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Abstract  

The financial landscape is undergoing a significant transformation, driven by technological 

innovations that are reshaping traditional banking practices. This thesis examines the 

evolving relationship between financial technology (FinTech) and banking, specifically 

addressing the credit risk aspects within the domains of Supply Chain Finance (SCF) and 

peer-to-peer (P2P) lending. 

FinTech has experienced rapid growth and innovation over the past decade. It encompasses 

a wide range of technologies and services that aim to enhance and streamline financial 

processes, disrupt traditional banking models, and offer new solutions to consumers and 

businesses. The status of FinTech and banking is assessed through an extensive review of 

the current literature and empirical data. Accordingly, FinTech development has 

significantly impacted the financial landscape, driving innovation, competition, and 

customer expectations while it has exposed inefficiencies within traditional banking, it has 

also compelled banks to evolve and embrace technological advancements. The impact of 

FinTech on traditional banking models, customer behaviours, and market competition is 

aimed to be explored. This investigation highlights the challenges and opportunities that 

arise as FinTech disrupts and reshapes the banking sector, emphasizing its potential to 

enhance efficiency, accessibility, and customer experiences. As Chapter 3 focuses on an 

empirical analysis of the impact of FinTech on the operating efficiency of commercial banks 

in China.  

Further, in the context of credit risk, the thesis focuses on SCF and P2P lending, two 

prominent areas influenced by FinTech innovation. SCF has witnessed substantial 

transformation with the infusion of FinTech solutions. Digital platforms have streamlined 

the flow of funds within complex supply networks, enhancing the liquidity of suppliers and 

optimizing working capital for buyers. However, this transformation introduces new credit 

risk challenges. As suppliers' financial data becomes more accessible, the need for accurate 

risk assessment and predictive modelling becomes paramount. The integration of big data 

analytics, machine learning, and artificial intelligence (AI) holds the promise of refining 

credit risk evaluation by offering real-time insights into supplier financial health, thereby 

improving lending decisions and reducing defaults.  

Similarly, P2P lending has redefined the borrowing and lending landscape, enabling direct 

connections between individual borrowers and lenders. While P2P lending platforms offer 



speed, convenience, and access to credit for previously underserved segments, they also 

grapple with credit risk concerns. Evaluating the creditworthiness of individual borrowers 

without sufficient credit history demands innovative risk assessment methodologies. The 

emergence of data issues, such as imbalanced data issues, feature selection, and data 

processing, presents challenges in building accurate credit risk profiles for P2P lending 

participants. FinTech solutions play a pivotal role in creating and implementing these 

alternative risk assessment models. Note that, few studies in the literature investigate the 

benchmark of the advanced method of solving the credit risk assessment in emerging 

financial services.  

This thesis aims to address this research gap by evaluating the effectiveness of credit risk 

assessment models in these FinTech-driven contexts, considering both traditional 

methodologies and novel data-driven approaches. Chapter 4 investigates the credit risk 

assessment issue in Digital Supply Chain Finance (DSCF) with the Machine Learning 

approach and Chapter 5 emphasises the issue of data imbalance of credit risk assessment in 

P2P Lending.  

By addressing these gaps and issues, this thesis aims to contribute to the broader discourse 

on FinTech's role in shaping the future of banking. The findings have implications for 

financial institutions, policymakers, and regulators seeking to harness the benefits of 

FinTech while mitigating associated risks. Ultimately, this study offers insights into 

navigating the evolving landscape of credit risk in SCF and P2P lending within the context 

of an increasingly technology-driven financial ecosystem. 
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Chapter 1 Introduction  

1.1 Background and Motivations 

FinTech is a technology-driven financial innovation which refers to a broad range of 

technological innovations that aim to disrupt and improve various financial activities, 

including banking, payments, investments, insurance, lending, and wealth management. 

These innovations leverage software, applications, algorithms, and data analytics to provide 

novel solutions that aim to enhance user experiences, reduce costs, and increase accessibility.  

In the continuous evolution and upgrading of technologies such as cloud computing, AI, big 

data, and blockchain, increasingly powerful computing capabilities have enabled the entire 

lifecycle of data creation, storage, use, sharing, archiving and destruction to be enhanced in 

quality and efficiency, which has brought transformative opportunities for the financial 

industry and is highly dependent on data and information. In terms of global strategic 

requirements for the development of FinTech, it is estimated that more than 170 countries 

worldwide have issued national FinTech and digitalisation strategies1. Among them, the 

financial industry is often treated as the first echelon of digitalisation due to its information-

intensive nature, playing the role of a "leader" in digital transformation. Taking AI as an 

example, in the past three years, 60 countries and regions, accounting for 90% of global 

GDP, have formulated AI policies and strategies, and the use of AI to facilitate digital 

transformation and intelligent operations in the financial sector has become a common 

strategic goal for all countries2.  In terms of industry trends, major global banks have 

increased their investment in FinTech. in 2019 BNP Paribas invested 90.56% of its profits 

in technology, JP Morgan Chase invested 81.2% of its net profits in technology, and Bank 

of America, Citibank, and State Street invested 30% to 60% of its net profits in technology. 

In terms of results orientation, during the period 2017-2020, UBS's net profit grew by 160.87% 

per annum, Morgan Stanley's net profit grew by 27.64% per annum and Deutsche Bank, 

despite having a negative net profit in 2019, invested an average of €3 billion per annum in 

technology in 2019-2020 and achieved a goal of turning a net profit from negative to positive 

in 20203, demonstrating the positive effects of the bank's strong focus on FinTech (see Figure 

 
1 https://www.ibanet.org/document?id=FinTech-legal-frameworks-23 
2 https://e.huawei.com/cn/material/enterprise/85edb14ae4d9452cbde0777ab9c5d8e7 
3 http://www.caict.ac.cn/kxyj/qwfb/bps/202009/P020200918520670741842.pdf 
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1.1). The comparison of IT expenditure between global banks and technology companies, as 

shown in the chart, further demonstrates the drive for technological upgrades and growing 

competition for services in the financial sector. 

 

Figure 1.1 Global Banks and tech companies – IT expenditure 20204 

FinTech is injecting new momentum into the transformation and development of 

commercial banks. On the one hand, FinTech leads a significant shift in the service concept 

and mindset of traditional commercial banks, thus helping to enhance their ability to 

innovate in financial services. Based on the technological support of FinTech, traditional 

commercial banks re-engineer their data ecosystem, further integrate diverse digital channels, 

enhance data collection, processing, and application, and bring a better experience to 

customers (Arslanian and Fischer, 2019). On the other hand, FinTech facilitates commercial 

banks to reduce operating costs and improve efficiency. Moreover, FinTech assists banks in 

improving traditional credit assessment systems, effectively alleviating information 

asymmetries, reducing the cost of a single operation, and greatly increasing the efficiency of 

lending while expanding their service coverage (Leong et al., 2017).  

However, the rapid development of FinTech has imposed a series of fundamental, 

institutional, and disruptive impacts on the banking industry that should not be overlooked, 

mainly in terms of directly squeezing the development space of commercial banks' major 

businesses such as payment and settlement, deposit management and finance. Many banks 

are also facing a serious issue of disintermediation (Navaretti et al., 2018). This has led the 

 
4 https://www.cdotrends.com/story/15968/4-trends-driving-record-investment-technology-global-banks 
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essay to further examine the empirical evidence of the impact of FinTech development on 

the efficiency of commercial banks. 

The application of FinTech has strongly driven disruptive innovation and reshaping of 

financial services, nevertheless, challenges and opportunities coexist, and the development 

of innovative financial services has also created more risk exposure (Mahalle et al., 2021). 

As the most important business of financial institutions, the credit business has given rise to 

more innovative businesses based on the needs of different customer groups, such as supply 

chain finance (SCF) and P2P lending. The SCF starts from the supply chain industry chain, 

consolidating logistics, capital chain, information flow, and other information with FinTech, 

and building an integrated financial system and risk assessment system for core enterprises 

and upstream and downstream enterprises, aiming to quickly respond to the comprehensive 

needs of industry chain enterprises for settlement, financing, and management (Liu, 2020). 

Compared with traditional bank credit, the biggest innovation of SCF is the change in its 

credit model (Moretto et al., 2019). The traditional credit model of banks is based on 

financial information such as balance sheets, and credit decisions are made based on an 

evaluation of the enterprises’ own situation, but this is not the case with SCF. Under the 

financing model of SCF, banks have diluted the financial analysis of the enterprises, and no 

longer emphasise the scale of the industry in which the enterprise is located, the value of its 

fixed assets, financial indicators, guarantee methods, etc (Wang and Wu, 2021). Instead, the 

real background of the enterprise's trade and the strength and credit level of the core 

enterprises in the supply chain are more focused, i.e., banks assess the credit status of the 

entire supply chain (Chen et al., 2019). The change has inevitably required financial 

institutions to re-establish a credit rating system for the credit risk assessment of SMEs in 

SCF. The development of digitalisation has further strengthened the establishment of 

information-sharing platforms, such as the application of enterprise resource planning (ERP) 

systems, which provide more sources of information for credit assessment in digital supply 

chain finance (DSCF) and increase the requirements for the effectiveness of credit risk 

assessment models. In addition, P2P platforms are online service that mediates debt contracts 

between lenders and borrowers. In the traditional lending market, the information collected 

by banks is usually privatised, whereas P2P lending activities leave behind a large amount 

of information and transaction data of the participants (Chen et al., 2020), which allows the 

lending platform to collect more data to identify credit risks. However, how to build relevant 

credit risk assessment models and collate the existing credit data has become a crucial 

concern of current research. 
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The manual credit risk assessment is highly subjective and arbitrary, and the process is 

cumbersome and costly in terms of human and material resources (Byanjankar et al., 2015). 

Solving credit assessment problems and thus reducing risk through FinTech approaches is 

becoming a necessity for the development of financial services. Figure 1.2 below shows that 

according to the report, AI applications in risk management account for 32% of the financial 

services sector, and machine learning as an important part of AI has become an important 

tool for credit risk identification. Under this circumstance, machine learning can effectively 

capture the non-linear characteristics of data in credit assessment and identify default risk 

points with supervised learning, by building relevant models, acquiring sufficient data, and 

evaluating the output results with metrics (Van Gestel et al., 2005). In terms of identifying 

the defaults on lending, machine learning algorithms apply a classification approach to 

separate default data from non-default samples, which provides a more capable fit the 

features and is stronger at non-linear and cross-sectional features. Secondly, machine 

learning algorithms offer more robust fitting effectiveness through the ensemble models 

(Mosavi et al., 2018), such as XGBoost and LightGBM. Essentially, the complexity of the 

model is increased and the ability of the model to identify fixed patterns is enhanced. Thirdly, 

machine learning is also more responsive to iterative forms of data and the existence of data 

processing issues (Saker, 2021). Overall, machine learning unlocks the value of vast amounts 

of data. 

 
Human 

Resource Manufacturing Market and 
sales 

Product and/or 
Service 

Development 
Risk Service 

Operations 

Strategy and 
Corporate 
Finance 

Supply-chain 
Management 

All industries 9% 12% 20% 23% 13% 25% 9% 13% 

Automotive and 
Assembly 

11% 26% 20% 15% 4% 18% 6% 17% 

Business, Legal, 
and Professional 

Services 
14% 8% 28% 15% 13% 26% 8% 13% 

Consumer 
Goods/Retail 

2% 18% 22% 17% 1% 15% 4% 18% 

Financial Services 10% 4% 24% 20% 32% 40% 13% 8% 

Healthcare 
Systems/Pharma 

and Medical 
Products 

9% 11% 14% 29% 13% 17% 12% 9% 

High Tech/Telecom 12% 11% 28% 45% 16% 34% 10% 16% 

Source: McKinsey & Company, 20215  

 
5 https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf 
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% of Respondents (Function) 
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Figure 1.2 AI adoption by industry and function, 2021 

Both sides of the coin exist, machine learning approaches also have limitations. Firstly, 

machine learning is a data-driven training model, it requires a high-quality and wide range 

of training data. Data issues like Imbalanced data require further analysis to avoid errors and 

over-fitting. Secondly, machine learning suffers from many constraints in its application due 

to its lack of explainability. Deep learning, as exemplified by MLP, is like a black box (Rai, 

2020), giving input and getting output as the result, but the rationale behind the result and 

the reliability of the decision are not explained. However, for financial institutions, causal 

explanations for decision-making are essential. For instance, in practice, credit risk 

assessment is usually based on the financial institution's risk-taking capacity and risk 

appetite (Epetimehin, 2013). When the decision-making of a financial institution is 

conservative, the credit assessment focuses more on identifying potential defaulters, whereas 

when the decision-making of a financial institution is more yield-oriented, the credit 

assessment focuses more on expanding more low-risk borrowers. This has led to further 

research into the use of machine learning for predictive analysis of credit risk assessment. 

Overall, while the role of FinTech in banking development has been studied, and credit risk 

assessment has made strides with machine learning, challenges of systematic investigation 

and gaps in the specific verification persist. Addressing regulatory issues based on the 

specific country and era, promoting financial inclusion, optimizing operations, and 

improving credit risk models through high-quality data and interpretability are crucial steps 

toward bridging these gaps and advancing the financial industry. 

1.2 Thesis Structure  

The objective of this thesis is to construct a research framework for exploring the evolution 

of FinTech alongside banking, and to delve into the particular procedure of evaluating credit 

risks in SCF and P2P lending, all rooted in the underlying motivations. This thesis contains 

7 chapters. Chapter 2 provides a review of FinTech developments, a description of advanced 

financial services, and a summary of machine learning methods. Three chapters (Chapter 

3,4,5) display empirical applications. The final Chapter 6 presents a summary. Limitations 

of the study and future work are also explained in this section. The overall structure of the 

article is illustrated in Figure 1.3 below. The introduction of empirical studies is also briefly 

described as follows: 
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Figure 1.3. Overview of thesis structure 

In Chapter 3, the impact of FinTech development on the efficiency of commercial banks in 

China is investigated by applying a two-stage Double Bootstrapped truncated regression. 

FinTech development in China has grown rapidly in recent years, with a wide range of 

physical application scenarios, and commercial bank efficiency is widely influenced. In 

terms of bank ownership and regional financial development, hypotheses based on different 

dimensions were formulated to detect the impact of FinTech on the efficiency of commercial 

banks in China. The DEA-Malmquist approach was used to estimate the dynamic efficiency 

change of 101 commercial banks for the period 2011-2020. Further, according to Simar & 

Wilson (2000), truncated regression models were used to regress DEA-Malmquist results to 

address inconsistent results due to changes in returns to scale. A double bootstrapped 

truncated regression is generated to obtain the bias-corrected score and examine whether 

FinTech development positively affects the efficiency changes of Chinese commercial 

banks. The overall results suggest that the FinTech development has a positive influence on 

Chinese commercial banks’ efficiency. In addition, the positive impact of a higher level of 

FinTech development on the efficiency of CCBs is greater than that of SOCBs and JSCBs. 

Finally, FinTech has had a higher positive impact on CCBs in more financially developed 

regions than those in less financially developed regions.  
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Financial Services 

Chapter 3: FinTech and Banking Efficiency  

Chapter 4: Digital Supply Chain Finance – Feature 
Selection in Credit Risk Assessment 

Chapter 5: P2P Lending – Imbalanced Issue Analysis and 
Feature Selection with Machine Learning Method 

Chapter 6: General Conclusions 

Empirical 
Studies 
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In Chapter 4, a hybrid XGBoost-MLP method is implemented in the credit risk assessment 

of DSCF. The operational processes of DSCF as a new type of financial service are presented. 

Meanwhile, digitalisation features are incorporated into the set of features for credit risk 

assessment. The growing non-linear data issues make traditional credit assessment methods 

inefficient. In this context, machine learning methods are applied to credit risk assessment. 

At first, to avoid subjective arbitrariness in data processing, XGBoost is proposed for feature 

selection. Using feature importance ranking, this chapter filters out the set of features that 

make the evaluation optimal. Afterwards, LR, KNN, NB, RF, DT, SVM and MLP are used 

as classifiers. The whole sample is evaluated by an in-sample test and out-of-sample test to 

avoid overfitting. The results demonstrate the effectiveness of the hybrid XGBoost-MLP 

model for DSCF credit evaluation and the importance of including digitalisation features in 

SCF credit risk assessment. 

In Chapter 5, a comprehensive investigation that combines feature selection with imbalanced 

learning methods is conducted for credit risk assessment of P2P lending. The credit 

assessment of P2P lending as exemplified by the Lending Club is considered by scholars to 

have a more serious imbalanced data problem, but the existing literature has ignored the 

importance of feature selection in dealing with the imbalanced data problem. Accordingly, 

the full sample of 151 original features was divided into two comparison sets, one with 17 

features selected from the existing literature as the selected feature set, and the other with 87 

features processed by data missing and data leakage only as our complete comparison feature 

set. For the selected feature set, XGBoost, DT and LR are used as baseline classifiers and 

imbalance learning methods by Bagging, Easy-Ensemble, IHT, Tomek links, SMOTE and 

CS are used for model evaluation. For comparison feature sets, the features are first selected 

by XGBoost and then subjected to the same model evaluation. By comparing the two feature 

sets, the results suggested that the performance of credit risk assessment is poor when the 

features are incomplete and that imbalanced learning methods are not effective in addressing 

the inefficiency of the evaluation results. Moreover, an analysis of the interactions between 

the degree of data imbalance and feature selection is performed. As a result, the more 

complete the data features are and the better the credit risk assessment performance is and 

the less the data imbalance problem affects them. In addition, the Easy-Ensemble method 

enables us to solve the problem to a great extent and obtain optimal results when there are 

limitations in the completeness of the features and imbalances in the data. 
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1.3 Contributions 

This thesis contributed to the FinTech development and machine learning methods in 

financial applications mainly from banking efficiency, and credit risk assessment in DSCF 

and P2P. In addition, each chapter has separate outputs for research motivation, technical 

application, and empirical analysis. 

Chapter 3 examines the impact of FinTech on the efficiency of commercial banks in China, 

a topic of both academic and practical significance. From an academic perspective, this paper 

enriches the research on FinTech and the influence of FinTech on commercial banks. In 

recent years, the world has witnessed a surge of research on FinTech and its effect on 

commercial banks, but the research is not yet systematic, and the research methods are not 

yet rich.  In studies on FinTech, for example, it is difficult to conduct in-depth discussions 

as the definition of the connotation of FinTech has no standard in much research. Meanwhile, 

most studies believe that the development of FinTech hurts the traditional financial industry, 

thus ignoring the current growing cooperation. This chapter analyses the impact of FinTech 

development on commercial banks from the perspective of their efficiency which generates 

valuable implications for the subsequent development and application of FinTech in 

financial services. Further, this paper aims to overcome these problems as follows: Firstly, 

defining the meaning of FinTech based on a comprehensive review of previous research 

findings. Secondly, identifying the specific mechanisms through which FinTech affects the 

efficiency of banks, and constructing an econometric model based on data from listed banks 

to test the proposed hypotheses. The goal is to analyse the impact of FinTech on the 

efficiency of commercial banks with different ownership levels. This provides a closer look 

at the current state of cooperation and competition between different types of banks and 

FinTech startups and provides an empirical analysis of the future practice of commercial 

banks. Nevertheless, the degree of regional financial development is considered in a study 

related to the impact of FinTech development, about city commercial banks. This also 

clarifies the mutually reinforcing relationship between FinTech development and the degree 

of financial development for commercial banks, expanding the significance of research 

combining local financial development and FinTech. From a practical perspective, this 

chapter provides insights into the transformation of Chinese commercial banks' operations 

in the context of FinTech development. With the increasing share of FinTech applications 

in the financial sector, the development of FinTech has a growing impact on the overall 

operation of commercial banks, which in turn greatly affects the financial system (Vives, 
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2017). This chapter also clarifies the mechanism and extent of the impact of FinTech on the 

efficiency of banks and proposes countermeasures to accelerate the transformation of 

Chinese commercial banks in the FinTech environment as an example, which is beneficial 

for modern commercial banks to adopt more targeted and effective transformation measures. 

Unlike the previous chapters, Chapters 4 and 5 focus more on machine learning methods to 

study practical models for credit risk assessment of specific financial businesses and to 

produce better model solutions. In Chapter 4, the process of DSCF, a new type of financing 

business, is summarised systematically in detail, and the findings contribute to improving 

the theoretical framework of DSCF in influencing corporate investment, financing behaviour, 

and enhancing the impact of machine learning training models in credit risk assessment. The 

current research on SCF is based on SMEs' perspectives to explore the mitigation effects of 

SCF and the investment and financing decisions of enterprises through games, while digital-

based SCF risk assessment has not received sufficient attention and lacks a corresponding 

theoretical guidance framework. Thus, based on manually collated data, this chapter adds 

new digital features to the training model for credit risk assessment. Using listed companies 

as the target of the study, it systematically investigates the business processes and risks of 

DSCF, provides theoretical explanations, completes the theory of SCF, and obtains a more 

effective feature set for credit risk assessment through empirical evidence. The conclusion 

of the study provides a reference for banks and other financial institutions to work closely 

with core enterprises, use DSCF to innovate financial supply methods, reduce credit risks, 

broaden long-tail customers, and promote profitable expansion and business upgrades. 

Chapter 5 focuses on the problems of imbalanced data and subjective and arbitrary feature 

selection in existing credit risk assessments and identifies the difficulties and solutions in 

data analysis and processing. Using P2P lending data as the research object for in-depth 

analysis, this chapter draws on previous literature to extract key characteristics related to 

credit risk for comparison and analysis and implement machine learning methods to build a 

comprehensive assessment model for individual credit risk, the findings of which help to 

improve the credit risk avoidance capability of P2P lending. Further, by comparing and 

validating existing credit assessment models, the conclusions of this paper make clearer the 

relationship between the imbalance data issue and feature selection in the credit risk 

assessment, which provides more effective theoretical support for the data processing. 

Finally, the identification of key influencing features provides a reference for the selection 
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of indicators in the subsequent credit risk assessment and also provides practical implications 

for the credit audit of P2P lending services and their following development. 
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Chapter 2 Overview of Financial Technology and Financial 

Services  

2.1 Introduction  

FinTech is a sweeping, technology-driven financial innovation that has seen the deep 

integration of representative information technologies such as big data, AI, cloud computing, 

blockchain and mobile internet with finance, resulting in a series of new financial industries 

such as mobile payment, big data credit, smart investment advisory, financial cloud, crypto-

digital currency, and insurance technology. FinTech-related investment in the market is also 

on the rise (see Figure 2.1). Financial innovation is common, nor is it always beneficial to 

economic development, but is only worthy of encouragement and support if it serves the real 

economy. Therefore, the role of FinTech in serving the real economy has become the focus 

of scholars. FinTech is a "disruptive innovation" to traditional finance, which has changed 

the established financial solutions (Anshari et al., 2020) and consumption patterns (Feng and 

Zhang, 2021). Applying big data technology to expand data sources, FinTech facilitates 

financing for small and micro enterprises and other market players and promotes industrial 

development and upgrading (Alt et al., 2018). The risk control capabilities of financial 

institutions are improved by FinTech, which helps financial institutions acquire and retain 

quality customers (Xiang et al., 2017). Increasing innovative business models reduces the 

cost of financial services (Leong and Sung, 2018).  

 
Source: CB INSIGHT CORNERSTONE ADVISOR6 

Figure 2.1 Global FinTech Investment ($ in billions)  

 
6 https://www.forbes.com/sites/ronshevlin/2020/09/01/nobody-wants-an-online-bank-and-other-wisdom-
from-investing-100-billion-in-FinTech/ 
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FinTech is the fusion of finance and technology, but technological progress is always a 

double-edged sword with both advantages and disadvantages. The impact of FinTech on the 

banking industry shares the same internal logic following the theory of innovation 

destruction (Schumpeter J., 2000). From the perspective of creation, FinTech is conducive 

to reducing transaction costs and improving the efficiency of resource allocation in the 

banking industry, helping to bank financial institutions to break through the traditional 

business scope to obtain new profit growth points. From the perspective of disruption, the 

emergence and development of new financial business models based on FinTech has broken 

the established interest pattern of the banking industry and has had a strong impact on the 

mindset and business space of the traditional banking industry through a service approach 

that is closer to modern customer needs and more efficient and convenient.  

In recent years, the function of FinTech to promote the transformation and upgrading of the 

traditional financial industry has gradually emerged, especially after big breakthroughs in 

underlying technologies, i.e., AI (Rasiwala and Kohli, 2021). With such technologies, a new 

wave of integration between traditional financial services such as payments, financing, 

wealth management and FinTech is rapidly developing, which drive the financial industry 

to improve the efficiency of financial services, provide better and more targeted products 

and services, and enhance the inclusiveness of the financial system (Philippon T., 2016). 

FinTech is providing a potential opportunity for traditional financial sectors. As Buchak et 

al. (2018) suggest, the relationship between shadow banking and FinTech in the US 

concluded that FinTech has played an important role in the rapid development of shadow 

banking. In contrast to shadow banks that do not use FinTech, shadow banks that use 

FinTech allocate credit resources to borrowers with better credit and participate more 

actively in the refinancing market, and FinTech improves the overall resource allocation 

efficiency of the financial market. Omarini (2020) also claims that under the wave of 

FinTech sweeping the world, traditional financial institutions can get a win-win situation by 

cooperating with FinTech companies. FinTech companies need to access customer data and 

payment systems through traditional financial institutions, and as long as they adopt the right 

response strategies, the creative effects of FinTech on traditional financial institutions will 

be greater than the "destructive effects".  

FinTech is driving the improving financial services, it is creating new types of financial risks 

and challenging the existing financial regulatory system. DSCF as a new FinTech service is 

an important means of corporate finance, originating from the management of capital flows 
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in supply chain organisations, aiming to optimise the allocation of funds in the organisation 

through the synergistic operation of logistics, information flow and capital flow, reduce the 

overall costs of the system and achieve the best overall value of the supply chain (Du et al., 

2020). Traditional SCF is more of a financial lending based on interpersonal trust, which not 

only requires long-term cooperation between trading parties but also relies on the core 

parties' guarantee of the SMEs' rights (Moretto et al., 2019). The inherent weaknesses of 

SMEs and the goal of maximising the interests of the core enterprises greatly limit the 

effectiveness of SCF. In the face of the swift ascent of the digital economy, industrial 

enterprises are intensifying their focus on adopting novel technologies and merging internal 

systems (Gomber et al., 2018). This is aimed at enhancing the amalgamation and utilization 

of enterprise data. Concurrently, a growing number of commercial banks are leveraging 

digital technology and FinTech to spearhead the strategic evolution of their operations. They 

are engaging in wide-ranging collaborations and strategic alignment within the supply chain 

ecosystem. This entails extracting and refining data from the operational contexts of 

enterprises, closely tied with panoramic data (He et al., 2020). These efforts centre on the 

functioning of businesses across procurement, manufacturing, and marketing domains. The 

company's credit rating is based on the consistency and validity of the company's 

behavioural data in procurement, manufacturing, and sales. 

P2P lending, meanwhile, regarded as a new FinTech service for personal financial needs, is 

a transaction model that enables peer-to-peer lending over the internet, with the transaction 

venue provided by an online platform (Havrylchyk and Verdier, 2018). The purpose of P2P 

lending is to provide loans to groups that have difficulty borrowing from large traditional 

banks. This has enabled the digitalisation, informatisation and dynamisation of lending 

behaviour and the effective integration of online and offline financial resources, which has 

had a significant impact on the development of SMEs and the expansion of individual 

spending power. However, amid the ongoing sequence of technological advancements, the 

credit risks associated with P2P lending operations have evolved into intricate and diverse 

challenges. P2P lending frequently involves SMEs and average consumers lacking robust 

financial stability within the lending framework (Wang et al., 2016; Bavoso, 2020). This not 

only augments the financial and spending capabilities of these segments, but also introduces 

complexities in accurately appraising the creditworthiness of individual borrowers and 

establishing more stringent limitations for borrowers within the digital realm. The issue of 

credit risk in P2P lending is therefore very prominent and deserves attention. 
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Risk management in new financial businesses is one of the core innovations in FinTech. As 

mobile internet and big data technologies advance, individuals are gaining access to an 

immense volume of novel data. This data is marked by its extensive size, intricate nature, 

and lack of structure, presenting a substantial challenge for data analysts. At the same time, 

the reality is that the collected independent and dependent variables often do not satisfy a 

simple linear relationship with each other, thus making traditional risk assessment models 

even more limited. These challenges are where machine learning excels. Machine learning 

combines the disciplines of statistics, computer technology and probability theory to solve 

the problem of automatically building computational models through experience and is at 

the heart of AI and data science (Jordan & Mitchell, 2015). 

Machine learning approaches, which are becoming mainstream in AI, are based on a data-

driven approach to building models that recognise and learn specific patterns and laws, with 

'learning' rather than established 'rules' at their core.  Algorithms in the field of machine 

learning are often less constrained by assumptions about the data, which makes them flexible, 

efficient, and highly accurate. Machine learning has the following characteristics: firstly, it 

is a multi-disciplinary subject, involving probability theory, statistics, algorithmic 

complexity theory, computational theory and other disciplines; secondly, as the word 

suggests, it is "the machine learning itself", which differs from traditional programming 

based on explicit rule-based algorithms. It operates under human-set rules and summarised 

knowledge and instead investigates how to recognise patterns or acquire knowledge from 

data without human intervention. (Bell, 2022). Naturally, machine learning is a systematic 

set of components that includes the problem to be solved, the data, the model, the 

optimisation algorithm, and the processes of validation and testing (Weichert et al., 2019). 

Machine learning is not a completely new concept in historical terms, as it has been 

developed in theory and practice since the 1950s and has undergone several methodological 

and paradigm shifts over the past 70 years (Shinde and Shah, 2018). In the 21st century, 

machine learning methods have made great breakthroughs in areas such as knowledge 

learning and pattern recognition. In addition to computer engineering applications, machine 

learning applications in the social sciences, especially financial fields, have also begun to 

increase (Athey, 2018). 

The existing literature has studied the impact of FinTech on the banking industry in three 

areas: operational efficiency, business innovation and risk management. The motivation 

behind this study is rooted in the quest to shed light on the intricate relationship between 
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scholars working in the field of FinTech and traditional financial institutions. This thesis 

aims to explore the dynamic interactions and collaborations that shape the evolution of both 

domains, and how they influence each other in terms of knowledge exchange, technological 

advancements, and the integration of innovative solutions into traditional financial practices. 

By exploring the development logic of FinTech, sorting out the background, evolutionary 

stages, basic driving technologies and primary business models of FinTech, and revealing 

the differences and connections between FinTech and traditional finance, this research 

clarifies the development logic of FinTech and its connotation. Moreover, the research 

endeavours to systematically analyse the role of machine learning in revolutionizing 

traditional financial businesses. Machine learning techniques have proven to be particularly 

transformative, offering new possibilities for data analysis, risk assessment, fraud detection, 

customer service, and investment strategies. This thesis seeks to comprehensively examine 

the adoption of machine learning algorithms by traditional financial institutions, their 

benefits, and challenges encountered during integration. 

2.2 Financial Services Powered by FinTech 

FinTech, financial innovation enabled by technology, (FSB 2016) relies on high 

technologies such as big data, cloud computing, blockchain and AI to gradually open new 

paths for SME finance. Scholars agree that FinTech innovates business models and services 

and improves the quality of information dissemination and tracking (Wonglimpiyarant et al., 

2017). Farboodi and Veldkamp (2017) point out that FinTech measures information, trading 

strategies and market efficiency through price information and market liquidity. One of the 

crucial functions of FinTech is to provide access to finance for companies, and lending 

platforms and the smart settlement and credit rating technologies behind them all reflect 

specific applications of FinTech for corporate finance (Berg et al., 2022). FinTech lending 

is an application that has been developed with debt financing as a fundamental point. The 

Basel Committee on Banking Supervision classifies FinTech business models and considers 

that FinTech activities are classified into depository and financing services, payment and 

clearing services, market infrastructure services and investment management services (see 

Table 2.1). The birth of FinTech as a product of the coupling of finance and technology did 

not happen overnight (Arner et al., 2015). Alt and Puschmann (2012) argue that advances in 

information technology, changes in consumer behaviour, the lack of traditional formal 

banking services and the existence of regulatory arbitrage have contributed to the emergence 

of FinTech. 



29 

 

 

Table 2.1 Sectional Innovations by FinTech   

Depository 
and Financing 

Services 

Payment, 
Clearing and 

Settlement 
Services 

Market 
Infrastructure 

Services 

Investment 
Management 

Services 

Lending 
Marketplaces 

Mobile 
Banking 

Credit Rating 
Crowdfunding 

Cryptocurrency 
P2P Transfers 

Mobile Wallet 

AI 
Big Data Management 

Digital certificates 
Blockchain 

Cloud Computing 

Robot Advisor 
E-Trading 

High Frequency 
Trading 

Copy-Trading  

Source: https://www.bis.org/bcbs/publ/d415.pdf 

2.2.1 Banking  

FinTech is evolving rapidly and is often presented in the news as 'revolutionary', with 'digital 

weapons' that will destroy industry barriers and traditional financial institutions.  The 

question of whether and to what extent FinTechs will replace traditional financial institutions 

such as banks remains a major point of research (Navaretti et al., 2018). The existing research 

suggests that there are two broad impact mechanisms of FinTech development on the 

operations of commercial banks, namely positive technology spillover effects and negative 

market crowding-out effects. As Chuen and Teo (2015) illustrated that the marginal cost of 

financial services decreases and the marginal benefit increases with the continuous 

development and application of FinTech, and the economic efficiency of banks benefits from 

customer connection behaviour and the resulting economies of scale and positive 

externalities, resulting in the high network effect. FinTech companies are often regarded to 

be ahead of traditional commercial banks in terms of digital technology, and technological 

knowledge itself has positive externalities (Gazel and Schwienbacher, 2021). As new market 

players, FinTech provides society with more efficient financial services and uses more 

comprehensive data to reduce transaction costs and improve decision-making, increasing 

financial inclusion (Zetsche et al., 2017). Alternatively, Li et al. (2022) suggested that there 

is a negative market crowding out effect because the development of FinTech does pose a 

significant challenge to the banking industry, with emerging financial sectors such as internet 

finance companies and third-party payment platforms crowding out commercial banks' 

liability, intermediate and asset businesses. There are surveys showing that younger users 
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are becoming more inclined to use digital banking and less inclined to use traditional banking 

(see Figure 2.2). Numerous studies have compared the characteristics, advantages, and 

disadvantages of FinTech and traditional banks. However, a research gap exists in 

understanding the specific factors that drive consumers to choose FinTech services over 

traditional banks and vice versa. Moreover, there is a research gap in understanding how 

FinTech affects small and medium-sized banks, which might face unique challenges and 

opportunities in the evolving financial landscape. At the same time, internet finance has had 

an impact on the marketisation of deposit rates, affecting commercial banks' profits and 

increasing their risks. In the face of the huge challenges posed by FinTech, traditional 

commercial banks have also started to take the initiative in using FinTech. 

 

Source: https://www.comscore.com/Insights/Blog/FinTech-and-traditional-banks-competition-or-
symbiosis 

Figure 2.2 Traditional Banks vs Digital Banks. 

There are two new models offered by FinTech for traditional banks to improve access to 

finance. Firstly, big data credit, where institutions can better screen the creditworthiness of 

borrowers by accessing big data information that banks do not have, and then grant loans. 

Secondly, P2P lending, where lenders and borrowers are matched directly via the Internet. 

The issues of information asymmetries and data complexity are addressed on this basis. The 

non-traditional information is a proxy for credit information, acts as a signal, and is often 

considered soft credit information. For example, physical appearance (Duarte et al., 2012), 

ethnicity and gender (Pope & Sydnor, 2011), financial status (Donnelly et al., 2009), social 
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connections (Freedman & Jin, 2008), social networks (Freedman & Jin, 2017), borrowing 

statements and investor rationality.  

2.2.2 Supply Chain Finance  

SCF is a specialised area of commercial banks' credit business and an important financing 

channel for enterprises based on big data, especially SMEs. SCF exists in a complete 

industrial chain, where the enterprises in the chain use the credit of the core enterprises and 

real transactions as the background and use some non-cash liquid assets such as accounts 

receivable, prepaid accounts, inventory, etc. as the guarantee for repayment. The information 

flow, logistics, and capital flow provide the foundations for the service in the supply chain. 

This financing mode breaks through the traditional enterprise financing process, which only 

focuses on the enterprise's own financial and operational status and reduces the financing 

risks caused by information asymmetry by improving the transparency of information of 

enterprises in the supply chain. With the development of FinTech, commercial banks are 

rapidly developing their electronic banking channels, while enterprises are also expanding 

the application of technological tools such as Enterprise Resource Planning (ERP), Supply 

Chain Management (SCM), and Money Management System (TMS), which gives SCF the 

basis for networking. Combining the resource-based concept with open innovation, 

commercial banks have two complementary models, from the perspective of external 

resources which are used to meet customer demand, and from the perspective of internal 

sources, where their resources are shared with the outside world, for example by forming 

strategic alliances to achieve integration (Gianiodis et al, 2014). In contrast, commercial 

banks use digital technology to empower SCF and develop DSCF, which streamlines 

processes, reduces costs, and enables them to serve more customers at lower costs (Caniato 

et al., 2016). Innovative technologies such as blockchain are also considered key elements 

to address existing difficulties and can further drive SCF to achieve multi-level credit 

penetration, combining SCF with recent technologies and driving SCF into the era of digital 

visualisation. 

The risk management capability of SCF has also been rapidly enhanced with the innovation 

of business models and the in-depth application of FinTech. In the development of DSCF, 

the construction of a data-based risk control system for SCF has played a key role. Big data 

technology, the booming development of e-commerce platforms, and the trend of networked 

transactions are improving the accessibility of risk control, as well as the supply chain 
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transaction data that can be obtained with low cost, high efficiency, and high credibility. In 

addition, regarding data acquisition, enterprise production and operation data and transaction 

data are collected in real-time through the Internet. In terms of data storage, cloud computing, 

and distributed databases accommodate massive amounts of data. Further, data processing, 

natural language understanding, image recognition, data mining, and machine learning 

technologies are becoming increasingly mature, and the application of AI technology 

improves the efficiency of information processing and partially or even completely replaces 

expert decision-making. While applying FinTech to SCF, the biggest challenge facing SCF 

is that the traditional credit system has lost its effectiveness, while a new credit system has 

not yet been established (Song et al., 2023). The heterogeneity of business contexts, irregular 

data forms, and information silos in the existing system make it difficult to form industry-

level supply chain information, the authenticity of which is questionable, making the 

establishment of a new credit risk management industry one of the issues worth studying. 

2.2.3 P2P Lending  

P2P lending services are a complement to traditional commercial bank credit, providing a 

new financing channel for SMEs and individuals to borrow money due to the "no credit, no 

collateral" business model adopted by existing financial institutions due to the imperfection 

of central bank credit collection (Havrylchyk and Verdier, 2018). Freedman and Jin (2008), 

by examining the social network nature of P2P lending, suggest that online lending has the 

advantage of lower interest rates and hence lower lending costs compared to traditional 

financial intermediaries. However, due to the nature and scope of business of online lending 

institutions, there are not enough funds to meet the needs of borrowers and lenders, and there 

is vicious competition in the industry under the practice of "zero interest" for online lending. 

P2P lending has also been seen as an alternative to traditional financial institutions. All loans 

on the Lending Club platforms are made through a partnership with WebBank, and loans are 

still granted through commercial banks, which act as intermediaries between the lenders and 

borrowers, so Lending Club executives do not see the rise of online lending platforms as 

competition to commercial banks. However, De Roure et al. (2022) argue that the emergence 

of the P2P lending model, with its high transparency and simplicity of procedures, has 

attracted more investors to invest through P2P platforms, which has dispersed the customers 

of commercial banks. While Tang (2019) constructed a theoretical model to identify the 

substitute role of P2P lending to banks. Nevertheless, with the numerous incidents of P2P 

lending platforms plunging into thunder, risk management in P2P lending has become a 
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principal issue that needs to be addressed urgently, and the development and application of 

a series of FinTech technologies such as AI and big data have revived the confidence of P2P 

platforms. 

Regarding the risks of P2P lending, P2P lending creates a creditor-debtor relationship just 

like ordinary loans, and therefore P2P lending cannot ignore credit risk. The credit risk factor 

for P2P lending is higher than for bonds and bank loans, due to the lack of collateral and 

credit references of P2P borrowers, or even having a poor credit history (Emekter et al., 

2015). This is compounded by the fact that P2P lending has higher interest rates, which puts 

more pressure on borrowers to finance themselves than loans from banks, and therefore 

increases the risk of default. The adverse selection risk faced by institutions increases with 

higher interest rates, and with higher interest rates, the credit risk of borrowers increases 

accordingly (Stiglitz and Weiss, 1981). In addition, investors also are exposed to significant 

risks when moral hazard happened in response to the lure of high profits.  

For P2P credit risk management, the massive voluntary information posted by lenders is 

unverifiable. Neither the lender nor the platform could screen the information for 

authenticity and cannot be used as a credible source of information. However, lenders are 

precisely susceptible to being influenced by this information and making potentially 

incorrect decisions (Michels, 2012). Thus, with the emergence of substantial amounts of data, 

researchers have begun to focus on the economic impact of big data. Goldfarb & Tucker 

(2019) found that the advantages of big data have led to cost reductions in data storage, 

computation, and data transmission. In addition, Begenau et al. (2018) and Farboodi et al. 

(2019) analysed the relationship between big data and firm size and growth and they found 

that data analysis improves investors' forecasts and reduces equity uncertainty, which, in 

turn, lowers the firm's cost of capital and increases the skewness of the firm size distribution 

due to the larger data generation and higher investment in active experimentation by large 

firms. Moreover, Farboodi & Veldkamp (2020) explored how access to big data affects 

market effectiveness and illustrated that the advancing data processing technology ensures 

the continued processing of both historical and future data in the long run, with data 

resolving investment risk while also introducing new risk factors. The proliferation of 

methods for analysing big data provides good methodological support for its application in 

the financial sector, as summarised by Varian (2014) and Mullainathan and Spiess (2017). 

Empirically, Hua and Huang (2021) use data from Ant Financial Services to find that big 

data credit can increase the volume and diversity of goods and improve merchant service 
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levels. This finding not only validates the effectiveness of big data credit but also indirectly 

reflects that FinTech promotes real economic development channels. As such, AI methods 

for processing big data are being developed to effectively mine and process all kinds of data 

on the Internet to find valuable information thereby helping investors make effective 

decisions. 

2.3 Financial Business and Artificial Intelligence Applications 

The new businesses that have emerged from FinTech have also created more complex risk 

management needs. The four representative technologies of FinTech have different depths 

of application in risk management scenarios, with different areas of focus and some 

crossover. Cloud computing technology brings breakthroughs in computing power and 

speed for massive data; big data risk control technology is mainly applied in the field of 

credit risk management in internet finance, solving the problem of information asymmetry; 

AI risk control technology is based on big data, mainly solving the problem of optimising 

risk control models; blockchain is mainly applied in the field of technical security in 

operational risk management such as payment clearing. 

Regarding the AI industry, its fervour is rising globally, and the market is expanding. 

Accordingly, global AI investment and financing reached $9.35 billion by 2021, an increase 

of 38% from 20207. Meanwhile, according to the 2021 AI Index Report released by Stanford 

University (see Figure 2.3), global Al company funding continued to converge on leading 

start-ups starting in 2018, and the number of new companies formed each year continued to 

decline starting in 2018, but Al funding amounts continued to maintain an upward trend8. 

Building models from massive amounts of data, machine learning, and AI will optimise 

business decisions, provide bespoke services, and improve risk management. According to 

McKinsey Global Institute, the application of these technologies is expected to create more 

than $250 billion in value for the banking industry9. 

 
7 https://www.statista.com/statistics/941137/ai-investment-and-funding-worldwide/ 
8 https://aiindex.stanford.edu/ report/ 
9 https://www.mckinsey.com/industries/financial-services/our-insights/banking-matters/a-new-era-
of-divergence 
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Figure 2.3 Global total corporate investment in AI from 2015-2021. 

