE, (f) EGE (Filter) only on the Shoes dataset for top-1 recommendation.
In Figure 4.6 (a-f), the first image is the target item desired by the user (labeled with “Target”),
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while the second image (labeled with “Initial”) is the initial recommendation proposed by the
recommender system randomly. For a fair comparison, the initial images are the same across the
tested recommender systems given the target image from the testing set. Then, the recommended
top-1 items and the user comments in the following turns are presented. The rank of the target
item is also presented above the images at each turn (e.g.‘̀Turn 1 (rank=13)” in Figure 4.6 (a)
iGRU, where the target image is ranked at the 13th position in the recommendation list at the first
interaction turn). When the target item is recommended, the rank is 1 (e.g.‘̀Turn 5 (rank=1)” in
Figure 4.6 (b)), and the user simulator will give the comment: “are the same”. We observe that
our proposed EGE model is the most effective recommender system among the tested models.
Both EGE and EGE (Filter) only need two interactions to display the desired item, while the
other tested models require at least 4 interactions given the same target and initial items. For
instance, iGRU fails to recommend the target item within 5 interaction turns and recommends the
same items repeatedly, even though the rank of the target item is getting higher. Though MBPI
is more effective than iGRU, there is also a repeated recommendation at the 4th interaction turn
when the post-filter is not applied. Furthermore, we also observe that the ranks of the target item
with iGRU/iGRU (Filter) are much higher than the ranks of MBPI/MBPI (Filter) and EGE/EGE
(Filter) at the first interaction turn. One possible reason is that the iGRU model is maximising
the instant reward while the RL-based models are maximising the future accumulative rewards.
In addition, our proposed EGE model is more effective at making use of the user’s natural-
language feedback, i.e. “are red shiny high heels". However, both the iGRU (Filter) and MBPI
(Filter) models continuously present items that violate the previous user’s feedback. Indeed,
iGRU (Filter) recommends the red sport shoes that are violated from the “high heels”, while
MBPI (Filter) recommends the black high heels that are contrary to the “red” colour. Note that
a use case on the Dresses dataset also led to similar results and observations. We omit their
reporting in this chapter to avoid redundancy.

4.5 Conclusions

In this chapter, we proposed a novel dialog-based recommendation model, denoted by the
Estimator-Generator-Evaluator (EGE) model, with Q-learning for POMDP to effectively incor-
porate the users’ preferences over time in a partially observable environment. Specifically, we
leveraged an Estimator to track and estimate the users’ preferences, a Generator to match the es-
timated preferences with the candidate items to rank the next recommendations (with a post-filter
to remove repeated recommendations), and an Evaluator to judge the quality of the estimated
preferences considering the users’ historical feedback. Following previous work, we trained our
EGE model by using a user simulator, which itself is trained to describe the differences between
the target users’ preferences and the recommended items in natural language. Our experiments
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on the Shoes and Dresses datasets demonstrated that our proposed EGE model achieves sig-
nificantly enhanced performances compared to the strongest baseline model (i.e. MBPI) – for
instance (as shown in Table 4.1), improving by 6− 23% when a post-filter is not used, and
4− 16% when post-filtering is applied, respectively. Our reported results also showed that the
EGE model can benefit from the historical information (i.e. the users’ historical feedback and
the agent’s historical recommendations). The experimental results and analysis provide support
for the thesis statement with Research Topic 1 in Section 1.3.

Next, in Chapter 5, we argue that the existing formulation of interactive recommender sys-
tems suffer from their inability to capture the multi-modal sequential dependencies of textual
feedback and visual recommendations becuase of their use of recurrent neural network-based or
transformer-based models. Therefore, we aim to address the multi-modal sequence dependency
issue by leveraging a recurrent-enhanced transformer architecture and introducing a feedback
gate to separately process the textual and visual representations.
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(a) iGRU

(b) iGRU (Filter)

(c) MBPI

(d) MBPI (Filter)

(e) EGE

(f) EGE (Filter)

Figure 4.6: A use case with different recommendation models on the Shoes dataset.



Chapter 5

Multi-Modal Sequence Dependency in
State Tracking

In our thesis statement (as stated in Section 1.3), we postulated that we can effectively incor-
porate the users’ preferences over time, with an RNN-enhanced Transformer structure for state
tracking, by mitigating the multi-modal sequence dependency issue in the multi-modal conver-
sational recommendation process. Therefore, in this chapter, we propose a novel multi-modal
recurrent attention network (MMRAN) model for addressing the multi-modal sequence depen-
dency issue so as to effectively incorporate the users’ preferences over the long visual dialog
sequences of the users’ natural-language feedback and the system’s visual recommendations.
This chapter is mainly based on our work (Y. Wu, Macdonald, & Ounis, 2022b) “Multi-Modal
Dialog State Tracking for Interactive Fashion Recommendation” published in the proceedings
of the 16th ACM Conference on Recommender Systems (RecSys 2022)1.

In Chapter 4, we have addressed the partial observability issue in nautural-language feed-
back in the dialog-based recommendation task by proposing the Estimator-Generator-Evaluator
(EGE) model with Q-learning for POMDP. In addition to the natural-language feedback, the
multi-modal conversational recommendation task also involves sequences of visual recommen-
dations across multiple iterations of interactions. However, such multi-modal dialog sequences
(i.e. turns consisting of the system’s visual recommendations and the user’s natural-language
feedback) make it challenging to correctly incorporate the users’ preferences across multiple
turns. Indeed, the existing formulations of interactive recommender systems suffer from their
inability to capture the multi-modal sequential dependencies of textual feedback and visual rec-
ommendations because of their use of recurrent neural network-based (i.e., RNN-based, see
Chapter 4) or transformer-based models. To alleviate the multi-modal sequence dependency
issue, in this chapter, we propose a novel multi-modal recurrent attention network (MMRAN)
model to effectively incorporate the users’ preferences over the long visual dialog sequences of

1 DOI: https://doi.org/10.1145/3523227.3546774
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Figure 5.1: Example multi-modal recommendation scenario.

the users’ natural-language feedback and the system’s visual recommendations. Specifically, we
leverage a gated recurrent network (GRN) with a feedback gate to separately process the textual
and visual representations of natural-language feedback and visual recommendations into hid-
den states (i.e. representations of the past interactions) for multi-modal sequence combination.
In addition, we apply a multi-head attention network (MAN) to refine the hidden states gener-
ated by the GRN and to further enhance the model’s ability in dynamic state tracking. Following
previous work, we conduct extensive experiments on the Fashion IQ Dresses, Shirts, and Tops
& Tees datasets (introduced in Section 3.3) to assess the effectiveness of our proposed model
by using a vision-language transformer-based user simulator as a surrogate for real human users
(described in Section 3.3). Our results show that our proposed MMRAN model can signifi-
cantly outperform several existing state-of-the-art baseline models (including the EGE model in
Chapter 4). The results conform with our thesis statement with Research Topic 2 in Section 1.3.

5.1 Motivations

As introduced in Section 3.2, the multi-modal interactive recommendation is specifically con-
cerned with a goal-oriented multi-modal sequence of interactions between users and the recom-
mender system, where users can receive visual recommendations (i.e. the items’ images) and
express fine-grained natural-language critiques about the recommendations based on their pref-
erences. Figure 5.1 illustrates an example multi-modal interactive recommendation scenario.
The multi-modal interactive recommendation task has been previously modelled using recurrent
neural networks (RNNs, using a gated recurrent unit (GRU) (Guo et al., 2018; Yu et al., 2020)
or a long short-term memory (LSTM) (R. Zhang et al., 2019)) or using a transformer (H. Wu
et al., 2021) as a state tracker for both multi-modal sequence combination (Beard et al., 2018;
Gkoumas et al., 2021) (i.e. combining the users’ natural-language feedback sequence and the
systems’ visual recommendation sequence) and dialog state tracking (Fu et al., 2020; Liao et
al., 2021; Y. Sun & Zhang, 2018) (i.e. eliciting the users’ preferences over time). However,
the actual neural networks adopted as the state trackers (such as GRUs (Chung et al., 2014),
LSTMs (Hochreiter & Schmidhuber, 1997) or transformers (Vaswani et al., 2017)) are all orig-
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inally designed for single-modal sequence modelling tasks (such as natural language process-
ing (Otter et al., 2020)). Therefore, these models typically resort to combining the textual and
visual representations with a concatenation operation (Guo et al., 2018; H. Wu et al., 2021;
R. Zhang et al., 2019), rather than processing the differing multi-modal sequence data sepa-
rately.

Despite the expressiveness and complementary of visual recommendations and the cor-
responding natural-language feedback in multi-modal interactive recommendations, the long
lengths of the dialog sequences makes it challenging to correctly incorporate the users’ pref-
erences over time, thereby resulting in a degraded satisfaction of the users’ information needs
with inappropriate recommendations. Indeed, the existing formulations of interactive recom-
mender systems suffer from an inability to capture multi-modal sequence dependencies be-
tween the textual feedback and visual recommendations using either the GRU/LSTM-based
models (Goodfellow et al., 2016; Guo et al., 2018; R. Zhang et al., 2019) or the transformer-
based model (H. Wu et al., 2021). Specifically, we argue that the inability of these GRU/LSTM-
based and transformer-based models at capturing such multi-modal sequence dependencies of
the dialog sequences is inherently due to their limitations in combining multi-modal sequences

or tracking dialog states (as we further discuss in Section 5.2).
In this chapter, we alleviate the multi-modal sequence dependency issue in multi-modal di-

alog sequences modelling by addressing the multi-modal sequence combination and the dialog

state tracking, respectively. To better combine the multi-modal dialog sequences than using
a concatenation operation, we extend the traditional GRU architecture with an extra feedback

gate (called a gate recurrent network (GRN), inspired by Donkers, Loepp, and Ziegler (2017);
Manotumruksa et al. (2018)) to separately process the textual feedback and the visual items in
the visual dialog sequences. To better track the users’ dynamic preferences across multiple in-
teraction turns, a multi-head attention network (MAN) is placed on top of our proposed GRN
component to refine the GRN’s hidden states and to further enhance the model’s ability in dia-
log state tracking, inspired by RNN-enhanced transformers (Z. Wang, Ma, Liu, & Tang, 2019).
To this end, we propose a novel multi-modal recurrent attention network (MMRAN) model for
interactive recommendation to effectively incorporate the users’ preferences over time from the
multi-modal dialog sequences of the users’ natural-language feedback and the systems’ visual
recommendations. Following previous work (see Section 3.3), we train and evaluate our MM-
RAN model by using a vision-language transformer-based user simulator (VL-Transformer),
which has been previously shown to be a good surrogate for real users. Our extensive experi-
ments conducted on the Fashion IQ Dresses, Shirts, and Tops & Tees datasets (see Section 3.3.2)
show that our proposed MMRAN model can significantly outperform several existing state-of-
the-art baseline models. The main contributions of this chapter are as follows:

• We propose a novel multi-modal recurrent attention network (MMRAN) model for inter-
active recommendation. Our model separately processes the textual feedback sequences and the
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visual item sequences for multi-modal sequence combination, and tracks the dialog states us-
ing abstract representations of the previous interactions. We show that our proposed MMRAN
model is more effective in capturing the dialog sequence information of the natural-language
feedback and the visual recommendations compared to the existing baseline models.

• We propose a gated recurrent network (GRN) for extracting the hidden states of the past
interactions from the natural-language feedback and the visual recommendations. Our GRN
extends the traditional gated recurrent unit (GRU) with a feedback gate to capture the correlation
between the textual feedback at the current turn and the hidden state of the previous turn.

• We deploy an advanced RNN-enhanced transformer architecture (Z. Wang et al., 2019)
for interactive recommendation, in order to effectively track the dialog states with a multi-head
attention network (MAN) using the GRN’s abstract representations.

• We perform extensive empirical evaluations with our proposed MMRAN model on the
multi-modal interactive recommendation task, demonstrating significant improvements over the
existing state-of-the-art approaches (including the EGE model in Chapter 4).

The remainder of this chapter is structured as follows: we first discuss the limitations of the
existing multi-modal interactive recommendation models in Section 5.2. We also review the re-
lated work and position our contributions in comparison to the existing literature in Section 5.3.
Then we detail our proposed MMRAN model in Section 5.4. Afterwards we describe our ex-
perimental setup in Section 5.5 and report our experimental results in Section 5.6, respectively.
Finally, we summarise our findings in Section 5.7.

5.2 Multi-modal Interactive Recommendation

In this section, we recap the problem of the multi-modal interactive recommendation task
(Section 5.2.1). Then, we briefly elicit the limitations of the RNN/transformer-based models in
terms of the multi-modal sequence dependency issue (Section 5.2.2).

5.2.1 Preliminaries

We study the multi-modal interactive recommendation task by considering a user interacting
with a recommender system using iterative multi-turn interactions through vision and language.
At the t-th interaction turn, the recommender system presents a candidate image at−1 selected
from a candidate pool I = {ai}N

i=0 to the user. The user then provides a natural language cri-
tique ot as feedback, describing the major visual differences between the candidate image and
their desired item. Specifically, we assume that the user only gives feedback on the top-ranked
candidate item in the ranking list (see Section 3.2). According to the users’ natural-language
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(a) DM-SL

(b) MMIT

Figure 5.2: Examples of multi-modal interactive recommendations obtained from (a) DM-
SL (Guo et al., 2018) and (b) MMIT (H. Wu et al., 2021).

feedback ot and the interaction history up to turn t, τt = (o≤t ,a<t) ∈ H (i.e. a set of interac-
tion history), where o≤t = (o1, ...,ot) ∈ O (i.e. a set of the users’ natural-language feedback)
and a<t = (a0, ...,at−1) ∈ A (i.e. a set of items for recommendation), the recommender sys-
tem selects another candidate image at from the candidate image pool. This vision-language
interaction process continues until the user’s desired target image atarget is recommended or a
maximum number of interaction turns, M, is reached, leaving the user unsatisfied.

5.2.2 Multi-Modal Interactive Models

Figure 5.2 shows examples of interactive recommendations obtained from (a) the Dialog Man-
ager (DM) (Guo et al., 2018) model, which is based on a gated recurrent unit (GRU) with a
supervised-learning setup (which we denote as DM-SL); and (b) the multi-modal interactive
transformer (MMIT) (H. Wu et al., 2021) model based on a transformer. In each example, the
recommender gives a random initial recommendation (denoted “Initial”) to the user, while the
user with a desired target item (denoted “Target”) provides natural-language feedback about the
recommendation at each turn. Then, the recommender system updates the ranking list of the
candidate items for the next recommendation according to the user’s feedback.

The GRU/LSTM-based Models

In GRU/LSTM-based models (Guo et al., 2018; R. Zhang et al., 2019) for multi-modal interac-
tive recommendation, due to the inability of GRUs/LSTMs in processing different multi-modal
data separately, the representations of the users’ natural-language feedback and the systems’
visual recommendations are usually combined with a concatenation operation and a multilayer
perceptron (MLP), so as to form a single input of the GRUs/LSTMs at each turn. Such a con-
catenation operation on the multi-modal sequence data causes the combined textual and vi-
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sual representations to be memorised or forgotten synchronously at each interaction turn in the
GRUs/LSTMs-based state trackers (Goodfellow et al., 2016; Guo et al., 2018; R. Zhang et al.,
2019) (Limitation 1). For instance, in Figure 5.2 (a), a sleeveless shirt is recommended at the
1st turn by the DM-SL model due to the initial comment, “shorter sleeves”, compared to the
red T-shirt shown at the initial turn, while the sleeveless feature shown in the image at the 1st
turn and similarly conveyed by the natural-language at the initial turn is omitted by the recom-
mender for the following recommendations. However, we argue that the users’ feedback should
have more effect on the hidden state of the GRUs/LSTMs in addition to the combined textual
and visual representations, in that the natural-language feedback explicitly conveys the users’
information needs while the rejected visual recommendations can be noisy by also containing
the users’ undesired features.

The Transformer-based Model

In the transformer-based model for multi-modal interactive recommendation (H. Wu et al.,
2021), the representations of the users’ natural-language feedback and the systems’ visual rec-
ommendations at all turns are concatenated together, while the dialog states (i.e. the estimated
users’ dynamic preferences) are directly tracked and inferred from all the concatenated tex-
tual and visual representations. Although the textual and visual representations at all turns in
a multi-modal dialog sequence can fully interact with each other by using a multi-head atten-
tion mechanism (Vaswani et al., 2017) in the transformers, we argue that the effectiveness of the
transformer-based model is limited as it cannot consider the previous inferred hidden states in an
iterative manner (i.e. abstract representations of the past interactions) of the multi-modal dialog
sequence as performed by the GRU/LSTM models at each turn (Limitation 2). For instance, in
Figure 5.2 (b), for the MMIT model, the “red” colour in the comment at the 2nd turn refers to
“red text” in the comment at the 1st turn, while it is misunderstood by the recommender system
and taken as the colour of the shirt according to the successively recommended “red” shirts from
the 3rd turn to the 5th turn.

Summary of Limitations

To conclude, in the above analysis, we have identified two limitations of the existing GRU/LSTM-
based and transformer-based models:

Limitation 1: The GRU/LSTM-based models incorporate the multi-modal data with a con-
catenation operation rather than processing the multi-modal dialog sequences separately for
multi-modal sequence combination.

Limitation 2: The transformer-based models directly infer the users’ preferences from all
the concatenated textual and visual representations rather than from the abstract representations
of the past interactions for dialog state tracking.
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In summary, the existing multi-modal interactive recommendation models based on only
GRUs, LSTMs or transformers are not able to properly process the multi-modal dialog se-
quences of the natural-language feedback and recommended visual items, which limits these
models’ ability to incorporate the users’ preferences over time. In Section 5.4, we propose a
model that addresses these limitations. In the next section, we detail related work in multi-
modal interactive recommendation and recurrent neural models.

5.3 Related Work

In this section, we first introduce the gating mechanisms in RNNs. We then discuss the
RNN-enhanced transformers.

5.3.1 Gating Mechanisms of Recurrent Models

Traditional RNNs usually suffer from the vanishing gradient problem when processing long
sequences (Hochreiter & Schmidhuber, 1997). Recurrent units such as a long short-term mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997) and a gated recurrent unit (GRU) (Chung et
al., 2014) are extensions of traditional RNNs, which use gating mechanisms to control the in-
fluence of a hidden state of the previous step. While the GRU and LSTM architectures can
alleviate the vanishing gradient problem (Chung et al., 2014; Hochreiter & Schmidhuber, 1997),
they cannot process different modalities separately at the same time. The representations of the
multi-modal sequences are usually combined with a concatenation operation as a single input of
the GRUs/LSTMs at each turn (Guo et al., 2018; Tan, Goel, Nguyen, & Ong, 2019; R. Zhang
et al., 2019). Many researchers have extended the GRUs/LSTMs to incorporate contextual in-
formation associated with the sequence information, such as transition contexts (the time inter-
vals and the geographical distances) by using time and/or spatial-based gates (Manotumruksa
et al., 2018; Smirnova & Vasile, 2017; Zhu et al., 2017). In the multi-modal interactive rec-
ommendation task, the users’ natural-language feedback can be taken as contextual information
associated with the visual recommendation sequences. However, to the best of our knowledge,
such an approach to associate the sources of contextual information has not been investigated
for multi-modal interactive recommendation to address Limitation 1.

5.3.2 RNN-Enhanced Transformers

In the transformer-based model (H. Wu et al., 2021) for interactive recommendation, dialog
states (i.e. the estimated users’ dynamic preferences) can only be directly tracked and inferred
from all the concatenated textual and visual representations instead of being estimated from the
abstract representations in the past interactions of the dialog sequences, as performed by the



CHAPTER 5. MULTI-MODAL SEQUENCE DEPENDENCY IN STATE TRACKING 76

GRU/LSTM models at each turn. To alleviate such inherent limitations of the transformers in
state tracking, a number of previous studies (Hao et al., 2019; Kim, Lin, Jeon, Min, & Sohn,
2018; J. Lei et al., 2020; Z. Wang et al., 2019) have investigated RNN-enhanced transformers
for sequence modelling tasks, such as R-Transformer (Z. Wang et al., 2019), to take the benefits
from both the RNNs for abstract representations at each turn and from the transformers for the
whole sequence’s overall feature interactions in sequence modelling. Z. Wang et al. (2019) pro-
posed an RNN-enhanced transformer model with a sliding window (called an R-Transformer)
to benefit from the advantages of both an RNN and a transformer’s multi-head attention mech-
anism. Three layers (i.e. RNNs with a sliding window, a multi-head attention layer, and a feed-
forward layer) were arranged hierarchically. In particular, the RNNs process sequences using
a sliding window and generate the hidden states of the past interactions sequentially, while the
multi-head attention layer captures the dialog states among the RNNs’ hidden states of the pre-
vious turns, and the feedforward layer conducts non-linear feature transformation. However,
these RNN-enhanced transformers have not yet been investigated for multi-modal interactive
recommendation in order to address Limitation 2.

As discussed in Section 5.2, given the limitations of the GRU, LSTM and transformer-based
models, we argue that the existing interactive recommendation models based on only GRUs,
LSTMs or transformers are not able to properly process the multi-modal dialog sequences of
natural-language feedback and recommended visual items. This limits the ability of such mod-
els in incorporating the users’ preferences over time. To address Limitation 1 & 2, we propose
a novel multi-modal recurrent attention network (MMRAN) model for interactive recommenda-
tion. Specifically, our model separately processes the textual feedback sequences and the visual
item sequences for multi-modal sequence combination so as to address Limitation 1, while it
tracks the dialog states with the abstract representations of the previous interactions in order to
address Limitation 2. To the best of our knowledge, this novel structure of our MMRAN model
constitutes the first work based on a multi-modal recurrent attention network in multi-modal
interactive recommendations.

5.4 Methodology

We now define our proposed Multi-Modal Recurrent Attention Network (MMRAN) model
and introduce its components. Figure 5.3 shows the architecture of MMRAN, which aims to
effectively incorporate the users’ preferences over time. The architecture consists of three parts:
text & image encoders, a gated recurrent network (GRN), and a multi-head attention network
(MAN). We also describe the training of the MMRAN model using multi-turn interactions with
a user simulator.



CHAPTER 5. MULTI-MODAL SEQUENCE DEPENDENCY IN STATE TRACKING 77

Figure 5.3: The multi-modal recurrent attention network (MMRAN) model.

Text & Image Encoders The text encoder (denoted T xtEnc(·)) consists of a 1D convolutional
layer (1D-CNN) and a subsequent linear layer as in (Guo et al., 2018), where the user’s natural-
language feedback ot (with each word represented by a one-hot vector) is extracted into a textual
sentence representation T xtEnc(ot). Although there are many advanced pre-trained transformer-
based language models (such as BERT, see Section 3.4.1) for processing the natural-language
feedback, we adopt a one-hot vector for each word with a pre-defined vocabulary (Guo et al.,
2018) of fashion-related terms when generating textual sentence representations, thus allowing
fair comparisons with existing works (Guo et al., 2018). Furthermore, a pre-defined fashion
vocabulary is much smaller and is more concentrated on fashion features than BERT. Simi-
larly, the image encoder (denoted ImgEnc(·)) consists of the ImageNet pre-trained ResNet101
model (K. He et al., 2016) and a subsequent linear layer, as in (Guo et al., 2018), where a can-
didate image at−1 is extracted into image feature representations ImgEnc(at−1). To simplify
the notations, in the following we directly use ot and at−1 as their representations, respectively.
Then, both the visual and textual representations are passed to a gated recurrent network (GRN)
and a multi-head attention network (MAN) to estimate the user’s preferences.

The Gated Recurrent Network (GRN) To address Limitation 1 and effectively incorporate
the users’ preferences from the multi-modal dialog sequences of the users’ natural-language
feedback and the recommended visual items, inspired by (Donkers et al., 2017; Manotumruksa
et al., 2018), we propose a gated recurrent network (GRN) with a feedback gate for multi-

modal sequence combination. Figure 5.4 shows the architecture of our proposed gated recurrent
network (GRN). Our GRN extends the traditional gated recurrent unit (GRU) with an extra gate
(i.e. a feedback gate βt) to directly impose more effect on the hidden state in addition to the
combined textual and visual representations, in that the natural-language feedback explicitly
conveys the users’ information needs. The estimated hidden states of the user’s preferences can
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be achieved with ht = GRN(ht−1,at−1,ot). In particular, the proposed feedback gate βt controls
the influences of the current textual feedback ot at each state as follows:

βt = σ(Wβ ,hht−1 +Wβ ,oot +bβ ) (5.1)

where Wβ ,h, Wβ ,o and b are, respectively, the transition matrices and the corresponding bias. Our
proposed feedback gate βt aims to capture the correlation between the current textual feedback
ot and the hidden state of the previous turn ht−1. The feedback gate βt is activated in case where
the natural-language feedback is less informative about the users’ preferences compared to the
hidden state ht−1. Then, the equations of GRN with the proposed feedback gate βt are:

ct =Wc,aat−1 +Wc,oot +bc (5.2)

zt = σ(Wzct +Uzht−1 +bz) (5.3)

rt = σ(Wrct +Urht−1 +br) (5.4)

h̃t = tanh(Whct +Uh(rt ⊙ht−1)+bh) (5.5)

ht = (1−βt)⊙ot +[(1− zt)ht−1 + zt h̃t ] (5.6)

where ct is an initially inferred multi-modal representation of the visual recommendation at−1

and the corresponding natural-language feedback ot . zt , rr are update and reset gates, respec-
tively. h̃t is a candidate hidden state. σ(·) and tanh(·) are the sigmoid and hyperbolic tangent
functions, respectively. Uz, Ur and Uh are the weight matrices that capture the recurrent con-
nections between every two adjacent hidden states ht−1 and ht . ⊙ denotes the element-wise
product. W and b with subscripts are, respectively, the transition matrices and the corresponding
biases. By including the natural-language feedback ot through an aggregation operation (Equa-
tion (5.6)), ot has more effect on the hidden state ht . In addition, a sliding window with size
Nsliding_window, as in (Z. Wang et al., 2019), can be used to limit the length of the multi-modal
dialog sequences considered at each turn. We investigate its impact on the model’s performance
in Section 5.6.2.

The GRN component allows our MMRAN model to sequentially aggregate the recommen-
dation and feedback information from the recommender system’s recommendations and the
user’s natural-language feedback to the estimated hidden states for multi-modal sequence com-

bination. These estimated hidden states can be considered as the representations of the past
interactions and are used as inputs to the following multi-head attention network (MAN).

The Multi-head Attention Network (MAN) To address Limitation 2 and further track the di-
alog states among the GRN’s hidden states of the previous turns, we adopt a multi-head attention
network (MAN) architecture that enables our MMRAN model to consider the entire history of
the multi-modal interactions during each interaction turn. The multi-head attention mechanism
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Figure 5.4: Our proposed GRN architecture.

in transformers has been shown to be extremely effective to learn the long-term dependencies
in the sequence modelling, since it allows a direct connection between every pair of its input
representations (Vaswani et al., 2017; Z. Wang et al., 2019). More specifically, in the multi-head
attention mechanism, each input representation at each turn will attend to all the other input
representations in the past interactions, thereby obtaining a set of attention scores that are used
to refine its representations. In particular, the estimated hidden states of the users’ preferences hi

(where i ∈ [1, t]) are further encoded with a multi-layer transformer encoder TranEnc(·) (with
Nlayers layers), which includes the multi-head attention mechanism (with Nheads attention heads).
The refined hidden states are defined as follows:

h
′
1, ...,h

′
t = TranEnc(h1, ...,ht) (5.7)

The estimated final state of the user’s preferences is obtained as st =Linear(ReLu(Mean(h
′
1, ...,h

′
t))).

For top-K candidate recommendation, the closest images to the estimated state st under the Eu-
clidean distance are recommended: at ∼ KNNs(st), where KNNs(·) is a softmax distribution
over the K nearest neighbours of st .

Overall, our MMRAN model enjoys the advantages of both the feedback gating mechanism
when processing multi-modal visual dialog sequence information in the GRN (for multi-modal

sequence combination), as well as the advantages of the multi-head attention mechanism when
tracking the dialog states among the GRN’s abstract representations of the users’ preferences
within the MAN.

