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Abstract 

A primary aim of cognitive neuroscience is to explain how cognition is physically realized 

by the brain. Toward this end, neuroscientists study consistent activity patterns produced 

across ensembles of neurons. Importantly, such ensembles are subject to excitability 

fluctuations imposed by neural oscillations, which are used in a self-organized way to realize 

windows of effective communication, coding schemes, a switch between memory processes, 

interareal information exchange, and other functions. Given the intimate link between 

oscillations and neural processing, this thesis explores the power of studying activity patterns 

of cognition with reference to brain dynamics. Specifically, I submit that spectral 

information like phase and oscillatory cycles offer a brain-intrinsic coordinate system by 

which the readout of neurocognitive patterns can be assisted. From this vantage point, I 

explore two methodological advances: (1) brain time warping, which incorporates 

oscillatory dynamics post-hoc after brain data has been acquired, and (2) visual perturbation 

or “pings”, which artificially regularize oscillations as memory retrieval is ongoing. We 

demonstrate that brain time warping can reveal activity patterns otherwise left undetected, 

and we introduce a comprehensive toolbox to apply the algorithm and test its effects. On the 

other hand, we found no evidence that pings enhance the readout of memory representations 

from electroencephalography data. Together, these empirical and theoretical points 

underscore the need for a neurally inspired methodology in which scientists are cast as 

spectators with privileged access to external world variables. 
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Chapter 1: General introduction 

1.1 Scope 

The motivating assumption of this thesis is that the brain works in ways that do not reveal 

themselves to naïve experimental observation. As neuroscientists, we study an information 

processing system that works via enshrouded internal processes, and our task is to work 

through this shroud and lay bare how the brain produces behaviour and cognition. The body 

of research presented in this manuscript suggests this project is more fruitful if we explicitly 

consider the relationship between scientists and their system of study in our approaches. By 

casting scientists as spectators, we confer a kind of primacy to the brain that has implications 

for how to analyse, experiment, and theorize. 

What is this thesis not about? Some thinkers have argued that due to our position as 

outside observers, we have consolidated over time a cognitive ontology that is misaligned 

with reality. The proposal to match is that instead of inheriting terms like perception, 

attention, memory, emotion, language, and action, we should revise our vocabulary by 

leveraging neural data (Buzsáki, 2019), or phylogenetic evidence (Cisek, 2019). Now, 

although the research presented in this thesis is inspired by inside-out approaches, this work 

remains agnostic to cognitive ontology—that is to say, it neither endorses nor rejects a brain-

driven revision of psychology. My key claim is critically different: Regardless of what 

cognition is like, inquiry into its neural underpinnings should start from the notion that the 

brain lacks direct access to information in the external world (Scharnowski et al., 2013). 

To be sure, the brain encodes distances and durations, manipulating representations 

of space and time in the service of adaptive behaviour (Gallistel, 2011). But this is orthogonal 

to the question of how the brain endemically structures its activity. As I will review, neuronal 

processing is organized by non-linear fluctuations in neuronal excitability. Given that these 

dynamics govern how information processing unfolds, they offer a system-centric base unit 

for scientific analysis, experimentation, and description. Put differently, while the brain 

infers and reconstruct variables of the external world to support complex cognition, units of 

spacetime are by no means the brain’s home court (Buzsáki & Llinás, 2017; Buzsáki & 

Vöröslakos, 2023). 

Thus, this work is about Methods, not Metaphysics: How do we effectively study an 

opaque information processing system? How do neural dimensions relate to worldly 

dimensions? What units of measurement can we validly project onto the brain, and when 

should we? 
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1.2 The curious case of unit t 

If there is one central message of this thesis, it would be that methodological trouble arrives 

when we collapse neural variables in favour of worldly variables. To introduce the issue, 

take the emblematic case of t = 0 in experiments of mind and brain. This represents a slice 

of time that marks the start of our recordings, the onset of an experimental intervention or 

stimulus, or some other striking event in the world. With our anchor firmly in place, we next 

track what happens within our system of study as a function of t. How do patterns of activity 

unfold? What consistent temporal structure do they display? When do participants press a 

button? What variability do we see in cognition and behaviour, within and across 

participants? 

 From the vantage point of the neural mechanisms we are studying, there is something 

peculiar about this way of doing neuroscience. Certainly, Newtonian time is indispensable 

to scientific investigation and conceptualization because it grounds measurements in the 

physical world. But this dimension of time is not all there is to it—and from the brain’s 

perspective, it is not even most central. 

The nuts and bolts of the brain process information on their own terms, using intrinsic 

dynamics which rarely comport to variables in the external world (Buzsáki & Llinás, 2017). 

In this sense, the brain is nothing much like a radio, with its perpetually receptive antenna 

and with its internal wirings that yield continuous processing. Instead, the brain fluctuates in 

excitability levels in ways that vary markedly across regions in the brain (Capilla et al., 2022). 

Even within the same region, individual ensembles display activity patterns that change 

nonlinearly with respect to Newtonian time from one moment to the next (Cole & Voytek, 

2019). As a result of such spatiotemporal variability, neural computation becomes 

idiosyncratic from the vantage point of external observers. The normative claim of this thesis 

is that accounting for such eccentricities makes for a neuroscience that is more fruit-bearing, 

and the descriptive contributions underpin this aim. To this end, I present an empirical 

overview that explores how brain dynamics relate to cognition (Chapter 2), and I evaluate 

methodological approaches that have the potential to support a brain-centric neuroscience 

(Chapter 3 and 4). Before relaying these points, I first spell out this work’s theoretical 

assumptions, and the basic principles of brain dynamics. 

 

1.3 Assumptions 

What are some assumptions that run through this thesis? First, neuronal activity is taken to 

represent and compute. That is to say, the brain is assumed to encode and transform 
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information in the service of cognition (Gallistel & King, 2009). While representationalism 

is taken on board axiomatically, it is not universally accepted (van Gelder, 1995). 

 Second, concerning time, it is often said that the brain is a dynamical system, but this 

does little to no conceptual work because any physical system that evolves over time is a 

dynamical system (Kelso, 2001), and it is hard to conceive of a system that does not. The 

more instructive lens is given by the distinction between analog and digital information 

processing. Unlike digital architectures in which a series of static state transitions discretely 

impinge on each other, the brain is an analog computational system which evolves 

continuously in a self-organized manner (Lashley, 1958, p. 539; but see Piccinini & Bahar, 

2013). This contrast is important, as the core functional properties of a system influence 

what scientific path most effectively enables our understanding of it, and more 

fundamentally, how the system actualizes its capacities. In short, the second assumption is 

that the brain’s processing regime is continuous and that these dynamics constrain brain 

function and guide methodology. 

 Now, a striking observation is that much of the brain’s activity displays stereotypic 

rhythmic fluctuations, or neural oscillations (Berger, 1929), a finding which is perhaps 

unsurprising considering that networks of neurons are systems of coupled relaxation 

oscillators. And just as physicists leverage different vocabularies and observe distinct 

physical laws under oscillatory and non-oscillatory regimes of its systems of study (Hartman 

& Wintner, 1949), so too do neuroscientists observe changes in information processing 

during oscillatory and non-oscillatory states, each inviting a separate body of terms and 

analytical techniques. In this work, a third assumption is that oscillations are a genuine class 

of brain activity that is to be separated from activity that unfolds by other temporal structure. 

For instance, in Chapter 2, the functional role of oscillations is explicitly analysed in the 

context of memory processing. In Chapter 3, electrophysiology data is transformed based on 

user-selected frequency bands of oscillations. In Chapter 4, the phase reset of oscillations is 

taken as a plausible mechanism of action for why visual perturbations could refocus brain 

activity. With that said, a good deal of the observations and inferences across these chapters 

hold even when collapsing all forms of brain dynamics into a single unitary dimension. Or, 

in philosophical terms, much but not everything turns on oscillations being a natural kind of 

brain activity. As an illustrative example, in bats, neuronal ensembles discharge at specific 

phases of non-oscillatory fluctuations in the local field potential (Eliav et al., 2018), 

suggesting that the basic idea of excitability changes as a valid reference scheme persists 

across dynamical regimes. 
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 A fourth question is whether oscillations are causal players in the brain or merely 

passive byproducts of neuronal activity. In other words, does the fluctuating brain activity, 

and specifically the electric field associated with it, feed back into neuronal populations to 

influence cortical and subcortical computation? This question will not be given extensive 

treatment. Rather, I consider what turns on its answer. Even if oscillations are nothing but a 

passive reflection of neuronal population states, then neuroscientific inquiry should factor in 

oscillatory dynamics all the same. Summary statistic alone, or top-down causal player over 

and above that, in either case oscillations offer information about how neural patterns of 

cognition unfold. Ergo, techniques that regularize or factor in oscillatory brain dynamics are 

important regardless—it is just that the reason for their importance varies. Even so, 

individual claims across these chapters depend in varying degrees on the hypothesis that 

oscillations causally influence neural computation and cognition at large, and I have 

attempted to support assertions that use causal terms with empirical and theoretical 

justification. 

 Finally, I have decided to tolerate vagueness and ambiguity toward the term neural 

oscillations, opting for the encompassing definition of fluctuating brain activity. There is 

currently no consensus on the necessary properties of neural oscillations. Some invoke the 

term when there is a rhythmic brain response of any kind, others require a (damping) 

rhythmic response after driving input has ceased (van Bree et al., 2021; van Bree, Alamia, 

et al., 2022; Zoefel et al., 2018), and further formulations still require active self-generative 

dynamics (Doelling & Assaneo, 2021). The reason to adopt a broad lens is that ultimately 

my claims concern temporally structured variance in brain activity, a point which transcends 

weak and strong oscillation accounts. By extension, I do not believe anything central turns 

on which formulation of neural oscillations is right. 

 In summary, ranging from most to least pivotal, the research in this thesis assumes 

representationalism, constraint of brain function by dynamics, the view that oscillations are 

real, that they are informative, and that they are causally relevant for cognition. Next, I 

introduce the scientific study of brain dynamics. 

 

1.4 Brain dynamics 

1.4.1 Characterizing temporal structure 

How do neuroscientists get a handle on the orchestra of neural activity? A primary method 

to characterize brain dynamics is Fourier analysis, whereby signals recorded using 

neuroimaging techniques—such as electroencephalography (EEG), 
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magnetoencephalography (MEG), intracranial local field potential recordings (LFP), and 

functional MRI (fMRI)—are decomposed into a set of sinusoidal functions which faithfully 

recapitulate the original signal when summed. Such decomposition into underlying functions 

has at least three uses. First, it helps us uncover the distribution of fast- and slow-changing 

signal components, which have distinct neural origins (Capilla et al., 2022; Womelsdorf et 

al., 2014). Second, through signal decomposition we can modify the data systematically, 

removing frequency bands or coloured noise we assume to be unrelated to our phenomena 

of interest, increasing our effective signal-to-noise ratio (Widmann et al., 2015). Third and 

relatedly, frequency decomposition can help us separate oscillatory and non-oscillatory 

dimensions of brain activity, which as outlined in Section 1.2 call for separate methodologies 

and arise from distinct brain mechanisms (Gerster et al., 2022). For a mathematical 

exposition of Fourier analysis, see Körner, 1988. 

In addition to Fourier analysis, there are a host of related techniques—such as 

Welch’s method (Welch, 1967) and wavelet transform—which also achieve the goal of 

representing neuroimaging data in time and frequency space, each with its own upshots and 

limitations (Akin, 2002; Rahi & Mehra, 2014). 

 

1.4.2 Non-oscillatory dynamics 

Whereas oscillatory brain activity confines itself to band-limited segments in frequency 

space, non-oscillatory activity spreads out disparately across the spectrum with varying 

intensities. White noise refers to activity with equal intensities across the board, pink noise 

has a negative slope with intensity ramping down with increasing frequencies (in keeping 

with a 1/frequency law), and Brown noise drops off even more rapidly (with a 

1/frequency2 law; Figure 1.1A). Pink noise—henceforth referred to as 1/f noise—shows 

up robustly across natural physical systems, and the brain is no exception (Fig. 1.1B). It is 

not understood why 1/f noise is so ubiquitous throughout the universe; though some accounts 

suggest it is a necessary byproduct of stationary random stochastic processes that arises 

regardless of the kind and number of system variables at play (Szendro et al., 2001). 
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Figure 1.1. Non-oscillatory activity in natural systems. (A) White noise, pink noise 

(1/frequency), and Brown noise (1/frequency2). (B) Examples of pink noise in nature. Figure 

1B was adapted from Ward & Greenwood, 2007; see reference for original data sources. 

 

 Out of the different forms of noise, 1/f noise has been of most interest to 

neuroscientists because it shows up robustly across power spectra of brain activity 

(Donoghue et al., 2020). 1/f noise profiles are correlated with network spiking (Manning et 

al., 2009), blood-oxygen levels (Winawer et al., 2013), the relative distribution of excitatory 

and inhibitory synaptic activity (E-I balance; Gao et al., 2017), task-relevant changes in 

behaviour (Ouyang et al., 2020) and cognition (Herweg et al., 2020), disease (Molina et al., 

2020), and cortical depth (Halgren et al., 2021). 

Given such relations, and the distinct brain mechanisms believed to be at play for 

oscillatory activity, a longstanding analytical project has been to develop ways of teasing 

apart 1/f and oscillatory components—which as mentioned before blend in frequency space. 

This problem spawned a host of modelling tools, including but not limited to Fitting 

Oscillations and One Over F (FOOOF; Donoghue et al., 2020) and Irregular-Resampling 

Auto-Spectral Analysis (IRASA; Wen & Liu, 2016), each with its own applications (Gerster 

et al., 2022). The Brain Time Toolbox introduced in Chapter 3 depends on the extraction of 

oscillatory components of brain activity, and as such leverages these and other techniques 

for its reliable application. 

This thesis places its focus on oscillatory dynamics. One reason for this is that 

oscillations come packaged with a relatively well-defined brain-inspired unit of time—

excitability cycles—allowing us to strike at the heart of the problem identified in the opening 

paragraphs. Since my focus is on this class of brain dynamics, forms of non-oscillatory 

dynamics—1/f or other forms of coloured noise—are often discussed as something to be 
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filtered out. Crucially, this should not be taken to suggest that such brain activity is 

uninformative, as the previous empirical relations attest. Rather, this thesis centrally explores 

how brain oscillations coordinate (or, alternatively, offer a summary statistic of) masses of 

neuronal activity in the service of cognition—and under that goal, its distinct mechanisms 

should be targeted, and its relevant methodologies should be used. 

