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Abstract

Air pollution is not only a major risk to the environment, but also a major environ-
mental risk to the health of the population in developed and developing countries. The
health impact of both short-term and long-term exposure to air pollution has been the
focus of much research in the past few decades, which has investigated the relationship
between specific air pollutants, such as carbon monoxide (CO), nitrogen dioxide (NO2),
particulate matter (PM2.5 and PM10), and sulphur dioxide (SO2), to cardiovascular and
respiratory diseases.

The health impact of short-term exposure is conducted through time series studies,
whereas long-term exposure is investigated through cohort studies. Cohort studies are
considered the gold-standard research design since inference is made at the individual
level and can directly assess cause and effect. However, cohort studies are costly and
require a long follow-up period meaning they take a long time to conduct.

To counteract these limitations, spatial ecological studies are used instead, which
make use of routinely available disease data and air pollutant concentrations at a small
areal level, such as census tracts or postcodes. This is to ensure the population under
study is relatively homogeneous within the areal unit in terms of socio-demographic
characteristics, and thus complements inference from a cohort study. These studies
quantify the health impact of exposure to air pollution by relating geographical con-
trasts between air pollutant concentrations and disease risk across the chosen spatial
resolution. The disease data are counts of the numbers of disease cases occurring in
each areal unit, and Poisson log-linear models are used to assess the pollutant-health
relationship.

Other covariate information, such as socio-economic deprivation, is also included to
help explain the spatial pattern in disease risk. However, the residual disease risk after
the covariate effects have been accounted for tends to contain spatial autocorrelation,
which has to be modelled in order to make sound inferences. Residual spatial autocor-
relation is typically modelled by a set of random effects that utilise a neighbourhood
matrix in order to induce spatial autocorrelation into the model. There are a number
of specifications to model this, but this thesis makes use of the Leroux specification due
to its flexibility in being able to model both strong and weak spatial autocorrelation.
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An important issue with using a spatial ecological study design is the estimation of
spatially representative pollutant concentrations that are available in each areal unit.
Studies can typically use measured data from fixed-location monitors that are spatially
sparse and do not provide a pollutant concentration for each areal unit; or they make
use of modelled concentrations available at a fine grid square resolution, which are
known to contain biases and no measure of uncertainty. There have been numerous
statistical approaches to combine both sets of information in order to estimate accurate
and spatially representative concentrations. This thesis will develop previous method-
ology that utilises extra data sources in order to improve the prediction performance
of the model for use in a Scottish context.

The overarching aim of this thesis is to investigate the cardio-respiratory health
effects of long-term exposure to air pollution in West Central Scotland, UK. As the
majority of air pollution in this region results from vehicle emissions, nitrogen dioxide
(NO2), a traffic-related gaseous pollutant, will be used to measure air pollution. Mod-
els investigating its health effect will incorporate predicted measures of NO2 developed
in this thesis. The sensitivity of the pollutant-health effect to the choice of NO2 con-
centrations, indicator of deprivation, and choice of spatial model will be investigated.
Changing these factors has been shown to modify estimated pollutant-health effects.

Findings in this thesis demonstrated that improvements in the accuracy of fine scale
spatial prediction of NO2 concentrations can be made by utilising extra sources of data
in addition to the commonly-used monitoring stations. In addition, the estimated
pollutant-health effect is not robust to the choice of the aforementioned factors and
the choice of these factors can have a major impact on the resulting pollutant-health
effects. This justified the combination of all statistical models into a single effect size,
which estimated a small, but positive effect of NO2 concentrations on cardio-respiratory
ill health. However, the estimated NO2-health relationship was not substantial, possi-
bly due to the NO2 concentrations in West Central Scotland being too low. Greater
variation in the exposure would be needed to observe substantial health impacts.
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Chapter 1

Introduction

1.1 Air pollution and health

Air pollution has been a major public health concern for over 700 years; however, it
only came to global prominence in the last 80 years and is the largest single environ-
mental health risk today. It is estimated to kill 1 in 8 people globally and by reducing
air pollution levels, many countries can reduce the burden of disease from chronic and
acute respiratory diseases, such as asthma, stroke, lung cancer, and heart disease. It
has repeatedly been shown to have a detrimental impact on human health, with some
of the earliest prominent examples being the Meuse Valley in Belgium in 1930 (Firket,
1936); Donora, Pennsylvania in October 1948 (Ciocco & Thompson, 1961); the London
smog episode of December 1952 (Ministry of Public Health, 1954); and more recently in
Shanghai, Eastern China in December 2013 (Huang et al., 2016). The London episode
resulted in more than 3,000 excess deaths (as displayed in Figure 1.1) compared with
previous years and brought the harmful effects of air pollution to the forefront. These
air pollution episodes were caused by industrial pollution sources and stagnant weather
conditions, which caused a sharp increase in air pollutant concentrations over several
days (Brunekreef & Holgate, 2002). For the London episode, a government committee
was set-up to examine the effects of air pollution and what caused these episodes, and
a report was produced that expressed an ‘emphatic belief that air pollution on the scale
with which we are familiar is a social and economic evil which should no longer be
tolerated... To do this will require a national effort, will entail costs and sacrifices, and
the recommendations made will involve expenditure by government, local authorities,
industry and householders alike’ (Stewart, 1994).

High pollution episodes such as these have lead to the implementation of air pol-
lution legislation, such as the Clean Air Acts in 1956 and 1993 in the UK; the UK
Air Quality Strategy in 1997, 2000 and 2007 (Department for the Environment, Food
and Rural Affairs, 2007); and the 2008 Ambient Air Quality Directive in the European
Union (2008/50/EC). These policies have lead to a reduction in air pollution concen-
trations in many parts of the world. However, a recent report by the World Health

1



2

Organisation (WHO) estimated that outdoor air pollution contributed to 3.7 million
premature deaths in people under the age of 60 in 2012 (World Health Organisation,
2014), and in 2014, 95% of the world’s population was living in places where levels of
air pollution were exceeding the WHO air quality guideline levels.

Air pollution remains a serious public health problem in the UK. Previous studies
have reported associations between numerous air pollutants, such as carbon monoxide
(CO, Villeneuve et al., 2003), nitrogen dioxide (NO2, Bennett et al., 2014), ozone (O3,
Tao et al., 2012), particulate matter with an aerodynamic diameter less than 2.5 µgm−3

(PM2.5, Cesaroni et al., 2013) and less than 10 µgm−3 (PM10, Pirani et al., 2014), and
sulphur dioxide (SO2, Wong et al., 2008); where they are related to mortality and
morbidity from many diseases including cardio-respiratory diseases. Particulate mat-
ter and nitrogen dioxide are amongst the most hazardous pollutants for population
health, especially in already sensitive individuals. Particulate matter comprises small
solid and liquid particles that are suspended in the air, which when inhaled into the
body can travel deep inside the lungs. This makes it an important pollutant and more
damaging compared to other air pollutants. Prolonged exposure increases the risks
of cardiovascular and respiratory disease, as well as lung cancer. NO2, on the other
hand, is a gaseous pollutant that is caused predominately by traffic and can cause
significant inflammation of the airways when exposed to high concentrations. This
thesis will focus primarily on NO2 as data for it are more widely available meaning it
is a more useful indicator of air pollution levels compared to the other commonly-used
measures, such as particulate matter, for which data are severely sparse across West
Central Scotland. There have been many studies investigating the effects of NO2 on ill
health, and a recent study in Scotland found a substantial association with respiratory
hospital admissions (Huang et al., 2015).

NO2 concentrations currently exceed the UK wide objective annual mean concentra-
tion of 40 µgm−3 set by EU legislation. These guidelines are set to protect the public,
but more importantly to protect susceptible members of the population, such as those
with asthma who react to lower levels of air pollutants compared to non-asthmatics. In
Glasgow, NO2 concentrations are predicted to exceed these targets until 2020 (Depart-
ment for the Environment, Food and Rural Affairs, 2015). While the health risk of air
pollution to any one person may be small, the risk is substantial in public health terms
since a whole population of people will be exposed and thus there is strain on local
governments to try and mitigate this (Pope III & Dockery, 2006). Although current
air pollution levels are not meeting the regulatory guidelines, air pollution levels in the
majority of major western cities have fallen considerably to historically low levels over
the last century. Reducing levels of air pollution still remains an area of active research
due to the aforementioned WHO estimates.
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Figure 1.1: London smog of 1952. Subfigure (a) displays the weekly number of deaths
in Greater London compared with those in 140 Great Towns between October 1952 -
March 1953. Subfigure (b) displays the mean values of sulphur dioxide compared with
1951-1952. (Anderson, 2009).
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Previous studies have typically focused on the short-term or acute health effects of
exposure to air pollution, due to the simplicity, data availability, and quickness to im-
plement and obtain results. These are referred to as time series studies, which estimate
the daily effects of air pollution on ill health over short time periods in large urban
areas, such as a city or state. This type of study is at the ecological or population
level since the health outcome refers to daily aggregated counts of mortality or mor-
bidity, which are then regressed on aggregated daily air pollutant concentrations and
other covariates relating to weather, influenza, and the day of the week. Air pollutant
concentrations are routinely measured from a number of fixed air pollution monitors
that are located throughout the study region, but are typically aggregated to form one
overall level of pollution at each time point.

Schwartz & Marcus (1990) were among the first to implement a time series study.
This was conducted on data from the Greater London area between 1958 and 1972 and
reported a significant association of air pollution with mortality. While each individual
time series study is important, there is wide variation in the statistical methods used
to explore the relationship between air pollution and health. Therefore, research teams
in more recent times have attempted to mitigate this variation through the implemen-
tation of large multi-city studies, which standardises the statistical modelling approach
and makes sure each city uses the same air pollutants from approved sources to ensure
homogeneity between the analyses in the different cities. Examples of these types of
studies in Europe include Air Pollution and Health: A European Approach (APHEA,
Dab et al., 1996; Katsouyanni & Schwartz, 1996; Samoli et al., 2006), and the National
Morbidity, Mortality and Air Pollution Study (NMMAPS, Huang et al., 2005).

The long-term or chronic health effects of exposure to air pollution relate to expo-
sure over a number of years and are typically estimated using cohort studies. Cohort
studies follow a number of people at the individual level, rather than at the ecological
level, over a specified time frame, which can last a large number of years. Some pre-
vious notable cohort studies include the Six Cities study by Dockery et al. (1993) and
Laden et al. (2000); the American Cancer Society study by Pope III et al. (2002); the
multicentre ESCAPE project in Europe by Beelen et al. (2014); and the Netherlands
cohort study by Hoek et al. (2002). However, cohort studies are not always feasible due
to the high cost and long implementation, since they require a long follow-up period
for every member in the cohort. Therefore, small area spatial ecological studies are
instead used to estimate the long-term health effects of air pollution since they are
much quicker and easier to implement due to the data being routinely available with
no cohort of people to follow up. Haining et al. (2010); Jerrett et al. (2005b); Lawson
et al. (2012); Lee et al. (2009); Lee & Sarran (2015); Maheswaran et al. (2005a); Rush-
worth et al. (2014) were among those to implement such studies.
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Small area spatial ecological studies overcome a number of limitations of general
ecological studies (e.g., time series) as the populations under study tend to be more
homogeneous with respect to their socio-demographic characteristics. Furthermore,
unlike time series studies, where a single estimate for air pollution exposure may be
used for an entire city, small area studies are able to capture finer spatial variations in
ecological exposure levels, which is important for studying the effects of air pollution
on ill health. Spatial ecological studies can be cross-sectional to give a snapshot of a
moment in time, for example, using data for one year (Lee & Sarran, 2015), or they
can also be longitudinal when daily, monthly or consecutive years of data are consid-
ered. Spatial ecological studies analyse populations or groups of people rather than
individuals, and while they are important for adding to the body of evidence whether
an exposure is associated with an outcome, they are not able to establish whether the
exposure caused the outcome.

Spatial ecological studies estimate the relationship between air pollution and ill
health by modelling geographical contrasts in air pollution and disease risk across areal
units determined by administrative boundaries, such as census tracts or postcodes. The
disease data comprise counts of the numbers of disease cases within each areal unit,
where typically Poisson log-linear models are used to model this relationship. These
models also take known confounders, such as socio-economic deprivation into account.
However, the spatial patterns in the disease data are never fully accounted for by the
covariates and typically contain residual spatial autocorrelation. The leftover spatial
patterning can be due to numerous factors, such as unmeasured confounding when an
important spatially correlated variable is not included as a covariate in the model. To
explain this leftover spatial autocorrelation, the linear predictor containing the covari-
ates includes an additional variable known as a random effect. This set of random
effects are typically modelled by a conditional autoregressive (CAR, Lee, 2011) speci-
fication, which is a type of Markov random field. The spatial autocorrelation between
the random effects is determined by a neighbourhood matrix, where the most common
approach is to specify ‘neighbours’ as areas sharing a common border. This matrix
holds information on whether the random effects are partially correlated or not and this
correlation can be modelled by a number of CAR specifications, such as the intrinsic
model (Besag et al., 1991), and the Leroux model (Leroux et al., 1999). Further de-
tails on how these spatial models differ in their specification can be found in Chapter 3.

A major issue in not only spatial ecological studies, but all studies quantifying the
health impact of air pollution, is ensuring the air pollutant concentrations used are
spatially representative and accurate. Typically, data on air pollutant concentrations
are available directly from air pollution monitors that are located throughout the study
region, or are available as estimated concentrations on a regular grid that are output
from a mathematical atmospheric dispersion model. As monitoring networks are ex-
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tremely sparse, using data collected by monitoring stations can be problematic for
adequately assessing exposure to air pollution for the whole population under study,
as it is not possible to provide every areal unit with an air pollutant value. Therefore,
modelled concentrations are used instead as they are estimated at a fine scale reso-
lution and provide complete spatial coverage of the study region. However, they are
known to contain biases and contain no measure of uncertainty (Berrocal et al., 2010b).

Another problem with measuring air pollution is that measured and modelled val-
ues of air pollution tend to be on different spatial scales, while the disease data are also
at another spatial resolution. In the statistical literature this is known as the change-
of-support problem (Gelfand et al., 2001; Gotway & Young, 2002), and has received
great attention in the past decade. While studies can either use measured data on
their own (Elliott et al., 2007), or the modelled data on their own (Lee et al., 2009),
new methods are now being developed which combine both sets of air pollution data
by scaling them to a specific spatial resolution (Berrocal et al., 2010b), or by fusing
the two sets of data together (Fuentes & Raftery, 2005).

1.2 Measuring deprivation

How healthy a person is, according to the WHO, is related to numerous social factors,
including level of education, whether in employment, level of income, gender and eth-
nicity. This leads to wide disparities in the health status of different social groups,
where a lower socio-economic position implies a higher risk of poor health.

There has been evidence to suggest that deprivation influences the association be-
tween air pollution and ill health, and is therefore an important confounding variable
to be considered in epidemiological studies. However, studies in Scotland have not been
consistent in finding an association between air pollution and ill health, when depriva-
tion is included in the statistical model. This may be due to the multi-factorial nature
of deprivation meaning it cannot be fully captured by one or two specific indicators,
such as education or employment.

Some studies try and capture deprivation as a whole by utilising an overall mea-
sure, such as the Carstairs Score (Carstairs, 2001; Elliott et al., 2007), the Townsend
Index (Haining et al., 2010; Maheswaran et al., 2005a, 2006, 2012; Townsend et al.,
1988; Walters et al., 1995), or the English Indices of Deprivation (Bennett et al., 2014;
Maheswaran et al., 2012; Tonne et al., 2008, 2010). Lastly, studies that do account
for numerous indicators (Goodman et al., 2011; Jerrett et al., 2005b; Lee & Mitchell,
2014; Naess et al., 2007) often conclude their research by either selecting one model
based on minimising a goodness-of-fit criteria, or presenting the results of all models.
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While these are simple approaches at attempting to find the best overall model or to
give an overall view of which deprivation indicators are important, they discard all the
information present from other models when selecting one, or fail to account for the
uncertainty in the choice of deprivation indicator when estimating the pollutant-health
effect. Furthermore, different deprivation indicators can result in a wide variation of
effect sizes, which are generally not explicitly discussed.

1.3 Aims

Precise measures of air pollution are an important requirement for adequately quan-
tifying the effects of air pollution on ill health. The primary aim of this thesis is to
utilise multiple air pollution data sources for extending downscaling and fusion meth-
ods in order to increase the accuracy of predicted concentrations for use in future health
studies. As estimates of the effect of air pollution on health may be influenced by the
choice of air pollutant concentrations and/or deprivation indicator used, this thesis will
also investigate the sensitivity of the pollutant-health relationship to these choices and
suggest ways of accounting for uncertainty.

1.3.1 Contribution to literature

This thesis will contribute to the body of evidence on air pollution and ill health in
Scotland. It will estimate the association between air pollutant concentrations, specifi-
cally NO2, and ill health across West Central Scotland, where ill health is measured in
terms of both mortality and hospital admissions as a result of cardio-respiratory disease.

This study will be conducted within an ecological small area framework, which will
relate air pollutant concentrations and other covariates, such as socio-economic depri-
vation to ill health. However, as air pollutant concentrations are generally measured in
more urban environments they tend to highlight peak pollutant levels. Furthermore,
measurements are usually not evenly distributed across the study area, especially in
more rural environments, and are therefore not spatially dense. For a small area study
to be feasible, it is crucial to have air pollutant measurements at the same spatial res-
olution at which the disease data are available. Otherwise, the study lacks statistical
power to obtain accurate results. This thesis will develop new spatial methodology for
estimating fine-scale air pollutant concentrations that ensures availability of concen-
trations at the area level that can be aligned with the disease data. This thesis will
then relate these new estimated air pollutant concentrations to ill health, while taking
into account other covariates, such as socio-economic deprivation. Furthermore, air
pollution levels in Scotland are relatively low, so it is important to investigate whether
any relationship holds at low pollutant levels, which will help inform any future policy
decisions regarding improving air quality.
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1.4 Overview of thesis

The remainder of this thesis is split into seven chapters. Chapter 2 provides an overview
of the existing statistical methods that form the basis of the methodology utilised in
this thesis. It discusses both maximum likelihood methods and Bayesian inference,
since analyses are conducted within a Bayesian framework. This chapter delves into
generalised linear modelling, while also providing background information on spatial
statistics in terms of both geostatistics and areal unit statistics. The geostatistics sec-
tion provides background methodology to the pollutant model developed in Chapter 4,
while the areal unit section provides background methodology for the pollutant-health
modelling conducted in Chapters 5 and 6.

Chapter 3 provides a detailed literature review on air pollution and health stud-
ies. This chapter discusses further the types of studies, such as time series and cohort
studies, used to quantify the impact of air pollution on ill health, with the main focus
being on ecological areal unit studies. In addition, Chapter 3 discusses the study de-
sign, frequency of disease, and data used throughout remaining chapters. This chapter
includes a review of evidence from around the world and how it relates to research
within Scotland. The problem of ecological bias is discussed since it plays an impor-
tant role in spatial ecological studies as one cannot assume association at the ecological
level holds at the individual level. This chapter ends with a discussion surrounding
the ways in which studies estimate exposure to air pollution at the ecological level,
by outlining the difficulties in estimating exposure from a sparse monitoring network.
Following this, there is discussion around the approaches employed to enhance spatial
prediction of air pollutant concentrations.

Chapter 4 considers the difficulties in estimating air pollutant concentrations that
are at the correct spatial resolution to be able to be used alongside the disease data.
This chapter discusses the types of air pollutant data that are available in Scotland and
how they can be combined to produced accurate fine scale estimated concentrations.
The statistical methodology developed to achieve this is based on methods already de-
veloped in the statistical literature, but extends them to make use of additional inputs
that are available in Scotland, and how they can be combined to produce accurate fine
scale estimated concentrations. Several models looking into how different covariates
and frameworks (maximum likelihood versus Bayesian) can alter the prediction per-
formance are compared, while utilising procedures to determine the best overall model
(in terms of goodness-of-fit criteria). The final model is then used to predict fine scale
air pollutant concentrations across West Central Scotland, which can then be used to
investigate whether they have a detrimental effect on ill health.



9

Chapters 5 and 6 relate the new fine scale predicted air pollutant concentrations
to cardio-respiratory ill health in West Central Scotland. Both chapters quantify the
impact of air pollution on human health, with results from Chapter 5 advocating the
statistical model, the set of air pollutant concentrations, and the indicators of socio-
economic deprivation to be used in Chapter 6. Chapter 5 utilises a relatively underused
type of statistical analysis used in the air pollution and health literature, and aims to
combine the results from multiple models into a single overall estimate that takes model
uncertainty into account. This stems from studies only selecting the best model that
minimises some goodness-of-fit criteria and ignoring information available from other
models. Therefore, this chapter develops Bayesian model averaging for use in an air
pollution and health context, which is a method to statistically combine results from
numerous models into an overall effect size for the association between air pollutant
concentrations and ill health. This methodology also helps to establish which of the
factors (in terms of the statistical framework employed, set of air pollutant concentra-
tions and choice of socio-economic deprivation utilised) in a model have the greatest
contribution to the overall effect size. This will help inform future studies of the factors
that are the most important. Chapter 6 utilised a similar approach since deprivation
still plays an important confounding role in air pollution and health studies, and made
use of the predicted air pollutant concentrations, but this chapter differs from the pre-
vious chapter in that the main focus is on disease incidence (number of new cases of a
disease within a population) rather than mortality. Incidence was the outcome in this
chapter rather than mortality so that there could be a chance of greater understanding
of the burden of air pollution on populations that are considered to be healthy with
no known pre-existing history of cardio-respiratory disease.

Finally, Chapter 7 presents the key findings from this thesis and outlines the inher-
ent limitations when conducting research of this kind, while proposing ideas for future
research. Suggestions of ways in which to engage policy on improving overall air quality
are provided.



Chapter 2

Review of Statistical methods

2.1 Introduction

This chapter forms the basis for the statistical techniques used throughout this thesis.
Likelihood-based methods of analysis are the predominant approach in many early and
current air pollution and health studies (see Larrieu et al., 2007; Prescott et al., 1998;
Willocks et al., 2012), and form the basis of more complex techniques. These meth-
ods are described in Section 2.2, which details regression methods, such as Poisson
regression and quasi-Poisson regression. As time has progressed, data and statistical
models have increased in size and complexity, thus resulting in the Bayesian approach
becoming the main framework in which analysis is conducted. Therefore, in this thesis,
statistical models are implemented within a Bayesian setting. These are introduced
in Section 2.3. This section discusses principles of Bayesian analysis, beginning with
Bayes Theorem, followed by a discussion of prior distributions and finally how to im-
plement it.

While a Bayesian framework is adopted in this thesis, the relationship between air
pollution and ill health is analysed using spatial statistics, which is described in Section
2.4. This section is further divided into two parts: geostatistics and areal unit statis-
tics. Geostatistics, as described in Section 2.4.1, forms the basis for the geostatistical
fusion model implemented in Chapter 4. Areal unit data, as described in Section 2.4.2,
serves as the basis for the pollution-health modelling implemented in Chapters 5 and
6, but also relates to the different regression methods given in Section 2.2. Finally,
Section 2.5 details the methods used to perform direct and indirect standardisation on
the health count data to be used in the pollution-health modelling.

2.2 Generalised linear models

Regression is a statistical technique used to determine if there are linear relationships
between multiple variables and answers questions such as ‘is there a relationship be-

10
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tween air pollution and health?’, ‘how strong is the relationship between air pollution
and health?’, and ‘how accurately can pollution be predicted in the future?’ (Dalgaard,
2008; Faraway, 2004; James et al., 2013). Linear regression is the most straightforward
approach for predicting a quantitative response or dependent variable represented by a
vector of observed data comprising m observations, Y = (Y1, . . . , Ym)>, while using the
information from one or more predictors (independent variable, explanatory variable,
covariate) x1, . . . , xp, where p denotes the number of covariates. When p = 1 there is
only one covariate and regression is called simple linear regression, whereas multiple
regression is when p > 1. Multiple regression assumes there is an approximately linear
relationship between the covariates and response and the model is given by

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi, i = 1, . . . ,m,

= x>i β + εi,
(2.1)

where the errors εi are assumed to be independent and identically distributed as εi ∼
N(0, σ2), x>i = (x0i, x1i, . . . , xpi) and x0i = 1 for the intercept term. In vector form the
regression model is given by

Y = Xβ + ε, (2.2)

where X is the design matrix of covariates, i.e., X = (x0,x1, . . . ,xm)>. The β =
(β0, . . . , βp)> parameters quantify the association between each covariate and the re-
sponse and are interpreted as the increase per unit change in each covariate, holding
all other covariates as fixed. The parameters β, σ2 are unknown quantities and are
estimated using the method of Maximum Likelihood (ML), where the estimate for the
regression coefficients β is given by β̂ = (X>X)−1X>Y and the estimate for σ2 is given
by σ̂2 = (Y −Xβ̂)>(Y −Xβ̂)/(m− p).

However, in linear regression, the residuals (Y − Xβ̂) must be continuous and
normally distributed. Therefore, it is not an appropriate modelling framework for
discrete data, such as binary outcomes, or for count data where the counts can be
heavily skewed. Instead, generalised linear models (GLMs, McCullagh & Nelder, 1989;
Nelder & Wedderburn, 1972) should be used. These are an extension of the linear
modelling framework outlined above, characterised by their response distribution, p,
and a link function, G, which describes how the mean, µ, is transformed onto a scale
related to the linear predictor. In general terms, the linear predictor of a regression
model is given by η = Xβ and the link function G (it can be noted that McCullagh &
Nelder, 1989; Nelder & Wedderburn, 1972 actually denote G−1 as the link function) is
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the function that relates the mean µ = E[Y|X] and the linear predictor η by

E[Y|X] = G(Xβ)⇔ µ = G(η). (2.3)

The linear model is a special case of the GLM, where the link function is simply the
identity function. Common link functions include log and square root transformations,
whereas in a logistic regression analysis where the response is binary coming from a
Binomial distribution, the link function is logit(li) = log(li/(1− li)) = x>i β, where l is
the probability of an event occurring.

As the disease data in this thesis are based on counts of mortality and hospital ad-
missions due to cardio-respiratory disease, linear regression may produce biased results
(Coxe et al., 2009). Instead, Poisson regression can be used to appropriately model
count data. This is a special case of a generalised linear model and is discussed below
in Section 2.2.1.

2.2.1 Poisson and quasi-Poisson regression

A count variable is one that can only take positive integer values such as (0, 1, 2, . . . )
and reflects the number of occurrences of an event, such as the number of people in
a specific area that have died, in a specified time frame. Count variables can only
be positive (or zero) since an event cannot occur a negative amount of times. Using
count data in ordinary least squares (OLS), which is the optimisation method used in
linear regression, may violate some of the assumptions that are placed on the error
structure of the model. The errors of a model are given by the residuals. A residual
is the difference between the observed data Yi and the predicted data Ŷi and is given
by êi = Yi − x>i β̂. The assumptions that are placed on the error structure are that
of normality, constant variance (homoscedasticity) and independence. Count data can
violate these assumptions when the variance increases with the mean of the data (het-
eroscedasticity) and by displaying skewness in its distribution.

In order to overcome these assumption violations, Poisson regression can be utilised
in which the Poisson distribution represents the distribution of the errors. As stated
above, Poisson regression falls into the class of generalised linear models where the
outcome is transformed to linearise the relationship between the response and the
covariate/s. This transformation is performed through the link function, in which the
natural log is the link function used in Poisson regression. The Poisson distribution is
important for modelling count data since it is a discrete distribution that only takes
positive integers and the probability mass function for the Poisson distribution is given
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by

p(Y = y|µ) = µy

y! exp(−µ), y = 0, 1, . . . , (2.4)

where µ is both the mean and variance of the distribution, i.e., E[Y ] = Var[Y ] = µ.
The Poisson regression model for response Yi and covariates x>i = (x0i, x1i, . . . , xpi) is
given by

Yi ∼ Poisson(µi), i = 1, . . . ,m,

log(µi) = x>i β,
(2.5)

where µi is the expected count given specific values of the covariates. As the trans-
formed outcome is no longer on the same scale as the original outcome, to find the
value of µi for specified values of the covariates, the exponential of the linear predictor
is taken, i.e., exp(x>i β).

One of the main issues with health count data is that they typically exhibit greater
variation compared to the mean. This poses an issue for Poisson regression since the
Poisson distribution has an equal mean and variance. When the variance is greater
than the mean it is known as overdispersion (underdispersion when the variance is
less than the mean and equidispersion when the mean and variance are equal). One
of the most common ways of dealing with overdispersed health count data is to use
quasi-Poisson regression (Wedderburn, 1974). Quasi-Poisson regression is similar to
Poisson regression except it has two parameters µ and φ, where φ is the parameter
that accounts for any overdispersion present in the data. The quasi-Poisson model
is characterised by its mean as E[Yi] = µi, and variance as Var[Yi] = φµi, where the
variance is assumed to be a linear function of the mean (Ver Hoef & Boveng, 2007).
Quasi-Poisson models are estimated by maximum likelihood (ML) using the method
of iteratively weighted least squares (IWLS), which is outlined below.

2.2.1.1 IWLS

In the GLM framework, the distributions used to characterise the observed data such as
Gaussian, Binomial, Exponential and Poisson, are members of the exponential family
of distributions, where the probability distributions can be written in the form

p(Y = y|θ, φ) = exp
(
yθ − b(θ)
a(φ) + c(y, φ)

)
, (2.6)

for some random variable Y , where φ is the dispersion parameter, θ is the parameter
of interest (canonical parameter), and a(•), b(•) and c(•) are some specific functions.
For example, suppose Y is normally (Gaussian) distributed, i.e., Y ∼ N(µ, σ2), then
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the distribution can be written as a member of the exponential family as

p(Y = y|µ, σ2) = 1√
2πσ2

exp
(
− 1

2σ2 (y − µ)2
)
,

= exp
(
y
µ

σ2 −
µ2

2σ2 −
y2

2σ2 − log(
√

2πσ2)
)
,

(2.7)

where a(φ) = σ2, b(θ) = µ2/2, c(y, φ) = −y2/2σ2 − log(
√

2πσ2), φ = σ and θ = µ.

The method of estimation for GLMs is maximum likelihood, where for the vector
of regression coefficients β = (β1, . . . , βp)> the likelihood is maximised with respect to
β. Denote the vector of observations as Y = (Y1, . . . , Ym)>, and denote the vector of
expectations as µ = (µ1, . . . , µm)>. Given the link function, θi = x>i β = G(µi). Then
the log-likelihood of Y is

l(Y,θ, φ) =
m∑
i=1

l(Yi, θi, φ), (2.8)

where θi = θ(ηi) = θ(x>i β), and l(•) on the right hand side of (2.8) denotes the
individual log-likelihood for each observation i. In the situation of quasi-likelihood
where the distribution of Y is unknown, the log-likelihood is replaced by the first
two moments of the unknown distribution, where it is assumed that E[Y] = µ and
Var[Y] = a(φ)V (µ). The quasi-likelihood (Nelder & Wedderburn, 1972) is then defined
by

l(Y, θ, φ) = 1
a(φ)

∫ y

µ(θ)

s− y
V (s) ds. (2.9)

When Y is from the exponential family of distributions, then the derivatives of l(y, θ, φ) =
log(p(y|θ, φ)) and the quasi-likelihood coincide.

If the log-likelihood in equation (2.8) is replaced with with the general form of the
exponential family of distributions given in equation (2.6), then

l(Y,θ, φ) =
m∑
i=1

[
Yiθi − b(θi)

a(φ) − c(Yi, φ)
]
. (2.10)

Since the terms a(φ) and c(Yi, φ) will not have an influence on the maximisation, it is
sufficient to consider the log-likelihood to be simplified to

l̃(Y,θ) =
m∑
i=1

(Yiθi − b(θi)). (2.11)

Then to maximise this log-likelihood with respect to β, the derivative is taken which
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yields

∂

∂β
l̃(Y,θ) =

m∑
i=1

(Yi − b′(θi))
∂

∂β
θi, (2.12)

which is solved by setting equal to zero and rearranging for β. However, this would
require solving a set of nonlinear system of equations, which requires an iterative proce-
dure to be solved. The Newton-Raphson algorithm is an iterative procedure for solving
such systems of equations. First of all, denote the Hessian of the log-likelihood to be
H(β), which is the matrix of second derivatives for all elements of β. One iteration of
the Newton-Raphson algorithm for β, where D(β) denotes equation (2.12), is

β̂
(t+1) = β̂

(t)
− (H(β̂(t)))−1D(β̂)(t). (2.13)

The Fisher scoring algorithm is a variation of the Newton-Raphson method, which
replaces the Hessian matrix by its expectation as

β̂
(t+1) = β̂

(t)
− E[H(β̂(t))]−1D(β̂)(t). (2.14)

Recall that θi = µi = G(x>i β) = b′(θi), ηi = x>i β, so b′(θi) = G(ηi). Then the first and
second derivatives of θi are

∂

∂β
θi = G′(ηi)

V (µi)
xi, (2.15)

∂2

∂β∂β>
θi = G′′(ηi)V (µi)−G′(ηi)2V ′(µi)

V (µi)2 xix>i .

Then, the derivative of the log-likelihood with respect to β given by D(β) can be
expressed as

D(β) =
m∑
i=1

(Yi − µi)
G′(ηi)
V (µi)

xi. (2.16)

And the Hessian matrix can be expressed as

H(β) =
m∑
i=1

[
− b′′(θi)

(
∂

∂β
θi

)(
∂

∂β
θi

)>
− (Yi − b′(θi))

∂2

∂β∂β>
θi

]
(2.17)

=
m∑
i=1

[
G′(ηi)2

V (µi)
− (Yi − µi)

G′′(ηi)V (µi)−G′(ηi)2V ′(µi)
V (µi)2

]
xix>i (2.18)

In the Fisher Scoring algorithm in equation (2.14), the expectation of the Hessian
matrix can be replaced by

E[H(β)] =
m∑
i=1

(
G′(ηi)2

V (µi)

)
xix>i , (2.19)
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since E[Yi] = µi. Furthermore, define the weight matrix for the Fisher scoring algorithm
as

W = diag
(
G′(η1)2

V (µ1) , . . . ,
G′(ηm)2

V (µm)

)
, (2.20)

and define

Ỹ =
(
Y1 − µ1

G′(η1) , . . . ,
Ym − µm
G′(ηm)

)
. (2.21)

One iteration for β can then be expressed as

β(t) = β(t−1) + (x>i Wxi)−1x>i WỸ,

= (x>i Wxi)−1x>i WZ, (2.22)

where Z = (Z1, . . . , Zm)> denotes the vector of adjusted dependent variables, i.e.,
zi = x>i β

(t−1) + (Yi − µi)(G′(ηi))−1. The iteration stops when the parameter estimate
or log-likelihood no longer changes significantly. Then, the parameter estimates for
regression parameters are denoted by β̂. At each step of the iteration, weighted least
squares is performed on the adjusted responses zi on xi. For normal linear regression,
iteration is not necessary because the link function is the identity so G′ = 1 and
µi = ηi = x>i β. The second derivative of θk is zero when the link is canonical, for
example, the log-link for count data. An estimate for the dispersion parameter φ can
be obtained from

â(φ) = 1
m

m∑
i=1

(Yi − µ̂i)2

V (µ̂i)
. (2.23)

2.3 Bayesian modelling

The foundation of Bayesian inference is Bayes theorem, which was introduced by En-
glish statistician and Reverend, Thomas Bayes (Bayes, 1764). Firstly, a joint proba-
bility distribution for the vector of unknown parameters θ = (θ1, . . . , θd) and observed
data Y can be written as a product of the prior distributions p(θ) and the likelihood
p(Y|θ) as

p(θ,Y) = p(θ)p(Y|θ). (2.24)

Observing data changes the information about a parameter according to

p(θ) −→ p(θ|Y). (2.25)

In other words, prior information via p(θ) relates to the posterior p(θ|Y), which is the
probability of the parameters conditioned on the observed data. The way in which
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prior information relates to the posterior is through Bayes Theorem

p(θ|Y) = p(θ)p(Y|θ)
p(Y)

= p(θ)p(Y|θ)∫
θ p(θ)p(Y|θ)dθ

∝ p(θ)p(Y|θ), (2.26)

and is equal to the prior density of unknown parameters θ times the likelihood of the
data p(Y|θ), divided by a normalising constant p(Y). This can be simplified to be
proportional to the prior times the likelihood. The likelihood, p(Y|θ), is the likelihood
of the observed data Y under a probability model, and the prior is the distribution of
knowledge about θ (set of parameters) before any data are observed. The posterior
therefore reflects uncertainty in the parameters after taking the prior information and
data into account. Typically, the central value, such as the mean or median, of the
parameter’s posterior distribution is taken to be its point estimate, where it provides
probabilistic statements about the parameter. A c% credible interval quantifies the
uncertainty surrounding the point estimate and estimates that the parameter will lie
within a specific interval with probability c

100 .

The choice of prior distribution is subjective and is one of the criticisms of a Bayesian
analysis, but prior information can be based on information from previous studies, ex-
pert intuition, or can be chosen to represent prior ignorance or on a basis of convenience.
It is common practice to use prior distributions that are close to flat, encouraging a
negligible impact on the posterior, which is driven mostly from the data (Gelman et al.,
2003). Thus, at this particular point, a frequentist model (using a ML approach) and
a Bayesian model should have very similar results. A hierarchical Bayesian framework
is typically used, in which the parameters of the prior distribution for each of the pa-
rameters is estimated using a further set of probability distributions in terms of further
parameters φ known as hyperparameters, which are given by

p(φ,θ|Y) = p(Y|θ)p(θ|φ)p(φ), (2.27)

where p(φ) is the set of hyperpriors and affects Y only through θ. The model is
hierarchical due to its inherent structure, since there are hyperparameters, φ, with dis-
tribution p(φ) that governs the prior distributions, p(θ|φ), which in turn are combined
with the data p(Y|θ) to produce the posterior distribution p(θ|Y).
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2.3.1 Choice of prior distribution

The prior distribution for a model parameter conveys all available information that is
known, before observing any data. Therefore, it is an important consideration when
preforming Bayesian inference as the choice of prior will influence the posterior dis-
tribution. One can choose a univariate prior for each of the parameters, such as
p(θ) = ∏d

i=1 p(θi), or combine information for all individual model parameters into
a single multivariate prior. Typically, such priors are used in combination as is the
case in this thesis.

There are many types of prior distributions that can be utilised, and each type
of prior has its own merits. The type of prior chosen depends on the information or
belief to be conveyed in the model. A conjugate prior (Räıffa & Schlaifer, 1961) is
one that results in a posterior density of the same parametric distribution as the prior.
For example, a Gamma prior combined with a Poisson likelihood will yield a Gamma
distribution for the posterior. The likelihood for a Poisson distribution is given as

p(Y = y|µ) = µy

y! exp(−µ) (2.28)

∝ µy exp(−µ),

and the Gamma distribution for the prior of µ is given as

p(µ|α, β) = βαµα−1 exp(−βµ)
Γ(α) , (2.29)

∝ µα−1 exp(−βµ).