AI in the financial services industry empowers risk and service operations. In the financial 

sector, AI is implemented in three parts (see Figure 2.4): the infrastructure layer, the core 

technology layer, and the extended application layer. The infrastructure layer provides basic 

hardware and software facilities, including computing hardware (AI chips, sensors, etc.), 

computing system technology (big data, blockchain technology, etc.), and big data 

technology (data collection, data storage, etc.). The core technology layer includes algorithm 

theory, development framework, and common application technologies, relying on 

computing platforms and data resources for mass recognition training and machine learning 

modeling, including natural language processing, graphic recognition, and deep learning, 

which are also the most important aspects of AI services for financial services (Jia et al., 

2018). Technology giants Google, IBM, Amazon, Apple, Alibaba, and Baidu are all deeply 

involved in this layer. The extended application layer addresses practical issues, where AI 

technologies provide products, services, and solutions for the financial industry, with 

commercialisation at its core. In the extended application layer, companies are integrating 

AI technology into their products and services to transform and upgrade their traditional 

business, for the data-intensive industry of finance. In parallel with rapid advances in 

machine learning techniques, there is a proliferation of diverse, high-frequency, voluminous, 

structured, or unstructured data at a granular level. Collecting and training in big data has 

undoubtedly led to an increase in the scope and capabilities of data-driven machine learning 

models. For financial services, machine learning advances risk management forward in time, 
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further predicting the cycle of financial risk and the degree of harm through big data mining, 

and intelligently monitoring risky transactions and irregularities. 

 

Figure 2.4 Implementation process of AI 

However, the application of machine learning models also amplifies certain gaps that are 

present in traditional models and relevant research. Many researchers discuss the application 

of machine learning models in various financial tasks and highlight the advantages and 

disadvantages of using such models in comparison to traditional methods. Lee et al. (2019) 

reviewed and sorted the machine learning application in risk management of banking. As 

well as the study of Goodell et al. (2021) which provide the statistical finding for AI and 

machine learning research and usage in the financial field. Moreover, increasing model 

complexity and improving explainability is also regarded as significant research point when 

machine learning models are applied to different industries or applications. In the current 

study, Machine learning models are typically based on large-scale unstructured datasets (e.g., 

natural language, image, speech information, etc.) and are built using new software packages 

and specific computing infrastructures (Ma et al., 2014). Nevertheless, the model's 

complexity does not mean an overly complex response should be adopted. As shown in 

Figure 2.5 below, the McKinsey Risk Dynamics model risk validation and management team, 

has adapted the model validation framework and practice approach so that the bank's existing 

traditional model validation framework is fully capable of effectively managing the risks 
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associated with machine learning models. Despite this, current research still has some gaps 

in developing hybrid models that standardize evaluation processes and integrate domain 

expertise.  

 

Figure 2.5 Machine Learning updated framework in risk management. 

2.4 Machine Learning in Credit Risk Assessment 

As the backbone of AI, the Machine learning approach allows the computer to identify the 

relationship between the data and model by learning the characteristics of the sample through 

advanced accuracy optimisation. Machine learning approaches are divided into two 

categories according to whether the data has labels: supervised and unsupervised learning. 

The supervised learning focus on the classification and regression targets where 

classification algorithms are used for discrete data distribution prediction and regression 

algorithms are used for continuous data distribution prediction (Nasteski, 2017). 

Unsupervised learning includes clustering and anomaly detection. Clustering algorithms 

scatter data into different groups according to similarity, and anomaly detection algorithms 

calculate the outlier degree of each data. From the perspective of credit risk assessment, the 

goal of identifying default groups is regarded as a binary classification target. On this basis, 
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the modeling design of machine learning include the following five processes as Figure 2.6 

displayed: at first, data import and data pre-processing, such as data cleaning, and 

normalisation. The second step is feature engineering, including feature selection and 

extraction, filtering, and transformation with prepared data. In the third step, model training 

aims to select an appropriate algorithm and perform model training on the data, and 

implement parameter tuning. Then, the model evaluation and the model export, deployment, 

and application are processed finally. 

 

Figure 2.6 Overall process of machine learning design. 

As computing and IT become more intergraded into daily life, the collection, collation, and 

processing of data relating to credit risk have become more feasible than ever before. Due 

to this, there has been a surge in the demand for data analysis and data classification, making 

statistical learning, machine learning, and ensemble learning emerge as prominent subjects 

of research. These different approaches are often cross-fertilised in current research methods. 

According to Galindo and Tamayo (2000), traditional statistical methods are dominated by 

linear, quadratic, and LR, while further modern statistical methods include a range of 

methods such as KNN. LR was proposed by Wiginton in 1989 and is frequently used for 
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credit risk assessment. It determines the probability of default by assuming that the applicant 

has both performance and default after taking out a loan and then doing an LR analysis based 

on the sample information data. This algorithm does not require the variables to follow a 

normal distribution and is more suitable for dealing with binary classification problems. 

Alternatively, the KNN method was introduced for the credit risk assessment (Henley and 

Hand, 1996). Applying a smoothing function to relate the category labels and sample 

attributes of the evaluation data, KNN uses a discriminant function to analyse the number of 

samples belonging to each category label among the samples of each category label. 

Obviously, statistical models often rely on specific assumptions, such as linearity, normality, 

and independence of observations. However, in credit risk assessment, these assumptions 

may not hold true for all data sets, leading to potential biases and inaccuracies in model 

predictions. Addressing the violation of assumptions and developing robust statistical 

models is essential. Meanwhile, credit risk assessment datasets can be high-dimensional, 

with numerous variables representing various aspects of the borrower's financial profile 

(Oreski and Oreski, 2014). 

Thus, the machine learning approaches such as neural networks, support vector machines 

(SVM), and decision trees (DT) are used for credit risk assessment (Bhatore et al., 2020). 

Since the capability of dealing with non-linear and the efficiency of prediction, the DT 

algorithm is used in the most basic classification problems, such as a probabilistic decision 

algorithm mapped in feature space and category space. The DT method primarily classifies 

many influencing factors that affect the borrower's credit, and through the introduction of 

entropy indicators to filter out the key classification factors for default and non-default 

situations, the DT method is highly operable and enables to better eliminate data noise. 

However, this model is more sensitive to data analysis and more prone to overfitting during 

the classification of single trees. In turn,  neural networks models take the attribute variables 

of the sample data as input data by constructing multiple hidden layers and then pass them 

through layer by layer to obtain the output results. The neural networks algorithm model can 

be backpropagated if the output results are far from the error margin. During the iterative 

forward and backward propagation process, the parameter values of the individual models, 

i.e., thresholds and weights, are continuously adjusted and the procedure is terminated when 

the results of the output layer reach the set error range. Different neural network techniques 

are used to solve the problem of credit risk assessment, such as probabilistic neural networks, 

artificial neural networks, and hybrid neural networks. Furthermore, SVM as a linear 

classifier based on a feature space is introduced to credit scoring (Baesens et al., 2003). The 
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algorithmic process of SVM is based on the construction of an approach by assigning 

weights to variables. SVMs are designed based on a high-dimensional space using kernel 

functions, which improves the classification accuracy of the predictive model compared to 

logistic algorithms, which are more suitable for binary classification problems. While the 

SVM is slow to train, it is not only inefficient when applied to large samples of data for 

classification. Then, single machine learning can no longer effectively meet the needs of 

prediction because of richer, more voluminous, and more imbalanced forms of data (Zhu et 

al., 2017). 

Ensemble learnings are considered improved predictive solutions (Saqi and Rokach, 2018). 

By iteratively learning sample data, multiple weak classifiers are used as base classifiers, 

and then the base classifiers are combined to improve the prediction accuracy and 

generalisation ability of the model. Each weak classifier is differentiated by the addition of 

a factor perturbation mechanism, and each better weak classifier is combined into a strong 

classifier with high prediction accuracy. Currently, two common ensemble methods are 

Bagging and Boosting, which are used to obtain the final strong classifier by combining 

different classification algorithms to improve the accuracy of a single classifier and to 

improve the generalisation ability of the classifier. 

In Bagging, a bootstrap approach is used to obtain N datasets from the overall dataset by 

taking a put-back sample, learning a model on each dataset, and using the output of the N 

models to obtain the final prediction, specifically as the classification problem represented 

by credit risk assessment uses N models to predict votes. Random Forest (RF), for example, 

is a form of Bagging, and it was confirmed that it outperforms a single classification DT 

model by composing multiple DTs, one of which is more accurate for a particular attribute 

and category of data (Breiman, 2001). The final discriminatory result is obtained by 

analysing the results of multiple DTs. 

Boosting methods, the representative example of Boosting is AdaBoost (Adaptive boosting), 

which learns a series of weak classifiers and combines them into a strong classifier by 

weighting the same sample training set differently, then training the weak classifiers with 

this data and finally constructing a DT from these underlying aspects. It has the advantage 

of being highly tolerant of noise and can analyse large sample classes for weighting while 

computing in parallel to obtain the final integrated classifier. During each iteration, the 

sample weight is determined by whether it is correctly classified by the weak classifier, with 
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its weight being increased if the current sample data is incorrectly classified, and decreased 

if the opposite is true, the advantage of AdaBoost includes less overfitting during the 

classification process and high prediction accuracy. Further, the Gradient Boosting Decision 

Tree (GBDT) was proposed as a Boosting method to improve the accuracy of a single model. 

The Gradient Boosting Decision Tree (GBDT) algorithm is trained in each round because of 

the residuals of the previous round, and it assigns an initial value to the input samples at the 

beginning of the prediction. Moreover, the Extreme Gradient Boosting (XGBboost) 

proposed by Tianqi Chen et al. in 2014 is an improvement of the GBDT algorithm, which 

solves both the regression and classification problems. The problem of inefficient 

classification by GBDT is solved by parallel computation. 

Overall, ensemble methods offer several advantages, such as improved accuracy, robustness, 

and the ability to handle high-dimensional data. However, they also face challenges, such as 

increased computational complexity and potential overfitting, which need to be carefully 

addressed in credit risk assessment scenarios. Meanwhile, Florez-Lopez and Ramon-

Jeronimo (2015) claimed that the current research related to the applications of ensemble 

methods often creates complex models that lack interpretability. In credit risk assessment, 

where transparency and justifiability are essential, the lack of interpretability can be a 

significant limitation. Moreover, credit risk datasets are commonly imbalanced, with a small 

fraction of default cases compared to non-default cases (Chen et al., 2016). Thus, the 

modifications to address the inherent bias in such datasets and produce balanced and fair 

credit risk assessments still exists in gaps. Finally, the emergence of new industries and novel 

business models introduces unique challenges to credit risk assessment. For instance, 

industries like FinTech start-ups, digital SCF services, and P2P lending platforms may have 

limited historical data or unconventional risk profiles, requiring adaptable ensemble 

techniques to model credit risk effectively. This critical literature review identifies the 

current research and gaps in the application of FinTech development and machine learning 

in credit risk assessment. The review also emphasizes the importance of adapting ensemble 

techniques to meet the challenges posed by emerging industries. By addressing these gaps 

and considering the evolving industry landscape, researchers and practitioners can develop 

more accurate and robust ensemble-based credit risk assessment models, contributing to 

enhanced risk management in the financial sector.   
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Chapter 3  FinTech and Banking Efficiency  

3.1 Introduction  

FinTech has become a driving factor for innovation across firms and financial institutions. 

This innovation varies across different dimensions, such as operational improvements, cost-

cutting alternative applications, access to a larger pool of customers, and integration of more 

popular products and services, inter alia (Nguyen et al., 2022). This new trend in financial 

services combines digital innovations, technology-enabled business models, and big data 

analytics that can facilitate improved financial decision-making (Soni et al., 2022), enforce 

sustainable solutions (Chueca Vergara and Ferruz Agudo, 2021) and improve firms’ risk 

profile (Austin and Dunham, 2022). All of the above concludes that there is strategic value 

for firms from FinTech innovation, as clearly explored by Chen et al. (2019). 

However, the picture is not so clear when it comes to evaluating the importance of FinTech 

innovation in the banking sector. Although the literature theoretically links FinTech with the 

disruption of financial services and the potential disintermediation effect, empirical analysis 

showcasing the effects of this new trend in the operations of banks is scarce. There are 

different views in the literature linking financial innovation with banking diversity (Berger, 

2003), resource allocation (Hartman et al., 2001), and innovation fragility and risk analysis 

(González et al., 2016; Zhao et al., 2022). Nonetheless, not enough attention is paid to the 

direct effects of FinTech. This is crucial, especially under the prism of Thakor (2020), who 

explains that when it comes to commercial banks, FinTech promotes the technological 

upgrade of their financial products and services, but also enhances overall competition in the 

sector.  

The motivation for this study stems from the above situations of modern interaction of 

technology innovation and banking services. Our main goal is attempting to quantify the 

effects and assess the importance of FinTech for banking efficiency, focusing on the Chinese 

banking system and particularly Chinese commercial banks. China has seen FinTech 

emerging in the past few years. In 2021 it was reported that China's total FinTech investment 

and financing reached 12.67 billion Yuan in the first quarter, a year-on-year growth rate of 

nearly 130%. Traditional financial institutions have become significantly more proactive in 

the FinTech space, with large State-owned Commercial Banks (SOCBs) increasing their 

technology investment by 34.54% in 2020, well above their overall revenue growth rate of 
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4.44%. In line with this argument, Gorjón Rivas (2018) suggests that more than 25% of 

global users of FinTech work in China which has a large FinTech market where the Chinese 

use their mobile phones for business transactions. Proportion-wise this corresponds to 87.3% 

of the population, compared to 43.2% in the US.10 In addition, China contains eleven times 

as many people in the US who use their mobile phones for payment transactions. This is 

consistent with KPMG’s report (2018) that in 2018, four out of ten FinTech companies in 

the world were Chinese firms. Consequently, Chinese commercial banks have experienced 

an upsurge in FinTech-related advances to promote growth and economic stability. 

This work is related to three different strands of literature. First, the empirical and theoretical 

framework is built that looks at the factors affecting the efficiency of banks. These confirm 

that bank-specific and country-specific factors influence efficiency levels (Casu et al., 2004; 

Ataullah and Le, 2006) but the new emerging external effect of technology has not been 

considered within the banking sector. A second relevant strand of literature emphasises the 

important role of efficiency measures and specific methodologies when dealing with banks 

(Fethi and Pasiouras, 2010). The majority of the studies use non-parametric methods, such 

as Data Envelopment Analysis (DEA) (Ferrier and Lovell, 1990; Zheng et al., 2003). 

Parametric methods represented by the Stochastic Frontier Approach (SFA) are also 

common (Bauer et al., 1993; Kwan and Eisenbeis, 1996; Clark and Siems, 2002). The SFA 

approach defines the functional form of the cost, profit, or production function and allows 

for the inclusion of the inefficiency factor in the error term, but it suffers from a pre-

determined form of the optimal efficiency frontier function, which may lead to bias in the 

efficiency ridge (Berger and Humphrey, 1991). DEA is a linear method used to estimate the 

efficiency of a decision unit and is based directly on a firm-specific dataset, rather than a 

specific functional form to define the production frontier, while its assumptions ignore the 

effects of random error. A third related line of work is the literature on the financial 

development of emerging economies. Prior literature has shown that there is a positive 

relationship between local financial development and bank efficiency (Claessens and Laeven, 

2003; Chen et al., 2020). Financial development has proven to be an important determinant 

 
10 The relevant statistics are available at 
http://www.caict.ac.cn/english/research/whitepapers/202112/t20211224_394512.html and 
https://www.businessofapps.com/data/mobile-payments-app-market/. 
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of FinTech development, and the regional nature of financial development is also influential 

(Laidroo and Avarmaa, 2020). 

This paper adds value to the literature in many ways. First, the extent to which FinTech has 

an impact on the efficiency of commercial Chinese banks is tested. Previous studies have 

shown that the banking sector is considered to play a significant role in the development of 

any financial system, especially those dependent on banks (Heffernan, 2005). However, very 

few studies explore the relationship between the banking industry and FinTech. Phan et al. 

(2019) find that FinTech has a negative impact on Indonesian banks by constructing the 

FinTech index with the counts of FinTech enterprises. Iman (2019) also finds through a 

series of case studies that the development of FinTech in Indonesia has increased banking 

competition, while Le et al. (2021) analyse the impact of FinTech credit on bank efficiency 

using banking data from 80 countries for a period between 2013 and 2017. The authors 

confirm that although there is a negative relationship between FinTech credit and bank 

efficiency, higher FinTech credit promotes bank efficiency. Lee et al. (2021) confirm that 

the FinTech innovations improve the cost efficiency of commercial banks by using principal 

component analysis to construct the Fintech index. Meanwhile, Wang et al. (2021) apply 

factor analysis to build the indicator that represents the FinTech development and they find 

the positive influence of FinTech in commercial banks’ efficiency. Taking this one step 

further, the relationship is explored by applying a Digital Financial Inclusion 

Index (DFII) (Stage, I.I., 2019),11 which is used in research to objectively reflect China’s 

FinTech development (Liu et al., 2021; Wang et al., 2022). Given the index's large and robust 

data sources, this indicator deeply reflects the development of financial digitisation in all 

regions within China, and serves as a proxy indicator for FinTech adoption, enabling the 

study to analyse the impact of FinTech development on banks from more perspectives (Yang 

et al., 2022).   

Second, an analysis focusing on CCBs is presented. There is evidence of an upsurge in 

Commercial banks learning and cooperating with FinTech in China.12 In China, these banks 

dominate funds coming from the local area (Zhang et al., 2012). All CCBs are based in 

 
11 The DFII index is obtained from the Ant Financial Service Group database. Information on this 
database can be found at: https://idf.pku.edu.cn/docs/20210421101507614920.pdf  
12 Source: https://www.centralbanking.com/central-banks/economics/7835346/the-irreversible-rise-
of-FinTech-in-china.https://www.centralbanking.com/central-banks/economics/7835346/the-
irreversible-rise-of-FinTech-in-china 
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central cities, i.e., provincial or prefecture-level cities. Before 2006, when the China Banking 

Regulatory Commission allowed CCBs to set up branches in other provinces, they were 

required to operate within their own administrative regions (Sun et al., 2013). In other words, 

their development and operations are closely related to the local economy. As of the end of 

2021, there were 125 CCBs with total assets of 45.1 trillion RMB, accounting for 13.1% of 

the industry. According to Ferri (2009), CCBs are a new force among Chinese commercial 

banks. Compared with other major commercial banks classifications in China, SOCBs and 

Joint-stocked Commercial Banks (JSCBs), the scale of CCBs is small, but their continuous 

development promotes and supports the balance of the local economy and the operation of 

small and medium-sized enterprises.  

Third, a two-stage bootstrap-DEA-Malmquist truncated regression method is considered. 

DEA-Malmquist approaches are commonly used when firm-level characteristics are 

explored, especially in regressions incorporating efficiency estimates as dependent variables. 

They provide estimates of the productivity of multi-input and output decision-making units 

(DMUs), but they have long criticised the accuracy and robustness. In this two-stage setup, 

a DEA-Malmquist framework is a relatively simple way to estimate the productivity of 

multi-input and output DMUs (Camanho and Dyson, 2006). Then, bootstrapped truncated 

regressions incorporating the Simar and Wilson (2007) method are used to eliminate bias in 

the estimates (Odeck, 2009; Fernandes et al., 2018). Wang et al. (2021) study the impact of 

FinTech development on the efficiency of commercial banks by obtaining the total factor 

productivity through DEA-Malmquist. However, they do not apply the same DEA-truncated 

regression framework leading to biased estimates, while the commercial banks' total factor 

productivity and its decomposers are specifically analysed in this chapter. This provides a 

more robust and complete approach. 

Fourth, this chapter also considers that the development of FinTech at city-level with 

different regional financial development status should have a differential impact on CCBs. 

The impact of regional financial development is of great significance to the business 

development of CCBs in China and should be considered in our paper (Marcelin and Mathur, 

2014). Chinese CCBs operate mainly in certain regions to which they are affiliated. They 

have a wider coverage of local businesses and are more closely connected to the local 

economic ecology, thereby making it easier for them to obtain policy support from local 

governments and regulatory authorities. CCBs are also an important contributor to 
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supporting the construction of local enterprises and the development of local finance (Chen 

et al., 2020). 

This analysis is based on a sample of 101 Chinese commercial banks sourced from the 

CSMAR database, over the period 2011-2020. The FinTech development index, i.e., DFII, 

is obtained from the Institute of Digital Finance, Peking University, with yearly data for a 

period between 2011 and 2020. This study provides an interesting set of findings by 

employing the two-stage bootstrap-DEA-Malmquist truncated regression. One of the first 

thing is to show that there is a positive relationship between FinTech development and the 

efficiency of Chinese commercial banks. Additionally, higher levels of FinTech 

development also contribute to the efficiency of Chinese commercial banks. Comparing the 

extent to which the efficiency of different commercial banks’ affiliations is affected, it is 

find that CCBs are more positively affected. There is more potential for the application and 

development of FinTech in CCBs that are smaller in original size and have a single source 

of financing. Further, we involve the regional financial development and find, surprisingly, 

that CCBs located in regions with higher levels of financial development are better able to 

receive the positive impact of FinTech. This demonstrates that regions in China with a more 

developed regional financial development have more capacity and scope to practice pushing 

FinTech to work in CCBs. It also serves as a reminder that less financially developed regions 

should apply FinTech in conjunction with their local level of financial development to 

maximise their advantages. 

The remainder of the paper is structured as follows. The theoretical background of Chinese 

commercial banks and the hypotheses are presented in Section 3.2. Section 3.3 includes the 

methodology applied, while Section 3.4 summarises the data description. The empirical 

results are presented in Section 3.5, while several robustness checks are given in Section 3.6. 

Finally, concluding remarks are provided in Section 3.7.  

3.2 Theoretical Background and Hypotheses Development 

3.2.1 Background of Chinese Banking System and Commercial Banks  

The Chinese commercial banking system has undergone intensive innovative and 

institutional reforms since 1978 (Qian, 2000). China's banking industry has gradually 

developed from a single banking system to a more diversified multi-level banking system 

(Lin and Zhang, 2009; Cousin, 2011). Initially, the banking system was comprised of only 
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one commercial bank (i.e., the People’s Bank of China), whereas by 1996 four major 

commercial banks played a crucial role in its development (Fu and Heffernan, 2009). During 

this period, China's commercial banking business gradually improved with the requirements 

of economic development and financial system reform. With China's reform and opening up, 

JSCBs were gradually established in the 1980s and 1990s as a kind of joint-stock bank with 

a mixture of state-owned investment and private equity participation. Under the guidance of 

the open-door policy, JSCBs operate entirely in a corporate manner in accordance with 

market norms, and they are relatively flexible and modern banks, with the customer as the 

guiding force and with the customer's needs as the top management philosophy (Craig, 2005). 

Until the gradual establishment of JSCBs and CCBs in 1986, China Minsheng Bank was the 

first national JSCB invested mainly by private enterprises. Since then, the rapid development 

of JSCB has realized its nationwide operation. CCBs are merged, reorganized, and 

transformed into urban cooperative banks from various urban credit cooperatives in order to 

resolve their existing risks and prevent and control incremental risks. Finally, the accession 

of China to the World Trade Organization (WTO) in 2001 allowed the country to develop 

and modernise its commercial banking system (Berger et al., 2009; Zha et al., 2016). 

Modern Chinese commercial banks are divided into SOCBs, JSCBs and CCBs, in 

accordance with their functions and politics (Zha et al., 2016). SOCBs are wholly owned by 

the state, currently represented by the five largest banks i.e., Bank of China, Agricultural 

Bank of China, Industrial and Commercial Bank of China, China Construction Bank and 

Bank of Communications (Wang et al., 2014). These banks were established or restructured 

from the pre-reform era and continue to play a pivotal role in China's financial landscape. 

JSCBs which represent a more market-oriented segment of China's banking system allow 

non-state shares to participate, giving them more customised operations and greater 

flexibility. Currently, there are 12 joint-stock companies in China, of which four are private 

and eight are state-owned (Fu and Heffernan, 2009). CCBs are also a type of JSCB, but they 

are also a special group due to the capital of CCBs comes from the local area. All CCBs are 

divided into provinces or specific priority cities, and their development and operations are 

closely linked to the local economy (Zhang et al., 2012). At the end of 2018, there were 134 

CCBs. They play a crucial role in supporting the development of small and medium-sized 

enterprises (SMEs) and fostering economic growth at the local level. China's banking system, 

with its diverse categories of banks, reflects a blend of state control and market-oriented 

approaches. While SOCBs dominate the sector, JSCBs and CCBs contribute to the overall 

dynamism of the financial system. 
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3.2.2 The FinTech development in China 

The development of FinTech in China has also experienced three main stages due to the 

reforming of China’s commercial banks (Hua and Huang, 2021). In particular, the financial 

informatisation stage (2005-2010), the Internet finance integration stage (2011-2015), and 

the FinTech and Digitisation stage (2016 up until today). The first stage was marked by the 

development of data aggregators and online banking. The financial system combined 

modern information technology with the aim of reorganising the traditional financial 

industry. In fact, China’s WTO membership created a new market competitive landscape. It 

established new customer relationship management and financial product innovation, and it 

strengthened internal banking information. The second stage was a period of rapid 

development for online banking in China (Chen et al., 2014). The establishment of PPDAI13 

in 2007 became a landmark event in the development of FinTech in China, as it marked the 

real inclusion of FinTech into the core business of finance (Kong and Loubere, 2021).14 

Individual and corporate internet banking transactions began to grow rapidly. Consequently, 

banks entered a new development phase where the internet and finance were formally 

combined.15 

Finally, the FinTech and Digitalisation stage is characterised by state-of-the-art technology, 

such as AI, quantitative trading, risk management by big data and cloud services. These are 

applied to the core industries of the financial sector. Overall, FinTech has made its way into 

the Chinese banking business, not only as a transformation tool in the industry but also as a 

strategic goal in Chinese national financial policy.16  

3.2.3 FinTech, Financial Development and Banking Efficiency  

Research on the efficiency of commercial banks in China has been active since the late 1990s, 

and there has been a diversity of approaches. Ariff and Luc (2008) calculate the cost 

efficiency and profit efficiency of 28 Chinese commercial banks for the period 1995-2004 

 
13 PPDAI is a leading online consumer finance marketplace in China. Launched in 2007, the company 
is the first online consumer finance marketplace in China connecting borrowers and investors 
(https://ir.finvgroup.com/2019-09-26-PPDAI-Group-Inc-to-Hold-Annual-General-Meeting-on-
November-5-2019).  
14  Source: 
https://www.sec.gov/Archives/edgar/data/1691445/000119312517309953/d285990df1.htm  
15 Source: https://www.chinatechnews.com/2011/05/27/13382-twenty-seven-chinese-companies-
gain-third-party-payment-licenses 
16 Source: http://www.chinadaily.com.cn/a/201908/22/WS5d5e5ed7a310cf3e35567595.html 
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using a DEA-based non-parametric approach. Further, Jiang et al. (2009) measure the 

efficiency of Chinese commercial banks from 1995 to 2005 using the SFA approach and 

analyse the impact of governance change on their efficiency. Matthews et al. (2007) further 

investigate the state-inefficiency and non-performing loans of Chinese commercial banks by 

using the non-parametric bootstrapping method, which is based on Simar and Wilson's (2000) 

approach and was more stable than the single DEA approach. Lin et al. (2009) also follow 

the SFA approach to measure the X-efficiency of the Chinese banking system and conclude 

that smaller banks are more efficient. See and He (2015), on the other hand, use the double 

bootstrap DEA method to measure the efficiency of 17 banks in China and analyse the 

determinants of bank technical efficiency in China, drawing on the methodology of Simar 

and Wilson (2007). 

This paper argues that there is a link between Chinese commercial banks’ efficiency levels 

and FinTech. Our motivation stems from two main aspects. First, FinTech can help 

commercial banks to explore data in the context of the digital age, extracting new 

information from any technological improvement. As a result, banks can achieve savings in 

a cost-efficiency way (Zhao et al., 2019). Previous studies have provided evidence that 

internet technology can improve the channels and services of commercial banks, enhancing 

their overall efficiency levels (Bons et al., 2012; Hoehle et al., 2012). In a similar vein, Chen 

et al. (2017) note the scale of traditional banks actively undergoing FinTech-driven 

transformation, with evidence that commercial banks have become more reliant on those 

that have implemented FinTech initiatives. Later, China Minsheng Bank and Alibaba Group 

signed a strategic pact to offer new finance services, a move that slightly perturbed China’s 

state-run banking giants. The Industrial and Commercial Bank of China set up a FinTech 

Research Institute aimed at driving innovation of the bank's core businesses with information 

technology. In 2020, Everbright Bank announced an investment in a financial innovation 

incubator to conduct research on FinTech development.17  

 
17  Sources for the above are provided at the following reports: http://en.srcb.com/latestnews/-
qiavExmOBOvytuXkRLRk.shtml , http://en.srcb.com/latestnews/-
qiavExmOBOvytuXkRLRk.shtml, https://www.chinabankingnews.com/2019/11/05/icbc-
announces-officially-launch-of-FinTech-research-academy/, 
https://www.chinabankingnews.com/2020/04/21/china-everbright-bank-invests-500-million-yuan-
in-FinTech-innovation-incubator/ 
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Second, the use of FinTech also allows for a more sustainable financial inclusion setting. 

Regions in China that are comprised of less concentrated traditional bank branches should 

benefit more from FinTech services (Hua and Huang, 2021). This is consistent with the view 

that internet finance blurs the boundaries among financial institutions and further eliminates 

barriers, encouraging traditional banks to achieve technological innovation and improve 

bank efficiency (Allen et al., 2002).  

Based on the above, this chapter argues that these technological updates and services should 

have a positive impact on the efficiency of commercial banks in China. As such, the first 

testable hypothesis is as follows: 

Hypothesis 1: Higher levels of FinTech development have a positive impact on CB’s 
efficiency levels. 

The role of FinTech in the different commercial banks’ efficiency levels is also tested. CCBs 

differ from SOCBs and JSCBs in terms of resource scale, property rights structure and 

business modeling (Lin and Zhang, 2009). CCBs are characterised by a short establishment 

time, a small number of outlets, and customers that are small and medium-sized privatised 

firms. These banks benefit from fast information transmission due to their small asset scale 

and concentration in specific business areas (Ferri, 2009). As a result, CCBs can quickly 

absorb FinTech technological changes by forming external cooperative relationships with 

FinTech start-ups (Li, 2020). While SOCBs comprise wider customer groups, large assets, 

and a higher national reputation, they suffer from high-level government jurisdiction, i.e., a 

lack of incentive mechanisms (Zhang, 1998). This prevents large SOCBs from absorbing in 

a timely matter advanced technology in FinTech (García-Herrero et al., 2009). Hence, the 

lack of an adhocracy system restrains these banks from investing more efficiently in 

innovative activities (Firth et al., 2008). Finally, the JSCBs consist of more flexible operating 

mechanisms, complete management systems, and diversified products. However, the 

literature shows that these banks’ positioning is not clear cut, as there is no fixed source of 

customer groups, giving the joint-stock system banks lower profit efficiency than CCBs 

(Jiang et al., 2013). Moreover, JSCBs lack policy support from local governments, which 

makes them benefit less from any local FinTech policy. It is argued that the positive impact 

of FinTech should exert a different effect on the efficiency levels of CCBs, SOCBs and 
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JSCBs. The development of FinTech poses a challenge to SOCBs and JSCBs; that is, 

whether nationwide business services can quickly respond to the transformation and 

upgrading of FinTech and implement it effectively. By contrast, the smaller size and the 

regional concentration of CCBs have become advantageous by absorbing the positive impact 

of FinTech development. Based on this argument, we propose the following hypothesis:  

Hypothesis 2: Higher levels of FinTech development have a stronger positive impact 

on the efficiency of CCBs than on their SOCBs and JSCBs counterparts. 

One of the features of CCBs is that they usually perform their business within the boundaries 

of the city or province where they are located, i.e., one-city-one bank (Ferri, 2009). Sun et 

al. (2013) show that CCBs operating regionally have higher efficiency levels due to the 

presence of strategic investors. However, the efficiency of CCBs is negatively related to the 

local region’s economic development, due to CCBs’ governance structure and the local 

officials’ promotion system. This provides us with a unique opportunity to explore how the 

regional institutional environment affects local commercial bank efficiency. Previous 

literature denotes that improvement of the financial market can gradually promote the 

development of the local economy, therefore increasing the level of financial development 

(Levine, 1999; Law et al., 2013). However, the development of FinTech has also created 

both positive and negative aspects for CCBs. While the development of FinTech can 

improve internal operations efficiency, it can increase competition among commercial banks 

in a certain region. The more developed the economy of the cities, the more intense the 

banking competition would be, as there is a higher likelihood of the presence of large 

commercial banks, limiting the innovative capacity of FinTech and leading to relatively 

lower efficiency of CCBs (Yao et al., 2008). On the contrary, in cities with low economic 

development levels, CCBs are the main local financial institutions, and their profit and return 

efficiency will be relatively high. In addition, local economic development is often directly 

correlated to the degree of regional financial development (Cheng and Degryse, 2010). 

Studies on financial development in banking have focused on the overall financial 

development of the country and neglected the influence of uneven regional financial 

development from the perspective of CCBs (Wu et al., 2007). Based on this, this chapter 

argues that the relationship between FinTech and efficiency should be higher for CCBs in 

less regional financially developed areas. 
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Hypothesis 3: FinTech exerts a positive and stronger effect on CCBs in less financially 

developed regions than in their more financially developed counterparts. 

3.3 Methodology  

To test the main hypotheses, this study takes into consideration a non-parametric method 

based on a technical efficiency theory first developed by Farrell (1957), that utilising a DEA 

approach. There are some differences in the stability and accuracy of DEA’s estimated 

efficiency. According to Simar and Wilson (2000), the DEA model has inconsistent 

efficiency results when the return to scale is assumed to be constant and/or variable. Hence, 

the DEA efficiency estimates are biased and should not be used directly in a regression 

framework, as in the work of Staub et al. (2010) and Chortareas et al. (2013). To alleviate 

these concerns, the hypotheses are tested by constructing a two-stage model. A two-stage 

model with a DEA-Malmquist process and a double bootstrapped truncated regression are 

generated.  

3.3.1 First Stage: Banking Efficiency Estimations 

The DEA-Malmquist method is a method of measuring Total Factor Productivity (TFP) 

changes (Färe et al., 1994). It combines the efficiency measuring method by Farrell (1957) 

and Caves et al. (1982). The main feature of this method is that panel data analysis, among 

multiple DMUs, can be performed without providing information on the price of the element. 

A variety of DEA models have been developed to measure efficiency and capacity in 

different ways. These largely fall within the category of input-oriented or output-oriented 

models.  

The input-oriented method measures the optimised efficiency when the output quantity is 

fixed. Conversely, the output-oriented method aims to measure the optimised efficiency 

when the input quantity is fixed under the same circumstances. Most scholars exploring 

banks’ efficiency consider the input-oriented model as the preferred model, as banks tend to 

control input quantity (Fethi and Pasiouras, 2010). However, in our case, CCBs are smaller 

in scale than national banks, which means that this level of control is not ensured. As such, 

we apply the output-oriented method as it is more reflective of banks that focus on growth 

in specific areas (Paradi and Schaffnit, 2004). 
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According to the output-orientation DEA-Malmquist method, the production technology 𝑃! 

that converts input into output during time period 𝑡 = 1…𝑇  can be expressed as 𝑃! =

{(𝑥! , 𝑦!): 𝑥!𝑐𝑎𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑦!}, in which we assume that there is a transformation of inputs, 

𝑥! ∈ 𝑅"# , into outputs, 𝑦! ∈ 𝑅"$ . Then, the distance function 𝐷%  can be defined by the 

reciprocal of the largest proportional changes of output 𝑦!, while the input 𝑥! is given and 

can be presented as follows: 𝐷%!(𝑥&! , 𝑦&!) = inf	{𝛿: (𝑥&! , 𝑦&!/𝛿) ∈ 𝑃!}, 𝑖 = 1,… , 𝑛! . Among 

them, we use 𝑛  banks as DMU, 𝑜  presents the output orientation, and 𝛿  represents the 

output-oriented efficiency index. If 𝑦&! is a component of 𝑃!, the function value will be less 

than or equal to one, as 𝐷%!(𝑥&! , 𝑦&!) ≤ 1; if 𝑦&! is on the frontier of 𝑃!, then the function value 

is equal to one, 𝐷%!(𝑥&! , 𝑦&!) > 1, which means the improvement of efficiency. 

On this basis, taking the period 𝑡 as a reference, the Malmquist productivity index (MPI) 

which uses 𝑀 to define for output-orientation from period 𝑡 to period 𝑡 + 1 is: 

𝑀%
!(𝑥&! , 𝑦&! , 𝑥&!"', 𝑦&!"') =

𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!(𝑥&! , 𝑦&!)

(1) 

Then, taking 𝑡 + 1 as the reference, the MPI is presented as: 

𝑀%
!(𝑥&!"', 𝑦&! , 𝑥&!"', 𝑦&!"') =

𝐷%!"'(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&! , 𝑦&!)

(2) 

This study considers MPI as the geometric average of the above two indices: 

𝑀%(𝑥&!"', 𝑦&! , 𝑥&!"', 𝑦&!"') = G
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!(𝑥&! , 𝑦&!)

∗
𝐷%!"'(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&! , 𝑦&!)

I

'
(

(3) 

Accordingly, the 𝑀%, which also represents the total factor productivity change (TFPCH), 

could be decomposed into the product of efficiency change (EFFCH) and technology change 

(TECHCH): 

𝑀%(𝑥&!"', 𝑦&! , 𝑥&!"', 𝑦&!"') =
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!(𝑥&! , 𝑦&!)

∗ G
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&!"', 𝑦&!"')

∗
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&! , 𝑦&!)

I

'
(

(4) 

= 𝐸𝐹𝐹𝐶𝐻 ∗ 𝑇𝐸𝐶𝐻𝐶𝐻 (5) 
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𝐸𝐹𝐹𝐶𝐻 =
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!(𝑥&! , 𝑦&!)

(6) 

𝑇𝐸𝐶𝐻𝐶𝐻 = G
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&!"', 𝑦&!"')

∗
𝐷%!(𝑥&!"', 𝑦&!"')
𝐷%!"'(𝑥&! , 𝑦&!)

I

'
(

(7) 

According to Färe et al. (1994), the efficiency change index can be decomposed into pure 

technical efficiency change index (PECH) and scale efficiency change index (SECH); in 

other words, the technical efficiency improvement index based on the constant returns to 

scale (CRS) method is decomposed into PECH and SECH under the variable returns to 

scale (VRS) method. 

𝑃𝐸𝐶𝐻 =
𝐷%)! (𝑥&!"', 𝑦&!"')
𝐷%)! (𝑥&! , 𝑦&!)

(8) 

𝑆𝐸𝐶𝐻 =
𝐷%)! (𝑥&!"', 𝑦&!"')
𝐷%)!"'(𝑥&!"', 𝑦&!"')

∗
𝐷%*! (𝑥&!"', 𝑦&!"')
𝐷%*!"'(𝑥&! , 𝑦&!)

(9) 

In the above formula, the added subscripts 𝒗 and 𝒄 correspond to the technical efficiency 

change index of VRS and CRS, respectively. 

3.3.2 Second Stage: Double Bootstrapped Truncated Regression 

At this stage, in view of the error problem of the DEA-Malmquist method, we introduce the 

bootstrap method to correct bias. The revision and improvement of the traditional DEA-

Malmquist model by Simar and Wilson (1999) made the results more robust. To test our 

hypotheses, the efficiency changes are the dependent variable in the second stage. This study 

is interested in an output-oriented model, thus, the specific model is built as follows: 

𝑆X&! = 𝛼 + 𝛽𝑧&! + 𝜖& ≥ 1 (10) 

Where �̀�𝒊𝒕 represents the Malmquist efficiency score and its decomposition scores, 𝒛𝒊 is the 

vector of explanatory variables, 𝜶 is a constant, 𝜷 is a vector of parameters to be estimated 

and 𝝐𝒊 is an error term that is independent of 𝒛𝒊, 𝝐𝒊 ∼ 𝓝(𝟎, 𝝈𝝐𝟐). We implement a bootstrap 

method to avoid the interference of random error accumulation and other factors in the 

model. Repeated sampling and estimation are applied and aim to achieve the highest 
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convergence of the estimated parameters to the real ones. To achieve this, the experiment 

follows the steps of the bootstrap truncated regression model of Simar & Wilson (2007): 

Step 1. Using the original data in 𝑃! for each period 𝑡(𝑡 = 1,… , 𝑇), we compute the 𝑆X&! using 

the Malmquist model (3)-(9). 

Step 2. Obtain the estimates 𝛼i, 𝛽X  and 𝜎/(k of 𝛼, 𝛽 and 𝜎/( in the truncated regression of 𝑆X&! on 

𝑧&! through applying maximum likelihood based on the (10). 

Step 3. Loop over 3.1-3.4 𝐿' times to obtain n set of bias-corrected estimates 𝐵&! = {𝑆X&0!∗}02'
3!  

: 

Step 3.1. Draw 𝜖&̂0!  from 𝒩(0, 𝜎/() distributed on the left truncation of p1 − 𝛼i − 𝑧&!𝛽Xr. 

Step 3.2. Compute the 𝑆X&0!∗ = 𝛼i + 𝛽X𝑧&! + 𝜖&̂0!  again for each 𝑖 = 1, . . , 𝑛!. 

Step 3.3. Set 𝑥&0!∗ = 𝑥&!, 𝑦&0!∗ = t 4"
#

5$%
#∗6 u ∗ 𝑦&

! and 𝑧&0!∗ = 𝑧&! for 𝑖 = 1,… , 𝑛!. 

Step 3.4. Estimate the 𝑆70!∗k  using the bootstrapped 𝑦80!∗ and 𝑥80!∗ instead of 𝑦8! and 𝑥8!. 

Step 4. Compute the bias-corrected scores 𝑆XX&! for each 𝑗 = 1,… , 𝑛!, which is defined by 𝑆XX&! =

𝑆X!" − 𝐵𝐼𝐴𝑆p𝑆X!"r where 𝐵𝐼𝐴𝑆p𝑆7!̀r represent the bootstrap estimator of bias in 𝐵&! obtained in 

step 3. 

Step 5. Again, employ the maximum likelihood method to estimate the truncated regression 

of 𝑆XX&! on 𝑧&! yielding new estimators of regression which defined as 𝛼iy, 𝛽XX and 𝜎/zk. 

Step 6. Loop over 6.1-6.3 𝐿(  times to obtain a set of bootstrapped estimates 

{(𝛼∗k,𝛽X∗, 𝜎/∗k)0}02'
3' : 

Step 6.1. Draw 𝜖X̂&0!  from 𝒩p0, 𝜎iy/(r for each 𝑖 = 1,… , 𝑛! with truncation on the left side at 

{1 − 𝛼iy − 𝑧&!𝛽XX|. 
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Step 6.2. Compute the 𝑆X&0!∗∗ = 𝛼iy + 𝛽XX𝑧&! + 𝜖X̂&0!  again for each 𝑖 = 1,… , 𝑛!. 

Step 6.3. Apply the maximum likelihood method to estimate the truncated regression of 𝑆&0!∗∗ 

on 𝑧&! yielding estimators 𝛼iy∗, 𝛽XX∗ and 𝜎iy/∗. 

Step 7. Construct bootstrapped confidence intervals for 𝛼, 𝛽 and 𝜎/ using the bootstrapping 

value 𝛼iy, 𝛽XX  and 𝜎/zk. 

At the end of this procedure, the set of biased-corrected efficiency estimates is obtained 𝑆XX&! =

𝐸&!, which will be used as in the truncated regression18.  