 

1.4.3 Oscillatory dynamics 

Spectral properties 

Borrowing from physics, neuroscience has benefited from nomenclature used to denote 

different aspects of an oscillation. The first spectral property of interest is frequency, which 

refers to the number of cycles per second (Hz). Relatedly we can refer to the duration of a 

cycle, or its period, which is inversely proportional to frequency. Third, oscillations vary in 

amplitude, which indexes the maximum magnitude deflection of an oscillation. A fourth 

concept central to these Chapters is phase, which refers to instantaneous moments of a cycle, 

or more formally, the fraction of a cycle traversed after t. The phases across a cycle are 

usually quantified from 0  to 2𝜋 , or sometimes −𝜋 𝑎𝑛𝑑 + 𝜋 . Each of these spectral 

properties offer ways to refer to aspects of the same phenomenon with potential empirical 

relations to molecular processes, neuronal information processing, cognition, and behaviour. 

 

Oscillatory frequencies 

In neuroscience, oscillations are categorized based on their membership to frequency bands. 

These bands are denoted by Greek letters, with delta (2-4 Hz), theta (4-7 Hz), alpha (7-13 

Hz), beta (13-30 Hz), and gamma (over 40 Hz) as the most prominent examples. These 

categories are human-constructed—at minimum, the borders are fuzzy—but they do find 

grounding in nature (Cohen, 2021). For one, regions of the human brain settle into specific 

frequency bands during resting periods, consistently so across participants (Fig. 1.2; Capilla 

et al., 2022). Second, at least for alpha and beta, we observe a normal distribution of 

frequencies spanning aforementioned ranges, with the mode in the centre of these bands. 

This pattern holds between participants, and between cognitive tasks within participants 

(Haegens et al., 2014). Third, frequency bands go together with stereotypic underpinnings. 

For example, gamma oscillations are produced by fast-spiking interneurons and basket cells 

(Kopell et al., 2000; Whittington et al., 2000; Buzsáki & Wang, 2012), and modelling work 

suggests that alpha and beta oscillations emerge from separable generators (Jones et al., 

2009; Kramer et al., 2008). Furthermore, on a functional level, activity at theta and gamma 
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frequencies carries feedforward signals, complemented by feedback-sending beta 

oscillations (Bastos et al., 2015). Thus, oscillatory frequency bands offer a useful and 

empirically justified vocabulary to study how cognition is realized by the brain. 

 

 

 

Figure 1.2. Natural frequencies of the human brain. (A) Spatial distribution of 

oscillations at the single-voxel level during rest. Typical frequency bands are colour coded 

and denoted by Greek letters on the colour bar. (B) A 95% confidence interval with lower 

and upper bounds derived using a bootstrapping technique. Figure 1.2 was borrowed from 

Capilla et al., 2022 (licensed under CC BY-NC-ND 4.0). 

 

Spectral variation 

The second point is that brain oscillations are themselves subject to dynamical fluctuations. 

Put differently, oscillations are not perfectly regular but instead vary along key spectral 

dimensions from one instance to the next. Such variation includes phase jumps and 

spontaneous resets, time-varying frequency modulations, dynamical shifts in amplitude, and 

interruption by sharp transients (Cole & Voytek, 2018; Rabinovich et al., 2008). As will be 

discussed, this picture of brain oscillations as containing a layer of non-linearity (with 

respect to Newtonian time) has consequences for neuroscientific practice and cognition itself. 

Specifically, if brain oscillations orchestrate information processing across neurons, then 
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their variability will cause changes to neural or behavioural patterns of interest. Or under the 

non-causal view that oscillations passively reflect information processing across neurons, 

tracking how oscillations unfold informs us about dynamical changes to the lower-level 

realizers of cognition and behaviour. 

 

1.4.4 Determinants of temporal structure in brain activity 

What physical factors underlie and shape brain dynamics? Neurobiological research 

suggests that factors at different levels of scale each leave their mark. 

At the neuronal level, the distribution of ion types across segments of the neuron 

influences action potential patterning (Hutcheon & Yarom, 2000). Under certain ionic 

configurations, pristinely regular firing emerges at baseline, such as in the seminal case of 

neurons in the inferior olive of the medulla oblongata (Llinás & Yarom, 1981). In addition, 

the spatial distribution of ions across neuronal segments influences not only the baseline 

firing of neurons, but also their resonance—i.e., their rhythmic response profile to external 

stimulation (Llinás, 1988).  

Furthermore, the activity of single neurons is dependent on how they are embedded 

in their local circuitry as well as the synaptic properties of cells in the circuit. Seminally, 

modelling work demonstrated that small circuits of mutually inhibiting neurons will, upon 

receiving an excitatory external drive, organically settle into a collective oscillatory regime 

(Matsuoka, 1985). This simplified example raised the possibility that recurrent inhibition in 

general produces oscillatory firing patterns. In line with this, subsequent empirical efforts 

have shown that reciprocally connected excitatory and inhibitory neurons instantiate a push-

pull dynamic that naturally gives rise to rhythmic firing patterns on the neuronal level, and 

oscillations on the network level (Kopell et al., 2000; Börgers & Kopell, 2008; Buzsáki & 

Wang, 2012). Much of this work covers the emergence of gamma oscillations, but different 

frequencies emerge depending on the time constants of synaptic potentials and dendritic 

integration, as well as the conductance properties of feedback loops (Hutcheon & Yarom, 

2000; Singer, 2018). Aside from these factors, there are increasingly complex arrangements 

of cell types and synaptic connections that produce distinct macroscopic network oscillations 

across the frequency spectrum (Womelsdorf et al., 2014). 

Finally, properties described at the network level itself—i.e., macroscopic details 

above the circuit level—have their own relation to global activity patterns. Most 

characteristically, the size of a network influences the temporal structure of population 

activity over and beyond underlying motif (Lea-Carnall et al., 2016). For example, slow 
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oscillations in the delta and frequency range inhabit the largest networks of the brain, with 

small circuits and local ensembles recruiting fast frequencies in the gamma range (Buzsáki 

& Draguhn, 2004; Csicsvari et al., 2003; Steriade, 2001). 

Taken together, fundamental neuroscience has found that factors at the level of 

neurons, circuits, and networks have interlocking effects that together determine the 

cacophony of neural activity. Importantly, insofar this neural symphony displays oscillatory 

structure, specific opportunities for information processing emerge. 

 

1.4.5 Oscillatory dynamics and information processing 

A fundamental property of neural oscillations is that they impose time windows for neuronal 

firing. Specifically, as oscillations fluctuate, they move between phases of low and high 

neuronal excitability, and this influences how cell ensembles in information-carrying circuits 

discharge over time. During low excitability phases, the membrane potential of neurons is 

reduced, requiring comparatively stronger excitatory post-synaptic potentials (EPSPs) from 

upstream ensembles to induce local action potentials (Singer, 2018). During such phases of 

functional inhibition, the combined input received from neuronal ensembles must produce 

relatively high levels of temporal and spatial summation for local firing thresholds to be 

reached. Conversely, at high excitability phases, the voltage difference between resting and 

threshold potentials is reduced, meaning less aggregate input is required for the induction of 

action potentials (Lakatos et al., 2007). In effect then, oscillations introduce temporal 

structure to an otherwise discordant brain. 

 From an information processing standpoint, the waxing and waning of neuronal 

excitability means that the exchange of impulses between up- and downstream ensembles 

becomes segmented into meaningful chunks (Buzsáki, 2010; Buzsáki & Draguhn, 2004). 

Indeed, the relative moments of silence and activity afforded by brain oscillations are 

reminiscent of Morse code and other communication systems that critically depend on 

boundaries to demarcate the start and end of encoded sequences. 

 On the network level, oscillations also establish functional communication channels 

between distant regions of the brain. When the neurons in two anatomically isolated regions 

fire synchronously at the same oscillatory phase, upstream action potentials during the 

excitable phase are more likely to elicit action potentials in downstream receiving areas 

because excitability levels will be high there also (Fries, 2005, 2015; Lisman & Jensen, 2013; 

Singer, 1999). The notion that phase coherence enhances the effective exchange of 

information across regions of the brain has given rise to fruitful theoretical pursuits. For 
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example, computational frameworks have been developed that posit the brain leverages 

oscillations through self-organizing principles to restrict communication to task-relevant 

brain regions, functionally inhibiting irrelevant and potentially interfering areas (Jahnke et 

al., 2014; Jensen & Mazaheri, 2010; Salinas & Sejnowski, 2001). In support of this, the 

allocation of covert attention to one hemifield increases alpha power in ipsilateral regions 

where task-irrelevant information is processed, inhibiting their activity levels (Thut et al., 

2006; Worden et al., 2000; Händel et al., 2011; but see Jensen, 2023). With that said, an 

alternative explanation is that interregional synchronization, regardless of whether it is taken 

to reduce task-irrelevant computation or to send information onward, is merely the product 

of a region sending oscillatory patterns downstream through anatomical projections 

(Schneider et al., 2021). Nevertheless, with this critical note in mind, a picture emerges in 

which brain oscillations orchestrate information processing across the brain in the service of 

cognition at large, and as we will see, memory is a richly supported case in point. 

 

1.5 Summary & looking ahead 

To summarize the points made thus far, a preliminary intuition for the relevance of brain 

dynamics in cognitive neuroscience is that it offers a brain-centric coordinate system by 

which to understand how the brain implements cognition. Brain dynamics reflect 

continuously evolving excitability fluctuations which, in contrast to Newtonian time, are the 

brain’s home court. Researchers characterize such dynamics by harnessing time-sensitive 

neuroimaging methods and a suite of mathematical approaches. What we learned as a result 

of these efforts is that brain activity displays stereotypic rhythms which unfold in natural 

frequency bands as dictated by factors at the neuronal, circuit, and network scale. 

This raises the question of what all of this has to do with cognition. After all, this 

thesis submits that a science interested in the neural basis of cognition should incorporate 

internal dynamics of the brain into its inquiry, and so it must be established that these 

dynamics pertain to cognition in the first place. In the proceeding chapter, rather than 

shallowly touching on all cognitive functions and frequency bands, I will focus on the 

relation between the phase of theta oscillations and memory processes, which have a 

particularly well-established link (Chapter 2). This overview will serve as an illustrative 

starting point, with the remainder of this thesis intermittently branching out to other 

frequency bands and cognitive functions, mostly by referencing key studies and 

comprehensive overviews by others. 
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After a representative case has been made that oscillatory dynamics are relevant for 

studying the neural basis of cognition, I will then introduce the Brain Time Toolbox (Chapter 

3). This part of the thesis fleshes out the importance of brain-intrinsic analysis, and spells 

out concretely how we might achieve this through algorithmic advances. In the penultimate 

chapter, I evaluate an alternative approach to accounting for brain dynamics (Chapter 4). 

Specifically, I outline an experiment that evaluates whether perturbing brain dynamics using 

visual stimulation regularizes relevant activity to enhance our study of memory 

representations. In this sense, while Chapter 3 covers the merit of weighing dynamics at the 

analysis end after the experiment is completed, Chapter 4 explores the possibility of 

factoring in brain dynamics as the experiment is ongoing. Finally, in Chapter 5 I collect and 

integrate insights across this body of work, discussing its implications and sketching a route 

forward. 
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Chapter 2: Theta phase and human memory 

2.1 Introduction 

2.1.1 Aims 

The goal of this Chapter is to offer a comprehensive overview of the computational relevance 

of theta oscillations for memory processes in the human brain. My focus is on theta phase, 

and how its instantaneous excitability is leveraged by memory areas to enable information 

processing (for older reviews on theta phase, see Fell & Axmacher, 2011; Klimesch et al., 

2008; Nyhus & Curran, 2010; for a recent review on theta power, see Herweg et al., 2020). 

Throughout the following paragraphs, I begin by tracing the origin of influential hypotheses 

to modelling research and empirical studies on the rodent brain. Then, once a scientific 

context has been established, I turn to the central aim and ask to what extent the ideas 

generalize to the human brain. 

 The structure of this Chapter unfolds as follow. First, I make a case for the existence 

and importance of theta oscillations in rodent and human memory areas. I briefly consider 

whether theta is homologous between the species to see if it is warranted to leverage rodent 

evidence to inspire human research. Then, I outline basic evidence for the notion that theta 

oscillations realize a phase-based coding scheme, which dynamically updates with goal-

directed behaviour. After that, I discuss two ways in which a theta phase code empowers 

memory processing: (1) it compresses event sequences to assist synaptic plasticity, and (2) 

it provides a neurally accessible scheme of the relative order of events and our position 

within it. Moving on from the phase code, I argue theta phase also implements a switch 

between encoding and retrieval processes. This efficiently makes available circuitry 

multipurpose, and it paves the way for learning algorithms that dynamically update memory 

representations. Finally, I argue that theta-based phase synchronization across distant 

regions makes it possible for memories to become integrated locally, and for neocortical 

patterns to become reinstated globally. 

 

2.1.2 The hippocampal theta rhythm in rodents and humans 

Theta oscillations in rodents 

In the rodent brain, theta oscillations between ~6 and 10 Hz dominate the frequency 

spectrum (Vanderwolf, 1969) of hippocampal activity—a brain region deeply implicated in 

memory processing (Bird & Burgess, 2008; Broadbent et al., 2004). Theta oscillations show 

up robustly when rodents explore a new environment, and display frequency and power-
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specific changes with running speed (Kennedy et al., 2022; McFarland et al., 1975). Beyond 

a movement signal, hippocampal theta has proven critical for the integrity of memory 

processes. Indeed, disrupting theta oscillations in rodents pharmacologically or using lesions 

has detrimental effects on memory performance (Buzsáki, 2005; Givens & Olton, 1994; 

McNaughton et al., 2006; Petersen & Buzsáki, 2020; Winson, 1978). 