Then, to obtain the posterior distribution for µ, the likelihood is multiplied by the prior;
however, the posterior is proportional to these elements. Therefore, in the likelihood
and prior distributions, only terms that are related to µ are kept as any terms not
containing µ are normalising constants. Therefore, combining the likelihood and the
prior yields a posterior density of

p(µ|y) ∝ µy+α−1 exp(−µ(β + 1)),

= Gamma(µ|y + α, β + 1).
(2.30)

A conjugate prior is used for ‘algebraic convenience’ as the resulting posterior is of the
same parametric form as the prior and is therefore easy to understand and evaluate in
closed-form.

Informative priors are such that the prior and the likelihood both have an influence
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on the resulting posterior density. These types of priors must be handled with care, but
they demonstrate the power of Bayesian methods as information on previous studies,
expert opinion or experience can be combined with current knowledge in a natural way.

Flat or noninformative prior specifications are used so that the resulting posterior
distribution is driven by the data, thus reducing the amount of subjective belief to be
incorporated into the model. A typical flat prior is the unbounded uniform distribu-
tion from negative infinity to positive infinity for a parameter θ on the real line. This
does indeed allow the data to determine the posterior density, but the resulting pos-
terior is improper as it cannot integrate to one and is therefore not a valid probability
distribution. However, if the uniform prior is on the interval [0, 1] for a parameter
characterising a proportion, then the resulting posterior distribution will be proper.

An alternative is the class of weakly informative priors, which are useful when there
is a lack of knowledge surrounding a parameter as little or no information is known.
These priors attempt to be noninformative, but are still proper priors that integrate to
one as they are not fully flat like the uniform prior. Furthermore, weakly informative
priors are purposely constructed so that the information contained is weaker than any
prior knowledge that is actually available (Gelman, 2006) and have a negligible effect
on the posterior, which allows the observed data to determine the posterior density.
An example of a weakly informative prior is when assigning a multivariate Gaussian
prior with mean zero and a large diagonal variance matrix (for example, setting the
diagonal elements to 1000) to the set of regression parameters for p covariates in a
regression model.

2.3.2 Inference

Bayesian inference can be conducted in many ways, but the most common approach
to obtaining the posterior distribution is through Markov chain Monte Carlo (McMC)
simulation methods. These methods allow sampling from the posterior distribution
by constructing a Markov chain, which produces correlated realisations from the pos-
terior after a finite number of iterations. The samples are drawn sequentially where
the current sample only depends on the previous sample. This is known as a Markov
chain. In probability theory, a Markov chain is a stochastic process comprising M

random variables (θ(1),θ(2), . . . ,θ(M)), where for any sample t, the distribution of
θ(t) = (θ(t)

1 , . . . , θ
(t)
d ) given all previous values only depends on the previous value,

θ(t−1) and d is the number of parameters. This Markov property is fundamental to
McMC simulation, but the key property of McMC is that it is an iterative procedure
in which the approximate distributions are improved at each step of the algorithm,
since they converge to the target (posterior) distribution p(θ|Y). The simulation has
to be run long enough so that the distribution of the current draws are the target
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density. The Markov chain is then assessed for convergence as the simulated sequences
should come from the target density.

Within McMC methods, there are numerous algorithms for sampling from the pos-
terior distribution such as Gibbs sampling, and the Metropolis-Hastings algorithm.
The Metropolis-Hastings algorithm is the simplest and most general McMC algorithm
(Banerjee et al., 2004; Robert & Casella, 2010). This algorithm is used to sample from
the posterior p(θ|Y) when the posterior distribution is not a standard distribution
(such as a Gaussian distribution), or when some/all of the full conditional distribu-
tions are not standard distributions. Consider a parameter vector θ = (θ1, . . . , θd). The
full conditional distribution of θi is the distribution of the parameter conditioned on the
known information and all other parameters, that is p(θi|θ1, . . . , θi−1, θi+1, . . . , θd,Y).

The Metropolis-Hastings algorithm is an adaptation of the Metropolis algorithm,
which uses an acceptance/rejection rule to converge to the specified posterior or full
conditional distribution for each parameter. The Metropolis algorithm (Metropolis
et al., 1953) is outlined below.

1. Choose starting values θ(0) = (θ(0)
1 , . . . , θ

(0)
d ), for which p(θ(0)|Y) > 0, from a

starting distribution p(θ(0)).

2. At iteration t, for parameters i = 1, . . . , d:

(a) Draw a proposal value θ(∗)
i from a jumping or proposal distribution, Jt(θ(∗)

i |θ
(t−1)
i ).

The jumping distribution must be symmetric for the Metropolis algorithm
such that Jt(θa|θb) = Jt(θb|θa), for all θa, θb and t.

(b) Compute the acceptance ratio (probability),

r = p(θ(∗)
i |θ−i,Y)

p(θ(t−1)|θ−i,Y) . (2.31)

(c) Accept θ(∗)
i as θ(t)

i with probability min(r, 1). If θ(∗)
i is not accepted, then

θ
(t)
i = θ

(t−1)
i .

3. Repeat step 2 M times to get M draws from p(θ|Y).

The proposal distribution determines where the chain moves to in the next iteration,
thus the support of the proposal distribution must contain the support of the posterior
or full conditional distribution. Furthermore, it is important to monitor the acceptance
rate (proportion of proposal values that are accepted) of the algorithm because, if it is
too high, the chain may not be mixing well (i.e., the chain is not moving around the
parameter space quickly enough). If the acceptance rate is too low, the algorithm is
too inefficient as it is rejecting too many proposal values. For the Metropolis-Hastings
algorithm (Hastings, 1970), the jumping distribution needs no longer be symmetric.



21

To correct for the asymmetry in the jumping distribution, the acceptance ratio in step
2 is replaced with

r = p(θ(∗)
i |θ−i,Y)/Jt(θ(∗)

i |θ
(t−1)
i )

p(θ(t−1)
i |θ−i,Y)/Jt(θ(t−1)

i |θ(∗)
i )

. (2.32)

The Gibbs sampler (Geman & Geman, 1984) is a special case of the Metropolis-
Hastings algorithm when each full conditional distribution is a known standard distri-
bution. Thus, the Gibbs sampler is useful for conditionally conjugate models, where
one can sample from each conditional posterior distribution. The procedure for Gibbs
sampling is outlined below.

1. Choose a vector of starting values θ(0).

2. At iteration t, for parameters i = 1, . . . , d:

(a) Draw a value θ(t)
1 from the full conditional distribution

p(θ1|θ(t−1)
2 , . . . , θ

(t−1)
d ,Y).

(b) Draw a value θ(t)
2 from the full conditional distribution

p(θ2|θ(t)
1 , θ

(t−1)
3 , . . . , θ

(t−1)
d ,Y), where θ(t−1)

1 has been replaced by its updated
value θ(t)

1 .
...

(c) Draw a value θ(t)
d from the full conditional distribution

p(θd|θ(t)
1 , θ

(t)
2 , . . . , θ

(t)
−d,Y), using updated values for θ(t)

1 , θ
(t)
2 , . . . , θ

(t)
d−1.

3. Repeat step 2 until M draws are obtained, with each draw being a vector θ(t).

Thus, each individual parameter is updated conditional on latest values of the remain-
ing parameters, which are the iteration t values for the parameters already updated
and iteration t− 1 values for the others.

2.3.3 Diagnostics

As said previously, it is important to assess the Markov chain to ensure that it is con-
verging to the target density. In order to diminish the effect of the starting distribution,
a specific number of samples from the beginning of the Markov chain are discarded,
which is known as the burn-in period. Another consideration is that of thinning the
Markov chain by only keeping every kth iteration for each parameter and discarding
the rest of the samples. This is performed as a way of breaking the dependence be-
tween iterations so that the chosen iterations are not too correlated. This also reduces
the memory needed on the computer to save all the samples since only a fraction of
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the samples are being kept. However, thinning can increase the variance of the esti-
mates (Gelman et al., 2003), increases the computational time required to obtain all
draws, and it has been argued that it is inefficient (Link & Eaton, 2012). The sim-
plest way of assessing convergence of the Markov chain is to study trace plots for each
parameter. Trace plots display the samples versus the simulation index (iterations)
and show whether the chain has reached its stationary or target distribution. A chain
is considered to have reached its stationary or target distribution if the distribution
of samples has relatively constant mean and variance, as shown in Figure 2.1. The
trace plot on the left is centred around a specific value and the density plot does not
display any skewness. A trace plot can also show whether the chain is mixing or not.
A chain that is mixing well will jump from one remote region to another in relatively
few steps. Furthermore, it is important for the chain to mix and have the ability to
explore the parameter space so that a good estimate of the posterior distribution can
be provided. This is assessed by examining the acceptance rates for each parameter,
where a low acceptance rate indicates the proposal values are not being accepted due
to vast exploration of the parameter space beyond the support of the posterior density.
In contrast, when too many proposal values are accepted it indicates the chain is not
mixing and thus the acceptance rate is too high.
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Figure 2.1: Trace plot for a model parameter is shown on the left and the density of
the iterations is shown on the right.

There are numerous formal diagnostic tests for assessing the convergence of Markov
chains, such as Gelman and Rubin diagnostics (Brooks & Gelman, 1998; Gelman &
Rubin, 1992), which uses parallel chains to test whether they all converge to the same
target distribution; Heidelberger and Welch Diagnostics (Heidelberger & Welch, 1981,
1983), which assesses whether the Markov chain is a weakly stationary process; and
Geweke diagnostics (Geweke, 1992), which tests whether the mean estimates have
converged by comparing the mean estimate from the beginning of the Markov chain
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to the mean estimate from the end of the Markov chain. For the Geweke test, if the
comparison of the mean estimates between the beginning and end of the Markov chain
are not similar then the chain has failed to converge. The test is a two-sided test based
on a z score where a large score value indicates failure of convergence. The mean for
the set of M samples for θi is given as

θ̂i = 1
M

M∑
t=1

θ
(t)
i . (2.33)

Geweke’s diagnostic is then calculated by taking the difference between the mean
of θ(t) based on the first set of m1 samples given as θ̂1, and the mean of θ(t) based on
the last set of m2 samples given by θ̂2 and dividing by the asymptotic standard error of
the difference, where the sample variances ŝ1, ŝ2 are computed using spectral densities.
If the ratios m1/M and m2/M are fixed and m1 +m2 < M , and the chain is stationary
then the following statistic converges to a standard normal distribution as M →∞

ZM = θ̂1 − θ̂2√
ŝ1
m1

+ ŝ2
m2

. (2.34)

2.3.4 Model comparison and selection

When multiple statistical models are at play, it is of interest to have a method which
allows the researcher to compare models and thus determine which model provides the
best fit to the data. It is necessary to utilise a model selection technique that balances
out the goodness of fit of a model, as determined by the model likelihood, with its
complexity, as determined by its number of parameters. More complex models contain
more parameters, which can lead to these models overfitting the data even though
the goodness of fit will be high. Therefore, it is important that a model comparison
and selection technique balances out these two phenomena. The approaches described
below are only viable when two or more models are being compared since they cannot
provide any information about the quality of a model in an absolute sense - it is only
a measure of the relative quality of the model.

One of the most common approaches to model comparison and selection is the
Akaike Information Criterion (AIC; Akaike, 1973) approach, which penalises models
that are too complex in terms of overparameterisation by containing a term for the
number of model parameters. The AIC is defined as

AIC = −2 log(L̂) + 2q, (2.35)
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where L̂ is the maximum likelihood of the candidate model, and q is the number of
model parameters. Given a set of candidate models, the model with the lowest AIC
value is deemed the more appropriate model.

Another approach to model comparison and selection is the Bayesian Information
Criterion (BIC; Schwarz, 1978), which is similar to AIC in the sense that the model
with the lowest value of the BIC is the preferred model of choice. The BIC is defined
as

BIC = −2 log(L̂) + q log(m), (2.36)

where m is the number of observations in the model. The difference between the BIC
and the AIC is that the BIC penalises the number of model parameters more strongly
compared to the AIC since the penalty is via log(m) rather than by 2.

A more common type of model comparison and selection technique within a Bayesian
setting is the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002), which
again involves a trade-off between the goodness of fit of the model and the model’s
complexity. The DIC is defined as

DIC = D + pD, (2.37)

where D = E[−2 log(L̂)] is the posterior mean deviance which measures the goodness
of fit of the model, and pD is the effective number of parameters to assess complexity.
Again, given a set of candidate models, the model with the lowest DIC value is the
preferred choice. Furthermore, the DIC is similar to the BIC since it penalises mod-
els which have extra unnecessary parameters and therefore prefers more parsimonious
models. For futher details on these model comparison, selection techniques and com-
pairson of AIC and DIC within a Bayesian context see Gelman et al. (2014).

2.4 Spatial statistics

Spatial statistics is the quantitative analysis and modelling of observed data at differ-
ent geographical locations. These geographical locations are typically in 2-dimensional
space consisting of (x, y) co-ordinates, such as latitude and longitude; however, they
can also be in 3 dimensions if considering elevation from the earth. Due to the nature
of spatial data, there is no ordering of the observations, unlike in time series data which
are naturally ordered in time. Furthermore, independence of the observations cannot
be assumed as observations closer together in space are more likely to have similar
values and this dependence means that commonly-used statistical methods requiring
the assumption of independence are not appropriate.
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A geographer named Waldo Tobler stated that ’Everything is related to everything
else, but near things are more related than distant things’. This is known as Tobler’s
first law of geography (Tobler, 1970), and is the basis for spatial analysis as it requires
the spatial dependence between observations to be modelled. Ignoring this dependence
hinders the quality of statistical inference.

There are three main types of spatial data, with only the first two utilised in this
thesis. These are: geostatistical data, areal unit data and point data. Geostatistical
data are data that could potentially be measured at any location within a 2-dimensional
region. For example, in a city, air pollution could be observed at infinitely many lo-
cations, but in practice there is a limited time frame and budget meaning that data
can only be collected at a fixed number of locations. For areal unit data, the study
region of interest is stratified into a number of non-overlapping subregions, such as
electoral wards and data, such as air pollution concentrations are observed for each of
the subregions. For point data, the locations of the observations are themselves data,
unlike in geostatistical data, with the number of locations being random rather than
specified by the data collector. For example, the location at which a lightening bolt
strikes the earth.

The objective of a spatial analysis is different depending on the type of spatial data
obtained. For geostatistical data, the goal is to identify and understand the spatial
pattern in the data by finding a statistical model to explain the observed spatial de-
pendence between observations. In addition, geostatistics also seeks out to predict the
spatial process at unmeasured locations by utilising the data already observed. For
areal unit data, one of the goals is to also understand the spatial pattern in the data,
but to also utilise ecological regression in order to estimate the effects of a predictor
on a response, while taking into account the fact that the residuals of the model will
be spatially autocorrelated. And lastly, for point data the goal is to find a statistical
model to explain the spatial dependence in the data, while estimating the intensity of
the event, i.e., the more points in a region, the higher the intensity.

The remainder of this section discusses the methodology behind geostatistics and
areal data in more detail in order to form the basis for the statistical methodology used
in this thesis.

2.4.1 Geostatistics

As discussed above, geostatistical data arise when data are collected at a fixed number
of locations within a specified study region. A geostatistical process is a stochastic
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process where the spatial domain, D, is a fixed subset of the 2-dimensional space

{Z(s) : s ∈ D ⊂ R2}, (2.38)

where Z(s) is a random variable representing the quantity of interest at spatial lo-
cation s, and R2 is a continuous 2-dimensional region of which D is a subset. In
reality, data are observed at a finite number of locations m and are denoted by
z = (z(s1), . . . , z(sm)). The main aim of spatial analysis is to model the spatial depen-
dence in the data. Geostatistical data will be positively correlated, meaning that two
observations closer together in space are more likely to have similar values. This cor-
relation is due to the variable of interest being affected by other unmeasured variables
that are also spatially correlated. For example, air pollution concentrations are spa-
tially correlated since air pollution is caused by traffic emissions, and two air pollution
monitoring stations on the same road will produce similar pollution levels.

2.4.1.1 Properties of the geostatistical process

The mean function or first moment of the stochastic process is defined by

µZ(s) = E[Z(s)], ∀ s ∈ D. (2.39)

The mean function, µZ(s), varies along space and can be interpreted as the expectation
at location s, taken over the distribution of all possible values that could have been
generated from the stochastic process {Z(s)}. The stochastic process can either be a
continuous random variable or a discrete random variable and when Z(s) is continuous
the mean function is given by

µZ(s) = E[Z(s)] =
∫ +∞

−∞
zfZ(s)(z) dz, (2.40)

where fZ(s)(·) is the probability density function (pdf) for stochastic process Z(s).
When Z(s) is a discrete random variable with sample space Ω, the mean function is
given by

µZ(s) = E[Z(s)] =
∑
zi∈ Ω

zifZ(s)(zi), (2.41)

where fZ(s)(·) is the probability mass function (pmf) for Z(s).

The covariance function or second moment of stochastic process {Z(s)} is defined
as

CZ(s, t) = Cov[Z(s), Z(t)],

= E
[
(Z(s)− µZ(s))(Z(t)− µZ(t))

]
,

(2.42)
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and measures the strength of the linear dependence between two random variables Z(s)
and Z(t). The variance function is a special case of the covariance function where s = t
and is given by

Var[Z(s)] = CZ(s, s)

= Cov[Z(s), Z(s)]

= E[(Z(s)− µZ(s))2]

= σ2
Z(s).

(2.43)

The covariance function is symmetric since CZ(s, t) = CZ(t, s) and a non-negative defi-
nite function since it satisfies the condition ∑m

i=1
∑m
j=1 aiajCZ(si, sj) > 0 for all positive

integers, m; real-valued constants, a1, . . . , am; and spatial locations, (s1, . . . , sm).

In addition to the covariance function, the correlation function of the stochastic
process {Z(s)} is a scaled version of the covariance function given by

ρZ(s, t) = Corr[Z(s), Z(t)] = CZ(s, t)√
CZ(s, s)CZ(t, t)

, (2.44)

and measures the strength of the linear association between the two random variables
Z(s) and Z(t) and takes values between -1 and 1, i.e., −1 6 ρZ(s, t) 6 1 for all pairs
s, t ∈ D.

2.4.1.2 Stationarity of the geostatistical process

Stationarity of the geostatistical process {Z(s)} occurs when it has the same charac-
teristics at any location, such as a constant mean or variance. There are two types of
stationarity conditions and these are defined below.

A geostatistical process {Z(s)} is strictly stationary when the process can be moved
in space and it stays the same, i.e.,

f(Z(s1), . . . , Z(sm)) =d f(Z(s1 + h), . . . , Z(sm + h)), (2.45)

where =d means equal in distribution. Here, h is a displacement or lag vector, which
dictates the shifts in space. This means that the geostatistical process, {Z(s)}, has the
same distribution for all locations within the spatial domain, thus we have constant
mean µZ(s) = µZ and constant variance σ2

Z(s) = σ2
Z ; but does not mean the random

variables (Z(s1), . . . , Z(sm)) are independent. Furthermore, the bivariate distribution
does not depend on the spatial location, i.e., f(Z(s), Z(s + h)) =d f(Z(0), Z(h)) for
all s and h. This means that the covariance function between any two points only
depends on the distance and direction between them, and not on the actual locations
themselves, i.e., Cov[Z(s), Z(s,h)] = CZ(s, s + h) = CZ(h) - it does not change over
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space.

Strictly stationary is a rather restrictive condition so a geostatistical process can
also be weakly stationary if

1. The mean is constant across space, i.e., E[Z(s)] = µZ(s) = µZ .

2. The covariance (and correlation) only depends on the distance and direction and
not on the location as described above.

Weakly stationary is typically assumed in a spatial analysis; however, it assumes a con-
stant mean in space, which will not be true for the majority of data sets. Therefore, a
regression model is fitted to the data to account for a non-constant trend in the mean
before assuming the spatial autocorrelation remaining in the data is stationary.

A further restriction is enforced on the geostatistical process for simplification and
is known as isotropy. A geostatistical process is weakly stationary if the covariance or
correlation function only depends on the distance and direction, and isotropy further
simplifies this condition to the covariance or correlation function only depending on
the distance and not the direction or actual location. Mathematically this is defined
as

CZ(h) = CZ(||h||), (2.46)

where h = ||h|| is the Euclidean distance between any two elements of h. In addition,
since the covariance is isotropic, the correlation function is also isotropic since it is just
a scaled version of the covariance.

2.4.1.3 Gaussian processes and covariance functions

The underlying spatial structure of the data can be specified in many ways, but
one of the most common types of geostatistical processes is the Gaussian process.
The Gaussian process is completely specified by its first two moments (mean, vari-
ance/covariance/correlation) and a geostatistical process is a Gaussian process if the
joint distribution of the random variables {Z(s1), . . . , Z(sm)} have a multivariate nor-
mal (Gaussian) distribution.

The joint probability density function of the random variables Z = (Z(s1), . . . , Z(sm))>

at m locations is given by

fZ(z) = (2π)−m
2 det(Σ)− 1

2 exp
− 1

2(z− µZ)>Σ−1(z− µZ)
, (2.47)
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where µZ = (µZ(s1), . . . , µZ(sm))> and the (j, k)th element of the covariance matrix
Σ is Σjk = CZ(||sj − sk||). Furthermore, if the Gaussian process is weakly stationary
then the process is also strictly stationary since the Gaussian distribution is completely
specified by its first two moments.

Since the covariance function is used to model the correlation between observations,
numerous models have been proposed that utilise the covariance function in geostatis-
tical processes. The most commonly-used model for its simplicity is the exponential
covariance function, defined as

CZ(h) =

σ
2 exp(−h/ρ), h > 0;

τ 2 + σ2, h = 0,
(2.48)

where h = ||h||, σ2 is the variance, ρ is the spatial decay parameter that measures
how quickly the covariance decays to zero and τ 2 quantifies the amount of non-spatial
variation or measurement error in the data.

The Gaussian covariance function is another covariance function, which is smoother
compared to the exponential, but slightly more complicated. It is defined as

CZ(h) =

σ
2 exp(−(h/ρ)2), h > 0;

τ 2 + σ2, h = 0.
(2.49)

There are many other covariance functions, including the power exponential, spheri-
cal exponential and wave exponential covariance functions (Diggle & Ribeiro, 2007).
These are not shown as they are not considered in this thesis. Instead, the exponential
covariance function is utilised due to its simplicity.

2.4.1.4 Maximum likelihood estimation

In classical parameter estimation, the geostatistical process is modelled as

Z(s) = µZ(s) + εZ(s), (2.50)

which is the trend plus error. The mean µZ(s) = x(s)>β is a linear combination
of p covariates, that is, x(s)> = (x0,x1(s), . . . ,xp(s)) and regression coefficients β =
(β1, . . . , βp)>. Since data are measured at m locations, the mean for geostatistical data
z = (z(s1), . . . , z(sm))> is defined as

µZ = (µZ(s1), . . . , µZ(sm)) = Xβ, (2.51)

where X is the m× p design matrix of covariates for all m locations. The errors for all
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m locations εZ = (εZ(s1), . . . , εZ(sm))> are modelled as

εZ ∼ N(0,Σ(θ)) (2.52)

where the covariance matrix Σ(θ) is a function of the covariance parameters θ =
(σ2, τ 2, ρ), and its ijth element is the Euclidean distance between locations si and sj
as given by Σ(θ)ij = CZ(||si − sj||), which is a covariance function that is weakly
stationary and isotropic, such as the exponential covariance function.

Therefore, for geostatistical data z = (z(s1), . . . , z(sm))> the Gaussian geostatistical
model considered is

z ∼ N(Xβ,Σ(θ)), (2.53)

where the mean function is a linear combination of known covariates X with associated
regression parameters β, and covariance matrix Σ(θ) as described above. For the
exponential covariance function, it can be written in matrix form as

Σ(θ) = σ2 exp(−D/ρ) + τ 2I, (2.54)

where D is an Euclidean distance matrix with ijth elements described by dij = ||si−sj||
and I is a m×m identity matrix. As this is a distance matrix, the diagonal elements are
zero corresponding to h = dii = 0 and have values Σ(θ)ij = σ2 + τ 2, and non-diagonal
elements have Σ(θ)ij = σ2 exp(−dij/ρ). Furthermore, this matrix is positive definite
and hence invertible.

The parameters (β, σ2, τ 2, ρ) are estimated by maximum likelihood by maximising
the log-likelihood function of z based on the multivariate Gaussian distribution given
in equation (2.47). Firstly, the log-likelihood function is differentiated with respect
to each of the parameters and setting each derivative equal to zero. Secondly, the
second derivative is calculated to ensure the estimator is indeed a maximum. The
log-likelihood function is therefore given by (with unnecessary constants removed)

ln(f(z)) ∝ −1
2 ln[det(σ2 exp(−D/ρ) + τ 2I)] (2.55)

−1
2(z−Xβ)>(σ2 exp(−D/ρ) + τ 2I)−1(z−Xβ).

In order to aid estimation, the transformation ν2 = τ 2/σ2 can be applied, where
the parameter ν2 is known as the noise-to-signal ratio. Applying this transformation
changes the log-likelihood function to
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ln(f(z)) ∝ −1
2m ln(σ2)− 1

2 ln[det(exp(−D/ρ) + ν2I)] (2.56)

− 1
2σ2 (z−Xβ)>(exp(−D/ρ) + ν2I)−1(z−Xβ).

The log-likelihood function can be further simplified by rewriting the covariance func-
tion Σ(θ) from σ2 exp(−D/ρ) + τ 2I to σ2V(ρ, ν2) where V(ρ, ν2) = exp(−D/ρ) + ν2I.
Therefore, to obtain the estimates for parameters (β, σ2) the log-likelihood function in
equation (2.56) is differentiated with respect to these parameters, set to equal zero and
solved to give the following.

For β, only the parts of the log-likelihood containing β are utilised to give

ln(f(z)) = 2β>X>V(ρ, ν2)−1z
2σ2 − β

>X>V(ρ, ν2)−1Xβ
2σ2 (2.57)

d ln(f(z))
dβ

= X>V(ρ, ν2)−1z
σ2 − X>V(ρ, ν2)−1Xβ

σ2 .

Setting this equal to 0 and solving for β gives

β̂(ρ, ν2) = (X>V(ρ, ν2)−1X)−1X>V(ρ, ν2)−1z. (2.58)

For σ2, only the parts of the log-likelihood function containing σ2 are utilised to
give

ln(f(z)) = −m ln(σ2)
2 − (z−Xβ)>V(ρ, ν2)−1(z−Xβ)

2σ2 (2.59)

d ln(f(z))
dσ2 = −m

2σ2 + (z−Xβ)>V(ρ, ν2)−1(z−Xβ)
2(σ2)2 .

Setting this equal to 0 and solving for σ2 gives

σ̂2(β, ρ, ν2) = 1
m

(z−Xβ)>V(ρ, ν2)−1(z−Xβ). (2.60)

As the maximum likelihood estimator is biased as with standard linear model theory,
the alternative is considered instead

σ̂2(β, ρ, ν2) = 1
m− p

(z−Xβ)>V(ρ, ν2)−1(z−Xβ), (2.61)

where p is the number of parameters in the mean model.
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For ρ and ν2, differentiation of the log-likelihood does not work as both these
parameters are contained within the inverted covariance matrix V(ρ, ν2)−1, so no closed
form exists. Therefore, the estimates for β and σ2 (β̂(ρ, ν2), σ̂2(β̂, ρ, ν2)) are plugged
into the log-likelihood function to obtain a reduced form known as the profile/reduced
likelihood that has to be maximised via numerical methods, such as grid searching.
The profile likelihood for (ρ, ν2) is given by

ln(f(z)) ∝ m

2 ln(σ̂2(β̂, ρ, ν2))− 1
2 ln[det(V(ρ, ν2))], (2.62)

and the final maximum likelihood estimates for β and σ2 are given by

β̂(ρ̂, ν̂2) = (X>V(ρ̂, ν̂2)−1X)−1X>V(ρ̂, ν̂2)−1z (2.63)

σ̂2(β̂, ρ̂, ν̂2) = 1
m− p

(z−Xβ̂(ρ̂, ν̂2))>V(ρ̂, ν̂2)−1(z−Xβ̂(ρ̂, ν̂2)). (2.64)

2.4.1.5 Spatial prediction

The objective of a geostatistical analysis is to not only identify and understand the
spatial pattern in the data, but to also predict the process at unmeasured location s0.
An approach called kriging was proposed by D. G. Krige, who worked in the South
African mining industry in 1955 (Krige, 1951). Kriging is based on obtaining the best
linear unbiased prediction (BLUP) for the process at new locations {Z(s0)}, given the
observed data z = (z(s1), . . . , z(sm))>. The BLUP can be obtained by choosing values
for (a0, a) that minimise the mean squared prediction error (MSPE) defined by

MSPE = E[(Z(s0)− Pz(s0))2], (2.65)

where Pz(s0) = a0 +∑m
j=1 ajZ(sj) is the linear prediction operator, a0 is some constant,

and a = (a1, . . . , am) are prediction weights.

There are two types of kriging predictors: the ordinary kriging predictor and the
universal kriging predictor. The ordinary kriging predictor assumes a constant mean;
whereas the universal kriging predictor allows for a non-constant mean which is much
more realistic.

For the universal kriging predictor, assume there is a non-constant mean for the data
such as E[Z] = Xβ, so the observed data are distributed as z ∼ N(Xβ,Σ(θ)). Then
the combination of the unobserved and observed data have the following distribution

Z∗ =
Z(s0)

Z

 ∼ N
x0β

Xβ

 ,
CZ(0,θ) cZ(s0,θ)>

cZ(s0,θ) Σ(θ)

 , (2.66)

where x0 is the vector of covariates at the unobserved location s0, and cZ(s0,θ) is the
vector of covariances at the unobserved location s0. To obtain the universal kriging
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predictor for the value at the unobserved location s0 given the observed data z, we make
use of the conditional distribution property of a multivariate Gaussian distribution
where the conditional distribution of Z(s0)|Z is given by

Z(s0)|Z ∼ N(E[Ẑ(s0)|Z],Var[Ẑ(s0)|Z]), (2.67)

and

• E[Ẑ(s0)|Z] = x0β̂ + cZ(s0, θ̂)>Σ(θ̂)−1(Z−Xβ̂),

• Var[Ẑ(s0)|Z] = CZ(0, θ̂) − cZ(s0, θ̂)>Σ(θ̂)−1cZ(s0, θ̂), which allows for any un-
certainty in the prediction. The hat notation here (Ẑ(s0)) denotes that these are
estimates of the mean and variance at unmeasured locations s0.

The above formula can be extended to predict the process at N unmeasured pre-
diction locations s∗ = (s∗1, . . . , s∗N) for random variables Z∗ = (Z(s∗1), . . . , Z(s∗N)) as

Z∗|Z ∼ N(E[Ẑ∗|Z],Var[Ẑ∗|Z]), (2.68)

where

E[Ẑ∗|Z] = X∗β̂ + cZ(s∗, θ̂)>Σ(θ̂)−1(Z−X∗β̂), (2.69)

Var[Ẑ∗|Z] = Σ∗(θ̂)− cZ(s∗, θ̂)>Σ(θ̂)−1cZ(s∗, θ̂), (2.70)

where Σ∗(θ̂) is a N ×N variance matrix for the N prediction locations, X∗ is a matrix
of covariates at the N prediction locations, and cZ(s∗, θ̂) is an N ×m covariance ma-
trix between the prediction and observed locations. This type of plug in prediction can
result in 95% prediction intervals that are too narrow due to the uncertainty in β and
θ not being taken into account, meaning that the confidence intervals contain the true
value less than 95% of the time. This is rather troublesome as it means that the con-
fidence intervals are not taking the inherent uncertainty in the predictions into account.

2.4.1.6 Bayesian methods for geostatistical processes

The difference between classical parameter estimation, i.e., maximum likelihood, and
Bayesian methods is that Bayesian methods do not only provide a point estimate,
but also provide information about the entire distribution of the parameters given the
observed data. This distribution is known as the posterior distribution as given by
Bayes Theorem in equation (2.26) in Section 2.3. A point estimate, such as the mean
or median, of the posterior distribution can be taken and a 95% credible interval (or
uncertainty interval) can be obtained by calculating the [2.5, 97.5] percentiles of the
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posterior. As discussed in Section 2.3, the most common approach is to assume a
non-informative or vague prior that contains little information about the parameters.
Working within a Bayesian setting performs prediction correctly by allowing for the
variation in (β,θ) when doing the prediction, rather than the plug-in approach utilised
by maximum likelihood. However, Bayesian methods are much slower compared to
maximum likelihood estimation due to the need to simulate entire distributions rather
than just obtaining point estimates.

A general modelling framework is given by

Z(si) ∼ N(µi, τ 2) for i = 1, . . . ,m, (2.71)

µi = x>i β + φ(si),

φ = (φ(s1), . . . , φ(sm)) ∼ N(0,Σ(θ)),

where φ = (φ(s1), . . . , φ(sm)) for all locations are known as random effects and allow
for any unmeasured spatial autocorrelation in the data after the covariate effects have
been accounted for. This is essentially a generalised linear mixed model, where the
random effects are spatially correlated and are modelled by a Gaussian geostatistical
process, and Σ(θ) is defined through an isotropic covariance function, such as the ex-
ponential correlation function. McMC is then used to sample values for each of the
parameters in order to provide the entire distribution, which is discussed in Section 2.3.

When predicting the geostatistical process at unmeasured locations, the random
effects also have to be generated at the N prediction locations given as
φ∗ = (φ(s∗1), . . . , φ(s∗N)). This is done using the same multivariate Gaussian theory as
above, namely

φ∗ ∼ N(E[φ∗|φ,θ],Var[φ∗|φ,θ]), (2.72)

where the mean and variance are given by

E[φ∗|φ,θ] = cZ(s∗,θ)>Σ(θ)−1φ, (2.73)

Var[φ∗|φ,θ] = Σ∗(θ)− cZ(s∗,θ)>Σ(θ)−1cZ(s∗,θ)

coming from multivariate Gaussian theory as shown in equations (2.69) and (2.70).
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2.4.2 Areal unit statistics

The second type of spatial data used in this thesis are areal unit data, where the study
region of interest, D, is partitioned into a finite number of non-overlapping subregions
{Ai : i = 1, . . . ,m}, and data are observed at the subregion level. The subregions have
the following characteristics

∪mi=1Ai = D and (2.74)

Ai ∩ Aj = ∅ for each i 6= j,

thus an areal process is a stochastic process defined by

{Zi = Z(Ai) : i = 1, . . . ,m}, (2.75)

where Zi is a random variable representing the quantity of interest at subregion (areal
unit) Ai.

As discussed above, the main goal in areal unit analysis is to understand the spatial
pattern in the data by producing maps and also to estimate the effects of a predictor on
a response, while taking into account any spatial dependence or spatial autocorrelation.
Spatial dependence is characterised by a proximity matrix, W, which defines how the
subregions are related to each other, be it in terms of the distance between the regions
or in terms of adjacency, i.e., which subregions neighbour each other. Let W denote
a m×m matrix with wij denoting the proximity between subregion Ai and subregion
Aj. The diagonal elements of the matrix are zero as the distance between a subregion
and itself is zero; a subregion cannot border itself. There are many approaches to
specifying the nature of W and one approach is to utilise a binary specification, which
assigns the value 1 to wij if subregions (Ai,Aj) neighbour each other, and 0 otherwise.

Typically, neighbours are defined as such when two subregions share a common
border (denoted by i ∼ j). These neighbouring areal units are modelled as correlated,
while the non-neighbours are conditionally independent given the remaining neigh-
bours. Neighbours can also be defined in terms of the distance between the centre of
the subregions and if subregion Ai is one of the k closest in terms of distance to subre-
gion Aj. Distance measures of proximity may be inappropriate for irregularly-shaped
areal units, such as electoral wards, since they are not consistent in shape or size across
the study region. In this case, the share-a-common-border approach is utilised.

W is used to define the spatial dependence between the m subregions; however, it
does not indicate the strength of the spatial dependence present in the data. Moran’s I
statistic (Moran, 1950) is a measure of the linear association in areal unit data weighted
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by the proximity between subregionAi and subregionAj. It is an extension of Pearson’s
correlation coefficient and is defined as

I =
m
∑m
i=1

∑m
j=1wij(Zi − Z̄)(Zj − Z̄)

w••
∑m
i=1(Zi − Z̄)2

, (2.76)

where Z̄ = ∑m
i=1 Zi/m is the average of the spatial process over all areal units, and w••

is the sum of all wij’s, i.e., w•• = ∑m
i=1

∑m
j=1wij. Moran’s I statistic can take a range of

positive and negative values between -1 and 1 and describes whether there is negative
spatial autocorrelation, no spatial autocorrelation, or positive spatial autocorrelation.
Negative spatial autocorrelation takes values between -1 and < 0 where a statistic of
-1 indicates perfect dispersion between the areal units, i.e., dissimilar areal units are
located next to each other. Positive spatial autocorrelation takes values between > 0
and 1 where a statistic of 1 indicates perfect correlation, i.e., similar areal units are
clustered next to each other. No spatial autocorrelation occurs with a statistic of 0
and indicates the similarity and dissimilarity of areal units are randomly arranged.

The significance of spatial autocorrelation can be quantified using a permutation
test, which is a non-parametric approach to testing the significance of a statistic. It
provides a simple way of calculating the sampling distribution of a test statistic under
the null hypothesis by calculating K different random permutations of the dataset.
The hypotheses for Moran’s I permutation test are

H0 − no spatial association (2.77)

H1 − some spatial association,

where some spatial association could relate to either positive or negative spatial au-
tocorrelation. The observed Moran’s I statistic , Iobs, is calculated, on the raw data.
Moran’s I statistics are then calculated on the K different random permutations of the
data set, given by I1, . . . , IK , then the estimated two-sided p-value for the test is given
by

2
K + 1

K∑
k=1

I(Ik > |Iobs|). (2.78)

There are numerous ways of measuring spatial associations, such as Local Indica-
tors of Spatial Association (LISA) and Geary’s contiguity ratio (Bivand et al., 2013),
but these are not considered in this thesis as Moran’s I is the most common approach
and is widely used in the analysis of the geographic differences in health outcomes.
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2.4.2.1 Constructing spatial dependence

Gaussian Markov Random Fields (GMRFs) are multivariate Gaussian distribution
models that are used to construct dependence among the random variables of the
areal process given in equation (2.75). The class of models used in this thesis are
Conditional Autoregressive (CAR) models, which are the most common approach to
modelling spatial autocorrelation in areal unit data. These CAR models are an exten-
sion of the autoregressive models seen in the branch of time series statistics that model
short-term autocorrelation in temporal data after the trend and seasonal pattern has
been removed.

