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Abstract  

Diseases, including communicable and noncommunicable diseases, have been one of the 

major causes of human morbidity and mortality since the beginning of our history. 

Although many diseases have become treatable or preventable, thanks to interventions 

including pharmaceutical and technological advances, many people die each year in 

developing countries and remote rural areas due to limited (or even no) access to medical 

facilities and expertise. An accurate, rapid, and reliable diagnostic test is vital to improved 

disease treatment and prevention. However, running diagnostic tests usually requires 

complex, expensive instruments, professionally trained operators, and a stable power 

supply. Unfortunately, these resources are generally limited or unavailable in many low-

resource settings.  

 

Although there are countless limitations in running diagnostic tests in low-resource 

settings, various endeavours have been made to overcome the existing obstacles. One of 

the most important advances has been the development of point-of-care or point-of-need 

tests. These diagnostic assays can be delivered in convenient formats and have 

successfully reduced the cost of running diagnostics, so playing an essential role in disease 

management and lifesaving in low-income countries.  

 

One key aspect of diagnosis may be the interpretation of the test, which can either be done 

by an expert in the field or by communicating that data to a remote expert or a “smart” 

system to interpret the data. Accurately interpreting the test outcome can help the patients 

receive appropriate treatment timely. However, issues presented in data management 

during such communication, such as tampered and counterfeited test results and unsecured 

data sharing between end users (patients) and professionals (doctors, healthcare workers, 

researchers, etc.). Also, problems like unreliable electricity supply and internet connection 

were found during the field study conducted by our group previously, and those issues can 

also delay the diagnosis of the disease. 

  

In this PhD study, an AI-assisted platform for DNA-based malaria diagnostic tests was 

developed and tested in the field. This platform allows users to run a test with a low-cost 
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portable heater and record the test information with an Android phone. It can be used to 

run LAMP-based malaria tests with a portable heater and read the test results 

automatically with 97.8% accuracy. And it only takes around 20 milliseconds to classify 

one image on an inexpensive (~£100) Android phone. When the internet connection is 

available, the test information can be safely kept in a Blockchain network for future use to 

inform treatment or surveillance activities.  

Expertise developed in the deep neural network was also used to train algorithms for the 

diagnosis of retinopathies, involving developing methods for retina vessel segmentation 

and classification, which explores the possibility of applying AI to diagnostics in low-

resource settings. In such settings, accessing medical expertise can be challenging. It has 

been found that using only a convolutional neural network is not sufficient in identifying 

arteries and veins. Models were trained for performing vessel segmentation and 

classification tasks; for segmenting vessels from the background achieved over 95% 

accuracy and over 0.8 mean average over the union score (MIoU) on the DRIVE dataset, 

while for A/V classification tasks, the MIoU decreased to less than 0.7. However, 

combining it with the traditional approach has the potential to achieve good performance. 

In addition, research was conducted on the utilisation of digital technologies to assist other 

researchers and engage with the public. To assist researchers in determining the minimum 

required sample size, a web-based calculator was developed during the COVID-19 

pandemic. Furthermore, a website was created containing 360-degree images to help 

individuals comprehend the challenges of diagnostics and healthcare in developing 

regions and to raise awareness about how infectious diseases spread. 
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Chapter 1  Introduction 

1.1 Background 

Infectious diseases remain one of the most crucial challenges globally. As a recent 

example, during the SARS-CoV-2 (COVID-19) outbreak, more than 6 million people 

have died since 2019 [1], and as of September 2022, more than 500 million cases have 

been confirmed worldwide [1].  During the pandemic, medical resources were inadequate 

to deal with the quick spread of the virus [2]. According to the WHO COVID-19 

dashboard, the United States of America reported the highest number of confirmed cases, 

over 90 million, with more than 1 million deaths as of 2022 [1]. 

 

If a patient has multiple medical conditions, known as comorbidities, they may be at a 

greater risk of experiencing severe illness or even death [3]. Some non-communicable 

diseases, such as diabetes, cancer and hypertension, can also significantly increase the 

case-fatality rate (CFR) from infectious diseases [3], [4]. Studies from China, the US, and 

Italy revealed that comorbidity is one of the major causes of critical illness [5], [6], [7], 

[8]. The mortality of critically ill patients with at least one comorbidity was extremely 

high (56%-97%) [9].  

 

Although many reports show that COVID-19 mortality in sub-Saharan regions was 

surprisingly lower than elsewhere [3], the situation still caused concern. Many countries 

imposed lockdown policies, which successfully suppressed coronavirus transmission but 

led to interruptions in the provision of treatment for other diseases. In sub-Saharan Africa 

(SSA), malaria cases and death rates rose during the lockdowns [10], [11], because the 

distribution of long-lasting insecticidal nets (LLINs) [12] and seasonal malaria 

chemoprevention (SMC) was suspended. According to WHO, the mortality linked to 

malaria has increased by approximately 12% from 2019 to 2020 [13].    

 

Taken together, infectious, or communicable diseases are one of the leading causes of 

death in low-income countries (LICs) and low and middle-income countries (LMICs) 

[14]; diseases like malaria, TB, HIV/AIDS etc., have threatened people’s lives for 

centuries. According to WHO, there were 241 million malaria cases and 627,000 deaths 

caused by malaria in 2020 [15], and over 65% of confirmed HIV cases are in Africa [16].  
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1.2 Malaria 
Malaria is an acute infectious disease caused by Plasmodium parasites, spreading through 

the bites of infected female Anopheles mosquitoes. There are five different types of 

malaria parasites: Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. 

knowlesi. Four types of those malaria species can infect human beings, Plasmodium 

falciparum, P. vivax, P. ovale and P. malariae, with P. falciparum and P. vivax showing 

the greatest threat to human life [13], [17].  

Although malaria has been eliminated in many countries in the past 150 years [18], it 

remains a heavy burden for many LMICs. Early diagnosis is crucial to stop the spread of 

malaria and provide adequate treatment to patients, especially for children [19]. There are 

various methods for malaria diagnosis, including microscopy, polymerase chain reaction 

(PCR), loop-mediated isothermal amplification (LAMP), and Rapid Diagnostic Tests 

(RDTs) using immunodiagnostics to measure antigens/antibodies. However, each 

approach has its advantages and disadvantages, not least how easily they can be adopted 

into the field, at the point-of-care. 

1.2.1 Clinical diagnosis for malaria 

Traditional clinical malaria diagnosis was based on the patient’s symptoms, such as fever, 

dizziness, and diarrhoea. Diagnosis by such observation of symptoms is the cheapest and 

is still used widely. However, the symptoms are nonspecific and are easily confused with 

other common “febrile” diseases. That can often lead to, misdiagnosis, over-diagnosis [20] 

and over-treatment, all of which can result, in the long term, in the emergence of drug 

resistance. The use of symptomatic diagnosis ultimately may lead to increases in the costs 

of treatment and mortality rates.  

1.2.1.1 Microscopic diagnosis 

Light microscopy remains the gold standard of malaria diagnosis through examination of 

the red blood cells in thick or thin blood smears/blood films using Giemsa, Wright’s, or 

Field’s stains [20]. Detection and identification of Plasmodium under the microscope is 

widely accepted because it is simple, has a relatively low-cost and can identify the 

infectious species. However, the stain and interpretation require a trained technician and 

manual scanning of samples under the microscope. This process is tedious, time-
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consuming, error-prone and relies on human expertise, which is infeasible in remote rural 

areas (although a well-trained microscopist can differentiate between species of 

plasmodium). In addition, the sensitivity of microscopy is relatively low at low parasite 

levels [21], with only 39.3% in sensitivity when using quantitative PCR (qPCR) as the 

reference [22]. 

 

 

Figure 1-1 Malaria microscopic diagnosis. (a) the microscopic test carried out by the 

local technician using a brightfield microscope, and (b) the patients’ thin and thick blood 

smears. (c) The parasite lives in a human red blood cell (the cell in the yellow circle); 

even after 100X magnification, it still can be hard to visualise. 

1.2.1.2 Quantitative buddy coat (QBC) 
The QBC technique improved and simplified the microscopic diagnosis. In this approach, 

the parasite’s deoxyribonucleic acid (DNA) is stained in a micro-haematocrit tube with 

fluorescent dyes, e.g., acridine orange, and detected by epi-fluorescent microscopy, a more 

expensive format to implement than upright (in-line) microscopy [23]. The QBC has been 

proven as a sensitive and rapid diagnostic test [24], [25]. Tests based on QBC can achieve 

sensitivity of over 90% and specificity of 95% [26]. Because of its increased sensitivity, it 

is preferred in epidemiologic studies in the asymptomatic population in endemic areas 

[27]. Furthermore, portable devices for QBC are available in the market. However, even if 

it is a reliable and straightforward approach for malaria diagnosis, the cost is much higher 

than the microscopic diagnostics [28]. QBC malaria test costs about £0.5-£2 per test, 

while microscopy is £0.01-0.02 per test [28], [29]. The instrument for QBC is, as stated, a 

more expensive format of equipment, costing ~£7,000 [30].  
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1.2.1.3 Rapid diagnostic tests (RDTs) 
RDT and microscopy are generally considered the most suitable tests for use in low-

resource settings. Unlike laboratory diagnosis, immunodiagnostic RDTs do not require a 

complicated operation, specific knowledge, expensive equipment or even a power supply. 

The RDTs for malaria are based on detecting malaria antigens in a finger-prick of blood 

applied to a membrane containing specific anti-malaria antibodies [31].  

 

In Figure 1-2 (b), the process of diagnosis using an RDT is depicted. The first step is 

mixing the patient’s blood with a lysing agent on a test strip or a well to release more 

parasite protein. Next, the blood and buffer solution can be placed on the strip or in the 

well and mixed with a dye-labelled antibody, which is specific for the target antigen. The 

dye-labelled antibody is present on the lower end of the nitrocellulose strip or in a plastic 

well provided with the strip. Then, due to capillary action, the mixture moves towards the 

test and control lines. If the target antigen is present in the sample, the antibody-antigen 

complex will form and accumulate on the test line, while excess-labelled antibodies will 

accumulate on the control line [32]. 

 

Figure 1-2 Malaria rapid diagnostic test. (a) the schematic drawing of the malaria RDT 

kit. (b) the illustration of how the malaria RDT works. (c) the Pf-Pan RDT kit used in the 

field. 

Although the RDTs reduce the requirements of running malaria diagnostic tests, there is 

still concern about their accuracy when the parasite density is low, especially in sensitivity 
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[33]. According to WHO, the RDTs can achieve a sensitivity over 90% when the 

P.falciparum density exceeds 100 parasites per μl blood [34]. S. Opoku Afriyie et al.’s 

study showed that RDTs can have higher accuracy than microscopic tests. However, when 

the parasite density is low, its accuracy can drop greatly when using qPCR as a reference 

[22]. Therefore, sometimes, when the parasite level is low, it needs to be combined with 

other diagnostic methods, such as microscopy and PCR, to confirm the results. As it is 

easy to use and cheap, many RDTs have been sold in endemic areas since 2010, and most 

of them were distributed to sub-Saharan Africa (Figure 1-3).  

 

Most malaria RDTs rely on detecting the histidine-rich protein 2/3 (HRP2/3) of P. 

falciparum. In recent years, the parasite has evolved with a variant that has a deletion of 

the HRP protein (as a method to avoid detection and treatment). Infections caused by 

parasites carrying the gene pfhrp2/3 deletion will result in false negative tests [35]. 

Therefore, there is a need to create diagnostic tests that have a higher level of sensitivity 

and specificity as a strategy for controlling the spread of malaria, through diagnosis and 

treatment. 

 

Figure 1-3 Number of RDTs sold by manufacturers and distributed by NMPs for testing 

suspected malaria cases, 2010-2018 [19]. 
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1.2.1.1 Molecular diagnostic 
The developments of molecular biological technologies provide more possibilities for 

diagnosing malaria. Nucleic acid-amplification-based diagnosis methods have been 

considered the future of diagnostic techniques. Advantages include using sequence 

complementarity to improve the specificity, target gene amplification to enable theoretical 

single copy detection and much more rapid turnaround time [20]. Polymerase chain 

reaction (PCR) and isothermal amplification are two strategies of nucleic acid 

amplification methods and can be used in diagnostics.  

1.2.1.1.1 PCR 
PCR-based malaria diagnosis has been proven to be one of the most sensitive and specific 

diagnostic methods, especially for low-level parasites, mixed infections, and drug-resistant 

parasites [23], [36]. It was found to be more sensitive than QBC and some RDTs [23], 

[31], [37], [38]. Compared with the microscopy diagnosis method, PCR shows higher 

sensitivity and specificity. PCR can detect as few as 1-5 parasites/μl of blood compared 

with approximately 50-100 parasites/μl by microscopy or RDT [31]. As a result, PCR has 

been considered the best approach to malaria diagnosis. Unfortunately, due to its high cost 

and complexity, this technology may not be well-suited for point-of-care testing in remote 

areas where laboratory infrastructure is lacking. 

1.2.1.1.2 Isothermal amplification (LAMP) 
Loop-mediated isothermal amplification (LAMP) [39] is one of many isothermal nucleic 

acid amplification approaches that have been developed as an alternative to PCR. 

Compared with PCR, the advantage of LAMP is that it is much cheaper and more 

straightforward, as these methods require no thermal cycling [37]. The amplification of 

gene sequences in the LAMP reaction is processed at a constant temperature, and it can 

amplify a few copies of DNA (or RNA) to a large amount in under an hour [40]. 

Moreover, the LAMP does not require complex equipment to perform the assay (primarily 

as a consequence of the simplicity in the thermal management). These advantages suggest 

that LAMP might become an excellent solution for malaria diagnosis in low-resource 

settings. However, LAMP primer design is complicated and requires a number of primer 

sequences (making storage in a point-of-care format more difficult). LAMP amplicons 
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contain a mixture of stem-loop DNA molecules of different sizes, which are not suitable 

for gene cloning or identifying specific targets based on size differences [39], [41]. 

1.3 Challenges of running diagnostic tests in low-resource settings 

Diagnostic testing has played an essential role in the containment of outbreaks and in 

preventing unnecessary deaths during pandemics and epidemics [42]. Poor infrastructure 

and lack of funds are some of the main barriers to introducing diagnostic strategies to 

LMICs and other areas with limited resources. Products used for disease diagnostics must 

strictly comply with medical clinical regulations, which could significantly increase the 

cost. The expensive equipment may be unaffordable and maladapted for use in low-

resource settings.  

 

However, some techniques used for high-resource settings could promote the development 

of tests in low-resource environments. For instance, the cultural isolation of bacteria or 

pathogens is still the gold standard for detecting most infectious diseases in modern 

hospitals. Isolation of bacteria is necessary for complete microbe identification, 

epidemiology, drug-resistance testing, patient triage, and nosocomial monitoring [20], 

which requires expert knowledge and training; hence, not well suited in low-resource 

settings. However, new automated systems are being developed to detect the organisms 

automatically. These systems reduce the cost and personnel training requirements and thus 

could be adaptable in some low-resource settings. 

 

Including lack of access to expensive diagnostic instruments, there may also be a shortage 

of well-trained operators, and minimal access to modern medical services in remote, 

rural/under-resourced settings [43], [20]. Many deaths result by delayed treatment, and 

many of these cases, death could have been prevented if the disease had been diagnosed at 

an early stage [43]. 

1.4 Digital technologies in diagnostics 
New technologies, including Blockchain, artificial intelligence (AI) and the Internet of 

Things (IoT), have recently changed how people work and live their lives. Numerous 

research projects have investigated the application of these technologies to diagnostics and 

the healthcare industry, such as AI-supported diagnostic systems for medical imaging, 
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Blockchain-based electronic health records (EHRs), and trillions of IoT devices that have 

been used for monitoring patients’ health status and improving the patients’ experience 

[44], [45]. However, these technologies have not been widely applied across the world, 

especially in the LMICs. Generally, Blockchain and AI as methods are amenable to use 

within digital or electronic health systems and can be implemented on mobile phones to 

provide secure communication of patient data and records as well as diagnostic decision 

support, in remote areas.  

 

In this study, the smartphone was used to deliver the diagnostic tests in low-resource 

settings. Combining AI and Blockchain technology, the platform can automatically read 

out and diagnose the test result and safely communicate or store the test information on 

the Blockchain network. 

1.4.1 Mobile network 
Mobile phones are one of the most accessible personal electronic instruments in many 

developing countries and regions. The number of unique mobile subscribers approached 

5.4 billion in 2022 with a 68% penetration rate globally, and this number was predicted to 

be 6.3 billion by 2030[46]. Although, in many countries the mobile penetration is 

approaching to saturation, the emerging market still has room for growth. In the 2022 to 

2030 period, India and Sub-Saharan Africa will contribute around half of new mobile 

subscribers globally[46], and by 2030, the mobile penetration rate in Sub-Saharan Africa 

was predicted to reach 50%[47]. 

 

Figure 1-4 Mobile subscriptions and penetration (a) worldwide[46] and in (b) sub-

Saharan Africa[47] from 2022 to 2030. 



Chapter 1 Introduction 

 

 
9 

The fast growth of mobile subscriptions and smartphone penetration provides an excellent 

opportunity to deliver diagnostic services to remote villages and monitor the spread of 

diseases.   

 

The smartphone is not only a tool for communication but also a portable device integrated 

with multiple sensors and high computational power [48]. The latest smartphone CPU 

integrated more than 10 billion transistors (the same level as the transistor count of a 

desktop CPU 10 years ago) [49], [50], which makes it possible to run complex 

calculations on the mobile device. Combined with multiple sensors, including geolocation 

(to confirm the site at which a test was performed), as well as cameras (to record patient 

data or test results), the smartphone can handle as many tasks as most computers [51], 

providing an excellent platform for mobile-diagnostics (m-diagnostics) or mobile health 

(m-health). 

1.4.2 AI supported diagnostics  

AI has been regarded as one of the most promising technologies of the 21st century. The 

ambition for AI is to design hardware and software systems which are able to mimic the 

sensing and decision-making capacity of humans. This concept was proposed in the 1950s 

[52], although because of the limitation of computational power, the extremely high cost 

of computers, limited available data, and immature algorithms, AI was not developed 

substantially until the 1980s.  

 

Machine learning (ML) is a branch of AI which uses a large amount of data to teach 

algorithms to perform specific tasks, such as performing a classification or prediction. The 

algorithms are trained on a library of data and subsequently are informed by this database 

in making a decision. An important milestone is the nearest neighbour algorithm that was 

proposed in 1967 [53]. Other algorithms, such as decision trees, reinforcement learning, 

and support vector machines, were also developed in the period from the 1980s to the 

1990s.  

 

Deep learning, a technology built on machine learning, outperforms other approaches in 

tasks like image recognition and natural language processing [54]. DL is good at 

processing high-dimensional data by using deep neural networks (DNN). DNNs consist of 
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multiple layers, and each layer can extract the features from the input. In a DNN, for 

example, a deep convolutional neural network, most of the processes are non-linear [54], 

and with the combination of several layers, the model can better map the input to the 

output. 

 

In recent years, DNNs have shown great potential in many fields. In medical diagnostics, 

DNN has been widely used in computer vision (CV) to support doctors in analysing 

medical images and making decisions [55]. The methods can also help experts work more 

efficiently and even run some diagnostic tests automatically when combined with 

hardware.  

 

Zachary S. Ballard et al. proposed a deep learning-enabled mobile phone reader to 

automatically read out the result of vertical flow assay (VFA) for cardiovascular disease 

(CVD) [56]. Their system benefited from the deep learning approaches in quantification 

accuracy, quality assurance of assay production, and reduced response error caused by the 

hood effect [56]. Valérian Turbé et al. utilised a convolutional neural network (CNN) for 

classifying the HIV RDT results; the CNN achieved 97.8% sensitivity and 100% 

specificity. And compared with the human vision interpretation (by experienced nurses 

and healthcare workers), CNN was able to reduce the number of false negatives and 

positives [57]. Liping Huang et al. combined deep learning approaches with Raman 

spectroscopy for liver cancer diagnosis [58]. Thus, it has already been proved that deep 

neural networks are fully capable of handling medical data, and compared with the 

traditional computational approaches, deep learning usually shows better performance in 

both sensitivity and specificity [56], [57], [59]. 

1.4.2.1 Deep learning for retina vessel 
segmentation/classification and diabetic retinopathy detection 

There are various studies about using machine learning approaches for automated retina 

vessel segmentation. In 2007, Elisa Ricci et al. proposed a method based on-line detectors 

and a linear support vector machine (SVM) for retinal vessel segmentation [60]. The 

proposed method achieved 0.9562 (±0.0001) accuracy on the Digital Retinal Images for 

Vessel Extraction (DRIVE) [61] database. The DRIVE dataset is a database containing 40 

retinal images. Of these images, 33 are healthy, and 7 show signs of certain pathologies. 
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The images were captured using a fundus camera with a field of view of 45 degrees [61]. 

This is one of the most famous retina image datasets and has been adopted by many 

researchers. 

 

With the advance of deep learning-based methods, many researchers have utilised deep 

learning models for retinal image analysis. For example, Huazhu Fu et al. used a fully 

convolutional neural network and combined fully connected Conditional Random Fields 

(CRF). Their model achieved 94.72% accuracy on the DRIVE dataset [62]. Further, UNet-

based models with higher sensitivity and specificity have been proposed in recent years 

[63], [64], [65]. This also leads to the creation of more retina image datasets, and an 

increasing number of annotated datasets are now available. For instance, the MESSIDOR 

database [66], [67], the ROC dataset [68] and EyePACs dataset [69]. 

 

Many studies analysing retina images using deep learning only focus on identifying 

vessels or classifying healthy/diseased eyes. There is limited effort on semantic artery/vein 

classification, although the classification could be helpful in detecting vascular diseases. 

The most common problem in DNN-based semantic classification is that the same vessel 

could be labelled as different classes [70], and this requires very complicated post/pre-

processing steps to correct the vessel labels [71], [72]. Figure 1-5, (a) displays a retina 

image taken from the DRIVE dataset [61], (b) shows its corresponding label (b), (c) the 

artery and vein label [73], and (e) and (f) shows the incorrectly labelled vessels in the 

DNN prediction (d). 
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Figure 1-5 An example image from the DRIVE dataset and DNN prediction. (a) the input 

image (01_test) from the DRIVE dataset and its label (b). (c) the artery and vein label 

[73] of the same image. (d) is the prediction of a DNN, (e) a section with the mislabelled

vessels and (f) the corresponding ground truth.