Training with A User Simulator To avoid collecting and annotating entire multi-modal con-
versations, which is expensive, time-consuming, and does not scale (S. Zhang & Balog, 2020),
we adopt an existing vision-language transformer-based user simulator (VL-Transformer) (H. Wu
et al., 2021) as a reasonable proxy for real human users for training and evaluating our proposed
MMRAN model. The user simulator considers the differences in the image features of the can-
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didate image acandidate and the target image atarget to produce a relative caption:

w≤i = f ([ResNet(acandidate),ResNet(atarget)]) (5.8)

where w≤i = (w0, ...,wi) is the word sequence generated for the caption (i.e. ot), f (·) is the rel-
ative captioning network and ResNet(·) is the ImageNet pre-trained ResNet101 model (K. He
et al., 2016) to obtain the prominent set of visual attributes from each image. The features
of the candidate and target image pairs are concatenated to form a set of relative features,
[ResNet(acandidate),ResNet(atarget)]. Furthermore, we train our proposed MMRAN model with
a triplet loss objective, Ltriplet , similar to (Guo et al., 2018; H. Wu et al., 2021):

Ltriplet = max(0, ||st −a+||2 −||st −a−||2 +m) (5.9)

where a+ is the representation of the target image as a positive sample, a− is the representation
of a randomly sampled image as a negative sample, || · ||2 denotes L2-norm, and m is a constant
for the margin.

5.5 Experimental Setup

In this section, we evaluate the effectiveness of our proposed MMRAN model in comparison
to the existing approaches from the literature. In particular, to address Limitations 1 & 2, we
answer the following three research questions:

• RQ5.1: Does our proposed MMRAN model outperform the existing state-of-the-art base-
line models in the multi-modal interactive recommendation task with natural-language feed-
back?

• RQ5.2: Does the GRN structure address Limitation 1 and thereby improve the MMRAN
models’ ability to incorporate the users’ preferences from the multi-modal dialog sequences?

• RQ5.3: Does the MAN structure address Limitation 2 so as to improve the MMRAN
models’ ability to effectively track dialog states?

5.5.1 Datasets & Measures

Datasets We perform experiments on the Fashion IQ Dresses, Shirts and Tops & Tees datasets
(introduced in Section 3.3.2). On these three datasets, both relative captions of image pairs and
the images of the fashion products (Imagesorigin) are available for training and testing the user
simulators (i.e. relative captioners) and the recommendation models, respectively. The statistics
of the Fashion IQ datasets are summarised in Table 3.1.
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Measures We measure the effectiveness of the multi-modal interactive recommendation mod-
els at the M-th turn interaction with top-heavy metrics, such as NDCG@N (i.e. Normalised
Discounted Cumulative Gain truncated at rank N = 10, see Section 2.1.3), MRR@N (i.e. Mean
Reciprocal Rank truncated at rank N = 10, see Section 2.1.3), and SR (i.e. Success Rate that
is the percentage of the succeeded users among all the users with top-1 recommendation, see
Section 3.2.2). In particular, both NDCG@N and MRR@N measure the quality of the rank-
ing list at each turn, while SR measures the efforts for finding the target items over multi-turn
interactions. We apply all the evaluation metrics (i.e. NDCG@10, MRR@10, SR) at the 5th
interaction turn for significance testing.

5.5.2 Baselines

We compare our proposed MMRAN model to three types of the existing state-of-the-art base-
lines for multi-modal interactive recommendation with different state trackers:
• RNNs (GRUs/LSTMs): The Dialog Manager model (Guo et al., 2018) is a multi-modal
interactive recommendation model based only on a GRU as the state tracker. There are two
variants of the Dialog Manager model in terms of their learning approaches: Dialog Manager
with a supervised-learning setup (denoted DM-SL) and Dialog Manager with a model-based
reinforcement learning setup (denoted DM-RL). The DM-SL model is trained with a triplet loss
(i.e. Equation (5.9)) to maximise the short-term rewards, while the DM-RL model is further
trained with a cross entropy loss to maximise the cumulative future rewards by exploring all
possible recommendation trajectories in the future turns given a known environment (i.e. a user
simulator) (Guo et al., 2018). In addition, as a further possible baseline, we envisage that an
LSTM can also act as a state tracker in the Dialog Manager model with a supervised-learning
setup (denoted DM-LSTM). Furthermore, we apply the Estimator-Generator-Evaluator (EGE)
model (see Chapter 4) as another GRU-based baseline model, which uses reinforcement learning
with a partially observable Markov decision process (POMDP).
• Transformers: The multi-modal interactive transformer (MMIT) model (H. Wu et al., 2021)
applies only a transformer. The MMIT model directly attends to the entire multi-modal interac-
tion history of both the users’ previous textual feedback and the system’s visual recommenda-
tions. The MMIT model is also trained with a triplet loss as per DM-SL.
• RNN-Enhanced Transformers: R-Transformer (Z. Wang et al., 2019), a typical RNN-enhanced
transformer, can be adapted as a strong baseline model based on a GRU and a transformer. There
are two variants of the R-Transformer model: R-Transformer with a window size 3 (Z. Wang et
al., 2019) (which we denote as R-TLocal) and R-Transformer without a sliding window (which
we denote as R-TGlobal). The R-TLocal and R-TGlobal models are also trained with a triplet loss
similar to DM-SL.

The baseline models based on RNNs (i.e. DM-LSTM, DM-SL and DM-RL) and Transform-
ers (i.e. MMIT)) are the two representative formulations of the existing multi-modal interactive
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recommendation task, which are formulated as a sequential modelling problem with an RNN
(such as a GRU or a LSTM) or a transformer, respectively. The RNN-enhanced transformer
models (i.e. R-TLocal and R-TGlobal) adapted from the literature (Z. Wang et al., 2019) can pro-
vide stronger baselines using more advanced network structures. In addition, the GRN compo-
nent in MMRAN can also be adapted as a multi-modal interactive recommendation model to
estimate the users’ preferences and to make recommendations independently (which we denote
as MMRAN w/o MAN).

5.5.3 Experimental Settings

Setup for User Simulator We first train the existing VL-Transformer user simulator (H. Wu
et al., 2021) for relative captioning on the Fashion IQ Dresses, Shirts, and Tops & Tees datasets,
separately. The network parameters are randomly initialised. We use the Adam (Kingma & Ba,
2014) optimiser with an initial learning rate of 10−4. The batch size is 16, and the maximum
number of epochs is 30. The dimensionality of the embeddings and hidden states is 512. Sec-
tion 3.3.3 provides a comparison of the VL-Transformer user simulator with another recent user
simulator called Show Tell (Vinyals et al., 2015) to demonstrate how close the VL-Transfomer
user simulator behaves in comparison to real human captions.

Setup for Recommender Training Next, we train our proposed MMRAN model using the
VL-Transformer user simulator trained on the Fashion IQ Dresses, Shirts, Tops & Tees datasets,
respectively. The recommendation models’ parameters are randomly initialised. We use Adam
with a learning rate of 10−3 (Guo et al., 2018; R. Zhang et al., 2019). The embedding dimen-
sionality of the feature space is set to 256 and the batch size to 128 following the setting in (Guo
et al., 2018). For each batch, we train the model with 10 interaction turns as in (Y. Wu et al.,
2021). The maximum number of epochs for training is 20. For the recommendation task, early
stopping (Goodfellow et al., 2016) is used to avoid overfitting. The training terminates when
average NDCG@10 over all the interaction turns on the validation sets stops improving for 5
epochs, or when the maximum number of training epochs is reached. For our proposed MM-
RAN model, we consider all the previous textual feedback and visual recommendations at each
turn.

Setup for Recommender Evaluation We evaluate the interactive recommendation models
for top-K (i.e. K = 1) recommendation with multi-turn interactions M ∈ [1,5] on the above three
datasets, respectively. The previously recommended items are removed from the ranking list
at each turn with a post-filter to avoid repeated recommendations, as in (Y. Wu et al., 2021).
For a fair comparison, we mainly compare the effectiveness of the tested models at the 5th
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Table 5.1: The multi-modal interactive recommendation effectiveness of our proposed MMRAN
model and the baseline models at the 5th turn on the three used datasets. % Improv. indicates the
improvements by MMRAN over the best baseline model. The best overall results are highlighted
in bold. * and † denote a significant difference in terms of a paired t-test (Holm-Boferroni cor-
rection, p < 0.05), compared to MMRAN and MMRAN w/o MAN in each dataset, respectively.

Models State Dresses Shirts Tops & Tees
Tracker NDCG@10 MRR@10 SR NDCG@10 MRR@10 SR NDCG@10 MRR@10 SR

DM-LSTM LSTM 0.1788*† 0.1517*† 0.1163*† 0.0928*† 0.0771*† 0.0573*† 0.1307*† 0.1101*† 0.0835*†
DM-SL GRU 0.2050*† 0.1756*† 0.1364*† 0.1108*† 0.0923*† 0.0680*† 0.1566*† 0.1337*† 0.1026*†
DM-RL GRU 0.2339* 0.2047* 0.1621* 0.1274* 0.1065* 0.0798* 0.1654*† 0.1407*† 0.1077*
EGE GRU 0.2580* 0.2245* 0.1765* 0.1398* 0.1179* 0.0888* 0.1909* 0.1618* 0.1221*
MMIT Transformer 0.2443* 0.2135* 0.1701* 0.1278* 0.1072* 0.0790* 0.1738* 0.1468* 0.1108*
R-TLocal R-Transformer 0.2407* 0.2099* 0.1663* 0.1232* 0.1034* 0.0777* 0.1796* 0.1536* 0.1180*
R-TGlobal R-Transformer 0.2672* 0.2320* 0.1831* 0.1402* 0.1182* 0.0884* 0.2019* 0.1703* 0.1288*

MMRAN GRN & MAN 0.3327 0.2918 0.2345 0.1683 0.1414 0.1043 0.2385 0.2041 0.1568
w/o MAN GRN 0.2477* 0.2162* 0.1751* 0.1244* 0.1058* 0.0808* 0.1823* 0.1545* 0.1178*
% Improv. - 24.51 25.78 28.07 20.04 19.63 17.45 18.13 19.45 21.74

turn (i.e. M = 5) using the paired t-test (applying Holm-Bonferroni for multiple comparison
correction (Holm, 1979)). When a user successfully finds the target item in less than 5 turns, we
consider the ranking metrics (i.e. NDCG@10 and MRR@10) for that user to be equal to one for
all turns thereafter.

5.6 Experimental Results

We now analyse the experimental results to answer the three research questions that are stated
in Section 5.5, concerning the effectiveness of our proposed MMRAN model for multi-modal
interactive recommendations with natural-language feedback (Section 5.6.1), the impact of the
GRN structure for multi-modal sequence combination (Section 5.6.2) and the impact of the
MAN structure for dialog state tracking (Section 5.6.3). We also show a use case from the
logged experimental results to consolidate our findings (Section 5.6.4).

5.6.1 MMRAN vs. Baselines (RQ5.1)

To answer RQ5.1, we assess the effectiveness of our MMRAN model by comparing them
with seven strong recommendation approaches in the literature. Table 5.1 shows the obtained
recommendation performances of the baseline models (i.e. DM-LSTM, DM-SL, DM-RL, EGE,
MMIT, R-TLocal and R-TGlobal in the first part) as well as the MMRAN model variants (in the
second part) with the same test sets of the Fashion IQ Dresses, Shirts and Tops & Tees datasets
at the 5th interaction turn. The best overall performances across the three groups of columns in
the table are highlighted in bold in Table 5.1. In each group, * and † denote, respectively, sig-
nificant differences compared to MMRAN and MMRAN w/o MAN (i.e. GRN only), in terms
of a paired t-test with a Holm-Bonferroni multiple comparison correction (p < 0.05) (Holm,
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1979). Among the tested baseline models and our proposed models, there are three different
types of state trackers: RNNs (i.e. GRUs/LSTMs/GRN, such as DM-LSTM, DM-SL, DM-RL,
EGE, MMRAN w/o MAN), Transformers (such as MMIT), and RNN-Enhanced Transformers
(such as R-TLocal , R-TGlobal , and MMRAN). Comparing the results in the table, we observe
that our proposed MMRAN model achieves better performances of 24-28%, 17-20% and 18-
22% at the 5th turn than the best baseline model across all metrics on the Fashion IQ Dresses,
Shirts, and Tops & Tees, respectively. Indeed, our proposed MMRAN model is significantly
better than DM-LSTM, DM-SL, DM-RL, EGE, MMIT, R-TLocal and R-TGlobal for each metric
at the 5th turn with top-1 recommendation. In answer to RQ1, the results demonstrate that our
proposed MMRAN model does overall outperform the previous state-of-the-art baseline mod-
els. In particular, it is significantly more effective than all of the GRU/LSTM-based models (i.e.
DM-LSTM, DM-SL, DM-RL and EGE) owing to its superior multi-modal sequence combina-
tion with GRN and enhanced dialog state tracking with MAN, the transformer-based model (i.e.
MMIT) due to improved multi-modal sequence combination with GRN, and the RNN-enhanced
transformer models (i.e. R-TLocal and R-TGlobal) due to a better multi-modal sequence combi-
nation with a feedback gate in GRN. Therefore, these results demonstrate that our proposed
MMRAN model, with the multi-modal recurrent attention network, can effectively incorporate
the users’ preferences over time.

5.6.2 Impact of GRN (RQ5.2)

To address RQ5.2, the second part of Table 5.1 examines the comparative performances of
the MMRAN and MMRAN w/o MAN models (i.e. GRN only) with different components for
tracking and estimating the users’ preferences (i.e. state trackers). First, focusing on GRN, we
observe that the MMRAN w/o MAN model performs significantly better than the DM-LSTM
and DM-SL models in terms of all metrics on the three datasets. The significantly better per-
formance of the GRN component indicates that the extra feedback gate can enhance the GRU’s
ability in combining the multi-modal sequences (i.e. textual feedback sequences and visual rec-
ommendation sequences). In addition, we also observe that MMRAN with a GRN component
in the state tracker performs significantly better than the R-TLocal and R-TGlobal baselines, which
all use a GRU component in the state tracker. This suggests, as we argued in Section 5.1, that
imposing more effect of the users’ natural-language feedback on the hidden state of the GRUs
in addtion to the combined textual and visual representations can benefit the interactive rec-
ommendation model. Furthermore, Figure 5.5 illustrates the NDCG@10 and SR performances
of MMRAN at the 5th turn in top-1 recommendation on the Fashion IQ Dresses dataset with
different sliding window sizes Nsliding_window that limit the lengths of the multi-modal dialog
sequences at each turn. We can see that the performance of MMRAN improves when the value
of the sliding window size Nsliding_window increases from 2 to 10, except for Nsliding_window = 10
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(a) NDCG@10 (b) SR

Figure 5.5: Effects of the sliding window size Nsliding_window over the multi-modal dialog se-
quences on our proposed MMRAN at the 5th turn on Fashion IQ Dresses.

in term of SR. Further ablation studies on the Fashion IQ Shirts and Tops & Tees datasets also
led to similar results and observations. We omit their reporting in this chapter because of space
constraints.

Overall, for RQ5.2, we conclude that the GRN component with a natural-language feedback
gating mechanism enhances the model’s ability to combine the multi-modal sequences so as to
address Limitation 1, thereby better incorporating the users’ information needs from the multi-
modal dialog sequences than the traditional GRU network.

5.6.3 Impact of MAN (RQ5.3)

To address RQ5.3, Figure 5.6 depicts the effects of the MAN’s layers Nlayers and the MAN’s at-
tention heads Nheads on our proposed MMRAN in terms of NDCG@10 and SR at the 5th turn on
Fashion IQ Dresses. We can see that the performance of MMRAN improves when the MAN’s
layers Nlayers and the MAN’s attention heads Nheads increase from 2, respectively, except for
Nlayers = 4 and Nheads from 4 to 8. Meanwhile, our proposed MMRAN model can achieve the
best performance with Nlayers = 6 and Nheads = 8 as in (H. Wu et al., 2021). Moreover, we note
that the MMRAN model with both the GRN and MAN components significantly outperforms
MMRAN w/o MAN, suggesting that the additional MAN component with the multi-head at-
tention mechanism further refines the hidden states (which are generated by the previous GRN
component) by tracking the dialog states of the users’ preferences among the multi-modal dialog
sequences. The better effectiveness of MMRAN with both GRN and MAN added up suggests
that MMRAN can benefit from their joint combination. Furthermore, we also observe that the
MMRAN model significantly outperforms the transformer-based MMIT model, suggesting that
adopting the hidden states of GRN as the representations of the past interactions is more effec-
tive than using the original textual and visual representations as the inputs of the transformer’s
multi-head attention.

Overall, for RQ3, we conclude that the MAN component of MMRAN allows to effectively
track the users’ preferences with the GRN’s abstract representations of the multi-modal dialog
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(a) NDCG@10 (b) SR

Figure 5.6: Effects of the MAN’s layers Nlayers and the MAN’s attention heads Nheads on our
proposed MMRAN model at the 5th turn on Fashion IQ Dresses.

sequences, while addressing Limitation 2.

5.6.4 A Use Case

To consolidate the results observed in the chapter, we present a use case of multi-modal
interactive recommendation in Figure 5.7 for the Fashion IQ Shirts. Figure 5.7 shows the in-
teraction process for top-1 recommendation across the six tested models: (a) DM-SL, (b) EGE,
(c) MMIT, (d) R-TGlobal , (e) MMRAN w/o MAN and (f) MMRAN. For a fair comparison, the
initial images are the same across the tested models given the target image from the testing set.
When the target item is recommended, the rank is 1 (e.g. “Turn 1 (rank=1)” in Figure 5.7 (f)),
and the user simulators will give the comment: “are the same”. We observe that our proposed
MMRAN model is the most effective among the tested models. In particular, DM-SL/EGE with
only a GRU, MMIT with only a transformer and R-TGlobal based on a GRU and a transformer
all fail to recommend the target item within 5 interaction turns, while our proposed MMRAN
model needs only 4 interaction turns to recommend the target item. Furthermore, we also ob-
serve that the rank of the target item with the MMRAN w/o MAN model is relatively higher than
the rank of DM-SL at the 5th interaction turn. In addition, both the MMRAN and MMRAN w/o
MAN models can generally maintain a reasonable recommendation during the multi-turn inter-
action process with a shirt that is “yellow with a design”. Though the recommendation with
MMRAN at the 1st turn is not a really “yellow” shirt, it contains features from both the initial
recommendation (i.e. the “green” colour) and the corresponding natural-language feedback (i.e.
the “yellow” colour) in its “different graphic”, while maintaining the highest rank of the target
item (i.e. “rank=6”) among all the tested models at the 1st turn. Indeed, the MMRAN model can
better capture the “green and yellow design” features from the users’ feedback than the other
tested models. Similar results and observations were seen for the Fashion IQ Dresses and Tops

& Tees datasets, but are omitted for reasons of space.
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5.7 Conclusions

In this chapter, we proposed a novel multi-modal recurrent attention network (MMRAN) model
for multi-modal interactive recommendation to effectively incorporate the users’ preferences
over time. Specifically, we leveraged a gated recurrent network (GRN) with a feedback gate
to separately process the natural-language feedback and visual recommendations into hidden
states (i.e. representations of the past interactions) for multi-modal sequence combination, as
well as a multi-head attention network (MAN) to refine the previously generated hidden states
by the GRN component to further track the dialog states of the users’ preferences. Following
previous work, we trained our MMRAN model by using a vision-language transformer-based
user simulator (VL-Transformer), which itself is trained to describe the differences between
the target users’ preferences and the recommended items in natural language. Our experiments
on three Fashion IQ datasets demonstrated that our proposed MMRAN model achieves signifi-
cantly enhanced performances compared to the strongest baseline models on each used dataset -
for instance, improvements of 24-28%, 17-20% and 18-22%, respectively. Our reported results
showed that the MMRAN model benefits from the capability of GRN in combining multi-modal
dialog sequences and from the MAN’s structure to effectively track the dialog states. The ex-
perimental results and analysis provide support for the thesis statement with Research Topic 2
in Section 1.3.

Next, in Chapter 6, we argue that the existing formulation of interactive recommender sys-
tems suffer from a coupling issue of policy optimisation and multi-modal composition repre-
sentation learning. Therefore, we aim to address the coupling issue to effectively incorporate
the users’ preferences over time in multi-modal conversational recommendation by leveraging
goal-oriented reinforcement learning and a composition network.



CHAPTER 5. MULTI-MODAL SEQUENCE DEPENDENCY IN STATE TRACKING 88

(a) DM-SL

(b) EGE

(c) MMIT

(d) R-TGlobal

(e) MMRAN w/o MAN

(f) MMRAN

Figure 5.7: A use case for multi-modal interactive recommendation with different models on
Fashion IQ Shirts.



Chapter 6

Coupling of Policy Optimisation &
Representation Learning

In our thesis statement (stated in Section 1.3), we hypothesised that we can effectively incor-
porate the users’ preferences over time, with a composition network and a multi-task learning
approach, by decoupling the policy optimisation and the multi-modal composition representa-
tion learning with goal-oriented reinforcement learning. Therefore, in this chapter, we propose
a novel propose a novel goal-oriented multi-modal interactive recommendation model (GOM-
MIR) that uses both verbal and non-verbal relevance feedback to effectively incorporate the
users’ preferences over time. This chapter is mainly based on our work (Y. Wu, Macdonald, &
Ounis, 2023) “Goal-Oriented Multi-Modal Interactive Recommendation with Verbal and Non-
Verbal Relevance Feedback” published in the proceedings of the 17th ACM Conference on
Recommender Systems (RecSys 2023)1.

In the previous chapters, we have addressed the partial observability issue (see Chapter 4)
and the multi-modal sequence dependency issue (see Chapter 5) by incorporating the users’
preferences from both the users’ natural-language feedback and the system’s visual recommen-
dations. In addition to the multi-modal information across the multi-turn interactions, the users
can also express/indicate their preferences with other types of behaviours, such as likes and
dislikes. In particular, interactive recommendation enables users to provide verbal and non-
verbal relevance feedback (such as natural-language critiques and likes/dislikes) when viewing
a ranked list of recommendations (such as images of fashion products), in order to guide the
recommender system towards their desired items (i.e. goals) across multiple interaction turns.
Such a multi-modal interactive recommendation (MMIR) task has been successfully formulated
with deep reinforcement learning (DRL) algorithms by simulating the interactions between an
environment (i.e. a user) and an agent (i.e. a recommender system). However, it is typically
challenging and unstable to optimise the agent to improve the recommendation quality asso-

1 DOI: https://doi.org/10.1145/3604915.3608775
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ciated with implicit learning of multi-modal representations in an end-to-end fashion in DRL.
This is known as the coupling of policy optimisation and representation learning. To address
this coupling issue, we propose a novel goal-oriented multi-modal interactive recommendation
model (GOMMIR) that uses both verbal and non-verbal relevance feedback to effectively in-
corporate the users’ preferences over time. Specifically, our GOMMIR model employs a multi-
task learning approach to explicitly learn the multi-modal representations using a multi-modal
composition network when optimising the recommendation agent. Moreover, we formulate the
MMIR task using goal-oriented reinforcement learning and enhance the optimisation objective
by leveraging non-verbal relevance feedback for hard negative sampling and providing extra
goal-oriented rewards to effectively optimise the recommendation agent. Following previous
work (see Section 3.1), we train and evaluate our GOMMIR model by using user simulators
(described in Section 3.3) that can generate natural-language feedback about the recommenda-
tions as a surrogate for real human users. Experiments conducted on four well-known fashion
datasets (see Section 3.3.2) demonstrate that our proposed GOMMIR model yields significant
improvements in comparison to the existing state-of-the-art baseline models (including the EGE
model in Chapter 4 and the MMRAN model in Chapter 5). The results conform with our thesis
statement with Research Topic 3 in Section 1.3.

6.1 Motivations

As described in Section 3.1, the multi-modal interactive recommendation task (MMIR) usually
involves information with various modalities, such as natural language and images. In addition
to the visual-language modalities (as discussed in Chapters 4 & 5), users can indicate their
positive/negative opinions by clicking like/dislike buttons when viewing a ranked list of visual
recommendations (such as images of fashion products). To this end, in this chapter, we aim
to satisfy the users’ dynamic information needs by interactively and continuously collecting
the users’ verbal (such as natural-language critiques) and non-verbal (such as likes/dislikes)
feedback in relation to the system’s recommendations. Figure 6.1 shows an example of multi-
modal interactive recommendation with both verbal and non-verbal relevance feedback. In this
use case, the user indicates the particularly liked item image(s) among the top-K (e.g., K = 3)
recommended items and provides a natural-language critique at each interaction turn to obtain
items with better preferred features, while tagging the other recommendations with a “dislike” if
they are less relevant to the user’s preferences. Such a multi-modal interactive recommendation
task is inherently a “goal-oriented” information-seeking process when a user seeks a target item
(i.e. a visual goal) and gives natural-language feedback using the user’s preferred features (i.e.
textual goals) across multiple interactions.

Interactive recommendation tasks have been typically formulated using deep reinforcement
learning (DRL) approaches (described in Section 2.4). Indeed, such approaches have demon-
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Figure 6.1: An example of multi-modal interactive recommendation with both verbal and non-
verbal relevance feedback.

strated an ability to capture the users’ preferences and to maximise the expected long-term cu-
mulative rewards (such as fewer efforts/interactions to find the desired items (Guo et al., 2018;
H. Wu et al., 2021)) when deciding what items to recommend to the users (i.e. the environment)
at each interaction turn. However, it is typically challenging to learn an effective multi-modal
interactive recommendation agent due to the so-called “coupling” of the policy optimisation (for
improving the quality of the recommendations) and representation learning (for understanding
the visual and textual information) (Eysenbach et al., 2022). In particular, prior research often
found that learning representations in an end-to-end fashion in DRL is usually unstable (Laskin,
Lee, et al., 2020; Yarats et al., 2020) due to the coupling issue. Indeed, the policy optimisation
processes of the existing DRL-based interactive recommendation models are associated with
an implicit multi-modal representation learning of discrete actions (i.e. the visual items), rel-
evance feedback (i.e. the natural-language critiques), and their composition of representations
(i.e. the estimated preferences). Such implicit multi-modal representation learning cannot guar-
antee good multi-modal representations, yet the DRL algorithms require good representations to
drive the policy learning in a MMIR task. In particular, a simple concatenation operation (Guo
et al., 2018; H. Wu et al., 2021) for multi-modal feature composition between text (encoded
with GloVe (Pennington et al., 2014) or BERT (Devlin et al., 2019a)) and image (encoded with
ResNet (K. He et al., 2016)) representations does not provide an effective understanding of
the users’ current information needs at each turn. In addition, more advanced feature compo-
sition approaches for combining image and text features (such as Text Image Residual Gating
(TIRG) (Vo et al., 2019) and CLIP for Conditioned image retrieval (CLIP4Cir) (Baldrati, Bertini,
Uricchio, & Del Bimbo, 2022a, 2022b)) have been recently proposed by various text-image re-
trieval models (Y. Chen, Gong, & Bazzani, 2020; Ge et al., 2021; Vo et al., 2019). We propose
to leverage such approaches as an extra multi-modal composition representation learning task
using multi-task learning (Laskin, Srinivas, & Abbeel, 2020) for decoupling the representation
learning from the policy optimisation in the MMIR task.