CAR models are specified by a set of m univariate full conditional distributions
given by

Zi|Z−i ∼ N
 m∑
j=1

bijZj, τ
2
i

, (2.79)

where Z = (Z1, . . . , Zm)>, the mean function is a linear combination of the remaining
random variables, bij are the regression coefficients, with bii = 0 for all i, and Z−i
denotes the set of random variables not containing the ith term. The joint distribution
corresponding to these full conditionals is

f(Z1, . . . , Zm) ∝ exp
− 1

2Z>K−1(I−B)Z
, (2.80)

where B = (bij), K = diag(τ 2
1 , . . . , τ

2
m) contains the variances, and I is the identity

matrix of appropriate order. This joint distribution function for Z can also be written
as

Z ∼ N(0,Σ−1), (2.81)

where the inverse of the covariance matrix Σ−1 = K−1(I−B). This is a multivariate
Gaussian distribution with mean zero and precision matrix Q = K−1(I − B), and
hence variance matrix Σ = (I − B)−1K. The covariance matrix Σ is valid when the
precision matrix Q is symmetric, otherwise Σ = Q−1 is not a valid variance matrix.
The precision matrix is symmetric when

bij
τ 2
i

= bji
τ 2
j

∀ i, j. (2.82)

The most common specification is to set

bij = wij∑m
i=1wij

, τ 2
i = τ 2∑m

i=1wij
(2.83)

as the neighbourhood matrix W is symmetric.
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The intrinsic model (ICAR) is the simplest conditional autoregressive model pro-
posed by Besag et al. (1991) and its univariate Gaussian conditional form is given
by

Zi|Z−i ∼ N
∑m

j=1wijZj∑m
j=1wij

,
τ 2∑m

j=1wij

. (2.84)

The conditional expectation of Zi is the mean of the random effects in neighbouring
areas as wij = 0 for non-neighbouring areas, therefore it is only conditioning on areas
that actually border. This means that neighbouring areas where wij 6= 0 are correlated
and non-neighbouring areas are conditionally independent given the rest of Z, i.e.,
Zi|Z−i. The conditional variance is inversely proportional to the sum of the number
of neighbours, i.e., the total number of neighbours. If strong spatial autocorrelation is
present, the conditional variance uses the fact that areas with more neighbours have
more information and thus can infer the value of the random effect. The variance
parameter, τ 2, controls the amount of variation between the random effects and the
conditional variance decreases with increasing number of neighbours. This is the sim-
plest CAR specification as it does not take into account the strength of correlation in
the data making this CAR model quite restrictive. Furthermore, it only models strong
spatial correlation and is therefore not appropriate for weakly correlated data.

2.4.2.2 General modelling framework

These types of CAR models are typically implemented within a Bayesian framework,
with inference based on Markov chain Monte Carlo (McMC) simulation. A general
Bayesian hierarchical modelling framework for areal unit data is given by

Zi ∼ p(Zi | µi), for i = 1, . . . ,m

G(µi) = z>i β + φi,

φi|φ−i ∼ N
∑m

j=1wijφj∑m
j=wij

,
τ 2∑m

j=1wij

,
β ∼ N(µβ,Vβ),

τ 2 ∼ Inverse-Gamma(a, b),

(2.85)

where p(Zi | µi) is a likelihood such as Poisson, µi = E[Zi] and G(.) is a link func-
tion. Spatial autocorrelation comes in at the linear predictor level comprising a set
of known covariates zi with associated regression parameters β and a spatial ran-
dom effect φ. The spatial random effects for all m areas are collectively denoted by
φ = (φ1, . . . , φm)>, and allow for any unmeasured spatial autocorrelation in the data
after the covariate effects have been accounted for. This is essentially a generalised
linear mixed model where the random effects are spatially autocorrelated and are mod-
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elled by a CAR model. This Bayesian framework assumes the data are conditionally
independent given the random effects, thus the data likelihood is given by

p(Z|β,φ, τ 2) =
m∏
i=1

p(Zi|β, φi), (2.86)

and the joint prior distribution is given by

p(β,φ, τ 2) = p(β)p(φ|τ 2)p(τ 2),

= N(β|µβ,Vβ)ICAR(φ|τ 2,W)IG(τ 2|a, b).
(2.87)

The parameters of the prior distribution (µβ,Vβ, a, b) are hyperparameters and are
typically chosen to be vague and non-informative.

In areal unit data, the main aim is to model the spatial pattern in the mean and
is typically performed in an ecological regression type setting. Typically, Poisson log-
linear models are used to estimate the effect of a predictor on a response, for example
estimating the effects of air pollution on heath via counts of mortality or morbidity.
The modelling framework for the Poisson log-linear model is given by

Zi ∼ Poisson(EiRi), for i = 1, . . . ,m,

ln(Ri) = z>i β + φi,

φi|φ−i ∼ N
∑m

j=1wijφj∑m
j=wij

,
τ 2∑m

j=1wij

,
β ∼ N(µβ,Vβ),

τ 2 ∼ Inverse-Gamma(a, b),

(2.88)

where the link function is a log-link function, Ei are the expected number of cases and
form the offset for the model, and Ri is the risk of disease in areal unit i. The mean
function is re-parameterised from E[Zi] = µi = EiRi. As these models are implemented
within a Bayesian setting, inference is based on McMC simulation using a combination
of Gibbs sampling and Metropolis-Hastings, as described in Section 2.3.2.

2.4.2.3 Additional CAR models

The ICAR prior given by equation (2.84) only models strong spatial autocorrelation
and can enforce too much spatial smoothness on the random effects. Therefore, nu-
merous extensions have been proposed to overcome these issues.

The convolution model, also known as the BYM model, is an extension of the
intrinsic model as it includes a second set of independent and identically distributed
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random effects with mean zero and constant variance. The convolution specification is
given by

φi = φ
(1)
i + φ

(2)
i , (2.89)

φ
(1)
i |φ

(1)
−i ∼ N

(∑m
j=1wijφ

(1)
j∑m

j=1wij
,

τ 2
1∑m

j=1wij

)
, (2.90)

φ
(2)
i ∼ N(0, τ 2

2 ),

where the ICAR prior is represented by φ(1)
i and φ(2) represents independence between

areas. The strength of spatial correlation is determined by the sizes of (φ(1),φ(2)) and
overcomes the problem of the ICAR prior by letting the data choose the amount of
spatial correlation in the data. The level of smoothness between the random effects
is determined by the ratio of the two variances τ 2

1 /τ
2
2 . However, this model requires

the fitting of two random effects for each area and only their sum is identifiable and
reliably estimated.

Again, the convolution prior does not contain a parameter that specifically con-
trols the level of spatial autocorrelation. The CAR model proposed by Cressie (1993)
contains only one set of random effects, but an additional parameter ρ is specified to
control the level of spatial autocorrelation. This CAR specification is given by

φi|φ−i ∼ N
(
ρ

∑m
j=1wijφj∑m
j=1wij

,
τ 2∑m

j=1wij

)
. (2.91)

This model is similar to the ICAR model, except the conditional mean is weighted by
the level of spatial correlation in the data, with ρ = 0 corresponding to independence
and ρ = 1 corresponds to strong spatial correlation, i.e., the ICAR model. One issue
with this model is that, when ρ is zero there is no need for the conditional variance to
be inversely proportional to the number of neighbours since the areas are independent.

Therefore, another CAR model was proposed by Leroux et al. (1999) that allows
for varying degrees of spatial autocorrelation in the data. The Leroux model has the
form

φi|φ−i ∼ N
(

ρ
∑m
j=1wijφj

ρ
∑m
j=1wij + (1− ρ) ,

τ 2∑m
j=1wij + (1− ρ)

)
. (2.92)

Again, ρ controls the level of spatial correlation in the data, with ρ = 0 corresponding to
spatial independence with mean zero and constant variance and ρ = 1 corresponding to
strong spatial correlation (ICAR model). This is a similar model to the Cressie model,
but it has the added flexibility that the conditional variance is no longer directly divided
by the total number of neighbours. This model captures global spatial autocorrelation
and is the CAR model used in this thesis due to its modelling flexibility.
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2.5 Standardisation

Populations are inherently heterogeneous in terms of their sociodemographic structure
(e.g., age, gender, education, ethnicity), and in terms of numerous personal and envi-
ronmental factors related to health, such as diet and access to amenities. A population
can therefore be viewed as a collection of different subgroups. Any overall measure-
ments and statistics describing the population are often known as crude measurements.
Crude measures are averages of particular subgroups weighted by the total size of the
subgroups and the larger the subgroup, the more it will influence the crude measure.

Let N denote the size of the population consisting of a specific number of age
groups, or strata. Each stratum contains a proportion of the total population, ni,
where i relates to the total number of strata. Within a specific time frame, each stra-
tum will experience a certain number of deaths, di. The total size of the population is
therefore Σni, the total number of deaths, D, is Σdi, and the crude death or mortality
rate is D/N . Crude rates are the simplest way of obtaining population summaries.
However, the main disadvantage with crude rates is that they do not take into account
the heterogeneity in the population. For example, if comparing the death rate in an
older population to the death rate in a younger population, the older population would
likely have more deaths and therefore a higher death rate, so the death rate is influ-
enced by the age structure of the population.

Comparing rates across populations or over different time periods results in rates
that are not directly comparable. This is due to the populations differing in composi-
tion so that what is observed may be attributed to these differences, such as the age
structure in the previous example. Standardisation is a procedure which allows for the
comparison of different populations or subgroups by taking into account the popula-
tion or subgroup composition. There are two main standardisation methods: direct
(or external) standardisation and indirect (or internal) standardisation. Indirect stan-
dardisation is the most common approach as it compares the actual number of events
in a local population or area (e.g., Glasgow) with the expected number of events when
strata-specific rates (e.g., based on the age and sex distribution) in a reference pop-
ulation (e.g., whole of Scotland) are applied to the local population or area. This
produces a standardised mortality ratio (SMR), which can then be used to compare
the local populations to the reference (or standard) population. However, SMRs cannot
be directly compared to one another - only to the reference, and indirect standardis-
ation can only be used if the strata-specific rates in the standard population are known.

Direct (or external) standardisation applies the local strata-specific rates to the
standard population. This allows for direct comparison between local populations, for
example, comparing the incidence of cardio-respiratory disease across regions in Scot-
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land, and allows for differing age and sex (or other demographic factors) structures
in each of the local areas. In contrast to the indirect method, direct standardisation
requires strata-specific rates for the local population and not the standard population.
Furthermore, if the heath outcome being studied is relatively rare, the direct method
becomes unstable due to few events occurring in the stratum of the local population.
As a result, the indirect method tends to be more commonly-used, as it requires strata-
specific rates for the reference population and not the local population.

2.5.1 Direct standardisation

By applying age and sex specific mortality rates of the population(s) under study to
the age and sex distribution of the reference population, direct standardisation ensures
that the mortality rate is independent of differences in the age and sex distribution
between populations. Furthermore, directly age-sex standardised mortality rates are
the rates these populations would have experienced if they had the same age-sex dis-
tribution as the reference population (Roalfe et al., 2008).

The directly standardised rate is calculated by dividing the total expected number
of cases in the standard population by its population size

Standardised rate =
∑
ij Nij p̂ij
N

, (2.93)

where i = 1, . . . , 19 age groups, j = 1, 2 sexes, Nij is the number of people in the
standard population in age group i and sex j, ∑ij Nij = N is the total population
from the standard, pij is the age-sex rate in the study population, and p̂ij = rij/nij

is the age-sex specific crude mortality rate in the study population, with the number
of deaths denoted by rij and the number of people in each age-sex group of the study
population denoted by nij.

The most common reference population is the European standard population 1 as
it gives more weight to older age groups, which best reflects an ageing population,
especially for the UK. The European standard population is a hypothetical popula-
tion used for comparing different countries across Europe comprising equal numbers of
males and females within each age band and totalling to a population of 200,000. Ta-
ble 2.1 displays the age-sex distribution of the European standard and shows relatively
high proportions of people in older aged groups, with the majority of the population
falling into the working-age group. There are other standard populations that can be
used depending on the age-sex structure of the study population. For example, a stan-
dard population comprising a high proportion of young people would be suitable for
making comparisons with African populations. In addition, there is a World standard

1Most recent 2012 version available from: www.isdscotland.org

www.isdscotland.org
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population that is based on the populations of 46 countries for producing rates that can
be compared across the globe. However, this World standard population is a younger
population compared to the European standard, thus not appropriate for the age-sex
distribution of the population in Scotland.

Table 2.1: Age-sex distribution of the European standard population based on the 2013
version.

Age group Male Female
0-4 5,000 5,000
5-9 5,500 5,500

10-14 5,500 5,500
15-19 5,500 5,500
20-24 6,000 6,000
25-29 6,000 6,000
30-34 6,500 6,500
35-39 7,000 7,000
40-44 7,000 7,000
45-49 7,000 7,000
50-54 7,000 7,000
55-59 6,500 6,500
60-64 6,000 6,000
65-69 5,500 5,500
70-74 5,000 5,000
75-79 4,000 4,000
80-84 2,500 2,500
85-89 1,500 1,500
90+ 1,000 1,000
Total 100,000 100,000

2.5.2 Indirect standardisation

One of the issues with direct standardisation is that the rates become unstable if there
are too few events in the age-sex groups. If there are many strata with zero rates, it
results in rates that are susceptible to being heavily influenced by random variabil-
ity, rendering direct standardisation unsatisfactory. Indirect standardisation avoids
the issue of imprecise estimates by applying age-sex specific rates from the reference
population to the age-sex structure of the study population. Indirect standardisa-
tion compares the observed number of deaths in the study population to the expected
number of deaths, i.e., the number of deaths that would be expected if the study
population bore the same age-sex structure of the reference population. The SMR is,
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therefore, the ratio of the observed number of deaths to the expected number of deaths.

The reference population used to perform internal standardisation in this thesis
was the population of West Central Scotland, i.e., the age-sex distribution of the study
region over all subregions. The West Central Scotland population was chosen because
the national Scottish mortality rates do not wholly reflect the mortality rates in West
Central Scotland due to the fact that the Glasgow conurbation has the highest levels of
deprivation in Scotland, thus it is a more representative reference population compared
to Scotland as a whole.

Let Yk denote the observed number of events (e.g., deaths) in subregion k and let
Ek denote the expected number of events in subregion k. The expected number of
events in subregion k is calculated as

Ek =
38∑
r=1

Nkrγr, (2.94)

where Nkr denotes the number of people in age-sex group r in subregion k, and γr

denotes the rate of events in the standard population in age-sex group r and is given
by the number of events in age-sex group r divided by the population in age-sex group
r.



Chapter 3

Review of air pollution and health
studies

3.1 Introduction

Quantifying the impact of air pollution on ill health is conducted using three main
types of studies, namely time series studies, cohort studies and areal unit studies. Eco-
logical time series studies, such as Omori et al. (2003), and Moolgavkar et al. (2013),
are the most common type of study design due to being quick and inexpensive to
implement since the data are readily available. These studies examine the effects of
short-term (acute) exposure on human health by regressing routinely available air pol-
lution and disease data collected at daily intervals. A detailed systematic review and
meta-analysis of the associations between short-term exposure to nitrogen dioxide and
health can be found in Mills et al. (2015). The disease data comprise population level
summaries (typically counts) of mortality (Kinney & Ozkaynak, 1991) or morbidity,
such as hospital admissions (Willocks et al., 2012), for a number of common disease
such as respiratory (Atkinson et al., 2001) and cardiovascular conditions (Larrieu et al.,
2007).

The long-term (chronic) health impact of air pollution is most often estimated
from cohort studies (Brunekreef, 2007; Cesaroni et al., 2014; Dockery et al., 1993; Jer-
rett et al., 2009; Pope III et al., 2002, 1995), which make use of individual-level air
pollution and disease data. However, cohort studies are expensive and time consum-
ing to implement due to the length of follow-up required for monitoring the health
status of the cohort. This has led to spatial ecological study designs being used (Hain-
ing et al., 2010; Lee et al., 2009; Maheswaran et al., 2005a), which make use of rou-
tinely available small area data, such as from the Scottish Neighbourhood Statistics
(http://www.sns.gov.uk/) database, and the Health and Social Care Information
Centre (http://www.hscic.gov.uk/). Due to their ecological nature these studies
cannot be used to determine individual-level causality, but they contribute to and in-
dependently corroborate the body of evidence provided by cohort studies.
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Spatial ecological studies are the main focus of this thesis, and are based on parti-
tioning the study region into m contiguous small areas determined by administrative
boundaries, such as electoral wards or census tracts, with smaller areas considered
to comprise more homogeneous populations compared to larger areas; for example,
in terms of social characteristics. For each small area, the response is the number of
disease cases in a fixed time period, such as the number of deaths due to respiratory dis-
ease in one year. These disease cases are adjusted for varying population demographics
across the study region using indirect standardisation, and then regressed against air
pollution concentrations and other confounders, such as socio-economic deprivation.
Typically, Poisson log-linear models are used to estimate the pollution-health effect,
and any residual spatial autocorrelation in the data is accounted for by introducing
a set of spatially autocorrelated random effects into the model. This residual spatial
autocorrelation could be due to numerous factors, including unmeasured confounding
(where an important spatially correlated variable is not included in the model or is
unknown), neighbourhood effects (where the behaviour of subjects is influenced by
surrounding subjects), and grouping effects (where subjects of similar characteristics
group together).

This literature review focuses on air pollution and health studies that have in-
corporated an ecological areal unit design, and the statistical challenges faced when
developing a concrete model to assess the association between air pollution and health.
These challenges include the difficulties of defining the study area and thus the size of
the small areas with regards to the abundance of health data that are available, the
risk of ecological bias, misestimation of exposure to air pollution and other covariates,
and modelling residual spatial autocorrelation. These factors are important when de-
veloping a statistical model as they all affect the complexity of the models and thus
there is often a trade-off between model simplicity and ensuring the model accurately
reflects the nature of the processes at play.

This review provides background information on the methods utilised in Chapters 4
and 5, while discussing the aforementioned statistical challenges. Section 3.2 describes
further the nature of ecological studies, their benefits and shortcomings; while Section
3.3 outlines the typical disease, air pollution and covariate data used in ecological areal
unit studies, along with the standard modelling approach. Section 3.4 provides a brief
overview of studies conducted in Scotland and other parts of the world, while providing
an in depth critique of small area studies. The remainder of the chapter focuses on the
limitations of areal unit studies, where Section 3.5 discusses the concept of ecological
bias and studies that try to mitigate its effects. The estimation of air pollution exposure
is discussed Section 3.6.
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3.2 Ecological studies

Spatial ecological or small area studies seek to analyse the geographical pattern of dis-
ease in terms of demographic, environmental, deprivation, as well as other important
factors. Spatial ecological studies aim to understand which spatially varying environ-
mental factors influence the risk of disease (Elliott & Savitz, 2008), and in this thesis
the spatially varying factor relates to air pollution.

Environmental exposures, such as air pollution, are largely influenced by location,
but also by meteorological factors. Exposure at the individual level to air pollution is
determined by geographical factors such as home, work, and school, but most impor-
tantly, how one moves from place to place through the air pollution surface and the
time spent outside. Incidentally, this is determined by the individual in terms of age,
sex, social class, job and therefore, level of income, as well as how an individual travels
between places. For example, a child will spend most of their time at school while
being active indoors and outdoors, an adult who works likely spends most of their time
at their job, and a retired individual likely spends most of their time at home. While
it is important to establish individual levels of exposure to air pollution, it is often
impractical and not cost-effective as it would require individual-based air pollutant
monitors for a large cohort of the at-risk population. Cohort studies therefore rely on
proxy measures of exposure, which can either be simple, for example, by measuring
the distance from a point source (Elliott et al., 1996), or distance to the nearest road
(Hoek et al., 2002; Wilkinson et al., 1999), or they can be more complex, using, for
example, dispersion modelling (Havard et al., 2009).

Spatial ecological studies differ from cohort studies in that they are carried out at
the population level on aggregated data for both the outcome and exposure, rather
than at the individual level. Furthermore, ecological studies, in general, are more con-
venient and are not expensive to conduct due to the availability and ease of access to
population-level and routine data. This type of study can be cross-sectional when con-
sidering only a single time point, such as all disease cases within a year, or longitudinal
when considering the change in disease and exposure over time. Spatial ecological stud-
ies can be descriptive (such as disease mapping; MacNab et al., 2006), which seeks to
describe the distribution and spatial pattern of an outcome, such as cardio-respiratory
mortality, across the chosen geographical area and study period. This type of descrip-
tive study helps generate further research questions, which can then be studied in a
more formal framework (Bailey et al., 2005). Therefore, analytical spatial ecological
studies aim to investigate the relationship between an exposure and outcome, while
taking into account any residual spatial autocorrelation.

One of the main issues with ecological studies is that they may not be able to
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measure information on important risk factors (or confounders) thought to be asso-
ciated with the disease under study, such as smoking levels when considering cardio-
respiratory diseases. This is due to the fact that data in general are not collected for
the purpose of the chosen study, but for other purposes such as surveillance. Likewise,
data on the exposure and outcome are usually collected in different ways. For exam-
ple, air pollution is measured at single points in space, whereas the outcome can be
individual hospital records, and this can inadvertently bias the results. Furthermore,
the way in which data are collected can differ systematically over time, for example,
when air pollution monitors are upgraded, removed, or change location. While ecolog-
ical studies are a powerful tool for investigating quickly and efficiently the relationship
between an exposure and outcome at the population level, they cannot be used to infer
associations at the individual level, otherwise this is known as the ecological fallacy as
is discussed further in Section 3.2.

3.3 Study design and data

The air pollution, disease and covariate data are typically recorded at the monthly or
annual level for each administrative unit in the chosen study region. The size of the
administration units varies from study to study, ranging from small census enumeration
districts, comprising 400 inhabitants on average, to large local unitary authorities,
comprising 200,000 inhabitants on average. It is clear that the smaller the area under
study the more homogeneous the populations living within the areas are considered to
be. The analyses presented in Chapters 5 and 6 are based on data from West Central
Scotland, where the size of the administration units, known as data zones, comprise
800 inhabitants on average. The air pollution, disease and covariate data used in these
studies are described below, firstly with a definition on the ways in which disease can
be studied.

3.3.1 Frequency of disease

The occurrence of morbidity and mortality varies over time, across space and between
different population groups, such as the working age population and the older age pop-
ulation. Therefore, it is important to be able to quantify the frequency of disease in
order to allow the study of these events when seeking to develop an intervention, when
seeking to prevent disease and promote health, or when seeking to identify a causal
relationship between an exposure and an outcome, such as between air pollutants and
health.

There are two main measures of disease frequency: prevalence and incidence. Preva-
lence is defined as the number of existing diseases cases within a defined population
within a specified time period. Prevalence is an important measure as it allows the as-
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sessment of the public health impact of a specific disease within a population, however
it cannot be used to establish any causal relationships (Bailey et al., 2005), since it is
studied at the population level. This is mainly due to not being able to fully establish
the factors that lead to the disease and the factors that exacerbate these conditions.
However, this can be mitigated by refining the study population, for example in terms
of age since air pollution will have different effects at different ages. Incidence is a
more useful measure as it only looks at new cases of disease. Incidence is defined as
the number of new disease cases within a defined population and time period, see, for
example, Atkinson et al. (2013) who analysed the incidence of cardiovascular disease
over a 5-year period. Incidence is studied in Chapter 6.

3.3.2 Disease data

In spatial ecological studies, the mortality or morbidity data are available as aggre-
gated counts for each of the m non-overlapping subregions {A : i = 1, . . . ,m} within
the study region of interest, D. These disease data are denoted by Y = (Y1, . . . , Ym),
where Yi represents the number of disease cases within areal unit i. Disease count
data are available from Government departments, such as the National Records of
Scotland (NRS, https://www.nrscotland.gov.uk/), whereby individual-level infor-
mation is collected from hospital and death records then aggregated to the population
level. Individual-level information is generally not publicly available for confidential-
ity reasons, but can be made available to researchers through the use of administra-
tive safe havens (subject to a successful application), such as the NHS Scotland Na-
tional Safe Haven (http://www.isdscotland.org/Products-and-Services/EDRIS/
Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven). Disease data are
classified according to the International Classification of Diseases (ICD), which is pri-
marily used to report mortality and hospitalisation data; a popular indicator for the
health status of a population. The ICD is maintained by the World Health Organisa-
tion (WHO, http://www.who.int/en/), with versions 9 (World Health Organisation,
1975) and 10 (World Health Organisation, 1994) currently used in practice, and the
eleventh version being due to be released in 2018.

Within the air pollution and health literature, a number of classifications have been
used to represent health, with some studies looking for associations with all-causes of
mortality (Jerrett et al., 2005c). While a positive and significant association was found
for particulate matter, considering all causes of death may not be the best indicator,
since it contains deaths not related to air pollution exposure, thus potentially gener-
ating a biased result. Therefore, many studies tend to focus on cause-specific disease,
such as those due to circulatory and respiratory conditions (Scoggins et al., 2004) or
cardio-respiratory conditions (Wang et al., 2009). These types of cause-specific con-
ditions are important to consider because they are more likely to be related to the
adverse effects of air pollutants. Respiratory conditions, such as asthma and chronic

https://www.nrscotland.gov.uk/
http://www.isdscotland.org/Products-and-Services/EDRIS/Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven
http://www.isdscotland.org/Products-and-Services/EDRIS/Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven
http://www.who.int/en/
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obstructive pulmonary disease (COPD), are particularly of interest, as exposure to
gaseous and particulate air pollutants is likely to aggravate the respiratory tract when
travelling into the lungs (Bernstein et al., 2004). It was estimated that, in 2008, more
than 23 million Americans suffered from asthma, while 13 million adults suffered from
COPD (Pleis et al., 2009). Therefore, it is important for policy-makers to identify risk
factors for respiratory diseases so that incidence and financial burden can be reduced.
Furthermore, it is argued that exposure to air pollution acts as an additional stress in
persons who already stuffer from morbidities, such as those relating to chronic condi-
tions (Anderson, 2009; Anderson et al., 2003).

While these studies help shed light on the associations between air pollution and
health, they do suffer from the major drawback of lacking statistical power to be able
to detect associations. By focusing on specific causes of disease, one will reduce the
number of disease cases utilised in the analysis. Willocks et al. (2012) discussed this
phenomena in detail, where they explained that, in order for an association to be de-
tected, there has to be sufficient variation in the pollution and disease data. In the
case of their study where no association was observed, the levels of variation in the air
pollution and disease data were low, and the inter-quartile ranges for the daily counts
of cardiovascular hospital admissions and levels of PM10 (measured in µgm−3) were
between (8, 13) and (17, 30.5) respectively. The authors also suggested that utilising
routinely collected data may not provide enough variation to allow an association to be
detected, especially when the region under study is considered to be relatively small.
However, their study was conducted at the daily level. Aggregating to a monthly or
annual level may be sufficient to mitigate the issue of low variation in the response and
covariates.

While seeking an association between specific causes of death and pollution is im-
portant, it is also of interest to ascertain whether there is a greater effect of air pollution
in specific age groups. Numerous studies have observed stronger effects of air pollution
on health in the elderly population (Fischer et al., 2003; Larrieu et al., 2007; O’Neill
et al., 2004). It is believed that exposure to air pollution at these ages is more likely
to cause harm or exacerbate cardiac and respiratory conditions in a population which
is classed as more vulnerable compared to the general population. Just as the elderly
are considered more susceptible to the adverse effects of air pollution, children are also
considered as a vulnerable group with respect to air pollution (Beatty & Shimshack,
2014). Children are more likely to suffer from direct exposure to air pollution since
they exhibit greater activity levels and spend more time outdoors, which can lead to
variable breathing rates and thus affect lung function (Beatty & Shimshack, 2014).
Furthermore, it is widely acknowledged that children are more prone to suffering from
chronic respiratory conditions, such as asthma, meaning that exposure to air pollution
can aggravate and exacerbate these chronic conditions. In addition, the effect of air
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pollution on infant mortality (Padilla et al., 2013), preterm delivery (Yi et al., 2010),
and preterm birth (Johnson et al., 2016) has also been investigated. The majority
of this thesis focuses on mortality and morbidity due to cardio-respiratory diseases in
the adult population (Chapters 5 and 6). However, this thesis also investigates the
association between air pollution and ill health at different ages (Chapter 6), where
age is stratified into 3 age groups: younger population (0-19 years); working popu-
lation (20-64 years); and an older population (65+ years). This allows for a deeper
understanding as to which ages air pollution has a more detrimental effect. This has
important policy implications when trying to find the best ways in which to target air
quality interventions.

3.3.3 Air pollution data

The term ‘air pollution’ includes a wide variety of atmospheric pollutants that are
present as gases or particles, which are individually and routinely monitored at hourly
intervals by a network of outdoor monitoring stations. Due to high correlations be-
tween individual pollutants, the majority of pollution-health studies estimate health
effects based on exposure to a single pollutant, or use multiple pollutants in separate
models. Commonly-used measures of gaseous pollutants include carbon monoxide (CO,
Villeneuve et al., 2003), oxides of nitrogen (Bennett et al., 2014), ozone (O3, Tao et al.,
2012), and sulphur dioxide (SO2, Wong et al., 2008). Particle pollutants comprise black
smoke (BS, Beverland et al., 2014a), and particulate matter, the latter characterised
according to its aerodynamic diameter as either less than 2.5 µgm−3 (PM2.5, Cesaroni
et al., 2013 or less than 10 µgm−3 (PM10, Pirani et al., 2014). PM2.5 is considered one
of the most important pollutants because it is small and can be easily inhaled into the
lungs, and is therefore an important risk factor for lung cancer, respiratory and car-
diopulmonary mortality (Pope III et al., 2002). It has been argued that studies should
focus more on ultrafine particles (aerodynamic diameter less than 0.1 µgm−3) as these
are what makes up the majority of the particle pollutants in urban and industrial areas
(Terzano et al., 2010). However, in the UK, these smaller particles are not monitored
making it difficult to assess their health effects.

In this thesis, nitrogen dioxide (NO2, Huang et al., 2015) is the main focus, as
it is a good marker for traffic-related air pollution, produced from vehicle exhausts
(World Health Organisation, 2006), and also due to its strong correlation with other
traffic-related pollutants (Brunekreef & Holgate, 2002). Furthermore, data on NO2

concentrations were more widely available in terms of the number of spatial locations
of the monitoring network compared to particulate matter, meaning it is a more com-
prehensive measure of air pollution across West Central Scotland.
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3.3.4 Covariate data

In addition to air pollution, a wide variety of covariates are used to model risk fac-
tors that are related to the disease data. If these covariates are not included in the
model, spatial autocorrelation and overdispersion can be induced, and thus any re-
sulting pollution-health relationship could be biased. This is known as confounding,
where an important spatially-correlated variable is not included in the model and the
resulting pollution-health risk is stronger or weaker than what it would have been had
if the variable had actually been included.

In time series studies, typical covariates include measures of meteorology, such
as temperature (Beverland et al., 2014b; Ou et al., 2008) and humidity (Samoli et al.,
2006), influenza epidemics (Hoek et al., 2000; Thach et al., 2010; Touloumi et al., 2005),
measures of deprivation (Carder et al., 2010; Jerrett et al., 2004), and time-related co-
variates such as day of the week (Neuberger et al., 2013; Simpson et al., 2005). Cohort
studies and spatial ecological studies mainly focus on aspects of deprivation, since it
is an important determinant of health and environmental justice concerns have been
raised with regards to differences in the effects of air pollution exposure being differ-
ent across socio-economic groups (Laurent et al., 2007; O’Neill et al., 2003; Pellow,
2000), with more deprived populations being more strongly affected (Forastiere et al.,
2007; Jerrett et al., 2004). This is argued to be due to populations living in more
deprived areas having less adequate access to healthcare, poorer nutrition, lack of ma-
terial resources, and a higher prevalence of smoking, which makes these populations
more susceptible to the effects of air pollution compared to those populations residing
in more affluent areas (Barceló et al., 2009; O’Neill et al., 2003; Richardson et al., 2011;
Wong et al., 2008). These factors also make their health worse, irrespective of air pol-
lution. Those residing in more affluent areas have a greater chance of living away from
undesirable areas containing high traffic density or industrial facilities, due to being
less financially constrained (Crouse et al., 2009).

Scotland is known for having the lowest life expectancy and highest mortality rates
in Western Europe (McCartney et al., 2012; Schofield et al., 2016), with Glasgow con-
taining more than 40% of Scotland’s most deprived areas comprising at least half of
Glasgow’s total population (National statistics. Scottish Index of Multiple Deprivation,
2012). It is therefore important to take deprivation into account when assessing the
pollution-health relationship in West Central Scotland, since deprivation is a known
determinant of health. Figure 3.1 displays the potential pathways through which socio-
economic position can increase exposure to air pollution, as well as susceptibility, which
relates to the presence of pre-existing medical conditions that can make individuals
more susceptible to the harmful effects of air pollution.

Deprivation, by nature, is multifactorial and studies have to account for depriva-
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Figure 3.1: Suggested pathways for socio-economic position to increase exposure and
susceptibility to air pollution (taken from O’Neill et al. (2003)).

tion through a number of proxy measures, such as the level of income or education
within each areal unit. There have been numerous studies which have found signif-
icant associations between air pollution and ill health while adjusting for indicators
of deprivation. For example, Wong et al. (2008) utilised information on education,
income and unemployment to classify each area as being low, medium or highly de-
prived. Significant associations were found for numerous pollutants, including NO2

and PM10, with cause-specific mortality for middle and high deprivation areas, and the
authors concluded that more deprived neighbourhoods experience increased mortality
risks associated with higher levels of pollution. However, the deprivation index used
in that study may not have captured the true extent of social deprivation in these
areas, since only certain factors were taken into account, such as unemployment, and
monthly household income. This could lead to an overestimation (or underestimation)
of the observed pollution-health relationships. A review paper by Laurent et al. (2007)
examined the literature (up until the year 2006) on the effect of socio-economic depri-
vation on the relationship between air pollution and mortality. The authors concluded
that results were inconsistent across the studies, indicating that it was not possible to
assert whether socio-economic deprivation modified the pollution-health relationship.
However, they did conclude that studies measuring socio-economic deprivation at the
individual level (i.e., in cohort studies) typically found that deprivation did modify
the effect of air pollution on health, with deprived people having greater exposure to
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air pollution. Studies that used a coarser measurement of deprivation, i.e., at the area
level, either found inconsistent results or no statistically significant associations. While
the majority of these studies did not adopt an areal unit design, it is interesting to note
that in the studies of a more ecological nature, the relationship between air pollution
and health was attenuated.

In areal unit studies, where inference is made at the ecological level, the efficacy of
the deprivation measures utilised depends on the size of the areal units under study,
as smaller units should be more socially homogeneous with respect to the level of
deprivation (Leyland et al., 2007b). Higher risks of mortality are observed in areas
with higher levels of pollution; however, due to the design of ecological studies, any
individual-level measurements of deprivation cannot be taken into account, and so any
observed associations may be over- or underestimated. There have been a number of
studies which have utilised individual-level measurements of deprivation along with
area-based measurements in order to examine the presence of residual confounding by
the exclusion of individual-based measurements. Goodman et al. (2011); Jerrett et al.
(2005b); Naess et al. (2007) all included individual- and area-level measurements of de-
privation in their analyses. Jerrett et al. (2005b) controlled for 44 individual covariates,
including education, income, and unemployment. Their results indicated that includ-
ing the individual-level covariates attenuated the effect of air pollution on mortality
by 5.6%. Including the ecological variables only reduced the pollution-health effect by
5%, but the resulting relationship was no longer significant at the 5% level. Similar
results are seen in Naess et al. (2007). The authors compared models that included
individual-level deprivation only with models including area-level deprivation only, and
also to a fully adjusted model comprising both. All of the pollution-health relation-
ships either stayed the same or were very similar across the models. For example, an
indicator of primary education resulted in an attenuation of 4.5% when comparing the
individual-level and area-level model, and an attenuated effect size of 3.6% for the fully
adjusted model. Goodman et al. (2011) also found that adjusting for individual-level
deprivation in addition to areal-level measurements did not explain any more of the
association between air pollution and ill health. These results indicate that incorpo-
rating individual-level deprivation does not make a notable difference to the estimated
pollution-health relationship. Studies that have not been able to include individual-
level measurements may not be overestimating the observed findings and are unlikely
to be affected by residual confounding of individual-level socio-economic deprivation.
Adjusting only for area-based measures of deprivation appears to be sufficient when
modelling the air pollution-health relationship.

Deprivation indexes are another way of tackling the multifactorial nature of depri-
vation, by combining a number of different socio-economic variables into one overall
index. There are numerous area-level deprivation measures that have been used in
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studies, such as the Carstairs score (Carstairs, 2001; Elliott et al., 2007), the Townsend
Index (Haining et al., 2010; Maheswaran et al., 2005a, 2006, 2012; Townsend et al.,
1988; Walters et al., 1995), the English Indices of Deprivation (Bennett et al., 2014;
Maheswaran et al., 2012; Tonne et al., 2008, 2010), and the New Zealand Deprivation
Index (Richardson et al., 2011; Scoggins et al., 2004). Both the Carstairs score and
Townsend Index comprise a combination of census output variables, such as social class,
overcrowding, unemployment, and car ownership; while the English Index of Multiple
Deprivation and the New Zealand Deprivation Index are a combination of multiple
domains relating to income, education and employment, among others. The variables
and domains used to create these deprivation indexes are based on health information
that is routinely collected from government departments, such as the Department for
Work and Pensions, the Information Services Division (ISD), and the National Health
Service (NHS). Other studies tend to combine a multitude of individual socio-economic
variables available from census data into one overall index in order to accurately char-
acterise small area deprivation levels (Havard et al., 2009; Jerrett et al., 2005c; Laurent
et al., 2008; Padilla et al., 2013; Wong et al., 2008).

In Scotland, most studies make use of proxy measures of socio-economic deprivation,
such as the median property price in each areal unit, and the proportion of people in
each areal unit claiming job seekers allowance (Huang et al., 2015; Lee & Mitchell,
2012, 2014; Lee et al., 2014). However, Scotland does have its own Scottish Index of
Multiple Deprivation (SIMD) that aims to establish a relative index of socio-economic
deprivation across data zones. The SIMD is similar to the aforementioned area-based
indexes in the sense that it comprises a number of different domains, including income,
education, and employment, among others. While it is important for studies to account
for deprivation in their analyses, it is unclear whether the relationship between air
pollution and ill health is dependent on the choice of deprivation measure. Therefore,
Chapter 5 presents a sensitivity analysis to the choice of deprivation measure on the
estimated pollution-health relationship in West Central Scotland to establish whether
the relationships between air pollution and ill health changes depending on the measure
of deprivation used.