In this thesis,  we now describe how different DNNs can be used for vessel segmentation 

and classification tasks using ultrawide field retina images, resulting in the development 

of an approach that combined DL and vessel profiling was developed for automated 

optical density (OD) analysis. 

1.4.3 Blockchain 
With the development of the Internet and the computing ability of the hardware, the 

modern world has become data driven. Data security, privacy, and reliability have become 

a great concern, particularly where the data collected from diagnostic tests or other 

healthcare scenarios require heightened privacy concerns.  

© [2004] IEEE© [2004] IEEE
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The concept of Blockchain was put forward by Satoshi Nakamoto in 2008 [74], and the 

first application built with Blockchain technology is known as Bitcoin [74]. Blockchain 

has been regarded as a revolution of technology. It is a secured, decentralised system that 

can record transactions and digital events in the network. Unlike traditional digital 

transaction systems, no third party is needed. For example, in the traditional banking 

system, banks are required to maintain and monitor the ledger to prevent invalid 

transactions or fraud. On a Blockchain network, the ledger is owned by all participants of 

the network. For example, the transactions are packed in blocks in the Bitcoin system. 

Each block contains information, including its hash number, the previous block’s hash, 

timestamp, and transaction details. If somebody modifies the ledger, the system will 

quickly recognise this infringement.  

Additionally, the Bitcoin system has a consensus mechanism called proof-of-work, which 

consumes computers’ computational power to solve a cryptographic puzzle, that gives the 

block’s hash the required zero bits [74]. The process of generating a new block usually 

takes about 10 mins for the miners to solve the puzzle and validate their commitment. This 

is called the blocktime of the Bitcoin network, the time between two successfully 

generated blocks. The difficulty of the puzzle could be dynamically adjusted to keep the 

blocktime stable. This mechanism further increases the network’s reliability and makes 

the ledger tamper-proof. 

Blockchain also has shown its usefulness in healthcare industries in recent years. Its 

characteristics include immutability, consistency, and a high level of trust, perfectly 

matching the modern healthcare system requirements [75]. From an IBM’s study, many 

healthcare leaders believe that Blockchain technology will have a tremendous impact in 

improving clinical trial management and regulatory compliance and providing a 

decentralised framework for sharing electronic health records (EHR) [76], [77]. Moreover, 

Blockchain could become part of the solution to many important health-related problems, 

such as forged health records and counterfeited drugs [78]. Most users just need a 

computer or smartphone with an internet connection to get access to a Blockchain 

network. No extra hardware is required, with this low-cost feature makes it possible to 

apply the Blockchain-based system to the whole world. 
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The Blockchain network proposed in Chapter 3 is based on Hyperledger [79], a 

Blockchain developing platform created by Linux Foundation and IBM. Although there 

are decentralised application (DApp) platforms such as Eos [80] and Ethereum [81], 

Hyperledger provides a more straightforward solution for developers to set up their 

Blockchain, and no cryptocurrency is required. Additionally, Hyperledger supports REST 

API and OAuth 2.0, which provides excellent flexibility in developing the end App. There 

are multiple sub-projects under the Hyperledger framework, and in this study Hyperledger 

Composer and Fabric were utilised. 

1.4.3.1 Types of Blockchain networks 
A large variety of different types of Blockchain networks have been reported for use in 

different applications [82]. All these networks can be divided into three categories, public 

Blockchain, consortium Blockchain and private Blockchain [83]. The main difference 

between these is in the extent of the level of trust. Public Blockchain networks are open to 

everyone with an internet connection, and all the participants are anonymous and 

untrusted. Consortium and private Blockchains require some level of trust to be shared by 

participants on the network; invitations are required to join these two kinds of networks, 

so only permitted users or organisations can acquire access. Table 1-1 shows the 

comparisons among these three types of Blockchains. Consequently, private and 

consortium Blockchains are more suitable for companies and organisations.  

The public Blockchain network is fully decentralised and highly accessible. Everyone can 

join the Blockchain network and become part of it, for example, Bitcoin and Ethereum 

networks. The public Blockchain networks are fully decentralised and are built on strong 

consensus because no trusted third-party monitors and verifies each transaction. To 

prevent invalid users from getting access to the network and manipulate transaction data 

stored on the Blockchain, algorithms like proof of work (PoW), and proof of stake (PoS), 

have been proposed and adopted by many Blockchains [84]. 

The private Blockchain is usually utilised in a closed network, e.g., a company or 

organisation’s local network. Only the authorised user can access a private Blockchain 

network, and external users will not be able to get access to the network or visualise the 

data on the chain. This type of Blockchain is centralised and built on strong trust. In some 
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cases, the participants know each other in real life, such as employees within the same 

company. However, it still operates on multiple nodes as a distributed ledger, all of which 

are owned by the same entity [85]. 

The consortium Blockchain network lies somewhere between a public and a private 

Blockchain network. Unlike public Blockchains with no trust or private Blockchains, all 

the participants are fully trusted. The consortium Blockchain is usually adopted by several 

different companies, institutes, or organisations. Only the participants from the consortium 

are allowed to join the network. Compared to private and public Blockchains, the 

consortium Blockchain is partially trusted [86], [87], [88]. The transactions in the network 

will need to be verified by participants from different organisations, which means it could 

offer better efficiency than the public chain and better security than the private chain. 

Table 1-1 Comparisons among public Blockchain, consortium Blockchain and private 

Blockchain [89] © [2017] IEEE 

Property Public Blockchain Consortium 

Blockchain 

Private 

Blockchain 

Consensus 

determination 

All miners Selected set of 

nodes 

On organization 

Read permission Public Could be public or 

restricted 

Could be public or 

restricted 

Immutability Nearly impossible 

to tamper 

Could be tampered Could be tampered 

Efficiency Low High High 

Centralised No Partial Yes 

Consensus 

process 

Permission less Permissioned Permissioned 

1.4.3.2 Smart contract 

The idea of a smart contract was initially introduced by the Ethereum Blockchain network 

[81] as a simple program stored on the Blockchain network that can automatically execute

transactions when all the predefined requirements are met [90]. Usually, the smart contract

is a group of “if…else…” commands running in a network, e.g., in a banking Blockchain
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system, if the customer wants to submit a transaction to someone else, the smart contract 

will check both sender’s and receiver’s identity, account number, the balance in his/her 

account for example. Only when all the information matches will the transaction be 

granted and recorded. The smart contract is the core of a Blockchain network, especially 

in a public Blockchain network; any flaw in the smart contract might lead to the whole 

system failure.  

1.4.3.3 Challenges and limitations of using Blockchain  

Although the Blockchain network has better security compared to the traditional databases 

and is hard to be tampered with, it is not perfect. The major threat to the safety of a 

Blockchain network includes the double spending problem, byzantine faults (51% attack), 

phishing attacks and/or routing attacks. The double spending problem is a system flaw in 

which the same token has been spent more than once simultaneously. Byzantine fault 

occurs in some decentralised system, when more than 51% nodes have been taken over, 

the system will be controlled by the attacker. It is related to the consensus algorithm 

defined in the system. Instead of attacking the Blockchain network, some hackers will 

choose to attack the users’ wallets. Usually, hackers use fake emails or hyperlinks to fraud 

Blockchain users. In routing attack, the hacker intercepts the data transferred between the 

nodes and the internet provider, the user cannot notice any abnormality until their asset 

been stolen. Consequently, the consensus and smart contract algorithms need to be 

designed carefully, and other data security protection approaches are needed to further 

secure the system and improve the trustworthiness. 

1.4.4 IoT and edge computing 

The Internet of Things (IoT) aims to connect objects in the real world with the Internet. In 

the context of diagnostics and healthcare, IoT devices have now shown great potential 

[44]. Prabal Verma and Sandeep K. Sood proposed an IoT-based framework for 

diagnostics; it could continually screen patients’ health and automatically analyse the data 

collected from the IoT device in the cloud [45]. Alternatively, Priyan Malarvizhi Kumar et 

al. proposed a system that enables IoT and cloud computing for diagnostic purposes. They 

applied several different classifiers, e.g., K-Nearest Neighbour (KNN), Decision Tree 

(DT), and a fuzzy classifier, to provide decision support [91]. Compared with cloud-based 

solutions, an edge computing/fog computing strategy could be another option. As the IoT 
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device usually does not need to collect complex data, most calculations and analyses can 

be done locally. This can not only release the calculation power demand from the server 

but also could benefit privacy protection [92]. 

1.5 Aims and objectives 
This PhD aims to develop a low-cost, easy-to-use diagnostic platform for researchers and 

healthcare organisations to better understand, monitor and control infectious diseases, 

such as malaria and schistosomiasis, in low-resource settings.  

Current diagnostic approaches often require expensive and bulky equipment to achieve 

high sensitivity and specificity. For example, in malaria diagnostics, PCR is used as a gold 

standard. However, a PCR system usually costs over £5,000 and weighs more than 10kg, 

and well-trained operators are required to perform the test. Although Rapid Diagnostic 

Tests (RDTs) are widely used as a low-cost alternative, their sensitivity and specificity are 

lower compared to DNA and RNA-based diagnostic tests. 

The Biomedical Engineering group at the University of Glasgow previously developed a 

LAMP-based microfluidic device for detecting malaria [93], [94]. It achieved a high 

sensitivity of 98%. The crucial challenges of the provision of using point-of-care medical 

devices have been highlighted in previous field research [94], including: 

1. Bulky and expensive equipment.

2. Complex operating procedures and need for skilled operators.

3. Counterfeited and tampered devices.

4. Lack of trust between local test operators and researchers or healthcare institutes.

5. Data security during collection and sharing.

6. Continuous monitoring and analysing of the disease based on the testing outcomes.

To address the first two challenges, a new hardware device that could perform the test 

process and record the test result was needed. AI algorithms could help reduce the 

complexity of performing the test and the operator training cost. 
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In this PhD, a portable, user-friendly, mobile platform which can process molecular 

diagnostic assays, e.g., DNA amplification (LAMP), has been proposed and demonstrated. 

In the list above, Challenges 3 to 4 require approaches that can enhance trust and provide 

quality assurance to the diagnostic process. Blockchain technology is well-suited for 

achieving the goals, as it is hard to be tampered with, and the consensus mechanism 

ensures the trustworthiness of every participant in the network. This technology can help 

address issues such as fake test records where some tests were not conducted, provide a 

more secure and real-time method for data sharing, and build trust between local operators 

and remote researchers and doctors. 

Blockchain and AI also have the potential to address Challenges 5-6. Clinical data are 

always highly sensitive and require a high level of protection. Blockchain systems can 

provide secure and safe storage for these data, and its immutable feature also maintains 

trust among the participants. AI could continually analyse the diagnostic test results and 

identify the outbreak of the disease at the early stage without the need for breaks. 

In this study, a platform, including a portable heater for the LAMP-based malaria 

diagnostics (see Chapter 2), a Blockchain network for secured data storage (see Chapter 3) 

and a neural network for automated result readout (see Chapter 4), was developed. This 

platform allows running diagnostic tests in remote areas with limited (to no) resources and 

enhances the trust between the participants in a remote diagnostic process, e.g., the local 

test operators and researchers or doctors who might live in another city or country. With 

the support of AI, the training needs of the local operator are reduced, and it becomes 

possible to monitor the disease prevalence continually.  

As AI shows increased performance in the context of remote diagnostics and telemedicine, 

it could greatly reduce the difficulty and cost of running diagnostic tests in low-resource 

environments. In this PhD, AI was also used in the retina image analysis (see Chapter 5). 

Models were trained for automated retina vessel segmentation and classification, which is 

a fundamental step of many retinal disease diagnoses.  
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1.6 Thesis structure 
This thesis includes seven Chapters; the first Chapter introduces the background of 

infectious diseases, especially malaria, in low-resource settings, the commonly used point-

of-care diagnosis approaches and the feasibility of adopting technologies such as deep 

learning and Blockchain in the context of medical diagnostics. 

Chapters 2 to 4 propose a mobile-based diagnostic platform for malaria diagnostics. The 

platform consists of a mobile-controlled heater, an Android App and a Blockchain 

network. Also, deep neural networks were trained and integrated into the App for decision 

support.  

Chapter 5 proposes an additional use of deep learning in automated retina image analysis. 

In this Chapter, the models were trained for retina vessel detection and artery vein (A/V) 

classification.  

Chapter 6 introduced a group project during the COVID-19 pandemic. In this project, a 

web App for sample size calculation in diagnostic tests was developed and deployed. This 

was work performed during the “lock-down” period when there was limited access to the 

laboratories. 



Chapter 2 Mobile phone-controlled heater for LAMP test 

 

 
20 

Chapter 2 Mobile phone-controlled heater for LAMP test 

2.1 Introduction 

Traditional clinical diagnosis of malaria is based on the patient’s symptoms, such as fever, 

dizziness, and diarrhoea. Although this is the cheapest and most widely used method in 

the world, the most critical problem with this symptom-based diagnostic is that these are 

nonspecific and overlap with other common febrile diseases- leading to misdiagnosis, 

over-diagnosis [31], overtreatment, and ultimately the spread of drug resistance through 

the prescription of incorrect treatments and/or wrong doses.  

 

In this Chapter, an instrument was designed as a low-cost device controlled by an Android 

mobile phone. Integral to the delivery of the DNA-based diagnostic assay was LAMP 

amplification, performed by integrating paper microfluidics within low-cost disposable 

cartridges, as described, and validated in the previous work of our group [95]. In this 

previous work, the heating was controlled manually, using a dry bath connected to power 

provided by a diesel generator or by solar power. Although the latter is available 

everywhere in remote settings in SSA, it requires expensive equipment and cannot be used 

at night, whilst the former is more inconvenient still and has a higher carbon footprint. 

However, it enables to perform multiple assays in a single device.  

 

Consequently, in this thesis, a standalone heater was designed and demonstrated, powered, 

and controlled by a mobile phone. The development of the heater, including the software 

and control circuit, was carried out by myself as part of this PhD study. The temperature 

was maintained using a control circuit (circuit diagram provided in Figure 2-2), a micro-

controller unit, two temperature sensors (one acting as reference, one measuring the 

cartridge temperature) and a heating unit. The heater was enabled either using the mobile 

phone On-To-Go (OTG) functionality or with a standard 5V battery power pack (through 

a micro-USB port and a voltage regulator LM317T). The body of the device was designed 

by using Autodesk Inventor and 3D printed using acrylonitrile butadiene styrene (ABS) 

plastic. This formed a small, lightweight (overall ~ 500g), low-cost(the prototype costs 

around £50. See Appendix Table 1), and long-lasting instrument (Figure 2-1). Relevant 

files, including code, 3D models, and circuit diagrams, were published and are available 
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on Zenodo (https://doi.org/10.5281/zenodo.4429293) and GitHub 

(https://github.com/XGuoo/BlockchainDiagnostics). 

2.2 Multiplex LAMP system 

The primer sets used for the LAMP assay were based on previously published [95] primer 

sequences for P. falciparum, whilst primers for a BCRA1 gene fragment were used to 

implement an assay which served as a positive control. The primers were all purchased 

from Eurofins Genomics. The reactions were amplified for no more than 45 min at 65°C.  

Field testing was carried out in Uganda and followed the same protocol as previously used 

[95] to demonstrate the platform’s functionality in the field. Briefly, the local technicians

collected and tested blood samples from 50 school children from Kocoge Primary School

in Tororo District. The mobile heater mentioned in this chapter had been tested by me and

used for LAMP-based malaria diagnostic tests by my colleagues. This study was

conducted as part of the activity undertaken by the Vector Control Division (VCD) of the

Ministry of Health (MoH) in Kampala, Uganda, on neglected tropical diseases and was

approved by the Vector Control Division (MOH) Research and Ethics Committee,

VCDREC/078 and Uganda National Council for Science and Technology (HS 2193). No

personal data were revealed to the investigators. Written informed consent was also

obtained from the children’s parents and the head teacher (see protocols in the previous

study for details). All samples were also tested retrospectively by RDT and microscopy in

the field, as well as by PCR, on our return to the UK [95].

Ethics approval was upon the basis of presumed positive, given the high prevalence of the 

disease, which is endemic in the region. All individuals were treated accordingly 

following the approved tests (RDT and microscopy) under the MoH of Uganda’s 

guidance. Analysis was always double-blinded between on-site field testing and reference 

tests. After testing at the school, all used paper devices and small plastic consumables 

were incinerated for their disposal. In contrast, glass slides and RDTs, used as reference 

techniques, were stored in a biohazard container for safe disposal at the VCD, Kampala.  

Analysis was performed in the children’s classrooms, where there was no access to power 

or running water. For each individual, a finger-prick (~5 µL) of whole blood was used, 
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with sample processing including sample lysis, DNA extraction and amplification 

performed using the paper ‘origami’ protocol, as previously published [95].  

2.3 Material and methods  

The mobile-controlled portable heating system for the LAMP test consists of two main 

parts: a 3D-printed portable heater and a smartphone App which can run on any phone 

with an Android operating system (Android version > 5.0). The heater includes both 

hardware and software. It used a microcontroller unit (MCU) to control the heating 

process and transfer data with the mobile phone. The circuit diagram of the heater can be 

found in Figure 2-2. The software of the MCU was written in C language and compiled by 

Arduino IDE.  

2.3.1 Mobile heater 
The heater used a 10000mAh (38Wh, 5V, 1A output) battery pack as its power supply, 

and a Bluno Beetle (from DF Robot) was used as the MCU. Figure 2-1 shows the overall 

design of the heater.  The enclosure of the heater comprised three parts, namely, the main 

body, a slide cover with a mobile phone holder and a top cover. There are two layers in 

the main body of the enclosure. The bottom layer was designed to contain the battery 

pack, and above that is the space for placing the circuit. The top cover was used to enclose 

the heater to reduce heat loss. Additionally, a mobile phone holder was integrated into the 

cover for easy monitoring of the heater’s status during testing. Simply place the mobile 

phone on top of the holder and keep an eye on the temperature and timer. Figure 2-1 

provides an overview of the overall design of the heater.  
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Figure 2-1 Heater design[96]. (a) Exploded view of the heater. The numbered parts are: 1 

the cover of the heater with mobile phone holder; 2 the power bank; 3 the internal circuit; 

4 the bent aluminium board. (b) Three-quarters view of the heater. (c) Multiplex 

diagnostic LAMP device. (d) Multiplex diagnostic LAMP device with aluminium loop 

attached onto the reaction chambers. 

2.3.1.1 Material 

The enclosure of the heater was 3D printed by Stratasys F170 printer with acrylonitrile 

butadiene styrene (ABS) copolymer.  

 

The circuit used the following components: a solderable breadboard, Arduino, N-channel 

metal-oxide-semiconductor field-effect transistor (MOSFET)((IRLB8721), light-emitting 

diodes (LEDs), micro -USB female connector, an ultra-low-power thermoelectric 



Chapter 2 Mobile phone-controlled heater for LAMP test 

24 

generator (TEG) (Peltier Module, 0.76 W, 600 mA, 2.5 V, 15 x 15 mm), an aluminium 

board, an AD8495 Thermocouple Amplifier (from Adafruit), K Type thermocouple wire, 

voltage regulator (LM2595/LM317T), and other small electronic parts.  

2.3.1.2 Method 
The enclosure of the heater was designed with Autodesk Inventor 2019. The heater used 

an aluminium band around the LAMP reaction chambers in the cartridge (numbered 4 in 

Figure 2-1 (a) and Figure 2-1 (d), to enhance thermal transfer and ensure homogeneity of 

temperature across the device.  
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Figure 2-2 Circuit schematic diagram [96] The heater’s circuit consists of four components: power supply, heating, microcontroller, and temperature 

sensor unit. Functionality is detailed in the main text. 
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2.3.1.2.1 Power supply unit 
To maximise the operation time and reduce the complexity, the heater used a standard 

power bank (5V output) as its power source. The power supply unit of the circuit includes 

a female micro-USB port for connecting to the power bank. There are five pins in the 

typical micro-USB port: GND, IO, D+, D- and VBUS. Because there was no data transfer, 

the IO, D+, and D- pins were left empty. The VBUS pin could be regarded as the positive 

electrode of the power supply, and it provided a constant 5V voltage. The ground (GND) 

provided a 0V reference for the whole system.  

The power supply unit needed to provide two different voltages for the MCU and TEG, 

the MCU requires a 5V input, and the input voltage of the TEG should be <2.5V. Two 

different voltage converters had been used for those purposes (Figure 2-3).  

Figure 2-3 Voltage converters. (a) LM317(T) LDO convertor (b) LM2595 based Buck 

convertor. 

LM317 is an adjustable 3-terminal positive voltage regulator [97], providing up to 1.5A 

current. The output voltage can be easily adjusted by the resistors that connect with its 

ADJ and the output pin (R1, R2). The output can be calculated by Equation 1. 

𝑉(𝑜𝑢𝑡) = 1.25 ∗ (1 + !!
!"
) Equation 1 
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In this study, the output voltage was set to 2V. In order to prevent any significant current 

flow through the resistors, the resistance of R1 and R2 were set to 1kΩ and 800Ω, 

respectively. 

Although LM317 performs well in the circuit, it generates too much heat, as has been seen 

in other LDO regulators. Consequently, the LM317 was replaced by a step-down (buck) 

regulator. The buck regulator converts the voltage by switching the circuit on and off to 

generate a PWM signal and uses a diode, a capacitor, and an inductor to regulate the 

signal to a stable output. However, the output voltage ripple could slightly affect the 

stability of the circuit. Figure 2-4 shows the basic principle of the buck converter. 

Figure 2-4 The basic principle of the buck converter.(a) the buck converter, (b) the 

simulated output, (c) the waveform of the output voltage ripple. 

2.3.1.2.2 Heating unit 
The heating unit used a Peltier as the heat source. Its compact size and flat surface make it 

easy to attach to the aluminium surface, allowing for better heat conduction. At low 

power, the energy consumption of a Peltier and a resistive heating element, the Peltier 

device can also be utilised for cooling, which allows for an upgrade of the heater for PCR-

based tests in the future. A N-channel MOSFET performed as the switch. The drain and 

source terminals were connected to the TEG and ground, respectively, and the gate 
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terminal was connected to a digital pin from the MCU. The TEG will be switched on/off 

based on the Pulse Width Modulation (PWM) signal generated by the MCU. A 10kΩ 

resister was placed between the gate terminal and the ground for circuit protection. 

