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Abstract

This thesis covers various aspects of Multi Model (MM) hearing impairments including hu-
man speech, sign language, behavior analysis, and facial expressions, which facilitate the deaf
communities. Recent research using wearable, audio, and visual technologies for monitoring
cognitive impairments in deaf individuals has its benefits but also presents certain limitations.
For instance, while wearable devices provide body-mounted monitoring, their constant use can
be uncomfortable, and there is a risk that deaf individuals might forget to wear them. More-
over, these devices need regular removal for recharging. In audio noise, even individuals with
regular hearing may struggle to clearly hear someone’s voice. Camera-based visual information
raises privacy concerns, and legal implications might restrict its broad usage in public and pri-
vate areas due to issues like filming without consent, which is illegal in many countries. This
thesis explores the use of Radio Frequency (RF) signals to sense human speech, sign recogni-
tion, behavior identification, and facial expressions using Wi-Fi, radar, and Radio Frequency
Identification (RFID) signals. RF sensing provides an exciting opportunity for next-generation
MM hearing aid devices. The RF-based hearing aid just requires Tx and Rx on a single chip.
Additionally, RF signal in the form of Wi-Fi is currently present in many homes. People move
around Wi-Fi signals, signal propagation is affected. Channel State Information (CSI) in Wi-Fi
describes how a signal propagates from the transmitter to the receiver. In this thesis, the data
collected in the form of CSI, micro-doppler, and Received Signal Strength Indicator (RSSI)
signals are fed into Machine Learning (ML) and Deep Learning (DL) techniques for classifi-
cation purposes. The proposed techniques successfully differentiate various activities, such as
speech recognition, sign language recognition, and behavior analysis by using head movements,
and facial expressions to understand the expressions of individuals when communicating with
deaf people. These techniques utilise RF signals to individually differentiate each activity and
achieve over 90% test accuracy. This thesis serves as a proof of concept for contactless MM
hearing aid systems that can assist deaf people with different perspectives to live independently
without the need to wear monitoring devices, audio, and visual devices.
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Chapter 1

Introduction

1.1 Background and Motivation

Normal hearing is defined as the ability to hear a sound of 20dB level and above. Inability to hear
this threshold can be recognised as hearing loss[1]. Hearing loss can be mild or severe and the
subjects are referred to as ‘hard of hearing’. Hearing loss and deafness is a major impediment
to normal communication and learning. Overall, 5% of the World’s population, around 430
million people suffer from hearing impairments. The number is expected to increase to 700
million people by 2050 [1]. In the United Kingdom (UK) alone, around 11 million individuals
live with hearing impairments and age-related hearing loss has become a serious concern [2].
Next-generation hearing aids by 2050 require transformative Multi Modal (MM) processing,
uninhibited by limitations of speech or sound enhancement. Lip-reading, sign language, head
movements, and face reading have gained notable research attention in recent years due to its
significance in many applications. These existing approaches are vision-based [3, 4, 5, 6, 7],
sensor-based [8, 9], and motion-based [10, 11].
Vision-based systems face fundamental issues like the necessity to record targets, raising privacy
concerns, and limiting real-world applications. Poor lighting affects image/video quality, and the
presence of face masks during COVID-19 has made camera-based lip-reading nearly impossible.
These systems also fail in complete darkness when visual observation of lip-movements is not
feasible. Sensor-based systems have their own flaws, requiring targets to wear or carry devices,
which can disrupt daily routines. In motion-based systems recently, RF based micro-movement
detection research has shown encouraging results. These approaches use fluctuations in widely
available RF signals to recognise movement. RF-based techniques, including Ultra-Wideband
(UWB) [12], Wi-Fi [13], Bluetooth [14], and Radio Frequency Identification (RFID) [15, 16]
are used to achieve precise detection of micro-movements. Wi-Fi-based, RFID-based, and radar-
based micro-movement monitoring is a promising solution when compared to other RF-based
approaches since it is a cost-effective due to the reuse of existing infrastructure. Now, there is
a need for the development of accurate and reliable RF-based MM sensing systems for hearing

1
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impairment in the deaf community. This is because RF sensing offers three main advantages,
which are outlined as follows:

1. Non-Invasive and Unobtrusive Monitoring: RF-based sensing, in contrast to wearable
or camera-based systems, doesn’t necessitate direct contact or a Line-of-Sight (LOS) con-
nection with the subject. This characteristic allows for uninterrupted and unobtrusive
monitoring, which is especially advantageous in sectors like healthcare, elderly care, and
security. Additionally, ambient RF sensing, as opposed to wearable sensing technologies,
lowers the risk of contact transmission infections by enabling contactless measurement of
vital signs and macro-health indicators in Non-Line-of-Sight (NLOS) environments [17].

2. Operational in Various Environmental Conditions: RF-based systems are less sensitive
to environmental variables like lighting conditions or weather in contrast to camera-based
systems, which may encounter difficulties in poor lighting or when views are obstructed
[18].

3. Preservation of Anonymity: RF-based sensing can track and analyse micro-movements
and vital signs without capturing facial or other identifiable features, inherently preserving
more anonymity than visual monitoring systems [19].

1.2 Problem Statement

The number of people with hearing impairments is expected to increase to 700 million by 2050
[1]. With this anticipated rise in the need for Hearing Aids (HAs), it is noteworthy that there are
currently only three existing technologies for HAs, each with its own disadvantages, which are
listed below.

1. Wearable Sensors: Wearable devices are electronic gadgets designed to be worn on the
body, typically as accessories. They can track and monitor various personal metrics such
as health and fitness data and provide a range of smart functionalities. However, these
sensors, when attached to the body for continuous monitoring, may not always be com-
fortable for users to wear all the time, potentially disrupting their daily routines [9]. Addi-
tionally, wearable hearing devices often require frequent charging or battery replacements
and regular maintenance, which can be inconvenient for users.

2. Audio-Based: Audio refers to the electronic representation, processing, or reproduction
of sound, usually within the range of frequencies audible to the human ear. Audio-based
devices designed for hearing impairments encounter challenges like ineffective noise fil-
tration in loud environments and sound distortion. Unfortunately, in noisy environments,
these devices often struggle, making it difficult to recognise individual voices [20].
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3. Vision-Based: A camera is a device that captures and records images, either as still pho-
tographs or moving videos by allowing light to fall onto a light-sensitive surface, such as
film or an electronic image sensor. Camera-based techniques face significant challenges,
including privacy concerns from recording subjects and poor lighting that affects image
quality. The widespread use of face masks during the COVID-19 era further reduces their
effectiveness in lip-reading, and these systems become ineffective in complete darkness
[21]. These unresolved issues continue to pose challenges for researchers.

1.3 Aims and Objectives

The purpose of this thesis is to create a non-invasive, contactless, MM sensing approach for
hearing impairments. Every study carried out for this thesis received ethical approval from the
College of Science and Engineering at the University of Glasgow. The purpose of MM aids is
not limited to Speech Recognition (SR); they also support the interpretation of visual cues such
as hand gestures, head movements, and facial expressions. The goals of this research include:

1. Review and evaluate the current systems for HAs and investigate the systems build for
lip-reading, hand movements, head movements, and facial Expression.

2. Analyse the visual information collected from a range of sensors, including USRP, radar,
and RFID.

3. Investigate Machine Learning (ML) and Deep Learning (DL) strategies for creating more
generalized, low-latency, energy-efficient, and privacy-preserving hearing aid systems for
deaf individuals.

4. Explore and integrate (with Ob3 models) ambitious wireless-based privacy-preserving
MM Lip-Reading (LR) and end-user cognitive load (CL) use prediction models to deliver
a personalised Audio-Video Speech Enhancement (AVSE) framework.

1.4 Contributions

This thesis proposes the effectiveness of MM sensing in applications related to hearing im-
pairments. It covers various technologies, including communication-based Wi-Fi, UWB radar-
based, Frequency Modulated Continuous Wave (FMCW) radar signals, and RFID-based signals.
Ethical approval for conducting these experiments was obtained from the University of Glas-
gow’s Research Ethics Committee (approval nos.: 300200232, 300190109). The significant
contributions of this work are outlined as follows:

1. Investigate the accuracy and computational cost of a range of ML and DL algorithms in
the context of MM sensing for hearing impairment.
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2. Lip reading recognition using RF-sensing-based technology is designed to accurately de-
tect lip movements whether a single subject is wearing a mask or not. This serves as a
proof of concept for lip reading detection.

3. Hand gesture recognition system using RF sensing-based technology is proposed that is
capable of accurately detect hand movements when performed by a single subject. This
serves as a proof of concept for hand gesture detection.

4. Head gesture recognition using RF sensing based technology is proposed that is designed
to accurately detect head movements whether a single subject performs them with or with-
out a wall obstruction. This serves as a proof of concept for head gesture detection.

5. Facial recognition using RF sensing is proposed that is capable of accurately detecting
facial expressions when performed by a single subject. This serves as a proof of concept
for facial detection.

1.5 Thesis Organisation

This thesis is organised into the following chapters:

Chapter 2 list the current technologies and literature related to the field of lip reading, hand
gesture recognition, head movements recognition, and facial expression.

Chapter 3 review examines how contactless sensing technologies can be utilised for lip-reading
detection under a face mask, particularly in the COVID-19 era. It compares technologies such
as Wi-Fi, Radar, and RFID sensing. The chapter concludes with findings that, while technolo-
gies like audio, video, and wearables are highly accurate, they do not function effectively under
face masks and lack privacy preservation. In contrast, technologies like Radar, Wi-Fi, and RFID
sensing can be implemented with privacy considerations, work effectively under face masks,
and yield high-quality results.

Chapter 4 details the process of data collection using radar sensors from deaf individuals, and
how DL techniques are applied for image classification of radar micro-doppler signatures. The
chapter employs DL algorithms to analyse radar images, which depict the movements of British
Sign Language (BSL). The findings indicate that, through a range of data processing techniques,
DL can accurately distinguish between various movements captured in the radar micro-doppler
signatures.

Chapter 5 discusses a novel approach that combines Wi-Fi and radar technologies, enhanced by
DL techniques, to detect head movements through walls. The potential of integrating these two
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sensing modalities to overcome the limitations of each technology when used separately. By
leveraging the strengths of both Wi-Fi and radar, along with the sophisticated pattern recogni-
tion capabilities of DL algorithms, this chapter demonstrates improved accuracy and reliability
in sensing head movements, even through physical barriers like walls. This advancement could
have significant implications for various applications, including security, health monitoring, and
smart home systems.

Chapter 6 develops an RF sensing-based system for facial expression recognition. The system
utilises frequency FMCW radar combined with ML techniques to classify facial expressions.
The study specifically focuses on five common facial expressions: Happy, Sad, Fear, Surprise,
and Neutral. The data, recorded as micro-doppler signals, are processed using state-of-the-art
ML models such as Super Learner (SL), Linear Discriminant Analysis (LDA), Random Forest
(RF), K Nearest Neighbor (KNN), Long Short-Term Memory (LSTM), and Logistic Regression
(LR) to extract relevant features. These features, derived from the radar data, are then input
into ML models for classification. The results demonstrate highly promising accuracy in facial
expression classification.

Chapter 7 concludes the thesis and details future work to be considered for expanding the work
discussed throughout the thesis.



Chapter 2

Literature Review

This chapter explores all contact and contactless techniques for hearing impairments that sup-
port lip reading, hand recognition, head movements, and facial recognition. The World Health
Organisation (WHO) reports that in the UK alone, about 11 million people live with hearing
impairments [1]. Therefore, the need for MM sensing techniques in this area is a critical as-
pect of healthcare research [22, 23, 24, 25]. MM hearing impairment technology is essential
for supporting the deaf community in communicating with others across various environments.
Future healthcare systems are looking to integrate such technologies to surpass the limitations
of current methods like wearables, cameras, and audio. This chapter also discusses how MM
hearing impairment devices enable communication through both verbal and non-verbal cues. It
introduces SR technologies, including contact and contactless methods, in Section 2.1. A re-
view of BSL in state-of-the-art technologies is presented in Section 2.2. Section 2.3 covers the
application of hearing aid devices in identifying human behavior. Section 2.4 discusses current
technologies that assist in the identification of facial expressions. Moreover, this chapter in-
cludes an overview of ML and DL techniques for classifying data collected by these devices,
detailed in Section 2.5. Finally, the findings of this chapter are summarised in Section 2.6.

2.1 Speech Recognition

This section investigates how lip-reading can be detected through both contact and non-contact
methods with the lips, as shown in Table 2.1.

Table 2.1: Summary of Speech Recognition Technologies: Sensor-, Audio-, Camera-, Radar-,
Wi-Fi-, and RFID

References Technology Used Application Key Outcomes Limitation
Sensor-Based Speech Recognition

Continued on next page
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Table 2.1 – continued from previous page
References Technology Used Application Key Outcomes Limitation
Xu et al.
[26]

Zwitterionic
hydrogel sensor

Silent-SR via
throat-worn
device

5x sensitivity
of nonionic hy-
drogels, 38ms
response, mimics
human skin

-

Kim et al.
[27]

Ultrathin silicon
strain gauges with
DL

Silent speech
interfaces

Detects mi-
nor physical
changes, facili-
tates non-verbal
communication

Sensitivity
to external
factors

Dong et al.
[28]

EMG technology
with less intrusive
dry electrodes

Lip-reading
for SR

Captures electri-
cal signals from
lip movements,
interprets signals
for lip-reading

Limited by dry
electrode reli-
ability

Lu et al.
[29]

Flexible triboelec-
tric sensors

Decoding lip
movements

Positioned inside
a pseudo mask
for clear visibil-
ity, identifies lip
movements

Mask design
may not fit all
users

Audio-Based Speech Recognition
Tsouvalas
et al. [30]

FedSTAR in Fed-
erated Learning
(FL)

Audio recog-
nition on
smartphones

Enhances audio
recognition with
minimal labeled
data; notable
gains in federated
settings

Dependency
on data distri-
bution

Adeel et al.
[31]

Acoustic modeling Speech quality
and intel-
ligibility
enhancement

Tested in real-
world scenarios
for improved
speech quality
and intelligibility

Requires clear
visual input

Continued on next page
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Table 2.1 – continued from previous page
References Technology Used Application Key Outcomes Limitation
Wu et al.
[32]

Two-layer LSTM
with pruning for
SR

Process au-
tomation via
human voice

Converts spoken
words to text,
with applica-
tions in process
automation

Pruning may
remove rele-
vant features

Johnson et
al. [33]

Voice recognition
systems

Healthcare
voice data
conversion

Converts sound
to digital signals
and data to text
for healthcare
applications

Susceptibility
to background
noise

Camera-Based Speech Recognition
Ma et al.
[34]

Video Speech
Recognition

Improving
VSR accuracy

Enhanced pre-
diction and
optimisation
outperform larger
datasets; effective
across multiple
languages

-

Various
[35, 36,
37]

Video Speech
Recognition

Communication
for the deaf,
biometric
authentication,
AVSE

Gained notable
research atten-
tion for various
applications

Challenges in
complex sce-
narios

Kamil et
al. [38]

Vision system for
lip-reading

Aiding pro-
nunciation for
the hearing-
impaired

Tracks lip move-
ments to distin-
guish phonemes
without an
instructor

Limited by
visual clarity
and user’s
ability to
mimic

Kastaniotis
et al. [39]

CNN-TCN model
for lip-reading

Predicting
Greek phrases
using mobile
phones

Surpasses CNN-
LSTM methods,
enhancing stabil-
ity and efficiency

Requires high-
quality video
input

Continued on next page
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Table 2.1 – continued from previous page
References Technology Used Application Key Outcomes Limitation
Nemani et
al. [40]

Custom 3-D CNN
for VSR

Analysing
spoken words
from video

Strong perfor-
mance across
conditions;
80.2% and 77.9%
accuracies

Dataset speci-
ficity and
generalisation
challenges

Radar-Based Speech Recognition
Yue Ma et
al. [41]

Auditory radar and
webcam

Speech recon-
struction

Accurate speech
reconstruction
for the char-
acter "A" with
portable radar
and webcam

Limited to sin-
gle character
analysis

Hameed et
al. [22]

Radar and Wi-Fi
sensing, ML/DL
algorithms

Vowel classifi-
cation

High accuracy
(91.67%) in
vowel classifi-
cation without
mask

Specific to
vowels, may
not generalise
to all speech

Ge et al.
[42]

Multimodal
dataset with
radars, camera,
and sensors

SR research Introduction of
RVTALL dataset
for diverse SR
applications

Dataset com-
plexity and in-
tegration chal-
lenges

Wi-Fi-Based Speech Recognition
Hameed et
al. [22]

Radar and Wi-Fi
RF sensing with
ML/DL

Vowel classifi-
cation

High classifica-
tion accuracy of
95% with Wi-Fi
data for vowel
recognition

Specific to
vowels, may
not generalise
to all speech

Wang et al.
[43]

CSI-based recog-
nition system

Pronunciation
classification

91% accuracy for
single user, 74%
for three users
with WiHear
system

Decreased
accuracy
with multiple
speakers

RFID-Based Speech Recognition
Continued on next page
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Table 2.1 – continued from previous page
References Technology Used Application Key Outcomes Limitation
Zhang et
al. [44]

Commercial RFID
technology with
multiple tags
embedded on a
transparent sheet

Words detec-
tion

95% detection
accuracy for user
speech; vocabu-
lary recognition
of 20 words with
an average classi-
fication accuracy
of 88%

Limited vo-
cabulary size;
potential
challenges
in expanding
the system
to recognise
a broader
vocabulary

Wang et al.
[45]

RFID tattoos at-
tached around the
user’s face

Speech recog-
nition

86% accuracy
rate among 10
users

Discomfort
from wearing
tattoos; need
for multiple
tags for a
single word
increases
costs; re-
calibration
difficulty;
limited com-
munication
range of 2.5
meters; con-
cerns about
cost efficiency
and user
convenience

2.2 Sign Language Recognition

This section examines how Sign Language can be recognised through methods that involve both
contact with and non-contact with the hand, as shown in Table 2.2.
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Table 2.2: Summary of Sign Language Recognition Technologies: Sensor, Camera-, Radar-,
Wi-Fi-, and RFID

Reference Technology Used Application Key Outcomes Limitation
Sensor-Based Sign Language Recognition
Gu et al.
[46]

Smart wearable
system with IMUs
on fingertips and
back of the hand

Interpreting
ASL

Average accuracy
of 99.81% in
identifying ASL
gestures

-

Fan et al.
[47]

Smart data glove
with sensors and
an IMU

Recognising
various hand
gestures in
land and
underwater
environments

High accuracy
rates (over 98%),
adaptive ges-
ture recognition
model, 94%
accuracy for new
users/devices

-

Harish et
al. [48]

Wearable glove
with flex sensors
and accelerome-
ters

Human Ma-
chine Interface
for ISL

Improved ac-
curacy from
74.12% to 97.2%
with accelerome-
ters

Initial lower
accuracy rate
without ac-
celerometers

Preetham
et al. [49]

Data glove with 10
flex sensors

Hand gesture
recognition

- Limited to
single-hand
gestures

Faisal et al.
[50]

Dataglove with
sensors, microcon-
troller

ASL recogni-
tion

Over 82% accu-
racy for static and
97% for dynamic
gestures

-

Pan et al.
[51]

Wearable system
with bimodal
capacitive sensors,
5G technology

Detecting
finger move-
ments and
hand location

Over 99% accu-
racy in static and
91% in dynamic
gesture recogni-
tion

-

Continued on next page
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Table 2.2 – continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Wang et al.
[52]

Miniature inertial
sensors with ML
algorithms

Hand gesture
recognition

High accuracy
with random
forest for static
gestures and en-
hanced LSTM for
dynamic gestures
(up to 98.3%)

-

Camera-Based Sign Language Recognition
Jadooki et
al. [53]

Kinect sensor sys-
tems

Recognition of
static signs of
SL

Fusion of depth
data and color in-
formation

-

Bauer et al.
[54]

Colored gloves,
HMM

Automatic
recognition of
SL

Data classified
using the KNN
algorithm

-

Mohandes
et al. [55]

2D video cameras SL recognition Cameras widely
used for SLR

-

Pigou et al.
[56]

Deep end-to-end
neural network

Gesture iden-
tification in
video

Enhances frame-
wise gesture
recognition

-

Neverova
et al. [57]

CNN architecture Integrates data
from multiple
channels

Learns from
grayscale video,
depth, and skele-
tal joints

-

D et al.
[58]

HOG, ANN BSL classifi-
cation

Utilised HOG for
image examina-
tion

-

Aditya et
al. [59]

Attentive multi-
feature network

CSLR in video
streams

Introduces extra
keypoint features
and attention
layers

Struggles with
limited infor-
mation during
training

Alyami et
al. [60]

2DCRNN,
3DCNN

Classifying
Arabic sign
language

High accuracy
levels (92%
with 2DCRNN
and 99% with
3DCNN)

-

Continued on next page
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Table 2.2 – continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Radar-Based Sign Language Recognition
McCleary
et al. [61]

CW radar and DL BSL gesture
recognition

92.81% accuracy
in recognising 36
finger movements

-

Rahman et
al. [62]

FMCW Radar,
GAN

Word-level
ASL recogni-
tion

- -

Gurbuz et
al. [63]

RF sensor and
CNN

ASL recogni-
tion

Real-time sign
recognition at 77
GHz

-

Wang et
al.(2023)
[64]

MV-DNN,
millimeter-wave
radar

CSL recogni-
tion

96% accuracy for
eight CSLs

-

Li et al.
[65]

UWB radar SL and hand
gesture recog-
nition

Shows improved
accuracy

-

Gavin et al.
[66]

Millimeter-wave
radar, CNN

ASL recogni-
tion

Effective in
scenarios with
overlapping
movements

-

Wi-Fi Based Sign Language Recognition
Shang et
al. [67]

Wi-Fi CSI, SVM SL classifica-
tion

Higher classifica-
tion accuarcy of
SL

-

Ji et al.
[68]

Wi-Fi devices,
Neural Network

Constructing
hand skeletons

Generates 2D and
3D hand models,
enables finger
tracking and SLR

-

Lin et al.
[69]