3.3.5 Standard spatial model

As previously mentioned, the disease, air pollution, and covariate data are available
at the ecological level, where the disease data are in the form of counts. Count data
are discrete and take the form of natural numbers {0, 1, 2, . . . }, which are whole and
non-negative and are therefore assumed to arise from a Poisson distribution. These
data denoted by Y = (Y1, . . . , Ym)> for all m areal units, and are regressed against air
pollution concentrations x = (x1, . . . , xm)>, and a matrix of p covariates denoted by
Z = (z1, . . . , zm)>, which includes a column of ones for the intercept term. Typically,
a generalised Poisson log-linear model (GLM) is used
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Yi ∼ Poisson(EiRi) for i = 1, . . . ,m (3.1)

ln(Ri) = xiβ + z>i δ + φi,

where Ei represents the expected number of disease cases in areal unit i and is treated
as an offset to allow for the number of disease cases to vary according to the age-sex
structure and size of the underlying population. The risk of disease in areal unit i is
denoted by Ri, and (β, δ) denotes the regression parameters for the air pollution and
covariates respectively. This type of GLM (where φi = 0 for all areal units i) is used as
an exploratory technique to highlight the need for a spatial model by showing overdis-
persion is present, and by assessing the presence of residual spatial autocorrelation in
the data, where Moran’s I (see equation(2.76)) is calculated on the residuals.

If residual spatial autocorrelation is not present after adjusting for the covariates,
then one need not progress onto a more complex modelling scheme. However, in most
cases, solely including the covariates is not enough to account for the variation in
the disease data. This then leads on to the inclusion of a set of random effects
φ = (φ1, . . . , φm)> into the linear predictor of equation (3.1) as a way of capturing
the leftover autocorrelation in the data. A number of models can be specified for these
random effects, including conditional autoregressive (CAR), simultaneous autoregres-
sive (SAR), or geostatistical models. However, in the spatial areal unit study context,
CAR models (Besag et al., 1991) models are most common (Lawson et al., 2012; Lee
et al., 2009; Lee & Sarran, 2015; Maheswaran et al., 2005a), and are discussed in Chap-
ter 2.

A number of globally smooth CAR models have been developed, and a review by Lee
(2011) concluded that the specification proposed by Leroux et al. (1999) was the most
appealing, since it can represent a range of strong and weak spatial autocorrelation all
within one set of parameters, unlike other CAR models. This modelling framework
is typically implemented within a Bayesian setting, with inference based on McMC
simulation; however, these models can also be implemented within a frequentist setting
using maximum likelihood methods. Bayesian methods are becoming the norm in this
context due to increasing improvements in computational power, making Bayesian
methods quicker and easier to implement. The estimated pollution-health effect is
typically reported on the relative risk (RR) scale, which measures the magnitude of
increasing air pollution levels on the health of the population. The RR is reported in
terms of a specific increase, usually a one standard deviation, in the pollutant, and is
given by

RR(β) = exp(ω × β), (3.2)
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where ω represents the standard deviation of the pollutant under study, and is used to
ensure a realistic change in long-term exposure. For example, a RR of 1.2 corresponds
to a 20% increased risk of disease.

3.4 Geographical locations

It is known that the relationship between air pollution and ill health has been well
studied for the past two decades, and this section aims to provide an overview of the
literature regarding areal unit studies conducted in Scotland, and in the wider UK,
European and worldwide contexts. The main difficulty when comparing areal unit
studies both within and across countries is the varying sizes of administrative bound-
aries, which can make it difficult to compare different pollution-health effects since
they do not all relate to the same sized areas. Therefore, in this thesis, studies have
been grouped according to their average areal unit population size, in order to attempt
consistency when presenting the results.

The majority of studies conducted in Scotland (especially earlier studies) sought
to quantify the relationship between air pollution and ill health through the imple-
mentation of cohort or time series designs (Agius et al., 2002; Beverland et al., 2014a,
2012a,b; Carder et al., 2010, 2008; Dibben & Clemens, 2015; Prescott, 2000; Prescott
et al., 1998; Willocks et al., 2012; Yap et al., 2012), where no consistent associations
were found between exposure to air pollution and ill health. However, the studies in
which an ecological areal unit design was adopted (Huang et al., 2015; Lee, 2012; Lee
et al., 2009; Lee & Mitchell, 2014; Lee et al., 2014) have collectively found substantial
pollution-health effects for NO2 and PM10 at the intermediate geography level (IG, me-
dian population of 3956) in Glasgow. The first paper in this field by Lee et al. (2009),
investigated the relationship between PM10 concentrations and hospital admissions
due to respiratory disease in four of the largest cities in Scotland, namely: Aberdeen,
Dundee, Edinburgh, and Glasgow. For a one standard deviation increase in PM10 con-
centrations, the authors found a 4%, 5%, 7%, and 7% increase in respiratory hospital
admissions for each city respectively. The results were substantial at the 5% level for
Edinburgh and Glasgow as their 95% credible intervals did not contain the null risk of
one; however, the same was not found for Aberdeen and Dundee. These results suggest
that, in Edinburgh and Glasgow, areas with higher pollution levels have increased risk
of respiratory hospital admissions. Similar results were reported in Lee (2012); Lee &
Mitchell (2014); Lee et al. (2014), where the effect sizes ranged between 4% and 6.6%.
Huang et al. (2015) studied Scotland as a whole and reported a 2.3% increase in respi-
ratory hospital admissions for a one standard deviation increase in NO2 concentrations.

Even within the wider UK context, there are relatively few studies that explore the
relationship between air pollution and ill health using an ecological small area design.
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Maheswaran et al. (2005a,b, 2006) utilised a small area design at the census enumer-
ation district level in Sheffield comprising, on average, 194 inhabitants over the age of
45 years. Maheswaran et al. (2005a, 2006) observed a positive relationship between
modelled NOx concentrations and stroke mortality, where the highest risks were found
in the highest NOx category. However, Maheswaran et al. (2005b), did not observe
any substantial relationships between NOx, PM10 or CO and ill health due to coronary
heart disease. Haining et al. (2010) extended the study by Maheswaran et al. (2006),
and reported that higher levels of NOx were associated with an increased risk in stroke
mortality. This study used a more robust modelling framework to try and account for
ecological bias (see Section 3.5); however, the authors concluded that the association
observed by Maheswaran et al. (2006) (where the prospect of ecological bias was not
considered) was not affected by ecological bias and is therefore a robust finding. Elliott
et al. (2007) considered larger electoral wards (comprising on average 5300 inhabitants)
for their unit of analysis, where stronger effects were observed between respiratory dis-
ease and black smoke (BS) and SO2 compared to lung cancer and others. The effects
were reported on the excess risk scale, where excess risks of 19.3% and 21.7% were
observed for BS and SO2 respectively, for an increase in 10 units for both pollutants.

A study by Tonne et al. (2008) evaluated the impact of the London congestion
charge at the census ward level (comprising 1500 inhabitants on average) to the sur-
rounding pollution levels (NO2 and PM10) and life expectancy. The authors observed
a notable decrease in pollution concentrations as a result of the intervention, and con-
cluded that more deprived areas had the highest levels of pollution. In addition, the
London congestion charge scheme resulted in a small increase in life expectancy due to
the reduction in traffic-related pollution, and therefore has an important public health
impact. Tonne et al. (2010) also investigated whether there was an association be-
tween cardio-respiratory hospital admissions and NOx concentrations across Greater
London, also at the census ward level. However, no consistent associations were ob-
served. In comparison, Maheswaran et al. (2012) sought to quantify the relationship
between NO2 and PM10 with the incidence of stroke, within smaller areal units com-
prising on average 283 inhabitants. No substantial associations were observed, but the
authors did conclude that there was evidence of an increased risk among older-aged
people between 65 and 79 years. The more recent studies conducted in England have
focussed on areal units on a larger scale. Both Bennett et al. (2014) and Rushworth
et al. (2014) studied the relationship between air pollution and ill health at the ward
level, comprising 5000 inhabitants on average. These are a similar size to the areal
units utilised in the studies conducted in Scotland. Bennett et al. (2014) observed a
positive association between NOx and the risk of heart failure in Warwickshire, while
Rushworth et al. (2014) found substantial relationships in London between CO and
PM2.5 and respiratory hospital admissions, but not for PM10 or NO2. Finally, Lee &
Sarran (2015) studied the relationship between emergency respiratory hospital admis-
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sions and NO2, PM10 and PM2.5, across local unitary authorities (population between
50,000 and 500,000) in England, and concluded there was evidence of substantial rela-
tionships between air pollution and respiratory ill health (relative risks of 1.089, 1.032
and 1.013 respectively).

There have been relatively few small areal ecological studies conducted elsewhere
in Europe. Both Barceló et al. (2009) and Laurent et al. (2008) used census bound-
aries comprising 4000 and 2000 inhabitants respectively, but found inconsistent re-
sults between PM10 and numerous causes of mortality, including cardio-respiratory
diseases. Barceló et al. (2009) only found significant results in the metropolitan area
of Barcelona, and only for men. There have also been few studies conducted in North
America, where each study utilised a different sized areal unit. Jerrett et al. (2005c)
utilised the Canadian census tract comprising 3000 inhabitants on average, whereas
Jerrett et al. (2005b) utilised zip codes in Los Angeles comprising 35,000 people on
average. Hu et al. (2008) utilised the Florida census tracts comprising 4000 people
on average, while Lawson et al. (2012) utilised counties in Georgia, where populations
ranged from 1500 to 900,000. It can be argued that the smaller the areal unit, the
more homogeneous the health, air pollution and deprivation data will be. All studies
concluded that more deprived areas exhibited higher air pollution levels and higher
rates of ill health, with Hu et al. (2008), and Jerrett et al. (2005b,c) further report-
ing positive associations between air pollution and health. However, Lawson et al.
(2012), observed a negative association between PM2.5 and asthma-related illness and
described the finding as ‘slightly surprising and inconsistent with some air pollution-
related time-series studies’. It is indeed a surprising result considering the majority
of studies assessing the impact of fine particulate matter either observe a positive or
inconsistent result, but the authors did awknowledge the ecological nature of their
finding, which could be an artefact of the modelling technique used. In addition to the
relatively few studies conducted in North America in terms of areal unit studies, there
have been relatively few studies conducted in Australia (Wang et al., 2009), China
(Wong et al., 2008), and New Zealand (Richardson et al., 2011). All three studies
utilised small areas, comprising between 3000 and 6000 people; however, only Wang
et al. (2009) found no consistent associations between air pollution (NO2, O3, SO2)
and cardio-respiratory mortality.

3.5 Ecological bias

As mentioned in the previous sections, spatial ecological studies are increasingly being
used to investigate the adverse effects of air pollution on ill health utilising population
summaries of these data. Ideally, one would want to investigate the association between
air pollution and ill health at the individual level as this is the only way of directly
determining a causal relationship between air pollution and ill health. However, due
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to the length of time it takes for cohort studies to be conducted, and the need for
individual-level data in which confidentiality issues may arise, these types of studies
are not always feasible.

There has been much discussion over the last two decades regarding ecological
studies and their flaws; see Elliott & Savitz (2008); Greenland & Morgenstern (1989);
Haining et al. (2010); Shaddick et al. (2013); Wakefield (2008); Wakefield & Salway
(2001) for further details. With ecological studies, inferences cannot be made from the
area level to the individual level as the areas studied may be highly heterogeneous, and
any generalisation to individuals depends on everyone within the area being similar,
which is highly unlikely. This is known as the ecological fallacy (Selvin, 1958), where
one assumes that associations observed at the area level also hold at the individual
level. While ecological studies are useful for estimating the pollution-health relation-
ship due to their relative inexpense and easy data acquisition, results are still treated
with caution (Haining et al., 2010).

A number of researchers have tried to mitigate ecological bias and estimate a causal
link by taking a mixed approach, i.e., including individual-level data along with the
ecological data (Elliott & Savitz, 2008; Haining et al., 2010; Wakefield, 2008; Wake-
field & Shaddick, 2006). Haneuse & Wakefield (2007, 2008) developed an approach
for case-control data that evaluates the conditional distribution of aggregated, eco-
logical data given the individual-level data, implemented both within a frequentist
(Haneuse & Wakefield, 2007) and Bayesian setting (Haneuse & Wakefield, 2008). An-
other approach by Jackson et al. (2008, 2006) corrects for ecological bias by combining
exposure-response information at the individual-level and ecological-level data for the
exposure. Two joint regression models are specified within a Bayesian framework,
which let the individual data inform the exposure-response coefficient, thus correct-
ing for ecological bias. These two types of design are considered in terms of either
individual-level models, taking into account ecological data in order to improve sta-
tistical power, or as an ecological study taking into account individual-level data to
mitigate against ecological bias (Jackson et al., 2006). While these approaches try and
account for ecological bias, Wakefield & Shaddick (2006) average the individual level
risks to try and avoid ecological bias, rather than estimating the relative risks from av-
eraging exposure. Wakefield (2008) suggested supplementing the ecological data with
individual-level information as in the previous approaches, but with regards to the
covariate data used in this thesis, Section 3.3.4 considered including individual-level
information along with the aggregated pollution data and it did not seem to affect
the overall estimated pollution-health relationship. Within the Scottish context, only
one study investigated the effects of ecological bias on their results. The study by
Lee et al. (2009) assessed the effects of pure specification bias (where the risk model
at the individual level is nonlinear and changes upon aggregation), by adjusting the
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regression model according to the parametric approach by Richardson et al. (1987).
The authors found only very minor changes in the estimated pollution-health effect,
thus concluding a weak effect of pure specification bias in their study.

3.6 Estimating exposure to air pollution

Since spatial ecological studies make use of routinely available health data, exposure
to air pollution also must be available at the ecological level. However, exposure then
relates to the average level of pollution experienced by the population as a whole, which
is typically measured by an outdoor pollution monitoring network, whereby researchers
take an average of the monitors’ values within the region of interest and ascribe that
population with a level of exposure. This can be deemed as a poor representation
of exposure since the majority of the population migrate between areas, and between
indoor and outdoor environments. Furthermore, the monitoring network does not take
into account indoor pollution sources, for example from gas cookers and fireplaces. In-
door pollution exposure may also have an effect on the health of the population under
study, which may vary across different age groups. For example, children spend a lot
of their time outdoors and at school, which can be in a different area to which they
reside in. The working age population (20-64 years) spend the majority of their time
at work and are more likely to travel between different areas. People in the older age
bracket (> 65 years) may spend the majority of their time indoors, and be more likely
to stay within their residential neighbourhood. In addition, averaging concentrations
from monitors ignores any small-scale variation in the pollution concentrations, since
the measurements from the monitors are realisations of the actual pollution field, which
is spatially varying. Therefore, there is a need for more appropriate estimates of expo-
sure at the population level to be used in spatial ecological studies.

There is major concern in the air pollution and health literature of obtaining air
pollution data that are comprehensive and of good quality. Generally, information on
air pollution is available from two distinct sources: the aforementioned outdoor mon-
itoring stations, and modelled concentrations from numerical models. The data from
the monitoring network are at the point level since these are observations taken from
monitoring sites located throughout the study area, while modelled concentrations are
estimated over a regular grid, such as 1km intervals. One major drawback of solely
utilising the observed concentrations from the monitoring network is that the network
is sparse across the study area, meaning that not all areal units contain an air pollu-
tion value. The monitoring sites are also likely to be preferentially located where the
pollution is thought to be highest (Zidek et al., 2014) and exceeds EU standards. This
can produce biased estimates of the true pollution concentrations in terms of inflating
area-wide concentrations, while potentially biasing the resulting health risk. Further-
more, the monitoring network has a multitude of missing data that arise from monitors
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becoming faulty or being relocated, which can therefore impede its functionality. Nev-
ertheless, as the pollution concentrations are directly measured they provide close to
the true value with little measurement error (Gelfand & Sahu, 2010).

Numerical computer models are increasingly being used to estimate pollutant con-
centrations in the atmosphere, which mathematically estimate the underlying physical
and chemical processes of the environment using partial differential equations. These
numerical computer models require large amounts of data input, such as information
on meteorological processes, land use, vehicle and power plant emission sources, which
makes them computationally expensive and time-consuming to implement. Further-
more, the resulting outputs from these complex systems is often biased and does not
hold any information about uncertainty in their estimates. The outputs from these
numerical models is often calibrated against observations from the monitoring network
(Pirani et al., 2014); however, the two types of data are on different spatial scales
and thus not directly comparable. This is known as the change-of-support problem
(Gelfand et al., 2001; Gotway & Young, 2002) in the statistical literature, that is, ‘the
problem of inferring about a spatial variable at a certain resolution using data with
different spatial support’ (Berrocal et al., 2010b). This makes it problematic when
investigating the relationship between air pollution and ill health since the health data
are available as aggregated counts over irregular spatial units, while the pollution data
from monitoring sites are at the point level and the numerical output is at the grid level.

There has been recent research interest in fusion modelling, which combines both
types of air pollution data in order to produce spatially representative pollution con-
centrations that can be aligned with disease data. There are two main approaches
to this. The first represents the true (unobserved) pollution field as an underlying
latent process, which drives both the observed and modelled data (see Figure 3.2).
The second approach is the regression-type method, which links the two data sources
together.

3.6.1 Latent process-type approach

A latent process or variable is one that is not directly observed or measured, but is
assumed to be related to variables that have been measured, such as the observations
from the monitoring sites and the modelled output. This method assumes that both
the monitoring and modelled data provide good information about the same underly-
ing process, where each have their own error structure. The observed data are related
to the true underlying process by a measurement error model, while the modelled data
are related to the true underlying process by a linear model that accounts for the bias
in the numerical estimates.
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Figure 3.2: Diagram of the latent process and its two components.

Fuentes & Raftery (2005) adopted this approach to model the true environmen-
tal process at the point level, and is an application of the Bayesian melding method
developed by Poole & Raftery (2000). In a purely spatial setting, let Z(s) be the la-
tent spatial process that measures the ‘true’ environmental factor at spatial location
s, which is assumed to follow the model

Z(s) = µ(s) + ε(s), (3.3)

where the spatial trend, µ(s), represents the overall mean of the process, and assumes
that the latent process has zero-mean correlated errors ε(s). The monitoring site at
location s is denoted by Y (s), and is related to the latent process Z(s), and measure-
ment error δ(s), with the measurement error at location s distributed as a Gaussian
process with mean zero and variance τ 2

Y . This model is of the form

Y (s) = Z(s) + δ(s), δ(s) ∼ N(0, τ 2
Y ). (3.4)

The modelled data at location s are denoted by X(s) and are modelled as

X(s) = a(s) + b(s)Z(s) + η(s), η(s) ∼ N(0, τ 2
X), (3.5)

where the parameters (a(s), b(s)) control the additive and multiplicative bias of the
modelled output respectively and are allowed to vary over space. However, because
the modelled concentrations are averages over grid cells (B1, ..., Bc) that cover the
entire study region D, the modelled concentrations are expressed in terms of stochastic
integrals of each component of equation (3.5), that is

X(Bi) =
∫
Bi

a(s) ds +
∫
Bi

b(s)Z(s) ds +
∫
Bi

η(s) ds, (3.6)

for i = 1, ..., c. In this context, the bias in the modelled data is mostly additive,
therefore the parameter b(s) is treated as constant over space (i.e., b(s) = b) in the
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above equation (thus moving to the outside of the middle integral). These parameters
are estimated by the following joint distribution between the monitored and modelled
concentrations

 Y
X

 ∼ N
 µ

a+ bµ

 ,
 ΣY ΣY X

ΣXY ΣX

 , (3.7)

where a is the integral component from equation (3.6) (
∫
Bi
a(s)) evaluated at the c

grid cells, and µ is the integral of µ(s) evaluated at each of the grid cells (B1, ..., Bc).
The goal is to predict the ‘true’ process at an unmeasured point location (s∗), given
by the predictive distribution

p(Z(s∗)|Y,X) =
∫
p(Z(s∗)|Y,X,θ) p(θ|Y,X) dθ, (3.8)

where (Y,X) are the monitored and modelled spatial processes respectively, and Φ is
the set of model parameters to be estimated.

This method of fusing the two types of environmental data together has two main
limitations. The first limitation is that this method is computationally demanding
and in most cases, infeasible when the modelled data contain a large number of grid
cells. This is due to the large number of numerical integrations that would have to be
computed at each step of the McMC algorithm. The second limitation follows on from
the first in the sense that extending to a space-time domain is also computationally
infeasible due to the computational burden it already possesses when considering a
spatial component.

These limitations can be overcome by an upscaling fusion model, proposed by
McMillan et al. (2010), in which the underlying latent process is specified at the grid
cell level rather than at the point level. This method avoids the use of stochastic in-
tegration and also allows a temporal component to be incorporated. In this case, the
specification of the monitoring concentrations in (3.5) has not changed, whereas the
bias in the modelled concentrations is represented by a linear model of the form

X(s) = Z(s) + βD(s) + ε(s), ε(s) ∼ N(0, τ 2
X), (3.9)

where D(s) is a vector of bias covariates and β is a vector of parameters to be estimated
in the model. The bias in the modelled concentrations D(s) is expressed in terms of
quadratic B-splines (Eilers & Marx, 1996) of the form

ND∑
j=1

Dijβj, (3.10)

where j = 1, ..., ND is the total number of knots and i represents the bias covariates
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for grid cell i. The latent process as defined in (3.3) can thus be extended to

Z(s, t) = µ(s, t) + ε(s, t), (3.11)

where t represents time, and ε(s, t) are the spatially and temporally correlated errors
modelled by a multivariate Gaussian distribution with an autoregressive (AR) prior
of order one to model the temporal autocorrelation, and a conditional autoregressive
(CAR) prior to model spatial autocorrelation. By modelling the latent process this
way, it allows the model to be expressed in terms of all grid cells that can be indexed
temporally and spatially. This model can predict on a much larger scale compared to
previous models - daily concentrations for one year equating to over 9 million predic-
tions. This approach also allows covariate data to be included in the model, but none
was used in their study due to their covariate of choice having no predictive benefit.

Two additional papers utilise this latent process approach for obtaining spatially
representative concentrations. Fuentes et al. (2008) follow on from their first approach
at combining both sets of environmental data, but avoid the use of numerical inte-
gration by employing spatial logistic regression in order to model the probability of
rainfall from monitored and modelled data at the grid cell level. The latent process
is modelled as a Gaussian random field of the spatial and temporal domain with the
time points modelled using a dynamic linear model of the form

Z(s, t) = ρZ(s, t− 1) + βW (s, t) + ε(s, t), (3.12)

where ρ ∈ (0, 1) controls the amount of temporal smoothing, and βW (s, t) is a vector
of weather covariates to improve the predictive performance of the model. Sahu et al.
(2010) also identify a true underlying process with predictions at the point level. They
developed a joint model by combining a space-time process for the monitoring data
and a CAR model for the modelled data, then linked these two processes by using a
latent space-time process in a Bayesian hierarchical modelling framework in order to
avoid the spatial misalignment of the observed data. The main difference with this
approach and the previous approaches is that two latent processes are chosen: one for
the monitoring (point) data and one for the modelled (grid) data. The latent process
for the monitoring data is assumed to follow the measurement error model (MEM)

H(s, t) ∼ N(V (s, t), σ2
W ), (3.13)

where the term V (s, t) denotes the latent process for the modelled data. Then, the
latent process for the modelled data is assumed to follow a first-order AR model in
time and a CAR model in space, that is

V (s, t) = ρZ(s, t− 1) + η(s, t), for i = 1, ..., n, t = 1, ..., T, (3.14)
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where η(s, t) are independent spatial processes, each of the form of improper CAR
models applied at the grid cell level. The latent processes are introduced this way in
order to capture point masses at zero with regards to chemical and wet deposition,
while also avoiding stochastic integration. The monitoring data were considered as the
ground truth, whereas the modelled data were expected to be biased. The measurement
error model, therefore, allowed for the calibration of the modelled output.

3.6.2 Regression-type approach

The aforementioned limitations of the Fuentes & Raftery (2005) latent-process type
approach can be overcome by fusing the monitored and modelled data together via
a spatially varying linear regression as proposed by Berrocal et al. (2010b), which
outperforms Fuentes & Raftery (2005) in terms of computational speed and out-of-
sample validation (Gelfand & Sahu, 2010). In a purely spatial setting, let Y (s) and
x(s) denote the monitored and modelled concentrations at spatial location s. Berrocal
et al. (2010b) propose a model of the form

Y (s) = β0(s) + β1(s)x(s) + ε(s), ε(s) ∼ N(0, τ 2), (3.15)

where the monitored concentrations are assumed to be measured with little error, and
are modelled as linearly-related to the error prone modelled concentrations. Due to
the change-of-support problem, the modelled concentration nearest to each monitoring
site is used in the above regression model to ensure that each monitoring site has a
corresponding modelled grid cell value. Furthermore, a square root transformation of
the monitored and modelled data was performed in order to stabilise the variance.
The terms (β0(s), β1(s)) control the additive and multiplicative bias in the modelled
pollution concentrations, and are allowed to vary over space. This spatial variation is
captured via the coregionalisation prior (Gelfand et al., 2004), which is given by

 β0(s)
β1(s)

 = A

 w0(s)
w1(s)

 . (3.16)

Here, A is a lower triangular matrix, while (w0(s), w1(s)) are two independent spatial
processes. Specifically, each has a Gaussian distribution with a mean of zero and a
correlation matrix defined by an exponential function of distance. The model was
fitted in a Bayesian setting, using McMC simulation. This model is used to predict
the monitored concentrations at locations without monitors using the above linear
regression model, and measures of uncertainty in these predictions can be obtained
from the McMC output via the posterior predictive distribution. That is, at iteration
j of the McMC algorithm, the prediction at location s∗ is given by

Y (j)(s∗) = β
(j)
0 (s∗) + β

(j)
1 (s∗)x(s∗),
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where (j) denotes the jth sample of a parameter from the McMC output, and(
β

(j)
0 (s∗), β(j)

1 (s∗)
)

are obtained from Bayesian Kriging (as described in Section 2.4.1).

Another regression-type approach was proposed by Bruno et al. (2013), where they
extended the previous regression approach by utilising a zero-inflated distribution to
account for the high number of zero values in the monitoring data, considered as
reliable measurements (in the context of rainfall). In a spatial and temporal setting,
let Y (s, t) and x(s, t) denote the monitored and modelled concentrations at spatial
location s and time t. A spatial logistic regression model is proposed, where the
probability of monitor occurrence π(s, t) at spatial location s and time t is regressed
by log-transformed modelled data of the form

logit(π(s, t)) = β0(t) + β1(t)x(s, t) + ε(s, t), ε(s, t) ∼ N(0, σ2
εtΣε). (3.17)

The variance parameter, σ2
εt, contains a temporal component in order to capture

the different variability in the probability of monitoring occurrence along time. The
spatial adjustment, ε(s, t), is specified as a multivariate Gaussian spatial process with
mean zero and a correlation matrix Σε defined by an exponential covariance function
of distance between sites s and s′ and is of the form Σε = exp(−φεdss′) (where dss′

donates the Euclidean distance between the sites). The bias terms (β0(t), β1(t)) were
modelled as Gaussian distributions with mean zero and variance σ2

β0 and σ2
β1 respec-

tively. The model was fitted in a Bayesian setting, adopting McMC simulation.

Considering the approaches by Berrocal et al. (2010b) and Bruno et al. (2013) to
the spatial misalignment issue, Berrocal et al. (2010b) benefits from its simplicity and
flexibility due to the modelling of the coefficients, and easily allowing for an extension
to the temporal domain. It allows prediction at the point level; however, only Gaus-
sian variables are acceptable in this context, restricting its application in other areas.
Similarly, Bruno et al. (2013) easily allow a temporal component to be incorporated
and extended (Berrocal et al., 2010b) by adopting generalised linear models, namely
logistic regression, as their regression model of choice. Both methods exploit only the
modelled data that correspond to the monitoring sites for parameter estimation (util-
ising all modelled data for prediction), but this does not restrict the quality of the
predictions that can be produced at unmeasured locations. Both methods also do not
take into account any other covariates (such as temperature) that might help increase
the predictive performance of the models; however, this can be easily incorporated.
Bruno et al. (2013) initially performed the modelling without taking into account the
spatial aspect of the data, highlighting the need to include the spatial component in the
modelling as the predictive performance of the model was notably improved. However,
they did remark that reliable predictions outside of the monitoring network were hin-
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dered, even when modelled data were available, due to the latent nature of the spatial
effects. Nevertheless, both approaches adopt a simple, yet effective way of combining
monitored and modelled data in order to provide a set of reliable measurements at the
appropriate spatial scale.

3.6.3 Additional approaches

Studies by Huang et al. (2015); Pirani et al. (2014); Sacks et al. (2014); Vinikoor-Imler
et al. (2013, 2014); Warren et al. (2013); Zhu et al. (2003) have adopted the fusion
and latent process approaches described above to estimate air pollution concentrations
and correct for spatial misalignment. Other common methods of estimating air pol-
lution concentrations range from simple averaging of modelled concentrations to the
correct spatial domain (Lee et al., 2009; Maheswaran et al., 2006; Rushworth et al.,
2014; Warren et al., 2012), interpolation methods (involving inverse distance weighting
and kriging (Elliott et al., 2007; Janes et al., 2007)) to the popular land-use regression
(Bertazzon et al., 2015; Fernández-Somoano et al., 2013; Hansell et al., 2016), of which
detailed reviews can be found in Jerrett et al. (2005a), and Hoek et al. (2008).

Briefly, land-use regression aims to predict pollutant concentrations by regressing
observed concentrations from a small number of air pollution monitors from numerous
other land-use covariates, such as distance to nearest road and meteorological variables.
This method is also combined with a geographic information system (GIS) in order to
model small scale variations in air pollution concentrations. Air dispersion models,
which model air pollution concentrations based on emissions sources, are usually what
modelled concentrations are based on, and it has been argued that dispersion models are
more reliable compared to land-use regression models in intra-urban settings because
they better represent the underlying process (Jerrett et al., 2005a). Beelen et al. (2010)
provide a performance comparison between land-use regression models and dispersion
models in predicting NO2 concentrations in the Netherlands, and found a moderate
agreement in the modelled concentrations between the two methods. In addition,
measurement error models (MEMs) are increasingly being used to estimate pollution
concentrations as part of a 2-stage modelling approach, whereby an exposure MEM is
proposed at the first stage, where measurement error is characterised by the difference
between the predictions and the ‘true’ unmeasured values, then these predictions are
treated as a covariate and fed into a second-stage health model in order to estimate
the possible exposure-health effect (Szpiro & Paciorek, 2013). However, the pollution
model used in this thesis is based on the regression-type approach by Berrocal et al.
(2010b); further details of which can be found in Chapter 4.



Chapter 4

Improving spatial nitrogen dioxide
prediction using diffusion tubes: A
case study in West Central Scotland

4.1 Introduction

As discussed in Chapter 3 Section 3.6, there is an inherent difficulty in obtaining air
pollution data that are of good quality and will cover the entire study region. In the
majority of air pollution and health studies, air pollution data typically come from
a small number of automatic monitors that measure individual pollutants, such as
NO2 and PM10, at a single point in space. However, the number of monitors is small
and their geographical positioning is sparse, which does not allow an accurate repre-
sentation of the spatial variation in air pollution concentrations that is required for
epidemiological studies, particularly cohort and spatial ecological studies.

For cohort studies, concentrations are required at the residence of each member
in the cohort, while for spatial ecological studies concentrations are required for each
spatial unit at which health data are available. These fine scale pollution data are not
available, for example, in the Glasgow area studied in this thesis, there are only 16
monitors covering the 368 square kilometre (km2) study area. Therefore, inexpensive
non-automatic diffusion tubes are also used to measure ambient concentrations of NO2,
and due to their lower cost and simpler equipment compared with automatic monitors,
they are more prevalent. In the Glasgow study area considered here, there are 230
diffusion tubes, thus providing greatly enhanced spatial coverage compared with using
the 16 automatic monitors alone.

The NO2 data collected from the diffusion tubes are aimed at monitoring long-term
exposure, usually monitoring at a monthly level, and then annual mean concentrations
can be calculated. Conversely, the automatic monitors can accommodate a wide rage
of exposure periods by recording hourly levels of multiple pollutant concentrations,
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where daily, monthly and annual concentrations can be calculated.

However, combining these two data sets still does not give complete spatial coverage
of the area under study, as is illustrated in the case study in Figure 4.2. As discussed
in Chapter 3 Section 3.6 modelled concentrations from atmospheric dispersion mod-
els are used instead (for example, see Naess et al., 2007), as they provide estimated
concentrations on a regular grid and thus have complete spatial coverage of the study
region. However, these modelled concentrations are known to contain biases (Berrocal
et al., 2010b), and are not as accurate as the measured pollution data.

Ideally, one would require measurements from automatic monitors and diffusion
tubes at every possible location; however, only the spatially-dense gridded modelled
data are available. NO2 measurements can then be estimated at all gridded locations
based on the modelled air pollution data and other relevant covariates. Therefore,
this chapter proposes a geostatistical fusion model, that regresses the combined NO2

concentrations from both automatic monitors and diffusion tubes against modelled
NO2 pollution data from an atmospheric dispersion model. This model is implemented
within a Bayesian setting and predicts NO2 concentrations across the Glasgow region
for use in the pollution-health studies conducted in Chapter 5 and Chapter 6. This
chapter demonstrates the dramatic improvement in fine scale spatial prediction of NO2

that can be obtained by using abundant diffusion tube data that is relatively inexpen-
sive to collect in addition to the small numbers of automatic monitors.

The remainder of this chapter is organised as follows. Section 4.2 describes the
study design of the Glasgow case study, specifically the spatial extent of the region
of interest, the NO2 and covariate data. Section 4.3 presents the geostatistical fusion
model for predicting NO2 concentrations across the study region proposed here, and
discusses its implementation. Section 4.4 presents the results of the analyses, including
a model validation exercise that compares the proposed model against a number of
other candidate models, and a fine scale prediction of NO2 across the Glasgow region.
Finally, Section 4.5 provides a concluding discussion.

4.2 Glasgow case study

4.2.1 Study region

The study region is centred around the Greater Glasgow conurbation, which is the
largest city in Scotland, UK (see Figure 4.1). The Glasgow conurbation contains just
under one quarter of the total Scottish population, equating to around 1.1 million
people, with a land area of around 368 km2. Seven local authorities comprise the
study region, namely: East Dunbartonshire, East Renfrewshire, Glasgow City, North
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Lanarkshire, Renfrewshire, South Lanarkshire, and West Dunbartonshire. These local
authorities have been selected because they surround and include the city of Glasgow,
collectively known as West Central Scotland, and include both urban and rural envi-
ronments, which leads to a wide variation in pollution concentrations across the study
region.
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55.6

55.8

56.0

−4.5 −4.0 −3.5
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Figure 4.1: Map displaying the chosen study region West Central Scotland.

4.2.2 Air pollutant data

The air pollution data comprise annual mean concentrations of nitrogen dioxide (NO2,
measured in microgrammes per cubic metre µgm−3) in 2006, for which two sources of
data are available. The first source is measured data at fixed points in space, which
come from both automatic monitoring stations and non-automatic diffusion tubes.
NO2 concentrations from the automatic monitors were downloaded from the Scottish
Air Quality website (www.scottishairquality.co.uk), while the non-automatic dif-
fusion tube data were obtained on request from each local authority through their
Air Quality Progress Reports. These reports are required for each local authority in
Scotland by the Local Air Quality Management (LAQM) process as set out in Part
IV of the Environment Act (1995), the Air Quality Strategy for England, Wales and

www.scottishairquality.co.uk
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Northern Ireland 2007, and the relevant Policy and Technical Guidance documents.
This process ensures that all local authorities in Scotland regularly review, assess and
report air quality within their areas, determining whether the air quality objective will
be achieved. Air quality objectives in Scotland are determined by the Air Quality
(Scotland) Regulations 2000 (Scottish SI 2000 No 97) and the Air Quality (Scotland)
Amendment Regulations 2002 (Scottish SI 2002 No 297), which, for NO2, state that
an annual mean concentration of 40µgm−3 should not be exceeded, otherwise the site
must undergo formal investigation.

The accuracy of the diffusion tubes varies depending on numerous factors, such as
the preparation methodology used, handling procedures and the laboratory analysing
the data. The diffusion tubes are calibrated using a bias-adjustment factor obtained
from co-location studies between diffusion tubes and automatic monitoring stations.
The data are collected and analysed by the local authority’s chosen laboratory and the
bias-adjustment factors are calculated through the methodology proposed by DEFRA
(http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html). In
the Glasgow area all diffusion tubes were adjusted by a factor of 0.82. The NO2 con-
centrations are measured at 246 sites across West Central Scotland, of which 230 are
diffusion tubes and 16 are automatic monitors. The locations of these sites within
the study region are displayed in Figure 4.2, where the diffusion tubes are displayed
as crosses and the automatic monitors are presented as triangles. Summary statis-
tics for the measured data are shown in Table 4.1. These statistics highlight that the
distribution of NO2 concentrations across West Central Scotland is slightly higher for
automatic monitors compared to diffusion tubes, with median values of 34.55µgm−3

and 29.95µgm−3 respectively. This could be due to local authorities placing automatic
monitors where they have a compliance problem with EU pollution standards. It could
also be due to there being more roadside monitors (142 sites out of 246) placed along
major roads throughout the study region, thus providing elevated NO2 pollutant levels.

Table 4.1: Summary statistics for the automatic monitoring and diffusion tube NO2
(µgm−3) data for 2006 across West Central Scotland.

Monitors Diffusion tubes
Min 10.00 9.00
25th Percentile 29.35 22.25
Median 34.55 29.95
Mean 38.31 31.63
75th Percentile 42.50 38.00
Max 89.00 86.10

Figure 4.2 highlights the sparsity of the measured data, and shows that these auto-
matic monitors and diffusion tubes do not provide complete spatial coverage of West

http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html
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Figure 4.2: This map showcases the locations of the measured (automatic monitors and
diffusion tubes) NO2 data for 2006 with the outline of the West Central Scotland study
region. Crosses denote diffusion tubes, and triangles denote automatic monitors.

Central Scotland.

The second source of data are modelled concentrations based on the UK Pollution
Climate Mapping (PCM) approach (Brookes et al., 2011), provided by the Department
for Environment, Food and Rural Affairs (DEFRA) (http://uk-air.defra.gov.uk/).
These data are modelled as yearly mean background concentrations, measured in
µgm−3, at a 1km grid square resolution, thus providing complete spatial coverage
across West Central Scotland with no missing data. However, modelled concentrations
such as these are known to contain biases due to being uncalibrated, and no mea-
sure of variability is available to quantify the level of uncertainty in these estimates.
These data are displayed in Figure 4.3, where the city of Glasgow and the main motor-
way network are easy to see. Annual mean concentrations range between 3.021µgm−3

and 34.760µgm−3, with a mean value of 7.632µgm−3 across West Central Scotland.
These concentrations are lower compared to the measured data as they are average
background concentrations over a 1km square grid, rather than relating to specific
pollution sources, such as roads.

http://uk-air.defra.gov.uk/
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Figure 4.3: Map showcasing the 2006 modelled NO2 (µgm−3) concentrations from an
atmospheric dispersion model across West Central Scotland at a 1km grid square reso-
lution.