 

Figure 2-5 The TEG control circuit. The Vcc is the output of the voltage converter. The 

LED is used for displaying the work status of the TEG power supply. The n-channel 

MOSFET was used as a switch to turn on/off TEG. The PWM signal is provided by the 

MCU (Bluno). 

2.3.1.2.3 Temperature sensor unit 
The portable heater used two K-Type thermocouples and an AD8495 thermocouple 

amplifier as temperature sensors. Compared with other types of thermocouples, the 

advantages of K-Type thermocouples include low-cost, tolerance of oxidised 

environments, fast response, and reliability. 

  

In the heater circuit, one thermocouple was used for reading the temperature of the TEG in 

real time and another for self-calibration. The mobile heater used a 1mm thick aluminium 

board for heat conduction. If compared with the heating block in the traditional LAMP 

heater used in DNA diagnostics, the heating area is limited, and the temperature in the 

channel could be lower than the TEG. Consequently, a calibration device was made to 

calibrate the target temperature and compensate for the heat loss (Figure 2-6 (a)). 
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Figure 2-6 Temperature calibration device. (a)The thermocouple was inserted into the 

microfluidic device (1) chamber (4), where the heat will be supplied during amplification. 

(b) The calibration device in use. (2) is the Pico Logger, (3) is the female thermocouple

connector for heater self-calibration, and (5) is a 1-pound coin for showing the device

size.

2.3.1.2.4 Microcontroller Unit 
In order to carry out a LAMP-based diagnostic test, it is important to maintain a stable 

temperature. Typically, the required temperature range for LAMP is between 60ºC and 

65ºC [98], Deviation away from this predefined regime can cause inefficiencies in the 

amplification and poor diagnostic performance.  

The heater enabled the control of the temperature of the LAMP reaction chambers 

embedded within the plastic microfluidic chip by using the proportional, integral, and 

derivative (PID) control mechanism in the Arduino code. The temperature control was 

achieved by adjusting the duty cycle of the output PWM signal and using an N-MOSFET 

as the switch. The PID control mechanism can be formulated as follows: 

u(t)=Kpe(t)+Ki ∫ e(t2)dt2t
0 +Kd

()(+)
(+

 Equation 2 
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The e(t) represents the error between the actual value (temperature) and the target, P 

stands for the proportional gain of the system, I is the integral gain, and D is the deviate 

gain. The Kp, Ki, and Kd are the coefficients of each type of gain. It is necessary to set 

appropriate coefficients to ensure the heater functions correctly. Corse tuning can be done 

by adjusting Kp (proportional gain), a higher Kp can increase the system response speed; 

however, if it is too high, it might lead to overshoot and oscillation. Ki (integral gain) can 

reduce the steady-state error of the system by integrating past errors over time. A proper 

Kd (deviate gain) can help the system stabilize faster by taking the error changing rate into 

account. In this study, the PID gain coefficients of each heater were manually adjusted. 

 

Figure 2-7 The PID control mechanism. The r(t) represents the error between the target 

and real-time temperature. The P, I and D will contribute to the PID value (0-255) based 

on the e(t), and the PWM signal’s duty cycle will be adjusted. 

A timer was integrated into the MCU program, in order that the system  could 

automatically switch off the heating unit when the countdown to zero. The timer could be 

set up through the mobile App, described in next section.  

2.3.2 Android app 

The Android App was designed with Android Studio in Java. The minimum requirements 

for installing this App are Android version >5.0 and support for Bluetooth 4.0.  Bluetooth 

Low Energy (BLE) was used for establishing connections with the Bluno chip, as part of 

Bluetooth 4.0.  The phone with a lower Android version may be unable to install the App 

properly because some dependencies require an Android API level >21, and this Android 

version improved the support of BLE [99]. The App only has one page, as Figure 2-8 

shows.  
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Figure 2-8 The user interface of the mobile App. There are two buttons on the screen. By 

clicking the “Scan” button, users can see the Bluetooth devices around them. Click the 

one named “Bluno,” and the App will connect with the mobile heater. Then, the user can 

enter the target temperature, set up a timer from the edit box, and click “Send Data”, and 

the settings will be sent to the heater. Once the App is successfully connected to the 

heater, the real-time temperature and a timer will be displayed in the received data area. 

The Blockchain Diagnostics App was developed based on the official demo App 

BlunoBasicDemo from DFRobot [100] by customising the input data format. By using the 

input boxes, users can set the target temperature and create a timer, which can then be sent 

to the heater with a click of the top right button. The App used a Bluno Library, which 

includes Bluetooth low energy (BLE) services to manage the Bluetooth activities, and a 

ring buffer was used to handle the data flow (timing and temperature). More 

functionalities were developed and integrated to this App in subsequent updates, see 

Chapter 3 and 4. 
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2.4 Results 

2.4.1 Laboratory testing 

The heater was tested in the laboratory with different target temperatures (40℃, 65℃, 

75℃ and 90℃). The test results are shown in Figure 2-9. The mobile heater can supply 

heat for over 12 hours at 65ºC, with a 10000mAh (36Wh) battery pack. The error of the 

actual temperature and target was controlled within 0.5ºC.  

Figure 2-9 The mobile heater was tested at different target temperatures [96]: 90°C 

(purple), 75°C (blue), 65°C (red, the temperature most commonly used for LAMP) and 

40°C (black). The X-axis represents time (in seconds, over 24h), and the Y-axis represents 

temperature. The temperature decreases when the battery becomes limited, providing the 

capability for >12h of LAMP reactions. The inset shows the temperature ramping up, 

demonstrating the control of the PID algorithm. Heating to 65°C took 10 minutes, 

providing the ability to run a full LAMP assay in under 1h (including sample processing 

[95]).  

2.4.2 Field testing 
The mobile heater was tested in Kocoge Primary School, Uganda. The heater successfully 

provided 64ºC (±0.5ºC) in the field environment shown in Figure 2-10. The temperature 
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was recorded by the temperature logger (PicoLog TC-08).

 

Figure 2-10 Field test result.(a)The temperature log obtained from the field. The x-axis 

shows the time in seconds, and the y-axis is the temperature. The red line is the 

temperature measured by the PicoLog temperature logger, the blue line with 50% 

transparency shows the temperature reading from the App without calibration, and the 

solid blue line represents the calibrated temperature reading from the phone. (b)The 

heater performs the LAMP test in the field. 

2.5 Conclusion 

This Chapter presented a 3D-printed heater for the LAMP microfluidic malaria test, as 

well as the development of an App to control the testing. It meets the requirements of 

being portable, affordable, and user-friendly. The heater used ABS material for the body, 

and a simple circuit was used to achieve its functionality. Also, an Android App was 

developed for controlling the heater. 

 

The overall cost of the heater was estimated to less than £50, with these found in 

Appendix Table 1. Compared with the bulky traditional heater and heating blocks the 

weight was reduced significantly, only about 500g (including the power bank), which can 

be easily transported and held in the hand. 
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The heater used an Arduino-based microcontroller with Bluetooth as the central processor. 

Through the PID control mechanism, it can maintain a stable temperature within 1ºC 

accuracy for the LAMP malaria test, whether in a laboratory or field environment.  

The portable heater was designed to work without an external AC power source, which 

makes it a useful option for areas without access to electricity. It can be powered by a 

standard power bank with 5V output or a mobile phone with an OTG function. A 

10,000mAH power bank can provide over 12-hour battery life. 
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Chapter 3 Blockchain network for diagnostic data 
management 

3.1 Introduction 

Since the concept of Blockchain and the first decentralised application was proposed in 

2008 by Satoshi Nakamoto [74], Blockchain technology has changed many industries. 

Today, many companies have adopted Blockchain in their daily business, for instance, 

IBM, Nvidia, Citi Bank, and Coca-Cola. Companies can use Blockchain networks for 

different purposes, such as quality assurance, supply chain management and cybersecurity. 

  

Compared to the traditional database system, the Blockchain has some significant 

advantages, including being hard to tamper with, trustworthiness, safety, and privacy. The 

data in a Blockchain network are kept in blocks, and each block includes four parts, 

header hash, the hash of its previous block, transaction details and a timestamp. Figure 3-1 

shows the structure of the Blockchain. 

 

Figure 3-1 The Blockchain architecture. Each block has its own hash number, the hash 

number of its previous block, a timestamp, transactions, and other data such as the Node 

version or geolocation.  

The immutability, safety, trustworthiness, and decentralised nature of Blockchain make it 

an ideal storage solution for sensitive clinical diagnostic data. And it can benefit scenarios 

such as remote diagnosis and data sharing between organisations. Data security and safety 

are critical concerns in remote healthcare and diagnostics. The Blockchain-based database 

perfectly meets these needs. Moreover, Blockchain can enhance trust when multiple 

organisations and participants are involved. Every transaction can be traced back, which 

also makes it suitable for continuous disease surveillance. 
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The Blockchain application mentioned in this Chapter was developed using Hyperledger 

Composer, which offers a simple way for developers to define the function and logic of 

the Blockchain application. The application operated on a Hyperledger Fabric Blockchain 

network. 

3.1.1 Central concepts in Hyperledger Composer 
There are some basic concepts and terms in Hyperledger Fabric and Composer Blockchain 

networks, which are defined below, including: 

 

• Business network archive (BNA): the application running on the Blockchain, 

including a model file, a JavaScript file, a query file, and an access control file 

(Figure 3-2). 

• Business network card: it provides all the necessary information for connecting to 

the business network, such as connection profile, private key, and certificate, in an 

encrypted format. 

• Asset: in a business network, the asset could be anything that has value, e.g., goods 

and services. In this study, the asset is the diagnostic assay. 

• Transactions: the interaction between participants and assets, such as buying and 

selling products. In this project, the transaction changes the assay information, e.g., 

the manufacturer uploads new device records to the Blockchain network. 

• Chaincode: a program running in a secured docker container [101] to manage the 

ledger states and transactions just like the smart contract (introduced in Chapter 1). 

3.2 Methods  

3.2.1 Blockchain network 

The Blockchain network, shown in Figure 3-2, was based on the open development toolkit 

Hyperledger Composer and Fabric, and the network was hosted on a Google Cloud server. 

The core of the Hyperledger composer Blockchain network was a business network 

archive (BNA), including a model, script, access control, and query file. The BNA was 

deployed to an existing Hyperledger Fabric runtime (inc. Fabric ordering service, 

certificate authority and peer nodes). Users needed to use a peer card containing public 

and private keys to obtain access to the Blockchain network.  
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Users can access the Blockchain from their desktop or mobile phone through a web 

browser or a customised Android app. This is made possible by the support of REST API 

and GitHub OAuth authentication. The database service in the cloud allowed a central 

point to collect information, enabling later analysis on geo-tagged disease propagation in 

the communities, with a certain point accessible by healthcare providers across the 

hierarchy of the healthcare system. The anonymisation of information in this database 

ensured privacy. At the same time, trust in the recorded data was always maintained, 

significantly improving the endorsement and privacy aspects, compared with either the 

manual or email transfer of records.  

 

Figure 3-2 The system architecture of the diagnostic Blockchain. [96] The client can use 

the mobile App or a web App to access the Blockchain. GitHub OAuth was used for 

authentication. The business network was defined in a Hyperledger Composer business 

network achieve file (BNA) and deployed on the Hyperledger Fabric network. The 

authenticated user can use their private and public key to interact with the Blockchain via 

REST requests. 

3.2.1.1 Blockchain model 
The Hyperledger composer model file defines the essential components of the business 

network, such as participants, transactions, assets, and events.  The assets (which in our 

case is the microfluidic diagnostic device), the participants (manufacturers), the operators 

(as the healthcare workers involved in the delivery of the diagnostic assays and their 
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analysis) and the transactions (as connections) were all defined in the BNA file (Figure 

3-2).  

 

The diagnostic device was addressed with a unique identifier (ID), and the related 

information (including, e.g., date of manufacture) was printed as a quick response (QR) 

code on the device (Figure 4-8). Participants have their ID and username stored on the 

Blockchain (i.e., the ledger). The role they can play is limited by access control, although 

they can create a new device record or update a piece of device information.  

3.2.1.2 Transaction 
The assay tracking network has two defined transactions: one for adding new device 

information to the Blockchain (ProduceDevice) and another for updating diagnostic test 

results (DoTheTest). Once each transaction is successfully submitted, a corresponding 

event will be emitted. The transaction algorithms are shown below: 

 

Algorithm 1. ProduceDevice [96] Algorithm 2. DoTheTest [96] 

Input: device ID, test name, manufacturer, 

date of manufacture, expire date, batch 

number, production place, status 

Result: Add new device record to the 

Blockchain 

If device exists, then 

      return 

else  

     set test name, participant (manufacturer), 

     date of manufacture, expire date, batch  

     number, production place, status to device 

     attribute 

 

get asset registry 

emit ‘Produce Device’ event 

Input: device ID, status, operator, test 

date, patient ID, gender, weight, URL 

(link to image of device after test), result, 

geo-location 

Result: Add test information to existing 

device 

If device does not exist, then 

  return 

else  

     update status 

     set operator, test date, patient ID,  

     gender, weight, URL, result, test place  

     to device attribute 

 

emit ‘Do The Test’ event 
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The “Produce the device” function allows the manufacturer users to add new device 

records to the Blockchain network. The information, including the device ID, 

manufacturer, batch number, and device status (new / used / invalid), will be stored. The 

“Perform the test” function was designed for the operators to upload the test details and 

patient information.  

3.2.1.3 Access control and authentication 

Access control and authorisation strategies were used to improve the system’s security. In 

the access control file, which is a part of the BNA, different participants were given a 

different level of access to the Blockchain resources. The manufacturers can only submit 

“ProduceDevice” transactions, the operators of the diagnostic test were only allowed to 

submit “DoTheTest” transactions, and analysts could visualise all the transactions and 

data that had been stored on the Blockchain network but could not add new information to 

the Blockchain. 

3.2.1.4 Authentication 

GitHub OAuth was used for authenticating the user’s identity. A token (e.g., 

f9cdd11f6b7e4fcd6c8316ae87bd5e1d3459314e) could be generated for each participant, 

and this token is linked with the user’s network card (including certificate and private 

key), which been used to launch the rest server.   

3.2.2 Android app 

The Hyperledger Blockchain network supports REST API, which allows users can access 

to the Blockchain network by using standard HTTP [102] requests. Thus, the Android 

App used for heater control was updated to enable communication with the Blockchain 

network. The data flow of the new App can be found in Appendix Figure 2 

 

Figure 3-3 shows the updated UI of the App. A login page (Figure 3-3 (a)) was added to 

the App to enable access control, and the users’ login details (User ID and Password) are 

associated with the GitHub OAuth token. Thus, different users can easily access the 

Blockchain network via mobile phones.  
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Multiple screens and more complex logic were implemented in this mobile App version. 

After logging in, different users will see different pages, depending on their role in the 

network (manufacturer, operator, analyst). Manufacturers can only add new devices to the 

Blockchain network, while operators can use the App for heater control and upload test 

information to the Blockchain. It is important to note that operators must scan the QR 

code on the device before conducting any tests. This step was used to verify the assay 

status and prevent counterfeited devices. Analysts can only view and search for data on 

the Blockchain via the App. 

 

Figure 3-3 The Blockchain diagnostics app. [96] The App was developed with Android 

Studio in JAVA language. (a) the login page, (b) the heater control page, and (c) the test 

information page. 

For each sample, the person running the test scanned the QR code of the device to be used 

(already ‘created’ by the manufacturer) and entered the required information on the test 

before inserting the device into the heater, controlled by the phone for amplification. The 

QR code was scanned, and a picture of the results was taken. The phone then returned the 

results for interpretation by the ‘analyst’, who could provide decision support to the 

person in charge of treatment. All testing steps (including derivatives) were also recorded 

manually to ascertain the results’ validity. When network connectivity was unavailable, 

the transactions were stored in the phone until connectivity was restored. 
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3.3 Results 
Hyperledger Composer provided a helpful tool called Composer Playground. It is a web-

based App that can be used to test and program the business network locally or in a cloud 

environment (Figure 3-4).  

Figure 3-4 Transactions tested with manufacture network card in composer playground. 

(a) the manufacturer (id M1001) submits a “ProduceDevice” transaction. (b) the

manufacturer tried to submit a “DoTheTest” transaction but got rejected because he has

no access to this resource.

The Hyperledger Blockchain network has successfully been deployed on a Google server 

(nodes are running in Docker), whilst the Blockchain network was tested in Uganda in 

2019 and 2020 with 79 device record successfully stored on the Blockchain.  

All the tests were performed by using the mobile heater that has been proposed in Chapter 

2. In the second field test, the system was upgraded. New features include geolocation

data and automated result readout (see Chapter 4) was enabled.

3.3.1 Blockchain performance test 
Hyperledger Caliper [103] was used as the benchmark, and both transaction functions 

were tested in six rounds. The test proceeded on an Ubuntu 16.04 virtual machine with 

four core CPUs, 4GB RAM and a 20GB hard drive. 
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The performance test results of the Blockchain are shown in Table 3-1. During the first 

round, 50 transactions were transmitted to the Blockchain network, resulting in a 

relatively low average latency of just 0.41 seconds. However, the network latency 

increased as more transactions were sent during the same period. Once the TPS reached 

500, the average latency for all transactions exceeded 36 seconds. However, it is worth 

noting that none of the transactions failed, indicating that the network can handle high 

TPS surges with good tolerance. 

Table 3-1 Performance evaluation results 

Transaction 

name 

Succeed Failed Send 

Rate 

(TPS) 

Max 

Latency 

(s) 

Min 

Latency 

(s) 

Average 

Latency 

(s) 

Throughput 

(TPS) 

ProduceDevice 50 0 5.1 0.60 0.19 0.41 5.0 

100 0 10.1 3.04 0.42 1.71 9.2 

200 0 20.1 14.30 0.77 10.97 10.2 

300 0 30.1 23.10 6.02 22.12 10.3 

400 0 40.1 33.22 4.40 28.57 10.3 

500 0 50.1 46.43 9.42 36.99 10.3 

DoTheTest 50 0 5.1 0.63 0.22 0.42 4.8 

100 0 10.1 4.36 0.27 2.52 8.7 

200 0 20.1 13.60 0.97 10.87 10.2 

300 0 30.1 23.73 1.17 18.44 10.6 

400 0 40.1 33.30 3.36 26.70 10.6 

500 0 50.1 43.02 17.05 36.02 10.3 

3.4 Conclusion and Discussion 
In this Chapter, a Blockchain network has been created to manage data effectively and 

securely. This network provides a tamper-proof solution for handling the diagnostic data 

gathered from the field and for continually monitoring the disease.  

The Blockchain was developed using Hyperledger Composer and Fabric. Different 

functions were designed for specific users, such as the diagnostic device manufacturer, 

test operator, and analyst. An access control file and GitHub authentication regulated 
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access to the Blockchain. The communication between the user and the Blockchain 

network can be done by using HTTP requests from computer or mobile devices, e.g., get 

and post, from the web browser or a mobile App. Appendix Figure 2 shows the workflow 

of the presented Blockchain system.  

Hyperledger Fabric can be used as a private (single organisation) or consortium (multiple 

organisations) Blockchain. Compared to another popular Blockchain network Ethereum, it 

can have lower latency and higher throughput, especially when facing large volumes of 

transactions[104]. The proposed Blockchain network was successfully tested in both lab 

and field environments. Although the network latency can increase noticeably when 

facing high throughput, no data loss was incurred during the test. However, it is possible 

to enhance the performance by using high-performance servers and optimising the 

transaction algorithm and network structure. 

The use of Blockchain technology has significantly improved the potential and 

effectiveness of utilising smartphones for diagnostic testing in resource-limited areas. It 

helps to enhance trust by addressing issues encountered in past field studies, including the 

use of counterfeit test devices and unreliable test records [94], [105]. In this study, the 

information stored on the Blockchain does not contain any personally identifiable details. 

Each plastic microfluidic device has a unique QR code [105], [106], [107], [108]. Data 

security was further improved by implementing access controls. Analysts can trace and 

verify every test record, making the system reliable and trustworthy. Although the QR 

code is currently falsifiable (it can be removed from the device easily), in future, it could 

be embedded into the device material (using e.g., embossing techniques).  

The Android App, also mentioned in Chapter 2, was updated to incorporate the 

Blockchain network. The updates included a user login interface, and multiple operation 

interfaces customised for different users. The App development was performed through 

collaboration with an undergraduate developer, Ivo Domingos (see also 

Acknowledgements).  

A visual representation of the App’s workflow can be found in Appendix Figure 3. The 

smartphone has potential to be used as a diagnostic tool, as it integrates with multiple 
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sensors, and its connectivity makes it an excellent interface of other technologies such as 

cloud computing, Blockchain and machine learning [109]. This makes the smartphone-

based diagnostic solutions highly extendable and give us the opportunity to improve our 

platform even further. 
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Chapter 4 Convolutional neural network (CNN) for 
automated malaria test result interpretation 

4.1 Introduction  

Deep neural networks have shown great potential in many fields, such as computer vision, 

robotics, self-driving cars, and medical image processing. In this work, a convolutional 

neural network (CNN) was trained to read the result from the microfluidic LAMP test 

automatically, which was implemented in the Android App. 

4.1.1 Deep learning  

Deep learning is a branch of artificial intelligence (AI) and is now one of the most 

promising technologies in the field [110]. It uses deep neural networks (DNNs) to handle 

multiple types of tasks, for example, image classification, object detection, natural 

language processing (NLP), and semantic segmentation. DNNs comprise multiple layers 

of neurons that perform multiple nonlinear processes for feature extraction, classification, 

and transformation [111]. The training of DNNs includes supervised and unsupervised 

learning. In supervised learning approaches, the models need to be trained with labels, and 

the models learn how to generate the right prediction from the input based on the labels 

given in the training data. In unsupervised learning, the labels are not provided, which 

means the model does not know what the right answer is. The model needs to explore the 

data and find out the relationships within it. In this study, all the networks were trained 

using supervised approaches. 

4.1.1.1 Convolutional layers 
The convolutional layers are usually used to extract features from the training data and 

feed the neural network. The convolution process is shown in Figure 4-1. A convolutional 

layer’s main component is convolutional kernels (filters), such as in Figure 4-1 (b).  

 

Convolutional kernels are typically square matrices, but in certain scenarios, such as 

processing 3D data, a 3D kernel may be utilised [112] . Thomas H et al. employed a 

sphere convolutional kernel in their study [113], while Luo J et al. proposed the use of a 

hexagonal kernel in 3D shape classification [114]. Since the number of parameters and 
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kernel sizes have an exponential relationship, using a large convolutional kernel may not 

be cost-efficient. Therefore, the kernel size in spatial terms is not large.  