 How are theta oscillations produced in the rodent brain? It is helpful to distinguish 

the mechanisms that orchestrate rhythmic structure from those that produce the electric fields 

picked up by electrodes (Buzsáki, 2002). On the former, theta’s patterning results in part 

from circuit architectures (Cutsuridis & Hasselmo, 2012) and inputs from the medial septum 

(Petersen & Buzsáki, 2020; Petsche et al., 1962; Vertes & Kocsis, 1997). The electric fields 

on the other hand are mostly a product of synaptic currents and to a lesser extent action 

potentials (Einevoll et al., 2013; Kamondi et al., 1998; Mazzoni et al., 2015; Reimann et al., 

2013), with the exact proportions for future work to uncover (Buzsáki et al., 2012). 

 

Theta oscillations in humans 

In humans, theta oscillations have been widely implicated in the encoding (Joensen et al., 

2023), consolidation (Marshall et al., 2011), and retrieval (Herweg et al., 2020) of 

information. In general support of this, successfully remembered memory items show 

differences in theta power from forgotten items (Backus et al., 2016; Kota et al., 2020; Ter 

Wal et al., 2021; Hanslmayr & Staudigl, 2014), and causal enhancements of theta 

synchronization improve performance on memory tasks (see Hanslmayr et al., 2019 for an 

overview). 

There are three ways in which theta in the human hippocampus differs from its rodent 

counterpart (for overviews, see Foo & Bohbot, 2020; Jacobs, 2014). First, the rhythm is 

overall less prominent in humans, showing up less reliably across measurements, and lasting 

fewer cycles when it does (Watrous, Lee, et al., 2013). Second, theta emerges at slower 

frequencies—around 1 to 4 Hz (Kahana et al., 2001; Lega et al., 2012; Mormann et al., 2005; 

Watrous et al., 2011)—compared to the 6 to 10 Hz fluctuations in rodents (Vanderwolf, 

1969). Third, rather than displaying a uniform frequency distribution, the human 

hippocampus seems to carry two functionally distinct rhythms (Lega et al., 2012); a slow 

signal dominating anterior regions, and a faster rhythm clustering in posterior regions (Goyal 

et al., 2020; Kota et al., 2020). Thus, in human hippocampal areas there seems to be a band 

residing at lower frequencies, though with a higher frequency component in addition to that. 
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Due to the lack of opportunities for invasive measurements and interventions, 

substantially less is known about the generating mechanisms of human theta oscillations. 

Indeed, given the lack of delicate causal control it is hard to establish whether theta is 

generated by mechanisms within the hippocampus and septum as with rodents, and an 

alternative hypothesis remains that the patterns are induced by neocortical inputs (Herweg 

et al., 2020; Box 3). 

 

What explains interspecies discrepancies? 

At first glance, these rodent-to-human discrepancies in hippocampal theta suggest that we 

are dealing with non-homologous neural phenomena instantiated by distinct mechanisms. 

However, a number of factors could explain away putative differences between the species. 

First, electrode implantation in rodents is carried out for scientific reasons alone, 

whereas electrode implantation in humans is performed for medical reasons—such as to 

identify the source of epileptic seizures. This confers more degrees of freedom in rodent 

electrophysiology, making it is possible to record from loci where theta is most striking. This 

could partially or fully explain interspecies differences in the prominence and reliability of 

theta. 

Second, whereas rodents typically move freely during recordings, human patients are 

for the most part recorded at the bedside. Given that locomotion modulates theta power 

(Terrazas et al., 2005) and frequency (Kennedy et al., 2022; McFarland et al., 1975), 

differences in mobility could account for interspecies variation. Indeed, in exceptional 

circumstances where human LFP is recorded during movement—such as during a virtual 

reality task (Bush et al., 2017; Ekstrom et al., 2005; Goyal et al., 2020) or when a mobile 

intracranial setup is employed (M. Aghajan et al., 2017; Stangl et al., 2021, 2023)—theta 

oscillations show increases in power. This suggests that discrepancies in theta robustness 

may be explained by a mobility confound. With that said, concerning other differences, the 

separation of high and low theta peaks in the human hippocampus seems to persist during 

virtual locomotion (Bush et al., 2017; Vivekananda et al., 2021), possibly highlighting one 

true difference. 

Third, variation in brain size rather than distinct mechanisms could explain inter-

species discrepancies in the dominant theta frequency. In support of this, theta oscillations 

are slower as a function of brain size across the animal kingdom (Buzsáki et al., 2013). And 

within the same species, dominant frequencies slow down with network size (Chapter 1; 

Section 1.4.4). To speculate, perhaps the larger human hippocampus means longer axons are 
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in place to connect information across the module, thus increasing conduction delays and 

slowing down the dominant frequency as a result. 

  Together, while more research is needed, it is highly plausible that theta oscillations 

are evolutionarily conserved across mammals, with interspecies variation in scientific 

methodology and brain size explaining away differences in theta frequency and power. One 

exception seems to be the existence of slow and fast theta components, which appear in 

humans from distinct hippocampal regions. Based on this, I will assume in the remainder of 

this chapter that findings on theta phase in rodents offer at minimum a jumping off point for 

the investigation of human memory processing. With that assumption in mind, I next turn to 

theta phase, the codes it embeds, and the computational benefits it affords. 

 

2.2 Theta phase 

2.2.1 Phase code 

Rodent phase code 

When theta oscillations—which are inhibitory in nature (Vertes & Kocsis, 1997)—are at 

their maximally inhibitory phase, only neuronal ensembles that have high pre-existing levels 

of excitation will be able to withstand global inhibition and trigger action potentials. Then, 

as inhibition ramps down, ensembles less strongly activated by the task will be able to 

withstand global inhibition, activating sequentially as a function of their relative input levels 

(Jensen & Lisman, 1996; Mehta et al., 2002; see Burgess et al., 2007 for a related 

mechanistic account). This instantiates a phase code, comprising a systematic activation of 

memory representations across the theta cycle through self-organizational principles. 

 Research on rodents has amassed evidence for the existence of a theta phase code 

(Dragoi & Buzsáki, 2006; Foster & Wilson, 2007; Wikenheiser & Redish, 2015; Zheng et 

al., 2021). Seminally, place cells which encode spatial locations fire at distinct theta phases 

as an animal moves across a previously experienced track, with these cells activating in a 

relative order matching the order of represented locations across the path (O’Keefe & Recce, 

1993; Skaggs et al., 1996). To enable the phase code, theta oscillations synergize with 

gamma oscillations, which recruit specific information-coding ensembles (including place 

cells). Through such theta-gamma coupling, a striking nested structure emerges in which the 

overarching theta cycle becomes parcelled up by a concatenation of gamma subcycles 

(Bragin et al., 1995). In philosophical terms, we might say that theta introduces a vehicle 

that bears the representational content, with such content inserted through gamma’s 

activation of ensembles (see Martínez & Artiga, 2023; Murphy, 2024 for relevant accounts). 
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Human phase code 

While the most compelling evidence for theta phase codes stems from rodent work, a 

growing body of studies strongly suggests humans carry a similar code to support the brain’s 

ability to encode, maintain, and retrieve information. Here, I cover each function in turn. 

First, as participants encode sequences of images, brain regions that represent each 

image display gamma peaks at distinct theta phases in the MEG signal, with a relative order 

that recapitulates the ground truth positional sequence (Heusser et al., 2016). These findings 

generalize to the spiking behaviour of information-coding ensembles. In Reddy et al., 2021, 

neurons in the human temporal lobe were recorded as participants encoded sequences of 

images. They found that during learning, neurons part of image-representing ensembles fired 

in a sequence-preserving fashion across the theta cycle. 

Similar findings were found in a study where participants carried out the Sternberg 

task, which requires the active maintenance of information in working memory. Analyses of 

simultaneously acquired intracranial recordings showed that letter-specific sites in the 

hippocampus displayed gamma power increases at distinct phases of high theta (or low 

alpha) frequencies (Bahramisharif et al., 2018) with dynamics that retained the original 

stimulus order. In another experiment, stimulus-selective neurons in medio-temporal regions 

fired at specific theta phases during sequence maintenance—although in this case, the 

reactivation patterns did not follow stimulus presentation order (Liebe et al., 2022). 

Finally, the theta phase code has been linked to human memory retrieval. In a recent 

study, participants learned associations between visual cues and locations in a virtual 

environment (Kunz et al., 2019). The authors found that each of eight cue representations 

were reactivated at distinct phases of the hippocampal theta cycle (but not in keeping with 

the original order). In further support, similar experiments revealed that spatial locations 

themselves—not just memory cues—were coded across separate phases of the theta cycle in 

the human hippocampus (Qasim et al., 2021; Watrous et al., 2018). 

Together, these studies support the notion that memory representations activate at 

distinct theta phases to instantiate a coding scheme. Interestingly, the fact that multiple kinds 

of representations (retrieval cues, spatial locations, letters, and images) and memory 

functions (encoding, maintenance, and retrieval) are involved in the theta phase code 

suggests we may be tapping into a general mechanism of the memorizing brain (for further 

discussions, see Griffiths & Jensen, 2023; Lisman, 2005; Lisman & Buzsáki, 2008; Lisman 

& Jensen, 2013; Yamaguchi et al., 2007). 
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Phase precession 

Research has shown that the theta phase code, at least in rodents, is anything but stationary 

over time. Rather, during a phenomenon called phase precession, information-coding cells 

fire at progressively earlier phases as a function of the organism’s position in the overall 

sequence (Dragoi & Buzsáki, 2006; Mehta et al., 2002; O’Keefe & Recce, 1993; Skaggs et 

al., 1996; Terada et al., 2017). This finding has been mostly demonstrated in the context of 

the navigating animal, during which place cells fire progressively earlier as a function of 

how much headway the animal makes across the track (Jensen & Lisman, 1996). 

 Interestingly, this finding has recently been extended to humans. First, in the 

previously mentioned study by Qasim et al., 2021, neurons part of the ensemble representing 

spatial locations fired during progressively earlier phases as participants virtually moved 

through that location. Similarly, neurons tuned to behaviourally relevant goal states showed 

phase precession during virtual movement toward the relevant goal. And second, in the study 

by Reddy et al., 2021, neurons part of image-coding ensembles shifted their firing to earlier 

phases as a function of their serial distance to currently presented images. To our knowledge, 

these are the only two demonstrations of human phase precession, and further work is needed 

to see if these results replicate and generalize. For further reading on computational and 

rodent evidence for phase precession, see Jaramillo & Kempter, 2017; Lisman, 2005; 

Malhotra et al., 2012; Maurer & McNaughton, 2007. Next, I will take this evidence for the 

existence of phase codes and phase precession in humans and explore their benefits to 

information processing. 

 

2.2.2 How theta phase codes support memory 

Neural compression and synaptic plasticity 

As rodents, humans, and other animals move through the world, they experience connected 

events that must be remembered to generate adaptive behaviour. Such event sequences 

typically unfold on the order of seconds, minutes, and longer still. Yet the synaptic plasticity 

mechanisms that strengthen and weaken the connection between groups of neurons that 

encode such events depend on Hebbian firing rules at play on the order of milliseconds (Bi 

& Poo, 1998, 2001). This introduces a conceptual tension that has been used to criticize 

Hebbian learning and the idea of synaptic memory storage in general (Gallistel & Matzel, 

2013). 
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Theta phase codes could partially resolve this temporal paradox by collapsing 

behavioural timescales into neural timescales (Jaramillo & Kempter, 2017; Reifenstein et al., 

2021; Skaggs et al., 1996; Wang et al., 2023). Specifically, as memory networks recruit 

theta-gamma coupled oscillations, the activation of represented sequences of events 

becomes compressed to the period of a theta cycle, which lasts roughly 125 to 250 

milliseconds. These ranges are compatible with spike-timing dependent plasticity (STDP) 

rules established in rodents (Bi & Poo, 1998; Markram et al., 1997) and humans (Mansvelder 

et al., 2019), which dictate the order and timing with which ensembles need to fire to induce 

a strengthening or weakening of synaptic connections (Abbott & Nelson, 2000). 

Importantly, beyond the theta phase code, sharp-wave ripples could offer an 

alternative or additional way for the brain to warp external event sequences to endemic 

timescales. Indeed, in rodents these brief bursts of activity also recapitulate events in 

compressed formats (Buzsáki, 2015; Nádasdy et al., 1999), and they figure prominently 

during memory consolidation and retrieval (Fernández-Ruiz et al., 2019; Jadhav et al., 2012; 

Ólafsdóttir et al., 2018)—especially during sleep (Girardeau et al., 2009; Ji & Wilson, 2007). 

In humans, sharp-wave ripples (or at least replay bursts) have also been observed across 

contexts, including restful periods (Higgins et al., 2021), transfer learning (Y. Liu et al., 

2019), and memory recollection (Michelmann et al., 2019; Y. Norman et al., 2019). 

To summarize this section then, it appears theta phase codes compress the neural 

activation of event sequences, making it possible for STDP-based plasticity mechanisms to 

flexibly modify associations between neural representations. With that said, sharp-wave 

ripples make it possible in their own right to compress sequences into neural timescales, 

introducing an additional or alternative resolution to the problem of mismatching timescales. 

 

Sequence and positional information 

To achieve goal-directed behaviour, animals must learn states of the world and construct 

internal models of how these states relate to each other (Pezzulo et al., 2014). The functional 

dissociation between these processes is supported by work in rodents, with optogenetic 

interference of place cell sequencing disrupting the neural prediction of state transitions 

without affecting event-specific information such as the spatial tuning of place cells (C. Liu 

et al., 2023). Theta phase codes are well-geared to assist in the build-up of event sequence 

representations. For one, since theta oscillations ride on top of many clusters of neurons at 

once, its cycles offer a neurally accessible reference point by which sequence representations 

become widely interpretable. Specifically, some event representations activate late and 
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others early within the overarching theta clock, and this relays details about the relative 

distance between serially connected events to downstream readers. Theta phase precession 

adds to the scheme by introducing another degree of freedom that can be used to dynamically 

encode the animal’s position within the sequence. Specifically, as the relation between the 

overarching theta cycle and spiking behaviour of information-coding ensembles steadily 

shifts as a function of task progression, a compact code manifests that can be accessed by 

connected areas. 