4.2.3 Covariate data

A number of covariates were considered in this study. Firstly, an indicator variable
was included in order to distinguish the pollution concentrations measured from the
two types of equipment: automatic monitors and diffusion tubes. Secondly, the local
environment in which each of the automatic monitors and diffusion tubes were located
was also recorded. These local environments include kerbside (placed within 1m of the
kerb on a busy road), roadside (placed between 1m and 5m of a busy road), urban
background (placed away from direct sources, usually in urban residential areas), rural
(placed in countryside locations far from roads, populated and industrial areas), and
special (placed at Glasgow airport and industrial sources). In total, there were 142
roadside, 34 kerbside, 8 special, 60 urban background, and 2 rural sites. Thirdly, in
order to distinguish between urban and rural environments an urban-rural variable
was constructed, which classifies each prediction location as urban or rural according
to the Scottish Government 6 fold Urban Rural Classification (http://www.gov.scot/
Topics/Statistics/About/Methodology/UrbanRuralClassification/) shown in Ta-
ble 4.2. This classification is the primary framework for defining rural areas in Scotland.
A location was considered urban if it was situated in a built-up area containing more

http://www.gov.scot/Topics/Statistics/About/Methodology/UrbanRuralClassification/
http://www.gov.scot/Topics/Statistics/About/Methodology/UrbanRuralClassification/
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than 10,000 people (groups 1 and 2), and rural otherwise (groups 3-6).

Table 4.2: Scottish Government 6 fold Urban Rural Classification.

Classification Description
1 Large urban areas Settlements of > 125,000 people.
2 Other urban areas Settlements of 10,000-124,999 people.
3 Accessible small
towns

Settlements of 3,000-9,999 people and be within a 30
minute drive of groups 1 and 2.

4 Remote small towns
Settlements of 3,000-9,999 people and be outwith a 30
minute drive of groups 1 and 2.

5 Accessible rural
Population < 3,000 people and within a 30 minute drive
of groups 1 and 2.

6 Remote rural
Population < 3,000 people and be outwith a 30 minute
drive of groups 1 and 2.

4.3 Statistical methods

This section presents the geostatistical fusion model proposed in this thesis for pre-
dicting NO2 concentrations across West Central Scotland, using both the measured
(automatic monitors and diffusion tubes) and modelled air pollutant data. Subsection
4.3.1 presents the statistical fusion model, while Subsection 4.3.2 outlines the predic-
tion methodology. The model is fitted in a Bayesian setting, with inference based on
Markov chain Monte Carlo (McMC) algorithms, which were written in the R statistical
programming language (R Core Team, 2015).

4.3.1 Spatial fusion model

Let Z = (Z(s1), . . . , Z(sm)T ) denote the vector of (natural) log-transformed NO2 con-
centrations from both the automatic monitors and diffusion tubes at spatial locations
(s1, . . . , sm), where the latter are measured as Eastings and Northings in metres. The
NO2 data are log-transformed because they are non-negative and skewed to the right,
and exploratory analyses suggested that a log-transformation improved the fit of the
resulting regression models (see Figure 4.4). These measured NO2 concentrations are
regressed against a matrix of p covariates denoted by X = (x(s1)>, . . . ,x(sm)>)>, where
the values relating to spatial location si are denoted by x(si)> = (x0(si), x2(si), . . . , xp(si)).
This covariate matrix includes a column of ones for the intercept term, the (natural)
log-transformed modelled concentrations, and other relevant covariates, such as the lo-
cal environment in which the observation is located (e.g., roadside, urban background,
etc). Thus, this model fuses the measured and modelled NO2 pollutant data via a
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linear regression relationship.
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Figure 4.4: The top panel displays the histogram for the NO2 measured concentrations
on the original scale, while the bottom panel displays the log-transformed measured NO2
concentrations.

A Bayesian geostatistical fusion model is proposed for these data, which relates the
measured and modelled NO2 concentrations using the equation (4.1). This model is
a development of the model presented by Berrocal et al. (2010b) (discussed fully in
Chapter 3 Section 3.6.2) in terms of making use of the diffusion tube data to increase
the total number of observations and hence spatial locations. Furthermore, this newly
developed specification includes other relevant spatial covariates to improve prediction,
instead of utilising spatially varying coefficients, as in the Berrocal et al. (2010b) frame-
work. These spatial covariates, as discussed in the previous section, are included to
differentiate any differences in the spatial pattern of the observations, for example, in
terms of differentiating between urban and rural environments. This specification here
is simpler than the model developed by Berrocal et al. (2010b), but as will be shown
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in further sections, produces a high prediction performance that rivals their model.

Z(si) ∼ N
(
x(si)>β + φ(si), ν2σ2

)
, i = 1, . . . ,m. (4.1)

The mean function is a linear combination of a covariate component x(si)>β, where
β = (β1, . . . , βp)> denotes the associated regression parameters for each covariate,
and spatial random effect φ(si). The regression parameters β are assigned a weakly
informative multivariate Gaussian prior with mean zero and large diagonal variance
matrix, such as β ∼ N(0, diag(1000)). The spatial random effects for all m locations
are collectively denoted by φ = (φ(s1), . . . , φ(sm))>, and allow for any unmeasured
spatial autocorrelation in the measured NO2 data after the covariate effects have been
accounted for. Their spatial autocorrelation is modelled using the formulation:

φ ∼ N(0, σ2Σ(ρ)), (4.2)

σ2 ∼ Inverse-Gamma(a, b),

ρ ∼ Discrete Uniform(ρ1, . . . , ρr).

The random effects φ are assumed to come from a multivariate Gaussian distribu-
tion with mean zero, variance σ2, and a spatial correlation matrix Σ(ρ). This matrix
is defined by an isotropic exponential correlation function of the distance between any
two locations, that is Σ(ρ) = exp(−ρD). Here D is an m×m distance matrix, where
the ijth element, dij = ||si− sj||, is the Euclidean Distance between any pair of spatial
locations (si, sj). In addition, the diagonal elements of D are zero corresponding to
dii = 0. The exponential model was chosen for simplicity and because it is the most
commonly used model in the geostatistical literature (see, for example, Vicedo-Cabrera
et al., 2013). A conjugate inverse-gamma prior was specified for the spatial variance
σ2, where (a = b = 0.001) were chosen to be non-informative. Here, ρ is the spatial
decay parameter, which controls the rate at which the spatial autocorrelation between
a pair of sites declines as the distance between them increases. A discrete uniform
prior with a large range was specified for ρ as suggested by Diggle & Ribeiro (2007)
for computational efficiency. This ensures that the correlation matrix, Σ(ρ), need only
be inverted r = 50 times, once for each of the candidate values ρ1, . . . , ρr, rather than
at every step of the McMC algorithm. Finally, the nugget effect, that is the amount of
non-spatial variation or measurement error, is controlled by ν2σ2, which is the product
of the spatial variance parameter and the noise-to-signal ratio ν2. This latter parame-
ter is assigned a uniform prior on the unit interval, as the nugget effect is expected to
be smaller than the amount of spatial variation for these data.
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4.3.2 Spatial prediction

Bayesian spatial prediction using kriging is a natural extension in the Bayesian paradigm
for estimating the parameters θ = (β,φ, ν2, σ2, ρ), and is implemented as a two-step
procedure within the McMC algorithm. In models (4.1) and (4.2), spatial autocor-
relation is induced into the mean function through the random effects φ. There-
fore, the first step in spatial prediction generates the random effects at N prediction
locations s∗ = (s∗1, . . . , s∗N) using multivariate Gaussian theory as described fully in
Chapter 2 Section 2.4.1.5. Specifically, the random effects at the prediction locations
φ∗ = (φ(s∗1), . . . , φ(s∗N))> are sampled from their conditional distribution given φ, that
is

φ∗|φ ∼ N (E[φ∗|φ],Var[φ∗|φ]) . (4.3)

The mean and variance are given by

E[φ∗|φ] = CZ(s∗, ρ)>Σ∗(ρ)−1φ, (4.4)

and
Var[φ∗|φ] = σ2

(
Σ∗(ρ)−CZ(s∗, ρ)>Σ∗(ρ)−1CZ(s∗, ρ)

)
, (4.5)

where Σ∗(ρ) is an N × N spatial correlation matrix for the N prediction locations
and CZ(s∗, ρ) is an N ×m spatial correlation matrix between the prediction and the
observation locations. These equations are equivalent to ordinary kriging. The second
step generates the predicted value of Z(s∗i ) for the N prediction locations as

Z(s∗i ) ∼ N(x(s∗i )>β + φ(s∗i ), σ2ν2), (4.6)

where x(s∗i ) denotes the matrix of covariates at the N prediction locations.

Leave-one-out cross-validation is performed in order to assess the quality of the
predictions, which removes each measured data point in turn and predicts its value
from the remainder of the data. The accuracy of the predictions compared to the
measured NO2 concentrations are compared using three statistics, namely bias, root
mean square prediction error (RMSPE), and the coverage probabilities of the 95%
prediction intervals. The bias is given by

Bias = 1
m

m∑
i=1

(
Z(s∗i )− Z(si)

)
, (4.7)

where a bias of zero indicates the predictions are the correct size on average. The
RMSPE is given by

RMSPE =
√√√√ 1
m

m∑
i=1

(
Z(s∗i )− Z(si)

)2
, (4.8)
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and for unbiased predictions, it measures the amount of variation in the predictions
around the true value, with smaller values indicating more precise estimation. Finally,
a 95% prediction interval is computed for each predicted NO2 concentration, and the
coverage probability of a model is the percentage of these prediction intervals that
contain the true value. The prediction intervals are the correct width if 95% of these
intervals contain the true value.

4.3.3 Inference and McMC algorithm

The McMC simulation algorithm for model (4.1) produces a set of J samples for each
of the model parameters θ = (β,φ, ν2, σ2, ρ), based on a mixture of Gibbs sampling
and Metropolis-Hastings steps as discussed in Chapter 2 Section 2.3.2. The results are
based on 10,000 posterior samples generated from one Markov chain, which has been
burnt-in until convergence by assessing the stability of trace plots of the McMC samples
for selected parameters (see Figure 4.5). The algorithm produces posterior distributions
for each of the model parameters in θ, and the joint posterior distribution of θ is given
by:

p(β,φ, ν2, σ2, ρ) ∝ p(Z|β,φ, σ2, ν2)p(β)p(φ|σ2, ρ)p(σ2)p(ν2)p(ρ),

= N(Z|Xβ + φ, ν2σ2I)N(β|µβ,Vβ)N(φ|0, σ2Σ(ρ))

× Γ−1(σ2|a, b)U(ν2|0, 1)DU(ρ1, . . . , ρr), (4.9)

where Γ−1 denotes the Inverse-Gamma distribution, U denotes the uniform distribu-
tion, and DU denotes the discrete uniform distribution. The full conditional distribu-
tions for each of the individual model parameters are described below.

β - regression parameters

The full conditional distribution for the regression parameters, β, is a combination of
the data likelihood given in equation (4.1) and the prior distribution for β. Since this
a combination of two Gaussian distributions, the resulting full conditional distribution
for β is a Gaussian distribution, which is a known standard statistical distribution that
can be simulated from utilising Gibbs sampling (see Chapter 2 Section 2.3.2 for further
details on Gibbs sampling). The full conditional distribution is as follows:
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Figure 4.5: Trace plots of selected model parameters under the full Bayesian model
(model 1), where the top plot refers to the regression parameter for log modelled, and
the bottom plot refers to the spatial decay parameter ρ. Similar results were found for
all parameters across all models.

p(β|φ, ν2, σ2,Z) = N(Z|Xβ + φ, ν2σ2I) N(β|µβ,Vβ), (4.10)
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.
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φ - spatial random effects

Similarly to β, the full conditional distribution for the spatial random effects, φ, is
also a Gaussian distribution, since it is a combination of the data likelihood model in
equation (4.1) and the multivariate Gaussian prior distribution for φ, which again is
Gibbs sampled. The resulting full conditional distribution for φ is as follows:

p(φ|β, ν2, σ2, ρ,Z) = N(Z|Xβ + φ, ν2σ2I)N(φ|0, σ2Σ(ρ)), (4.11)

∝ exp
(
− 1

2ν2σ2 (Z−Xβ − φ)>(Z−Xβ − φ)
)
×

exp
(
− 1

2σ2φ
>Σ(ρ)−1φ

)
,

∝ exp
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− 1

2ν2σ2 (φ>Iφ− 2β>X>φ− 2Z>φ)−
( 1

2σ2φ
>Iφ
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,

∝ exp
(
−1

2
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σ2 − 2φ>
(

Z−Xβ
ν2σ2

)])
,

∝ exp
(
−1

2

[
φ>

(
1
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[

1
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]−1
[
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ν2σ2

]
and Λ̃ = σ2

[
1
ν2 I + Σ(ρ)−1

]−1
.

σ2 - spatial variance

The spatial variance parameter for the random effects is given by σ2 and is present
in three models: the data likelihood model given by equation (4.1), the multivariate
Gaussian distribution for the random effects, φ, given by (4.2), and its own Inverse-
Gamma prior distribution. Therefore, the resulting full conditional distribution for σ2

is a combination of these three models, which produces an Inverse-Gamma distribution
that can be Gibbs sampled. It is given by:

p(σ2|β,φ, ν2, ρ,Z) = N(Z|Xβ + φ, ν2σ2I) N(φ|0, σ2Σ(ρ)) Γ−1(σ2|a, b), (4.12)

∝ (σ2)−m
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)
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)
.
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ν2 - variance parameter

The level of the automatic monitor and diffusion tube measurement error (nugget) is
specified by ν2σ2, where the full conditional distribution for the variance parameter ν2

is as follows:

p(ν2|β,φ, σ2,Z) = N(Z|Xβ + φ, ν2σ2I) Uniform(ν2|0, 1), (4.13)

∝ (ν2)−m
2 exp

(
− 1

2ν2σ2 (Z−Xβ − φ)>(Z−Xβ − φ)
)

∝ (ν2)−( m
2 −1+1) exp

(
− 1

2ν2σ2 (Z−Xβ − φ)>(Z−Xβ − φ)
)
,

∼ Γ−1
(
m

2 − 1, 1
2σ2 (Z−Xβ − φ)>(Z−Xβ − φ)

)
.

This produces an Inverse-Gamma distribution for ν2, which is sampled using Gibbs
sampling.

ρ - spatial decay parameter

The full conditional distribution for the spatial decay parameter, ρ, is a combination of
the multivariate Gaussian distribution for the spatial random effects and the discrete
Uniform prior specified for ρ. The resulting full conditional distribution is not a known
standard statistical distribution and is therefore sampled using the Metropolis-Hastings
algorithm discussed in Chapter 2 Section 2.3.2. The full conditional distribution for ρ
is given by

p(ρ|φ, σ2) = N(φ|0, σ2Σ(ρ)) DU(ρ1, . . . , ρr), (4.14)

∝ |Σ(ρ)|− 1
2 exp

(
− 1

2σ2φ
>Σ(ρ)−1φ

)
I[ρ ∈ {ρ1, . . . , ρr}],

ln[p(ρ|−)] ∝ −1
2ln|Σ(ρ)| − 1

2σ2φ
>Σ(ρ)−1φ.

As stated in Section 4.3.1, a discrete uniform prior is specified for ρ to ensure that
the spatial correlation matrix, Σ(ρ), need only be inverted a specified number of times
rather than at every J iteration of the McMC algorithm, which would dramatically
increase the computational time of the algorithm. Therefore, based on the recom-
mendation from Diggle & Ribeiro (2007) values for ρ are generated within the range
(0.01, 2 max(D)), where max(D) relates to the maximum distance between any two
locations. The proposal, ρ∗ is then sampled from within this range, and the acceptance
probability of a move from ρ(i) to ρ∗ is given by min

(
1, p(ρ

∗)
ρ(i)

)
.
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4.3.3.1 Algorithm

The model parameters are updated using a combination of a Metropolis-Hastings step
for ρ and Gibbs sampling for the remaining parameters. The spatial prediction algo-
rithm proposed here is as follows:

1. Calculate Euclidean Distance matrices for the spatial correlation matrix for the
observed locations Σ(ρ), the prediction locations Σ∗(ρ), and between both ob-
served and prediction locations CZ(s∗, ρ).

2. Create the vector of r = 50 fixed values for the spatial decay parameter, ρ, based
on (0.01, 2 max(D)).

3. Calculate the corresponding spatial correlation matrices (inverse and determi-
nant) from the distance matrices created in Step 1 and the proposed candidate
values for ρ in Step 2.

4. Compute starting values for all model parameters based on their prior distribu-
tions, where a starting value for ρ is sampled randomly from its predetermined
set of values.

5. Perform the Gibbs Sampling and Metropolis-Hastings step for the model param-
eters and the spatial prediction for j = 1, . . . , J samples. The model parameters
are sampled as follows:

(a) Sample the block of regression parameters, β(j), from its full conditional
distribution given by p(β|φ(j−1), ν2(j−1), σ2(j−1),Z).

(b) Sample the spatial variance parameter, σ2(j), from its full conditional distri-
bution given by p(σ2|β(j),φ(j−1), ν2(j−1), ρ(j−1),Z).

(c) Sample the spatial decay parameter, ρ(j), from its full conditional distribu-
tion p(ρ|φ(j−1), σ2(j)).

(d) Sample the variance parameter, ν2(j), from its full conditional distribution
given by p(ν2|β(j),φ(j−1), σ2(j),Z).

(e) Sample the random effects, φ(j), from its full conditional distribution given
by p(φ|β(j), ν2(j), σ2(j), ρ(j),Z).

(f) Sample the random effects, φ∗(j), at theN prediction locations s∗ = (s∗1, . . . , s∗N)
from its full conditional distribution p(φ∗|β(j), ν2(j), σ2(j), ρ(j),Z).

(g) Generate the predicted value of Z(s∗)(j) for the N prediction locations given
by equation (4.6).
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4.4 Results

This section presents results from applying the statistical fusion model proposed in
Section 4.3 to the Glasgow case study outlined in Section 4.2. Section 4.4.1 presents
a validation study comparing the appropriateness of the proposed model against a
number of alternative models in terms of both model structure and covariate choice.
Section 4.4.2 demonstrates the advantages of using the diffusion tube data for fine
scale spatial prediction by comparing predictive accuracy against using the automatic
monitors alone. Finally, Section 4.4.3 uses the best performing model from the previous
two sections to predict yearly average NO2 concentrations at a 1 kilometre grid square
resolution across West Central Scotland, with associated 95% prediction intervals.

4.4.1 Validation study 1: model structure and covariate choice

In this validation study, the predictive performances of a number of different model
specifications are compared, focusing on the utility of allowing for spatial autocorre-
lation in the data, the approach to parameter estimation adopted for the model, and
the choice of covariates.

The results of the validation study are presented in Table 4.3, for nine different
models and are compared in terms of bias, RMSPE and coverage probability (as de-
tailed in Section 4.3.2). The top panel of the table compares the utility of allowing
for spatial autocorrelation in the data and the estimation approach taken, while the
bottom panel shows a sensitivity analysis to the choice of covariates. In all cases the
models are unbiased, as the biases are all close to zero, ranging between -0.0001 and
0.356. Model 1 is the full Bayesian model described in Section 4.3, which includes the
log-transformed modelled NO2 concentrations (log modelled), an indicator for the type
of measured data (automatic monitor or non-automatic diffusion tube, monitor/tube),
and the local environment in which each observation resides (e.g., roadside, urban
background, etc, environment) as covariates. Model 2 is the same as Model 1 except
that inference is performed using restricted maximum likelihood estimation instead of
Bayesian methods, and the RMSPE values are almost identical. The differences are in
the coverage probabilities, with the Bayesian estimation having wider and more appro-
priate prediction intervals (coverages differ by around 1%) than under likelihood based
estimation. This small difference occurs as, when using restricted maximum likelihood,
the estimated model parameters are assumed to be fixed and known when making the
predictions, thus underestimating the amount of uncertainty in the data. In contrast,
the Bayesian model allows for uncertainty in the estimated model parameters when
making predictions, thus explaining its wider prediction intervals. Model 3 also uses
maximum likelihood estimation, but naively ignores the spatial autocorrelation present
in the data. This model shows around a 5% increase in RMSPE compared with Model
1, suggesting that ignoring the spatial autocorrelation in the data results in poorer
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predictive performance.

Table 4.3: Bias (µgm−3), RMSPE (µgm−3) and coverage probability (%) results all
models compared in this section. The top panel displays the models with different
estimation methods (Models 1-3), while the bottom panel displays the results for the
Bayesian models containing differing covariate combinations (Models 4-9).

Model Bias RMSPE Coverage
1 0.010 0.257 93.089
2 0.005 0.255 91.870
3 -0.0001 0.271 93.902
4 0.356 0.545 95.122
5 0.020 0.303 95.122
6 0.011 0.258 93.496
7 0.018 0.276 94.715
8 0.009 0.255 94.715
9 0.013 0.255 94.715

The bottom panel of Table 4.3 shows a comparison of different combinations of
covariates, which are summarised below.

Model 1 - log modelled + monitor/tube + environment

Model 4 - log modelled

Model 5 - log modelled + monitor/tube

Model 6 - log modelled + environment

Model 7 - monitor/tube + environment

Model 8 - log modelled + monitor/tube + environment + easting + northing + log
modelled:easting + log modelled:northing

Model 9 - log modelled + environment + easting + northing + log modelled:easting
+ log modelled:northing

In all cases, the Bayesian fusion model described in Section 4.3 is used. These results
show two main points. Firstly, the log modelled and environment variables are im-
portant for accurate NO2 prediction, which is evidenced by an increase in RMSPE for
Models 4, 5 and 7 compared with Model 1. The bias and RMSPE is much greater
for Model 4 compared to Model 1 and Models 5-7. This is because Model 4 did not
include any covariates to distinguish between measurements made in different environ-
ments, i.e., roadside, kerbside, rural or urban background locations. The log modelled
variable is a spatially smooth covariate with no adjustment for the environment, so
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it cannot capture higher measurements at the roadside and lower background mea-
surements, and therefore, tends to overestimate the pollutant concentrations, which is
evidenced by its higher bias and RMSPE. The importance of the log modelled covariate
is clear, while the environment variable is important because it distinguishes between
observations at roadside and background environments, which will have a large impact
on the measured NO2 value since it is largely driven by traffic sources. Secondly, in-
cluding the monitor/tube variable does not lead to improved NO2 prediction, as the
RMSPE of Model 6 is 0.258 compared to 0.257 for Model 1. This can also be shown
in Table 4.4, which displays the posterior medians and 95% credible intervals for each
of the covariates for Model 1. NO2 concentrations recorded by automatic monitors
are slightly higher compared to NO2 concentrations recorded by diffusion tubes as the
posterior median is positive. However, the relationship is very weak as the 95% CI’s
lower bound is close to zero. Furthermore, rural, special and urban background sites
have substantially lower NO2 concentrations compared to kerbside sites; however, even
though roadside sites have lower NO2 pollution levels compared to kerbside sites, the
relationship is quite weak as the upper bound for the credible interval is just below
one, which is not surprising since roadside and kerbside sites both measure pollution
at the roadside.

The bias and RMSPE in the modelled concentrations are also computed, thus allow-
ing the improvement in predictive performance from the above models to be observed.
Since the modelled concentrations are ambient, background concentrations, an adjust-
ment for sites measured at roadside and kerbside environments was included. The
results show that even after adjusting the modelled concentrations for roadside and
kerbside environments (roadside/otherwise), the modelled concentrations are not as
good for predicting NO2 concentrations compared to the best Model with a RMSPE
of 0.337 (and a bias of -0.068) compared to 0.258 for Model 6.

Each of the models described above assume the effect of the modelled concentrations
is constant across space. This necessarily might not be the case as the effect may vary
depending on the spatial location. Therefore, to allow flexibility in the effect of the
modelled concentrations to vary across space, Models 8 and 9 contain an interaction
term between the log modelled variable and the easting and northing coordinates of the
location of the automatic monitors and diffusion tubes, given as log modelled:easting
and log modelled:northing. Model 9 is the same as Model 8 except it does not contain
the monitor/tube covariate. Both models are unbiased, and have the same RMSPE
of 0.255 and coverage probability of 94.715%, indicating again that the monitor/tube
variable does not lead to improved NO2 prediction. Even though the bias in Model
9 (0.013) is slightly higher compared to Model 8 (0.009), Model 9 is a better model
compared to Model 6 as it does not treat the effect of the modelled concentrations
to be constant across space. Furthermore, the RMSPE decreases by around 1% and
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Table 4.4: Posterior medians and 95% credible intervals (CI) for selected parameters
of Model 1, which is the full Bayesian model with log modelled, monitor/tube and
environment as covariates. The diffusion tubes were taken as the reference category
for monitor/tube and kerbside was taken as the reference category for environment.
Results are also shown for the spatial variance σ2, noise-to-signal ratio ν2 and spatial
decay parameter ρ.

Variable Posterior median 95% CI
Intercept 1.900 (1.564, 2.259)
Log modelled 0.594 (0.459, 0.708)
Monitor 0.125 (0.027, 0.238)
Roadside -0.150 (-0.258, -0.042)
Rural -1.021 (-1.585, -0.488)
Special -0.390 (-0.630, -0.147)
Urban background -0.531 (-0.659, -0.407)
σ2 0.057 (0.024, 0.077)
ν2 0.232 (0.064, 1.819)
ρ 12.852 (2.578, 53.946)

the coverage probability is closer to the nominal value of 95%. Therefore, the final
model considered here is Model 9, as it is more flexible compared to Model 6, and
has improved performance, mainly in terms of coverage probability. The effect of the
modelled concentrations was also considered to vary as a quadratic surface in location
by adding into Model 9 the covariates log modelled:easting2 + log modelled:northing2;
however, this did not improve spatial NO2 prediction as the RMSPE (0.258) was higher
compared to Model 9 (0.255).

4.4.2 Validation study 2: data source

The second validation study investigates the effectiveness of using the diffusion tube
data in addition to the automatic monitoring data for fine scale spatial prediction.
Model 9 is used throughout this section, as Section 4.4.1 showed it had the best over-
all performance. In common with Section 4.4.1, leave-one-out cross-validation is used
to assess predictive accuracy, again using bias, RMSPE and coverage probabilities to
quantify prediction performance. Model 9 is fit to two subsets of the data: one where
only the 16 automatic monitors are used as the response, and one where only the 230
diffusion tubes are used as the response. In each case Model 9 is used to predict each
of the 246 observations in turn.

The results of the second validation study are displayed in Table 4.5 for the two
different subsets of the measured pollutant data, along with the full data set containing
all 246 observations from both the automatic monitors and diffusion tubes. In common
with the results from the first validation study in Section 4.4.1, all three sets of data
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are unbiased as the biases are all close to zero, ranging from 0.009 to 0.266. How-
ever, the predictive performance from using only the automatic monitors is markedly
poorer than using either just the diffusion tubes or all the observations. This is ev-
idenced by both its RMSPE and coverage probability. The RMSPE from using the
automatic monitors only is 0.478, which is 48% (RMSPE of 0.249) and 47% (RMSPE
of 0.255) greater than the corresponding values from using the diffusion tubes only and
the combined data set respectively. Additionally, the coverage probability when using
the automatic monitors alone is over 99.5%, which is larger than the nominal 95%
levels. This high coverage probability suggests that the prediction intervals are too
wide, most likely due to a lack of data provided by the automatic monitors, of which
there are only 16, thus resulting in poorer parameter estimation and higher uncertainty.

Table 4.5: Bias (µgm−3), RMSPE (µgm−3) and coverage probabilities (%) for the leave-
one-out cross-validation of applying Model 9 to the three different sources of data. One
data set containing only the automatic monitors, one data set containing only the
diffusion tubes, and one data set containing a combination of both automatic monitors
and diffusion tubes.

Data source Bias RMSPE Coverage
Monitors 0.266 0.478 99.594
Tubes 0.009 0.249 95.122
Monitors & Tubes 0.013 0.255 94.715

In contrast, the coverage probabilities from using just the diffusion tubes and all
the measured data are close to their nominal 95% levels, while the RMSPE for the
diffusion tube only model is 0.249 and 0.255 for the combined model. These results
suggest that using the automatic monitors in addition to the diffusion tubes does not
lead to better predictive performance compared to using the diffusion tubes alone, as
the two sets of results are essentially the same after allowing for random error. The
reason for this is that some of the automatic monitors are co-located with the diffusion
tubes so when the automatic monitors are included with the diffusion tubes, there is
not a large increase in the number of observed data points. These results, therefore,
demonstrate the effectiveness of using the diffusion tube data for predicting the NO2

concentrations at a fine spatial scale.

4.4.3 NO2 prediction

The model chosen to predict NO2 concentrations at each 1km ×1km grid box was
Model 9: the Bayesian fusion model including both automatic monitors and diffusion
tubes, with the log-transformed modelled concentrations and the local environment
in which each automatic monitor and diffusion tube resides as covariates. The effect
of the modelled concentrations was also allowed to vary across space by including an
interaction term between the modelled concentrations and the easting and northing
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coordinates of the monitors and tubes. For spatial prediction purposes, grid boxes
were predicted as urban background or rural. The remainder of the local environment
locations (kerbside, roadside, and special) were not considered here because the NO2

concentrations to be predicted are averages over a 1km × 1km grid box, meaning that
NO2 measurements produced from the roadside are averaged out across the grid box.
Furthermore, when estimating the effect of air pollutants of ill health, roadside con-
centrations are not representative of exposure levels as people tend not to spend large
proportions of their time next to a road. The urban-rural variable discussed in Section
4.2.3 is used instead to predict each grid box as urban background or rural.

Figure 4.6 displays the final predicted NO2 concentrations across West Central Scot-
land and their associated standard errors. The median of the 10,000 posterior samples
was taken to be the Bayesian point estimate for these predicted NO2 concentrations.
In common with the modelled concentrations in Figure 4.3, the City of Glasgow and
the main road network are easily distinguishable. Summary statistics for the predicted
NO2 concentrations, their standard errors and the modelled concentrations are shown
in Table 4.6 separately for urban and rural areas. These statistics highlight that the
median concentration predicted from Model 9 is 23.000 µgm−3 for urban areas and
12.060 µgm−3 for rural areas, while for the modelled concentrations the median value
is 11.680 and 4.849 µgm−3 for urban and rural areas respectively. Therefore as shown
in Table 4.3 that the predictions from Model 9 are unbiased, the modelled concentra-
tions are likely to be underestimating the level of NO2 across West Central Scotland.
However, the spatial pattern in the two sets of data is similar, with a Pearson’s cor-
relation coefficient of 0.923 between the predictions from Model 9 and the modelled
concentrations. Figure 4.7 highlights the strong agreement between the predicted NO2

concentrations and the modelled NO2 concentrations.

The next chapter in this thesis presents a new study of NO2 concentrations that
are combined with cardio-respiratory mortality data in order to estimate the pollutant-
health relationship in West Central Scotland. This requires predicted NO2 concentra-
tions for years 2007 to 2012, which are now described in this section. The number
of automatic monitors and diffusion tubes were not fixed over the seven year period
between 2006 and 2012. Table 4.7 displays the numbers of automatic monitors and
diffusion tubes in each year of the study period. The number of automatic monitors
increased over the seven years from 16 in 2006 to 24 in 2012, while the numbers of
diffusion tubes increased from 230 in 2006 to 299 in 2012.

However, one has to bear in mind that the numbers of automatic monitors and
diffusion tubes may not mirror the same locations across the years since automatic
monitors and diffusion tubes become faulty, which can result in the closure and intro-
duction of new sites across the study region. The spatial distribution of the automatic



90

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

1.30

1.35

1.40

1.45

NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

0

10

20

30

40

50
NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

1.30

1.35

1.40

1.45

NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

0

10

20

30

40

50
NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

1.30

1.35

1.40

1.45

Standard 
 Errors

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

0

10

20

30

40

50
NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

1.30

1.35

1.40

1.45

Standard 
 Errors

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

0

10

20

30

40

50
NO2

600000

625000

650000

675000

240000 260000 280000 300000
Easting

N
or

th
in

g

1.30

1.35

1.40

1.45

Standard 
 Errors

Figure 4.6: The top map shows the 2006 predicted NO2 (µgm−3) concentrations from
Model 9 across West Central Scotland, while the bottom map shows the corresponding
standard errors.

monitors and diffusion tubes for the remaining years is similar to that seen in Figure
4.2 for the year 2006.

Model 9 was used to predict the NO2 concentrations separately for the remaining
years using the methodology described above, and summary statistics are presented in
Table 4.8. The ranges of predicted NO2 concentrations are similar across the years,
with 2010 having the highest maximum concentration of 56.980 µgm−3. Furthermore,
spatial maps of the predicted NO2 concentrations and their corresponding standing
errors are presented in Appendix A, and all years exhibit similar spatial patterns. In
contrast, the year 2012 has higher levels of predicted NO2 concentrations across West
Central Scotland compared to previous years.
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Table 4.6: Summary statistics for the 2006 modelled and predicted NO2 (µgm−3) con-
centrations from Model 9 with associated standard errors separately for urban and rural
areas.

Modelled NO2 Predicted NO2 Standard Errors
Urban areas
Min 3.207 12.570 1.314
25th Percentile 7.985 18.300 1.394
Median 11.680 22.650 1.399
Mean 12.040 23.000 1.400
75th Percentile 15.230 27.42 1.406
Max 34.760 46.400 1.439
Rural areas
Min 3.021 8.028 1.379
25th Percentile 4.268 10.230 1.411
Median 4.849 12.060 1.417
Mean 5.575 13.020 1.418
75th Percentile 6.207 14.060 1.424
Max 18.090 32.090 1.472

4.5 Discussion

This chapter demonstrates that improvements in the accuracy of fine scale spatial pre-
diction of NO2 concentrations can be made by using diffusion tube data in addition to
the commonly-used automatic monitors. Diffusion tubes are relatively inexpensive and
thus, more prevalent than automatic monitors in many urban environments, and the
subsequent large increase in the number of spatial locations at which NO2 is measured
leads to improvements in predictive performance. The Bayesian geostatistical fusion
model proposed links the measured and modelled NO2 concentrations via a regres-
sion relationship, and is similar to existing downscaling models used in the literature
(Berrocal et al., 2010a,b). The model performs fine scale spatial NO2 predictions that
are unbiased and have appropriate width prediction intervals. Thus, this modelling
framework should be useful for predicting NO2 concentrations in other urban environ-
ments.

The results from this chapter have illustrated three key points. Firstly, using the
diffusion tube data in addition to the automatic monitoring data enhances the predic-
tive performance of fine scale NO2 concentrations, compared to using the automatic
monitors alone. This is evidenced by a 47% reduction in RMSPE when utilising both
sources of NO2 concentrations. This reduction in RMSPE is due to the increase in
the number of observations used, resulting in more accurate parameter estimation and
lower uncertainty. Furthermore, the bias reduced by a factor of 10 and the coverage
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Table 4.7: Total number of automatic monitors and diffusion tubes for the years 2006
to 2012.

Year Automatic monitors Diffusion tubes
2006 16 230
2007 18 257
2008 23 252
2009 23 305
2010 25 290
2011 23 311
2012 24 299

10

20

30

40

50

10 20 30
Modelled concentrations

P
re

di
ct

ed
 c

on
ce

nt
ra

tio
ns

Figure 4.7: Scatter plot highlighting the high agreement between the predicted NO2
concentrations and the modelled NO2 concentrations.

probability improved by 5% when using both sets of measured pollutant data. The
latter is important because using monitoring data alone resulted in predictive uncer-
tainty that was too high. This was due to the considerably fewer automatic monitors
compared to the diffusion tubes (16 compared to 230). Secondly, using the modelled
concentrations leads to improved spatial prediction, as a model containing the mod-
elled concentrations surpassed the model without the modelled concentrations, with
RMSPEs of 0.257 and 0.276 respectively, which is an increase of 7% in predictive ac-
curacy. Finally, it is important to allow for spatial autocorrelation in the data, as
the RMSPE increased by 5% compared to the model that did not take into account
spatial autocorrelation. Furthermore, Bayesian methods allow for better uncertainty
quantification than likelihood based estimation, as the coverage probability is closer
to the nominal 95% level. The chosen model (Model 9) allowed the effect of the mod-
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Table 4.8: Summary statistics for Model 9 predicted NO2 concentrations for the years
2007 to 2012.

Year Min 25 Percentile Median Mean 75th Percentile Max
2007 7.002 9.657 11.980 14.910 18.970 50.170
2008 9.075 11.870 14.120 17.020 20.990 49.810
2009 6.487 9.648 12.330 15.720 21.030 51.980
2010 12.840 16.000 19.130 21.020 25.300 56.430
2011 8.325 11.460 14.440 16.730 21.300 46.720
2012 15.420 20.290 22.290 23.250 25.530 43.260

elled concentrations to vary across space, which showed a slight improvement over the
model that assumed the effect was constant (Model 6: RMSPE of 0.255 compared to
0.258). The main difference between these two models is in the coverage probability,
which was closer to the 95% nominal level for the model that considered the effect to
vary across space. In absolute terms, the results do not show large differences between
a model without using the diffusion tubes and a model with the diffusion tubes, but
a 47% increase in performance highlights the utility of this approach. Furthermore,
the model that only makes use of the automatic monitors for prediction, had credible
intervals that were far too wide, with a coverage probability of 99.594%. This was due
to the small number of automatic monitors and hence this model was poorer than the
model using both automatic monitors and diffusion tubes.

The methodology proposed here has a number of limitations. The temporal res-
olution for the study was yearly, but it would be more desirable to be able to apply
the same methodology to higher resolution time periods, such as daily. However, the
diffusion tube data are only available as monthly averages, preventing the use of this
approach at finer temporal scales. Furthermore, background NO2 concentrations were
predicted using the modelled NO2 data at a 1km grid square resolution, and thus the
predictions are background concentrations that do not include local sources, such as
roads. In addition, NO2 concentrations cannot be predicted at a finer spatial scale as
the modelled concentrations are only available at the 1km grid square resolution. Irre-
spective of these limitations the predicted concentrations are utilised in the following
two chapters to investigate the relationship between NO2 and ill health in West Central
Scotland.



Chapter 5

How robust are the estimated
effects of air pollution on health?
Accounting for model uncertainty
using Bayesian model averaging

5.1 Introduction

As discussed in Chapter 3, the health impacts of exposure to both long-term (chronic)
and short-term (acute) air pollution have been much researched, where the long-term
health impact of air pollution is most often estimated from cohort studies (see Ce-
saroni et al., 2014). However, cohort studies are expensive and time consuming to
implement, and it may take years before results are available. This has led to spatial
ecological study designs being implemented instead (see Lee et al., 2009; Maheswaran
et al., 2005a), where routinely available small area data can be used, which makes the
implementation of such studies much quicker. However, because they are conducted
on aggregate data rather than at the individual level, they cannot be used as a means
of determining causation between exposure to air pollution and subsequent ill health.
Further details of this study design is discussed in Chapter 3 Section 3.3

As with all statistical modelling endeavours, estimating the effects of air pollution
on ill health requires a number of modelling choices to be made, which are likely to
affect the results. This variation in effect estimates due to model uncertainty is typi-
cally ignored, and results from a single ‘final’ model are often presented. However, it
is likely to be crucial in this context, because the estimated effect sizes are small and
their significance will depend on the final model chosen (as highlighted in Table 5.3),
thus it is likely that statistically significant or non-significant results could be presented
depending on the choices made by the investigators.

