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Abstract

Spatial areal unit data are a type of spatial data which consist of a set of con-

tiguous non-overlapping areal units in space, one example being Data Zones

(DZ) in Scotland. A special feature about these data is that they are spatially

correlated. This means that pairs of areal units that are close to each other in

space have more similar data values and structure to one another than areal

units that are further apart. In general, spatial data are modelled using classi-

cal spatial statistical methods that account for spatial correlation within the

data. One widely established spatial method being the conditional autore-

gressive (CAR) model where spatial correlation is modelled through a set of

random effects. However, in recent years, the application of machine learning

(ML) methods to spatial data in order to generate predictions has risen in

popularity. Unlike spatial methods, machine learning methods can account

for non-linear effects. This results in two important questions of interest: (i)

Are classical spatial statistical methods or a-spatial machine learning methods

best for prediction of spatial areal unit data? and (ii) Can machine learning

methods and spatial methods be combined as one to improve predictive per-

formance compared to using the two methods in isolation? By partitioning

the data into training and test sets and evaluating predictions using prediction

metrics, this MSc addresses these questions in the context of property prices

at the Data Zone level in Scotland. In general, I found that there was little

difference between spatial methods and machine learning methods in terms

of prediction and the combination of both also had a very similar predictive

performance.
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Chapter 1

Introduction

In statistics, as well as interpreting and analysing data, a common goal is also to make

predictions of unknown quantities using that data. A statistical model that is able to

make accurate predictions with appropriate uncertainty quantification can play an im-

portant role in a variety of day-to-day scenarios, allowing people to predict unknown

values, potentially in the future, and prepare or plan accordingly for different eventual-

ities. Many industries rely on predictions made by statisticians in order make effective

decisions that will lead to improved business prospects and profits. The predictive models

that are built by statisticians can use a variety of complex of statistical methods, in order

to make accurate predictions on missing observations in a data set. As there is such a

wide range of methods and data sets, it is essential to compare different methods and

evaluate which method is most suitable for each particular type of data set.

One industry where predictive models are very beneficial is the real estate industry.

It is the job of an estate agent to assess and value a property as accurately as possible

based on it’s characteristics and spatial location before it is put on the market either

to rent or for sale. They play a crucial role in making sure that properties are sold to

buyers at realistic prices and also that sellers receive a fair price for what their property

is worth (Rightmove, 2023). Therefore, it is important that statisticians investigate and

understand spatial patterns in property price data so they can identify which methods

most accurately predict property sub-markets and estate agents are able to carry out

their job successfully.

Traditionally, when presented with areal unit data and faced with the challenge of

making predictions, the general approach would be to model the data using spatial meth-

ods. Spatial methods rely on using the spatial structure of the areal units to model corre-
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1. INTRODUCTION

lation by a set of random effects (Lee and Mitchell, 2013). Examples of spatial methods

can include simultaneous autoregressive (SAR) models and the popularly used condi-

tional autoregressive (CAR) models (Dormann et al., 2007). CAR models can be fitted

within a Bayesian setting using both Markov Chain Monte-Carlo simulation (MCMC)

and Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009), the latter being

possible due to the invention of the INLA package in R (R INLA Project, 2020).

Another tool which has become increasingly popular in recent years to generate pre-

dictions is the use of tree-based machine learning methods, with some examples being

bagging, random forest and gradient boosting (Boehmke and Greenwell, 2019). These are

all ensemble methods with different strengths which are based on a set of basic decision

trees. A single decision tree is an algorithm which splits the data into various subgroups

which have similar response values through the use of splitting rules. When multiple de-

cision trees are combined through the ensemble methods mentioned above, they usually

perform much better than single trees in prediction. Contrary to the spatial methods,

these machine learning methods do not account for any spatial correlation in the data

but instead are effective in fitting complex non-linear relationships between features and

a target (Boehmke and Greenwell, 2019).

It must be noted that there has not been much research carried out on spatial and

machine learning methods in the context of predicting areal unit data, however as men-

tioned above these methods have different strengths. Therefore, a good idea would be

to fuse the strengths of both methods together as this could produce an optimal method

for prediction. There are various possible approaches in which these methods could be

combined, however the most popular current approach is the geographically weighted

random forest (GWRF) method proposed in Georganos et al. [2021]. This consists of

constructing a unique random forest for each known areal unit, and using these random

forests to make predictions on nearby areal unit with unknown response values.

To test the comparative predictive performance of the methods from the three paradigms,

spatial, machine learning and the GWRF, I am going to use data published by the Scottish

Government on residential property transactions in 2018 (Scottish Government, 2021).

This data set consists of 6,881 observations on 30 variables. Of the 30 variables, there is

one target variable, property price, and 29 other variables are features which relate to the

spatial location and property characteristics. The data will be partitioned into training

and test sets and predictions will be made on the test set using the training set. By

using prediction metrics such as root mean square error (RMSE) and median absolute

2



1. INTRODUCTION

error (MAE), the performance of each of the methods will be measured and compared so

the overall best method for prediction in the context of property price will be able to be

determined.

1.1 Aims and Objectives

In this study we will use statistical methods to model spatial areal unit data on property

prices at the Data Zone level in Scotland. There are three primary aims of this study:

• To quantify how well average property prices in small areas can be predicted in

Scotland.

• To explore if classical spatial modelling approaches or a-spatial machine learning

methods provide better prediction of property prices.

• To find out if the spatially adjusted GWRF method can improve prediction com-

pared to the simpler approaches outlined above.

In addition, within these aims I answer the following important questions of interest:

• Through spatial statistical modelling, is there spatial correlation between property

prices in neighbouring Data Zones in Scotland after the effects of the features have

been accounted for?

• Which features of the data set are the most important for predicting property

prices?

1.2 Thesis Structure

Firstly, before constructing any prediction models, Chapter 2 will explore the character-

istics of the data set and determining if there are any interesting relationships between

the covariates and the property price variable. I will also use data splitting techniques

to partition the data into training and test splits to maintain consistency throughout

the thesis. On the training set, I will use a cross validation approach to tune each of

the models and determine the optimal tuning parameter combinations for each method I

investigate. Then, I will construct a normal linear model and assess its predictive perfor-

mance to see the impact that covariates have on determining property price. This model

will be used as a baseline for the more complex models to outperform.

3



1. INTRODUCTION

In Chapter 3, the concept of spatial prediction will be introduced and property price

predictions will be made using spatial CAR models. The predictive ability of the CAR

model will be evaluated using prediction metrics and it will be compared against the linear

model to show the impact that accounting for spatial structure has on a model’s accuracy.

Chapter 4 will discuss various tree-based machine learning methods starting with the

foundation of tree-based methods, the basic decision tree, and following on with three

ensemble methods; bagging, random forest and gradient boosting. Property price pre-

dictions will be made using each of these methods allowing their respective predictive

abilities to be compared with one another and also with the spatial CAR model and

linear model.

After studying the different methods in isolation in Chapters 3 and 4, Chapter 5

will explore the combination of spatial and machine learning methods through a method

recently proposed, the geographically weighted random forest (Georganos et al., 2021).

Again, property price predictions will be made and the results will show whether spatial

and machine learning methods perform better alone or if combining them as one method

will produce an optimal model for prediction. At the end of this chapter, the final con-

clusion will be made on whether classical spatial models or a-spatial machine learning

methods are better at predicting property prices in Scotland or if using spatially adjusted

machine learning methods can outperform both of these methods.

Finally, Chapter 6 will provide an overall summary of each of the methods of prediction

applied to the data set and their results. Furthermore, I will give a short critical evaluation

of my thesis and propose some improvements that could be made in future research of

this topic if time was not limited.
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Chapter 2

Data and exploratory analysis

Firstly, I describe the data set and undertake exploratory analysis to identify the key

patterns in the data. All analysis uses the R statistical software system (R Core Team,

2022). The data set has 6,881 observations on 30 variables.

2.1 Study Region

This study is based in Scotland, United Kingdom in 2018. The year 2018 was chosen

as it is the most recent publication of small-area average property price data in Scot-

land. Scotland has been split up into 6,976 small non overlapping areal units called Data

Zones. These are essentially spatial footprints of small geographical polygons of around

500-1,000 people of similar socioeconomic backgrounds which all fit together to create

the map of Scotland (Scottish Government, 2004). They were initially generated by the

Scottish Government in 1991 then finalised and formally introduced in 2002 after the

2001 Census (Scottish Government, 2004), and further updated in 2011. Each of these

Data Zones belongs to one of the 32 Local Authorities in Scotland. Local Authorities are

small local governments who are in charge of public services such as schools, transport,

roads etc within their boundary (Scottish Government, 2017). This would suggest that

Local Authorities may play an important role in impacting property prices. For this

study, due to their small numbers of Data Zones (which makes prediction difficult) and

the fact that they do not have a physical land border with the rest of Scotland (which

makes spatial modelling difficult), the island local authorities of Shetland, Orkney and

Western Isles have been removed from the analysis. This concludes the final data set as

6,881 Data Zones from 29 Local Authorities, covering mainland Scotland.

As previously mentioned there is a possibility that local authority could have an ef-
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2. DATA AND EXPLORATORY ANALYSIS

fect on property price. This is because of certain factors such as education, council tax,

amenities and geographical location that are local authority specific. Local authorities

that boast successful exam results and provide good schools leading to pupils having

better job prospects in the future will have higher property prices as the demand from

parents to get their children into a good school is very high (Marshall, 2013). Further-

more, the better the transport links to cities, the more likely people are to purchase a

property as it makes their daily life more accessible, thus an area with good transport

will be more desirable to live in than an area further out in the countryside (Brown, 2022).
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Figure 2.1: Bar plot showing the number of Data Zones within each local authority in
Scotland.

Figure 2.1 shows that there is sizeable variation in the numbers of Data Zones in each

local authority across Scotland, with the majority of local authorities having between

around 100 to 250 Data Zones. Glasgow City has the highest number of Data Zones (746)

followed by the City of Edinburgh which has 597. These areas despite not having very

large areas in square kilometres (Scottish Government, 2012), have the highest numbers

of Data Zones in them due to how densely populated they are. On the other hand,

Clackmannanshire has the least with only 72 Data Zones, this is over 10 times less the

number in Glasgow City.

2.2 Property Price

The prediction variable for this study is the average Property Price of all sold properties

in each Data Zone in 2018 which was extracted from a 2018 Scottish Government pub-

lication on residential property transactions recorded by Registers of Scotland (Scottish
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2. DATA AND EXPLORATORY ANALYSIS

Government, 2021). This publication provides various different types of information re-

garding property prices. For this study the median price of all properties sold in 2018 in

each Data Zone was used rather than the mean, as it prevented skewness due to small

numbers of high or low priced properties. Furthermore, Data Zones with less than 5

properties sold were suppressed from the data set because of the risk of breaching confi-

dentiality and also so that there were at least 5 different property prices used to calculate

the average. There was however, one Data Zone which had an average sold property price

of £600. This value was deemed as unknown due to the likelihood of there being an error

in its calculation.
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Figure 2.2: Histogram of sold property prices across Scotland in 2018. Along the x axis
is the value of the property price in £’s and along the y axis is the number of data zones
whose average sold property prices corresponds to this.

Looking at the whole of Scotland, the minimum average property price for a Data

Zone is £19,500 while the maximum is £878,000. The mean property price is £159,056
while the median is lower at £139,282. Figure 2.2 is a histogram of the distribution of

average property prices across Scotland and gives a visualisation of the data distribution.

It shows obvious right skewness and no symmetrical pattern. This suggests that it is very

unusual to have high sold property prices and that most properties are valued at between

around £50,000 and £250,000. There is a peak at around £150,000 indicating that this

is the most common property price in Scotland, the mode. It is important to note that

these data include all different kinds of properties from flats to detached houses and from
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cities to rural areas.
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Figure 2.3: Boxplots of the sold property prices across all 29 Local Authorities in mainland
Scotland in 2018.

When looking closely at Figure 2.3, it is clear that 26 of the 29 local authorities

across Scotland have a median property price of under £200,000. There are only 3 lo-

cal authorities- City of Edinburgh, East Dunbartonshire and East Renfrewshire where

the median is over £200,000. However, these three local authorities have the largest in-

terquartile ranges - £158,834, £143,500 and £138,822 respectively. This indicates that

the property prices are more dispersed in these areas. Figure 2.3 also shows that there are

a sizeable number of outliers on the right hand side in nearly every local authority. This

highlights the variation in property prices within every local authority in Scotland. The

highest property values seem to be from local authorities situated in or around Glasgow

and Edinburgh, which are the two major cities in Scotland where there will be lots of

flats and apartments in the city centres valued for a lot more than a house in a rural

community for example. Clackmannanshire is the only local authority that has no out-

liers. It also has a low interquartile range of £70,000 in comparison to Scotland, which is

£100,508, emphasising that the majority of it’s properties are probably of similar prices.

Contrary to this, the City of Edinburgh and Glasgow City local authorities have a large

number of outliers. When looking at the spatial map of Glasgow City in Figure 2.4 we see

it is mainly purple hence lower property prices and the corresponding boxplot in Figure

2.3 further supports this. However, there are some areas such as Merrylee, Newlands,

8



2. DATA AND EXPLORATORY ANALYSIS

Pollokshields and the West End which are in orange meaning they have higher average

property prices. As these are such small areas in comparison to the rest of Glasgow City,

this could be why these areas could be considered outliers. On the other hand, the City

of Edinburgh seen in Figure 2.5, which still has a good number of purple shaded areas,

has slightly more higher priced areas than Glasgow City. This explains why there are

lots of outliers towards the more expensive end of the property ladder - The Grange and

Calton Hill are home to some of the most expensive properties in the city. Similar to

Glasgow City, these are small areas in comparison to the big picture – one Data Zone

only consisting of 3 streets yet the most expensive – hence this is why they could be

considered outliers. All in all, when looking in more detail at the Data Zones within local

authorities, the spatial pattern in property prices can be visualized in the spatial map of

Scotland in Figure 2.6, where we see the vast majority of Data Zones in Scotland having

average sold property prices of £300,000 or less.

Figure 2.4: Spatial map of the average property price in the Glasgow City local authority
that consists of 746 Data Zones. Along the right hand side there is a scale which represents
the value of the average sold property price.

Altogether of the 6,881 Data Zones, we have 617 Data Zones that have missing prop-

erty price values. This means that in 617 Data Zones there were either no properties sold

or less than 5 properties sold in 2018. The latter is the threshold used for suppressing
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Figure 2.5: Spatial map of the average property price in the City of Edinburgh local
authority that consists of 597 Data Zones. Along the right hand side there is a scale
which represents the value of the average sold property price.

the data due to the risk of confidentiality by being able to identify individual property

sales. The average percentage of missing values in a local authority is approximately 9%.

There are 8 local authorities whose percentages are above this value including 3 out of 4

of the local authorities with the largest number of Data Zones.

Although Glasgow City has the most missing values, 125, and Clackmannanshire the

least, 3, when finding the missing values in each local authority as a percentage of all

values we get slightly different results shown in Table 2.1. We see the largest percentage

missing is indeed Glasgow City with around 16.8% while East Lothian has the small-

est percentage missing values, approximately 3%. There are many factors which could

contribute to this including that Glasgow City takes into account the city centre, this is
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Figure 2.6: This is a spatial map of the average property price in Scotland divided up
into the 6881 Data Zones. Along the right hand side there is a scale which represents the
value of the average sold property price.

where there are lots of businesses, hotels and education buildings such as Universities.

This means fewer properties will be sold in these areas because these buildings tend to

be occupied by the same business or landlord for a long period of time. Furthermore,

in the city there are many people renting properties as they cannot afford to buy and

this renting is not taken into account as the landlord is still owning the property. The

deprivation level in Glasgow City is around 44% as of 2020 (Scottish Government, 2012).

This was measured using the Scottish Index of Multiple Deprivation (SIMD) (Scottish

Government, 2020a) which means that 44% of the residents of Glasgow City Council are

living in the bottom 20% of all Data Zones by poverty in Scotland. This is another reason

which could explain why the percentage of missing values is the highest, as many of the
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Table 2.1: Table of the 29 local authorities and their corresponding numbers of Data
Zones, number of missing values and percentage of missing values.

Local Authority Total Values Missing Values Missing Percentage(%)
Aberdeen City 283 26 9.19
Aberdeenshire 340 29 8.53

Angus 155 11 7.10
Argyll and Bute 125 9 7.20
City of Edinburgh 597 54 9.05
Clackmannanshire 72 3 4.17

Dumfries and Galloway 201 16 7.96
Dundee City 188 13 6.91
East Ayrshire 163 11 6.75

East Dunbartonshire 130 4 3.08
East Lothian 132 4 3.03

East Renfrewshire 122 5 4.10
Falkirk 214 18 8.41
Fife 494 28 5.67

Glasgow City 746 125 16.76
Highland 312 24 7.69
Inverclyde 114 16 14.04
Midlothian 115 19 16.52
Moray 126 17 13.49

North Ayrshire 186 13 6.99
North Lanarkshire 447 64 14.32
Perth and Kinross 186 11 5.91

Renfrewshire 225 14 6.22
Scottish Borders 143 5 3.50
South Ayrshire 153 12 7.84

South Lanarkshire 431 18 4.18
Stirling 121 10 8.26

West Dunbartonshire 121 19 15.70
West Lothian 239 19 7.95

people living in these Data Zones cannot afford to buy a property.