 

The most commonly used kernel size is 3*3, and some other sizes were used in typical 

networks. For example, in AlexNet, 5*5 and 11*11 kernels have been used to have a 

wider receptive field. The receptive field is a crucial concept in deep convolutional neural 

networks. This refers to the region of the input space that a neuron or unit is sensitive to, 

and anything else outside the receptive field will not be able to affect that unit or neuron 

[115]. Expanding the receptive field enables neurons to identify broader regions and 

acquire more comprehensive characteristics from the input. However, simply increasing 

the kernel size will result in a significant rise in computational power.  

 

 

Figure 4-1 The convolutional layer. (a) The input matrix. (b)A 3*3 convolutional kernel. 

(c) The output of the convolutional layer. 

4.1.1.2 Dense layers 

The dense layer is also known as the hidden layer or fully connected layer. Each neuron in 

the dense layer connects with the neurons in its preceding layers, and the classification job 

was done in the dense layers. Figure 4-2 shows how a dense layer connects with its 

preceding layer and the following layer.  
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Figure 4-2 Dense layer. The input of the dense layer could be any layer with one-

dimension output. Each neuron from the input layer connects with every neuron in the 

dense layer. In a classification network, the dense layer is usually used as the output layer 

as well. 

4.1.2 Activation function 

The activation function is an essential component of convolutional neural networks 

(CNNs). It can add nonlinearity to the system, reduce the complexity and accelerate the 

model running speed. There are different activation functions, with the most commonly 

used ones include ReLU, SoftMax, Sigmoid, and hyperbolic tangent function (Tanh).  

4.1.2.1 ReLU 
The rectified linear activation function (ReLU) can be expressed as follows: 

𝑓(𝑥) = <0, 𝑥 < 0
𝑥, 𝑥 ≥ 0 

The ReLU function improves the nonlinearity and efficiency of the network by setting all 

negative values to 0.  

In this Section, a ReLU function was applied to every layer of the sequential CNN model 

except the last one, the output layer. 
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Figure 4-3 The ReLU function. It sets the input values that are less than 0 to 0. 

Although there are many advantages of using RELU, the biggest challenge in its use is 

“dying ReLU”, which means that some neurons could never be activated (died) because 

the ReLU does not have negative output. 

To address the dying ReLU problem, some variants of the ReLU were developed, for 

example, Leaky-ReLU 𝑓(𝑥) = <𝛼𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0  and ELU (0<α) 𝑓(𝑥) = @α(𝑒

- − 1), 𝑥 < 0
𝑥, 𝑥 ≥ 0

[116]Figure 4-4.

Instead of setting all the negative values to 0, the Leaky-ReLU and ELU still retains some 

negative values,  preventing the dying ReLU “problem”. However, as a result the 

computational complexity increased. 

Figure 4-4 Leaky ReLU (left) and ELU (right) activation function. 
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4.1.2.2 Sigmoid 
The sigmoid function can be formulated as follows: 

𝑆(𝑥) =
1

1 + 𝑒.-	

 

Sigmoid has usually been used as the activation function for the output layer. Because the 

output ranges from 0 to 1, that can be considered as the possibility of the prediction.  

 

 

Figure 4-5 The Sigmoid function. 

 

4.1.2.3 SoftMax 

SoftMax is usually used in the output layer for multi-class classification models. It can be 

formulated as follows: 

𝑆(𝑥/) =
𝑒-#

∑ 𝑒-$0
1

	

 

The SoftMax function can be considered as a combination of multiple sigmoid functions. 

The S(x2) represents the SoftMax value of the input vector x2, e3% represents a standard 

exponential function for input vector, the e3& represents the standard exponential function 

for output vector, and K stands for the number of classes.  
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The SoftMax function could map the output and the sum of the output of each class will 

be 1, and the outputs of the SoftMax function could be interpreted as possibilities of every 

class. 

4.1.3 Optimizer 
The optimizer is a function or algorithm for adjusting the attributes of the neural network, 

such as weight and learning rate, to help the model converge. The commonly used 

optimizers include gradient descent (GD), stochastic gradient descent (SGD), and 

Adaptive Moment Estimation (Adam). 

  

The GD is the most basic and wildly adopted optimizer and is based on the first-order 

derivative of the loss function. It uses backpropagation to decide which direction how 

weighting should be tuned to minimize the loss. The advantage is that GD is easy to 

compute and implement, although, it could be trapped in the local minima, and when the 

dataset is too large, it will take a long time to converge. The GD will only update the 

weight matrix after the whole dataset has been processed (every epoch). 

  

The SGD is a variant of GD. The calculation of SGD is similar to GD, but it could update 

the parameters more frequently. Instead of updating the weights and biases after the whole 

dataset has been processed, SGD randomly picks a batch of data to calculate and update 

the model parameters. This could help the model converge much faster, and requires less 

RAM for calculating the gradient, compared to the GD.  

  

Adam was first proposed by Diederik P. Kingma In 2015 [117], and has shown better 

performance compared with SGD [117], [118]. The Adam algorithm is provided as 

Algorithm 3. 
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Algorithm 3. Adam [117] Details removed due to copyright restrictions. 

QR code below links to the original paper 

 
In the Adam function, the goal is to minimise the value of the function 𝔼[𝑓(𝜃)]. Noisy 

objective function 𝑓(𝜃) is a differentiable w.r.t. parameter 𝜃 stochastic scalar function. 

And 𝑔(𝑡) = 𝛻4𝑓+(𝜃) represents the partial derivates of 𝑓+, w.r.t. 𝜃 evaluated at time step t. 

 

Compared to the GD and SGD, Adam could converge more rapidly, and the loss does not 

change sharply because of the data variance. In this project, the Adam optimizer was used 

for all models. 

4.1.4 Deep CNNs 
There are several models that have been used for different use cases and are considered 

milestones because of their outstanding performance, such as AlexNet, ResNet, VGG, and 

MobileNet.  

4.1.4.1 AlexNet 

The AlexNet was designed by Alex Krizhevsky in 2012 [119], it was considered as a 

milestone of Deep neural networks in image recognition. It achieved a 15.3% error rate in 

ILSVRC-2012 competition, compared to the second-best which was 26.2% [119]. It 

proved that the depth of the neural network could greatly influence the model 

performance. 

4.1.4.2 ResNet 

The ResNet, a deep residual network, has been widely adopted as the backbone for many 

deep neural networks due to its exceptional ability to extract and classify features. By 

leveraging the backpropagation mechanism, ResNet has taken the depth of DCNN to new 



Chapter 4 Convolutional neural network (CNN) for automated malaria test result interpretation 

52 

heights [120]. Unlike the DCNNs that have been used before, the ResNet has several 

residual blocks that consist of convolutional layers [120], and “shortcut connections” were 

used. 

Figure 4-6 A residual block in Resnet. [120] The network is feedforward and with a 

shortcut connection. 

The architecture of the ResNet allows the model to have better depth and tackle the 

gradient vanishing problem of the traditional CNN. In this Chapter, a ResNet-based object 

detection model was trained and used as a reference. 

4.2 Methods 
In this study, a CNN classifier and an object detection network were trained to classify the 

LF results automatically. The models were trained on both local and cloud environments. 

The local environment was a desktop with RTX3060 12G graphic card, 32G RAM, and 

Intel i5-12400 CPU. The cloud environment is Google Colab, which provides CPU, GPU 

and TPU for neural network training. All the training scripts were written in Python, and 

the models were based on Tensorflow 2.0 and Keras.  

4.2.1 Data preparation 
The training dataset included 5 classes, and 100 images in each class. The training data 

was obtained by carrying out targeted tests on synthetically prepared samples from the 

laboratory. Positive samples were obtained from the LAMP amplification of a Pf target 

sequence (WHO DNA standard obtained from the National Institute for Biological 

Standards) at 105 copies/reaction. Negative samples were obtained by LAMP 
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amplification using Pf primers and probes without any target (in this case, using de-

ionised water).  

This comprised two test strips for detecting Plasmodium falciparum (Pf) and 

Plasmodium pan (Ppan), with “pan” comprising a test of all species that cause malaria. 

There was also one positive control channel (using a test for the presence of BRCA1 

human gene, always present in humans) and two negative control strips (one for each of 

the two test strips), Figure 4-7.  

The test strip in each channel therefore had three possible outcomes: negative, positive, 

and blank (invalid). Thus, using all results combinations across the five lateral flow strips 

gave 243 different possible result scenarios, including operator errors. To reduce the 

classification complexity, the outputs were subdivided into five clinically meaningful 

categories described in Table 4-1. 

 Table 4-1 Classification criteria 

.Channel 

Class 

Negative 

control 1 

Negative 

control 2 

Positive 

control 

Test 1 

(Pf) 

Test 2 

(Ppan) 

1N2P - - + + - 

1P2N - - + - +

Double 

positive 

- - + + + 

Negative - - + - - 

Invalid +, / +, / -, / / / 

To increase the range of intensities in the bands available for training, amplicons were 

used at different amplification times (5, 10, and 15 mins), leading to a balanced dataset 

with100 images in each class. This was for simulating the possible outcomes in actual 
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tests. Because in actual experiments, variations in the number of target DNA copies may 

influence the intensity of test bands. 

To reduce the training time and improve the accuracy, the images were cropped in the 

App to a small 16:9 picture that contained results (Figure 4-8). All training images were 

resized to 128*128*3 before sending to the model.  

 

Keras image generator (provided by TensorFlow) was used to augment the input data in 

real-time by adjusting both brightness/shade and zoom range as well as the orientation 

during the training process. This enlarged the training dataset and mimicked various 

possible conditions that may occur when taking pictures, such as different exposure, white 

balance, contrast, alignment, and so on. This can help improve the generalization ability of 

the model and reduce over-fitting. 

 

 

Figure 4-7 Examples of images from different categories. The channels marked with” 1” 

and “2” are the test channels, the channel marked with “p” is the positive control 

channel and the channels marked with “-” are negative control channels.  

A separate dataset with five categories containing 92 test images (including 11 “1N2P”, 

13 “1P2N”, 23 “double-positive”, 15 “negative”, and 30 “Invalid”) was created to test the 

model performance (the test set). The microfluidic devices were prepared with the help of 

Dr Xiaoxiang Yan and Dr Shantimoy Kar. For training the CNN, instead of using the full 

image as the input, the images were cropped into a smaller size (Figure 4-8 (b)) to reduce 

the complexity of the input data.  

- - p 12 - - p 12- - p 12- - p 12- - p 12 - - p 12 - - p 12- - p 12

1N2P InvalidNegativeDouble positive1P2N
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Figure 4-8 The Plastic cartridge [96] includes a microfluidic circuit with chambers for 

LAMP amplification reaction and lateral flow strips for readout, as well as a QR code for 

traceability. The dashed lines represent the cropped area for analysis by AI.  

The same dataset without cropping was labelled using LabelImg software [121] to train 

the object detection model. There are five labels in the label map: negative, positive, 

empty, device, and QR code, where negative, positive, and empty indicate the outcome of 

each strip. After labelling, the images were divided into two separate sub-sets, 90% for 

training and 10% for testing, and corresponding tf-record (a format of TensorFlow dataset) 

files were created.  

 

Figure 4-9 An example of image labelling using LabelMe [121]. 
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4.2.2 Model training 
Two neural networks were trained to automatically analyse the results of diagnostic tests 

[94]. An image of the device after the test is shown in Figure 4-8 as an example. One was 

a convolutional neural network (CNN) model, while the other was an object-detection 

model. Both models are based on Keras TensorFlow 2.0. The CNN classifier is a small-

scale network, making it easier to use on devices with limited computational power. 

The CNN was incorporated into the Android App discussed in earlier Chapters, while the 

object detection model, which was based on a Faster Region-based Convolutional Neural 

Network (R-CNN) ResNet50 model, was not included in the App. but instead was used as 

a reference for post-analysis to independently verify the results. 

4.2.2.1 Classification network 

The CNN model was developed and integrated into the App to classify the paper-based 

microfluidic diagnostic test images automatically. The five-plex DNA diagnostic strips, 

including species-specific diagnostics for Plasmodium sp as well as controls, were used as 

designed previously [95], based on lateral (capillary) flow showing a control line and a 

test line (Figure 4-8). The CNN was trained using both Google Colab and a local PC. 

4.2.2.1.1 Architecture of CNN 
In this project, a CNN with four convolutional layers and three dense layers was designed 

and used to automatically classify the test result from the paper-based LAMP device. The 

graphical architecture of the network is shown in Figure 4-10. There are two main tasks in 

CNN, namely feature extraction and classification. Several convolutional and pooling 

layers were used for extracting features from the input image. Each layer generated feature 

maps with varying levels of feature expression. The classification includes 3 dense layers, 

and between each dense layer, a dropout layer was applied to prevent overfitting.  

It takes a 128*128*3 image that contains the test result of the LAMP test as the input.  

Then in the convolutional layers, the image will be scanned by several convolutional 

kennels, and a set of feature maps will be generated and sent to the dense layers. Between 

every two convolutional layers, a pooling layer was applied to reduce the number of 

parameters in the network.  
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Figure 4-10 The architecture of CNN. It used four convolutional layers for feature 

extraction. After each convolutional layer, a MaxPooling layer was used to reduce the 

number of parameters. The extracted feature maps will be flattened to a 2D tensor and 

processed by the dense (hidden) layers. 

The CNN was based on the TensorFlow Keras sequential model, which is “a plain stack of 

layers where each layer only has one input tensor and one output tensor” [122]. The 

structure of the sequential model was simple, allowing us to build it in a shorter time with 

Keras API, which generated computationally lightweight models suitable for smartphone 

deployment [123].  

  

The model hosted sixteen layers, including four convolution layers, four max-pooling 

layers, a flatten layer, three dropout layers and four dense layers. The depth (number of 

layers) of the model was finetuned by multiple tests. The convolutional layer extracted 

features from the input images by scanning the input with a weighted matrix (convolution 

kernel). The process of generating a single feature map could be presented as follows:  

𝐴1 = 𝑓(∑ 𝐼/,16
/78 ∗ 𝐾/,1 + 𝐵1)     Equation 3 

Every input matrix 𝐼/was convolved with kernels 𝐾/,1, and a bias 𝐵1 was added to every 

element in the sum of convoluted matrices. The non-linear activation functions were 

applied to the matrix. All convolution layers used the activation function ReLU to 
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improve the learning speed and non-linearity of the model, setting all negative values of 

input matrices to zero. The Max-Pooling layer reduced the dimension of the output 

matrices of the previous convolution layer, using a 2*2 kernel with stride 2 to scan its 

input and take the largest number from four adjacent elements.  

 

To extract sufficient features and detail whilst reducing the number of parameters in the 

training process, four convolutional layers were implemented, with a pooling layer 

following each convolutional layer. The output of the last pooling layer was then flattened 

to a 1D tensor and sent to the fully connected dense layers by the flattened layer. As the 

training dataset was relatively small and only had three categories, the model needed to 

have more fully connected (FC) layers and relatively fewer neurons [124]. Consequently, 

three dense layers (size 128) and one dense layer (output layer) with size 5 (number of 

class) were used to obtain better accuracy.  

 

Between every dense layer, a dropout layer was utilised to prevent overfitting. The first 

three dense layers also used ReLU as their activation function. The last dense layer, the 

output layer, used SoftMax (𝑆(𝑥/)) as its activation function to provide the predictions and 

their probability. 

 

The loss function used in training the CNN is sparse cross-entropy, which can be 

formulated as follows: 

𝐿 = 	− 8
6
∑ ∑ 𝑦/19

178 𝑙𝑜𝑔	(𝑝/1)/    Equation 4 

 

In the equation above, N represents the number of samples, while y sub i. j  indicates 

whether sample i belongs to category j, and p sub i. j indicates the predicted possibility 

that sample i belongs to category j.  

 

During model training, an Adam optimizer with an initial learning rate of 0.0001 was 

used, while the batch size was set to 32. 

4.2.2.2 Object detection network 
To evaluate the CNN, we used an object detection model as a comparison benchmark. The 

objective detection model was based on a faster RCNN ResNet50 model provided in the 
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Tensorflow model Zoo [125]. Tensorflow offers object detection APIs and pre-trained 

models to train object detection models. Useful Python scripts for model training were 

also provided. To start training, the training pipeline only requires a few configurations 

and can be started using the provided training script. 

TensorBoard was used to monitor the training process, Figure 4-11(a) shows the training 

loss curve of the object detection model and an example of its prediction. The loss 

function used for this model is also sparse cross-entropy. 

Figure 4-11 Performance of the object detection model. [96] (a) The loss curve of the 

training process of the object detection model. The model was based on SSD resnet50. The 

x-axis was the training steps and y-axis was the loss. (b)A sample image with predictions,

all the targets were detected successfully and classified correctly with high confidence.

4.2.3 App implementation 

The Android App now has the CNN feature available, which was tested and found to have 

an accuracy of over 98% and a loss of less than 0.1. Since mobile phone devices have 

weaker processing power when compared to desktops, the CNN model needed to be 

compressed. TensorFlow offers a technique known as “model quantization” that reduces 

the model size while maintaining performance. 
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4.3 Results and discussion 
The CNN was tested with both laboratory collected data and field data. Figure 4-12(a)(b) 

shows the model accuracy and loss changes during the training process, respectively. The 

model converged after 300 training steps, with a batch size of 32. A training step denotes 

the model successfully processed a batch of data and updated the model parameters. The 

model achieved 98% accuracy and less than 0.1 loss. Figure 4-12(c) is the confusion 

matrix of the CNN, and it is based on the test set created using the lab data, which 

includes 92 images. Only two images were wrongly classified, including one 1P2N and 

one Double positive. 

 

Figure 4-12 The performance of the CNN. [96] (a) accuracy and (b) loss of AI training 

process (x-axis shows epochs). Red represents the training set and blue represents the test 

set. (c) Confusion matrix of the test results of the CNN model. The horizontal axis of the 

matrix represents the predicted label, and the vertical axis represents the actual label of 

every test image. The background colour of each grid of the matrix represents the number 

of images that were classified into that case (darker means there were more images), and 

the number on each grid is the percentage of predictions in that case.  

Our CNN has an overall sensitivity of 0.976 with a standard deviation (SD) of 0.035 and a 

specificity of 0.994 (SD=0.0079). In comparison to other similar systems that use 
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smartphones and CNN to interpret the lateral flow test results, our CNN has achieved a 

state-of-the-art level of accuracy. Table 4-2 provides a comparison of the performance of 

other readers and our CNN. Our CNN was implemented in the Android App after 

quantisation. Tested on a Nokia 4.2 mobile phone with Android version 12.0, processing 

one image only took 20ms ± 5ms. 

Table 4-2 Model performance comparison 

Method  Accuracy Sensitivity Specificity 

Fuhad K al. (2020) [126]  0.968 0.976 0.957 

Mendels D al. (2021) [127] 0.993 0.995 0.999 

Mujtaba D al. (2021) [128] 1.000 1.00(0.997) 1.00(0.996) 

Wong N al. (2022) [129] 0.983 0.971 0.994 

Lee S al.(2023) [130] 0.99 0.987 0.978 

Our CNN 0.978 0.976 0.994 

 

To better evaluate the CNN’s classification ability, we compared the classification ability 

of the ResNet50-based object detection model and our CNN. Figure 4-13 is the precision-

recall curve of the CNN (blue) and ResNet50(red). The test was carried out by using the 

images collected from the field test. A total of 40 images (29 valid results and 11 invalids) 

were used for testing the models. The CNN was able to correctly classify all the invalid 

results and 28 of the valid results into correct categories. Only one positive result has been 

wrongly labelled as invalid.  

 

Because the object detection model has both localisation accuracy and classification 

accuracy, the SSD ResNet50 model only considers the classification results from the strips 

that have been successfully detected. For example, if there is one strip that has not been 

detected by the model, the result will be skipped. Our CNN and the ResNet-based model 

both achieved a high area under the precision-recall curve (AUC), but the CNN had a 

slightly better classification performance. 

 

Our CNN has proven to be highly accurate and efficient, but it has limitations when it 

comes to scalability. It was specifically trained for use with the five-chamber microfluidic 

device [94], so any modifications to the design would require the model to be retrained. 



Chapter 4 Convolutional neural network (CNN) for automated malaria test result interpretation 

 

 
62 

Using the object-detection model, like the SSD ResNet50 we used in this study, can be a 

viable solution for enhancing scalability, but it requires additional computational power 

and time for both training and prediction [131]. Additionally, preparing the dataset for 

training an object-detection model can be time-consuming. 

 

Figure 4-13 The precision-recall curves [96] for the CNN (blue) and the SSD ResNet 50 

(red) to compare their predictive abilities, with recall measured as TP/(TP+FN), and 

precision as TP/(TP+FP), where TP are the true positive predictions, FN is false negative 

predictions and FP are false positive predictions If the confidence level of a prediction 

exceeds a threshold (e.g. 0.8), the result is deemed a positive case if not, it is a negative 

case. If the prediction matches the true label of the input, then the output is true. If not, it 

is false. The AUC of the CNN and ResNet50, respectively, are 0.993 and 0.983. 

As the object detection models are usually more complex and have more parameters, 

running them on mobile devices can be another challenge, especially in low-resource 

settings. Nevertheless, many mobile CPUs now come with integrated neural processing 

units (NPUs), which significantly enhance the capacity of mobile devices to execute deep 

learning models [132]. Moreover, an increasing number of networks have been designed 

specifically for mobile devices, allowing them to run machine-learning tasks more 

efficiently [133], [134]. 
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The increase in the number of mobile network services and the increasing number of 

smartphone users in low- and middle-income countries (LMICs) has made smartphones 

the most accessible technology in many resource-limited regions. In Sub-Saharan Africa 

and South Asia, for instance, the growth rate of smartphone users has exceeded 20% 

[135]. With the improvement of network connections, cloud computing services are 

becoming more accessible in some LMICs, allowing complex deep learning models to be 

deployed on cloud servers instead of local devices.  

Cloud-based services can provide greater computational power and a wider range of 

services compared to edge computing devices. Whilst edge-computing devices can 

provide lower latency, energy consumption and user experience [136]. In the previous 

Chapter, we explored the possibility of utilising a cloud-based Blockchain network in low-

resource settings, and the results were positive. In the future, it would be advantageous to 

investigate the integration of cloud-based solutions and edge computing to enhance 

services in resource-constrained environments and enhance the platform’s overall 

capabilities and reliability. 