94
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In this chapter, the impact of three such modelling choices is investigated, namely
estimation of NO2 concentrations, the measure of socio-economic deprivation used, and
the method for controlling residual spatial autocorrelation. This chapter utilises the
fine scale NO2 concentrations produced from the geostatistical fusion model developed
in Chapter 4, while also comparing its health effects to when the modelled concentra-
tions are used instead, since this is what the majority of most spatial ecological studies
use (Haining et al., 2010; Lee et al., 2009). Socio-economic deprivation is an important
confounder in these studies, and existing studies have attempted to control for it using
either individual-level measures, such as job seekers allowance or house price (Lee et al.,
2014), or composite indexes, such as the Townsend index (Maheswaran et al., 2005a).
This study makes use of the SIMD and its individual domains to account for depri-
vation, while keeping in line with previous studies. Finally, fitting a simple Poisson
log-linear model to the data ignores any residual spatial autocorrelation. A common
adjustment is to add a set of random effects represented by a globally smooth condi-
tional autoregressive (CAR, Besag et al., 1991) prior to the linear predictor. However,
Clayton et al. (1993); Hodges & Reich (2010); Reich et al. (2006), and Paciorek (2010)
have shown this may lead to collinearity between the fixed and random effects, which
can lead to poor estimation of the fixed effects. Thus, a number of extensions have been
proposed to mitigate spatial confounding, such as the orthogonal smoothing approach
by Hughes & Haran (2013), and the localised smoothing approach by Lee & Sarran
(2015). This study utilises the approach by Hughes & Haran (2013), rather than Lee
& Sarran (2015), since their method was strictly developed to mitigate against against
spatial confounding.

This chapter will present a new study of NO2 concentrations and cardio-respiratory
mortalities in West Central Scotland, in which the robustness of the estimated pollutant-
health effect sizes to these factors are quantified. A Bayesian model averaging (BMA,
Hoeting et al., 1999; Raftery, 1995) approach to estimating the overall effect size,
whilst accounting for model uncertainty is considered. This chapter is organised as
follows. Section 5.2 describes the motivating study, along with descriptions of the dis-
ease, air pollutant and deprivation data. Section 5.3 presents the statistical models
described above for taking into account residual spatial autocorrelation and estimating
NO2 concentrations. This section also presents the BMA methodology for combining
the estimated air pollutant effects from the range of models considered. The results
from the individual models and BMA are presented in Section 5.4, while Section 5.5
provides a concluding discussion.

5.2 Motivating study

The methodology developed in this chapter is motivated by a new epidemiological study
investigating the health impact of long-term exposure to air pollution in West Central
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Scotland, for the seven year period 2006 to 2012. This is the same study region as the
fusion model study presented in Chapter 4 Section 4.2, but for the purposes of this
study, West Central Scotland is partitioned into m = 2089 non-overlapping data zones
comprising between 500 and 1000 (mean population = 800) residents of similar social
characteristics. Data zones are the key small area geography in Scotland that are used
for communicating and monitoring government statistics and to aid policy. Typical
information relates to benefits, education, health, and area-level deprivation. These
data zones cover the whole of Scotland (total of 6505) and individually nest within
local authorities, where care has been taken to ensure they respect physical boundaries
and are of a compact shape, albeit irregular. These data zones are described further at
the Scottish Neighbourhood statistics website (SNS, http://www.sns.gov.uk/). The
layout of the study region is presented in Figure 5.1, where the city of Glasgow is the
set of small data zones in the middle north of the figure.

5.2.1 Disease data

The disease data comprise counts of the numbers of cardio-respiratory deaths (Interna-
tional Classification of Diseases, 10th Revision (ICD-10): I00-I99, J00-J99) within each
of the 2089 data zones during the seven year period 2006 to 2012. These death records
were obtained from National Records Scotland (https://www.nrscotland.gov.uk/)
and held at the MRC/CSO Social and Public Health Sciences Unit (http://www.
sphsu.mrc.ac.uk/). In order to take into account the heterogeneity of the population
within each data zone in terms of their size and demographic structure, the expected
numbers of cardio-respiratory deaths were calculated by indirect standardisation, using
age- and sex-specific cardio-respiratory mortality rates for the whole of West Central
Scotland as described in Chapter 2 Section 2.5.2. However, due to the low numbers
of cardio-respiratory mortalities occurring in a single year (mean of 4.093 for 2006
as shown in Table 5.1), the cardio-respiratory deaths have been aggregated across the
seven year period in order to increase the variation of deaths across the data zones. Fur-
thermore, Table 5.1 shows that the distribution and total numbers of cardio-respiratory
deaths do not change considerably over the seven year period, highlighting a lack of
temporal variation. The spatial distribution of disease risk is shown in the bottom left
panel of Figure 5.1, which displays the standardised mortality ratios (SMR, observed
numbers/expected numbers) across West Central Scotland for the aggregated years
2006 to 2012. An SMR of 1.2 corresponds to a 20% increase in the risk of disease
compared to what is expected. The highest SMRs are found in areas with the highest
level of deprivation, and range between 0 and 4.747, with a mean SMR of 1.066, and
a standard deviation of 0.440. Therefore, on average, there is a 6.6% increased risk of
cardio-respiratory mortality relative to what is expected. Data zones have an SMR of
zero when there have been no deaths. This mostly occurs in the centre of Glasgow,
which consists mainly of shopping districts.

http://www.sns.gov.uk/
https://www.nrscotland.gov.uk/
http://www.sphsu.mrc.ac.uk/
http://www.sphsu.mrc.ac.uk/
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Figure 5.1: Display of the data. The top left panel shows estimates from the statistical
fusion model, while the top right panel shows background NO2 concentrations provided
by DEFRA both averaged across the seven year period 2006-2012. The bottom left
panel displays the Standardised mortality ratio (SMR) for cardio-respiratory disease
aggregated over 2006-2012, while the bottom right panel displays the SIMD score (with-
out health domain), where a high score indicates deprivation and a low score indicates
affluence.
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Table 5.1: Summary statistics and total number of cardio-respiratory deaths separately
for each year, and for aggregated years 2006-12 and across all data zones.

Year Min 25% Median Mean 75% Max Total
2006 0 2 3 4.093 6 46 8551
2007 0 2 3 4.095 5 39 8334
2008 0 2 3 3.989 5 39 8334
2009 0 1 3 3.714 5 36 7759
2010 0 1 3 3.649 5 31 7623
2011 0 1 3 3.569 5 40 7455
2012 0 1 3 3.623 5 38 7569
2006-2012 0 14 22 26.730 33 260 55,846

5.2.2 Air pollutant data

Both the modelled NO2 concentrations and the NO2 concentrations developed in this
thesis are used to investigate its association with cardio-respiratory mortality. The first
set of NO2 concentrations are the modelled concentrations available as annual mean
background concentrations at a 1km × 1km grid square resolution for the seven year
period. These concentrations are temporally aggregated over the seven year period by
averaging, then spatially aggregated to the data zone level using the following formula

NO2i
=
∑ni
j=1 exp(−dij) ˜NO2j∑ni

j=1 exp(−dij)
, (5.1)

where NO2i
is the averaged annual concentration for data zone i. Here ˜NO21, . . . , ˜NO2ni

are the modelled NO2 concentrations at the ni grid squares within data zone i, and
dij is the Euclidean distance between the population-weighted centroid of data zone
i and the centroid of grid square j. This is a distance weighting formula that gives
more weight to grid squares closer to the population weighted centroid compared to
further away grid squares. This ensures that the data zone takes a representative value
according to the location at which the population density is greatest, as dictated by
the population-weighted centroid. The aggregation approach is based on three typical
scenarios (examples of which are displayed in Figure 5.2): data zones containing no
grid square centroids, data zones containing only one grid square centroid, and data
zones containing more than one grid square centroid. Data zones containing no grid
square centroids (see Figure 5.2a) were assigned the NO2 concentration nearest the
population-weighted centroid of the data zone. These data zones typically occur in the
most populated urban environments in Glasgow, where the data zones are extremely
small due to the high population density. Data zones containing only one grid square
centroid are assigned the NO2 concentration of that grid square (see Figure 5.2b), and
data zones containing more than one grid square centroid (see Figure 5.2c) are aggre-
gated based on the above formula.

The data zone averaged modelled concentrations are displayed in the top left panel
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(a) (b)

(c)

Figure 5.2: Three data zone scenarios for aggregating NO2 pollutant concentrations.
Dots represent the grid box centroids and diamonds represent the population-weighted
centroids. (a) depicts scenario one, where there are data zones that contain no grid box
centroid. (b) depicts scenario two, where there are data zones that contain only one
grid box centroid. (c) depicts scenario three, where a data zone contains more than one
grid box centroid.

of Figure 5.1. As expected, background concentrations are highest for the city of Glas-
gow. However, these modelled concentrations are known to contain biases, and so this
chapter compares the health effects estimated from using them to those obtained from
predicting NO2 with a statistical fusion model.

The second set of NO2 concentrations were developed in Chapter 4, specifically for
the West Central Scotland study region. The general form of the model is given by:

Z(si) ∼ N
(
x(si)>β + φ(si), ν2σ2

)
, i = 1, . . . ,m, (5.2)

φ = (φ(s1), . . . , φ(sm)) ∼ N(0, σ2Σ(ρ)),

where Z(si) is the measured NO2 concentration at spatial location si for i = 1, . . . ,m
spatial locations. The n measurements are modelled by a set of covariates x(si) with
regression parameters, β, and the former include the modelled concentration in the
nearest grid square, the local environment in which the site is located (e.g. roadside,
urban background, rural), and an interaction term between the modelled concentration
and the spatial location of the measured data. The second term in the mean function is
a vector of spatial random effects, φ = (φ(s1), . . . , φ(sn)), which accounts for residual
spatial autocorrelation in the measured data, and is modelled by a Gaussian process
with a spatial exponential correlation matrix, Σ(ρ), and range parameter ρ. Full de-
tails of this model are discussed in Chapter 4.
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As West Central Scotland has a large proportion of rural areas, this model cali-
brates the modelled concentrations according to urban background and rural environ-
ments, while allowing the effect of the modelled concentrations to vary linearly across
space. The predictions were made from the model on a 1km × 1km resolution for each
year separately. These predictions were temporally aggregated by averaging and then
spatially aggregated to data zone level using the same form as Equation (5.1). The
resulting concentrations are displayed in the top right panel of Figure 5.1, which is
structurally similar to the modelled concentrations as expected.

5.2.3 Deprivation data

Many studies have shown that populations living in more deprived areas exhibit greater
levels of morbidity and mortality compared to populations living in more affluent ar-
eas (Mackenbach et al., 2008; Smith et al., 1990). Therefore, the main confounding
factor in ecological health studies is socio-economic deprivation (Mackenbach et al.,
1997), in which populations with higher levels of deprivation may be more susceptible
to the effects of air pollution (Laurent et al., 2007; O’Neill et al., 2003). This may
be due to individuals living in more deprived communities having worse underlying
health, on average, than those living in more affluent communities. The majority of
the most deprived areas in Scotland occur within Glasgow, and Scotland is infamous
for its low life expectancy compared to other Western European countries (McCart-
ney et al., 2012; Schofield et al., 2016). Deprivation is a known determinant of health
and is paramount when assessing the relationship between air pollution and ill health,
not just in West Central Scotland, but in any study region. However, deprivation is
multi-factorial and difficult to measure, but is commonly represented by a composite
index. This chapter makes use of the Scottish Index of Multiple Deprivation (SIMD,
http://www.gov.scot/Topics/Statistics/SIMD), which is a composite index con-
taining seven domains, namely: access to services; crime; education, skills and training;
employment; income; health; and housing. However, as the health domain contains an
indicator of the Comparative Mortality Factor, and as such, includes deaths which are
part of the outcome in this chapter, it has not been included here. The 2009 version
of the index was selected because it forms the mid-point of the study period.

The domains are available as continuous measures comprising scores, rates and
counts. Continuous measures for the education, skills and training domain; housing
domain; and geographic access to services domain are based on scores, whereby the
individual indicators are ranked, transformed to a standard normal, and then combined
using weights generated by a factor analysis. The income and employment domains
have continuous measures based on rates. For the income domain, it represents the
percentage in each data zone who are in receipt of benefits, such as income support.
For the employment domain, it represents the percentage of each data zone’s working

http://www.gov.scot/Topics/Statistics/SIMD
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age population who are in receipt of benefits, such as unemployment claimant count,
working age incapacity benefit, and employment support allowance. The crime domain
comprises a count relating to selected recorded offences in the data zone, rather than
all crimes committed in the area. The selected crimes relate to violence, domestic
housebreaking, vandalism, drugs offences and minor assaults. The mean number of
crimes committed is 45.266, with a standard deviation of 67.044, suggesting a wide
range of values for this variable. Correlations between the remaining six domains are
displayed in Table 5.2, where there are high correlations between income, employment,
and education; and weak to moderate correlations with the access, housing and crime
domains. Access has considerably lower correlations with all other domains suggesting
it is exhibiting an independent spatial pattern.

Table 5.2: Correlations between the six deprivation measures, where EST denotes the
education, skills and training domain.

Variable Access Crime EST Employment Income Housing
Access 1 -0.252 -0.250 -0.287 -0.321 -0.411
Crime -0.252 1 0.411 0.436 0.430 0.351
EST -0.250 0.411 1 0.833 0.860 0.680
Employment -0.287 0.436 0.833 1 0.946 0.436
Income -0.321 0.430 0.860 0.946 1 0.658
Housing -0.411 0.351 0.680 0.436 0.658 1

The SIMD also comprises an overall score, which is a weighted sum of the seven
domains. As this also includes the health domain, it is not appropriate to be used as
a covariate. Therefore, the overall score was re-weighted to remove the health domain
and was constructed based on the original index methodology (http://www.gov.scot/
Publications/2004/10/20089/45173). Briefly, the new overall score was constructed
by transforming the ranks of the individual domains to an exponential distribution
using the formula

T = −23× log[1−R(1− exp(−100/23))], (5.3)

where R denotes the rank of the domain transformed to the range [0, 1]. The domains
are ranked to standardise them since they are on different scales. This ensures they
have identical distributions with the same range. However, the ranks result in distri-
butions that are symmetrical, where it is possible that high levels of deprivation in one
domain cancel out low deprivation levels in another domain. Using the exponential
transformation mitigates against this. The constant in equation (5.3) −23 gives a 10%
cancellation property so that data zones are ranked within the 10% most deprived
data zones. The domains then have scores that range from 0 (least deprived) to 100
(most deprived), and are combined into an overall score by summing the scores to the
following weights: 12 for income, 12 for employment, 6 for education, 4 for access, 2 for

http://www.gov.scot/Publications/2004/10/20089/45173
http://www.gov.scot/Publications/2004/10/20089/45173
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crime and 1 for housing. The bottom right panel of Figure 5.1 displays the re-weighted
overall score, where it is clear that the City of Glasgow contains the majority of the
most deprived areas, as expected.

Initially, a simple Quasi-Poisson generalised linear model (without any spatial ran-
dom effects) was applied to the disease data, with NO2 (DEFRA modelled concen-
trations) and income deprivation as covariates. The overdispersion parameter was
estimated as 4.35, suggesting substantial overdispersion with respect to the Poisson
assumption of equal mean and variance. The residuals from this model were tested
for any residual spatial autocorrelation, using a permutation test based on Moran’s I
statistic (Moran, 1950) given by equation (2.76) in Chapter 2 Section 2.4.2. The null
hypothesis of this test is no spatial autocorrelation, and Moran’s I statistic was 0.036
with a p-value of 0.003, suggesting that spatial autocorrelation is present in the resid-
uals. Since spatial autocorrelation is present in the data, spatial models are therefore
required to take this residual spatial autocorrelation into account. There are numerous
ways of modelling this residual spatial autocorrelation, of which three approaches are
described below.

5.3 Statistical models for estimating air pollution
and health effects

The aim of this chapter is to estimate the sensitivity of the estimated relationship be-
tween NO2 concentrations and cardio-respiratory mortality in the West Central Scot-
land region between 2006 and 2012. This included estimating the sensitivity of the
pollutant-health effect to changing the estimation of NO2 concentrations, controlling
for socio-economic deprivation, and allowance for residual spatial autocorrelation in
the mortality data after adjusting for the covariate effects. Three specific Poisson log-
linear models are compared in this sensitivity analysis, which differ in their control
for residual spatial autocorrelation. These models are then combined to estimate an
overall pollution-health effect using Bayesian model averaging, with inference based on
Markov chain Monte Carlo (McMC) simulation. These models are implemented in the
R software environment (R Core Team, 2015), using self-written code, the CARBayes
(Lee, 2013) and ngspatial (Hughes & Cui, 1-16-2015) packages. Sensitivity to the
estimation of NO2 and control for socio-economic deprivation is assessed by fitting
different covariate combinations in all of the three models described below.

5.3.1 Data and Likelihood model

The vector of the observed numbers of cardio-respiratory deaths is denoted by Y =
(Y1, . . . , Ym)>, while the expected numbers of deaths are computed using indirect
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standardisation (discussed in Chapter 3, Section 2.5) based on age- and sex-specific
cardio-respiratory mortality rates in West Central Scotland. These expected counts
are denoted by E = (E1, . . . , Em)>, where for data zone i, Ei = ∑

rNirγr, where
Nir is the number of people in age-sex group r in data zone i, and γr denotes the
region-wide age-sex mortality rate. The vector of NO2 concentrations is denoted by
x = (x1, . . . , xm) for all m data zones, while each measure of socio-economic deprivation
is denoted by u = (u1, . . . , um). Thus, for the ith data zone, the vector of covariates
is given by z>i = (1, xi, ui), while the corresponding regression parameters are given
by β = (β1, β2, β3)>, so that β1 is the intercept term, and β2 is the key parameter in
this model, namely the effect of NO2 on cardio-respiratory mortality risk. A general
Bayesian Poisson log-linear model for these data is given by:

Yi | Ei, Ri ∼ Poisson(EiRi) for i = 1, . . . ,m, (5.4)

ln(Ri) = z>i β + φi,

β ∼ N(m,V),

where Ri is the risk of disease in data zone i. The regression parameters, β, are assigned
a weakly informative multivariate Gaussian prior, with hyperparameters (m,V), typ-
ically with mean zero and a large diagonal variance matrix. Population demography,
including the age-sex structure of the population and the overall size, can pose some
confounding effects and are partially accounted for within the expected counts of mor-
tality (Ei), by including it as an offset in the regression models. The final term in the
linear predictor is the vector of random effects, φ = (φ1, . . . , φm)>, which controls the
residual spatial autocorrelation in the data after accounting for the covariate effects.
Three modelling specifications are now considered here, which include ignoring the
presence of any residual spatial autocorrelation, utilising a commonly-used approach
to modelling residual spatial autocorrelation, and utilising an approach that tries to
alleviate the issues surrounding the commonly-used approaches.

5.3.2 Model 1 - no spatial autocorrelation

The simplest approach is to ignore the presence of any residual spatial autocorrelation
and assume φi = 0 for all data zones, i, which is equivalent to fitting a Poisson gen-
eralised linear model to the data. This model naively assumes the cardio-respiratory
counts are independent conditional on the covariates, which, as illustrated in Section
5.2.3, is not true for this case study. Additionally, the model does not allow for overdis-
persion relative to the Poisson likelihood, and thus makes the restrictive assumption
that E[Yi] = Var[Yi] (see Chapter 2 Section 2.2.1), which is unrealistic. This model is
thus only included here for comparison purposes, with the remaining two models being
described below.
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5.3.3 Model 2 - globally smooth spatial autocorrelation

The standard approach to accounting for residual spatial autocorrelation and overdis-
persion in this context is to model φ by a set of globally spatially smooth (autocor-
related) random effects, φ = (φ1, . . . , φm)>. A number of models can be specified for
these random effects, including conditional autoregressive (CAR), simultaneous autore-
gressive (SAR) or geostatistical models. However, CAR priors are the most common
in this field, and examples of their use include Maheswaran et al. (2005a) and Lee
et al. (2009). A number of globally smooth CAR priors have been proposed, and
a review by Lee (2011) concluded that the model proposed by Leroux et al. (1999)
was the most appealing because its results were consistent across a range of spatial
autocorrelation scenarios, and it is flexible in its ability to account for both strong
and weak spatial autocorrelation structures. Furthermore, the strength of the spatial
autocorrelation is captured within one set of random effects, which makes it superior
compared to other CAR specifications (see Chapter 2 Section 2.4.2.3) that do not en-
compass this component. In addition, its specification corresponds to a proper joint
distribution for the random effects, and it does not assume the conditional variance is
inversely proportional to the total number of neighbouring areas, even when no spa-
tial autocorrelation is present, therefore adding to its flexibility. This model can be
specified by a set of m univariate full conditional distributions, p(φi | φ−i), where
φ−i = (φ1, . . . , φi−1, φi+1, . . . , φm). Spatial autocorrelation is imposed using a binary
m × m neighbourhood matrix, W, whose ijth element wij = 1 if areas (i, j) share
a common border, and wij = 0 otherwise. This specification asserts that neighbour-
ing areas have random effects that are partially autocorrelated, otherwise the random
effects are conditionally independent. The model has the form

φi | φ−i ∼ N
(

ρ
∑m
j=1wijφj

ρ
∑m
j=1wij + 1− ρ,

τ 2

ρ
∑m
j=1 wij + 1− ρ

)
, (5.5)

where ρ controls the level of spatial autocorrelation. Spatial independence occurs when
ρ = 0, with mean zero and constant variance. Strong spatial autocorrelation is defined
when ρ = 1, which simplifies to the intrinsic CAR model given by equation (2.84) in
Chapter 2 Section 2.4.2.1. Weakly informative hyperpriors are assigned for τ 2 and ρ;
typically an inverse-gamma(a, b) distribution for τ 2, and a uniform distribution on the
unit interval for ρ.

5.3.4 Model 3 - orthogonal smoothing

One problem with traditional CAR models, such as (5.5), is that the spatially smooth
random effects have been shown to be correlated with the spatially smooth covariates,
such as air pollution (Clayton et al., 1993; Paciorek, 2010). This spatial confounding
between the fixed and random effects leads to variance inflation and the model param-
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eters becoming uninterpretable. Much research has been conducted on controlling for
this spatial confounding, in which the random effects are instead modelled with a series
of basis functions that are orthogonal to the covariates, thus mitigating this confound-
ing (Hughes & Haran, 2013; Reich et al., 2006). This chapter utilises the orthogonal
smoothing model proposed by Hughes & Haran (2013) due to the low dimensionality
of the random effects, which leads to fast computation. This model replaces the vector
of random effects φi in equation (5.4) with a linear combination of basis functions that
are orthogonal to the fixed effects.

Let the matrix of p covariates be denoted by Z = (z>1 , . . . , z>m)>. Then the orthog-
onal projection matrix (hat matrix) onto the column space of the design matrix Z is
defined by

P = Z(Z>Z)−1Z>. (5.6)

Further, let the residual projection matrix onto the space orthogonal to Z be defined
by

P′ = Im −P. (5.7)

The residual projection matrix is then used to create a set of eigenvectors, given
by the matrix product, P′WP′, which combines covariate orthogonality given by P′

with spatial adjacency given by W. The eigenvectors of P′WP′ contain all possible
mutually distinct spatial patterns of clustering orthogonal to Z. Furthermore, spa-
tial dependence is related to both positive and negative eigenvalues, where positive
eigenvalues correspond to positive spatial autocorrelation. The size of the eigenvalue
associated with a given eigenvector determines the relative importance of its spatial
pattern, so Hughes & Haran (2013) suggest only selecting the first q << m eigenvectors
corresponding to the largest positive eigenvectors. This matrix is denoted by B, where
b>i = (bi1, . . . , biq). The chosen number of eigenvectors, q, acts as a tuning parameter,
which determines the extent of dimensionality reduction in the model. The authors
suggest using q = 50 as a default choice. The orthogonal smoothing model replaces
the random effects in the linear predictor in equation (5.4) by

ln(Ri) = z>i β + b>i δ, (5.8)

δ ∼ N(0, τ 2Q(W)−1
s ),

where the random effects, δ, are assigned a Gaussian prior with mean 0, and precision
matrix given by Q(W)s = B>Q(W)B, where Q(W) = diag(W1)−W corresponds to
the precision matrix for the intrinsic CAR prior (Besag et al., 1991) given by equation
(2.84).
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5.3.5 Bayesian model averaging

Bayesian model averaging provides a coherent framework for combining estimates of
the same quantity of interest from a number of different Bayesian models into a single
overall estimate to account for model uncertainty. Such model uncertainty is often
ignored in existing studies, and as shown in the next section, can have a large impact
on the results. Recall that β2 is the key parameter of interest in this model, namely the
effect of NO2 concentrations on cardio-respiratory mortality risk. Consider the case
of having K candidate models, where in this chapter there are K = 42 models (see
Section 5.4 for details). Denote these models by (M1, . . . ,MK) and their respective
sets of model parameters by (θ1, . . . ,θK). Let β2 denote the true unknown parameter
of interest and β̂2k

denote the estimate (posterior median) from the kth model. Then
the posterior distribution of interest is

p(β2 |Y) =
K∑
k=1

p(β2 |Mk,Y)p(Mk |Y). (5.9)

Here, p(β2 |Mk,Y) is the posterior distribution of β2 from model K, and p(Mk |Y) is
the posterior probability of model Mk. This equation essentially averages the posterior
distributions for NO2 under each model weighted by their posterior model probabilities.

The posterior probability for model Mk is given by

p(Mk |Y) = p(Y |Mk)p(Mk)∑K
l=1 p(Y |Ml)p(Ml)

, (5.10)

where p(Mk) is the prior probability for model Mk. Prior ignorance is specified via a
discrete uniform prior for p(Mk), that is p(Mk) = 1/K. This specification simplifies
the posterior probability for model Mk in equation (5.10) to

p(Mk |Y) = p(Y |Mk)∑K
l=1 p(Y |Ml)

. (5.11)

The marginal (averaged over the parameters) probability of the data given model Mk

is computed by

p(Y |Mk) =
∫
θk

p(Y |θk,Mk)p(θk |Mk)dθk, (5.12)

which can be approximated by J McMC samples as

p(Y |Mk) ≈
1
J

J∑
j=1

p(Y |θ(j)
k ,Mk)p(θ(j)

k |Mk), (5.13)

where θ(j)
k is the jth McMC sample for model Mk. Once these quantities have been

computed, the posterior mean and variance of β2 are given by:
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E[β2 |Y] =
K∑
k=1

β̂2k
p(Mk |Y), (5.14)

Var[β2 |Y] =
K∑
k=1

(Var[β2 |Mk,Y] + β̂2
2k

)p(Mk |Y)− E[β2 |Y]2, (5.15)

where Var[β2 |Mk,Y] is the posterior variance of β2 from model Mk. Based on a
normal approximation to the posterior, an approximate 95% credible interval (CI) can
be obtained for β2 that accounts for model uncertainty as follows:

95% CI = E[β2 |Y]± 1.96
√

Var[β2 |Y]. (5.16)

5.4 Results from the West Central Scotland study

This section presents results from investigating the long-term effects of NO2 concen-
trations on cardio-respiratory mortality in West Central Scotland between 2006 and
2012 inclusive. Section 5.4.1 describes the set of results obtained from fitting the sta-
tistical models described in Section 5.3, which illustrates the sensitivity of the results
to model choice. Section 5.4.2 presents the overall estimate of the effect of NO2 on
cardio-respiratory mortality using the Bayesian model averaging approach, as outlined
in the previous section. Inference for all models described in this section are based
on running 5 parallel Markov chains for 120,000 iterations, which included a burn-in
period of 20,000 iterations. The remaining samples were thinned by 10 to reduce their
autocorrelation, thus producing a final set of 50,000 posterior samples across the five
chains.

5.4.1 Results - sensitivity to model choice

This section empirically investigates the sensitivity of the estimated pollution-health
effect to three modelling choices. The first is the estimation of spatially averaged NO2

concentrations for each data zone, and compares averaging the raw output from the
atmospheric dispersion model used by DEFRA (http://uk-air.defra.gov.uk/, de-
noted DEFRA) to averaging predictions from the fusion model proposed in Chapter
4 (denoted Fusion). The second modelling choice concerns control for the confound-
ing effects of socio-economic deprivation, and compares using the composite Scottish
Index of Multiple Deprivation (SIMD, minus the health domain), with individual indi-
cators from its sub-domains, namely access to services, crime, education, employment,
housing and income. Finally, three approaches to controlling for residual spatial au-
tocorrelation are compared: ignoring it (denoted GLM ), modelling it using random
effects represented by the globally smooth model proposed by Leroux et al. (1999)
(denoted Leroux), and modelling it using a set of orthogonal random effects proposed

http://uk-air.defra.gov.uk/
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by Hughes & Haran (2013) (denoted OS).

All combinations of these factors give a set of 42 possible models, and the results
are summarised in Tables 5.3 and 5.4, which respectively display the posterior median
relative risks and 95% credible intervals, and the Deviance Information Criterion (DIC,
given by equation (2.37)) together with the effective number of parameters (pD) for
each model, which were described in Chapter 2 Section 2.3.4. All pollution-health
effects are presented on the relative risk scale for a 5µgm−3 increase in NO2 concentra-
tions (for both DEFRA and Fusion), as this is a realistic change in long-term exposure.

Overall, there is evidence that increasing NO2 concentrations are associated with
small but positive increases in the risk of cardio-respiratory mortality, as 36 out of
the 42 models estimate the relative risk to be greater than 1. However, the range of
the effects estimated across the 42 models is large, being between a 2% decreased risk
(0.980) to a 5.3% increased risk (1.053) associated with a 5µgm−3 increase in NO2.
This suggests that the results are highly sensitive to model choice, and that if results
were presented from a single model then either a positive or a negative effect of NO2

on mortality risk could have been observed. Focusing on the 95% credible intervals
shows that 23 of the 42 intervals are wholly above the null risk of 1, which is just over
57% of the models considered.

The three modelling choices considered here all appear to have the potential to sub-
stantially affect the estimated relative risks, as the estimates from varying one factor
at a time can lead to large changes in risk. For example, changing the NO2 metric
from that produced by the fusion model to that produced by DEFRA resulted in the
risks changing by between -1% and 5.3%, and in all but 3 cases, these changes were
positive. This indicates that, overall, using the DEFRA concentrations resulted in in-
creased risks compared with using the predictions from the fusion model.

Changing how socio-economic deprivation was controlled for also had a large im-
pact on the results, with changes in relative risk of between 3.8% and 7.3% across
the 7 measures considered depending on the combination of DEFRA/Fusion and
GLM/Leroux/OS. In general, using the housing indicator resulted in the lowest ef-
fect sizes, while using crime resulted in the highest estimates. Finally, varying the
control for spatial autocorrelation had a slight effect on the results, with differences in
relative risk between the three models considered ranging between 0.1% and 0.9%. The
only pattern of note is that the effect sizes are attenuated for the OS models compared
to the Leroux models in 10 out of the 14 models, with 2 models comprising the same
effect size.

Finally, Table 5.4 summarises the fit of each model via the DIC, which shows that,
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Table 5.3: Posterior median relative risks (RR) and 95% credible intervals for a 5µgm−3

increase in NO2 concentrations on cardio-respiratory mortality. The results displayed
relate to models varying in their estimation of NO2, control for deprivation and al-
lowance for residual spatial autocorrelation. The results in bold are substantial effects
at the 5% level.

Deprivation Model RR (95% CI)
Fusion DEFRA

Access
GLM 1.036 (1.016, 1.056) 1.050 (1.026, 1.075)
Leroux 1.033 (1.006, 1.059) 1.045 (1.015, 1.075)
OS 1.029 (1.020, 1.039) 1.041 (1.030, 1.051)

Crime
GLM 1.038 (1.018, 1.058) 1.053 (1.033, 1.074)
Leroux 1.039 (1.015, 1.063) 1.053 (1.027, 1.079)
OS 1.034 (1.025, 1.043) 1.046 (1.037, 1.057)

Education
GLM 1.006 (0.988, 1.024) 1.019 (0.999, 1.039)
Leroux 1.007 (0.991, 1.024) 1.019 (1.002, 1.041)
OS 1.006 (0.998, 1.015) 1.021 (1.011, 1.030)

Employment
GLM 1.010 (0.990, 1.030) 1.020 (1.000, 1.040)
Leroux 1.015 (0.998, 1.033) 1.025 (1.007, 1.044)
OS 1.014 (1.006, 1.023) 1.025 (1.016, 1.036)

Housing
GLM 0.992 (0.973, 1.012) 0.989 (0.968, 1.011)
Leroux 0.990 (0.971, 1.009) 0.980 (0.959, 1.002)
OS 0.992 (0.983, 1.002) 0.987 (0.977, 0.997)

Income
GLM 1.003 (0.985, 1.021) 1.010 (0.990, 1.030)
Leroux 1.008 (0.992, 1.018) 1.012 (0.995, 1.030)
OS 1.007 (0.998, 1.015) 1.013 (1.004, 1.023)

SIMD
GLM 1.007 (0.989, 1.025) 1.017 (0.997, 1.037)
Leroux 1.013 (0.997, 1.030) 1.021 (1.003, 1.040)
OS 1.011 (1.003, 1.020) 1.021 (1.011, 1.030)

in all cases, the Leroux model fits the data best compared with the other alternatives.
This is surprising considering the globally smooth model has the potential for correla-
tion between the fixed and random effects and thus one would expect the OS model
to outperform the Leroux model. The OS model has many fewer effective numbers of
parameters compared to the Leroux model, which makes it more parsimonious. How-
ever, it is this reduction in dimensionality that has resulted in a poorer fit to the data
(in terms of DIC). In most cases, the DIC is lower for the DEFRA concentrations com-
pared to the Fusion concentrations, while the income domain provides the best fit to
the data of all the socio-economic indicators considered here. Furthermore, the RMSE
allows the closeness of the models fitted values to the observed health outcomes (with
the lowest values indicating better performance) to be assessed, and to give a sense of
scale, the 25th and 75th percentiles of the observed cardio-respiratory deaths were 14
and 33 respectively. The Leroux models have the lowest RMSE values compared to the
GLM s and OS models, which is due to their increased number of effective parameters.
For the Leroux models the relationship between RMSE and deprivation is opposite to
that observed for the GLM s and OS models, with income, the best deprivation co-
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variate in terms of DIC, having the highest RMSE compared to the other deprivation
measures (2.693 compared to 2.518 for access). This can be explained by the lower
residual spatial variation in the model adjusting for income deprivation compared to
using the other deprivation covariates. The random effects have less spatial variation,
and thus, less impact on the fitted values. For example, the variance, τ 2, is 0.230 for
the access covariate compared to 0.094 for income. This is also observed in the effective
number of parameters pD, which is smallest for the model with income. In contrast,
the DIC is an overall measure of model quality that penalises complex models that
contain more parameters, as is observed in higher DIC values for access (and others)
compared to income.

Table 5.4: Model fit for each of the 42 models, measured by the Deviance Information
Criterion (DIC), the effective number of parameters (pD), and the root mean square
error (RMSE)

Deprivation Model DIC (pD) RMSE
Fusion DEFRA Fusion DEFRA

Access
GLM 20219 (2) 20182 (2) 13.560 13.519
Leroux 13797 (1508) 13799 (1507) 2.518 2.525
OS 19130 (76) 19115 (74) 12.614 12.604

Crime
GLM 20017 (2) 19967 (2) 13.471 13.429
Leroux 13793 (1498) 13791 (1497) 2.511 2.510
OS 19222 (67) 19201 (66) 12.707 12.697

Education
GLM 18240 (2) 18224 (2) 12.742 12.724
Leroux 13601 (1369) 13600 (1367) 2.687 2.688
OS 17964 (62) 17942 (62) 12.336 12.319

Employment
GLM 18373 (2) 18359 (2) 12.811 12.812
Leroux 13600 (1378) 13597 (1377) 2.655 2.658
OS 18010 (66) 17996 (65) 12.323 12.318

Housing
GLM 19107 (2) 19106 (2) 12.989 12.993
Leroux 13737 (1451) 13736 (1450) 2.522 2.522
OS 18336 (69) 18352 (69) 12.302 12.323

Income
GLM 18139 (2) 18135 (2) 12.638 12.623
Leroux 13589 (1362) 13589 (1362) 2.693 2.692
OS 17743 (66) 17729 (60) 12.128 12.129

SIMD
GLM 18277 (2) 18267 (2) 12.701 12.694
Leroux 13609 (1374) 13606 (1373) 2.672 2.670
OS 17900 (62) 17898 (64) 12.242 12.240

5.4.2 Results - BMA

The previous section shows clear sensitivity of the results to the model fitted, and
one solution would be to choose a single ‘best’ model, for example, by minimising the
DIC. However, this clearly ignores model uncertainty, which can be accounted for using
BMA as described in Section 5.3.5. This method combines the estimated effect sizes
from the 42 models considered here. When this was conducted, the overall estimated
relative risk was 1.011 together with an associated 95% uncertainty interval of (0.993,
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1.029). This small, but positive effect indicates that for a 5µgm−3 increase in NO2

concentrations, cardio-respiratory deaths increase by an estimated 1.1%, although it
should be noted that the lower end of the 95% credible interval is below the null
risk of 1. In fact, the posterior probability that the relative risk is greater than 1 is
0.884. This result is essentially a mixture of the effect estimates from the Leroux model
including income and DEFRA NO2 concentrations, and the effect estimate from the
Leroux model including income and Fusion model NO2 concentrations. The former
had the most influence on the overall effect size, since its posterior model probability,
p(Mk|Y), was 67.82%, whilst it was 32.17% for the latter. So, in this example, the
large differences in fit across the 42 models has resulted in only two models contributing
to the overall effect estimate.

5.5 Discussion

In this chapter, sensitivity of the pollution-health relationship in West Central Scot-
land to the impact of three modelling choices was investigated: the estimation of NO2

concentrations, control for socio-economic deprivation, and control for residual spatial
autocorrelation after accounting for covariate effects. The main finding is that the
choice of these three factors can have a major impact on the resulting pollution-health
effects, meaning that presenting results from a single model could result in a wide
range of effect sizes depending on the model selected. The estimated pollution-health
effect in this study varies considerably across the 42 models (effect sizes range from
0.980-1.053), highlighting the estimated pollution-health effect sizes are not robust to
the three aforementioned factors.

BMA was utilised to combine results from all 42 models into an overall pollution-
health effect size, whilst taking model uncertainty into account. The final estimated
effect size shows that a 5µgm−3 increase in NO2 concentrations is associated with 1.1%
higher cardio-respiratory deaths in West Central Scotland between 2006 and 2012.
However, this effect is (borderline) not substantial at the 5% level, as the resulting
95% credible interval contains the null risk of 1. This could be due to the fact that
the majority of NO2 concentrations are relatively low, and thus greater variation in the
exposure would be needed to observe substantial health impacts.