Along with the coupling issue, an appropriate optimisation objective for learning what to
recommend at the next turn is typically important for improving the effectiveness of the inter-
active recommendation agents (Afsar, Crump, & Far, 2022; X. Chen et al., 2021; Xin et al.,
2020). However, the recommendation policy optimisation functions adopted by existing inter-
active recommendation agents (Guo et al., 2018; Y. Wu et al., 2021; R. Zhang et al., 2019) are
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mainly based on both (1) a sampled softmax (M. Chen et al., 2019) with randomly sampled
negatives from the whole candidate pool (Guo et al., 2018; Y. Wu et al., 2021), and (2) an unin-
formative reward function that considers only the critiqued items (Guo et al., 2018; Y. Wu et al.,
2021; R. Zhang et al., 2019) and/or a sparse reward function defined as a binary credit (success
or fail) for reaching the desired item (R. Zhang et al., 2019). Due to the “goal-oriented” na-
ture of the multi-modal interactive recommendation task, goal-oriented reinforcement learning
(GORL) (Colas et al., 2022; M. Liu et al., 2022) can be easily adapted to the MMIR task with a
goal-oriented policy optimisation function that allows the agents to pursue their own goals (i.e.
the users’ desired items or the users’ critiques for acquiring their desired items) and to learn to
achieve their goals via goal-oriented rewards. In the multi-modal interactive recommendation
task, goals are both the users’ target item (i.e. the visual goal) and the corresponding natural-
language critiques (i.e. the textual goals) in the multi-turn interactions. These rewards can be
formulated by using a distance measure between the achieved textual goals and the desired vi-
sual goal without any domain knowledge (M. Liu et al., 2022). In this chapter, we leverage a
goal-oriented policy optimisation function with hard negative samples obtained iteratively from
the disliked items across multiple interaction turns, as well as more informative rewards by
measuring the similarities between the retrieved top-K item images (according to the estimated
preferences at each turn) and the user’s target item image. In addition, the critiqued items and the
corresponding natural-language critiques (the textual goals) are collectively taken as the inputs
of the interactive recommendation agent for estimating the users’ preferences over time.

In this chapter, we propose a novel goal-oriented multi-modal interactive recommendation
(GOMMIR) model for addressing the so-called “coupling” issue, to use both verbal and non-
verbal relevance feedback to effectively incorporate the users’ preferences over time. In particu-
lar, we formulate the MMIR task with goal-oriented reinforcement learning (M. Liu et al., 2022)
based on a policy gradient method (i.e. REINFORCE (M. Chen et al., 2019)) to effectively op-
timise the recommendation policy using hard negative sampling and goal-oriented rewards for
pursuing the textual and visual goals. Different from the existing models, our proposed GOM-
MIR model adopts a recent unified multi-modal vision and language model (i.e. CLIP) for image
and text encoding, as well as a Text Image Residual Gating (TIRG) (Vo et al., 2019) component
for multi-modal feature composition to better understand the users’ current information needs
at each turn. For the training of our model, we adopt a multi-task learning (Laskin, Srinivas,
& Abbeel, 2020) approach that jointly leverages both a deep reinforcement learning objective
for improving the recommendation quality and a supervised learning objective for explicitly
learning the multi-modal composition representations. Following Chapters 4 and 5, we train
and evaluate our proposed GOMMIR model by using user simulators that can generate natural-
language critiques about the recommendations as a surrogate for real human users. Experiments
conducted on four well-known fashion datasets (Shoes, Dresses, Shirts, and Tops & Tees, see
Section 3.3.2) demonstrate that our proposed model yields significant improvements in compar-
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ison to the existing state-of-the-art baseline models (including the EGE model in Chapter 4 and
the MMRAN model in Chapter 5).

The main contributions of this chapter are summarised as follows:
• We propose a goal-oriented multi-modal interactive recommendation (GOMMIR) model

for addressing the coupling issue of policy optimisation and representation learning from both
the users’ verbal and non-verbal relevance feedback. Our model adopts an advanced multi-
modal composition model (i.e. TIRG) and a multi-task learning approach to explicitly learn
the multi-modal composition representations during the recommendation policy optimisation
process using goal-oriented reinforcement learning.

• The GOMMIR model leverages verbal relevance feedback as textual sub-goals and adopts
non-verbal relevance feedback for hard negative sampling and the extra visual rewards.

• An extensive empirical evaluation is performed on the multi-modal interactive recommen-
dation task, demonstrating significant improvements with GOMMIR over existing state-of-the-
art approaches (including the EGE model in Chapter 4 and the MMRAN model in Chapter 5).

The remainder of the chapter is organised as follows: In Section 6.2, we review the related
work, and position our contributions in comparison to the existing literature; Section 6.3 defines
the problem formulation and presents our proposed GOMMIR model; Our experimental setup
and results are presented in Sections 6.4 and 6.5, respectively; Section 6.6 summarises our
findings.

6.2 Related Work

In this section, we first describe goal-oriented reinforcement learning. Next, we discuss the use
of verbal and non-verbal relevance feedback in recommendation.

Goal-Oriented Reinforcement Learning Deep reinforcement learning has been widely adopted
in recommender systems in order to improve the quality of the recommendations while max-
imising the users’ long-term satisfaction and engagement. Typically, the multi-modal inter-
active recommendation task has been modelled with reinforcement learning (RL) and formu-
lated as Markov decision processes (MDPs) (Guo et al., 2018), partially observable Markov
decision processes (POMDPs) (Y. Wu et al., 2021), constrained Markov decision processes
(CMDPs) (R. Zhang et al., 2019) or multi-armed bandits (Yu et al., 2020) so as to effectively
incorporate the users’ information needs across multiple turns. However, the policy optimisa-
tion adopted by existing interactive recommendation agents (Guo et al., 2018; Y. Wu et al., 2021;
R. Zhang et al., 2019) is generally ineffective due to random negative sampling (Guo et al., 2018;
Y. Wu et al., 2021) and sparse/non-informative rewards (as discussed in Section 6.1). Compared
to the standard RL algorithms that learn a policy solely based on the states or observations,
goal-oriented reinforcement learning (GORL) additionally requires the agent to make decisions
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according to different goals (M. Liu et al., 2022). A goal is defined as “a cognitive representa-
tion of a future object" (Colas et al., 2022), which the agent is committed to achieve or maintain.
The goal-oriented reinforcement learning approaches have been shown to improve training sam-
ple efficiency by learning from self-generated rewards (i.e. intrinsic rewards) when the external
rewards are sparse. For example, K. Wang et al. (2021) proposed a novel model-based model,
GoalRec, based on a Dueling Deep Q-Network (DDQN), by designing a disentangled universal
value function with the users’ desired future trajectory (i.e. goal). In addition, D. Zhao et al.
(2020) proposed a novel multi-goals abstraction-based deep hierarchical reinforcement learning
algorithm (MaHRL) to generate multiple goals with the high-level agent so as to reduce the
difficulty for the low-level agent to approach the high-level goals. The high-level agent catches
long-term sparse conversion signals, while the low-level agent captures short-term click signals.
However, these existing formulations of recommendation agents with GORL are not suitable for
the MMIR task where there is neither a desired future trajectory nor any conversion signals that
can be leveraged as a goal or to learn high-level goals. Indeed, to the best of our knowledge,
goal-oriented reinforcement learning has not yet been explicitly formulated with the MMIR sce-
nario, which has both visual and textual goals for optimising the recommendation policy.

Relevance Feedback in Recommendation Relevance feedback provides indications about
whether the shown recommendations are relevant to the user’s current preferences. Both verbal
(e.g., natural-language feedback) and non-verbal (e.g., likes/dislikes, clicks, and skips) relevance
feedback have been intensively investigated in the recommendation field (Batmaz et al., 2019;
Deldjoo et al., 2022; Hu, Huang, Zhang, & Liu, 2022; X. Zhao, Zhang, et al., 2018). In partic-
ular, non-verbal relevance feedback is often used to model the users’ behaviours and to indicate
their preferences. For instance, X. Zhao, Zhang, et al. (2018) proposed the DEERS model with a
Deep Q-Network (DQN) to automatically learn the optimal recommendation strategies through
the incorporation of positive (such as purchases) and negative (such as skips) feedback for se-
quential recommendations. In addition, natural-language feedback has been shown to be more
informative about the users’ preferences in comparison to non-verbal relevance feedback (e.g.,
ratings and clicks) (Gao et al., 2021; Jannach et al., 2021). For instance, existing conversational
recommendation models either allow the users to describe their preferred attributes as positive
feedback (Guo et al., 2018; Hu et al., 2022; Y. Sun & Zhang, 2018; H. Wu et al., 2021; Yu,
Shen, & Jin, 2019; Yu et al., 2020; Y. Zhang, Chen, Ai, Yang, & Croft, 2018) (e.g., “I prefer
dresses with longer sleeves.”) or to provide disliked attributes as negative feedback (Y. Wu,
Macdonald, & Ounis, 2022a) (e.g., “I dislike shoes with high heels.”). In addition, the users
can also answer some attribute-level clarification questions (e.g., “Do you like a red colour?”)
with a binary yes/no response, while rejecting the undesired item-level recommendations (Bi,
Ai, Zhang, & Croft, 2019; W. Lei et al., 2020; Xu et al., 2021). In this chapter, we consider both
verbal (e.g., natural-language critiques) and non-verbal (e.g., likes/dislikes) relevance feedback
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(a) Traditional RL with a MDP/POMDP

(b) GO-POMDP for MMIR

Figure 6.2: Traditional RL with a MDP/POMDP (Huang et al., 2022) and GO-POMDP for
MMIR.

from the user’s multi-turn interactions to incorporate their preferences in the MMIR task.
We particularly argue that the existing multi-modal recommendation models (see Section 3.1

and Chapters 4 & 5) have not effectively addressed the coupling issue of the policy optimisation
and representation learning from both the verbal and non-verbal relevance feedback. Such an is-
sue limits these models’ ability at incorporating the users’ preferences over time. Our proposed
GOMMIR model aims to address the coupling issue by adopting an advanced multi-modal com-
position model (such as TIRG (Vo et al., 2019)) and a multi-task learning approach to explicitly
learn the multi-modal composition representations during the recommendation policy optimisa-
tion process driven by a goal-oriented reinforcement learning.

6.3 The GOMMIR Model

In this section, we first formulate the problem of the MMIR task via DRL using goal-oriented
partially observable Markov decision processes (GO-POMDP) and introduce our notations (Sec-
tion 6.3.1). Next, in Section 6.3.2, we propose a novel goal-oriented multi-modal interactive
recommendation (GOMMIR) model to effectively incorporate the users’ preferences over time
with both verbal and non-verbal relevance feedback. Finally, we define the negative sampling
and rewards that are suitable for this MMIR scenario (Section 6.3.3).
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6.3.1 Preliminaries

GO-POMDP for MMIR

Figure 6.2 (a) shows the traditional RL as a Markov decision process (MDP) or a partially
observable Markov decision process (MDP) in formulating interactive/sequential recommenda-
tions (Afsar et al., 2022; X. Chen et al., 2021; Huang et al., 2022; Y. Lin et al., 2021). In this
scenario, the users’ interactions with the recommended items (actions) are returned as feedback
(the so-called observations from the environments, such as views, clicks, skips, purchases, and
ratings) to the recommendation agents, which usually convert the users’ feedback into a re-
ward signal (Huang et al., 2022). The scalar values of the rewards vary based on the different
types of feedback (e.g., purchases have high rewards and skips have low rewards). The aim of
traditional RL with a MDP/POMDP is to optimise the recommendation agents by maximising
the cumulative rewards across the multiple interaction turns. On the other hand, Figure 6.2 (b)
illustrates a goal-oriented partially observable Markov decision process (GO-POMDP) for the
MMIR task. Different from the traditional RL with MDPs, the rewards are calculated based
on the distances/similarities between the actions (the recommended items) and the goal (the
target item). The goal can be either fully represented with an image as a visual goal or par-
tially represented with a natural-language sentence as a textual goal. In particular, users can
provide natural-language feedback (critiques), which typically only partially express their pref-
erences (Y. Wu et al., 2021), by eliciting the missing attributes of the target item (goal) compared
to the recommendation items (actions). To this end, the users’ natural-language feedback (cri-
tiques) can be seen both as an integral part of the environment observations, as well as textual
goals towards the users’ desired item. The aim of GO-POMDP is to guide the recommendation
agents towards the goals (both the textual goals with the critiques and the visual goal with the
target item) by taking the critiques (textual goals) as a part of the inputs to the recommendation
agents and achieving the maximum cumulative distance-based/similarity-based rewards. Here,
we mainly focus on goals in terms of visual features with images and textual inputs due to the
limitations of the available datasets. Indeed, we believe that our formulation with GO-POMDP
can also be generalised with goals in terms of other non-visual features, such as brands, prices,
and functionalities. We leave this as an interesting future work.

Notations

Specifically, we formulate the multi-modal interactive recommendation (MMIR) task as a goal-
oriented partially observable Markov decision process (GO-POMDP) with a tuple of seven el-
ements (S ,A ,O,T ,G ,r,γ) to describe the multi-modal interactive recommendation process,
where: S is a continuous state space to describe the user states; A is a discrete action space
that contains candidate items for recommendation; O is a set of observations, which are the
users’ verbal (e.g., the natural-language critiques) and non-verbal (e.g., likes/dislikes) relevance
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feedback; T is a set of conditional transition probabilities between states; G is a set of visual
goals (i.e. the users’ target items); R ∈R is the reward function, where r(s,a,g) is the immediate
reward obtained from a user with a desired goal g ∈ G by performing action a ∈ A at user state
s ∈ S ; γ ∈ [0,1] is the discount factor for future rewards.

Figure 6.3 shows the goal-oriented interactive recommendation process with both verbal
and non-verbal relevance feedback for top-K recommendations. During the interaction pro-
cess (with an initial state s0), the recommender system suggests a ranking of top-K items
(at,≤K = (at,1, ...,at,K) ∈ A ) at each turn t. Meanwhile, the user provides non-verbal relevance
feedback (e.g., likes/dislikes) and gives natural-language feedback (ot ∈O) in terms of the liked
item(s) among the current top-K recommendations at,≤K by describing the desired features that
the current recommended item(s) lack. In this goal-oriented seeking process, we assume that the
user gives natural-language feedback on the recommended item that is the most similar item to
their perceived target item. Then, the recommender system collects both the top-K recommenda-
tions at,≤K and the corresponding relevance feedback ot to track/estimate the user’s preferences
according to the transition distribution, st+1 ∼ T (st+1|st ,ot ,at,≤K). The recommender system
takes actions according to its policy π(at+1,≤K|st+1), which returns the probability of taking
action at+1,≤K at turn t + 1. Hence, the interactive recommendation process decomposes the
long-term, hard-reaching goals (i.e. the users’ desired items g) into easily obtained sub-goals
expressed by the users’ natural-language critiques ot (i.e. the textual goals).

6.3.2 The Model Architecture

Figure 6.4 shows our proposed GOMMIR model for multi-modal interactive recommendations.
In particular, we leverage a pre-processing stage for identifying the critiqued items with the
non-verbal relevance feedback (i.e. likes/dislikes), a multi-modal encoding stage for extracting
textual and visual representations, a composition stage for multi-modal feature composition, a
state tracking stage for tracking/estimating the users’ preferences over time, and a ranking stage
for recommending visual items.

Pre-processing Stage The goal of the pre-processing step is to identify the critiqued item(s)
from the non-verbal relevance feedback (i.e. likes and dislikes), to infer the index numbers of the
liked item(s) (i.e. at,u,where u ∈ [1,K]) and the disliked items (i.e. at,d,where d ∈ [1,K]) among
the recommendation list at≤K . The identified liked item(s) are then passed to the subsequent
text and image encoders for extracting features, while the disliked items are stored in the set of
negative feedback history. The negative feedback history with the disliked items is used as hard
negative samples for model optimisation, as described in Section 6.3.3.

Multi-Modal Encoding Stage To represent the textual content related to the users’ prefer-
ences, both the users’ natural-language feedback and the recommender system’s visual rec-
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Figure 6.3: The goal-oriented interactive recommendation process with verbal & non-verbal
relevance feedback for top-K recommendations.

ommendations are encoded into embedded vector representations, using a text encoder and an
image encoder, respectively. In particular, we leverage a pre-trained vision and language model,
called CLIP (Radford et al., 2021), for both image encoding and text encoding. Different from
ResNet and GloVe/BERT for image and text encoding used by previous work in this task (see
Section 3.1, and Chapters 4 and 5), CLIP can provide unified representation vectors for each
modality with the same dimensionality. For instance, an image of red shoes has a similar repre-
sentation vector to the text “red shoes”. Given a user’s natural-language feedback ot at the t-th
dialog turn, the encoded textual representation is denoted by:

o′
t = Norm(Linear(CLIPtxt(ot))). (6.1)

Similarly, given a liked image at,u at the t-th turn, the encoded image representation is denoted
by:

a′
t,u = Norm(Linear(CLIPimg(at,u))). (6.2)

For simplicity of notation, we use at and ot directly to denote their representations (i.e. a′
t and

o′
t), respectively.

Composition Stage To understand the user’s current information needs from the recommen-
dations and the corresponding relevance feedback at each turn, we need to generate a new
composed candidate image representation instead of simply concatenating the text and image
representations. We adopt a representative composition network ψ (in particular, Text Image
Residual Gating (TIRG) (Vo et al., 2019)) to combine image and text representations with a
gated feature fgate(at,u,ot) to establish the input image representation at,u as a “reference” to
the output composition representation and a residual feature fres(at,u,ot) to describe the “modi-
fication” on the “reference” in the feature space (Vo et al., 2019). The multi-modal composition
feature ct = ψ(at,u,ot) is computed by:

ct = ψ(at,u,ot) = ωg fgate(at,u,ot)+ωr fres(at,u,ot) (6.3)



CHAPTER 6. COUPLING OF POLICY OPTIMISATION & REPRESENTATION LEARNING99

Figure 6.4: The proposed GOMMIR model for multi-modal interactive recommendations.

fgate(at,u,ot) = σ(Wg2 ∗ReLU(Wg1 ∗ [at,u,ot ]))⊙at,u (6.4)

fres(at,u,ot) =Wr2 ∗ReLU(Wr1 ∗ [at,u,ot ]) (6.5)

where ωg and ωr are learnable weights. σ(·) and ReLU(·) are the Sigmoid and the Recti-
fied Linear Unit (ReLU) functions. Wg1, Wg2, Wr1, and Wr2 are convolution filters. ⊙ denotes
element-wise product, and * denotes a 2d convolution with batch normalisation.

State Tracking Stage To incorporate the users’ preferences from the combined text and image
representations ct = ψ(at,u,ot), we leverage a Transformer encoder TranEnc(·), as in (H. Wu
et al., 2021; Y. Wu, Macdonald, & Ounis, 2022a, 2022b), as a state tracker to track/estimate the
interaction states. In particular, the Transformer encoder allows our GOMMIR model to sequen-
tially aggregate the recommendation and feedback information from the multi-modal composi-
tion feature ct to attend to the entire feedback history during each interaction turn. The estimated
state of the user’s preferences can be obtained as follows:

st+1 = Linear(Tanh(Mean(TranEnc([c≤t ,o≤t ])))) (6.6)

where c≤t = (c0, ...,ct) and o≤t = (o0, ...,ot) are the composition representations and critique
histories, respectively.

Ranking Stage Based on the estimated final state of the user’s preferences, we adopt a greedy
policy (Guo et al., 2018; Y. Wu et al., 2021) to recommend a candidate item list for the next
action. In particular, we select the top-K closest images to the estimated state st+1 under the
Euclidean distance in the image feature space: at+1,≤K ∼ KNNs(st+1), where KNNs(·) is a
softmax distribution over the top-K nearest neighbours of st+1 and at+1,≤K = (at+1,1, ...,at+1,K).
Furthermore, based on the interaction history ht = (o≤t ,a≤t,≤K), a post-filter is adopted to re-
move any previously recommended candidate items from the ranking. Indeed, since these items
have already been shown to the user, they are assumed to be non-relevant, and do not need to be
re-shown again (Y. Wu et al., 2021).
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To summarise, in the GOMMIR model, we maintain the Transformer Encoder for state track-
ing and the KNNs(·) for sampling as in the state-of-the-art approaches (H. Wu et al., 2021;
Y. Wu, Macdonald, & Ounis, 2022a, 2022b). Meanwhile, we leverage the CLIP-based multi-
modal encoders and a composition network (i.e. TIRG (Vo et al., 2019)) to explicitly learn the
multi-modal composition features at each turn and to better incorporate the users’ dynamic pref-
erences, rather than using a simple concatenation operation (Guo et al., 2018; H. Wu et al., 2021;
Y. Wu et al., 2021) (as described in Sections 6.1 & 6.2).

6.3.3 Learning Algorithm

We adopt a multi-task learning (Laskin, Srinivas, & Abbeel, 2020) approach for GO-POMDP to
optimise the recommendation policy with a policy gradient method (e.g., REINFORCE (M. Chen
et al., 2019)) learning loss and to explicitly learn good representations of the multi-modal
composition features with a supervised learning loss. Although value-based methods (such as
DQN (Mnih et al., 2013)) have demonstrated many advantages in solving DRL problems, they
are known to be prone to instability with value function approximations (M. Chen et al., 2019;
Sutton, McAllester, Singh, & Mansour, 1999; Xin et al., 2020). Alternatively, policy-based
methods (such as REINFORCE) are more stable given a sufficiently small learning rate (M. Chen
et al., 2019) compared to value-based methods (such as DQN (Mnih et al., 2013)). Therefore, we
rely on a policy gradient method (in particular REINFORCE) and enrich this on-policy method
with goals for the MMIR task.

Goal-Oriented Policy Optimisation

The objective of goal-oriented policy optimisation is to reach the goal g via a goal-oriented
policy πθ (θ ∈ R denotes policy parameters) that maximises the expectation of the cumulative
return over the goal distribution:

max
θ

J(πθ ) = max
θ

E
τ∼πθ

[R(τ)] (6.7)

where R(τ) = ∑
T
t=0 γ tr(st ,at,≤K,g) is the discounted cumulative reward, and T is the maximum

turn in the interaction trajectory. The expectation is taken over trajectories τ = ((o0,a0,≤K), ...,
(oT ,aT,≤K)).

We define the loss for optimising the recommendation policy based on the gradient of J(πθ )

with REINFORCE. Specifically, the gradient of Equation (6.7) can be computed as follows:

∇θ J(πθ ) = E
τ∼πθ

[
T

∑
t=0

∇θ logπθ (at,≤K|st)R(τ)] (6.8)

We define logπθ (at,≤K|st) as a softmax cross-entropy objective to identify the positive sample
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amongst a set of negative samples:

logπθ (at,≤K|st) = log(
eκ(st ,g)

eκ(st ,g)+∑
J
j=1 eκ(st ,a−j )

) (6.9)

where κ(·) is a similarity kernel that can be the dot product or the negative l2 distance in our
experiments. g is a target image representation, and a−j ( j ∈ [1,J]) are negative sample represen-
tations. The negative samples are usually randomly sampled images from the candidate pool in
the previous research (Guo et al., 2018; H. Wu et al., 2021; Y. Wu et al., 2021). To leverage the
benefits from the non-verbal relevance feedback, as hard negative samples, we iteratively con-
sider randomly sampled images from the previously disliked recommendations (a0,d, ...,at−1,d)

and the disliked items in the following turn at,d , i.e. a−d, j( j ∈ [1,J]). Therefore, we optimise the
policy after we collect the users’ relevance feedback ot and at,d .

We define the goal-oriented reward r(st ,at,≤K,g) as the sum of the similarities between all
the top-K candidates and the goal:

r(st ,at,≤K,g) =
K

∑
i=1

κ(at,i,g) = κ(at,u,g)+
K−1

∑
d=1

κ(at,d,g) (6.10)

Here, we expect our GOMMIR model to learn from rewards rt,u = κ(at,u,g) on the cri-

tiqued/liked items, as well as from the extra rewards rt,d = ∑
K−1
d=1 κ(at,d,g) on the disliked items.

Both the hard negative sampling and the extra visual rewards rt,d on the disliked items provide
further information relating to the target item, thereby enhancing the goal-oriented optimisation
objective to effectively optimise the recommendation agent.

Composition Representation Learning

To learn the multi-modal composition representation explicitly, we leverage a triplet loss objec-
tive for composition representation learning along with the policy optimisation process. Given
a multi-modal composition feature ct = ψφ (at,u,ot), a target item (i.e. the goal) g and a negative
sample a−, the composition loss L(ψφ ) can be defined as follows:

max
φ

L(ψφ ) =
T

∑
t=0

max
φ

(0, l2(ct ,g)− l2(ct ,a−)+ ε1) (6.11)

where φ ∈R denotes the parameters of the composition network ψ . l2(·) denotes the l2 distance.
The negative sample a− is sampled from (a−1 , ...,a

−
J ) as in Equation (6.9). ε1 is a constant for

the margin to keep negative samples far apart.
Therefore, we jointly train our model with both the goal-oriented policy optimisation objec-

tive J(πθ ) and the composition representation learning objective L(ψφ ) to mitigate the so-called
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coupling issue (as described in Sections 6.1 & 6.2), as follows:

max LGOMMIR = max
θ

J(πθ )+max
φ

L(ψφ ) (6.12)

Pre-training

To improve the sample efficiency with the policy gradient method, we initialise the GOMMIR
model with a supervised pre-training process instead of using a random initialisation. We lever-
age a triplet loss supervised objective L(πθ ) to pre-train the recommendation policy πθ , similar
to (Guo et al., 2018):

max
θ

L(πθ ) =
T

∑
t=0

max
θ

(0, l2(st ,g)− l2(st ,a−)+ ε2) (6.13)

where a− is a randomly sampled image, and ε2 is a constant for the margin. To learn the
composition representation explicitly, we also jointly pre-train the GOMMIR model with both
triplet loss objectives (i.e. πθ and L(ψφ )) as follows:

max LPre−train = max
θ

L(πθ )+max
φ

L(ψφ ) (6.14)

Based on the pre-trained model obtained with LPre−train, the joint loss objective LGOMMIR

can further improve the composition representations with L(ψφ ), as well as maximise the ex-
pected future rewards with J(πθ ), thereby addressing the coupling issue.

6.4 Experimental Setup

In this section, we evaluate the effectiveness of our proposed GOMMIR model in comparison to
the existing approaches from the literature. Figure 3.5 shows an example of a top-K (e.g., K = 3)
recommendation in the MMIR scenario. A user browses the exposed items (i.e. the top-K rec-
ommendations) and gives likes/dislikes and natural-language critiques on the recommendations
at each turn. The figure illustrates how a user can find the desired item (i.e. the goal) through
multi-turn interactions. Following the methodology applied in Chapters 4 and 5, we measure
the effectiveness of the interactive recommendation models at interaction turn M. Meanwhile,
the user may examine more items in the ranking list at each turn, down to rank N (N > K). In
particular, we address three research questions:
• RQ6.1: Does our proposed GOMMIR model with joint policy and composition representation
learning for GO-POMDP outperform the existing state-of-the-art baseline models in the multi-
modal interactive recommendation task?
• RQ6.2: How do the components designed for composition representation learning and goal-
oriented policy optimisation in the GOMMIR model affect the performance?
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• RQ6.3: What are the impacts of the introduced hyper-parameters on the performance, such as
the reward discount factor γ and the number of recommended items K?

6.4.1 Datasets & Setup

Our proposed approaches are evaluated on four well-known fashion datasets, namely the Shoes

and Fashion IQ Dresses, Shirts, Tops & Tees datasets (see Section 3.3.2), to verify the gen-
eralisation of the recommendation performance of our proposed GOMMIR model. Note that
we leverage Shoes with the Imagesorigin version for training/testing the recommender systems,
and Dresses, Shirt, and Tops & Tees with the Imagescaption version that extracts unique images
from the relevative captioning triplets for training/testing the recommender systems (see Sec-
tion 3.3.2). The statistics of the four datasets are summarised in Table 3.1.