These ideas are based on an array of modelling and empirical work in rodents 

(Burgess et al., 2007; Canavier, 2015; Dragoi & Buzsáki, 2006; Hasselmo, 2012; Jensen, 

2001; Lisman & Buzsáki, 2008; Lisman & Jensen, 2013). One way to test these hypotheses 

is by exploring the relative contribution of theta phase-locked firing versus other neural 

variables toward predictions of an animal’s current location in a memorized sequence 

(Jensen & Lisman, 1996; Lisman & Buzsáki, 2008). The reasoning here is that if it is correct 

that theta phase sets a grounding template for neural ensembles to parse event and position 

information by, then a decoder fed the same information should be able to infer event and 

position information. 

Promisingly, when including theta phase beyond phase-agnostic spike rates to 

decoders, position readouts are improved by more than 43% (Jensen & Lisman, 2000) or 

even 80%, reaching centimetre-level precision (Reifenstein et al., 2012). While such 

improvements may indicate that phase coupling between spikes and the overarching theta 

cycle confers positional information, a caveat remains. Namely, a longstanding question is 

whether our ability to use neural variables as information justifies the inference that such 

variables are legible and informative for the human brain itself (for discussions on the scope 

and limits of decoding, see de-Wit et al., 2016; Ritchie et al., 2019; van Bree, 2023). In light 

of this debate, I invite the reader to decide for themselves how much evidential weight they 

wish to grant to these results. 

In terms of causal work, the discussed findings that theta disruptions worsen memory 

performance further suggests computational relevance of the dynamically updating theta 

phase (Buzsáki, 2005; Givens & Olton, 1994; McNaughton et al., 2006; Petersen & Buzsáki, 

2020; Winson, 1978)—though it needs to establish whether such impairments are due to a 

disruption of theta phase codes or due to other neural processes promoted by theta 

oscillations. Ambitious research could try to disentangle theta oscillations from spike-field 

coupling, for example through pharmacological intervention (Douchamps et al., 2013) or 

optogenetic manipulation (Strüber et al., 2022). 



21 

 

 

 

Finally, to establish whether the theta phase code confers computational utility to the 

human brain, it could similarly be explored what the relative contribution is between spike-

field coupling and other neural variables in predicting sequence position across memory 

tasks (subject to the previous considerations). This question is actively being pursued (e.g., 

Watrous et al., 2018), with advancements in intracranial tools inviting a more holistic 

mapping (Ye et al., 2023). More basically, some of the human research in Section 2.2.1 could 

be taken as preliminary evidence for not only the existence of a human theta phase code 

itself, but also its computation-enhancing role. Finally, one way to evaluate the 

computational role of the theta phase code is to test whether momentary aberrations to the 

theta phase code—for example, specific goal locations incorrectly activating too late or too 

early in the scheme—produce expected behavioural errors. 

 

2.2.3 Mode switching 

We have established that rodent and human brains represent information across the theta 

cycle through ensemble-recruiting gamma waves. We have also seen that the sweep of event 

representations that results from this moves progressively earlier during goal-directed 

behaviour. It appears the purpose of this scheme is to make information about event 

sequences and an animal’s current position accessible to other areas for subsequent 

processing. As I will discuss next, separate from this, the phase of theta oscillations may 

introduce a circuit processing switch that makes it possible for the brain to flexibly alternate 

between encoding and retrieval. 

 

Rodent evidence 

The hypothesis for a theta phase-based switch goes back to the seminal discovery that 

stimulation to hippocampal region CA1 results in long-term potentiation (LTP) when it is 

applied during one phase, and in long-term depression (LTD) when it is applied during the 

opposite phase (Hölscher et al., 1997; Huerta & Lisman, 1995; Hyman et al., 2003; Pavlides 

et al., 1988). These findings inspired a model which proposed that during the LTD-

conducive phase, hippocampal dynamics show weak synaptic transmission from the 

entorhinal cortex such as to gear neural systems toward the retrieval of old information. 

Conversely, during the LTP-conducive phase, the model takes entorhinal input to be strong 

in order to promote the encoding of new information (Hasselmo et al., 2002). Subsequent 

research confirmed the notion that the phase of hippocampal theta oscillations initiates a 
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switch in network processing (Colgin et al., 2009; Colgin & Moser, 2010; Cutsuridis & 

Hasselmo, 2012; Hasselmo & Stern, 2014; Kunec et al., 2005; Manns et al., 2007). 

Crucially, it has been found that the theta phase switch exerts effects on the cognitive-

behavioural level. In environments where encoding predominates, such as in novel locations, 

spikes organically cluster to theta peaks in CA1. Conversely, in familiar environments, 

where retrieval predominates, spikes tend to coincide with theta troughs (Douchamps et al., 

2013). Furthermore, optogenetic inhibition of CA1 during theta peaks produced deficits 

selectively during encoding stages of a memory task, with stimulation at theta troughs 

conversely impairing performance during retrieval stages, demonstrating a double 

dissociation (with compelling effect sizes; Siegle & Wilson, 2014). Together, these studies 

strongly suggest that the phase of theta oscillations in the rodent hippocampus initiates a 

switch between encoding and retrieval by cyclically biassing the routing of information 

towards pathways that subserve one or the other function. 

 

Human evidence 

Subsequent research suggests that these findings carry over to the human brain. First, theta 

oscillations in medial temporal regions showed significant phase differences between the 

encoding and retrieval of letters in a working memory task (Rizzuto et al., 2006). These 

findings generalize to long-term memory contexts, where the encoding and reinstatement of 

specific items trends to opposite hippocampal theta phases (Pacheco Estefan et al., 2021). 

Similarly, ERPs arising from memory cues that prompted the encoding and retrieval of 

information displayed opposing phase relations (Ter Wal et al., 2021). Moreover, in this last 

study, a marked theta rhythm emerged in the cross-trial distribution of reaction times 

following retrieval cue onset. This is consistent with the phase switch hypothesis, which 

predicts that retrieval processes wax and wane at theta frequencies. 

On the level of neural representations, it has been found that the EEG-based 

decodability of memory items fluctuates at theta rates, importantly at opposite phases during 

encoding and retrieval (Kerrén et al., 2018). Finally, high-resolution fMRI suggests that 

encoding and retrieval initiate distinct functional connectivity patterns across hippocampal 

and midbrain areas (K. Duncan et al., 2014), though temporally sensitive techniques are 

required to test if this is theta-locked. Together, these results strongly indicate that a theta 

switch mechanism exists in humans. However, further inquiry is needed to establish whether 

the observed phase-to-cognition relations are causal, as they are in the rodent brain. 
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Computational utility 

How might a theta phase switch support memory? One promising answer is that it prevents 

neural circuits from conflating internally generated and externally received information. For 

context, while encoding and retrieval in humans are partially subserved by different regions 

of the hippocampus (Eldridge et al., 2005; Small et al., 2001; Zeineh et al., 2003), they also 

recruit overlapping circuitry (Greicius et al., 2003). By delegating encoding and retrieval to 

distinct theta phases, a functional separation emerges in time that makes it possible for 

networks generally equipped to process information to operate over both encoded and 

retrieved events without cross-interference. Moreover, a phasic separation of processing 

regimes is likely energetically cheap, considering that theta oscillations are self-sustaining 

processes (Giovannini et al., 2017), meaning they require little drive to continue once they 

are active. In short, a theta switch offers a metabolically inexpensive way to make available 

brain circuitry multipurpose. 

More broadly, dynamic mode-switching between processing states could facilitate 

learning in the brain (Honey et al., 2018). As the brain cyclically processes perceptual inputs 

(during encoding) and internally generated predictions (during retrieval), such 

representations can be contrasted against each other. Then, prediction errors can be used to 

update memory representations (see Sauseng et al., 2015 for a related idea). In a similar vein, 

a theta switch might offer the backbone for learning algorithms where target memory 

representations are strengthened during one oscillatory phase, followed by a weakening of 

competitor memories during the opposing phase (K. Norman et al., 2006). In direct support 

of this idea, a recent MEG study found that target and competing memories become 

processed at distinct theta phases following repeated recall (Kerrén et al., 2022). 

 

2.2.4 Interareal synchronization 

Most of the ideas explicated up until this point suggest that the phase of theta oscillations 

empowers local information processing within the hippocampus and regions in its vicinity. 

However, for this to happen, such memory modules need to have access to information 

housed across the brain. During learning for example, multimodal perceptual inputs, error 

signals, goal states, and other elements need to be integrated before a holistic memory can 

be formed (see also Singer, 2007). And as widely maintained across theories, retrieval 

involves the (re-)activation of relevant neural patterns distributed across neocortical 

networks (Battaglia et al., 2011; Buzsáki, 1996; Eichenbaum, 2000; McClelland et al., 1995; 
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Preston & Eichenbaum, 2013; Rolls, 2013; Sekeres et al., 2018; Squire et al., 2015; Teyler 

& DiScenna, 1985).  

The phase synchronization of theta oscillations between distant regions likely plays 

an important role in realizing these ends (Fell & Axmacher, 2011; Klimesch et al., 2008; 

Nyhus & Curran, 2010). Specifically, by aligning excitable phases of distant areas, theta 

oscillations initiate functional communication routes that support the readout and 

reinstatement of relevant representations (see also Chapter 1, Section 1.4.5). Interestingly, 

compared with the previous relevancies of theta phase, most evidence for the importance of 

phase synchronization comes from research in humans—and so I turn to this question 

directly. 

A primary line of work supporting the notion that theta phase synchronization 

benefits binding and reinstatement is the highly replicable finding that memory processes 

coincide with phase connectivity changes at theta frequencies. Namely, during encoding, 

hippocampal theta waves synchronize with neocortical regions, and their consistent phase 

relation predicts memory performance across tasks, such as during the integration of new 

and old memories (Backus et al., 2016), the encoding of unexpected items (Gruber et al., 

2018), and during word list learning (Solomon et al., 2019). Similar results have been 

obtained for retrieval, with cues that prompt the recollection of spatial information resulting 

in increases in theta phase coupling between medial temporal regions and prefrontal areas 

(Kaplan et al., 2014), as well as across large networks of the neocortex generally (Watrous, 

Tandon, et al., 2013). Indeed, I emphasize that the communication-enhancing function of 

theta phase is not specific to the hippocampus, with the observed effects generalizing across 

the human brain (Weiss et al., 2000; Weiss & Rappelsberger, 2000). 

 This raises the question of whether correlations between theta phase synchronization 

and memory reflect a causally relevant mechanism. Recent evidence that leverages 

oscillatory entrainment paradigms suggests that the answer may be yes. In one study, 

participants learned associations between rhythmically fluctuating audio and visual clips, 

which is a manipulation that can synchronize brain oscillations (Clouter et al., 2017). 

Interestingly, the synchronous presentation of the stimuli resulted in better memory 

performance than asynchronous presentation, but only when the stimuli had luminance 

fluctuations at theta frequencies (the effects did not manifest at delta and alpha rates). 

Subsequent research confirmed these findings, with phase differences between visual and 

auditory regions reliably predicting memory performance (Wang et al., 2018). Furthermore, 

non-invasive brain stimulation can be used to address this question (Hanslmayr et al., 2019). 
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Importantly, in brain stimulation work it is important to target regions simultaneously to 

attain full control over their phase relation. 

 

2.3 Summary & looking ahead 

Let us take a step back and evaluate how the findings covered in this Chapter contribute to 

the overall claims of this manuscript. As a start, these are the five most important assertions 

of this Thesis: 

1) Scientists study evolving neural patterns to investigate how cognition is 

implemented by the brain. 

2) Oscillatory dynamics strongly influence or covary with the evolution of neural 

patterns of cognition. 

3) As such, oscillatory dynamics offer a reference point or anchor by which the study 

of neural patterns can be improved. 

4) We can adopt this reference point algorithmically by transforming recorded brain 

data in concordance with coordinating oscillations of interest. 

5) Alternatively, we can adopt it by experimentally regularizing oscillatory dynamics 

during data acquisition. 

The purpose of this Chapter has been to justify claim (2). In support of this, theta oscillations 

are deeply connected with memory processing. As we have seen, theta waves instantiate an 

evolving phase code, a phasic processing switch, and functional communication channels. 

Together, these confer computational benefits: they promote neural access to event order 

and position information, they achieve sequence compression for synaptic learning, they 

support multiplexed computations within neural circuits, and they promote the integration 

and reinstatement of memory patterns. As a result, systematic changes emerge in the 

neurocognitive patterns that scientists seek to capture to construct scientific explanations. I 

maintain that the symbiosis between brain oscillations and computational processes naturally 

invites an integration of spectral information into our investigations, and the remainder of 

this thesis is about exploring specific solutions toward this end. In the next Chapter, I will 

evaluate an algorithmic technique that can be used to bring electrophysiology data toward 

key dynamics (Chapter 3). Its contents establish points (3) and (4) in the inference train 

outlined above, and—to a lesser extent—points (1) and (2).  
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Chapter 3: Aligning brain dynamics with the 

Brain Time Toolbox 

 

This chapter contains material from van Bree et al., 2022: 

 

van Bree, S., Melcón, M., Kolibius, L. D., Kerrén, C., Wimber, M., & Hanslmayr, S. (2022). 

The brain time toolbox, a software library to retune electrophysiology data to brain 

dynamics. Nature Human Behaviour, 6(10), 1430–1439. https://doi.org/10.1038/s41562-

022-01386-8 

 

3.1 Aims 

This Chapter opens by concretizing the abstract problem identified in Chapter 1—namely 

that researchers risk missing informative neural patterns by projecting external worldly 

variables onto a brain that has no direct access to them. To make this problem more tangible, 

I elaborate on the notion of time in neuroscientific methodology, outlining why it is a thorny 

concept. Specifically, I highlight the problems that come with adopting clock time as a 

reference point in neural analysis rather than brain-centric measures such as oscillatory 

dynamics, the latter of which I shorthand with the term brain time. Importantly, clock time 

is similar to the concept of Newtonian time introduced in Chapter 1, but with the added 

connotation of timekeeping and measurement. Clock time refers to milliseconds, seconds, 

minutes, or any other unit that quantifies a magnitude order of Newtonian time. 

 After expanding the intuition, I claim that brain time is more appropriate because, as 

we have seen in Chapter 2, it relates intrinsically to the unfolding of neural patterns of 

cognition. I specify how clock and brain time are in tension with each other, and what we 

might expect to happen if we do not internalize their differences in our research practices. 