A second finding is the attenuation of the pollution-health effects when the NO2 con-
centrations were estimated using the geostatistical fusion model proposed in Chapter
4, compared to when the NO2 concentrations were estimated by the DEFRA diffusion
model. The estimated health effects changed between -1% and 5.3%, indicating that
increased risks are observed when the DEFRA concentrations are utilised. This is an
interesting result considering that the majority of spatial ecological studies in Scotland,
and indeed in the UK, make use of modelled concentrations due its wide availability and
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fine scale spatial coverage. Furthermore, the correlation between residual disease (after
adjustment from income deprivation) and pollution from both the fusion and DEFRA
models is 0.041 and 0.029 respectively. This highlights that the DEFRA pollution con-
centrations are more correlated with residual disease, thus explaining its stronger effect
size (see Table 5.3) compared to the pollution concentrations from the fusion model.
However, in terms of pollution predictive performance, Section 4.4.1, shows that the
DEFRA data are not as good at predicting measured pollution concentrations at the
point level, since the root mean square prediction error (RMSPE) is 0.337 compared to
0.255 for the fusion model. A recent study conducted in mainland Scotland by Huang
et al. (2015), concluded that the estimated health effects of NO2 were largely consis-
tent when estimated from a fusion model compared to modelled concentrations from
the DEFRA. However, the authors utilised a coarser spatial resolution compared to
this chapter, suggesting further research is needed to understand why changing spatial
resolution changes the results of the estimated NO2-health relationship when different
types of NO2 concentrations are used.

A third finding is that the global spatial autocorrelation model comprising the DE-
FRA concentrations and income deprivation dominated the overall pollution-health
effect size when combining models using BMA. The posterior model probability was
67.82%, while for the model with the fusion model concentrations it was 32.17%. It
is interesting to note that only 2 out of the 42 models had a considerable influence,
suggesting that the global spatial autocorrelation model, income deprivation and DE-
FRA concentrations are the most important factors when investigating the impact
of air pollution on health in West Central Scotland. In addition, the global spatial
autocorrelation model, which has been under much scrutiny by Reich et al. (2006),
outperformed the orthogonal smoothing model proposed by Hughes & Haran (2013)
in terms of model fit via the DIC.

However, here are a few limitations to these analyses. Firstly, cardio-respiratory
deaths were aggregated over a 7 year period to ensure sufficient variation in the disease
data. This meant it was not possible to investigate how pollution-health risks had
changed over time, since the analyses were purely spatial. In addition, small numbers
of events from cardio-respiratory deaths at the data zone level may necessitate the need
to upgrade to a larger spatial resolution, such as intermediate geographies, comprising
4300 inhabitants on average, in order to improve the power to detect an association.
Alternatively, hospital admission data could instead be used to create the health out-
come of interest, as it is expected that there will be more events and thus, no need to
aggregate over multiple years.

Secondly, the DEFRA modelled concentrations come with no measure of uncer-
tainty, which could impact the analysis. The predicted concentrations from the geosta-
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tistical fusion model do have measures of prediction uncertainty; however, in this study
the predicted NO2 concentrations were treated as the known and true values, which
again could impact results. Therefore, an avenue for future work is to incorporate
the uncertainty surrounding predicted NO2 concentrations in an combined Bayesian
framework, which estimates the exposures and health risks simultaneously.



Chapter 6

Investigating the long-term effect of
outdoor air pollution on
cardio-respiratory incidence in
West Central Scotland

6.1 Introduction

The previous chapter explored the relationship between air pollution and cardio-respiratory
deaths by applying predicted NO2 concentrations, obtained from a novel statistical fu-
sion model, to mortality data. This chapter will instead focus on the incidence of
cardio-respiratory disease as the health outcome. The outcome was created by com-
bining cardio-respiratory deaths with first-ever admission to hospital for causes related
to cardio-respiratory disease as the primary diagnosis. These data are the first of their
kind to be used in an air pollution and health study in Scotland. Furthermore, no
previous research in Scotland has focussed on incidence.

Age is an important consideration when it comes to making policy decisions re-
garding air quality, as more vulnerable groups, such as children and the elderly, may
be more susceptible to the adverse effects of air pollution. Young children can be
more prone to chronic respiratory conditions, like asthma, and older people are more
likely to have numerous co-morbidities, and are also just generally more susceptible
because of old age (Beatty & Shimshack, 2014). Thus, the effect of NO2 on the risk
of cardio-respiratory ill health will be studied at different age groups. A more detailed
discussion of age with respect to air pollution and health studies can be found in Chap-
ter 3 Section 3.3.2. This is the first epidemiological study in Scotland to investigate
the pollution-health relationship across the age spectrum as part of a spatial ecological
study.

114
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In addition to age being an important variable to consider, it is well acknowledged
in the air pollution and ill health literature that deprivation plays a key role in the
estimation of the relationship between air pollution and ill health. Populations resid-
ing in more deprived areas may be at an increased risk of pollutant-related morbidity
or mortality (Carder et al., 2010), or exacerbating certain medical conditions, such as
asthma. It is thought that more deprived people may reside or work in areas that are
exposed to higher levels of air pollution and thus exposure estimates for these popula-
tions may be underestimated. Furthermore, deprived populations may also experience
poorer health due to other factors, such as smoking, less access to healthcare, and
poorer dietary habits, which in turn can make these populations more susceptible to
the detrimental effects of air pollution. The combination of all these factors further
increase the risk of health problems in deprived populations (O’Neill et al., 2003).

Studies in Scotland do not tend to focus on disease incidence, but rather focus on
either hospital admissions or mortality. The studies that utilised an ecological areal
unit design observed substantial pollutant-health effects for NO2 and PM10, but at a
greater spatial resolution than the spatial resolution used in this thesis (Huang et al.,
2015; Lee, 2012; Lee et al., 2009; Lee & Mitchell, 2014; Lee et al., 2014). However,
there have been studies conducted elsewhere that have primarily focused on the inci-
dence of disease. Five studies have been identified, where only one study utilised an
ecological areal unit design. The remaining four studies are cohort studies and mixed
results were found. A meta-analysis conducted by Cesaroni et al. (2014) utilised 11
cohorts across Europe as part of the ESCAPE project, which investigated the long-
term impact of PM2.5 on the incidence of acute coronary events. The patients recruited
for the study were free from any coronary events at the beginning of the study, and
took part between 1997 and 2007. The overall pooled effect size for a 5µgm−3 increase
in PM2.5 concentrations was associated with a 13% increased risk of coronary events,
with corresponding 95% confidence interval (0.98, 1.30). The authors concluded that
long-term exposure to PM2.5 was associated with incidence of coronary events, even
though the levels of PM2.5 observed were below the current European limit values. An-
other European cohort was devised in Rome between 1998 and 2000, which observed
a borderline association (relative risk (RR) = 1.03, 95% CI = (1.00, 1.07)) between
NO2 concentrations and coronary events (Rosenlund et al., 2008). Weak relationships
were also observed in a cohort study conducted in England by Atkinson et al. (2013),
which investigated a number of cardiovascular diseases, but found only incidence of
heart failure to be consistently associated with both PM10 and NO2. Another cohort
study, conducted by Miller et al. (2007), looked at the effect of PM2.5 on the incidence
of cardiovascular events in women in 36 US metropolitan areas. Again, the individuals
did not have any cardiovascular disease prior to the study. The authors found that a
10µgm−3 increase in PM2.5 was associated with a 24% increase in the risk of a cardio-
vascular event (hazard ratio (HR) = 1.24, 95% CI = (1.09, 1.41)). However, there was
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an even stronger association when only cardiovascular deaths were considered (hazard
ratio (HR) = 1.76, 95% CI = (1.25, 2.57)). The results from these cohort studies
are broadly consistent, but none of them studied the incidence of cardio-respiratory
disease. The only ecological study was conducted by Maheswaran et al. (2012) in
Sheffield, England between 1995 and 2004. The study investigated the association
between PM10 and NO2 concentrations with incidence of ischemic and haemorrhagic
stroke. The authors found no consistent associations between air pollution and stroke
incidence, but did note the risks were slightly increased in the older age group (65-79
years). However, this health outcome is not the focus in the present analyses.

The chapter is organised as follows. Section 6.2 outlines the motivating study by
discussing the disease, air pollutant and covariate data used in the statistical mod-
elling. Section 6.3 briefly describes the ecological spatial model used to investigate
the association between air pollution and ill health (a full discussion can be found in
Chapter 5). Section 6.4 provides some descriptive and formal results from applying the
spatial model to the health data. Finally, Section 6.5 provides a concluding discussion,
and motivations for future research.

6.2 Motivating study

The methodology developed in this chapter is motivated by a new epidemiological
study investigating whether long-term exposure to the air pollutant NO2 has a detri-
mental impact on the incidence of cardio-respiratory disease. This extends the research
conducted in Chapter 5 in terms of the study data, but focuses on incidence of cardio-
respiratory disease.

The study area is West Central Scotland (discussed in Chapter 5 Section 5.2).
Briefly, West Central Scotland is partitioned into m = 2089 non-overlapping areal
units, known as data zones, that comprise 800 inhabitants on average. These data
zones were constructed in such a way as to ensure homogeneity of the areal unit in
terms of its social characteristics, and are presented in Figure 6.1. The remainder of
this section describes the disease, air pollutant and covariate data to be used in the
statistical modelling.

6.2.1 Disease data

This study seeks to investigate the incidence of cardio-respiratory disease (Interna-
tional Classification of Diseases, 10th Revision (ICD-10): I00-I99, J00-J99), by util-
ising hospital admission data and mortality records for the number of first events
of cardio-respiratory disease between 2006 and 2012. These first events serve as a
proxy measure of incidence, since they comprise either the first admission into hospi-
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tal, where cardio-respiratory disease is the main cause, or cardio-respiratory deaths.
Since these are strictly first events they exclude any patients with a hospital discharge
for cardio-respiratory disease prior to the study period. Therefore, these data con-
tain only the first record in the study period (commencing the year 2006 until 2012)
- either a hospital admission or death - of all patients who had no known prior ad-
mission to hospital for cardio-respiratory disease. These data were obtained from
National Services Scotland (NSS, https://nhsnss.org/), by submitting an appli-
cation to the Privacy Advisory Committee (now known as the Public Benefit and
Privacy Panel for Health and Social Care), which aims to protect personal individ-
ual level data when making it available for research. The hospital admission data
are available from the SMR01 dataset, which is national dataset comprising all gen-
eral/acute inpatient and day cases to hospital. The death records are available from
National Records Scotland (https://www.nrscotland.gov.uk/), and were linked with
the hospital admission data through the Information Services Division (http://www.
isdscotland.org/). All analyses in this chapter were performed within the NSS Na-
tional Safe Haven (http://www.isdscotland.org/Products-and-Services/EDRIS/
Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven), which is a secure
environment where identifiable patient data are linked and accessed, while maintaining
top level confidentiality.

The incidence data were available as counts of cardio-respiratory first events strat-
ified by month and year of admission or death, sex (male or female), 5-year age groups
(0-4, 5-9, . . . , 90+), and data zone. In total, there were 161,752 cardio-respiratory
first events between 2006 and 2012, equating to 23,100 first events per year on average,
where 80,121 (49.55%) were male and 81,581 (50.45%) were female. However, due to
the low numbers of first events occurring in any single strata (a mean count of less than
one) the cardio-respiratory first events were aggregated over month, year, age group
and sex in order to ensure there was enough variation in the response. This method-
ology is in line with Chapter 5 Section 5.2, which aggregated the cardio-respiratory
deaths across the seven year study period. Table 6.1 shows the distribution of cardio-
respiratory first events aggregated over month, age group and sex, but separately across
the seven year period. This shows that the total number and distribution of first events
are consistent across the study period. Further, it highlights a lack of temporal vari-
ation, which was also observed in the mortality data. While there is a considerably
greater number of yearly first events, the distribution is more spread out across the data
zones compared to when only the mortality data were considered. Further aggregation
across the years results in greater variation compared to the mortality data (Table 5.1).

Fully-aggregated first events over all months, years, sex and age groups are denoted
by Yi for each data zone. Expected numbers, Ei, of cardio-respiratory first events were
calculated based on the indirect standardisation method (see Chapter 2 Section 2.5

https://nhsnss.org/
https://www.nrscotland.gov.uk/
http://www.isdscotland.org/
http://www.isdscotland.org/
http://www.isdscotland.org/Products-and-Services/EDRIS/Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven
http://www.isdscotland.org/Products-and-Services/EDRIS/Use-of-the-National-Safe-Haven/#NSS-National-Safe-Haven
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Table 6.1: Summary statistics and total number of cardio-respiratory first events ag-
gregated over age group and sex, but separately for each year. Summary statistics and
the standardised incidece ratio (SIR) for the fully-aggregated first events over all age
groups, sex, months and years are also displayed.

Year Min 25% Median Mean 75% Max Total
2006 0 0.740 0.969 1.003 1.242 2.962 23,205
2007 0 0.754 0.975 1.000 1.227 2.261 23,358
2008 0 0.738 0.976 1.003 1.236 3.272 23,856
2009 0 0.739 0.968 1.000 1.236 2.511 23,060
2010 0 0.743 0.972 1.003 1.236 2.910 22,314
2011 0 0.744 0.988 1.006 1.233 2.394 22,632
2012 0 0.759 0.984 1.009 1.223 3.267 23,277
2006-2012 0 58 74 77.41 93 270 161,702
SIR 0.289 0.840 0.992 0.999 1.147 2.075

for a detailed description) using age- and sex-specific cardio-respiratory incidence rates
for the whole of West Central Scotland. These expected numbers were calculated in
order to take the varying population size and demographic structure of data zones into
account. Specifically, Ei = ∑

rNmrγr, where Nnr is the number of people in data zone
n from age-sex strata r, while γr is the strata-specific disease rate for West Central
Scotland. An exploratory measure of disease risk is the standardised incidence ratio
(SIR), computed as SIRi = Yi/Ei, where an SIR of 1.2 corresponds to a 20% increase
in the risk of disease compared to what is expected. Table 6.1 also showcases the distri-
bution of the SIRs for the fully aggregated first events, which shows that, on average,
(SIR = 0.999) what is observed in West Central Scotland is what is expected.

As discussed in Chapter 3 Section 3.3.2, the effect of air pollution on ill health
has been shown to differ across the age spectrum, with the elderly population be-
ing more susceptible to its adverse effects (Fischer et al., 2003; Larrieu et al., 2007;
O’Neill et al., 2004) due to having multiple co-morbidities. Therefore, to investigate
whether the effect of air pollution is different at different ages in this specific analysis,
the cardio-respiratory first events were aggregated across all months, years and sex
to three separate age groups that represent three broad stages within a population:
namely, younger population (0-19 years), working population (20-64 years), and older
population (> 65 years). The distribution across the three age groups is shown in
Table 6.2, where a greater number of first events is observed for the working age group.
For the younger age group, on average, there were 4898 first events per year, 10,311
per year on average for the working age group, and 8113 per year on average for the
older age group.

The spatial distribution of disease risk is shown in Figure 6.1, which displays SIRs
across West Central Scotland for the fully-aggregated first events, and the first events
separately for the three age groups. All maps display similar spatial patterns, where
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Table 6.2: Summary statistics and total number of cardio-respiratory first events, strat-
ified by three age groups: younger (0-19 years), working (20-64 years), and older (> 65
years). Av. per year represents the average number of first events per year.

Age (years) Min 25% Median Mean 75% Max Av. per year Total
0-19 0 8 12 13.750 17 140 4898 28,688
20-64 0 26 33 35.550 41 105 10,311 72,179
> 65 0 17 26 29.100 37 163 8113 56,790

the data zones with the highest SIRs occur in areas with higher levels of deprivation.
Furthermore, greater spatial variation is seen when the first events are separated ac-
cording to age compared to the fully-aggregated SIRs which seem visually smoother.

6.2.2 Air pollutant data

The air pollutant utilised in this study is nitrogen dioxide (NO2, measured in µgm−3),
in which concentrations are available at the yearly level between 2006 and 2012 inclu-
sive. These are based on the statistical fusion model (denoted Fusion) developed in
Chapter 4. This fusion model combines measured data obtained directly from air pol-
lutant monitors and diffusion tubes located throughout the study region, and modelled
concentrations from an atmospheric dispersion model, which predicts NO2 concentra-
tions on a regular 1km square grid. Predicting on a regular grid ensures complete
spatial coverage of West Central Scotland, which is not possible when only considering
directly measured data. However, modelled concentrations should not be considered
on their own as they are estimated concentrations form a mathematical model, with
no measure of uncertainty surrounding the estimates. Concentrations were averaged
across the seven year period, and aggregated from the grid level to the data zone level.
The spatial distribution of NO2 concentrations is displayed in Figure 6.2, where the
City of Glasgow has high levels of NO2. The lower pollutant levels reflect the more
rural parts of West Central Scotland, especially in the southern region. Concentrations
of NO2 range from 12 µgm−3 to 47µgm−3, with a median concentration of 27 µgm−3.
As in the previous chapter, modelled concentrations (denoted DEFRA), are also used
in addition to the fusion model concentrations so that comparisons can be made be-
tween the two analyses. Even though these data should not be considered on their own,
they are also used here as a way of keeping in line with previous pollutant-health stud-
ies. When BMA was performed on the mortality data, both the Fusion and DEFRA
concentrations contributed to the overall relative risk for cardio-respiratory mortality.

6.2.3 Deprivation data

As discussed in the Literature Review in Chapter 3 Section 3.3.4 and again in the
previous chapter, socio-economic deprivation is an important factor to take into ac-
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Figure 6.1: Maps display the SIR for the cardio-respiratory first events, stratified by
data zone (top left), then stratified by data zone and younger age group (0-29 years,
top right), working age group (20-64 years, bottom left), and the older age group (> 65
years, bottom right).
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Figure 6.2: Spatial map of the averaged 2006-2012 NO2 concentrations from the statis-
tical fusion model across West Central Scotland.

count when investigating the relationship between air pollution and ill health. People
living in more deprived neighbourhoods are more likely to experience worse health, on
average, than people living in more affluent neighbourhoods, thus making them more
vulnerable to the effects of air pollution (Laurent et al., 2007). Moreover, the inequality
gap between the most and least deprived groups is increasing, with health improving
faster in more affluent populations compared to more deprived populations (Leyland
et al., 2007a). Health status is affected by, not only individual life choices, but also by
contextual and ecological factors (Marmot, 2007). This chapter uses the 2009 Scottish
Index for Multiple Deprivation (SIMD) to measure deprivation. This is an ecologi-
cal measure of overall deprivation, which includes aspects of income, education and
employment. However, the index also comprises a measure of health, which includes
deaths that are part of the chosen outcome. Therefore, the index was re-weighted to
exclude the health domain, where the methodology is discussed fully in Chapter 5 Sec-
tion 5.2.3. The domains utilised here are income; employment; education, skills and
training; housing; geographical access to services; crime; and the overall (minus health)
domain. Details on these domains can be found in Chapter 5. The spatial distribution
of the income domain is displayed in Figure 6.3, where the City of Glasgow contains
the greatest number of data zones that are income deprived.
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Figure 6.3: Spatial map of the income domain across West Central Scotland. The
income domain represents the percentage of each data zone’s population who are in
receipt of means-tested benefits, such as income support, income-based employment
support allowance, and job seekers allowance.

6.3 Statistical methods

The aim of this chapter is to investigate whether there is an association between the
incidence of cardio-respiratory disease and exposure to NO2 concentrations across West
Central Scotland between 2006 and 2012 inclusive. In the previous chapter, the aims
of the analyses were to, firstly, estimate the sensitivity of the NO2-health effect by
utilising two sets of NO2 concentrations, utilising different deprivation indicators, and
by changing the way in which to model residual spatial autocorrelation. Then, in order
to determine a single effect estimate for NO2 on mortality without having to choose
one model based on a goodness-of-fit criterion, BMA was used to combine all models
into an overall effect estimate that took model uncertainty into account. This method
allows for the calculation of the model that contributes the most to the overall effect,
thus highlighting which model can be deemed the most informative. The results showed
clear sensitivity to model choice; however when all models were combined into a sin-
gle effect estimate, only the income domain with the Leroux specification (using both
sets of NO2 concentrations) out of a possible 42 models determined the overall estimate.

Therefore, this analysis will only utilise the Leroux specification to model the resid-
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ual spatial autocorrelation, while utilising both sets of NO2 concentrations. Although
the income domain was shown to be the only contributing socio-economic factor to
cardio-respiratory mortality in the previous chapter, this chapter will consider all de-
privation measures, since the outcome now includes hospital admissions in addition
to the deaths, meaning that another deprivation measure may dominate instead of
income. Furthermore, as this chapter also seeks to investigate whether the effect of
NO2 differs by different age groups, the deprivation measure which dominates may also
change depending on the age group.

The remainder of this section will briefly describe the statistical model used to
estimate the NO2-health relationship, while also briefly describing BMA. Inference is
performed within a Bayesian setting using McMC within the R software environment
(R Core Team, 2015).

6.3.1 Spatial model

The vector of observed and expected numbers of cardio-respiratory first events (hos-
pital admissions or deaths) is denoted by Y = (Y1, . . . , Ym)> and E = (E1, . . . , Em)>

respectively, where m = 2089 data zones in total. The vector of NO2 concentrations
(for either Fusion or DEFRA) is denoted by x = (x1, . . . , xm) for all m data zones,
while each measure of socio-economic deprivation is denoted by u = (u1, . . . , um).
Thus, for the ith data zone, the vector of covariates is given by z>i = (1, xi, ui), while
the corresponding regression parameters are given by β = (β1, β2, β3)>, where β1 is
the intercept term, β2 is the key parameter in this model, namely the effect of NO2

on cardio-respiratory disease risk, and β3 is the deprivation effect. A general Bayesian
Poisson log-linear spatial model for these data is given by:

Yi | Ei, Ri ∼ Poisson(EiRi) for i = 1, . . . ,m, (6.1)

ln(Ri) = z>i β + φi,

β ∼ N(m,V),

φi | φ−i ∼ N
(

ρ
∑m
j=1wijφj

ρ
∑m
j=1wij + 1− ρ,

τ 2

ρ
∑m
j=1wij + 1− ρ

)
,

where Ri is the risk of disease in data zone i. Again, the regression parameters,
β, are assigned a weakly informative multivariate Gaussian prior, with hyperparam-
eters (m,V), typically with mean zero and a large diagonal variance matrix (such as
diagβ(1000)). The final term in the linear predictor is the vector of random effects
φ = (φ1, . . . , φm)>, which controls the residual spatial autocorrelation in the data after
accounting for covariate effects.

The Leroux (Leroux et al., 1999) specification is used for φi | φ−i here, due to its
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flexibility in accounting for both strong and weak spatial autocorrelation structures.
This model is specified by a set of m univariate full conditional distributions, p(φi |
φ−i), where φ−i = (φ1, . . . , φi−1, φi+1, . . . , φm). Spatial autocorrelation is imposed
using a binary m×m neighbourhood matrix, W, whose ijth element, wij = 1 if areas
(i, j) share a common border, and wij = 0 otherwise. This specification asserts that
neighbouring areas have random effects that are partially autocorrelated, otherwise
the random effects are conditionally independent. Furthermore, ρ controls the level of
spatial autocorrelation, with ρ = 0 corresponding to spatial independence with mean
zero and constant variance, and ρ = 1 corresponding to strong spatial autocorrelation
(and simplifying to the intrinsic CAR model given by equation (2.84) in Chapter 2
Section 2.4.2.1). Weakly informative hyperpriors are assigned for τ 2 and ρ; typically
an inverse-gamma(a, b) distribution for τ 2, and a uniform distribution on the unit
interval for ρ.

6.3.2 BMA

Bayesian model averaging (BMA) provides a framework for combining estimates for a
specific quantity of interest from multiple Bayesian models into a single overall esti-
mate that takes model uncertainty into account. This methodology will be described
briefly here, but a full description can be found in Chapter 5 Section 5.3.5.

Numerous models are considered here due to the spatial model being applied sepa-
rately for each of the seven deprivation measures and for both sets of NO2 concentra-
tions: the Fusion concentrations, and the DEFRA modelled concentrations. In total,
there are K = 14 models, where β̂2k

reflects the estimate for the NO2-health relation-
ship for the kth model. The models are denoted by (M1, . . . ,MK), with corresponding
model parameters given by the set (θ1, . . . ,θK). The true effect of NO2 concentrations
on the risk of cardio-respiratory disease is given by β2, with its posterior distribution
given by

p(β2 |Y) =
K∑
k=1

p(β2 |Mk,Y)p(Mk |Y). (6.2)

The posterior distribution of β2 from model K is given by p(β2 |Mk,Y), and p(Mk |Y)
is the posterior probability of model Mk. In other words, the posterior distributions
for the NO2 effects are averaged across the K = 14 models, while being weighted by
their posterior model probabilities, given by

p(Mk |Y) = p(Y |Mk)∑K
l=1 p(Y |Ml)

. (6.3)

Typically, if information is available regarding which model should be more influential
to the overall effect size, then that can be incorporated into (6.3). However, no such
information is available here, therefore, each model is assumed to have an equal contri-



125

bution to the overall effect size. Next, p(Y |Mk) is approximated by J McMC samples
as

p(Y |Mk) ≈
1
J

J∑
j=1

p(Y |θ(j)
k ,Mk)p(θ(j)

k |Mk), (6.4)

which gives the marginal probability of the data, Y given model Mk averaged over all
parameters, where the superscript (j) denotes the jth McMC sample. Thereafter, the
posterior mean and variance for the true relationship β2 can be computed as

E[β2 |Y] =
K∑
k=1

β̂2k
p(Mk |Y), (6.5)

for the mean, and

Var[β2 |Y] =
K∑
k=1

(Var[β2 |Mk,Y] + β̂2
2k

)p(Mk |Y)− E[β2 |Y]2, (6.6)

for the variance. Then, the uncertainty surrounding the estimate for the overall NO2-
health relationship is given by the approximate 95% credible interval (CI) as

95% CI = E[β2 |Y]± 1.96
√

Var[β2 |Y]. (6.7)

6.4 Results

This section presents the results from investigating whether long-term exposure to
NO2 concentrations has a detrimental effect on the risk of cardio-respiratory disease in
West Central Scotland between 2006 and 2012. Section 6.4.1 provides some descriptive
analyses, while Section 6.4.2 describes the sets of results obtained from fitting the
spatial model to both sets of NO2 concentrations and all seven deprivation measures
to the fully-aggregated (over month, year, age group and sex) first events. Section
6.4.3 presents the same set of aforementioned models, but applied to the aggregated
(over month, year and sex) first events separately for three age groups: younger age
group (0-19 years), working age group (20-64 years), and older age group (> 65 years).
Section 6.4.4 presents the overall estimate of the effect of NO2 on cardio-respiratory
first events using the BMA approach for the fully-aggregated first events, and the three
age groups separately. Each model was based on running five parallel Markov chains
for 120,000 iterations, which included a burn-in period of 20,000 iterations. Thinning
was applied to the remaining samples in each chain in which every 10th sample was
kept in order to reduce their autocorrelation, thus producing a final set of 50,000
posterior samples to be used to determine the association between NO2 concentrations
and cardio-respiratory disease.
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Figure 6.4: Scatter plots displaying the relationship between the cardio-respiratory stan-
dardised incidence ratio (SIR) and both the Fusion NO2 concentrations (µgm−3) and
the DEFRA NO2 concentrations (µgm−3) for the fully-aggregated first events.

6.4.1 Descriptive results

This section explores relationships between variables, while performing simple Poisson
regression in order to assess the strength of the residual spatial autocorrelation. In
general, both the Fusion concentrations and the DEFRA concentrations exhibited a
weak, but positive linear relationship with the cardio-respiratory SIR when investigat-
ing both the fully-aggregated first events, and the first events stratified by age group.
This is shown in Figure 6.4 which displays scatter plots of the relationship between
SIR and NO2 concentrations for the fully-aggregated first events. Similar results were
found for each of the three age groups separately.

When looking at the relationship between the SIR and the individual deprivation



127

Figure 6.5: Scatter plots displaying the relationship between the cardio-respiratory stan-
dardised incidence ratio (SIR) and two deprivation measures: income and access to
services.

measures, only access to services did not have a strong or positive relationship with
SIR. This is displayed in the bottom panel of Figure 6.5, where it is clear that access to
services has a slight negative, but linear relationship. The top panel is the relationship
for the income domain, which shows a strong, positive and linear relationship with SIR.
Both employment and education displayed similar relationships, with housing display-
ing a slightly weaker, positive relationship. Again, similar relationships were observed
for all three age groups.

Initially, a simple Quasi-Poisson generalised linear model that did not include any
spatial random effects was applied to the cardio-respiratory first events, with NO2 (both
Fusion concentrations and DEFRA concentrations) and each deprivation measure in
turn as covariates. The results for the NO2-health effects are given in Table 6.3. Inter-
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estingly, none of the RRs are positive, suggesting that NO2 has a protective effect on
the risk of cardio-respiratory disease when fully aggregated over all years, sex and age
groups. However, the overdispersion parameter ranges from 2.201 to 3.613, suggesting
there is moderate overdispersion present with respect to the Poisson assumption of
equal mean and variance. The dispersion is highest for the housing, access and crime
domains, suggesting that these deprivation variables do not account for as much of the
variation in cardio-respiratory first events compared to the remaining deprivation mea-
sures. Residuals from each model were then tested for residual spatial autocorrelation
by calculating Moran’s I statistic (Moran, 1950) given by equation (2.76) in Chapter 2
Section 2.4.2. Here, Moran’s I statistic ranges from 0.203 to 0.338, and was statistically
significant at the 5% level (according to the p-values) for all models, thus suggesting
that spatial autocorrelation was present in the data. This is also shown in Figure 6.6,
where it is clear that spatial autocorrelation remains. This map relates to the Fusion
NO2 concentrations with the income domain as the chosen deprivation measure, but
similar results were observed for the other deprivation measures and when the DEFRA
concentrations were used.

Table 6.3: Quasi-Poisson generalised linear model results for the NO2-health effect
under each deprivation measure for the fully-aggregated data. Results show the relative
risks (RR), 95% confidence intervals (CI), dispersion parameter, and Moran’s I statistic
for each model.

NO2 Deprivation RR (95% CI) Dispersion Moran’s I

Fusion

Income 0.971 (0.964, 0.978) 2.245 0.219
Employment 0.973 (0.966, 0.980) 2.205 0.188
Education 0.971 (0.964, 0.978) 2.404 0.161
Housing 0.973 (0.963, 0.982) 3.394 0.320
Access 0.987 (0.977, 0.997) 3.706 0.338
Crime 0.992 (0.983, 1.001) 3.613 0.325
SIMD 0.973 (0.973, 0.980) 2.278 0.209

DEFRA

Income 0.964 (0.957, 0.972) 2.205 0.210
Employment 0.970 (0.962, 0.977) 2.201 0.185
Education 0.969 (0.961, 0.977) 2.409 0.161
Housing 0.961 (0.950, 0.971) 3.366 0.311
Access 0.981 (0.970, 0.992) 3.702 0.336
Crime 0.991 (0.981, 1.000) 3.613 0.324
SIMD 0.968 (0.961, 0.976) 2.270 0.203

Similar results were observed for the younger and working age group. For the
younger age group, RRs ranged from 0.917 to 0.948, with dispersion (1.980 - 2.265)
and Moran’s I (0.313 - 0.374) values indicative of residual spatial autocorrelation. The
working age group had RRs ranging from 0.934 to 0.989, which suggests a weak associ-
ation between NO2 concentrations and cardio-respiratory disease in this age group. In
addition, the dispersion (1.517 - 2.935) and Moran’s I (0.142 - 0.341) values reduced,
but were still statistically significant and suggested residual spatial autocorrelation was
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present. However, in the older age group, RRs were positive, suggesting that exposure
to NO2 concentrations has a detrimental effect on cardio-respiratory disease. The RRs
ranged from 1.002 to 1.036, with six out of 14 models containing the null risk of one in
their corresponding confidence intervals. The dispersion (0.914 - 2.089) and Moran’s I
(0.051 - 0.096) values reduced further, while still suggesting spatial autocorrelation is
present.
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Figure 6.6: Spatial map of residuals from a quasi-Poisson model, with Fusion NO2
concentrations and the income domain as covariates on the fully-aggregated first events.

6.4.2 Spatial model on fully aggregated first events

This section investigates the sensitivity of the NO2-health effect according to how NO2

is estimated, and the deprivation measure included as a covariate in the statistical
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model for the fully-aggregated cardio-respiratory first events. Combination of these
two factors results in a total of 14 models. Bayesian spatial models are used here,
which include a set of spatial random effects to take into account any residual spatial
autocorrelation in the data after the covariates have been accounted for.

As aforementioned, the Moran’s I statistic suggested substantial spatial autocorre-
lation in the residuals when no random effects were included, and this was reflected
in the spatial autocorrelation parameter, ρ, as all values were close to one implying
strong spatial autocorrelation. The posterior median and 95% credible intervals for
each combination of NO2 and deprivation measure are given in Table 6.4, where the
NO2-health effects are presented on the relative risk scale for a 5 µgm−3 increase in
NO2 concentrations, since this reflects a realistic change in exposure. Overall, results
suggest that NO2 has a negative association with cardio-respiratory first events since
the RRs are below the null risk of one, ranging from 0.977 to 0.996. However, out
of the 14 models only two are substantial at the 95% level, since their corresponding
credible intervals are wholly below the null risk of one. These two models relate to
the education domain, which displays a 2.3% decreased risk in cardio-respiratory first
events when the Fusion concentrations are used, and a 2.1% decreased risk when the
DEFRA concentrations are used. Both of these models only show a small decreased
risk, and are also only borderline substantial, since the upper limit of the credible inter-
val is close to one. Meanwhile, all remaining models show no evidence of a substantial
relationship between NO2 concentrations and the risk of cardio-respiratory first events,
while being adjusted for various indicators of deprivation. Furthermore, the range in
estimated RRs is small, with a difference of only 1.9%, suggesting that the estimated
relationship between NO2 concentrations and the risk of cardio-respiratory disease is
robust to the choice of NO2 concentrations and indicator of deprivation. The only pat-
tern of note is that the estimated effect sizes are slightly attenuated when the Fusion
concentrations are used compared to the DEFRA concentrations.

Even though education was the only domain that resulted in a small, but sub-
stantial effect for NO2 on the risk of cardio-respiratory disease, the statistical model
including the income domain had the best fit to the data compared to the remaining
models in terms of the deviance information criterion (DIC), since it had the lowest
value. This finding is in line with what was observed in the previous chapter, when
cardio-respiratory mortality was the chosen outcome. However, the observed asso-
ciation between NO2 concentrations and cardio-respiratory mortality in the previous
chapter was positive, unlike here, where the association was found to be negative. How-
ever, both analyses were in agreement that the statistical model including the income
domain had the best fit to the data, in terms of DIC.
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Table 6.4: Bayesian Poisson model results for the NO2-health effect under each depri-
vation measure for the fully-aggregated data. Results show the relative risks (RR), 95%
credible intervals (CI), spatial correlation parameter ρ and the deviance information
criterion (DIC) for each model. RRs are presented for a 5µgm−3 increase in NO2 con-
centrations.SIMD represents the entire deprivation index re-weighted without the health
domain. The results in bold are substantial at the 5% level.

NO2 Deprivation RR (95% CI) ρ (95% CI) DIC

Fusion

Income 0.989 (0.975, 1.005) 0.926 (0.932, 0.979) 15906
Employment 0.988 (0.974, 1.002) 0.848 (0.716, 0.941) 15917
Education 0.977 (0.965, 0.990) 0.603 (0.440, 0.764) 16070
Housing 0.990 (0.971, 1.011) 0.923 (0.845, 0.977) 16196
Access 0.981 (0.961, 1.001) 0.985 (0.811, 0.960) 16247
Crime 0.989 (0.971, 1.008) 0.875 (0.781, 0.949) 16230
SIMD 0.992 (0.976, 1.008) 0.885 (0.773, 0.961) 15935

DEFRA

Income 0.992 (0.976, 1.010) 0.928 (0.834, 0.980) 15906
Employment 0.990 (0.975, 1.007) 0.982 (0.710, 0.946) 15916
Education 0.979 (0.966, 0.993) 0.604 (0.440, 0.775) 16072
Housing 0.994 (0.973, 1.015) 0.925 (0.847, 0.978) 16199
Access 0.986 (0.966, 1.009) 0.892 (0.807, 0.958) 16249
Crime 0.996 (0.976, 1.017) 0.875 (0.781, 0.950) 16224
SIMD 0.995 (0.977, 1.012) 0.892 (0.779, 0.965) 15937

6.4.3 Spatial model on first events stratified by three age
groups

This section explores how the association between NO2 concentrations and the risk of
cardio-respiratory disease changes across the age spectrum. Data are stratified into
three age groups: younger (0-19 years), working (20-64 years), and older (> 64 years),
where the sensitivity of the association will be investigated according to the choice of
NO2 concentrations (either Fusion or DEFRA), and deprivation indicator. The com-
bination of these factors results in a total of 42 models, where the statistical model of
choice is the Bayesian spatial model that incorporates spatial random effects.

The Moran’s I statistics for the quasi-Poisson models ranged from 0.313 to 0.374
for the younger age group; 0.341 to 0.142 for the working age group; and 0.051 to 0.096
for the older age group. All statistics were statistically significant; however, the level
of residual spatial autocorrelation reduces as the age of the population increases. A
similar pattern is observed in the Bayesian spatial models for the ρ parameter, which
ranged from 0.993 to 0.996 for the younger age group; 0.887 to 0.976 for the working
age group; and 0.007 to 0.155 for the older age group. These results for the younger
and working age group are in line with what was observed for the fully-aggregated
data, whereas the Moran’s I results for the older age group are in line with what was
observed when using mortality data only (statistic of 0.036).
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The results for these models are displayed in Table 6.5, where the RRs and 95%
credible intervals are shown for all three age groups. The RRs are consistent within
the specified age groups, but vary considerably across the age groups. For the younger
age group, the results differ from the quasi-Poisson results in terms of the relationship
being estimated to be positive instead of negative. Therefore, increasing NO2 concen-
trations is associated with a small, but positive increase in the risk of cardio-respiratory
disease; however, the evidence suggests the association is not substantial, since the 95%
credible intervals contain the null risk of one. The working age group displays a nega-
tive association with the risk of cardio-respiratory disease, with all posterior medians
being less than one; however, only two out of the 14 models are borderline substantial.
Therefore, there is little evidence in the working age group of a relationship between
NO2 concentrations and the risk of cardio-respiratory disease. For the older age group,
the RRs switch to being positive, which is in line with the mortality analyses in the
previous chapter, and implies that there is a small, but positive relationship between
NO2 concentrations and the risk of cardio-respiratory disease. Eight out of the 14
models have substantial relationships, with the crime domain having the strongest re-
lationship. However, in terms of DIC, the income domain still has the lowest value,
and is therefore considered as the best fit to the data. Conversely, the DIC was lowest
for the employment domain in the working age group, but was lowest for income in the
younger age group. These results suggest that it is important to consider the pollution-
health relationship at different ages in order to understand where the relationship lies,
which in turn can help policy makers target the people that are most affected by the
detrimental effects of air pollution.