We pre-train our GOMMIR model with a multi-task supervised learning setting (as per Equa-
tion (6.14)) for initialisation, and then further optimise GOMMIR with a joint supervised and re-
inforcement learning setting with Equation (6.12)2. Following previous work (see Section 3.1),
we use Adam (Kingma & Ba, 2014) with learning rates η1 = 10−3 and η2 = 10−5 with Equa-
tion (6.14) and Equation (6.12), respectively, for optimising the GOMMIR model’s parameters.
The similarity kernel κ(·) in Equation (6.9) is set to be the dot product by default. Unless men-
tioned otherwise, the discount factor γ is set to 0.2 due to the generally good performance. The
embedding dimensionality of the feature space is set to 512 with the pre-trained CLIP model us-
ing the “RN101” checkpoint3. The batch size is set to 128 and the number of negative samples
(i.e. J) is set to 5. The maximum number of epochs for training is 20. We consider the top-K
(i.e. K = 3) items as a recommendation at each interaction turn for both training and testing.
Due to the lack of the users’ profiles in the datasets, the recommendation models make an initial
random recommendation for each user with a fixed random seed (i.e. 42). We expect the rec-
ommendations to become more similar to the target item with more interactions. The maximum
number of interaction turns is set to 10.

6.4.2 Online Evaluation

An interactive recommender system is a type of closed-loop system (see Section 2.2) in
which the inputs (i.e. the users’ relevance feedback) of the recommender system are fully or
partially determined by the outputs (i.e. the recommendations). When we evaluate the inter-
active recommendation models, it is challenging to know the users’ real-time feedback on the
recommendations at each interaction turn. To alleviate this issue, we adopt relative captioning

2 The code and datasets for this chapter are publicly available in https://github.com/yashonwu/

gommir 3 https://github.com/openai/CLIP

https://github.com/yashonwu/gommir
https://github.com/yashonwu/gommir
https://github.com/openai/CLIP
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models4 (i.e. the Show, Attend, & Tell (Xu et al., 2015) model on Shoes and the VL-Transformer
(see Section 3.3) model on Fashion IQ Dresses, Shirts, and Tops & Tees) as a surrogate for real
human users (a.k.a. user simulators), as in (Guo et al., 2018; Y. Wu et al., 2021; R. Zhang et
al., 2019). We assume the user desires a visual item and gives both verbal and non-verbal rele-
vance feedback on the recommendations. To properly simulate the user’s behaviour, we assume
that the user simulator can observe a ranked list of visual recommendations at each interaction
turn. Then, the user simulator gives a “like” on the item that is the most similar to the target
image, while it gives “dislikes” on other items, and provides a natural-language critique (i.e.
a relative caption) to describe the attributes missing from the liked item. The non-verbal rel-
evance feedback (i.e. “likes” and “dislikes”) reflects the users’ relative preferences among the
recommendations at each turn, while the verbal relevance feedback (i.e. natural-language cri-
tiques) illustrates the users’ evolving dynamic preferences initiated by themselves. Note that
we directly use the user simulator checkpoint5 (Berg et al., 2010; Guo et al., 2018) for Shoes

(provided by Guo et al. (2018)), following the setting in Guo et al. (2018), while we use the
user simulator checkpoints for Fahion IQ Dresses, Shirts, and Tops & Tees (provided by Y. Wu,
Macdonald, and Ounis (2022b)) following the setting in Y. Wu, Macdonald, and Ounis (2022b).
It is worth noting that in the real world, the situation of interactive recommendation can be much
more complicated in terms of both verbal and non-verbal relevance feedback. For instance, the
user may give “likes” on more than one item in the recommendation list and may also give free-
form natural-language feedback even on “disliked” items. We leave the handling of such more
complex situations in the interactive recommendation task as interesting future work. Note also
that our simplification is necessitated by the existing datasets and the availability of accurate
user simulators.

6.4.3 Evaluation Metrics

We measure the effectiveness of different interactive recommendation models under the two
evaluation metrics (see Section 3.2.2): Normalised Discounted Cumulative Gain (NDCG) and
Success Rate (SR). In our experiments, we consider NDCG@N, which is truncated at rank N = 3
and N = 10 and we report the interaction turn M ∈ [1,10]. If a user obtains the target item in less
than 10 interaction turns, we consider the ranking metrics (i.e. NDCG@3 and NDCG@10) for
that user to be equal to one for all turns thereafter. We conduct significance testing in terms of a
paired t-test with a Holm-Bonferroni multiple comparison correction for all evaluation metrics
(i.e. NDCG@3, NDCG@10 and SR) at the 10th interaction turns.
4 These user simulators were used by the original authors - we replicate their user simulator setups. 5 https://
github.com/XiaoxiaoGuo/fashion-retrieval

https://github.com/XiaoxiaoGuo/fashion-retrieval
https://github.com/XiaoxiaoGuo/fashion-retrieval
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6.4.4 Baselines

We compare our GOMMIR model with three groups of representative baseline models for the
MMIR task.

Interactive Recommendation Models with a Single Modality We first consider two repre-
sentative interactive recommendation (IR) models, each with a single modality, using a Transformer-
based state tracker for sequential modelling as in Section 6.3.2.
• IRimg: IRimg estimates the users’ preferences through the sequences of their liked images only.
• IRtxt : IRtxt estimates the users’ preferences through the sequences of their natural-language
critiques only.

Text-Image Retrieval Models We next consider two representative text-image retrieval mod-
els that explicitly learn the composition representations from both the text and image modalities.
These models are extended to the MMIR task by incorporating the current recommendations and
the corresponding natural-language feedback at each turn. However, due to their lack of a state
tracker, they ignore the users’ interaction histories.
• TIRG6 (Vo et al., 2019): TIRG was the first model proposed for the composition of text and
image features in the context of text-image retrieval through a gating and a residual connection.
We also use TIRG as a composition network in our GOMMIR model in Section 6.3.2.
• CLIP4Cir7 (Baldrati et al., 2022a, 2022b): CLIP4Cir adopts a Combiner network (Baldrati et
al., 2022b) with the CLIP image and text encoders to understand the images content, integrate the
textual descriptions and provide a combined feature for text-image retrieval. CLIP4Cir obtains
a state-of-the-art performance in the context of text-image retrieval on Fashion IQ.

Multi-Modal Interactive Recommendation Models We now consider multi-modal inter-
active recommendation baseline models with both image and text modalities. These baseline
models learn the multi-modal composition representations implicitly. In particular, both EGE
(Chapter 4) and DEERS (X. Zhao, Zhang, et al., 2018) are the two baseline models that use
DRL algorithms.
• DM8 (Guo et al., 2018): In the Dialog Manager (DM) model, the image and text representa-
tions are concatenated and embedded through a linear transformation layer to obtain a composed
feature. The state tracker is based on a GRU for tracking and estimating the users’ preferences
with the composed representation and the history representation of previous interaction turns.
• MMT9 (H. Wu et al., 2021): The Multi-Modal Transformer (MMT) model directly attends to
the entire interaction history of both the users’ previous textual feedback and the system’s visual

6 https://github.com/google/tirg 7 https://github.com/ABaldrati/

CLIP4Cir 8 https://github.com/XiaoxiaoGuo/fashion-retrieval 9 https://
github.com/XiaoxiaoGuo/fashion-iq

https://github.com/google/tirg
https://github.com/ABaldrati/CLIP4Cir
https://github.com/ABaldrati/CLIP4Cir
https://github.com/XiaoxiaoGuo/fashion-retrieval
https://github.com/XiaoxiaoGuo/fashion-iq
https://github.com/XiaoxiaoGuo/fashion-iq
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recommendations.
• MMRAN (Chapter 5): The Multi-Modal Recurrent Attention Network (MMRAN) model
leverages a gated recurrent network (GRN) with a feedback gate for combining the image and
text representations and further uses a multi-head attention network (MAN) for tracking the
users’ dynamic preferences over time.
• EGE (Chapter 4): The Estimator-Generator-Evaluator (EGE) model is another GRU-based
model, which uses a multi-task learning approach for POMDP to optimise the model, combining
a supervised learning classification loss and a Q-learning prediction loss.
• DEERS (X. Zhao, Zhang, et al., 2018): The DEERS model leverages a Deep Q-Network
(DQN) to automatically learn the optimal recommendation strategies by incorporating positive
and negative feedback. It adopts two GRU-based state trackers to track the users’ positive and
negative states, respectively. We extend this model for the multi-modal interactive recommen-
dation task by incorporating both images and natural-language feedback as inputs.

In addition to the above baseline models for the MMIR task, the GOMMIR variants used for
the ablation studies (in Section 6.5.2) can also act as strong baselines. For fair comparisons, all
of the tested baseline models use CLIP (using the “RN101” checkpoint) for providing the texts
and image representations (as described in Section 6.3.2). Although there are a few more other
models with different formulations for the interactive recommendation task, these models are not
comparable with our scenario due to them being unable to incorporate both the textual and visual
modalities during the recommendation process (W. Lei et al., 2020; Y. Sun & Zhang, 2018),
requiring additional attributes of items for learning (Yu, Shen, Zhang, et al., 2019; Yuan & Lam,
2021; R. Zhang et al., 2019) or requiring multi-modal knowledge graph for reasoning (Y. Wu,
Liao, et al., 2022).

6.5 Experimental Results

In this section, we analyse the experimental results with respect to the three research questions
stated in Section 6.4 to gauge the effectiveness of our proposed GOMMIR model. Specifi-
cally, we address the overall effectiveness of our proposed GOMMIR model for the MMIR task
(RQ6.1, Section 6.5.1), the impact of the goal-oriented policy optimisation and composition
representation learning (RQ6.2, Section 6.5.2), and the effects of the hyper-parameters (RQ6.3,
Section 6.5.3). To consolidate our findings, similar to previous chapters, we provide a use case
from the logged experimental results in Section 6.5.4.

6.5.1 Performance Comparison (RQ6.1)

Figure 6.5 shows the effectiveness of our proposed GOMMIR model in comparison to the base-
line models for top-3 recommendation in terms of SR while varying the number of interaction
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(a) Shoes (b) Dresses

(c) Shirts (d) Tops & Tees

Figure 6.5: Comparison of the recommendation effectiveness at various interaction turns with
top-3 recommendation.

turns on the Shoes, Fashion IQ Dresses, Shirts and Tops & Tees datasets. Comparing the re-
sults in Figure 6.5, we observe that our proposed GOMMIR model generally achieves a better
overall performance in terms of SR at various interaction turns. As the number of interaction
turns increases, the magnitude of the differences between the effectiveness of GOMMIR with
the baseline models on SR also increases. Similar trends are also observed with other metrics
(i.e. NDCG@3 and NDCG@10) – we omit their reporting due to space constraints. The better
overall performance of our proposed GOMMIR model indicates that learning the composition
representations explicitly with goal-oriented policy optimisation can better incorporate the users’
preferences from the recommended visual items and the corresponding verbal and non-verbal
relevance feedback. To quantify the improvements of our proposed GOMMIR model compared
to the other nine baseline models, Table 6.1 reports their performances at the 10th interaction
turn. The best results of the baseline models and the best overall results are underlined and high-
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Table 6.1: The effectiveness of the tested models at the 10th turn. The best results of baseline
models and the best overall results are underlined and highlighted in bold, respectively. %
Improv. indicates the improvements by our GOMMIR model over the best baseline model.
* denotes a significant difference in terms of paired t-test with a Holm-Bonferroni multiple
comparison correction (p < 0.05), compared to GOMMIR.

Shoes Dresses Shirts Tops & Tees
Models NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR NDCG@3 NDCG@10 SR

IRimg 0.0339* 0.0366* 0.0350* 0.07272* 0.0780* 0.0746* 0.0490* 0.0526* 0.0506* 0.0549* 0.0590* 0.0566*
IRtxt 0.5365* 0.5556* 0.5451* 0.4784* 0.4984* 0.4878* 0.4240* 0.4448* 0.4336* 0.4973* 0.5189* 0.5053*

TIRG 0.4067* 0.4226* 0.4124* 0.3803* 0.3934* 0.3863* 0.3248* 0.3400* 0.3304* 0.4049* 0.4237* 0.4106*
CLIP4Cir 0.4438* 0.4566* 0.4506* 0.4527* 0.4735* 0.4597* 0.3608* 0.3754* 0.3675* 0.4437* 0.4610* 0.4501*

DM 0.5374* 0.5571* 0.5453* 0.5022* 0.5225* 0.5110* 0.4598* 0.4811* 0.4697* 0.5226* 0.5419* 0.5313*
MMT 0.5336* 0.5521* 0.5406* 0.5981* 0.6194* 0.6072* 0.4945* 0.5124* 0.5061* 0.5501* 0.5697* 0.5563*
MMRAN 0.5680* 0.5879* 0.5771* 0.5887* 0.6099* 0.5986* 0.4484* 0.4692* 0.4568* 0.5508* 0.5710* 0.5598*
EGE 0.6657* 0.6880* 0.6750* 0.7353* 0.7559* 0.7449* 0.5826* 0.6044* 0.5931* 0.6868* 0.7059* 0.6930*
DEERS 0.6749* 0.6940* 0.6831* 0.7083* 0.7250* 0.7143* 0.6027 0.6215 0.6106 0.6989* 0.7144* 0.7090*

GOMMIR 0.8173 0.8297 0.8248 0.8255 0.8385 0.8346 0.6275 0.6440 0.6369 0.7582 0.7706 0.7653
% Improv. 21.10 19.55 20.74 12.27 10.93 12.04 4.11 3.62 4.31 8.48 7.87 7.94

lighted in bold, respectively. Analysing the results in the table, we observe that our proposed
GOMMIR model achieves better performances at the 10th turn than the best baseline model
on all metrics on Shoes, Dresses, Shirts, and Tops & Tees by a margin of 19-21%, 10-12%,
3-4%, and 7-8%, respectively. Indeed, our proposed GOMMIR model is significantly better
than the baseline models (except for DEERS on Shirts) for each metric at the 10th turn in top-3
recommendation.

Therefore, in answer to RQ6.1, the results show that the GOMMIR model can outperform
the existing state-of-the-art baseline models. In particular, it is significantly more effective than
the state-of-the-art baseline models at the 10th turn. Therefore, we conclude that our proposed
GOMMIR model, which addresses the coupling issue, can better incorporate the users’ prefer-
ences for an improved top-3 recommendation. In the next section, we analyse the impact of the
coupling issue and demonstrate how they are addressed with our proposed GOMMIR model.

6.5.2 Impact of Components (RQ6.2)

To address RQ6.2, we investigate the impact of the components designed for both composition
representation learning and goal-oriented policy optimisation to tackle the coupling issue. Ta-
ble 6.2 reports the performances of our GOMMIR model with different ablations in terms of
SR considering the original setting in the top part of the table, the composition representation
learning in the second part of the table, and the goal-oriented optimisation in the last part of
the table. The same trends can be also observed on NDCG@3 and NDCG@10 – we omit their
reporting due to space constraints.

Composition Representation Learning We investigate the impact of the explicit composi-
tion learning on the performance of our proposed GOMMIR model in terms of four aspects: the
whole composition network ψ , the gated feature fgate, the residual feature fres, and the triplet
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loss for the composition representation learning L(ψφ ). Table 6.2 (second part of the table)
reports the performances of our GOMMIR model with different ablations considering the afore-
mentioned four aspects at the 10th interaction turn. The reported results in Table 6.2 show that
the full GOMMIR model (i.e. considering the above four aspects in the second part of Table 6.2)
can outperform “GOMMIR w/o ψ”, “GOMMIR w/o fgate”, “GOMMIR w/o fres”, and “GOM-
MIR w/o L(ψφ )”. These results suggest that our proposed GOMMIR model can benefit from
both the composition network (i.e. TIRG) with both gated and residual features and the composi-
tion learning loss L(ψφ ). In particular, the composition learning loss L(ψφ ) contributes the most
to the GOMMIR model’s performance on all four datasets, while the gated feature fgate con-
tributes the least on Dresses and Tops & Tees, and the residual feature fres contributes the least
on Shoes and Shirts. Therefore, it is necessary to explicitly learn the multi-modal composition
representations with an advanced composition network (such as TIRG).

Goal-Oriented Policy Optimisation We now investigate the impact of goal-oriented policy
optimisation on the performance of our proposed GOMMIR model in terms of four aspects:

• (1) the hard negative sampling a−d, j in Equation (6.9),

• (2) the following relevance feedback at,d in hard negative sampling a−d, j,

• (3) the goal-oriented rewards r(st ,at,≤K,g) in Equation (6.8), and

• (4) the extra rewards of the disliked items rt,d in Equation (6.10).

Table 6.2 (last part) reports the performances of the GOMMIR variants considering the afore-
mentioned four aspects. In particular, within the table, “GOMMIR w/o a−d, j in Equation (6.9)”
selects negative samples randomly from the candidate pool rather than sampling from the nega-
tive feedback history (i.e. the disliked items (a0,d, ...,at,d)). “GOMMIR w/o rt,d in a−d, j” samples
hard negatives from the previously disliked recommendations (a0,d, ...,at−1,d). “GOMMIR w/o
r(st ,at,≤K,g) in Equation (6.8)” optimises the recommendation policy using supervised learn-
ing without the goal-oriented rewards. “GOMMIR w/o rt,d in Equation (6.10)” only considers
the visual reward for the critiqued/liked item rather than all the rewards for both the liked and
disliked recommendation items. The results reported in Table 6.2 show that the full GOMMIR
model (i.e. considering the above four aspects) can outperform the above four variants on all
four datasets, except for “GOMMIR w/o rt,d in Equation (6.10)” on Shirts. These results sug-
gest that it is necessary to consider non-verbal relevance feedback in the hard negative sampling
and the reward function during the goal-oriented policy optimisation process. In addition, we
can also observe that GOMMIR can gain more improvements with the explicit composition loss
L(ψφ ) compared to using the goal-oriented rewards r(st ,at,≤K,g).

In response to RQ6.2, we find that our proposed GOMMIR model can benefit from explicitly
learning the composition representation with an advanced composition network (i.e. TIRG) and
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Table 6.2: Ablation study at turn 10 in terms of SR. w/o denotes that component is removed from
GOMMIR. * denotes a significant difference in terms of a paired t-test with a Holm-Bonferroni
multiple comparison correction (p < 0.05), compared to GOMMIR.

Models Shoes Dresses Shirts Tops & Tees

GOMMIR 0.8248 0.8346 0.6369 0.7653

Composition Representation Learning

1. w/o ψ 0.7428* 0.7384* 0.5850* 0.7001*
2. w/o fgate 0.7168* 0.7816* 0.5792* 0.6948*
3. w/o fres 0.7863* 0.7384* 0.5890* 0.6595*
4. w/o L(ψφ ) 0.6932* 0.7115* 0.4589* 0.6528*

Goal-Oriented Policy Optimisation

5. w/o a−d, j in Eq. (6.9) 0.7231* 0.7649* 0.6177 0.7279*
6. w/o at,d in a−d, j 0.8010* 0.8329 0.6274 0.7546
7. w/o r(st ,at,≤K,g) 0.7799* 0.7991* 0.6001* 0.7350*
8. w/o rt,d in Eq. (6.10) 0.8128* 0.8305 0.6369 0.7614

optimising the recommendation policy with hard negative sampling and rewards based on the
non-verbal relevance feedback.

6.5.3 Impact of Hyper-Parameters (RQ6.3)

To address RQ6.3, Figure 6.6 depicts the impact in terms of SR of the reward discount fac-
tor γ and the number of recommended items K when training the GOMMIR model on all
four datasets, respectively. The same results/trends can be also observed for NDCG@3 and
NDCG@10, we omit their reporting due to space constraints.

Effect of the reward discount factor (γ) Figure 6.6 (a) shows SR at the 10th turn in top-3
recommendation with various reward discount factors γ on the four datasets. In particular, the
model can only consider the immediate goal-oriented reward with γ = 0 or weight all future
rewards equally with γ = 1. We can observe that the performance of GOMMIR decreases when
the reward discount factor γ is larger than 0.2. The better performance with a lower reward
discount factor shows that the immediate reward is much more important compared to the future
rewards.

Effect of the number of recommended items (K) Figure 6.6 (b) shows SR with different
numbers of top-K recommendations at each turn (i.e. K = 2,3,4,5). The K values indicate
how deep the users can explore among a ranking list of all items at each interaction turn. Note
that larger metrics indicate a better performance across top-K recommendations even though
the number of exposed items at each turn is different. We observe that the performance of
GOMMIR increases when the number of recommended items K increases from 2 to 5, as more
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(a) γ for SR (b) K for SR

Figure 6.6: Comparison of the recommendation effectiveness at 10th turn with different γ and
K values.

items are exposed to the users and users provide more feedback. Overall, in response to RQ6.3,
we find that a lower reward discount factor γ and more exposed top-K items can improve the
effectiveness of our GOMMIR model.

6.5.4 Use Case

In this section, we present a use case of the multi-modal interactive recommendation on the
Shoes dataset in Figure 6.7. In particular, the figures show the interaction process for the top-3
recommendations between the simulated users for the DEERS (i.e. the strongest baseline model)
and GOMMIR models. For a fair comparison, the initial images are the same across the tested
models given the target image from the testing set. When the target item is listed in the rec-
ommendation list, the user simulator will give a comment to end the interaction, such as “They
are my desired shoes” in Figure 6.7 (b). Comparing the recommendations made by DEERS and
GOMMIR on the Shoes dataset, we can observe that our proposed GOMMIR model can find the
target items with fewer interaction turns compared to DEERS – this is expected, due to the in-
creased effectiveness of GOMMIR shown in Section 6.5.1. In addition, our GOMMIR model is
more effective at incorporating more relevant features of the critique in the following interaction
turn. For instance, at the initial interaction turn in Figures 6.7 (a) and (b), the user claimed that
“I prefer blue open toe high heel pumps” in comparison to the 2nd image (i.e. black clogs). Our
GOMMIR model suggests open-toe recommendations, while DEERS ignores the “open-toe”
feature from the critique and instead recommends closed-toe blue clogs in the second place and
closed-toe blue sneakers in the third place. We observed similar trends and results in use cases
with the other baseline models on the Shoes, Dresses, Shirts, and Tops & Tees datasets. We omit
their reporting in this chapter because of space constraints.
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(a) DEERS

(b) GOMMIR

Figure 6.7: Example use cases for the interactive recommendation with DEERS and GOMMIR
on Shoes.

6.6 Conclusions

In this chapter, we proposed a novel goal-oriented multi-modal interactive recommendation
(GOMMIR) model to effectively incorporate the users’ preferences from both verbal and non-
verbal relevance feedback over time, by addressing the coupling issue of policy optimisation
and multi-modal composition representation learning. Specifically, we jointly leveraged both
goal-oriented deep reinforcement learning and supervised learning objectives to explicitly learn
the multi-modal representations with a multi-modal composition network (i.e. TIRG) during the
recommendation policy optimisation process. We adopted a pre-trained CLIP model for image
and text encoding, and a Transformer-based state tracker for estimating the users’ preferences
from the users’ natural-language critiques and the previously combined representations from the
composition network. Following previous work (see Section 3.1 and Chapters 4 & 5), we trained
and evaluated our GOMMIR model by using a user simulator as a surrogate for real human users.
Our experiments on the Shoes, Dresses, Shirts and Tops & Tees datasets demonstrated that our
proposed GOMMIR model achieves better performances of 19-21%, 10-12%, 3-4%, and 7-8%
compared to the best baseline models, respectively. Moreover, our reported results showed that
our proposed GOMMIR model can benefit from explicit composition representation learning
and goal-oriented policy optimisation with both verbal and non-verbal relevance feedback. The
experimental results and analysis provide support for the thesis statement with Research Topic
3 in Section 1.3.

Next, in Chapter 7, we argue that the existing formulation of interactive recommender sys-
tems are typically challenging to make satisfactory personalised recommendations across multi-
turn interactions due to the difficulty in balancing the users’ past interests and the current needs



CHAPTER 6. COUPLING OF POLICY OPTIMISATION & REPRESENTATION LEARNING113

for generating the users’ state (i.e. current preferences) representations over time. Therefore, we
aim to effectively incorporate both the users’ long-term preferences and short-term needs into
the personalised recommendations by modelling the multi-modal conversational recommenda-
tion process with both the users’ interaction history and the users’ instant natural-language feed-
back.



Chapter 7

Personalisation for Cold-Start &
Warm-Start Users

In our thesis statement (as stated in Section 1.3), we hypothesised that we can effectively
incorporate both the users’ long-term preferences and short-term needs into the personalised
recommendations by modelling the multi-modal conversational recommendation process with
both the users’ interaction history and the users’ instant natural-language feedback. Therefore,
in this chapter, we propose a novel personalised multi-modal interactive recommendation model
(PMMIR) using hierarchical reinforcement learning to more effectively incorporate the users’
preferences from both their past and real-time interactions. This chapter is mainly based on our
work “Personalised Multi-Modal Interactive Recommendation with Hierarchical State Repre-
sentations” that has been submitted to TORS and is currently accepted.

In the previous chapters (see Chapters 4, 5, & 6), we have formulated the multi-modal
conversational recommendation task with cold-start users without interaction history. In the
real-world scenario, the users’ preferences can be expressed by both the users’ past interests
from their historical interactions and their current needs from the real-time interactions (see
Section 3.2). However, it is typically challenging to make satisfactory personalised recommen-
dations across multi-turn interactions due to the difficulty in balancing the users’ past interests
and the current needs for generating the users’ state (i.e. current preferences) representations
over time. On the other hand, hierarchical reinforcement learning has been successfully applied
in various fields by decomposing a complex task into a hierarchy of more easily addressed sub-
tasks. In this chapter, we propose a novel personalised multi-modal interactive recommendation
model (PMMIR) using hierarchical reinforcement learning to more effectively incorporate the
users’ preferences from both their past and real-time interactions. In particular, PMMIR decom-
poses the personalised interactive recommendation process into a sequence of two subtasks with
hierarchical state representations: a first subtask where a history encoder learns the users’ past
interests with the hidden states of history for providing personalised initial recommendations,
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and a second subtask where a state tracker estimates the current needs with the real-time esti-
mated states for updating the subsequent recommendations. The history encoder and the state
tracker are jointly optimised with a single objective by maximising the users’ future satisfaction
with the recommendations. Following previous work (described in Section 3.1), we train and
evaluate our PMMIR model using a user simulator (described in Section 3.3) that can gener-
ate natural-language critiques about the recommendations as a surrogate for real human users.
Experiments conducted on two derived fashion datasets from two well-known public datasets
demonstrate that our proposed PMMIR model yields significant improvements in comparison to
the existing state-of-the-art baseline models (including our previously proposed EGE model in
Chapter 4). The results conform with our thesis statement with Research Topic 4 in Section 1.3.

7.1 Motivations

Multi-modal interactive recommender systems (MMIRSs) enable the users to explore their de-
sired items (such as images of fashion products) through multi-turn interactions by expressing
their current needs with real-time feedback (often natural-language critiques) according to the
quality of the recommendations (described in Section 3.1). In the multi-modal interactive recom-
mendation (MMIR) scenario addressed by this chapter, the users’ preferences can be represented
by both the users’ past interests from their historical interactions and their current needs from
their recent interactions. Figure 7.1 shows an example of the personalised multi-modal inter-
active recommendation with visual recommendations and the corresponding natural-language
critiques. Different from the previous chapters (Chapters 4, 5, & 6) that initiate a conversa-
tion with randomly sampled recommendation items, the personalised multi-modal interactive
recommendation task starts with a personalised initial recommendations based the users’ past
shopping history. In particular, Figure 7.1 (a) demonstrates the users’ past interests with the
shopping history recorded by the recommender system and their current needs with the next
item that they wish to purchase (the next target item). Next, Figure 7.1 (b) illustrates the real-
time interactions between a recommender system and a user. The recommender system initiates
the conversation by presenting a list of personalised initial recommendations to the user. Subse-
quently, during each interaction turn, the user provides natural-language critiques regarding the
visual recommendation list in order to achieve items with more preferred features. An effective
MMIRS will improve the users’ experience substantially and will save users much efforts in
finding their target items.

Despite the advances in incorporating the users’ current needs (i.e. the target items) from the
informative multi-modal information across the multi-turn interactions, exemplified in Chapters
4, 5, & 6, we argue that it is challenging to make satisfactory personalised recommendations
due to the difficulty in balancing the users’ past interests and the current needs for generating
the users’ state (i.e. current preferences) representations over time. Indeed, the existing MMIRSs
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(a) The user’s purchase history and the next target item.

(b) The real-time interactions between a recommender system and a user.

Figure 7.1: An example of the personalised multi-modal interactive recommendation.