Smartphone, Wi-
Fi router, ML
models

Human activ-
ity recognition

97.25% accuracy
in classifying 20
types of human
activities

-

Gao et al.
[70]

Wi-Fi CSI, CNN,
KNN

SLR High accuracies
on the SignFi
dataset

-

Continued on next page
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Table 2.2 – continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Zhang et
al. [71]

Wi-Fi signals,
PCA, Residual-
MultiHead model

SLR for
phrases

95.03% recogni-
tion accuracy for
English phrases
translation

-

RFID-Based Sign Language Recognition
Xu et al.
[72]

Passive RFID tag CSL recogni-
tion

Average F1-
scores of 96.67%
for new users and
97.50% for new
environments

-

Zou et al.
[73]

COTS RFID read-
ers

Gesture recog-
nition

High accuracy
of 96.5% in
fixed-position
and 92.8% in
diverse-position
scenarios

-

Ma et al.
[74]

RFID technology
and Siamese net-
work

Gesture recog-
nition

Achieves an
accuracy of
0.93 with a sin-
gle sample per
gesture

-

Zhao et al.
[75]

RFID technology Human action
recognition

Developed a
system for spa-
tiotemporal data
analysis

-

Dian et al.
[76]

RFID with MCNN Gesture recog-
nition

Significantly out-
performs existing
RFID solutions

-

2.3 Head Movements Recognition

This section discusses techniques for recognising head gestures that both require and do not
require contact with the head, as shown in Table 2.3.
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Table 2.3: Summary of Head Movements Recognition Technologies: Sensor, Camera-, Radar-,
Wi-Fi-, and RFID

Reference Technology Used Application Key Outcomes Limitation
Sensor-Based Head Movements Recognition
Liu et al.
[77]

Smart pillow with
strain-sensing
threads

Tracking head
movements

Successful real-
time tracking
for flexible
bioelectronics

-

Gonzalez
et al. [78]

Wheelchair op-
erated by head
movements

Mobility
impairments
assistance

"Very good" SUS
rating; response
times detailed

Head mo-
tion errors in
variable speed

Lee et al.
[79]

Infrared Sensors Minimising
car accidents

78% success in
detecting drowsy
driving

-

Jiang et al.
[80]

Human-machine
interface with flex-
ible strain-sensing
threads

Accurate head
motion track-
ing

92% accuracy in
predicting head
orientations

-

Camera-Based Head Movements Recognition
Al et al.
[81]

Eye-gaze and
head movement
tracking

Human-
computer
interaction

Comprehensive
methods
overview

-

Horprasert
et al. [82]

Facial symmetry
and anthropomet-
ric measurements

Determining
head orienta-
tion

Empirical val-
idation with
photographs

-

Neto et al.
[83]

Real-time head
movement esti-
mation via video
camera

Communication
interface

Tuned computer-
vision algorithms

Environment
specificity

Arcoverde
et al. [84]

API for mobile
phones with
computer vision

Real-time
head pose
estimation

Robust across di-
verse conditions

-

Merrouche
et al. [85]

Vision-based fall
detection with a
depth camera

Human shape
analysis, head
tracking

93.25% accuracy
on SDUFall
dataset

-

Continued on next page
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Table 2.3 – continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Wang et al.
[86]

Head pose track-
ing with gaze esti-
mation

Driver’s gaze
zone estima-
tion

Effective gaze di-
rection prediction

-

Radar-Based Head Movements Recognition
Raja et al.
[87]

Millimeter-wave
doppler radar

3D head track-
ing in vehicles

92% movement-
prediction accu-
racy

-

Ding et al.
[88]

FMCW radar Detecting inat-
tentive driving
behaviors

Average accuracy
of about 95%

-

Bresnahan
et al. [89]

Millimeter-wave
FMCW radar

Classifying
driver head
movements

High classifica-
tion accuracy in
both stationary
and moving cars

-

Nguyen et
al. [90]

Millimeter-wave
radar with One-
shot learning

Monitoring
head move-
ments

High accuracy of
100%

-

Bu et al.
[91]

LFMCW radar
with multidomain
fusion network

Human head
movement
recognition

Enhanced ac-
curacy using
a multidomain
approach

-

Sun et al.
[92]

Automotive-
Radars in driving-
assistance systems

Advantages
and challenges
discussion

Higher angular
resolutions with
fewer antennas

Hardware
and size
constraints

Wi-Fi Based Head Movements Recognition
Shang et
al. [67]

Kernel-based
SVM

Classification
of SL using
CSI patterns

Utilised for SL
classification

-

Ji et al.
[68]

Neural network
with Wi-Fi devices

Constructing
hand skeletons
for SLR

Generates 2D and
3D hand mod-
els; surpasses
previous methods

-

Lin et al.
[69]

ML models with
Wi-Fi CSI

Human activ-
ity recognition

97.25% accuracy
in classifying hu-
man activities

-

Continued on next page
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Table 2.3 – continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Gao et al.
[70]

CNN and KNN
with Wi-Fi CSI

Wi-Fi-based
SLR

High accuracies
on the SignFi
dataset

-

Zhang et
al. [71]

PCA and
Residual-
MultiHead model
with Wi-Fi signals

SLR for
phrases

95.03% recogni-
tion accuracy for
English phrase
translation

-

RFID-Based Head Movements Recognition
Chen et al.
[93]

RFID for passive
sensing

Head gesture
recognition

91% accuracy in
recognising head
gestures

Interference
from other
body move-
ments

He et al.
[94]

RFID with cross
circular polarisa-
tion

Non-contact
human activity
detection

Improved SNR
and sensing
range, 230%
increase in
detection area

-

Figueiredo
et al. [95]

RFID, antennas,
IMU

Tracking head
orientation

Accurate predic-
tion of Euler an-
gles, minimal er-
ror

Challenges
with noise and
sampling

Yang et al.
[96]

RFID tag phase re-
sponses for Nod-
Track

Driving fa-
tigue detection

High accuracy
in detecting
nodding motion

-

2.4 Facial Recognition

This section discusses techniques for recognising facial expressions that include both contact
and non-contact with the face, as shown in Table 2.4.

Table 2.4: Summary of Facial Recognition Technologies: Sensor, Camera-, Radar-, Wi-Fi-, and
RFID

Reference Technology Used Application Key Outcomes Limitation
Sensor-Based Facial Expression Recognition

Continued on next page
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Table 2.4 Continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Yan et al.
[97]

EmoGlass:
emotion-detecting
glasses

Enhancing
emotional
awareness

Recognizes seven
facial expres-
sions; valuable
insights for emo-
tional health
tech

-

Matthies et
al. [98]

Wearable sensing
methods survey

Understanding
emotions for
HCI

Reviews tech-
nologies for
emotion recogni-
tion

-

Verma et
al. [99]

Inertial sensors Facial ex-
pression
recognition

89.9% aver-
age accuracy
in detecting
expressions

-

Masai et
al. [100]

Photo Reflective
Sensors

Recognizing
facial expres-
sions during
daily activities

Identifies eight
expressions;
resembles regular
glasses

-

Matthies et
al. [101]

EarFieldSensing
(EarFS)

Detecting
facial ex-
pressions via
electric field
changes

High accuracy
in facial gesture
recognition

-

Camera-Based Facial Expression Recognition
O et al.
[102]

Cameras with
computer vision
and DL

Facial ex-
pression
recognition

Effective face ex-
pression classifi-
cation

-

Wu [103] Edge comput-
ing with mobile
network design

Real-time fa-
cial expression
recognition
on mobile
devices

Efficient and real-
time recognition

-

Continued on next page
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Table 2.4 Continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Komagal
[104]

PTZ cameras with
Faster R-CNN

Facial ex-
pression
analysis for
educational
technology

Enhances student
engagement
recognition

-

Siddiqi et
al. [105]

Depth camera with
PCA and ICA

Facial Ex-
pression
Recognition
(FER) system

98.0% accuracy
rate

-

Suk et al.
[106]

Smartphone app
with SVMs

Real-time fa-
cial expression
recognition

86% accuracy
on standard
dataset; 72% in
real-world testing

Limited frame
rate

Terissi et
al. [107]

Single camera
with 3D face
model

Tracking head
pose and facial
expressions

Effective tracking
without specific
training phase

Challenges
with occlu-
sions and
varying dis-
tances

Radar-Based Facial Expression Recognition
Mostafa et
al. [108]

IF waveform gen-
eration and acqui-
sition circuits

Radar system
applications

Suitable for
radar system
applications

-

Shah et al.
[109]

RF sensing tech-
nologies (Doppler
radar, RFID, Wi-
Fi)

Monitoring
health param-
eters

Explores various
RF-based sensing
techniques

-

Dang et al.
[110]

Millimeter-wave
radar with DL
model

Emotion
recognition

High accuracy in
emotion recogni-
tion

-

Zhang et
al. [111]

CW radar and
camera technology

Non-contact
emotion
recognition

High accuracy in
emotion recogni-
tion

Interference
reduction
required

Gouveia et
al. [112]

Non-contact radar
for emotion recog-
nition

Mental health
care applica-
tions

Accuracy rates
between 60% and
70%

-

Continued on next page
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Table 2.4 Continued from previous page
Reference Technology Used Application Key Outcomes Limitation
Dang et al.
[113]

Millimeter-wave
radar with DL

Classifying
emotions

High recognition
accuracy

-

Wi-Fi Based Facial Expression Recognition
Chen et al.
[114]

Wi-Fi signal anal-
ysis (WiFace)

Facial ex-
pression
recognition

94.80% accu-
racy for six
expressions

-

Gu et al.
[115]

Wi-Fi and vision-
based analysis

Hybrid emo-
tion recogni-
tion

79.05% accuracy
for seven emo-
tions

-

Gu et al.
[116]

Wi-Fi sig-
nal processing
(EmoSense)

Emotion sens-
ing

Unobtrusive
detection

-

Khan et al.
[117]

Wireless signals
with DL

Emotion state
recognition

71.67% classifi-
cation accuracy

-

Jia et al.
[118]

RF system with
Wi-Fi (BeAware)

Behaviour
recognition

Effective user
behavior recogni-
tion

-

RFID-Based Facial Expression Recognition
Ramli et
al. [119]

Stretchable strain
sensor

Facial expres-
sion detection

High sensitivity;
can stretch up to
20% strain

-

Xu et al.
[120]

RFID for facial au-
thentication

Enhancing pri-
vacy and anti-
spoofing

Over 95.7% suc-
cess in authenti-
cation; EER of
4.4%

-

Battaglia
et al. [121]

RFID with face
recognition and
pattern matching

Authentication
solution

Addresses com-
putational com-
plexity and data
storage issues

-

Luo et al.
[122]

RFaceID: RFID-
based face recog-
nition

Facial recog-
nition

93.1% recogni-
tion accuracy

-
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2.5 Machine and Deep Learning

ML involves algorithms that enable computers to identify patterns and make decisions or pre-
dictions based on data [123]. ML and DL are widely used in various applications, including
self-driving cars, SR, and etc [124, 125]. ML encompasses diverse algorithms designed to
address different problems [126]. These algorithms create models using training data, which
provide sample patterns for the algorithms to recognise in future, unseen data. By learning from
these patterns, ML algorithms can make predictions or decisions based on past data examples.
For instance, when a model is fed sensor information about specific movements, ML algorithms
can detect patterns of these movements in new, unseen samples. DL algorithms, a subset of ML,
utilise neural networks that mimic the functioning of the human brain.

2.5.1 Advantages of Machine Learning

ML has the advantage of requiring no specific programming to recognise patterns. Instead, ML
algorithms learn from sample data, known as training data, allowing them to find patterns on
their own. This method saves time and uncovers patterns in data that people may find difficult
to discern[127, 128].

2.5.2 Machine Learning Approaches

ML algorithms are broadly categorised into three groups: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning involves algorithms learning from
labeled training data to recognise patterns and subsequently predict or classify data based on
these learned patterns [129]. Unsupervised learning, on the other hand, works with unlabeled
data, with computers clustering data into clusters based on identified patterns [130]. Reinforce-
ment learning is a reward-based system in which the algorithm learns to attain a specific reward
through trial and error. This sort of learning is used in a variety of applications, including as
self-driving automobiles and strategic games such as chess [131].

2.5.3 Advantages of Deep Learning

DL provides flexibility across applications such as image identification and natural language
processing. It specialises in processing huge and complicated datasets and automatically ex-
tracting crucial features. It is an essential tool because of its robustness, adaptability, and ability
to deal with unstructured data and make predictions in real-time. Enhancing its efficiency and
usefulness is its automated decision-making and transfer learning capabilities [132, 133, 134].



CHAPTER 2. LITERATURE REVIEW 22

2.5.4 Deep Learning Approaches

DL is the subset of ML, that utilises artificial neural networks similar to those in the human
brain [135]. These networks consist of interconnected neurons [136]. DL architectures include
an input layer for training the data, several hidden layers, and an output layer. The deep in
DL refers to the number of hidden layers, which can be quite extensive [137]. These layers
process input data by multiplying it with assigned weights and producing outputs [138]. The
final output is compared to the input layer at the output layer, resulting in weight recalibration
for better alignment with the input data. As the input is passed through the layers the final
output is represented in the output layer. The output layer is then compared to the input layer
and weights are recalculated to be more in line with the input data [139]. The weight values
are then readjusted which results in small changes in the network’s perception of patterns in the
data to increase accuracy [140]. The input data is then fed through the network with the updated
weights. Backpropagation algorithms are used to adjust the values of the weights based on the
results of the previous run [141]. This process is repeated many times until optimal results are
obtained. The number of times the data is fed through the neural network is known as epochs
[142].

2.6 Summary

In this chapter, we have discussed various technologies that support future hearing impairment
applications designed to assist the deaf in communicating with hearing individuals through both
verbal and non-verbal modes. The concept of future MM hearing aids encompasses speech
recognition (SR), sign language recognition (SLR), head movement recognition, and facial
recognition to identify others’ behaviors. However, existing technologies such as wearables,
audio systems, and cameras face certain limitations in supporting future hearing aid devices.
Table 2.5 outlines the advantages and limitations of current and prospective technologies that
support hearing aid devices. The work of this thesis seeks to fill this gap in the literature. The
next chapter describes the important aspects of future MM hearing aid devices that use RF-based
SR.

The work of this thesis seeks to fill this gap in the literature. The next chapter describes the
important aspects of future MM hearing aid devices that use RF-based SR.
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Table 2.5: Technologies supporting future hearing aid device

Technology Type Advantages Limitations
Wearable-Based Devices Collect and monitor vari-

ous personal metrics, such
as health and fitness data,
and provide smart fea-
tures.

Continuous attachment
can cause discomfort,
limited battery life neces-
sitating frequent charging.

Audio-Based Devices Allows communication in
verbal modes.

Insufficient noise filtering,
sound distortion in noisy
environments, difficulty
distinguishing voices.

Camera-based Devices Support non-verbal com-
munication modes like fa-
cial recognition and lip-
reading.

Privacy concerns, de-
graded image quality in
poor lighting, ineffective
with face masks and in
total darkness.

RF Sensing (Radar, Wi-Fi,
RFID)

Can penetrate masks eas-
ily, leverage existing com-
munication signals and in-
frastructure, not dependent
on light, offers solutions to
assisted living and contact-
less monitoring.

Gaps in literature on RF
sensing for MM hearing
aids, the need for a Tx
and Rx chip addition to the
hearing aid.



Chapter 3

Lip Reading Under Face Mask Using
Contactless Sensing

Lip-reading has emerged as a vital research challenge with the objective of recognising speech
through lip movements. However, most existing lip-reading technologies, such as Sensor-based,
Audio-based, and Vision-based systems, encounter substantial limitations. Sensor-based devices
often cause discomfort in daily usage, Audio-based methods face challenges in noisy environ-
ments, and Vision-based techniques have become almost impractical during the COVID-19 era
due to mask usage. This chapter introduces three innovative approaches for MM hearing im-
pairment based on speech recognition, emphasising non-invasive methods to detect speech in
the presence of face masks such as radar, Wi-Fi, and RFID. It also highlights potential future
research directions essential for developing advanced hearing impairment technologies adapted
to the unique challenges posed by the COVID-19 pandemic.

3.1 Introduction

Hearing abilities are often measured by a person’s capacity to understand noises at decibel levels
(dB) of 20 and above. When people fail to distinguish sounds at this level or higher, it is a sign
of a problem with hearing, from small to serious [1]. Those with such disorders frequently
encounter considerable difficulty in ordinary communication and learning processes and are
commonly termed as ’hard of hearing’ or ’deaf’. Globally, approximately 5% of the population,
or around 430 million individuals, currently experience hearing impairments. According to
predictions, this amount will rise to 700 million by 2050. Around 11 million people in the United
Kingdom have hearing impairments, with age-related hearing loss emerging as a significant issue
[2]. Future developments in hearing aids are expected to significantly evolve, emphasizing MM
processing that extends beyond the traditional scope of speech and sound enhancement.

Existing hearing impairment technologies have several drawbacks. Sensor-based systems
require the user to wear or carry devices, which can be uncomfortable for prolonged periods and

24
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Figure 3.1: Conceptual illustration of the proposed lip-reading framework.

disrupt daily activities. These devices often need frequent charging or battery replacement, and
require regular maintenance, adding to the inconvenience. Audio-based devices, while designed
for hearing impairments, struggle with noise filtration in loud environments and can distort
sounds. This makes it challenging to recognise individual voices in noisy environments. Vision-
based systems, which use visual information like lip-reading for speech recognition, face privacy
concerns. The use of cameras in hearing aids could be seen as recording without consent, which
is legally problematic in many regions. Moreover, the widespread use of face masks during the
COVID-19 pandemic has further limited the effectiveness of vision-based hearing aids.

The limitations of existing hearing aid devices indicate that RF sensing is the only viable
solution for MM hearing aid devices. The need for advancement of next-generation MM hearing
aids could be propelled by RF sensing technology. This approach, adept at detecting lip and
mouth movements, provides precise cues for hearing aids by identifying spoken sounds and
speech patterns through ML and DL techniques. A notable benefit of RF sensing is its efficacy
even with face masks on, as RF signals can penetrate masks to capture essential visual cues,
overcoming a major limitation of existing hearing aid devices. This chapter describes the design,
development, and demonstration of a functioning RF sensing-based system for the detection of
spoken sounds via face masks. The suggested RF sensing device can function both on its own
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and in combination with the hearing aids, helping to identify lip and mouth movements that are
hidden by face masks, which often obstruct visual cues in vision-based hearing aid systems.

A conceptual illustration of the proposed lip-reading framework is presented in Figure. 3.1.
This framework detects variations in wireless CSI amplitudes, resulting from lip and mouth
movements, through the use of ML and DL algorithms. These variations are then categorised
into distinct forms of speech, such as words, phonemes, or letters. In particular, the radar-based
system within this framework uses Doppler shift spectrograms, which a DL model identifies to
classify various lip movements. Additionally, the framework incorporates a passive RFID tag,
commonly found in Ultra high frequency (UHF) Textile Laundry products, which is integrated
into a standard mask for data collection. This design ensures comfort and eliminates discomfort
for the wearer. The gathered data, expressed in RSSI values, are then analysed with different
ML models. The applications of this RF-based lip-reading framework are diverse, extending to
fields such as hearing aid enhancement, biometric security, and voice-activated controls in smart
home and vehicle infotainment systems.

3.2 Radar and Wi-Fi Speech Recognition

3.2.1 Methodology

The methodology used in this chapter has five main steps. Firstly, the experimental setup of radar
and Wi-Fi is described, followed by data collection as the second step. The third step details the
pre-processing phases. In the fourth step, the parameter settings of the considered algorithm
are described. Finally, the evaluation metrics of the classification model are outlined. The
subsequent subsections provide a detailed discussion of each stage in the proposed methodology.

Radar Based Experimental Setup

The hardware setup of radar-based lip-reading system is shown in Figure. 3.2, where Figure.
3.2a shows the front view and Figure. 3.2b represents the top view. Correspondingly, the front
and top views of Wi-Fi-based setup are shown in Figure. 3.2c and Figure. 3.2d, respectively. For
radar-based setup, Xethru X4M03 an UWB was used in this experiment, which was placed on
top of the screen of the laptop. The Xethru X4M03 is a UWB radar sensor with built-in transmit-
ter (Tx) and receiver (Rx) antennas, providing a maximum detection range of 9.6 metres. Key
parameter settings of the radar are indicated in Table. 3.1. The subject was sitting 0.45 metres
away from the radar while pronouncing vowels as illustrated in Figure. 3.2b. The body was in
normal position and the only movements were the lip movements along with slight head move-
ments, which are common while talking. The duration of each activity was set to 6 seconds,
where an activity represents the data collection of a single vowel from a single subject. The RF
signal was transmitted and received from the radar within this duration. The UWB radar-based
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system setup for lip-reading data collection and processing is illustrated in Figure. 3.4a. The
details of all components presented in the figure are discussed later in this section. The features
utilised for the radar are obtained from the STFT of the radar signal which provide the spectro-
grams of radar doppler shift due to lip and mouth movements. The analysis of the spectrograms
showed that different vowels resulted in different spectrograms due to the differences in lip and
mouth movements. To classify vowels, pre-trained Visual Geometry Group (VGG) models was
utilised due to their better performance on abstract images like spectrograms [143, 144].

Table

Chair

0.45m

0.45m

Xethru X4M03 Radar

Tx and Rx

Table

Chair

Rx

0.45m

0.45m

USRP X300

TxRx

a

c

b

d

Figure 3.2: Experimental setup of the data collection through radar and Wi-Fi. (a) Front view
of the data collection setup using Xethru UWB radar. (b) Top view of the radar based data
collection. (c) Front view of Wi-Fi based data collection. (d) Top view of the Wi-Fi based data
collection setup.

Parameter Value
Platform Xetru radar X4MO3
Instrumental range 9.6 meters
Target’s distance from radar 0.45 meters
Operating frequency 7.29GHz
Transmitter power 6.3dBm
Activity duration 6 seconds
Collected samples in each class 50

Table 3.1: Configuration parameters of radar software and hardware.