4.4 Conclusion 
The smartphone-based system for malaria tests mentioned in Chapters 2 and 3 now 

includes a neural network based on CNN. The CNN enables automated result analysis and 

has shown high accuracy in classifying positive and negative test outcomes. 

The CNN was designed as a 5-class classification model with 16 layers, and the input size 

was set to 128x128x3. It is small in scale and can run on a normal smartphone after 

quantisation. It was integrated with the Android App mentioned in the previous Chapters, 

allowing the test operator to take a photo of the microfluidic device after each test. and 

have the App interpret the results. This not only eliminates the potential for human 

interpretation errors but also reduces the operator’s training requirements.  

Cloud storage was also used to store the images captured after the tests. Thus, other 

participants in the Blockchain network can verify each record that has been stored on the 

Blockchain system. This enabled the entire system to meet the WHO ASSURED 
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(Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free and 

Deliverable to end-users) criteria [137], [138], [139]. 

 

Additionally, the test records kept on the Blockchain are now geo-tagged, allowing for 

constant disease surveillance. However, to protect privacy, the exact geolocation was not 

included.
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Chapter 5 Retina vessel identification and segmentation 
using deep learning 

5.1 Introduction 

Deep learning has proven to be useful in many medical image analysis tasks due to its 

capability to perform tasks such as image classification, segmentation, and object 

detection. Based on the previous experience of using CNN as an interpreter of the lateral 

flow test result, this Chapter investigated the possibility of using deep learning to assist in 

diagnosing retinopathy.  

 

Retinal diseases place a heavy burden on public health. There are approximately 422 

million people who have diabetes mellitus (DM) [140], [141] and diabetic retinopathy 

(DR) as one of the common complications of DM and the leading cause of blindness 

[142]. Thus, diagnosing and treating diabetic retinopathy in the early stage is necessary to 

prevent blindness in patients. However, diagnosing retinal diseases requires a high level of 

expertise and heavily relies on expensive imaging systems, which are normally 

inaccessible in remote villages. 

 

Retinal image analysis is a widely adopted and helpful tool for diagnosing retinal 

pathology. For example, the abnormal tortuosity of the retina vessel and the presence of 

exudates can be noticed in fundus images. The abnormalities in the retina image could 

reveal lesions, such as retina vascular diseases, cardiovascular disease, DR, and 

hypertension in the early stage [143]. To perform the analysis, retinal vessel segmentation 

and classification are fundamental and crucial steps [143], [144].  

 

Traditionally, retinal vessel segmentation and classification require manual processing and 

substantial professional knowledge. The annotating process can be very time-consuming 

and tedious[62], [145]. Ophthalmologists need to carefully identify each vessel 

(identifying the arteries and veins) from the background. The analysis based on 

observation can sometimes lead to false results due to uneven illumination of the imaging 

system, artefacts, glares, and various interpretations from different specialists [145]. Thus, 

many researchers endeavoured to develop techniques for automated retinal image analysis.  
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In the past ten years, many studies have introduced automated retinal vessel segmentation. 

For example, Huang et al. proposed a framework for artery vein (A/V) classification based 

on a feature selection algorithm [146], Liangzhi Li et al.[147]  designed a novel deep 

learning model called IterNet, which consists of a UNet and iterations of several mini-

UNets, and Zhun Fan et al. [143] introduced an octave convolutional neural network that 

extracts frequency information from the retinal images to differentiate vessels from the 

background.  Many studies have reported over 0.95 accuracy and specificity.  

 

However, in these studies, the data were mainly from public datasets such as “DRIVE” 

[61], “INSPIRE” [148] and “ROC” [68], which only consist of pictures that have been 

captured by professional ophthalmoscopes. Additionally, compared to vessel 

segmentation, there are fewer studies on A/V identification, as most studies focus only on 

vessel extraction [149]. The data in Table 5-1 shows the outcomes of several recent 

studies on retina vessel segmentation and A/V classification using deep learning 

approaches. Networks that solely focus on segmentation have higher accuracy than those 

that also perform the A/V classification. 

Table 5-1 Performance comparison of retina vessel segmentation and A/V classification 

Method Accuracy Sensitivity Specificity AUC 

Huang F al. (2018) [146] (A/V) 0.720 0.709 0.738 0.78 

Galdran A al. (2019) [150] (A/V) 0.890 0.890 0.900 - 

Kang H al. (2020) [70] (A/V) 0.906 0.883 0.927 - 

Liagngzhi Li al. (2020) [147] 0.957 0.774 0.984 0.982 

Zhun Fan al. (2020) [143] 0.976 0.867 0.984 0.991 

Wang D al. (2020) [151] 0.958 0.799 0.981 0.982 

Uysal E al. (2020) [152] 0.942 0.755 0.968 - 

Saranya P al. (2022) [153] 0.960 0.950 0.990 - 

 

The goal of this Chapter was to build upon previous expertise developed in earlier 

Chapters to develop systems that could be used to segment and classify vessels in photos 

captured by a low-cost ultrawide field retinal vessel imaging system developed by 

Professor Andy Harvey (subsequently analysed by Dr Victor Ochoa, see 

Acknowledgements). Different from the CNN proposed in Chapter 4, semantic 
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segmentation models have a larger scale due to pixel-wise labelling of images. As each 

pixel needs to be classified, more parameters are required, and it is challenging to identify 

small and similar features accurately. 

Compared to public datasets, these ultrawide field images revealed more details of the 

retina but also contained more glares, artefacts, and background noise. The most 

challenging part of the project was the scarcity of data. Due to the limited access to the 

camera and lack of ophthalmologists to label the data, only six ultrawide fundus images 

were available, with only two of them having ground truth labels. This was significantly 

less than the public datasets, which typically contain more than 30 images. Thus, the 

DRIVE dataset was used as a reference in this study.  

Figure 5-1 An example of images from the DRIVE dataset (a) and our dataset (b) which 

shows more glare spots and many red flocculent parts. The bright area pointed by the blue 

arrow is the optic disc. 

Figure 5-1 (a) shows an example of the retina image captured from a standard fundus 

camera (DRIVE 21_training.tif), and Figure 5-1 (b) shows a UWF retina image captured 

from a low-cost handheld fundus camera. The blue arrows point to the optic discs. It can 

be noticed that the optic disc area in the UWF image was smaller, which means the UWF 

image has a wider field of view and could cover more area of the fundus than the standard 

© [2004] IEEE
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fundus cameras. Thus, the UWF imaging system could detect some early lesions that 

cannot be seen from the typical fundus cameras.  

5.1.1 Challenges in retina vessel segmentation and classification 

Vessel segmentation is a challenging task due to the difficulty of distinguishing small 

vessels from the background noise. This noise may come from the illumination system or 

imaging sensor, resulting in bright spots and fuzzy areas in Figure 5-2. From observation, 

these noises have very similar features compared with some small vessels, and in most of 

the published studies, the DNNs were struggling with identifying tiny vessels and 

backgrounds from the features [154], [155]. It could be more challenging in our UWF 

fundus images because it covers a wider area of the retina, and more information will be 

included.  

Figure 5-2 The noise in the UWF fundus image. 1 The red flocculent parts and 2 glares. 

Another challenge of applying deep learning in medical image analysis is the data 

availability of medical images. Although, as mentioned previously, there are some public 

retinal image datasets available, compared to other public datasets, medical image datasets 

are generally much smaller. For example, the ADE20K [156] dataset comprised >20,000 

labelled images, but retina image datasets normally only contain less than 200 images.  

A further challenge is that medical images are usually complex and difficult to label. For 

instance, the retina image contains numerous small vessels, which are essential in 

detecting lesions during the early stage [157]. Some blood vessels are challenging to 
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distinguish from the background and other features, including for example, optic nerves. 

The shape of the vessels and lesions is also often irregular; consequently, labelling the 

fundus image on the pixel level can be very time-consuming. 

5.1.2 Diabetic retinopathy 
The diagnosis of DR is usually based on the early treatment diabetic retinopathy study 

(ETDRS) grading system ( 

Appendix Figure 4), which is the gold standard of DR diagnosis [158], [159], [160]. DR 

can be divided into two types based on the stage, which are non-proliferative diabetic 

retinopathy (NPDR) and proliferative diabetic retinopathy (PDR), [159], [160]. There are 

four major types of lesions in DPDR: hard exudates, soft exudates, microaneurysms, and 

haemorrhages. According to the severity of the lesions, the NPDR can be classified as 

mild to moderate, moderate to severe and severe to very severe. 

In practice, the grading system could be slightly different. For example, DR could be 

divided into three [160] or six stages [159], according to NHS England (Appendix 1-4) 

and Scotland (Appendix 5) diabetic retinopathy screening guidelines, respectively.  

5.2 Methods 

In this study, several different DNNs were trained for two tasks: vessel segmentation only 

and artery vein segmentation + classification. Both tasks were done using supervised 

learning approaches. Different models, including UNet, PsPNet, and Attention UNet, have 

been trained and tested using the DRIVE dataset and UWF retina images. 

5.2.1 Data preparation for vessel classification 

5.2.1.1 DRIVE dataset 

The DRIVE dataset was used for training and evaluating different model performances. It 

includes 20 hand-labelled retina images for training and 20 labelled photos for testing. The 

20 images in the training set were divided into two subsets: a training set that includes 16 

images and a validation set with four images. The test set was only used in model 

performance evaluation.  
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The retina images are RGB with size 565*584*3, and the label files are single-channel 

images with size 565*584. The image segmentation approach used in this study is 

semantic segmentation. It requires the data to be labelled pixel-wise. There are two labels 

in the DRIVE dataset, background and vessel, and each class were represented by pixel 

value 0 (background) and 255(vessel), respectively. 

The label files of the DRIVE dataset were provided in 3 channel Graphics Interchange 

Format (.gif), and the image files are provided with tag image format (.TIF) format. 

Images and labels are converted to Portable Network Graphics (.PNG) format to simplify 

the data loading process. And the labels were converted to single-channel images, and 

pixel values were encoded to 0 and 1 to represent the background and vessel. 

For the A/V classification task, a dataset called RITE [73] was used. The RITE dataset 

was created by the University of Iowa, and it can be considered a variant of the DRIVE 

dataset with A/V information. Figure 5-3 shows an example of the data from the DRIVE 

[61] and RITE datasets.

Figure 5-3 Sample images from the DRIVE dataset. (a)original vessel annotation from the 

DRIVE dataset. (b) the extracted vessels. (c) The label used for AV classification (red for 

arteries, blue for veins, the overlapping of arteries and veins are labelled in green; the 

uncertain vessels are labelled in white. 

5.2.1.2 UWF retina images 
The annotation of the image (see Figure 5-4) was created using Lableme [161] software 

based on the ground truth provided by Dr Victor Ochoa. Figure 5-4 (a) shows the original 
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image used for training, and Figure 5-4 (b) is the ground truth of the vessels overlaid on 

the raw image. 

Figure 5-4 Example of the retinal image used for training. (a) The original ultrawide field 

retina Image for training. (b) hand labelled ground truth provided by Dr Victor Ochoa, 

the red represents veins, and the blue is the arteries.  

5.2.1.3 Image labelling 

The hand-labelled vessels in Figure 5-4 (b) show the category of the vessels of the fundus 

image; however, some of the annotations cannot accurately cover the vessel area, and a 

separate label file was needed for model training. Thus, the images were relabelled using a 

Python software called Labelme [161] (Figure 5-5). In Labelme software, the label can be 

accurately created by clicking the edge of the vessel. The vessels were pixel-wise labelled 

as arteries and veins by following the ground truth shown in Figure 5-4 (b). 



Chapter 5 Retina Vessel identification and segmentation using deep learning 

72 

Figure 5-5 The user interface of LabelMe [161] software. The mask is created by creating 

polygons that follow the edges of the vessels. The coordination and label information will 

be stored in a JSON file.  

After labelling, Labelme [161] software could save the label information in JSON format, 

including the coordinates and category of each labelled vessel. The JSON file can be 

converted to an image by using the built-in script (labelme_json_to_dataset) of Lableme. 

Figure 5-6 shows an example of the label file, (a) is the hand-labelled ground truth, and 

(b) is the label for model training.

Figure 5-6 The labelled retia image. (a) the ground truth provided by Victor (red for vein 

and blue for artery), and (b) the label map used for model training (red for vein and green 

for artery). 
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5.2.1.4 Data augmentation 
Both DRIVE and our UWF datasets are relatively small for training the deep neural 

network, and it could easily lead to overfitting. Thus, data augmentation was necessary for 

improving the model’s generalisation ability.  

The data augmentation was applied in two stages. Firstly, the training images were 

augmented to 800 images by applying random rotation, flip, distortion, brightness, and 

contrast. This part was performed using the Augmentor software [162], and could 

simultaneously be applies to the same transformations to the image and its corresponding 

mask.  

It should be noted that it is important to verify that the labels’ category index (the pixel 

value that indicates the category) was not changed during the augmentation process. 

During the study, the Augmentor could occasionally apply unwanted adjustments to the 

labels. For instance, when adjusting the brightness and contrast of the image, its 

corresponding label should not be modified, but sometimes the result is the opposite. This 

could lead to errors when starting the training because the label’s pixel value indicates 

each pixel’s classes. 

To address this issue, after the augmentation, a checking step was added to check if any 

label images had been changed mistakenly. The checking was performed using the 

NumPy unique function. It could return the unique values in the label matrixes, and it 

could be easy to notice if there are any mistakes, as all values in the label matrixes should 

be integers, and the range of the values is set. 

The second stage of data augmentation was performed when the images were loaded into 

the dataset. Transformations include randomly adjusting contrast, brightness, gamma, 

image quality and random flip applied to the training images.  

To prevent overfitting and ensure that the original images were still used for training, a 

possibility of 0.5 was set for each adjustment. This was achieved by generating a random 

number between 0 and 1 using the tf.random.uniform function. If the number is greater 
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than 0.5, then the corresponding transformation will be applied. The transformation 

includes random brightness, contrast, and flip. 

In the beginning, full-size fundus images were used for training. The model however 

could not perform well in detecting very thin vessels (see Chapter 5.3). To address this, 

there could be two options, namely either increasing the input size of the model or 

cropping the image into small patches and restoring the full picture afterwards. Increasing 

the input size could greatly increase the model complexity, and introducing more 

parameters will take more time for training. Thus, the latter option was chosen.  

To perform this, random cropping and zooming transformation were implemented at the 

first data augmentation step. The probability of cropping was set to 1 with a cropping area 

ranging from 0.2 to 0.5, and the zooming possibility was set to 0.5 with a zoom range 

from 1.2 to 2. Figure 5-7 shows an example of the small patch of the retinal image. 

Figure 5-7 An example of the cropped image. (a) the original image. The black box was 

the cropped area (b) the small section of the retina image. 

5.2.2 DNN Models for Semantic Segmentation 

5.2.2.1 UNet 
The UNet model was the first model that was used in this project for vessel segmentation 

and classification. Different from the typical convolutional neural networks used for 
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image classification, such as the one described in Chapter 4. The UNet was a fully 

convolutional network for semantic image segmentation [163]. Figure 5-8 shows the 

architecture of the UNet. 

Figure 5-8 UNet architecture (example for 32x32 pixels in the lowest resolution). Each 

blue box corresponds to a multi-channel feature map. The number of channels is denoted 

on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes 

represent copied feature maps. The arrows indicate the different operations [163]. 

Some modifications were made based on the original UNet architecture, namely: 

1. The input size was changed to 512*512 and 256*256.

2. The copy and crop process were simplified to copy.

3. The depth of the model was adjusted.

The model underwent modifications to make training and prediction easier. Padding was 

added after each convolutional process, resulting in input and output images of the same 

size. Changing the size to either 512*512 or 256*256 can prevent odd-sized matrices 

when sending the input to a polling layer. The Figure 5-9 shows the architecture of the 
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UNet models that have been used in this project. The UNet in Figure 5-9 (a) is a UNet 

with 31.12 million parameters, it has a 512*512*3 input size and more layers.  

Thus, we were able to preserve more details from the input images. Figure 5-9 (b) depicts 

a UNet with fewer parameters(7.73 million) and depth, enabling it to achieve faster 

training speeds. When using a computer with an RTX3060 12 GB graphics card and the 

batch size was set to 6, the smaller UNet completes an epoch in only 14 seconds, whereas 

the larger model takes 64 seconds per epoch. 

Figure 5-9 The architecture of the optimised UNet.(a) UNet with input size 512*512*3, 

and the model includes five down-sampling processes and five up-sampling steps. (b) the 

UNet with reduced layers and a smaller input size (256*256*3). 

The UNet has two parts: the left part was a typical convolutional neural network (CNN) 

for feature extraction, which can be regarded as a down-sampling process (encoder), and 

the right side was up-sampling (decoder). There are several connections (the grey lines in 
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Figure 5-9) between the encoder and decoder layers. This operation could address the 

context-missing issue caused by down-sampling. In this process, the feature maps from 

the encoder were copied and connected with the feature maps in the decoder to maximise 

the preserved features. 

A conditional random field (CRF) layer was implemented to a UNet as the output layer 

for the classification task. This model architecture was first proposed by Shuai Zheng et 

al. in 2015 [164]. The idea of using CRF is because the convolutional process and max 

pooling in a CNN model could result in unclear boundaries and noisy dots in the predicted 

label mask.  

The CNN provided predictions only based on considered regional features of the image, 

but in semantic segmentation tasks, the global features also need to be considered. For 

example, one vessel should only belong to one class (vein or artery). CRF could solve this 

issue by turning the label assignment issue into a probability inference problem.  

As TensorFlow does not provide a CRF layer, a customised CRF RNN layer designed by 

S. Jayasumana et al. [165] was implemented to test the feasibility of using CRF in this

study.

5.2.2.2 PsPNet 

The Pyramid Scene Parsing Network (PsPNet) was proposed by Hengshuang Zhao et al. 

in 2017 [166]. The PsPNet aimed to capture multi-scale contextual information from the 

input image by leveraging a pyramid pooling module. Like UNet, the PsPNet also uses a 

CNN encoder-decoder structure. The encoder was used for extracting high-level features 

from the input images, and the decoder could restore the low-resolution feature maps to 

the original image size.  

Figure 5-10 shows the PsPNet that has been used in this project. In this study, a ResNet50 

model was used as the CNN of the PsPNet.  
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Figure 5-10 Overview of the PsPNet used for retina vessel segmentation and 

classification. (a) the input image, (b) the pyramid pooling module [166], and (c) the 

predicted label. 

5.2.2.3 Attention UNet 

The attention mechanism has been proved that could improve the model performance by 

enhancing the weight of some crucial areas of the input and reduce the weight of the 

regions that the model is not paying attention to. In the retina vessel segmentation task, the 

attention mechanism can reduce the background noise and emphasis the relevant features. 

The architecture of the Att-UNet is shown below: 

Figure 5-11 The architecture of the Attention UNet. An attention gate was added to the 

connections between the upsampling and down-sampling steps. 

© [2017] IEEE
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Using the attention mechanism in UNet has first been proposed by Oktay et al.[167]. They 

implemented an attention gate (AG) (Figure 5-12) to the UNet to enhance the features that 

are relevant to the target. The AG takes two input vectors 𝑔	V𝐻:´𝑊:´𝐷:Z and 

𝑥;(𝐻-´𝑊-´𝐷-), the 𝑥; is the feature maps of the layer 𝑙, and 𝑔 is the feature maps from 

the corresponding lower layer from the up sampler (𝐻- = 𝐻:´2, 𝑎𝑛𝑑	𝑊- = 𝑊:´2). The 

two vectors go through a 1´1´1 convolution (the 𝑊:	𝑎𝑛𝑑	𝑊-) to have the same 

dimension.  

Subsequently, the two vectors do the element-wise sum and go through a ReLU activation 

function, during this process, the aligned features will gain more weight. After, a 1´1´1 

convolution y, the vector dimension will be reduced to 1´𝑊:´𝑊:, and the sigmoid 

function produces the attention coefficients by scaling the vector to the [0,1] range. 

Finally, the resampler up sample the attention coefficient matrix to 𝑊-´𝑊- with trilinear 

interpolation, and multiple with the original 𝑥; on elementwise. 

Figure 5-12 Attention Gate [167]. The AG can produce an attention coefficient matrix a 

and contribute to the feature map 𝑥;. The AG takes two feature maps (𝑥	𝑎𝑛𝑑	𝑔) as its 

input, the gating signal 𝑔 has a smaller scale and better feature representation 

5.2.3 Model training 

The training environment includes a Windows desktop with an RTX3060(12G) graphic 

card and Google Colab. The batch size was set to 4 due to the limitation of the graphic 

RAM, and 50 epochs were enough for the model to converge. The sparse categorical 

cross-entropy loss function was used for all models. 
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To assess the performance of the trained Attention UNet, standard evaluation metrics were 

used for semantic segmentation, including pixel classification accuracy and mean 

Intersection over Union (MIoU). Pixel accuracy measures the percentage of correctly 

classified pixels, while MIoU calculates the average overlap between the predicted and 

ground truth segmentation maps.  

Figure 5-13 illustrates how IoU is calculated. IoU is a value that ranges from 0 to 1 and 

indicates the accuracy of the prediction. A value closer to 1 means that the prediction is 

more accurate. MIoU is the average of all class IoU values in multi-class semantic 

segmentation. 

Figure 5-13 Intersection over union(IoU). IoU is the ratio of the intersection area (the 

green square) over the union area. 

5.2.4 Vessel tracking 

Dr Ochoa developed an accurate retina vessel classification approach, which used the 

vessel’s optical density (OD) to do the A/V classification [168], because the vein and 

artery have different light absorption characteristics so that we can differentiate arteries 

and veins from the retina vessel images by measuring the OD of the blood vessels. 

The differential light absorption characteristics between arteries and veins enabled the 

differentiation of arterial and venous vessels by analysing the absorption patterns of 

different colours of light. By drawing a perpendicular line along the vessel, a profile 

vector can be extracted, and then the profile vectors will be fitted by a Gaussian function 
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𝑔(𝑥)and a linear function 𝑙(𝑥) (Equation 5). Figure 5-14 demonstrates the idea of getting 

the profile and calculating OD. 

 

𝑓(𝑥) = 𝑔(𝑥) + 𝑙(𝑥) = 𝑎 ∗ 𝑒.
(()*)!