(as used in the previous previous chapters) typically simplify the multi-modal interactive recom-
mendation task by initiating conversations using randomly sampled recommendations irrespec-
tive of the users’ interaction histories (i.e. the past interests), thereby only focusing on seeking
the target item (i.e. the current needs) across real-time interactions. Although providing next-
item recommendations from sequential user-item interaction history is one of the most common
use cases in the recommender system domain, the existing sequential and session-aware recom-
mendation models (Hidasi & Karatzoglou, 2018; Hidasi et al., 2016; Kang & McAuley, 2018;
F. Sun et al., 2019) currently only consider the explicit/implicit past user-item interactions (such
as purchases and clicks) in the sequence modelling. In addition, these sequential/session-aware
recommendation models have shown difficulties in learning sequential patterns over cold-start

users (who have very limited historical interactions) compared to warm-start users (who have
longer interaction sequences) (J. Wang, Ding, & Caverlee, 2021; Y. Zheng, Liu, Li, & Wu, 2021).
An obvious and simple solution for the personalised MMIR task is to conduct a pipeline, where a
sequential/session-aware recommendation model (such as GRU4Rec (Hidasi et al., 2016)) gen-
erates the initial personalised recommendations and a multi-modal interactive recommendation
model (Chapter 4) updates the subsequent recommendations across the multi-turn interactions.
However, such pipeline-based recommender systems cannot effectively benefit from a proper
cooperation between the sequential/session-aware recommendation models and the multi-modal
interactive recommendation models when there is a shift between the users’ past interests and
their current needs (in particular with cold-start users), thereby possibly failing to provide satis-
factory personalised recommendations over time.
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Deep reinforcement learning (DRL) allows a recommender system (i.e. an agent) to actively
interact with a user (i.e. the environment) while learning from the user’s real-time feedback to in-
fer the user’s dynamic preferences. A variety of DRL algorithms has been successfully applied in
various recommender system domains, such as e-commerce (Xin et al., 2020), video (M. Chen,
Chang, Xu, & Chi, 2021) and music recommendations (W. Lei et al., 2020). In particular, re-
cent research on multi-modal interactive recommendation (MMIR) has formulated the MMIR
task with various DRL algorithms as MDPs (Guo et al., 2018), POMDPs (Y. Wu et al., 2021),
CMDPs (R. Zhang et al., 2019) or multi-armed bandits (Yu et al., 2020). However, none of these
have been adapted for a personalised recommendation scenario. Indeed, the existing DRL-based
recommender systems are not able to deal with the personalised multi-modal interactive recom-
mendation task in an end-to-end fashion considering the computational complexity of learning
users’ the past interests from the interaction history and estimating the users’ current needs
from the real-time interactions. Hierarchical reinforcement learning (HRL) (Hutsebaut-Buysse
et al., 2022; Pateria et al., 2021) can decompose a complex task into a hierarchy of subtasks as
semi-Markov decision processes (SMDPs), which reduces the computational complexity. Such
a HRL formulation with a hierarchy of subtasks is particularly suitable for the multi-modal
interactive task that requires to address different subtasks over time by either estimating the
users’ past interests or tracking the users’ current needs. For instance, the “Options” framework
of HRL provides a generic way for task decomposition where options represent closed-loop
sub-behaviours that are carried out for multiple timesteps until the termination condition is trig-
gered (Hutsebaut-Buysse et al., 2022). However, to the best of our knowledge, no prior work
has investigated HRL in the multi-modal interactive recommendation task.

In this chapter, we present our formulation of the personalised MMIR task as a semi-Markov
decision process (SMDP) by simulating both the past and real-time interactions between a user
(i.e. an environment) and a recommender system (i.e. an agent). To this end, we propose a
novel personalised multi-modal interactive recommendation model (PMMIR) using hierarchi-
cal reinforcement learning to more effectively incorporate the users’ preferences from both their
past and real-time interactions. In particular, the proposed PMMIR model uses the Options
framework of HRL to decompose the personalised interactive recommendation process into a
sequence of two subtasks with hierarchical state representations: a first subtask where a history

encoder learns the users’ past interests with the hidden states of history for providing person-
alised initial recommendations, and a second subtask where a state tracker estimates the current
needs with the real-time estimated states for updating the subsequent recommendations. The
history encoder and the state tracker are jointly optimised using a typical policy gradient ap-
proach (namely REINFORCE (M. Chen et al., 2019)) with a single optimisation objective by
maximising the users’ future satisfaction with the recommendations (i.e. the cumulative future
rewards). Like Chapters 4, 5, & 6, our PMMIR model is trained and evaluated by adopting a
user simulator, which is capable of producing natural-language critiques regarding the recom-
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mendations. By conducting experiments on two fashion datasets, we observe that our proposed
PMMIR model outperforms existing state-of-the-art baseline models, leading to significant im-
provements. In short, we summarise the main contributions of this chapter as follows:

• We propose a novel personalised multi-modal interactive recommendation model (PM-
MIR) that effectively integrates the users’ preferences obtained from both past and real-
time interactions by leveraging HRL with the Options framework.

• Our proposed PMMIR model decomposes the MMIR task into two subtasks: an initial
personalised recommendation with the users’ past interests and several subsequent rec-
ommendations with the users’ current needs.

• We derive two fashion datasets (i.e. Amazon-Shoes and Amazon-Dresses) for provid-
ing the users’ interaction histories from two well-known public datasets since there is
no existing dataset suitable for the personalisation setting of the multi-modal interactive
recommendation task.

• Through extensive empirical evaluations conducted on the personalised MMIR task, our
proposed PMMIR model demonstrates significant improvements over existing state-of-
the-art approaches (including the EGE model in Chapter 4). We also show that both
cold-start and warm-start users can benefit from our proposed PMMIR model in terms of
recommendation effectiveness.

The chapter is structured as follows: Section 7.2 provides a comprehensive review of the
related work and highlights the contributions of our research in relation to the existing literature.
In Section 7.3, we define the problem formulation and introduce our proposed PMMIR model.
The experimental setup and results are presented in Sections 7.4 and 7.5, respectively. Finally,
Section 7.6 summarises our findings.

7.2 Related Work

Within this section, we discuss personalisation in interactive recommendation. Then, we de-
scribe hierarchical reinforcement learning.

Personalisation in Interactive Recommendation The existing MMIR models only focus on
incorporating the users’ current needs across the multi-turn real-time interactions but omit their
past behaviours, by initially presenting users with randomly selected items at the start of the
interaction process. Meanwhile, a variety of interactive recommendation models have leveraged
the users’ past behaviours for personalised recommendations during the multi-turn interaction
processes. For instance, the Estimation-Action-Reflection (EAR) model by W. Lei et al. (2020)
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(a typical question-based interactive recommendation model (Gao et al., 2021)) leveraged the
factorisation machine (FM) (Rendle, 2010) to estimate the users’ preferences with the users’
past behaviours for predicting further preferred items and attributes. The users’ online feed-
back is incorporated by feeding the accepted attributes back to FM to make a new prediction
of items and attributes again or using the rejected items as negative signals for training FM
again. However, such an FM-based method for the question-based interactive recommenda-
tion task is infeasible for our multi-modal interactive recommendation task, which leverages
natural-language critiquing sentences freely expressed by the users rather than the brief terms
of well-categorised attributes. In addition, a simple solution for the personalised multi-modal
interactive recommendation task is to combine the sequential recommendation models (such as
GRU4Rec (Hidasi et al., 2016)) with the multi-modal interactive recommendation models (such
as EGE (Y. Wu et al., 2021)) in a pipeline. For instance, GRU4Rec can be leveraged for gen-
erating the initial personalised recommendations, while EGE can be utilised for updating the
subsequent recommendation across the multi-turn real-time interactions. However, we argue
that such pipeline-based recommender systems are fragile at providing satisfactory personalised
recommendations over time when there is a shift between the users’ past interests and current
needs since their components are optimised independently.

Furthermore, session-aware recommendation models (Jannach, Quadrana, & Cremonesi,
2022; Latifi, Mauro, & Jannach, 2021; Quadrana, Karatzoglou, Hidasi, & Cremonesi, 2017;
S. Wang et al., 2021) decouple the users’ long-term and short-term preferences for making
better-personalised recommendations by exploiting the relationship between sessions for each
user. For instance, Quadrana et al. (Quadrana et al., 2017) proposed a Hierarchical Recur-
rent Neural Network model (HRNN) for the personalised session-based recommendations. The
HRNN model is structured with a hierarchy of two-level Gated Recurrent Units (GRUs): the
session-level GRU that makes recommendations by tracking the user interactions within ses-
sions; and the user-level GRU that tracks the evolution of the users’ preferences across ses-
sions. When a new session starts, the hidden state of the user-level GRU is used to initialise
the session-level GRU, thereby providing personalisation capabilities to the session-level GRU.
Such a hierarchy of two-level GRUs structure can also be leveraged in the multi-modal interac-
tive recommendation task to make personalised recommendations over time. Therefore, we are
inspired by the hierarchy of two-level GRUs structure to propose an effective end-to-end multi-
modal interactive recommendation model with a dual GRUs/Transformers structure that can
make personalised recommendations over time by incorporating both the users’ past behaviours
and the informative multi-modal information from real-time interactions. The HRNN model
with two-level GRUs adopts a supervised learning approach for jointly optimising the user-level
and session-level GRUs, which is less effective than the DRL approaches for maximising the
future rewards (Afsar et al., 2022; X. Chen et al., 2021; Y. Lin et al., 2021).
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Hierarchical Reinforcement Learning Deep reinforcement learning (DRL) has been widely
adopted in the recommendation field with various DRL algorithms, such as Deep Q-learning
Network (DQN) (Mnih et al., 2013), REINFORCE (Williams, 1992), and Actor-Critic (Konda
& Tsitsiklis, 2000), for coping with the users’ dynamic preferences over time and maximising
their long-term engagements (Afsar et al., 2022; X. Chen et al., 2021; Y. Lin et al., 2021). In par-
ticular, the MMIR task has been formulated with various DRL algorithms as MDPs (Guo et al.,
2018), POMDPs (Y. Wu et al., 2021), CMDPs (R. Zhang et al., 2019) or multi-armed bandits (Yu
et al., 2020) to simulate the multi-turn interactions between the recommender systems and the
users. However, the existing MMIR models (e.g., MBPI (Guo et al., 2018), EGE (Chapter 4),
and RCR (R. Zhang et al., 2019)) with DRL can only maximise the cumulative rewards when
dealing with real-time requests within the conversational session, while simplifying the MMIR
task by omitting the users’ past interests. Indeed, making personalised recommendations across
multi-turn interactions considering the users’ past interests and current needs is a complex task.
Hierarchical reinforcement learning provides a solution for decomposing a complex task into a
hierarchy of easily addressed subtasks as semi-Markov decision processes (SMDPs) with var-
ious frameworks, such as Options (Sutton, Precup, & Singh, 1999), Hierarchical of Abstract
Machines (HAMs) (Parr & Russell, 1997), and MAXQ value function decomposition (Diet-
terich, 2000). The existing recommender systems with HRL (Greco et al., 2017; Y. Lin et al.,
2022; Xie et al., 2021; D. Zhao et al., 2020) typically formulate the recommendation task with
two levels of hierarchies where a high-level agent (the so-called meta-controller) determines the
subtasks and a low-level agent (the so-called controller) addresses the subtasks. For instance,
CEI (Greco et al., 2017) formulates the conversational recommendation task with the Options
framework using a meta-controller to select a type of subtasks (chitchat or recommendation)
and a controller to provide subtask-specific actions (i.e. response for chitchat or candidate items
for recommendation). In addition, recent research on question-based conversational recommen-
dations (such as EAR (W. Lei et al., 2020) and FPAN (Xu et al., 2021)) follows a two-level
architecture with a policy network as a meta-controller to decide either to ask for more infor-
mation or to recommend items and a Factorisation Machine (FM) (Rendle, 2010) as a controller
to generate a set of recommendations (Gao et al., 2021). Different from the standard HRL
models, these question-based conversational recommendation models (Gao et al., 2021; W. Lei
et al., 2020; Xu et al., 2021) only optimise the meta-controller with RL algorithms (such as
REINFORCE (Williams, 1992)) to manage the conversational system, while the controller is
separately optimised with supervised learning approaches (such as BPR (Rendle, Freudenthaler,
Gantner, & Schmidt-Thieme, 2012)). However, to the best of our knowledge, no prior work
has investigated HRL in the multi-modal interactive recommendation task. In this chapter, we
leverage HRL with the Options framework by proposing a personalised multi-modal interactive
recommendation model (PMMIR) to effectively incorporate the users’ past interests and their
evolving current needs over time. In particular, the high-level agent for determining the subtasks
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is fully driven by the users’ natural-language feedback (we will describe this in Section 7.3).
Therefore, we mainly focus on modelling the cooperation of the low-level agents for estimating
the users’ past interests and tracking the users’ current needs over time in our proposed PMMIR
model.

7.3 The PMMIR Model

In this section, we begin by formulating the problem of the multi-modal interactive recommen-
dation task using hierarchical reinforcement learning within the framework of partially observ-
able semi-Markov decision processes (PO-SMDP) and we introduce the notations used in our
formulation (Section 7.3.1). Then, in Section 7.3.2, we propose a novel personalised multi-
modal interactive recommendation model (PMMIR) using dual GRUs, as well as dual Trans-
formers, to effectively incorporate the users’ preferences from both past interests through the
interaction history and the current needs via the real-time interactions. Finally, we define the
rewards and describe the learning algorithm for the multi-modal interactive recommendation
scenario (Section 7.3.3).

7.3.1 Preliminaries

This chapter focuses on investigating the personalised multi-modal interactive recommenda-
tion (MMIR) task within a hierarchical reinforcement learning (HRL) formulation, specifically
utilising the Options framework (Sutton, Precup, & Singh, 1999) in a partially observable en-
vironment. In such an environment, the users’ preferences can only be partially expressed with
the natural-language critiques at each turn (Chapter 4). Figure 7.2 (b) & (c) illustrate the state
transition process with hierarchical state representations for the personalised MMIR task.

PO-SMDP for Personalised MMIR

Figure 7.2 (a) shows the extension of a Markov decision process (MDP) with options (i.e. closed-
loop policies for taking action over a period of time (Sutton, Precup, & Singh, 1999)) into a
semi-Markov decision process (SMDP). In particular, the state trajectory of an MDP is made
up of discrete-time transitions. Meanwhile, SMDP is a type of MDP suitable for modelling
continuous-time discrete-event systems, therefore its state trajectory consists of continuous-time
transitions. Sutton, Precup, and Singh (1999) defined a set of options over an MDP as a semi-
Markov decision process (SMDP), which enables an MDP trajectory to be analysed in either
discrete-time transitions or continuous-time transitions. In this chapter, we adopt a partially
observable semi-Markov decision process (PO-SMDP, as shown in Figure 7.2 (b)) for the per-
sonalised MMIR task with two low-level agents for addressing the subtasks: (1) estimating the
users’ past interests from their interaction history using a history encoder as a Markov decision
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(a) Options over MDP (Sutton, Precup, & Singh, 1999) (b) PO-SMDP for PMMIR

(c) State Transition Process

Figure 7.2: State transition process with hierarchical state representations for the personalised
MMIR task.

process (MDP), and (2) tracking the users’ current needs from the real-time interactions using
a state tracker as a partially observable Markov decision process (POMDP). The subtasks for
taking actions can be selected in sequence with a fixed high-level agent according to the users’
requests in natural language following the example of the interaction process in Figure 7.1. The
history encoder is initiated as a one-step option for the initial personalised recommendations
corresponding to the request for recommending “some shoes for women” in Figure 7.1. The
history encoder is then terminated and the state tracker is initiated when the user requests “shoes
that are brown leather with an ankle strap”. Since the high-level agent for determining the sub-
tasks is fully driven by the users’ natural-language feedback, we mainly focus on modelling the
cooperation of the low-level agents for addressing the MMIR task.

Notations

We specifically approach the multi-modal interactive recommendation (MMIR) process as a
partially observable semi-Markov decision process (PO-SMDP) with a tuple consisting of eight
elements (S ,A ,C ,O,R,T ,P,γ), where:

• S is a set of states (i.e. the users’ preferences),

• A is a set of actions (i.e. the items for recommendations),
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• C is a set of observations (i.e. the users’ natural-language critiques),

• O is a set of options (i.e. options for selecting subtasks, either estimating past interests or
tracking current needs),

• R is the reward function,

• T is a set of transition probabilities between states,

• P is a set of transition probabilities between options, and

• γ ∈ [0,1] is the discount factor for future rewards.

The estimated users’ preferences at turn t are denoted by st ∈ S . When the recommender
system (i.e. the agent) provides a ranking of K items, at ∈ A (at,≤K = (at,1, ...,at,K)) and re-
ceives a natural-language critique ct ∈ C and a reward rt ∼ R(st ,at), the estimated preferences
st change in accordance with the transition distribution, st+1 ∼ T (st+1|st ,at ,ct). A recom-
mender system acts according to its policy π(at+1|a≤t ,c≤t) by returning the probability of se-
lecting action at at turn t, where a≤t = (a0, ...,at) and c≤t = (c0, ...,ct) are the action and cri-
tique histories, respectively. Figure 7.2 (b) shows that the personalised multi-modal interactive
recommendation process starts with the past interests s0 estimated from the users’ interaction
history (ap

1 , ...,a
p
n) with the past hidden states (hp

0 , ...,h
p
n) while following with the current needs

st(t ̸= 0) tracked from the users’ real-time interactions (i.e. the sequence of the critiqued items
(ac

0, ...,a
c
t ) and the sequence of the corresponding critiques (c0, ...,ct)) with the current hid-

den states (hc
0, ...,h

c
t ). Generally, for a partially observable semi-Markov decision process (PO-

SMDP), the recommender system’s goal is to learn policies πφ (i.e. the history encoder) and πθ

(i.e. the state tracker) that maximise the expected future return over trajectories τ = ((a0,≤K,c0),
..., (aT,≤K,cT )) induced by the policies. Note that we assume that the users seek a single target
item based on its visual features, have a single history session for estimating their past inter-
ests, and interact with the recommender system within a single interaction session. We leave
the handling of more complex situations (such as multiple target items based on both visual &
non-visual features (such as brands, prices, and sizes) across multiple interaction sessions) in
the multi-modal interactive recommendation task as interesting future work.

7.3.2 The Model Architecture

We propose a personalised multi-modal interactive recommendation model (PMMIR) compris-
ing multi-modal encoders, a history encoder, and a state tracker. In particular, both GRU and
Transformer encoders are two popular neural networks for sequence modeling and state tracking.
Therefore, our proposed PMMIR model can adopt either GRU or Transformer as the history en-
coder and/or state tracker. Here, we consider two versions of PMMIR: PMMIRGRU with GRUs
only and PMMIRTrans f ormer with Transformers only. Figure 7.3 shows our proposed end-to-end
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(a) PMMIRGRU

(b) PMMIRTrans f ormer

Figure 7.3: The proposed personalised multi-modal interactive recommendation (PMMIR)
model with hierarchical state representations.

personalised multi-modal interactive recommendation model (PMMIR) with hierarchical state
representations based on GRUs (Figure 7.3 (a) with PMMIRGRU ) and Transformers (Figure 7.3
(b) with PMMIRTrans f ormer). In the following, we describe the major components of our PM-
MIR models.

The Multi-Modal Encoders To properly represent the system’ recommendations and the
users’ feedback, we leverage visual and textual encoders for encoding the images of the rec-
ommendations and the natural-language critiques into embedded vector representations, respec-
tively. In particular, both images of recommendations and natural-language critiques made by
users can be encoded with a pre-trained vision-language model, called CLIP (Radford et al.,
2021), as the unified visual and textual representations. There are also other alternatives for the
multi-modal encoders (Guo et al., 2018; H. Wu et al., 2021), for instance the pre-trained lan-
guage models (such as GloVe (Pennington et al., 2014) and BERT (Devlin et al., 2019a)) for text
and the pre-trained vision models (such as ResNet (K. He et al., 2016) and ViT (Dosovitskiy et
al., 2020)) for images. Compared to these alternative encoders, CLIP has the capability of pro-
viding a single representation vector for each modality with the same dimensionality. We denote
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the multi-modal encoders for encoding a visual item a as a
′
=CLIPimg(a) and a textual critique

c as c
′
= CLIPtxt(c). Note that we directly use a and c to denote their encoded representations

(i.e. a
′
and c

′
), respectively.

The History Encoder The users’ interaction history (i.e. a sequence of the interacted items
ap

1:n = (ap
1 , ...,a

p
n)) can be first encoded with the above visual encoder CLIPimg(·). To estimate

the users’ past interests, we adopt a gated recurrent unit (GRU) (Chung et al., 2014) as the history
encoder (similar to the GRU4Rec (Hidasi et al., 2016) model for sequential recommendations)
for encoding the past hidden states as follows:

hp
n = GRU past(hp

n−1,a
p
n) (7.1)

The last hidden state hp
n of GRU past(·) is further mapped with a linear layer as the overall-

representation of the users’ past interests (i.e. the initial state s0 = Linear(tanh(hp
n)) for the

MMIR task).
Alternatively, we can adopt a Transformer encoder (see Section 2.1) as the history encoder

(similar to the SASRec (Kang & McAuley, 2018) model for sequential recommendations) by
directly processing the sequence of the interacted items ap

1:n as the input, while averaging the
output embeddings with Mean(·). Note that we also use hp

n to denote the estimated historical
preferences using a Transformer encoder as follows:

hp
n = Mean(Trans f ormerpast(ap

1:n)) (7.2)

The State Tracker To incorporate the users’ current needs over time from the visual recom-
mendations and the corresponding natural-language feedback, we leverage a simple concatena-
tion operation for the multi-modal feature fusion, as in (Guo et al., 2018; H. Wu et al., 2021) and
then a state tracker (either based on a GRU (Guo et al., 2018) or a Transformer encoder (H. Wu
et al., 2021)) for estimating the users’ interaction states. In particular, both the visual and textual
representations are concatenated and then mapped into a low dimensional space as input to a
subsequent GRU-based state tracker to model the user’s current needs at each turn t.

xt−1 = Linear([ac
t−1,ct−1]) (7.3)

hc
t = GRUcurrent(hc

t−1,xt−1) (7.4)

We argue that the users usually hold a certain preference state (such as the estimated past pref-
erence state hp

n) when they start seeking their current needs in a real-time interaction session. To
this end, the initial hidden state hc

0 of the state tracker GRUcurrent(·) can be initialised by the last
hidden state hp

n of the history encoder GRU past(·), that is hc
0 = hp

n . In addition, the hidden state
hc

t at each turn t (t ̸= 0) is further mapped with a linear layer into the estimated users’ current
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needs (i.e. st = Linear(hc
t )).

Similarly, a Transformer-based state tracker concatenates and encodes all previous visual
and textual representations:

hc
t = Mean(Trans f ormercurrent([hc

0,a
c
0,c0, ...,ac

t−1,ct−1])) (7.5)

The last hidden state hp
n of the history encoder Trans f ormerpast(·) is concatenated as the in-

put of Trans f ormercurrent(·), that is hc
0 = hp

n . In addition, the hidden state hc
t at each turn

t (t ̸= 0) is further mapped with a linear layer into the estimated users’ current needs (i.e.
st = Linear(tanh(hc

t ))).
Considering the estimated state st representing the user’s preferences, we adopt a greedy

policy (Guo et al., 2018; Y. Wu et al., 2021) by recommending the top-K candidate items at,≤K =

(at,1, ...,at,K) for the next action. More specifically, we choose the top-K items that are closest
to st in the multi-modal (i.e. visual and textual) feature space using the Euclidean distance:
at,≤K ∼ KNNs(st), where KNNs(·) represents a softmax distribution over the top-K nearest
neighbours of st and at,≤K = (at,1, ...,at,K). Furthermore, we incorporate a post-filtering step to
eliminate any candidate item from the ranking list that has already been shown to the user based
on the real-time interaction history a≤t as Chapter 4.

7.3.3 The Learning Algorithm

To optimise PMMIR, we leverage a two-stage optimisation method following (Guo et al., 2018)
with a supervised learning (SL) loss for initialising the policies and then a reinforcement learning
(RL) loss for further improving the performances.

Supervised Learning

We initialise PMMIR with a supervised pre-training process to improve the sample efficiency
during the RL training process. In particular, we leverage a triplet loss objective L(πφ ,πθ ) as
in (Guo et al., 2018) to jointly pre-train the recommendation policies πφ (for estimating the past
interests) and πθ (for tracking the current needs):

max L(πφ ,πθ ) =
T

∑
t=0

max (0, l2(st ,a+)− l2(st ,a−)+ ε) (7.6)

where φ ∈ R and θ ∈ R denote policy parameters. l2(·) denotes the l2 distance. a+ is the target
item and a− is a randomly sampled item from the candidate pool. ε is a constant for the margin
to keep the negative samples a− far apart.
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Reinforcement Learning

The objective of policy optimisation with RL is to find the target item via the policies πφ and πθ

that maximise the expectation of the cumulative return:

max J(πφ ,πθ ) = max E
τ∼πφ ,πθ

[R(τ)], where R(τ) =
T

∑
t=0

γ
tr(st ,at,≤K) (7.7)

where R(τ) is the discounted cumulative reward, and T is the maximum turn in the interaction
trajectory. The expectation is taken over trajectories τ = ((a0,≤K,c0), ..., (aT,≤K,cT )).

We adopt a policy gradient method (e.g., REINFORCE (Williams, 1992)) for PO-SMDP to
further optimise our PMMIR model. Indeed, the policy gradient methods have been shown to
be more stable with a small learning rate (M. Chen et al., 2019) compared to the value-based
methods (such as DQN (Mnih et al., 2013)). Specifically, the gradient of Equation (7.7) can be
computed as follows:

∇J(πφ ,πθ ) = E
τ∼πφ ,πθ

[
T

∑
t=0

∇ logπ(at,≤K|st)R(τ)] (7.8)

We define logπ(at,≤K|st) as a softmax cross-entropy objective to identify the positive sample
(i.e. the target item a+) amongst a set of hard negative samples (i.e. the rejected items a−j ( j ∈
[1,J])):

logπ(at,≤K|st) = log(
esim(st ,a+)

esim(st ,a+)+∑
J
j=1 esim(st ,a−j )

) (7.9)

where sim(·) is a similarity kernel that can be the dot product or the negative l2 distance in our
experiments.

Finally, we define the reward r(st ,at,≤K) as the sum of the similarities between all the top-K
candidates and the target item:

r(st ,at,≤K) =
K

∑
i=1

sim(at,i,a+) (7.10)

Training Procedure

We also present the training procedure of our PMMIR model for PO-SMDP with REINFORCE
in Algorithm 7.1. To facilitate the training processes, a user simulator (see Section 3.3) is
adopted as a substitute for real human users. Further information regarding the specific user
simulator employed is discussed in Section 7.4.2. As shown in Algorithm 7.1, the recommender
policies πφ and πθ aim to maximise the expected rewards by properly cooperating with each
other.
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Algorithm 7.1 Training procedure of PMMIR
Input: User-item interaction sequence set X , history encoder πφ , and state tracker πθ ,
discount factor γ , learning rates ηsl > ηrl
Output: All learned parameters φ , and θ

1: Initialise all trainable parameters
2: Pre-train πφ & πθ with Eq. (7.6)
3: Load all parameters with weights from pre-training
4: repeat
5: Draw a batch of (ap

1:n,a
target) from X

6: Start with πφ for estimating the past interests
7: Generate hp

n from ap
1:n with Eq. (7.1)/Eq. (7.2)

8: Map hp
n into s0

9: Switch into πθ for tracking the current needs
10: Initialise hc

0 = hp
n

11: for t = 0, 1, ... T do
12: Sample at,≤K = (at,1, ...,at,K) with st
13: Receive a critique ct with a user simulator
14: Calculate a reward r(st ,at,≤K) with Eq. (7.10)
15: if t==0 then
16: Calculate logπ(st ,at ;φ) with Eq. (7.9)
17: else
18: Calculate logπ(st ,at ;θ) with Eq. (7.9)
19: end if
20: Estimate and update next state st+1
21: end for
22: Calculate R(τ) with Eq. (7.7)
23: Perform updates by ∇J(πφ ,πθ ) with Eq. (7.8)
24: until converge
25: return all parameters of policies φ , and θ
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7.4 Experimental Setup

We proceed to evaluate the effectiveness of our proposed PMMIR model, along with its two
variants (PMMIRGRU and PMMIRTrans f ormer), in comparison to existing approaches from the
literature. In particular, we aim to address the following three research questions:
• RQ7.1: Is there a significant improvement in the performance of our proposed PMMIR model
compared to the existing state-of-the-art baseline models in the multi-modal interactive recom-
mendation task?
• RQ7.2: Can both cold-start and warm-start users benefit from our proposed PMMIR model?
• RQ7.3: What are the impacts of the components of the PMMIR model (such as hc

0 = hp
n and

CLIP backbones) and the introduced hyper-parameters (such as γ & K) on the overall perfor-
mance?