Wi-Fi Based Experimental Setup

For the second set of experiments, Wi-Fi was used as a lip movement recognition platform. For
this, a Universal Software Radio Peripheral (USRP) X300 was used, equipped with one direc-
tional antenna as a Tx and two omnidirectional antennas as Rx as shown in Figure. 3.2c. For
experiments, monopole antennas, VERT2450, optimised at 2.45GHz frequency band, were used
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as Rx. A log-periodic antenna, HyperLOG 7040 X BPA was used as a Tx. Both Tx and Rx an-
tenna gains were set to 35dB. The USRP was connected with a desktop having an Intel(R) Core
(TM) i7-7700 3.60GHz processors with a 16GB RAM. Key parameter settings of the Wi-Fi
based setup are indicated in Table. 3.2. GNU’s Not Unix (GNU) radio was used to communi-
cate with the USRP with the help of a virtual machine having Ubuntu 16.04 operating system.
A python script was developed to send and receive data from USRP X300. The experiments
were conducted at an operational frequency of Wi-Fi in 2.45GHz band. Both the Tx and Rx
antennas were placed around 0.45 metres from the target as illustrated in Figure. 3.2d. Each
activity was performed for 6 seconds. It is worth mentioning that Wi-Fi signals were tested with
different features including time-frequency maps, etc. However, the CSI values of Wi-Fi signals
performed best with variations in CSI amplitudes unlike the radar signals, where frequency shift
was a major differentiating factor. The variations in one dimensional CSI amplitude showed
clear patterns which could be attributed to a spoken vowel.

Parameter Value
USRP Platform X300
OFDM subcarriers 51
Operating frequency 2.45GHz
Transmitter Gain 35dB
Receiver gain 35dB
TX Antenna Log periodic HyperLOG 7040, 700MHz to 4GHz
Rx Antenna Monopole VERT2450, 2.45GHz
Target’s distance from Tx and Rx antennas 0.45 meters
Activity duration 6 seconds
Collected samples in each class 50

Table 3.2: Configuration parameters of USRP software and hardware.

Data Collection

The conducted experiments were performed with two different technologies, i.e., Wi-Fi and
radar. Five vowels, A, E, I, O, and U were collected along with an empty letter, where subjects
were not talking at all, and the lips were in normal closed position. An illustration of the lip
movements to speak out all classes is shown in Figure. 3.3a, while the corresponding CSI sam-
ples and spectrograms are shown in Figure. 3.3b and Figure. 3.3c, respectively. The following
section describes the experimental hardware setup used to collect data using both technologies.

For both experiments (radar and Wi-Fi), three participants, one male and two females, par-
ticipated in the data collection process. The reason to include more participants was to make
the dataset more realistic and diverse. A total of 3600 data samples were collected during both
experiment for six classes, namely, A, E, I, O, U, and Emp, where Emp represents the lip pos-
ture of being silent. In each experiment, a total of 1800 data samples were collected from three
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Figure 3.3: Pronounced vowels with their representation in Wi-Fi and radar signal. (a) A visual
illustration of the pronounced vowels. (b) Wi-Fi data samples with mask representing various
vowel classes. (c) Radar data samples with mask representing various vowel classes. (d) Wi-Fi
data samples without mask representing various vowel classes. (e) Radar data samples without
mask representing various vowel classes.
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participants, 900 with face mask and 900 without face mask, where 50 samples were collected
in each class. In particular, each participant repeated the speaking activity of each vowel 50
times with mask and 50 times without mask with the radar. Similarly, the same amount of data
was collected from USRP with the same strategy. In this way, each participant contributed to
collect 1200 data samples in total for six classes, two scenarios (with mask and without mask)
and two technologies (radar and Wi-Fi). The ethical approval to conduct these experiments was
obtained by the University of Glasgow’s Research Ethics Committee (approval no.: 300200232,
300190109).

In the case of Wi-Fi, each instance of the data represents the CSI amplitudes, where 2000
packets were transmitted in a duration of six seconds. Figure. 3.3b illustrates the CSI patterns
(amplitude) of considered Lip movements, i.e., A, E, I, O, U and empty, in the case of face
mask. The CSI patterns in the case of without face mask are illustrated in Figure. 3.3d Different
colours in each figure represent the 51 subcarriers of the OFDM signal. Y-axis of each sub-figure
represents the amplitude of the subcarriers while number of received packets are displayed on
x-axis. The same data collection strategy was applied in radar, where a total number 1800 data
samples were collected for three subject male and females with and without face mask, with 50
data samples in each class. In the case of radar, each instance of data sample is represented in
the form of a spectrogram, displayed in Figure. 3.3c for with face mask. The spectrograms for
without face mask scenario are represented in Figure. 3.3e.

Data Pre-Processing Radar Data

In the beginning, the radar chip was configured via the XEP interface with x4driver. Data were
recorded from the module at 500 Frames Per Second (FPS) in the form of float message data.
A loop was used to read the data file and save the data into a data stream variable, which was
mapped into a complex range-time-intensity matrix. Thereafter, the Moving Target Indication
(MTI) filter was applied to get the doppler range map. Afterward, the second MTI was used as a
butterworth 4th order filter to generate the spectrograms using the following parameters: window
length, overlap percentage, and Fast Fourier Transform (FFT) padding factor. In particular, a
window length of 128 samples, and a padding factor of 16 were used. In addition, a range
profile was created by first converting each chirp to an FFT. A second FFT is then conducted on
a defined number of consecutive chirps for a given range bin. Furthermore, an STFT was used
to create these spectrograms, because, unlike Fourier Transform (FT), it offers both temporal
and frequency information [145]. This is done by segmenting the data and then performing a
fourier transform on each segment. When the window length is changed, both the temporal and
frequency resolutions are altered inversely. For example, if one increases the other decreases.
The level of doppler detail in radar data is determined by the hardware’s sampling capability.
The greatest unambiguous doppler frequency in radar is Fd,max = 1

2tr, where tr is the chirp time.
In this chapter, we look at lip-reading recognition at a distance D(t) from a specified location
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such as the mouth. V(t) represents the point of target movement in front of the radar, and Ts

represents the transmitted signal,

Ts(t) = Acos(2π f t). (3.1)

The received signal is provided by Rs(t),

Rs(t) = Ácos(2π f (t − 2D(t)
c

)), (3.2)

where A is the reflection coefficient, and c is the speed of light. The reflected signal can be
expressed as Rs(t), where the signal reflected off the target points at an angle θ to the direction
of radar.

Rs(t) = Ácos(2π f (1+
2v(t)

c
)(t − 4πD(θ)

c
)). (3.3)

The Doppler shift that corresponds to it can be written as,

fd = f
2v(t)

c
. (3.4)

The returned signal becomes a composite of several moving elements such as the head, and lips.
Each component moves at its own speed and acceleration. If we consider i to be the various
moving components of the lip, we can write the received signal as

Rs(t) =
N

∑
i

Ai cos(2π f (1+
2vi(t)

c
)(t − 4πDi(0)

c
)). (3.5)

The doppler shift is the result of a complex interaction of numerous doppler shifts induced
by different moving face parts. Detection of lip-reading in a reliable fashion clearly depends
upon the characteristics of the doppler signatures. After obtaining the spectrograms of various
vowels and empty files from the participants, a dataset was constructed. The spectrogram is
in the form of an image; therefore, we used DL models. The dataset consisted of two key
modules: (i) system training and (ii) system testing. We implemented the proposed pre-trained
DL classification algorithms on the spectrogram to recognize vowels and the empty dataset, as
indicated in the high-level signal flow diagram in Figure 3.4a.

Data Pre-Processing Wi-Fi Data

The data was transmitted in the form of OFDM symbols comprising of 52 closely spaced sub-
carriers. Data were collected in the forms a matrix that contains frequency responses of all N =
51 subcarriers as shown in Eq. 3.6.
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Figure 3.4: Overall system overview. (a) Radar-based system overview and data collection for
lip-reading. (b) Wi-Fi-based system overview and data collection for lip-reading.
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H = [H1( f ),H2( f ), · · · ,HN( f )]T , (3.6)

Here frequency of each subcarrier H j can be represented as

H j ( f ) = |H j ( f ) |e j ̸ H j( f ), (3.7)

where |H j( f )| and ̸ H j( f ) are the amplitude and phase responses of the jth subcarrier. Each of
these subcarrier responses is related to the system input and output as given in Eq. 3.8,

H j( f ) =
Y j( f )
X j( f )

, (3.8)

where X j( f ) and Y j( f ) are the fourier transforms of input and output of the system. Indeed, the
received CSI samples are impaired due to environmental noise.

As a result, the collected samples are denoised by subtracting the mean received power
from each subcarrier. To observe the maximum variation due to lip movements the subcarrier
with highest variance was identified for the feature extraction. A total of 9 features were ex-
tracted namely, mean, median, standard deviation, variance, minimum, eight peaks and high
order moments, such as skewness and kurtosis. The numerical extracted features were stored in
a Comma-Separated Values (CSV) file, which was then utilised by various ML algorithms. For
each ML model, we employed a standard train-test split of 80% for training and 20% for testing
to ensure sufficient data for learning while retaining a representative subset for evaluation. To
compute performance metrics and ensure the reliability and stability of our models, we utilised
k-fold cross-validation, specifically with k set to 5, across the training data. This method par-
titions the data into k subsets, trains the model on k-1 of those subsets, and validates it on the
remaining subset, repeating this process k times with each subset used exactly once for valida-
tion. This approach allows for a comprehensive evaluation of the model’s performance across
different segments of the data. Following this, training, testing, and validation were conducted
using the test-train split evaluation method to accurately classify vowels and the empty class, as
shown in the high-level signal flow diagram in Figure. 3.4b.

Parameter Settings of the Considered Algorithms

The proposed classification methodology to distinguish lip-reading activities is divided into two
key stages: (i) system training and (ii) system testing. In the case of radar data, the DL pre-
trained models VGG16, VGG19, and InceptionV3 [146] were used on the spectrogram images
generated from the radar data. While ML algorithms NN pattern recognition, support vector
machine (SVM, medium gaussian SVM), Ensemble (boosted trees) and Naïve Bayes (kernel
Naïve Bayes) were used on Wi-Fi data.The parameter settings of ML and DL model are shown
in Table. 3.3.
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VGG16 Model: VGG16 has been used with 16 convolution layers and a Rectified Linear Unit
(ReLU) activation function, with kernel sizes of 3×3. Following each convolution layer, a max-
pooling layer with all kernel sizes of 2×2 was added. Final layer worked as three fully connected
layers (FC). The convolution layer and FC hold the weight of the training results, which allows
them to determine the number of parameters.
VGG19 Model: A 3×3 filter was used to capture image details, consisting of five stages of
convolution layers, five pooling layers, and three fully connected layers. The depth of the con-
volution kernel in the VGG19 network has been raised from 64 to 512, allowing for improved
image feature vector extraction. A pooling layer was applied after each stage of convolutional
layers. Each pooling layer has the same size and step size, which is 2×2.
InceptionV3 Model: A 48-layered InceptionV3 DL model was also applied on the dataset.
Three convolution layers were added first, followed by a max pooling layer, two more convolu-
tion layers, and another max pooling layer. The spectrograms were sent to various convolutions,
which convoluted the input images using various filters, stacked the extracted data, and sent
it forward, and this process was repeated multiple times across the network [147], rather than
manually adjusting the filter size for each layer.
Neural Network Pattern Recognition Model: Data were passed through two-layer feed-forward
networks with sigmoid hidden neurons, SoftMax output neurons, and scaled conjugate gradi-
ent back propagation. Meanwhile, weight and bias values are updated according to the scaled
conjugate gradient method. Training, validation, and test sets of data were created. Network
performance was measured using cross-entropy and miss-classification errors.
SVM (Medium Gaussian SVM) Model: SVM was used for classification of dataset by deter-
mining the optimum hyperplane for separating data points from one class to another. Training
data, parameter values, prior probabilities, support vectors, and algorithmic implementation de-
tails were stored in trained SVM classifiers. The experimental data was modelled using a Gaus-
sian kernel.
Ensemble (Boosted Trees) Model: Ensemble classifiers combined the results of a number of
low-quality learners into a single high-quality ensemble model. Boosting ensemble method was
used on the dataset to regulate the depth of tree learners by specifying the maximum number of
splits or branch points. The experimental setup achieved better accuracy with 0.1 learning rate.
Naïve Bayes(Kernel Naïve Bayes) Model: Naïve Bayes classifier was used for lip-reading
classification, which is based on Bayes theorem and assumes that predictors are conditionally
independent in the given class. Specifically, a Gaussian Naïve Bayes kernel was used in this
experiment
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DL/ML Model Parameters Settings

VGG16

Number of Layers
Initial learning rate
Mini-batch size
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch

16
0.0001
16
Adam
Cross entropy
25
500

VGG19

Initial Number of Layers
learning rate
Mini-batch size
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch

19
0.0001
16
Adam
Cross entropy
25
500

InceptionV3

Number of Layers
Initial learning rate
Mini-batch size
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch

48
0.0001
16
Adam
Cross entropy
25
500

NN

Initial Number of Layers
Training Function
Number of Epoch
Loss function

10
Scaled conjugate Gradient Backpropagation
20
Cross entropy

SVM

Kernel Scale
K-Fold Predict
Kernel Function
Loss Function
Multiclass Method

3.9
5
Gaussion
Classiferror
One-vs-One

Ensemble

Ensemble Method
Learner type
Maximum Number of splits
Learning rate
Number of learners
Loss Function

AdaBoost
Decision Tree
20
0.1
30
Classiferror

Naïve Bayes

Kernel Smooth Density
K-fold Predict
Kernel Function
Loss function
Predictor distribution

Unbounded
5
Gaussian
Classiferror
mvmn

Table 3.3: Parameter settings for the selected models.
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Evaluation Metrics of Classification Models

The performance of the DL and ML models in the classification of vowels, consonants, and
words is evaluated through accuracy, True Positive Rate (TPR), and False Positive Rate (FPR).
TPR and FPR are calculated using equation 3.9 and 3.10, respectively. The equation 3.13 is
used to calculate the F1 score, one of the most popular classification metrics in the literature.
The F1−Score combines precision and recall, which are calculated using the equations 3.11
and 3.12. The equation 3.14 was used to calculate the Average accuracy, used to evaluate the
performance of ML models.

T PR =
T P

T P+FN
(3.9)

FPR =
FP

FP+T N
(3.10)

Precision =
∑(T P)

∑(T P+FP)
(3.11)

Recall =
∑(T P)

∑(T P+FN)
(3.12)

F1−Score = 2
(Precision.Recall)
(Precision+Recall)

(3.13)

Accuracy =
∑(T P+T N)

∑(T P+FP+T N +FN)
(3.14)

where TP stands for true positive, i.e., both the truth and the predicted values are positive. FN
is false negative, which represents the cases when the truth is positive and the prediction is
negative.

3.2.2 Result and Discussion

In this section, a lip-reading RF-sensing based framework is proposed using both RF sensing
technologies, i.e., Wi-Fi and radar. Wi-Fi signals are generated using USRP X300, which uses
CSI signals to identify human lip movements for all considered classes, i.e., A, E, I, O, U, and
Empty. For radar, a UWB radar sensor, Xethru X4M03 was used, where reflected doppler signals
(Hz) were plotted in the form of frequency-time diagrams, such as spectrograms. The proposed
RF sensing system can either work as standalone or assist in sensing for hearing aids through
reading of lip and mouth movements in the presence of face masks, which normally obstruct
visual cues for hearing aids in vision-based systems. A diverse dataset of three participants (one
male and two females) was collected for 5 vowels A, E, I, O, U, and Empty, where lips were not
moving. The collected dataset was used to train different ML and DL algorithms. The work’s
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major goal was to propose a secure lip-reading system that could identify the lip movements
in the presence of a mask with different RF sensing technologies and ML/DL algorithms. In
particular, four algorithms, NN, SVM, Ensemble, and Naïve Bayes, were evaluated using train-
test evaluation methods on the Wi-Fi dataset, where the maximum classification test accuracy
of 93.3% was observed on the male datasets without face mask. On the other hand, DL pre-
trained models VGG16, VGG19, and InceptionV3, evaluated using train-test methods, achieved
a maximum average test accuracy of 91.67% on male data without masks using radar. The
proposed model’s performance was assessed using TPR and FPR metrics derived from confusion
matrices, ensuring reliable classification accuracy. Moreover, because the current system is a
proof of concept with the goal of showing the importance and effectiveness of detecting lips
using RF-sensing technology such as radar and Wi-Fi, future experiments will be conducted
to detect different words or sentences in real time and perform activity from various angles
using radar and Wi-Fi. Furthermore, and as mentioned earlier, the dataset used to achieve the
previously reported results is made publicly available to encourage other researchers and the
wider communities to take this system a step further.

Radar Data

The evaluation results of the considered DL algorithms (VGG16, VGG19, and InceptionV3)
on the radar dataset are presented in Table. 3.4 and 3.5. VGG and InceptionV3 are CNN-
based DL models (trained on ImageNet dataset [148]), which are commonly used in image
classification. VGG16, VGG19, and InceptionV3 have 16, 19, and deep layers, respectively.
A detailed description of these models is presented in references [149, 150]. Moreover, [151]
provides the fundamental understanding of ML. It can be observed from Table. 3.4 and 3.5
that all algorithms produce comparable results with VGG16 slightly outperforming others on all
individual subjects and combined dataset in terms of accuracy. Using VGG16, the classification
accuracy of 91.7% is observed on S1 dataset without mask, which is reduced to a promising
accuracy 83.3% when the subject wears the face mask. The other performance metrics, such
as TPR and FPR are presented in Table. 3.4 and 3.5. It can be observed from the tables that
they perform well on all individual classes. Almost all individual classes produce 100% TPR
with mask and promising TPR on without mask dataset. Similarly, on combined dataset the
same algorithm produces best results in terms of classification accuracy for both with mask and
without mask. Overall, a classification accuracy of 85.94% is observed on without face mask
combined dataset. On the other hand, the same algorithm classifies the vowels with 73.44%
accuracy with face mask on the combined dataset. Moreover, other DL models, i.e., VGG19
and Inception V3 also produce comparable results on the radar dataset.

Figure. 3.5 shows the accuracies of with mask and without mask scenarios for different
DL algorithms examined on the radar data of male subject. It can be observed from the figure
that InceptionV3 produces biggest accuracy difference between with mask and without mask
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DL Model TPR/FPR
(%) S1(Male) S1(Female)

A E I O U Emp Accuracy
(%) A E I O U Emp Accuracy

(%)
VGG16 With Mask TPR (%) 90.0 50.0 80.0 90.0 90.0 100 83.3 70.0 50.0 100 90.0 100 100 85.0

FPR (%) 10.0 50.0 20.0 10.0 10.0 0.0 30.0 50.0 0.0 10.0 0.0 0.0
Without Mask TPR (%) 80.0 100 80.0 90.0 100 100 91.7 86.7 63.3 83.3 83.3 83.3 100 83.3

FPR (%) 20.0 0.0 20.0 10.0 0.0 0.0 13.3 36.7 16.7 16.7 16.7 0.0
VGG19 With Mask TPR (%) 70.0 80.0 90.0 80.0 80.0 100 83.33 50.0 45.0 92.0 90.0 82.0 90.0 75.0

FPR (%) 30.0 20.0 10.0 20.0 20.0 0.0 50.0 55.0 8.0 10.0 18.0 10.0
Without Mask TPR (%) 80.0 90.0 70.0 90.0 90.0 100 86.67 90.0 70.0 70.0 100 60.0 100 81.67

FPR (%) 20.0 10.0 30.0 10.0 10.0 0.0 10.0 30.0 30.0 0.0 40.0 0.0
InceptionV3 With Mask TPR (%) 80.0 70.0 90.0 50.0 90.0 100 80.0 100 60.0 60.0 30.0 70.0 100 70.0

FPR (%) 20.0 30.0 10.0 50.0 10.0 0.0 0.0 40.0 40.0 70.0 30.0 0.0
Without Mask TPR (%) 100 90.0 50.0 100 100 100 90.0 80.0 70.0 90.0 50.0 90.0 100 80.0

FPR (%) 0.0 10.0 50.0 0.0 0.0 0.0 10.0 30.0 10.0 50.0 10.0 0.0

Table 3.4: Comparative result of vowels with and without mask using radar dataset.

DL Model TPR/FPR
(%) S3 (Female) Combined

A E I O U Emp Accuracy
(%) A E I O U Emp Accuracy

(%)
VGG16 With Mask TPR(%) 50.0 80.0 100 70.0 60.0 100 76.7 75.0 67.0 44.0 67.0 67.0 100 73.44

FPR(%) 50.0 20.0 0.0 30.0 40.0 0.0 25.0 33.0 56.0 33.0 33.0 0.0
Without Mask TPR(%) 80.0 90.0 80.0 80.0 80.0 100 85.0 91.0 82.0 100 90.0 62.0 100 85.94

FPR(%) 20.0 10.0 20.0 20.0 20.0 0.0 9.0 18.0 0.0 10.0 38.0 0.0
VGG19 With Mask TPR(%) 80.0 40.0 80.0 80.0 100 70.0 75.0 40.0 69.2 100 83.3 40.0 100 68.9

FPR(%) 20.0 60.0 20.0 20.0 0.0 30.0 60.0 30.8 0.0 16.7 60.0 0.0
Without Mask TPR(%) 50.0 80.0 100 70.0 60.0 100 76.7 88.0 73.0 100 36.0 78.0 100 79.69

FPR(%) 50.0 20.0 0.0 30.0 40.0 0.0 12.0 27.0 0.0 64.0 22.0 0.0
InceptionV3 With Mask TPR(%) 80.0 40.0 80.0 80.0 100 70.0 75.0 76.0 60.0 36.0 46.0 82.0 90.0 65.0

FPR(%) 20.0 60.0 20.0 20.0 0.0 30.0 24.0 40.0 64.0 54.0 18.0 10.0
Without Mask TPR(%) 80.0 30.0 100 80.0 90.0 100 80.0 75.0 67.0 80.0 80.0 22.0 100 73.44

FPR(%) 20.0 70.0 0.0 20.0 10.0 0.0 25.0 33.0 20.0 20.0 78.0 0.0

Table 3.5: Comparative result of vowels with and without mask using radar dataset.
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Figure 3.5: The accuracy improvement of male subject using DL algorithms between with mask
and without mask using radar.

cases, which is around 12%, while VGG19 produces the least different, which is around just
4%. Overall, VGG16 performs better on both datasets with an accuracy difference of 7%.
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Wi-Fi Data

Table. 3.6 and 3.7 represents the average accuracy of classifying the dataset collected from Wi-
Fi using different ML and DL algorithms. Four different algorithms are considered, namely NN,
Support Vector Machine (SVM), Ensemble and Naïve Bayes. The results are generated using
test-train split evaluation method.