3.3.3 Final Double Bootstrapped Truncated Regression Specification 

To investigate the impact of FinTech development on the efficiency of Chinese commercial 

banks, this chapter follows the previous literature (Chang et al., 2012; Du et al., 2018) and 

defines our model as follows: 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + ∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (11) 

Where 𝐸&! represents the Malmquist efficiency score and the decomposition bootstrapped 

bias-corrected efficiency scores; 𝐹𝐼&!;' indicates the lagged FinTech index measured as the 

logarithm of the aggregated development level of FinTech ; 𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&!  denotes the 

macroeconomic variables while 𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&!  stands for the microeconomic variables; 𝑖 

identifies the bank; 𝑡 is the time component; and 𝜖 is the random error. The analysis also 

controls the possibility of endogeneity (Taylor, 1999; Rossi et al., 2009) In particular, the 

lag value of efficiency is included (𝐸&,!;'). as the efficiency level of a bank at time t depends 

on the effect of efficiency from the previous period (t-1).   

The study hypothesises that higher levels of FinTech development (𝐹𝐼&!;') increase the 

efficiency levels of commercial banks’ (hypothesis 1). Hence, it expects 𝛽(  to exert a 

positive effect on banks’ efficiency.  

 
18 The above procedure is implemented in R using the FEAR packaged for estimating the double 
bootstrapped truncated regression by Wilson (2008). 
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In addition to the main variable of interest, a set of financial variables are included in our 

model specification. Banks’ size, measured as the total asset of banks, is used to control for 

the risk level and financing access preferences (Kishan and Opiela, 2000). Past literature 

refers that larger commercial banks should have lower efficiency levels as they are more 

difficult to manage due to they are less contributed to volatility connectedness (Wang et al., 

2018; Fang et al., 2019). Hence, we expect a negative impact of size on the efficiency levels 

of banks. 

The loan-to-deposit ratio (LDR) is also applied as an indicator of resource allocation for 

commercial banks. According to Van den End (2016), higher LDR reflects higher capital 

usage, therefore, increasing the efficiency of resource allocation. As such, The analysis 

expects the coefficient of LDR to be positive. The variable Return on Assets (ROA) is used 

as a proxy for firms' profitability performance (Bonin et al., 2005).  Higher levels of ROA 

indicate higher profitability levels (Ozili and Uadiale, 2017). Hence, the profitability is 

expected to exert a positive effect on the efficiency levels of banks. 

In addition,  the Capital Adequacy Ratio (CAR) is used a proxy for risk tolerance level. It is 

generally accepted that a higher CAR reflects a bank's greater resilience to risk contributing 

to its efficiency (Pessarossi and Weill, 2015). This chapter expects a positive impact of CAR 

on the efficiency changes. Finally, IPO is a dummy variable equal to 1 if the banks are listed 

and 0, otherwise. Listing helps commercial banks to expand the capital source and strengthen 

the market discipline, thereby standardising internal management and improving the 

efficiency of banks (Alqahtani et al., 2017). As such, IPO should have a positive effect on 

efficiency levels. 

At a macro level,  the real Gross Domestic Product (GDP) growth is included to reflect the 

development of the economy. Better economic situations promote loans and deposits of 

businesses for commercial banks (Behr et al., 2017). As such, it expects a positive 

relationship with banks’ efficiency. The Consumer Price Index (CPI) is employed to measure 

inflation (Lozano-Vivas and Humphrey, 2002; Lensink et al., 2008). The higher inflation 

level is considered to have a positive impact on the profitability of banks in China (Tan and 

Floros, 2012). As such, it expects a positive effect on efficiency levels. Finally, the 

proportion of assets of the five major banks in China is used as an indicator of industry 

concentration. According to Semih Yildirim and Philippatos (2007), industry concentration 



58 

 

should negatively affect the efficiency of banks as the lack of competition in the highly 

concentrated structure of the banking system. 

Next, this chapter investigates whether the relationship between banks' efficiency levels and 

FinTech differs across different bank groups (i.e., CCBs, SOCBs, and JSCBs). Corporate 

social responsibility activities and business survival vary among the bank groups and there 

are differences in their treatments of FinTech in terms of acceptance and policy guidelines. 

In particular, CCBs have smaller capitalisation but more targeted business compared to 

SOCBs and JSCBs, incentives under the local government and the imposition of FinTech 

have greatly expanded original business. As such, it is argue that the impact of FI on 

efficiency should be higher for CCBs. Equation (12) is augmented with a dummy variable 

representing each bank type. Specifically, 𝑆𝑂𝐶𝐵&! is a dummy variable equal to 1, and 0 

otherwise while 𝐽𝑆𝐶𝐵&!(𝐶𝐶𝐵&!)  is a dummy variable that takes the value of 1, and 0 

otherwise. 𝑆𝑂𝐶𝐵&! is omitted in the following equation as the benchmark group (Luo et al., 

2017).  

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + 𝛽<𝐽𝑆𝐶𝐵&! + 𝛽=𝐶𝐶𝐵&!
+𝛽>𝐽𝑆𝐶𝐵&! ∗ 𝐹𝐼&!;' + 𝛽?𝐶𝐶𝐵&! ∗ 𝐹𝐼&!;'

+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (12)
 

If the hypothesis stands, then  the impact of FinTech development on efficiency is expected 

to be higher for CCBs than for the commercial banks counterparts.  

Finally, this study aims to explore the impact of regional financial development on CCBs’ 

absorption of FinTech. The motivation for this analysis is due to the importance of 

geographical impact on CCBs as the success of CCBs is systematically and positively 

correlated to their economic region (Cai et al., 2016; Li and Song, 2021). 

To focus on the specific role of FinTech and financial development for CCBs we follow the 

past literature (Ariff and Luc, 2008) and remove data from other commercial banks. As a 

proxy for financial development in China,  the ratio of regional total loans to GDP is applied 

(Yuxiang and Chen, 2011; Xu, 2012). This variable measures the depth of the financial 

sector (Ljungwall and Li, 2007).  

Furthermore, the province-based sample in the study is also classified into more and less 

financially developed ones according to the average ratio of total loans to GDP. We argue 
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that CCBs located in more financially developed than average levels have more potential to 

improve efficiency due to the FinTech application. Hence, we include a dummy variable 

𝐹𝐷&!;' which is equal to 1 if the Chinese provinces are above the average ratio of total loans 

to GDP, and 0 otherwise. The specific regression is shown as follow: 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽( ∗ 𝐹𝐼&!;' + 𝛽< ∗ 𝐹𝐷&!;' + 𝛽= ∗ 𝐹𝐷&!;' ∗ 𝐹𝐼&!;' 

+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (13) 

This chapter expects the effect of financial development on efficiency to be stronger for less 

financially developed provinces than their more developed counterparts. 

3.3.4 Data Description: DEA Inputs and Outputs, FinTech Index and Control 
Variables 

To construct the database, this study uses annual reports from the Chinese Stock Market & 

Accounting Research Database (CSMAR), which is a leading source of the Chinese financial 

data, published by Shenzhen CSMAR Data Technology Co., Ltd. CSMAR provides us with 

consolidated financial statements on listed commercial banks. In China, there are also many 

unlisted commercial banks, these include smaller regional banks and some policy banks 

which are not publicly traded. The main difference between listed and unlisted commercial 

banks are the regulatory management (Chen et al., 2021). Listed commercial banks provide 

more transparency and prudential management than unlisted commercial banks (Xu et al., 

2018). So only listed commercial banks are considered in this chapter because they are 

influenced by market forces, and their statement are reflective and objective, providing 

convincing variables for analysis. Further, information on GDP and CPI is obtained from 

the Chinese Statistic Yearbook19. This dataset covers the period between 2011 and 2020 

starting from the era of Internet finance intergration stage, focusing on Chinese commercial 

banks across 31 provinces (i.e., only autonomseous regions and province-level municipal 

cities are included20).  

 
19 China Statistical Yearbook is an annual statistical publication which comprehensively reflects the 
economic and social development of China. 
20 There are 34 such divisions claimed by the People's Republic of China, classified as twenty-two 
provinces, five autonomous regions, four municipalities, two special administrative regions (Hong 
Kong and Macau) and one claimed region (Taiwan). Normally, 31 provinces directly under the 
central government are counted as the observations when doing relevant research (Hasan et al., 2009; 
Gao et al., 2020).  
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Observations with negative sales and assets are removed and  firms that do not have complete 

records on the variables are droped in the regressions. Following the standard practice in the 

literature (Brown et al., 2009), we control for the potential influence of outliers by excluding 

observations in the 1% tails of each of the regression variables. Commercial banks with 

missing data are also removed. The final balance panel consists of 909 bank-year 

observations with 101 Chinese commercial banks ( i.e., 5 large SOCBs, 10 JSCBs and 86 

CCBs). To measure the Malmquist estimators, we consider that banks act as intermediaries 

for the flow of funds. As such, input and output indicators are selected based on banks’ 

balance sheets (Casu et al., 2004; Tortosa-Ausina et al., 2008). As such, the efficiency of 

Chinese commercial banks whose profit mainly comes from the deposit and loan spread is 

estimated.21 Thus, this expiriment selects the following as input variables: deposit, interest 

expense, non-interest expense (including other operating fees) and labour cost (measured by 

employee payable). The output variables are loans, interest income (including fee and 

commission income) and non-interest income. 

In terms of the second stage double bootstrapped truncated regression, the DFII based on the 

past literature is conducted (Hua and Huang, 2020; Sheng, 2020). In the last decade, China 

has emerged as a leading role in FinTech adoption and digitalization, revolutionizing 

traditional financial services and paving the way for a cashless society. Chinese FinTech has 

experienced exponential growth, fuelled by a dynamic blend of technological innovation and 

a burgeoning middle class eager for convenient financial solutions. Companies such as Ant 

Group, Tencent, and JD Finance have played pivotal roles in pioneering novel fintech 

services, from mobile payments and wealth management to peer-to-peer lending. China's 

transition to a cashless society is epitomized by the widespread adoption of mobile payment 

platforms like Alipay and WeChat Pay. These digital wallets have seamlessly integrated into 

daily life, facilitating transactions for everything from groceries to transportation. 

To characteristic the development level of FinTech adoption, we use the Peking University 

DFII. The experiment tests hypotheses using data from the Ant Financial Service, which 

belongs to Alibaba’s affiliate and owns the largest customer groups of FinTech services in 

China. This is an annual indicator based on 31 provinces, compiled through a hierarchical 

analysis of three dimensions, i.e., the breadth of digital financial coverage, the depth of 

 
21  Previous literature (Xiaogang et al., 2005; Das and Ghosh, 2006) follows the financial 
intermediation approach of Sealey Jr and Lindley (1997), according to which bank deposits are used 
as an input.  
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digital financial usage, and the degree of digitalisation of inclusive financial services. Table 

3.1 shows the index system of DFII in Guo et al. (2020).  

Table 3.1 Index system of DFII 
Level I Level II Specific Indicators  
Breadth of 
Coverage 

Account coverage 
rate 

Number of Alipay accounts owned per 10,000 
people 
Proportion of Alipay users who have bank cards 
bound to their Alipay accounts 
Average number of bank cards bound to each 
Alipay account 

Depth of Usage Payment Number of payments per capita 
Amount of payments per capita 
Proportion of number of high-frequency active 
users (50 times or more each year) to number of 
users with a frequency at least once each year 

Money Funds Number of Yu'ebao purchases per capita 
Amount of Yu'ebao purchases per capita 
Number of people who have purchased Yu'ebao per 
10,000 Alipay users 

Credit  Individual 
User 

Number of users with an internet loan for 
consumption per 10,000 adult Alipay users 
Number of loans per capita 
Total amount of loans per capita 

Small & 
Micro 
Businesses 

Number of users with an Internet loan for small & 
micro businesses per 10,000 adult Alipay users 
Number of loans per small & micro business 
Average amount of loan among small & micro 
businesses 

Insurance  Number of insured users per 10,000 Alipay users 
Number of insurance policies per capita 
Average insurance amount per capita 

Investment Number of people engaged in Internet investment 
and money management Per 10,000 Alipay users 
Number of investments per capita 
Average investment amount per capita 

Credit Investigation Number of credit investigations by natural persons 
per capita 
Number of users with access to credit-based 
livelihood services (including finance, 
accommodations, mobility, social contacts, etc.) 
per 10,000 Alipay users 

Level of 
Digitalization 

Mobility Proportion of number of mobile payments 
Proportion of total amount of mobile payments 

Affordability Average loan interest rate for small & micro 
businesses 
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Average loan interest rate for individuals 
Credit Proportion of number of Ant Check Later 

payments 
Proportion of total amount Ant Check Later 
payments 
Proportion of number of “Zhima Credit as deposit” 
cases (to number of full deposit cases) 
Proportion of total amount of “Zhima Credit as 
deposit” (to amount of full deposit) 

Convenience Proportion of number of QR code payments by 
users 
Proportion of “average amount” or “total amount” 
of QR code payments by users 

Based on the platform of Alibaba owning over 400 million users, the DFII systematically 

displays the FinTech inclusion degree from different financials filed in China. Hence, the 

DFII is introduced as an indicator for FinTech development. In addition, and as a robustness 

check of main research results, we include the FinTech index from three different 

dimensions are also included, which are provided by the DFII, i.e., the coverage and usage 

breadth and the digitisation level. The construction of the whole index system is divided into 

two steps. Firstly, the specific indexes are used to construct the second-level index after 

being nondimensionalised according to the logarithmic efficacy function, and the weights 

are assigned according to the coefficient of variation. Second, the weights of the second-

level indexes are assigned to the first-level indexes using hierarchical analysis (AHP), as 

well as the weights of the first-level indexes are assigned to the total digital inclusive finance 

index. Table 3.2 shows DFII in China across province in 2011 and 2020. In 2011, the average 

Digital Financial Inclusion Index (DFII) stood at 40.00. Over the subsequent nine years, 

there was a remarkable surge, with the index sharply escalating to 341.22 by 2020. This 

significant upswing serves as a clear indicator of the rapid and robust development of 

FinTech applications in China during that period. In addition, while eastern China leads in 

FinTech adoption, the middle and western regions are rapidly closing the gap (Yang and 

Zhang, 2022). This trend signifies a nationwide movement towards financial inclusion, 

extending FinTech benefits to regional commercial banks and consumers who were 

previously excluded. 
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Table 3.2 Province level DFII in China  
Province  DFII Province DFII 

2011 2020 2011 2020 
Average 40.00 341.22 Henan 28.40 340.81 
Beijing 79.41 417.88 Hubei 39.82 358.64 
Tianjin 60.58 361.46 Hunan 32.68 332.03 
Hebei 32.42 322.70 Guangdong 69.48 379.53 
Shanxi 33.41 325.73 Guangxi 33.89 325.17 
Inner 
Mongolia 

28.89 309.39 Hainan 45.56 344.05 

Liaoning 43.29 326.29 Chongqing 42.89 344.76 
Jilin 24.51 308.26 Sichuan 40.16 334.82 
Heilongjiang 33.58 306.08 Guizhou 18.47 307.94 
Shanghai 80.19 431.93 Yunnan 24.91 318.48 
Jiangsu 62.08 381.61 Tibet 16.22 310.53 
Zhejiang 77.39 406.88 Shaanxi 40.96 342.04 
Anhui 33.07 350.16 Gansu 18.84 305.50 
Fujian 61.76 380.13 Qinghai 18.33 298.23 
Jiangxi 29.74 340.61 Ningxia 31.31 310.02 
Shandong 38.55 347.81 Xinjiang 20.34 308.35 

 

Then, regarding the calculations of commercial banks’ efficiency, the DEA-Malmquist 

method is used in the first stage. Table 3.3 provides the descriptive statistics of the input and 

output variables for DEA-Malmquist method.  

Table 3.3 Summary of input & output 
 Variables Observations Mean Std. Dev. Min Max 
Input  Total deposit 1010 1422.77 3652.62 7.22 25134.73 

Interest rate cost 1010 37.80 77.47 0.04 445.76 
Non-interest rate 
cost 

1010 1.19 3.06 0.00 19.74 

Labor expense  1010 3.76 8.68 0.00 56.81 
Output  Total loan 1010 1079.62 2718.29 3.68 18624.31 

Interest rate 
income 

1010 80.11 179.27 0.15 1092.52 

Non-interest rate 
income 

1010 12.11 29.11 0.00 171.64 

Note: This table presents the descriptive statistics for input and output variables during the period 2011-
2020 for DEA-Malmquist at first stage (all in billion RMB). All variables are collected from CSMAR. 

All data are in CNY billions. As we can observe from Table 3.3, there is a large profitability 

gap among different banks, and the total loan dominates banks’ operations. This is consistent 

with the view of Dong et al. (2016), according to which the degree of development and 

operation of each type of bank varies considerably. 
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Table 3.4 provides the definition and summary of all variables applied in the second stage. 

This result shows that CCBs are characterised by the highest average growth rate of total 

assets and average ROA when compared with other bank groups. CCBs also show an 

increasing expansion and profitability indicated by the highest average growth rate of size 

and ROA, which is consistent with Ferri (2009). However, CCBs show the lowest average 

LDR, while the JOCB has the largest LDR. These preliminary results suggest that JOCBs 

have even better resource allocation capabilities than their SOCBs counterparts. Moreover, 

the SOCBs’ average capital adequacy ratio is also the highest. This is consistent with the 

idea that such bank groups have an advantage in terms of size and national policy support, 

providing them with a stronger risk tolerance (Li et al., 2001).  
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Table 3.4 Descriptive statistic 
Banks Variables SIZE LDR ROA CAR IPO GDPg CPI IP FI FCB FUD 

All banks  

Obs 909 909 909 909 909 909 909 909 909 909 909 
Mean 0.168 0.430 0.205 8.602 0.286 0.077 102.465 0.396 208.039 186.271 202.086 
St. Dev 0.178 0.340 0.294 6.699 0.452 0.020 0.136 0.047 94.218 91.598 90.473 
Min -0.789 -0.350 -0.470 -0.154 0.000 0.052 102.271 0.323 40.621 34.278 49.933 
Max 1.891 1.130 2.500 59.610 1.000 0.115 102.679 0.473 354.645 327.235 338.046 

SOCB  

Obs 45 45 45 45 45 45 45 45 45 45 45 
Mean 0.103 0.723 0.031 13.805 1.000 0.077 102.465 0.396 207.732 187.285 202.086 
St. Dev 0.050 0.072 0.005 1.631 0.000 0.021 0.138 0.048 94.706 93.882 90.473 
Min 0.046 0.585 0.024 10.830 1.000 0.052 102.271 0.323 40.621 34.278 49.933 
Max 0.350 0.916 0.043 17.520 1.000 0.115 102.679 0.473 341.220 327.235 338.046 

JSCB  

Obs 90 90 90 90 90 90 90 90 90 90 90 
Mean 0.125 0.821 0.035 12.040 1.000 0.077 102.465 0.396 207.732 187.285 202.086 
St. Dev 0.131 0.126 0.004 1.304 0.000 0.020 0.137 0.048 94.173 93.353 90.473 
Min -0.789 0.553 0.026 9.000 1.000 0.052 102.271 0.323 40.621 34.278 49.933 
Max 0.511 1.130 0.048 15.680 1.000 0.115 102.679 0.473 341.220 327.235 338.046 

CCB  

Obs 774 774 774 774 774 774 774 774 774 774 774 
Mean 0.176 0.372 0.233 7.930 0.167 0.077 102.465 0.396 208.090 186.101 201.994 
St. Dev 0.186 0.326 0.308 6.983 0.373 0.020 0.136 0.047 94.313 91.389 90.369 
Min -0.774 -0.350 -0.470 -0.154 0.000 0.052 102.271 0.323 40.621 34.278 46.933 
Max 1.891 1.000 2.500 59.610 1.000 0.115 102.679 0.473 354.645 327.235 338.046 

Note: This table presents the descriptive statistic for independent variables from 2011-2020 for the second truncated regression. SIZE is calculated as the total asset growth rate. LDR is the loan-deposit ratio. 
ROA represent the profitability of commercial banks. CAR is the capital adequacy ratio which represent the operation conditions of commercial banks. IPO is the dummy variable of whether listed. GDPg is 
national annual GDP growth rate. CPI is the national customer purchase index of current period. IP represent the industry concentration which is calculate by the growth rate of total asset of five large commercial 
banks in industry. FI is the logarithm of lagged FinTech index which collected from the Pecking University Digital Financial Inclusion Index. FCB and FUD are the index of FinTech coverage breadth and the 
FinTech usage depth separately which are applied as the institution variables for robustness check. We only report 9 periods of the observation (e.g., 2011-2012 as one period) as one year is loss for the calculation 
of the original MPI score
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3.4 Empirical Results 

In this section, the main hypotheses is tested in Section 3.4. Specifically, the role of FinTech 

on the different decomposition of commercial banks is tested using the DEA-Malmquist 

efficiency scores (Section 3.4.1) and the Simar and Wilson (2007) truncated regression 

analysis is applied (Section 3.4.2). In Section 3.6, it explores the role of different dimensions 

of FinTech and potential endogeneity problems. 

3.4.1 First Stage: Banking Efficiency Estimations 

A basic premise of this study is that FinTech development has a positive effect on Chinese 

banks’ efficiency levels. To assess this claim, we begin by estimating the DEA-Malmquist 

efficiency scores and respective TFPCH decomposition of commercial banks (i.e., EFFCH, 

TECHCH, PURE and SCALE). This decomposition is important for our analysis as it 

supplies essential information on internal technological changes (Isik and Hassan, 2003). 

Table 3.5 reports the Malmquist decomposition yearly scores, obtained using the (DEAP) 

2.1 software. Overall, the average total factor productivity change is 1.008 during the sample 

period (2011-2020). This suggests that the TFPCH of commercial banks in China improves 

at an annual growth rate of 0.8%. When we consider the different TFPCH decomposition of 

commercial banks, the average productivity change of SOCBs (1.4%) is the same as that of 

JSCBs (1.4%) and CCBs (0.9%). From the aspect of decomposition, the TECHCH mainly 

contributes to productivity growth, which increases by 1.8% on average for all samples of 

commercial banks. This result is consistent with our expectations, as past studies have shown 

that Chinese commercial banks have increased their technological research, development 

efforts, and management practices, reflecting strong technological progress. For SOCBs, 

JSCBs and CCBs the average technology change is 2.3%, -0.2% and 1.5%, respectively. In 

terms of PURE and SCALE, we find that the average PURE remains unchanged during this 

period whilst SCALE also decreases by 0.3%. This result further illustrates that scale 

expansion does not bring further total factor productivity improvements to banks, and it even 

tends to saturate, leading to decreasing efficiency of scale (Duncan et al., 2004). Figure 3.1 

provides a visual account of the different Chinese commercial banks’ efficiency scores, 

confirming the previous findings. Specifically, during the 2013-2016 period, the average 

TFPCH for all commercial banks presents an increasing trend with a slight drop afterwards 

(2016-2018). However, for the period between 2018 and 2020, the changes in the efficiency 

levels of the different types of banks are more volatile. To be specific, the TFPCH of SOCBs 
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reaches a peak during 2018-2019, whereas the JSCBs has the lowest TFPCH. Interestingly, 

the figure indicates that during the 2019-2020 period, the TFPCH of SOCBs and JSCBs 

presents the opposite behaviour. In addition, the TFPCH of CCBs is relatively stable but also 

decreases during this period. These preliminary results may be explained by the 

macroeconomic environment during the 2019-2020 period, with a worldwide pandemic and 

a combination of the cyclical and structural slowdown of the Chinese economy (Bagchi et 

al., 2020). Finally, the TECHCH is found to has a similar pattern to the TFPCH, especially 

from 2017 onwards. This may be explained by the policy support for FinTech, with 

cooperation between banks and technological firms during the 2017-2020 period (Wang et 

al., 2021).  

Table 3.5 First stage DEA-Malmquist efficiency scores 
Banks Year TFPCH EFFCH TECHCH PURE SCALE 
SOCB  2011-2012 1.064 1.110 0.959 1.000 1.110 

2012-2013 1.005 0.930 1.081 1.000 0.930 
2013-2014 0.988 1.008 0.980 1.000 1.008 
2014-2015 1.015 0.953 1.065 1.000 0.953 
2015-2016 1.055 1.017 1.037 0.999 1.018 
2016-2017 0.998 0.933 1.069 0.925 1.009 
2017-2018 1.006 0.997 1.009 1.000 0.997 
2018-2019 1.119 0.996 1.124 0.996 1.000 
2019-2020 0.875 0.996 0.879 1.000 0.996 
2011-2020 1.014 0.993 1.023 0.991 1.002 

JSCB  2011-2012 1.013 0.887 1.141 0.936 0.948 
2012-2013 1.017 1.081 0.941 1.054 1.025 
2013-2014 1.015 0.996 1.019 0.999 0.997 
2014-2015 0.981 1.028 0.955 0.997 1.031 
2015-2016 1.064 1.110 0.917 1.050 0.982 
2016-2017 1.064 1.110 0.935 0.937 1.062 
2017-2018 0.952 0.998 0.954 1.009 0.989 
2018-2019 0.900 1.000 0.899 1.000 1.000 
2019-2020 1.119 0.987 1.134 0.999 0.989 
2011-2020 1.014 1.022 0.988 0.998 1.003 

CCB 2011-2012 0.962 1.110 0.867 1.101 1.008 
2012-2013 0.979 0.960 1.020 0.928 1.034 
2013-2014 1.023 0.990 1.033 1.002 0.988 
2014-2015 0.998 0.948 1.053 0.974 0.973 
2015-2016 1.030 1.004 1.026 0.906 1.108 
2016-2017 0.984 0.939 1.048 1.017 0.923 
2017-2018 1.055 1.000 1.055 1.002 0.998 
2018-2019 1.044 1.004 1.040 1.012 0.992 
2019-2020 1.005 1.010 0.995 1.025 0.985 
2011-2020 1.009 0.996 1.015 0.996 1.001 

All banks 2011-2012 1.013 1.036 0.989 1.012 1.022 
2012-2013 1.000 0.990 1.014 0.994 0.996 
2013-2014 1.008 0.998 1.011 1.000 0.998 
2014-2015 0.998 0.976 1.024 0.990 0.986 
2015-2016 0.998 1.036 0.993 0.985 1.022 
2016-2017 0.998 1.036 1.017 1.012 0.998 
2017-2018 1.004 0.998 1.006 1.004 0.995 
2018-2019 1.014 0.921 1.101 0.954 0.965 
2019-2020 1.041 1.033 1.007 1.046 0.987 
2011-2020 1.008 1.003 1.018 1.000 0.997 

Note: This table presents the yearly efficiency result and the Malmquist decomposition of first stage by the DEA-
Malmquist method. The results during the 2011-2020 are presented by the mean of each individual commercial bank 
during the period. The efficiency results based on different types commercial banks are reported separately. 
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Figure 3.1 Efficiency of different Chinese commercial banks 

 

 

 

Note: The figure present the TFPCH, EFFCH and TECHCH evolution of different types of commercial banks for all years. 
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Overall, the above results show that the efficiency changes of SOCBs and JSCBs are more 

volatile, while the efficiency changes of CCBs are relatively more stable. These results are 

consistent with the work of Zha et al. (2016). Given the above, this study is interested in 

further exploring the relationship between FinTech development and efficiency changes in 

Chinese commercial banks. The results and analysis based on the hypotheses are presented 

in the next section. 

3.4.2 The Role of FinTech Development 

Table 3.6 presents the estimated results on the baseline model by using the double 

bootstrapped truncated regression technique (Equation 11). The results in Columns 1-5 

reflect the decomposition of banks’ efficiency measure (i.e., TFPCH, EFFCH, TECHCH, 

PURE and SCALE in Columns 1, 2, 3, 4 and 5, respectively). The findings reveal that the 

higher level of FinTech development (FI) does exert a significant and positive impact on 

each component of bank efficiency. This implies that FinTech can be instrumental to 

enhancing commercial banks’ efficiency levels. This finding is significant, not only 

statistically but also economically. For instance, let us consider the effect of FI on TFPCH 

measure (Column 1). The coefficient of 0.061 on the FI variable implies that FinTech 

development increases the productivity of commercial banks by 6.1%. Our results show that, 

independent of the decomposition of bank efficiency used, the coefficient of FI is positive 

and statistically significant. These results consistent which show the important role of 

FinTech development on banks’ efficiency. This is in line with past studies demonstrating 

the positive role of FinTech on banks’ performance (Zhao et al., 2022; Leong et al., 2017; 

Fuster et al., 2019). These results are also consistent with past literature on bank efficiency 

which uses SFA studies as a proxy for Chinese banks’ efficiency over the period 2003-2017 

(Lee et al., 2021). Similarly, the finding of Ntwiga (2020) who use DEA methods for banks’ 

efficiency in Kenya from 2009-2018 also supports these results. The results also indicate 

that the negative coefficient on the lag of the dependent variable (LEFF) suggests that the 

efficiency levels of Chinese banks in the current year is significantly and negatively affected 

by its previous year’s efficiency levels. In other words, banks’ past efficiency levels have a 

negative impact on their current efficiency levels, demonstrating the importance of banks’ 

efficiency, consistent with the existing literature (Fiordelisi et al., 2011). 
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 Table 3.6 Double bootstrapped truncated regression result (Baseline model) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.190*** 
(-4.65) 

-0.316*** 
(-9.61) 

-0.112** 
(-3.28) 

-0.287*** 
(-8.38) 

-0.102** 
(-2.97) 

FI 0.061*** 
(5.26) 

0.029*** 
(4.08) 

0.049*** 
(6.86) 

0.025** 
(3.24) 

0.015* 
(2.11) 

SIZE -0.414*** 
(-3.82) 

-0.251*** 
(-4.34) 

-0.172** 
(-2.81) 

-0.315*** 
(-5.29) 

-0.064 
(-1.21) 

GDP 0.053*** 
(3.82) 

0.007 
(0.92) 

0.047*** 
(5.98) 

0.003 
(0.39) 

-0.009 
(-1.32) 

CPI 0.176*** 
(17.90) 

0.100*** 
(18.57) 

0.096*** 
(18.38) 

0.096*** 
(18.76) 

0.087*** 
(18.89) 

IP -0.614*** 
(-4.49) 

-0.156*** 
(-2.09) 

-0.438*** 
(-5.45) 

-0.071 
(-0.92) 

0.027 
(0.38) 

LDR -0.050 
(-0.46) 

-0.019 
(-0.32) 

-0.025 
(-0.41) 

-0.006 
(-0.11) 

0.021 
(0.039) 

ROA 0.077 
(1.65) 

0.052* 
(2.04) 

0.051 
(1.88) 

0.027 
(1.05) 

-0.006 
(-0.24) 

CAR 0.042* 
(2.04) 

0.063*** 
(5.23) 

-0.068*** 
(-5.39) 

0.047*** 
(3.79) 

0.029** 
(2.74) 

IPO 0.042 
(1.19) 

0.013 
(0.67) 

0.041* 
(2.03) 

0.040* 
(2.05) 

-0.015 
(-0.84) 

Observation 909 909 909 909 909 

Constant -1.780*** 
(-17.74) 

-0.010*** 
(-18.35) 

-9.654*** 
(-18.14) 

-9.744*** 
(-18.56) 

-8.764*** 
(-18.65) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 32.91*** 28.18*** 47.73*** 31.93*** 7.20** 
Notes: The table presents the truncated regressed result at the second stage for Hypothesis 1: Higher levels of FinTech 
development have a positive impact on CB’s efficiency levels. The dependent variables are bias-corrected efficiency score 
derived from DEA-Malmquist method. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables. 

Regarding the control variables, bank size has a significantly negative effect on efficiency 

scores. Higher size levels indicate a faster total asset growth rate. This is consistent with 

Dong et al. (2017), who claim that faster growth of bank size can lead to inefficient 

performance of commercial banks. Banks’ larger size would affect their efficiency which is 

consistent with our expectations.  

The coefficient of the LDR variable indicates that this variable exerts a negative effect on 

the efficiency change (i.e., TFPCH, EFFCH, TECHCH and PURE) and a positive effect on 

the SCALE proxy. These results are consistent with the argument of Yamori et al. (2017) in 

which excessively aggressive lending may lead to a decline in marginal profit, affecting 

productivity and technological efficiency. Lending is also the main way for commercial 

banks to expand which can explain the positive influence on the scale efficiency change 

(Taiwo et al., 2017). In addition, ROA is positively correlated with the total factor 

productivity score. Higher ROA values reflect better profitability of banks (Zhao et al., 

2022). CAR, which indicates the level of risk tolerance, shows a positive relationship with 

TFPCH, EFFCH, PURE and SCALE. A bank with a higher level of CAR is found to operate 

more effectively, which explains the positive influence on efficiency changes (Kwan and 

Eisenbeis, 1995). Finally, the listing coefficient has a positive effect on the productivity 
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change, especially significantly on TECHCH and PURE due to the fact that listing 

strengthens the internal ownership structure and establishes external discipline, thereby 

improving operating incentives. 

Overall, FinTech development improves commercial banks’ efficiency levels. FinTech 

development in China generates more intensive competition in the financial industry but also 

brings technological improvement (Hua and Huang, 2020).  

3.4.3 The Effect of FinTech on Different Banks’ Ownership 

This chapter also considers the role of FinTech on the heterogeneity of banks. Past literature 

has shown that banks are most likely to behave differently under different ownership 

structures (Jiang et al., 2013; Huang et al., 2017). According to Zhao et al. (2022), while 

SOCBs are required to finance certain government and state-owned projects, other 

commercial banks are not faced with these requirements. As such, FinTech should exert a 

differential effect on banks’ efficiency changes. To further test the argument,  a set of 

ownership dummy variables and their interaction terms with FinTech development are 

introduced (Equation 12). Estimation results are reported in Table 3.7. The coefficient on FI 

remains positive and statistically significant. The coefficients on all ownership variables 

(JSCB and CCB) are negative and statistically significant, indicating that these banks 

underperform SOCBs on their profit efficiency levels. In other words, these results show 

that regardless of the type of ownership, all banks have very low efficiency levels. This 

might be the result of past deeper reforms implemented in the banking sector. These reforms 

helped banks to rectify internal governance mechanisms and strengthen external monitoring.  
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Table 3.7 Double bootstrapped truncated regression result of different types of commercial 
banks 

Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.156*** 
(-4.01) 

-0.160*** 
(-4.91) 

-0.072* 
(-2.23) 

-0.131*** 
(-3.61) 

0.059 
(1.81) 

FI 0.047*** 
(8.02) 

0.036*** 
(8.25) 

0.018*** 
(4.97) 

0.038*** 
(4.99) 

0.046*** 
(11.34) 

JSCB -0.081*** 
(-8.73) 

-0.042*** 
(-8.57) 

-0.039*** 
(-7.48) 

-0.038*** 
(-6.26) 

-0.022*** 
(-5.17) 

CCB -0.079*** 
(-11.06) 

-0.035*** 
(-9.00) 

-0.043*** 
(-10.48) 

-0.035*** 
(-6.32) 

-0.022*** 
(-6.28) 

FI*JSCB 0.016*** 
(11.35) 

0.007*** 
(9.28) 

0.009*** 
(10.87) 

0.007*** 
(6.31) 

0.005*** 
(6.62) 

FI*CCB 0.017*** 
(9.11) 

0.009*** 
(8.83) 

0.008*** 
(7.73) 

0.008*** 
(6.37) 

0.005*** 
(5.34) 

SIZE -0.318** 
(-2.86) 

-0.189** 
(3.16) 

-0.134* 
(-2.11) 

-0.247*** 
(-3.94) 

-0.053 
(-1.00) 

GDP 0.203*** 
(9.02) 

0.116*** 
(7.73) 

0.101*** 
(7.36) 

0.119*** 
(4.85) 

0.141*** 
(10.32) 

CPI 0.243*** 
(19.72) 

0.144*** 
(14.93) 

0.125*** 
(15.59) 

0.141*** 
(7.09) 

0.128*** 
(14.62) 

IP -2.806*** 
(-10.63) 

-1.670*** 
(-9.23) 

-1.261*** 
(-8.01) 

-1.678*** 
(-5.26) 

-1.875*** 
(-11.40) 

LDR -0.115 
(-1.03) 

-0.059 
(-0.98) 

-0.059 
(-0.92) 

-0.053 
(-0.84) 

-0.031 
(-0.58) 

ROA 0.049 
(1.02) 

0.032 
(1.23) 

0.036 
(1.28) 

0.007 
(0.25) 

-0.023 
(-0.99) 

CAR 0.033 
(1.43) 

0.049*** 
(4.01) 

-0.072*** 
(-5.49) 

0.033** 
(2.64) 

0.018 
(1.72) 

IPO 0.029 
(0.62) 

-0.001 
(-0.05) 

0.012 
(0.46) 

0.046 
(1.81) 

-0.038 
(-1.75) 

Observation 909 909 909 909 909 

Constant -2.663*** 
(-19.25) 

-1.587*** 
(-14.47) 

-1.357*** 
(-15.00) 

-1.548*** 
(-6.88) 

-1.443*** 
(-14.52) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 101.75*** 102.38*** 61.34*** 40.56*** 129.87*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 2: Higher levels of FinTech 
development have a stronger positive impact on the efficiency of CCBs than on their SOCBs and JSCBs counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The SOCBs (omitted), 
JSCBs and CCBs are dummy variables. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables.  
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More importantly, when considering the role of FinTech on the relationship between their 

levels of efficiency, the findings suggest that FinTech development has a positive effect on 

all types of banks. This impact is statistically significant and higher for CCBs than JSCBs 

and SOCBs, with the latter presenting a relatively lower effect on efficiency changes. This 

is a new result which adds to the literature on efficiency and FinTech, demonstrating how 

effective FinTech is in improving the efficiency of banks, especially JSCBs and CCBs. There 

are 1.6% and 1.7% changes for the CCBs and JSCBs interaction terms respectively as in 5.2. 

Our findings are also in line with the argument of Wang et al. (2020) and Lee et al. (2021), 

according to which the FinTech spillover effect is higher for CCBs than JSCBs and SOCBs. 

The efficiency changes of CCBs are more sensitive to FinTech development and the 

technological promotions largely improve the efficiency of small-size commercial banks. As 

Liu et al. (2021) suggest, CCBs still have a gap with JSCB and SOCB at both technology 

and management levels. Due to the high cost of independent R&D, CCBs mainly rely on 

cooperation with FinTech companies to upgrade their technology. As a result, when FinTech 

develops to a higher level, CCBs can adjust their cooperation methods and structures more 

quickly, so their efficiency improvement is more significant. 

These results show that the operation model, scale and ownership of banks affect the 

absorption of FinTech spillovers by commercial banks. FinTech decentralises the services 

that enable commercial banks to provide more commercialised services to users, simplifying 

banks’ infrastructure and reducing costs (Gomber et al., 2018). Therefore, a rapid response 

capacity and good technological absorption can help commercial banks rethink their 

development models and paths. More importantly, local small banks with flexibility benefit 

most from FinTech development. The small scale and geographical restrictions of CCBs are 

the main limitations for their development. However, the aforementioned characteristics 

become advantages when absorbing the technology spillover (Zhao et al., 2022). 

3.4.4 The Role of Regional Financial Development 

In addition, the impact of regional financial development on the FinTech absorption of CCBs 

is tested. It is argued that their efficiency performance should be linked to their location, in 

line with previous studies which demonstrate that CCBs’ performance is linked to local 

financial development (Chen et al., 2020). The FinTech variable (FI) is interacted with the 

financial development dummy to gauge the extent to which the impact of FinTech on banks’ 

efficiency is stronger in a more financially developed setting. Results are provided in Table 
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3.8. The study observes that regional financial development exerts a positive effect on banks’ 

efficiency, and this effect remains positive and statistically significant once FI is taken into 

consideration. In other words, the impact of FinTech on efficiency changes is higher for 

CCBs located in more financially developed provinces than their less financially developed 

counterparts. This is a new result which adds to the literature on financial development and 

banks (Sufian and Habibullah, 2009; Wu et al., 2007). Taking for example, the effect on 

TFPCH. 0.2% change on TFPCH for FI*FD as in 5.2. The coefficient of FI remains positive 

and statistically significant. The coefficient on the LEFF of the dependent variable remains 

negative and statistically significant.  

Table 3.8 Double bootstrapped truncated regression result of the impact of financial 
development 

Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF 0.354*** 
(9.46) 

0.375*** 
(12.85) 

0.532*** 
(17.63) 

0.444*** 
(14.76) 

0.438*** 
(15.31) 

FI 0.008*** 
(3.63) 

0.005*** 
(3.68) 

0.005*** 
(4.14) 

0.010*** 
(3.51) 

0.008** 
(3.08) 

FD 0.769*** 
(9.00) 

0.482*** 
(9.68) 

0.367*** 
(7.82) 

0.489*** 
(9.37) 

0.275*** 
(5.87) 

FI*FD 0.002*** 
(4.64) 

0.002*** 
(5.42) 

0.001*** 
(5.73) 

0.002*** 
(6.28) 

0.001*** 
(4.97) 

SIZE -0.241 
(-1.83) 

-0.343*** 
(-4.34) 

-0.095 
(-1.29) 

-0.419*** 
(-5.05) 

-0.247*** 
(-3.28) 

GDP 0.096*** 
(3.37) 

0.056*** 
(3.34) 

0.102*** 
(6.48) 

-0.059** 
(-2.63) 

-0.030 
(1.52) 

CPI 0.093*** 
(6.01) 

0.039*** 
(4.10) 

0.027** 
(3.13) 

0.001 
(0.12) 

-0.009 
(-1.04) 

IP -3.189*** 
(-4.31) 

-2.109*** 
(-4.83) 

-1.887*** 
(-4.72) 

-1.654** 
(-3.01) 

-1.217* 
(-2.49) 

LDR -0.065 
(-0.51) 

-0.013 
(-0.18) 

-0.067 
(-0.95) 

0.037 
(0.47) 

0.028 
(0.39) 

ROA 0.095 
(1.66) 

0.057 
(1.66) 

0.038 
(1.16) 

0.028 
(0.77) 

0.017 
(0.52) 

CAR 0.047 
(1.73) 

0.053** 
(3.26) 

-0.034* 
(-2.24) 

0.042* 
(2.44) 

0.031* 
(2.03) 

IPO 0.024 
(0.44) 

-0.006 
(-0.17) 

0.024 
(0.77) 

0.015 
(0.46) 

-0.032 
(-1.04) 

Observation 774 774 774 774 774 

Constant -9.043*** 
(-5.62) 

-3.577*** 
(-3.65) 

-2.487*** 
(-2.74) 

0.787 
(0.66) 

1.716 
(1.60) 

Banks×Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 101.99*** 117.77*** 85.68*** 93.06*** 39.81*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 3: FinTech exerts a positive and 
higher effect on CCBs in less financially developed areas than in their more financially developed counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The FD is dummy variable 
for cities higher than the average financial development level. * Significant at 10%, ** significant at 5% and *** significant 
at 1%. See notes on Table 1 for the definition of the variables. 
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The coefficient of the interactive term between FI and FD is significantly positive at 0.002, 

indicating that for the same level of FinTech development, the TFPCH of CCBs in more 

financially developed cities would be 0.002 more than those in less financially developed 

cities. Similarly, for other Malmquist decompositions, the coefficients on the interactive 

terms are significantly positive.  

Overall, these findings suggest that regional financial development promotes the innovation 

of firms, but specific government factors should be considered when analysing the local 

banking sectors, as CCBs are supported by the local government. Regional financial 

development is mainly related to government policy and economic growth. More financially 

developed cities are also more economically developed cities that have more emerging 

technologies and richer technical resources. In addition, customers in more financially 

developed regions are usually more willing to try new services of CCBs. These internal 

factors have affected the absorption of FinTech by CCBs because of different levels of 

regional financial development. Moreover, from an external perspective, the path and the 

level of FinTech development in different financially developed regions are also different. 

FinTech application in more financially developed regions tends to be wider and more 

quickly put into use.  

3.5 Robustness Check 

In this section,  several robustness checks are applied. This chapter tests the role of FinTech 

in different dimensions, perform estimation techniques and address the possibility of 

endogeneity.  