, + 𝑝 ∗ 𝑥 + 𝑞                   Equation 5 

 

However, this method was time-consuming as it required manual drawing and extracting 

the profile. This process can be accelerated by using the DNN since the DNNs have good 

performance in vessel segmentation. 

 

 

Figure 5-14 Vessel profiling and OD calculation.(a) shows a segment of the retina image. 

The red line is a hand-drawn profile. In (b), the red dashed line is the data of the profile, 

the blue line is the fitting result, and the black line shows the OD value. 

5.2.5 Profile extraction using semantic segmentation 
The output of the DNN is a binary image that contains all the detected vessels (Figure 

5-15 (a)). To obtain the vessel profiles, the coordinates of each vessel are needed. Thus, a 

vessel tracking algorithm was designed for this task. 
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Figure 5-15 The vessel label(a) and the vessel skeleton(b). 

The vessel tracking algorithm includes three steps: 

1. Skeletonise the label map (Figure 5-15(b)) of vessels and get the distance

between the central line and the vessel edge.

2. Scanning the picture, find the vessel skeleton and extract the coordination of

each pixel that contains the vessel skeleton.

3. Drawing the profile line based on the vessel skeleton and the distance.

Figure 5-16 shows an example of a binarised vessel skeleton. This step was performed by 

using the scikit-learn package [169]. The “medial_axis” function could return both the 

central line and the distance between the central line and the edge.  

© [2004] IEEE
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Figure 5-16 An example of the binarized skeletonised vessel segment. “1” represents the 

vessel skeleton “0” for the background. 

After the vessel label image has been skeletonised, a 3*3 sliding window will scan the 

padded image using the method shown in Figure 5-17. When the centre of the sliding 

window is 1 and the number of ones £ 3, the sliding window will follow the direction of 

the vessel skeleton and record the coordinates.  

Once the sliding window approaches the crossing point (Figure 5-17(d)), the function will 

return the coordinate array of the vessel segment and remove the scanned vessel from the 

image. This could avoid scanning the same vessel multiple times. Then, the algorithm will 

restart the scanning until all the vessels have been scanned.  
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Figure 5-17 Vessel tracking process. (a) Adding 1-pixel padding to the skeletonised vessel 

picture. (b) A 3*3 slide window at the starting point. (c) The sliding window will scan 

every pixel alone on the x-axis until the centre pixel value of the sliding window is 1. (d) 

The sliding window will follow the non-zero values until approaching the crossing point. 

The most crucial aspect of the algorithm was determining the direction in which the 

sliding window would move. To locate the starting point of the vessel, the sliding window 

will scan the image pixel by pixel. Once the centre of the sliding window detects a 1 and 

there are two additional ones within the sliding window, that point will be considered the 

starting point(Figure 5-17(c)). The sliding window then shifts to the "1" that is off-centre 

and has not been scanned. There are 8 possible directions that the sliding window can go, 

as shown in Figure 5-18.  

 

The tracking algorithm performed the count of ones within the sliding window to 

determine the scanning status. To ensure that the sliding window moves in the correct 
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direction, recording the previous movement of the sliding window is necessary. A notation 

of right, top right, top, top left, left, bottom left, bottom, and bottom right, was utilised to 

document the sliding window’s most recent movement direction. For example, if the last 

move of the sliding window is bottom left, then the next position can only be top left, left, 

bottom left, bottom, or bottom left.  

Figure 5-18 The tracking function at pixel (i, j), the yellow squares are the position of the 

current sliding window, and the blue squares show the direction of the sliding window 

movement. If the sliding window approaches pixel (i, j) and its value is 1, then check the 

values of the other eight pixels around pixel (i, j) to decide the direction of scanning.  

After the scanning, the coordinates of the vessels’ central lines will be saved as a list, and 

the position of the profiles will be calculated based on these coordinates. Figure 5-19 
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illustrates the four scenarios in calculating the coordinates of the profiles. In the case of 

Figure 5-19 (a) (b) and (c), the coordinates of p3 and p4 can be calculated with the 

following equations: 

𝑘 = <!.<"
-!.-"

 Equation 6 

𝑥= =
(-">-!)

?
−k∗ `(?(∗A)!

B(8>C!)
Equation 7 

𝑦= =
(<"><!)

?
+ `(?(∗A)!

B(8>C!)
Equation 8 

𝑥B =
(-">-!)

?
+ 𝑘 ∗ `(?(∗A)!

B(8>C!)
Equation 9 

𝑦B =
(<"><!)

?
− `(?(∗A)!

B(8>C!)
Equation 10 

In the above formula, “k” represents the slope of line segment P1P2, m represents the 

multiple by which it extends relative to “d”, and it is typically chosen as 1.2. In the case of 

Figure 5-19 (d), the k does not exist, and x2=x1. The p3 and p4 coordinates were: 

𝑥= =
(-">-!)

?
+ 𝑑 ∗ 𝑚 Equation 11 

𝑥= =
(-">-!)

?
− 𝑑 ∗ 𝑚 Equation 12 

𝑦= = 𝑦B =
(<"><!)

?
 Equation 13 
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Figure 5-19 Profile calculation. P1 and P2 are two points on the central line of the blood 

vessel, and the distance between these two points can be adjusted based on the specific 

circumstances, typically by selecting adjacent or spaced points. The dashed line 

represents the edge of the blood vessel, and “d” is the distance between the centre and the 

edge of the blood vessel. P3 and P4 are two endpoints of a cross-section of the blood 

vessel. 

5.3 Results and discussion 

5.3.1 Vessel classification and segmentation  

The deep neural networks, including UNet PsPNet and Att-UNet, show outstanding 

performance in vessel segmentation, but the classification performance needs to be 

improved. The major problems are the discontinuity of tiny vessels and the vessel’s 
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mislabelling. The DNNs were evaluated using two different test datasets, one from the 

DRIVE dataset and another from the UWF image captured by the handheld retinopathy of 

prematurity (RoP) camera.  

5.3.1.1 Vessel segmentation 
Table 5-2 provides the classification accuracy of the models in doing the vessel 

segmentation task, and Table 5-3 provides the MIoU of the models. The performance of 

the UNet with 256*256 input size and fewer layers was comparable to the larger one in 

terms of accuracy and MIoU, despite having fewer parameters and layers. By 

incorporating the attention mechanism, the accuracy of the model was improved. The 

Attention UNet model outperformed the other models. It achieved an accuracy of 0.96, 

0.88 sensitivity, 0.97 specificity, and MIoU 0.86 on the Drive dataset, which is 

comparable with the related work in Table 5-1. However, the PsPNet model did not 

perform well and only achieved an MIoU score of 0.715 on the DRIVE dataset. 

 

It was observed that all models performed better on the DRIVE dataset, which suggests 

that more images are needed if we want to use deep neural networks in processing images 

captured by a low-cost camera. This suggests that more images are needed if we intend to 

use deep neural networks to process images captured by a low-cost camera. Therefore, it 

would be beneficial to gather more data using the RoP camera developed by Professor 

Andy Harvey’s team in future work.  

Table 5-2 The Vessel segmentation accuracy of UNet, Att-UNet, and PsPNet 

 UNet(256) UNet(512) Att-UNet PsPNet 

DRIVE 0.965 0.967 0.963 0.942 

UWF 0.879 0.890 0.906 0.899 

Table 5-3 The MIoU of UNet, Att-UNet, and PsPNet in vessel segmentation 

 UNet(256) UNet(512) Att-UNet PsPNet 

DRIVE 0.810 0.815 0.816 0.715 

UWF 0.573 0.638 0.669 0.663 



Chapter 5 Retina Vessel identification and segmentation using deep learning 

89 

Table 5-4 Sensitivity and specificity of different models on the DRIVE dataset 

Sensitivity Specificity 

UNet(256) 0.778 0.982 

UNet(512) 0.875 0.970 

Att-UNet 0.881 0.970 

PsPNet 0.752 0.980 

5.3.1.2 Artery/Vein (A/V) classification 
Table 5-5 displays the outcomes of the model’s accuracy in conducting vessel 

segmentation and artery-vein classification at the same time. and Table 5-6 shows the 

MIoU of different models in A/V classification.  

When compared to the result of segmentation only, the A/V classification result is a little 

worse. It can be seen that the Att-UNet accuracy and sensitivity dropped to 0.940 and 

0.489, respectively. This result is similar to the result from other’s studies, as it appears to 

be more difficult for the DNNs to perform the A/V classification while segmenting the 

vessels from the background.    

Table 5-5 The Vessel classification accuracy of UNet, Att-UNet, and PsPNet 

UNet Att-UNet PsPNet 

DRIVE 0.932 0.940 0.923 

UWF 0.928 0.945 0.879 

Table 5-6 The MIoU of UNet, Att-UNet, and PsPNet 

UNet Att-UNet PsPNet 

DRIVE 0.692 0.677 0.570 

UWF 0.646 0.677 0.632 
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One effective way to improve the accuracy of A/V classification is by incorporating 

additional techniques into the deep learning model instead of relying on just one model. 

For example, Sojun Go et al. proposed an approach that combined DNN with fluorescein 

angiography to achieve an accuracy of 0.948, with 0.950 sensitivity and 0.945 specificities 

[170]. Another study by Luo S et al. developed a two-stage deep learning framework that 

utilised topological information and enhanced A/V classification accuracy from 0.957 to 

0.970 [171]. Additionally, Yi J et al. proposed a method that utilised a multi-channel 

module (MM) to enhance feature input images, as well as a multi-scale transformation 

(MT) module and multi-feature fusion (MF) module to expand the network’s receptive 

field and enhance the representability of deep features [172]. 

 

For this research, I utilised deep learning to segment the blood vessels and obtain the 

coordinates for enhancing Dr Victor Jalil Ochoa Gutierrez’s proposed method. By 

employing deep learning, the process of drawing profiles along the vessels, which 

previously took days, was reduced to approximately 5 minutes.  

5.3.2 Vessel tracking and profiling.  

The vessel tracking algorithm was tested with both the UWF retinal image and the DRIVE 

dataset. The algorithm can automatically draw profiles along the vessels and export the 

coordinates of each profile. Figure 5-20 shows the result of applying the vessel tracking 

algorithm to a segment of the UWF retina image. Most of the profiles can be drawn 

correctly on both arteries and veins.  
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Figure 5-20 The outcome of vessel tracking and profile algorithm (a) and (d) are the 

binarized labels of a vein and artery, respectively. (b)and(e) is the skeleton of the 

corresponding vessel. (c) and (f) shows the profiles(green) drawn on the original image. 

Software with a graphic user interface (GUI) was also developed using PyQt5, as 

illustrated in the figure below. To use this software, users only need to upload the retina 

image and its label, adjust the parameters, and click on the run button. The output that 

includes the coordinates of the profiles can be saved as a .csv file. 
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Figure 5-21 The software GUI. Users can select the retina image and its label from the 

computer and set the parameters, including profile length (multiple of the distance from 

the centreline to the edge), filter size, threshold, channel selection (the R, G, B channels), 

and minimum vessel length (ignore the segments that are too short). 

It appears that the machine learning-based algorithms used for tracking and profiling 

vessels are quite precise. These algorithms are able to provide accurate coordinates for 

most vessels.  

5.4 Conclusion 

This Chapter focuses on developing neural networks, including UNet, attention UNet, and 

PsPNet, for identifying blood vessels and classifying arteries and veins. These models are 

different from the CNN multi-class classification network discussed in the previous 

Chapter, as they are designed for semantic segmentation tasks, which involve pixel-wise 

classification. All those model structures were tested for both tasks using different data 

types, including a public dataset (DRIVE) and a private UWF dataset [168].  
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Amongst the different models, Att-UNet has exhibited the most impressive performance 

in both tasks. However, none of the models has been able to attain an MIoU of over 0.8 in 

the classification of arteries/veins for both datasets. This phenomenon also appeared in 

other studies (Table 5-1), the models are less accurate in A/V classification than in 

segmentation only. The main issue is the inconsistent prediction on identical vessels. This 

implies that although the models can recognise blood vessels from retinal images, they 

have some difficulty in identifying the type of some blood vessels.  

 

A software was developed to improve our group’s vessel extraction method [168], as the 

models were found to provide a satisfactory performance in vessel segmentation with 0.88 

sensitivity and 0.97 specificity. Although this approach was found accurate in previous 

studies, it was also time-consuming, linked to many manual steps. By incorporating deep 

learning and a vessel tracking algorithm, the processing time has been significantly 

reduced from days to just a few minutes. However, more testing is needed to determine if 

combining the two methods will enhance the accuracy of A/V classification in future 

research. 
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Chapter 6 Sample size calculator for diagnostic study 

6.1 Introduction 

The UK has been under lockdown due to COVID-19 for around two years during 2020-

2021, resulting in limited access to labs and suspension of field research, leading to the 

necessity to adapt our research plans, in particular around field testing and experimental. 

A group project resulted from these circumstances in June 2020 aimed to develop a web-

based calculator to determine a diagnostic study’s minimum required sample size. The 

team comprised PhD students of a wide range of backgrounds (from epidemiology to 

optical, software and mechanical engineering). Most students in the team were involved in 

other research that would have led to diagnostic surveys or field studies that require a 

rational determination of sample size [173]. Testing a large number of subjects in studies 

typically requires a significant amount of effort and using a too-large sample size could 

lead to many issues, such as being time-consuming, resource-wasting and potentially 

unethical. On the other hand, a limited sample size could reduce the study’s statistical 

power and, consequently, its conclusions and impact. The term power in statistics 

represents the ability to avoid a type II error (accept a false null hypothesis). In this 

project, I was responsible for implementing the web page functionality, building upon the 

statistical theories that were researched and validated by other team members. 

Additionally, I designed the web page layout in accordance with the storyboard (Appendix 

7) developed by our team.

Many studies have been conducted on sample size estimation in diagnostic studies. E.g., 

Nancy M et al. introduced the method of incorporating the prevalence into the sample size 

calculation in 1996 [174]. They proposed the method of sample size estimation with and 

without conditions in 1998 [175], David et al. proposed a method of estimating the 

minimum sample size required for a positive likelihood ratio with its respective 

confidence interval [176]. S Carley et al. developed a nomogram to estimate sample size 

based on the determination of sample size precision [177].  

Statistical analysis is necessary for many studies, but not all researchers are proficient in 

mathematics or statistics [173]. Statistics tools, such as SPSS [178] and PASS [178], can 
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be expensive and geared towards professionals, making them inaccessible to many 

potential users. Installing software specifically for specificity and sensitivity analysis may 

not be necessary. Therefore, there is a need for a simpler, user-friendly, and free tool to 

calculate sample size. Moreover, this project can be carried out without the need for 

laboratory equipment, enabling us to work from home amidst the lockdown. 

6.2 Methods  

6.2.1 Waterfall methodology 
This project was completed using the widely used waterfall software engineering 

methodology [179] waterfall model can aid in organising tasks, minimising human errors 

in team collaborations, and boosting overall productivity. Figure 6-1 illustrates the five 

steps of the waterfall: requirements analysis, system design, coding, testing, and 

maintenance. To promote knowledge sharing and shorten the software development cycle, 

different project steps were assigned to different team members. 

 

All of the software designs and coding tasks were performed as part of this thesis. 

 

 

Figure 6-1 The waterfall methodology. The App development process was divided into five 

stages: analysing requirements, designing, coding, testing, and maintaining the code.  

Various methods, including storyboarding and fast code prototyping, were also utilized to 

enhance collaboration and continuously improve the software. A detailed storyboard was 

created that outlines the statistical theory and web interface design. It includes a 

comprehensive description of both aspects. The fast-prototyping process required an Excel 

file to validate the calculator. The storyboard can be found in Appendix 7. 
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6.2.2 Webpage development  
The web App was developed based on Angular 9, one of the most popular web 

development frameworks. It provided a solid foundation for creating a dynamic and 

interactive user interface. Additionally, various Angular libraries and components were 

leveraged to enhance the functionality and user experience of the web tool.  

 

Angular uses TypeScript and HTML to create applications for computers and mobile 

devices. The platform is constructed with a modular architecture that includes different 

building blocks called components. Each component comprises a TypeScript class, an 

HTML template, and styles. This modular approach gives developers the freedom and 

flexibility to create applications according to their unique needs during the development 

process. 

6.2.3 User interface design  

The user interface (UI) of the web tool was designed to be intuitive and user-friendly. 

Users are presented with input fields where they can enter the desired sensitivity and 

specificity values. Clear instructions and tooltips are provided to guide users in entering 

valid inputs. The user interface design was based on the storyboard which can be found in 

the Appendix 7.  

 

The UI of the initial version of the sample size calculator is displayed in Figure 6-2. It is 

divided into four sections: title, introduction, calculation, and references. There were three 

calculation modes available: sensitivity, specificity, and a combination of both to estimate 

sample size. At the bottom of the page, the corresponding formulas and helpful references 

are provided.  
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Figure 6-2 The user interface of the sample size calculator V1.0. There was a brief 

introduction to the calculator on the top of the page, and under that, three radio buttons 

were provided for different calculation modes. The inputs include the prevalence of a 

disease (Prev), sensitivity (Se) and specificity (Sp) of a diagnostic test, the maximum 

marginal error (M), the confidence level of the statistic test, and likelihood(1-α) of the test 

failure. The results include the sample size based on sensitivity and specificity, positive 

predicted value (PPV), and negative predicted value (NPV). The formulas used for 

calculation were rendered by a node module named MathJax and displayed under the 

result section. Also, the references were provided at the bottom. 
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Following the waterfall methodology, some issues were identified in the first version 

during the test phase, including the compatibility problem on mobile devices and limited 

description of some functions. New requirements were suggested by our group members, 

including adding more calculation modes and hypothesis tests.  

 

In the second development phase, the webpage incorporated responsive design principles, 

allowing it to adapt to different screen sizes and devices for a seamless user experience. 

The UI colour scheme was enhanced, and animated effects were incorporated. 

 

The UI of different functional areas were placed in separate components to enhance the 

program’s scalability. This not only simplifies the process of adjusting the UI but also 

prevents any impact on other components when adding new ones. Figure 6-3 shows the 

updated UI on both laptops and mobile phones.  

 

 

Figure 6-3 The UI with responsive design. (a) a screenshot captured from PC, (b) a 

Screenshot captured from a mobile phone. 

The modularised design of Angular allows the implementation of new components to the 

project easily by using the “@Component ()” decorator. To integrate a new component 

with the existing project, only their relationship in the App module file needs to be 

declared. Additionally, a routing module was added to the app, it allows each page to have 

its own URL. 
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6.2.4 Implementing website functionality 
The first version of the calculator was designed as a single-page website with only one 

Angular component. It could be used for estimating the sample size based on sensitivity 

and specificity (as shown in Figure 6-2). The inputs include the desired sensitivity (Se) 

and specificity (Sp), the prevalence (Prev) of the disease, Maximum marginal error (M), 

confidence level (1-a) and failure rate in sampling (q). The formula below shows the 

calculation of the estimated sample size based on the sensitivity.  

 

𝑁D)′ =
E-
!
!×G)(8.G))

9!×HI)J
     Equation 14 

𝑁D) =
6./K
8.L

      Equation 15 

The minimum sample size needed to achieve the desired sensitivity, without considering 

the failure rate of sampling, is denoted as 𝑁D)′. 𝑍-
!
 represents the Z-score with confidence 

interval a, a table of commonly used Z-score is provided in Appendix Table 5. Similarly, 

the following equations were used for estimating the sample size based on specificity. 

𝑁DM′ =
E-
!
!×GM(8.GM)

9!×(8.HI)J)
     Equation 16 

𝑁DM =
6.0K
8.L

      Equation 17 

When considering both sensitivity and specificity, the positive predictive value (PPV) and 

negative predictive value (NPV) will also be calculated to show the estimated proportion 

of true positives and negatives of the diagnostic test. The calculation of PPV and NPV can 

be formularized as follow: 

𝑃𝑃𝑉 = G)×HI)J
G)×HI)J>(8.GM)×(8.HI)J)

    Equation 18 

𝑁𝑃𝑉 = GM×(8.HI)J)
(8.G)×HI)J)>GM×(8.HI)J)

    Equation 19 
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The updated web page implemented hypothesis tests and sample size estimation based on 

the area under the receiver operating characteristic (ROC) curve (AUC). The sample size 

estimation based on AUC was implemented as a new function of the previous sample size 

calculator. This function was designed to calculate the required number of samples or 

subjects for estimating the AUC of the ROC curve of a diagnostic test.  

 

The sample size for estimating the AUC of ROC cure consists of two parts, the sample 

size with (𝑁N =
E-
!
!×O(PQR)

9!×(8.L)
) and without conditions of interest (𝑁6N = 	𝑅 × 𝑁N) [175]. 

The overall sample size needed is 𝑁 = 𝑁N + 𝑁6N. In the calculation of 𝑁N, the V(AUC) 

can be calculated by: 

𝑉(𝐴𝑈𝐶) = 𝑁N𝑉𝑎𝑟V𝐴𝑈𝐶jZ = V0.0099	 × 𝑒.S! ?⁄ Z × l(5𝑎? + 8) +	S
!>U
!
n Equation 20 

The 𝑉𝑎𝑟V𝐴𝑈𝐶jZ denotes the variance of 𝐴𝑈𝐶j  [180], a	 = 	φ.8(AUC)	x	1.414 and φ.8 is 

the inverse of standard cumulative normal distribution, the φ.8 value can be found in 

Appendix Table 7. 

 

The hypothesis test comprises two functions, testing if the accuracy of a single diagnostic 

test achieved the desired accuracy and comparing if the accuracies of two tests are 

equivalent. The following figure displays the required inputs for testing the accuracy of a 

single diagnostic test. 
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Figure 6-4 Testing the accuracy of a single test. 

In testing the accuracy of a single test, the null hypothesis assumes that the test sensitivity 

or specificity 𝑝8 is the same as the pre-specified one 𝑝V. The α% represents the likelihood 

of mistakenly rejecting the null hypothesis, which serves as evidence for demonstrating 

the presence of the phenomenon [12]. The power (1-β)% refers to the likelihood that the 

study will identify a variation in accuracies, assuming that the phenomenon being studied 

is indeed present [181]. The calculator uses a two-tailed z-score test under the null and 

alternative hypothesis, and normal approximation is the general rule [180]. To determine 

the sample size, Equation 21 was used for the conditional approach, and Equation 22 for 

the unconditional approach. The Z-scores can be found in Appendix Table 6. 