ML Model TPR/FPR
(%) S1 (Male) S2 (Female)

A E I O U Emp Accuracy
(%) A E I O U Emp Accuracy

(%)
SVM (Medium Gaussian SVM) With Mask TPR (%) 54.0 40.0 42.0 38.0 46.0 88.0 51.3 38.0 72.0 58.0 70.0 36.0 96.0 61.7

FPR (%) 46.0 60.0 58.0 62.0 54.0 12.0 62.0 28.0 42.0 30.0 64.0 4.0
Without Mask TPR (%) 62.0 86.0 72.0 46.0 84.0 88.0 73.0 82.0 76.0 46.0 36.0 60.0 90.0 65.0

FPR (%) 38.0 14.0 28.0 54.0 16.0 12.0 18.0 24.0 54.0 64.0 40.0 10.0
Neural Network Pattern Recognition With Mask TPR (%) 60.0 100 60.0 60.0 75.0 100 73.3 50.0 75.0 71.4 85.7 50.0 100 80.0

FPR (%) 40.0 0.0 40.0 40.0 25.0 0.0 50.0 25.0 28.6 14.3 50.0 0.0
Without Mask TPR (%) 100 100 100 100 60.0 100 95.6 68.0 96.0 74.0 54.0 80.0 86.0 76.3

FPR (%) 0.0 0.0 0.0 0.0 40.0 0.0 32.0 4.0 26.0 46.0 20.0 14.0
Naive Bayes (Kernel Naive Bayes) With Mask TPR (%) 58.0 52.0 44.0 34.0 30.0 94.0 52.0 38.0 80.0 56.0 76.0 18.0 96.0 60.7

FPR (%) 42.0 48.0 56.0 66.0 70.0 6.0 62.0 20.0 44.0 24.0 82.0 4.0
Without Mask TPR (%) 60.0 88.0 78.0 40.0 76.0 98.0 73.3 76.0 66.0 58.0 22.0 58.0 96.0 62.7

FPR (%) 40.0 12.0 22.0 60.0 24.0 20.0 24.0 34.0 42.0 78.0 42.0 4.0
Ensemble (Boosted Trees) With Mask TPR (%) 58.0 80.0 42.0 66.0 16.0 96.0 59.7 58.0 80.0 42.0 66.0 16.0 96.0 59.7

FPR (%) 42.0 20.0 58.0 34.0 84.0 4.0 42.0 20.0 58.0 34.0 84.0 4.0
Without Mask TPR (%) 68.0 96.0 74.0 54.0 80.0 86.0 76.3 66.0 62.0 44.0 48.0 54.0 94.0 61.3

FPR (%) 32.0 4.0 26.0 46.0 20.0 14.0 34.0 38.0 56.0 52.0 46.0 6.0

Table 3.6: Comparative result of vowels with and without mask using Wi-Fi dataset.

ML Model TPR/FPR
(%) S3 (Female) Combined

A E I O U Emp Accuracy (%) A E I O U Emp Accuracy (%)
SVM (Medium Gaussian SVM) With Mask TPR (%) 76.0 10.0 62.0 60.0 24.0 96.0 54.7 32.7 46.0 36.7 56.0 34.0 100 50.9

FPR (%) 24.0 90.0 38.0 40.0 76.0 4.0 67.3 54.0 63.3 44.0 66.0 0.0
Without Mask TPR (%) 56.0 56.0 52.0 56.0 60.0 90.0 61.7 48.0 40.0 44.7 42.0 67.3 100 57.8

FPR (%) 44.0 44.0 48.0 44.0 40.0 10.0 52.0 60.0 55.3 58.0 32.7 0.0
Neural Network Pattern Recognition With Mask TPR (%) 60.0 88.0 78.0 40.0 76.0 98.0 76.7 41.7 50.0 61.5 63.2 35.7 100 61.1

FPR (%) 40.0 12.0 22.0 60.0 24.0 2.0 58.3 50.0 38.5 36.8 64.3 0.0
Without Mask TPR (%) 100 100 83.3 83.3 66.7 100 88.9 60.0 100 60.0 60.0 75.0 100 73.3

FPR (%) 0.0 0.0 16.7 16.7 33.3 0.0 40.0 0.0 40.0 40.0 25.0 0.0
Naive Bayes (Kernel Naive Bayes) With Mask TPR (%) 80.0 8.0 64.0 72.0 14.0 90.0 54.7 36.7 45.3 39.3 46.0 27.3 100 49.0

FPR (%) 20.0 92.0 36.0 28.0 86.0 10.0 63.3 54.7 60.7 54.0 72.7 0.0
Without Mask TPR (%) 58.0 58.0 38.0 58.0 64.0 98.0 62.3 34.7 46.7 62.0 25.3 48.7 95.3 52.1

FPR (%) 42.0 42.0 62.0 42.0 36.0 2.0 65.3 53.3 38.0 74.7 51.3 4.7
Ensemble (Boosted Trees) With Mask TPR (%) 64.0 50.0 40.0 40.0 46.0 96.0 56.0 44.0 56.0 40.7 63.3 37.3 100 56.9

FPR (%) 36.0 50.0 60.0 60.0 54.0 4.0 56.0 44.0 59.3 36.7 62.7 0.0
Without Mask TPR (%) 60.0 56.0 56.0 54.0 58.0 92.0 62.7 50.0 51.3 48.0 33.3 64.0 100 57.8

FPR (%) 40.0 44.0 44.0 46.0 42.0 8.0 50.0 48.7 52.0 66.7 36.0 0.0

Table 3.7: Comparative result of vowels with and without mask using Wi-Fi dataset.

It can be noted from tables that NN algorithm outperforms others for individual male and fe-
male data and the combined dataset. Using NN algorithm, the classification accuracy of 95.6%
is observed on S1 without face mask, while the same algorithm gives 73.3% classification accu-
racy on the same subject when he wears a face mask. Similarly, on the combined dataset, NN
gives a premising accuracy of 73.3% without face mask and an accuracy of 61.1% on with-mask
combined dataset. The other performance metrics, such as TPR and FPR are shown in Table. 3.6
and 3.7. It can be observed that these metrics perform well in all individual classes. Almost all
individual classes produce 100% TPR with mask and promising TPR on without mask dataset.
Interestingly, the classification accuracy of male dataset for all algorithms is higher than the fe-
males’ dataset. This is due to the reason that the lip movements of male subject in pronouncing
vowels were comparatively larger than females among the participants.
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Figure 3.6: The accuracy improvement of male subject using ML algorithms between with mask
and without mask using Wi-Fi.

Overall, the classification accuracy of with mask dataset is lower than without face mask.
This is because of the reason that the lip movements are restricted due to the restraints caused by
the face mask. For instance, a person may not be able to fully open the mouth while wearing face
mask. The percentage accuracy difference in classifying with mask and without mask dataset is
depicted in Figure. 3.6. The highest accuracy difference is observed for male subjects for NN
algorithm where an accuracy difference of around 23%. The minimum difference observed is
for ensemble algorithm on S1 dataset, where with mask and without mask accuracy difference
is 12%.

3.3 RFID Based Speech Recognition

3.3.1 RFID Tag Performance Setup and Test Results

The passive UHF RFID tag used in our proposed smart mask underwent testing for reusability
and rigor. It is a flexible, low-profile, linearly polarised textile laundry tag that offers versatile
attachment methods and meets specific electrical specifications. The dimension of the tag is
58x15x1.5 mm. It is an EPC Gen2 compliance tag with a copper dipole antenna and Impinj
Monza R6P Integrated Circuit (IC)/chip. A simplified model of the tag chip, consisting of
lumped elements, is shown in Figure. 3.7a. The port model is derived using a source-pull
method due to the nonlinear and time-varying nature of the tag’s RF circuits. This model is an
accurate mathematical representation of the chip’s behavior over a wide range of frequencies.
Table. 3.8, provides the values of the lumped elements for the Monza R6-P tag chip’s port model,
which are valid for all primary regions of operation within the UHF range (868-920 MHz). The
lumped elements include Cmount , which represents the parasitic capacitance resulting from the
overlap of the antenna trace with the chip surface, Cp, which is intrinsic to the chip and appears
at the chip terminals, and Rp, which represents the energy conversion and absorption of the RF
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circuits.

(a) (b)
Tag

Antenna
Tag
Chip

Zan

Van

Zch

Figure 3.7: linearised RF-model of the tag. (a) Tag chip lumped element model. (b) Tag antenna
lumped element model.

Symbol Parameter Typical Value
Cp Chip Capacitance 1.23 pF

Rp Chip Resistance 1.2 kOhm

Cmount
Capacitance due to adhesive
and antenna mount parasitics

0.21 pF

Sensitivity Chip Read Sensitivity - 20 dBm

Table 3.8: Operating conditions and electrical characteristics of Monza R6-P chip port model.

The chip impedance Zch and antenna impedance Zan, which vary with frequency, can be
expressed according to [152, 153, 154], and the equivalent lumped circuit depicted in Figure.
3.7 as:

Zch = Rch + jXch (3.15)

Zan = Ran + jXan (3.16)

The chip and antenna resistance is represented by Rch & Ran, respectively, while the chip and
antenna reactance is denoted by Xch & Xan. Vant refers to the open-circuit RF voltage that arises
from the electromagnetic field generated by the reader at the terminals of the tag antenna. The
impedance of the chip, Zch, is affected by the power that the chip absorbs, Pch, and this often
has a draining effect on energy. To determine the power that is absorbed by the tag chip, Pch, we
utilise the maximum available power from the antenna, Pan, as well as the power transmission
coefficient, Pch, as shown below:

Pch = Panτ (3.17)
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The maximum antenna power, Pan, is achieved when Zch = Zan. The power transmission
coefficient, τ , represents the degree of impedance matching between the IC and the antenna and
is expressed as follows:

τ =
4∗RchRan

Zch +Zan
(3.18)

As τ approaches unity, the match between the tag chip and antenna impedance improves,
with a perfect complex conjugate match achieved at τ=1. Thus, for a given chip-and-tag antenna
setup, an ideal situation would be where Zch=Zan, corresponding to τ=1. Moreover, in order for
the chip to activate, the antenna is often matched to the minimum threshold power, Pth. The Friis
free-space equation is utilised to compute the free-space tag antenna power, Pan, where:

Pan = PreadGantGread(
λ

4πd
)2 (3.19)

Here, Pread and Gread refer to the reader-transmitted power and antenna gain, respectively.
Gant represents the tag antenna gain, λ denotes the wavelength, and d represents the distance
between the tag and reader. Substituting equation (3.17) and determining the read range, r, at
which the tag receives the minimum Pth yields the following equation:

r =
λ

4π

√
PreadGantGreadτ

Pth
(3.20)

The tag’s resonance, which represents the peak read range over a frequency range, is asso-
ciated with the maximum power transmission coefficient, τ . Therefore, in order to achieve the
maximum read range, it is essential to optimise the tag antenna to achieve the highest power
transmission coefficient, τ , and then utilise (3.20) in conjunction with the reader system to cal-
culate the corresponding read range, r. For a parallel circuit with a resistor and capacitor:

Q = Rp ×ω(Cp +Cmount) (3.21)

From 3.8, the parallel resistance of the tag chip, Rp = 1200 Ω, while the parallel capacitance,
Cp = 1.23 pF with an additional parasitic capacitance of 0.21 pF . Furthermore, ω = 2π f , where
f is the central frequency of 900 MHz. As per circuit theory, the real component of the chip
impedance, Rch, at this frequency can be calculated as Rch = Rp/(1+Q2). For this particular
case, Rch evaluates to 12.3 Ω. Additionally, the imaginary component of the chip impedance is
1/(ωCp) and equals -120.8 Ω. Utilising (3.15), we can express the chip impedance, Zch = 12 –
j121 Ω. The matching of the antenna-chip impedance is validated through the read range tests,
which are discussed in the subsequent section.

The chip employed in these tags is characterised by exceptional read sensitivity of up to
-22.1 dBm when used with a dipole antenna. Additionally, the chip leverages autotune technol-
ogy to maintain performance consistency across various dielectric materials. This technology’s
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Figure 3.8: Experimental setup for tag measurements, using tagformance pro device.

primary advantage lies in its cost-effectiveness and high efficiency in achieving our research ob-
jectives. It has the capacity to store individualised data within the integrated IC and seamlessly
integrates into Internet of Things (IoT) technologies. This functionality allows for the unique
identification of items by leveraging the unique ID stored in its IC. However, a potential limi-
tation of RFID technology is its restricted read range capability. The read range tests and other
necessary measurements are presented in Section 3.3.1.

RFID Tag Measurement Results using Tagformance® Pro Unit

To evaluate the reliability of the RFID tag, we employed the Voyantic Tagformance® Pro device
used in the industry. The measurement setup is shown in Figure. 3.8. The Tagformance device is
composed of several components, including Tag Designer Suite (TDS) software, a Tagformance
unit that comes with a UHF circulator and a foam spacer, and a linearly polarised RFID reader
antenna that has a gain of 6 dBi and can be adjusted through the settings [155].

In the read range test, the sensitivity of the RFID tag is assessed across a frequency range of
800 MHz to 1000 MHz. At each frequency, the power of the forward and backscatter signals on
the tag is analysed with various transmit-power levels. The test results are illustrated in Figure.
3.9. The read range measurements for the dry and wet tag are presented in Figure. 3.10. The
dry tag achieves a read range of up to 6.5 m. whereas the wet tag can be read at up to 5m.

3.3.2 Methodology

The block diagram in Figure. 3.11 shows the methodology used in this chapter. There are three
steps to the suggested framework. In the first step, we collected, build and annotated various lip-
reading datasets. In the second step, the pre-processing phases are explained. Lastly, several ML
models were used to classify the RFID-based lip-reading. The following subsections provide a
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Figure 3.9: Analysed power on tag forward, and backscatter signal at 800-1000 MHz with
multiple transmit-power levels for both the dry and wet tag.

Figure 3.10: Read range measurements of the tag in both dry and wet conditions.

detailed description of each step of the proposed methodology.

Experimental Setup and Data Collection

In this section, we used an RFID-based smart mask to collect data on lip-reading. The exper-
imental setup of the lip-reading using an RFID-based smart mask is shown in Figure. 3.12a.
The RFID laundry tag was stitched on disposable face masks. The multiple color mask hav-
ing different thicknesses were used for the experiments to check the authenticity of the system
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Figure 3.11: An overview of the proposed framework signal flow diagram highlighting the RFID
technology, data collection, and ML models for lip-reading classification.

Smart Mask 

IMPING
R700 RAIN RFID Reader

Circular Polarized UHF
Antenna

aa bb

Figure 3.12: Experimental setup of lip-reading data collection using RFID-based smart mask.
(a) Real experimental setup. (b) Color-thickness variants of smart masks used in the experimen-
tal setup.

Figure 3.13: A visual illustration of the lip-reading. (a) Vowels. (b) consonants. (c) Words.

which is shown in Figure. 3.12b. The key parameter settings of the RFID lip-reading system are
indicated in Table. 3.9. In this system, participants were asked to sit 0.50 meters away from the
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a

b

c

Figure 3.14: A graphical illustration of the received lip-reading signals: (a) vowels, (b) conso-
nants, and (c) words.

Parameter Value
Tag Passive UHF RFID Laundry Tag
Frequency 868-920MHZ
Read Distance Up to 6.5 meters
Reader Impinj R7000 Rain RFID
Antenna Circular Polarised UHF 6 dBi
Life Time 200 Wash Cycles
Mounting Methods Sewing or Heating Sealing
Chip Impinj Monza R6-P
Activity Duration 4 Seconds
Number Of Sample Per Class 50

Table 3.9: Selected hardware and software parameter settings.

RFID reader and antenna. The subject’s body was in its regular position during data collection,
with only head movements. Furthermore, each activity had a time limit of 4 seconds and the
data collection process involved recording a single word/vowel/consonant from each subject.
Figure 3.13 provides a visual illustration, and Figure 3.14 offers a graphical representation of
the pronounced vowels, consonants, and words. A total of four participants, two males, and two
females, participated in the data collection process. Multiple participants were invited to the data
collection process to make the data more realistic and diverse. During the experiments, a total
of 2800 data samples were collected, with 50 samples collected in each class. We distributed the
dataset into three sub-classes (vowels, consonants, and words). Table. 3.10 provides a detailed
overview of the collected dataset. In particular, each class is divided into two parts 80% data
for training and 20% dataset for testing purposes. In each sub-set either vowels or words, a total
of 1000 data samples were collected from participants, where 800 were utilised for training and
200 for testing purposes. In the case of consonants, a total of 800 data samples were collected
from participants, where 640 were utilised for training and 160 for testing purposes.
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Experimental Dataset Total
Classes Subject(S1) Subject(S2) Subject(S3) Subject(S4)

VOWELS
A 50 50 50 50 200
E 50 50 50 50 200
I 50 50 50 50 200
O 50 50 50 50 200
U 50 50 50 50 200

CONSONANTS
F 50 50 50 50 200
G 50 50 50 50 200
M 50 50 50 50 200
S 50 50 50 50 200

WORDS
Fish 50 50 50 50 200
Goat 50 50 50 50 200
Meal 50 50 50 50 200
Moon 50 50 50 50 200
Snake 50 50 50 50 200
Total 420 420 420 420 2800

Table 3.10: An overview of the information gathered, the number of participants, and the activ-
ities performed.

Data Pre-Processing

The collected data was in the form of RSSI values stored in a single CSV file namely Scikit.
The library was used to preprocess data and implement ML models. Additionally, CSV files
are interpreted using the Python program, i.e., Pandas. The CSV files are then converted into
data frames, which are then analysed with SciKit29. In the end, 14 labels were added in the
first column of data frames. A total of 9 features were extracted namely, mean, median, mode,
standard deviation, variance, minimum, maximum, and high order moments, such as skewness
and kurtosis. The final data is fed to different ML algorithms, namely Random Forest, K-NN,
SVM, Logistics Regression, and SVM RBF.

Classification via Machine learning Models

For classification, the RSSI information collected in the previous step is fed into ML mod-
els. Three different ML models are considered for this purpose: Random Forest, k-NN, and
SVM(RBF). The high-level signal flow diagram of the proposed lip- reading recognition system
is illustrated in Figure. 3.11. Our classification framework differentiates different groups of En-
glish structures such as vowels, consonants, and Words. The next subsections provide a detailed
description of the ML models used in this chapter.
Random Forest: A random forest is a cutting-edge ML classifier for classifying numeric
datasets[156]. In order to fit various decision tree classifiers on various subsamples of the
dataset, it implemented a meta-estimator to increase predicted accuracy and manage over-fitting.
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ML Model Parameter Setting
Random Forest N Estimators 200

CV 10
Criterion gini
Min Sample Split 2
Max Feature Sqrt
Min Sample 1

K-Nearest Neighbours N Neigbors 3
CV 10
Weights Uniform
Leaf Size 30
P 2
Metric Minowski

SVM RBF Gamma Auto
Kernel Rbf
C 6.7
Degree 3
Cache Size 200

Table 3.11: Selected model parameter configurations.

Table. 3.11 presents the hyper-parameter settings used for the Random-Forest model.
K-Nearest Neighbors(k-NN): This is a well-known decision rule that is commonly used in
pattern classification [157]. In this technique, the ideal choice of the value of k was largely
data-dependent; generally, a bigger k decreases the effects of noise but makes the classification
boundaries less distinct. The hyper-parameter settings of k-nearest neighbor are shown in Table.
3.11.
SVM RBF: RBF kernel SVM used gamma and C parameters [158], where the gamma parame-
ter defines how far a single training example’s influence reaches, with low values indicating "far"
and high values indicating "close." The C parameter trades off correct training example classifi-
cation against maximisation of the decision function’s margin. The hyper-parameter settings of
SVM RBF are shown in Table. 3.11

3.3.3 Experiments and Results

This section focuses on the dataset description as well as system evaluation using the ML models
previously discussed.

Dataset

A collection of RSSI values was produced as a result of the earlier described data collection and
pre-processing phases. The dataset contains 2800 samples from 14 different categories/classes.
These classifications are divided into three groups: (i) vowels, (ii) consonants, and (iii) words.
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Figure 3.15: Experiment results of different ML models for the classification of lip-reading. (a)
Vowels. (b) Consonants. (c) Words. (d) The combined result of all fourteen classes.

The vowels group consists of the five classes A, E, I, O, and U. The second group consonants
are F, G, M, and S, while the last group is made up of words from the Fish, Goat, Meal, Moon,
and Snake classes. Each of these groups has classes with an equal amount of samples. The
dataset of each group was divided into two subsets: training and testing. In the vowels and
words, dataset 300 samples were used as test and 700 samples for training. In the same way, the
consonants dataset was divided into two parts, 240 samples for testing and 560 for training. All
classes and subjects are represented equally in the training and testing sets. The University of
Glasgow’s Research Ethics Committee (permission numbers: 300200232, 300190109) received
ethical approval for these experiments.