In addition to the RRs displayed for the NO2-health effects, Table 6.6 displays
the corresponding deprivation-health effect separately for the three age groups. The
deprivation-health effects are extremely similar across the two measures of NO2 con-
centrations. The RRs are also similar across the three age groups for each deprivation
indicator; however, the effect sizes are slightly higher for the working age group, and
are slightly attenuated for the older age group. The access to services domain was
the only deprivation indicator with a negative relationship with the risk of cardio-
respiratory disease; however, this relationship is not strong since the upper limit of the
95% credible intervals is close to the null risk of one. These results are in line with
the scatter plots displayed in Figure 6.5, which shows a slightly decreasing albeit weak
relationship between SIR and the access to services score. This also highlights that
the access to services domain exhibits an independent spatial pattern compared to the
other indicators, which was also indicated in the previous chapter when mortality was
the outcome. Six out of the seven deprivation indicators have narrow credible inter-
vals, whereas the crime domain has credible intervals that are extremely wide. This
highlights greater uncertainty for this domain.
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Table 6.5: Relative risks (RR) and 95% credible intervals for the NO2-health effect
under each deprivation measure for the younger (0-19 years), working (20-64 years)
and older (> 65 years) age groups. RRs are presented for a 5µgm−3 increase in NO2
concentrations. SIMD represents the entire deprivation index re-weighted without the
health domain. The results in bold are substantial at the 5% level.

NO2 Deprivation RR (95% CI)
Younger Working Older

Fusion

Income 1.019 (0.988, 1.051) 0.988 (0.970, 1.008) 1.008 (0.996, 1.019)
Employment 1.012 (0.990, 1.055) 0.988 (0.969, 1.005) 1.011 (1.000, 1.023)
Education 1.011 (0.981, 1.043) 0.979 (0.962, 0.999) 1.013 (1.002, 1.025)
Housing 1.022 (0.988, 1.055) 0.996 (0.972, 1.021) 1.002 (0.989, 1.014)
Access 1.012 (0.974, 1.048) 0.981 (0.956, 1.007) 1.009 (0.996, 1.022)
Crime 1.018 (0.985, 1.053) 0.996 (0.970, 1.020) 1.018 (1.002, 1.032)
SIMD 1.026 (0.996, 1.058) 0.993 (0.975, 1.011) 1.011 (1.000, 1.023)

DEFRA

Income 1.023 (0.990, 1.057) 0.985 (0.966, 1.004) 1.018 (1.009, 1.011)
Employment 1.026 (0.993, 1.058) 0.985 (0.976, 1.004) 1.023 (1.010, 1.035)
Education 1.017 (0.984, 1.051) 0.974 (0.955, 0.995) 1.026 (1.013, 1.039)
Housing 1.023 (0.989, 1.055) 0.991 (0.965, 1.018) 1.007 (0.993, 1.021)
Access 1.018 (0.981, 1.055) 0.981 (0.954, 1.008) 1.019 (1.005, 1.035)
Crime 1.025 (0.990, 1.065) 0.996 (0.969, 1.022) 1.031 (1.016, 1.047)
SIMD 1.023 (0.994, 1.061) 0.989 (0.970, 1.008) 1.022 (1.010, 1.035)

6.4.4 BMA

Results from the previous section demonstrated that the effect of NO2 on ill health
differed by age group and was sensitive to the choice of deprivation indicator. When
BMA was performed on the fully-aggregated first events, the overall estimated relative
risk was 0.991, together with an associated 95% credible interval of (0.975, 1.008).
This small, but the negative effect indicates that for a 5µgm−3 increase in NO2 concen-
trations, the cardio-respiratory first events decrease by an estimated 0.9%. However,
this overall result is not substantial since the credible interval encompasses the null
risk of one, indicating that there is no evidence of a relationship between NO2 and
cardio-respiratory ill health. These results are in line with what was observed for the
cardio-respiratory deaths, where the estimated RR was 1.011 (0.993, 1.029). Con-
versely, a positive relationship was observed here; however, the relationship was not
substantial, since the credible interval contained the null risk of one. Again, income was
the only deprivation indicator that contributed to the overall effect size in which the
Fusion model contributed 45.44% and the DEFRA model contributed 54.56%. These
results are in line with the mortality study, which observed a greater influence on the
overall effect size from the DEFRA (67.83%) model compared to the Fusion (32.17%)
model. However, in this case, the difference in influence between the two models is
small.

BMA was performed separately for the three age groups, where for the younger age
group, the estimated overall RR and 95% credible interval was 1.013 (0.982, 1.045);
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Table 6.6: Relative risks (RR) and 95% credible intervals for each deprivation mea-
sure for the younger (0-19 years), working (20-64 years) and older (> 65 years) age
groups. RRs are presented for a one standard deviation increase in deprivation. SIMD
represents the entire deprivation index re-weighted without the health domain.

NO2 Deprivation RR (95% CI)
Younger Working Older

Fusion

Income 1.010 (1.009, 1.011) 1.015 (1.014, 1.016) 1.008 (1.007, 1.009)
Employment 1.013 (1.011, 1.015) 1.021 (1.020, 1.022) 1.010 (1.009, 1.011)
Education 1.141 (1.121, 1.161) 1.203 (1.189, 1.218) 1.078 (1.066, 1.091)
Housing 1.006 (1.005, 1.007) 1.007 (1.006, 1.008) 1.004 (1.004, 1.005)
Access 0.997 (0.996, 0.999) 0.995 (0.994, 0.996) 0.995 (0.994, 0.997)
Crime 1.828 (1.420, 2.320) 1.982 (1.677, 2.323) 1.992 (1.656, 2.392)
SIMD 1.006 (1.005, 1.007) 1.010 (1.010, 1.011) 1.005 (1.004, 1.005)

DEFRA

Income 1.010 (1.009, 1.011) 1.015 (1.014, 1.016) 1.007 (1.007, 1.008)
Employment 1.013 (1.011 1.014) 1.021 (1.020, 1.022) 1.010 (1.009, 1.011)
Education 1.141 (1.122, 1.160) 1.203 (1.189, 1.217) 1.076 (1.064, 1.088)
Housing 1.006 (1.004, 1.007) 1.007 (1.006, 1.008) 1.004 (1.004, 1.005)
Access 0.997 (0.996, 0.999) 0.995 (0.994, 0.996) 0.996 (0.995, 0.997)
Crime 1.820 (1.429, 2.300) 1.982 (1.677, 2.336) 1.937 (1.607, 2.327)
SIMD 1.006 (1.005, 1.007) 1.010 (1.010, 1.011) 1.005 (1.004, 1.005)

0.984 (0.966, 1.003) for the working age group; and 1.008 (0.996, 1.019) for the older
age group. For all age groups, the estimated RRs were small, but not substantial
at the 95% level indicating no evidence of an association between NO2 and cardio-
respiratory first events even at different age groups. Furthermore, the deprivation
indicator with the most influence changes across the three age groups. The education
domain contributed to the overall effect size in the younger age group (21.17% for
Fusion and 78.83% for DEFRA), while the employment domain had the most influence
for the working age group (92.38% for Fusion and 7.62% for DEFRA). Similarly to the
fully-aggregated BMA, the income domain had the most influence in the older age
group (0.01% for Fusion and 99.91% for DEFRA). These results show that out of the
numerous deprivation indicators, only one contributes to the overall effect size, which
was also observed in the previous chapter.

6.5 Discussion

This chapter sought to investigate the association between NO2 concentrations and
the incidence of cardio-respiratory disease in West Central Scotland between 2006 and
2012 inclusive. Incidence was defined as the number of first events of cardio-respiratory
disease in terms of death or the first admission into hospital, with cardio-respiratory
disease as the main cause. Incidence was the focus of this chapter, since it studies
the number of new cases of a disease in a population in order to understand the risk
of developing cardio-respiratory disease as a result of air pollution. Similarly to the
previous chapter on cardio-respiratory mortality, this chapter investigated the sensitiv-
ity of the NO2-health relationship according to how NO2 was estimated, the choice of
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deprivation indicator, and whether the observed relationship was different at different
age groups.

The main finding from this chapter is that the way in which NO2 concentrations
were estimated and which deprivation indicator was included did not have a major im-
pact on the estimated relationship between NO2 and cardio-respiratory disease. This is
in contrast to the previous chapter when mortality was considered, which saw these two
factors having a major impact on the resulting NO2-health effects. BMA was utilised
as a way of combining information from all models into a single, overall estimate, rather
than choosing one model based on a goodness-of-fit measure and ignoring the uncer-
tainty from having multiple estimated effect sizes. The final estimated effect size for
the fully-aggregated first events shows that a 5µgm−3 increase in NO2 concentrations
is associated with 0.9% lower cardio-respiratory first events in West Central Scotland
between 2006 and 2012. However, this effect is not substantial at the 5% level, since
the resulting 95% credible interval contains the null risk of 1. Again, this could be
due to the NO2 concentrations being too low to show a strong impact, with greater
variation being paramount to observe any substantial health impacts. Furthermore,
this result is not in line with what was observed when mortality was considered, which
saw a small, but positive effect of NO2 concentrations on cardio-respiratory mortality.
The correlation between mortality and first events is 0.713, which indicates a moderate
to high correlation between the two variables. Even though there is a relatively high
correlation between the two variables, slightly opposing effect sizes are still observed.
This suggests that the hospital admission and mortality data behave differently to each
other in this particular setting. However, in both analyses, there was no evidence to
suggest a substantial association between NO2 concentrations and cardio-respiratory
disease. Huang et al. (2015) conducted a spatio-temporal study across the whole of
Scotland, where the outcome of the study focused on all respiratory hospital admis-
sions, and not just the first admission into hospital. This study found a small negative
relationship when Fusion NO2 concentrations were used (the authors developed their
own fusion model), but found a small positive relationship when DEFRA concentra-
tions were used. Together with the analyses conducted in this thesis, there is clear
inconsistency in the results, which emphasises the need for further study, in terms of
separating out the effects of respiratory and cardiovascular disease, as the two diseases
could behave in different ways. Unfortunately, this was not possible in this thesis due to
time constraints, but would inherently be important in future research. Furthermore,
the difference between hospital admissions and mortality could be studied further in
order to tease out where the effect of air pollution is greatest.

In contrast to the fully-aggregated first events results discussed above, the NO2-
health effect was not consistent across the three age groups. In the younger age group
(0-19 years), which includes children and young adults, there was a small, but positive
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effect on the risk of cardio-respiratory first events, while in the working age group, the
effect was negative , which is in line with the fully-aggregated results. Conversely, the
older age group (> 65 years) found a small, but positive effect, which is in line with
the results from using mortality data as the study outcome. The difference in effect
sizes between the age groups could be due the nature of the three different age groups.
For example, individuals in the younger age group may have greater admissions into
hospital with acute respiratory illness, such as asthma, rather than having illnesses
that cause death. Individuals within the working age group may have a mix of cardio-
vascular and respiratory diseases and therefore greater numbers of hospital admissions;
however, cardiovascular disease tends to be more prominent by the late 40s. The older
age group may be likely to include the greatest numbers of deaths, with fewer numbers
of admissions (which would most likely relate to cases of pneumonia, since it is an acute
condition, Gittins et al., 2013), and in general, tend to suffer from more cardiovascular
diseases. Moreover, there is a great deal of exposure misclassification with regards to
the younger and working age group, but not so much for the older age group. Exposure
is generally more accurate for older people, since the majority of their time is spent
at home and they tend to stay within the same data zone. However, the younger age
group will see individuals spending most of their time at school, which may not be
within the same data zone as their home, especially for individuals that reside within
the city as the data zones become smaller with increasing population density. Likewise,
for the working age group, exposure misclassification is prominent since individuals are
more likely to travel from the home to the workplace, which is often not in the same
data zone. It is likely that this type of measurement error biases the relative risks
towards the null risk of one, indicating no substantial association (Armstrong, 1998).

Previous studies have observed stronger pollutant-health effects in the elderly pop-
ulation (Fischer et al., 2003; Larrieu et al., 2007; O’Neill et al., 2003); however, the
results observed here, are in line with Maheswaran et al. (2012), who found no asso-
ciation between air pollutants and ischemic stroke incidence in London. The authors
noted that while there was no substantial association, the effects were slightly stronger
in the older age group (65-79 years). In addition, a small area ecological study by
Lawson et al. (2012), observed a small negative association between PM2.5 and asthma
incidence aggregated across all ages, which is in line with the fully-aggregated analysis
presented here. Lee & Shaddick (2010) investigated the relationship between respira-
tory mortality and a number of air pollutants in the Greater London region between
2003 and 2005. The age group under study was the same as the older age group de-
fined here, and the authors found a small positive effect (RR of 1.013 (0.998, 1.027))
of NO2 concentrations on respiratory mortality. This effect size is dissimilar to what
was observed in this study, but is similar in the sense that no substantial association
was observed.
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With regards to the relationship between air pollution and children’s health, Beatty
& Shimshack (2014) have noted that the relationship has been understudied, with the
main focus being on adult and older age groups. The authors note that children could
be vulnerable to air pollution, having smaller than average lung size as they develop
into adulthood, as well as having a more active lifestyle (Committee on Environmenta
Health, 2004). However, in this chapter, no substantial association was observed.

It has been shown that exposure to air pollution tends to have a greater effect on
more deprived groups, with socially and economically deprived people more likely to
live in more polluted areas, whether on purpose or accidentally (Liverani et al., 2016;
O’Neill et al., 2003). This chapter observed consistent NO2-health effects when dif-
ferent deprivation indicators were considered. However, this was in contrast to what
was observed in the previous chapter when mortality was the study outcome, which
found that the resulting NO2-health effect was highly variable depending on the de-
privation indicator used. In general, individuals from more deprived backgrounds are
more likely to be admitted to hospital. This could, in part, be due to to individuals
from less deprived backgrounds having greater knowledge of when to seek support and
seeking support earlier for poor health. Therefore, it is possible that referral bias in
present in these analyses.

It has been established that low levels of income and education are associated with
higher risks of mortality and morbidity (Fernández-Somoano et al., 2013; O’Neill et al.,
2003). For both the fully-aggregated first events and the fully-aggregated mortality
data, income was the deprivation indicator with the greatest influence on the overall
NO2-health effect, which is in line with the literature (Fernández-Somoano et al., 2013;
O’Neill et al., 2003). When the first events were stratified according to the three age
groups, the education and employment indicators had the greatest influence for the
younger and working age group, while income had the greatest contribution in the
older age group, which is in line with the fully-aggregated first events and mortality.
While results are different for two out of the three age groups, it is important to note
that the correlation between education, employment and income was high, ranging
from 0.833 to 0.946, which suggests that these three variables are essentially providing
the same information, and thus, indicating robustness in results between the three age
groups. These results also suggest that other studies focusing on income, employment
or education as their main measure of socio-economic deprivation, are utilising the best
possible variables when accounting for deprivation in their analyses.

Similarly to the previous chapter focussing on cardio-respiratory mortality, the es-
timated effect sizes were slightly attenuated when the Fusion NO2 concentrations were
used compared to the DEFRA concentrations. Both sets of pollutant concentrations
influenced the overall effect size; however, how much each influenced the overall effect
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size varied across the age groups, with the DEFRA concentrations having the majority
of the greatest influences. This is in line with the previous chapter, which also found
that the DEFRA concentrations had the greatest influence. These results are broadly
consistent with previous studies, such as Huang et al. (2015), indicating that studies
which use modelled concentrations, such as DEFRA, will obtain similar results com-
pared to taking the proper steps to account for uncertainty in the modelled pollution
estimates.

There are a few limitations to the analyses conducted in this chapter. Firstly, the
cardio-respiratory first events were aggregated over a 7 year period to ensure that there
was enough variation in the response. The aggregated first events were then stratified
according to three broad age groups; however, it would be interesting to utilise nar-
rower age groups in order to get a more detailed understanding of where the effect
of air pollution is greatest. This would help aid policy makers in tackling the burden
of detrimental air quality. However, reducing the age groups further will hinder the
variation in the response, therefore either more data are required or different outcomes
should be studied. Again, only a purely spatial study could be conducted due to the
small number of first events in each data zone, therefore, aggregating to a higher spatial
resolution may improve the power of the study. Secondly, cardio-respiratory disease is
a combination of two main disease types, but it would be interesting to study these two
diseases separately. It was not possible due to time constraints with the Safe Haven
and data controllers; however, high level aggregation would have to take place to ensure
enough variation in the response for detecting any potential substantial effects.

Suggestions for future work include the study of vulnerability, by following up a
cohort of people that have already been admitted to hospital for cardio-respiratory
disease and observing whether they have further admissions or not. This would allow
the study of air pollution on a population that is already considered vulnerable due to
having co-morbidities, which is more representative of the population as a whole.



Chapter 7

Conclusion

7.1 Introduction

There has been much research surrounding the detrimental effects of air pollution on
the human population, where long-term exposure has been linked with increased risks
of both cardio-respiratory mortality and morbidity. Exposure to air pollution has been
a global concern for the past eighty years, and initially came light due to extreme air
pollution episodes, including the London Smog in December 1952 (Ministry of Public
Health, 1954). These short-term air pollution episodes, usually lasting over a period
of two to three days, saw a rise in the numbers of people with respiratory distress
and increased the numbers of premature deaths. These air pollution episodes and the
research surrounding them have helped develop legislation, such as the Clean Air Act
(1993) in the UK, to improve air quality by setting target levels that have to be met.
Areas which fail to achieve these targets are investigated, and strategies initiated to
try and mitigate potential hazardous effects.

Generally, research into the effects of air pollution on ill health utilises either, time
series studies when investigating the effects of short-term exposure, or cohort studies
at the individual level when investigating the longer-term impact of air pollution on
ill health. Although cohort studies are extremely important research tools, allowing
for inferences to be made at the individual level, as well as helping establish causal
relationships, they can be time-consuming due to the need to follow-up patients over
a number of years. More recently, spatial ecological studies are being used, where a
population level association is estimated between air pollutant levels and ill health.
Data for these studies are more widely available and analyses are quick to implement
as there is no long follow-up period. While these studies are performed at the group
level, meaning cause and effect cannot be directly established, they are still valuable in
terms of making a contribution to the growing body of evidence, which demonstrates
that exposure to air pollution, even at low levels, is detrimental to health.

The majority of studies into the effects of air pollution on ill health in the United
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Kingdom have been conducted in England, with a particular focus on London given its
status of being the largest city in the UK in terms of population number and density.
Relatively few studies have been conducted in Scotland. Scotland is predominantly
a rural country, with the majority of the population residing within the central belt.
The continued expansion of major towns and cities in this region is conducive to rising
levels of air pollution, mainly due to increasing numbers of public transport and private
vehicles. Therefore, the focus on this thesis was to investigate the relationship between
NO2 concentrations, a measure of traffic-related air pollution, and ill health in West
Central Scotland during the period 2006 to 2012. Health outcomes of interest included
cardio-respiratory morbidity and mortality. Cardio-respiratory disease was chosen as
the study outcome due to its well-established links with air pollution (Scoggins et al.,
2004; Wang et al., 2009), since pollutants travel deep into the lungs when breathed,
thus aggravating the respiratory tract.

Researchers are faced with many challenges when it comes to statistical modelling,
especially when trying to estimate air pollutant concentrations at the appropriate spa-
tial level to be used in conjunction available disease data (referred to as the change-of-
support problem in the statistical literature). Therefore, the aims of this thesis were
to firstly, develop an air pollutant model that produces accurate and spatially dense
NO2 concentrations, that also mitigates the statistical challenges faced, such as the
change-of-support problem, when combining different sets of spatial data. Secondly,
these predicted pollutant concentrations were used to investigate its association with
cardio-respiratory ill health in West Central Scotland. Thirdly, estimates of the effect
of NO2 on ill health may be influenced by the type of NO2 concentrations used, the
choice of deprivation indicator, and the choice of spatial model, therefore, this thesis
also explored the sensitivity of the NO2-health relationship to these choices and sug-
gested ways of accounting for uncertainty.

7.2 Estimating spatially representative NO2 con-
centrations

The overarching aim of this thesis was to investigate the impact of NO2 concentra-
tions on cardio-respiratory disease, from 2006 to 2012 in West Central Scotland, thus
requiring spatially representative air pollutant concentrations. The disease data were
available at the data zone level, whereas NO2 data were only available at the point
and grid level. The misalignment in data between disease and air pollutant formed the
basis for this chapter, which sought to estimate accurate, fine scale NO2 concentrations
at the desired spatial scale.
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The NO2 concentrations across West Central Scotland were available from two
sources: measured concentrations from automatic monitors and diffusion tubes, and
modelled concentrations from an atmospheric dispersion model. The measured con-
centrations were sparse at the data zone level in that there was not an air pollution
monitor situated within every areal unit. This is why modelled concentrations are
typically used in epidemiological studies, since they provide complete spatial coverage
at a fine spatial scale. However, biases were inherent in these modelled concentrations,
since they were estimated from a mathematical model that usually provides no measure
of uncertainty. This chapter developed a geostatistical fusion model to combine both
sets of data on NO2 in order to predict NO2 concentrations at a fine spatial scale that
could then be used alongside the disease data.

The geostatistical fusion model developed in this thesis was an extension of the
model developed by Berrocal et al. (2010b), and was novel because it utilised infor-
mation from diffusion tubes, which have not been available for use in previous studies
(Lawson et al., 2012), as well as utilising important covariate information. The auto-
matic monitors only provide information at a limited number of locations, 16 in West
Central Scotland, and utilising diffusion tubes increased this number by 230 locations.
This in turn helped increase the efficacy of the geostatistical fusion model.

This chapter also studied the robustness of the fusion model in terms of comparing
modelling within a Bayesian setting to a classical frequentist setting. Both models per-
formed similarly when comparing bias and RMSPE, but the Bayesian model had wider
and more appropriate prediction intervals, owing to the fact that modelling within a
Bayesian framework allows for uncertainty in the estimated model parameters, whereas
the frequentist approach assumes the estimated model parameters are fixed and known
when making predictions. Furthermore, this chapter demonstrated an improvement in
fine scale spatial prediction when the diffusion tube data were included with the com-
monly used automatic monitors. This improvement was due to the sheer increase in
the number of spatial locations at which NO2 concentrations were measured. This was
shown in the comparison of a prediction model solely utilising the automatic monitors,
and a prediction model solely using the diffusion tubes. The diffusion tube predic-
tion model performed better than the automatic monitor prediction model, as it had
lower bias (meaning the predictions were close to the true values), lower RMSPE, and
predictions intervals that were not overly wide. However, there was no difference in
prediction accuracy when both the automatic monitors and diffusion tube were used
jointly to predict NO2 concentrations. This is not surprising since it was the addition
from the diffusion tubes that improved the prediction accuracy, not vice versa.

There are a number of ways in which the proposed geostatistical fusion model can
be extended. One way is in terms of including a temporal resolution to the model. A
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purely spatial study was conducted in this thesis due to the lack of variation between
the NO2 concentrations over the years, and also for the fact that the health study
was at a yearly level and purely spatial. This is a limitation of the present study.
Another limitation is in terms of temporal resolution, as the diffusion tube data are
only available as monthly averages, whereas monitor data are available either hourly
or daily. Therefore, predicting at finer temporal scales is not possible at present. In
addition, it would be desirable to predict at a finer spatial resolution when used in
conjunction with the disease data. Although disease data are available at the area
level, they still require fine spatial resolutions since the size of a data zone depends
on population density. Therefore, in the city where population density is greatest the
data zones are extremely small and pollutant concentrations at 1km grid square are
still too large to ensure each small data zone has a grid box centroid, which was used as
the location point to assign each data zone a NO2 value. Despite these limitations, the
clear improvements in fine scale spatial prediction due to the novel methodology are
incredibly important in taking the estimation of air pollutant concentrations forward
for future research.

7.3 Application of estimated NO2 concentrations to
cardio-respiratory mortality data

The overarching aim of Chapter 5 was to apply the NO2 concentrations developed from
the previous chapter to cardio-respiratory mortality data in West Central Scotland to
investigate whether long-term exposure to NO2 concentrations increased the risk of
cardio-respiratory mortality. While no substantial association was observed between
exposure to NO2 and cardio-respiratory mortality after adjustment for deprivation, this
chapter provided a key insight into the importance of ensuring the pollutant-health ef-
fect is robust to the modelling choices made. Having numerous covariates or different
statistical models (spatial in the present case) can lead to a variation estimated effect
sizes. Variation in estimated effect sizes is often ignored in epidemiological studies,
which tend to highlight their ‘best’ model depending on the model that minimised
some goodness-of-fit criteria, such as the AIC or DIC. However, in air pollution and
health studies, the estimated effect sizes are relatively small meaning, the overall con-
clusion of the research depends on the final model chosen.

This chapter investigated the sensitivity of the NO2-health effect according to three
factors: estimation of NO2 concentrations, the choice of deprivation indicator, and the
choice of spatial model. Then sought to provide an approach to utilising information
from all models, rather than just presenting information from a single model. The pro-
posed methodology utilised Bayesian model averaging (BMA) as a way of combining
the results from all models into a single overall estimate that takes model uncertainty
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into account. The main finding was that the NO2-health effect was not robust to the
choice of these three factors, as a wide range of effect sizes were observed. There was
attenuation of the pollutant-heath effects when the NO2 concentrations were estimated
using the proposed geostatistical fusion model compared to when the modelled DE-
FRA concentrations were used. Furthermore, when BMA was performed on all models,
the statistical model with the DEFRA concentrations contributed to the overall effect
size more rather than the model with the proposed fusion model concentrations. The
majority of spatial ecological studies in Scotland (and the UK) tend to use modelled
concentrations due to their wide availability and ease of use, even though they are con-
sidered to contain biases. This suggests that, studies which use these types of modelled
data are using data that are more aligned with residual disease. However, as discussed
in Chapter 4, the DEFRA data were not as good at predicting measured pollutant
concentrations compared to the proposed fusion model, which provides more evidence
that the proposed estimated NO2 concentrations are indeed a better representation of
NO2 levels in West Central Scotland compared to the estimated DEFRA concentra-
tions.

As mentioned previously, data zones in West Central Scotland are relatively small
in the city due to its high population density, meaning that not all data zones have
an air pollutant value since they do not contain a grid box centroid. These data zones
were assigned the closest grid box centroid to where the population density is greatest.
However, this can still lead to exposure misclassification, as, technically, the data zone
is an amalgamation of all grid boxes that cross the data zone boundary. More research
is needed to ensure that areal units take a representative value that minimises exposure
misclassification, which in turn would lead to less biased and less diluted effect sizes.

There was a lack of variation across years in the cardio-respiratory mortality data
used in this thesis, meaning that the death counts had to be aggregated over a seven
year period. This can be mitigated by upgrading to a larger spatial unit to try and
increase the power of the study. However, there must be a trade-off between improving
power by having a coarser spatial unit and a reduction in evidence of a causal relation-
ship. The smaller the areal unit, the smaller the population within each area. This
implies a more socially and demographically homogeneous area, which is more closely
related to an individual level study.
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7.4 Application of estimated NO2 concentrations to
cardio-respiratory incidence data

The focus of this chapter was to study the effect of NO2 concentrations on the incidence
of cardio-respiratory disease. This chapter builds on knowledge from the previous chap-
ter by only utilising the spatial model that had the best performance, which was the
spatial model using the Leroux specification to model residual spatial autocorrelation.
This chapter is also similar to the previous chapter also in that it investigated whether
the relationship between NO2 concentrations and ill health was different in different
age groups.

Since the outcome of this chapter was different to that in the previous chapter, anal-
yses were conducted by comparing, in the first instance, both sets of estimated NO2

concentrations and utilising all indicators of deprivation in case different indicators
contributed to the overall NO2-health effect size. In contrast to the previous chapter,
the type of estimated NO2 concentrations and the choice of deprivation indicator did
not have a major impact on the estimated NO2-health relationship. Again, no sub-
stantial association was observed; however, the overall effect size indicated a protective
effect of NO2, rather than a detrimental effect. The mortality and incidence data were
relatively highly correlated, suggesting that the hospital admission data may have a
different relationship with air pollution compared to the mortality data. It was not
possible to assess this difference within this thesis due to time constraints, therefore,
future work could aim to investigate this.

Age is an important consideration in air pollution and health studies, as exposure
to air pollution may impact more vulnerable groups, such as children and the elderly,
who may be more susceptible to its detrimental effects. This chapter found inconsis-
tent results across the three age groups: younger ages (0-19 years), working ages (20-64
years), and elderly (> 65 years). These different age groups encompassed a wide range
of ages and thus, a wide range of morbidities. Previous studies found associations
between air pollution and cardio-respiratory disease in young children and in the older
population, but in this thesis no such relationships were found. It is possible that this
was due to the age groups used here being too wide for any association to be notice-
able. It was not possible in this thesis to construct narrower age groups, as smaller
groups would lead to smaller numbers of cardio-respiratory disease within the groups
and thus, less variation in the outcome. Therefore, there is scope for future studies in
Scotland to add to the growing evidence that exposure to air pollution affects more
vulnerable age groups by studying this further.

As with all air pollution and health studies, there is always a degree of exposure
misclassification, and within this chapter, exposure misclassification was prominent.
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The level of exposure misclassification may not be as high in cohort studies, since
exposure is assigned individually and can, therefore, borrow information from other
factors, such as information on where the individual spends the majority of their time.
However, ecological studies infer associations at the group level, where every individual
within an area is assigned the same level of exposure, which clearly is not plausible. It
is important for future research to mitigate exposure misclassification when it comes to
assigning exposure levels to younger and working age populations, since these groups
of people are more likely to spend their time not in the home.

Deprivation has played a major role in the two pollutant-health studies conducted
in this thesis. The majority of ecological studies control for deprivation using one or two
variables that serve as a proxy for area level deprivation. In this thesis, each individual
domain of the overall Scottish Index of Multiple Deprivation was included separately
to investigate which deprivation indicators were the most important in the NO2-health
relationship. This can help inform future research about the deprivation indicators
that should always be considered in an analysis. Bayesian model averaging was per-
formed as a way of determining which indicators were the most important. There
was consistency in the the deprivation indicator having the most influence between
the two pollutant-health chapters; however, the indicators changed when stratified by
age group. However, correlation between these indicators (income, employment, and
education) was high, suggesting that these indicators can be used interchangeably as
they essentially provide the same information. This is beneficial for future studies as
it is not always possible to obtain data on the suggested important indicators; thus,
knowing that there are a number of indicators that can be used eases the burden of
lack of available data or information.

This thesis only made use of a single air pollutant, NO2, since data were more
widely available. This pollutant served as an indication for traffic-related pollution,
and is widely studied due to its known health risks. However, the air people breathe
is a complex mixture of a whole host of air pollutants. Ideally, multi-pollutant models
should be considered, where care should be taken to ensure no two highly correlated
pollutants are included in the same statistical model. Combining air pollutants into
an overall air pollution index would be one way of ensuring air pollution is considered
as a whole. However, it is equally important to investigate individual pollutants, since
they are produced in different ways from different sources, and can help inform local
government and policy on how to reduce pollutants by targeting specific sources, and
thus improve overall air quality.

It is known that smoking is a major cause of both cardiovascular and respiratory
disease, and is a cause of air pollution in the home. Smoking is also very strongly
socially patterned, with higher levels of smoking in more deprived areas, and therefore
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could be influential in all aspects of this thesis. However, as information on smoking
is not routinely collected, it could not be accounted for in this thesis. It was also
not possible to assess, separately, the potential impacts of socio-economic deprivation
and smoking on the pollutant-health effects. There are many implications for not ad-
justing for smoking, such as biased and stronger pollutant-health effects, and perhaps
also stronger deprivation-health effects which would be attenuated if smoking was in-
cluded. However, smoking has been shown to be highly correlated with deprivation
(Rushworth et al., 2014), which has been accounted for in these analyses. Future
analyses could adopt the approaches suggested by Jackson et al. (2006) and Wakefield
(2004), who suggest combining area-level disease and air pollution data with corre-
sponding individual-level smoking data on smaller samples within a select number of
areas. This could reduce the bias compared with a simple spatial ecological study, and
also has the ability to increase the power of an individual-level only study. Although
small areas, such as data zones and output areas, are typically constructed for use in
a census, where data on smoking are still not routinely collected as part of this. In-
stead, data on smoking and other lifestyle factors are becoming more widely available
through health surveys, meaning that these types of data could be incorporated into
future analyses to utilise the aforementioned approaches.

Lastly, one of the main issues in this thesis and in other air pollution and health
studies is that the uncertainty present in the air pollution concentrations is not fully
taken into account. This thesis and the majority of studies treat the air pollutant con-
centrations, whether estimated from a geostatistical fusion model like here or utilise
output from an atmospheric dispersion model, as the known and true value (Huang
et al., 2015; Lee & Sarran, 2015; Rushworth et al., 2014). This could give rise to a
biased estimate of the relationship between air pollution and health. This weakness
can be overcome in a number of ways, one of which is to develop a joint Bayesian
framework where the posterior distribution of the estimated air pollutant concentra-
tions are directly fed forward into the health model, as demonstrated by Blangiardo
et al. (2016). However, care has to be taken when utilising a joint modelling framework
so that the health model does not infer the air pollution model, known as feedback,
as it can artificially increase the precision of the estimates of the air pollutant effects
(Blangiardo et al., 2016). This is therefore an avenue for future work for this thesis
and future air pollutant and health studies.

7.5 Summary

This thesis involved three major pieces of research, which enhance and contribute to the
existing literature surrounding air pollution and health. It provides a new approach to
estimating pollutant concentrations at a fine spatial scale that can then be used to in-
vestigate its effects on human ill health, while determining which factors in an analysis
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have the most influence on the resulting estimated pollutant-health association. The
methodology developed in this thesis can be adopted in future studies, and should lead
to further research into this important public health topic, and provides a more accu-
rate approach to estimating air pollutant concentrations, with the ability to combine
results from multiple models. The novel air pollutant model, given by a geostatistical
fusion model, allows concentrations measured at different spatial resolutions, such as
the point and grid level, to be combined to produce a more accurate representation of
air pollutant concentrations at the desired spatial resolution (grid level in the present
case) that are more spatially dense compared to using point-level concentrations from
air pollution monitors, or solely using initial grid-level concentrations that are biased
and have no measure of uncertainty. Furthermore, this geostatistical fusion model can
be extended to include a temporal domain when there is variation in concentrations
across the study period.

This thesis highlighted that the estimated pollutant-health effect depends on how
air pollutant concentrations are measured, the measure of deprivation used, and finally,
the spatial model used. It demonstrated how selecting only one model ignored any un-
certainty present.

While no substantial association was found between NO2 concentrations and cardio-
respiratory disease, results from this thesis add to the body of evidence surrounding
air pollution and ill health. With regards to policy and legislation, it is important
to continually improve public health through closer integration of air quality and cli-
mate change policies, even when no consistent associations are observed. Tackling air
pollution as part of the UK and Scottish Climate Change Acts could result in saving
$24 billion by 2050. However, short-term solutions are needed to meet current EU air
quality thresholds in Scotland.

There are a number of strategies that can be implemented to tackle the damaging
effects of air pollution on ill health. These mainly focus on emission control and include
strategies, such as low emission zones, transport planning at the local level (e.g., bus
management arrangements), and adopting low carbon or hydrogen-electric vehicles.
However, while most studies focus on outdoor air pollution, the highest level of expo-
sure occurs within the household, implying a greater focus on energy-efficient housing
would also be beneficial. Efforts to improve air quality and the built environment have
the potential to improve the health of the population as a whole.
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‘It seems to me that the natural world is the greatest
source of excitement; the greatest source of visual
beauty; the greatest source of intellectual interest. It
is the greatest source of so much in life that makes
life worth living.’

— Sir David Attenborough



Appendix A

NO2 predicted pollution maps

This appendix details predicted NO2 pollution maps across West Central Scotland from
the Bayesian Geostatistical fusion model proposed in Section 6.3.
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Figure A.1: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2007.
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Figure A.2: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2008.
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Figure A.3: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2009.
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Figure A.4: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2010.
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Figure A.5: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2011.
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Figure A.6: Spatial map of predicted NO2 concentrations and standard errors from
Model 9 across West Central Scotland in 2012.
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Jöckel, K.-H., Korek, M., Lanki, T., Leander, K., Magnusson, P. K. E., Migliore,
E., Ostenson, C.-G., Overvad, K., Pedersen, N. L., J, J. P., Penell, J., Pershagen,

http://uk-air.defra.gov.uk/reports/cat09/1204301513{_}AQD2010mapsrep{_}master{_}v0.pdf
http://uk-air.defra.gov.uk/reports/cat09/1204301513{_}AQD2010mapsrep{_}master{_}v0.pdf
http://dx.doi.org/10.1038/sj.jes.7500628
http://dx.doi.org/10.1016/S0140-6736(02)11274-8
http://dx.doi.org/10.1007/s00477-013-0812-0
http://dx.doi.org/10.1136/oem.2008.044602
http://dx.doi.org/10.1136/oem.2007.032896
http://dx.doi.org/10.1093/acprof:oso/9780198515326.003.0004
http://dx.doi.org/10.1289/ehp.1205862


159

G., Pyko, A., Raaschou-Nielsen, O., Ranzi, A., Ricceri, F., Sacerdote, C., Salomaa,
V., Swart, W., Turunen, A. W., Vineis, P., Weinmayr, G., Wolf, K., de Hoogh,
K., Hoek, G., Brunekreef, B., & Peters, A. (2014). Long term exposure to ambient
air pollution and incidence of acute coronary events: prospective cohort study and
meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ (Clinical
research ed.), 348 . doi:10.1136/bmj.f7412.

Ciocco, A., & Thompson, D. J. (1961). A follow-up of Donora ten years after: method-
ology and findings. American journal of public health, 51 , 155–64.

Clayton, D. G., Bernardinelli, L., & Montomoli, C. (1993). Spatial correlation in
ecological analysis. International journal of epidemiology, 22 , 1193–202.

Committee on Environmenta Health (2004). Ambient Air Pollution: Health Hazards
to Children. Pediatrics, 114 , 1699 LP – 1707.

Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: a gen-
tle introduction to poisson regression and its alternatives. Journal of Personality
Assessment, 91 , 121–36. doi:10.1080/00223890802634175.

Cressie, N. (1993). Statistics for spatial data, revised ed volume 900. Wiley New York.

Crouse, D. L., Ross, N. A., & Goldberg, M. S. (2009). Double burden of deprivation and
high concentrations of ambient air pollution at the neighbourhood scale in Montreal,
Canada. Social science & Medicine, 69 , 971–81. doi:10.1016/j.socscimed.2009.
07.010.
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