3.5.1 Different Dimensions of FinTech 

Shifting the attention to the role of the different dimensions of FinTech on banks’ efficiency 

changes, the measurements are worth noting when we consider more specific dimensions as 

Niu et al. (2022) shows.  

Following the empirical results, the positive impact of FinTech on the efficiency of 

commercial banks is illstrauted. To check the robustness of the main result, this section aims 

to test whether the different dimensions of FinTech would generate the same positive impact 

on the efficiency change of commercial banks. As Table 3.9 shows, the coverage breadth 
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(FCB) and usage depth (FUD) of FinTech are used as instrumental variables for the FinTech 

development index. The coefficient of alternative FinTech indices stays consistent with the 

empirical result, which confirms the main hypothesis that FinTech development has a 

positive impact on the efficiency change of commercial banks. In addition, the breadth of 

FinTech coverage has a greater positive impact on the efficiency changes of commercial 

banks than the usage depth of FinTech. Regarding the decomposition of efficiency change, 

TFPCH is most affected by the development of FinTech, which increased by 2.2% and 2.7% 

respectively for coverage breath and usage depth. 

Table 3.10 and Table 3.11 show the robustness results of Hypothesis 2, which uses FCB and 

FUD as instrumental variables, respectively. The results, consistent with Table 3.7, show 

that FinTech development has a relatively higher impact on the efficiency changes of CCBs, 

especially compared with SOCBs, but the difference of influence between CCBs and JSCBs 

is very slight. Table 3.12 and Table 3.13 present the robustness check of Hypothesis 3. Both 

results of using instrumental variables FCB and FUD are consistent with the result of Table 

3.8: the CCBs in higher financially developed cities would increase more TFPCH, EFFCH, 

and TECHCH from FinTech development. 
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Table 3.9 Robustness check on different dimension FinTech index 
Variables TFPCH 

(1) 
TFPCH 

(2) 
EFFCH 

(1) 
EFFCH 

(2) 
TECHCH 

(1) 
TECHCH 

(2) 
PURE 

(1) 
PURE 

(2) 
SCALE 

(1) 
SCALE 

(2) 

LEFF -0.322 
(-0.95) 

-0.206*** 
(-5.01) 

-0.121*** 
(-4.51) 

-0.327*** 
(-9.84) 

0.062* 
(2.26) 

-0.137*** 
(-3.94) 

-0.107*** 
(-3.91) 

-0.301*** 
(-8.67) 

-0.014 
(-0.54) 

-0.109** 
(-3.14) 

FCB 0.022*** 
(5.34)  0.018*** 

(8.12)  0.007** 
(3.16)  0.018*** 

(7.64)  0.022*** 
(10.96)  

FUD  0.027*** 
(5.95)  0.013*** 

(4.42)  0.003*** 
(7.95)  0.001*** 

(3.83)  -0.001* 
(-1.65) 

SIZE -0.206 
(-1.91) 

-0.421*** 
(-3.93) 

-0.196*** 
(-3.36) 

-0.250*** 
(-4.35) 

-0.021 
(-0.34) 

-0.173** 
(-2.84) 

-0.274*** 
(-4.58) 

-0.312*** 
(-5.26) 

-0.105* 
(-2.03) 

-0.065 
(-1.21) 

GDP 0.123*** 
(5.07) 

0.058*** 
(4.23) 

0.083*** 
(6.21) 

0.009 
(1.21) 

0.054*** 
(3.99) 

0.052*** 
(6.56) 

0.082** 
(5.87) 

0.007 
(0.81) 

0.116*** 
(9.77) 

-0.007 
(-1.24) 

CPI 0.238*** 
(14.31) 

0.174*** 
(17.64) 

0.135*** 
(17.84) 

0.097*** 
(18.54) 

0.108*** 
(13.93) 

0.092*** 
(17.61) 

0.128*** 
(15.19) 

0.094*** 
(17.73) 

0.118*** 
(18.19) 

0.082*** 
(17.58) 

IP -2.765*** 
(-5.39) 

-0.544*** 
(-4.48) 

-2.15*** 
(-7.75) 

-0.113 
(-1.69) 

-0.859** 
(-3.18) 

-0.386*** 
(-5.45) 

-2.099*** 
(-7.11) 

-0.044 
(-0.65) 

-2.708*** 
(-11.02) 

-0.019 
(-0.31) 

LDR -0.054 
(-0.46) 

-0.050 
(-0.46) 

-0.017 
(-0.27) 

-0.019 
(-0.33) 

-0.024 
(-0.37) 

-0.026 
(-0.41) 

-0.004 
(-0.06) 

-0.009 
(-0.15) 

0.012 
(0.22) 

0.024 
(0.44) 

ROA 0.044 
(0.88) 

0.081 
(1.74) 

0.023 
(0.86) 

0.054* 
(2.07) 

0.033 
(1.15) 

0.054* 
(2.01) 

-0.003 
(-0.10) 

0.029 
(1.09) 

-0.035 
(-1.51) 

-0.007 
(-0.30) 

CAR 0.028 
(1.19) 

0.049* 
(2.12) 

0.047*** 
(3.73) 

0.064*** 
(5.21) 

-0.065*** 
(-4.94) 

-0.069*** 
(-5.42) 

0.032* 
(2.51) 

0.048*** 
(3.83) 

0.019 
(1.78) 

0.029** 
(2.71) 

IPO 0.037 
(1.00) 

0.042 
(1.20) 

0.012 
(0.60) 

0.013 
(0.64) 

0.036 
(1.68) 

0.041* 
(2.04) 

0.038 
(1.89) 

0.041* 
(2.04) 

-0.010 
(-0.59) 

-0.015 
(-0.83) 

Observation 909 909 909 909 909 909 909 909 909 909 

Constant -2.422*** 
(-14.33) 

-1.774*** 
(-17.53) 

-1.370*** 
(-19.82) 

-0.997*** 
(-18.35) 

-1.098*** 
(-13.91) 

-0.929*** 
(-17.42) 

-1.300*** 
(-15.12) 

-0.094*** 
(-17.55) 

-1.184*** 
(-18.02) 

-0.082*** 
(-17.34) 

Banks × Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 32.23*** 40.66*** 75.05*** 30.60*** 10.13*** 63.70*** 75.12*** 35.08*** 121.38*** 5.09* 

Note: The table presents the robustness check based on the truncated regressed result at the second stage for Hypothesis 1. The dependent variables are bias-corrected efficiency score derived from DEA-Malmquist 
method. The FCB and FUD are instrumental variables which represent the coverage breadth and the usage depth of FinTech separately. * Significant at 10%, ** significant at 5% and *** significant at 1%. See 
notes on Table 1 for the definition of the variables. 
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Table 3.10 Robustness result for H2 (FCB: The coverage breadth) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.013 
(-0.37) 

-0.063* 
(-2.24) 

0.085** 
(2.93) 

-0.046 
(-1.45) 

0.084** 
(3.18) 

FCB 0.028*** 
(5.21) 

0.025*** 
(13.16) 

0.012*** 
(5.63) 

0.025*** 
(7.29) 

0.031*** 
(17.61) 

JSCB -0.013*** 
(-4.01) 

-0.008*** 
(-5.26) 

-0.006*** 
(-3.75) 

-0.008*** 
(-4.96) 

-0.005*** 
(-3.64) 

CCB -0.014*** 
(-5.09) 

-0.006*** 
(-4.96) 

-0.008*** 
(-5.66) 

-0.008*** 
(-5.48) 

-0.004*** 
(-3.79) 

FCB*JSCB 0.007*** 
(5.19) 

0.004*** 
(6.53) 

0.003*** 
(4.62) 

0.004*** 
(5.80) 

0.002*** 
(4.57) 

FCB*CCB 0.009*** 
(6.09) 

0.004*** 
(6.46) 

0.005*** 
(7.16) 

0.004*** 
(6.04) 

0.003*** 
(5.61) 

SIZE -0.122 
(-1.09) 

-0.158** 
(-2.69) 

-0.013 
(-0.21) 

-0.221*** 
(-3.61) 

-0.101 
(-1.95) 

GDP 0.163*** 
(5.56) 

0.110*** 
(10.11) 

0.089*** 
(6.96) 

0.113*** 
(6.43) 

0.144*** 
(14.65) 

CPI 0.272*** 
(10.08) 

0.161*** 
(31.09) 

0.138*** 
(16.80) 

0.151*** 
(10.32) 

0.146*** 
(30.84) 

IP -3.456*** 
(-6.25) 

-2.379*** 
(-13.92) 

-1.596*** 
(-7.81) 

-0.240*** 
(-7.57) 

-2.749*** 
(-17.66) 

LDR -0.065 
(-0.55) 

-0.019 
(-0.31) 

-0.037 
(-0.57) 

-0.010 
(-0.16) 

0.004 
(0.08) 

ROA 0.054 
(1.06) 

0.025 
(0.93) 

0.034 
(1.17) 

0.000 
(0.00) 

-0.034 
(-1.46) 

CAR 0.029 
(1.21) 

0.045*** 
(3.59) 

-0.064*** 
(-4.79) 

0.031* 
(2.39) 

0.017 
(1.56) 

IPO 0.031 
(0.64) 

0.001 
(0.02) 

0.017 
(0.63) 

0.046 
(1.80) 

-0.037 
(-1.71) 

Observation 909 909 909 909 909 

Constant -2.990*** 
(-9.69) 

-1.795*** 
(-30.10) 

-1.500*** 
(-15.98) 

-1.697*** 
(-10.03) 

-1.676*** 
(-30.61) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 32.12*** 193.63*** 39.96*** 60.14*** 316.41*** 

Note: The table presents the robustness check based on the truncated regressed result at the second stage for Hypothesis 2. 
The dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The FCB is the 
institution variable which represents the coverage breadth. * Significant at 10%, ** significant at 5% and *** significant 
at 1%. See notes on Table 1 for the definition of the variables.  
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Table 3.11 Robustness result for H2 (FUD: The usage depth) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.295*** 
(-7.08) 

-0.392*** 
(-12.49) 

-0.231*** 
(-6.42) 

-0.372*** 
(-11.43) 

-0.230*** 
(-7.11) 

FUD 0.012*** 
(4.44) 

0.007*** 
(4.48) 

0.012*** 
(6.98) 

0.006*** 
(3.91) 

0.001 
(0.81) 

JSCB -0.006* 
(-2.36) 

-0.005*** 
(-3.32) 

-0.001 
(-0.91) 

-0.005** 
(-3.06) 

-0.004** 
(-2.65) 

CCB -0.007** 
(-3.08) 

-0.002* 
(-2.08) 

-0.003** 
(-2.69) 

-0.004*** 
(-3.45) 

-0.002* 
(-2.08) 

FUD*JSCB 0.004*** 
(3.87) 

0.002*** 
(4.38) 

0.001* 
(1.86) 

0.002*** 
(3.70) 

0.002*** 
(3.53) 

FUD*CCB 0.004*** 
(4.60) 

0.001** 
(3.17) 

0.002*** 
(4.42) 

0.001*** 
(3.79) 

0.002*** 
(3.74) 

SIZE -0.307** 
(-2.86) 

-0.199*** 
(3.44) 

-0.094 
(-1.59) 

-0.245*** 
(-4.12) 

-0.071 
(-1.32) 

GDP -0.004 
(-0.31) 

-0.015* 
(-2.20) 

0.006 
(0.82) 

-0.166* 
(-2.38) 

-0.007 
(-1.25) 

CPI 0.206*** 
(16.05) 

0.118*** 
(20.79) 

0.114*** 
(18.12) 

0.113*** 
(18.94) 

0.098*** 
(16.67) 

IP -1.355*** 
(-11.04) 

-0.532*** 
(-8.42) 

-0.891*** 
(-13.07) 

-0.513*** 
(-7.94) 

-0.376*** 
(-6.18) 

LDR 0.106 
(2.67) 

-0.044 
(-0.74) 

-0.071 
(-1.18) 

-0.045 
(-0.76) 

0.003 
(0.05) 

ROA 0.123** 
(2.67) 

0.071** 
(2.80) 

0.079** 
(3.03) 

0.050 
(1.93) 

-0.005 
(-0.22) 

CAR 0.058** 
(2.69) 

0.069*** 
(5.85) 

-0.069*** 
(-5.69) 

0.054*** 
(4.42) 

0.033** 
(3.03) 

IPO 0.033 
(0.76) 

0.005 
(0.19) 

0.017 
(0.70) 

0.060* 
(2.41) 

-0.042 
(-1.89) 

Observation 909 909 909 909 909 

Constant -2.180*** 
(-16.46) 

-1.232*** 
(-20.90) 

-0.001*** 
(-18.73) 

-1.174*** 
(-18.98) 

-1.007*** 
(-16.43) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 48.62*** 58.77*** 75.02*** 47.45*** 12.28*** 

Note: The table presents the robustness check based on the truncated regressed result at the second stage for Hypothesis 2. 
The dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The FUD is institution 
variable which represents the usage depth of FinTech. * Significant at 10%, ** significant at 5% and *** significant at 1%. 
See notes on Table 1 for the definition of the variables.  
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Table 3.12 Robustness result for H3 (FCB: The coverage breadth) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.185*** 
(-5.35) 

-0.223*** 
(-6.74) 

-0.356*** 
(-7.18) 

-0.175*** 
(-7.05) 

-0.562*** 
(-17.01) 

FCB 0.039*** 
(14.48) 

0.018*** 
(9.72) 

0.020*** 
(12.41) 

0.022*** 
(12.65) 

0.003*** 
(5.25) 

FD 0.100*** 
(11.36) 

0.049* 
(1.82) 

0.056* 
(2.32) 

0.012 
(0.42) 

0.020*** 
(3.54) 

FCB*FD 0.002*** 
(5.48) 

0.001*** 
(8.46) 

0.001*** 
(2.32) 

0.002*** 
(6.58) 

0.001** 
(3.05) 

SIZE -0.335** 
(-2.92) 

-0.301*** 
(-3.81) 

-0.085 
(-1.21) 

-0.314*** 
(-3.85) 

-0.268*** 
(-3.66) 

GDP 0.259*** 
(12.02) 

0.122*** 
(8.27) 

0.171*** 
(13.23) 

0.152*** 
(10.27) 

0.034*** 
(4.00) 

CPI 0.210*** 
(12.58) 

0.087*** 
(7.38) 

0.080*** 
(8.03) 

0.094*** 
(8.37) 

0.046*** 
(4.18) 

IP -1.183*** 
(-14.97) 

-0.626*** 
(-11.43) 

-0.656*** 
(-13.54) 

-0.735*** 
(-14.13) 

-0.454* 
(2.44) 

LDR 0.032 
(0.29) 

0.057 
(0.77) 

0.016 
(0.23) 

0.057 
(0.75) 

0.048 
(0.71) 

ROA 0.183*** 
(3.64) 

0.089* 
(2.51) 

0.082** 
(2.59) 

0.069 
(1.91) 

-0.000 
(-0.01) 

CAR 0.083*** 
(3.47) 

0.059*** 
(3.58) 

-0.037* 
(-2.49) 

0.050** 
(2.96) 

0.022 
(1.45) 

IPO 0.039 
(0.82) 

0.010 
(0.29) 

0.042 
(1.41) 

0.041 
(1.18) 

-0.026 
(-0.88) 

Observation 774 774 774 774 774 

Constant -1.940*** 
(-11.84) 

-0.765*** 
(-6.67) 

-0.703*** 
(-7.18) 

-0.818*** 
(-7.42) 

-0.471*** 
(4.24) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 268.18*** 96.70*** 156.62*** 160.20*** 64.47*** 

Note: The table presents the robustness check based on the truncated regressed result at the second stage for Hypothesis 3. 
The dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. * Significant at 10%, 
** significant at 5% and *** significant at 1%. See notes on Table 1 for the definition of the variables. 
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Table 3.13 Robustness result for H3 (FUD: The usage depth) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.272** 
(-7.05) 

-0.428*** 
(-13.18) 

-0.491*** 
(-14.69) 

-0.298*** 
(-11.45) 

-0.562*** 
(-17.01) 

FUD 0.008*** 
(7.05) 

0.001 
(0.47) 

0.003*** 
(5.17) 

0.002** 
(3.10) 

0.003*** 
(5.25) 

FD 0.104*** 
(9.73) 

0.586*** 
(9.45) 

0.489*** 
(8.37) 

0.557*** 
(8.31) 

0.202*** 
(3.55) 

FUD*FD 0.003*** 
(5.76) 

0.002*** 
(5.78) 

0.002*** 
(6.28) 

0.002*** 
(5.79) 

0.001** 
(3.05) 

SIZE -0.286* 
(-2.24) 

-0.364*** 
(-4.61) 

-0.108 
(-1.48) 

-0.318*** 
(-3.74) 

-0.268*** 
(-3.66) 

GDP 0.004 
(0.25) 

0.009 
(1.03) 

0.045*** 
(4.81) 

0.007 
(0.72) 

0.034*** 
(4.01) 

CPI 0.143*** 
(8.12) 

0.025* 
(2.23) 

0.042*** 
(4.11) 

0.044*** 
(3.79) 

0.046*** 
(4.18) 

IP -2.828*** 
(-9.34) 

-0.601** 
(-3.10) 

-1.185*** 
(-6.55) 

-1.055*** 
(-5.29) 

-0.455* 
(2.44) 

LDR -0.075 
(-0.61) 

-0.012 
(-0.16) 

-0.056 
(-0.81) 

-0.001 
(-0.01) 

0.048 
(0.71) 

ROA 0.136* 
(2.42) 

0.053 
(1.53) 

0.053 
(1.62) 

0.034 
(0.89) 

-0.000 
(-0.01) 

CAR 0.063* 
(2.42) 

0.051** 
(3.18) 

-0.031* 
(-1.99) 

0.044* 
(2.49) 

0.022 
(1.45) 

IPO 0.029 
(0.55) 

-0.006 
(-0.18) 

0.024 
(0.78) 

0.032 
(0.92) 

-0.026 
(-0.88) 

Observation 774 774 774 774 774 

Constant -1.406*** 
(-7.92) 

-2.431* 
(-2.11) 

-0.410*** 
(-3.95) 

-0.423*** 
(-3.61) 

-0.471*** 
(4.25) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 108.04*** 100.42*** 74.08*** 69.07*** 64.47** 

Note: The table presents the robustness check based on the truncated regressed result at the second stage for Hypothesis 3. 
The dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. * Significant at 10%, 
** significant at 5% and *** significant at 1%. See notes on Table 1 for the definition of the variables. 
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3.5.2 Non-linear Effects 

It could be argued that FinTech may have a negative effect up to a certain (turning) point 

and positive thereafter. Past studies argue that FinTech is characterised by high operation 

and research and development (R&D) cost, and, therefore, might not improve banks’ 

efficiency at early stages due to intensive competition (Zhao et al., 2022). Hence, to capture 

potential non-linear influences, we also allow for non-linear transformation in our main 

models. We add a quadratic term on the FI variable in our three main specifications. These 

are as follows: 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + 𝛽<𝐹𝐼(&!;' + ∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&!(14) 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + 𝛽<𝐹𝐼(&!;' + 𝛽=𝐽𝑆𝐶𝐵&! + 𝛽>𝐶𝐶𝐵&!
+𝛽?𝐽𝑆𝐶𝐵&! ∗ 𝐹𝐼&!;' + 𝛽@𝐶𝐶𝐵&! ∗ 𝐹𝐼&!;' + 𝛽A𝐽𝑆𝐶𝐵&! ∗ 𝐹𝐼(&!;' + 𝛽B𝐶𝐶𝐵&! ∗ 𝐹𝐼(&!;'

+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (15)
 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽( ∗ 𝐹𝐼&!;' + 𝛽<𝐹𝐼(&!;' + 𝛽=𝐹𝐷(&!;'
𝛽>𝐹𝐷&!;' ∗ 𝐹𝐼&!;' + 𝛽?𝐹𝐷(&!;' ∗ 𝐹𝐼(&!;' + ∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&!	(16)

 

Table 3.14 shows that the models are linear and consistent with our main findings. The 

coefficient of FI remains positive and significant, as well as the coefficient of FI(. This 

shows that FinTech development exerts a positive effect on banks’ efficiency throughout the 

sample period. This study further investigates whether the linear nexus is related to banks’ 

ownership structure (see Table 3.15). The interactive term of FI( and ownership dummy 

variables are included. The interactive terms are found positive and significant for JSCBs 

and CCBs. This finding shows that JSCBs and CCBs are more sensitive to the spillover 

effect brought by FinTech compared to their SOCBs counterparts. This is consistent with 

our hypothesis and the arguments of past studies (Wang et al., 2021; Cheng et al., 2022). 

Finally, the effect of both financial development and FinTech development is took into 

consideration. The interactive terms of FI(  and FD(  on Table 3.16 are positive and 

statistically significant. This denotes the positive and more significant impact of FinTech on 

banks in more financially developed areas. Therefore, these results are robust to the main 

findings. 
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Table 3.14 Double bootstrapped truncated regression result (non-linear model) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.228*** 
(-5.34) 

-0.256*** 
(-7.61) 

-0.151*** 
(-4.06) 

-0.229*** 
(-6.58) 

-0.013 
(-0.39) 

FI 0.028*** 
(6.94) 

0.019*** 
(8.43) 

0.011*** 
(4.83) 

0.018*** 
(8.35) 

0.023*** 
(11.94) 

			𝐅𝐈𝟐 0.015*** 
(7.88) 

0.009*** 
(9.26) 

0.006*** 
(6.10) 

0.009*** 
(9.07) 

0.010*** 
(11.78) 

SIZE -0.448*** 
(-4.07) 

-0.267*** 
(-4.56) 

-0.187** 
(-3.01) 

-0.328*** 
(-5.46) 

-0.085 
(-1.64) 

GDP 0.392*** 
(8.75) 

0.225*** 
(9.15) 

0.193*** 
(7.72) 

0.206*** 
(8.69) 

0.215*** 
(10.58) 

CPI 0.238*** 
(14.69) 

0.143*** 
(15.58) 

0.121*** 
(14.56) 

0.133*** 
(17.17) 

0.127*** 
(19.37) 

IP -7.468*** 
(-8.49) 

-4.544*** 
(-9.48) 

-3.381*** 
(-6.92) 

-4.149*** 
(-9.09) 

-4.524*** 
(-11.52) 

LDR -0.123 
(-1.09) 

-0.067 
(-1.12) 

-0.055 
(-0.87) 

-0.051 
(-0.83) 

-0.028 
(-0.54) 

ROA 0.031 
(0.65) 

0.021 
(0.80) 

0.032 
(1.15) 

-0.002 
(-0.08) 

-0.032 
(-1.40) 

CAR 0.030 
(1.35) 

0.050*** 
(4.12) 

-0.077*** 
(-5.96) 

0.035** 
(2.82) 

0.018 
(1.69) 

IPO 0.046 
(1.29) 

0.014 
(0.75) 

0.043* 
(2.13) 

0.042* 
(2.10) 

-0.012 
(-0.67) 

Observation 909 909 909 909 909 

Constant -2.308*** 
(-14.79) 

-1.384*** 
(-15.60) 

-1.180*** 
(-14.71) 

-1.292*** 
(17.21) 

-1.223*** 
(-19.24) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 90.25*** 51.58*** 61.05*** 104.70*** 70.87*** 

Notes: The table presents the truncated regressed result at the second stage for Hypothesis 1: Higher levels of FinTech 
development have a positive impact on CB’s efficiency levels. The dependent variables are bias-corrected efficiency score 
derived from DEA-Malmquist method. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables. 
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Table 3.15 Double bootstrapped truncated regression result of different types of 
commercial banks 

(non-linear model) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.296*** 
(-6.07) 

-0.270*** 
(-7.94) 

-0.189*** 
(-5.08) 

-0.234*** 
(-6.65) 

-0.022 
(-0.61) 

FI 0.097*** 
(22.40) 

0.037*** 
(20.00) 

0.028*** 
(14.73) 

0.038*** 
(19.45) 

0.039*** 
(21.84) 

			𝐅𝐈𝟐 0.059*** 
(25.11) 

0.022*** 
(24.41) 

0.019*** 
(19.46) 

0.023*** 
(23.97) 

0.021*** 
(25.26) 

JSCB -0.199*** 
(-6.97) 

-0.086*** 
(-7.77) 

-0.055*** 
(-4.56) 

-0.086*** 
(-7.51) 

-0.057*** 
(-5.71) 

CCB -0.204*** 
(-7.66) 

-0.069*** 
(-7.32) 

-0.075*** 
(-7.17) 

-0.078*** 
(-8.03) 

-0.051*** 
(-5.98) 

FI*JSCB 0.077*** 
(19.19) 

0.028*** 
(17.14) 

0.023*** 
(13.04) 

0.031*** 
(17.24) 

0.024*** 
(15.37) 

FI*CCB 0.092*** 
(26.11) 

0.031*** 
(25.06) 

0.033*** 
(27.37) 

0.034*** 
(24.71) 

0.027*** 
(22.67) 

𝐅𝐈𝟐*JSCB 0.017*** 
(16.78) 

0.007*** 
(15.40) 

0.005*** 
(11.81) 

0.008*** 
(15.99) 

0.006*** 
(14.61) 

𝐅𝐈𝟐*CCB 0.019*** 
(22.56) 

0.007*** 
(22.69) 

0.007*** 
(23.32) 

0.007*** 
(22.94) 

0.006*** 
(21.12) 

SIZE -0.122 
(-0.99) 

-0.112 
(-1.86) 

-0.058 
(-0.89) 

-0.141* 
(-2.28) 

0.038 
(0.71) 

GDP 0.906*** 
(19.75) 

0.333*** 
(17.08) 

0.304*** 
(14.16) 

0.329*** 
(15.88) 

0.316*** 
(16.89) 

CPI 0.893*** 
(34.14) 

0.339*** 
(43.15) 

0.305*** 
(47.16) 

0.343*** 
(40.09) 

0.301*** 
(40.91) 

IP -2.488*** 
(-28.78) 

-8.881*** 
(-29.87) 

-8.191*** 
(-26.94) 

-9.146*** 
(-29.68) 

-8.147*** 
(-30.27) 

LDR -0.181 
(-1.48) 

-0.082 
(-1.37) 

-0.092 
(-1.43) 

-0.071 
(-1.16) 

-0.048 
(-0.89) 

ROA 0.058 
(1.11) 

0.036 
(1.41) 

0.041 
(1.47) 

0.015 
(0.57) 

-0.022 
(-0.92) 

CAR 0.033 
(1.34) 

0.054*** 
(4.38) 

-0.079*** 
(-5.99) 

0.038** 
(3.06) 

-0.020 
(1.82) 

IPO 0.055 
(1.10) 

0.012 
(0.48) 

0.024 
(0.92) 

0.065* 
(2.56) 

-0.031 
(-1.38) 

Observation 909 909 909 909 909 

Constant -1.041*** 
(-33.95) 

-3.913*** 
(-42.65) 

-3.533*** 
(-45.64) 

-3.971*** 
(-40.10) 

-3.498*** 
(-41.05) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 599.92*** 581.89*** 468.29*** 620.08*** 592.64*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 2: Higher levels of FinTech 
development have a stronger positive impact on the efficiency of CCBs than on their SOCBs and JSCBs counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The SOCBs (omitted), 
JSCBs and CCBs are dummy variables. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables.  
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Table 3.16 Double bootstrapped truncated regression result of the impact of financial 
development 

(non-linear model) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.114** 
(-2.79) 

-0.165*** 
(-4.58) 

-0.067 
(-1.18) 

-0.085* 
(-6.75) 

0.078* 
(2.01) 

𝐅𝐈 0.007*** 
(3.64) 

0.009*** 
(8.54) 

0.003*** 
(3.76) 

0.013*** 
(10.71) 

0.016*** 
(13.80) 

𝐅𝐈𝟐 0.007*** 
(9.14) 

0.005*** 
(13.89) 

0.004*** 
(10.46) 

0.007*** 
(14.63) 

0.007*** 
(16.16) 

𝐅𝐃𝟐 0.102*** 
(10.72) 

0.404*** 
(8.69) 

0.488*** 
(10.33) 

0.326*** 
(6.70) 

0.092* 
(2.07) 

FI*FD 0.012*** 
(8.35) 

0.005*** 
(5.98) 

0.008*** 
(9.85) 

0.005*** 
(6.11) 

0.002*** 
(4.14) 

𝐅𝐈𝟐*𝐅𝐃𝟐 0.001*** 
(7.61) 

0.001*** 
(5.44) 

0.001*** 
(9.02) 

0.001*** 
(6.04) 

0.000*** 
(4.69) 

SIZE -0.427*** 
(-3.78) 

-0.251*** 
(-3.98) 

-0.151* 
(-2.41) 

-0.255*** 
(-3.89) 

0.005 
(0.08) 

GDP 0.218*** 
(11.14) 

0.126*** 
(12.22) 

0.151*** 
(14.05) 

0.142*** 
(12.07) 

0.140*** 
(12.73) 

CPI 0.054*** 
(4.05) 

0.052*** 
(6.89) 

0.013 
(1.65) 

0.045*** 
(5.65) 

0.042*** 
(5.75) 

IP -3.767*** 
(-11.26) 

-2.383*** 
(-14.75) 

-2.291*** 
(-13.47) 

2.004*** 
(14.73) 

1.972*** 
(15.54) 

LDR -0.117 
(-1.11) 

-0.049 
(-0.85) 

-0.086 
(-1.47) 

-0.043 
(-0.71) 

-0.038 
(-0.67) 

ROA 0.093* 
(1.97) 

0.048 
(1.81) 

0.060* 
(2.26) 

0.022 
(0.79) 

-0.023 
(-0.92) 

CAR 0.062** 
(2.79) 

0.062*** 
(4.92) 

-0.063*** 
(-5.03) 

0.042** 
(3.25) 

0.016 
(1.38) 

IPO 0.013 
(0.29) 

-0.007 
(-0.31) 

0.017 
(0.69) 

0.039 
(1.53) 

-0.038 
(-1.62) 

Observation 774 774 774 774 774 

Constant -0.498*** 
(-3.65) 

-0.491*** 
(-6.34) 

-0.091 
(-1.18) 

-0.565*** 
(-6.75) 

-0.532*** 
(-6.89) 

Banks×Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 217.42*** 284.83*** 339.94*** 263.37*** 268.48*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 3: FinTech exerts a positive and 
higher effect on CCBs in less financially developed areas than in their more financially developed counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The FD is dummy variable 
for cities higher than the average financial development level. * Significant at 10%, ** significant at 5% and *** significant 
at 1%. See notes on Table 1 for the definition of the variables. 

 

3.5.3 Endogeneity 

To address the endogeneity, we introduced an exogenous variable. The People's Bank of 

China, the central bank of China, issued in July 2016 the Supervisory Guidance on the 13th 

Five-Year Development Plan for Informatisation in the Chinese Banking Sector (hereinafter 

referred to as "the Opinions") (Cheng et al., 2022). This Opinions document clearly states 

the mission to promote emerging high technology in the banking sector. We consider this as 

an exogenous policy shock to banks and define 𝑠ℎ𝑜𝑐𝑘&! to be equal to 1 in years after 2016 

and 0 otherwise. The model for the three hypotheses is specified as follows. 
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𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + 𝛽<𝑠ℎ𝑜𝑐𝑘&! + 𝛽<𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!
+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (17) 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽(𝐹𝐼&!;' + 𝛽<𝑠ℎ𝑜𝑐𝑘&! + 𝛽=𝐽𝑆𝐶𝐵&! + 𝛽>𝐶𝐶𝐵&! + 𝛽?𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!
+𝛽@𝐽𝑆𝐶𝐵&! ∗ 𝑠ℎ𝑜𝑐𝑘&! + 𝛽A𝐶𝐶𝐵&! ∗ 𝑠ℎ𝑜𝑐𝑘&!

+𝛽B𝐽𝑆𝐶𝐵&! ∗ 𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&! + 𝛽'9𝐶𝐶𝐵&! ∗ 𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!
+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (18)

 

𝐸&! = 𝛽9 + 𝛽'𝐸&,!;' + 𝛽( ∗ 𝐹𝐼&!;' + 𝛽<𝑠ℎ𝑜𝑐𝑘&! + 𝛽= ∗ 𝐹𝐷&!;' 

+𝛽>𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&! + 𝛽?𝐹𝐷&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&! + 𝛽@ ∗ 𝐹𝐼&!;' ∗ 𝐹𝐷&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!
+∑𝛿&𝑀𝑎𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + ∑𝛾&𝑀𝑖𝑐𝑟𝑜𝑙𝑒𝑣𝑒𝑙&! + 𝜖&! (19) 

As shown in Table 3.17, the coefficient on FI is significantly positive, which is consistent 

with the main finding. Interestingly, the coefficient on the shock is significantly negative, 

while the coefficient on FI*shock is significantly positive, suggesting that the Opinions aims 

to promote banks' R&D and system upgrades for innovation-driven development, which may 

have a negative impact on banks' current efficiency since the increase in R&D investment is 

not matched by a corresponding output in the short term. The Opinions does not work well 

unless there are high levels of FinTech infrastructure development. 

Table 3.18 reports the results considering the banks’ ownership, where the coefficients on 

FI and FI*shock remain positive and the shock still has a negative effect on bank efficiency, 

whereas the coefficients on JCSB*shock and CCB*shock are both significantly negative, 

indicating that the Opinions has a less negative impact on JSCBs and CCBs efficiency than 

SOCBs. The coefficients of FI*JSCB*shock and FI*CCB*shock are both significantly 

positive, and the efficiencies of JSCBs and CCBs are affected more positively by the 

FinTech development than SOCBs under the Opinions. 

Table 3.19 presents the results of Eq. 19, where the significantly negative coefficient on 

FD*shock indicates that the Opinions weakened the impact of the degree of financial 

development on bank efficiency, while the significantly positive coefficient on 

FI*FD*shock indicates that CCBs in areas with higher financial development were more 

affected by the development of FinTech after the Opinions was issued. 
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Table 3.17 Double bootstrapped truncated regression result (endogeneity test of policy 
shock) 

Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.199*** 
(-5.17) 

-0.366*** 
(-10.54) 

-0.088** 
(-2.63) 

-0.336*** 
(-9.67) 

-0.141*** 
(-3.87) 

FI 0.046*** 
(4.09) 

0.028*** 
(3.59) 

0.035*** 
(4.78) 

0.021** 
(2.73) 

0.044* 
(2.36) 

shock -0.971*** 
(-16.90) 

-0.464*** 
(-9.18) 

-0.705*** 
(-20.71) 

-0.552*** 
(-16.01) 

-0.384*** 
(-6.97) 

FI*shock 0.082*** 
(16.83) 

0.039*** 
(9.16) 

0.059*** 
(20.64) 

0.047*** 
(15.93) 

0.033*** 
(6.95) 

SIZE -0.274** 
(-2.58) 

-0.206*** 
(-3.32) 

-0.069 
(-1.12) 

-0.257*** 
(-4.16) 

-0.034 
(-0.61) 

GDP 0.043** 
(2.77) 

0.009 
(0.95) 

0.038*** 
(4.16) 

0.005 
(0.53) 

-0.002 
(-0.21) 

CPI 0.213*** 
(27.47) 

0.126*** 
(17.56) 

0.128*** 
(27.13) 

0.124*** 
(26.38) 

0.107*** 
(13.41) 

IP -0.404 
(-1.61) 

0.024 
(0.16) 

-0.296* 
(-1.98) 

0.151 
(1.03) 

0.314* 
(2.36) 

LDR 0.065 
(0.63) 

0.049 
(0.80) 

0.061 
(0.98) 

0.067 
(1.08) 

0.082 
(1.47) 

ROA 0.125** 
(2.76) 

0.072** 
(2.69) 

0.082** 
(3.10) 

0.051 
(1.91) 

0.005 
(0.19) 

CAR 0.062** 
(2.92) 

0.072*** 
(5.76) 

-0.055*** 
(-4.40) 

0.058*** 
(4.61) 

0.036** 
(3.20) 

IPO 0.036 
(1.05) 

0.011 
(0.57) 

0.036 
(1.83) 

0.039* 
(1.97) 

-0.015 
(-0.86) 

Observation 909 909 909 909 909 

Constant -2.168*** 
(26.89) 

-1.283*** 
(-17.34) 

-1.301*** 
(-26.51) 

-1.267*** 
(-25.91) 

-1.093*** 
(-13.28) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 279.97*** 98.35*** 450.185*** 260.56*** 53.89*** 

Notes: The table presents the truncated regressed result at the second stage for Hypothesis 1: Higher levels of FinTech 
development have a positive impact on CB’s efficiency levels. The dependent variables are bias-corrected efficiency score 
derived from DEA-Malmquist method. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables. 

Next, the role of this policy shock on banks’ ownership type is tested. In Table 3.18, the 

coefficients on the two interaction terms are observed 𝐽𝑆𝐶𝐵&! ∗ 𝑠ℎ𝑜𝑐𝑘&! and 𝐶𝐶𝐵&! ∗ 𝑠ℎ𝑜𝑐𝑘&! 

are negative and statistically significant, denoting that the policy shock affects banks’ 

efficiency negatively. This effect is stronger for JSCBs than CCBs. This is in line with 

evidence presented by other studies (Cheng et al., 2022) Accordingly, due to the off-site 

surveillance nature of JSCBs (Sufian and Habibullah, 2012), they are more direct in 

responding to national calls and are more strongly influenced by them. On the contrary, the 

operations of CCBs are largely local in scope, which is different from JSCB, and their 

management is more influenced by local policies which often lag the newly released policy. 

However, once we consider FinTech, this negative effect is mitigated. Specifically, the 

coefficients of 𝐽𝑆𝐶𝐵&! ∗ 𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!  and 𝐶𝐶𝐵&! ∗ 𝐹𝐼&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!  are positive and 

statistically significant. The positive impact of FinTech is higher for CCBs than JSCBs. This 

once more denotes the differential effect of bank ownership and the role of the government 
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on CCBs. Overall, these findings show the clear and positive impact of FinTech on banks’ 

efficiency levels. 

Table 3.18 Double bootstrapped truncated regression result of different types of 
commercial banks 

(Endogeneity test of policy shock) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF 0.003 
(0.09) 

-0.124*** 
(-3.69) 

-0.104** 
(3.28) 

-0.291 
(0.71) 

-0.150*** 
(-4.68) 

FI 0.016*** 
(6.81) 

0.017*** 
(3.56) 

0.021*** 
(5.01) 

0.018*** 
(11.64) 

0.018*** 
(14.89) 

shock -0.148*** 
(-3.34) 

-0.237*** 
(-8.58) 

-0.088*** 
(-4.09) 

-0.120*** 
(-7.33) 

-0.069*** 
(-4.83) 

JSCB 0.176 
(1.57) 

0.169 
(0.29) 

0.089 
(1.49) 

0.019 
(0.32) 

-0.014 
(-0.28) 

CCB 0.060 
(0.60) 

0.183 
(0.34) 

0.051 
(0.93) 

-0.043 
(-0.79) 

0.033 
(0.74) 

FI*shock 0.042*** 
(3.34) 

0.067*** 
(8.57) 

0.025*** 
(4.09) 

0.037*** 
(7.34) 

0.065*** 
(4.85) 

JSCB*shock -0.079*** 
(-7.39) 

-0.077*** 
(-11.87) 

-0.049*** 
(-9.66) 

-0.061*** 
(-8.19) 

-0.040*** 
(-10.84) 

CCB*shock -0.011*** 
(-7.98) 

-0.074*** 
(-8.30) 

-0.014*** 
(-7.57) 

-0.081** 
(-3.03) 

-0.029*** 
(-6.37) 

JSCB*FI*shock 0.014*** 
(7.35) 

0.014*** 
(11.78) 

0.009*** 
(9.63) 

0.011*** 
(8.18) 

0.007*** 
(10.85) 

CCB*FI*shock 0.020*** 
(7.96) 

0.014*** 
(8.29) 

0.004*** 
(-7.57) 

0.015** 
(3.03) 

0.005*** 
(6.40) 

SIZE 0.041 
(0.34) 

-0.069 
(-1.09) 

-0.079 
(1.20) 

-0.058 
(-0.87) 

0.051 
(0.91) 

GDP 0.159*** 
(6.02) 

0.039* 
(2.47) 

0.086*** 
(5.50) 

0.144*** 
(9.27) 

0.157*** 
(12.34) 

CPI 0.333*** 
(14.46) 

0.106*** 
(8.08) 

0.169*** 
(13.81) 

0.212*** 
(13.16) 

0.174*** 
(20.12) 

IP -1.238*** 
(-5.29) 

-0.396* 
(-2.50) 

-0.527*** 
(-3.77) 

-1.454*** 
(-9.46) 

-1.639*** 
(-12.58) 

LDR 0.083 
(0.71) 

0.033 
(0.53) 

0.068 
(2.41) 

0.082 
(1.23) 

0.075 
(1.37) 

ROA 0.104* 
(2.08) 

0.055* 
(2.04) 

0.068* 
(2.41) 

0.034 
(1.18) 

0.006 
(0.27) 

CAR 0.047* 
(2.01) 

0.057*** 
(4.53) 

-0.050*** 
(-3.81) 

0.042** 
(1.18) 

0.027* 
(2.51) 

IPO 0.042 
(0.86) 

0.006 
(0.25) 

0.023 
(0.86) 

0.055* 
(2.05) 

-0.031 
(-1.39) 

Observation 909 909 909 909 909 

Constant -3.517*** 
(-14.09) 

-1.113*** 
(-7.72) 

-1.780*** 
(-13.26) 

-2.294*** 
(-13.28) 

-1.914*** 
(-20.09) 

Banks × Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 127.63*** 289.82*** 109.52*** 303.15*** 501.17*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 2: Higher levels of FinTech 
development have a stronger positive impact on the efficiency of CCBs than on their SOCBs and JSCBs counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The SOCBs (omitted), 
JSCBs and CCBs are dummy variables. * Significant at 10%, ** significant at 5% and *** significant at 1%. See notes on 
Table 1 for the definition of the variables.  

Finally, in Table 3.19, the impact of the policy shock on how regional financial development 

relates to banks’ efficiency. These results of using the Opinion as the exogenous variable 

remain robust to the main findings. The implemented policy exerts a negative and 
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statistically significant effect on the relationship between regional financial development and 

CCBs’ efficiency levels (𝐹𝐷&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&!). However, this effect is mitigated once we take 

into consideration FinTech ( 𝐹𝐼&!;' ∗ 𝐹𝐷&!;' ∗ 𝑠ℎ𝑜𝑐𝑘&! ). These findings confirm that 

FinTech exerts a positive impact on CCBs’ efficiency levels, independent of any external 

negative policy shock, such as the new technology policy regulation promulgated by the 

Chinese government. Taken together, these findings suggest that the results are consistent 

with those of the baseline models, providing evidence of the effect of FinTech on banks’ 

efficiency levels.  