Results and Discussion

The experimentation in this work serves two purposes. In the first, we introduced RFID based
smart mask for lip-reading recognition, and in the other, we compared the performance of var-
ious existing ML models. We collected and analysed the different sub-categories of English
structure datasets such as vowels, consonants, and words taken from the diverse genders on the
performance of RFID-based lip-reading frameworks. As a result, we conducted three distinct
experiments on RSSI-captured data to evaluate the performances of the models. Table. 3.11 con-
tains the hyper-parameter settings for all models. On the dataset, all of the models are fine-tuned.
Furthermore, all experiments used fixed training and testing sets. Our training and testing sets
contain 80% and 20% of total data, respectively. Figure. 3.15 displays the experimental results
of experiments conducted with various English language structures in terms of precision, recall,
and F1 Score. Overall better results were achieved for the combined and individual groups for
all the models.

In the case of the vowels dataset, we calculated different diverse subjects’ results which
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included females and males. In terms of subject (S1), Subject (S3), and Subject (S2) have high
accuracy using the SVM RBF algorithm around 97.18%, 91.96%, and 83.13% as compared to
other ML algorithms. Subject (S4) has also high classification accuracy of around 79.91% using
Random Forest. In the combined RFID lip-reading vowels dataset of all females and males, we
got high classification accuracy of 80.0% with precision, recall, and F1-score using Random
Forest algorithms which are shown in Figure. 3.15a.

Similarly, consonant datasets namely F, G, M, and S were collected by diverse groups of
subjects. In terms of Subject (S1) and Subject (S4) have high classification accuracy using
Random Forest, k-NN, and SVM RBF algorithm around 97.18% and 97.48% as compared to
other ML algorithms. Subject (S2) and Subject(S3) have a high accuracy of 86.43% using
Random forest and k-NN, than other proposed ML algorithms. In combined RFID consonant
datasets, we got high classification accuracy of 89.5% using Random Forest algorithm and has
high precision, recall, and F1-score to other ML algorithms which are shown in Figure. 3.15b.

In the case of words datasets namely Fish, Goat, Meal, Moon, and Snake were collected
by multiple subjects. K-NN algorithm has high classification accuracy using subject (S1) and
subject (S3) datasets compared with other ML algorithms with around 89.15% accuracy. In
terms of subject (S2) and subject (S3) a high classification accuracy is achieved using the SVM
RBF algorithm which is around 95.58% and 97.18%. RFID words combined datasets got 93.0%
classification accuracy along with high precision, recall, and F1-score using k-NN and SVM
RBF algorithms which are shown in Figure. 3.15c.

Lastly, the confusion matrix of the combined dataset is shown in Figure. 3.15d. Three differ-
ent ML models were applied to RSSI information namely Random Forest, k-NN, and SVM RBF.
In the case of Random Forest most of the classes are correctly recognised except "U" because
it performed similarly to "F". Here again, most of the classes are correctly classified using the
k-NN algorithm except "I" which has misclassified with "S". Furthermore, the confusion matrix
of SVM RBF mostly classifies except two classes "Goat" and "I". Overall, all three algorithms
correctly classified 14 classes but Random Forest outperformed other with 80.0% classification
accuracy.

3.4 Summary

This chapter presents results from a study on lip-reading using RF sensing technologies like Wi-
Fi, radar, and RFID. Wi-Fi signals were generated using a USRP x300, which identifies human
lip movements across various classes by utilising CSI signals. For radar technology, a UWB
radar sensor, Xethru X4M03, was used to plot reflected Doppler signals (Hz) in frequency-time
diagrams, such as spectrograms. Passive RFID technology was used to collect RSSI data, dis-
playing time on the x-axis and power changes in dBm on the y-axis. The proposed RF sensing
techniques can function independently or assist hearing aids by reading lip and mouth move-
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ments, especially in situations where face masks obstruct visual cues in vision-based systems.
A diverse dataset, including male and female participants, was collected. The primary goal of
the paper was to propose a secure lip-reading system capable of identifying lip movements with
different RF sensing technologies and ML/DL algorithms, even in the presence of a mask. Four
algorithms – NN, SVM, Ensemble, and Naïve Bayes – were evaluated on the Wi-Fi dataset using
train-test methods. The highest classification accuracy observed was 93.3% on datasets involv-
ing males without face masks. Additionally, DL pre-trained models like VGG16, VGG19, and
InceptionV3 were tested with radar data, achieving a maximum average accuracy of 91.67% on
male data without masks. With RFID, RSSI data was input into various ML models, including
Random Forest, k-Nearest Neighbors (k-NN), and SVM RBF. The system successfully classi-
fied lip movements, reaching a 100% accuracy rate. Furthermore, this current system serves
as a proof of concept, demonstrating the importance and effectiveness of lip detection using
RF-sensing technologies such as radar, Wi-Fi, and RFID. The next chapter explores 15 different
British Sign Language recognition systems using UWB radar, providing an alternate perspective
on communication with the deaf community through hearing aids.



Chapter 4

Deep Learning for British Sign Language
Recognition: A Non-Contact and
Privacy-Preserving Method

4.1 Introduction

The number of persons with hearing loss rises each day. Those who have trouble hearing often
rely on SL for communication, depending on their level of disability. Sign language is used
by millions of deaf people around the world to communicate and is imperative for their social
integration. Similar to spoken languages, different parts of the world use different versions
of SL. The importance of SL with its origin is discussed in [159, 160], with examples from
American, British, Japanese, Chinese, and Arabic. Automatic sign language recognition is a
challenging research area and is still in its early stages compared to speech recognition, despite
of many efforts done in the literature using wearable or vision-based approaches. Wearable
systems like hand gloves are intrusive and limit continuous human-computer interaction as they
require users to wear sensors continuously. Camera-based systems also have fundamental flaws,
such as privacy concerns due to recorded videos/images and the dependency on ambient lighting,
which limits their effectiveness in SLR. Recently, RF sensing has emerged as a viable alternative
in assisted living and contactless activity monitoring as it does not require end-users to wear or
carry devices. The use of existing communication devices and infrastructure, like Wi-Fi routers,
further enhances its applicability. To overcome the drawbacks of camera-based systems, radar-
based sensing systems have been proposed. These systems are not affected by ambient lighting
variations and ensure user privacy. They function by exploiting the unique doppler signatures
created by hand movements.

Although RF sensing has been partly discussed in the literature to recognise SL, the exis-
tence of a diverse dataset that includes samples from a wide range of subjects (diverse age and
sex) and covers diverse number of classes is missing in the literature. To bridge this gap, this

52



CHAPTER 4. RADAR SENSING FOR SIGN LANGUAGE DETECTION 53

work focuses on identifying different emotions, most common verbs, and family groups in BSL
using micro-doppler signatures of the data collected using a radar sensor. Fifteen different types
of doppler signatures are considered that include verbs (Drink, Eat, Help, Stop and Walk), emo-
tions (Confused, Depressed, Happy, Hate and Sad) and Family Group (Family, Brother, Father,
Mother and Sister). These categories of BSL signs are represented through dynamic SL, which
utilises mobility or movements of the hands to represent various signs. An UWB Radar, XeThru
X4M03 was used for recording the dataset. We note that the dataset is recorded at two different
distances and angles. These characteristics make the dataset a better choice for training and
evaluation of ML algorithms for BSL signs recognition and translation. The recorded data is
represented in the form of spectrograms and further spatio-temporal features are extracted using
GoogleNet and squeezenet CNNs.

The main contributions of the work are summarised as follows:

• We propose a contactless BSL recognition system that automatically recognises and trans-
lates BSL signs into verbs and emotions.

• The idea presented is of a future hearing aid device capable of capturing sign language to
facilitate non-verbal communication for deaf individuals.

• We also collect a large-scale benchmark dataset containing a total of 1950 samples from
15 different types of BSL signs captured at distances of 141 and 154 cm. Moreover, the
data samples are captured from two different angles. To ensure diversity, the data was
collected from four deaf participants (1 male and 3 females) having ages between 16 and
82.

• We report experimental results of several state-of-the-art DL models on the dataset, pro-
viding a baseline for future research in this domain.

4.2 Methodology

Figure. 4.1 provides the block diagram of the methodology adopted in this work. The proposed
framework is divided mainly into three phases. In the first phases, we collected and annotated a
large collection of BSL signs. In the second phase, we used some signal processing techniques
to extract spectrograms of various signs captured in the first phase. Finally, several DL models
are employed to classify the signs.

In the next sub-sections, we provide a detailed description of each of the phases of the
proposed methodology.
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Figure 4.1: Block diagram of the proposed framework highlighting the UWB radar-based sys-
tem, data collection, and the DL models for the classification of BSL signs.

4.2.1 Data Collection

In this phase, we collected BSL sign data through UWB radar. Figure. 4.2 provides an overview
of the hardware setup of the radar-based BSL data collection system. To this aim, an UWB radar
sensor, namely Xethru X4M03 is used. The Xethru X4M03 is a UWB radar sensor with built-in
Tx and Rx antennas, providing a maximum detection range of 9.6 metres.

Person height while
sitting is 0.473 m

Table, 0.29 m height 141 CM

Xetrhu X4M03 

Xetrhu X4M03

62 CM

Radar mounted at a height from
the table 0.16 m

154 CM

9024

66

(a) Measurable Experimental-Setup (b) Real Experimental Setup

Figure 4.2: Experimental setup of data collection using Xethru UWB radar sensor.

As shown in the figure, the radar sensor is placed on top of the screen of the laptop. The key
parameter settings of the radar are indicated in Table. 4.1. In order to differentiate complexity
levels in the dataset, the radar sensor was placed at two different distances including a distance
of 141 and 154 cm from the subject (i.e., person). Moreover, the sign gestures of the subject are
recorded at two different angles. The variations in the distance and viewpoint are expected to
help in training distance and viewpoint invariant DL models that are able to recognise gestures
of the subjects from different distances and angles. During the data collection, the body of the
subject was in normal position with head and hands movements only. Moreover, the duration of
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each activity was set to 5 seconds involving the data collection of a single gesture from a single
subject. Figure. 4.3 provides visual illustration of the pronounced BSL.

Parameter Value
Platform Xetru radar X4MO3
Instrumental range 9.6 meters
Target’s distance from radar 141 cm and 154 cm
Operating frequency 7.29GHz
Transmitter power 6.3dBm
Activity duration 5 seconds
Collected samples in each class 15

Table 4.1: Parameters configuration of radar software and hardware.

Moreover, four deaf subjects/participants, one male and three females participated in the
data collection process. The reason to include more participants was to make the dataset more
realistic and diverse. A total of 1950 data samples were collected during experiment for 15
different categories at distances of 141 cm and 154 cm. The details of the collected dataset
are highlighted in Table. 4.2. In each experiment, a total of 975 data samples were collected
from four deaf participants, where 15 samples were collected in each class. In particular, each
participant repeated the speaking activity of each gesture 15 times with the radar. In this way,
each participant contributed to collect 225 or 300 data samples in total for fifteen classes. In
each case, A total of 975 spectrograms were categorised as fifteen BSL signs, with 750 being
utilised for training and 225 for testing.

After capturing the data, the RF signal was transmitted and received from the radar within
this duration. The details of all components presented in the figure are discussed later in this
section.

4.2.2 Pre-Processing

In this section, we describe the pre-processing steps carried out to extract the required spectro-
grams. In the beginning, the radar chip was configured via the XEP interface with x4driver.
Data were recorded from the module at 500 frames per second (FPS) (in the form of the float
message data), where each value is a 32-bit floating point number. A loop was used to read the
data file and save the data into a DataStream variable, which was mapped into a complex (range-
time-intensity) Range-Time Intensity (RTI) matrix. Thereafter, MTI filter was applied to get the
doppler range map. Afterwards, the second MTI was used as a Butterworth 4th order filter to
generate the spectrograms using the following parameters: window length, overlap percentage,
and FFT padding factor. In particular, a window length of 128 samples and a padding factor of
16 was used. In addition, a range profile was created by first converting each chirp to an FFT. A
second FFT is then conducted on a defined number of consecutive chirps for a given range bin.
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(a) Brother (b) Sister (c) Mother (d) Father (e) Family

(f) Con f use (g) Depress (h) Happy (i) Hate (j) Sad

(k) Walk (l) Eat (m) Hel p (n) Drink (o) Stop

Figure 4.3: A visual illustration of the pronounced british sign language.
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Classes Experimental Dataset
141 cm 154 cm Total

Subject
(S1)

Subject
(S2)

Subject
(S3)

Subject
(S4)

Subject
(S1)

Subject
(S2)

Subject
(S3)

Subject
(S4)

Brother 15 15 20 15 15 15 20 15 130
Sister 15 15 20 15 15 15 20 15 130
Mother 15 15 20 15 15 15 20 15 130
Father 15 15 20 15 15 15 20 15 130
Family 15 15 20 15 15 15 20 15 130
Confused 15 15 20 15 15 15 20 15 130
Depressed 15 15 20 15 15 15 20 15 130
Happy 15 15 20 15 15 15 20 15 130
Hate 15 15 20 15 15 15 20 15 130
Sad 15 15 20 15 15 15 20 15 130
Stop 15 15 20 15 15 15 20 15 130
Walk 15 15 20 15 15 15 20 15 130
Eat 15 15 20 15 15 15 20 15 130
Help 15 15 20 15 15 15 20 15 130
Drink 15 15 20 15 15 15 20 15 130
Total 225 225 300 225 225 225 300 255 1950

Table 4.2: An overview of the data collected, number of subjects and the activities performed.

Furthermore, a STFT was used to create these spectrograms, because, unlike fourier transform,
it offers both temporal and frequency information [161]. This is done by segmenting the data
and then performing fourier transform on each segment. When the window length is changed,
both the temporal and frequency resolutions are altered inversely. For example, if one increases
the other decreases. The level of doppler detail in radar data is determined by the hardware’s
sampling capability. The greatest unambiguous doppler frequency in radar is Fd,max = 1

2tr,
where tr is the chirp time. In this chapter, we look at BSL gestures recognition at a distance D(t)
from a specified location, such as the subject’s hand and faces. V(t) represents the point of target
movement in front of the radar, and Ts represents the transmitted signal,

Ts(t) = Acos(2π f t). (4.1)

The received signal is provided by Rs(t),

Rs(t) = Ácos(2π f (t − 2D(t)
c

)), (4.2)

where A is the reflection coefficient, and c is the speed of light. The reflected signal can be
expressed as Rs(t), where the signal reflected off the target points at an angle θ to the direction
of radar.
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Rs(t) = Ácos(2π f (1+
2v(t)

c
)t − 4πD(θ)

c
)). (4.3)

The doppler shift that corresponds to it can be written as,

fd = f
2v(t)

c
. (4.4)

The returned signal becomes a composite of several moving elements such as the head and
hand. Each component moves at its own speed and acceleration. If we consider i to be the
various moving components of the hands, we write the received signal as

Rs(t) =
N

∑
i

Ai cos(2π f (1+
2vi(t)

c
)t − 4πDi(0)

c
)). (4.5)

The doppler shift is the result of a complex interaction of numerous doppler shifts induced
by moving hands and head. Detection of SL in a reliable fashion clearly depends upon the
characteristics of the doppler signatures. After obtaining the spectrograms of various signs from
the participants, datasets were labeled with 15 different signs. As indicated in the high-level
signal flow diagram in Figure. 4.1, the dataset is consisted of two key modules: (i) system
training and (ii) system testing. The proposed pre-trained DL classification algorithms were
implemented on spectrograms to recognise the BSL dataset.

4.2.3 Classification via Deep Learning Models

The data in the form of spectrograms considered as images is why we used DL models. The
spectrograms generated and labeled in the previous step are now fed into DL models for clas-
sification purposes. For this purpose, three different pre-trained models, namely VGGNet,
GoogLeNet, and SqueezeNet are considered. Our classification framework, designed to differ-
entiate between BSL signs/activities, primarily relies on fine-tuning pre-trained models. Here,
multiple state-of-the-art CNN architectures, which were pre-trained on ImageNet [162], are
fine-tuned on the spectrogram images generated from radar data. In fine-tuning the pre-trained
models, we used data augmentation to overcome the overfitting along with modifying the top
layers of the models to classify the collected data into fifteen considered classes, namely Verbs
(Drink, Eat, Help, Stop and Walk), Emotions(Confused, Depressed, Happy, Hate and Sad) and
Family Group (Family, Brother, Father, Mother and Sister).

In the following subsections, we provide a detailed description of the CNN architectures
used in this work.
GoogLeNet Model: GoogLeNet [163] is one of the state-of-the-art and commonly used CNN
architecture for different image classification tasks [164]. The architecture is composed of 22
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layers including convolutional, pooling layers, inception modules, and a fully connected layer.
The inception module is made up of 6 convolutional layers and a pooling layer. The module
consists of patches or filters of sizes 1 × 1, 3 × 3 and 5 × 5. These filters of different sizes help
to obtain different patterns of the input image. The feature maps obtained from various filters
are concatenated at the output of each module. Furthermore, 1 × 1 convolutions are performed
prior to convolutions by large filters. The use of 1 × 1 convolution filter decreases the number
of parameters required by GoogLeNet. The hyper-parameter settings of GoogleNet are shown
in Table. 4.3.
SqueezeNet Model: Our second pre-trained model is based on SqueezeNet architecture [165],
which is composed of 18 layers. This architecture has shown comparable results with fifty
times fewer parameters, which makes it a preferable choice for applications with fewer data and
low computational resources. Squeezenet adapts to three major strategies. The first strategy
reduces the 3×3 filters to 1×1 filters given in the squeeze layer. The second strategy uses expand
layer in which 1×1 and 3×3 filters are fed with less input parameters from the squeeze layer.
The third strategy down-samples late (having smaller stride values), so that the last layer has
larger activation maps which results in better accuracy.The parameter settings of SqueezeNet
are shown in Table. 4.3.
VGG16 Model: Another pre-trained model is based on VGG16 architecture [166], which is
composed of 16 layers. This architecture contains a total of 138 million parameters, which used
a 3x3 filter size with a stride 1 and always use the same padding and max-pooling layer of a 2x2
filter with stride 2. The arrangement of the layers in this architecture is as follows convolutional
layers, ReLU layers, and max pool layers. ReLU is more computationally efficient because it
results in faster learning and it also decreases the likelihood of vanishing gradient problems. The
end of the model has 3 fully connected layers followed by a softmax for output. The parameter
settings of VGG16 are shown in Table. 4.3.

4.3 Experiments and Results

This section elaborates on the data description with its distribution, system evaluation, and the
obtained classification results from all considered pre-trained models.

4.3.1 Dataset

The data collection and pre-processing phases described earlier resulted in a collection of spec-
trograms. In total, the dataset is composed of 1950 samples from 15 different categories/classes.
These classes are sub-grouped into three groups, namely (i) verbs, (ii) emotions, and (iii) family.
The verbs group includes five classes namely Drink, Eat, Help, Stop and Walk. The emotions
include Confused, Depressed, Happy, Hate and Sad while the final group is made of Family,
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DL Model Parameters Settings

GoogleNet

Initial learning rate
Mini-batch size
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch
Elapsed time for 141 cm
Elapsed time for 154 cm

0.0001
128
Adam
Cross entropy
100
500
04:35:57
06:15:21

SqueezeNet

Initial learning rate
Mini-batch size
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch
Elapsed time for 141 cm
Elapsed time for 154 cm

0.0001
128
Adam
Cross entropy
100
500
01:41:53
02:03:28

VGG16

Initial learning rate
Mini-batch si
Learning algorithm
Loss function
Maximum epochs
Iteration per epoch
Elapsed time for 141 cm
Elapsed time for 154 cm

0.0001
16
Adam
Cross entropy
100
46
41:32:11
45:03:58

Table 4.3: Parameter settings for the selected models.
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i.e., Brother, Father, Mother, and Sister classes. Each of these fifteen classes contain an equal
number of sample. Figure. 4.4 provides some samples images/spectrograms from the dataset.

The dataset has been divided into two subsets namely training and testing set. The training
set is composed of 1560 samples while the testing set provides a total of 390 samples. These
subset have equal representation from all the classes and subjects.

(a) Brother (b) Sister (c) Mother (d) Father (e) Family

(f) Con f use (g) Depress (h) Happy (i) Hate (j) Sad

(k) Walk (l) Eat (m) Hel p (n) Drink (o) Stop

Figure 4.4: Obtained spectrum’s sample of (a) Brother, (b) Sister, (c) Mother, (d) Father, (e)
Family, (f) Confused, (g) Depress, (h) Happy, (i) Hate, (j) Sad, (k) Walk, (l) Eat, (m) Help, (n)
Drink, (o) Stop signs.

4.3.2 Evaluation Matrics for Classification Model

In this chapter, the performance of the DL models in classification of BSL signs is evaluated in
terms of weighted average accuracy, precision, recall, and F1 Score. F1 Score is one of the most
commonly used metrics in the literature for classification, which is calculated using Equation
6.2. F1 Score is a combination of precision and recall, which are calculated using equation 6.3
and 6.4, respectively.

F1 = 2
Precision.Recall

Precision+Recall
(4.6)

Precision =
∑TruePositive

∑TruePositive+∑FalsePositive
(4.7)
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Model 141 cm 154 cm
Precision Recall F1 Score Precision Recall F1 Score

GoogleNet 0.81 0.87 0.83 0.78 0.87 0.80
SqueezNet 0.75 0.83 0.77 0.69 0.76 0.71
VGGNet16 0.90 0.92 0.91 0.86 0.89 0.87

Table 4.4: An evaluation of the pre-trained models in terms of macro-recall, macro precision,
and macro-F1-score on the datasets captured at distances of 141 and 154 cm.

Recall =
∑TruePositive

∑TruePositive+∑FalseNegative
(4.8)

4.3.3 Results and Discussion

The objectives of the experimentation in this chapter are two-fold. On one side, we analyse the
performance of different existing pre-trained models on the newly collected BSL dataset. On
the other hand, we analyse the impact of variations in viewpoint and distances from the subject
on the performance of BSL frameworks. Therefore, we conducted two different experiments
by evaluating the performances of the models on spectrograms captured at distances of 141 and
154 cm.

The hyper-parameter settings for all the models are provided in Table. 4.3. All the models
are fine-tuned on the dataset for a maximum of 100 epochs. Moreover, in all the experiments,
fixed training and testing sets are used. Our training and testing sets are composed of 80% and
20% of the total data, respectively.