𝑁 =
WE-
!
XM1(8.M1)>	E2	XM"(8.M")Z

!

(M".M1)!×(8.L)
Equation 21 

𝑁 =
[E-

!
>E2\

!
M"(8.M")

(M".M1)!×(8.L)
Equation 22 

When comparing the accuracies of two tests, there is an additional input factor to consider: 

the allocation ratio (𝑘 = 	 ]"
]!

). The 𝑛8 and 𝑛? are the determined sample size of the two 

independent diagnostic tests. The sample size for the reference test (𝑛?) can be obtained 
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by using Equation 23, in which 𝑝 = 	 CM">	M!
8>C

, with the conditional approach and Equation 

24 with the unconditional approach. The sample size needed for the reference group 𝑛8 =

𝑘 ∗ 𝑛?, and the total number of subjects 𝑁 = 𝑛8 + 𝑛?. 

𝑛? =
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(8.L)
=	
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!
^_8>"3`M(8.M)		>	E2	^

0"(")	0")
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!

(M".	M!)!(8.L)
Equation 23 

𝑛? =
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(8.L)
=

[E-
!
>E2\

!

(8.L)(M".M!)!
uM"(8.M")

C
+ 𝑝?(1 − 𝑝?)v Equation 24 

A continuity factor was applied to address the discrepancy between the continuous and 

discrete nature of the data. The formula for determining the sample size of group 2 with 

the continuity factor is as follows: 

𝑁? =
6!
B
w1 + `1 + ?(C>8)

C6!|M".M!|
x
?

Equation 25 

𝑛? =
𝑵𝟐

(8.L)
Equation 26 

6.2.5 Validation 

To ensure the calculation results’ accuracy by utilising the Excel prototype and G*Power 

software [182], [183]. We tested various combinations of target sensitivity, specificity, 

and other parameters to confirm that the results obtained from our website matched those 

from the other two sources. 

6.3 Results 
A prototype of the sample size calculator was developed and hosted on the Firebase in 

June 2020. This can be accessed from https://sample-size-calculator-69531.web.app/. The 

first version is straightforward and easy to use. Users can simply estimate the minimum 

sample size that is required for their study based on sensitivity and specificity. However, 

this version was not compatible with some mobile phone screens. The accuracy of our 

https://sample-size-calculator-69531.web.app/
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calculator has been verified by an Excel version prototype created by other group 

members. 

 

The updated version of the webpage allows for dynamic display adjustment. This new 

feature has been tested on computers and mobile devices, including Android and iPhone. 

In this update, the project’s architecture was modularised. Thus, the extendibility of the 

calculator was improved, and adding new functions to the App became easier. New 

functions, including ROC-based and hypothesis test calculations, were implemented, and 

validated by using G*Power software [182], [183]. The latest version of the website can 

be accessed at https://power-app2.web.app/sample-size. 

https://power-app2.web.app/sample-size
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Chapter 7 Discussion 
Advances in technology, such as deep learning, Blockchain and IoT, have eliminated the 

boundaries of space and time in many aspects, including healthcare and diagnostics. The 

WHO recognised the potential of developing an eHealth system back in 2005 [183], and 

today, with the progress of communication and digital technology, eHealth has become a 

reality. Embracing these technologies can significantly aid medical diagnostic testing, 

particularly in areas with limited resources. WHO has emphasised that there is a high 

demand for affordable, high-quality health technologies [184].  

 

As important components of health technologies, medical devices, assistive devices, and 

eHealth solutions play an important role in saving lives and improving patients’ quality of 

life and well-being [184]. However, there are still many people suffering from the lack of 

access to medical facilities and equipment.  

 

The smartphone is the most accessible technology in today’s world, even in many Low- 

and Middle-income Countries (LMICs). The number of smartphone users has increased 

from 3.6 billion to 5.8 billion between 2016 and 2020, and it was predicted to be 

approximately 7.86 billion in 2028 [185]. Notably, Sub-Saharan Africa is expected to 

have the highest growth rate in mobile subscriptions globally, with an estimated 613 

million subscribers by 2025, representing a growth of approximately 5% [186]. 

Smartphone adoption is also increasing in sub-Saharan African countries, with Uganda 

reaching a penetration rate of 23%.  

 

The accessibility and versatility of smartphones provide an opportunity to deliver 

appropriate and timely medical services to people living in remote areas with limited 

access to modern healthcare facilities. For example, the Ministry of Health in Uganda uses 

smartphone apps to provide frontline health workers access to patient healthcare records 

[187]. And most of the applications that have been mentioned in this thesis can be run on 

smartphones and tablets.  

 

As the number of mobile connections continues to increase, so do IoT connections, which 

will approach 15.14 billion devices globally in 2023 [188]. IoT is now predicted to be one 
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of the leading solutions for enhancing global healthcare services [189]. Increasing the 

versatility of smartphones will greatly reduce the costs of digital interventions compared 

to conventional methods, as illustrated in the work on retinal imaging of Chapter 5.  

 

The diagnostic platform for malaria combined the smartphone into the context of IoT, 

which demonstrated the capability, capacity, and opportunity of edge computing in the 

area where internet connection can be intermittent. This advancement improved upon the 

existing cloud-based diagnostics, such as the IoT solution for e-health presented by Kumar 

et al. [190]. The system showed significant tolerance for internet traffic. 

 

Clinical data is highly sensitive and requires top-notch protection. Fortunately, the 

tamperproof nature of Blockchain technology offers a secure means of storing this data in 

the proposed diagnostic platform. The use of wireless connectivity in cloud-based 

diagnostic testing also raises ethical concerns regarding the transmission of personally 

identifiable information. Therefore, it is essential to prioritise the preservation of privacy 

for private and individual data. To address this concern, privacy preservation frameworks 

have been developed, such as the BeepTrace network proposed by Xu H et al. [191], they 

designed a framework using mobile phones and the Ethereum Blockchain network for 

COVID-19 surveillance and tracing. The BeepTrace framework is a secure and 

trustworthy system and is more complex than the Blockchain we used in Chapter 3. 

However, like many Ethereum-based applications, it requires cryptocurrency for 

transactions (gas fees), which can be an additional expense.  

 

It's worth noting that the Blockchain system is not failproof, and some security risks 

remain to consider. For instance, before the data is fully uploaded to the Blockchain 

network, it will be temporarily stored on the phone, which opens up the possibility of theft 

and access. Android phones are vulnerable to phishing links and malicious programs, 

which may lead to serious security issues, such as private key disclosure [192]. Besides 

the problems such as double spending, the 51% attack, and the cost can also be obstacles 

to integrating Blockchain into the existing system [193]. Moreover, in systems like the 

proposed diagnostic platform, the distribution of app and network cards can be vulnerable. 

Additional measures may need to be put in place to further improve the security of the 
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system, for instance, we need to ensure that the keys are provided to the correct 

individuals. 

 

The energy consumption of Blockchain, especially those using the PoW mechanism, is 

another major concern in wide adoption of Blockchain technology. In 2021, the equivalent 

of about 30% of Germany’s or 35% of Ireland’s energy was consumed by Bitcoin mining 

[194]. Other types of Blockchain networks can also consume more energy than traditional 

data centres [195]. The Blockchain system is decentralised, meaning it has more 

redundancy than traditional centralised approaches. According to a study by Sedlmeir J et 

al., a public Blockchain system can consume 10^4 to 10^9 times more energy for handling 

a single transaction than traditional approaches, while even enterprise Blockchain (private 

or consortium) systems can consume 10 times as much energy [195].  

 

However, the environmental sustainability and cost of Blockchain cannot simply be 

concluded as how much energy it consumes. It is worth finding a balance between its 

benefits and drawbacks when considering whether Blockchain technology should be used. 

The advantage of this technology, like security and transparency, was also found helpful 

in reducing the carbon footprint in industry by supplying chain management, reducing 

waste, and providing quality assurance [196]. Additionally, the development of 

Blockchain has resulted in significantly lower energy demands, compared to the first 

generation Blockchain networks, by utilising enhanced consensus algorithms and reducing 

network redundancy [195]. Furthermore, the use of clean energy in Blockchain is 

becoming increasingly important, with more policies and legislation guiding its 

development towards greater sustainability [197], [198]. 

 

The healthcare industry is utilising AI more frequently in diagnostics to improve the 

current system, and it has been authorised for use as a medical device [199], [200]. When 

interpreting results from immunodiagnostic lateral-flow rapid diagnostic tests (RDTs) 

devices, AI can offer a more consistent, accurate performance than visual interpretation 

[201], as confirmed by a revision of ASSURE criteria [137]. The malaria diagnostic 

platform that has been proposed in chapters 2 to 4 is not only ASSURED but also meets 

the WHO target product profile (TPP) for readers of RDTs [201]. 
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The use of AI in diagnostics also raises concerns around trustworthiness, which is crucial 

in healthcare [202]. In healthcare, inaccurate predictions can lead to fatal subsequent 

effects. For example, a false negative could cause a patient to miss out on receiving timely 

treatment, while a false positive could lead to healthy individuals taking unnecessary 

medication (or further testing with economic impacts as well as potential health impacts 

when radiation is involved, for example). Thus, using AI in diagnostics requires caution 

since most deep neural networks can easily get overfitted. The CNN introduced in Chapter 

3 has proved its trustworthiness by its high accuracy and combination of Blockchain 

technology. During the test, all false predictions will lead to repeating the test, which 

ensures the trustworthiness of the entire platform and each step in the process.  

After successfully using AI to assist in reading test results from microfluidic tests, further 

investigation was conducted into its capabilities. In Chapter 5, several deep neural 

networks were utilised for retina image processing. Although the performance of AI was 

found to not be on par with that of human expertise, it still has shown great promise and 

potential when combined with other approaches. The advances in model architecture and 

algorithms can improve the precision of the predictions. For instance, state-of-the-art deep 

neural networks, diffusion networks and transformer mechanisms recently became popular 

in computer vision and have been proven to improve the accuracy and stability of medical 

image analysis significantly [203]. 

In a low-resource environment, it can be difficult to redo the test. Diabetic retinopathy 

screening strategy is being transformed by AI, leading to greatly improved cost-

effectiveness [206]. Early treatment and continuous screening can effectively prevent 

blindness caused by asymptomatic diabetic retinopathy (DR) since it can be asymptomatic 

until advanced stages [207]. However, non-communicable diseases like DR are frequently 

overlooked in LMICs, unlike communicable diseases.  

It has been proven that incorporating other types of image processing in developing 

automated diagnostic tools can improve overall accuracy and reliability than relying solely 

on AI predictions [204]. For instance, the system proposed by Xingzheng Lyu et al. 

attained a higher accuracy by combining pre and post-processing steps, an improved 

neural network for completing the retina vessel analysis, and a fractal dimension to 
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indicate the image quality [205]. As some fundus images can be hard to analyse even by 

experienced ophthalmologists, a typical solution in clinical practice is to retake the photo 

with better quality.  

 

In conclusion, digital technologies such as AI, Blockchain, IoT, and edge computing offer 

opportunities to enhance healthcare systems by introducing innovative diagnostic 

approaches, providing more efficient and secured data management systems, and engaging 

the public to be aware and better understand the challenges that remain in healthcare. 

These technologies can provide people in remote rural areas with access to advanced 

healthcare services at a lower cost while also improving the healthcare experience for 

those in urban cities.  

 

This study proposes possible solutions to overcome challenges in conducting diagnostics 

in low-resource settings and improving current diagnostic methods. However, introducing 

new technologies into diagnostics always requires caution and consideration of potential 

issues such as trust, regulation, and ethics. 
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Chapter 8  Conclusion and future works 

8.1 Thesis conclusion 

Digital technologies have greatly impacted people’s lives both positively and negatively. 

While it has improved our daily lives, it has also brought challenges such as data security, 

privacy concerns, system bugs, and dependence on electricity. This research focuses on 

using emerging technologies in the context of medical diagnostics, with the aim to address 

these challenges whilst improving current diagnostic methods. 

 

Chapters 2-4 showcase a smartphone-based diagnostic platform for malaria that offers a 

low-cost, user-friendly, secure, and trustworthy solution for conducting diagnostic tests in 

low-resource settings. The platform tackled the challenges pointed out in Chapter 1.6. By 

combining low-cost hardware, such as a heater and a mobile phone, with software, such as 

Blockchain, a mobile app, and a neural network, the proposed platform allows running 

sensitive and specific DNA malaria diagnostic tests in the environment with very limited 

resources. 

 

In Chapter 5, AI was examined for its potential use in analysing retina vessels. Although 

current neural networks may not be able to accurately classify arteries and veins, they are 

capable of identifying blood vessels in fundus images with human-level expertise. When 

combined with other image processing techniques, AI’s performance can improve 

significantly. Chapter 5 also proposes a vessel tracing algorithm, reducing processing time 

from days to just a few minutes. 

 

The COVID-19 pandemic significantly impacted this PhD study. Chapter 6 outlines a 

research project on mitigation that was carried out by a team of group members during 

this period, although all work described in this thesis, including coding and creation of 

web-based tools, was performed by the author. The project focused on exploring the 

statistical models required for determining the appropriate sample size to achieve the 

necessary power and accuracy when validating new diagnostic tests. As part of this study, 

a web-based tool was developed and deployed with open access.  
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The purpose of diagnostics is to identify the cause of the disease, provide timely and 

appropriate treatment to patients, and prevent illness. Educating and engaging the public 

could also be essential to accomplish these goals. An example is the study conducted by 

Kaushik M et al., which demonstrates that public awareness regarding disease prevention 

can significantly decrease the likelihood of contracting COVID-19 during the pandemic 

[184]. As part of this study, an interactive website with a map and media was created to 

make people aware of the risks of contracting diseases like malaria. And the objective was 

to increase awareness about the actions being taken to enhance health and wellness in 

isolated African villages with limited resources. Additionally, the aim was also to 

motivate more people to join in the efforts to eradicate infectious diseases such as malaria 

and provide safe drinking water, sanitation, and hygiene (WASH) [185] to those living in 

resource-limited areas. The webpage can be accessed from https://vr-360-

bme.firebaseapp.com/.  

 

In conclusion, this PhD thesis mainly focused on utilising technologies to address the 

problems existing in doing diagnostic tests and providing a low-cost, easy-to-use, and 

robust solution to minimise the requirements, such as equipment and human expertise in 

running diagnostic tests in low-resource circumstances. Also, collaborations with people 

who have different background knowledge has helped me better understand and find the 

gap between biological study and software hardware engineering. 

8.2 Future works 
Using Blockchain technology is an effective way to safeguard sensitive medical 

information, such as diagnoses and patient data, through its secure features. However, 

there are still challenges that need to be addressed. Security threats, like cyber-attacks and 

ethical concerns, such as data ownership, can impact the safety and privacy of this 

information. Additionally, since the Blockchain is decentralised, numerous ledger copies 

will be stored on multiple nodes, which could require significant storage space, especially 

for large files like images and videos that are common in medical data. Moreover, the 

amount of energy consumed by using Blockchain is also a concern that needs to be 

addressed. 

 

https://vr-360-bme.firebaseapp.com/
https://vr-360-bme.firebaseapp.com/
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Studies have shown that AI has the potential to aid medical decisions, but there is still a 

long way to go. During this PhD, the ability of AI to handle complex medical images was 

found to be insufficient compared with human experts. However, AI, as an emerging 

technology, is rapidly improving. 

Recent studies have demonstrated the excellent performance of AI in handling image-

related tasks, such as the stable-diffusion network [186] and transformer [187]. Numerous 

scaled neural networks with optimised architecture and algorithms have been developed in 

recent years [188], especially the generative models, such as ChatGPT [189] and Stable 

Diffusion [186] have shown impressive performance. In the future, AI’s ability to handle 

various types of medical data should improve [190], and regulations should be established 

to address ethical concerns surrounding the use of AI in healthcare decision-making [191]. 

One of the major challenges identified in using AI as a diagnostic tool in this study is the 

limited data availability. While neural networks have demonstrated excellent performance, 

the quality and quantity of data are crucial to their success. Unfortunately, most of the 

medical image datasets are significantly smaller than those for general use, e.g., the 

ADE20K [156] dataset, which was designed for segmenting the objects in people’s daily 

lives. This is particularly problematic for supervised learning, which requires high-quality 

data that has been labelled by specialists. Fortunately, the development of machine 

learning has led to the availability of more open-access annotated databases. For example, 

the EyePACS dataset [192] includes 88,702 images for detecting diabetic retinopathy, and 

the FIVES dataset [193] has 800 pixel-wise labelled high-resolution retina photographs. 

Furthermore, as mobile devices become more powerful and neural processor units (NPUs) 

are integrated into more smartphones. In the coming future, it will be possible to perform 

many AI-powered diagnostic tests using just a smartphone or with basic external 

hardware. We have noticed a significant increase in commercially-available [194] 

products involving AI, e.g., for interpreting LFT results (such as those from Audere [195], 

[196], the UKHSA [197] or Abingdon Health [198] as a promising step into the future.  
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Appendix 

Appendix figures 

Appendix Figure 1. Screenshots of Android App (latest version). (a)The login page of the 

app. (b)The screen for manufacturers to add new device information to the system. (c)The 

heater control page for the operator. (d)The screen for operators to upload the test 

information. (e)Screen for analysts to read device information. (f). The screen for result 

analysis. 
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Appendix Figure 2. Workflow of the Blockchain network. The information of 

manufacturer, operator, and analyst includes their ID and username, which could be 

recoded with other data required by transactions to the diagnostic device properties. Each 

block provided the information of data required and its type in different classes. 
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Appendix Figure 3. Workflow of the Android App. 



Appendix 

 
115 

 

Appendix Figure 4. ETDRS standard photography 2A, 6A and 8A.[158], [160] 

 
 
  

 

 
 
 
 
 
 

Standard photograph 2A, the standard for hemorrhages/microaneurysms. 
Eyes with severe NPDR have this degree of severity of hemorrhages and 
microaneurysms in all four midperipheral quadrants.  
 

 

 
 
 
 
 
 
 

Standard photograph 6A, less severe of two standards for venous beading. 
Two main branches of the superior temporal vein show beading that is 
definite but not severe. 

 

 

 

 

 

 

 

 

Standard photograph 8A, the standard for moderate IRMA. Patients with 
severe NPDR have moderate IRMA of at least this severity in at least one 
quadrant.  
 

Reprinted with permission from the Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from 
stereoscopic color fundus photographs--an extension of the modified Airlie House classification: ETDRS report number 10. 
Ophthalmology 1991;98:786-806.  
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Appendix tables 
Appendix Table 1 The estimated cost of a mobile heater 

Estimated cost of a mobile heater 

Micro-controller £11 

Power bank £10-20 

Thermoelectric generator (TEG) £14 

Thermocouple £5 

Other electronic parts (resistors etc.) £5 

3D printing £5 

Total £50-60 
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Appendix Table 2 System resource usage during the Blockchain Performance Test 

Node Name 

Memory 

(avg) 

MB 

CPU% 

(avg) 

Traffic 

In (MB) 

Traffic 

Out 

(MB) 

Disc 

Read 

(KB) 

Disc 

Write  

(MB) 

dev-

peer0.org1.example.com-

assay-tracking-network-

0.1.0 

118.9 42.80 9.70 4.5 0.0 0.0 

dev-

peer0.org2.example.com-

assay-tracking-network-

0.1.0 

174.5 9.47 1.80 1.3 0.0 0.00 

peer0.org2.example.com 363.8 6.92 5.30 11.0 380.0 1.40 

peer0.org1.example.com 318.4 26.0 21.2MB 26.2 16.0 1.40 

orderer.example.com 53.8 0.30 0.67 1.4 0.0 0.94 

couchdb.org1.example.com 185.0 58.47 4.60 13.3 128.0 2.70 

ca.org2.example.com 17.9 0.01 0.0003 0.0 0.0 0.00 

ca.org1.example.com 7.1 0.00 0.0003 0.0 0.0 0.00 

couchdb.org2.example.com 174.0 18.82 1.00 3.1 48.0 2.70 
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Appendix Table 3 Performance evaluation results 

Transaction 

name 

Succeed Failed Send 

Rate 

(TPS) 

Max 

Latency 

(s) 

Min 

Latency 

(s) 

Average 

Latency 

(s) 

Throughput 

(TPS) 

ProduceDevice 50 0 5.1 0.60 0.19 0.41 5.0 

100 0 10.1 3.04 0.42 1.71 9.2 

200 0 20.1 14.30 0.77 10.97 10.2 

300 0 30.1 23.10 6.02 22.12 10.3 

400 0 40.1 33.22 4.40 28.57 10.3 

500 0 50.1 46.43 9.42 36.99 10.3 

DoTheTest 50 0 5.1 0.63 0.22 0.42 4.8 

100 0 10.1 4.36 0.27 2.52 8.7 

200 0 20.1 13.60 0.97 10.87 10.2 

300 0 30.1 23.73 1.17 18.44 10.6 

400 0 40.1 33.30 3.36 26.70 10.6 

500 0 50.1 43.02 17.05 36.02 10.3 
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Appendix Table 4 Species of Plasmodium that cause malaria [199] 

    P falciparum P vivax P malariae P ovale 

Distribution  Global tropics 
Global tropics and 

some temperate zones 
Global tropics 

Africa, southeast Asia, 

Oceania 

Disease burden (number 

of people infected) 
 400 million 80-400 million Minor Probably minor 

Number of people at risk  5 billion 3 billion Uknown Unknown 

Type of malaria  

Asexual blood 
Asymptomatic Many endemic settings Many endemic settings Almost always Unknown 

Therapies Many Many Many Many 

Sexual blood 

Asymptomatic Always Always Always Always 

Therapies 
Primaquine, single 

dose 

Primaquine, 

hypnozoitocide 

Primaquine, single 

dose 

Primaquine, 

hypnozoitocide 

Asexual liver 

Asymptomatic Always Always Always Always 

Therapies Not indicated 
Primaquine, 14 daily 

doses 
Not indicated  

Primaquine, 14 daily 

doses 
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Appendix Table 5 𝑍-
!
 value and Significance level corresponding to confidence level 

Confidence level 𝑍c
?
 Significance level 

80% 1.28 20% 

85% 1.44 15% 

90% 1.645 10% 

95% 1.960 5% 

98% 2.326 2% 

99% 2.576 1% 

 

Appendix Table 6 𝑍8.d value under different power 

Power 𝑍8.d 

0.70 0.52 

0.75 0.67 

0.80 0.84 

0.85 1.03 

0.90 1.28 

0.95 1.64 

0.99 2.33 
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Appendix Table 7 Normal distribution – inverse cumulative distribution function 

Z 0.5 0.6 0.7 0.8 0.9 

0.00 0.0000 0.2533 0.5244 0.8416 1.2816 

0.01 0.0252 0.2793 0.5534 0.8779 1.3408 

0.02 0.0502 0.3055 0.5828 0.9154 1.4051 

0.03 0.0753 0.3319 0.6128 0.9542 1.4758 

0.04 0.1004 0.3585 0.6433 0.9945 1.5548 

0.05 0.1257 0.3853 0.6745 1.0364 1.6449 

0.06 0.1510 0.4125 0.7063 1.0803 1.7507 

0.07 0.1764 0.4399 0.7388 1.1264 1.8808 

0.08 0.2019 0.4677 0.7722 1.1750 1.9600 

0.09 0.2275 0.4958 0.8064 1.2265 2.0537 
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Other appendices 

Appendix 1 Standard Feature Based Grading Form to be used in Routine Digital 

Screening [159] 

R NHS Diabetic Eye Screening Programme Feature Based Grading Classification 
    

R0 None No DR  
    
R1 Background 1 microaneurysm *  
  2 microaneurysms  
  3 microaneurysms  
  4 microaneurysms  
  5+ microaneurysms  
  or  
  microaneurysm(s)  
    
  retinal haemorrhage(s)  
  venous loop  
  any exudate in the presence of other 

features of DR 
 

  any number of cotton wool spots (CWS) 
in the presence of other features of DR 

 

    

R2 Pre-proliferative venous beading  

  venous reduplication  
  multiple blot haemorrhages  
  intraretinal microvascular abnormality 

(IRMA) 
 

    
R3 Proliferative Stable pre-retinal fibrosis + peripheral 

retinal scatter laser 

R3s (Stable post treatment) 

 

(If discharged from the Hospital 

Eye Service a photograph should 

be taken at or shortly after 

discharge from the Hospital Eye 

  Stable fibrous proliferation (disc or 
elsewhere) + peripheral retinal scatter 
laser 

  Stable R2 features (from feature based 
grading) + peripheral retinal scatter 
laser 
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  R1 features (from feature based 
grading) + peripheral retinal scatter 
laser 

service (HES) that records these 

features) 

    
  new vessels on disc (NVD)  

R3a (Active Proliferative 

Retinopathy) 

  new vessels elsewhere (NVE) 
  New pre-retinal or vitreous 

haemorrhage 

  New pre-retinal fibrosis 
  New tractional retinal detachment 
  Reactivation in a previous stable R3s 

eye 

    
M  Maculopathy  
M0  No maculopathy absence of any M1 features 
M0  any microaneurysm or haemorrhage 

within 1DD of the centre of the fovea if 

associated with a best VA of ��6/12 

where the cause of the reduced vision 

 

  is known and is not diabetic macular 
oedema. 