7.4.1 Datasets & Setup

Datasets Since there is no existing dataset suitable for the personalisation setting of the multi-
modal interactive recommendation task, we derive two datasets (i.e. Amazon-Shoes and Amazon-
Dresses) for providing the user-item interaction sequences from two well-known public fashion
datasets, i.e. Amazon Review Data (2014)1 and Amazon Review Data (2018)2 with the “Cloth-
ing, Shoes and Jewelry” category. In particular, we derive the Amazon-Shoes dataset by in-
cluding various types of shoes for women (such as “Athletic”, “Boot”, “Clog”, “Flat”, “Heel”,
“Pump”, “Sneaker”, “Stiletto”, and “Wedding”) from the “Clothing, Shoes and Jewelry” cate-
gory of Amazon Review Data (2014). Meanwhile, we also derive the Amazon-Dresses dataset
by including the fashion products with the “dress” label for women from the “Clothing, Shoes
and Jewelry” category of Amazon Review Data (2018). On both derived datasets, we construct
the user-item interaction sequences by concatenating the IDs of a user’s purchased items accord-
ing to their interaction timestamps. Table 7.1 summarises the statistics of the Amazon-Shoes and
Amazon-Dresses datasets. Our both derived datasets are open to the public via the anonymised
link in the abstract. Both datasets provide an image for each fashion product. In addition, for
training/testing the user simulators, we use two well-known fashion datasets, namely the Shoes

and Fashion IQ Dresses datasets (discussed in Section 3.3.2) for relative captioning with the pro-
vided triplets (i.e. ⟨atarget , acandidate, ccaption⟩). The relative captions (ccaption) of the image pairs
(atarget and acandidate) describe the attributes of the target item atarget that is missing in candidate
item acandidate in natural language, and have been written by real users via crowd-sourcing. The

1 http://jmcauley.ucsd.edu/data/amazon/index_2014.html 2 https://
nijianmo.github.io/amazon/

http://jmcauley.ucsd.edu/data/amazon/index_2014.html
https://nijianmo.github.io/amazon/
https://nijianmo.github.io/amazon/
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Table 7.1: Datasets’ statistics.
Dataset Total Items Train Users Test Users Lengths

Amazon-Shoes 31,940 14,892 3,722 3-9
Amazon-Dresses 18,501 13,657 3,414 4-9

Shoes dataset contains 10,751 triplets in total, while the Fashion IQ Dresses dataset provides
11,970 and 4,034 triplets for training and testing, respectively.

Setup As described in Algorithm 7.1, we leverage a two-stage training procedure for opti-
mising the PMMIR model3 following (Guo et al., 2018). In particular, we first pre-train and
initialise the PMMIR model with the supervised learning (SL) setting using a learning rate
ηsl = 10−3 (Guo et al., 2018) and then further optimise the PMMIR model in the reinforcement
learning (RL) setting using a learning rate ηrl = 10−5 (Guo et al., 2018). We use Adam (Kingma
& Ba, 2014) with Eq. (7.6) and Eq. (7.8) for optimising the PMMIR model’s parameters, respec-
tively. The pre-trained CLIP image and text encoders are loaded with the “ViT-B/32” check-
point4, and the visual and textual embedding dimensionalities of the multi-modal feature space
are both set to 512. The batch size is set to 128 following the setting in (Guo et al., 2018). The
maximum number of epochs for SL & RL training is set to 20 with early stopping, while the
maximum number of interaction turns is set to 10. At each interaction turn for both training and
testing, the recommender system provides the top-K (i.e. K = 3) items as a recommendation.
For the RL stage, the number of hard negative samples (i.e. J) is set to 5, following (Y. Wu et
al., 2021). The similarity kernel sim(·) in Equation (7.9) is set to be the dot product by default
with the normalised visual and textual representations. If not mentioned otherwise, the discount
factor γ is set to 0.2. We consider users with the least interactions (3 interactions on Amazon-
Shoes and 4 interactions on Amazon-Dresses) as cold-start users, while the other users with
longer interaction sequences are considered as warm-start users. For each user-item interaction
sequence, we leave the last interaction as the user’s target item (i.e. the current needs) and the
previous sequence of interactions as the users’ interaction history (i.e. the past interests).

7.4.2 Online Evaluation & Metrics

Online Evaluation The success of the personalised MMIR task is measured by the number of
interaction turns to obtain the target item(s) and the rank of the target item(s) in each interaction
turn. We evaluate the effectiveness of our proposed PMMIR model for personalised multi-modal
interactive recommendation in comparison to the existing approaches from the literature based
on an online evaluation approach (mentioned in Section 3.2.2). Figure 3.5 shows an example
of online evaluation with top-K (e.g., K = 3) recommendation across multi-turn interactions in

3 The code and datasets for this chapter are publicly available in https://github.com/yashonwu/
pmmir 4 https://github.com/openai/CLIP

https://github.com/yashonwu/pmmir
https://github.com/yashonwu/pmmir
https://github.com/openai/CLIP


CHAPTER 7. PERSONALISATION FOR COLD-START & WARM-START USERS 131

the personalised MMIR scenario. In this scenario, the recommender system ranks all the items
and shows the top-K items as the recommendations at each turn. Meanwhile, a user browses the
exposed top-K items, gives a natural-language critique on the most preferred item and rejects
the others at each turn. In particular, the figure illustrates how a user can find the desired item
through multi-turn interactions. Following the methodology in Chapters 4 & 5, we measure the
effectiveness of the interactive recommendation models at interaction turn M. On the other hand,
the user may check more items in the ranking list at each turn, down to rank N.

User Simulators In both the optimisation and evaluation processes, user simulators have been
employed as substitutes for real human users in the context of relative captioning tasks (see
Section 3.3). Indeed, the user simulator can actively interact with the recommender system
to provide various real-time natural-language feedback, thereby allowing to learn satisfactory
multi-modal interactive recommender systems with enough training data. In particular, we adopt
a user simulator with the Show, Attend, & Tell (Xu et al., 2015) model trained with triplets from
Shoes by using the checkpoint5 (Berg et al., 2010; Guo et al., 2018) provided by Guo et al. (Guo
et al., 2018). In addition, we adopt the VL-Transformer model introduced in (H. Wu et al., 2021;
Y. Wu, Macdonald, & Ounis, 2022b) as a user simulator, specifically trained on triplets extracted
from the Fashion IQ Dresses dataset, following the setting6 in (H. Wu et al., 2021; Y. Wu, Mac-
donald, & Ounis, 2022b) and using the checkpoint from Chapter 5. Both user simulators are
deployed by using an image captioning tool (called ImageCaptioning.pytorch7 (Luo, Price, Co-
hen, & Shakhnarovich, 2018)). Following previous work (described in Section 3.1 and previous
chapters), we assume that the user simulator only gives a natural-language critique on a single
recommended item (the most similar to the target item) at each turn by describing the desired
attributes in the target item that are missing in the recommended item. Such simplification is
necessitated by the existing available datasets and the availability of accurate user simulators.

Metrics We measure the effectiveness of the multi-modal interactive recommendations at in-
teraction turn M in terms of Normalised Discounted Cumulative Gain (NDCG@N truncated at
rank N = 3, described in Section 2.1.3) and Success Rate (SR, described in Section 3.2.2). To
assess the quality of the ranking lists, the Normalized Discounted Cumulative Gain (NDCG)
metric emphasises the importance of higher ranks compared to lower ones. On the other hand,
the Success Rate (SR) metric measures the percentage of users for whom the target image was
successfully retrieved within a specific number of interactions, denoted as M within the range
of 1 to 10. For significance testing, we employ both evaluation metrics, namely NDCG@3 and
SR, at the 5th and 10th interaction turns.
5 https://github.com/XiaoxiaoGuo/fashion-retrieval 6 https://github.com/
XiaoxiaoGuo/fashion-iq 7 https://github.com/ruotianluo/
ImageCaptioning.pytorch

https://github.com/XiaoxiaoGuo/fashion-retrieval
https://github.com/XiaoxiaoGuo/fashion-iq
https://github.com/XiaoxiaoGuo/fashion-iq
https://github.com/ruotianluo/ImageCaptioning.pytorch
https://github.com/ruotianluo/ImageCaptioning.pytorch
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7.4.3 Baselines

We conduct a comparative analysis between our proposed PMMIR model variants (PMMIRGRU

and PMMIRTrans f ormer) and existing state-of-the-art baseline models, including their extensions,
for the multi-modal interactive recommendation (MMIR) task.

The first group of baseline models are all based on GRUs in order to compare with PMMIRGRU :
• GRUhist : The GRUhist model is adapted from the GRU4Rec (Hidasi et al., 2016) model for
sequential recommendations. It adopts a GRU to model the user-item interaction history with
images.
• GRUimg+txt : The GRUimg+txt model (or called Dialog Manager (DM) (Guo et al., 2018))
leverages a single GRU as a state tracker with images of items and natural-language critiques as
its inputs for addressing the multi-modal interactive recommendation task.
• EGE (Chapter 4): Estimator-Generator-Evaluator (EGE) is also a GRU-based model for
MMIR. It uses a multi-task learning approach to optimise the model, combining a cross-entropy
classification loss for supervised learning and a Q-learning prediction loss for reinforcement
learning.
• GRU-EGE: To provide strong baseline models for the personalised MMIR task considering
both the users’ past interests and the current needs, we integrate the existing sequential recom-
mendation model (i.e. GRUhist) and the RL-based MMIR model (i.e. EGE) within a pipeline.
In particular, the sequential recommendation model estimates the users’ past interests from the
interaction history and provides the initial recommendations, while the RL-based MMIR model
tracks the users’ current needs from the real-time interactions and updates the subsequent rec-
ommendations.
• GRUall: We extend a single GRU for both estimating the users’ past interests and tracking
the users’ current needs. We optimise the GRUall model with a triplet loss (i.e. GRUall-SL) and
then extend it with REINFORCE (Sutton & Barto, 2018) (i.e. GRUall-RL) to further improve
the performance by maximising the long-term rewards.

The next group of baseline models are based on Transformers in order to compare with
PMMIRTrans f ormers:
• Transformerhist : The Transformerhist model is adapted from the SASRec (Kang & McAuley,
2018) model for sequential recommendations, which adopts a Transformer encoder to model the
user-item interaction history with images and predict the target item.
• Transformerimg+txt & MMT: The Transformerimg+txt model, also called Multi-Modal Inter-
active Transformer (H. Wu et al., 2021; Y. Wu, Macdonald, & Ounis, 2022a), is a state-of-the-art
multi-modal interactive recommendation model. It incorporates a Transformer encoder to di-
rectly attend to the entire multi-modal real-time interaction sequences, encompassing the users’
textual feedback and the system’s visual recommendations. We optimise the Transformerimg+txt

model with a triplet loss and then extend it with REINFORCE (denoted by MMT) to further
improve the performance by maximising the long-term rewards.
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• Transformer-MMT: Similar to GRU-EGE, we also make both well-trained Transformerhist

and MMT models into a pipeline for making personalised initial recommendations with Transformerhist

and updating the subsequent recommendation during the real-time interactions with Trans-
former.
• Transformerall: We also extend a single Transformer encoder for both estimating the users’
past interests and tracking the users’ current needs. We optimise Transformerall with a triplet
loss (Transformerall-SL) and then extend it with REINFORCE (Transformerall-RL) to further
improve the performance by maximising the long-term rewards.

Although there are a few more attention-based/Transformer-based sequential recommenda-
tion models (such as BERT4Rec (F. Sun et al., 2019) and Transformers4Rec (de Souza Pereira Mor-
eira, Rabhi, Lee, Ak, & Oldridge, 2021)) and multi-modal interactive recommendation models
(such as MMRAN (Chapter 5) with a RNN-enhanced Transformer structure), they can make
the PMMIR model overly complex compared to using a simple GRU-based/Transformer-based
history encoder. We leave the integration of these more advanced sequential recommendation
models for estimating past interests and multi-modal interactive models for tracking the cur-
rent needs as future work. In addition to the above baseline models for the MMIR task, we also
investigate variants of PMMIR for ablation studies. Such variants can also act as solid baselines:
• PMMIR w/o hc

0 = hp
n : The “PMMIR w/o hc

0 = hp
n” variant initialises the initial hidden state

hc
0 of the state tracker randomly instead of using hc

0 = hp
n .

• PMMIR w/ Linearimg/txt : The “PMMIR w/ Linearimg/txt” variant adds both a Linearimg layer
in the image encoder and a Lineartxt layer in the textual encoder for fine-tuning the CLIP visual
and textual representations. The parameters of both the Linearimg and Lineartxt layers are frozen
during the RL training procedure following (Guo et al., 2018; Y. Wu et al., 2021).
• PMMIR w/ “RN101”: The “PMMIR w/ RN101” variant replace the ViT-based CLIP check-
point (i.e. “ViT-B/32”) with a ResNet101-based (K. He et al., 2016) CLIP checkpoint (i.e.
“RN101”).

For fair comparisons, all of the tested baseline models and variants use CLIP to encode the
text and image as the backbone representations (as described in Section 7.3.2). Although there
are a few more other models with different formulations for the interactive recommendation task
(e.g., RCR (R. Zhang et al., 2019), EAR (W. Lei et al., 2020), CRM (Y. Sun & Zhang, 2018),
and SGR (Y. Wu, Liao, et al., 2022)), these models are not comparable with our scenario due
to requiring additional attributes of items for learning (Haque & Wang, 2022; Yu, Shen, Zhang,
et al., 2019; Yuan & Lam, 2021; R. Zhang et al., 2019), requiring a multi-modal knowledge
graph for reasoning (Y. Wu, Liao, et al., 2022), or their inability to incorporate both the textual
and visual modalities during the recommendation process (W. Lei et al., 2020; Y. Sun & Zhang,
2018).
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(a) PMMIRGRU on Shoes (b) PMMIRTrans f ormer on Shoes

(c) PMMIRGRU on Dresses (d) PMMIRTrans f ormer on Dresses

Figure 7.4: Comparison of the recommendation effectiveness in terms of SR between our pro-
posed PMMIR model variants (PMMIRGRU and PMMIRTrans f ormer) and the baseline models

at various interaction turns with top-3 recommendations on both datasets.

7.5 Experimental Results

In this section, we present an analysis of the experimental results in relation to the three research
questions outlined in Section 7.4, in order to demonstrate the effectiveness of our proposed PM-
MIR model. Specifically, we address the overall effectiveness of the PMMIR model variants
(PMMIRGRU and PMMIRTrans f ormer) for multi-modal interactive recommendations (RQ7.1,
discussed in Section 7.5.1), its performance on both cold-start and warm-start users (RQ7.2,
detailed in Section 7.5.2), and the impact of various components and hyperparameters (RQ7.3,
covered in Section 7.5.3). To further consolidate our findings, we provide a use case based on
the logged experimental results in Section 7.5.4.
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Table 7.2: The recommendation effectiveness of our proposed PMMIR model variants
(PMMIRGRU and PMMIRTrans f ormer) and the baseline models at the 5th and 10th turns on the
Amazon-Shoes and Amazon-Dresses datasets.

Input Type Learning Amazon-Shoes Amazon-Dresses
Turn 5 Turn 10 Turn 5 Turn 10

Models hist img txt Type NDCG@3 SR NDCG@3 SR NDCG@3 SR NDCG@3 SR

GRU

GRUhist ✓ ✗ ✗ SL 0.0131* 0.0134* 0.0198* 0.0201* 0.0435* 0.0445* 0.0638* 0.0644*
GRUimg+txt ✗ ✓ ✓ SL 0.1342* 0.1421* 0.2635* 0.2705* 0.3015* 0.3145* 0.4658* 0.4703*
GRUall-SL ✓ ✓ ✓ SL 0.1520* 0.1606* 0.2740* 0.2796* 0.3204* 0.3315* 0.4653* 0.4703*
PMMIRGRU -SL ✓ ✓ ✓ SL 0.1564* 0.1647* 0.2925* 0.2998* 0.3441* 0.3552* 0.4966* 0.5019*
EGE ✗ ✓ ✓ RL 0.1970* 0.2095* 0.3644* 0.3712* 0.3825* 0.4012* 0.5885* 0.5950*
GRU-EGE ✓ ✓ ✓ SL/RL 0.2160* 0.2310* 0.3746* 0.3809* 0.4102* 0.4243* 0.6114* 0.6193*
GRUall-RL ✓ ✓ ✓ RL 0.2160* 0.2272* 0.3821* 0.3876* 0.4573* 0.4712* 0.6587* 0.6659*

PMMIRGRU ✓ ✓ ✓ RL 0.2299 0.2412 0.4120 0.4196 0.4748 0.4878 0.6766 0.6843
% Improvement - - - - 6.44 4.42 7.83 8.26 3.83 3.52 2.72 2.76

Transformer

Transformerhist ✓ ✗ ✗ SL 0.0104* 0.0107* 0.0149* 0.0150* 0.0213* 0.0228* 0.0411* 0.0422*
Transformerimg+txt ✗ ✓ ✓ SL 0.1102* 0.1176* 0.2235* 0.2286* 0.2603* 0.2735* 0.4343* 0.4436*
Transformerall-SL ✓ ✓ ✓ SL 0.1122* 0.1179* 0.2138* 0.2192* 0.2425* 0.2553* 0.3927* 0.3994*
PMMIRTrans f ormer-SL ✓ ✓ ✓ SL 0.1245* 0.1311* 0.2472* 0.2536* 0.2842* 0.2937* 0.4419* 0.4498*
MMT ✗ ✓ ✓ RL 0.2220* 0.2302* 0.3894* 0.3973* 0.4721* 0.4867* 0.6759* 0.6826*
Transformer-MMT ✓ ✓ ✓ SL/RL 0.2258* 0.2340* 0.3935* 0.4013* 0.4798* 0.4958* 0.6789* 0.6858*
Transformerall-RL ✓ ✓ ✓ RL 0.2289* 0.2412* 0.3919* 0.3989* 0.4950* 0.5086* 0.6809* 0.6876*

PMMIRTrans f ormer ✓ ✓ ✓ RL 0.2390 0.2517 0.4207 0.4276 0.5261 0.5394 0.7107 0.7171
% Improvement - - - - 4.41 4.35 6.91 6.55 6.28 6.06 4.38 4.29

7.5.1 PMMIR vs. Baselines (RQ7.1)

To address RQ7.1, we investigate the performance of our proposed PMMIR model variants
(PMMIRGRU and PMMIRTrans f ormer) and the baseline models. Figure 7.4 depicts the recom-
mendation effectiveness of our proposed PMMIR model variants, along with the corresponding
baseline models, for top-3 recommendations in terms of Success Rate (SR) on the Amazon-

Shoes and Amazon-Dresses datasets. Specifically, Figure 7.4 (a) and (c) represent the results
using PMMIRGRU , while Figure 7.4 (b) and (d) correspond to PMMIRTrans f ormer. The x-axis
indicates the number of interaction turns. Comparing the results presented in Figure 7.4, we can
observe that our proposed PMMIR model variants consistently outperform the baseline models
in terms of Success Rate (SR) across different interaction turns (in particular from 4th to 10th
turns). This indicates the superior overall performance of our PMMIR models. As the num-
ber of interaction turns increases, the differences in effectiveness between our PMMIR models
and the baseline models become more pronounced, as observed from the increasing gaps in
Success Rate (SR). This suggests that our PMMIR models demonstrate a stronger performance
advantage over the baseline models as the interaction process unfolds. We can also observe the
same trends on NDCG@3. We omit their reporting in a figure to reduce redundancy. The bet-
ter overall performance of PMMIR suggests that our PMMIR model can better incorporate the
users’ preferences from both the interaction history and the real-time interactions compared to
the baseline models.

In order to quantify the improvements achieved by our proposed PMMIR model in com-
parison to the baseline models, we measure their performances in terms of Success Rate (SR)
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and Normalized Discounted Cumulative Gain at rank 3 (NDCG@3) at the 5th and 10th inter-
action turns. This enables us to assess the progress and effectiveness of our PMMIR model
at different stages of the interaction process. Table 7.2 presents the obtained recommendation
performances of the PMMIR model variants (PMMIRGRU and PMMIRTrans f ormer) and their cor-
responding baseline models. These baseline models include the GRU-based models (GRUhist ,
GRUimg+txt , GRUall-SL, EGE, GRU-EGE, and GRUall-RL) as well as the Transformer-based
models (Transformerhist , Transformerimg+txt , Transformerall-SL, MMT, Transformer-MMT, and
Transformerall-RL). The performances are evaluated using the same test datasets from the Amazon-

Shoes and Amazon-Dresses datasets at the 5th and 10th interaction turns. The table provides a
comprehensive overview of the recommendation performances, allowing for a direct compari-
son between the PMMIR model and the various baseline models. In Table 7.2, the best overall
performing results across the four groups of columns are highlighted in bold. * indicates a sig-
nificant difference, determined by a paired t-test with a Holm-Bonferroni multiple comparison
correction (p < 0.05), when compared to the PMMIR model within each group. Comparing
the results in the table, we observe that our proposed PMMIRGRU model consistently achieves
significantly better performances, with improvements on both metrics ranging from 4%-8% and
2%-4% on the Amazon-Shoes and Amazon-Dresses datasets, respectively, compared to the best
GRU-based baseline model. Similarly, the PMMIRTrans f ormer model also demonstrates similar
improvements, with performance gains ranging from 4%-7% and 4%-6% compared to the best
Transformer-based baseline model. These findings highlight the effectiveness of our proposed
PMMIR models in outperforming the baseline models across both datasets. Furthermore, it is
worth noting that the PMMIRTrans f ormer model, which is based on Transformers, generally out-
performs the PMMIRGRU model, which is based on GRUs, in terms of both metrics on both the
Amazon-Shoes and Amazon-Dresses datasets. This observation highlights the superiority of the
Transformer-based approach in achieving improved recommendation performances.

In response to RQ7.1, the results obtained clearly demonstrate that our proposed PMMIR
model variants exhibit a significant performance advantage over the state-of-the-art baseline
models. Therefore, our proposed PMMIR model with hierarchical state representations in PO-
SMDP can effectively incorporate the users’ preferences from both the interaction history and
the real-time interactions.

7.5.2 Cold-Start vs. Warm-Start Users (RQ7.2)

To address RQ7.2, we investigate the performance of our proposed PMMIR model on cold-
start and warm-start users. We classify users with the minimum interactions (3 interactions
on Amazon-Shoes and 4 interactions on Amazon-Dresses) as cold-start users, while those with
longer interaction sequences are categorized as warm-start users (as mentioned in Section 7.4.1).
This investigation aims to understand how effectively our model adapts to different user scenar-
ios and assess its performance in each case. Table 7.3 presents the performances of our PM-
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Table 7.3: Personalised multi-modal interactive recommendation effectiveness of our proposed
PMMIR model variants (PMMIRGRU and PMMIRTrans f ormer) and the baseline models on the
cold-start and warm-start users at the 10th turn on the Amazon-Shoes and Amazon-Dresses
datasets. * indicates a significant difference (p<0.05, paired t-test with Holm-Bonferroni correc-
tion) wrt. PMMIR for each group.

Amazon-Shoes Amazon-Dresses
NDCG@3 SR NDCG@3 SR

Models Cold Warm Overall Cold Warm Overall Cold Warm Overall Cold Warm Overall

GRU

EGE 0.3726* 0.3546* 0.3644* 0.3807 0.3600* 0.3712* 0.5876* 0.5892* 0.5885* 0.5935* 0.5963* 0.5950*
GRU-EGE 0.3764 0.3724* 0.3746* 0.3827 0.3787* 0.3809* 0.6120* 0.6109* 0.6114* 0.6210* 0.6179* 0.6193*
GRUall-RL 0.3827 0.3814* 0.3821* 0.3886 0.3864* 0.3876* 0.6575 0.6597* 0.6587* 0.6639 0.6676* 0.6659*

PMMIRGRU 0.4007 0.4253 0.4120 0.4089 0.4322 0.4196 0.6569 0.6933 0.6766 0.6665 0.6994 0.6843
% Improvement 4.70 11.51 7.83 5.22 11.85 8.26 -0.09 5.09 2.72 0.39 4.76 2.76

Transformer

MMT 0.3902* 0.3885 0.3894* 0.3980* 0.3964 0.3973* 0.6691* 0.6817 0.6759* 0.6754* 0.6886 0.6826*
Transformer-MMT 0.3973* 0.3889 0.3935* 0.4059* 0.3958 0.4013* 0.6894 0.6701* 0.6789* 0.6959 0.6773* 0.6858*
Transformerall-RL 0.3900* 0.3941 0.3919* 0.3970* 0.4011 0.3989* 0.6797* 0.6819 0.6809* 0.6869* 0.6881 0.6876*

PMMIRTrans f ormer 0.4352 0.4035 0.4207 0.4406 0.4122 0.4276 0.7168 0.7055 0.7107 0.7228 0.7124 0.7171
% Improvement 9.54 2.39 6.91 8.55 2.77 6.55 3.97 3.46 4.38 3.87 3.46 4.29

MIR model variants, as well as the RL-based and pipeline-based baseline models, in terms of
NDCG@3 and SR. The table is divided into two parts: the top part focuses on the GRU-based
models, while the second part pertains to the Transformer-based models. This division facilitates
a comprehensive comparison of the performances across different model types. Comparing the
results in Table 7.3, we observe that our proposed PMMIRGRU and PMMIRTrans f ormer models
can achieve better performances than the corresponding baseline models in terms of both metrics
on both cold-start and warm-start users on the two used datasets, except for the cold-start users
with PMMIRGRU in terms of NDCG@3 on Amazon-Dresses. The reported results in Table 7.3
show that both the cold-start and warm-start users can generally benefit from our proposed
PMMIR model variants with hierarchical state representations. In addition, we also observe
that the warm-start users can generally benefit more from the GRU-based variant compared
to the cold-start users. In particular, PMMIRGRU achieves improvements of 11-12% (warm-
start) vs. 4-5% (cold-start) on Amazon-Shoes and 4-5% (warm-start) vs. 0-1% (cold-start) on
Amazon-Dresses in terms of both metrics. Conversely, we observe that cold-start users can gen-
erally benefit more from the Transformer-based variant compared to warm-start users. In par-
ticular, PMMIRTrans f ormer achieves improvements of 8-9% (cold-start) vs. 2-3% (warm-start)
on Amazon-Shoes and 3.8-4.0% (cold-start) vs. 3.4-3.5% (warm-start) on Amazon-Dresses in
terms of both metrics. We postulate that this difference in performance on cold-start and warm-
start users between PMMIRGRU and PMMIRTrans f ormer can be attributed to the features of the
interaction history sequences and the different sequence modelling abilities of GRUs and Trans-
formers. The long sequences of purchases (warm-start users) can have a greater timespan and
can be noisy due to the users’ preferences drifting over time, while short sequences of purchases
(cold-start) can have a relatively smaller timespan but can be less informative in relating to the
users’ preferences. Meanwhile, GRUs (adopted by PMMIRGRU ) can effectively denoise the
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Table 7.4: Ablation study at the 10th turn. w/o and w/ denote that a component is removed or
replaced in PMMIR, respectively. Notation as per Table 7.3.