Table. 4.4 provides the experimental results conducted at distances of 141 and 154 cm in
terms of precision, recall, and F1 Score. As expected, overall better results for all the models
are obtained when the radar sensor is placed at a distance of 141 cm compared to 154 cm. This
is due to the reason that the 141cm radar is placed exactly in front of the subject and the micro-
doppler signature at this view points are more sensitive to hands movements as compared to
what is received at 151cm radar for the same movements. As a result, the ML model better
classify the hand movements as this viewpoint. As far as the performances of the pre-trained
models is concerned, overall better results are obtained with VGGNet achieving an F1 Score of
0.87.

In order to better analyse the performances of the models, we also provide confusion matrices
for each model at each distance in Figure. 4.5. Figure. 4.5a illustrates the confusion matrix of
the GoogleNet model with 141 cm distance. It can be observed from the figure that most of
the classes are correctly classified having a lowest classification accuracy of 0.26% for Brother
class, which is mostly confused with the class Happy. Similarly, the confusion matrix of the
GoogleNet at a distance of 154 cm is presented in Figure. 4.5b, where the classification accuracy
is nearly 100% for all classes except the classes Brother, Mother, and Sister. The samples from
the class Brother are mostly (around 0.13%) confused with the class Happy. The samples from
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(a) Confusion matrix of GoogleNet at 141 cm (b) Confusion matrix of GoogleNet at 154 cm

(c) Confusion matrix of SqueezNet at 141 cm (d) Confusion matrix of SqueezNet at 154 cm

(e) Confusion matrix of VGGNet at 141 cm (f) Confusion matrix of VGGNet at 154 cm

Figure 4.5: The confusion matrices of all the models at two different distances.
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the class Mother confused with the samples from the classes Father and Family. This may be
because of the reason that both right and left-hand fingers move in the same manner. Similarly,
the class Sister has resemblance with class Drink as the participants used their right-hand index
finger and thumb to touch the nose.

Similarly, the confusion matrix of SqueezeNet with a distance of 141 cm is presented in
Figure. 4.5c. Here again, most of the samples from all the classes are correctly classified with
the exception of Brother, which shows similarities with class Confused gestures because both
the classes gesture right-hand and left-hand rub with each other between the head or without a
head. Furthermore, the confusion matrix of SqueezeNet at a distance of 154 cm is presented in
Figure. 4.5d. In this case, most of the classes are correctly classified with an exception of class
Brother and Mother, which show similarities with the classes Happy and Father. However, 80%
of test samples are correctly classified for the class Sad with only 20% matching confusion with
the class Depressed.

Likewise, the confusion matrix of classifying the considered emotions using VGG16 with
a distance of 141 cm is presented in Figure. 4.5e. Here again, most samples from all classes
are correctly classified, with the exception of Depressed, which shows similarities with the Sad
class because in both classes, the front mouth makes a downward movement. On the other side,
Help is similar to the Family because both signs have upturned hands while performing the
activity. Furthermore, the confusion matrix of VGG16 at a distance of 154 cm is presented in
Figure. 4.5f. In this case, most of the classes are correctly classified with an exception of class
Confused, which shows similarities with the classes Family and Stop. However, 70% of test
samples are correctly classified for the class Confused with only 20% matching confusion with
the class Family and 10% with the class Stop.

4.4 Summary

This chapter presented a privacy-preserving BSL recognition system using state-of-the-art XeThru
X4M03 UWB radar sensors and DL algorithms. In BSL, the fifteen most common gestures are
categorised into classes, namely Verbs (Drink, Eat, Help, Stop, and Walk), Emotions(Confused,
Depressed, Happy, Hate, and Sad), and Family Group (Family, Brother, Father, Mother, and
Sister). For each class, micro-doppler unique features were stored in the form of spectrograms.
These were used to train two DL models, namely GoogleNet and SqueezeNet models. The
classification accuracy for most of the classes was close to 100% with the GoogleNet model
outperforming others, giving an overall accuracy of 81.33% on all fifteen classes. The next
chapter presents another application of hearing impairment devices designed to assist deaf peo-
ple in identifying the behavior of others, both with and without wall obstacles.



Chapter 5

Wi-Fi and Radar Fusion for Head
Movement Sensing Through Walls
Leveraging Deep Learning

This chapter highlights the potential of non-invasive head movement recognition for various
applications, including human behavior identification, controlling assistive technologies like
wheelchairs for quadriplegics, virtual/augmented reality, and assistive driving. Wearable and
vision-based devices face specific limitations, including challenges with ambient lighting, line
of sight, and privacy concerns. Additionally, wearing these devices can often be uncomfortable.
Wi-Fi and radar offer contactless sensing applicable in different applications through-wall sce-
narios. We propose a contactless system using UWB radar and Wi-Fi signals, combined with
ML and DL techniques to detect human head movements. Our study focuses on six common
head gestures (head down, head up, head left 90, head right 90, head right 45, and head right 90)
using time-frequency multi-resolution analysis based on wavelet scalograms for feature extrac-
tion from channel state information values and radar signal spectrograms. By fusing features
from both radar and Wi-Fi signals and employing DL models like VGG16 and InceptionV3, we
achieve high classification accuracies of 83.33% and 91.8% for head movement detection with
and without walls, respectively.

5.1 Introduction

Head movement [167] carries important information related to human behavior which is an inte-
gral part of non-verbal communication and has a wide range of applications for human-computer
interaction, such as assistive technologies, virtual and augmented reality, and assistive driving
systems. Head movement detection has been widely utilised for assistive driving of wheelchairs
for patients suffering from paralysis, driver drowsiness detection and alert systems. Intelligent
assistive driving systems can reduce the number of road accidents by monitoring driver’s be-
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havior through head movements and generate alerts accordingly. Mental tiredness impairs focus
when driving and has major safety implications [168, 169]. Poor sleep and tiredness are major
causes of poor driving performance, steering mistakes, loss of vehicle control, and deadly acci-
dents [170, 171, 172, 173]. Driving assistance systems rely heavily on the detection of driver
attentiveness. The orientation of the driver’s head may reflect his degree of attention. Head
movement is getting high popularity in assistive driving since an estimated 1,560 reported road
deaths in 2021 in the UK [2].

In recent years, there has been an increase in assistive technologies in healthcare and many
other domains that benefit from smart technology concepts. Head movement detection has
proven to be effective in many applications such as the detection of driver’s fatigue [174], human
visual focus [175], behavior recognition [176], vitals monitoring [177], healthcare cognitive as-
sistance [178], in figuring out the human head kinematics [179] to estimate and predict possible
head collision injuries in athletes, and in clinical depression monitoring [180], etc.

The current head movement detection systems primarily utilise camera-based and wearable
technologies, each with significant limitations. Camera-based systems face privacy concerns due
to the necessity of recording the target, legal implications that may limit their use in both public
and private spaces, and the potential for being perceived as photographing someone without
consent, which is illegal in many jurisdictions. Additional challenges include obstructions to
the line of sight and difficulties in training with long video sequences. Wearable devices, on the
other hand, disrupt daily routines due to their intrusive nature.

RF head movement sensors, on the other hand, can fulfill the demand for next-generation
technologies. By recognizing head motions using RF sensing, ML, and DL techniques, various
applications can be benefited from very accurate cues. Moreover, unlike vision-based systems,
RF sensing-based head movements are unaffected by opaque barriers or walls separating the
target and the transponder. RF signals can pass through walls to detect visual cues, such as head
and lip movements. Head movements provide additional functionality for the next generation
of MM hearing aid devices for understanding the behavior of people. In this chapter, we de-
signed, developed, and tested an RF sensing-based method for detecting head motions with and
without a wall. Activity monitoring through walls or barriers via Wi-Fi and radar devices is a
great breakthrough in the field. Since cameras are limited to line-of-sight visuals they can not
detect/sense any object or humans through walls/barriers. Therefore in this work, we proposed
a radar and Wi-Fi-based novel system that can perform head-movements monitoring through
walls and other opaque barriers.

This chapter focuses on recognizing different head movements and collecting data using
micro-doppler signatures and CSI amplitude using a radar sensor and Wi-Fi signals. The existing
dataset is diverse in nature that includes samples from a wide variety of subjects (ages and
genders) and a diverse number of classes that cover all essential aspects of head movements.
Head up, Head down, Right 90, Left 90, Right 45, and Left 45 are the six types of doppler
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signatures and CSI data considered for this work. These types of movements include dynamic
gestures in which mobility or head are used to represent various movements. The dataset was
recorded using two separate methods, i.e., using a Radar sensor and Wi-Fi signals with and
without a wall. These features make the dataset a better option for the training and assessment
of ML and DL algorithms for the recognition of head movements. In order to visualize the
recorded data, spectrograms and CSI amplitudes were used.

The following presents the main contributions:

• This RF-based system provides the idea of a flexible hearing aid because it tracks lip
movements along with the individual’s head in different positions.

• We proposed a contact-less head recognition system that automatically recognises and
translates head movements with and without a wall in between the target and transponder
setup.

• In addition, we collect a dataset of 2400 samples from 6 different types of head move-
ments captured at 0.50 centimeters distance away from the target. Furthermore, the data
samples are collected using 2 different techniques (Radar sensor and Wi-Fi signals) with
and without a wall. To ensure diversity, data was collected from four participants (two
males and two females) ranging in age from 20 to 40 years.

• For the radar dataset, various DL models including VGG16, VGG19, InceptionV3, and
SqueezeNet were applied. When tested on a combined dataset of four subjects, VGG16
outperformed the other algorithms, achieving 80% accuracy with the presence of a wall
and 79.2% without it.

• For the Wi-Fi dataset, VGG16, VGG19, InceptionV3, SqueezeNet, Neural network pat-
tern recognition, Tree(Medium Tree), and Ensemble(Boosted Tree) was applied on the
individual subject, a combined dataset of four subjects InceptionV3 outperformed as com-
pared to another algorithm 80% Accuracy with the wall and 89% without the wall.

• The fusion of features for different DL models was tested. The highest accuracy values
of 91.8% without the wall was achieved with feature fusion of VGG16 and InceptionV3
DL models. Furthermore, the highest accuracy of 83.33% was achieved through the walls
with the feature fusion of VGG16 and InceptionV3 DL models.

• In this work, we presented the experimental results from several state-of-the-art DL and
ML models applied to our benchmark dataset, which can serve as a foundation for future
research in the domain of detecting head movements through walls.

This chapter proposes novel head movement gestures using micro-doppler signatures using
radar-sensor with and without walls. Six different gestures are considered, Head 45L, Head
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45R, Head 90L, Head 90R, and Head Down. An ultra-wideband radar, XeThru X4M03 is used
to record experimental data. The received data is represented in the form of spectrograms while
spatiotemporal features were extracted using fusion of two different models. We achieved 91.8%
of classification accuracy without a wall. The possible use cases of the proposed technology are
illustrated in Figure. 5.1.

Face mask

Head movements

RadarWi-Fi

Sensing head movements with 

Wi-Fi and radar

Received signals dataset

 Machine learning (ML)/

Deep learning (DL)

Head movements 

recognition

Poor lightening

Head movements use-casesApplications

Next generation

hearing aids

Without Face mask

Driving Alerting System
Identifying depressive 


pateinets

Data Storage and Pre-ProcessingDataset after Pre-Processing

Wall-through
without mask

Wall-through
with mask

Employer monitoring
through the wall

Figure 5.1: Conceptual representation of the suggested methodology for head movements.

5.2 Experimental Setup

5.2.1 Radar based setup

The experimental setup and configuration parameters for the radar-based head movement system
are illustrated in Figure. 5.2a. The sensor has a 1.5 GHz sensor bandwidth and a detection range
of about 9.6 meters. It utilizes a UWB radar sensor, specifically the Xethru-X4M03 model,
equipped with both Tx and Rx antennas. To derive valuable insights from the radar data, we
employed the STFT on the radar signal. This process resulted in the creation of spectrograms
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Parameter Value

USRP-Platform X300
OFDM-subcarriers 51
Frequency of operation 5.5GHz
Gain of Tx 35dB
Gain of Rx 35dB
Tx antenna Log periodic HyperLOG 7040, 700MHz to 4GHz
Rx antenna UWB 1.35GHz-9.5GHz Log-Periodic Directional
Subject distance from Tx-Rx antennas 0.50 meters
Duration of activity 4 seconds
Samples collected (each class) 50

References

Subject Head Movements
Radar Wi-Fi

Head down Head Up Left 45 Left 90 Right 45 Right 90 Head down Head Up Left 45 Left 90 Right 45 Right 90 Total

S1 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S2 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S3 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S4 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

Total 200 200 200 200 200 200 200 200 200 200 200 200 2400
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Parameter Value

Platform Xetru radar X4MO3
Instrumental range 9.6 meters
Subject and Radar distance 0.50 meters
Frequency of operation 7.29GHz
Tx power 6.3dBm
Activity duration 4 seconds
Collected samples in each class 25

2

Figure 5.2: Head movements activity with their representation in Wi-Fi and radar signal. (a)
The configuration parameters of radar software and hardware without and with through the wall
experiment. (b) The configuration parameters of Wi-Fi software and hardware with and without
the wall experiment. (c) An overview of the gathered data, the total number of participants, and
the conducted activities.

that effectively captured the radar doppler shift corresponding to various head movements. Ex-
amination of these spectrograms revealed that different head movements produced distinct spec-
trogram patterns.

Scenario 1 - Line-of-sight: With no wall in between target and transponder setup

The sensor was placed in front of the participants/subject at around a half-meter distance. The
experimental data recording activity for head movements was carried out by placing the radar
0.5 meters away from the subject sitting on a chair. The only movements performed here by the
subjects were the head movements with slight shoulder movements which naturally arises while
talking. The rest of the body was in a normal sitting position. Each activity was performed in a
4 seconds time frame. In these 4 seconds, the RF signal was transmitted and received back by
the radar. The data collection and processing using UWB radar setup are shown in Figure. 5.3a.

Scenario 2 -Non-line-of-sight: With wall/opaque barrier in between target and transpon-
der setup

The sensor was placed in the line of sight of the participants/subject at around a half-meter
distance. A plasterboard/drywall wall was placed between the target and the radar. The experi-
mental data recording activity for each head movement was carried out for 4 seconds and during
these four seconds, the radar sent and received the RF signals. The subject was sitting on the
chair in a normal position while performing head movements activity. The data collection and
processing using UWB radar setup are shown in Figure. 5.3b.
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Figure 5.3: Head movements activity with their representation in Wi-Fi and radar signal. (a)
An experimental setup of the radar signal without a wall. (b) An experimental setup involving
radar signal penetration through a wall in a closed-door environment. (c) An experimental setup
of Wi-Fi signal without a wall. (d) An experimental setup of Wi-Fi signal through a wall in a
closed-door environment.

5.2.2 Wi-Fi based setup

The second set of experiments was performed using Wi-Fi. The experimental setup and param-
eter configuration for Wi-Fi based head movement system is given in Figure. 5.2b. The main
equipment of this setup is USRP-X300 with a single transmitter antenna (directional) and two
antennas at the receiver side which are (directional) in nature. On the transmitter side, the Rx an-
tenna UWB 1.35GHz-9.5GHz Log-Periodic Directional was used as a transmitter whereas two
monopole antennas (VERT2450) optimized at an operating frequency of 5.5 GHz were used as
a receiver. The gain of both the Tx/Rx antennas was set to 35 dB. The USRP and desktop were
connected using an Intel(R)-Core(TM) i7-7700 processor operating at 3.60 GHz with 16GB of
RAM. Communication between the USRP and GNU Radio was established using a virtual ma-
chine running Ubuntu 16.04. A Python script was employed to transmit and receive data from
the USRP-X300. The experiments were conducted within the 5.5 GHz Wi-Fi frequency band.

Scenario 1 - Line-of-sight: With no wall in between target and transponder setup

The Tx and Rx antennas were situated approximately 0.50 meters away from the subject, and
each head movement was performed continuously for 4 seconds. The data collection process
and subsequent processing using Wi-Fi equipment are depicted in Figure. 5.3c. It is important
to note that Wi-Fi signals were evaluated based on a range of characteristics, including time-
frequency maps, among others. Unlike radar signals, where frequency shift was the primary
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distinguishing factor, Wi-Fi CSI values were most effective when variations in CSI amplitudes
were observed. These fluctuations in one-dimensional CSI amplitude revealed distinctive pat-
terns of head movement.

Scenario 2 - Non-line-of-sight: With wall/opaque barrier in between target and transpon-
der setup

The Tx and Rx antennas were positioned around 0.50 meters away from the subject. Plas-
terboard or drywall was placed between Tx/Rx, and target. The experimental data recording
activity for each head movement was carried out for 4 seconds and during these four seconds,
the Tx signal hit the target and was received back to the receiver. The subject was sitting on the
chair in a normal position while performing head movements activity. The data collection and
processing using Wi-Fi setup are shown in Figure. 5.3d.

5.3 Methods

The main illustration of head movement activity is shown in Figure. 5.4a. In the case of Wi-
Fi, 2000 packets were transmitted within four seconds, where each data instance represented
the CSI amplitudes. The CSI patterns (amplitude) of considered head movements, namely,
Head down, Head up, Head left 90, Head Right 90, Head Right 45, and Head Left 45, are
depicted in Figure. 5.4b without wall and Figure. 5.4d with wall experiments. In each figure,
the 51 subcarriers of the OFDM signal are represented by different colors. The amplitude of
the subcarriers is represented on the y-axis of each sub-figure, while the number of received
packets is displayed on the x-axis. In the radar scenario, the same approach was used for data
collection with a total of 600 data samples, four subjects participated including two males and
two females, with 25 data samples in each class. Data is in the form of a spectrogram, which
is shown in Figure. 5.4c without wall and Figure. 5.4e with wall experiments. Each figure’s
different colors represent a change in frequency. In each spectrogram, y-axis represents the
doppler shift (Hz), while the x-axis represents time in seconds.

5.3.1 Radar Data Processing

The Xethru X4M03 radar chip was configured using the XEP interface and X4driver. Data
was recorded at a rate of 500 Frames Per Second (FPS) in the form of float message data.
A loop was implemented to read the data file, and the values were subsequently stored in a
DataStream variable, which was then converted into a complex range-time-intensity matrix. To
generate a doppler range map, an MTI filter was applied. Spectrograms were created using
the following parameters: overlap percentage, window length set to 128, FFT, and padding
factor set to 16. A Butterworth 4th-order filter, serving as the second MTI filter, was used.
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Each chirp underwent an initial FFT transformation to produce a range profile. Subsequently,
a second FFT was performed on a specific number of chirps in a sequence for each range bin.
Spectrograms were created using the STFT, which segments the data and applies the fourier
transform to each segment, providing information about both time and frequency. The radar
data’s doppler information depends on the hardware sampling rate, and the highest unambiguous
doppler frequency in radar is determined by the chirp time, given by the formula Fd,max = 1

2tc
.

Head movements recognition at a distance D(t) from a specified location such as the head is
the focus of this chapter. T s is the transmitted signal, while V (t) is the target position in front of
the RADAR,

Ts(t) = E cos(2π f t). (5.1)

The signal received is provided by Rs(t),

Rs(t) = É cos(2π f (t − 2D(t)
c

)), (5.2)

where the speed of light is c and E is the reflection coefficient. The signal that is reflected off
the target points at an angle theta to the direction of the RADAR and is denoted by the symbol
Rs(t).

Rs(t) = É cos(2π f (1+
2v(t)

c
)(t − 4πD(θ)

c
)). (5.3)

The corresponding doppler shift can be expressed as,

fd = f
2v(t)

c
. (5.4)

The signal that is received back is composed of a number of moving parts, including the head
and other small motions of the body. Each component moves with its own acceleration and
speed. The received signal can be written as if i shows the various moving parts of the head. We
can write as

Rs(t) =
N

∑
k

Ak cos(2π f (1+
2vk(t)

c
)(t − 4πDk(0)

c
)). (5.5)

The doppler shift is the result of a complex interaction of multiple doppler shifts due to various
head movements. The feature of doppler signatures depends on the detection of head move-
ments. After getting the spectrogram of different subjects, It was divided into two datasets:
(i) data training and (ii) data testing. The spectrogram fed into the proposed pre-trained DL
classification algorithm for the classification of the head movements dataset.
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5.3.2 Wi-Fi Data Processing

The data was transmitted using OFDM symbols with 52 subcarriers that were tightly spaced.
According to Eq. 5.6, data were collected in a matrix form having frequency responses of
subcarriers N=51.

H = [H1( f ),H2( f ), · · · ,HM( f )]K, (5.6)

Here, the Hl-frequency subcarrier is expressed as

Hl ( f ) = |Hl ( f ) |el ̸ Hl( f ), (5.7)

where, amplitude |Hl( f )| and phase ̸ Hl( f ) are responses of the lth subcarrier. All subcarrier
responses correlated with system input and output as shown in Eq. 5.8,

Hk( f ) =
Yl( f )
Xl( f )

, (5.8)

where input and output fourier transformations are denoted by Xl( f ) and Y l( f ), respectively.
The received CSI data often contain environmental noise. Therefore, the collected data is pro-
cessed by eliminating the mean received power for each subcarrier from every sample. To ob-
serve the maximum variation due to head movements, the subcarrier with the highest variance
was identified for feature extraction. These 10 features were extracted from the dataset namely
minimum, median, variance, eight peaks, standard deviation, high order moments, mode, skew-
ness, kurtosis, and moments. Features extracted into a CSV file were used to train various ML
algorithms, as described in another section. After that, to accurately classify the head movement
classes, training, and testing were carried out using the test-train split evaluation method.

5.3.3 Evaluation Metrics of Classification Models

The performance of DL and ML models was evaluated through TPR, FPR, and accuracy using
the head movements dataset. Equations 3.9 and 3.10 are used to determine TPR and FPR,
respectively. Additionally, accuracy was calculated using the equation, which is one of the most
commonly used metrics in the literature for classification 3.14.