Table 3.19 Double bootstrapped truncated regression result of the impact of financial 
development  

(endogeneity test of policy shock) 
Variables TFPCH EFFCH TECHCH PURE SCALE 

LEFF -0.113** 
(-2.89) 

-0.140*** 
(-4.17) 

-0.161*** 
(-4.30) 

-0.133*** 
(-3.80) 

-0.187*** 
(6.37) 

FI 0.063*** 
(10.62) 

0.022*** 
(5.91) 

0.048*** 
(12.98) 

0.022*** 
(5.45) 

0.006*** 
(12.54) 

shock -0.201*** 
(-6.81) 

-0.104*** 
(-6.56) 

-0.101*** 
(-6.14) 

-0.088*** 
(-5.79) 

-0.024*** 
(-10.63) 

FD 0.506*** 
(11.79) 

0.281*** 
(11.88) 

0.191*** 
(7.96) 

0.213*** 
(8.61) 

0.021 
(0.91) 

FI*shock 0.073*** 
(7.03) 

0.037*** 
(6.78) 

0.037*** 
(6.38) 

0.032*** 
(5.99) 

0.085*** 
(10.58) 

FD*shock -0.607* 
(-1.89) 

-0.264 
(-1.52) 

-0.559** 
(-3.11) 

-0.368* 
(-2.14) 

-0.524** 
(-2.79) 

FI*FD*shock 0.020* 
(1.83) 

0.088 
(1.46) 

0.019** 
(3.07) 

0.013* 
(2.09) 

0.018** 
(2.82) 

SIZE -0.326** 
(-3.00) 

-0.204*** 
(-3.36) 

-0.107* 
(-1.73) 

-0.232*** 
(-3.62) 

0.061 
(1.04) 

GDP 0.025 
(1.47) 

-0.014 
(-1.40) 

0.033*** 
(3.39) 

-0.013 
(-1.27) 

0.047*** 
(12.14) 

CPI 0.052*** 
(3.98) 

0.045*** 
(6.21) 

0.012 
(1.56) 

0.030*** 
(3.87) 

0.144*** 
(11.49) 

IP -2.843*** 
(-10.64) 

-1.317*** 
(-9.32) 

-1.698*** 
(-11.21) 

-0.656*** 
(-7.08) 

-1.127*** 
(12.74) 

LDR -0.051 
(-0.52) 

-0.004 
(-0.07) 

-0.045 
(-0.80) 

0.005 
(0.08) 

-0.049 
(-0.91) 

ROA 0.143** 
(3.21) 

0.082** 
(3.26) 

0.092*** 
(3.54) 

0.053* 
(2.02) 

-0.002 
(-0.06) 

CAR 0.064** 
(3.05) 

0.067*** 
(5.68) 

-0.068*** 
(-5.65) 

0.049*** 
(4.02) 

0.017 
(1.47) 

IPO 0.034 
(0.83) 

0.002 
(0.09) 

0.034 
(1.43) 

0.052* 
(2.09) 

-0.025 
(-1.14) 

Observation 774 774 774 774 774 

Constant -4.697*** 
(-3.48) 

-4.282*** 
(-5.65) 

-0.811 
(-1.04) 

-3.278*** 
(-4.15) 

-2.053*** 
(-12.20) 

Banks×Year FE Yes Yes Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 136.08*** 70.02*** 180.11*** 56.56*** 163.26*** 

Note: The table presents the truncated regressed result at the second stage for Hypothesis 3: FinTech exerts a positive and 
higher effect on CCBs in less financially developed areas than in their more financially developed counterparts. The 
dependent variables are bias-corrected efficiency score derived from DEA-Malmquist method. The FD is dummy variable 
for cities higher than the average financial development level. * Significant at 10%, ** significant at 5% and *** significant 
at 1%. See notes on Table 1 for the definition of the variables. 
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3.6 Conclusions 

This paper extends the existing literature on the FinTech development and efficiency 

changes of commercial banks in China. To quantify FinTech development, we introduce the 

DFII. This study employs a two-stage bootstrap-DEA-Malmquist truncated regression to test 

the hypotheses. The efficiency changes of 101 Chinese commercial banks from 2011-2020 

is evaluated and the DEA-Malmquist method is applied in the first stage. This study also 

introduces the double bootstrapped truncated regression from Simar and Wilson (2007) to 

estimate the relationship between FinTech development and efficiency change of Chinese 

commercial banks. These results confirm that FinTech development exerts a positive impact 

on Chinese commercial banks’ efficiency changes. Once accounting for the different types 

of Chinese commercial banks, these results show that CCBs are relatively more sensitive to 

the positive impact of FinTech development than other bank groups. In addition,  the 

relationship between FinTech and the local financial development level is explored. This 

research finds that FinTech exerts a stronger and more positive effect on efficiency changes 

in CCBs located in more financially developed cities.  

The results remain consistent under a battery of robustness checks. First, FCB and FUD are 

shown, two dimensions of DFII, a positive impact of FinTech on the efficiency change of 

commercial banks. Using those dimensions in our setup validates that FinTech development 

has a higher impact on the efficiency changes of CCBs, especially compared with SOCBs. 

The same factors also show that CCBs in higher financially developed cities would increase 

more TFPCH, EFFCH, and TECHCH from FinTech development. Second, the main results 

are replicated but allow for non-linear transformation in the main models. These findings 

suggest that the original findings are robust. Finally, to account for endogeneity we perform 

a DID approach using the "the Opinions" directive as an exogenous policy shock. This 

robustness check shows that FinTech is associated with higher banks’ efficiency levels after 

the policy shock, even if the shock itself has a negative effect in banking efficiency. In the 

presence of higher FinTech development and regional development, the negative effect on 

CCBs is mitigated affirming the main results. 

Overall, FinTech is still a forward-looking technological framework for the development of 

the financial system. These findings highlight the variation in efficiency changes among 

different commercial banks and the importance of their operations management. In that 

framework, this research underlines once more the impact of the Chinese government's 

guidance and supervision over the banking system. Regarding the common question of 
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whether FinTech is a shock to the Chinese commercial banks, our current understanding is 

that FinTech helps Chinese commercial banks improve their productivity in the long run, 

but its integration should be guided by the different characteristics of commercial banks. 

This study’s findings also highlight that less financially developed regions should integrate 

FinTech in conjunction with their levels of financial development. local governments in 

China should continue to collaborate with commercial banks, and especially CCBs, to 

maximise the positive impact of FinTech.  
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Chapter 4 Digital Supply Chain Finance: Feature Selection in 

Credit Risk Assessment   

4.1 Introduction 

In recent years, technological innovation and transformation of the new technology-led 

FinTech applications in the digital economy are gradually merging with traditional industries 

and generating new developments22. DSCF, a product of the digital technology surrounding 

SCF, is a complex web-like system formed due to the combination of big data, cloud 

computing, IT and blockchain technologies. The SCF platform provided by traditional 

financial institutions is infinitely extended by the participating entities in this engagement 

process (Du et al., 2020). The upstream and downstream operational structure of companies 

in the supply chain is not limited to the traditional chain organisation but has evolved into 

an organisational structure (Scuotto et al., 2017). Governments, financial institutions, 

logistics, and other proponents of SCF activities are all reflected in this intertwining of 

interests, guiding supply chain forecasting, planning, execution, and decision-making 

activities through DSCF platforms. The construction of a modern DSCF system is the 

integration of traditional process fragmentation, using new technological tools to keep 

companies closely connected while refining the division of labor and reducing the frictional 

costs between each link through information technology; DSCF is a deep integration of 

various industrial chains and finance (Korpela et al., 2017). Due to the application and 

penetration of digital technologies, SCF has undergone significant changes in the valuation 

of the soft power of companies, target credit assessment, and asset risk control (Banerjee et 

al., 2021). For companies financed based on DSCF, financial institutions are increasingly 

incorporating the digitalisation of companies into their credit assessment (Ivanov and 

Dolgui, 2021). Meanwhile, credit risk assessment models are being improved to 

accommodate the increasing complexity of the data. The introduction of machine learning 

methods has contributed significantly to the development of credit risk assessment, but the 

effectiveness of an extensive range of machine learning models in dealing with the credit 

risk assessment problem in DSCF remains to be investigated. The motivation of this paper 

is driven by three aspects: Firstly, the model for credit risk assessment is various and 

ambivalent. For instance, LR has defaulted to the most common method for credit risk 

 
22 see Deloitte (2021) at https://www2.deloitte. com/mt/en/pages/technology/articles/mt-what-is-digital-
economy.html, accessed on 12 January 2021 



93 

 

assessment even if it shows less non-linear fitting ability in forecasting the credit risk 

(Denison et al., 2002). While SVM is believed to provide the highest accuracy in forecasting 

(Khemakhem and Boujelbene, 2017; Danenas and Garsva, 2012), the MLP is also argued to 

outperform other traditional approaches (Bahnsen and Gonzalez, 2011). The performance of 

modern machine learning models in empirical data remains to be tested. Secondly, most of 

the credit risk assessment variables in the existing literature are selected manually, and their 

selection is subjective and arbitrary, e.g., Wang et al. (2020) summarised the existing 

literature and came up with four first-level indicators, 11 s-level indicators, and 20 third-

level indicators. However, the selection of feature variables for enterprises is diverse and 

advanced with the time that we cannot clarify the proper indicators for assessment. Thirdly, 

there are gaps in the research on DSCF, especially from the perspective of credit risk 

assessment, and most existing articles investigate DSCF from a theoretical perspective, not 

to mention the lack of a corresponding indicator system. Thus, this chapter uses 1357 

observations from 85 Chinese-listed SMEs over the period 2016–2019 as the sample 

andselects the important feature automatically through XGBoost at the first stage, then 

compare the performance of MLP and other machine learning models in credit risk 

assessment. This study enriches the theory and practice of enterprise credit risk assessment 

in the DSCF environment. The effectiveness of the XGBoost-MLP approach for credit risk 

assessment in DSCF is investigated. Based on the traditional single credit risk assessment 

model, the feature selection is considered in the first stage by using XGBoost as the model, 

and then is compared to each traditional model including LR, KNN, NB, DT, RF, SVM and 

MLP, and its combination with XGBoost in the second stage. The hybrid method of 

XGBoost-MLP is observed to have optimal performance, which contributes to the 

enhancement and development of the theory of enterprise risk assessment models in the 

DSCF environment, and also provides new ideas to improve the accuracy of enterprise credit 

risk prediction. Further, the impact of feature selection on credit risk assessment under the 

XGBoost method is explored in depth by observing the effect of risk assessment models 

with different feature thresholds. Feature selection plays an important role in credit risk 

assessment, and selecting the most appropriate features as indicators for credit risk 

assessment analysis helps to improve the accuracy of the model. This extends the application 

of traditional credit risk assessment indicator systems and provides strong evidence for banks 

and other financial institutions to make sound financing decisions. Finally, the study on 

DSCF features is conducted by comparing the assessment results with and without DSCF 

features; we find that the credit risk assessment of firms is better when their DSCF features 

are considered. Based on feature screening, adding indicators of DSCF features further 
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improves the modern credit risk assessment indicator system and enriches the relevant 

theory. The paper proceeds as follows. In Section 4.2, the background of DSCF and credit 

risk assessment with machine learning is presented as the literature review. Section 4.3 

includes the theory and methodology. Section 4.4 exhibits experimental design. Section 4.5 

reports the results and discussion of the experiment. Section 4.6 offers robustness check. 

Section 4.7 provides the conclusion. 

4.2 Literature Review 

4.2.1 Background of DSCF 

Since the 1970s, driven by rising consumption levels, market demand and minimisation of 

production costs, there has been a gradual shift in the pattern of division of labour from 

within a single enterprise to between multiple enterprises. The role of inter-firm coordination 

and facilitation through new supply chain enterprises, leading to the derivation of a supply 

chain production model. Timme & Williams-Timme (2000) first introduced the concept of 

SCF and then Berger et al. (2004) defined SCF from the perspective of SME lending. They 

argued that SMEs have difficulty in obtaining loans due to a lack of good credit support and 

proposed a new financing model in which large enterprises or financial institutions control 

transactions to finance SMEs that are difficult to finance. Initially, supply chain management 

neglected the flow of capital until the late 20th century when the importance of capital flow 

to the entire supply chain came into focus and SCF was created. Hofmann (2005) argued 

that multiple firms and external service participants participate in the management and 

integration of financial resources to increase the value of all participants in the supply chain. 

He also innovatively incorporates corporate values by managing the stakeholders in the 

supply chain to strengthen the corporate culture of the core companies, which can effectively 

reduce the credit risk in SCF. The core of SCF is composed of financial institutions, core 

enterprises and information platforms, which focus on financing and cost settlement in the 

supply chain, thereby optimising and reducing the costs of enterprises in the supply chain 

(Supply chain Europe, 2007). Further, Camerinelli (2009) defines SCF as the provision of 

financial services by financial institutions to companies in the supply chain to help them 

manage logistics and information flows. Lyons et al. (2012) argue that supply chains contain 

a large number of enterprises with complex structures, and that they can be considered as a 

whole where countermeasures can be formulated by integrating information on all 

commodities and materials, information on transactions and financial transactions to 

ultimately improve the competitiveness of the supply chain. 
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Digitisation has been a popular trend in recent years, and its application does not happen 

overnight but is advanced in layers. With the advancement of technology, FinTech 

represented by AI, blockchain, cloud computing and big data is being deeply integrated with 

traditional SCF, forming a new generation of DSCF platforms. The root of DSCF is the 

supply chain. The essence of the supply chain is actually the supply and demand chain, which 

refers to the chain consisting of a series of supply and demand links from the supply chain 

to the customer. The supply chain includes physical flow, capital flow and information flow, 

in which the physical flow and capital flow forming a complete closed-loop, i.e. the use of 

funds to purchase raw materials, raw materials are converted into products, products are 

further converted into funds, and then part of the converted funds are used to purchase raw 

materials again, opening a new cycle23. SCF is an activity that brings in external capital when 

a company is not operating well or when it wants to expand its business. Scholars usually 

define the concept of SCF: from the supply chain perspective, e.g., Hofmann (2005), Guillén 

et al. (2007) thought that SCF integrates production and financing into the management 

framework of a firm's supply chain, and thus manages it in an integrated manner. Gomm 

(2010), Caniato et al. (2016) believed that SCF uses optimal strategies to plan, manage and 

control cash flows in the supply chain to help improve the operational efficiency of the 

supply chain, while Wuttke et al. (2013), Wandfluh et al. (2016) illustrated that SCF can 

strengthen the relationship between upstream and downstream firms and core firms and 

optimise the financing structure in the supply chain. From another type of financial 

perspective, such as Atkinson (2008) and Gobbi and Sette (2014) considered that SCF is a 

financing business conducted through a third-party trading platform, which can effectively 

reduce the financing cost of enterprises and improve the cash flow turnover of the supply 

chain. Jing and Seidmann (2014) and Caniato et al. (2016) argued that SCF is a process of 

optimising the financial management of the supply chain, focusing on core enterprises and 

financing institutions. 

Compared to traditional SCF, an important feature of DSCF is the "enterprise data on the 

chain", i.e., the enterprises in the supply chain register and confirm their transaction 

information on the chain, which is a different way of digitising enterprises than the internet 

(Goldfarb and Tucker, 2019). For the realisation of this feature, the digitalisation of both 

financial institutions and enterprises is essential, with the digitalisation of enterprises also 

playing an important role in the risk control of SCF (see Figure 4.1). Firstly, the information 

recording, IoT technology plays a role in collecting and recording information, warehouse 

 
23 https://www.ft.com/content/8ca7b05d-f1a8-4ddd-8fda-3383f11e5143 
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management system (WMS), supplier relationship management (SRM), customer 

relationship management (CRM), etc. are all supply chain information collection and 

recording systems. Secondly, the dissemination of information, in digital form, makes it 

possible to share, collaborate and monitor information in real-time across locations. 

Enterprise resource planning (ERP), for example, is called the internal information internet 

of the enterprise. Thirdly, information processing, i.e., the fast and accurate processing of 

information, e.g., advanced planning and scheduling (APS) is an information processing 

system for supply chain management. The new generation platform features intelligent 

multi-party connection, mutual trust of chain enterprises, multi-level credit penetration and 

closed-loop ecological risk control, which is expected to drive the development of enterprise 

financing business in relatively risk-controlled batches by transferring core enterprise credit 

at multiple levels and closing the loop of funds in an operational manner. 

 

Figure 4.1 Framework of DSCF 

Moreover, the role of machine learning method in DSCF is also significant (Olan et al., 

2022). DSCF and machine learning have a symbiotic relationship that transforms the 

landscape of financial operations within the supply chain. The integration of machine 

learning into DSCF is motivated by the need for enhanced efficiency, risk mitigation, and 

strategic decision-making. Machine learning algorithms, equipped with the capability to 

analyze vast datasets, play a pivotal role in predicting market trends, optimizing inventory 

management, and assessing the creditworthiness of suppliers. By automating routine tasks, 

such as invoice processing and fraud detection, machine learning not only reduces errors but 

also frees up valuable human resources for more strategic endeavors. The real-time 

monitoring capabilities of machine learning ensure that financial decisions align with current 
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market conditions, contributing to agile and adaptive supply chain finance strategies. 

Ultimately, the motivation behind applying machine learning in digital supply chain finance 

lies in its ability to drive innovation, improve accuracy, and foster a more resilient and 

responsive financial ecosystem within the dynamic landscape of global supply chains. 

4.2.2 Machine Learning and Credit Risk Models 

The issue of credit risk assessment in SCF has attracted the attention of scholars. Hallikas et 

al. (2002) used internal audit and computer cameras and analysed the causes of risk through 

interviews with two core enterprises and nine suppliers and classified the risks of SCF into 

four parts: demand, transaction, pricing and finance. Finch (2004) analysed the literature on 

the need for core firms to determine whether to use SMEs as a supply partner for critical 

operations and to establish appropriate information systems for review and found that 

improved information management of SMEs contributed to credit risk reduction. Yurdakul 

& İç (2004) developed a credit assessment and decision-making model for determining the 

credibility of manufacturing firms. Ghadge et al. (2013) developed a holistic, systematic and 

quantitative risk assessment process to measure overall risk behaviour. By capturing 

dynamic risks in case studies of manufacturing firms, the overall risk impact of SCF can be 

predicted and a whole picture of risk behaviour exhibited is constructed. With the gradual 

improvement of SCF applications, the credit risks they face are becoming increasingly 

complex. Subjective assessments based on experience and traditional linear models are no 

longer able to accurately predict risks, and assessment models based on machine learning 

techniques are now more popular. Many research results have been achieved in the 

assessment of enterprise credit risks in SCF. Zhu et al. (2017) used an integrated ensemble 

machine learning approach to assess SME credit risk in Chinese SCF. The RS-boosting 

method was found to outperform other methods in improving the accuracy of risk prediction. 

Zhu et al. (2019) further used a new hybrid ensemble machine learning method, RS-

MultiBoosting, which improve the accuracy of credit risk assessment based on the SCF in 

China. Wang et al. (2020) then explored the mechanism of online SCF using Least Square 

Support Vector Machine (LS-SVM) method and found that LS-SVM method has higher 

accuracy in online SCF risk prediction. 

Due to the complexity of credit risk, there are various models for credit risk assessment, 

which have undergone a series of improvements since their development. Prior to 1970, 

financial institutions such as commercial banks mainly carried out qualitative analysis of 

financing companies by professionals and credit assessment was more subjective. The 
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methods used included expert scoring and profiling. After 1970, financial institutions used 

ZETA scoring models, Z-score models and other statistical distributions to assess the credit 

risk of financing companies. Orgler (1970) studied credit risk based on the characteristics of 

linear regression, and later linear regression methods also provided many references to credit 

risk assessment problems (Fitzpatrick, 1976; Lucas, 1992; Henley, 1995) However, in view 

of the shortcomings of linear discriminatory methods, non-linear statistical models such as 

LR and Probit have emerged as commonly used models for multivariate credit risk 

assessment. Wiginton (1980) assessed risk on the basis that LR can explain problems where 

the variable is a qualitative indicator, and Steenackers & Goovaens (1989) made a related 

follow-up application of personal loans. Cramer (2004) systematically investigated LR and 

showed that LR was more accurate in classification and that its low assumptions and high 

stability made it one of the most widely used methods for credit risk assessment. Profit 

regression was used by Grablowsky & Talley (1981) in their study of credit risk and the 

results showed that profit regression did not have as good an interpretation as LR.  

Further, the classification tree method was first applied to credit risk assessment by 

Makowsik (1985), whose results were compared and confirmed its high accuracy in credit 

assessment applications, with the advantage of automatic variable selection and better 

handling of missing information (Carter & Catlett, 1987). While Cover (1968) proposed the 

K-Nearest Neighbour (KNN) discriminant method, and then Henley et al. (1996) applied the 

KNN analysis method to personal credit assessment and confirmed the feasibility of KNN 

in credit risk assessment. Hand (1981) used the KNN method and DT to identify loan risk 

and the results showed that the KNN method had better prediction accuracy. Subsequently, 

Bayesian algorithms were proposed by Pearl (1988) and have been used to good effect in 

the areas of representation of uncertain knowledge and inference. The research of Hsieh 

(2010) showed that Bayesian networks enable to intuitively represent the relationship 

between attributes and probabilities and have good explanatory power. As Bayesian 

classification models combine prior knowledge and sample information and use probability 

tables to quantify the dependencies between variables with better classification accuracy, 

they have attracted increasing attention from scholars. The Naïve Bayesian (NB) 

classification algorithm (Friedman et al., 1997), a milestone in Bayesian classification 

research, assumes that all feature variables are independent of each other where the class 

node is the parent of all attribute nodes in the structured graph, with no arcs between any 

other attribute nodes. A good classification with a simple structure can be obtained using an 

NB classifier when the correlation between feature variables is small, but its strict 
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conditional independence is often not achieved under realistic conditions thereby greatly 

reducing its classification effectiveness (Langley et al., 1992). 

As the application of machine learning methods in credit risk assessment continues to 

evolve, do Prado et al. (2016) used the Web Science database to analyse the journal literature 

on credit risk and bankruptcy research published between 1968 and 2014 using bibliometric 

methods. They found that LR has been a common approach though since Odom and Sharda 

(1990) first used Artificial Neural Network (ANN) for credit risk assessment, AI techniques 

represented by neural networks have been used more and more widely, and multiple or 

hybrid models with sophisticated AI techniques are a trend for further research. Since credit 

risk assessment models based on AI techniques do not require strict assumptions to be made 

and have advantages in dealing with non-linear problems (Denison et al., 2002), they have 

become more popular when facing increasingly complex credit risk. Davis et al. (1992) 

conducted a case study of neural networks in personal credit assessment and found that the 

neural network method was more accurate in classification, but the training time for the 

neural network data was longer. Desai et al. (1997) also used neural networks in personal 

credit assessment and showed that their performance was better. Piramuthu (1999) 

developed a neural network survival model using multi-layer perceptron (MLP) neural 

networks and fuzzy neural network-related principles. Lee & Chen (2005) used neural 

networks and the related theory of multivariate adaptive spline regression to investigate the 

feasibility of applying the related theory to credit assessment. Tsai (2008) applied the 

principles of MLP neural networks to corporate bankruptcy prediction and credit assessment. 

Marcano-Cedeño et al. (2011) developed a plasticity neural network model and then 

conducted an empirical study using relevant data. Coincidently, the theory of Support Vector 

Machine (SVM) was first proposed by Cortes and Vapnik in 1995, and SVM has quickly 

become a hot topic of research in machine learning in recent years. Stecking and Schebesch 

(2005) selected different kernel functions and then analysed the impact of these kernel 

functions on credit appraisal. Lai et al. (2006) modelled the problem of credit assessment 

and verified the feasibility of the theory in credit assessment by using the theory related to 

least squares support vector machines. Schebesch and Stecking (2008) developed a credit 

assessment model by combining these principles through a study of combined support vector 

machines and imbalanced data sets. Yu et al. (2010) developed a credit risk assessment 

model based on hybrid intelligent mining, in which rough set theory and the related theory 

of support vector machines were used.  
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Controversy surrounds the choice of credit risk assessment models. The advent of SVM has 

provided excellent algorithms for classification models, with a large number of kernel 

functions available for flexible solutions to a wide range of non-linear classification 

regression problems. However, model selection is also the main problem with SVMs, as the 

selection of kernels and the optimisation of kernels and regularisation parameters can often 

lead to severe overfitting if the model selection criteria are over-optimised, while the 

emergence of ANNs has effectively bridged the shortcomings of traditional methods. ANNs 

are widely used for the estimation and prognosis of complex processes due to their ability to 

classify research populations in complex environments using large amounts of uncertain 

information. The advantage of ANNs is that they do not require a strict distribution of the 

data, nor do they require a detailed representation of the function between the independent 

and dependent variables, and they are effective in solving non-normally distributed nonlinear 

credit assessment problems. However, neural networks also have their disadvantages, 

namely the long training time and the difficulty in identifying the relative importance of the 

input variables to obtain the optimal network. Among the ANNs, MLP neural networks have 

been used in risk assessment due to their outstanding performance. 

4.3 Methodology 

To accurately and effectively conduct a credit risk assessment, we construct the following 

model (See Figure 4.2). In the first stage, through feature selection, we extract the training 

sample set and select the features with higher scores based on the importance score of the 

calculated features. In the second stage, MLP is used for credit risk assessment based on the 

selected features. As credit risk assessment can essentially be seen as a classification 

problem, the MLP is used as a classification model in the credit assessment process. Further, 

the trained model is used to test the test set and ultimately, this research validates the 

proposed research question. Specifically, given the training set 𝑿, 𝒙𝒊 represents the original 

features as the input of credit risk assessment and 𝒚𝒊 is the label of credit status (𝒀 = 𝟎	𝒐𝒓	𝟏, 

i.e. risky/non-risky). 𝑿 = {(𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … , (𝒙𝒏, 𝒚𝒏)}. Based on the importance ranking 

𝒓𝒏 by XGBoost classifier in the first stage, we filter the features by thresholds 𝒕𝒊 and remove 

features 𝒙𝒏  where 𝒓𝒏 < 𝒕𝒊 . Then the remaining features in subset are obtained 𝑿E  as the 

input for retraining with MLP. Through the 𝑹𝒆𝑳𝑼-based MLP, 𝑹𝒆𝑳𝑼 as the activation 

function is more expressive for linear functions. For non-linear functions, 𝑹𝒆𝑳𝑼 does not 

have the vanishing gradient problem as the gradient of the non-negative interval is constant, 

allowing the convergence rate of the model to be maintained in a steady state. Thus, we 

obtain the output of 𝒚 = 𝒇(𝒙) = 𝐦𝐚𝐱(𝟎, 𝒙) and the performance of the model.  
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Figure 4.2 The flowchart of XGBoost-MLP. 

4.3.1 Stage I: Feature Selection with XGBoost 

XGBoost is an improved algorithm based on Gradient Boosting Decision Trees (GBDT) 

proposed by Chen and Guestrin (2016), which can efficiently build augmented trees and run 

in parallel. This is an ensemble learning method that the basic idea is to select some samples 

and features to generate a simple model (e.g. a DT) as the basic classifier and to learn the 

residuals of the previous model, minimise the target function and generate a new model, 

which is repeated to produce a combination of hundreds of linear or tree models with high 

accuracy. At its core, the new model is built in the direction of the corresponding gradient 

of the loss function, correcting for residuals while controlling complexity. Thus, the dataset 

in our paper containing 𝑛  examples with 𝑒  features is denoted as 𝑋 = {(𝑥& , 𝑦&): 𝑥& ∈ 𝑅F ,

𝑦& ∈ 𝑅, |𝑋| = 𝑛} and the set of all classification and regression trees (CART) (1984) is 

denoted as  𝐹 = {𝑓(𝑥) = 𝑤G(I), 𝑞: 𝑅F → 𝑇, 𝑤 ∈ 𝑅K}  where 𝑞  is the rule structure for 

mapping the samples to the corresponding leaf nodes, 𝑇 is the number of leaf nodes in a tree, 

and 𝑤 is the weight of the leaf nodes. 𝑓 represents the CART, including the structure of the 

tree 𝑞 and the weight of the leaf nodes 𝑤. CART decision trees are divided into regression 

trees and classification trees, and CART regression trees, which assume that a DT is a binary 

tree. It constructs a DT by continuously splitting the features (into left and right halves). The 

predicted value of 𝑦& based on the XGBoost algorithm can be expressed as: 

𝑦i& = 𝜃(𝑥&) =¢ 𝑓L(𝑥&)
M

L2'
(20) 
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Where 𝑓L ∈ 𝐹 and 𝐾 is the number of CART. 𝑓L(𝑥) represents a DT, that function 𝑓 can be 

interpreted as mapping the sample 𝑥 into some leaf node of the tree, and each leaf node in 

the tree will correspond to a weight 𝑤. 

A general objective function is firstly considered as follow: 

𝑜𝑏𝑗(𝜃) =¢𝑙(𝑦i& , 𝑦&)
&

+¢Ω(𝑓L)
L

(21) 

𝛺(𝑓) = 𝛾𝑇 +
1
2 𝜆
‖𝑤‖( (22) 

Among them, 𝑙  is a derivable and convex loss function, which is used to measure the 

similarity between 𝑦i and 𝑦. The second term 𝛺 is a regular term, which contains two parts. 

The first one is 𝛾𝑇, where 𝑇 is leaf The number of nodes, 𝛾 is a hyperparameter that if 𝛾 is 

larger, the number of leaf nodes will be smaller. The other part is the L2 regularisation term, 

which penalises the weight of the leaf nodes so that there will be no leaf nodes with too large 

weights to prevent overfitting. 

It is difficult to optimise and minimise the above objective function Eq. (22), so we transform 

it by greedily optimising the objective function by adding a base classifier 𝑓! at each step so 

that each time it is added, the loss becomes smaller. In this way, an evaluation function is 

obtained that can be used to evaluate the performance of the current classifier 𝑓!.  

𝑜𝑏𝑗(𝑡) = ¢𝑙 {𝑦& , 𝑦i&
(!;') + 𝑓!(𝑥&)|

N

&2'

+ Ω(𝑓!) (23) 

Where 𝑦&  is the 𝑖  target and 𝑦i&! = 𝑦i&
(!;') + 𝑓!(𝑥&)  is the prediction for the 𝑡 th iteration. 

Eq.(23) can also be called forward stepwise optimisation. To optimise this function more 

quickly, we do a second-order Taylor expansion at 𝑓! = 0. 

𝑜𝑏𝑗(𝑡) ≈¢ª𝑙p𝑦& , 𝑦i(!;')r + 𝑔&𝑓!(𝑥&) +
1
2ℎ&𝑓!

((𝑥&)¬
N

&2'

+ 𝛾𝑇 + Ω(𝑓!) (24) 

Where 𝑔& denotes the first order partial derivative of 𝑙 with respect to 𝑓 and ℎ& denotes the 

second order partial derivative of 𝑙 with respect to 𝑓.  
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𝑔& = 𝜕OP"
(#)!)𝑙{𝑦& , 𝑦i&

(!;')| (25) 

ℎ& = 𝜕
OP"
(#)!)
( 𝑙{𝑦& , 𝑦i&

(!;')| (26) 

Then the total number of samples is defined as 𝑛 , each sample as 𝑖 , the information of 𝑖 is 

divided into some leaf node information and define the weight of each leaf belonging to 𝑖 as 

𝑗. 𝐼8 = {𝑖|𝑞(𝑥&) = 𝑗} is the instance set of leaf 𝑖. 

𝑜𝑏�̄�(𝑡) =¢ª𝑔&𝑓!(𝑥&) +
1
2ℎ&𝑓!

((𝑥&)¬
N

&2'

+ 𝛾𝑇 +
1
2 𝜆¢𝑤8(

K

82'

=¢°±¢𝑔&
&∈R+

²𝑤8 +
1
2
±¢ℎ&
&∈R+

+ 𝜆²𝑤8(³
N

82'

+ 𝛾𝑇 (27)

 

Define the 𝐺& = ∑ 𝑔&&∈R+ , 𝐻& = ∑ ℎ&&∈R+ , then let the current function derivative of 𝑤 be 0. At 

this point the objective function becomes quadratic with respect to 𝑤. The optimal weight 

for the fixed 𝑞(x) is:  

𝑤8∗ =
𝐺8

𝐻8 + 𝜆
(28) 

Substituting Eq.(28) into the objective function gives: 

𝑜𝑏�̄�∗ = −
1
2¢

𝐺8(

𝐻8 + 𝜆

K

82'

+ 𝛾𝑇 (29) 

When selecting features for XGBoost-based classification, feature importance is integrated 

into the classification process. A new tree is created in each iteration, and the branch nodes 

in the tree are a feature variable, and the importance of these nodes is calculated. The 

importance of a feature is based on the squared improvement of the split nodes of the tree 

that a feature is selected for. Each time a feature is selected to be added to the tree as a 

splitting node, all possible splitting points are enumerated using a greedy algorithm, from 

which the splitting point with the best gain is selected. The best splitting point corresponds 

to the maximum gain and the gain is calculated by the formula: 
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𝐺S&N =
1
2 G

𝐺3(

𝐻3 + 𝜆
+

𝐺T(

𝐻T + 𝜆
−
(𝐺3 + 𝐺T)(

𝐻3 + 𝐻T + 𝜆
I − 𝛾 (30) 

where the 𝐼3  and 𝐼T  are the instance sets of left and right nodes after splitting. Relevant 

features and split points improve the squared difference on a single tree, and the more 

improvement there is, the better the split point and the more important the feature is. When 

all trees are built, the calculated node importance is averaged over the forest. The more times 

a feature is selected as a split point, the more important it will be. 

4.3.2 Stage II: Credit Risk Assessment Models 

As part of the second stage, we utilise several models, namely a MLP, KNN, NB, DT, RF, 

and SVM. MLP, an ANN with forwarding agency that maps a set of input vectors to a set of 

output vectors, is thought of as a directed graph, consisting of multiple layers of nodes, each 

layer fully connected to the next (see Figure 4.3). In addition to the input nodes, each node 

is a neuron (or processing unit) with a non-linear activation function. A supervised learning 

method known as backpropagation is often used to train MLPs, which overcomes the 

weakness of the perceptron in their inability to recognise nonlinear data. MLP has been 

shown to be a general function approximation method that can be used to fit complex 

functions or to solve classification problems.  

 

Figure 4.3 Structure of Multi-layer perceptron. 

The LR model is widely used in corporate credit risk assessment research, and the LR model 

is used to calculate the relationship between the dependent variables and the independent 

variables as well as the strength of the relationship (Crook et al., 2007). In this paper, the 

subject of credit risk research, i.e. enterprise in the digital supply chain financial 
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environment, is divided into two categories: one category is risky SMEs; the other category 

is non-risky enterprises, and the binary LR method is used to assess the credit risk based on 

the DSCF environment.  

ln t
𝑝
𝑝Eu = 𝛽9 +¢𝑐8𝛽8

N

82'

(31) 

Where ln {U
U,
| is the dependent variable, i.e. the risky and non-risky enterprises assigned 0 

and 1 respectively. 𝑝  represents the probability of non-defaults and 𝑝E  represents the 

probability of defaults. 𝑐8 	(j=1, ... , n) is the independent variable which explains the value 

of variable 𝑗 , i.e. the feature 𝑗  of enterprise. 𝛽8 	(𝑗 = 1,… , 𝑛)  is the coefficient of each 

independent variable.    

KNN is a non-parametric estimation method in the field of pattern recognition (Cover and 

Hart, 1967). The algorithm is simple, fast and efficient, and the idea is to assume that a 

sample data 𝑥  to be recognised, where most of the 𝑘  nearest neighbour training sample 

representative points in the feature space belong to one of the categories, then 𝒙 also belongs 

to this category. The sample vector 𝑥& = (𝑥&', 𝑥&(, … , 𝑥&V), the elements of the vector are the 

observed values of each sample feature. If the samples in the training set are divided into ℎ 

classes, 𝐶', 𝐶(, … , 𝐶W , 𝐶 = (𝑥', 𝑥(, … , 𝑥V) , indicates that there are 𝑚 samples in class 𝑖 of 

the sample set. The similarity between the samples of 𝑥& = (𝑥&', 𝑥&(, … , 𝑥&V) and all the 

samples in the training sample set is first calculated, and the 𝑘 samples that are most similar 

can be selected according to certain principles of similarity, and these K samples belong to 

class 𝐶&. Assuming that there are  attributes of the samples, the attribute indicators of the 

sample data can form a 𝑧-dimensional feature space, and all sample points have a unique 

point corresponding to it in this 𝑧 -dimensional feature space, for any sample 𝑥  to be 

identified can be put into this 𝑧-dimensional feature space, and by constructing a distance 

formula (generally using Euclidean distance), the 𝑘-nearest neighbours of the sample 𝑥 can 

be found. Thus, for a sample training set given two samples 𝑥& = (𝑥&', 𝑥&(, … , 𝑥&V) and 𝑥8 =

(𝑥8', 𝑥8(, … , 𝑥8V), the Euclidean distance is as follow.  

𝐷p𝑥& , 𝑥8r = ¸p𝑥&' − 𝑥8'r
( + p𝑥&( − 𝑥8(r

( +⋯+ p𝑥&V − 𝑥8Vr
( (32) 
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The NB classifier is the simplest Bayesian classifier with the advantage of high efficiency 

and good classification accuracy (Rish, 2001; Antonakis and Sfakianakis, 2009). In its 

structure, the class variables are treated as parents of the other attribute variables, and it is 

assumed that the attribute variables are independent of each other, provided that the class 

variables are known. Figure 4.4 gives a graphical depiction of a simple Bayesian classifier. 

 

Figure 4.4 Naïve Bayesian classifier. 

Assume 𝐴', 𝐴(, … , 𝐴N  are the 𝑛  attribute variables of dataset 𝐷 , 𝐶', 𝐶(, … , 𝐶N  are the 𝑚 

classes of dataset 𝐷, 𝑋 = {𝑋', 𝑋(, … , 𝑋N} is a specific object, then the probability that this 

object belongs to class 𝐶& can be calculated using the Bayesian formula to calculate: 

𝑃(𝐶&|𝑋) =
𝑃(𝑋|𝐶&)𝑃(𝐶&)

𝑃(𝑋)
(33) 

Bayesian classification considers a given object 𝑋 = {𝑋', 𝑋(, … , 𝑋N} belongs to the class 

with the highest posterior probability, under the premise of the Naïve Bayesian assumption, 

the description (𝑋', 𝑋(, … , 𝑋N|𝐶) is simplified as follow:  

𝑃(𝐶&|𝑋) = 𝑃(𝑥', 𝑥(, … , 𝑥N|𝐶&) 

= 𝑃(𝑥'|𝐶&)𝑃(𝑥(|𝐶& , 𝑥')𝑃(𝑥<|𝐶& , 𝑥', 𝑥()…𝑃(𝑥N|𝐶& , 𝑥', 𝑥(, … , 𝑥N;'	) 

=º𝑃p𝑥8»𝐶&r
N

82'

(34) 

The DT is a binary tree decision method similar to that used in risk management theory and 

a conditional branching structure in discrete mathematical flowchart theory, where 

probability calculations are used to classify the categories. The DT model makes an 

inductive classification algorithm that learns from a sample of training data and then suitable 

decision rules are then used to analyse the test data samples. The structure of a DT consists 
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of a root node, i.e., the decision point, internal nodes, and leaf nodes. Each internal node is 

the location where the root data attribute selection metric is performed and the attribute 

values are used to calculate the attributes of the classified sample, representing the conditions 

for conducting the test. The leaf nodes are the category identifiers obtained after the splitting 

is completed. In addition, each DT has a number of branches, with more branches 

representing the complexity of the classification process and each internal node of the DT is 

tested using only one input dimension. If a variable in the input dimension used is discrete, 

the internal node calculates the attribute value of that variable and then selects the 

corresponding branch. The DT algorithm divides the data into subsets depending on whether 

the selected attribute is discrete or numerical. The corresponding subsets are then divided 

recursively until the division is no longer required and a leaf node is placed to identify it. 

There are many classification algorithms for DTs, including the Iterative Dichotomiser 3 

(ID3) algorithm and the C 4.5 algorithm proposed by Quinlan (1996). 

The RF method is a classification model based on DT theory, but which differs from DT in 

that the RF does not generate only unique trees, and randomly uses variables and data in the 

process of generating DTs (Breiman, 1999). It is also known as a random DT because it uses 

variables and data randomly in the process of generating a DT that contains multiple DTs. 

RF contains the idea of integrated learning, which means that weak classifiers are learned 

and trained to combine into strong. In the RF model, this integrated learning theory is based 

on the Bagging algorithm (Boostrap aggregating). The difference is that the RF model 

creates a DT by splitting the set of attributes for random selection.  

SVM is the linear classifier first proposed by Cortes & Vapnik (1995). The SVM has 

advantages in solving small-sample, non-linear and high-dimensional pattern recognition 

(Cusano et al., 2003). For non-linear problems, a non-linear transformation 𝒇(𝒙) is used to 

map the input data into a high-dimensional feature space, and then go for linear classification 

in the high-dimensional feature space, which solves the low-dimensional space (Bao et al., 

2019). In a linear classifier, the classifier is a hyperplane 𝑓(𝑥) = 𝑤𝑥 − 𝑏 = 0, If 𝑓(𝑥) > 0, 

then the point belongs to class 1, and if 𝑓(𝑥) < 0, then the point belongs to class -1. The 

optimal partitioned hyperplane constructed by the SVM is the one that maximises the 

maximum of the shortest distance from a point in class 1 to the hyperplane and the shortest 

distance from a point in class - 1 to the hyperplane, the solution showed as the following 

function, resulting in the weight vector 𝑤 and offset 𝑏. 
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minΘ(w) =
1
2	
‖𝑤‖( (35) 

𝑠. 𝑡		𝑦&(𝑤 ∗ 𝑥& + 𝑏) ≥ 1, 𝑖 = 1, 2, … , 𝑛 (36) 

The linearly indivisible problem in low-dimensional space could be transformed into a 

linearly divisible problem in high-dimensional feature space by Kernel function, basically 

including linear, polynemoid, radial bias function and sigmoid.  

4.4 Experimental Setup 

To compare the performance of the XGBoost-MLP model with other traditional models for 

credit risk assessment of DSCF, we selected listed SMEs in China as the data sample. SMEs 

in China are a major demand-side of SCF which is certainly representative. Nevertheless, a 

controversy arises when examining the actual financial constraints faced by listed versus 

unlisted SMEs. Listed and unlisted SMEs in China differ primarily in terms of their status 

on the stock exchange. Listed SMEs are companies that have undergone an initial public 

offering (IPO) and have their shares traded on a stock exchange, while unlisted SMEs are 

privately held companies that do not have their shares publicly traded. This study primarily 

concentrates on listed SMEs for two key reasons. For one thing, the studies on SCF in China 

are relatively limited, and it is difficult to collect relevant data. The information disclosures 

are also lacking transparency. SMEs listed on the SME board offer greater public 

information. A second aspect, concerning financial constraints, listed firms face heightened 

scrutiny from investors, analysts, and regulatory bodies. This examination can generate 

pressure to maintain consistent performance and meet market expectations, thereby 

constraining their financial flexibility. Thus, listed SMEs are considered as a more 

representative sample for this experiment.  

This chapter firstly select listed SMEs as the main subject of the credit risk assessment, 

which represents the main target of supply chain financial services. Secondly, large 

enterprises listed on the Main Board are selected as the core enterprises, which have the 

strong financial strength and enable them to act as important guarantors in the supply chain. 

The requirements for listing on the Main Board are the highest, with the listing criteria 

requiring the company to be established and in operation for at least three years, and to be 

profitable for three years, with an aggregate of more than RMB 30 million, and the 

company’s net cash flow from operations for three years to exceed an aggregate of RMB 50 
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million. The company is also required to have a cumulative total of more than RMB 300 

million over three years, plus a total pre-issue share capital of not less than RMB 30 million. 

Companies that can successfully list on the Main Board are in a leading position in a certain 

industry 24 . Thirdly, the selected SMEs have real trading relationships with the core 

enterprises, and they are suppliers or customers of the core enterprises. Based on the above 

selection criteria, this chapter selectes 85 listed SMEs from 31 March 2016–31 December 

2019 from the Small and Medium Enterprise Board of the Shenzhen and Shanghai Stock 

Exchange including a quarterly 1357-observations dataset of risky and non-risky enterprises.  

All companies selected are private manufacturing companies that have been listed for more 

than 10 years. Although this method of data collection is commonly used in the existing 

literature (Zhang et al., 2015; Zhu et al., 2017; Zhu et al., 2019), it has certain limitations 

that make the results susceptible to error. Hence, certain improvements have been made on 

this basis. Firstly, most of the relevant data samples are collected through questionnaires on 

non-financial data related to the supply chains which is somewhat subjective and arbitrary 

and can bias the experimental results. Thus, we use publicly available financial data for the 

SCF part of the feature data to be measured. Secondly, the existing literature mostly takes 

SCF or online SCF as the research object, and there are gaps in research on the characteristics 

of the DSCF. In this paper, through the analysis and investigation of DSCF, digital features 

are added to the credit risk assessment. Thirdly, there are few data treatments in the existing 

literature that focus on feature selection. Zhu et al. (2017) use the DT to evaluate data 

samples and derive important rankings before conducting classification assessment. 