2.3 Covariates

This data set consists of 29 covariates describing the characteristics of the area and also

the housing stock in each area, and are summarised in the three groups below - Physical

Geography, Characteristics of the Area and Property Type Characteristics.

By investigating correlation plots we are able to see if there is a linear (or non-linear)
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relationship between each of the covariates and the price variable. Firstly, the correlation

coefficient is a number between -1 and 1 which will show how strong or weak a linear

relationship between two variables is. A value close to -1 means there is a strong negative

linear relationship while if it is close to 1 there is a strong positive linear relationship. In

Figures 2.7, 2.8 and 2.9 there are scatterplots in the final row which show the relationship

between property prices and each of the other variables. Along the diagonal is the density

of each variable while the other scatterplots show collinearity between covariates.

2.3.1 Property Type Characteristics
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Figure 2.7: Correlation plot showing the relationship between the variables price, mean
rooms, percentage of flats and percentage of semi or detached using scatterplots, density
plots and correlation coefficents.

Firstly, Property Type Characteristics help to give a summary of the properties them-

selves. Covariates describing the housing stock include the mean number of rooms, per-

centage of flats and percentage of semi detached and detached properties. Mean rooms

calculates an average number of rooms for all properties, excluding kitchens and bath-

rooms, in each Data Zone. We see in Figure 2.7 that, as expected, as the price of a

property increases it seems that the average number of rooms it has increases also. How-

ever we do see some lower numbers of mean rooms towards the higher end of the price

axis. This would possibly be because of where the property is situated - a smaller house

in the west end of Glasgow is a lot more expensive than a bigger house in Queens Park

for example. This is due to the fact that the West End of Glasgow is probably overall
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a more desirable place to live in than Queens Park. Next, the percentage of flats and

the property prices in an area seem to follow a slight U shape. This suggests that there

are lots of areas with small percentages of flats that have high property prices but also

areas with small percentages of flats with low property prices. Lastly the percentage of

semi detached and detached properties seems to follow a positive linear relationship with

property price because of the very slight gradient seen in the scatterplot. This means

that in general, as the percentage of semi-detached and detached properties increase in

an area, the property prices increase.

2.3.2 Physical Geography
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Figure 2.8: Correlation plot showing the relationship between the variables price,
dwellings per hectare, percentage urban and percentage rural using scatterplots, density
plots and correlation coefficients.

A number of variables are available about the geography of the Data Zone, including

dwellings per hectare, percentage of urban properties and percentage of rural properties.

Dwellings per hectare measures the number of residential properties per hectare of land

hence the smaller the number the lower density the properties. This means that there

is more room for personal space such as gardens, driveways and garages. In Figure 2.8,

although there is no clear relationship between property price and dwellings per hectare,

it can be speculated from the scatterplot that as the property price seems to increase,

the number of dwellings per hectare decreases. This makes sense as bigger homes tend to

take up more land so dwellings per hectare would be smaller. However, we see that there
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are some areas with properties of around £150,000 with the same number of dwellings

per hectare as areas with properties of around £400,000. This could be because of the

local area where it is located and the desirability of it. Also, areas with lots of flats will

have more dwellings per hectare and this could contribute to why there is right skewness

as in some areas with flats the prices are a lot higher.

Furthermore, other important variables are whether a Data Zone is classified as ur-

ban or rural. The Data Zones are classified as either urban or rural through an 8 fold

urban-rural classification measuring urbanicity developed by the Scottish Government

(Scottish Government, 2020a). This 8 fold classification was simplified into 3 levels , ur-

ban, semi-urban small towns, and rural, and the urban and rural categories are retained

here for analysis. There is no clear relationship between urbanicity and property prices

across Scotland. For example, there are some very expensive properties in urban areas

while there are also some very low priced properties in urban areas. The same can be said

about rural areas. However, it is important to note that when examining the scatterplots,

there is a larger volume of properties of high prices of around £750,000 in urban areas

than in rural areas. These expensive properties are more likely to be city townhouses and

flats rather than the large mansions of the same price in rural areas.

2.3.3 Characteristics of Data Zones

It was also important to look at the features of the area other than its property charac-

teristics, so the Scottish Index of Multiple Deprivation was used to provide data on the

socioeconomic features of each data zone. This looks at how deprived an area is across 7

different domains (Scottish Government, 2020a) - Employment, Income, Crime, Housing,

Health, Education and Access. Each of these domains accounts for a different percentage

of the final SIMD score, for example Employment accounts for 28% of the overall final

score while Housing accounts for only 2%. Crime was removed from this study because

its single indicator had 435 missing values, while in the other domains each indicator had

at most 14 missing values. These small amounts of missing values were imputed using

the k nearest neighbours algorithm with k=5 after scaling each indicator to have mean 0

and standard deviation 1. As the set of indicators within each domain are often highly

correlated, principal component analysis was carried out to represent each domain with

independent components. Note, this was only done for domains which had more than one

indicator. In each case, enough principal components were kept so that the cumulative

proportion of variation explained in each domain was over 80%. This resulted in each

domain having the following number of indicators- education (2), access (3), employment
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Figure 2.9: Correlation plot showing the relationship between the variables price, em-
ployment rate and education using scatterplots, density plots and correlation coefficients.

(1), income (1), health (3) and housing (2).

The final variable is the number of properties in each area that were allocated to a

group from A to H corresponding to their council tax band. Band A is the cheapest

properties while band H is the most expensive properties, although these bands vary by

local authority. Then, a principle component analysis was applied to these 8 bands due

to their high collinearity and the top 3 principle components were retained as features

for analysis as they explained around 80% of the variation.

Displayed in Figure 2.9 are the correlation plots of two area based measures from the

SIMD (Scottish Index of Multiple Deprivation), employment rate and education, with

the price variable (Scottish Government, 2020b). At first glance, both scatterplots seem

to follow a similar pattern suggesting that employment rate and education are indeed re-

lated to one another. This can be seen from the strong positive correlation coefficient of

0.829. Employment rate is a combination of 3 indicators of employment- those receiving

Jobseeker’s Allowance, those receiving Universal Credit who are unemployed and those

who are claiming Incapacity Benefits, Employment Support Allowance or Severe Disable-

ment Allowance (Scottish Government, 2020b). The higher the value of the employment

rate value, the more deprived the Data Zone is. Essentially, the employment rate is a

measure of unemployment. The scatterplot highlights that the more unemployment in an
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area, the lower the property prices, as expected. We see that the majority of lower priced

properties have a high unemployment. However, there are a good number who have low

property prices yet low unemployment rates. These could perhaps be more affluent Data

Zones which have affordable housing. Therefore, it is likely that the levels of deprivation

in an area impacts property prices, for example the exact same house could be built in a

more deprived area and an affluent area however due to the affluent area having a higher

SIMD score thus being more desirable to live in, the price will be much higher here. As

mentioned previously, the education covariate is just one of two principal components of

education. In the SIMD, Education is measured using 5 indicators- School Pupil Atten-

dance, Attainment of School Leavers, Working age people with no qualifications, 17-21

year olds enrolling in higher education and those age 16-19 not participating in higher

education, employment or training (Scottish Government, 2020b). The scatterplot of ed-

ucation against property price shows that the vast majority of less educated people live

in properties that are of lower prices. This makes sense as those who are well educated

tend to be in better jobs which in turn would provide them with a better income and as

a result will allow them to be able to purchase properties of higher prices.

One of the other domains of SIMD measures the geographical access to a variety

of services, as measured by the travel time to get there. The better the amenities in

an area could also impact the house prices. For example living near a more upmarket

supermarket such as Waitrose or M&S can increase property prices (Shaw, 2017) . A

study was conducted by Lloyds Bank where the average property prices in postal districts

which have chain supermarkets were compared with average property prices in wider

towns. The result of this study was that properties situated closer to a supermarket

had a higher selling price than those that didn’t, of average around £20,000 more than

those further out. In fact, this is where the so called “Waitrose Effect” comes into play,

as it was found that living nearby a Waitrose can increase the price of your property

by around £40,000, compared to Aldi which can reduce the prices by between £3,000-
£4,000 (Redhead, 2015). However, due to the cost of living increasing and more affluent

areas having Lidl and Aldi stores being built, there is an increase in property price from

budget supermarkets. This is very much a causality issue - did the supermarket being

built cause the house prices to be higher or were they already high due to other factors?

The West End of Glasgow is a good example of this. Furthermore, the number of fast

food restaurants or outlets in an area may also have an effect on the property prices.

Public Health England recent research has shown that the poorest areas in England have

the highest numbers of fast food places and have at least 5 times more than the more

affluent areas (Public Health England, 2018). This is because these businesses often
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bring with them local litter problems with packaging being dropped and bins overflowing

from not being emptied. This creates an eyesore hence making the area less desirable

to live. Furthermore, drive thru’s, especially with the sky rocketing of demand for fast

food during covid times, can lead to traffic problems due to excessive queues during peak

times and noise and air pollution from vehicles. Despite this research being carried out

in England, it can be expected that Scotland will follow the same trend.

2.3.4 Data Splitting

In order to assess how successful a model is in prediction, we must take the data set and

split it into various subgroups for training and then testing the model. This must be done

before constructing any spatial or machine learning models so that the same training and

test sets are used to compare all models. This is because using the same data on which

a model is fit to assess its predictive performance will give biased results and tend to

overfit (Robertson and Gray, 2021).

The main goal of this thesis is to create an algorithm which predicts outcomes of

property price where there is no data most accurately using the set of covariates. This is

otherwise known as generalizability. In total we have 6,881 Data Zones, 617 of which have

missing values. Therefore, these missing values are removed from the total because these

are the quantities that we want to predict and we cannot validate our models on them

as there are no true values, which leaves us with 6,264 observed property price values.

These can then be split into training and test sets. The training set will be used to fit the

model while the test set, which must not be used before having chosen the final model,

will be used as new data to evaluate the success of the subsequent models performance

(Robertson and Gray, 2021). If on the other hand, the test set was incorporated into the

making of the model, this would mean that the model would have been made in order to

suit the test set when it should be independent of it. In this study, an 80-20 randomized

split will be used with 80% of the Data Zones forming the training set and the remaining

20% forming the test set. If too much is spent in training, i.e. over 80%, then the model

will be unsuitable as there is not enough test data to properly evaluate the performance.

Whereas on the other hand, if too much is spent in testing, i.e. over 40%, then it will be

unlikely to accurately assess how good the model parameters are as the model will not

be fit realistically because there is not enough training data (Boehmke and Greenwell,

2019). Therefore, it is important to have a good split which is why the 80-20 split was

selected. Once split the test set consists of 1,253 Data Zones and the training set has

5,011 Data Zones.
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Following this, the training set will be split randomly into 10 subgroups of near

enough equal size – 9 groups of 501, and 1 group of 502 (due to there being a remainder)

- with each group in turn being used as a validation set within a 10 fold cross validation

procedure. In this 10-fold cross validation, 9 of the 10 groups are considered training sets

and 1 group is considered the validation set, and this procedure is repeated 10 times with

a different validation set each time. The number 10 was chosen because this is typically

what the value of k is in the majority of k-fold cross validation models. The greater the

value of k, the smaller the difference between the estimated and the true performance

will be on the test set (Boehmke and Greenwell, 2019), but the longer the cross validation

process will take to run.

Figure 2.10: This diagram is a visualisation of the data splitting procedure.

This procedure is repeated a further 5 times in order to take into account any biases

which may occur in the random data splitting (Boehmke and Greenwell, 2019). Figure

2.10 is a diagram showing how the data are split. Furthermore, the performance of the

models are then evaluated with the test set using various different techniques and sta-

tistical analysis to come to a conclusion of which model is the most accurate and best

for prediction of property prices in Scotland. Some examples of the statistical metrics

evaluated are Root Mean Squared Error (RMSE), Median Absolute Error (MAE), Bias

and Prediction Interval Coverage.
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The RMSE measures the square error in the same units as the price variable so it

is easily computable - essentially it is the square root of the Mean Squared Error. It is

given by the following equation:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (2.1)

where n represents the number of observations in the test set and (yi − ŷi) is the

difference between the actual value of property price on yi and the predicted value of

property price on ŷi based on the model developed on the training set. The objective is

to minimize the RMSE value as much as possible.

Next, the MAE is a measure of the median absolute error between the actual and

predicted values. It is defined as,

MAE = median
i=1,...,n

{|yi − ŷi|}. (2.2)

Again, the smaller the value of MAE is the better. The MAE is less affected by

outliers than the RMSE, because it does not have a squared term and uses the median

rather than the mean.

Bias is a value computed by calculating the difference between the actual and the

predicted value of property price. It follows the formula:

Bias =
1

n

n∑
i=1

(yi − ŷi), (2.3)

The aim is to have the bias value as close to 0 as possible as this would indicate the

model is successful in prediction on average.

The Prediction Interval Coverage measures the proportion of the 95% prediction in-

tervals that contain the true value, which should be close to 0.95. Thus it measures the

accuracy of predictive uncertainty and not point prediction.
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2.4 Normal Linear Model

I begin by assessing the predictive ability of a normal linear model as a simple base case.

Ten models are compared, two for each of the 5 training/test data splits. The first uses

all the covariates, while the second applies a backwards elimination procedure to select

important covariates.

Backwards Elimination is when the original full regression model with all the possible

covariates is fitted, then the covariate with highest p-value is removed. This process is

repeated until all the covariates have a p-value which is significant, so in this case have a

value of less than 0.05. By carrying out this process, we end up with 10 models in total -

5 ‘original’ models with all the covariates of the 5 data splits and 5 respective ‘backwards’

models of the 5 data splits which contain only covariates chosen via backwards elimina-

tion. When the final backwards selection models are achieved they are then compared

to the original full regression models with all the covariates using the prediction metrics

described above and listed in Table 2.2.

However, before making predictions from this model, it is crucial to determine whether

the model is valid and satisfies the 4 assumptions. The model assumptions are as follows

- data must be normally distributed, residuals must have a mean value of 0, there must

be constant variance and residuals must be independent. If these assumptions are not

satisfied then transformations could be made.

First of all, the data splits are visualised and examined using plots with all of them

producing very similar results. Figure 2.11 examines the normality of the residuals for

one of the data splits. By looking at the normal q-q plot we see that the data points do

not form a straight line and instead form a line which curves towards the right hand side

with lots of outliers. This would suggest that the normality assumption is not validated

and the residuals are not normally distributed and are very skewed to the right hand

side. This indicates that normality is not present and hence a transformation must be

used. In order to achieve normality a log transformation is carried out.

After transforming the average property price variable for all of the 5 data splits

using a log transformation, the following plots were achieved of the residuals. Despite

all the data splits again showing very similar results, the same data split used previously

is used again as an example in Figure 2.12 . This new q-q plot in Figure 2.12, which

assesses normality through the distribution of residuals, is an improvement on the q-q
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Figure 2.11: Normal Q-Q Plot and Histogram of residuals from the full covariate model
before transformations.
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Figure 2.12: Normal Q-Q Plot and the Histogram of residuals from the full covariate
model once transformed using a log transformation.
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2. DATA AND EXPLORATORY ANALYSIS

Table 2.2: Table showing different Statistical Model Evaluation Analysis of each of the 5
Original Full Regression Models and their respective Backwards Model.

MODEL Parameters RMSE MAE Coverage Probability
1 original 23 £47,995 £20,038 0.947

1 backwards 12 £47,933 £20,231 0.945
2 original 23 £48,973 £19,902 0.936

2 backwards 14 £48,926 £20,003 0.935
3 original 23 £45,631 £20,910 0.943

3 backwards 12 £45,754 £20,926 0.941
4 original 23 £43,524 £18,704 0.958

4 backwards 14 £43,446 £19,098 0.956
5 original 23 £45,875 £18,984 0.951

5 backwards 13 £45,802 £19,181 0.951
Average Original 23 £46,400 £19,708 0.947

Average Backwards 13 £46,372 £19,888 0.946

plot in Figure 2.11 and now resembles more of a straight line with no obvious curve at

the edges anymore. Furthermore, the histogram is now symmetric and has a peak around

0. This highlights that now the conditions for normality appear reasonable, so all further

modelling will be done on the log scale and predictions then back transformed to the

original scale.

2.4.1 Variable Selection

Firstly, in Table 2.2, when comparing each of the original models to their respective

backwards model, the backwards models all have significantly less parameters - at least

9 but sometimes 11 less parameters. It is clear that these parameters are covariates that

are insignificant to the model by use of backwards elimination based on p-values set at

0.05. This means that they have coefficients of around 0 hence they make no real impact

whether they are part of the model or not. This can be proved by the very small difference

in Mean Error, Median Absolute Error and Bias between the original and the backwards

models. Therefore, it is best to select the original models for the spatial modelling and

machine learning models. This is because here and in spatial models these models are

linear in the covariates. However, machine learning models can be non-linear, so there

may be some effects of the covariates that are non-linear and not picked up here hence

in the future I keep all covariates in the models.