5.3.4 Parameter Settings of the ML and DL Algorithms

The presented approach for classifying head movements was divided into two parts: (i) sys-
tem training and (ii) system testing. For the Wi-Fi numeric dataset, ML algorithms such as
Neural Network (NN) pattern recognition, Medium Tree, and Boosted Trees were applied. The
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Figure 5.4: Wi-Fi and radar signal representation of head movement activity. (a) A visual repre-
sentation of head movements from various angles. (b) Wi-Fi data samples representing various
classes of head movements without walls. (c) Radar data samples representing various head
movement classes without the wall. (d) Wi-Fi data samples representing various classes of head
movements with walls. (e) Data samples from radar that represent different head movement
classes with the presence of a wall.
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Figure 5.5: Overall system overview and the results. (a) The comparative result of radar-based
system with and without wall using DL models. (b) The comparative result of a Wi-Fi-based
system with and without wall using DL and ML models. (c) The data fusion result of Wi-Fi
and radar data without wall using DL models. (d) The data fusion result of Wi-Fi and radar data
through the wall using DL models.

pre-trained DL models—VGG16, VGG19, InceptionV3, and SqueezeNet were utilised on spec-
trogram images generated from radar data. To achieve better results and improve future MM
hearing impairment systems, we converted the Wi-Fi numeric dataset into scalograms. After
getting features extracted from the spectrogram and scalgroam at fully connected layers fused it
into a unified feature vector. This unified vector is then fed into the fully connected layer(s) of a
neural network for further processing and ultimately for making predictions or classifications.
The ML and DL model parameter settings are shown in Table. 5.1.
VGG16 Model: The data was input into the VGG16 models convolution layers with rectified
linear unit (ReLU) activation functions and 3×3 kernel sizes. Each convolution layer was fol-
lowed by a max-pooling layer with 2×2 kernel sizes. The final layer comprised three FC. The
convolution layer and FC layers contained the training weights, which determined the number
of parameters.
VGG19 Model: The data was passed through a different layer which consists of 3×3 filters
with five stages of convolutional layers, five pooling layers, and three fully connected layers to
get image information. The convolution kernel depth has been increased from 64 to 512 of the
VGG16 network for better image feature vector extraction. Every stage of convolutional layers
was followed by pooling layers which have the size and step size of 2×2.
InceptionV3 Model: The dataset was processed using the InceptionV3 DL model, which con-
sists of 48 layers. The architecture of the model involves a sequence of three convolution layers,
followed by a max pooling layer, two more convolution layers, and another max pooling layer.
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Figure 5.6: Feature fusion of radar and Wi-Fi time-frequency maps.

Spectrograms were input into the model, which then underwent multiple convolutions using var-
ious filters. This process was repeated several times across the entire network to facilitate image
classification.
SqueezeNet Model: SqueezeNet is an 18-layer deep CNN. Spectrograms of the input were sent
to the layers. The last convolution layers were added as follows the dropout layer was set to
50%, convolution layers with stride, Relu as activation function, Global average pooling, and
softmax layer were added before the classification output layer.
NN (Neural Network Pattern Recognition) Model: The pattern recognition neural network
used in this chapter comprises two-layer feed-forward networks with hidden neurons using sig-
moid activation functions. SoftMax activation functions were applied to the output layer neu-
rons. The network was trained using the scaled conjugate gradient backpropagation algorithm,
which involved updating the weight and bias values as data passed through these layers. Subse-
quently, the dataset was partitioned into training, validation, and testing subsets. The network’s
performance was assessed based on cross-entropy and misclassification error metrics.
Tree (Medium Tree) Model: Data were fed to decision trees, classification trees, and regres-
sion trees for classification. It followed the decisions in the trees down to a leaf node in order
to forecast a reaction. The response was located in the leaf node. Classification trees provided
nominal answers, such as "true" or "false".
Ensemble (Boosted Tree) Model: The classifier has the ability to combine the results of mul-
tiple low-quality learners into a single high-quality model. The data were input to the booting
ensemble algorithm, which identified the highest breakpoints or branch points to handle the
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depth of tree learners. The experimental setup achieved improved precision with a learning rate
of 0.1.

5.4 Results and Discussion

Two RF sensing technologies were used in two different experiments with and without a wall,
i.e., Wi-Fi and radar. Data collection involved the capture of six head movements: Head up,
Head down, Head Right 90, Head Left 90, Head Right 45, and Head Left 45. These movements
were recorded with subjects in a stationary position and their bodies in a typical posture. To
enhance the dataset’s authenticity, four participants (two males and two females) took part in
both the radar and Wi-Fi experiments. A total of 2400 data samples were collected from both
experiments using radar and Wi-Fi, with and without a wall as shown in Figure. 5.2c. In each ex-
periment with wall and without wall using radar, a total of 600 data samples were collected from
four participants, where 25 samples were taken from each class. Specifically, each participant
repeated each head movement activity 25 times with the radar. Likewise, the same number of
data was acquired from USRP using the same strategy. The University of Glasgow’s Research
Ethics Committee granted ethical approval for these experiments (approval no.: 300200232,
300190109). In the context of radar datasets, both with and without a wall, the evaluation out-
comes for the considered DL algorithms ( VGG16, VGG19, SqueezeNet, and InceptionV3) are
presented in Figure. 5.5a. Notably, all the algorithms produced comparable results, with VGG16
slightly outperforming the others in both scenarios, whether with or without a wall, when using
a combined dataset. Specifically, when employing the VGG16 algorithm, a classification accu-
racy of 80.0% is achieved on the combined dataset without a wall, which is marginally reduced
to a promising accuracy of 79.2% in the presence of a wall.

The evaluation results for various DL and ML algorithms (including VGG16, VGG19,
SqueezeNet, InceptionV3, Neural Network Pattern (NNP) recognition, Tree (Medium Tree),
and Ensemble (Boosted Tree)) for Wi-Fi signals both with and without a wall are displayed in
Figure. 5.5b, using the combined dataset. It is evident from the graph that the InceptionV3 algo-
rithm surpasses the others on the combined dataset. Specifically, when utilising the InceptionV3
algorithm, a classification accuracy of 89.0% is achieved without a wall, whereas the same algo-
rithm yields an 80.0% classification accuracy with the presence of a wall. The fusion of different
DL models was tested which is illustrated in Figure. 5.6 . The highest accuracy values of 91.8%
without the wall were achieved with feature fusion at the fully connected layers of VGG16 and
InceptionV3 DL models shown in Figure. 5.5c. Furthermore, the highest accuracy of 83.33%
was achieved through the walls with the feature fusion of VGG16 and InceptionV3 DL models
shown in Figure. 5.5d.
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DL/ML Model Parameters Settings

VGG16

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

16
0.0001
16
Adam
Cross entropy
25

VGG19

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

19
0.0001
16
Adam
Cross entropy
25

InceptionV3

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number epochs

48
0.0001
16
Adam
Cross entropy
25

SqueezeNet

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

18
0.0001
16
Adam
Cross entropy
25

NN

Number of Layers
Training Function
Number of epochs
Loss function

10
Scaled conjugate
Gradient Backpropagation
20
Cross entropy

Tree (Medium Tree)

SplitCriterion
MaxNumSplits
Surrogate
KFold
Loss Function

gdi
20
off
5
Classiferror

Ensemble

Learner type
Ensemble Method
Loss Function
Learning rate
Number of learners
Maximum Number of splits

Decision Tree
AdaBoost
Classiferror
0.1
30
20

Table 5.1: Parameter settings for the selected DL and ML models.
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5.5 Summary

The work of this chapter has presented an RF sensing-based head movement recognition sys-
tem proposed using Wi-Fi and radar, and state-of-the-art DL and ML algorithms. All directions
of head movements were covered, such as Head up, Head down, Head left 90, Head right 90,
Head left 45, and Head right 45. Wi-Fi data was passed to the InceptionV3 model and radar
data to VGG16 models and the features of the two models were fused for the highest perfor-
mance results of 91.8% without the walls and 83.33% accuracy was achieved through the walls.
Furthermore, the proposed system preserves the privacy concerns of users, which may exist in
vision-based systems. The next chapter focuses on another aspect of future MM hearing impair-
ments, centering on RF-based facial expression analysis. This technique helps deaf individuals
to recognise the expressions of another individual via visual cues.



Chapter 6

RF Sensing Enabled Tracking Of Human
Facial Expressions Using Machine
Learning Algorithms

This chapter presents facial expressions as crucial indicators for understanding human behavior,
enabling the identification and assessment of positive and negative emotions. Moreover, facial
expressions provide insights into various aspects of mental activities, social connections, and
physiological information. Currently, most facial expression detection systems rely on cameras
and wearable devices. However, these methods have drawbacks, including privacy concerns,
issues with poor lighting and line of sight blockage, difficulties in training with longer video
sequences, computational complexities, and disruptions to daily routines. To address these chal-
lenges, this chapter proposes a novel and privacy-preserving human behavior recognition sys-
tem that utilises FMCW radar combined with ML techniques for classifying facial expressions.
Specifically, the study focuses on five common facial expressions: Happy, Sad, Fear, Surprise,
and Neutral. The recorded data is obtained in the form of a micro-doppler signal, and state-
of-the-art ML models such as Super Learner, Linear Discriminant Analysis, Random Forest, K
Nearest Neighbour, Long Short-Term Memory, and Logistic Regression are employed to extract
relevant features. These extracted features from the radar data are then fed into ML models for
classification. The results show a highly promising classification accuracy of 91%.

6.1 Introduction

Facial recognition technology has witnessed substantial advancements in recent years, finding
widespread applications across various domains. These applications include healthcare and
mental health, human-robot interaction, biometric identification, human-computer interaction,
security and surveillance, as well as entertainment and gaming. It is also treated as a nonver-
bal sign used by people to convey emotions, intentions, and social signals [181]. The paper

80
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[182] presents that understanding and monitoring facial expressions has piqued the interest of
researchers in a variety of fields, including psychology, neuroscience, and computer vision.
Face expressions are ubiquitous and may be used to communicate effectively across cultures
and languages [183]. They are essential in social interactions because they let humans express
emotions such as happiness, sadness, anger, fear, surprise, disgust, and contempt [184]. Fa-
cial expressions are caused by the coordinated movement of facial muscles, which results in
recognised and interpretable patterns by human observers [185]. Affective computing, human-
computer interaction, healthcare, and social robotics all benefit from the capacity to reliably
monitor and comprehend facial emotions [186]. The current facial movement detection systems
are based on wearable and camera-based technologies. These techniques have limitations, such
as the need to record the target, which restricts their practical use due to privacy concerns. The
current facial detection systems are based on wearable and camera-based technologies. These
techniques have limitations, such as the need to record the target, which restricts their practical
use due to privacy concerns. The legal implications of such aids may restrict their wider use in
public and private settings; for example, video-in-head motions may be viewed as photograph-
ing someone without their consent, which is illegal in many countries. The main drawbacks of
existing camera-based and wearable-based technology include serious privacy concerns, poor
lighting, obstructions to the line of sight, training difficulties with longer video sequence data,
and computational complexities, and wearable devices disrupt daily routines.

In contrast, RF facial expression sensors present a promising solution to meet the require-
ments of next-generation technologies. These sensors utilise RF sensing and ML techniques to
accurately detect and recognise facial expressions, offering valuable cues that can benefit a wide
range of applications.

The following presents the main contributions of our research work in the field:

• We proposed a unique RF sensing-based facial expression monitoring system that inte-
grates powerful ML algorithms for accurate facial expression recognition and is applicable
for different applications such as healthcare and mental health, human-robot interaction,
biometric identification, human-computer interaction, security and surveillance, as well
as entertainment and gaming.

• A dataset comprising 1000 samples was gathered, encompassing five distinct facial ex-
pressions. The data collection took place at a consistent distance of 1.50 meters from the
target. To ensure variability and inclusiveness, four participants were involved in the data
collection process, consisting of two males and two females within the age range of 20 to
40 years.

• We used extensive experiments and comparisons with existing camera-based and wearable
device-based technologies to assess the performance and usefulness of the proposed RF-
based system, demonstrating the benefits and prospective uses of RF sensing in facial
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expression monitoring.

• In this study, we have presented the experimental results of several advanced ML models
applied to our benchmark dataset. These findings provide valuable insights and can serve
as a fundamental reference for future research in the domain of facial expression detection.

This research introduces innovative facial expression gestures using radar-sensor and micro-
doppler signatures. The study focuses on five distinct gestures: Neutral, Happy, Sad, Fear, and
Surprise. Experimental data is collected using an FMCW radar, and the recorded data is repre-
sented as a micro-doppler signal. The classification accuracy achieved is 91.0%. The potential
applications of this technology are illustrated in Figure. 6.1. Detailed information regarding
the setup, data collection process, ML algorithms, and experimental results are provided in the
subsequent sections.
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Figure 6.1: The overall flow diagram of proposed facial expressions system.

6.2 Methodology

The methodology used in this study is depicted in Figure. 6.1 as a block diagram. The frame-
work comprises three main steps. Firstly, diverse facial expression datasets were collected,
constructed, and annotated using FMCW radar. Subsequently, the pre-processing phases are
explained in the form of an algorithm, as depicted in Figure. 6.3. Finally, a range of ML models
was employed for the classification of facial expressions. The following subsections provide a
detailed discussion of each stage in the proposed methodology.
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Parameter Value
Sensor Type FMCW Radar
Center Frequency 9.5 GHz
Bandwidth 1GHz
Chirp Width 50 us
Chirp Repitation Period 100 us
Transmitter Power 23 dBm
Reciever Gain 20 dB
Tx and Rx Type Horn Antenna
Antenna Gain 13 dB
Number Of Samples Per Class 30
Distance From Rdar to Target 1.5 meter
Activity Duration 4 sec

Table 6.1: Selected hardware and software parameter settings

6.2.1 Experimental Setup and Data Collection

The hardware configuration of the radar-based facial expression system is illustrated in Figure.
6.2. The experiments were conducted in two separate rooms, as shown in Figure. 6.2a and
Figure. 6.2b, representing Room 1 and Room 2, respectively. The experimental setup included
a FMCW radar sensor, positioned in front of the user. The FMCW radar sensor comprised a Tx,
an Rx, and two horn antennas for transmitting and receiving, allowing for a maximum detection
range of 20 meters. The key parameter settings of the radar system are outlined in Table. 6.1.
During the facial expression tasks, the subject was positioned at a distance of 1.50 meters from
the radar. The subject’s body remained in a natural position, with the only movements being
those of the face and slight head movements, which are typical during the conversation. A
single subject facial expression was recorded for each action in the study for a total of 4 seconds.
The radar system transmitted and received the RF signal during this time period. Figure. 6.4b
presents the range time output captured during the measurement of various facial expressions.
This output is utilised for signal processing and distance measurement purposes. To extract
features from the radar data, the FFT is applied, generating spectrograms that illustrate the
radar doppler shift caused by facial movements as depicted in Figure. 6.4c. The analysis of
these spectrograms reveals variations corresponding to different facial expressions due to the
distinct movements of the face and mouth. The use of a trigger in a radar system is essential to
ensure precise timing, synchronisation, and control over the data acquisition process, as shown
in Figure. 6.5.

6.2.2 Data Pre-Processing and Machine Learning Models

The FMCW radar was used for data collection, many parameters are important for target de-
tection in radar systems such as Tx power, Carrier frequency, antenna gain, receiver sensitivity,
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Figure 6.2: The experimental setup. (a) The experimental setup for room 1. (b) The experimental
setup for room 2.

target cross-section area, and receiver noise. To extract facial expression accurately, first detect
the target location is needed. The target range in radar systems is defined by the delay between
the transmitted and received echoes. Equation 6.1 shows the radar range equation:

Rmax = 4

√
PtGtG2

r σ

(4π)3KT0BFn
S
N

(6.1)

Where Pt is the transmitted power, Gt is the Tx antenna gain, Gr is the receiver antenna
gain, is the wavelength, is the target cross-section area, K is Boltzmann constant, T is sys-
tem temperature, B is the Bandwidth, F is the receiver noise Figure, and S/N is signal to noise
ratio[187],[188]. Firstly, we generated of the FMCW ramp which is the fundamental step in
the operation of FMCW radar systems, enabling the measurement of target range based on the
frequency difference between transmitted and received echoes. After that, acquired the received
echoes using an Analog-to-Digital Converter (ADC) with a sampling rate of 250 MSPS (Mega
Samples Per Second) and applied signal processing techniques on collected samples such as low
pass filtering, target extraction, and range calculation. Signal integration technique is applied for
improving SNR to enhance the signal quality and increase the probability of detection. SNR was
measured of the strength of the desired signal compared to the background noise level. Down-
sampling technique was used to reduce the sampling rate of a signal while retaining the essential
information. We did downsampling to 10 MSPS. For data pre-processing and ML approaches,
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Figure 6.3: Pseudo code for the proposed facial expression systems.
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we employed the Scikit-learn library, widely recognised for its comprehensive suite of data anal-
ysis tools and supervised ML algorithms in Python, which are already optimised [189, 190, 191].
Additionally, we employed Pandas, a Python library, for parsing CSV files and converting them
into data frames. Labels were assigned to the first column of the data frames. In the combined
dataset, produced by merging the data frames of each sample, NaN (Not a Number) values may
arise due to slight mismatches in the micro-doppler signal. To handle these NaN values, we
used the SimpleImputer function from Scikit-learn to replace them with the mean of each row.
It is important to note that this data cleansing process does not alter the overall data patterns.
Following the data cleansing step, the processed data, which was in numerical form, was input
into several ML algorithms. This study’s proposed facial expression recognition system under-
went evaluation using six distinct ML methods. The system’s performance was assessed based
on the test accuracy with which it could correctly classify various facial expressions. Each ML
algorithm’s accuracy is assessed independently using two approaches to ensure robust analysis:
(i) k-fold cross-validation and (ii) train-test split. K-fold cross-validation is a widely adopted
approach in ML testing, where the dataset is divided into k groups. In this experiment, we set k
to 10, resulting in the dataset being divided into 10 groups or folds. Each group is then used as a
test set while the remaining groups serve as training sets. This process is repeated k times, with
each group acting as the test set once. The results obtained from each group of classifications
collectively represent the performance of the ML algorithms on the entire dataset. In addition
to k-fold cross-validation, the train-test split technique is employed. This technique involves
dividing the dataset into training and testing subsets. The training data is used to train the ML
models, enabling them to learn from the provided inputs and corresponding labels.

6.3 Experiments and Results

In this section, we will provide a detailed description of the dataset used in the study, along with
an evaluation of the system using the ML models mentioned earlier.

6.3.1 Dataset

In this phase, facial expression data was collected using FMCW radar. Figure. 6.2 illustrates the
hardware setup of the radar-based system employed for facial expression data collection. The
FMCW radar sensor was equipped with two horn antennas, one for Tx and the other for Rx,
enabling a maximum detection range of 20 meters. As shown in the figure, the radar sensor is
placed on the table. The key parameter settings of the radar are indicated in the Table. 6.1. In
order to encompass different complexity levels in the dataset, it was recorded in two different
room environments. The data collection is significantly impacted by a variety of environmental
circumstances, ensuring the reliability and authenticity of the proposed system in a variety of
locations. After collecting the dataset, it is proved that the system has the same behaviour in
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all environments. During the data collection process, the subjects maintained a neutral body
position, focusing solely on facial movements. Additionally, each activity had a fixed duration
of 4 seconds, allowing for the collection of data corresponding to a single gesture performed by
an individual subject. Figure. 6.4 provides a visual illustration of the face expression datasets.
The ethical approval for these experiments was obtained from the Research Ethics Committee at
the University of Glasgow (approval no. 300200232, 300190109). The data collection process
involved the participation of four individuals, consisting of two males and two females. The
inclusion of multiple participants aimed to enhance the realism and diversity of the dataset. A
total of 1000 data samples were collected during the experiment, encompassing five distinct
categories across two different rooms. The details of the collected dataset are highlighted in
the Table. 6.2. In each experiment, a total of 1000 data samples were collected from four
participants, with 30 samples collected in each class. In particular, each participant repeated the
facial expression activity of each gesture 30 times with the radar. In this way, each participant
contributed to collecting 250 data samples in total for the fifth class. In each case, a total of 1000
data were categorised as fifth facial gestures, of which 800 were utilised for training and 200 for
testing.

Figure 6.4: The radar signal representation of facial expression activities. (a) A visual rep-
resentation of facial expression activities. (b) The range-time output of various activities (c)
Spectogram representing various facial expression activities.

6.3.2 Performance Metrics for Evaluating the Classification Model

In this study, the performance evaluation of ML models for facial expression dataset classifica-
tion involves several metrics, including weighted average accuracy, precision, recall, f1-score,
accuracy, and a 95% confidence interval (CI). The F1-score is a widely used metric in classifi-
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Classes Experimental Dataset
Subject (S1) Subject (S2) Subject (S3) Subject (S4) Total

Happy 50 50 50 50 200
Sad 50 50 50 50 200
Surprise 50 50 50 50 200
Fair 50 50 50 50 200
Neutral 50 50 50 50 200
Total 250 250 250 250 1000

Table 6.2: A summary of the collected data, the participant count, and the conducted activities
of facial expressions.

Figure 6.5: A visual representation of variation in frequency for different facial expressions (a)
Trigger. (b) Neutral. (c) Happy. (d) Sad. (e) Fair. (f) Surprise.

cation literature, serving as a measure of classification performance. It combines precision and
recall, which are calculated using Equations 6.3 and 6.4, respectively. The F1-score, calculated
using Equation 6.2, provides a comprehensive evaluation of the model’s ability to balance both
precision and recall in classification tasks. The overall accuracy of the combined dataset is cal-
culated using 6.5 and verified the interval using 6.6. Where, the 95% asymptotic CI measures
the statistical significance of experimental results. It represents the radius, with n = 1000 sam-
ples (20% of the dataset), and uses k as the number of standard deviations. The CI has a 95%
probability of containing the true classification result. A value of k = 1.96 from the Gaussian
distribution establishes this 95% confidence level.