Then, I introduce the Brain Time Toolbox, a software library that retunes electrophysiology 

data in line with oscillations that orchestrate such neurocognitive patterns. The toolbox 

overcomes mismatches between clock time and brain dynamics by warping the data based 

on the temporal structure of coordinating oscillations. This enforces oscillatory cycles as the 

data’s new time axis, which I demonstrate can be used to detect activity patterns. 
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3.2 Introduction 

Everyday tasks involve a plethora of cognitive functions that operate dynamically in tandem. 

Something as mundane as taking notes during a meeting or battling your friend in a video 

game requires attention, motor activity, perception, memory and decision-making, each 

evolving over time. How does the brain achieve dynamic cognition? To answer this question, 

neuroscientists closely study how brain activity unfolds from one moment to the next using 

temporally precise neuroimaging methods. These include electroencephalography (EEG), 

magnetoencephalography (MEG) and single and multi-unit recordings—grouped together 

under the term electrophysiology. 

 

3.2.1 Seconds are foreign to the brain 

In a typical electrophysiology study, neuroscientists first probe cognition by introducing an 

experimental manipulation. For example, an attention researcher might introduce a set of 

moving dots. Then, to understand cognition in the brain, they perform a series of analyses 

on the recorded data. They might study changes in scalp topography over a second of data, 

apply machine learning to characterize how the representation of the dots evolves or perform 

any other time-dependent analysis. 

Critically, from the raw output of neuroimaging devices to the analysis of recorded 

brain signals, time is operationalized as clock time—sequences of milliseconds. We claim 

that clock time, with all its benefits for human affairs, is generally inappropriate for 

neuroscience. This is because clock time is defined by us and for us, on the basis of how 

long it takes for Earth to rotate its axis. The brain itself, however, uses its own regime of 

time, dictated by its own dynamics. 

As such, the brain is indifferent to how many milliseconds, seconds, minutes or hours 

have passed unless it is expressly relevant for specific behaviour, such as maintaining 

circadian rhythms (Antle & Silver, 2005) tracking a time-dependent reward (MacDonald et 

al., 2011), . Instead, the brain is concerned with coordinating communication between cells 

in a delicate time-sensitive manner, such as sending information at one moment and 

receiving feedback signals at the next. Hence, the brain’s intrinsic time format—brain 

time—is dictated by the internal processes that clock brain activity (for an explanation of 

key terms, see Table 3.1). 
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Term Description 

Antiphase Two oscillations are in antiphase when they stand in opposite phase relation to 

each other—for example, when the peak of one oscillation co-occurs with the 

other’s trough. 

Brain oscillations Rhythmic fluctuations of brain activity generated by populations of cells. 

Brain time Time as sequences of cycles of a coordinating brain oscillation. 

Brain time warping Algorithm that uses dynamic time warping to transform electrophysiology data 

in accordance with brain time dynamics. 

Brain time toolbox Software library that implements brain time warping and tests its effects. 

Clock time Time as sequences of seconds. 

Dynamic time 

warping (DTW) 

Algorithm that can measure the similarity between signals and minimize their 

difference. 

Frequency Number of cycles per time window (typically a second). 

Linear discriminant 

analysis (LDA) 

Machine learning method that maximizes the separability between two classes 

of data by applying linear transformations to it. 

Local field potential 

(LFP) 

The electric potential recorded from extracellular space around cells. 

Neural signature Brain activity that systematically correlates with, in the present context, a 

cognitive process. 

Periodicity Fluctuating patterns of a neural signature. 

Phase Metric to indicate the specific point in the cycle of an oscillation. Two 

oscillations are in phase when (for example) their peaks align. 

Phase precession Phenomenon where place cells fire at progressively earlier phases of theta 

oscillations as an animal moves across a trajectory. 

Temporal 

generalization 

matrix (TGM) 

Representation of how a classifier trained to separate classes of data on one 

timepoint performs on other timepoints. When a classifier generalizes, it 

indicates that the neural signature remains stable. 

Warping path Representation obtained from DTW that shows how two signals need to be 

resampled to minimize their difference. 

Warping source Data structure containing potential coordinating brain oscillations used for 

brain time warping. 

Table 3.1. Glossary of key terms used in this Chapter. 

 

3.2.2 Cycles as the brain’s native unit 

How is brain activity organized? A defining feature of the brain is that its activity waxes and 

wanes (Llinás, 1988), pointing to a central role of brain oscillations. Brain oscillations are 

well-geared to structure brain activity. For one, each cycle of an oscillation contains a 
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window of excitability where cells are more likely to fire (Buzsáki & Draguhn, 2004; Engel 

et al., 2001). Moreover, oscillations vary in their frequency, meaning that the excitability 

windows vary in duration. The functional role of oscillations has been shown across a wide 

array of cognitive functions, including attention (Capotosto et al., 2009; Jensen & Mazaheri, 

2010; Klimesch, 2012), perception (auditory; Lakatos et al., 2005; Luo & Poeppel, 201, 

visual; Busch et al., 2009; Romei et al., 2010 and tactile; Ai & Ro, 2013; Ruzzoli & Soto-

Faraco, 2014), action (Joundi et al., 2012; Nowak et al., 2018), memory (Hanslmayr et al., 

2019; Hasselmo et al., 2002; Kerrén et al., 2018) and decision-making (Jacobs et al., 2006; 

Polanía et al., 2015). Together, this situates brain oscillations as the brain’s clocking 

mechanism, clustering brain activity in flexible ways to organize dynamic cognition. The 

brain’s base units of time then, are the cycles of oscillations that coordinate neural firing, not 

the milliseconds with which we format our data. 

 

3.2.3 Clock and brain time are usually out of tune 

Why does it matter that we use a foreign time format? When neuroscientists study dynamic 

cognition, they repeat measurements across trials, resetting their stopwatch at the start of 

each. However, some oscillations do not reset (Jansen et al., 2003; Mazaheri & Jensen, 2006). 

Even when most do, oscillations evolve continuously in frequency and show jumps in phase 

(Fig. 3.1). Thus, besides a potential mismatch between clock and brain time from the get-go 

caused by variable starting phases, the disharmony between the dimensions accumulates due 

to frequency drift and phase jumps. These are prime examples of eccentricities in brain 

dynamics (and there are more; Cole & Voytek, 2017). Their presence makes clock time an 

ill-suited format to study temporal patterns of dynamic cognitive function—it distorts how 

the brain itself carries information forward in time. 

To demonstrate this point, take again the case of spatial attention. Studies show that 

alpha oscillations (8–12 Hz) in parietal regions orchestrate the dynamics of spatial attention 

(Capotosto et al., 2009; Sauseng et al., 2005). If these oscillations vary in their starting phase 

across trials, then the neural patterns of spatial attention will vary along with it. Likewise, if 

the oscillations slow down in frequency, the patterns slow down too. If a researcher is 

interested in, say, decoding the locus of covert attention in the visual field over time, it would 

muddy the waters to do so in clock time, ticking away with its equal periods. The slowing 

down of alpha oscillations means brain time falls behind relative to clock time, so analysing 

the data in its default format yields a sped-up readout of attention’s true pattern. Instead, we 

argue that the dynamics of clocking oscillations should heavily inform data analysis. As a 
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general mantra, the optimal approach to analyse the brain, like any other system, is with 

recourse to its own dynamics—from inside out (Buzsáki, 2019; Scharnowski et al., 2013; 

Fig. 3.2). 

 

 

Figure 3.1. Sources of disharmony between clock and brain time. (A) Brain oscillations 

display spectral variation, which causes a non-correspondence or ‘disharmony’ between the 

brain’s internal dynamics and clock time. An oscillation shows frequency drift and a 

spontaneous jump in phase, resetting itself. (B) Two oscillations with different starting 

phases. The blue oscillation starts with a rising phase, while the sand-coloured oscillation 

starts with a falling phase. The top rows of each panel show the amplitude fluctuations of 

oscillations, while the bottom rows show the phase. 
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 The problem of disharmony does not end here. Neuroscientists repeat measurements 

across participants to establish whether effects found in the data are representative and 

statistically robust. But different brains have different dynamics, resulting in disharmony 

across brains too. In the attention experiment, it is highly relevant that the clocking alpha 

oscillations differ in frequency from person to person (Klimesch, 1999) as it means the 

patterns differ too. Looking for evolving patterns of spatial attention by averaging across 

participants is like asking when spring turns to summer in a solar system that contains diverse 

planets—it only makes sense after correcting for individual dynamics (Fig. 3.2). 

 

 

 

 

Figure 3.2. What is the best way to study a foreign system? (Top) Imagine a planet with 

seasonal dynamics radically different from Earth’s, where the duration of each season differs 

substantially (as a real-world example, planet Kepler-413b has erratic seasons due to its 

eccentric orbit; Kostov et al., 2014). To understand the system, we measure a variable of 

interest across time, such as surface temperature. Critically, how do we define time here? If 

we plot temperature as a function of Earth’s seasons (Earth time), the data will be heavily 
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distorted, hampering interpretation. Instead, if we were to study the system with recourse to 

its own dynamics (system time), the same temporal patterns in the data become interpretable. 

(Bottom) As neuroscientists, we are in an analogous position—we are studying a foreign 

system with its own dynamics. So, in the same vein, we should interpret data patterns with 

reference to the brain’s dynamics, enabling an accurate readout of evolving patterns of 

information. 

 

3.2.4 Approaches to factor in brain time 

Disharmony between clock and brain time impedes scientific analysis within and across 

brains. To overcome this problem, approaches have been developed that factor in brain 

dynamics (Panzeri et al., 2014). At minimum, the phase of oscillations can be tracked to 

explain some of the variance in brain data (Kerrén et al., 2018) or behaviour (Kösem et al., 

2014; Ter Wal et al., 2021) and analyses can be locked selectively to oscillatory peaks or 

troughs (Bonnefond & Jensen, 2015) or, more expansively, to a range of oscillatory phase 

bins (C. Kayser et al., 2012). Then there are more techniques where the electrophysiological 

data are restructured before any analysis is carried out. These include organizing the data 

with phase as the time axis (Eliav et al., 2018; Qasim et al., 2021), as well as linear time 

warping approaches that transform a template signal on the basis of trial-by-trial variations 

in brain dynamics (Williams, 2020). 

 Such approaches can reveal brain patterns of interest that are otherwise obstructed 

by clock time’s distorting effects. For example, the phenomenon of phase precession has 

been extended from rodents to humans when using phase as the time axis, with no such effect 

visible in clock time (Qasim et al., 2021). As another example, linear time warping uncovers 

oscillatory brain patterns on the trial average by correcting for differences in brain time 

across trials (Williams et al., 2020). Over and beyond oscillatory reference frames, relative 

spike timings offer a brain-centric coordinate system that is agnostic to clock time as well 

(Chase & Young, 2007; Panzeri et al., 2014; Sotomayor-Gómez et al., 2023). 

 While these approaches come a long way in factoring in brain dynamics, each is 

limited in their scope. Using phase to explain variance in the data or locking analyses to 

peaks or troughs provides insights about selective data samples but does little to enable the 

readout of dynamic patterns. Setting the time axis to phase may not always be possible and 

departs significantly from the original data structure—such that unique phase-based analyses 

are needed. Linear time warping can equalize brain time across trials but is less equipped to 

deal with spectral variation throughout the trial due to its linear nature. 

 In this Chapter, we introduce brain time warping as a non-linear method to account 

for the disharmony between clock and brain time. This algorithm tracks disharmony between 
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clock and brain time in electrophysiology data and it transforms the data to mitigate such 

mismatches. We offer a software library for MATLAB (The MathWorks), the Brain Time 

Toolbox, which implements brain time warping and evaluates its effects. This toolbox was 

built for electrophysiology data analysis, including EEG, MEG and single and multi-unit 

recordings. It allows users to select a brain time signal from one or more warping sources 

(for example, channels or independent components extracted from a data structure). This 

signal then serves as the basis for brain time warping as laid out in Fig. 3.3. 

 In the remainder of this Chapter, we first introduce the methodological details of 

brain time warping. Then, we briefly introduce three datasets which we used to evaluate 

whether brain time warping can uncover effects absent in clock time. We discuss the details 

of several basic and advanced analyses that were used to this end. Then, we offer a more 

detailed exposition of each dataset’s methodology. In the Results section, we describe the 

outcome of each dataset’s basic and advanced analyses. Finally, the Discussion covers 

possible circularity concerns, criteria which determine whether brain time warping is 

appropriate, and various other considerations. The full methodological details of the toolbox 

itself are provided in the supplementary material of Chapter 3, as are additional analyses 

mentioned throughout these paragraphs. 

 

3.3 Methods 

3.3.1 Brain time warping 

Here, we introduce brain time warping as a method to account for the disharmony between 

clock and brain time. This approach overcomes previous limitations in the following way. 

First, it identifies segments throughout each trial where clock and brain time fall out of tune. 

Then, it adapts the data to reduce their difference—winding back clock to brain time sample 

by sample (Fig. 3.3). Brain time warping incorporates an algorithm called dynamic time 

warping (DTW), which characterizes the similarity of two signals (Berndt & Clifford, 1994; 

Sakoe & Chiba, 1978). DTW computes a warping path, which shows how the samples of 

each signal need to be transformed to optimize their alignment. For brain time warping, those 

signals are clock and brain time (Fig. 3.3a). How are clock and brain time operationalized? 

Brain time can be characterized as the phase of the oscillations hypothesized to orchestrate 

the dynamics of a process, with its variable starts, drift and phase jumps. Clock time can be 

characterized as the phase of a stationary sine wave, fluctuating away faithfully to seconds. 

Such a signal is what brain time would look like without the three sources of disharmony; 
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here milliseconds and cycles map directly onto each other. (For example, in Fig. 3.3a, 

multiples of 100 ms correspond to each zero-crossing of the clock time signal.) 

 

 

 

Figure 3.3. Brain time warping between clock and brain time. (A) Brain time starts in its 

rising phase and slows down its frequency over the course of the trial, both causing a 

mismatch to clock time (defined as a sinusoidal signal fluctuating in synchrony with a 

researcher’s stopwatch). (B) To facilitate warping, the phase of clock and brain time is 

unwrapped, meaning phase is computed without cycle resets. (C) On the left-hand side, the 

unwrapped clock time (left; black line) and brain time phase vectors (top; blue line) are 

displayed, with a matrix between their individual samples representing possible mappings 

between the dimensions. DTW calculates a warping path (red squares) which amounts to a 

resampling procedure that efficiently minimizes the distance between the two signals—in 

this context, clock and brain time phase dynamics. Cycle by cycle, this warping path is 

applied to the input electrophysiology data, transforming its dynamics in accordance with 
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the brain’s dynamics. To enable alignment of brain time across trials, the data of each cycle 

are resized to a constant number of samples. The previous steps are repeated for all remaining 

trials. Upon completion, the data’s time axis is changed from seconds to cycles of brain time. 