Despite there being such large values of all the mean errors and median absolute er-

rors, this is not a cause for concern. They are both large because of the large range in

property prices. As found earlier in Section 2.2, the average property price is around
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2. DATA AND EXPLORATORY ANALYSIS

£150,000 but there are some clear outliers which have prices of around £800,000. These
outliers cause the data to be skewed and hence create large errors in prediction. The

median absolute error is lower than the mean error because the median is affected much

less by the skewing and the outliers than the mean is. When looking at all the models as

a whole the RMSE is around £46,000 with all models within £5,000 of each other while

the MAE is around £20,000 with the range being around £2,000. These values being so

close to one another indicate similarities between each of the data splits.

Finally, the final column in Table 2.2 is the coverage of the 95% prediction intervals,

i.e. the proportion of times they contain the true value. All 10 of the models have a

proportion of between 0.93 and 0.96 of the test set which lies within the prediction interval.

As these are all close to 0.95, this shows that all models are fairly successful in quantifying

predictive uncertainty, with Model 4, both original and backwards models, having the

highest proportion lying within the prediction interval - 0.958 and 0.956 respectively.

2.5 Discussion

A general overview of the data has been provided to give an insight into some properties

of the data set. Then, as the aim is to create an algorithm which best predicts property

price using the covariates, by splitting the data randomly into training-test data splits

and transforming to reduce uncertainity has aided to create and assess a best fit model

of the data. Further analysis of the models and their predictive performance has been

calculated using various prediction metrics.

Overall, despite noticing some key patterns and relationships between the covariates

and the price variable, it is clear that there is not one single factor that has a strong

relationship with property price as there is a lot of noise in each of the scatterplots.

Therefore, this leads to the conclusion that there are multiple factors that contribute

to the price of a property, which motivates the use of regression models and machine

learning techniques in the analysis.

The use of backwards elimination to test the impact of covariate selection has shown

that the original and backwards models are very statistically similar to each other. This

occurring in not only 1 or 2 but all 5 of the data splits highlights that the covariates

which have been removed have very little to no impact on the normal linear regres-

sion models. Through various prediction metrics, it has been shown that there is very

little difference between each of the data splits emphasising the consistency between all 5.
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2. DATA AND EXPLORATORY ANALYSIS

Hence, we proceed into further analysis using the full set of covariates on the chance

that there are non-linear effects produced by the covariates. This will be conducted by

fitting a spatial model to the data splits to evaluate prediction abilities and find a best

fit model.
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Chapter 3

Property price predictions using

spatial conditional autoregressive

models

3.1 Introduction

In this chapter, the aim is to utilize the spatial structure in the data to improve the

accuracy of the spatial prediction of property prices in Scotland. Firstly, a condition

surrounding spatial autocorrelation must be satisfied before developing this spatial model.

Spatial autocorrelation must be shown to exist in the residuals from the non-spatial

model, otherwise the spatial structure in the data is unlikely to aid the prediction. This

is done by evaluating the residuals from the simple linear regression model in the previous

chapter using a Moran’s permutation test (Moran, 1950). Once it has been determined

that spatial autocorrelation does exist, then I can continue to fit a spatial model and use

it for predictions.

3.2 Exploratory Analysis

In order to correctly model spatial dependence and show how spatially close Data Zones

are to one another, a neighbourhood matrix W must be created. The neighbourhood

matrix W is the vehicle by which the spatial closeness (proximity) between each pair of

areal units is determined. Typically a binary specification is used, where two areas are

defined to either be neighbours or not neighbours of each other. Note this is different

from point level data, where exact distances between points are used to measure closeness.

This is not used here because the distance between two areas is not unique as they are
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areas and not single points. This neighbourhood matrix is the basis for defining the

spatial autocorrelation structures implied by the models used in this section. There are

two commonly used methods that can be used to create the neighbourhood matrix W,

the K-Nearest Neighbours (KNN) method and the border sharing method (Bivand et al.,

2008).

3.2.1 KNN Method

In the KNN method (Bivand et al., 2008), the central points of all Data Zones are

identified, and a value of k is selected which represents the number of nearest neighbouring

Data Zones used to create W. Then if Data Zone Bj is one of k nearest neighbours to

Data Zone Bi, this can be represented in the W matrix as wij=1, indicating that these

areas are spatially close to each other, with wij=0 otherwise if this is not the case. This

method is applied to all Data Zones in turn to construct W. The resulting matrix will be

asymmetric because Bi may be one of the k nearest neighbours to Bj, but Bj may not

be one of the k nearest neighbours to Bi. To solve this, if wij = 0 and wji=1 then both

are set to be equal to 1 to make sure that W is symmetric. Moreover, wii will always

equal 0 because the Data Zones cannot be neighbours of themselves.

3.2.2 Border Sharing Method

The border sharing method is more straightforward than the KNN method and produces

a symmetric matrix without needing a correction step. Essentially, if Bi and Bj share a

border, an edge where they both meet, then wij=wji=1 in the W matrix and if not they

will equal 0. Again, wii will always equal zero since a Data Zone cannot be a neighbour

of itself.

As a general rule, border sharing is the preferred method for this type of spatial

areal unit modelling, due to its simplicity. However, because our training and evaluation

processes will split the data into training and test data splits, there will be missing areal

units in the study region when fitting the model so that some Data Zones will have no

neighbours under the border sharing rule. Therefore in this particular case, it is more

beneficial to continue with the KNN method to avoid having isolated Data Zones with

no neighbours.

3.2.3 Assessing the presence of spatial autocorrelation

Once the W matrix has been produced it can be further used to assess the presence

of spatial autocorrelation. Spatial autocorrelation gives a measure of the relationship

27
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between neighbouring observational units based on the similarity of their data values

(Shekhar and Xiong, 2007). One method for investigating if spatial autocorrelation is

present in the residuals of the simple non-spatial models is a Moran’s I test. Developed

by statistician Patrick Alfred Pierce Moran, it is an extension of Pearson’s correlation

coefficient to measure spatial autocorrelation between areal units (Moran, 1950). This

test computes a Moran’s I statistic, which is a single value that measures the strength

of the linear association in areal data with respect to their spatial locations. Supposing

we have data Z=(Z1, . . . , Zn) and neighbourhood matrix W, with Z̄ representing the

sample mean of (Z1, . . . , Zn). Then Moran’s I statistic can be defined as:

I =
n
∑n

i=1

∑n
j=1wi,j(Zi − Z̄)(Zj − Z̄)∑n

i=1

∑n
j=1wi,j(Zi − Z̄)2

, (3.1)

where the value of I will lie between -1 and 1, and gives the spatial autocorrelation in

the data. The value of I can be interpreted with regards to spatial autocorrelation as

follows:

I =


1, there is perfect positive autocorrelation

0, there is no spatial autocorrelation

−1, there is negative spatial autocorrelation.

(3.2)

When carrying out a Moran’s I test, a hypothesis test is carried out to assess the

significance of the spatial autocorrelation, where the hypotheses are set as follows:

• H0= No spatial autocorrelation

• H1= Positive spatial autocorrelation.

At a 5% significance level the p-value is calculated. It is computed by Monte Carlo

permutation, a randomised process where independence is satisfied. The process consists

of taking the data points then randomly reallocating them to Data Zones. The value

of the I statistic is then obtained, and the process is repeated a large number of times,

say 10,000. These 10,000 I statistics have been generated under independence as they

are based on a random permutation of the data, and they can then be compared to the

Moran’s I value from the data. The subsequent p-value from the hypothesis test is the

proportion of these randomised values that are bigger than the observed value of Moran’s

I. If the p-value is less than 0.05 then H0 is rejected and we conclude that spatial auto-

correlation is present. Whereas, if the p-value is greater than 0.05 then H0 is not rejected

and it is concluded that there is not evidence to suggest that there is positive spatial

autocorrelation.
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When spatial autocorrelation is present in the residuals from a non spatial model, this

would indicate that a spatial model may be more appropriate than the linear model (Lee,

2013). One would hope that prediction could improve by taking into account the spatial

structure in this situation in the data. The linear model created in the last chapter was

applied to data from all Data Zones with non-missing price values, and the residuals were

created. Table 3.1 displays the results of Moran’s I tests for these residuals, which were

conducted with k = 1, . . . , 10. If this test suggests that there is no spatial structure left

in the residuals then there is no point in fitting a spatial model as the covariates account

for the entire spatial structure in the data.

Table 3.1: Table of Moran’s I applied to residuals from a simple linear model for various
k.

k I statistic P-value
1 0.19901 <0.001
2 0.20409 <0.001
3 0.18683 <0.001
4 0.17715 <0.001
5 0.16671 <0.001
6 0.15947 <0.001
7 0.15610 <0.001
8 0.15053 <0.001
9 0.14462 <0.001
10 0.14225 <0.001

The results from Table 3.1 show that the I statistics from all 10 values of k are

positive and all very similar to each other. A pattern present from these results is that

as the value of k increases, the I statistic decreases hence there is less and less spatial

association. This would make sense as the higher the number of nearest neighbours a

Data Zone has, the lower the chance of all of these Data Zones being similar to each

other as some are situated further away from the Data Zone in question than others.

With the I statistics all being between 0.14 and 0.21, it indicates that neighbouring Data

Zones seem to have some association with each other and share some similarities in their

linear model residuals. This illustrates that it is not just a particular specific value of k

but that there is spatial autocorrelation in the residuals for all values of k considered.

The p-values for every value of k are less than 0.001 so since this is less than 0.05, we

can reject the null hypothesis which states there is no spatial autocorrelation and we can

conclude that there is significant evidence to suggest that there is spatial autocorrelation

present between neighbouring Data Zones. This is true for all values of k suggesting this

result is robust to the choice of k.
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3.3 Spatial modelling of areal unit data

Conditional Autoregressive (CAR) models are the most common way of modelling spatial

autocorrelation in areal unit data. The correlation is modelled by a set of random effects,

which are forced to be spatially correlated by making their joint prior distribution a CAR

type model (Lee and Mitchell, 2013). In what follows the model is fitted in a Bayesian

paradigm. The general model begins with a linear model of the form,

Yk ∼ N(xT
kβ + ϕk, σ

2) for k = 1, . . . , n. (3.3)

This is a similar structure to the linear model described in the previous chapter however

with an extra variable, ϕk, which is a random effect for the kth Data Zone. In this spatial

linear model the vector of random effects ϕ = (ϕ1, . . . , ϕn), are defined to be spatially

correlated and hence the residuals from this model should now be independent. These

random effects are modelled with a CAR Model based on the neighbourhood matrix W.

CAR models are a type of Gaussian Markov Random Fields (GMRF), which are a

general class of models used to construct dependence amongst random variables (Rue and

Held, 2005). Another example of a GMRF are Autoregressive (AR) models which are

used in time series. The simplest CAR model is the Intrinsic CAR model (Besag et al.,

1991), which states that the random effect ϕk depends only on the random effects ϕj in

a small number of neighbouring areas, as defined by W. It can be written as a set of n

univariate full conditional distributions, f(ϕk|ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn) for all k, where

n is the total number of Data Zones. These conditional distributions are given by

ϕk|ϕ−k ∼ N

(∑n
j=1wkjϕj∑n
j=1wkj

,
τ 2∑n

j=1 wkj

)
for all k = 1, . . . , n, (3.4)

where ϕ−k= (ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕn). This model has a normal distribution with the

mean being the sample mean of the random effects in neighbouring areas and the vari-

ance being a single parameter τ 2 divided by the number of neighbours the Data Zone

k has. The definition of the variance makes logical sense here as it is inversely propor-

tional to the number of neighbours and therefore the more neighbours a Data Zone has,

the less uncertainty the model implies about its random effect. Although this model is

intuitively simple, there are some drawbacks. Firstly, the joint distribution f(ϕ1, . . . , ϕn)

corresponding to the set of f(ϕk|ϕ−k) for all k is improper. The precision matrix is sin-

gular as its determinant is zero, hence the covariance matrix does not exist. Also, there

is no parameter to control the strength of the spatial correlation (Lee, 2023).
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The Leroux CAR model (Leroux et al., 1999) is an adaptation of the Intrinsic CAR

model with a parameter for spatial dependence, ρ, which addresses the above problems.

Its full conditional distribution is given by

ϕk|ϕ−k ∼ N

(
ρ
∑n

j=1wkjϕj

ρ
∑n

j=1 wkj + 1− ρ
,

τ 2

ρ
∑n

j=1wkj + 1− ρ

)
. (3.5)

It is important to note that ρ only has values within the range 0 to 1 with values close

to 0 representing weak correlation, 0.5 representing moderate correlation and close to

1 representing strong correlation. If ρ = 0 then the distribution is ϕk|ϕ−k ∼ N(0, τ 2),

indicating independence is present, and this means that the neighbouring random effects

have no impact on the distribution of ϕk. On the contrary if ρ = 1 the random effect will

follow the Intrinsic CAR model, and so because there is strong correlation the random

effect ϕk will be explained by the random effects in the neighbouring Data Zones. The

joint distribution for the Leroux CAR model corresponding to the above full conditionals

can be written as

ϕ = (ϕ1, . . . , ϕn) ∼ N(0, τ 2Q(W , ρ)−1), (3.6)

where Q(W , ρ) is the precision matrix which is given by,

Q(W , ρ) = ρ[diag(W1)−W] + (1− ρ)I. (3.7)

Here, W is the neighbourhood matrix while 1 is an n × 1 vector of ones, and I is the

n × n identity matrix. When i ̸= j, then Qij = -ρwij but when i = j this means

Qii=ρ
∑n

j=1 wij+(1-ρ). Finally, if ρ ∈ [0, 1) then Q(W , ρ) is invertible, however if ρ = 1

it will be singular.

3.3.1 Prior distributions

For each of the parameters, τ 2, ρ and β= (β1, . . . , βp), prior distributions need to be

specified. These are prior beliefs about each of the parameters separately. In this thesis,

the prior distribution for each βj is specified as

βj ∼ N(0, σ2
β) for j = 1, . . . , p, (3.8)

where σ2
β is the variance which is chosen here to be 100,000 to make the prior weakly

informative and give almost no prior information about the values of β. The variance
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parameter τ 2 is assigned a log-gamma distribution on the log precision scale, that is,

ln

(
1

τ 2

)
∼ Log −Gamma(1, 0.01). (3.9)

This distribution is the default family of priors which have been suggested by the INLA

programme that is used for inference (Rue et al., 2009).

Finally, as ρ must be in the interval [0,1], its logit is modelled as a normal distribution

as follows, which is again an INLA default.

ln

(
ρ

1− ρ

)
∼ N(0, 10). (3.10)

After these prior distributions for the parameters are specified, they are then combined

with the likelihood function for the observed data shown in (3.3) and (3.6) to construct

the posterior distribution for the model (Gelman et al., 1995).

3.3.2 Spatial prediction

Since the property price data are modelled on the log scale, any predictions for the test

set observations Ŷi

(test)
must be made on the original scale. Hence to achieve appropriate

property price predictions, the final predictions have the form,

Ŷi
(test)

= exp{x(test)T

i β̂ + ϕ̂
(test)
i }. (3.11)

Here, Ŷi

(test)
is the test set observation to be predicted, x

(test)T

i is the set of covariates

corresponding to this observation and β̂ are regression parameters estimated as the pos-

terior mean values based on the model applied to the training set. Since this is a spatial

model, it is also necessary that the random effect, ϕ̂
(test)
i , is estimated.

This is done using the same Leroux CAR model applied to training set. Thus

ϕ̂
(test)
i = E(ϕ(test)

i |ϕ) = ρ̂
∑K

r=1 wirϕ̂r

ρ̂
∑K

r=1wir + 1− ρ̂
, (3.12)

where r is an observation from the training set and i from the test set. Here, ρ̂ and ϕ̂r

are the posterior means from the training set and wir = 1 if the rth Data Zone in the

training set is one of the kth closest to the ith Data Zone in the test set.
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This model is fit to 9 out of the 10 folds of the training set separately for each value of

k when constructing W, and is used to predict the 10th (validation set). This process is

repeated 10 times each time leaving out a different fold. The RMSE and MAE are then

computed for each value of k from 1 through 10 and the ‘best’ value of k is chosen. Once

the best value has been chosen, the model is then refit to the entire training set using

this ‘best’ value of k in order to make predictions on the test set.

3.3.3 Parameter estimation

Two common ways of fitting CAR Models within a Bayesian setting are Integrated

Nested Laplace Approximation (INLA)(Rue et al., 2009) and Markov Chain Monte-Carlo

(MCMC) simulation (Gómez-Rubio, 2021a). INLA can be implemented via the INLA

package in R which is used for approximating Bayesian inference of Latent Gaussian

models (R INLA Project, 2020). In recent years, it has become a popular alternative to

MCMC simulation because MCMC can often be computationally expensive when dealing

with large volumes of data like in this study (Gómez-Rubio, 2021b).