Although the algorithm of DT is simple and interpretable, the risk of overfitting is great, and 

the application scenario is limited. This research uses XGBoost as the first stage feature 

selection method, which improves based on GBDT by adding a regular term to the objective 

function of each iteration to further reduce the risk of overfitting, thus improving the 

performance for feature selection. 

Further, to assess the likelihood of default among SMEs, this study employs ST and ST* 

stocks as indicators of the default sample. These stocks represent enterprises under special 

treatment with a risk alert. In the context of China's financial landscape, "special treatment" 

refers to the differentiated regulatory measures or interventions applied to certain companies 

that are facing financial distress or other issues. Companies under special treatment face 

 
24 https://www.szse.cn/English/products/equity/mainboards/index.html, accessed on 5 February 
2021 
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restrictions on accessing new loans or credit facilities (Jiang and Jones, 2018). The 

regulatory intervention often implies that the company's financial health is compromised, 

making lenders hesitant to extend credit. Limited access to funding exacerbates liquidity 

issues and heightens credit risk.  

The 85 listed SMEs comprise 11 enterprises under special treatment under risk alert, i.e., ST 

and *ST stocks, which are regard as risky SME with negative credit status, and 74 enterprises 

with normal financial status. Thus, the dependent variables are classified into two groups on 

the basis of the credit status, the dependent variables are assigned the value of 0 or 1 which 

indicates the risky and non- risky enterprises. This experiment selects 30% of the data set as 

the test set, i.e., 408 observations, with 49 negative examples and 359 positive examples, 

and 949 observations in the training set, with 127 negative examples and 822 positive 

examples. 

In addition, the confusion matrix and its derived assessment metrics are used to evaluate the 

results of the sample data. In this paper, positive samples are creditworthy, i.e., risk-free 

firms, and negative samples are bad creditworthy, i.e., risky firms. The parameters 

mentioned below are calculated based on a confusion matrix shown in Table 4.1. True 

positive (TP) refers the number of defaults that are correctly predicted as defaults; false 

positive (FP) refers the number of non-defaults that are mistakenly predicted as defaults; true 

negative (TN) refers the number of non- defaults that are correctly predicted as non-default; 

false negative (FN) refers the number of defaults that are mistakenly predicted as non-

defaults. The parameters used in this work are calculated with the following equations (Eqs. 

(37)–(43)). 

Table 4.1 Confusion matrix.   

    Actual condition   

    Positive (non-risky)  Negative (risky)  

Test result   Positive (non-risky)  Ture positive (TP)  False positive 

(FP)  

 Negative (risky)  False negative (FN)  Ture negative 

(TN)  

The accuracy rate represents the proportion of correct samples to the total sample： 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(37) 

Precision indicates the number of samples that are predicted to be positive that are truly 

positive, and Recall indicates the number of positive cases in the sample that was correctly 

predicted. Precision is specific to the predicted output and recall is specific to the original 

sample. Type I error is defined as the number of true negative samples incorrectly predicted 

to be positive as a proportion of the number of all true negative samples. While Type II error 

is defined as the number of true positive samples incorrectly predicted to be negative as a 

proportion of the number of all true positive samples.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
(38) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(39) 

𝑇𝑦𝑝𝑒	𝐼	𝐸𝑟𝑟𝑜𝑟 = 	
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
(40) 

𝑇𝑦𝑝𝑒	𝐼𝐼	𝐸𝑟𝑟𝑜𝑟 = 	
𝐹𝑁

𝑇𝑁 + 𝐹𝑃
(41) 

The F-measure is the composite index based on the accuracy and recall, the closer the F-

measure is to 1, the better the classification model is.  

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(42) 

The Matthew correlation coefficient (MCC) considers true and false positives and false 

negatives and is often seen as an unbalanced measure that can be used even if these 

categories are of varied sizes. 

MCC is the correlation coefficient between the observed category and the predicted binary 

category; it returns a value between -1 and +1. A coefficient of +1 indicates a perfect 

prediction, 0 indicates no better than a random prediction, and -1 indicates a complete 

inconsistency between prediction and observation. 
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𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

Á(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(43) 

4.5 Experimental Results 

Following the existing literature (Zhu et al., 2019; Wang and Ma, 2012; Wang et al., 

2020), 17 independent variables are selected. Table 4.2 defines the variables 

for enterprise credit risk analysis based on the DSCF and Table 4.3 presents the descriptive 

statistics of all data.  

Table 4.2 Variables for enterprise credit risk analysis.  
 Groups  Independent Variables  

Status of financing company  

Current ratio of SMEs  

Quick ratio of SMEs   
Working capital turnover of SMEs   
Accounts Receivable Turnover Ratio of SMEs  
Rate of return on total assets of SMEs  

 Total assets growth rate of SMEs  

 Credit rating of SME (The evaluation of SMEs creditworthiness is 
divided into 10 grade)  

Status of core enterprise  Quick ratio of the CE   
 Total assets growth rate of the CE  
 Rate of return on total assets of the CE  

 Credit rating of CE (The evaluation of CEs creditworthiness is 
divided into 10 grade)  

Status of Supply chain   Transaction amount / SME sales or cost of sales (sales when the SME 
is upstream, cost of sales when the SME is downstream)  

 
Transaction amount/cost of sales of the core enterprise (sales when 
the core enterprise is an upstream supplier, cost of sales when the 
core enterprise is a downstream purchaser)  

 Average rate of return on total assets in the industry 
Status of digitalisation Age of online platform construction   
 Enterprise Resource Planning (ERP) system application (1/0)  
 Age of ERP system application   
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Table 4.3 Descriptive statistics. 
Code Observations Mean Std. Dev Minimum Maximum 

SME_CurrentRatio 1357 2.327 2.327 0.162 45.316 
SME_QuickRatio 1357 1.802 1.972 0.161 45.191 

SME_WorkingCapitalTurnover 1355 0.502 5.859 -3.101 189.143 
SME_AccountReceivableTurnover 1319 12.710 92.873 0.000 1736.194 

SME_ROA 1357 0.029 0.059 -0.909 0.248 
SME_TotalAssetGrowthRate 1357 0.091 0.327 -0.579 5.779 

SME_CreditRating 1357 8.757 1.365 2.000 10.000 
CE_QuickRatio 1348 1.570 1.587 0.000 19.821 

CE_TotalAssetGrowthRate 1348 0.163 0.304 -0.708 2.587 
CE_ROA 1348 533.465 285.922 1.000 946.000 

CE_CreditRating 1357 4.850 3.511 1 10 
TransactionAmount/SME 1357 96.944 57.707 1.000 197.000 
TransactionAmount/CE 1357 57.027 60.218 1.000 185.000 
AverageIndustryROA 1357 3.248 1.481 1.000 5.000 

ERP_Age 1324 4.546 5.348 0.000 19.000 
ERP_Usage 1325 0.649 0.487 0.000 1.000 
PlatformAge 1325 5.629 5.323 0.000 19.000 

Note: This table presents the descriptive statistics of original features for credit risk assessment based on the existing works 
of literatures. The raw data is collected from CSMAR, Wind and annual reports manually.  

4.5.1 Model Performance Evaluations  

To compare the performance of the proposed XGBoost- MLP model with other machine 

learning models, LR, DT, SVM, RF and MLP were chosen as the single model for 

comparison, as well the hybrid model of XGBoost with DF, SVM, and RF. The results of 

XGBoost-MLP and other machine learning results using out-of-sample tests are shown in 

Table 4.4, the accuracy of XGBoost-MLP is the highest of the full sample (0.983). Compared 

to the average accuracies of LR (0.909), DT (0.936), SVM (0.961) and RF (0.966), the single 

machine learning model is overall lower than the hybrid XGBoost model although the MLP 

has a better classification evaluation among them. The comparison of the hybrid models 

shows that XGBoost - MLP has the best results, which validates our first research question. 

Further, the XGBoost-MLP model achieves reliable results for both recall and precision, and 

the XGBoost-MLP model has the highest F-measure score of 0.994 compared to other 

models, which indicates a well-balanced precision and recall. Type I error indicates the 

weight of this false-positive case, i.e., enterprises that are expected to be risky are judged to 

be risk-free, which is unfavorable for credit risk assessment. The Type I error of XGboost-

MLP is 0.014, which is the lowest among the models measured, which is beneficial for credit 

risk assessment. In addition, MCC shows that the XGBoost- MLP has the best performance, 

i.e., 0.922.  
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Table 4.4 Performance of XGBoost-MLP and other machine learning methods.  
(Out-of-sample) 

 Average 
accuracy Recall Precision Type I 

error 
Type II 

error 
F-

measure MCC 

LR  0.909 0.994 0.910 0.098 0.038 0.950 0.508 
KNN 0.946 0.983 0.956 0.045 0.115 0.969 0.741 
NB 0.897 0.938 0.943 0.056 0.423 0.941 0.545 
DT  0.936 0.978 0.951 0.051 0.154 0.964 0.693 

SVM 0.961 1.000 0.957 0.044 0.000 0.978 0.814 
RF  0.966 1.000 0.962 0.039 0.000 0.981 0.839 

MLP  0.973 0.986 0.983 0.017 0.009 0.985 0.922 
XGBoost-

KNN 0.953 0.986 0.961 0.039 0.096 0.974 0.776 

XGBoost-NB 0.912 0.952 0.947 0.053 0.327 0.949 0.607 
XGBoost-DT 0.963 0.986 0.972 0.028 0.096 0.979 0.921 

XGBoost-
SVM 0.963 1.000 0.960 0.042 0.000 0.979 0.826 

XGBoost-RF 0.973 1.000 0.970 0.031 0.000 0.985 0.875 
XGBoost-

MLP 0.983 0.994 0.986 0.014 0.038 0.994 0.922 

Notes: All models presented in Table 4.4 are estimated based on the out-of-samples test. Results are estimated based on 
the training set of 949-observations and the test set of 408-observations from 31 March 2016- 31 December 2019. LR is 
the logistic regression model; KNN is the k-nearest-neighbor model; NB is the naïve Bayes model; DT is the decision tree 
model; SVM is the support vector machine model with radial bias function as kernel function; RF is the random forest 
model; MLP is the multi-layer perceptron model. 

In addition, to assess the effectiveness of the algorithm, this chapter also presents the 

performance of models by in-sample test (See Table 4.5). The average accuracy score of 

models is all higher than the results of the out-of-sample test and the results of XGBoost 

based models are close to 1, which indicates that the models are well trained. 

Table 4.5 Performance of XGBoost-MLP and other machine learning methods. (In-sample) 

 Average 
accuracy Recall Precision Type I 

error 
Type II 

error 
F-

measure MCC 

LR  0.917 0.991 0.919 0.087 0.056 0.954 0.573 
KNN 0.978 0.994 0.981 0.019 0.040 0.987 0.900 
NB 0.902 0.948 0.939 0.061 0.347 0.944 0.558 
DT  1.000 1.000 1.000 0.000 0.000 1.000 1.000 

SVM 0.967 1.000 0.964 0.037 0.000 0.982 0.850 
RF  1.000 1.000 1.000 0.000 0.000 1.000 1.000 

MLP  1.000 1.000 1.000 0.000 0.000 1.000 0.995 
XGBoost-

KNN 0.978 0.996 0.979 0.022 0.024 0.987 0.899 

XGBoost-NB 0.906 0.958 0.935 0.067 0.274 0.947 0.558 
XGBoost-DT 1.000 1.000 1.000 0.000 0.000 1.000 1.000 

XGBoost-
SVM 0.969 1.000 0.966 0.035 0.000 0.983 0.870 

XGBoost-RF 1.000 1.000 1.000 0.000 0.000 1.000 1.000 
XGBoost-

MLP 0.999 1.000 0.999 0.001 0.000 0.999 0.995 

Notes: All models presented in Table 4.5 are estimated based on the in-samples test. Results are estimated based on the 
training set of 949-observations from 31 March 2016- 31 December 2019. LR is the logistic regression model; KNN is the 
k-nearest-neighbor model; NB is the naïve Bayes model; DT is the decision tree model; SVM is the support vector machine 
model with radial bias function as kernel function; RF is the random forest model; MLP is the multi-layer perceptron model. 
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4.5.2 The Impact of Feature Selection 

To further validate the impact of XGBoost feature selection on credit risk assessment, the 

importance of all the features is first to ranked, and Figure 4.5 shows the XGBoost feature 

importance ranking, with the horizontal axis showing the threshold of the selected features.  

 

 

Figure 4.5 XGBoost feature importance ranking. 

Then the accuracy of the assessment at different thresholds is examined and the change is 

plotted as Figure 4.6. An increasing threshold means that more useless features are removed, 

and the accuracy of the model increases as the threshold increases until the best accuracy of 

the model is assessed at a threshold of 0.03 (average accuracy is 0.983), when the quick ratio 

of SMEs, the growth rate of total assets of the core enterprise and the average industry ROA 

are removed. This indicates that these three indicators are detrimental to credit risk 

assessment and that removing these three characteristics will result in a more accurate model. 

Then, as the threshold continues to increase (above 0.03), the correctness of the model starts 

to decline, especially when the threshold is between 0.05 and 0.08, the correctness tends to 

drop sharply which shows when notable features are removed from the model the correctness 

rate deteriorates. This indicates that feature selection has a significant impact on the 

effectiveness of credit risk assessment models, and that reasonable feature selection can 

improve model effectiveness. 
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Figure 4.6 The model accuracy in different threshold level. 

4.5.3 The Impact of DSCF Feature 
Further, for the extent to which DSCF features affect the effectiveness of credit risk 

assessment, it finds that DSCF features occupy certain importance from the prominent 

features chart. i.e., whether the enterprise has an ERP system or not, the importance accounts 

for 0.07 in credit risk assessment, which is an important credit risk assessment factor. The 

age of enterprise's electronic information technology platform construction, with an 

important share of 0.065, and the year in which the ERP was used with an important share 

of 0.055, are the more important features. To further confirm that the inclusion of digital 

supply chain financial features has an impact on the effectiveness of the credit risk 

assessment model, we compared the results of the XGBoost-MLP model with/without digital 

supply chain financial features. As shown in Table 4.6, the average accuracy of XGBoost-

MLP without DSCF feature is 0.946 which is lower than the result of XGBoost-MLP with 

DSCF features and the MCC also shows that the performance of XGBoost-MLP with DSCF 

features is better than it without DSCF features.  

Table 4.6. Comparison of XGBoost-MLP with/without digital SCF features. 

 Average 
accuracy Recall Precision Type I 

error 
Type II 

error 
F-

measure MCC 

XGBoost-
MLP (Threshold=0.03) 

with DSCF features 
0.983 0.994 0.986 0.014 0.038 0.994 0.922 

XGBoost-
MLP (Threshold=0.03) 
without DSCF features 

0.946 0.986 0.954 0.048 0.096 0.970 0.739 
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Moreover, this paper uses partial dependence plots (PDP) to analyse the impact of each 

explanatory variable in the XGBoost-MLP model on credit risk assessment (Scikit-learn in 

Python is used for the PDP experiment.). PDP was introduced by Friedman (2001) which 

can be used to indicate how one of the features affects the model prediction if all other 

features are maintained constant. Figure 4.7 shows the PDP of traditional financing features 

of SMEs including the current ratio, working capital turnover ratio, account receivable 

turnover ratio, ROA, total asset growth rate and the credit rating score. The vertical axis of 

PDP represents the probability that an SME is judged non-risky, and the horizontal axis 

represents the change in features. Accordingly, Figure 4.7 indicates that the higher the 

current ratio, the higher probability of non-risky SMEs which is consistent with the result of 

Zhu et al. (2019). Similarly, the impact of accounting receivable turnover ratio and ROA 

also have a similar trend that the higher ratio the higher probability of non-risky SMEs. The 

change of total asset growth rate has a slight impact on the probability though the overall 

impact of the total asset growth rate remains between 0.85 to 0.9. And the working capital 

turnover ratio has the contrary trend of probability changes that the higher the working 

capital turnover ratio the lower possibility of non-risky SMEs. The highest probability of 

non-risky SMEs happens when the working capital ratio is below 1. Generally, the higher 

the accounts receivable turnover rate, the shorter the period of accounts receivable, which 

means that the return of funds is guaranteed and the risk of repayment is correspondingly 

lower. However, for working capital turnover, a high working capital turnover indicates that 

the company is under-capitalised and has a debt crisis. Based on the sample of the SMEs in 

the paper, the working capital turnover ratio of SMEs in China is generally low, and although 

the risk of loan repayment is low, it also indicates low capital utilisation and insufficient 

sales. Additionally, a higher credit rating has a higher probability of non-risky SMEs and the 

probability increases sharply when the credit rating of SMEs is improved. 
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Figure 4.7 The PDP of SMEs’ traditional financing features based on the XGBoost-MLP. 

Figure 4.8 indicates the PDP of DSCF features of SMEs including the features of core 

enterprise, the digitalisation feature of SMEs and the trading features in the supply chain. 

There is a decreasing trend of the probability of non-risky SMEs following the increase of 

CE’s Quick ratio, which is consistent with the result of Zhu et al. (2019). The high quick 

ratio of a core enterprise leads to excessive capital occupation in its quick assets, which are 

mostly accounts receivable in the supply chain, and this has an impact on its solvency, as 

there is a certain degree of uncertainty regarding the collection of accounts receivable. 

Therefore, for SMEs in the supply chain, a core enterprise with a high quick ratio does not 

enhance its own risk tolerance. It is also interesting to note that a higher return on assets 

(ROA) of the core firm does not improve the risk-free probability of the SME. Although a 

higher ROA indicates a better utilisation of the assets of the core enterprise, for SMEs in the 

supply chain, their own repayment ability is more important. Meanwhile, we find that core 

enterprise with a higher credit rating does not have the higher risk-free probability of SMEs 

but has the opposite effect. Combined with the fact that the weight of the credit rating of 

core enterprises is not prominent in the feature importance ranking in Figure 4.5, we believe 

that the current source of funds for SMEs in China is complex, and SCF is not the main 

source of funds for SMEs, which leads to the core enterprises' own advantage does not 

effectively enhance the risk-free probability of SMEs. 
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Figure 4.8 The PDP of DSCF features based on the XGBoost-MLP. 

Nevertheless, the DSCF features of SMEs have a more positive impact. The change in the 

age of platform usage is non-linear, with the lowest probability of a firm being non-risky 

when the age of information platform usage is around 3 years. Whereas, when the age of 

platform use is in the range of 3 to 10 years, the probability of a firm being non-risky is 

positively affected. Furthermore, the longer the platform is used does not increase the risk-

free probability of the firm, which starts to decrease after 15 years of usage. This study 

further uses the dummy variable to describe the usage of ERP by firms and the trend in 

Figure 4.8 shows that SMEs using ERP systems have a higher probability of being risk-free. 

The feature of ERP usage age is also non-linear, as the change in risk-free probability is not 

significant for firms with ERP usage of fewer than 5 years, but when firms have ERP usage 

of more than 5 years, the longer the usage time, the higher the risk-free probability. 
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Regarding the basis of supply chain financial cooperation, the variable of the transactions 

between the core firm and the SME divided by SME's sales or costs also shows a positive 

change, with a subsequent increase in the probability of risk-free for the firm. This indicates 

that in the supply chain when the main business of SMEs and core enterprises has a certain 

regularity and a large proportion, the solvency of SMEs has certain stability and security. 

4.6 Robustness Check 

The XGBoost -MLP model achieves better credit risk assessment results than the 

comparison models in the designed experimental environment. To assess the robustness of 

the XGBoost-MLP model in credit risk assessment, we attempt to vary the experimental 

setting of the model and investigate whether changing the test set proportion in the dataset 

has an impact on the performance of the models. The following Tables show the evaluation 

results for each model when the test set percentage is adjusted from 0.3 to 0.1 with the rest 

of the data set remaining unchanged.  

Table 4.7 shows the performance of each model when the test set is 0.1, the average accuracy 

of XGBoost-MLP is the highest, we further focus on the F-measure which represents the 

harmonised average score of recall and precision. The F-measure score of XGBoost-MLP is 

also the highest among the tested models. In addition, the type I error of XGBoost-MLP is 

the lowest among the models, which indicates that XGBoost-MLP works best in screening 

for risky firms. 

Table 4.7 Performance of XGBoost-MLP and other machine learning methods.  
(Test set =0.1) 

 Average accuracy Recall Precision Type I error Type II error F-measure MCC 
LR 0.926 0.992 0.929 0.076 0.056 0.959 0.638 

KNN 0.971 0.992 0.975 0.025 0.056 0.983 0.868 
NB 0.860 0.889 0.946 0.051 0.722 0.917 0.487 
DT 0.956 0.966 0.983 0.017 0.222 0.974 0.818 

SVM 0.971 1.000 0.967 0.034 0.000 0.983 0.867 
RF 0.963 1.000 0.959 0.042 0.000 0.979 0.832 

MLP 0.978 1.000 0.975 0.025 0.000 0.987 0.901 
XGBoost-KNN 0.978 0.992 0.983 0.017 0.056 0.987 0.902 
XGBoost-NB 0.882 0.924 0.939 0.059 0.500 0.932 0.512 
XGBoost-DT 0.934 0.983 0.943 0.059 0.111 0.963 0.695 

XGBoost-SVM 0.977 1.000 0.975 0.025 0.000 0.987 0.901 
XGBoost-RF 0.971 1.000 0.967 0.034 0.000 0.983 0.867 

XGBoost-MLP 0.978 0.989 0.986 0.014 0.077 0.987 0.901 
Notes: All models presented in Table 4.7 are estimated based on the test set=0.1. Results are estimated based on the training 
set of 949-observations and the test set of 408-observations from 31 March 2016- 31 December 2019. LR is the logistic 
regression model; KNN is the k-nearest-neighbor model; NB is the naïve Bayes mode; DT is the decision tree model; SVM 
is the support vector machine model with radial bias function as kernel function; RF is the random forest model; MLP is 
the multi-layer perceptron model. 
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Figure 4.9 shows the ranking of the feature importance of XGBoost-MLP at a test set of 0.1, 

with the ROA of SME being the most important feature. More specifically, we find by 

plotting the variation in model accuracy for different thresholds (See Figure 4.10) that the 

model has the highest accuracy of 0.978 when the threshold is at 0.04 or 0.05, i.e. removing 

the quick ratio of SMEs, the credit rating of CE, the proportion of trading transaction on CE 

sales or cost, the growth rate of total assets of the core enterprise and the average industry 

ROA. It is noteworthy that when the threshold rises to 0.06, the growth rate of total assets 

of the core enterprise and the average industry ROA is also removed, and then the accuracy 

of the model decreases significantly and the features removed include ERP age, usage status 

of ERP, the growth rate of total assets of the SME and the credit rating of the SME. 

 
Figure 4.9 XGBoost feature importance ranking. (Test set=0.1) 

 
Figure 4.10 The model accuracy in different threshold level. (Test set=0.1) 
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Table 4.8 shows the performance of each model when the test set is 0.2, with XGBoost-MLP 

having the highest average accuracy, and F-measure and type I error also having the best 

performance. In this case the working capital turnover of the SME is the most important 

feature in the feature importance ranking (see Figure 4.11). Figure 4.12 indicates that the 

average accuracy of the model is highest at a threshold of 0.03 at 0.978, i.e., removing the 

quick ratio of SMEs, the growth rate of total assets of the core enterprise and the average 

industry ROA. 

Table 4.8 Performance of XGBoost-MLP and other machine learning methods.  

(Test set =0.2) 
 Average accuracy Recall Precision Type I error Type II error F-measure MCC 

LR 0.909 0.994 0.910 0.098 0.038 0.950 0.909 
KNN 0.934 0.978 0.946 0.056 0.125 0.962 0.934 
NB 0.875 0.918 0.934 0.065 0.475 0.926 0.875 
DT 0.956 0.983 0.967 0.034 0.115 0.975 0.956 

SVM 0.922 0.997 0.919 0.087 0.019 0.957 0.922 
RF 0.963 1.000 0.959 0.042 0.000 0.979 0.963 

MLP 0.946 0.986 0.953 0.048 0.096 0.969 0.946 
XGBoost-KNN 0.934 0.983 0.942 0.060 0.100 0.962 0.934 
XGBoost-NB 0.901 0.948 0.936 0.065 0.300 0.942 0.901 
XGBoost-DT 0.945 0.966 0.960 0.300 0.200 0.968 0.945 

XGBoost-SVM 0.959 1.000 0.955 0.047 0.000 0.977 0.959 
XGBoost-RF 0.974 0.996 0.975 0.026 0.025 0.985 0.974 

XGBoost-MLP 0.978 0.991 0.979 0.022 0.050 0.985 0.978 
Notes: All models present in Table 4.8 are estimated based on the test set=0.2. Results are estimated based on the training 
set of 949-observations and test set of 408-observations from 31 March 2016- 31 December 2019. LR is logistic regression 
model; KNN is k-nearest-neighbor model; NB is naïve Bayes mode; DT is decision tree model; SVM is support vector 
machine model with radial bias function as kernel function; RF is random forest model; MLP is multi-layer perceptron 
model. 

 

 
Figure 4.11 XGBoost feature importance ranking. (Test set=0.2) 
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Figure 4.12 The model accuracy in different threshold level. (Test set=0.2) 

Table 4.9 shows the performance of each model when the test set is 0.4. The average 

accuracy, F-measure and type I error of XGBoost-MLP are consistent with the previous tests. 

Figure 4.13 shows the ranking of feature importance, with the SME's accounts receivable 

turnover rate being the most important feature to assess at a test set of 0.4. Figure 4.14 

indicates that the average accuracy of the model is highest at 0.974 when threshold is 0.03 

or 0.04, that the quick ratio of SMEs, the credit rating of CE, the growth rate of total assets 

of the core enterprise, the average industry ROA and status of ERP usage are removed. 

Table 4.9 Performance of XGBoost-MLP and other machine learning methods.  
(Test set =0.4) 

 Average accuracy Recall Precision Type I error Type II error F-measure MCC 
LR 0.906 0.991 0.908 0.100 0.054 0.948 0.906 

KNN 0.937 0.985 0.945 0.058 0.095 0.965 0.937 
NB 0.901 0.951 0.935 0.066 0.311 0.943 0.901 
DT 0.937 0.977 0.952 0.049 0.149 0.964 0.937 

SVM 0.939 1.000 0.934 0.070 0.000 0.966 0.939 
RF 0.958 0.991 0.961 0.041 0.054 0.976 0.958 

MLP 0.959 0.989 0.964 0.036 0.068 0.977 0.959 
XGBoost-KNN 0.932 0.985 0.939 0.064 0.095 0.961 0.932 
XGBoost-NB 0.915 0.966 0.938 0.064 0.216 0.952 0.915 
XGBoost-DT 0.934 0.959 0.964 0.036 0.257 0.962 0.934 

XGBoost-SVM 0.932 1.000 0.927 0.079 0.000 0.962 0.932 
XGBoost-RF 0.961 0.991 0.965 0.036 0.054 0.978 0.961 

XGBoost-MLP 0.974 0.991 0.979 0.022 0.050 0.985 0.974 
Notes: All models present in Table 4.9 are estimated based on the test set=0.4. Results are estimated based on the training 
set of 949-observations and test set of 408-observations from 31 March 2016- 31 December 2019. LR is logistic regression 
model; KNN is k-nearest-neighbor model; NB is naïve Bayes mode; DT is decision tree model; SVM is support vector 
machine model with radial bias function as kernel function; RF is random forest model; MLP is multi-layer perceptron 
model. 
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Figure 4.13 XGBoost feature importance ranking. (Test set=0.4) 

 

 
Figure 4.14 The model accuracy in different threshold level. (Test set=0.4) 

In summary, combining the different test set settings, it finds that the overall model 

evaluation results change to some extent as the test set changes, but the average accuracy of 

XGBoost -MLP is still the highest, indicating that robustness of XGBoost-MLP model. And 

the most optimal test setting is when the test set is 0.3. 

4.7 Conclusions  

With the development of the industrial IoT and the digital economy, various industries and 

sectors will form different industrial chains and supply chains on various digital platforms 

in the future. DSCF is breaking the shackles of the current inertia of building digital 

platforms centered on finance or banks, embedding DSCF into various industrial Internet of 
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Things and various digital economic platforms, and becoming an organic part of these digital 

economic platforms. In order to take DSCF as the research background, specifically from 

the perspective of credit risk assessment, this paper conducted research on the credit risk 

assessment methods of enterprises in the DSCF environment and its empirical evidence.  

Firstly, the existing credit risk assessment methods in terms of their subjective and arbitrary 

feature selection and the poor effectiveness of linear assessment methods are analysed in this 

paper. Secondly, feature importance and the role of feature selection on credit risk 

assessment models through XGBoost feature selection are evaluated. Then, the role of digital 

features for credit risk assessment in SCF is validated. This chapter selected 1357 

observations from 85 private Chinese-listed manufacturing SMEs over the period 2016–

2019 to empirically test and compare the credit risk assessment models. After the feature 

selection by XGBoost, the five most important features were selected as accounts receivable 

turnover of SME, working capital turnover of SME, ROA of SME, quick ratio of CE, and 

ERP usage situations of SME, which improved the accuracy of risk identification by 98.3% 

compared to the traditional credit risk assessment models without the feature selection. The 

importance of the DSCF features was also verified through the XGboost feature selection. It 

is further found that the feature selection is essential to the performance of credit risk 

assessment results by varying the threshold value of XGBoost feature importance ranking. 

The effectiveness of the risk assessment model varies depending on the threshold value set 

by the lending decision-maker for the feature selection process in the risk assessment, and 

that reasonable feature selection will improve the model effectiveness. Considering the 

various threshold values for feature selection, the accounts receivable turnover ratio of SMEs 

is the most important risk assessment indicator. Finally, by comparing the inclusion and 

removal of digital features of enterprises, we found that digital features are important for the 

credit risk assessment effect of DSCF, and the model with the inclusion of digital features 

as an assessment indicator has a higher accuracy rate, with an increase of 3.7%. This further 

validates that the inclusion of DSCF features in credit risk assessment is beneficial in terms 

of the accuracy of its risk identification. 

On this aforementioned basis, this paper provides the following recommendations for the 

mitigation of credit risks based on DSCF. For SCF platforms, including commercial banks 

and other financial institutions, as one of the main actors in supply chain financial services, 

they should be well prepared for their own risk management, credit assessment, and credit 

limits. Traditional credit risk assessment features such as accounts receivable turnover of 
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SMEs, working capital turnover of SMEs, ROA of SMEs and CEs, quick ratio of CE, and 

credit rating of SMEs are still key characteristics for lending decision-makers. Furthermore, 

in the case of companies with a high degree of digitalisation, such as those that actively use 

ERP systems or have a well-developed information technology network, the corresponding 

DSCF features such as the degree of ERP usage or the construction of an information 

technology platform should also be taken into account in the credit risk assessment. For core 

enterprises and SMEs, the enterprise’s accounts receivable turnover and working capital 

turnover are two important indicators for credit risk assessment, so enterprises are expected 

to be flexible in working capital and to digitise assets such as pledges to improve the speed 

and efficiency of circulation of the pledge. Whereas ROA, as one of the most important 

traditional evaluation indicators, also points out that enterprises are supposed to improve 

their own financial system and management system to improve their production and 

operation capacity. Meanwhile, the construction of digital information platforms and the 

usage of ERP as new indicators also provide important reference bases for credit risk 

assessment, and enterprises are advised to strengthen their digital development process to 

achieve open and transparent business data and reduce their own credit risks.  

Overall, SCF is a very promising business for commercial banks, and with the continuous 

innovation of technology, the application of DSCF is becoming more and more widespread, 

and its connotations are becoming more and more enriched. Although DSCF is a future 

development trend and has high research value, DSCF is still in its infancy and research on 

it is very limited. Thus, there are some limitations in our paper. Firstly, due to the availability 

of data, 85 Chinese enterprises are selected as the sample for this paper. Although they are 

representative of the empirical samples in the context of DSCF in China, the experimental 

results may be biased due to the small sample. Secondly, only by comparing traditional 

commonly used machine learning models as a comparative analysis in this paper, this 

research does not perform a comprehensive experimental analysis, so the inter-model study 

would be increased in future research. 
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Chapter 5  P2P Lending: Imbalanced Issue Analysis and 

Feature Selection with Machine Learning Method  

5.1 Introduction  

With the continuous development of technologies such as the Internet, big data and cloud 

computing, P2P lending is an innovative financial industry derived from a high degree of 

merger between finance and the Internet (Bachmann et al., 2011). P2P lending, as an 

important part of the Internet financial market, has been developing rapidly in recent years, 

realising direct lending between peer-to-peer without the involvement of financial 

intermediaries. In March 2005, the UK's Zopa website was launched, marking the birth of 

p2p network lending, and by the end of 2013, the transaction volume of the Zopa website 

was growing at an annual average rate of over 50%25. 2006 saw the launch of Prosper, the 

first p2p lending platform in the US; in 2007, Lending Club, currently the world's largest 

p2p lending platform, was established. By the end of 2013, the US p2p online lending market 

was entirely dominated by Lending Club and Prosper. The annual transaction volume in 

2013 was approximately US$2.4 billion, of which Lending Club's transaction volume was 

US$2.065 billion, an increase of 200% compared to 2012's transaction volume of US$718 

million; Prosper's transaction volume in 2013 was 3.56 billion. The volume of transactions 

in 2013 was $356 million, a growth rate of over 100% compared to 2012's volume of $152 

million26 . However, high returns often go hand in hand with risk. When P2P lending 

platforms provide users with convenient and reliable credit services, they need to predict the 

credit risk of users based on their basic information and transaction data (Lenz, 2016). For 

example, a credit-risk-free and compliant customer will repay the loan on time and in full 

after completing the transaction, while a credit-risk-missing customer will default due to his 

or her lack of repayment ability or willingness to repay, which will result in the platform 

incurring substantial financial losses. Therefore, for P2P platforms, establishing a personal 

credit risk prediction model to accurately identify users who are likely to default and reject 

their transaction requests can effectively reduce the platform's economic losses and 

safeguard its sound development. 

The rise of P2P lending stems from the maturity of the credit system and the advancement 

of Internet technology (Klafft, 2008). The multi-dimensional data recording customers’ 

 
25 https://www.ft.com/content/65795036-ddd6-3838-a100-d0ae4f401c7c 
26 https://www.ft.com/content/029c2ddc-d3df-11e3-b0be-00144feabdc0 



128 

 

various behaviours has been increasing and accumulating, and the thinking of big data credit 

has gradually stepped into people's view and is sought after by Internet finance and capital 

markets (Yan et al., 2015). The cross-recurrence of multi-faceted and multi-level 

behavioural information of P2P borrowers and the continuous presentation of information 

associated with customers’ activities can map their credit status in terms of both willingness 

and ability to repay (Zhang et al., 2016). However, although multi-dimensional information 

data can cross-replicate the credit status of P2P borrowers, the computation of credit 

evaluation models tends to become more complex as the dimensionality of the data increases. 

At the same time, the data generated by credit transactions is usually highly unbalanced, i.e., 

the vast majority of people who make credit transactions can keep their contracts, and only 

a small number of people will incur defaults. Meanwhile, the problem of classifying 

imbalance data is often a dilemma: if a model predicts a creditworthy customer to be a non-

creditworthy user, the platform will reject the user's transaction request, thereby reducing 

revenue; if it predicts a non-creditworthy user to be a creditworthy user, the platform will 

approve the user's transaction request and lend to the user, resulting in significant financial 

losses. Machine learning methods are crucial in credit risk assessment due to their ability to 

analyze large volumes of diverse data and identify complex patterns that may elude 

traditional rule-based systems. However, the imbalance data issue is a prevalent challenge 

in machine learning and data analysis where the distribution of classes within a dataset is 

significantly skewed, with one or more classes being underrepresented compared to others. 

This imbalance compromise the performance of machine learning models, as they tend to be 

biased towards the majority class, often leading to poor generalization and predictive 

accuracy for minority classes (Abd Elrahman and Abraham, 2013). Therefore, many 

scholars working on the improvement of evaluation models for the P2P lending imbalance 

data problem, such as (Niu et al., 2020; Song et al., 2020; Zhou et al., 2019).re 

Lending Club, once the most popular online lending platform, provides the data set that most 

academics use to conduct their analysis (Emekter et al., 2015). Many scholars have used 

Lending club data for credit risk assessment analysis and model improvement studies, but 

there are inconsistencies in their treatment of the data. Firstly, many scholars have ignored 

the imbalance in the credit data (Bastani et al., 2019; Ma et al., 2021; Xia et al., 2017), e.g., 

Malekipirbazari and Aksakalli (2015) selected only 15 features for risk assessment by 

Random Forest model without considering the imbalance status of the data, and the results 

show that the model is ineffective in identifying the risky samples. Similarly, Teply and 

Polena (2020) selected 23 features for the optimal risk assessment model but did not consider 
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the impact of imbalance in the data sample and the incomplete selection of features on the 

classification model. Arora and Kaur (2020) used 143 features for assessment, and although 

this study does not mention and address the imbalanced nature of the data, all models of the 

experiment, including the baseline model, yielded very good assessment results, with good 

identification of risky samples. Yu and Zhang (2021), in their study of poor evaluation due 

to missing samples, ignore the fact that imbalance in the sample and the selection of features 

can be a real cause of poor results. Secondly, it is found that some scholars have studied the 

imbalance issue in Lending Club data, but only selected partial specific features for credit 

evaluation and claimed that the low effectiveness of their results was due to the imbalance 

data problem. For example, Namvar et al. (2018) attempted to propose a new model to 

improve credit risk evaluation in an imbalance data environment, but only 25 features were 

selected for evaluation and the results were unsatisfactory, with poor overall prediction 

accuracy and no significant improvement in the ability to identify risky samples. COŞER et 

al. (2019)considered the imbalance data problem in their risk assessment and compared the 

balanced and imbalance datasets, but the feature selection level was unclear and only 14 

numerical and 3 categorical variables were retained in the analysis. Finally, although some 

scholars have selected important features through a feature filtering mechanism and noted 

the imbalance data problem, e.g., Chen et al. (2021) and Moscato et al. (2021) attempted to 

address the imbalance data problem arising from P2P credit evaluation, the results are not 

significant. Owusu et al. (2022) selected only five features for evaluation after feature 

filtering and the results showed that the accuracy was still high, which may be a problem of 

information leakage rather than valid proof that the imbalance in the data was resolved. 

Similarly, Chang et al. (2022) filtered 16 Lending Club’s features and under-sampling the 

imbalance data, but the overall results were not satisfactory. 

Thus, the motivation for this chapter aims to address the following research questions:  

RQ1: Whether an imbalanced data issue matters in the Lending Club dataset with complete 

features? 

RQ2: Whether the feature incompleteness in the existing literature result in poor 

performances of the existing models? 

RQ3: How to mitigate the imbalance data issue with limited features? 
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To examine the above questions, the data is collected from the Lending Club 2007-2018 Q4, 

which contains 151 original features and 1345310 observations. The first set of data was 

constructed from the features selected in the previous article and contains 17 features. The 

second set of data is cleaned by removing the missing data and information leakage features 

from the original features, resulting in a dataset of 87 features. By comparing the results 

obtained from these two datasets on the classification problem to explain the RQ1 that 

whether an imbalanced data issue matters in the Lending Club dataset with complete features. 

The imbalanced data issue won’t affect the prediction performance if the evaluation metric 

of the dataset with 87 features performs better than that of the dataset with 17 features. 

Meanwhile, the poor performance of existing models with 17 features will be identified that 

could explain the RQ2. In addition, further investigation focuses on the relationship between 

feature selection and imbalance data which try to figure out the solution of RQ3.  Thus, 

comprehensive baseline models (LR, DT, XGBoost), as well as learning models for 

imbalanced data (Bagging, Easy Ensemble, Instance Hardness Threshold (IHT), SMOTE, 

Tomek Links, Cost-sensitive), are built on the basis of which a plot of feature selection 

versus imbalance proportions are constructed. Figure 5.1 shows the flow chart of our 

research. 
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Figure 5.1 Research flow chart. 

This research is of great interest to the enrichment of the theory and practice of credit risk 

assessment under the P2P lending model, and the main contributions are as follows. Firstly, 

there is a gap in the existing literature on the relationship between imbalanced data and 

feature selection due to there being no standard for feature selection and a lack of systematic 

theoretical support. The feature selection in previous studies is replicated and compared. The 

findings illustrate that too limited features reduce the effectiveness of credit assessment. 

While the more complete and richer dataset makes the credit risk assessment model achieve 

satisfactory results. This indicates that the selection of a dataset is important for credit risk 

assessment. The findings expand the consideration for model improvement in risk 

assessment from the actual P2P lending business thereby meeting the actual business needs. 

Meanwhile, a systematic study of learning methods for the imbalanced data problem is also 
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conducted. A comprehensive range of over-sampling, under-sampling, ensemble, and cost-

sensitive methods are used to fully train the data. The results enrich the study of the 

classification of imbalanced data. Further, the theoretical support for imbalanced datasets 

and feature selection is extended by exploring the dynamics of the imbalanced ratio and 

feature selection in depth. The analysis of different data imbalance ratios and feature 

selection results helps future research to select credit risk assessment features and deal 

effectively and rationally with imbalance problems. Finally, an optimal set of features is 

obtained through feature selection, which further improves the assessment system of P2P 

lending and enriches the related theory. 

The paper is presented as follows. Section 5.2 contains the background of P2P lending and 

a literature review of the imbalanced data issue. Section 5.3 covers the methodology of the 

baseline classifier and the imbalance learning methods. Section 5.4 reports the design, 

acquisition, and processing of the experiments. Section 5.5 presents the results and analysis. 

Chapter 5.6 provides the conclusions. 

5.2 Literature Review 

P2P lending is direct lending between individuals and individuals through Internet platforms, 

i.e., individuals with funds, lending to other individuals with borrowing needs through 

electronic trading platforms (Emekter et al., 2015). As platforms offering peer-to-peer 

lending usually operate online, the cost of service is relatively low and therefore generates 

more revenue for investors and lower costs for borrowers. With the launch of the first P2P 

platform, Zopa, in the UK in 2005, the P2P lending business has grown rapidly around the 

world27. The UK's P2P industry is well regulated, with three layers of regulatory defence. 

The first layer is self-regulation by industry associations, with the Peer-to-Peer Finance 

Association (P2P Association) established on 15 August 2011, and its proposed "Principles 

of the Association" filling the gap in regulatory law to a certain extent28. The second level is 

government regulation. The UK government has clear requirements on minimum capital 

requirements, customer funds and information disclosure for P2P platforms, and the 

corresponding regulatory laws and regulations mainly consist of national macro financial 

laws, industry laws and regulations. The third level is the professional institutions regulation, 

since April 2014, the Financial Conduct Authority (FCA) has started to exercise regulatory 

functions on P2P lending business, requiring lending platforms to provide regular financial 

 
27 https://www.theguardian.com/money/2021/dec/11/zopa-peer-to-peer-lending-p2p-money  
28 https://www.p2pfinancenews.co.uk/2020/01/13/p2pfa-disbands-as-platforms-establish-new-group/  
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reports, customer funds reports, etc.29  Further, Prosper was founded in February 2006, 

marking the beginning of the P2P lending industry in the US, and by 2017 the total amount 

of P2P lending in the US exceeded US$26 billion30. The US Securities and Exchange 

Commission (SEC) is the regulatory body for the business, and since 2008 the SEC has 

required all P2P lending platforms to be registered and their products regulated as securities. 

The SEC has required all P2P lending platforms to register and regulate their products as 

securities since 2008 (Lo, 2015). The US P2P business has an 'oligarchic' pattern. The two 

main P2P lending platforms, Lending Club and Prosper, largely dominate the market, and 

the size of P2P lending is growing rapidly, with Nash and Beardsley (2015) and Zhang et al. 

(2015) noting that the total P2P lending business in the US and Europe will continue to grow 

at a rate of double the annual rate. 