Amazon-Shoes Amazon-Dresses
GRU Transformer GRU Transformer

Models NDCG@3 SR NDCG@3 SR NDCG@3 SR NDCG@3 SR

PMMIR 0.4120 0.4196 0.4207 0.4276 0.6766 0.6843 0.7107 0.7171

1. w/o hc
0 = hp

n 0.4013 0.4102 0.4074 0.4155 0.6658 0.6714 0.6835* 0.6899*
2. w/ Linearimg/txt 0.3966 0.4048 0.3510* 0.3575* 0.6462* 0.6530* 0.6252* 0.6322*
3. w/ “RN101” 0.3891 0.3954* 0.3914* 0.4024* 0.6338* 0.6392* 0.6913* 0.6969*

sequences with their internal forgetting mechanism with a forget gate, while the Transformer
encoders (adopted by PMMIRTrans f ormer) have stronger sequence modelling abilities due to the
complex neural structures but have been shown to be insufficient to address noisy items within
sequences (H. Chen et al., 2022).

In response to RQ7.2, we find that both cold-start and warm-start users can benefit from our
proposed PMMIR model. The warm-start users can generally benefit more with PMMIRGRU ,
while the cold-start users can generally benefit more with PMMIRTrans f ormer.

7.5.3 Impact of Components & Hyper-Parameters (RQ7.3)

To address RQ7.3, we investigate the impact of the components and the hyper-parameters of our
proposed PMMIR model.

Impact of Components Table 7.4 reports the performances of our PMMIR model with differ-
ent applied ablations in terms of NDCG@3 and SR. The original setting is shown in the top part
of the table. The PMMIR ablation variants (i.e. PMMIR w/o hc

0 = hp
n , PMMIR w/ Linearimg/txt ,

and PMMIR w/ “RN101”) are shown in the second part of the table. All the examined PMMIR
ablation variants perform generally worse than the corresponding original PMMIR model. The
results of PMMIR w/o hc

0 = hp
n suggest that our PMMIR model can benefit from the initialisa-

tion of the state tracker with the final hidden state of the history encoder. The results of PMMIR
w/ Linearimg/txt and PMMIR w/ “RN101” indicate that the CLIP model with the “ViT-B/32”
checkpoint can provide better visual and textual representations than the “RN101” checkpoint,
and further fine-tuning the CLIP embeddings is not necessary for our personalised MMIR task.

Impact of Hyper-Parameters Figure 7.5 depicts the effects of the reward discount factor
(γ ∈ [0,1]) when training the PMMIR model on both datasets and the number of exposed top-K
items (K ∈ [2,5]) in each ranking list in terms of SR at 10th turn, respectively. In our analysis,
we primarily compare the performances of our PMMIR model with different values of discount
factors (i.e. γ ∈ [0,1]) at the 10th interaction turn. Specifically, when the discount factor γ is
set to 0, it indicates that the model exclusively considers immediate rewards and does not take
future rewards into account. On the other hand, when γ is set to 1, the model assigns equal im-
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(a) γ for SR (b) K for SR

Figure 7.5: Comparison of the recommendation effectiveness at 10th turn with different γ and
K values.

portance to all future rewards and considers them on an equal footing. From Figure 7.5 (a), we
observe that there is a decreasing trend in the performance of PMMIRGRU on both datasets and a
decrease in the effectiveness of PMMIRTrans f ormer on Amazon-Shoes when the discount factor
γ increases from 0.2 to 1.0. We observe the same trend for PMMIRTrans f ormer on Amazon-
Dresses with γ ∈ [0.6,1.0]. This trend shows that both the history encoder and the state tracker
in PMMIR are more influenced by the immediate rewards than by future rewards. Addition-
ally, Figure 7.5 (b) highlights that the PMMIR model exhibits better performance when more
items are exposed to users at each interaction turn. This suggests that increasing the number
of items presented to users during the interaction process leads to improved recommendation
performance for PMMIR.

Overall, in response to RQ7.3, we find that the PMMIR model can generally benefit more
in terms of effectiveness from the hierarchical state representations, adequate multi-modal CLIP
encoders, using low values for the discount factor γ , and from more exposed top-K items.

7.5.4 Use Case

In this section, we present use cases of the multi-modal interactive recommendation task with/without
personalisation on the Amazon-Shoes dataset in Figure 7.6. In particular, the figure shows a
user’s interaction history and the next target item, as well as the interaction process for the
top-3 recommendations between the simulated users for the EGE and PMMIRGRU models that
are both based on GRUs. When the target item is listed in the recommendation list, the user
simulator will give a comment to end the interaction, such as “The 3rd shoes are my desired
shoes” in Figure 7.6 (c). Comparing the recommendations made by EGE and PMMIRGRU on
the Amazon-Shoes dataset, we can observe that our proposed PMMIRGRU model is able to find
the target items with fewer interaction turns compared to EGE – this is expected, due to the
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(a) The interaction history and the target

(b) EGE (c) PMMIRGRU

Figure 7.6: Example use cases for the multi-modal interactive recommendation task with EGE
(without personalisation) and PMMIRGRU (with personalisation) on Amazon-Shoes.

increased effectiveness of PMMIRGRU shown in Section 7.5.1. In addition, our PMMIRGRU

model is more effective at incorporating the users’ preferences from both the users’ interaction
history and the real-time interactions. For instance, our PMMIRGRU model suggests person-
alised recommendations with different “high-heeled sandals” at the initial interaction turn, then
easily finds the target items with a critique “tan with a higher heel” at the next turn. Meanwhile,
the EGE model can only randomly sample items as the initial recommendations, but the “high
heel” feature is missing in the initial recommendation, which leads to the EGE model’s failure
in finding the target item at the next turn. We observed similar trends and results in other use
cases involving other baseline models compared to the PMMIR variants on the Amazon-Shoes

and Amazon-Dresses datasets. We omit their reporting in this chapter to reduce redundancy.

7.6 Conclusions

In this chapter, we proposed a novel personalised multi-modal interactive recommendation
model (PMMIR) using hierarchical reinforcement learning with the Options framework to more
effectively incorporate the users’ preferences from both their past and real-time interactions.
Specifically, PMMIR decomposes the personalised interactive recommendation process into a
sequence of two subtasks with hierarchical state representations: a first subtask where a history

encoder learns the users’ past interests with the hidden states of history for providing person-
alised initial recommendations, and a second subtask where a state tracker estimates the current
needs with the real-time estimated states for updating the subsequent recommendations. The
history encoder and the state tracker are jointly optimised with a single optimisation objective



CHAPTER 7. PERSONALISATION FOR COLD-START & WARM-START USERS 141

by maximising the users’ future satisfaction. Following previous work (Guo et al., 2018; H. Wu
et al., 2021), we trained and evaluated our PMMIR model using a user simulator that can gen-
erate natural-language critiques about the recommendations as a surrogate for real human users.
Our experiments on the Amazon-Shoes and Amazon-Dresses datasets demonstrate that our pro-
posed PMMIR model variants achieve significantly better performances compared to the best
baseline models – for instance, improvements of 4-8% and 2-4% with PMMIRGRU and 4-7%
and 4-6% with PMMIRTrans f ormer at the 5th and 10th turns. The reported results show that our
proposed PMMIR model benefits from the dual GRUs/Transformers structure and the initialisa-
tion of the state tracker with the final hidden state of the history encoder. In addition, the results
show that both cold-start and warm start users can benefit from our proposed PMMIR model.
The experimental results and analysis provide support for the thesis statement with Research
Topic 4 in Section 1.3.

Next, in Chapter 8, we illustrate the realism of simulated conversations by considering posi-
tive/negative natural-language feedback in multi-modal conversational recommendation.



Chapter 8

Positive and Negative Natural-Language
Feedback

In our thesis statement (as stated in Section 1.3), we metioned the realism of simulated con-
versations. Therefore, in this chapter, we consider bot positive and negative natural-language
feedback in our simulations of users to make the multi-modal conversational recommendation
task more realistic. This chapter is mainly based on our work (Y. Wu, Macdonald, & Ou-
nis, 2022a) “Multimodal Conversational Fashion Recommendation with Positive and Negative
Natural-Language Feedback” published in the proceedings of the 4th Conference on Conversa-
tional User Interfaces (CUI 2022)1.

In the previous chapters (see Chapters 4, 5, 6, and 7), we have simulated the users’ natural-
language feedback positively, such as “I prefer blue open toe high heel pumps”. However, in
a real-world shopping scenario, users can express their natural-language feedback when com-
municating with a shopping assistant by stating their satisfactions positively with “I like” or
negatively with “I dislike” according to the quality of the recommended fashion products. A
multi-modal conversational recommender system (using text and images in particular) aims to
replicate this process by eliciting the dynamic preferences of users from their natural-language
feedback and updating the visual recommendations so as to satisfy the users’ current needs
through multi-turn interactions. However, the impact of positive and negative natural-language
feedback on the effectiveness of multi-modal conversational recommendation has not yet been
fully explored. Since there are no datasets for evaluating conversational recommendation with
both positive and negative natural-language feedback, the existing research on multi-modal con-
versational recommendation imposed several constraints on the users’ natural-language expres-
sions (i.e. either only describing their preferred attributes as positive feedback or rejecting the
undesired recommendations without any natural-language critiques) to simplify the multi-modal
conversational recommendation task. To further explore the multi-modal conversational recom-

1 DOI: https://doi.org/10.1145/3543829.3543837
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mendation with positive and negative natural-language feedback, we investigate the effective-
ness of the recent multi-modal conversational recommendation models for effectively incorpo-
rating the users’ preferences over time from both positively and negatively natural-language
oriented feedback corresponding to the visual recommendations. We also propose an approach
to generate both positive and negative natural-language critiques about the recommendations
within an existing user simulator. Following previous chapters that simulate the users’ feedback
with relative captioners (see Section 3.3), we train and evaluate the two existing conversational
recommendation models by using the user simulator (see Section 3.3) with both positive and
negative feedback as a surrogate for real human users. Extensive experiments conducted on
a well-known fashion dataset (described in Section 3.3.2) demonstrate that positive natural-
language feedback (assumed in previous chapters) is more informative relating to the users’
preferences in comparison to negative natural-language feedback. The results conform with our
thesis statement with Research Topic 5 in Section 1.3.

8.1 Motivations

In general, the conversational recommender systems have addressed the information asymme-
try problem in information seeking, by tracking/eliciting the users’ dynamic preferences and
take actions (such as recommending items) according to their current needs through multi-turn
interactions (described in Section 2.3). Figure 8.1 (a) shows an example of multi-modal conver-
sational recommendation with natural-language feedback (Guo et al., 2018) for fashion products
(such as shoes). In this use case (as shown in Chapters 4, 5, 6, and 7), the user gives natural-
language feedback (critiques) that describe the differences between the users’ preferences (i.e.
the target item they have in mind) and the system’s recommendations at each interaction turn,
to obtain items with more preferred features. The conversational recommender system recom-
mends the images of 3 items, based on the users’ natural-language critiques.

Such a multi-modal conversational recommendation task is close to a real-world shopping
scenario, where the users generally express their natural-language feedback positively or neg-
atively according to the quality of the recommendations when communicating/interacting with
the shopping assistants (who may recommend items). In particular, the users might be asked
to state their satisfactions using the sentences with “I like” for positive feedback or “I dislike”
for negative feedback. Figure 8.1 (b) demonstrates an example of both positive and negative
natural-language feedback in the multi-modal conversational recommendation task. The rec-
ommender system is expected to update visual recommendations with more preferred features
and to avoid recommendations with undesired features according to the users’ positive and/or
negative natural-language feedback.

Despite the expressiveness of natural-language feedback in conversational recommendation,
the impact of positive and negative natural-language feedback on the effectiveness of multi-
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(a) Multi-modal Conversational Recommendation

(b) Positive & Negative Natural-Language Feedback

Figure 8.1: An example of multi-modal conversational recommendation with positive & nega-
tive natural-language feedback.

modal conversational recommendation has not yet been fully explored. Due to the lack of multi-
modal conversations with both positive and negative natural-language critiques about the visual
recommendations in terms of the users’ preferences, the existing research on multi-modal con-
versational recommendation imposed several constraints on the users’ natural-language expres-
sions, in order to simplify the multi-modal conversational recommendation task. For instance,
the users are assumed to either only describe their preferred attributes as positive feedback (Guo
et al., 2018; Y. Sun & Zhang, 2018; H. Wu et al., 2021; Y. Wu et al., 2021; Yu, Shen, & Jin, 2019;
Yu et al., 2020; Y. Zhang et al., 2018) or just reject the undesired item-level recommendations
without any natural-language critiques (Bi et al., 2019; W. Lei et al., 2020; Xu et al., 2021) dur-
ing the multi-turn interactions. To learn satisfactory recommender systems with enough training
data, user simulators have been used as surrogates for real human users in the optimisation and
evaluation processes (see Sections 3.1 and 3.3). In particular, Guo et al. (2018) proposed a user
simulator with only positive natural-language feedback for relative captioning (Rennie et al.,
2017). Meanwhile, W. Lei et al. (2020) formulated the conversational recommendation task as
answering the questions about the attributes and the recommended items with a binary yes/no
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response.
In this chapter, we investigate the effectiveness of the recent multi-modal conversational rec-

ommendation models for effectively incorporating the users’ preferences over time from pos-
itively and/or negatively natural-language oriented feedback corresponding to the visual rec-
ommendations. To make the conversational recommendation task more realistic by supporting
both positive and negative natural-language feedback, we propose an approach to generate both
positive and negative natural-language critiques about the recommendations with an existing
user simulator for relative captioning (see Sections 3.3). Following previous work, we train and
evaluate the two existing multi-modal conversational recommendation models (i.e. Dialog Man-
ager (DM) and Multi-modal Interactive Transformer (MIT) (see Sections 3.1) by using the user
simulator with positive and negative feedback as a surrogate for real human users. Extensive
experiments conducted on a well-known fashion dataset demonstrate that positive feedback is
more informative relating to the users’ preferences in comparison to negative feedback. The
main contributions of this chapter are summarised as follows:
• We first investigate the effectiveness of the multi-modal conversational recommendation mod-
els with both positive and negative natural-language feedback. Different from the previous work
relating to positive and negative feedback, the users are assumed to actively express their sat-
isfactions positively with “I like” or negatively with “I dislike” according to the quality of the
recommendations, rather than answering questions passively with “yes” or “no”.
• We propose an approach to generate both positive and negative natural-language feedback with
a user simulator for relative captioning, which enables our research with various combinations
of positive and negative natural-language sentences.
• We investigate the impact of different textual encoding mechanisms (i.e. pre-trained contextual
embeddings (Devlin et al., 2019b) and one-hot embeddings) on the effectiveness of the multi-
modal conversational recommendation models.
• Extensive empirical evaluations are performed on the multi-modal recommendation task,
demonstrating different levels of difficulties for incorporating the users’ preferences from posi-
tive and negative feedback over existing state-of-the-art approaches (i.e. those in previous chap-
ters) while providing directions for future work.

The remainder of the chapter is organised as follows: In Section 8.2, we review the related
work and position our contributions in comparison to the existing literature about positive and
negative natural-language feedback. Section 8.3 defines the problem statement and extends two
recent multi-modal conversational recommendation models for top-K recommendations. Sec-
tion 8.4 presents the existing user simulator for relative captioning and extends it for generating
both positive and negative natural-language feedback. Our experimental setup and results are
presented in Sections 8.5 and 8.6, respectively. Section 8.7 summarises our findings and pro-
vides possible future work.
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8.2 Related Work

In this section, we mainly introduce positive & negative natural-language feedback in the
recommendation field.

8.2.1 Positive & Negative Natural-Language Feedback

Positive/negative explicit/implicit feedback (such as ratings, transactions, clicks, and skips) have
been intensively investigated in the recommendation field (Batmaz et al., 2019; Chakraborty et
al., 2021; Deldjoo et al., 2022; S. Wang et al., 2019; X. Zhao, Zhang, et al., 2018; Zou et al.,
2020). For instance, X. Zhao, Zhang, et al. (2018) proposed a deep Q-learning network (DQN)
based recommender system with GRUs by incorporating both positive implicit feedback (i.e.
clicks) and negative implicit feedback (i.e. skips) from the logged implicit interactions datasets.
In recent research, natural-language feedback has been proven to be more informative relat-
ing to the users’ preferences compared to the non-verbal explicit/implicit feedback. Although
natural-language feedback has been intensively investigated in the conversational recommenda-
tion field (Gao et al., 2021; Jannach et al., 2021; X. Zhao, Zhang, et al., 2018), these existing
research on conversational recommendation imposed several constraints on the users’ natural-
language feedback to simplify the conversational recommendation task. In particular, the users
are assumed to either only describe their preferred attributes as positive feedback (Guo et al.,
2018; Y. Sun & Zhang, 2018; H. Wu et al., 2021; Y. Wu et al., 2021; Yu, Shen, & Jin, 2019;
Yu et al., 2020; Y. Zhang et al., 2018) or just answer attribute-level questions with a binary
yes/no response while rejecting the undesired item-level recommendations without any natural-
language critiques (Bi et al., 2019; W. Lei et al., 2020; Xu et al., 2021) during the multi-turn in-
teractions. For instance, the existing multi-modal conversational recommendation models based
either on a GRU (Guo et al., 2018; Y. Wu et al., 2021; R. Zhang et al., 2019) or a Transformer
Encoder (H. Wu et al., 2021) only consider the users’ positive natural-language feedback for
describing their desired features in terms of the recommendations, thereby directing the rec-
ommender systems towards obtaining a correct desired item. Meanwhile, W. Lei et al. (2020)
formulated the conversational recommendation task as answering the questions about the at-
tributes and the recommended items with a binary yes/no response. Furthermore, a multi-round
conversational recommender system (called Feedback-guided Preference Adaptation Network
(FPAN)) (Xu et al., 2021) was recently proposed to consider the relation between attribute-level
and item-level positive and negative feedback signals. The users’ feedback is constrained to an-
swer the questions asked by the recommender systems and is also simplified by answering “yes”
for acceptance and “no” for rejection in terms of the attribute-level clarification questions and
the and item-level recommendations from the recommender systems. However, we argue that
users should be able to actively express their positive and/or negative critiques about the recom-
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mendations via natural language in addition to answering the recommender systems’ questions.
Such a constraint with only positive natural-language feedback or a simplification with “yes”
or “no” is limited by the conversational recommendation datasets available, which makes the
research less realistic in the shopping scenario. To this end, we propose an approach to gen-
erate both positive and negative natural-language feedback with the existing user simulator for
relative captioning (see Section 3.3).

As a consequence, in this chapter, we investigate the effectiveness of the existing multi-
modal conversational recommendation models with both positive and negative natural-language
feedback that describes the users’ desired/undesired features in terms of the visual recommen-
dations. To the best of our knowledge, this is the first work for investigating mutlimodal conver-
sational recommendations with both positive and negative natural-language feedback.

8.3 The Multi-modal Conversational Recommendation Mod-
els

In this section, we introduce our notations and formulate the problem of the multi-modal con-
versational recommendation task with positive and negative natural-language feedback. Next,
we extend two recent multi-modal conversational recommendation models for top-K recom-
mendations using both positive and negative natural-language feedback and describe each of its
components. Finally, we describe training the models using the interactions with a simulated
user.

8.3.1 Preliminaries

We study the multi-modal conversational recommendation task by considering a user interact-
ing with a recommender system via iterative interaction turns with text and images. At the t-th
interaction turn, the recommender system presents K candidate images at,≤K = (at,1, ...,at,K) se-
lected from a candidate pool I = {ai}N

i=0 to the user. The user then provides a natural language
critique, ot , as feedback, describing the major differences between the candidate image and the
desired image. The natural language feedback can be positive – having the form “Compared to
the k-th item, I like ...” (i.e. o+t ) or negative – such as “I dislike the k-th item because ...” (i.e. o−t ).
Based on the users’ positive/negative natural-language feedback and the interaction history up to
turn t, τt =(o≤t ,a≤t,≤K)∈H , where o≤t =(o1, ...,ot)∈O and a≤t,≤K =(a1,≤K, ...,at,≤K)∈A ,
the recommender system selects another list of candidate images at+1,≤K from the candidate
image pool. This vision-language interaction process continues until the target image atarget is
recommended or the maximum number of interaction turns M is reached.
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(a) Dialog Manager (DM)

(b) Multi-modal Interactive Transformer (MIT)

Figure 8.2: Architectures of the multi-modal conversational recommendation models: (a) Dialog
Manager (DM) and (b) Multi-modal Interactive Transformer (MIT).

8.3.2 The Model Architectures

Figure 8.2 shows the architectures of two end-to-end models (i.e. Figure 8.2 (a) Dialog Manager
(DM) (Guo et al., 2018) and Figure 8.2 (b) Multi-modal Interactive Transformer (MIT) (H. Wu et
al., 2021)) for multi-modal conversational recommendations to effectively incorporate the users’
preferences over time. The user views the recommended items (K items at each interaction) and
provides positive natural-language feedback by describing their desired features that the current
recommended items lack. Alternatively, the user can provide negative feedback by describing
the undesired features in the current recommended items compared to the user’s envisaged target
item.
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Text & Image Encoders The multi-modal conversational recommendation models track and
estimate the user’s preferences from both the user’s positive and negative natural-language feed-
back and the latest recommended visual items. The positive and negative natural-language feed-
back texts are encoded with a text encoder, while the recommended images are encoded with
an image encoder (Guo et al., 2018; H. Wu et al., 2021). In particular, the text encoder (which
consists of a pre-trained language model BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2019b), a 1D convolutional layer (1D-CNN) and a subsequent lin-
ear layer) encodes the positive and negative natural-language feedback texts into a single textual
representation. Alternatively, each word in the sentences can also be represented by a one-hot
vector with pre-defined vocabulary (Guo et al., 2018; H. Wu et al., 2021) of fashion-related
terms. We adopt the pre-trained BERT model as our default encoding mechanism, while we in-
vestigate the impact of different encoding mechanisms (i.e. the one-hot encoding and the BERT
encoding) in Section 8.6.3. In a similar manner to the text encoder, the image encoder extracts
image feature representations based on the ImageNet pre-trained ResNet101 model (K. He et
al., 2016) and subsequently transforms the extracted image feature representations with a linear
layer. Then, both the image feature representations and the textual representations are concate-
nated as input to a subsequent GRU (Guo et al., 2018) or Transformer Encoder (H. Wu et al.,
2021) to model the user’s estimated preferences.

The State Trackers Given a list of candidate images at,≤K = (at,1, ...,at,K) and a user’s corre-
sponding natural-language feedback ot at the t-th dialog turn, the encoded textual representation
is denoted by xtxt

t and the encoded image representation is denoted by ximg
t,≤K = ResNet(at,≤K).

The concatenated textual and image representations [xtxt
t ,ximg

t,≤K] are further tracked in a gated
recurrent unit (GRU) (Chung et al., 2014) as in (Guo et al., 2018). The estimated state of user’s
preferences can be achieved with

st+1 = Linear(GRU(Linear([xtxt
t ,ximg

t,≤K]),ht)),

where ht = GRU(Linear([xtxt
t−1,x

img
t−1,≤K]),ht−1) is the estimated hidden states of the user’s pref-

erences. The GRU component allows the model to sequentially aggregate the recommenda-
tions and positive/negative feedback information from the recommender system’s recommenda-
tions and the user’s natural-language feedback to the estimated hidden states. Alternatively, a
Transformer-based state tracker enables the recommendation model to attend to the entire his-
tory of the multi-modal interactions. The estimated state of user’s preferences can be achieved
with

st+1 = Linear(Mean(Trans f ormer([xtxt
≤t ,x

img
≤t,≤K]))).

The Top-K Recommendations Based on the estimated state of user’s preferences, a list of
candidate items can be recommended for the next action. If K items are recommended at each
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turn t + 1, we select the top-K closest images to the estimated state st+1 under the Euclidean
distance in the image feature (ResNet) space: at+1,≤K ∼ KNNs(st+1), where KNNs() is a soft-
max distribution over the top-K nearest neighbours of st+1 and at+1,≤K = (at+1,1, ...,at+1,K).
Furthermore, to avoid repeated recommendations during the multi-turn interactions, we adopt a
post-filter, as in (Y. Wu et al., 2021), to remove any candidate items from the ranking list that
have previously occurred in the recommendation history a≤t,≤K .

The Triplet Loss Function User simulators (Ekstrand et al., 2021; Guo et al., 2018; H. Wu et
al., 2021; S. Zhang & Balog, 2020) are generally used as a surrogate for real human users in the
training processes. For a fair comparison, we train the above GRU/Transformer-based models
with a triplet loss objective, Ltri, similar to (Guo et al., 2018; H. Wu et al., 2021):

Ltri = max(0, ||st+1 − ximg
+ ||2 −||st+1 − ximg

− ||2 +m) (8.1)

where ximg
+ and ximg

− are respectively the representations of the target image and of a randomly
sampled image, m is a constant for the margin and ||.||2 denotes L2-norm.

8.4 A User Simulator with Positive and Negative Feedback

To learn satisfactory multi-modal conversational recommender systems with enough training
data, user simulators based on vision and language (VL) have been considered as surrogates for
real human users in the optimisation and evaluation processes (see Section 3.3). The adoption
of such VL-based user simulators helps to avoid collecting and annotating entire multi-modal
conversations, which is expensive, time-consuming, and does not scale (S. Zhang & Balog,
2020).

User Simulators for Relative Captioning Such user simulators have been generally formu-
lated as relative captioners for fashion recommendation (Guo et al., 2018; H. Wu et al., 2021)
that can automatically generate descriptions of the prominent visual differences between any
pair of target and candidate images (i.e. a target representing the user’s desired item and the
candidate representing a recommendation by the system). For instance, Guo et al. (2018) ap-
plied long short-term memory network (LSTM)-based models, such as Show, Tell (Vinyals et
al., 2015), to generate the relative captions as natural-language critiques about the recommen-
dations. These user simulators for relative captioning have been thoroughly evaluated via both
a quantitative evaluation and a user study, which showed that the user simulators for relative
captioning can serve as a reasonable proxy for real users (Guo et al., 2018).
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User Simulators with Positive/Negative Feedback Here, we propose an approach to gener-
ate positive and negative natural-language feedback with the existing user simulators for relative
captioning (Guo et al., 2018). In the relative captioning task, the relative captioner caprel() is
given a candidate image at,k (k ∈ [1,K]) and a target image atarget and it is tasked with describ-
ing the differences of at,k relative to atarget in natural language. To generate both positive and
negative feedback, two sentence templates, which state the users’ satisfactions positively with
“I like” and negatively with “I dislike”, are appended to the relative captions from caprel(). In
particular, the positive feedback of the image pair (i.e. at,k and atarget) is defined as follows:

o+t = “Compared to the k-th item, I like”+ caprel(atarget ,at,k)

where each relative caption caprel(atarget ,at,k) describes what is missing from the candidate
image at,k to obtain atarget . Inversely, the relative captioner caprel() can also describe the features
of the candidate image at,k that are not contained in the target image atarget . Therefore, we
propose that negative feedback can thus be instantiated by reversing candidate and target images:

o−t = “I dislike the k-th item because”+ caprel(at,k,atarget)

and changing the textual prefix from “I like” to “I dislike”. It is worth noting that we adopt
templates as wrappers to handle users’ positive and negative utterances so as to reduce the errors
for language understanding and generation. We demonstrate an example of positive & negative
feedback with relative captioning in Section 8.6.4.

8.5 Experimental Setup For Recommendation

In this section, we evaluate the effectiveness of the two existing multi-modal conversational
recommendation models from the literature with different types of natural-language feedback
(i.e. positive and/or negative feedback). In particular, we address the three research questions:
• RQ8.1: Is positive natural-language feedback more informative relating to the users’ prefer-
ences in comparison to negative natural-language feedback?
• RQ8.2: Can the combined positive & negative natural-language feedback enhance the ability
of the existing GRU/Transformer-based models in incorporating the users’ preferences?
• RQ8.3: What is the impact of the natural-language encoding on the models’ performances?