3.4 Choosing the number of neighbours k to

construct W

Before the spatial model is fit and predictions are made, it is necessary to determine

whether there are covariates that are not needed now due to being represented by spatial

terms. These covariates will be removed from the model. Therefore, two covariates –

easting and northing – have been removed as linear terms in the model, because the

effects of spatial location are instead modelled more flexibly by the random effects as

summarised above. Although there are arguments for both keeping these covariates as

linear terms or removing them from the prediction model, it has been decided to remove

these covariates. This decision is justified in terms of the easting covariate because there

could be a relationship that as you move further east across Scotland then property price

increases, but this would imply that the whole of Glasgow has lower property prices

than Edinburgh. This is untrue because although there may be some very expensive

affluent areas in Edinburgh, there are also areas like this in Glasgow, hence some areas in

Glasgow will indeed have higher property prices than some areas in Edinburgh. Moreover,

the same theory can be applied to the northing covariate – the further north of Scotland

you travel, the higher or lower the property prices. This would imply that two places at
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similar latitudes have similar property prices, but Fort William and Aberdeen contradict

this. Aberdeen is a big city in comparison to Fort William which would suggest that

property prices would be higher here as there is better access to amenities. Thus linear

relationships between property price and easting/northing seem inappropriate. However,

all other covariates from the linear models in the previous chapter are retained.

3.4.1 Validation strategy

As shown previously in Section 2.3.4, 5 different data splits are considered through the

process shown in Figure 2.10. These are training-test splits assigned randomly in order to

assure that the splitting hasn’t impacted the results (e.g. all of Glasgow has ended up in

the same data split). In each split, the test set is removed and a model is created with the

training set which in turn is separated into 10 more splits within itself. For the purposes

of choosing the best k for constructing W, the model is fit to 9/10 of the training set and

is used to predict the 10th part of the training set otherwise known as the validation set.

This process is repeated 10 times and the validation set is changed each time. The tuning

parameter k is selected by applying the model with W constructed with each value of k

from 1 to 10, and predictions made of the validation set in each case. Table 3.2 shows

the computed values of the root mean square error (RMSE) for the validation sets on

each of the 5 data splits for each of the 10 values of k, while Table 3.3 shows the median

absolute error (MAE). Across the 5 splits and 10 values of k, the metrics are computed

over all observations in the training set. The averages across the 5 data splits are used to

obtain the best value or values of k for prediction, which is the one which produces the

lowest RMSE and MAE. From Table 3.2, the best value of RMSE is £42,595 which occurs

when k = 7, whereas Table 3.3 shows the best value of MAE is £18,007 when k = 3.

Therefore, since the best values of k are not the same for the RMSE and MAE metrics

we will continue test set prediction in the next section with both k = 3 and k = 7. In

general, as the values of RMSE and MAE are very similar for all values of k, it indicates

that its value should not have a big effect on the final results.

3.4.2 Test Set Predictions

The spatial model is refit to each entire training set with k equal to 3 and 7, and property

prices are predicted for the test set using the fitted model on each of the 5 test splits.

The resulting RMSEs and MAEs are shown in Table 3.4, which also includes the results

from the linear model from the previous chapter, for comparison. Comparing the spatial

models to the original linear model, we see that there is a general improvement as the

RMSE values have decreased as have the MAE values for both values of k in each of the
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Table 3.2: Table of root mean square error (RMSE) of property price for each value of k
when constructing W applied to the 5 data splits.

k Split 1 Split 2 Split 3 Split 4 Split 5 Average
1 £44,368 £44,429 £45,698 £45,858 £45,332 £45,137
2 £42,751 £42,786 £44,140 £44,105 £43,701 £43,497
3 £42,361 £42,299 £43,633 £43,539 £43,246 £43,016
4 £42,230 £42,054 £43,394 £43,462 £42,895 £42,807
5 £42,091 £41,910 £43,302 £43,295 £42,943 £42,708
6 £42,007 £41,879 £43,132 £43,142 £42,869 £42,606
7 £41,982 £41,933 £43,108 £43,148 £42,803 £42,595
8 £42,017 £41,998 £43,089 £43,124 £42,814 £42,608
9 £42,148 £41,937 £43,131 £43,159 £42,864 £42,648
10 £42,150 £42,015 £43,187 £43,189 £42,904 £42,689

Table 3.3: Table of median absolute error (MAE) of property price for each value of k
when constructing W applied to the 5 data splits.

k Split 1 Split 2 Split 3 Split 4 Split 5 Average
1 £18,258 £18,438 £18,376 £18,910 £18,806 £18,578
2 £17,945 £18,198 £18,330 £18,860 £18,340 £18,335
3 £17,762 £17,966 £17,968 £18,341 £17,998 £18,007
4 £17,968 £17,993 £18,168 £18,170 £18,195 £18,099
5 £17,859 £18,066 £18,113 £18,308 £18,112 £18,092
6 £17,878 £17,838 £18,163 £18,226 £18,207 £18,062
7 £17,985 £17,812 £18,234 £18,111 £18,031 £18,035
8 £17,858 £17,775 £18,139 £18,294 £18,158 £18,045
9 £17,919 £17,809 £18,208 £18,210 £18,000 £18,029
10 £17,840 £17,788 £18,233 £18,128 £18,157 £18,029

5 data splits. The RMSE and MAE differ from each other in both the linear and spatial

models because the median is much less affected by skewness and outliers than the mean

is. Comparing RMSE and MAE values of the linear model to each of the spatial models

for each split, it can be seen that when k = 3, the RMSE and MAE decreases by around

9%, and likewise when k = 7, the decreases are around 10%. This gives an indication

that the spatial models are more accurate in prediction than the original linear model as

the lower the values of RMSE and MAE, the better the prediction. The bottom of Table

3.4 shows the average values of RMSE and MAE for the linear model and the spatial

models for the two values of k over all 5 data splits. By calculating these averages, this

makes it easier to compare the models. Overall, we see that there are very similar results

when k = 3 and k = 7. By using spatial models instead of the linear model, the RMSE

has improved by around £5,000 while the MAE has improved by nearly £2,000. When

predicting on the test set, k = 7 has the lowest RMSE in every split and the lowest
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Table 3.4: Table showing root mean square errors (RMSE) and median absolute errors
(MAE) of each of the 5 data splits using a linear model, and two spatial models with
different k values.

Split Model RMSE MAE

1
Linear £47,995 £20,038
KNN(k = 3) £44,590 £17,915
KNN(k = 7) £44,068 £18,386

2
Linear £48,973 £19,902
KNN(k = 3) £44,291 £17,972
KNN(k = 7) £43,775 £18,111

3
Linear £45,631 £20,910
KNN(k = 3) £40,453 £17,880
KNN(k = 7) £40,122 £17,431

4
Linear £43,524 £18,704
KNN(k = 3) £39,573 £18,036
KNN(k = 7) £39,439 £17,624

5
Linear £45,875 £18,984
KNN(k = 3) £40,992 £17,723
KNN(k = 7) £40,861 £17,244

Average
Linear £46,400 £19,708
KNN(k = 3) £41,980 £17,905
KNN(k = 7) £41,653 £17,759

overall average. However, despite having the lowest average MAE, in 2 out of 5 of the

data splits, k = 7 has a higher value of MAE than k = 3. This shows that both values

of k have very similar outcomes as there are very small differences between their RMSE

and MAE values. However, due to having lower averages, k = 7 is the better value for

prediction. Finally, these results suggest that using spatial models has improved the

accuracy compared to the simple linear model, because the random effects in the model

have taken the remaining spatial structure in the data taken into account.

3.5 Discussion

In conclusion, by constructing a CAR model with spatially correlated random effects, we

see that there is a clear improvement in predictive performance from the original linear

models, thus suggesting that the spatial modelling has helped create a more accurate

prediction model.

By evaluating the original linear models using a Moran’s I test to obtain I statistics,

we have shown that spatial autocorrelation is present in the residuals of a simple linear
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model hence spatial modelling is appropriate for predicting property prices in Scotland.

The best value of k when constructing W was firstly selected by comparing the RMSE

and MAE for values k = 1 to 10 across 5 data splits, which resulted in k=3 and k=7

being chosen as they had the lowest MAE and RMSE values respectively. Furthermore,

by applying these two values of k to predict the test set observations and comparing

these spatial models to the original linear model, a significant improvement can be seen

and it can be concluded that k = 7 is the best value for prediction. Overall, the average

RMSE value has decreased by around £5,000 and the MAE by nearly £2,000, emphasis-

ing that the spatial model has higher predictive accuracy in predicting property prices

across Scotland than the linear model.

However, despite this improvement, a problem with spatial models is that all of the

covariate effects are assumed to be linear which could negatively impact the accuracy

of the predictions. So, it may be beneficial to explore and consider non-linear methods

of prediction such as Machine Learning (ML) methods. In the following chapter, I will

investigate whether ML methods such as random forest and gradient boosting machines,

which are known to be good at prediction, can outperform the spatial models above in

the case of property prices.
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Chapter 4

Property price predictions using

classical machine learning methods

4.1 Introduction

Previously, the predictive ability of spatial CAR models were compared to linear models

in the context of property price data and I learned through prediction metrics that the

spatial CAR models produced more accurate predictions than linear models. Another

commonly used family of methods which are good for prediction, as they consider both

linear and non-linear covariate effects, are machine learning methods, which have been

popularly used in various different settings including medical (Cruz and Wishart, 2006),

geographical (Georganos et al., 2021) and financial (Bensic et al., 2005).

In this chapter, I will investigate specifically tree-based machine learning methods

beginning with a single basic decision tree (Section 4.2) then following on with ensemble

tree-based methods such as bagging (Section 4.3), random forest (Section 4.4) and gradi-

ent boosting (Section 4.5). Despite originating from the same family of methods, each of

these tree-based methods have different strengths, which are outlined later in this chap-

ter. Bagging has been used to help protect computers from threats through an intrusion

detection system as it uses the bootstrapping technique to create an ensemble of decision

trees then takes an average over this in order to reduce the rate of false-positive threats

arising (Gaikwad and Thool, 2015). Random forests, which similarly build an ensemble

of trees but encourage more randomness amongst the trees by only using a subset of

covariates, have been used in the diagnosis of colon cancer by identifying the genes which

have the highest correlation with the cancer (Su et al., 2022). Finally gradient boosting

helped to prevent bank failure in the USA through identifying key factors of risk using an
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ensemble of small trees where each tree builds upon its predecessor (Carmona et al., 2019).

By investigating these tree-based machine learning methods, this will allow a conclu-

sion to be reached as to whether, in a spatial data context, classical a-spatial machine

learning methods can predict better than standard spatial models. This is a very new

topic of research which has been rarely approached, some examples being Tehrany et al.

[2019] and Knoll et al. [2019] in the context of environmental spatial data, so the results I

gather will provide an interesting insight into machine learning methods in a spatial data

context. Furthermore, another aim is to see how different tree-based machine learning

methods compare in predictive ability to one another, whether one specific method is sig-

nificantly better at prediction or if all methods have very similar predictive performance.

Predictive performance of the tree-based methods will be measured using the same

data splitting techniques from Section 2.3.4 and train-validation-test strategies as Sections

3.4.1 and 3.4.2 in order to maintain consistency throughout. This allows the tree-based

methods to not only be easily comparable to one another but also to the spatial CAR

model as seen in Section 3.2.1. Like previously, by calculating the root mean square error

(RMSE) and median absolute error (MAE) and using these prediction metrics to measure

the performance of each of the methods, the overall best method of prediction can be

determined. The remainder of this chapter is organised as follows: Section 4.2 discusses

basic decision trees whilst Sections 4.3, 4.4 and 4.5 analyse the bagging, random forest,

and gradient boosting methods respectively and finally Section 4.6 gives a comparison

of each of the machine learning methods to each other whilst also analyses them against

previous methods studied such as the linear model and spatial model.

4.2 Decision Trees

Decision trees are a class of non-parametric algorithms that split the data in the training

set into numerous subgroups that internally contain similar response values through a set

of splitting rules in order to make predictions on the test set. They can be very beneficial

in the sense that they are easy to construct and interpret, however alone they typically

lack in predictive performance by being biased or imprecise (Boehmke and Greenwell,

2019). In order to fix this problem and achieve a model with the best predictive perfor-

mance, random forest and gradient boosting methods can be used as they are, in essence,

a combination of multiple decision trees. These will be discussed later on in this chapter,

but first single decision trees are summarised. Despite there being various methods for

building a decision tree, the classification and regression tree (CART) algorithm devel-
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oped by Leo Breiman in 1984 is the most renowned (Breiman, 2017). This algorithm

caters for two different kinds of problems, regression and classification, which must be

distinguished before creating the tree, and in this thesis I focus on regression because the

response variable, property price, is numerical rather than categorical. A decision tree

splits the training data into various homogeneous subgroups, where the response vari-

ables in each subgroup are very similar to each other. Then the average response value of

the observations for each subgroup is used to predict any test set observation assigned to

that group. These subgroups, also known as nodes, are constructed by partitioning the

training data based on values of covariates using simple binary style splitting rules such

as x < c or x ≥ c, where each observation is allocated to one of two subgroups depending

on which group it fits in. As this process is repeated, a structure which visually resembles

a tree occurs with numerous nodes and branches. The root node at the top of the tree

consists of all the training data before any partitioning has begun. Then each node is

split into z further nodes until a stopping criteria has been reached and the nodes at

the bottom are known as terminal nodes. Any nodes that lie between the root node and

the terminal nodes are referred to as internal nodes as can be seen in Figure 4.1 which

is taken from Chapter 9 of Hands-on Machine Learning with R textbook (Boehmke and

Greenwell, 2019).

Figure 4.1: Diagram of the structure of a decision tree identifying the 3 different types
of nodes - root, internal, and leaf.

4.2.1 Partitioning

The construction of a decision tree requires the training data to be split into subsets,

so CART uses binary recursive partitioning which means that the splitting at each node

is dependent on how the data are split at the nodes above. Therefore, put simply it
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is a process that depends on the results of the previous partitioning. The aim of this

procedure is at each split to find the covariate (xi) which best splits the data into two

nodes (R1 and R2), so that the overall error between the response variable (yi) and the

prediction (ci) is minimized as much as possible, where ci is the mean of the responses

that fall in Ri. The following sum of squared errors (SSE) is minimised at each split,

SSE =
∑
i∈R1

(yi − c1)
2 +

∑
i∈R2

(yi − c2)
2. (4.1)

By repeating this process until the tree is ‘too complex’ (has too many terminal

nodes), an overfitted tree is achieved. This tree is then simplified by pruning as discussed

below. It is important to note that when dealing with multiple covariates, it is possible

that a single covariate can dominate and be used multiple times to partition the data.

For example, as the tree grows, this specific covariate can be used repeatedly to find the

optimal split in the data.

4.2.2 Creating an optimal tree

Decision trees can be of any size, small or large, which is why it can be complicated to

find a structure that provides an optimal prediction. Sometimes trees can be too large

and too overcomplicated, which can lead to the data being overfit, leading to non-optimal

prediction in the test set. On the contrary, there can be trees which only partition the

data once, leading to an inaccurate prediction. In both these circumstances a problem

of poor predictive performance occurs. To tackle this problem the complexity/size of the

tree must be chosen to obtain the optimal predictive performance. Two methods used to

create the best decision tree for prediction are early stopping and pruning.

Early stopping consists of applying different types of growth restrictions to the tree

such as, restricting the depth of the tree by implementing a strict rule on the number of

levels it has, or limiting the minimum number of observations allowed in a terminal node.

By limiting the number of levels this could result in a shallow tree which means there is

less variance in the predictions. However, sometimes a tree being too shallow can lead

to too much bias and the patterns and interactions within the data cannot be picked up.

Similarly, allowing the minimum number of observations in each terminal node to be too

small can lead to a high variance which will result in the predictions being good for the

training set but not for the test set. Similarly, having too large a minimum number of

observations in a terminal node can reduce the variance and like before when restrict-

ing the levels, this will result in a shallow tree which is unable to properly encapsulate

trends in the data. Although both of these restrictions are independent, they still have
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an effect on each other, i.e. setting a minimum value of 10 observations in each terminal

node will have an impact on how many levels the tree has. A disadvantage of the early

stopping method is that it relies on human decisions as the size and structure of the tree

all depends on the values chosen for the restrictions.

Pruning is an alternative method to early stopping, which is when a very large tree

is created first, and is then pruned back, removing branches that are not particularly

important, in order to generate an optimal subtree for prediction. This subtree is con-

structed using a cost complexity parameter, α, which penalizes the SSE function in (4.1),

by the number of terminal nodes it has, T. That is, one minimises

SSE + α|T |, (4.2)

which aims to balance out fit to the data via a small SSE (favouring a complex tree)

against simpler trees via a small α|T |. Then, the best tree is chosen by optimising (4.2)

with respect to α. This is done by comparing multiple different trees constructed based on

various values of α through cross validation leading to the best tree in a predictive sense.

Once these results are compared with one another and the value of α which minimizes

(4.2) is identified, predictions on the test set can be evaluated.

4.2.3 Prediction using decision trees

A basic decision tree can be constructed for the property price data, and its predictive

performance can be evaluated using the same prediction metrics as earlier, namely root

mean square error (RMSE) and median absolute error (MAE). This method is applied

to all 5 of the data splits with α chosen through 10-fold cross validation on the training

set in order to predict the test set. Then, its predictive ability can be compared with the

other prediction models in this thesis, such as the original linear model and the spatial

CAR model with k = 7, to determine which model is the most accurate for predicting

property price in Scotland. It is worthwhile to note that when producing a decision tree,

the same set of covariates is used as the linear model i.e. with easting and northing

included again unlike in the spatial model. This is because there is not an explicit use of

space in decision trees hence it cannot be captured in any other way.