The data are no longer in clock time but in brain time. 

 

DTW highlights during which samples clock and brain time fall into disharmony and 

offers a warping path to mitigate such disharmony. Concretely, at samples where the warping 

path suggests that brain time needs to repeat itself before ramping back up to clock time, 

brain time warping repeats samples in the original data (Fig. 3.3c). Looping back to our 

attention example, at segments where DTW indicates that alpha oscillations slow down, 

brain time warping stretches the data by repeating samples in an attempt to bring its structure 

closer to the true dynamics of spatial attention. 

 The toolbox extracts the warping path between clock time (ct_phs) and brain time 

(bt_phs) using the following MATLAB code: 

 

[~,ix,iy] = dtw(bt_phs,ct_phs) 

 

ix is the warping path which, when applied to bt_phs, will minimize its distance to 

ct_phs, and vice versa for iy. Since ct_phs is a sinusoidal signal without frequency 

drift or phase jumps, ix indicates (1) segments with spectral eccentricities in bt_phs and 

(2) how bt_phs needs to be resampled to overcome these. Crucially, rather than applying 

ix to bt_phs to get it closer to ct_phs, brain time warping instead applies ix to the 

clock time data structure, transforming all of its dynamics based on the dynamics of the 

warping signal.  

Whilst applying each trial’s ix to transform clock time data in a trial-by-trial fashion, 

the toolbox implements a cycle-by-cycle resizing. This ensures that the data of each cycle 

per trial has a constant number of samples. Without this step, if the warping path contains 

an extended segment of data repetitions for some trials, which would stretch out the data 

extensively, introducing a misalignment of brain time across trials. In other words, cycle-

by-cycle resizing ensures brain time unfolds with a similar time course across trials by 

aligning its cycles. To resize data, the toolbox uses MATLAB’s imresize (which uses 

nearest-neighbour interpolation). Braintime determines the start and end of cycles using the 

warping path iy (the warping path from ct_phs to bt_phs), which has an equal length 

to ix but more closely reflects the dynamics of clock time. An additional side-effect of 
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cycle-by-cycle resizing is that the number of samples of the original data remains unchanged 

after brain time warping. 

 As brain time warping loops over trials, it continuously corrects disharmony by 

applying the warping path cycle-by-cycle. The result is a dataset in brain time rather than 

clock time and, as such, the time axis has changed from seconds to cycles. As the data are 

referenced to individual dynamics, it also becomes easier to look for temporal patterns across 

brains.  

 

3.3.2 Dataset introduction 

 

 

 

Figure 3.4. Electrophysiology datasets used to validate brain time warping. (A) 

Simulated EEG data (n = 10 virtual participants). We developed a basic attentional spotlight 

model with dipoles oscillating at alpha frequencies (8–12 Hz). One parietal conductor dipole 

controlled two follower dipoles, one in each visual cortex. Two conditions differed in brain 

activity due to the phase relation across dipoles and the suppressed amplitude of the 

contralateral follower dipole, together yielding attention’s neural signature. To introduce 

disharmony between clock and brain time, we added frequency drift and variable starting 

phases to the data. We brain time warped to alpha oscillations in visual regions (right). (B) 

Rodent single and multi-unit data (n = 7 sessions). Long-Evans rats navigated through a 

square environment while single units and LFP were recorded from the entorhinal cortex. 

We identified grid cells and cut the data depending on whether the animal was travelling 

through a location coded by a grid cell (condition 1) or not (condition 2). We display cell 

spike locations in the field, its smoothed representation (rate map) and this representation’s 
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autocorrelation. We then brain time warped grid cell firing patterns to theta oscillations (4–

8 Hz) measured in LFP recordings (bottom right). (C) Human EEG data (n = 16 participants). 

Participants viewed random dot kinematograms, with dots moving at one of two levels of 

coherence (25.6% or 51.2%) in a direction ranging from 1° to 360°. We pooled the levels of 

coherence and binarized direction toward leftward (condition 1) or rightward (condition 2) 

motion. We then brain time warped the EEG data to parietal alpha oscillations (bottom right). 

 

We tested the algorithm’s effects across three electrophysiology datasets. In the first dataset 

(n = 10 participants), we simulated a basic attentional spotlight model, giving us full control 

over the ground truth brain patterns (Fig. 3.4a). Briefly, we placed one conducting dipole in 

the right parietal cortex, which exerted top-down control over the phase of two follower 

dipoles, one located in each visual cortex. We generated two conditions, one where attention 

was oriented to the left hemifield and one to the right. These conditions systematically 

differed in their underlying brain activity. Specifically, the conducting dipole always forced 

its contralateral follower to the same phase while setting an antiphase relation with its 

ipsilateral follower (drawing upon experimental findings Sauseng et al., 2005; Thut et al., 

2006; Worden et al., 2000). In addition, the conducting dipole inhibited the contralateral 

follower dipole, reducing its amplitude (Jensen & Mazaheri, 2010). We then injected the 

data with variable starting phases and frequency drift to mimic natural brain activity. 

In a second dataset (n = 7 sessions), we warped intracranial data from rodents 

navigating through a square environment (Fig. 3.4b; data obtained from Newman & 

Hasselmo, 2014). Here, we were interested in characterizing the dynamics of the local field 

potential (LFP) and grid cell firing patterns in the entorhinal cortex. Just like in the 

simulation, we again formatted the data into two conditions. Specifically, the data were split 

on the basis of whether the animal was travelling through a firing field of the grid cell or 

through another location not in the firing field of the grid cell. 

In a third dataset (n = 16 participants), we warped EEG data recorded while human 

participants observed moving dots (Fig. 3.4c; data obtained from Bae & Luck, 2019). The 

two conditions were set around the motion direction of dots—with one condition comprising 

trials with leftward motion and the other comprising rightward motion. We report additional 

details on each dataset after describing methodological details of the analyses applied to each. 

 

3.3.3 Analysis 

Basic analyses 

In basic analyses, we asked whether warping recovers oscillatory neural activity for each 

dataset by comparing clock and brain time on a number of measures. For these analyses, we 
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pooled across conditions—focusing on general effects of brain time warping on 

electrophysiology data and ignoring cognition for the moment.  

 

Event-related potentials 

Brain time warping is expected to overcome frequency drift, variable starting phases, and 

phase jumps, which in conjunction should result in a strong oscillatory structure in the event-

related average, where trials are collapsed. We tested this hypothesis by applying a 

timelocked analysis in FieldTrip (Oostenveld et al., 2011) to each of the three datasets, 

separately for both conditions. We then selected a channel near the location of the warping 

signal to obtain a qualitative indication that brain time warping increases the simulated or 

predicted oscillatory structure (with similar results for neighbouring channels). In short, we 

tested whether warping increases the oscillatory structure of event-related potentials of 

channels near the predicted location of coordinating brain oscillations. This analysis 

provides a qualitative indication on the question of whether brain time warping overcomes 

mismatches between clock and brain time. 

 

Power spectrum 

Second, we performed a time frequency analysis across all channels and tested whether 

warped data reveal a higher peak at the predicted frequency of interest in the power spectrum. 

This quantifies the degree to which brain time warping is able to overcome frequency drift 

and phase jumps in the data. 

We obtained Welch’s power spectral density estimates for each trial and channel per 

participant. We used the fitting oscillations & one over f (FOOOF) toolbox (the MATLAB 

implementation; Donoghue et al., 2020) to remove the aperiodic 1/f component, after which 

we averaged across trials and channels per participant. As such, each power spectrum we 

display shows the average model fit with the aperiodic component removed. For each dataset, 

we analysed the clock time data from 2 to 30 Hz. For brain time spectra, we re-referenced 

the frequency space to each participant’s individual warping frequency – which we then 

aligned in terms of spectral resolution and frequency space via the method explained in 

Supplementary material section 2.3.4 (Filtering to common frequencies). We equalized the 

y-axis (power) between clock and brain time according to the minimum and maximum 

values between them to enable a direct visual comparison. 
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Intertrial coherence 

Third, we compared the intertrial coherence (ITC) across all channels between clock and 

brain time. This measure tests for the consistency of oscillatory phase across trials and 

thereby additionally taps into the degree to which the algorithm overcomes variable starting 

phases (which ordinarily reduce ITC by jittering the phase relation across trials). We 

predicted that brain time warping increases ITC at the predicted frequency of interest by 

equalizing brain time across trials. In the next paragraphs, we offer additional detail on each 

basic analysis. 

For each dataset, we used FieldTrip’s ft_freqanalysis to obtain the Fourier 

spectrum of each channel and trial, using a wavelet analysis that fits 5 cycles. We calculated 

the intertrial phase coherence (ITPC) across time and frequency for each participant in the 

following way. We divided the Fourier spectrum by its amplitude, summed the resulting 

angles, took the absolute value and normalized based on the number of trials (adapting the 

scripts provided by https://www.fieldtriptoolbox.org/faq/itc/). We averaged ITPC across all 

channels within participants, and then averaged across participants – separately for clock 

and brain time. We used the same brain time frequency re-referencing, spectral alignment 

approach, and axis equalization step as described in the previous paragraph. 

 

Advanced analysis 

In advanced analyses, we tested whether brain time warping unveils dynamic patterns of 

cognition. For each dataset, the conditions were set up such that their contrast was expected 

to yield a difference in brain activity that makes for a neural signature of cognition. For 

example, in the human dataset, the difference in neural activity between leftward and 

rightward motion trials estimates the neural signature of spatial attention because activity 

unrelated to attending to one or other spatial direction is factored out. If oscillations of 

interest dynamically clock the neural processes underlying cognition, this should cause the 

neural signature to vary along with the oscillations. 

 Pattern classifiers capitalize on neural signatures to make predictions about condition 

(that is, class) membership of untrained data. As such, classifier performance makes for a 

useful index of the fidelity of neural signatures of cognition—with fluctuations of classifier 

performance indicating fluctuations in the neural signature (periodicity; Bouwer et al., 2020). 

Building off these assumptions, we predicted that brain time warping enhances periodicity 

of these neural signatures by adapting for spectral variation in the data. 

https://www.fieldtriptoolbox.org/faq/itc/
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 To test this, we used a linear discriminant analysis (LDA) to classify condition in 

each dataset. We trained the LDA on each timepoint and tested how well it generalized to 

all other timepoints (King & Dehaene, 2014). This resulted in a two-dimensional temporal 

generalization matrix (TGM) that provides a robust map of classification performance over 

time (and so too of the fidelity of the neural signature). In summary, we assumed that 

periodicity in TGMs is a high-level measure to detect periodic brain patterns of cognition 

and we predicted that brain time warping would increase such patterns by factoring in the 

dynamics of clocking oscillations. 

 

Classification 

We trained an LDA with 5 folds and 10 repetitions on the data and obtained 50 empirical 

TGMs and a null distribution of 50 permuted TGMs (obtained by class label shuffling). 

Classifier performance was defined in terms of accuracy (i.e., the proportion of correctly 

classified trials). 

 

Quantifying periodicity 

For the advanced analyses, we quantified TGM periodicity by applying a Fast Fourier 

Transform (FFT) over each row and column of TGMs. Then, we averaged the resulting 

spectra into a single spectrum—the periodicity spectrum. This spectrum quantifies how 

much the neural signature fluctuates at different frequencies. To test our hypothesis that 

brain time warping increases the oscillatory structure of neural signatures, we contrasted the 

spectra obtained from clock and brain time data against each other—comparing the 

periodicity at predicted frequencies of interest. 

Moreover, to aid visual inspection of periodicity, we also report autocorrelation maps 

of TGMs for each dataset. These maps are generated by correlating TGMs with iteratively 

shifted versions of itself, resulting in a representation of its self-similarity that brings out 

latent periodic structure (Hafting et al., 2005). 

Henceforth, the term “periodicity spectrum” refers to this analysis outcome of the 

decoding data. The more commonplace term “frequency spectrum” refers to the spectrum 

derived by applying FFT to the electrophysiology directly, not to classifier output. This 

distinction will be maintained throughout this thesis. 

 

Statistically testing periodicity 



41 

 

 

 

To evaluate which frequencies in the periodicity spectrum are statistically reliable, we 

compared the empirically derived spectrum with the periodicity spectra obtained under the 

null hypothesis that there is no fluctuating neural signature of cognition. To do so, we used 

the pool of 50 TGMs trained using randomly permuted classification labels. This procedure 

destroys the true class structure inherent to the data (Grootswagers et al., 2017), leaving the 

classifier with pseudo neural signatures that do not contain generalizable information about 

the cognitive process under investigation. To obtain second-level results, we set the toolbox 

settings such as to obtain 106 permuted power values for each periodicity frequency by 

randomly grabbing (with replacement) from the total pool of 50 permuted TGMs, from 

which p-values are calculated. This was done for both the clock and brain time data. 

 

Cluster correction 

We established whether the classifier was able to differentiate both classes of data above 

chance using cluster correction in MVPA Light. We use 104 permutations to test for 

significant clusters. 

 

Warping source extraction 

For the simulation and human analyses, we use independent component analysis (ICA) to 

decompose the input clock time data into additive subcomponents with statistically 

independent characteristics. Each component served as a warping source, meaning each 

contained a potential warping signal that could be designated as brain time.  After brain time 

warping, we removed the warping source (ICA component) that was used for warping from 

the data before continuing to periodicity analyses. This removes the warping signal from the 

output data, introducing data independence (see Supplementary Material section 2.4.1). 

For the rodent analysis, we warp using local field potential channels, and introduce 

independence by removing the selected channel from the data, leaving only the warped 

single-unit data. 