8.5.1 Dataset & Measures

Dataset We perform experiments on the Shoes dataset (see Section 3.3.2). The dataset pro-
vides 10,751 pairs of images with relative captions about their visual differences and 3,600
images with captions about their discriminative visual features for training a user simulator. In
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(a) NDCG@10 (b) SR

Figure 8.3: Comparison of the recommendation effectiveness of DM and MIT with single-
sentence feedback at various interaction turns with top-3 recommendation on Shoes. + & -
denote positive and negative natural-language feedback, respectively.

Table 8.1: Multi-modal conversational recommendation effectiveness of the tested models at the
5th & 10th turns on the Shoes dataset. The best overall results are highlighted in bold. The best
performing results in the first and second parts of the table are underlined, while the best overall
performing results are highlighted in bold. † and * respectively denote significant differences
in terms of a paired t-test with a Holm-Bonferroni multiple comparison correction (p < 0.05),
compared to the best performing results in the first group and the best overall performing results.
+ and - denote positive & negative natural-language feedback, respectively.

Models → DM MIT

Feedback Turn 5 Turn 10 Turn 5 Turn 10
Type ↓ NDCG@10 SR NDCG@10 SR NDCG@10 SR NDCG@10 SR

+ 0.4627* 0.4253* 0.6602* 0.6404* 0.5039* 0.4657* 0.7158 0.6949
- 0.0675*† 0.0567*† 0.1527*† 0.1419*† 0.0771*† 0.0659*† 0.1791*† 0.1662*†

+ & + 0.5330 0.4966 0.7157 0.6973 0.5471 0.5122 0.7210 0.7027
+ & - 0.4524* 0.4163* 0.6650* 0.6462* 0.4628* 0.4242* 0.6638* 0.6423*
- & - 0.1111* 0.0932* 0.2450* 0.2265* 0.1362* 0.1140* 0.3023* 0.2834*

addition, the dataset also contains 10,000 images for training the recommender systems, and
4,658 images for testing.

Measures The effectiveness of the multi-modal conversational models is measured by Nor-
malised Discounted Cumulative Gain (i.e. NDCG@N truncated at rank N = 10 calculated at the
M-th interaction, see Section 2.1.3) and Success Rate (SR, see Section 3.2.2) at the M-th inter-
action, as in Chapter 4. In particular, SR is the percentage of users who find their target items
in the top-K recommendation lists among all the users within M interactions. Furthermore, it is
possible that the user may view more of the ranking of items at each interaction turn, down to
rank N. We use the evaluation metrics (i.e. NDCG@10 and SR) at the 5th and 10th interaction
turn for significance testing.
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8.5.2 Experimental Settings

Setup for User Simulator A user simulator with the Shoes dataset was intensively and care-
fully trained by (Guo et al., 2018) through crowdsourcing relative expressions about the visual
differences of the image pairs that are written by real human users in natural language. Fur-
thermore, the pre-trained user simulator has previously been thoroughly evaluated via both a
quantitative evaluation and a user study (Guo et al., 2018), thereby serving as a reasonable
proxy for real users in our work. The pre-trained user simulator can generate either positive
or negative natural-language feedback with our proposed approach as illustrated in Section 8.4.
At each interaction turn, the user simulator gives feedback on the candidate images that are
the most and/or least similar to the target image. We consider five types of natural-language
feedback in our experiments: single-positive (i.e. +), single-negative (i.e. -), paired-positive (i.e.
+ & +), paired-negative (i.e. - & -) and mixed (i.e. + & -) feedback. In single-positive (i.e. +),
single-negative (i.e. -) and mixed (i.e. + & -) feedback settings, the most similar candidate image
receives positive feedback and/or the least similar candidate image receives negative feedback.

Setup for Recommender Systems We then train the models (i.e. DM and MIT) with the user
simulator on the Shoes dataset. The parameters of the models are randomly initialised. We use
Adam (Kingma & Ba, 2014) with a learning rate 10−3 (Guo et al., 2018; R. Zhang et al., 2019).
We set the embedding dimensionality of the feature space to 256 and the batch size to 128 as
in (Guo et al., 2018). For each batch, we train the model with 10 interaction turns as in (Y. Wu
et al., 2021). We consider the top-K items (K=3) as a recommendation list at each interaction
turn for testing. For the evaluation metrics, we denote the interaction turn M ∈ [1,10]. If a
user obtains the target item in less than 10 interaction turns, we consider the ranking metric (i.e.
NDCG@10) for that user to be equal to one for all turns thereafter (see Chapter 6).

8.6 Experimental Results

In this section, we analyse the experimental results respect to the research questions stated
in Section 8.5, concerning the effectiveness of the models for multi-modal conversational rec-
ommendations with positive and negative natural-language feedback (Section 8.6.1), the impact
of the combined positive and negative feedback (Section 8.6.2), and the impact of the textual
encoding mechanisms (Section 8.6.3). We demonstrate a use case for generating both positive
and negative feedback, as well as a use case from the logged experimental results to consolidate
our findings (Section 8.6.4).
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(a) DM (b) MIT

Figure 8.4: Comparison of the recommendation effectiveness of DM and MIT with various types
of natural-language feedback at various interaction turns with top-3 recommendation on Shoes.

8.6.1 Positive vs. Negative Feedback (RQ8.1)

Figure 8.3 shows the recommendation effectiveness of the DM and MIT models with positive
or negative single-sentence feedback for top-3 recommendation in terms of NDCG@10 (Fig-
ure 8.3 (a)) and SR (Figure 8.3 (b)), while varying the number of interaction turns on the Shoes

dataset. The solid lines show the models’ performances with positive natural-language feedback
(denoted +), while the dashed lines show performances with negative natural-language feedback
(denoted -). Comparing the results in Figure 8.3, we observe that both DM and MIT models
generally achieve a better overall performance with positive feedback than negative feedback in
terms of NDCG@10 and SR. The better performance of the tested models with positive feed-
back compared to those with negative feedback indicates that positive natural-language feedback
in more informative relating the users’ preferences than negative natural-language feedback. In
addition, MIT achieves a better overall performance than DM in terms of NDCG@10 and SR at
various interaction turns with positive and negative natural-language feedback. Such an obser-
vation is aligned with the results reported in (H. Wu et al., 2021) considering positive natural-
language feedback only.

Table 8.1 shows the obtained recommendation performances of the tested models (i.e. DM
and MIT) with the same test sets of the Shoes dataset at the 5th and 10th interaction turns. More
specifically, Table 8.1 contains two parts: the first part reports the effectiveness of the models
with either positive or negative feedback. The second part reports the effectiveness of the models
with different combinations of positive or negative feedback. The best performing results in the
first and second parts of the table are underlined, while the best overall performing results are
highlighted in bold in Table 8.1. † and * respectively denote significant differences in terms of
a paired t-test with a Holm-Bonferroni multiple comparison correction (p < 0.05), compared to
the best performing results in the first group and the best overall performing results. Comparing
the results in the first group of rows in the table, we observe that both DM and MIT achieve a
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(a) Positive (b) Negative (c) Positive & Negative

Figure 8.5: Effects of the textual encoding mechanisms on both DM and MIT with different
types of natural-language feedback.

significant better overall performance in terms of both NDCG@10 and SR at the 5th and 10th
turns with positive feedback (denoted +) than with negative feedback (denoted -) on the Shoes

dataset, respectively.
In answer to RQ8.1, the results demonstrate that the tested models with positive feedback are

significantly more effective than those with negative feedback. Therefore, it can be inferred that
positive feedback is more informative relating to the users’ preferences than negative feedback.
The DM and MIT models can better incorporate the users’ preferences from the recommended
visual items with positive natural-language feedback than negative natural-language feedback.

8.6.2 Impact of the Combined Feedback (RQ8.2)

Figure 8.4 (a) and Figure 8.4 (b) illustrate the SR of DM and MIT with different types of
natural-language feedback (i.e. different combinations of positive and negative feedback) at the
various interaction turns, respectively. The gray lines show the DM/MIT model’s performances
with a single sentence at each interaction turn, while the blue/red and green lines show perfor-
mances with a pair of sentences at each interaction. Comparing the results in Figure 8.4 (a) and
Figure 8.4 (b), we observe that both DM and MIT achieve a better overall performance with
paired positive (i.e. + & +) or paired negative (i.e. - & -) natural-language feedback sentences
in comparison to the models with a single positive (i.e. +) or single negative (i.e. -) natural-
language feedback sentence. Furthermore, the performances of DM and MIT differ with a pair
of both positive and negative feedback sentences. In particular, the performance of DM (+) and
DM (+ & -) are very close in term of SR at various interaction turns, while MIT (+) outperforms
MIT (+ & -) overall except for the initial two interaction turns. The better performance of the
models with (+ & +) and (- & -) compared to the models with (+) and (-) can be attributed to the
fact that the same type of natural-language feedback at each turn can be aggregated to leverage
the information relating to the users’ preferences. Meanwhile, the paired positive and negative
feedback make it challenging for DM and MIT the elicit the users’ preferences from the feed-
back sentences with opposite sentiments. Furthermore, Table 8.1 demonstrate that DM (+ & +)
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and MIT (+ & +) are significantly more effective than those with other types of natural-language
feedback at both 5-th and 10-th interaction turns, except for MIT (+) in term NDCG@10 and
SR at the 10-th interaction turn.

Overall, in response to RQ8.2, we find that the single type of natural-language feedback (i.e.
either paired positive or paired negative feedback) at each turn can be aggregated to leverage the
information relating to the users’ preferences, while the paired positive and negative feedback
make it challenging for DM and MIT to elicit the users’ preferences.

8.6.3 Impact of Textual Encoding (RQ8.3)

To address RQ8.3, Figure 8.5 depicts the effects of the textual encoding mechanisms on both
DM and MIT with different types of natural-language feedback. Figure 8.5 (a) demonstrates that
both DM (+) and MIT (+) with the one-hot encoding using a pre-defined vocabulary of fashion-
related terms achieve an overall better performance in comparison to those with the BERT en-
coding. Figure 8.5 (b) shows that MIT (-) with the one-hot encoding also outperforms MIT (-)
with the BERT encoding, while DM (-) with the one-hot encoding and the BERT encoding are
almost the same. The better performance of the models with the one-hot encoding compared
to the BERT encoding can be attributed to the fact that the pre-defined fashion vocabulary for
the one-hot encoding is much smaller and is more concentrated on fashion features than BERT.
Furthermore, Figure 8.5 (c) shows that the performances of DM (+ & -) and MIT (+ & -) with
the one-hot encoding are dramatically degraded compared to those with the BERT encoding that
is able to capture the contextual information between sentences with the pre-trained contextual
embeddings. Such a difference can be attributed to the inability of the one-hot encoding in
capturing the relations between the positive and negative natural-language feedback.

Overall, in response to RQ8.3, we find that the BERT encoding is surprisingly important
to capture the contextual information with the pre-trained contextual embeddings when there
are both positive and negative feedback, while the one-hot encoding can enhance the models’
performance by using a pre-defined fashion vocabulary that is more concentrated on fashion
features than BERT.

8.6.4 Use Cases

A Use Case for Generating Positive & Negative Feedback To show that it is realistic to
generate both positive and negative natural-language feedback with our proposed approach (il-
lustrated in Section 8.4), we provide examples of the generated natural language critiques for
given target images and candidate images in Table 8.2, on the Shoes dataset. There are two
ground truths for each pair of the candidate and target images, while following the generated
positive and negative natural-language feedback by the aforementioned user simulator for rela-
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tive captioning. We observe that the user simulator can effectively describe the major differences
between the target and candidate images, while using phrases that differ from the ground truth
critiques, such as “all white” vs. “solid white” for the positive feedback and “more athletic
soles” vs. “chunkier sole” for the negative feedback.

A Use Case for Multi-modal Conversational Recommendation To consolidate the results
observed in the the above sections, we present a use case of multi-modal conversational rec-
ommendation in Table 8.3 and Table 8.4 on the Shoes dataset. Table 8.3 and Table 8.4 show
the interaction process for top-3 recommendation with the DM model over positive feedback
(i.e. DM (+)) and negative feedback (i.e. DM (-)), respectively. For fair comparison, the initial
images are the same across DM (+) and DM (-) given the target image from the testing set. We
observe that DM with positive feedback is more effective than negative feedback. In particular,
DM with positive feedback only needs 2 interaction turns to display the desired item in addi-
tion to the initial random recommendation by capturing the key features from the user’s positive
feedback, such as “gold”, “open-toed”, “high heels”, and “straps”. However, DM with negative
feedback fails to recommend the user’s desired shoes within 5 interaction turns. Although, DM
with negative feedback can successfully capture the “open toe” feature from the rejection of the
“closed toe” feature, it is still struggling with the decisions of the colours and the thickness of the
platform. The differences in interaction rounds indicate that positive feedback is typically more
conducive than negative feedback to capturing user preference information in recommendation
systems.

8.7 Conclusions

In this chapter, we first investigated the effectiveness of the multi-modal conversational
recommendation models with both positive and negative natural-language feedback. To make
the conversational recommendation task more realistic with both positive and negative natural-
language feedback, we proposed an approach to generate both the positive and negative natural-
language critiques about the recommendations with the existing user simulator for relative cap-
tioning. Following previous chapters (see Chapters 4, 5, 6, and 7), we trained and evaluated
the two existing conversational recommendation models by using the user simulator with posi-
tive and negative feedback as a surrogate for real human users. Our experiments on the Shoes

dataset demonstrated that positive feedback is more informative relating to the users’ prefer-
ences in comparison to negative feedback. Our reported results also showed that the types of
users’ natural-language feedback (i.e. different combinations of positive and negative feedback)
and the types of textual encoding mechanisms (i.e. pre-trained contextual embeddings and one-
hot embeddings) can greatly affect the performance of the both tested models (i.e. DM & MIT).
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The experimental results and analysis provide support for the thesis statement with Research
Topic 5 in Section 1.3.

Thus far, we have shown the effectiveness of the various recommender systems, which in-
stantiated our proposed multi-modal conversational recommendation framework in Chapter 3.
In particular, starting from Chapter 4 until Chapter 8, we have proposed various techniques to
address the challenges (i.e. partial observations in natural-language feedback, multi-modal se-
quence dependency issue, coupling of policy optimisation and representation learning, person-
alisation, and the realism of simulated conversations with negative natural-language feedback)
within such a framework. Therefore, in the next chapter, we summarise the main contributions
and conclusions of this thesis and also discuss possible future directions.
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Table 8.2: An example of positive and negative feedback with relative captioning on the Shoes
dataset.
Pair Target Candidate Feedback

1

Ground Truths:

• Compared to the candidate shoes, the target shoes
are shoes with red trim.

• Compared to the target shoes, the candidate shoes
are brown, not red.

Positive Feedback: Compared to the candidate shoes, I
like shoes that are red and black.
Negative Feedback: I dislike the candidate shoes be-
cause they are brown.

2

Ground Truths:

• Compared to the candidate shoes, the target shoes
are the same design but are brown.

• Compared to the target shoes, the candidate shoes
are black, not brown.

Positive Feedback: Compared to the candidate shoes, I
like shoes that are the same design but are brown.
Negative Feedback: I dislike the candidate shoes be-
cause they are black, not brown.

3

Ground Truths:

• Compared to the candidate shoes, the target shoes
are all white.

• Compared to the target shoes, the candidate shoes
have pink accents and more lace eyelets.

Positive Feedback: Compared to the candidate shoes, I
like shoes that are solid white.
Negative Feedback: I dislike the candidate shoes be-
cause they have pink accents and more eyelets.

4

Ground Truths:

• Compared to the candidate shoes, the target shoes
are almost identical.

• Compared to the target shoes, the candidate shoes
have more athletic soles.

Positive Feedback: Compared to the candidate shoes, I
like shoes that are almost identical.
Negative Feedback: I dislike the candidate shoes be-
cause they have a chunkier sole.
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Table 8.3: An example use case for multi-modal conversational recommendation for the Dialog
Manager model with positive natural-language feedback on the Shoes dataset.
Turn Top-3 Recommendations Positive Feedback

0
Compared to the 3rd shoes, I like shoes that are gold open
toe high heels.

1
Compared to the 3rd shoes, I like shoes that are open-toed
with straps.

2 The 1st shoes are my desired shoes.

Table 8.4: An example use case for multi-modal conversational recommendation for the Dialog
Manager model with negative natural-language feedback on the Shoes dataset.
Turn Top-3 Recommendations Negative Feedback

0
I dislike the 1st shoes because they are colorful and white
running shoes.

1 I dislike the 1st shoes because they are black with a closed
toe.

2
I dislike the 2nd shoes because they are red and have a
pattern.

3
I dislike the 2nd shoes because they are beige open toed
pumps.

4 I dislike the 2nd shoes because they are black strappy high
heeled shoes.

5 I dislike the 2nd shoes because they have a higher plat-
form.



Chapter 9

Conclusions and Future Work

9.1 Contributions and Conclusions

In this thesis, we focused on developing multi-modal conversational recommender systems by
leveraging the multi-modal interactions (including both visual and textual information) between
users and recommender systems. Specifically, we leveraged advanced techniques (including
multi-modal learning, sequential recommender systems, and reinforcement learning approaches)
for reformulating and improving the multi-modal conversational recommendation framework.
In Section 1.2, we stated that this thesis was motivated to address the following challenges:

• Challenge 1: How to better understand the users’ natural-language feedback and the cor-
responding recommendations with the partial observations of the users’ preferences over
time;

• Challenge 2: How to better tracking the users’ preferences over the sequences of the
systems’ visual recommendations and the users’ natural-language feedback;

• Challenge 3: How to decouple the recommendation policy (i.e. model) optimisation and
the multi-modal composition representation learning;

• Challenge 4: How to effectively incorporate the users’ long-term and short-term interests
for both cold-start and warm-start users;

• Challenge 5: How to ensure the realism of simulated conversations, such as positive/negative
natural-language feedback.

To address the above challenges (i.e. questions), we first described the multi-modal conver-
sational recommendation framework in Chapter 3 and illustrated the challenges and opportuni-
ties within the framework. Furthermore, we have proposed various models from Chapter 4 to

161
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Chapter 8 for addressing the above challenges corresponding to five research topics (mentioned
in Section 1.3). In particular, we argued that the tasks of modelling multi-modal conversa-
tional recommendations can be effectively achieved by tracking users’ preferences with partial
observations, mitigating the multi-modal sequence dependency issue, decoupling the composi-
tion representation learning from policy optimisation, incorporating both the users’ long-term
preferences and short-term needs for personalisation, and ensuring the realism of simulated con-
versations. Below, we will describe our main contributions and conclusions in addressing these
challenges:

• Research Topic 1: By modelling the multi-modal conversational recommendation process

with (self-)supervised Q-learning in a partially observable environment, the multi-modal

conversational recommender system can effectively incorporate the users’ preferences

over time using the partial observations. To address Challenge 1, we proposed a novel
dialog-based recommendation model, denoted by the Estimator-Generator-Evaluator (EGE)
model, with Q-learning for POMDP to effectively incorporate the users’ preferences over
time in a partially observable environment (see Chapter 4). Specifically, we leveraged
an Estimator to track and estimate the users’ preferences, a Generator to match the es-
timated preferences with the candidate items to rank the next recommendations (with a
post-filter to remove repeated recommendations), and an Evaluator to judge the quality
of the estimated preferences considering the users’ historical feedback. Our experiments
in Chapter 4 validated Research Topic 1 by showing that our proposed EGE model can
achieve significantly enhanced performances compared to the strongest baseline model
(i.e. MBPI), as shown in Figures 4.3 & 4.4 and Table 4.1.

• Research Topic 2: By mitigating the multi-modal sequence dependency issue in the multi-

modal conversational recommendation process, the multi-modal conversational recom-

mender system can effectively incorporate the users’ preferences over time with an RNN-

enhanced Transformer structure for state tracking. To address Challenge 2, we proposed
a novel multi-modal recurrent attention network (MMRAN) model for multi-modal inter-
active recommendation to effectively incorporate the users’ preferences over time. Specif-
ically, we leveraged a gated recurrent network (GRN) with a feedback gate to separately
process the natural-language feedback and visual recommendations into hidden states (i.e.
representations of the past interactions) for multi-modal sequence combination, as well as
a multi-head attention network (MAN) to refine the previously generated hidden states by
the GRN component to further track the dialog states of the users’ preferences. Our exper-
iments in Chapter 5 validated Research Topic 2 by showing that our proposed MMRAN
model achieves significantly enhanced performances compared to the strongest baseline
models (see Table 5.1). Our reported results showed that the MMRAN model benefits
from the capability of GRN in combining multi-modal dialog sequences and from the
MAN’s structure to effectively track the dialog states (see Figures 5.5 and 5.6).
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• Research Topic 3: By decoupling the policy optimisation and the multi-modal composi-

tion representation learning with goal-oriented reinforcement learning, the multi-modal

conversational recommender system can effectively incorporate the users’ preferences

over time with a composition network and a multi-task learning approach. To address
Challenge 3, we proposed a novel goal-oriented multi-modal interactive recommendation
(GOMMIR) model to effectively incorporate the users’ preferences from both verbal and
non-verbal relevance feedback over time, by addressing the coupling issue of policy op-
timisation and multi-modal composition representation learning. Specifically, we jointly
leveraged both goal-oriented deep reinforcement learning and supervised learning objec-
tives to explicitly learn the multi-modal representations with a multi-modal composition
network (i.e. TIRG) during the recommendation policy optimisation process. We adopted
a pre-trained CLIP model for image and text encoding, and a Transformer-based state

tracker for estimating the users’ preferences from the users’ natural-language critiques
and the previously combined representations from the composition network. Our experi-
ments in Chapter 6 validated Research Topic 3 by showing that our proposed GOMMIR
model achieves better overall performances compared to the best baseline models (see
Figure 6.5 and Table 6.1).

• Research Topic 4: By modelling the multi-modal conversational recommendation process

with both the users’ interaction history and the users’ instant natural-language feedback,

the multi-modal conversational recommender system can effectively incorporate both the

users’ long-term preferences and short-term needs into the personalised recommenda-

tions. To address Challenge 4, we proposed a novel personalised multi-modal interactive
recommendation model (PMMIR) using hierarchical reinforcement learning with the Op-
tions framework to more effectively incorporate the users’ preferences from both their past
and real-time interactions. Specifically, PMMIR decomposes the personalised interactive
recommendation process into a sequence of two subtasks with hierarchical state represen-
tations: a first subtask where a history encoder learns the users’ past interests with the
hidden states of history for providing personalised initial recommendations, and a sec-
ond subtask where a state tracker estimates the current needs with the real-time estimated

states for updating the subsequent recommendations. The history encoder and the state
tracker are jointly optimised with a single optimisation objective by maximising the users’
future satisfaction. Our experiments in Chapter 7 validated Research Topic 4 by showing
that our proposed PMMIR model variants achieve significantly better performances com-
pared to the best baseline models (see Figure 7.4 and Table 7.2). The reported results show
that our proposed PMMIR model benefits from the dual GRUs/Transformers structure and
the initialisation of the state tracker with the final hidden state of the history encoder (see
Tables 7.2 and 7.4). In addition, the results show that both cold-start and warm start users
can benefit from our proposed PMMIR model (see Section 7.3).
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• Research Topic 5: To make the multi-modal conversational recommendation task more

realistic, we ensure the realism of simulated conversations by considering positive/negative

natural-language feedback. To address Challenge 5, we first investigated the effective-
ness of the multi-modal conversational recommendation models with both positive and
negative natural-language feedback. To make the conversational recommendation task
more realistic with both positive and negative natural-language feedback, we proposed
an approach to generate both the positive and negative natural-language critiques about
the recommendations with the existing user simulator for relative captioning. Our ex-
periments in Chapter 8 validated Research Topic 4 by showing that positive feedback is
more informative relating to the users’ preferences in comparison to negative feedback
(see Figure 8.3 and Table 8.1). Our reported results also showed that the types of users’
natural-language feedback (i.e. different combinations of positive and negative feedback,
see Figure 8.4) and the types of textual encoding mechanisms (i.e. pre-trained contextual
embeddings and one-hot embeddings, see Figure 8.5) can greatly affect the performance
of the both tested models (i.e. DM & MIT).

In summary, we have validated each of the claims of our thesis statement in Section 1.3. We
have shown that we can effectively tracking and estimating the users’ dynamic preferences from
the multi-modal conversational recommendations by leveraging multi-modal pre-trained models
for representation encoding and composition (such as ResNet, BERT, CLIP, and TIRG), nerual
networks for dialog state tracking (such as GRU, Transformer, and RNN-enhanced Transformer
(see Chapter 5)) and reinforcement learning (such as self-supervised reinforcement learning
(SSRL, see Chapter 4), goal-oriented reinforcement learning (GORL, see Chapter 6), and hier-
archical reinforcement learning (HRL, see Chapter 7)) approaches. Furthermore, our described
multi-modal conversational recommendation framework in Chapter 3 allows to investigate the
impact of different types of users’ feedback on the multi-modal conversational recommenda-
tion task (see Chapter 8). Next, we describe some future research directions for multi-modal
conversational recommendations in Section 9.2.

9.2 Directions for Future Work

In this section, we discuss possible future directions that could benefit re-framing and devel-
oping more effective and realistic multi-modal conversational recommender systems (MMCRS).

• Mixed-initiative MMCRSs: Across Chapters 4 to 8, we have only investigated a critiquing-
based multi-modal conversational recommendation framework with “systems recommend-
ing visual recommendations, cold/warm-start users providing natural-language feedback”.
However, the interactions between users and recommender systems can involve complex
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mixed-initiated question-answering processes (Zamani et al., 2022). In particular, it is
more natural and realistic to allow users to ask questions about the details of the recom-
mendations and allow recommender systems to ask clarification questions to more effec-
tively collect the users’ preferences.

• Generation-based MMCRSs: Across Chapters 4 to 8, we only investigated retrieval-
based multi-modal conversational recommendation framework by matching candidates
with an estimated preference representation. Recent advances in generative artificial intel-
ligence (GAI), such as ChatGPT and Diffusion models, have greatly enhanced the gener-
ation abilities in both image and texts. As we mentioned in Section 2.3, generation-based
CRSs have the advantage of being able to generate novel responses, which allows them to
handle a wider range of inputs. To this end, it is promising to leverage the recent genera-
tive AI techniques (such as Llama 2 (Touvron et al., 2023), reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017), and retrieval-augmented generation
(RAG) (Lewis et al., 2020)) for modelling the multi-modal conversational recommenda-
tion task.

• LLMs powered autonomous agents as MMCRSs: In the scope of this thesis, we have
only investigated a multi-modal conversational recommendation framework by tracking
and estimating the users’ preferences from sequences of visual recommendations and
natural-language feedback. In particular, the core component of the current MMCRSs is
a multi-modal dialog state tracker based on GRU, Transformer or RNN-enhanced Trans-
former. However, the current MMCRSs are not able to plan the whole conversational
recommendation process, memorise the users’ all interaction history, and use tools for ac-
cessing extra information. Recently, with the rapid development of LLMs, LLMs have
been leveraged as autonomous agents to perform tasks automatically with abilities of
planning (i.e. task decomposition to “think step by step” and self-reflection by refining
past action decisions and correcting previous mistakes), memory (short-term memory as
in-context learning and long-term memory as the external vector store), and using tools
(by calling external APIs for extra information) (L. Wang et al., 2023; Weng, 2023). To
this end, it is interesting and promising to leverage LLMs-powered autonomous agents as
MMCRSs.

9.3 Concluding Remarks

This thesis has investigated a challenging task: multi-modal conversational recommendation.
In particular, this thesis contributed to re-framing and developing more effective multi-modal
conversational recommender systems by leveraging advanced techniques, such as multi-modal
learning, deep learning, and reinforcement learning. However, there are still interesting research
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directions in this area, as we have shown some of them in Section 9.2. This work provides a solid
motivation and the groundwork for exploring these further research directions in the future. We
believe that the development of realistic and effective multi-modal conversational recommender
systems will continue to benefit users by effectively satisfying their information needs.
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