Figure 4.2 is an example of the property price predictions for one of the 5 data splits

using a basic decision tree. This decision tree has 8 terminal nodes, otherwise known as

prediction regions, with each node being represented by one of the vertical lines on the

graph. On inspection, this tree seems unsuitable because there are so few terminal nodes
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Figure 4.2: Scatterplot of property price predictions (x-axis) vs true property prices (y-
axis) for one of the test sets of tree depth 4 with 8 terminal nodes.

despite there being 1253 observations. This means that there could be more than 150

observations in a prediction region, depending on the characteristics of the Data Zone

and the path it follows in the tree, which in this case is around 1/8th of the total number

of observations. A better and more accurate prediction would be for Figure 4.2 to resem-

ble more of a random scatter instead of distinct vertical lines and the tree to have more

depth hence more terminal nodes leading to less observations in each prediction region.

Table 4.1 shows how the decision tree predictions compare to the linear model and

the spatial model with k = 7. In all 5 data splits, it is clear that the RMSE and MAE

values are notably higher for the decision tree in comparison to the two other models.

This highlights that the linear model and the spatial model both have much better pre-

dictive performance than a simple decision tree across all data splits. In order to easily

compare the models with each other, the average values of RMSE and MAE for each of

the models are calculated and are displayed at the bottom of Table 4.1. In general, the

linear and spatial models outperform the decision tree because they have significantly

lower average errors. The RMSE of the tree is around £10,000 higher than the linear

model and around £15,000 higher than the spatial model. Moreover, the MAE further

highlights the difference between the models as the tree has an MAE value £5,000 higher

than the linear model and £7,000 higher than the spatial model. As these values are

largely different from one another and the aim is to have the lowest RMSE and MAE

value possible, this suggests that the basic decision tree has poor predictive performance

so adaptations that combine multiple trees are now considered.
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Table 4.1: Table showing root mean square errors (RMSE) and median absolute errors
(MAE) of each of the 5 data splits using a decision tree, a linear model and a spatial
model where k = 7.

Split Model RMSE MAE

1
Tree £59,625 £25,504
Linear £47,995 £20,038
Spatial(k = 7) £44,068 £18,386

2
Tree £58,692 £24,581
Linear £48,973 £19,902
Spatial(k = 7) £43,775 £18,111

3
Tree £55,160 £25,259
Linear £45,631 £20,910
Spatial(k = 7) £40,122 £17,431

4
Tree £54,119 £25,195
Linear £43,524 £18,704
Spatial(k = 7) £39,439 £17,624

5
Tree £56,049 £23,683
Linear £45,875 £18,984
Spatial(k = 7) £40,861 £17,244

Average
Tree £56,729 £24,845
Linear £46,400 £19,708
Spatial(k = 7) £41,653 £17,759

4.3 Bagging

Bootstrap aggregating, otherwise known as bagging, is an algorithm which combines

multiple decision tree models and takes an average of the predictions from these trees.

This assists in increasing the accuracy of the predictions whilst also reducing the variance.

Firstly, b bootstrap samples of the training data of size n are obtained, where sampling

is done with replacement. Then a decision tree is constructed for each bootstrapped

sample. Thus, the resulting number of decision trees created is equal to the number

of bootstrap samples chosen, b. Test set predictions are made for each decision tree

separately and a final bagged prediction, ˆfbag, is generated by combining the individual

predictions and taking an average. The process is given by the following equation,

ˆfbag =
f̂1 + f̂2 + . . .+ f̂b

b
, (4.3)
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where f̂1 . . . f̂b, are the predictions from the decision trees using b bootstrapped data

samples. In this setting the decision trees constructed are unpruned, as this allows the

variance to be kept high and the bias low, therefore optimal bagging will occur when

averaging over the b trees. In turn, bagging will reduce the variance overall because of

the averaging process. Generally, the more decision trees that there are, the better the

prediction will be, but there will be a point reached where the prediction RMSE will

stabilize and even if more trees are added, there will be very little, if any, improvement

that is significant.

Table 4.2 shows how the out-of-sample RMSE and MAE for the 5 data splits compare

for 50, 100 and 150 bootstrapped samples using the bagging method. Overall, there is not

a large difference in the RMSE values between each of the 3 bootstrap values, generally

less than £1,000. As between 50 and 150 trees there is very little improvement in the

RMSE value, this would imply that the optimal number of bootstrap samples required

for the best predictive performance is somewhere towards the larger end of this range.

This is because as we reach towards 150 trees, the improvement in RMSE between the

trees becomes smaller.

Table 4.2: Table showing the root mean square errors (RMSE) and median absolute
errors (MAE) of each of the 5 data splits using bagging and based on 50, 100, and 150
bootstrapped samples.

Split
Number of Bootstraps

50 100 150
RMSE MAE RMSE MAE RMSE MAE

1 £45,740 £17,895 £44,857 £17,912 £44,745 £18,037
2 £45,421 £18,334 £44,711 £17,673 £44,805 £17,487
3 £41,499 £18,447 £41,044 £17,517 £41,175 £18,793
4 £39,601 £16,372 £39,889 £17,054 £39,795 £17,049
5 £43,122 £18,119 £42,252 £17,615 £42,131 £17,490
Average £43,077 £17,833 £42,551 £17,554 £42,530 £17,771

An important factor surrounding these results is that there is an obvious spread in

RMSE values between the 5 data splits. For example, in the case where there are 50

bootstrapped samples, Split 4 has the smallest RMSE of £39,601 while Split 1 has the

largest, £45,740, which is a difference of over £6,000. This could be due to the dynamics

of each split i.e. Split 1 may have more higher priced areas in the test set, which are

generally predicted less well than lower priced areas. On the other hand, the MAE values

do not follow this pattern and instead are much closer in value to each other. This may

be because any high priced outliers in the test set will have no effect on the median so if
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there is an extremely high property price in one of the test set splits, this will only have

an effect on the RMSE value and not on the MAE value.

Figure 4.3 is a graphical example of the predicted property prices for one of the 5 data

splits using 50 bootstrap samples. When comparing this to Figure 4.1 which only used

a single decision tree, there is now a linear relationship which is the desired outcome.

Hence, this indicates that the predictive performance is better and more accurate when

using the bagging method where multiple trees are combined and averaged over rather

than using one single decision tree on its own. This can be seen by comparing Tables

4.1 and 4.2, which show that the bagging method, no matter the number of bootstrap

samples, has better predictions of property prices than both a single decision tree and

the linear model. However, using the spatial CAR model with k = 7 is the best overall

so far for prediction, having an RMSE that is lower by £877 as seen in Table 4.6.

Despite the results in Table 4.2 and Figure 4.3 showing that the bagging method is

fairly good at prediction, it does have a crucial weakness – namely the individual trees

are similar. Even though the data in each bootstrap sample is randomized and no 2

bootstrap samples are the same, the same covariates are still being used to create each

tree. Therefore, this means that all of the decision trees will likely follow a very similar

structure at the top of the trees and will only differ towards the bottom. This will lead to

similar trees being constructed due to the strong impact of certain covariates on the data.

Hence, bagging prevents the variance from being further reduced. In order to tackle this

problem, the random forest and gradient boosting methods, which are an extension of

decision trees, can be used and evaluated to see if they can produce better predictions.

4.4 Random Forests

Random forests are algorithms that offer improved predictive performance over decision

trees and potentially bagging. They follow the same fundamentals as bagged decision

trees but encourage more randomness in the construction of the trees by reducing the

between tree correlations. Due to the between tree correlation being present in bagging,

this prevents the overall variance from being further reduced, so to combat this random

forests reduce correlation by using less correlated trees. There are many different ways

of structuring and creating a random forest but the most popular, which will be used in

this thesis, is Leo Breimann’s method (Breiman, 2001). This method allows for very few

tuning parameters whilst also normally decreasing the error through randomisation.
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4.4.1 Structure

Similar to all of the previous models, the random forest algorithm is applied separately

to each of the 5 original data splits, being fitted and trained on the training set and

subsequently used to predict the test set. The construction of a random forest begins the

same as bagging where the desired number of trees is chosen, and a bootstrap sample

of the training data is generated to create each decision tree. Then for a given tree in

order to split each node into two further nodes, instead of the whole set of covariates

being considered, each node is limited to a fraction of the set of covariates, mtry, with

covariates allocated to this small set randomly. The number of covariates considered for

use at each node split is set beforehand, with each node having the same number but a

different selection of possible covariates for making the split. The covariate which has the

strongest relationship with the data at each node will be used as the variable on which

the node split is determined on. This means that the covariates which determine the node

split could differ at every split depending on which subset of covariates are considered at

that split. The tree will continue to grow until the stopping criteria is reached, and in the

case of random forests, the minimum number of observations in each node is fixed by the

user. Once this is reached we have a full decision tree, and this same process is repeated

for each of the bootstrap data samples until the number of desired trees is obtained. The

final prediction can then be calculated by combining the predictions of each individual

tree in the random forest and taking an average (Boehmke and Greenwell, 2019).
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Figure 4.3: Scatterplot of property price predictions for one of the test sets using bagging
based on 150 bootstrap samples.
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4.4.2 Tuning Parameters

The mtry tuning parameter controls the number of variables on which the nodes could

be split on, and because of the induced randomization in the covariate selection process

at each node, will help to keep the trees decorrelated (James et al., 2013). Typically, a

sensible value of mtry is p
3
where p represents the total number of covariates in the full

set (Boehmke and Greenwell, 2019). Hence this means that only one third of the covari-

ates is considered at each split, and of this third the covariate which has the strongest

relationship with the response variable will be the variable on which the node split is

determined on at each split in order to grow the tree. The value of mtry can be altered

to suit different data sets. For example, data sets with very few covariates of large im-

portance will generally benefit from using a higher value of mtry as this will increase the

likelihood of at least one of the covariates of importance being considered as the variable

which determines the node split (Boehmke and Greenwell, 2019).

For this property price data set, I will investigate different values of mtry, from low to

high, in order to see the impact that the value of mtry has on predicting property prices.

Firstly, the value of mtry is
p
10

with 10% of the full set of covariates being considered, then

this value will be increased in 10% increments, rounded to the nearest whole number,

until the full set of covariates is reached and it will in turn be equivalent to bagging.

Additionally, the number of trees in a random forest is another tuning parameter that

plays a crucial role in determining the predictive ability of the model. As seen previously

when comparing the single decision tree versus the bagging method in Section 4.3, where

multiple trees are used, as the number of trees increase the RMSE will decrease because

the accuracy in prediction has improved due to a decreased error rate (Boehmke and

Greenwell, 2019). Therefore, when building random forest models on this property price

data set, I will investigate how 50, 100 and 150 trees compare, the same values used in the

bagging method. This will allow these machine learning methods to be compared fairly.

Thus there are 30 possible tuning parameter combinations, which are all combinations

of b = 50, 100, 150 and mtry = 2, 4, 6, 9, 11, 13, 16, 18, 20, 23. The final tuning parameter

in the model, the number of minimum observations in each terminal node, is a fixed

parameter and will be set at 2 for all combinations.

4.4.3 Choosing the tuning parameter combination

Before making any predictions on the test set, the optimal values of the tuning parame-

ters, namely the number of trees (b) and the number of covariates (mtry), must be chosen
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by evaluating the training-validation set. Similar to the spatial CAR model shown in Sec-

tion 3.2.1, the data are randomly split into 5 training-test data splits using the splitting

process shown in Figure 2.10. Then, the test sets for each of the 5 splits are removed and

random forest models are created using the training sets. For the purposes of choosing

the optimal tuning parameter combination, in each split the training set is further parti-

tioned into 10 smaller sub-splits of roughly equal size. The random forest is subsequently

fit to 9/10 of the training set for each combination of tuning parameters, and is then

used to predict the 10th, the validation set. This process is repeated 10 times, with a

different validation set each time, using 10-fold cross validation. In turn, this will lead

to 30 different combinations of results being generated per split and Tables 4.3 and 4.4

show the values of root mean square error (RMSE) and median absolute error (MAE)

obtained by each combination.

From Table 4.3 the best value of RMSE across the 5 splits is £42,805 which is obtained

when the value of mtry is 20 and b=150. On the contrary, the least optimal combination

has a RMSE of £46,453 and occurs when mtry=2 and b=50 creating an overall range of

approximately £3,600. This would suggest that increasing both b, the number of trees,

and mtry will decrease the RMSE value and hence provide a more accurate prediction.

Moreover, Table 4.4 shows that the MAE has a slightly different optimal combination,

as the lowest MAE value of £17,380 is obtained when mtry=13 and b=100. The least

optimal combination outputs a MAE of £18,713 which is again when mtry is 2 and b=50.

These results highlight that it is highly likely that there are certain covariates that have

a stronger impact on property price than others, and hence when a small value of mtry is

used this could lead to unimportant covariates being used as the split variable. Therefore,

since the best combination of tuning parameters are not the same for the RMSE and MAE

metrics, we will continue to make predictions on the test set in the following section using

both (mtry=20, b=150) and (mtry=13, b=100).

4.4.4 Test Set Predictions

The random forest model is refit to the entire training set firstly with (mtry= 20, b=150),

and then with (mtry=13, b=100), and property prices are predicted for the test set using

the fitted model for each of the 5 splits. The resulting RMSE and MAE values can be seen

in Table 4.5, where the combinations can be compared with one another and averages are

calculated over all 5 data splits. In general, the values of RMSE are very similar to each

other across all 5 splits with very little difference between the two combinations. Like-

wise, the MAE values for the 5 splits are all close in value to one another. In 4 out of 5 of

the splits the mtry=20 and b=150 combination has a lower RMSE than the mtry=13 and
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Table 4.3: Table showing the root mean square error (RMSE) of property price for each
combination of tuning parameters when building a random forest applied to the 5 data
splits.

mtry b Split 1 Split 2 Split 3 Split 4 Split 5 Average
2 50 £45,840 £45,966 £46,869 £46,706 £46,886 £46,453
4 50 £44,218 £43,844 £44,953 £45,055 £44,404 £44,495
6 50 £43,347 £43,567 £44,201 £44,247 £43,322 £43,467
11 50 £42,881 £42,873 £43,621 £43,706 £43,229 £43,262
13 50 £42,947 £42,833 £43,429 £43,762 £43,589 £43,312
16 50 £42,781 £43,129 £43,591 £43,166 £43,165 £43,167
18 50 £42,643 £42,846 £43,377 £43,418 £43,498 £43,156
20 50 £42,308 £42,941 £43,642 £43,018 £43,199 £43,021
23 50 £42,675 £42,911 £43,425 £43,339 £43,019 £43,074
2 100 £45,619 £45,581 £46,640 £46,444 £46,236 £46,104
4 100 £43,975 £43,656 £44,769 £44,800 £44,258 £44,292
6 100 £43,292 £43,279 £43,972 £44,035 £43,703 £43,656
9 100 £42,902 £42,859 £43,791 £43,566 £43,190 £43,261
11 100 £42,668 £42,602 £43,396 £43,542 £43,030 £43,048
13 100 £42,616 £42,514 £43,431 £43,693 £43,325 £43,116
16 100 £42,617 £42,782 £43,391 £43,182 £43,052 £43,005
18 100 £42,490 £42,698 £43,430 £43,203 £43,240 £43,012
20 100 £42,196 £42,663 £43,451 £43,061 £42,960 £42,866
23 100 £42,403 £42,673 £43,483 £43,253 £43,145 £42,991
2 150 £45,420 £45,525 £46,531 £46,395 £46,144 £46,003
4 150 £43,790 £43,584 £44,780 £44,677 £44,207 £44,208
6 150 £43,300 £43,169 £44,025 £44,056 £43,611 £43,632
9 150 £42,793 £42,746 £43,724 £43,570 £43,140 £43,195
11 150 £42,636 £42,594 £43,386 £43,484 £42,982 £43,016
13 150 £42,403 £42,456 £43,327 £43,511 £43,124 £42,964
16 150 £42,524 £42,699 £43,396 £43,102 £42,978 £42,940
18 150 £42,425 £42,657 £43,331 £43,188 £43,158 £42,952
20 150 £42,184 £42,534 £43,372 £43,087 £42,846 £42,805
23 150 £42,427 £42,593 £43,427 £43,251 £43,088 £42,957

b=100 combination. On the other hand, for all 5 splits the 13-100 combination provides

the lowest MAE values. Overall when taking a look at the averages, the values are very

similar for both combinations with a less than £100 difference in RMSE and a slightly

larger difference, around £400, in MAE between the combinations. The results are very

similar to the results obtained by using the bagging method, because mtry is relatively

large, suggesting that the same covariates are used as the node splitting variable the

majority of the time because they have the most influence on property prices. Therefore,

the individual trees in the random forest will be very structurally similar to the bagged

trees.
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Table 4.4: Table showing the median absolute error (MAE) of property price for each
combination of tuning parameters when building a random forest applied to the 5 data
splits.