 

Brain Time Toolbox settings 

We used braintime’s default consistenttime method to ensure the brain time warped data 

restricts itself to the specified time window for each analysis (for details, see Supplementary 

Material section 2.4.2). To obtain time frequency information of each warping source, we 
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applied a wavelet analysis (fitting 5 cycles to the data). To correct for multiple comparisons 

across the tested frequencies in the periodicity spectra, we adjusted p-values for the false 

discovery rate (FDR). We implemented the FDR correction as described in (Benjamini & 

Yekutieli, 2001), which is optimized for analyses with statistical dependencies between tests 

– as is the case with frequencies across the periodicity spectra. 

 

Classifier reliability 

The previous analyses evaluate whether brain time warping can uncover periodic patterns of 

the neural signature—either in basic analyses of electrophysiology (ERP, ITC, power 

spectrum), or on a higher-level in time-generalized decoding results. A further question is 

whether brain time warping can increase classifier performance or, relatedly, its statistical 

reliability, in and of itself regardless of periodic fluctuations. The logic is that since brain 

time warping artificially regularizes brain dynamics, neural signatures coupled to such 

oscillations might artificially align across trials. This is expected to increase the performance 

of MVPA methods such as LDA because these techniques capitalize on neural patterns of 

cognition that unfold in a consistent manner across trials to generate predictions. In short, 

brain time warping serves to align neural codes, and since LDA relies on the cross-trial 

alignment of neural codes, brain time warping is expected to increase the performance and 

statistical reliability of LDA if variably unfolding neural codes are present in the data.  

We tested this prediction using the attentional simulated dataset by systematically 

comparing the difference in the proportion of significantly classified timepoints between 

clock and brain time data as a function of the number of simulated trials. We predicted that 

brain time warping would introduce a higher proportion of significantly classified timepoints 

compared to what is present in the clock time data, with this difference between the 

dimensions increasing as more trials are tested. Furthermore, we use this analysis to offer a 

secondary evaluation of whether brain time warping can uncover periodic patterns in the 

neural signature. For this additional analysis, we predict that brain time warping introduces 

more evidence for periodicity than clock time, with the difference between these dimensions 

also scaling as a function of the number of simulated trials. 

Throughout these analyses, we focused on classifier output that was not cross-time 

generalized—which is equivalent of testing only the diagonal of a TGM. The reason for this 

is twofold. First, most applications of LDA in the neuroscience literature are not time-

generalized, so demonstrating its applicability in this more basic context means researchers 
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can use brain time warping without making further assumptions. Second and relatedly, it 

could be that brain time warping detectably increases classifier performance and reliability 

only on data trained and tested on the same timepoints (on diagonal in the TGM), but not on 

cross-time generalized timepoints (off-diagonal in the TGM). Since the absence of off-

diagonal reliability increases could drown out on-diagonal reliability increases across these 

analyses, we limit tests to the diagonal only. 

 

Comparing classifier reliability 

We generated a version of the simulated attentional dataset with 600 left (class 1) and right 

(class 2) trials, resulting in 1200 trials in total (for details on the simulation, see the next 

section; 3.3.4). We brain time warped these data and compared the statistical reliability of 

accuracy values between the clock time and brain time data structure. 

 For both data structures, we iteratively subsampled from the full distribution of class-

specific trials with increments of 40 trials. For example, in the first iteration, we randomly 

grabbed 40 left trials, and 40 right trials. Then, during the next iteration, we increased the 

number of randomly grabbed class-specific trials by 40. This resulted in 17 total iterations 

ranging from 40 subsampled trials to a sampling of all 600 trials. Furthermore, we repeated 

each iteration 20 times to avoid a subsampling of trials which are not representative of the 

ground truth pattern (for example, a set of trials where frequency drift is minimal, or where 

the starting phase of each trial coincidentally aligns). We averaged the analysis outcomes 

across all 20 repetitions of each iteration to get a robust estimate. 

 For each iteration, we calculated the proportion of significantly classified timepoints 

in the clock time and brain time classifier outcome. Specifically, for both data dimensions, 

we computed how many of the individual timepoints of the classifier performance time series 

contained accuracy values that exceeded 95% of the accuracy values for that timepoint 

derived across 60 permuted results (derived by shuffling class labels). In other words, for 

each iteration, we counted the proportion of samples where the p-value was lower than 0.05, 

where the p-value is defined in terms of the percentile of the empirical value among a null 

distribution of shuffled values (e.g., if the empirical accuracy is larger than 98.3% of shuffled 

values, a p-value of 0.017 obtains for that sample). 

 

Comparing periodicity reliability 
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We performed a similar analysis to evaluate whether the difference in evidence for classifier 

periodicity between clock and brain time data scales parametrically with simulated trial 

number. All of the procedures were identical to the previous analysis, except for the 

statistical outcome computed per iteration. Namely, instead of calculating the proportion of 

significantly classified timepoints between classifiers trained on clock and brain time data 

structures, we computed the average p-value for periodicity at the warping frequency across 

repetitions of the same iteration (Supplementary Material, section 2.3.4). The reason for 

evaluating the reliability of periodicity in this way is that periodicity is definitionally 

calculated across timepoints, resulting in one p-value per frequency across all timepoints 

rather than one p-value per timepoint. We predicted that the average p-value for brain time 

data at the warping frequency would be lower than in clock time, and that this difference 

between the dimensions scales across iterations. 

 

Warping source extraction 

We extracted warping sources in the same way as described in the advanced analysis. 

 

Classification 

As with the advanced periodicity analyses, we trained an LDA with 5 folds and 10 repetitions 

and used accuracy as classifier performance. 

 

Quantifying periodicity 

We quantified periodicity using FFT as in the advanced analysis, but this time over only a 

single vector (the one-dimensional classifier results across time; TGM diagonal). For more 

details on quantifying periodicity in this way, see Supplementary Material section 2.3.1. 

 

Brain Time Toolbox settings 

The toolbox parameters were the same as they were for the advanced periodicity analyses. 

 

3.3.4 Dataset methods 

Simulated dataset 
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We simulated a basic attentional spotlight model (Figure 3.4) with dipoles oscillating at an 

alpha frequency (8 to 12 Hz). To introduce disharmony between clock and brain time, we 

introduced variable starting phases and frequency drift in the primary dipoles. We predicted 

that brain time warping would selectively increase periodicity at the ground truth frequency 

by adjusting for spectral eccentricities in the warping signal. The Brain Time Toolbox 

contains the MATLAB (The MathWorks, Natick, Massachusetts, USA) code used to 

generate the simulated dataset, which includes options to change simulation parameters 

(such as the degree of frequency drift, pink noise amplitude, the number and duration of 

trials, and so forth). 

We used FieldTrip’s (Oostenveld et al., 2011) ft_dipolesimulation function 

to generate an electrophysiology dataset where the ground truth consists in a periodic 

fluctuation of covert attention at alpha frequencies. For the basic and advanced analyses, we 

simulated 𝑛 =  10 datasets with 120 trials and two conditions (covert attention to the left 

and right hemifield; LHF and RHF). For the parametric analyses, we simulated 𝑛 =  1 

dataset with 1200 trials and two conditions. Each trial lasted one second and had a sampling 

rate of 200 Hertz (Hz). Across both conditions and all participants, we held constant the 

orientation and location of the primary dipoles that instantiated the neural signature of 

attention. The remaining parameters were randomized, such as the frequency, location, and 

orientation of non-primary dipoles (“random” dipoles), as well as each dipole’s starting 

phase. We modelled 3 primary dipoles, and 8 random dipoles. The primary dipoles contained 

different parameters across the two classes of data. In contrast, the random dipoles contained 

parameters that were uncorrelated to each class, yielding no meaningful average difference 

in neural activity between conditions. In this simulation, our primary focus was to create a 

dataset suitable to test brain time warping (with a neural signature and spectral phenomena 

like drift and phase jumps) rather than to accurately model attention in close accordance with 

theoretical models. 

 

Primary dipole configuration 

We placed the conductor dipole in the right parietal cortex with an amplitude of 1 (in 

arbitrary units), oscillating at a random alpha frequency. This conductor dipole “conducted” 

the phase of two follower dipoles, one located in each visual cortex, oscillating at the same 

frequency and oriented with the same x, y, and z coordinates. We generated two classes: 

trials of LHF and RHF data. The two conditions contained a difference in parameters – and 
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thereby brain activity – that the classifier could exploit to differentiate the data and obtain 

the ground truth signature of attention. Specifically, for both conditions, we changed two 

parameters: 

• The relative amplitude between follower dipoles. The follower dipole contralateral 

to the hemifield condition oscillated at half the amplitude (0.5) compared to the 

ipsilateral dipole (1) – mimicking contralateral inhibition of alpha. 

• Phase relation between primary dipoles. The conductor dipole oscillated in 

antiphase with the follower dipole contralateral to the hemifield. In contrast, it 

oscillated in phase with the follower dipole ipsilateral to the hemifield (barring a 
𝜋

6
 

phase delay to mimic signal conductance delay). 

In addition to these condition-specific differences, each primary dipole contained 1/F 

noise, variable starting phase, and frequency drift. We implemented frequency drift 

through a random walk approach, where the frequency of all three primary dipoles 

decreased or increased by 0.05 Hz per sample. 

 

Random dipole configuration 

To decrease the signal to noise ratio of the neural signature exerted by primary dipoles, we 

introduced 8 random dipoles that oscillated at random frequencies, limited to 2 Hz above 

and below the primary dipole’s frequency to avoid interference with the neural signature. 

These dipoles oscillated at an amplitude of 1, contained 1/F noise, and were placed randomly 

across the brain with a random orientation.  

 

Brain time warping 

For the main and advanced analysis with multiple simulated datasets, we considered each as 

separate participants with their own alpha frequency. Across all analyses, we used ICA to 

obtain warping sources and warped each participant to a source with (1) a topographical 

activity profile around occipital and parietal regions, (2) and a high amplitude alpha peak. 

 

Rodent dataset 

We brain time warped a rodent dataset obtained from (Newman & Hasselmo, 2014). In this 

study, local field potentials (LFP) and single units were measured from the entorhinal cortex 
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of Long-Evans rats as they navigated through a rectangular open field. In the following 

section, we describe how we reformatted and analysed the data to test the effects of brain 

time warping. For methodological details on the recordings such as data acquisition, surgical 

procedures, and behavioural protocols, we refer to (Newman & Hasselmo, 2014). We 

hypothesized that brain time warping would increase the periodicity with which a classifier 

is able to differentiate when an animal is inside or outside the firing field of a grid cell. To 

this end, we brain time warped grid cell activity to theta oscillations in the LFP. The logic is 

that if theta clocks grid cell activity, then periodic patterns in their spiking activity should be 

enhanced after brain time warping (through its correcting of spectral eccentricities in brain 

time). 

  

Primary grid cells 

We inspected single cell recordings from 7 recording sessions (N = 2 rodents) and extracted 

one primary grid cell for each recording, which we used to define the in- and outfield 

condition. We selected a primary grid cell by comparing each cell’s firing rate map for 

triangular structure and the periodicity of these maps using a 2D autocorrelation analysis 

(Hafting et al., 2005). In Supplementary Material section 3.2.2, we display the smoothed 

firing rate maps of each session’s primary grid cell and how we devised classes based on 

their firing fields. 

 

Spike-field coupling 

Brain time warping is only expected to enhance periodicity if grid cells phase lock to theta. 

Thus, we verified spike-field coupling for selected grid cells. In Supplementary Material 

section 3.2.3, we show the spike-field coupling of one example grid cell. 

 

Data preparation 

For each session, we created a separate structure for the spike activity of grid cells (between 

2 and 4 channels; convolved with a Gaussian) and LFP recordings (2 channels). We split 

each structure into two classes of data based on when rodents were inside a firing field of 

the primary grid cell’s firing field (defined by local maxima in the smoothed firing rate map) 

or outside of it (defined by local minima). As a consequence of this split, the data at t = 0 

reflected the animal’s presence in a firing field (class 1), or not (class 2). This trivially 
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introduces high classifier performance around these timepoints. However, we were not 

interested in the classifier’s performance to differentiate in- and out-field conditions. Rather, 

we tested whether brain time warped data increased periodicity in classifier performance at 

the warping frequency. We brain time warped 2.5 seconds of data (from 1.25 seconds before 

to after t = 0). The number of trials per session ranged from 60 to 168 (mean: 104.8 trials, 

standard deviation: 39). 

 

Brain time warping 

The average waveshape of LFP theta was asymmetric, so we generated the clock time 

template signal (used to detect segments of frequency drift and phase jumps in LFP theta) 

based on a smoothed version of the average waveshape rather than a symmetric sine wave 

(which is the default method). This optimizes brain time warping by reducing differences 

between the clock and brain time signal, improving the accuracy of the warping path (see 

Toolbox methods). In Supplementary Material Section 3.2, we show TGMs and their 

autocorrelation map for each session. The prepared data and scripts used for analysis are 

included in the Brain Time Toolbox. For our warping signal, we selected the highest power 

theta frequency from the component that displayed the overall highest power across theta 

frequencies (always resulting in an 8 Hz signal). 

 

Human dataset 

We brain time warped a human dataset obtained from Bae & Luck (2019), which is available 

for download at https://osf.io/bpexa/. In this study, electroencephalography (EEG) was 

recorded while participants viewed random dot kinematograms, where a proportion of dots 

moved coherently toward a direction in 360° space. Each trial contained, in order, a fixation 

period of 1.5s, a motion period of 1.5s, and a direction report of variable duration. Again, 

we restrict our description to how we reformatted and analysed the data. For the full 

methodological details, see Bae & Luck (2019). We hypothesized that brain time warping to 

occipital-parietal alpha oscillations would increase the periodicity with which a classifier is 

able to differentiate whether motion is leftward or rightward, resting on evidence for alpha’s 

role in controlling spatial attention (Capotosto et al., 2009). 

 

Data preparation 

https://osf.io/bpexa/
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First, we pooled both recording sessions and coherence levels (with 25.6% and 51.2% of 

dots moving coherently in one direction). We used only the 1.5s motion period for decoding, 

as we predicted the neural signature of spatial attention is most detectable during motion. 

We filtered each participant’s data (N = 16) to the 80% most accurate trials (defined based 

on the error between reported and presented motion angle), reducing the number of trials 

from 1280 to 1024. This removes the subset of trials where a rare reversal effect occurred in 

which participants report motion in roughly the opposite direction to the presented motion. 