 

    
 

M1 

 exudate within 1 disc diameter (DD) of 

the centre of the fovea 

 

  group of exudates within the macula A group of exudates is an area of 
exudates that is greater than or 
equal to half the disc area 
and 
this area (of greater than or equal 
half the disc area) is all within the 
macular area 

  retinal thickening within 1DD of the 
centre of the fovea (if stereo available) 

 

  any microaneurysm or haemorrhage 
within 1DD of the centre of the fovea 
only if associated with a best VA of � 
6/12 (if no stereo) 

 

    

P  Photocoagulation  
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P0  No evidence of previous 

photocoagulation (default) 

 

P1  focal/grid to macula or peripheral 

scatter 

 

    

U  Ungradable  
  An image set that cannot be graded  
    

 Other Lesions 
(optional) 

See later section ‘The Grading Pathway 
Non DR Features’ 

Lesions resulting in referral to 
ROG or finalisation of grade are 
programme definable. 

    

* dot haemorrhages should be included in the count as it is often difficult to tell the difference 
between a microaneurysm and a dot haemorrhage. 

Outcomes 

 Outcome choice How outcome is decided 

 Routine Digital Screening Annual 
Recall 

See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012 

 Refer to Digital Surveillance Primary / secondary / arbitration / 
referral outcome / grader 

 Refer to SLB Surveillance Primary / secondary / arbitration / 
referral outcome / grader 

 Refer DR to Ophthalmology urgently See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012 

 Refer DR to Ophthalmology routinely See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012 

 Exclude Referral Outcome grader can 
select but admin staff have to 
approve 

 Off register? Admin staff only 

 Refer non DR to Ophthalmology/GP 
urgently 

Referral Outcome Grader, refer 
according to local protocol 

 Refer non DR to Ophthalmology/GP 
routinely 

Referral Outcome Grader, refer 

according to local protocol 
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Appendix 2 Feature Based Grading Forms to be used in Surveillance [159] 

Background 

 

As part of a series of pathway modifications the NHS Diabetic Eye Screening Programme 

(DESP) wishes to introduce Surveillance clinics in all programmes which will encompass 

fundal visualisation by digital camera, slit lamp biomicroscopy (SLB). These clinics will 

be implemented and recorded as a separate stream of activity to normal screening but the 

call and recall will be within screening management software. 

This operational guidance is intended to clarify the additional minimum requirements for 

recording grading and associated workflows in both Digital Surveillance and SLB 

Surveillance clinics. 

 

The grading pathway used in surveillance should be capable of being configured flexibly 

so that grading can be used in a full arbitration type grading, by technician followed by 

ophthalmologist in a hierarchical grade or finalised by a single user with the appropriate 

access type. This will enable programmes to use technician, optometric or ophthalmologist 

graders in ways which they consider both efficient and appropriate. 

 

The form allows recording of outcomes from OCT. However, OCT is not part of the 

national screening programme pathway. 

 

R NHS Diabetic Eye Screening Programme Feature Based Grading Classification 

    
R0 None No DR  
    
R1 Background 1 microaneurysm *  
  2 microaneurysms  
  3 microaneurysms  
  4 microaneurysms  
  5+ microaneurysms 

or 
microaneurysm(s) 

 
   
   

    
  retinal haemorrhage(s)  
  venous loop  
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  any exudate in the presence of other 
features of DR 

 

  any number of cotton wool spots 
(CWS) in the presence of other 
features of DR 

 

    
R2 Pre-proliferative venous beading  
  venous reduplication  
  multiple blot haemorrhages  
  intraretinal microvascular 

abnormality (IRMA) 
 

    
R3 Proliferative Stable pre-retinal fibrosis + 

peripheral retinal scatter laser 

R3s (Stable post treatment) 

 

(If discharged from the Hospital 

Eye Service a photograph should 

be taken at or shortly after 

discharge from the Hospital Eye 

service (HES) that records these 

features) 

  Stable fibrous proliferation (disc or 
elsewhere) + peripheral retinal 
scatter laser 

  Stable R2 features (from feature 
based grading) + peripheral retinal 
scatter laser 

  R1 features (from feature based 
grading) + peripheral retinal scatter 
laser 

    
  new vessels on disc (NVD)  

R3a (Active Proliferative 
Retinopathy)   new vessels elsewhere (NVE) 

  New pre-retinal or vitreous 
haemorrhage 

  New pre-retinal fibrosis 

  New tractional retinal detachment 
  Reactivation in a previous stable 

R3s eye 
    
M  Maculopathy  
M0  No maculopathy absence of any M1 features 
M0  any microaneurysm or haemorrhage 

within 1DD of the centre of the 

fovea if associated with a best VA 

of ��6/12 where the cause of the 

reduced vision 

 

  is known and is not diabetic macular 
oedema. 

 

    
 

M1 

 exudate within 1 disc diameter (DD) 

of the centre of the fovea 
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  group of exudates within the macula A group of exudates is an area of 
exudates that is greater than or 
equal to half the disc area 
and 
this area (of greater than or equal 
half the disc area) is all within the 
macular area   retinal thickening within 1DD of the 

centre of the fovea (if stereo 
available) 

 

  any microaneurysm or haemorrhage 
within 1DD of the centre of the 
fovea only if associated with a best 
VA of � 6/12 (if no stereo) 

 

    
P  Photocoagulation  
P0  No evidence of previous 

photocoagulation (default) 

 

P1  focal/grid to macula or peripheral 

scatter 

 

    
U  Ungradable  
  An image set that cannot be graded  
    
 Other Lesions 

(optional) 
See later section ‘The Grading 
Pathway Non DR Features’ 

Lesions resulting in referral to 
ROG or finalisation of grade are 
programme definable. 

    
* dot haemorrhages should be included in the count as it is often difficult to tell the difference 

between a microaneurysm and a dot haemorrhage. 

Outcomes 
 Outcome choice How outcome is decided 
 Routine Digital Screening Annual 

Recall 
See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012  Refer to Digital Surveillance Primary / secondary / arbitration / 
referral outcome / grader 

 Refer to SLB Surveillance Primary / secondary / arbitration / 
referral outcome / grader 

 Refer DR to Ophthalmology 
urgently 

See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012  Refer DR to Ophthalmology 

routinely 
See DESP Grading Criteria and 
Actions Version 1.0 07 March 
2012  Exclude Referral Outcome grader can 
select but admin staff have to 
approve  Off register? Admin staff only 

 Refer non DR to Ophthalmology/GP 
urgently 

Referral Outcome Grader, refer 
according to local protocol 

 Refer non DR to Ophthalmology/GP 
routinely 

Referral Outcome Grader, refer 
according to local protocol 
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Appendix 3 Standard Feature Based Grading Form to be used in Digital Surveillance 

[159] 

 
Right Left 

Visual Acuity 
(best of unaided, best corrected with spectacles and 

with pinhole) 

  

  
Screener 
Grading 

Ophthalmolo
gist 
Grading   

Right 
 

Left 
 

Right 
 

Left 

 
OCT* 

    

Adequate 
    

Inadequate 
    

OCT positive 
    

OCT borderline 
    

OCT negative 
    

Photographs 
    

Adequate 
    

Inadequate 
    

R0 None No DR     

       

R1 Background microaneurysm(s)     

  retinal haemorrhage(s)     

  venous loop     

  any exudate in the 
presence of other features 
of DR 

    

  any number of cotton wool 
spots (CWS) in the presence 
of other features of DR 

    

       

R2 Pre- 
proliferati
ve 

venous beading     
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  venous reduplication     

  multiple blot haemorrhages     

 

  intraretinal 
microvascular 
abnormality 
(IRMA) 

    

       

R3 Proliferative      

 R3s Stable pre-retinal 
fibrosis + peripheral 
retinal scatter laser 

    

  Stable fibrous proliferation 
(disc or elsewhere) + 
peripheral retinal 
scatter laser 

    

  Stable R2 features (from 
feature based grading) + 
peripheral retinal scatter 
laser 

    

  R1 features (from feature 
based 
grading) + peripheral retinal 
scatter laser 

    

       

 R3a new vessels on disc (NVD)     

  new vessels elsewhere (NVE)     

  New pre-retinal or 
vitreous 
haemorrhage 

    

  New pre-retinal fibrosis     

  New tractional retinal 
detachment 

    

  Reactivation in a previous 
stable R3s eye 

    

       

M Maculopathy      

 M0 No maculopathy     

  any microaneurysm or 
haemorrhage within 1DD of 
the centre of the fovea if 
associated with a best VA 
of ��6/12 where the cause 
of the reduced vision is 
known and is not diabetic 
macular oedema. 

    

       
 M1 exudate within 1 disc 

diameter (DD) of the centre 
of the fovea 

    

  group of exudates within the 
macula 
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  retinal thickening within 
1DD of the centre of the 
fovea (if stereo available) 

    

 

  any microaneurysm or 
haemorrhage within 
1DD of the centre of 
the fovea only if 
associated with a best 
VA of ��6/12 (if no 
stereo) 

    

       

P Photocoagul ation      

 P0 No evidence 
of previous 
photocoagula
tion (default) 

    

 P1 focal/grid to macula 
or peripheral scatter 

    

       

U Ungradable      

 U An image set that 
cannot be graded 

    

       

 Other Lesions 
(optional) 

See later section 
‘The Grading 
Pathway Non DR 
Features’ 

Lesions resulting in referral to 
ROG or finalisation of grade 

are programme definable. 

       

Outcomes 
NOTE: outcomes are chosen by examiner and are not defined by business rules 

  Refer DR to 
Ophthalmolog
y urgently 

    

  Refer DR to 
Ophthalmolog
y routinely 

    

  Refer to Slit Lamp 
biomicroscopy 
clinic routinely 

    

  Review in Digital 
Surveillance clinic in 
3/12 

    

  Review in Digital 
Surveillance clinic in 
6/12 

    

  Review in Digital 
Surveillance clinic in 
9/12 

    



Appendix 

 
131 

  Review in Digital 
Surveillance clinic in 
12/12 

    

  Discharge back to 
screening 

    

  Exclude     

  Refer non DR to 
Ophthalmology/GP 
urgently 

    

  Refer non DR to 
Ophthalmology/GP 
routinely 

    

*OCT definitions
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Appendix 4 Standard Feature Based Grading Form to be used in SLB Surveillance[159] 

 Right Left 

Visual Acuity 
(best of unaided, best corrected with spectacles and with pinhole) 

  

 
Slit lamp biomicroscopy 

  

 
View # 

  
Retinal view adequate 

  

  Retinal view inadequate   

R0 None No DR   

     

R1 Background microaneurysm(s)   

  retinal haemorrhage(s)   

  venous loop   

  any exudate in the presence of other 
features of DR 

  

  any number of  cotton wool spots 
(CWS) in the presence of other 
features of DR 

  

     

R2 Pre-proliferative venous beading   

  venous reduplication   

  multiple blot haemorrhages   

  intraretinal microvascular abnormality 
(IRMA) 

  

     

R3 Proliferative    

 R3s Stable pre-retinal fibrosis + peripheral 
retinal scatter laser 

  

  Stable fibrous proliferation (disc or 
elsewhere) + peripheral retinal scatter 

  

  Stable R2 features (from feature based 
grading) + peripheral retinal scatter 
laser 

  

  R1 features (from feature based 
grading) + peripheral retinal scatter 
laser 

  

     

 R3a new vessels on disc (NVD)   
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  new vessels elsewhere (NVE)   

  New pre-retinal or vitreous 
haemorrhage 

  

  New pre-retinal fibrosis   

  New tractional retinal detachment   

  Reactivation in a previous stable R3s 
eye 

  

     

M Maculopathy    

 M0 No maculopathy   

  any microaneurysm or haemorrhage 
within 1DD of the centre of the fovea 
if associated with a best VA of 
��6/12 where the cause of the 
reduced vision is known and is not 
diabetic macular oedema. 

  

     

 M1 exudate within 1 disc diameter (DD) 
of the centre of the fovea 

  

  group of exudates within the macula   

  retinal thickening within 1DD of the 
centre of the fovea (if stereo available) 

  

  any microaneurysm or haemorrhage 
within 1DD of the centre of the fovea 
only if associated with a best VA of � 
6/12 (if no stereo) 

  

  CSMO - Retinal thickening at or 
within 500 microns of the centre of the 
macula 

  

  CSMO - Hard exudates at or within 
500 microns of the centre of the 
macula, if associated with thickening 
of the adjacent retina (not residual 
hard exudates remaining after 
disappearance of retinal 
thickening)hard exudates remaining 

  

  CSMO - A zone or zones of retinal 
thickening one disc area or larger, any 
part of which is within one disc 
diameter of the centre of the macula. 

  

     

P Photocoagulation    

 P0 No evidence of previous 
photocoagulation (default) 
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 P1 focal/grid to macula or peripheral 
scatter 

  

     

U Ungradable    

 U Retinal status cannot be determined by 
slit lamp biomicroscopy 

  

 Other Lesions 
(optional) 

See later section ‘The Grading 
Pathway Non DR Features’ 

Lesions resulting in 
referral to ROG or 
finalisation of grade are 
programme definable. 

     

Outcomes 
NOTE: outcomes are chosen by examiner and are not defined by business rules 
  Refer DR to Ophthalmology urgently   

  Refer DR to Ophthalmology routinely   

  Refer to Digital Surveillance clinic   

  List for cataract surgery (if conducted 
within HES) 

  

  Review in slit lamp biomicroscopy in 
6/12 

  

  Review in slit lamp biomicroscopy in 
12/12 

  

  Discharge back to screening   

  Exclude   

  Refer non DR to Ophthalmology/GP 
urgently 

  

  Refer non DR to Ophthalmology/GP 
routinely 

  

 

# SLB Examination Quality 

Adequate: Practitioner is confident that referable pathology can be assessed or 
there is referable DR present 

 

Inadequate: Practitioner cannot visualise majority of fundus and no referable DR 
is visible.
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The Grading Pathway Non DR Features 

 

The Diabetic Eye Screening Programme has the primary function of detecting retinal 

disease secondary to diabetes. 

 

Other non DR features may be observed during the screening process which may result in 

the need for a referral or which may need to be recorded: 

 

to refer in other sight threatening conditions 

 

to have an audit trail back to see if confounders for DR (drusen / AMD, asteroid) were 

detected 

 

It is the responsibility of the Clinical Lead of the screening programme to decide what 

‘other lesions’ are recorded within the diabetic retinopathy screening programme, train the 

graders to detect these lesions and, if any referral is made from the screening programme 

for other eye lesions, to decide the referral pathway. 

 

Programmes should determine their own local policy for recording the features and 

handling the outcomes of Non DR related pathologies. This includes the number of 

grading stages where only non DR is observed. 

 

The lesions may either be recorded and require no action or, if they require a second 

opinion or referral, the image set should be sent to the ROG. 

 

The ROG will determine what outcome is indicated. The status of the patient from that 

point is described in the current exclusions and suspensions guidance. 

 

Local policy will determine whether the referral is directly from the service or routed 

through the GP. 
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Appendix 5 The different grades of diabetic retinopathy (DR) in the Scottish Grading 

Protocol: features and outcomes[160] 

Retinopathy Description Outcome 

R0 No diabetic retinopathy anywhere Rescreen 12 months 

R1(mild) 

Background diabetic retinopathy 
BDR – mild 

§ At least one dot 
haemorrhage or 
microaneurysm with or 
without hard exudates Rescreen 12 months 

R2(moderate) 

BDR – moderate 
§ Four or more blot 

haemorrhages (>=AH 
standard photograph 2a) 
in one hemi-field only 

(Inferior and superior hemi-fields 
delineated by a line passing through 
the centre of the fovea and optic 
disc) 

Rescreen 6 
months(or refer to 
ophthalmology if 
this is not feasible) 

R3(severe) 

BDR – severe 
Any of the following features: 

§ Four or more blot 
haemorrhages (>=AH 
standard photograph 2a) 
in both inferior and 
superior hemi-fields 

§ Venous beading (>= 
AH standard 
photograph 6a) 

§ IRMA (>= AH standard 
photograph 8a) 

Refer 
ophthalmology 

R4(proliferative) 

Proliferative diabetic retinopathy 
PDR 
Any of the following features: 

§ New vessels 
§ Vitreous haemorrhage 

Refer 
ophthalmology 

R5(enucleated) Enucleated eye 
Rescreen 12 months 
(other eye) 

R6 (inadequate) 

Not adequately visualised 
§ Retina not sufficiently 

visible for assessment 

Technical failure. 
Arrange alternative 
screening 
examination 

  



Appendix 

 

 

137 

Appendix 6 Documentation of  the medial_axis function from Skimage 

 

The medial_axis function defined in the scikit-learn package. The documentation and 

example of this package was provided below: 

 

medial_axis(image, mask=None, return_distance=False, *, random_state=None): 

    """Compute the medial axis transform of a binary image. 

 

    Parameters 

    ---------- 

    image : binary ndarray, shape (M, N) 

        The image of the shape to be skeletonized. 

    mask : binary ndarray, shape (M, N), optional 

        If a mask is given, only those elements in `image` with a true 

        value in `mask` are used for computing the medial axis. 

    return_distance : bool, optional 

        If true, the distance transform is returned as well as the skeleton. 

    random_state : {None, int, `numpy.random.Generator`}, optional 

        If `random_state` is None the `numpy.random.Generator` singleton is 

        used. 

        If `random_state` is an int, a new ``Generator`` instance is used, 

        seeded with `random_state`. 

        If `random_state` is already a ``Generator`` instance then that 

        instance is used. 

 

        .. versionadded:: 0.19 

 

    Returns 

    ------- 

    out : ndarray of bools 

        Medial axis transform of the image 

    dist : ndarray of ints, optional 

        Distance transform of the image (only returned if `return_distance` 
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        is True) 

 

    See Also 

    -------- 

    skeletonize 

 

    Notes 

    ----- 

    This algorithm computes the medial axis transform of an image 

    as the ridges of its distance transform. 

 

    The different steps of the algorithm are as follows 

     * A lookup table is used, that assigns 0 or 1 to each configuration of 

       the 3x3 binary square, whether the central pixel should be removed 

       or kept. We want a point to be removed if it has more than one neighbor 

       and if removing it does not change the number of connected components. 

 

     * The distance transform to the background is computed, as well as 

       the cornerness of the pixel. 

 

     * The foreground (value of 1) points are ordered by 

       the distance transform, then the cornerness. 

 

     * A cython function is called to reduce the image to its skeleton. It 

       processes pixels in the order determined at the previous step, and 

       removes or maintains a pixel according to the lookup table. Because 

       of the ordering, it is possible to process all pixels in only one 

       pass. 

 

    Examples 

    -------- 

    >>> square = np.zeros((7, 7), dtype=np.uint8) 

    >>> square[1:-1, 2:-2] = 1 

    >>> square 
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    array([[0, 0, 0, 0, 0, 0, 0], 

           [0, 0, 1, 1, 1, 0, 0], 

           [0, 0, 1, 1, 1, 0, 0], 

           [0, 0, 1, 1, 1, 0, 0], 

           [0, 0, 1, 1, 1, 0, 0], 

           [0, 0, 1, 1, 1, 0, 0], 

           [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) 

    >>> medial_axis(square).astype(np.uint8) 

    array([[0, 0, 0, 0, 0, 0, 0], 

           [0, 0, 1, 0, 1, 0, 0], 

           [0, 0, 0, 1, 0, 0, 0], 

           [0, 0, 0, 1, 0, 0, 0], 

           [0, 0, 0, 1, 0, 0, 0], 

           [0, 0, 1, 0, 1, 0, 0], 

           [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) 
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Appendix 7 Storyboard 
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