mtry b Split 1 Split 2 Split 3 Split 4 Split 5 Average
2 50 £18,920 £18,617 £18,445 £19,065 £18,521 £18,713
4 50 £18,160 £17,853 £17,741 £18,099 £18,063 £17,983
6 50 £17,750 £17,596 £17,497 £18,302 £17,625 £17,754
9 50 £17,393 £17,810 £17,445 £18,111 £17,910 £17,734
11 50 £17,222 £17,680 £17,558 £17,713 £17,734 £17,581
13 50 £17,739 £17,788 £17,192 £17,464 £17,441 £17,525
16 50 £17,908 £17,669 £17,520 £17,732 £17,735 £17,713
18 50 £17,500 £17,302 £17,419 £17,593 £17,953 £17,553
20 50 £17,689 £17,510 £17,581 £17,645 £17,548 £17,595
23 50 £17,832 £18,059 £17,465 £18,044 £17,521 £17,784
2 100 £18,683 £18,051 £18,452 £18,839 £18,369 £18,479
4 100 £17,918 £17,842 £17,638 £17,993 £17,887 £17,856
6 100 £17,463 £17,498 £17,501 £18,088 £17,564 £17,623
9 100 £17,485 £17,728 £17,394 £17,720 £17,638 £17,593
11 100 £17,190 £17,691 £17,473 £17,687 £17,504 £17,509
13 100 £17,174 £17,582 £17,191 £17,594 £17,358 £17,380
16 100 £17,626 £17,520 £17,422 £17,500 £17,519 £17,518
18 100 £17,446 £17,577 £17,366 £17,635 £17,772 £17,559
20 100 £17,808 £17,464 £17,554 £17,656 £17,337 £17,564
23 100 £17,733 £17,642 £17,347 £17,916 £17,751 £17,678
2 150 £18,610 £18,008 £18,376 £18,760 £18,200 £18,391
4 150 £17,635 £17,834 £17,426 £18,128 £17,863 £17,777
6 150 £17,547 £17,423 £17,424 £17,783 £17,605 £17,556
9 150 £17,310 £17,400 £17,319 £17,538 £17,694 £17,452
11 150 £17,116 £17,381 £17,498 £17,589 £17,467 £17,410
13 150 £17,219 £17,609 £17,095 £17,648 £17,374 £17,389
16 150 £17,545 £17,625 £17,255 £17,542 £17,626 £17,519
18 150 £17,343 £17,464 £17,297 £17,560 £17,679 £17,469
20 150 £17,665 £17,400 £17,337 £17,564 £17,444 £17,482
23 150 £17,520 £17,456 £17,260 £17,899 £17,606 £17,548

Table 4.6 shows how the property price predictions of each of the 5 different models

investigated so far in this thesis compare with one another. Across all 5 data splits,

the spatial model, bagging and random forest are very similar to each other in terms of

RMSE and MAE respectively, suggesting that these methods are much better at predict-

ing property price in Scotland than the decision tree and the linear model are. At the

bottom of Table 4.6, the averages of each of the models are displayed and this allows

them to be easily comparable to each other. From these results, it is clear that the spa-
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Table 4.5: Table of the root mean square errors (RMSE) and median absolute errors
(MAE) of property prices of each of the 5 data splits using the random forest algorithm
for 2 different combinations of tuning parameters.

Split mtry b RMSE MAE

1
20 150 £44,676 £18,036
13 100 £44,391 £17,249

2
20 150 £44,430 £17,815
13 100 £44,758 £17,304

3
20 150 £41,408 £18,890
13 100 £41,635 £18,710

4
20 150 £40,173 £16,946
13 100 £40,221 £16,866

5
20 150 £42,163 £17,817
13 100 £42,258 £17,230

Average
20 150 £42,570 £17,901
13 100 £42,653 £17,472

tial model has the lowest RMSE and MAE hence indicating that it has better predictive

performance than the other models. Despite there being very little difference in MAE,

£12, between the spatial model and the model created using the bagging method, the

difference in RMSE between these models is much more apparent at around £1,000.

It is advantageous to investigate the feature importance plots for the machine learning

methods to see which of the covariates influence the predictions. Figures 4.4 and 4.5 show

the feature importance plots of the bagging model and the random forest model respec-

tively for 1 of the 5 data splits. The random forest model is selected to be impurity based

so it can be compared to the bagging model and maintains consistency. The ordering of

the covariates in the feature importance plot is determined by the sum of squared errors

(SSE) value of each covariate, defined in Section 4.2.1. As both the bagging and random

forest methods have a large number of trees, an average SSE for each of the 5 splits is

calculated for every covariate. Then, these average SSE values are added together to give

a total SSE value across all 5 splits and the covariates can be ordered by importance

from lowest SSE (most important) to highest SSE (least important). For further details,

please see Chapter 9 of Hands-on Machine Learning with R book (Boehmke and Green-

well, 2019). Both models share the same covariates at the top of their respective plots,

indicating the similarity between the models which could explain why the RMSEs and

MAEs are so similar in both cases. In the random forest model, council tax clearly has

a much more significant effect than any of the other covariates. Whereas, in the bagging

model, council tax is not the only covariate of substantial importance as mean number of
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Table 4.6: Table showing the root mean square errors (RMSE) and median absolute
errors (MAE) of each of the 5 data splits using a decision tree, a linear model, a spatial
model where k = 7, bagging and a random forest where mtry=20 and b=150.

Split Model RMSE MAE

1

Tree £59,625 £25,504
Linear £47,995 £20,038
Spatial(k = 7) £44,068 £18,386
Bagging £44,745 £18,037
Random Forest £44,676 £18,036

2

Tree £58,692 £24,581
Linear £48,973 £19,902
Spatial(k = 7) £43,775 £18,111
Bagging £44,805 £17,487
Random Forest £44,430 £17,815

3

Tree £55,160 £25,259
Linear £45,631 £20,910
Spatial(k = 7) £40,122 £17,431
Bagging £41,175 £18,793
Random Forest £41,408 £18,890

4

Tree £54,119 £25,195
Linear £43,524 £18,704
Spatial(k = 7) £39,439 £17,624
Bagging £39,795 £17,049
Random Forest £40,173 £16,946

5

Tree £56,049 £23,683
Linear £45,875 £18,984
Spatial(k = 7) £40,861 £17,244
Bagging £42,131 £17,490
Random Forest £42,163 £17,817

Average

Tree £56,729 £24,845
Linear £46,400 £19,708
Spatial(k = 7) £41,653 £17,759
Bagging £42,530 £17,771
Random Forest £42,570 £17,901

rooms, percentage of flats and percentage of semi or detached properties all have similar

importance. Overall, across both models, both property and Data Zone characteristics

have large effects on the model. However, despite having little impact on the bagging

model, easting and northing, both of which are physical geographical covariates, are two

of the top 10 most influential covariates on the random forest, although the absolute size

of their importance is still low. When referring back to Table 4.6, bagging is only slightly

better at predicting property prices than the random forest, which would suggest that

although they place higher in the random forest feature importance plot than they do
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in bagging, easting and northing have very little impact on the model as a whole. The

spatial model, which has the best RMSE and MAE so far, uses the full set of covariates

and also takes into account spatial geometry via a neighbourhood matrix between the

Data Zones in order to make predictions, whereas the machine learning methods directly

utilise the central points of each Data Zone to represent space. These differences in the

geometry used could have an effect on the model and may be a reason why the spatial

model has the lowest RMSE and MAE so far.
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Figure 4.4: Feature Importance Plot of the bagging model.
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Figure 4.5: Feature Importance Plot of the impurity based random forest model.

Overall, this shows that the spatial model has outperformed the machine learning
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methods of prediction, and is the method which has the best predictive performance so

far with regards to the property price data set. However, it is worthwhile to explore

whether gradient boosting, a machine learning method which is a further development

of bagging and random forests, can outperform the spatial model and produce a more

accurate model for predicting property prices in Scotland.

4.5 Gradient Boosting

The final machine learning algorithm investigated in this chapter is gradient boosting.

Gradient boosting, unlike random forest and bagging where an ensemble of large deep

trees are constructed, builds an ensemble of shallow trees in which each tree is an im-

provement on the one that precedes it (Boehmke and Greenwell, 2019). Although shallow

trees are usually poor indicators of prediction on their own, if appropriate tuning param-

eters are considered and selected, the results of an ensemble of shallow trees using the

gradient boosting method can be very successful.

4.5.1 Structure

As seen previously, the other machine learning methods investigated, bagging and random

forest, create large complex trees with low bias and high variance (Breiman, 2001). By

taking an average across the ensemble of trees in both of these methods it reduces the

variance and hence the predictive performance improves as the error in the residuals is

minimized (Breiman, 1996). Despite also being a machine learning method of prediction,

gradient boosting does not follow a similar structure and instead consists of simple shallow

decision trees of high bias and low variance where averaging is not required.

Figure 4.6: Diagram of the sequential improvement of a gradient boosting machine taken
from Boehmke and Greenwell [2019].
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To begin with, a weak model which is a single shallow decision tree typically with the

tree depth tuning parameter of around 1 to 6 is built, and its performance is assessed

through the size of the prediction errors. This performance is sequentially improved by

constructing new trees where each tree will attempt to fix where the previous tree went

wrong using the prediction errors. It does this by focusing in on a specific line in the

training data where the largest prediction errors occur, and adapts to reduce or simply

eliminate the error (Boehmke and Greenwell, 2019). This repeated process, which can

be seen in Figure 4.6 taken from the Gradient Boosting chapter of Hands-on Machine

Learning with R (Boehmke and Greenwell, 2019), will continue with each tree building

on its predecessor until a specific stopping criteria is reached – usually the set number of

trees is achieved. Initially, the errors in the residuals will be extensive and there will be

lots of room for improvement, but as the process goes on this error will be sequentially

reduced as the trees are continually improving through each new tree that is constructed

(Boehmke and Greenwell, 2019). The process can be summarised using the following

algorithm, which again is taken from Hands-on Machine Learning with R (Boehmke and

Greenwell, 2019):

Algorithm 1 Algorithm for Gradient Boosting

1: while Stopping criteria is not reached do
2: Fit a decision tree to the data : F1(x) = y
3: Fit the next decision tree to the residuals of the previous: h1(x) = y − F1(x)
4: Add this new tree to our algorithm: F2(x) = F1(x) + h1(x)
5: Fit the next decision tree to the residuals of F2(x) : h2(x) = y − F2(x)
6: Add this new tree to our algorithm : F3(x) = F2(x) + h2(x)
7: end while

4.5.2 Tuning Parameters

In a basic gradient boosting model, two different types of tuning parameters are consid-

ered, boosting (the number of trees and the learning rate) and tree specific (tree depth

and the minimum number of observations in terminal nodes) (Boehmke and Greenwell,

2019). The number of trees is a common tuning parameter in tree-based machine learning

methods, and often plays a very important part in determining predictive performance

(Breiman, 1996). The aim of gradient boosting machines is to create an ensemble of trees

in which each tree is an improvement on the tree created before it. This process can go on

for as long as allowed, in some cases creating thousands upon thousands of trees, which

can often lead to over-fitting because an average is not taken. Therefore, it is important

to find an optimal number of trees which minimizes the RMSE and MAE values in an ap-
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propriate amount of time as sometimes these processes can be very time consuming. After

evaluating this tuning parameter in the bagging and random forest methods with 50, 100,

and 150 trees, it was concluded that the optimal number of trees was 150 because, in

general, this number produced the lowest RMSE and MAE values. Hence, in order to be

consistent and since gradient boosting machines often require a large number of trees, the

number of trees parameter is set so that 150 trees are constructed using gradient boosting.

Another boosting specific tuning parameter is the learning rate (lr), otherwise known

as shrinkage, which is the value of the contribution of each tree to the final outcome

(Boehmke and Greenwell, 2019). This is a value between 0 and 1, however typically it

lies between 0.001 and 0.3. In order to find the optimal value of the learning rate, larger

values such as 0.3 should be considered first, and then the value should be reduced pro-

gressively in increments until the optimum is achieved (Boehmke and Greenwell, 2019).

In general, as the learning rate decreases, the accuracy of the model will increase but more

trees will be required. For the property price data set, the learning rate will be evaluated

at 0.3, 0.1, 0.05, 0.01, 0.005, and 0.001 with 150 trees as recommended in Chapter 12.3

of Hands-on Machine Learning with R (Boehmke and Greenwell, 2019).

In gradient boosting, the depth of each of the trees (td) must be managed as it can

have an impact on the final outcome. It is possible for trees to be very large and have

only one observation in each terminal node, but this is often an inaccurate depiction of

the data as it is an exact copy of the training set so tree depth is usually set between 1

and 8 with the majority being between 3 and 8 (Boehmke and Greenwell, 2019). Shallow

trees of depth 1 or 2, essentially stumps, will be successful if a large number of them

are constructed, but deeper trees are generally preferred for large data sets and allow for

special relationships to be captured by the gradient boosting machines (Boehmke and

Greenwell, 2019). They do however, increase the risk of over-fitting if they are too large.

Therefore, to find the optimal value using gradient boosting machines in predicting prop-

erty prices, tree depth of sizes 1, 3, 5, and 8 will be assessed.

The final tuning parameter to be set in the gradient boosting machines is the mini-

mum number of observations in each terminal node. This tuning parameter is the least

influential of the four as it does not have a significant impact on predictive performance

(Boehmke and Greenwell, 2019). Since both the bagging and random forest methods

considered set this parameter at a value of 2, to stay consistent in the gradient boosting

machine it will also be set at 2.
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4.5.3 Choosing the tuning parameter combination

Like the random forest and CAR models, before any predictions are made on the test

set, the optimal combination of values of the tuning parameters, specifically lr and td,

must be chosen by evaluating the training-validation set. It should be noted that the two

other tuning parameters used in gradient boosting, minimum number of observations in

terminal nodes and number of trees, are assumed to be fixed values here.

The data are split at random into 5 training-test data splits, and the tuning param-

eters are estimated in the same way as the previous models, which is omitted here for

brevity. This produces 24 combinations of results for each of the 5 data splits seen in

Tables 4.7 and 4.8 which show the root mean square error and median absolute error

obtained by each combination respectively.

Table 4.7: Table showing the root mean square error (RMSE) of property price for each
combination of tuning parameters using the gradient boosting method applied to the 5
data splits.

td lr SPLIT 1 SPLIT 2 SPLIT 3 SPLIT 4 SPLIT 5 Average
1 0.3 £45,694 £45,302 £46,282 £46,995 £45,844 £46,023
1 0.1 £46,460 £46,324 £47,187 £47,647 £46,712 £46,866
1 0.05 £49,427 £49,415 £50,189 £50,746 £49,997 £49,955
1 0.01 £69,315 £69,093 £70,460 £70,559 £70,201 £69,926
1 0.005 £76,698 £76,489 £78,034 £78,124 £77,749 £77,419
1 0.001 £86,684 £86,686 £87,989 £88,396 £87,870 £87,525
3 0.3 £44,096 £43,250 £44,309 £44,784 £44,535 £44,195
3 0.1 £43,788 £43,538 £44,241 £44,691 £43,846 £44,021
3 0.05 £45,081 £45,071 £45,728 £45,946 £45,523 £45,470
3 0.01 £60,571 £60,486 £61,657 £61,842 £61,358 £61,183
3 0.005 £71,228 £71,145 £72,445 £72,688 £72,188 £71,939
3 0.001 £85,475 £85,505 £86,764 £87,207 £86,655 £86,321
5 0.3 £44,343 £44,176 £45,273 £44,655 £44,008 £44,491
5 0.1 £42,881 £42,175 £43,435 £43,484 £43,092 £43,013
5 0.05 £43,718 £43,505 £44,372 £44,510 £44,197 £44,060
5 0.01 £57,588 £57,625 £58,607 £58,987 £58,512 £58,264
5 0.005 £68,983 £68,958 £70,180 £70,537 £70,058 £69,743
5 0.001 £84,966 £84,990 £86,263 £86,719 £86,182 £85,824
8 0.3 £44,991 £44,984 £46,412 £46,129 £45,609 £45,625
8 0.1 £42,040 £41,903 £43,284 £43,093 £42,562 £42,576
8 0.05 £42,855 £42,380 £43,516 £43,388 £43,308 £43,089
8 0.01 £55,490 £55,489 £56,362 £56,682 £56,332 £56,071
8 0.005 £67,417 £67,403 £68,492 £68,853 £68,440 £68,121
8 0.001 £84,571 £84,592 £85,859 £86,308 £85,764 £85,419
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Table 4.8: Table showing the median absolute error (MAE) of property price for each
combination of tuning parameters using the gradient boosting method applied to the 5
data splits.

td lr SPLIT 1 SPLIT 2 SPLIT 3 SPLIT 4 SPLIT 5 Average
1 0.3 £19,318 £19,353 £19,333 £20,317 £19,698 £19,604
1 0.1 £19,829 £19,984 £19,886 £20,615 £20,153 £20,093
1 0.05 £20,453 £20,558 £20,139 £20,600 £20,707 £20,491
1 0.01 £28,253 £27,810 £27,995 £28,270 £27,966 £28,059
1 0.005 £33,459 £32,438 £32,910 £33,089 £32,990 £32,977
1 0.001 £43,402 £42,640 £43,033 £43,849 £43,459 £43,276
3 0.3 £18,812 £18,782 £18,633 £19,027 £18,546 £18,760
3 0.1 £18,193 £18,322 £18,077 £18,703 £18,187 £18,296
3 0.05 £18,895 £18,952 £18,899 £19,187 £18,772 £18,941
3 0.01 £24,272 £24,130 £24,264 £24,527 £24,334 £24,306
3 0.005 £30,434 £29,653 £30,205 £30,252 £29,932 £30,095
3 0.001 £43,415 £42,549 £43,034 £43,757 £42,808 £43,113
5 0.3 £19,276 £18,877 £18,962 £19,173 £18,934 £19,044
5 0.1 £17,783 £17,691 £17,971 £18,160 £17,866 £17,894
5 0.05 £17,845 £18,249 £18,231 £18,612 £17,929 £18,173
5 0.01 £22,957 £22,498 £22,522 £22,965 £22,772 £22,743
5 0.005 £29,035 £28,733 £28,924 £29,095 £28,743 £28,906
5 0.001 £43,035 £42,480 £42,760 £43,271 £42,640 £42,837
8 0.3 £19,282 £19,321 £19,217 £19,993 £19,297 £19,422
8 0.1 £17,835 £17,490 £17,602 £17,677 £17,228 £17,566
8 0.05 £17,422 £17,828 £17,526 £17,848 £17,448 £17,614
8 0.01 £21,918 £21,538 £21,630 £22,029 £21,626 £21,748
8 0.005 £28,344 £27,783 £27,973 £28,362 £27,919 £28,076
8 0.001 £42,858 £42,204 £42,388 £42,813 £42,349 £42,522

Table 4.7 shows that the lowest value of RMSE across the 5 splits is £42,576 which

is obtained when the tree depth is 8 and the learning rate is 0.1. On the other hand, the

highest RMSE is £87,525, when the tree depth is 1 and learning rate is 0.001. As there

is a £44,949 difference in RMSE, this shows that in the case of the property price data

set, shallow trees are insufficient and the learning rate, when it is too small, leads to poor

predictive performance. Interestingly, when examining the splits individually, all 5 splits

produce the lowest RMSE using the (tree depth= 8, learning rate= 0.1) combination and

the highest RMSE when the (tree depth=1, learning rate=0.001) combination is used.