Although P2P lending is growing at a phenomenal rate, there is still a huge difference 

between the size of the business and the credit business of traditional banks. The 

International Monetary Fund (IMF, 2015) reports that the total asset size of global P2P 

lending represents only 0.05% of total global banking assets31. Havrylchyk et al. (2017) also 

argue that the total size of the P2P lending business in the US is equivalent to only 0.7% of 

the total national retail sales in the U.S. P2P lending platforms try to act as intermediaries 

by leveraging the power of internet technology to connect individuals or businesses 

(borrowers) who wish to obtain loans with individuals and institutions (investors) who wish 

to invest. Berger and Gleisner (2009) found that P2P platforms act as financial intermediaries 

such as banks between borrowers and investors, reducing information asymmetry between 

borrowers and lenders and improving borrowers' credit ratings and that the costs incurred in 

this process are compensated by lower borrowing rates. Wang et al. (2015) compared the 

P2P lending business model with that of traditional banks and found that the information 

flow in the P2P lending process is more frequent and transparent, and thus more information-

dependent. As P2P lending platforms operate online automated transaction systems outside 

of the bank regulatory system, none of the loans are included in their liabilities and operating 

costs are very low relative to banks (Cummins et al., 2019). P2P lending platforms, on the 

 
29 https://news.ateb-group.co.uk/advising-on-p2p-agreements  
30  https://techcrunch.com/2009/04/29/p2p-lending-marketplace-prosper-gets-off-the-bench-debuts-open-
market-
initiative/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQ
AAAEwIVXcVsdcefd-Ai53koEwSg26HSQrXuACc10jaFFIesgqK9w-
dd1chJ9Qgqo5J3X2LYlqf39vMA8c1Tdtebh_e-
UAnOVJu1Ye9DKsLPuaE0kmGMvf_ifMxWFSMp2agcy7eqxBqEc-7IE0m-
KieTOJyDpZ6ZhWFoZZeaAjGniBu  
31 https://www.imf.org/external/pubs/ft/wp/2015/wp1519.pdf  
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other hand, are mainly profitable from transaction aggregation and loan-related service fees 

for both borrowers and investors, with borrowers typically paying a percentage of the loan 

closing fee at loan inception, as well as penalties in case of late repayment, while investors 

pay a service fee based on the amount of their investment. 

The imbalanced data problem arising from P2P lending platforms refers to the phenomenon 

of an imbalance in the ratio of the number of samples with different labels in the 

classification of risk assessment, i.e. a situation where in reality the default sample is much 

smaller than the compliance sample. Due to the complex nature of imbalanced datasets, 

different processing methods and techniques are classified into two categories. The first 

category is data-level methods that balance the data set at the data pre-processing stage by 

resampling to reduce the effect of skewed class distribution on the classification model 

during learning. Kubat and Matwin (1997) proposed a selective majority of sample 

extraction method, the One-sided Selection method, considering that it would be detrimental 

to the classification of small samples if the majority of samples taken during the under-

sampling process were noisy or unreliable samples. Yen and Lee (2009) introduced 

clustering in under-sampling methods to select large classes of samples. Similarly, Padmaja 

et al. (2008) introduced clustering in the under-sampling process and proposed a new under-

sampling method, majority filter-based minority prediction (MFMP). Laurikkala  (2001) 

proposed an under-sampling method based on the neighborhood cleaning rule. The 

oversampling method balances the large and small samples in the dataset by increasing the 

number of small samples, so that the influence of the small samples in the classification 

learning process is increased. Nickerson et al. (2001) aimed to improve the classification 

performance of small class samples by introducing clustering methods in oversampling. 

Nowadays, the most widely used oversampling method is the Synthetic Minority 

Oversampling Technique (SMOTE) algorithm proposed by Chawla et al. (2002). The basic 

idea of this algorithm is to analyse the minor class samples and synthesise new minor class 

samples by k-nearest neighbours. However, there are two main problems with the SMOTE 

algorithm: firstly, there is a certain degree of blindness in the selection of nearest neighbours; 

secondly, it cannot overcome the problem of data distribution in imbalanced datasets and is 

prone to distribution marginalisation. Many scholars have improved the SMOTE algorithm 

in response to its problems. Borderline-SMOTE (Han et al., 2005), MSMOTE (Hu et al., 

2009) and other algorithms have been proposed, which improve the SMOTE algorithm to 

some extent. Nowadays, hybrid sampling methods, which are a combination of under-

sampling and over-sampling methods, are emerging in a growing number of research studies 
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(Marqués et al., 2013; Sun et al., 2018). The aim is to achieve a balanced distribution of 

categories in an imbalanced data set. 

The second category is algorithm-level approaches, where the recognition rate of 

classification models for small classes of samples is improved by changing the algorithm. 

Integrated learning algorithms and cost-sensitive learning algorithms are commonly used to 

deal with classification problems on imbalanced datasets. Krawczyk et al. (2015) introduced 

cost-sensitive learning algorithms to deal with imbalanced classification problems based on 

the use of DT as base classifiers. Using hybrid methods, a combination of sampling methods, 

ensemble learning algorithms and cost-sensitive learning algorithms have been used for 

imbalance classification problems. Barandela et al. (2003) proposed the under-bagging 

algorithm by combining the under-sampling method and the bagging ensemble algorithm, 

which can effectively handle imbalance classification problems. Subsequently, Seiffert et al. 

(2010) proposed a random under-sampling boosting (RUSBoost) algorithm to solve the 

imbalance classification problem by combining a random under-sampling method with a 

boosting ensemble learning algorithm. Based on the RUSBoost algorithm, Galar et al. (2013) 

proposed the evolutionary under-sampling boosting (EUSBoost) algorithm by improving the 

under-sampling method. SMOTEBoost was proposed by Chawla et al. (2003), which 

combined SMOTE oversampling method and boosting ensemble learning algorithm. The 

algorithm first oversampled the imbalanced dataset to make the data categories balanced and 

then used the balanced dataset to train the classifier. Afterwards, Wang and Yao (2009) 

combined SMOTE algorithm and the bagging algorithm to propose a SMOTEBagging 

algorithm to solve the imbalance classification problem. Hu et al. (2009) proposed the 

MSMOTEBoost algorithm after improving the SMOTEBoost algorithm, which offers some 

performance improvements over the SMOTEBoost algorithm. An increasing number of 

scholars have now started to apply a combination of hybrid sampling methods and ensemble 

learning algorithms to the imbalance classification problem (Qian et al., 2014; Zhang and 

Chi, 2021).  

Feature selection is a critical step in data processing, and it also plays an important role in 

imbalance data problems, that the aim is to select a subset of 𝑗 features based on some rule 

that allows the classifier to achieve optimal performance, where 𝑗  is a user-defined 

parameter (Wasikowski and Chen, 2009). Feature selection is extremely important as 

sampling techniques and algorithm-level approaches are not sufficient to solve the class 

imbalance problem for high-dimensional data, where the class imbalance problem usually 
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occurs (Chawla et al., 2004). Van Der Putten and Van Someren (2004) found that feature 

selection was more important than the choice of a classification algorithm in improving 

performance when analysing the CoLL Challenge 2000 dataset. In a study of highly 

imbalanced textual classification problems, Forman (2003) found that the use of feature 

selection alone in a high-level dataset could largely resolve the imbalance in the dataset. 

Feature selection lies in the fact that a small number of features represent the majority of 

information in the original data, but in cases where the imbalance ratio is large, feature 

selection may eliminate key features that serve to identify the minority samples. Elkan (2001) 

found that feature selection did not bring enough benefit to his work. Guyon and Elisseeff 

(2003) also illustrate the limitations of feature selection through theoretical analysis. 

5.3 Methodology 

5.3.1 Baseline Models  

For the binary classification assessment of credit risk, this study uses LR, DT and XGBoost 

as baseline classifiers. LR is a traditional classification and prediction model, which is 

widely used in data mining, economic forecasting and other fields, and is essentially a 

probabilistic prediction model that can be categorised by different attributes of the dependent 

variable, such as binary classification problems (Komarek, 2004). In this paper, for the 

binary classification problem of credit risk assessment, given a set of customer samples 

𝑇 = {(𝑥& , 𝑦&)}&2'N , 𝑥& ∈ 𝑅U  is a customer feature variable, 𝑦& ∈ {0, 1} is a binary attribute 

variable that 𝑦&  denotes the 	𝑖 -th customer is a risky customer, 𝑦& = 0  means the 𝑖 -th 

customer is a non-risky customer. The purpose of a credit scoring model using LR is to 

assess the probability of a given customer being a "good customer" or a "bad customer", 

with the expression of the LR equation as 𝑝(𝑦 = 1|𝑋) = XYZ	(\-"\.])
'"XYZ	(\-"\.])

, where 𝑝(𝑦 = 1|𝑋) 

denotes the probability of the “bad customer”, 𝑋 is the 𝑚-dimensional vector, 𝛽 is the 𝑚-

dimensional parameters to be estimated.  

DT is a non-linear discriminant analysis method, which is a classification function 

approximation method developed in the field of machine learning (Curram and Mingers, 

1994). It is essentially a process of classifying samples by building a series of tree rules, i.e., 

generating a series of tree classifier rules based on the attributes and classification results of 

known samples, and using these rules to classify and predict unknown data, which is a typical 

supervised single classifier. The DT has three types of nodes: a root node, a leaf node and 

an intermediate node, each node is a specific attribute of an attribute, and from each node, a 
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new path can be generated by splitting one level down, with as many attribute sets as the 

node has. Thus, from the top root node, a path is followed through a number of intermediate 

nodes to a leaf node, which can be seen as a specific rule for classification, and the whole 

DT is a collection of classification rules made up of a series of paths. From the root node, 

there is one and only one path to the final leaf node, ensuring that the output of the DT is 

unique and that the results of the tree can be used to classify and predict data. The specific 

application process of DTs consists of three steps: Firstly, analyse the training sample set 

and generate an inverted tree topology through recursive calls. Secondly, analyse each path 

of the generated inverted tree from the root to the leaf nodes and generate specific 

classification rules. Thirdly, use the generated classification rules to classify and predict the 

new data to get the result. There are many algorithms for DT generation. The Concept 

Learning System (CLS) proposed by Hunt et al. (1966) is the earliest algorithm for DT 

generation, after which scholars have successively proposed ID3, C4.5, C5.0, CART and 

other algorithms (Quinlan, 1996), all of which can be regarded as improvements or 

derivatives of the CLS algorithm. 

XGBoost (Extreme Gradient Boosting) is an integrated tree-based learning algorithm that 

represents an advanced gradient boosting system, proposed by Chen et al. (2015). For a given 

credit dataset with 𝑛 samples and 𝑚 features, the XGBoost model draws on the ideas of 

Gradient Boosting (GB), using feature sampling techniques to prevent overfitting and 

controlling the complexity of the model through regular terms. Similar to GB, both use 

additive functions and control the complexity of the model by means of a self-defined Data 

Matrix. The base classifier is then trained from the initial training set to improve the 

efficiency of each iteration, where the base classifiers are weak classifiers. The distribution 

of training samples is then adjusted according to the performance of the base classifier, 

memory consumption is reduced by using an approximation algorithm that finds split nodes. 

The misclassified training samples receive continuous attention in subsequent training and 

the weights are adjusted. The next base classifier is then trained based on the adjusted sample 

distribution and iterated until the number of base classifiers reaches a pre-specified number, 

which is eventually weighted and integrated. A weak classifier here means that the model 

performs only marginally better than a random guess, and the Boosting algorithm is suitable 

for addable base classifiers to minimise the loss function provided. The boosting tree uses 

an additive function algorithm with a forward distribution algorithm to implement the 

optimisation process of learning. The loss function measures how well the model fits the 

data at hand, and each step of the optimisation is easy to implement when the loss function 
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is a squared loss and exponential loss function. In the XGBoost algorithm, the loss function 

is extended to the objective function by adding a regularisation term (Chen et al., 2015): 

𝐿Lp𝐹(𝑥&)r =¢ 𝜓p𝑦& , 𝐹L(𝑥&)r +¢ Ω(𝑓L)
M

L2'

N

&2'
(44) 

𝐹L(𝑥&) denotes the prediction about the 𝑖th sample at the 𝑘th lift, and Ω(𝑓L) = 𝛾𝑇 + 0.5 ∗

𝜆‖𝜔‖(. In regularisation, 𝛾 is the complexity parameter and 𝜆 is a fixed coefficient. Ω(∙) is 

the regularisation term that penalises the complexity of the model. The regularised objective 

function is inspired by the regularised greedy forest algorithm and tends to smooth the 

contribution of the base classifier to avoid overfitting from occurring; with the regular term 

removed, the objective function is reduced to the loss function of GB. However, it is difficult 

to optimise directly in the function space for the objective function represented. Similarly, 

XGBoost is trained in the additive form at step 𝑘 as: 

𝐿Lp𝐹(𝑥&)r =¢ 𝜓p𝑦& , 𝐹L;'(𝑥&) + 𝑓L(𝑥&)r +
N

&2'
Ω(𝑓L) (45) 

Unlike traditional GBDT algorithms which only use information from the first-order 

derivatives, the XGBoost algorithm performs a second-order Taylor expansion of the loss 

function and adds a regular term to the objective function to find the optimal solution, in 

order to weigh the decline of the objective function against the complexity of the model and 

avoid overfitting. The Taylor expansion of the objective function and the introduction of the 

regularisation term. 

𝑂𝑏𝑗(!) =¢ 𝐿{𝑦& , 𝑦&
(!;') + 𝑓!(𝑥&)| +

N

&2'
Ω(𝑓!) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

≈¢ª𝐿{𝑦& , 𝑦&
(!;')| + 𝛿O"(#)!)

𝐿{𝑦& , 𝑦&
(!;')|𝑓!(𝑥&) +

1
2 𝛿O"(#)!)

( 𝑦&
(!;')𝑓!((𝑥&)¬

N

&2'
+Ω(𝑓!) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (46)

 

Divide the constant term and find the first-order derivative 𝑔& and second-order derivative 

ℎ& for each sample, grouping the objective functions by the leaf node statute.  

𝑂𝑏𝑗(!) =¢ ª𝑔&𝑓!(𝑥&) +
1
2ℎ&𝑓!

((𝑥&)¬ + Ω(𝑓!)
N

&2'
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=¢ ª𝐺8𝜔8 +
1
2
p𝐻8 + 𝜆r𝜔8(¬ + 𝛾𝑇

K

82'
(47) 

The leaf node weight 𝜔8 in the above equation has a closed-form solution, and the solution 

and corresponding objective function values are as follows. 

𝜔8∗ =
𝐺8

𝐻8 + 𝜆
(48) 

𝑂𝑏𝑗 =
1
2
¢

𝐺8(

𝐻8 + 𝜆

K

82'
+ 𝛾𝑇 (49) 

Finally, the XGBoost algorithm corrects the estimation of the data in each training session 

in order to modify the weights and penalise the misclassified samples by increasing their 

weights, so that the misclassified points are continuously focused on, and after several 

iterations, a number of base classifiers are obtained, which are then integrated and fused and 

weighted (i.e. the larger the error rate the smaller the weight of the base classifier, the smaller 

the weight of the base classifier) or allowed to vote to obtain a final integrated learning model. 

5.3.2 Feature Selection  

For the pre-processed dataset, the data dimensionality is still high, and in order to select the 

best feature set, we further perform feature filtering by XGBoost. Ranking the importance 

of feature variables is an important application of XGBoost (Chen et al., 2019). The 

importance of a feature is the sum of the number of times it appears in all trees, meaning that 

the more an attribute is used to build a DT in the model, the more important it is in 

comparison. XGBoost is also implemented with a number of optimisation improvements: 

Firstly, the traditional greedy algorithm of enumerating all possible splitting points for each 

feature is inefficient to find the best segmentation point, the XGBoost algorithm enumerates 

several possible candidates for the segmentation point based on the percentile method and 

then finds the best segmentation point from the candidates. Secondly, the XGBoost 

algorithm takes into account the case where the training data is sparse, and can specify the 

default direction of branching for missing values or specified values. This greatly improves 

the efficiency of the algorithm. 

5.3.3 Imbalance Learning Models  

Tomek Links 
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Tomek improved the Condensed Nearest Neighbor (CNN) in 1976 by proposing a 

framework for detecting noisy data in the majority class by under-sampling samples from 

the bounded majority class without destroying the underlying information in the data space. 

That is, if two samples belong to different classes and are close together, they can be linked 

into a Tomek link pair. Once two samples form a Tomek link pair, it means that either one 

of the samples is noisy or both samples are on the boundary. The idea is that given a pair of 

samples (𝑆& , 𝑆8), 𝑆& belonging to the majority class and 𝑆8 belonging to the minority class, 

the distance between the two points is denoted by 𝑑(𝑆& , 𝑆8), and 𝑆& and 𝑆8 form a Tomek link 

pair if there is no arbitrary sample 𝑆L such that 𝑑(𝑆& , 𝑆L) < 𝑑(𝑆& , 𝑆8) or 𝑑(𝑆8 , 𝑆L) < 𝑑(𝑆& , 𝑆8) 

holds. In order to avoid the effect of a small number of minority samples on classification, 

the majority of samples in each Tomek link pair are removed and the majority of samples 

after under-sampling are denoted as 𝑆VS8. This operation makes the boundary between the 

two classes obvious and reduces the effect of class overlap on classification performance. 

Instance Hardness Threshold (IHT) 

Smith et al. (2014) proposed the concept of instance hardness (IH) for the problem of 

imbalanced data for binary classification. This approach expresses the probability of a data 

point in the training set being misclassified in terms of the property of IH, i.e. data samples 

that lie on the boundary between two classes or exist in noisy form have a higher IH value 

due to the fact that the learning algorithm forces them to correctly overfit a given training 

sample 〈𝑥& , 𝑦&〉, 𝑝(𝑦&|𝑥& , ℎ) is the conditional probability of the label 𝑦& given by the weak 

learner ℎ for the input feature vector 𝑥& . The smaller the value of 𝑝(𝑦&|𝑥& , ℎ), the more 

incorrect ℎ will be (Le et al., 2018). The IH of the training sample 〈𝑥& , 𝑦&〉, denoted by 𝑖, with 

respect to ℎ, is as follows. 

𝐼𝐻W(〈𝑥& , 𝑦&〉) = 1 − 𝑝(𝑦&|𝑥& , ℎ) (50) 

In practice, ℎ is induced by the learning algorithm 𝑔 trained on 𝑡 using the hyperparameter 

𝛼, i.e., ℎ = 𝑔(𝑡, 𝛼). Then, 𝐼𝐻W(〈𝑥& , 𝑦&〉) = 1 − 𝑝(𝑦&|𝑥& , 𝑡, ℎ), but since 𝑦&  is conditionally 

independent of 𝑡 given ℎ that we can use 𝑝(𝑦&|𝑥& , ℎ). Thus, the hardness of the instance is 

dependent on the instances in the training data and the algorithm used to generate ℎ. There 

are a number of methods that can be used to calculate the hardness of an instance, such as 

analysing the distribution of instances in 𝑡 based on their category. To further investigate 



141 

 

what causes 𝐼𝐻 in general, the dependence of 𝐼𝐻 on particular assumptions can be reduced 

by adding instance hardness to the set of hypothesis 𝐻 and weighting each ℎ ∈ 𝐻 by 𝑝(ℎ|𝑡). 

𝐼𝐻(〈𝑥& , 𝑦&〉) =¢(1 − 𝑝(𝑦&|𝑥& , ℎ))
^

𝑝(ℎ|𝑡)  

=¢𝑝(ℎ|𝑡) −¢𝑝(𝑦&|𝑥& , ℎ)
^^

𝑝(ℎ|𝑡) 

= 1 −¢𝑝(𝑦&|𝑥& , ℎ)𝑝(ℎ|𝑡)
^

(51) 

SMOTE 

In terms of oversampling, the Synthetic Minority Oversampling Technique (SMOTE) 

sampling algorithm is used, which differs from traditional oversampling methods in that it 

directly replicates minority samples to achieve data equalisation by creating new minority 

sample points from the original minority sample points (Chawla et al., 2002). For a given 

data set {(𝑥', 𝑦'), (𝑥(, 𝑦(), … , (𝑥N, 𝑦N)	}, where 𝑥& ∈ 𝑅V, 𝑦' ∈ {+1,−1}, 𝑖 = 1,2, … , 𝑛, for a 

minority class sample 𝑥&, firstly find its 𝑘 neighbours among the sample points of the same 

minority class, i.e. the 𝑘 nearest samples in the sample space to 𝑥&, and then construct its 

attribute value 𝑟&8 , 𝑗 = 1, 2, … ,𝑚  for each attribute of the sample. For each attribute 	𝑗  a 

sample 𝑥_
8  is randomly selected among the 𝑘  neighbouring samples, and the difference 

between the original minority class sample 𝑥_ and the sample 𝑥_
8 on attribute 𝑗 is multiplied 

by a random number within [0,1] plus the value of the original minority class sample 𝑥_ on 

attribute 𝑗. The specific formula is as follows:  

𝑟&8 = 𝑥_,8 + p𝑥_,8
8 − 𝑥_,8r ∗ 𝑟𝑎𝑛𝑑[0,1] (52) 

where 𝑥_,8 is the value of the original minority class sample 𝑥_ on attribute 𝑗 and 𝑥_,8
8  is the 

value of 𝑥_,8  on attribute 𝑗 , 𝑟𝑎𝑛𝑑[0,1]  is the random number within [0,1] . Then, the 

generated new minority samples are [𝑟_', 𝑟_(, … , 𝑟_V].	Finally, the above operation is repeated 

according to the number of samples that need to be synthesised manually. The new minority 

class samples are added to the original dataset, thereby balancing the dataset. 

Bagging  
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Bagging, also known as bootstrap, is an integrated learning method based on the idea of 

sampling with put-back (Breiman, 1996). The main idea is to partition the original dataset 

into multiple training subsets, i.e., before each iteration, a random sample is taken from the 

training set to be trained, based on this approach, the weak classifier generated in each 

iteration does not depend on the previously trained In this way, the weak classifiers generated 

in each iteration do not depend on the previously trained classifiers, meaning that each of 

the generated weak classifiers is not directly related to each other and can be trained in 

parallel. After all the sub-classifiers are trained, the test set is predicted separately, and the 

classification result with the most votes is selected as the final result of the whole 

classification system by voting (see Figure 5.2). 

 

Figure 5.2 Working process of the bagging. 

Easy Ensemble  

Easy Ensemble is an efficient data augmentation algorithm for extremely imbalanced data. 

It combines under-sampling methods with ensemble learning by randomly dividing the 

majority class samples into the same number of subsets as the minority class, and then 

merging each of the removed majority class subsets with the minority class sample set to 

obtain a new training subset with a balanced proportion of sample classes (Liu et al., 2009). 

The Adaboost classifier is trained on the new subset, and finally, a strong classifier is 

obtained by integrating all the base classifiers using simple voting. Specifically, the number 

of minority class samples is assumed to be 𝑃 and the number of majority class samples is 𝑁. 

𝑃 number of samples are randomly sampled from the majority class and combined with the 

minority class samples into the base classifier for training. Repeated sampling trains T base 

classifiers, the predicted probabilities of the T base classifiers are summed, and then the 

classification is determined by the 𝑠𝑖𝑔𝑛 function. 
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where ℎ&,8 is the base classifier, 𝛼&,8 is the weight of corresponding base classifier. 𝑆& is the 

number of iterations for each base model, 𝐻& represents the ensemble of each base model, 

and 𝜃& is the threshold of each ensemble model.  

Cost-Sensitive 

Unlike sampling methods that use different sampling strategies by changing the distribution 

of numbers, cost-sensitive learning methods address the problem of data imbalance by 

setting the cost of misclassification for different samples (Elkan, 2001). The basic idea is to 

create a misclassification cost matrix, which can be regarded as the cost of misclassifying a 

sample from one class into another class, where the cost of the correct class is zero. 

Assuming that the cost matrix 𝐶 is known, cost-sensitive learning classifies a sample 𝑥 into 

class 𝑗 according to the loss minimisation criterion. 

∅∗(𝑥, 𝑗) =¢ 𝑝(𝑖|𝑥)𝐶&8
&

(55) 

where ∑ 𝑝(𝑖|𝑥)𝐶&8&  denotes the expected loss of classifying sample 𝑥 into class 𝑗, 𝑝(𝑖|𝑥) 

denotes the posterior probability that the sample belongs to class 𝑖 , and 𝐶&8  denotes the 

misclassification cost of classifying sample 𝑖 into class 𝑗. It is worth noting that when all the 

elements of the cost matrix 𝐶  have a value of 1, i.e., 𝐶&8 = 1 for any 𝑖  and 𝑗 , the cost-

sensitive learning degenerates to a traditional classification learning algorithm that seeks the 

lowest classification error rate. The cost due to misclassification can be described by a 

misclassification cost matrix, Table 5.1 shows the cost matrix for the most common two-

class classification. 
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Table 5.1 Confusion and cost matrix of Cost Sensitive method. 
  Actual classes 

  Minority class Majority class 

Predicted classes 
Minority class 𝐶(+,+) 𝐶(+,−) 

Majority class 𝐶(−,+) 𝐶(−,−) 

Where 𝐶(+,+) denotes the cost of partitioning the minority class samples to the majority 

class, 𝐶(−,+) denotes the cost of partitioning majority class samples to minority class. 

When dealing with imbalanced data, the identification of minority class samples is more 

important than the identification of majority class samples. Thus, the cost of misclassifying 

minority classes is higher than the cost of misclassifying majority classes, which is expected 

to balance the difference in numbers between samples, i.e., 𝐶(+,−) > 𝐶(−,+) . If the 

classification is correct, it usually corresponds to a 0 penalty, i.e., 𝐶(+,+) = 𝐶(−,−) = 0. 

5.4 Experiment Design  

This research selects data from Lending Club 2007-2018 Q4, with 151 original features and 

1345310 observations. Based on the loan status, Fully Paid observations are marked as the 

compliance sample (i.e. negative sample) and Charged off as the default sample (positive 

sample), with 1303607 negative sample records and 261655 positive sample records in the 

dataset, the imbalance ratio is 0.20 (positive samples : negative samples = 1:5).  

5.4.1 Data Processing 

The dataset with 87 features is obtained by only processing the basic data cleaning to remove 

noise. (1) Regarding the pre-processing of the data, features with more than 40% of missing 

values are removed and the missing values which attribute less than or equal to 40% are 

filled with mean. The removed features are as Table 5.2 shows below. (2) We remove 

features which lack useful information (e.g., ‘address’, ‘zip_code’). (3) The redundant 

information is manually removed. Due to the similarity of some features, for example, 

‘loan_amnt’, ‘funded_amnt_inv’ and ‘funded_amnt’ are considered as the same record for 

loan amount (Song et al., 2020). In this case, only one feature is retained. (4) Post-loan 

features, such as ‘total_rec_int’, and ‘last_pymnt_amnt’, which leak the situation of monthly 
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payback status are removed (Namvar et al., 2018). Further, the categorical features are 

segmented with one-hot encoding32.  

Table 5.2 Pre-processing of features exclude from the dataset due to the higher missing 
percentage above 40% 

Feature name 
% of 

missing 
value 

Feature name % of missing 
value 

member_id 100 verification_status_ joint 98.1 
next_pymntd 100 dti_ joint 98.1 

orig_projected_additional_accrued_ 
interest 99.7 annual_ inc_ joint 98.1 

hardship_type 99.6 debt_ settlement flag_date 97.5 
hardship_reason 99.6 settlement_status 97.5 
hardship_status 99.6 settlement_date 97.5 
deferral_term 99.6 settlement_amount 97.5 

hardship_amount 99.6 settlement_percentage 97.5 
hardship_start_date 99.6 settlement_term 97.5 
hardship_end_date 99.6 desc 90.8 

payment_plan_start_date 99.6 mths_since_last_record 83 
hardship_length 99.6 mths_since_recent_bc_dlq 76.3 
hardship_dpd 99.6 mths_ since_last_major_derog 73.7 

hardship_loan_status 99.6 mths_since_recent_revol_delinq 66.6 
hardship_payoff_balance_amount 99.6 il_util 65.4 
hardship_last_payment_amount 99.6 mths_since_rcnt_il 61.1 

sec_app_mths_since_last_major_derog 99.5 all_util 60 
sec_app_revol_util 98.6 open_acc_6m 60 

revol_bal_joint 98.6 inq_last_12m 60 
sec_app_chargeoff_within_12_mths 98.6 total_cu_t 60 

sec_app_open_act_il 98.6 open_rv_12m 60 
sec_app_open_acc 98.6 open_il _12m 60 
sec_app_mort_acc 98.6 open_rv_24m 60 

sec_app_inq_last_6mths 98.6 max_bal_bc 60 
sec_app_earliest_cr_line 98.6 total_bal_il 60 
sec_app_fico_range_high 98.6 inq_fi 60 
sec_app_num_rev_accts 98.6 open_il_24m 60 
sec_app_fico_range_low 98.6 open_act_il 60 

sec_app_collections_12_ mths_ex_ 
med 98.6 mths_since_last_delinq 50.5 

The dataset with 17 features which represents the feature selection of some scholars with 

respect to credit risk assessment on Lending Club’s dataset33 is manually selected based on 

existing articles (Babaei and Bamdad, 2020; Bastani et al., 2019). The specific features we 

select are shown in Table 5.3. 

 
32 The 𝑁 states are encoded using 𝑁-bit status registers, each with its own independent register bit 
and only one of which is valid at any given time. For each feature, if it has 𝑁 possible values, then 
after one-hot encoding it becomes 𝑁 binary features. These features are mutually exclusive, with 
only one activation at a time. As a result, this solves the problem that the classifier does not handle 
attribute data well. It also serves to expand the features to a certain extent. 

33 Description source: http://rstudio-pubs-
static.s3.amazonaws.com/290261_676d9bb194ae4c9882f599e7c0a808f2.html 
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Table 5.3 The dataset with 17 features. 
Feature name Description  

Annual_Income The self-reported annual income provided by the borrower during 
registration. 

Delinqency_2yrs The number of 30+ days past-due incidences of delinquency in the 
borrower’s credit file for the past 2 years. 

Employment_Length Employment length in years. Possible values are between 0 and 10 
where 0 means less than one year and 10 means ten or more years. 

Home_Ownership Own, rent, mortgage. 
Inquery_Last_6mths The number of inquiries in the past 6 months. 

Loan_Amount The listed amount of the loan applied for by the borrower. 
Purpose 14 loan purposes: wedding, credit card, car loan, major purchase, home 

improvement, debt consolidation, house, vacation, medical, moving, 
renewable energy, educational, small business, and other. 

Open_Account The number of open credit lines in the borrower’s credit life. 
Fico A measure of credit risk, based on credit reports that range from 300 

to 850. FICO is a registered trademark of Fair Isaac Corporation 
Grade LC assigned loan grade. (7 loan grades totally for borrowers from A to 

G, A-grade being the best grade.) 
Sub_Grade LC assigned loan subgrade. (35 loan subgrades totally for borrowers 

from A1 to G5, A1 denotes to the best subgrade.) 
Dti A ratio calculated using the borrower’s total monthly debt payments 

on the total debt obligations, excluding mortgage and the requested LC 
loan, divided by the borrower’s self-reported monthly income. 

Revoling_Utilisation Revolving line utilisation rate, or the amount of credit the borrower is 
using relative to all available revolving credit. 

Interest_Rate The interest rate on the loan paid by the borrower. 
Installment The monthly payment owed by the borrower if the loan originates.  

Public_Record Number of derogatory public records. 
Months_Since_Last_Delinqency The number of months since the borrower’s last delinquency. 

5.4.2 Experimental Setup 

DT and XGBoost were chosen as the base classifier as the best rank baseline model, and the 

parameters were selected by the Grid search mechanism 34 . Use max_depth=20, 

min_samples_leaf=5, and min_samples_split=2 for DT, and for XGBoost, max_depth=6, 

n_estimators=100 are used as parameters. To further avoid overfitting, the early stopping 

mechanism35 is used to ensure that the XGBoost loss function stops training when it reaches 

 
34 Among all the alternative parameter choices, look for the best-performing parameter by iterating 
through the loop and testing every possibility. For 𝑘 parameters, there are 𝑚! values to take. The 
total number of configurations: 𝑁 = 𝑚" ×𝑚# ×. . .× 𝑚! . If the hyperparameters are continuous, 
some empirical values can be chosen empirically, such as learning rate: 𝛼 ∈ {0.01, 0.1, 0.5,1.0}, for 
different combinations of these hyperparameters, train and test the performance on the validation set 
separately, and finally select the best performing parameter configuration from them. 
35 The expectation of the ideal model is that as the model's error in the training set decreases, its error 
performance in the validation set does not deteriorate. Conversely, when the model performs well on 
the training set and poorly on the validation set, we assume that the model is overfitting. By 
calculating the model's performance on the validation set during training and stopping training when 
the model's performance on the validation set starts to decline, the problem of overfitting by 
continuing training could be avoided. 
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its minimum point (see Figure 5.3), avoiding too long and ineffective learning. This 

expiriment selects 20% of the dataset as the test set, i.e., 269062 observations with 53454 

default samples (denotes as 1 in classification) and 215608 fully paid samples (denotes as 0 

in classification). And 80% of the dataset as the train set, i.e., 1076248 observations with 

215105 default samples and 861143 fully paid samples. The further adjustment in the 

imbalance ratio is processed in the train set.  

 

 

Figure 5.3 Log loss curve and classification error changes of XGBoost. 
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5.4.3 Evaluation Metrics 

For the evaluation of binary imbalance data, traditional evaluation metrics such as accuracy 

cannot effectively assess the performance of the model for imbalance data problems due it 

cannot reflect the identification situation of true positive and false positive. Thus, F-measure, 

AUC, G-mean, Matthews correlation coefficient (MCC) and Bookmaker Informedness (BM) 

are chosen as evaluation metrics for imbalance data credit risk assessment, emphasising the 

significance of true positive and true negative identification for the model. F-Measure is a 

composite evaluation indicator that measures Precision and Recall comprehensively and is 

calculated as follows. 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(56) 

AUC is used to represent the area enclosed by the ROC curve and the coordinate axis, so the 

value of AUC is not greater than 1. Since the ROC curve always lies above 𝑦 = 𝑥, the value 

of AUC ranges between 0.5 and 1. The closer the AUC is to 1, the better the reliability of 

the model, and equal to 0.5, the model is equivalent to random guessing and has no 

application value. 

G-mean is a comprehensive evaluation metric measuring the accuracy of positive and 

negative classes, which contains 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  and 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 , where 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑇𝑃/

(𝑇𝑃 + 𝐹𝑁), which measures the classifier's ability to identify positive class samples, and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃), which measures the classifier's ability to identify negative 

classes ability. The greater the true-positive rate and true-negative rates of the classification 

model, the better the performance of the model; correspondingly, the greater the false-

positive and false-negative rates of the classification model, the worse the performance of 

the model. The G-mean is therefore a good indicator of the performance of the classification 

model and is not affected by the imbalance of the dataset (Bekkar et al., 2013). 

𝐺 −𝑚𝑒𝑎𝑛 = Á𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (57) 

The MCC also takes into account true-positives, true-negatives, false-positives and false-

negatives, and is generally considered to be a more balanced indicator that can be applied 

even when the sample content of the two categories is extremely different (Boughorbel et 

al., 2017; Zhu, 2020). The MCC is essentially a correlation coefficient describing the 
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relationship between the actual and predicted classifications and takes values in the range 

[−1,1], where a value of 1 indicates a perfect prediction of the subject, a value of 0 indicates 

that the prediction is not as good as the random prediction, and -1 means that the predicted 

classification and the actual classification do not agree at all. 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

Á(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(58) 

BM is a comprehensive assessment metric that is often applied to measure the results of 

imbalance data (Zhang & Chi, 2021; Chicco et al., 2021). 

𝐵𝑀 = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 (59) 

5.5 Results  

Both datasets were evaluated with the same model. Thus, the following results are obainted. 

Table 5.4, 5.5 and 5.6 shows the classification results with different base estimators of the 

models when specific features are selected, while Table 5.7, 5.8 and 5.9 shows the 

classification results with a different base estimator of our dataset with more complete 

features by pre-processing the data.  

Tables 5.4, 5.5 and 5.6 show the results of each model based on 18 feature-specific datasets 

with XGBoost, DT and LR as base classifiers, respectively. The AUC shows that the 

effectiveness of this dataset is not good. In Table 5.4, the results for XGBoost as a base 

classifier, for example, show that the AUCs of basically all models, including the imbalanced 

learning model, are below 0.6, except for ES-XGBoost, which has the highest score of 

0.64737 but is still poor. In addition, the F-measure can be used to evaluate the results of the 

combined precision and recall trade-offs, and the low F-measure for the feature-specific 

dataset indicates that the models are not effective in identifying positive samples in the data. 

The F-measure for the feature-specific dataset evaluation results are all below 0.5, which 

indicates that the overall effectiveness of identifying positive samples in this data is poor, 

possibly due to the imbalanced data problem as in the previous study. The G-mean, however, 

is not affected by the imbalanced data and thus better reflects the training effect of the model, 

which to some extent reflects the true effect of the model training, but the overall result is 

still low, indicating that the model is not able to discriminate between positive and negative 

samples. Similarly, the MCC index is close to 0, which further indicates that the model 
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results can barely discriminate between positive and negative samples. This may be due to 

the low classification effect caused by the imbalance of the data which makes it difficult to 

identify a few samples. However, we added a variety of imbalance learning methods and we 

found that the overall assessment improved again with the addition of further imbalance 

learning methods, with better results than a single classifier for each metric, but the overall 

results were still poor. The ES-XGBoost has the highest rank among the overall metrics. 

This result suggests to some extent that although the unbalanced learning methods improve 

the evaluation of this data sample, they still do not effectively address the problem of 

misclassification of positive and negative samples, so the problem may lie in the data set 

itself. Similar results could be observed from Table 5.5 and Table 5.6 that DT and LR as 

base classifiers. The results suggest that the conclusions drawn in previous studies, i.e. the 

inefficiency of selecting a small number of specific features and thus attributing their results 

to unbalanced data, still merit further observation. 
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Table 5.4 Classification results with XGBoost as the base estimator (specific dataset). 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank Ave rank 

XGBoost 0.54778 5 0.28290 5 0.09290 6 0.4855 5 0.09555 5 5.2 
Bagging-XGBoost 0.53561 7 0.16159 7 0.14597 2 0.3071 7 0.07122 7 6 

Easy Ensemble-XGBoost 0.64737 1 0.42442 1 0.23780 1 0.64638 1 0.29474 1 1 
IHT-XGBoost 0.56479 2 0.31906 2 0.11740 3 0.53055 2 0.12957 2 2.2 

Tomek Links-XGBoost 0.55353 3 0.29685 3 0.10090 4 0.50344 3 0.10705 3 3.2 
SMOTE-XGBoost 0.55126 4 0.28916 4 0.09914 5 0.49221 4 0.10253 4 4.2 

CS-XGBoost 0.54611 6 0.27590 6 0.09198 7 0.47514 6 0.09223 6 6.2 
 

Table 5.5 Classification results with DT as the base estimator (specific dataset). 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank Ave rank 

DT 0.52959 5 0.13031 5 0.14799 7 0.26949 5 0.05918 5 5.4 
Bagging-DT 0.52944 7 0.12910 7 0.14906 6 0.26794 7 0.05888 7 6.8 

Easy Ensemble-DT 0.65624 1 0.43407 1 0.25336 1 0.65584 1 0.31247 1 1 
IHT-DT 0.61269 2 0.39409 2 0.20222 2 0.53940 2 0.22538 2 2 

Tomek Links-DT 0.55203 3 0.21639 3 0.18446 3 0.36427 3 0.10405 3 3 
SMOTE-DT 0.53145 4 0.13886 4 0.14966 5 0.27963 4 0.06290 4 4.2 

CS-DT 0.53072 6 0.13520 6 0.14972 4 0.27523 6 0.06144 6 5.6 
 

Table 5.6 Classification results with LR as the base estimator (specific dataset). 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank Ave rank 

LR 0.51529 5 0.09086 5 0.07556 5 0.22463 5 0.03058 5 5 
Bagging-LR 0.50771 6 0.04696 6 0.05541 6 0.15721 6 0.01542 6 6 

Easy Ensemble-LR 0.62498 3 0.40228 3 0.20087 3 0.62285 3 0.24997 3 3 
IHT-LR 0.61216 4 0.39267 4 0.18704 4 0.57783 4 0.22432 4 4 

Tomek Links-LR 0.50040 7 0.00434 7 0.00819 7 0.04672 7 0.00080 7 7 
SMOTE-LR 0.62736 1 0.40457 1 0.20529 1 0.62658 1 0.25472 1 1 

CS-LR 0.62504 2 0.40234 2 0.20096 2 0.62292 2 0.25008 2 2 
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Table 5.7 Classification results with XGBoost as the base estimator (our dataset) 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank ave rank 

XGBoost 0.99009 2 0.98771 1 0.98471 1 0.99006 2 0.98018 2 1.6 
Bagging-XGBoost 0.98964 4 0.98754 2 0.98451 2 0.98960 5 0.97927 5 3.6 

Easy Ensemble-XGBoost 0.9926 1 0.98622 5 0.9828 5 0.99260 1 0.98521 1 2.6 
IHT-XGBoost 0.8460 7 0.61716 7 0.55565 7 0.83204 7 0.69201 7 7 

Tomek Links-XGBoost 0.98992 3 0.98740 3 0.98433 3 0.98988 4 0.97983 4 3.4 
SMOTE-XGBoost 0.98938 5 0.98663 4 0.98338 4 0.98934 6 0.97875 6 5 

CS-XGBoost 0.9809 6 0.93413 6 0.96403 6 0.99001 3 0.98003 3 4.8 
 

Table 5.8 Classification results with DT as the base estimator (our dataset) 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank Ave rank 

DT 0.98648 6 0.98032 2 0.97547 2 0.98643 6 0.97295 6 4.4 
Bagging-DT 0.98793 2 0.98422 1 0.98036 1 0.98788 2 0.97586 2 1.6 

Easy Ensemble-DT 0.98979 1 0.97917 4 0.9740 4 0.98979 1 0.97959 1 2.2 
IHT-DT 0.98767 3 0.97708 6 0.97138 6 0.98765 3 0.97533 3 4.2 

Tomek Links-DT 0.98652 5 0.98019 3 0.97531 3 0.98647 5 0.97303 5 4.2 
SMOTE-DT 0.98721 4 0.97896 5 0.97374 5 0.98718 4 0.97442 4 4.4 

CS-DT 0.98566 7 0.96922 7 0.96160 7 0.98566 7 0.97132 7 7 
 

Table 5.9 Classification results with LR as the base estimator (our dataset) 
Model  AUC Rank F-Measure Rank MCC Rank G-Mean Rank BM Rank Ave rank 

LR 0.97341 6 0.96495 3 0.95654 3 0.97318 6 0.94682 6 4.8 
Bagging-LR 0.97350 5 0.96575 1 0.95757 1 0.97326 5 0.9470 5 2.6 

Easy Ensemble-LR 0.97645 2 0.94742 6 0.93446 6 0.97645 2 0.95291 2 3.8 
IHT-LR 0.75452 7 0.50272 7 0.41301 7 0.71409 7 0.50905 7 7 

Tomek Links-LR 0.97410 4 0.96517 2 0.95677 2 0.97389 4 0.94821 4 3.4 
SMOTE-LR 0.97716 1 0.95763 4 0.94707 4 0.97711 1 0.95432 1 2.4 

CS-LR 0.97632 3 0.94794 5 0.93509 5 0.97631 3 0.95265 3 4 
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Tables 5.7, 5.8 and 5.9 show the results for each model with XGBoost, DT and LR as base 

classifiers for our dataset after pre-processing, respectively. Using Table 5.7 as an example, 

we find that the ES model is still the best choice for the XGBoost-based classifier based on 

the validity metric AUC. In this sample evaluation, the models were generally able to obtain 

very good classification results, with AUCs above 0.8. Even a single XGBoost model could 

achieve an AUC of 0.99009. This result shows that although there are data imbalances in the 

lending club dataset, the evaluation effect is not affected by the data imbalance when the 

features are comprehensive. Even the excessive use of unbalanced learning methods can lead 

to a decrease in effectiveness. 