F1−Score = 2
Precision.Recall

Precision+Recall
(6.2)

Precision =
∑T P

∑T P+∑FP
(6.3)

Recall =
∑T P

∑T P+∑FN
(6.4)
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Models Precision Recall F1-Score Accurcay (%) 95% CI
Super Learner 0.90 0.90 0.90 90.0 0.84-0.96
Linear Discriminant Analysis 0.81 0.79 0.79 79.0 0.77-0.82
Random Forest 0.86 0.85 0.85 85.0 0.83-0.87
K Nearest Neighbour 0.82 0.80 0.80 80.0 0.78-0.83
Long Short-Term Memory 0.92 0.91 0.91 91.0 0.89-0.93
Logistic Regression 0.75 0.75 0.74 75.0 0.72-0.78

Table 6.3: The evaluation of the ML models on the facial expression dataset involved measuring
weighted average recall, weighted average precision, weighted average F1-score, accuracy, and
determining a 95% confidence interval.

Accuracy =
∑(T P+T N)

∑(T P+FP+T N +FN)
(6.5)

Interval = k×
√

Accuracy× (1−Accuracy)
n

(6.6)

6.3.3 Results and Discussion

This experimentation serves two purposes. In the first step, we introduced radar-based facial
recognition, and in the next step, we compared the performance of various existing ML models
such as Super Learner, LDA, RF, KNN, LSTM, and Logistic Regression. We collected and anal-
ysed the performance of facial expression frameworks using different facial expression datasets
such as Neutral, Happy, Sad, Fair, and Surprise from different genders. As a result, we per-
formed experiments on micro-doppler signal data to evaluate the model’s performance. The
hyper-parameter settings for all models are listed in the Table. 6.4. All of the models on the
dataset have been fine-tuned. Additionally, the training and testing sets were fixed throughout
all studies. The percentages of the entire data in our training and testing sets are 80% and 20%,
respectively Table. 6.3 shows the outcomes of studies with various facial expression structures
in terms of precision, recall, f1-score, accuracy, and interval which help with decision-making
and comparisons. The Figure. 6.6 shows the confusion matrix of all proposed models on col-
lected datasets. Overall, better outcomes were obtained for the combined and individual datasets
using all models.

In the super learner algorithm, the combined dataset includes males and females. We got a
high classification accuracy of 90% with precision, recall, and F1-score and accurate interval,
which are shown in Figure. 6.6a. All the classes are correctly classified except Fair because
11% of expressions are similar to Happy.

Similarly, Linear Discriminant Analysis is well-performed on the combined dataset with
80% accuracy, precision, recall, f1-score and valid interval which are shown in Figure. 6.6b. All
the classes are correctly classified except Fair which has been misclassified with Happy, Sad,
and Surprise with a ratio of 0.08, 0.08, and 0.16.
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Using Random Forest, the combined dataset includes males and females. We got a high
classification accuracy of 85% with precision, recall, f1-score, and accurate interval which are
shown in Figure. 6.6c. All the classes are correctly classified except Fair and Surprise. The Fair
has similarities with Happy with a ratio of 0.16. Here again, Surprise has similarities with Fair,
Happy, Neutral, and Sad with ratios of 0.095, 0.048, 0.048, and 0.048.

In the case of the K Nearest Neighbour algorithm, we got a high classification accuracy of
80%, precision, recall, f1-score, and interval, which are shown in Figure. 6.6d. Except for
Surprise all classes are correctly classified because it has similarity with Fair and Sad with a
ratio of 0.14 and 0.095.

Using the Long Short-Term Memory algorithm on the combined dataset, we got high clas-
sification accuracy of 91%, precision, recall, f1-score, and interval, which are shown in Figure.
6.6e. All classes are correctly classified except Fair which has been misclassified with Sad and
Surprise with ratios of 0.15 and 0.15.

Logistic Regression, the combined dataset includes males and females. We got a high clas-
sification accuracy of 75% with precision, recall, and F1-score and an accurate interval, which
are shown in Figure. 6.6f. All the classes are correctly classified except Fair because it has
similarities with Happy, Neutral, Sad, and Surprise with ratios of 0.12, 0.08, 0.08, and 0.16.

(a) (b) (c)

(d) (e) (f )

Figure 6.6: The confusion matrix of well-known ML algorithms on the combined dataset. (a)
Super Learner. (b) Linear Discriminant Analysis. (c) Random Forest. (d) K Nearest Neighbour.
(e) Long Short-Term Memory. (f) Logistic Regression.

6.4 Summary

This chapter presents a contactless and privacy-preserving facial recognition framework. The
diverse dataset is taken from different users in the form of micro-doppler signals and fed into
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ML Model Parameters Settings

Super Learner

N_estimator
Type
N_split
Solver
Gamma

20
Multi-threading
10
Liblinear
Scale

Linear Discriminant Analysis

Solver
Shrinkag
Store_covariance
Tol
CV
Covariance_estimator

Svd
None
False
0.0001
10
None

Random Forest

N_estimator
CV
Criterion
Mini_samples_Split
Max_features

200
10
gini
2
sqrt

K Nearest Neighbour

N_neighbors
CV
Weights
Leaf Size
Metric

5
20
Uniform
30
minikowski

Long Short-Term Memory

Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

0.0001
128
Adam
Binary_crossentropy
100

Logistic Regression

Penalty
tol
Solver
CV
C

l2
0.0001
lbfgs
10
1.0

Table 6.4: Parameter settings for the ML models
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well-known ML models. The collected data consists of five different classes: neutral, happy, sad,
fair, and surprise. The experiment included four participants, two male and two female, aged 20
to 40 years. The micro-doppler data is fed into various ML models, including Super Learner,
Linear Discriminant Analysis, Random Forest, K Nearest Neighbour, Long Short-Term Mem-
ory, and Logistic Regression. The face movements were mostly classified correctly, achieving
a 100% accuracy rate. Among the models tested, the Long Short-Term Memory algorithm per-
formed the best, with an overall accuracy of 91% for all five classes. The next chapter discusses
the future direction of MM hearing impairment devices.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main purpose of this thesis is to propose future MM hearing aid devices based on RF sens-
ing capable of communicating deaf communities with normal individuals with the assistance of
ML and DL. The thesis details the current literature in the field of hearing impairments by using
contact and contactless methods. Contact-based methods include wearable sensors. Although
contact-based sensors provide good accuracy, they have disadvantages such as discomfort, bat-
tery capacity issues, and human forgetfulness to wear the device. The regular use of assistive
technologies becomes especially critical in the context of cognitive disorders. This is because
deaf people have a higher risk of memory problems, making continuous engagement with these
devices become necessary for their efficiency. When people discomfort to utilise these devices
daily, their usefulness decreases significantly. Contactless methods include cameras, radar, Wi-
Fi, and RFID technology. Camera technology is effective for monitoring lip-reading recognition,
sign language, head movements, and facial expressions, however, it has privacy issues. Using
cameras in hearing aids could be seen as recording without consent, which is legally problematic
in many regions. Moreover, the widespread use of face masks during the COVID-19 pandemic
has further limited the effectiveness of vision-based hearing aids.

RF sensing-based hearing aid technologies, including Wi-Fi, Radar, and RFID, effectively
address the limitations of wearable and camera-based devices. These RF sensing devices of-
fer numerous advantages for future hearing aids: they maintain privacy, operate effectively even
with face masks on since RF signals can penetrate masks to detect vital visual cues, and are com-
monly present in homes with Wi-Fi networks. Wi-Fi transmits data between devices wirelessly
using RF signals. Micro-movements of lips, head, hands, and face between an RF transmit-
ter and receiver affect signal propagation, visible through CSI analysis. The radar framework
utilises doppler shift spectrograms and requires only a single Tx and Rx on a single chip. A
DL model interprets these spectrograms to classify various micro-movements for hearing aids.
Additionally, the another RF-based framework incorporates a passive RFID tag, similar to those

93
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used in UHF Textile Laundry products, integrated into standard masks for data collection. The
collected data represented as RSSI values, are analysed using different ML models to detect
these micro-movements. In order to assist deaf communities, this thesis offers a monitoring
system that uses RF signals to detect micro-movements. It investigates the identification of RF
patterns linked to certain spoken and nonverbal signals through the use of ML and DL tech-
niques. The thesis analyses various ML and DL algorithms focusing on their accuracy to ensure
that the future hearing device meets the needs of deaf people and facilitates all perspectives.

The thesis chapters elaborate on how a multi-functional, future-oriented hearing aid was pro-
posed using RF sensing technology. The initial applications of the system successfully detected
human lip movements (vowels, consonants, words, and sentences), recognising the primary vo-
cabulary of BSL, identifying human behaviors through head movement recognition( Head up,
Head down, Head left 90, Head right 90, Head left 45, and Head right 45), and facial recogni-
tion(Neutral, Happy, Sad, Fear, and Surprise) which are accurately visible in motions of the CSI
data stream, Doppler shift, and RSSI information. This progression has enabled the application
of ML and DL techniques to precisely classify the specific lip, hand, head, and face motions.
This offers a proof of concept demonstrating that RF signals can detect such micro-movements.

This thesis investigates the potential of cutting-edge MM assistive technology to improve
verbal and nonverbal communication within the deaf community. The work investigates how
these RF-based MM hearing aids outperform previous technologies and introduces novel con-
cepts. It opens the door for future advances in assistive hearing equipment while recognising
significant success in this field. It demonstrates the growth and significance of hearing aid tech-
nology in overcoming communication obstacles and shows how these technologies can help the
deaf communicate more effectively through in-depth analysis, making the environment easier
and more accessible.

7.2 Limitation

Herein, there are some limitations of RF sensing-based technology, such as those listed in the
following section.

1. Limited Number Of Data: The low number of participants and the limited amount of
data can significantly affect the generalisation of the machine learning algorithm, whether
it involves classical or deep learning methods.

2. Regulatory Constraints: The operation of RF sensors is subject to regulatory constraints,
including limits on transmission power and frequency band usage. These regulations can
limit the design and deployment of RF sensing technologies, particularly in regions with
strict wireless communication standards.
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3. Susceptibility To Interference: RF sensors can be highly susceptible to interference
from other wireless devices operating in the same frequency band. This interference can
degrade the quality of the sensed data, affecting the accuracy and reliability of the appli-
cations that depend on it.

7.3 Future Work

Future research efforts will focus on the many aspects of future MM hearing impairments using
AI techniques, such as the following.

1. Diverse Environmental Data Collections: This study proposes a concept for a future
MM hearing aid device, aimed at benefiting deaf individuals through the use of RF signals,
while also pinpointing areas for further enhancement. The initial research was conducted
with meticulous attention, focusing on the collection of CSI, Doppler shift, and RSSI data
from a predetermined set of locations. The next phase of research will aim to enhance the
detection process by compiling a more extensive dataset, which will include data gath-
ered from a broader range of positions and orientations. This expanded data collection
will be instrumental in enabling future MM hearing aids to function effectively in diverse
environments.

2. Advancements in Signal Processing: Future research should prioritise advancements
in signal processing, a key factor in reducing noise within CSI, Doppler shift, and RSSI
datasets. These improvements are essential for achieving more accurate movement clas-
sification. Moreover, minimising external noise is vital for optimal system performance
across a variety of settings. This includes adapting to different indoor environments with
varying room configurations, furniture arrangements, and architectural designs, as well as
tackling the unique challenges presented by outdoor conditions. Such modifications are
imperative to ensure the effective functioning of future MM hearing aids in both indoor
and outdoor environments.

3. Multi-Target Activity Monitoring: Future research should focus on advancing multi-
target activity monitoring, especially in enhancing the accuracy of CSI, Doppler shift,
and RSSI datasets. Such improvements are essential for precise movement classification
in environments with varied noise sources. The next steps will involve developing more
sophisticated algorithms and sensor technologies to effectively differentiate and track mul-
tiple targets. These advancements are not only crucial for achieving higher accuracy in
controlled settings but are also key to enhancing the system’s adaptability and reliability
in dynamic, real-world scenarios. The ultimate goal is to establish a robust multi-target
activity monitoring system that can efficiently function in a range of environments, from
densely populated urban areas to complex indoor spaces.
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4. Real-Time Activity Monitoring: Future research efforts will focus on significantly en-
hancing real-time monitoring of all micro-movements, covering activities ranging from lip
reading and hand gesture recognition to head and facial expression tracking. The goal is to
establish a foundational support system for the development of advanced MM hearing aid
devices. These devices, utilising RF-based technology, are anticipated to be cost-effective
and highly versatile, functioning seamlessly across various environments. A key aspect of
our advancement strategy involves integrating sophisticated algorithms with state-of-the-
art sensor technology. Such integration is essential for ensuring that MM hearing aids can
accurately interpret and respond in real time to the subtlest human gestures and expres-
sions, thus providing a more intuitive and natural user experience.

5. Advancements in ML and DL Algorithms: Further improvements will be made in ML
and DL to enhance the accuracy of RF sensing, particularly as the complexity of CSI,
Doppler shift, and RSSI increases with more varied data collection. Our comprehensive
analysis will assess ML and DL effectiveness in RF sensing, focusing on model accuracy
and rapid data processing, critical in real-time applications. Additionally, we will focus
on developing adaptive algorithms to continually improve performance in dynamically
changing environments.
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[140] Musab Coşkun et al. “An overview of popular deep learning methods”. In: European

Journal of Technique (EJT) 7.2 (2017), pp. 165–176.

[141] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[142] Tobias Gruber et al. “On deep learning-based channel decoding”. In: 2017 51st Annual

Conference on Information Sciences and Systems (CISS). IEEE. 2017, pp. 1–6.

[143] Ibrahim Alnujaim et al. “Hand Gesture Recognition Using Input Impedance Variation
of Two Antennas with Transfer Learning”. In: IEEE Sensors Journal 18.10 (2018),
pp. 4129–4135. DOI: 10.1109/JSEN.2018.2820000.



BIBLIOGRAPHY 108

[144] Shahin Amiriparian et al. ““Are You Playing a Shooter Again?!” Deep Representation
Learning for Audio-Based Video Game Genre Recognition”. In: IEEE Transactions on

Games 12.2 (2020), pp. 145–154. DOI: 10.1109/TG.2019.2894532.

[145] Dustin P Fairchild et al. “Through-the-wall micro-Doppler signatures”. In: Chen, VC,

Tahmoush, D., Miceli, WJ (Eds.) (2014).

[146] Yong Wu et al. “Convolution Neural Network based Transfer Learning for Classification
of Flowers”. In: 2018 IEEE 3rd International Conference on Signal and Image Process-

ing (ICSIP). 2018, pp. 562–566. DOI: 10.1109/SIPROCESS.2018.8600536.

[147] MS Windows NT Kernel Description. http://https://machinelearningmastery.
com/transfer-learning-for-deep-learning/.htm. Accessed: 2019-09-
16.

[148] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE

Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. DOI: 10.
1109/CVPR.2009.5206848.

[149] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[150] Christian Szegedy et al. “Rethinking the inception architecture for computer vision”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 2818–2826.

[151] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From the-

ory to algorithms. Cambridge university press, 2014.

[152] KV Seshagiri Rao, Pavel V Nikitin, and Sander F Lam. “Impedance matching concepts
in RFID transponder design”. In: Fourth IEEE Workshop on Automatic Identification

Advanced Technologies (AutoID’05). IEEE. 2005, pp. 39–42.

[153] MS Yeoman and MA O’neill. “Impedance matching of tag antenna to maximize RFID
read ranges & design optimization”. In: 2014 COMSOL Conference, Cambridge, UK.
2014.

[154] Daniel Dobkin. The RF in RFID: UHF RFID in practice. Newnes, 2012.

[155] Lubna et al. “IoT-Enabled Vacant Parking Slot Detection System Using Inkjet-Printed
RFID Tags”. In: IEEE Sensors Journal 23.7 (2023), pp. 7828–7835.

[156] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.

[157] Leif E Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009), p. 1883.

[158] Shunjie Han, Cao Qubo, and Han Meng. “Parameter selection in SVM with RBF kernel
function”. In: World Automation Congress 2012. IEEE. 2012, pp. 1–4.

[159] Gary F Simons and Charles D Fennig. “Ethnologue: Languages of Honduras”. In: (2017).



BIBLIOGRAPHY 109

[160] Jordan Fenlon and Erin Wilkinson. “Sign languages in the world”. In: Sociolinguistics

and Deaf communities (2015), pp. 5–28.

[161] Dustin P Fairchild et al. “Through-the-wall micro-Doppler signatures”. In: Chen, VC,

Tahmoush, D., Miceli, WJ (Eds.) (2014).

[162] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[163] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2015, pp. 1–9.

[164] Kashif Ahmad and Nicola Conci. “How deep features have improved event recognition
in multimedia: A survey”. In: ACM Transactions on Multimedia Computing, Communi-

cations, and Applications (TOMM) 15.2 (2019), pp. 1–27.

[165] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[166] Aravind Krishnaswamy Rangarajan and Raja Purushothaman. “Disease classification
in eggplant using pre-trained VGG16 and MSVM”. In: Scientific reports 10.1 (2020),
pp. 1–11.

[167] Bo Xiao et al. “Head motion modeling for human behavior analysis in dyadic interac-
tion”. In: IEEE transactions on multimedia 17.7 (2015), pp. 1107–1119.

[168] Chunlin Zhao et al. “Multivariate autoregressive models and kernel learning algorithms
for classifying driving mental fatigue based on electroencephalographic”. In: Expert Sys-

tems with Applications 38.3 (2011), pp. 1859–1865.

[169] Gianluca Borghini et al. “Assessment of mental fatigue during car driving by using high
resolution EEG activity and neurophysiologic indices”. In: 2012 Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2012,
pp. 6442–6445.

[170] Monagi H Alkinani, Wazir Zada Khan, and Quratulain Arshad. “Detecting human driver
inattentive and aggressive driving behavior using deep learning: Recent advances, re-
quirements and open challenges”. In: Ieee Access 8 (2020), pp. 105008–105030.

[171] Xuesong Wang and Chuan Xu. “Driver drowsiness detection based on non-intrusive
metrics considering individual specifics”. In: Accident Analysis & Prevention 95 (2016),
pp. 350–357.

[172] Grégoire S Larue, Andry Rakotonirainy, and Anthony N Pettitt. “Predicting reduced
driver alertness on monotonous highways”. In: IEEE Pervasive Computing 14.2 (2015),
pp. 78–85.



BIBLIOGRAPHY 110

[173] Sinan Kaplan et al. “Driver behavior analysis for safe driving: A survey”. In: IEEE

Transactions on Intelligent Transportation Systems 16.6 (2015), pp. 3017–3032.

[174] Shahzeb Ansari et al. “Driver mental fatigue detection based on head posture using new
modified reLU-BiLSTM deep neural network”. In: IEEE Transactions on Intelligent

Transportation Systems (2021).

[175] Partha Chakraborty, Mohammad Abu Yousuf, and Saifur Rahman. “Predicting level of
visual focus of human’s attention using machine learning approaches”. In: Proceed-

ings of international conference on trends in computational and cognitive engineering.
Springer. 2021, pp. 683–694.

[176] T Kujani and V Dhilip Kumar. “Head movements for behavior recognition from real
time video based on deep learning ConvNet transfer learning”. In: Journal of Ambient

Intelligence and Humanized Computing (2021), pp. 1–15.

[177] A Enis Cetin et al. “Review of signal processing applications of Pyroelectric Infrared
(PIR) sensors with a focus on respiration rate and heart rate detection”. In: Digital Signal

Processing 119 (2021), p. 103247.

[178] Sarah Masud Preum et al. “A review of cognitive assistants for healthcare: Trends,
prospects, and future directions”. In: ACM Computing Surveys (CSUR) 53.6 (2021),
pp. 1–37.

[179] Henry Dsouza et al. “Flexible, self-powered sensors for estimating human head kine-
matics relevant to concussions”. In: Scientific reports 12.1 (2022), pp. 1–8.

[180] Sharifa Alghowinem et al. “Head pose and movement analysis as an indicator of depres-
sion”. In: 2013 Humaine Association Conference on Affective Computing and Intelligent

Interaction. IEEE. 2013, pp. 283–288.

[181] Chien-Hsu Chen, I-Jui Lee, and Ling-Yi Lin. “Augmented reality-based video-modeling
storybook of nonverbal facial cues for children with autism spectrum disorder to improve
their perceptions and judgments of facial expressions and emotions”. In: Computers in

Human Behavior 55 (2016), pp. 477–485.

[182] Anil Audumbar Pise et al. “Methods for Facial Expression Recognition with Applica-
tions in Challenging Situations”. In: Computational Intelligence and Neuroscience 2022
(2022).

[183] Klaus R Scherer, Rainer Banse, and Harald G Wallbott. “Emotion inferences from vo-
cal expression correlate across languages and cultures”. In: Journal of Cross-cultural

psychology 32.1 (2001), pp. 76–92.

[184] Lisa Feldman Barrett et al. “Emotional expressions reconsidered: Challenges to inferring
emotion from human facial movements”. In: Psychological science in the public interest

20.1 (2019), pp. 1–68.



BIBLIOGRAPHY 111

[185] Wataru Sato and Sakiko Yoshikawa. “Spontaneous facial mimicry in response to dy-
namic facial expressions”. In: Cognition 104.1 (2007), pp. 1–18.

[186] Chiara Filippini et al. “Thermal infrared imaging-based affective computing and its ap-
plication to facilitate human robot interaction: A review”. In: Applied Sciences 10.8
(2020), p. 2924.

[187] M. I. Skolnik. Radar Handbook. Third Edition. McGraw-Hill Education, 2008.

[188] E. Levanon N. Mozeson. Radar Signals. Wiley, 2004.

[189] 1. Supervised learning — scikit-learn.org. https://scikit-learn.org/stable/
supervised_learning.html#supervised-learning. [Accessed 25-02-
2024].

[190] Shuyu Shi et al. “Accurate location tracking from CSI-based passive device-free prob-
abilistic fingerprinting”. In: IEEE Transactions on Vehicular Technology 67.6 (2018),
pp. 5217–5230.

[191] Jiangang Hao and Tin Kam Ho. “Machine Learning Made Easy: A Review of Scikit-
learn Package in Python Programming Language”. In: Journal of Educational and Be-

havioral Statistics 44.3 (2019), pp. 348–361.


	Thesis cover sheet
	2024HameedPhD_edited