This suggests that there is a clear difference between the combinations and highlights

how sensitive the results are to small changes in the tuning parameters. When inspecting

Table 4.8 it can be seen again that the combination which generates the optimal MAE

of £17,566 is when the tree depth is 8 and the learning rate is 0.1. Likewise, the least

optimal combination is when the tree depth is 1 and the learning rate is 0.001 which
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yields a MAE of £43,276, £25,710 more than the best value. Overall these results con-

clude that the best combination of tuning parameters is when the tree depth is set at 8

and the learning rate is 0.1, therefore predictions on the test set will be made using this

combination.

4.5.4 Test Set Predictions

The gradient boosting model is refit to the entire training set with lr = 0.1 and td =

8 and property price predictions can be made on the test set using the fitted model for

each of the 5 training/test splits. The resulting RMSE and MAE values can be seen

in Table 4.9 alongside the results from all of the other methods of prediction evaluated

previously, with their respective averages displayed at the bottom of the table. In general,

for gradient boosting the RMSE values are very similar to each other across the 5 splits

and follow a similar pattern to the other tree-based machine learning methods with Split

4 having the lowest RMSE of the 5. Likewise, the MAE values across all 5 splits are also

very similar to each other.

4.6 Discussion

In conclusion, when looking at the tree-based machine learning methods, all 3 of the en-

semble tree-based methods have very similar predictive performance as their RMSE and

MAE values are all around the same value. The single decision tree is omitted from the

following discussion because it is the basis for the 3 ensemble methods and is expected to

perform poorly compared to the other methods due to the lack of tuning parameters. As

there is a substantial difference in the RMSE and MAE values of the single tree compared

to the ensemble methods, this highlights that ensembles of trees are much more successful

in prediction and that tuning parameters have a positive impact on predictive ability.

The average RMSE and MAE values for each of the methods across all 5 data splits

are displayed at the bottom of Table 4.9. Overall, with regards to the machine learning

methods, bagging has the lowest RMSE value of £42,530 which is £40 less than random

forest and £296 less than gradient boosting. The prediction metric RMSE penalises more

heavily for outliers suggesting that bagging is therefore the best method of the three as

it deals best with outliers in this particular data set. However, the differences in RMSE

between the methods are all very small in comparison to the large values of the prop-

erty price data, showing that there is actually very little between the 3 machine learning
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Table 4.9: Table showing the root mean square errors (RMSE) and the median absolute
errors (MAE) of each of the 5 data splits using a decision tree, a linear model, a spatial
model where k = 7, bagging, a random forest where mtry=20 and b=150 and gradient
boosting.

Split Model RMSE MAE

1

Linear £47,995 £20,038
Spatial(k = 7) £44,068 £18,386
Tree £59,625 £25,504
Bagging £44,745 £18,037
Random Forest £44,676 £18,036
Gradient Boosting £44,381 £17,815

2

Linear £48,973 £19,902
Spatial(k = 7) £43,775 £18,111
Tree £58,692 £24,581
Bagging £44,805 £17,487
Random Forest £44,430 £17,815
Gradient Boosting £45,686 £17,389

3

Linear £45,631 £20,910
Spatial(k = 7) £40,122 £17,431
Tree £55,160 £25,259
Bagging £41,175 £18,793
Random Forest £41,408 £18,890
Gradient Boosting £41,225 £17,888

4

Linear £43,524 £18,704
Spatial(k = 7) £39,439 £17,624
Tree £54,119 £25,195
Bagging £39,795 £17,049
Random Forest £40,173 £16,946
Gradient Boosting £39,688 £16,730

5

Linear £45,875 £18,984
Spatial(k = 7) £40,861 £17,244
Tree £56,049 £23,683
Bagging £42,131 £17,490
Random Forest £42,163 £17,817
Gradient Boosting £43,150 £18,726

Average

Linear £46,400 £19,708
Spatial(k = 7) £41,653 £17,759
Tree £56,729 £24,845
Bagging £42,530 £17,771
Random Forest £42,570 £17,901
Gradient Boosting £42,826 £17,710

methods and they all have similar predictive performance with bagging just slightly out-

performing the rest. Again, the MAE values highlight this similar predictive performance
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as the values are not very different to each other, this time with gradient boosting having

the lowest MAE by only £61.

In terms of comparing the tree-based machine learning methods to the methods previ-

ously investigated, the RMSE results suggest that the spatial CAR model when KNN=7

performs best in prediction for this particular property price data set because it has

the lowest average RMSE, beating bagging, the best machine learning method, by £877.
However, the gradient boosting method has the lowest MAE, £49 less than the spatial

model. Therefore, it can be said that in the spatial data context classical a-spatial ma-

chine learning methods are broadly comparable to standard spatial models. If a best

model had to be chosen, one would potentially choose the spatial CAR model when

KNN=7 because it has the lowest RMSE meaning that it is best at dealing with outliers

in this data set. However, in another context the machine learning methods may be

more suitable as it is dependent on the makeup of the data set and how large an impact

the outliers make. As seen from Figure 4.7, both machine learning methods and spatial

methods seem to do worst at high price extremes as property price predictions are gen-

erally lower than the actual property prices, indicating that these methods of prediction

are much more accurate at lower property price values than higher ones.
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Figure 4.7: Scatterplots of property price predictions on the test set against actual test
set property prices using spatial modelling with KNN= 7 (L) and gradient boosting using
td= 8 and lr= 0.1 (R).

Overall, both the spatial CAR model and the tree-based machine learning methods

have their advantages, the spatial CAR model is good because it picks up on spatial
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autocorrelation present in the structure of the data, while the machine learning meth-

ods account for non-linear covariate effects. So, logically since both methods produce

fairly similar predictions, it may be of interest to attempt to further improve on these

predictions by incorporating the strengths of both machine learning methods and spatial

methods together. Thus the next chapter will investigate if combining these methods I

can achieve a more accurate model for predicting property prices in Scotland.
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Chapter 5

Property price prediction by

combining spatial and machine

learning methods

5.1 Introduction

In Chapters 3 and 4 the predictive abilities of spatial CAR models and machine learning

methods were investigated in a spatial areal unit data context and compared with one

another through prediction metrics such as root mean square error (RMSE) and me-

dian absolute error (MAE). The results of this investigation showed that there is not a

substantial difference in the predictive performance of the spatial CAR model and the

tree-based machine learning methods compared, namely bagging, random forests and gra-

dient boosting machines. Therefore, in this chapter I will investigate whether combining

the strengths of spatial methods and machine learning methods together using geograph-

ically weighted random forests will improve the accuracy of property price predictions in

Scotland.

5.2 Geographically Weighted Random Forests

An established prediction method which combines spatial information and random forests

is the geographically weighted random forest (GWRF) algorithm (Georganos et al., 2021).

This algorithm, although very similar to the traditional random forest, adds a degree of

complexity by accounting for space. It does this by fitting a separate “local” random

forest for each observation in the training set using only it’s neighbouring observations,

so that the prediction of each observation in the test set depends on a local random forest
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“close” to it in space.

5.2.1 Structure

In the property price context a random forest is fitted for each individual Data Zone

in the training set using only the training points “close” to the Data Zone in question,

making each local random forest unique. A detailed explanation of how a random forest

is constructed can be seen in Section 4.4.1. In order to make predictions on a Data Zone

in the test set, the closest training Data Zone is chosen and predictions are made using

a weighted average of it’s associated local random forest and a global random forest con-

structed from the entire training set. This is contrary to the random forests discussed in

Section 4.4 where only a single global random forest was constructed based on all Data

Zones in the training set.

5.2.2 Implementation

Like the other machine learning methods assessed in Chapter 4, the local random for-

est also has various tuning parameters including the number of variables to consider at

each split (mtry) and the number of trees in the forest (b), both of which are used in

the traditional random forest. For this property price data set, I have fixed the values

of these specific tuning parameters at mtry = 20 and b = 150 due to the computational

complexity of this algorithm (a separate random forest is fitted for each training set data

point) and because this specific combination of (mtry = 20, b = 150) was the random

forest combination which produced the lowest RMSE in the previous chapter.

Two new tuning parameters are introduced in the local random forest, the first of

which is the bandwidth (bw) parameter. The bandwidth controls the number of training

points (Data Zones) close to the Data Zone in question which the local random forest

is constructed with. This must be a value less than the total number of data points

(Data Zones) in the training set, as otherwise if equal, it will produce a global random

forest such as that constructed in Section 4.4. So, the bandwidths of 100, 300 and 500

neighbours will be investigated on the property price data set. These values are chosen

because even though there are 6,881 Data Zones in total, as the bandwidth increases, the

local random forest becomes more computationally demanding and a previous study of

this method has shown that in general, using lower values of bw results in a more accurate

prediction (Georganos et al., 2021). Furthermore, due to the shortness of time allocated

to this research thesis, the lower values of bw, 100, 300 and 500, are a better choice as
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they are able to be computed within a shorter time period.

The other tuning parameter introduced in the geographically weighted random forest

is the weight parameter (a). The weight parameter controls how much the predictions

are determined by the local random forest model and how much by the global random

forest model. To see the impact of how predictive performance varies depending on a,

this parameter will be evaluated at a= 0.25, 0.5, 0.75 and 1. If a= 0.25 this means that

the predictions from the local model hold 25% of the overall weight while the predictions

from the global model hold 75%, so this prediction is determined more on the global

model than the local model. On the other hand if a=1 then the prediction will be solely

determined on the local random forest model with no weighting on the global model

whatsoever (Georganos et al., 2021). Note, setting a=0 results in a global random forest

which was fitted in Section 4.4.

5.2.3 Choosing the optimal tuning parameter combination

Like the other machine learning methods, before any predictions are made on the test set,

the optimal combination of values of the tuning parameters, bw and a, must be chosen by

evaluating the same 10-fold cross validation approach used previously. Specifically, the

data are randomly split into 5 training-test data splits using the splitting process shown in

Figure 2.3.4. Note, the mtry and b parameters are fixed at 20 and 150 respectively. Then,

the test sets for each of the 5 splits are removed and the local random forest algorithm is

applied to the training sets. In order to choose the optimal tuning parameter combina-

tion, (bw, a), each of the training splits are further partitioned into 10 smaller sub-splits of

roughly equal size. The local random forest is then fit to 9/10 of the training set for each

combination of tuning parameters and is then used to predict the 10th, the validation

set. This process is then repeated 10 times for each split, with a different validation set

used each time, using 10-fold cross validation. This produces 12 different combinations

of results for each of the 5 splits with bw=(100, 300, 500) and a= (0.25, 0.5, 0.75, 1),

and Tables 5.1 and 5.2 show the values of RMSE and MAE obtained by each combination.

It can be seen from Table 5.1 that the lowest average value of RMSE is £42,717
which is when bw=300 and a=0.5. On the contrary, the highest average value of RMSE

is £45,746 when bw=100 and a=1, creating an overall range of £3,029. There is not

substantial difference in the RMSE values between the combinations, however when a= 1

the RMSE values are slightly higher. This would suggest that the optimal geographically

weighted random forests are those which incorporate both the local and global models as

the RMSE values lower when this occurs. Moreover, Table 5.2 shows that the combination
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Table 5.1: Table showing the root mean square error (RMSE) of property price for each
combination of tuning parameters when building a geographically weighted random forest
applied to the 5 data splits.

bw a Split 1 Split 2 Split 3 Split 4 Split 5 Average
100 0.25 £42,548 £42,539 £43,486 £43,239 £42,911 £42,944
300 0.25 £42,802 £42,628 £43,444 £43,274 £43,035 £43,036
500 0.25 £42,921 £43,045 £43,571 £43,563 £43,330 £43,286
100 0.5 £42,425 £42,207 £43,794 £43,277 £42,674 £42,875
300 0.5 £42,457 £42,300 £43,255 £43,047 £42,528 £42,717
500 0.5 £42,696 £42,755 £43,526 £43,400 £43,022 £43,080
100 0.75 £43,260 £42,874 £45,139 £44,335 £43,452 £43,812
300 0.75 £42,737 £42,576 £43,697 £43,484 £42,686 £43,036
500 0.75 £42,966 £42,950 £43,965 £43,736 £43,197 £43,363
100 1 £45,054 £44,551 £47,506 £46,391 £45,225 £45,746
300 1 £43,673 £43,478 £44,792 £44,612 £43,525 £44,016
500 1 £43,750 £43,648 £44,898 £44,585 £43,864 £44,149

Table 5.2: Table showing the median absolute error (MAE) of property price for each
combination of tuning parameters when building a geographically weighted random forest
applied to the 5 data splits.

bw a Split 1 Split 2 Split 3 Split 4 Split 5 Average
100 0.25 £17,239 £17,081 £17,030 £17,417 £17,233 £17,200
300 0.25 £17,644 £17,220 £17,373 £17,507 £17,367 £17,422
500 0.25 £17,638 £17,561 £17,300 £17,796 £17,586 £17,576
100 0.5 £17,051 £16,856 £16,985 £16,924 £16,947 £16,953
300 0.5 £17,356 £17,065 £17,340 £17,277 £17,145 £17,237
500 0.5 £17,577 £17,287 £17,084 £17,608 £17,142 £17,340
100 0.75 £17,798 £17,483 £17,445 £17,376 £17,449 £17,510
300 0.75 £17,456 £17,276 £17,352 £17,338 £17,339 £17,352
500 0.75 £17,489 £17,383 £17,300 £17,619 £17,337 £17,426
100 1 £18,573 £18,450 £18,455 £18,523 £18,497 £18,499
300 1 £18,021 £17,829 £17,756 £17,846 £17,752 £17,841
500 1 £17,864 £17,617 £17,885 £18,202 £17,478 £17,809

which produces the lowest MAE of £16,953 is when bw=100 and a=0.5. Similar to the

RMSE, the least optimal combination is when bw=100 and a=1 as the MAE is the

highest at £18,499 when this occurs creating an overall MAE range of £1,546. Again,

the highest average MAE values also seem to be when a=1, which would suggest that

in order to achieve the most accurate model for prediction, the geographically weighted

random forest prediction should not be determined on the local model alone. Therefore,

since the best combination of tuning parameters are not the same for RMSE and MAE,

we will continue to make predictions on the test set in the following section using both
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the bw=300 and a=0.5 combination and the bw=100 and a=0.5 combination.

5.2.4 Test Set Predictions

The geographically weighted random forest is refit to the entire training set, firstly with

bw=100 and a=0.5 and then with bw=300 and a=0.5. Predictions can then be made on

the test set using the fitted model for each of the 5 training-test data splits. The resulting

RMSE and MAE values are evaluated and can be seen in Table 5.3 where the two tuning

parameter combinations can be compared with one another in order to find out which

is best. To get a general overview of each combination, the average values across the 5

splits are calculated and are shown at the bottom of Table 5.3 .