Furthermore, the relationship between feature selection and imbalanced data in depth is 

explored. For the dataset with 87 features, each base classifier and its ES model are used to 

measure the importance ranking of features and set different thresholds for selecting relevant 

features. Randomly removing a proportion of positive samples to form a more severe 

proportion of imbalance, allows the test to examine in detail the variation in evaluation 

effects between different levels of data imbalance and different feature selections. Thus,  the 

full feature dataset with the XGBoost evaluation model is evaluated and the results are 

presented in Figure 5.4.  

From Figure 5.4, it is observed that under the single XGBoost model evaluation, when the 

imbalance of the dataset is 1:5, the feature selection can get the optimal solution by removing 

the features with importance ranking below 0.01. As the imbalance becomes more serious, 

the evaluation of the model does not decrease much when the features are more complete, 

even if the imbalance ratio deteriorates from 1:5 to 1:500, at the feature selection threshold 

of 0.01 still had an AUC of 94.64%, F-measure of 94.93%. In addition, for feature selection, 

the model works best with a threshold of 0.01, however, compared to the results in Table 

5.5, the more complete the features are, the better the model evaluation results are found. As 

the threshold increases, i.e., the more features we remove, the evaluation of the model 

becomes progressively worse, and the performance of the model decreases significantly as 

the number of unbalanced data problems increases. Even in the case of an imbalance greater 

than 1:100, too limited data can lead to the model not working properly and the metrics being 

0. 

An interaction plot between sample selection and feature selection with the ES-XGBoost 

model is further shown in Figure 5.5. As the imbalance learning model with the best average 

performance for both dataset, the results of ES-XGBoost shows a similar trend to the results 



154 

 

of the single XGBoost model. For sample selection, as the ratio of imbalance increases, the 

effectiveness of the model evaluation decreases. And as the threshold for feature selection 

increases, i.e. more features are removed, the model’s effectiveness also decreases. 

Moreover, it is worth noting that when the imbalance ratio and feature selection increase 

simultaneously, unlike the results of the single XGBoost model, ES-XGBoost is able to 

obtain reasonable evaluation results despite a high degree of imbalance and a very limited 

number of features, e.g. when the imbalance ratio is 1:500 and the threshold of feature 

selection is 0.1, the model AUC still reaches 88.742%, the F-measure of 74.154% and G-

mean of 88.714%. This demonstrates that ES-XGBoost is very effective for imbalanced data 

processing, and is able to solve the problem of imbalanced data with large differences in 

binary classes. It also illustrates that for datasets with limited features, the ES-XGboost 

method also alleviates the poor performance to a certain extent. 

To demonstrate the robustness of the results, the experimental results with LR and with DT 

as the base classifier are shown in Figure 5.6 which presents the Interaction heat plot of the 

imbalance ratio & feature selection threshold with DT as the base classifier. And Figure 5.7 

shows the ES-DT heat plot. Likewise, Figure 5.8 and Figure 5.9 show the heat plot with LR 

and ES-LR as the method respectively. It is observed that as the imbalance indicator becomes 

more severe, the evaluation of each model becomes less effective. Similarly, as the threshold 

increases, i.e. as fewer features are used for evaluation, the models become less effective. 

When both the degree of imbalance and the degree of feature reduction increase, the models 

become sharply and severely worse, which is in line with our expectations. 

Based on the evaluation results of various models with different base classifiers, we conclude 

that ES-XGBoost has the best evaluation results. ES addresses the issue of extremely 

imbalanced datasets, ensuring that the model pays more attention to the minority class. This 

helps in situations where one class is significantly underrepresented. While XGBoost is also 

known for its powerful performance, efficient computation, and ability to capture complex 

patterns in the data. It provides a strong base classifier for the easy ensemble to aggregate 

and create a robust final prediction. So, by comparing Figure 5.4 and Figure 5.5 we also 

conclude that ES-XGBoost is effective in alleviating the imbalance of the data with limited 

features. Combining the strengths of ES and XGBoost, the resulting ensemble model has the 

potential to provide better generalisation and accuracy, especially when dealing with 

imbalanced datasets and complex relationships in the data. Then, a further feature 

importance analysis was performed on the data by XGBoost and derived the minimum 
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feature set. The variation of the AUC results of the model with ES-XGBoost as the classifier 

and modulated feature selection by threshold is shown in Figure 5.10. Since the selected 

feature set has 87 initial features, each feature has a relatively small importance share, and 

the result is selected with a feature importance rank of 0.001. It is found that the AUC reaches 

its highest value when the threshold is at 0.007, from which this study selects the feature set 

with feature importance above the threshold of 0.007 as the minimum feature set (see Table 

5.10). Compared with the dataset with 17 features, the minimum feature set includes the 

term, verification status, number of mortgage accounts, number of trades opened in the past 

24 months, number of currently active revolving trades, number of accounts currently 120 

days past due (updated in past 2 months), the average current balance of all accounts, total 

bankcard high credit/credit limit and application type of users. This result identifies the 

attributions of this information in credit risk assessment. 
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Figure 5.4 Interaction heat plot of imbalance ratio & feature selection threshold with 
XGBoost in selected dataset. 
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Figure 5.5 Interaction heat plot of imbalance ratio & feature selection threshold with ES-
XGBoost in complete dataset. 
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Figure 5.6 Interaction heat plot of imbalance ratio & feature selection threshold with DT in 
selected dataset. 
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Figure 5.7 Interaction heat plot of imbalance ratio & feature selection threshold with ES-
DT in complete dataset. 
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Figure 5.8 Interaction heat plot of imbalance ratio & feature selection threshold with LR in 
selected dataset. 
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Figure 5.9 Interaction heat plot of imbalance ratio & feature selection threshold with ES-
LR in complete dataset. 
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Figure 5.10 The AUC of ES-XGBoost model in different threshold. 
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Table 5.10 Minimum feature set based on the feature selection.  
Importance 

rank 
Feature name Importance Description  

1 grade 0.21411 LC assigned loan grade 
2 sub_grade 0.20161 LC assigned loan subgrade 

3 term 0.06025 The number of payments on the loan. Values 
are in months and can be either 36 or 60. 

4 

home_ownership_MORTGAGE 

0.03236 

The home ownership status provided by the 
borrower during registration or obtained from 
the credit report. Our values are: RENT, 
OWN, MORTGAGE, OTHER 

5 

home_ownership_RENT 

0.02474 

The home ownership status provided by the 
borrower during registration or obtained from 
the credit report. Our values are: RENT, 
OWN, MORTGAGE, OTHER 

6 verification_status_Not Verified 0.02270 Indicates if income was verified by LC, not 
verified, or if the income source was verified. 

7 mort_acc 0.02202 Number of mortgage accounts. 
8 acc_open_past_24mths 0.01662 Number of trades opened in past 24 months. 
9 num_actv_rev_tl 0.01518 Number of currently active revolving trades. 

10 num_tl_120dpd_2m 0.01364 Number of accounts currently 120 days past 
due (updated in past 2 months) 

11 avg_cur_bal 0.01340 Average current balance of all accounts. 

12 purpose_small_business 0.01290 A category provided by the borrower for the 
loan request. 

13 
emp_length 

0.01236 
Employment length in years. Possible values 
are between 0 and 10 where 0 means less than 
one year and 10 means ten or more years. 

14 

dti 

0.01135 

A ratio calculated using the borrower’s total 
monthly debt payments on the total debt 
obligations, excluding mortgage and the 
requested LC loan, divided by the borrower’s 
self-reported monthly income. 

15 
fico 

0.01053 
A measure of creditworthiness, based on 
credit reports that range from 300 to 850. 
FICO is developed by Fair Isaac Corporation 

16 

loan_amnt 

0.01033 

The listed amount of the loan applied for by 
the borrower. If at some point in time, the 
credit department reduces the loan amount, 
then it will be reflected in this value. 

17 purpose_medical 0.00828 A category provided by the borrower for the 
loan request. 

18 
delinq_2yrs 

0.00821 
The number of 30+ days past-due incidences 
of delinquency in the borrower's credit file for 
the past 2 years 

19 installment 0.00762 The monthly payment owed by the borrower 
if the loan originates. 

20 total_bc_limit 0.00758 Total bankcard high credit/credit limit 

21 annual_inc 0.00745 The self-reported annual income provided by 
the borrower during registration. 

22 mths_since_recent_inq 0.00744 Months since most recent inquiry. 

23 
application_type_Individual 

0.00730 
Indicates whether the loan is an individual 
application or a joint application with two co-
borrowers. 

 

3 
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5.6 Conclusions 

P2P lending is becoming an important way forward in the financial sector as an innovation 

in the consumer finance business model. As the number of users increases and the amount 

of lending grows, credit risk as the core risk that needs attention is also gradually rising. 

When using FinTech tools for risk management, training on historical data to obtain an 

effective credit risk assessment model is the basis of risk control modelling, but the problem 

of data imbalance leads to poor performance of traditional classification and prediction 

models on the test set. Also due to the data-driven nature of P2P lending, how to select 

suitable variables for training for high-dimensional data is also the key to effective risk 

assessment. This chapter takes a practical approach to the problem by using the initial dataset 

of Lending Club 2007-2018 Q4 to investigate credit risk assessment (containing 151 

features). By arranging two datasets to compare the assessment results, this chapter focuses 

on three research questions. Firstly, aiming to figure out whether an imbalanced data issue 

matters in the Lending Club dataset with complete features, this study obtained a dataset 

with 87 features by removing missing values and noise from the initial dataset based on the 

basic data pre-processing only. The good performance of this dataset illustrates that a more 

complete feature set would cause a less imbalanced effect on the credit risk assessment 

model.  

Secondly, to further identify whether the feature incompleteness in the existing literature 

result in poor performances of the existing models, the dataset with 17 features are selected 

based on the dataset already used by previous papers for the imbalance data study. By using 

LR, DT and XGBoost as base classifiers, the performance of two datasets is obtained and 

compared. The results revealed that the evaluation was poor based on the dataset chosen by 

the previous scholars, while the imbalanced learning approach did not effectively improve 

the evaluation. The result illustrates that the possible problems with the dataset are not just 

a matter of imbalanced data. In contrast, the evaluation of the dataset with 87 features is very 

good and the model is still very effective in identifying defaulting users even when trained 

using only the base classifier. And the results show that the Easy Ensemble approach is very 

effective in alleviating the problem of imbalanced data. This comparison illustrates the 

importance of data features and that too limited feature selection can lead to serious risk 

assessment problems. 

Finally, to investigate the solution of mitigating the imbalanced data issue with limited 

features, the dynamics between the imbalanced data problem and feature selection are tested 
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based on the dataset with 87 features. Using the XGBoost algorithm for feature selection and 

adjusting the threshold to reduce the features, while the imbalance ratio of the training set is 

adjusted to make it progressively more imbalanced. Thus, a heat map is shown to represent 

the dynamics between the imbalance ratio and feature selection. For the traditional single-

base classifier evaluation model, the evaluation model is found that becomes less effective 

as the imbalance increases in the absence of feature reduction. Similarly, a gradual reduction 

in features also makes the evaluation model less effective when the data imbalance ratio is 

constant. When both the imbalance ratio and the feature reduction increase, the traditional 

classification model deteriorates dramatically, rendering the assessment unworkable. As a 

representative of the unbalanced learning approach, the same heat map demonstration was 

also performed using Easy Ensemble. The results are consistent in that too few features and 

too much imbalance will both cause the assessment model to deteriorate, but with the fewest 

features and the highest level of unbalance, the training model maintains relatively good 

assessment results and does not deteriorate dramatically. This suggests that Easy Ensemble 

's imbalance learning method is effective in dealing with both imbalanced data issues and 

problems with limited features. It also shows that too few data features can lead to poorer 

model evaluation when the data has some data imbalance problem. Ultimately, the minimum 

feature set which includes 23 features according to the XGBoost feature importance ranking 

and considering the model evaluation metrics and comprehensive operation is selected. 

On this basis, this chapter makes the following recommendations based on the risk 

assessment of P2P lending. Firstly, appropriate risk management by P2P enterprises is 

always inseparable from the development of the credit industry, which is due to the fact that 

credit and finance are always complementary to each other. However, at present, there are 

various problems such as fragmentation of data collection scenarios, prominent data silos, 

serious data homogenisation and difficulty in guaranteeing data quality, thus making it 

difficult to match the development of data supply and risk assessment, and failing to form a 

useful complement to P2P lending risk management, thereby restricting the healthy and 

sustainable development of the P2P lending industry. Therefore, full consideration should 

be given to incorporating valid data into the construction of P2P lending default risk 

prediction models. Secondly, in the future practical application environment, the sources of 

data will be rich and diverse, and the processing of multi-source data will be based on 

machine learning. The processing of data from multiple sources will be one of the difficulties 

in modelling financial risk management based on machine learning algorithms. In the future 

era of explosive data growth, credit data will exist not only in the form of data presentation 
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but also in the form of text and even including voice and video. Thus, it is attempted to 

incorporate these multimodal data into the default risk prediction modelling to increase the 

diversity of the data structure of the prediction model. Finally, the forecasting models 

constructed in this paper are all based on machine learning algorithms, which are themselves 

a form of black-box forecasting. Financial institutions need not only prediction models that 

perform well, but also prediction models that can be interpreted. When prediction models 

can be interpreted, the decision process of the model can be informed, and thus they can be 

improved to obtain a more accurate model. In particular, when financial institutions use 

machine learning to model risk problems, they need to be able to understand and trust the 

models, and only then can they be widely used. Therefore, combining machine learning 

algorithms with empirical analysis is recommended for future research in order to improve 

the interpretability of predictive models. 
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Chapter 6  General Conclusion 

6.1 Summary  

This chapter summarises the main findings on the subject of the study, distils the 

connotations and implications of the research findings, and reviews the contributions of the 

relevant literature. It also shows the limitations of current research and how to improve the 

prospect for future research. Based on the rapid and widespread emergence of FinTech, this 

thesis provides an investigation and review of the state of FinTech development and its 

implications for the development of different financial service cooperation concepts, 

business models, and financial needs, in the context of the new functions that FinTech has 

injected into traditional financial institutions and the application of new technologies to 

financial services. The thesis begins with a thorough review of previous academic research, 

on the basis of which it defines the connotation of FinTech and argues that FinTech is a 

holistic concept that can be understood in three dimensions: industry, technology, and 

integration. As a result, through empirical analysis, this study firstly clarifies the positive 

impact of FinTech on the efficiency of traditional commercial banks. Secondly, this thesis 

boasts a structured collation and analysis of systems for credit risk management through 

advanced machine learning combined with specific financial services. The specific 

processes of combining each service with FinTech are analysed and summarised in terms of 

two specific business models, i.e. SCF and P2P lending. Finally, this study presents a 

comprehensive analysis of machine learning models and data analysis methods for credit 

risk assessment-related classification problems and validates the effectiveness of the hybrid 

models. The followings summarise the contributions as well as the conclusions of each of 

the three independent empirical studies. 

Chapter 3 employs a two-stage double bootstrapped truncated regression model proposed by 

Simar and Wilson (2007) to explore the impact of FinTech development on the efficiency 

of Chinese commercial banks. This study provides a systematic review of FinTech 

development in the Chinese banking industry and identifies the positive effect of emerging 

FinTech development on the efficiency of Chinese commercial banks. Using financial data 

of Chinese commercial banks for the period 2011-2020, the first stage employs the DEA-

Malmquist approach to efficiency estimation and analyses the dynamics changes of Chinese 

commercial banks' efficiency over the decade. In the second stage, the Digital FinTech 

Inclusion is applied to the truncated regression model as a representative index of FinTech 
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development. The positive impact of FinTech development on the efficiency of commercial 

banks is expanded from the perspective of bank ownership and regional financial 

development. The impact of FinTech development varies for different ownership structures 

of Chinese commercial banks. Smaller commercial banks, such as city commercial banks, 

which rely on the local economy and business development, are more positively impacted 

by FinTech development than state-owned banks and joint-stock banks. Regional financial 

development was included as a consideration for bank efficiency in response to the nature 

of the business structure of city commercial banks linked to the local economy, and the 

positive impact of FinTech development on the efficiency of urban commercial banks was 

greater in regions with higher FinTech development than in those with less developed 

financial development. From the perspective of political effect, this study identifies the 

extent of the influence of FinTech on the efficiency of Chinese commercial banks and 

provides additional policy guidance for the development of local financial institutions. In 

addition, this study of local financial development as a macro-factor for the development of 

FinTech in Chinese city commercial banks' commercial banks deepens the significance of 

financial inclusion development and the growth of local financial institutions. From the 

perspective of research improvement, the application of a two-stage bootstrap-Malmquist 

truncated regression method provides further relevant research with a more robust and 

complete reference. 

The objective of Chapter 4 is to conduct a credit risk assessment for DSCF through a hybrid 

XGBoost-MLP model. This study explores in detail the content and risk management 

elements of DSCF at a model level. Based on the analysis of the business processes of DSCF 

and the review of previous studies, the incorporation of digital features into the credit risk 

assessment model increases the effectiveness of credit assessment in this area. The essay 

validates the importance of digital features in the risk assessment of DSCF by comparing the 

credit risk assessment results of various base classifier models. The findings also verify the 

advantages of the MLP model and the superiority of the hybrid model with feature selection. 

This study enriches credit risk assessment at both theoretical and practical levels and clarifies 

the issue of feature selection for the DSCF field. Meanwhile, the extended credit risk 

assessment system promotes data-driven decision-making within DSCF institutions. 

Moreover, by considering a broader range of features, such as ERP system construction and 

usage and SCF platform status, the system offers a more accurate and in-depth risk 

assessment. This heightened risk evaluation helps banks and financial institutions identify 

potential risks and make well-calibrated financing decisions. 



169 

 

Chapter 5 attempts to investigate the imbalanced data issue based on P2P lending credit risk 

assessment. The review of studies on the imbalanced data issue in P2P lending reveals that 

there is confusion and subjective assumptions in the existing literature between the 

imbalanced data problem and incomplete sample characteristics. The inefficiency of the 

model on this basis is not because of an imbalance in the data but may be due to a lack of 

features. In the absence of a systematic analysis of the relationship between imbalanced data 

and feature selection in P2P lending credit risk assessment, this study compares the feature 

selection problem of Lending Club, a P2P lending platform, with the existing literature on 

the subject. By constructing two comparative feature sets, the feature set selected based on 

the existing literature is used as the baseline feature set and the dataset obtained through data 

cleaning is used as the complete dataset. Meanwhile, this study collates the model of 

imbalance learning as a benchmark for the research method on the imbalance problem. The 

trade-off relationship between the degree of data imbalance and the degree of feature 

selection in the analysis of credit risk assessment is investigated. when the data features are 

certain, the higher the degree of data imbalance will make the assessment model less 

effective, and in the case of relatively complete data features, the data imbalance problem 

has less impact on the credit risk assessment model. However, for a given level of data 

imbalance, the more missing features severely worsen the effectiveness of the model. At the 

same time, with a low level of data imbalance, missing features have a significant impact on 

the credit risk assessment model. Based on this finding, the minimum effective feature set is 

generated for Lending Club’s dataset. Further, by using and comparing the imbalance 

learning methods, the Easy-Ensemble method is the most effective and it can successfully 

mitigate the imbalance problem and feature missing problem of the data. This finding 

provides fundamental theoretical support for the subsequent research on P2P lending risk 

assessment and the exploration of the imbalanced data problem. Moreover, the identified 

machine learning techniques help in balancing the data distribution, ensuring that the credit 

risk model can accurately capture the risks associated with both low and high-risk borrowers. 

Finally, by implementing an interactive trade-off that incorporates imbalanced data issues 

and feature selection, this study improves can fine-tune the credit risk models regularly in 

P2P lending. 

6.2 Contributions and Importance of the Thesis  

At present, the rapid development of FinTech has a significant impact on the business and 

operation of traditional financial institutions, which are facing rapid innovation in the 

economic and financial environment, market competition and customer demand. The 
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transformation of their operations urgently requires the empowerment of FinTech to 

optimise their business models, improve innovation efficiency and management 

effectiveness, and ultimately enhance the efficiency and functionality of financial services. 

In order to accelerate the transformation of their business development philosophy, 

traditional financial institutions should strategically recognise the importance of FinTech 

and integrate FinTech into their overall business strategies, as well as their top-level design 

and planning, and actively promote the transformation of their business operations. Chapter 

3 provides the theoretical support and impetus for the transformation and development. 

Simultaneously, this thesis emphasises the concrete hands-on analysis of FinTech 

applications for various detailed operations. Emerging information technologies provide 

effective means to implement FinTech strategies. Firstly, using cloud computing, big data, 

and other technologies to deepen the transformation of the data system architecture to 

provide strong support for rapid response to market and customer expectations. Secondly, it 

establishes an enterprise-level business architecture to realise the coordination and 

integration of business demands and enhance the efficiency of business innovation. Thirdly, 

the goals of focusing on the application of cutting-edge technologies in the financial sector, 

building application models based on AI and other new technologies, enhancing perception, 

analysis, decision-making, and prediction capabilities, improving operational efficiency and 

output capacity, and boosting financial business development are theoretically supported. 

6.3 Limitations and Future Research Dimensions  

Due to the availability of data and the design of the model, there are still some limitations 

and shortcomings in the research process of this paper, which can be further developed and 

improved in the future.  

From the perspective of the research design, the innovation of this thesis includes the 

prediction of credit risk assessment through machine learning methods and the analysis of 

data characteristics. However, due to the poor interpretability of the machine learning 

approach, the empirical analysis and derivation of the model results are lacking. As Kruse et 

al. (2022) suggested, the application of AI technology and machine learning algorithm 

models in the financial industry is becoming more and more common and in-depth, 

promoting the intelligent development of the industry, while the algorithm black box 

problem, security issues, bias issues, etc. are also exposed and become potential risks 

affecting the healthy development of the financial industry. Especially for machine learning 
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applications such as credit rating, the development and systematic analysis of explainability 

models and algorithms are very important. Moreover, the limitations of machine learning 

models in this thesis are intertwined with the challenges of running them efficiently in terms 

of both size and time. As models become more complex and sophisticated, their size tends 

to increase, posing challenges for storage, memory, and bandwidth requirements. Larger 

models demand more computational resources, which can strain hardware capabilities and 

hinder deployment on devices with limited processing power. Additionally, the time 

required to train and run these models can be a significant bottleneck, especially when 

dealing with massive datasets or real-time applications. Longer training times not only 

impede rapid experimentation and development but also increase the overall cost of 

computation. Balancing the trade-off between model complexity and practical deployment 

considerations remains a crucial challenge in the field of machine learning, requiring 

continuous efforts to optimize size and runtime efficiency without compromising 

performance. 

From the perspective of empirical analysis, the data availability is the main limitation. The 

study of SCF in Chapter 4 is limited by the lack of profound information on the amount and 

mode of financing of SCF. Due to the non-mandatory nature of SCF data disclosure by listed 

companies, this article only compiles superficial data on whether enterprises have developed 

DSCF, the number of years of development of relevant systems and supply chain financial 

capability through manual collection. However, the detailed information on the amount of 

SCF generated by enterprises, the mode of SCF and specific supply chain financial products 

cannot be obtained. In addition, the use of different SCF models, such as accounts receivable 

financing model, prepayment financing model and inventory financing model, and the 

exploration of the heterogeneity of risk assessment of DSCF based on various models are 

more conducive to revealing its operation process and internal logic. Thus, the limitation of 

data availability stands as a formidable challenge in the realm of machine learning. Machine 

learning algorithms heavily rely on large and diverse datasets to generalize patterns 

effectively. Nevertheless, obtaining and curating such datasets can be a daunting task, 

especially in niche domains or emerging fields where relevant data may be scarce. Data 

availability issues in this thesis is worth noting and could be improved in the future work. 

This thesis emphasises the specific impact and application of FinTech development on 

financial institutions and services. It is interesting to further examine and sort the potential 

insights in the following aspects: 
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Firstly, from the perspective of the empirical research objective, as shown in Chapter 3, the 

impact of FinTech development on the efficiency of commercial banks is investigated. For 

commercial banks, a traditional financial institution, efficiency, risk and profitability are 

significant factors in operations (Bitar et al., 2018). Thus, except for the efficiency of 

commercial banks, it is also worthy of further exploration to address the issues related to the 

development of FinTech on commercial banks’ risk-taking and profitability. Combined with 

the existing literature (Carletti et al., 2020; Banna and Alam, 2021), the contradictions of 

traditional financial institutions in the post-epidemic era are prominent. The development 

and cooperation of FinTech are even more foremost. The comprehensive analysis of the 

combination of multiple factors is worthy of further analysis and research. 

Secondly, from the perspective of the research method, the operational research of 

combining FinTech and traditional businesses from the perspective of risk management is 

conducted using machine learning methods for credit risk assessment on DSCF and P2P 

lending. There is more extensive research on the application of machine learning methods 

to credit risk assessment issues, such as multiple classification approaches in risk rating 

issues and classification issues for time series data. Due to the immerging technology and 

financial businesses, the method of risk assessment is also constantly updated (Zheng et al., 

2019). Based on different financial business, the usage of advanced machine learning 

methods is one of the innovation points of future research. 

Thirdly, from the perspective of the theoretical research, focusing on the service of lending, 

the trend of the combination of FinTech and financial services is upgrading. With the 

continuous elaboration of technology and business models, P2P lending gradually develops 

from the reception of lending in traditional commercial banks. Moreover, the development 

of decentralised finance today has made DeFi lending a reality. What changes have taken 

place in the connotation of the lending business during the development process, and what 

problems have emerged in the lending process and risk assessment are all worthy of future 

research. It is an insightful expansion of existing research to sort out its process and measure 

the risk assessment of specific services. 

Finally, from the perspective of the thorough FinTech development environment, future 

research should explore the ethical implications of FinTech innovations, such as algorithmic 

bias, fair lending practices, and responsible AI usage. This research would lead to guidelines 

and principles that prioritize ethical decision-making in FinTech development and 

deployment. Meanwhile, researching strategies to foster collaboration between FinTech 
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startups and traditional financial institutions would be instrumental in harnessing the 

strengths of both sectors. Identifying barriers to collaboration and proposing mechanisms for 

knowledge exchange could accelerate the adoption of innovative FinTech solutions. 

In summary, future research in FinTech should encompass a broad spectrum of specific and 

generic themes, from specialized advancements in credit risk assessment and blockchain 

applications to more overarching considerations like ethics, collaboration, and the impact of 

emerging technologies. By addressing these diverse areas of research, FinTech can continue 

to drive innovation and shape the future of the financial industry in a responsible and 

sustainable manner. 
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Appendix  

Appendix A (Chapter 3) 

A. 1 Robustness Tests with SFA Cost Efficiency  

For the measurement of bank efficiency, the frontier analysis method has been used 

frequently and is divided into two types of methods, parametric and non-parametric, based 

on the principle of calculation. Aigner & Schmidt (1977) proposed a stochastic frontier 

approach to calculate the boundaries of the production function and analysed the theory and 

estimation methods of the SFA method in detail, laying the foundation for subsequent 

empirical studies. Subsequently, many scholars have applied various parametric methods to 

the efficiency evaluation of banking institutions, such as Berger et al. (1993), Meste (1996), 

Altunbaş et al (2001). SFA assumes that the presence of the stochastic error term and 

inefficiency leads to the deviation of the bank to be examined from the stochastic frontier 

bank. Greene (1990) discusses the validity of using truncated versus half-normal 

distributions to define the type of distribution for inefficiency and concludes that different 

distribution types can sometimes affect the average efficiency of financial institutions. The 

effect of the type of distribution on the calculation of efficiency has been explored by many 

scholars, and the truncated distribution has been found to have statistically significant results 

compared to the normal distribution (Berger and DeYoung, 1997; Greene, 1993; Mester, 

1996; Yuengert, 1993). However, the validity of SFA is reduced by the arbitrary nature of 

the assumptions of the distribution of the inefficiency term on the stochastic frontier and the 

difficulty of testing the assumptions (Bauer et al., 1998; Coelli, 1996). Furthermore, once 

the actual distribution of the inefficiency term deviates from the set distribution form, it is 

not possible to distinguish between the inefficiency term and the stochastic error term in 

bank efficiency using SFA.  

Many debates exist on the use of parametric or non-parametric approaches to bank efficiency 

measurement, and synthesising the previously mentioned literature, there is no optimal 

choice in the comparison of DEA and SFA. In order to improve the study of the impact of 

FinTech on commercial banks and to make the results more robust, this paper will measure 

efficiency through the parametric method and analyse whether its efficiency is affected in 

the same manner as in the main text.  

The SFA model consists of a stochastic frontier cost analysis and a stochastic frontier output 

function analysis. Frontier cost refers to the minimum cost that can be achieved at a given 
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level of output; frontier output refers to the maximum output that can be achieved at a given 

level of input. In this study, a translog (transcendental logarithmic) stochastic cost frontier 

which is the most widely used functional form in the bank efficiency literature is used to 

verify the robustness of the experimental results. The input and output sectors consist with 

the main paper which involve four inputs - Total deposit (w1), Interest rate cost (w2), Non-

interest rate cost (w3) and Labor expense (w4) and three outputs - Total loan (y1), Interest 

rate income (y2) and Non-interest rate income (y3). We also use time tendency (t) to denote 

technical change (Nguyen et al., 2016).  The translog stochastic cost frontier model is as 

follow:   

ln 𝑇𝐶&! = 𝛼9 + ¢ 𝛼V ln 𝑦&!V

<

V2'

+
1
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1
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1
2 ¢ ¢𝛽VN	ln 𝑦&!V

=

N2'

<

V2'

ln𝑤&!N + 𝛾'𝑡 +
1
2 𝛾(𝑡

( 

+¢ 𝛾<𝑡
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V2'

ln 𝑦&!V +¢𝛾=𝑡
=

N2'

ln𝑤&!N + 𝑣&! + 𝜇&! (A. 1) 

where the subscript 𝑖 denotes the cross-sectional dimension across banks, subscript t denotes 

the time. 𝑇𝐶  is the total observed cost, consisting of interest expenses, other operating 

expenses and personnel expenses. The combined error term includes random noise 𝑣&! , 

which is assumed to follow a normal distribution, and cost inefficiency 𝜇&!, which is assumed 

to follow a truncated distribution. Further, using the linear homogeneity condition, equation 

(1) can be transformed into a cost function by normalising the dependent variable and all 

input prices by the input 4 (w4), as follows. 

ln(𝑇𝐶&!/𝑤&!=) = 𝛼9 + ¢ 𝛼V ln 𝑦&!V
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Thus, the individual cost efficiency score is calculated as 𝐶𝐸&! = exp	(−𝜇&!) which range 

from 0 to1. 

The empirical analysis is carried out using SFA and the specific quantitative model is that 

of Battese and Coelli (1995). The parameter estimation part was done using Frontier 4.1 

software, which is mainly used to implement the estimation and statistical tests for the 

translog stochastic parameters. The results of the model are presented in Table A.1. Since  

𝛾 = 𝜎`(/(𝜎`( + 𝜎)(), if 𝛾 = 0 , the technically inefficient term does not exist and all errors 

are due to random disturbances; if 𝛾 = 1, the random disturbances do not exist and all errors 

are due to technical inefficiency. As the Table A.6.1 shows, 𝛾 = 0.532 , the technical 

inefficiency exist and the SFA method is suitable for efficiency estimation of commercial 

banks. 

Table A.6.1 SFA results for cost efficiency  
Variables Coef. 
Constant 9.726*** 

(3.19) 
ln 𝑦"#$ 0.179 

(1.52) 
ln 𝑦%#$ 0.486 

(0.86) 
ln 𝑦&#$ -0.588 

(-0.99) 
0.5 ∙ ln% 𝑦"#$ -0.003 

(-0.67) 
0.5 ∙ ln% 𝑦%#$ -0.015 

(-0.80) 
0.5 ∙ ln% 𝑦&#$ 0.054*** 

(2.77) 
ln(𝑤"#$ /𝑤'#$) 1.198*** 

(2.54) 
ln(𝑤%#$ /𝑤'#$) -0.558*** 

(-2.80) 
ln(𝑤&#$ /𝑤'#$) -0.399 

(-1.00) 
0.5 ∙ ln%(𝑤"#$ /𝑤'#$) -0.320*** 
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(-7.09) 
0.5 ∙ ln%(𝑤%#$ /𝑤'#$) -0.014*** 

(-2.97) 
0.5 ∙ ln%(𝑤&#$ /𝑤'#$) -0.229*** 

(-8.30) 
0.5 ∙ ln(𝑤"#$/𝑤'#$) ∙ ln(𝑤%#$ /𝑤'#$) 0.086*** 

(3.92) 
0.5 ∙ ln(𝑤&#$/𝑤'#$) ∙ ln(𝑤%#$ /𝑤'#$) -0.322*** 

(-1.99) 
0.5 ∙ ln(𝑤"#$/𝑤'#$) ∙ ln(𝑤&#$ /𝑤'#$) 0.491*** 

(7.54) 
0.5 ∙ ln 𝑦"#$ ∙ ln(𝑤"#$/𝑤'#$) -0.015 

(-0.50) 
0.5 ∙ ln 𝑦"#$ ∙ ln(𝑤%#$/𝑤'#$) -0.018 

(-1.34) 
0.5 ∙ ln 𝑦"#$ ∙ ln(𝑤&#$/𝑤'#$) 0.022 

(0.89) 
0.5 ∙ ln 𝑦%#$ ∙ ln(𝑤"#$/𝑤'#$) 0.279*** 

(4.60) 
0.5 ∙ ln 𝑦%#$ ∙ ln(𝑤%#$/𝑤'#$) -0.039 

(-1.95) 
0.5 ∙ ln 𝑦%#$ ∙ ln(𝑤&#$/𝑤'#$) -0.401*** 

(-10.82) 
0.5 ∙ ln 𝑦&#$ ∙ ln(𝑤"#$/𝑤'#$) -0.243*** 

(-2.90) 
0.5 ∙ ln 𝑦&#$ ∙ ln(𝑤%#$/𝑤'#$) 0.083*** 

(2.44) 
0.5 ∙ ln 𝑦&#$ ∙ ln(𝑤&#$/𝑤'#$) 0.349*** 

(6.84) 
𝑡 0.043 

(0.78) 
0.5 ∙ 𝑡% -0.002*** 

(-1.97) 
𝑡 ∙ ln 𝑦"#$ -0.011*** 

(-6.28) 
𝑡 ∙ ln 𝑦%#$ 0.013** 

(1.93) 
𝑡 ∙ ln 𝑦&#$ -0.004 

(-0.55) 
𝑡 ∙ ln(𝑤"#$/𝑤'#$) -0.014*** 

(-2.23) 
𝑡 ∙ ln(𝑤%#$/𝑤'#$) 0.002 

(1.07) 
𝑡 ∙ ln(𝑤&#$/𝑤'#$) 0.013*** 

(2.44) 
𝜎% = 𝜎(% + 𝜎)% 0.011 

𝛾 = 𝜎(%/(𝜎(% + 𝜎)%) 0.532 
𝜎(% 0.006 
𝜎)% 0.005 

Note: The table presents the results based on SFA cost frontier.  
* Significant at 10%, ** significant at 5% and *** significant at 1%. 
See notes on Table 1 for the definition of the variables. 

Thus, we calculated the cost efficiency of commercial banks and the specific results are 

shown in the Table A.2. Accordingly, the cost efficiency of all commercial banks shows an 

upward trend, but the cost efficiency of SOCBs shows a more moderate trend of change, 

while the cost efficiency of JSCBs shows a stronger change, and its change tends to be more 

in line with the development of the overall national economy. 
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Table A.6.2 Cost efficiency score based on the SFA method 
  SOCB JSCB CCB All Banks  

2011 0.802 0.804 0.784 0.797 
2012 0.783 0.789 0.785 0.786 
2013 0.790 0.817 0.799 0.802 
2014 0.798 0.824 0.806 0.809 
2015 0.786 0.808 0.800 0.798 
2016 0.790 0.812 0.819 0.807 
2017 0.802 0.842 0.825 0.823 
2018 0.806 0.848 0.831 0.828 
2019 0.808 0.812 0.813 0.811 
2020 0.799 0.823 0.824 0.815 

2011-2020 0.796 0.818 0.809 0.808 

We further investigate the influence of FinTech development. Based on Hypothesis 1, we 

estimated the impact of FinTech indexes on the cost efficiency of commercial banks through 

truncated regression. The results are collated in Table A.3. The coefficients of FI in columns 

(a), (b) and (c) are significantly positive, which is consistent with the results of the double 

bootstrapped DEA-Malmquist truncated regression in the main text, indicating that the 

overall development of FinTech have an positive effect on the cost efficiency of commercial 

banks. Meanwhile, the expanding coverage of FinTech breadth and the improvement of 

usage depth of FinTech would increase the cost efficiency of Chinese commercial banks. 

Table A.6.3 Truncated regression results based on the SFA efficiency score 
 (a) (b) (c) 
LTE -0.197*** 

(-9.05) 
-0.001*** 

(-7.09) 
-0.004*** 

(1.46) 
FI 0.069*** 

(12.96) 
0.057*** 
(13.06) 

0.033*** 
(11.10) 

SIZE -0.009 
(-1.18) 

-0.010 
(-1.33) 

-0.002 
(-0.28) 

GDP 0.573*** 
(4.53) 

0.951*** 
(6.58) 

0.177*** 
(0.28) 

CPI 0.105*** 
(6.67) 

0.293** 
(2.51) 

0.570** 
(3.97) 

IP -0.888*** 
(-4.42) 

-0.654*** 
(-3.59) 

-3.437*** 
(-2.71) 

LDR -0.002 
(-0.18) 

-0.004 
(-0.45) 

-0.005 
(-0.52) 

ROA 0.001 
(0.02) 

-0.026 
(-0.49) 

-0.001 
(-0.02) 

CAR 0.000 
(1.14) 

0.000 
(0.86) 

-0.000 
(-0.75) 

IPO 0.005** 
(2.05) 

0.005** 
(2.09) 

0.007* 
(2.23) 

Observation 1010 1010 1010 
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Constant 0.987*** 
(5.60) 

0.995*** 
(7.68) 

0.994*** 
(6.51) 

Banks×Year FE Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 168.57*** 171.41*** 123.99*** 
Notes: The table presents the truncated regressed result for Hypothesis 1. The 
dependent variables are SFA Cost efficiency, the independent variables of (a), (b) and 
(c) are aggregate FinTech index (FI), coverage breadth (FCB) and the usage depth 
(FUD) of FinTech at t-1 separately. * Significant at 10%, ** significant at 5% and 
*** significant at 1%. See notes on Table 1 for the definition of the variables.  

Further, we analysed the different impacts of FinTech on SOCBs, JSCBs and CCBs 

according to Hypothesis 2. The results are presented in the Table A.4, where we find that 

the cross-sectional coefficient of FinTech with CCBs is the highest among all commercial 

banks in the sample, while the cross-sectional coefficient for SOCBs is the lowest. This 

result is consistent with the results in the main text. 

Table A.6.4 Truncated regression result of different types of commercial banks based on 
the SFA efficiency score 

 (a) (b) (c) 
LTE 0.000*** 

(7.36) 
0.002*** 

(6.11) 
0.000*** 

(9.06) 
FI 0.095*** 

(3.53) 
0.080*** 

(4.65) 
0.047*** 

(6.40) 
JSCB -0.013** 

(-2.71) 
-0.013** 
(-2.73) 

-0.010* 
(-1.97) 

CCB -0.014*** 
(-4.09) 

-0.015*** 
(-3.79) 

-0.013** 
(-2.84) 

FI*JSCB 0.059** 
(2.69) 

0.056** 
(2.71) 

0.044 
(1.97) 

FI*CCB 0.071*** 
(4.01) 

0.073*** 
(3.72) 

0.055** 
(2.77) 

SIZE -0.000 
(-0.65) 

-0.005 
(-0.64) 

-0.000 
(-1.23) 

GDP 0.447*** 
(3.41) 

0.669*** 
(4.58) 

0.097 
(0.78) 

CPI 0.120*** 
(5.05) 

0.070*** 
(5.37) 

0.100*** 
(7.19) 

IP -3.16*** 
(-6.38) 

-2.892*** 
(-8.88) 

-2.382*** 
(-16.74) 

LDR -0.016 
(-1.36) 

-0.013 
(-1.09) 

-0.013 
(-1.11) 

ROA 0.047 
(0.07) 

0.008 
(0.13) 

0.024 
(0.04) 

CAR 0.001 
(0.35) 

0.002 
(0.53) 

0.002 
(0.41) 

IPO 0.047 
(1.29) 

0.047 
(1.30) 

0.048 
(1.32) 

Observation 1010 1010 1010 
Constant 1.013*** 

(3.81) 
1.008*** 

(7.04) 
1.011*** 

(6.90) 
Banks×Year FE Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 19.509*** 31.579*** 40.994*** 
Notes: The table presents the truncated regressed result for Hypothesis 2. The 
dependent variables are SFA Cost efficiency, the independent variables of (a), (b) and 
(c) are aggregate FinTech index (FI), coverage breadth (FCB) and the usage depth 
(FUD) of FinTech at t-1 separately. * Significant at 10%, ** significant at 5% and 
*** significant at 1%. See notes on Table 1 for the definition of the variables. 
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Finally, we present the impact of FinTech on commercial banks in regions with different 

levels of financial development based on Hypothesis 3. According to Table A.5, we find that 

the cost efficiency of commercial banks in regions with higher levels of financial 

development are affected by FinTech more than those in regions with lower levels of 

FinTech development (see column (a) and (b)), the result that is consistent with the results 

in main text, both contrary to the original hypothesis.  

Table A.6.5 Truncated regression result of the impact of financial development based on 
the SFA efficiency score 

 (a) (b) (c) 
LTE -0.002*** 

(-9.08) 
-0.001*** 

(-7.12) 
0.000*** 

(5.13) 
FI 0.070*** 

(12.92) 
0.057*** 
(13.00) 

0.016 
(0.39) 

FD 0.007** 
(2.44) 

0.008 
(0.50) 

0.007** 
(2.94) 

FI*FD 0.027* 
(1.69) 

0.026* 
(1.77) 

0.032 
(0.82) 

SIZE -0.008 
(-1.13) 

-0.009 
(-1.25) 

-0.005 
(-0.63) 

GDP 0.578*** 
(4.67) 

0.957*** 
(6.62) 

0.314* 
(2.55) 

CPI 0.105*** 
(6.68) 

0.029* 
(2.51) 

0.061*** 
(3.71) 

IP -0.890*** 
(-4.43) 

-0.649*** 
(-3.57) 

-1.794*** 
(-10.71) 

LDR -0.001 
(-0.10) 

-0.003 
(-0.37) 

-0.017 
(-1.62) 

ROA 0.003 
(0.25) 

0.004 
(0.32) 

0.004 
(0.30) 

CAR 0.005 
(1.15) 

0.003 
(0.83) 

-0.000 
(-0.70) 

IPO 0.006* 
(2.26) 

0.006* 
(2.23) 

0.006* 
(2.12) 

Observation 860 860 860 
Constant 0.987*** 

(5.62) 
0.995*** 

(7.70) 
1.007*** 

(5.58) 
Banks×Year FE Yes Yes Yes 
𝑾𝒂𝒍𝒅 𝝌𝟐 169.17*** 171.79*** 9.50*** 
Notes: The table presents the truncated regressed result for Hypothesis 3. The 
dependent variables are SFA Cost efficiency, the independent variables of (a), (b) and 
(c) are aggregate FinTech index (FI), coverage breadth (FCB) and the usage depth 
(FUD) of FinTech at t-1 separately. * Significant at 10%, ** significant at 5% and 
*** significant at 1%. See notes on Table 1 for the definition of the variables. 

 In summary, the performance of SFA on the efficiency estimation are consistent with the 

results of the DEA method in the main text, which demonstrates the robustness of the results 

in this paper.  
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