Table 5.3: Table of root mean square errors (RMSE) and median absolute errors (MAE)
of property prices of each of the 5 data splits using the geographically weighted random
forest algorithm for 2 different combinations of tuning parameters.

Split bw a RMSE MAE

1
100 0.5 £44,507 £17,721
300 0.5 £45,012 £17,517

2
100 0.5 £44,380 £16,372
300 0.5 £44,621 £17,356

3
100 0.5 £41,257 £17,550
300 0.5 £40,900 £17,466

4
100 0.5 £39,995 £16,497
300 0.5 £40,397 £16,503

5
100 0.5 £43,114 £17,048
300 0.5 £42,319 £17,734

Average
100 0.5 £42,651 £17,038
300 0.5 £42,650 £17,315

Firstly, it should be noted that of the tuning parameter combinations being evaluated,

both have the same value of a, 0.5. This suggests that in terms of making predictions on

the property price data set with a geographically weighted random forest, it is best to

have equal proportions of the local model and the global model. In general, when looking

at the RMSE and MAE values across the 5 splits, there is not a substantial difference

between both tuning parameter combinations as respective values are all very similar to

each other. The average values displayed at the bottom of Table 5.3 show the RMSE

values being almost exactly the same, a difference of only £1. This highlights that in

terms of RMSE, there is no bandwidth in particular that is better than the other of the

two presented. On the other hand, there is a £277 difference in the average MAE values
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with bw=100 having the lower value, although given the scale of the data this difference

is small.

5.3 Discussion

In conclusion, by using state-of-the-art geographically weighted random forests to com-

bine the spatial information in the data and random forest models, I found that the

GWRF produced very similar results to the other models in terms of both RMSE and

MAE. Therefore, since the GWRF did not improve on the predictions made by the spa-

tial CAR models and the a-spatial tree-based machine learning methods on their own

and took substantially longer to implement, it suggests these methods work better alone

rather than combined in the form of a GWRF.

In general, for all 12 tuning parameter combinations, the geographically weighted

random forest had very similar RMSE and MAE values. By comparing the results of

these combinations to one another, I found that there was not one single combination

that produced the best RMSE and the best MAE. Although, when looking at the tuning

parameters individually, the best values of RMSE and MAE were both obtained when

a had a value of 0.5, which is an equal mix of the global model and the local model.

This suggests that by predicting the property price of a Data Zone by using only the

property prices of the Data Zones nearby is not the best approach. Furthermore, the

optimal RMSE value was obtained when the bandwidth parameter, bw, was equal to 300,

whilst the best MAE value was when bw=100. This shows that lower bandwidths are

generally slightly better for predicting property prices than higher bandwidths because

bw=500 was not chosen by either metric. So, even though the GWRF performed best

when a=0.5 and bw=100 and 300, there was very little difference between all the combi-

nations suggesting that the results are relatively robust to the tuning parameters.

As the geographically weighted random forest is essentially a combination of the spa-

tial information in the data and the traditional random forest model, it is of interest to

first compare the GWRF results to the other models compared in this thesis. From Table

5.4, the overall average RMSE of the GWRF is £42,651 while the spatial CAR model

where knn = 7 is £1,000 lower at £41,653. On the other hand, the GWRF has a lower

MAE by around £700 which shows that one method is not definitively better than the

other. Similarly, when comparing the GWRF to the random forest, the average RMSE

for the random forest is £42,570, approximately £80 less than the GWRF. Although this

is a very small difference in the grand scheme of things, it shows that in the context of
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property prices in Scotland, using the global random forest model alone produces slightly

better results with regards to RMSE than using an equal combination of the global and

local models. On the contrary, the MAE of the GWRF is £863 less than that of the

random forest, which highlights that the GWRF performs better than both spatial and

machine learning methods in terms of MAE and slightly worse in terms of RMSE. Since

the RMSE is a prediction metric which penalizes more heavily for extreme values, this

leads to the conclusion that despite all 3 of these models being broadly comparable to one

another, the GWRF is better at prediction when there are very few extreme values while

the random forest and spatial CAR model are better at predicting extreme property price

values than the GWRF.

Overall, when evaluating Table 5.4, it can be seen that excluding the linear model

and the decision tree, the tree-based machine learning methods, spatial CAR model and

the geographically weighted random forest all have very similar predictive performance

across all 5 splits as the RMSE and MAE values are all within around £2,000 and £1,000
of one another respectively. On average, the best value of RMSE, £41,653, is obtained

using the spatial CAR method, which suggests that when presented with areal unit data

like this particular data set with extreme price values, that accounting for space using

spatial random effects is more important for making accurate predictions than flexible

covariate response relationships delivered by the random forests. However, the spatial

CAR model was outperformed in terms of MAE by the geographically weighted random

forest model which has the lowest overall average MAE of £17,038. Therefore, this in-

dicates that there is not a clear answer as to which method is best for prediction as a

single model does not outperform the rest in terms of both RMSE and MAE. Due to

there being very little difference in the results between the methods across the 5 splits,

it indicates that these methods excluding the linear model and the decision tree, are all

broadly comparable to one another. Thus each of the methods have different strengths,

and the most suitable method for prediction is likely to vary depending on the data

set in question. A data set with lots of outliers will benefit more by using the spatial

CAR method for prediction, while on the other hand a data set with fewer outliers is

likely to have more accurate predictions using the geographically weighted random forest.

In the future, if I have the opportunity to investigate combining spatial and machine

learning methods without being limited by time, it would be interesting to find out if

there are other ways which will improve the modelling of property price predictions in

Scotland. One method of improvement is to look at the tuning parameters in more de-

tail. When I was choosing the best tuning parameter combination for the geographically

70



5. COMBINING SPATIAL AND MACHINE LEARNING METHODS

weighted random forest, I had set the values of a, the proportion determined by the local

model, to increase in increments of 0.25 from 0.25 to 1. The value which produced the

optimal RMSE and MAE values were when a=0.5, an even combination of the global

model and the local model. However, when comparing to the traditional random forest

in Chapter 4.4 when a=0, the GWRF had a poorer RMSE by only £80. So, since this

difference is very small, if a was increased in smaller increments such as by 0.01, there

may be a value between 0.25 and 0.75 where the GWRF has a lower RMSE than the

random forest and thus is a more accurate model overall.

Furthermore, by investigating whether there are ways of combining spatial and ma-

chine learning methods other than the geographically weighted random forest could be

beneficial for building a more accurate model for prediction. The GWRF was chosen as

the method which combines space and machine learning because it is a popular algorithm

that has software to allow implementation. But, of all the well performing tree-based ma-

chine learning methods, the random forest performed the worst in terms of both RMSE

and MAE. There is a chance these values could be improved upon if bagging or gradient

boosting was combined with spatial methods instead of the random forest, so if there was

more time allocated to the thesis these methods could be researched and evaluated.
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Table 5.4: Table showing the RMSE and the MAE of each of the 5 data splits using a
decision tree, linear model, spatial model where k = 7, bagging, random forest where
mtry=20 and b=150 and gradient boosting.

Split Model RMSE MAE

1

Linear £47,995 £20,038
Spatial(k = 7) £44,068 £18,386
Bagging £44,745 £18,037
Random Forest £44,676 £18,036
Gradient Boosting £44,381 £17,815
GWRF(bw=100, a = 0.5) £44,507 £17,721
GWRF(bw=300, a = 0.5) £45,012 £17,517

2

Linear £48,973 £19,902
Spatial(k = 7) £43,775 £18,111
Bagging £44,805 £17,487
Random Forest £44,430 £17,815
Gradient Boosting £45,686 £17,389
GWRF(bw=100, a = 0.5) £44,380 £16,372
GWRF(bw=300, a = 0.5) £44,621 £17,356

3

Linear £45,631 £20,910
Spatial(k = 7) £40,122 £17,431
Bagging £41,175 £18,793
Random Forest £41,408 £18,890
Gradient Boosting £41,225 £17,888
GWRF(bw=100, a = 0.5) £41,257 £17,550
GWRF(bw=300, a = 0.5) £40,900 £17,466

4

Linear £43,524 £18,704
Spatial(k = 7) £39,439 £17,624
Bagging £39,795 £17,049
Random Forest £40,173 £16,946
Gradient Boosting £39,688 £16,730
GWRF(bw=100, a = 0.5) £39,995 £16,497
GWRF(bw=300, a = 0.5) £40,397 £16,503

5

Linear £45,875 £18,984
Spatial(k = 7) £40,861 £17,244
Bagging £42,131 £17,490
Random Forest £42,163 £17,817
Gradient Boosting £43,150 £18,726
GWRF(bw=100, a = 0.5) £43,114 £17,048
GWRF(bw=300, a = 0.5) £42,319 £17,734

Average

Linear £46,400 £19,708
Spatial(k = 7) £41,653 £17,759
Bagging £42,530 £17,771
Random Forest £42,570 £17,901
Gradient Boosting £42,826 £17,710
GWRF(bw=100, a = 0.5) £42,651 £17,038
GWRF(bw=300, a = 0.5) £42,650 £17,315
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Chapter 6

Conclusion

6.1 Discussion

The main aim of this thesis, as set out in Section 1.1, was to investigate different methods

for predicting property prices in Scotland and compare how accurate those predictions

were. This was done by evaluating various different methods such as the linear model

(Section 2.4), the spatial conditional autoregressive (CAR) model (Chapter 3), tree-based

machine learning methods (Chapter 4) and finally a spatially adjusted machine learning

algorithm, namely the geographically weighted random forest (GWRF) (Chapter 5), us-

ing a range of prediction metrics such as root mean square error (RMSE) and median

absolute error (MAE). In order to prevent the results being biased and achieve accuracy

in predictions, each of the methods were assessed via 5 training and test data splits,

which were then further split using the 10-fold cross validation technique to tune the

parameters and find the optimal tuning parameter combinations.

Firstly, it was important to gain an insight into the characteristics of the data set

and identify any key patterns which emerged. These findings were discussed in Chapter

2. The average median property prices in Scotland’s Data Zones in 2018 ranged from as

low as £19,500 to as high as £878,000, with the majority priced between £50,000 and

£250,000. When looking at specific covariates which may have an effect on property

price, mean number of rooms and council tax are two covariates which tend to influence

property price the most. However, since there was not one single covariate that can be

used to determine the price of a property, this led to the conclusion that there are mul-

tiple factors that contribute to the price of a property. The linear model was used as a

simple prediction model in order to see the impact of covariates and was also set as the

original baseline model for the more complex models to beat.
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The predominant method for modelling areal unit data is spatial CAR models, hence

this was the natural first choice model to use in Chapter 3 to attempt to improve on the

predictions made by the linear model. Spatial CAR models use the same linear covariate

model as the linear model, but by accounting for the spatial correlation between obser-

vations after covariate adjustment, the accuracy of the predictions is improved. This

essentially means that one would assume that the Data Zones with missing values will

be similar to those in neighbouring Data Zones with available values, once the covariate

effects have been accounted for. The strength of the spatial correlation present in the

residuals of the linear model was measured using Moran’s I test (Moran, 1950), and sig-

nificant spatial correlation was found. Then the spatial model was fitted to the data with

10 different values of k, the number of nearest neighbours for constructing the spatial

correlation structure via the neighbourhood matrix, through 10-fold cross validation on

the training validation set. It was found in Tables 3.2 and 3.3 that the best values of k

for RMSE and MAE were k=7 and k=3 respectively. Then when assessing these values

of k on the entire training set to predict the test set in Table 3.4, k=7 produced the opti-

mal RMSE and MAE values. Overall, this method offered a dramatic improvement over

the linear model, improving RMSE by around £5,000 (approximately 10%) and MAE by

around £2,000 (approximately 10%).

After looking at the classical spatial statistical methods, the next step in this thesis in

Chapter 4 was to study different machine learning methods, as they are currently popular

for prediction problems and generally perform well. I focused specifically on tree-based

methods because they are the one of the most common classes of machine learning models

used today. So, to begin with a simple decision tree model was constructed due to its

simplicity and the fact that it is the basis for all of the other tree-based machine learning

methods. As expected, Table 4.1 showed that this model performed poorly because it is

known to be a weak leaner (Boehmke and Greenwell, 2019). After studying the single

decision tree, I then moved on to investigate more complex ensemble machine learn-

ing methods such as Bagging (Section 4.3), Random Forest (Section 4.4) and Gradient

Boosting (Section 4.5). These methods all had very similar results as they follow the same

general principles, with bagging being a special case of the random forest model with mtry

being equal to the full set of covariates. By studying the different tuning parameter com-

binations for each method using 10-fold cross validation on the training-validation set,

the optimal tuning parameter combinations were 150 trees for Bagging (Table 4.2), 150

trees and mtry=20 and 100 trees and mtry=13 for Random Forest (Tables 4.3 and 4.4),

and 150 trees, learning rate=0.1 and tree depth=8 for Gradient Boosting (Tables 4.7 and
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4.8). In general, the tuning parameters did not have a very large impact on the results

suggesting that most methods are fairly robust to tuning parameter selection. When

comparing the three tree-based methods with one another, despite being very similar,

Bagging proved to have the lowest RMSE value whilst Gradient Boosting had the lowest

value of MAE. Overall, Table 4.9 shows that there was not a lot of difference between

the tree-based machine learning methods and the spatial CAR models, suggesting that

in general neither is clearly preferable. If one had to be selected, spatial CAR models are

slightly better in RMSE by approximately £877, whilst the tree-based machine learning

method of Gradient Boosting is slightly better in MAE by approximately £49.

Since spatial methods and machine learning methods produced very similar results, it

was of interest in Chapter 5 to study a recently proposed method, the fusion of these two

approaches, the GWRF (Georganos et al., 2021). The GWRF fits a separate local ran-

dom forest for each Data Zone using only it’s spatially neighbouring Data Zones. Then

predictions of missing values depend on a proportion of the local random forest closest

to it in space and the global random forest, the latter accounting for all Data Zones.

By carrying out the same 10 fold-cross validation technique on the training-validation

data splits as used for the spatial models and the machine learning models, the optimal

tuning parameter combinations were obtained from the results of Tables 5.1 and 5.2. The

optimal GWRF models had a=0.5, an equal proportion of the global and local models,

and lower bandwidths of 100 and 300 nearest Data Zones. Generally speaking, when

compared to spatial and machine learning methods in Table 5.4, the GWRF was better

at achieving a lower MAE, an improvement of nearly £700 on Gradient Boosting when

bw=100, however it is not as good regarding RMSE compared to the spatial CAR model

and machine learning methods apart from Gradient Boosting.

In conclusion, all of the complex (not linear model or single decision tree) methods of

prediction studied are broadly comparable to each other as they produced very similar

results. As seen in Table 5.4, these methods all had values of RMSE around £42,500 and

MAE values of around £17,600, a clear improvement on the linear model. In this data set

spatial autocorrelation is present and is important, as shown by the spatial CAR model

substantially outperforming the linear model. Moreover, linear and non-linear effects are

also important as the tree-based machine learning models are much better at accurately

predicting the property prices than the linear model. The combining of spatial methods

and machine learning methods in the form of the geographically weighted random forest

does not perform better than the spatial CAR model or the random forest overall, however

like the other methods it is much better at prediction than the linear model. Therefore,
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the conclusion can be drawn that there is not one method that is the “best” at predicting

the areal unit property price data analysed in this thesis, as it depends on the prediction

metric (RMSE or MAE) used.

6.2 Future Work

This research provided an interesting insight into different methods of prediction for areal

unit data in the context of Scottish property prices. It concluded that, of the methods

studied, there is no particular “best” method of prediction which substantially outper-

formed the others. However, if there was more time allocated to this research, there are

a few things that could have been done to achieve a more accurate set of results.

Firstly, it is important to keep in mind that the conclusion that I reached is only

based on the results of one property price data set. If a similar study was carried out

on another property price data set of perhaps another year or another study region, a

different conclusion may occur. Therefore, in the future, if I was allocated more time to

complete this research project, I would explore other property price data sets and simu-

late predictions using the same methods as in this thesis. By doing this, I would be able

to compare the results across different data sets and reach a more comprehensive conclu-

sion over whether there is a method which is best at predicting property prices in general.

In addition, another improvement which could be made is the prediction methods cho-

sen to be studied. When investigating property price predictions by combining spatial

methods and machine learning methods, I only considered one method, the geograph-

ically weighted random forest (Georganos et al., 2021). As mentioned previously, this

method was selected because it is an established method and had software in R to allow

ease of implementation. However, as seen from Section 4.4, of the tree-based machine

learning models, the random forest did not have the optimal average RMSE or MAE

value. Therefore, this would encourage me to explore the respective combinations of bag-

ging and gradient boosting with the spatial information in the data in the future, as this

could improve the accuracy of predictions and outperform the current methods I have

investigated in this thesis.

Finally, as far as prediction goes, there are a plethora of different methods that can be

used to make predictions on data. In Chapter 4, where property price predictions were

made using classical machine learning methods, only tree-based methods were considered

and studied. There are other non-tree-based methods which could be investigated on this
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property price data set if there was no time constraint, an example being neural networks

(Boehmke and Greenwell, 2019). There may be a chance that there are machine learning

methods other than those studied in this thesis that have lower RMSE and MAE values

and are able to more accurately predict property prices in Scotland.
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