Next, we defined two classes of data based on whether motion was leftward (class 1; angles 

between 90° and 270°), or rightward (class 2; the remaining angles). 

 

Brain time warping 

We extracted warping sources by applying ICA to the data. For each participant, we chose a 

component with sustained alpha power and a topographical profile that suggested an 

occipital-parietal origin in line with previous research (Capotosto et al., 2009; Sauseng et al., 

2005). Out of components that met these criteria, we chose the component with the largest 

amplitude at alpha. In Supplementary Material section 3.3, we show TGMs and 

autocorrelation maps for each participant. 

 

3.4 Results 

3.4.1 Brain time warping recovers oscillatory activity 

In the simulated dataset, the event-related average of clock time data shows no robust 

oscillatory shape. After warping, the oscillatory structure hidden in the data becomes 

qualitatively uncovered (Fig. 3.5a). Moreover, we found that the algorithm sharpens the 

power spectrum selectively around the warping frequency (Fig. 3.5b) and, in line with our 

hypothesis, increases the peak’s magnitude. Third, the ITC in clock time shows 

comparatively low values around simulated alpha rates—with only weak clustering at low 

alpha (Fig. 3.5c). ITC is enhanced by brain time warping, revealing a strong cluster at 

participants’ warping frequency. We find similar results for the rodent dataset 

(Supplementary Material section 3.2.1). For the human data, we found a prominent increase 

in ITC at the warping frequency but not in the peaks of the power spectrum (Supplementary 

Material section 3.3.1). Together, these results demonstrate that warping can reveal 

oscillatory activity that is lost due to clock time’s distorting effects on the data. As mentioned 

in Figure 3.5, brain time spectra are normalized with respect to individual participants’ brain 
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time warping frequency  (
𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑏𝑟𝑎𝑖𝑛 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
). While we denote these ratios in terms of Hz 

throughout this Thesis, we recognize that Hz is a unit that refers to cycles per clock time 

second, making it a technically inadequate brain time-based frequency unit. 

 

 

 

Figure 3.5. Results of basic analyses in the simulated dataset. (A) ERPs in the left visual 

cortex of one example virtual participant. In clock time, averaging across trials destroys the 

simulated oscillatory structure. By repairing disharmony, brain time warping recovers this 

structure. (B) Power spectra averaged across all channels and participants. Brain time 

warping increases the power of alpha oscillations at the simulated rate for each participant. 

Brain time results are always rereferenced to individual participants’ brain time 

rate (
𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑏𝑟𝑎𝑖𝑛 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
). This sets 1 Hz as each participant’s warping frequency (and, for 

example, 0.5 Hz as half the warping frequency). We removed the aperiodic (1/f) component 

of the power spectrum using the FOOOF toolbox (Donoghue et al., 2020). (C) ITC averaged 

across all channels and participants. Brain time warping increases ITC at the (ground truth) 

alpha frequency. The analysis window was restricted to 1–2 s to reduce artefacts. We 

equalized the y axis in (B) and the colour axis in (C) between clock and brain time based on 

maximum values to enable a visual comparison between dimensions (this step is performed 

in all figures). 

 

3.4.2 Brain time warping recovers neural patterns of cognition 

In the simulation, the neural signature provided by the classes reflected attention. The 

simulated patterns of this signature were not detectable in a default clock time format but 

did emerge after brain time warping (Fig. 3.6). 
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Figure 3.6. Results of advanced analyses in the simulated dataset. We tested for periodic 

patterns in the classifier’s TGM, which provides an index of neural signatures of cognition 

by demonstrating how the classifier’s performance generalizes across time. (A) An example 

participant’s TGM shows no periodic structure in clock time (top). After brain time warping, 

the simulated periodic structure in the neural signature is recovered—as evidenced by the 

chequerboard pattern (bottom). (B) The difference between clock and brain time becomes 

qualitatively striking in the TGM’s autocorrelation maps. (C) We quantified periodicity by 

applying an FFT over all rows and columns of TGMs. Then, we perform second-level 

statistics by comparing empirical periodicity with permuted periodicity (obtained by 

shuffling class labels). Only brain time spectra show significant periodicity at the warping 

frequency (P < 0.001) and its first harmonic (P < 0.05), demonstrating that brain time 

warping corrects for disharmony and unveils ground truth neural signature dynamics 

(bottom and top). Each participant showed periodicity peaks selectively at their warping 

frequency. We corrected for multiple comparisons (using false discovery rate (FDR); 

Benjamini & Yekutieli, 2001), except at specific frequencies in the brain time spectra at 

which we hypothesized classifier periodicity (0.5, 1 and 2 Hz; 1 Hz remains significant when 

applying FDR. We provide additional plots, including all TGMs, autocorrelation maps and 

periodicity spectra in Supplementary Material section 3.1.2). 

 

 In the rodent data, the difference in activity between classes reflected whether the 

animal was in a firing field of the grid cells, yielding a signature of the neural basis for spatial 

navigation (Jacobs et al., 2013). In clock time, no periodicity is evident over time (Fig. 3.7a; 

top) despite grid cells strongly phase locking to theta oscillations (Burgess & O’Keefe, 2011; 

Supplementary Material section 3.2.3). Importantly, brain time warping the firing rates of 

grid cells to theta oscillations obtained from the LFP does result in periodicity (Fig. 3.7a; 

bottom). 
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 In the human data, the neural signature reflected spatial attention, provided by the 

difference in brain activity during leftward and rightward motion. While the clock time data 

qualitatively show some periodicity at alpha, the peaks do not stand out reliably from the 

peaks in periodicity spectra obtained with permuted labels (Fig. 3.7b; top). In contrast, brain 

time warping reveals prominent and reliable periodicity at participants’ individual alpha 

frequency (Fig. 3.7b; bottom). Together, the basic and advanced results indicate that brain 

time warping is a promising tool to repair disharmony between clock and brain time, 

facilitating the study of the dynamic cognitive brain. 

 

 

 

Figure 3.7. Results of advanced analyses in the rodent and human dataset. (A) Warping 

the rodent data to LFP theta unveils statistically robust periodicity around the warping 

frequency and its first harmonic (P < 0.001), while the clock time spectrum shows no 

significant peaks. (B) In the human dataset, brain time warping reveals periodic patterns 

around the warping frequency (P < 0.001), indicating that the neural signature of attention 

fluctuates during motion perception. For the rodent data, each session showed periodicity 

peaks selectively at their warping frequency. For the human data, not all participants showed 

periodicity peaks and there was some variance in the brain time frequency of peaks. The 

insets display autocorrelation maps of TGMs from example sessions (for the rodent dataset) 

or example participants (for the human dataset). We provide additional plots in 

Supplementary Material section 3.2 and 3.3. These plots include TGMs, autocorrelation 

maps, periodicity spectra, grid cell maps and spike-field coupling between theta and single 

unit spikes. 
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3.4.3 Brain time warping parametric classifier reliability 

As mentioned in the Methods section, a further question is whether brain time warping can 

be used to increase the readout of neural signatures regardless of whether the algorithm can 

increase the readout of their periodicity. In the simulated data, we found evidence for a 

parametric increase in the proportion of significantly classified timepoints for brain time 

warping, with the difference in this proportion to clock time scaling with the number of 

considered trials (Figure 3.8). This situates brain time warping as a promising approach to 

uncover cognition-specific brain activity. 

 

 

Figure 3.8. Results of parametric analysis classifier reliability. The proportion of 

classifier timepoints with accuracy values that exceed the top 5 percent of null distribution 

accuracy values (i.e., p < 0.05) as a function of the number of subsampled simulation trials 

per class. While a classifier trained and tested on clock time data contains approximately the 

same proportion of significantly classified timepoints with increasing trial numbers, brain 

time results show a gradual increase in this proportion. With increasing trial numbers, the 

difference between clock and brain time classifier reliability increases. 

 

3.4.4 Brain time warping parametric classifier periodicity 

We used the same analytical setup to offer a secondary way to address the question of 

whether brain time warping can uncover periodicity in the neural signature (Figure 3.9). 
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While the evidence for periodicity in a classifier carried out on clock time data retains 

approximately the same average p-value regardless of how many trials are used for 

classification, a classifier performed on brain time data shows decreasing average p-values 

for periodicity at the warping frequency. This corroborates the idea that brain time warping 

can be used to uncover periodicity in neural signatures of cognition. 

 

 

Figure 3.9. Results of parametric analysis classifier periodicity. The average p-value at 

the warping frequency as a function of the number of subsampled simulation trials per class. 

While a classifier trained and tested on clock time data does not show systematic changes in 

the average p-value at the warping frequency across simulated trial numbers, brain time 

results show a decrease in average p-value as the number of trials increases. 

 

3.5 Discussion 

3.5.1 Is retuning using brain time warping circular? 

A potential concern with brain time warping could be that it trivially imposes oscillatory 

structure onto the data. The worry here is that the algorithm makes data patterns fluctuate at 

the warped frequency no matter which frequency is selected. In this section, we examine 

when the algorithm is on safe grounds and when vigilance is needed. 

First, as a note of clarification, the path used for brain time warping does not contain 

oscillatory structure. That is to say, if the path were applied to a random time series, it would 
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not mould it to increase its oscillatory shape. This is because the path is instead designed to 

show when the oscillation used for warping undergoes spectrally variable behaviour. 

Nevertheless, an important concern remains. Brain time warping applies the path to the data 

to align it with brain dynamics, so if the warping signal is within the data, its stationarity 

will increase—introducing some oscillatory structure after all. Whether circularity is a 

problem depends on two factors: the type of analysis carried out and the dependence between 

warping signal and warped data. We discuss these points in turn, first covering each type of 

analysis. 

 

Basic analyses 

Brain time warping is expected to enhance oscillatory structure in the event-related potential 

(ERP), power spectrum and ITC at least somewhat because there are usually at least some 

oscillations at any frequency to begin with. So, warping to a random frequency will cause 

those oscillations to have their frequency drift, variable starting phase, and phase jumps 

reduced, affecting subsequent results. Hence, any increase around warping frequencies in 

basic analyses should not be taken as evidence that those frequencies are critical for 

cognition—there needs to be a further relation to independent measures (such as cognitive 

or orthogonal neural variables). In this sense, brain time warping can be used as a 

preprocessing step to aid subsequent high-level approaches that are sufficiently independent 

(to avoid circular inference; Kriegeskorte et al., 2009). 

With that said, we find that warping to weak simulated oscillations results in only 

weak frequency-specific enhancements compared to warping to strong oscillations—

speaking to the specificity of brain time warping even before cognition enters the scene 

(Supplementary Material section 1.1). 

 

Advanced analyses 

We have presented the advanced classification analysis as a circularity-free high-level 

approach and it is the central analysis implemented in the Brain Time Toolbox. By tapping 

into neural signatures of cognition rather than oscillations themselves, warping-induced 

changes are non-trivial. Specifically, only warping to those oscillations that coordinate the 

underlying activity relevant for cognition is expected to yield fluctuations in cognition’s 

neural signature. In support of this, we performed a control analysis where we warp to 

control frequencies (Pletzer et al., 2010), resulting in no evidence of periodicity 

(Supplementary Material section 1.1). A further safeguard of the advanced analysis is that 
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the obtained null distributions benefit equally from any trivially imposed oscillatory 

structure as the empirical distribution. 

 

Data dependence 

Beyond the type of analysis that is used, the dependence between warping source and 

transformed data is another factor to consider. After all, if the cause for circularity lies chiefly 

in changes to the warping signal, then removing it from the warped data reduces circularity 

concerns. We report suggestions on how to achieve data independence for each 

electrophysiology method, describing how they can be implemented before or after warping 

(Supplementary Material section 2.4.1). We also report cases in which independence 

between warping source and data is impossible. Here, it is important to determine on a case-

by-case basis whether circularity is a concern on the basis of the previous points (that is, are 

subsequent analyses orthogonal or not?). To aid this process, the toolbox tracks dependence 

between warping source and warped data and raises a warning when circularity could 

become an issue. 

 

Statistical false positives 

With these reflections in mind, we finally emphasize that brain time warping is a hypothesis-

driven method that capitalizes on the temporally coordinating nature of oscillations. Hence, 

we recommend warping only using oscillations predicted to fit that bill to avoid false positive 

results by chance or to apply multiple testing correction when rewarping to a different signal 

in the data. To enable hypothesis-driven warping, the Brain Time Toolbox computes a 

variety of information about warping signals—including their time frequency characteristics, 

waveshape and topographical profile—allowing users to make informed decisions about 

which signal they wish to designate as brain time.  

 

3.5.2 When is retuning clock and brain time necessary? 

The need to use brain time warping or other methods to retune depends on (1) the degree to 

which clock and brain time are in disharmony and (2) the degree to which such disharmony 

interferes with analyses. Below, we elaborate on both criteria. 

The degree to which disharmony is present depends on the levels of processing 

involved in the experimental paradigm used. Take once again the spatial attention study. 

Between the moving dots’ light hitting the participant’s retina and their pressing of the button 

to indicate motion direction, a vast amount of subcortical and cortical processing transpires. 
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While internal dynamics start to coordinate stimulus processing as early as the thalamus 

(Hughes, 2004; Vijayan & Kopell, 2012), or even earlier (Koepsell et al., 2009), disharmony 

is most prevalent in higher level regions—where processes such as attention and decision-

making operate in full swing. This is because, at this late stage, information has passed 

through many cell ensembles where different oscillations have each exerted a temporal 

footprint. As these footprints add up, clock time falls increasingly out of tune with brain time. 

As a result, we lose track of brain dynamics and the information they provide about cognition, 

such as whether dots make it to awareness (VanRullen, 2016) or whether features of the dots 

(such as their colour) are available to working memory (ten Oever et al., 2020). Thus, there 

is a gradation in clock time’s distorting effect which depends on the extent of cortical 

processing. Research that restricts analyses to low-level subcortical processing or very early 

evoked potentials benefits comparatively little from retuning, while retuning may be a vital 

step to understand brain patterns in late stages—with at least one exception: retuning is 

unnecessary for analyses that do not rely on temporal variations of the neural signature. For 

example, a researcher may want to study the trial-average activity in parietal regions as a 

function of the proportion of dots that moved or map aggregate differences in network 

connectivity between participants. Here, it is true as ever that brain dynamics play their part 

in the subprocesses involved but the analyses are insensitive to time variations, leaving them 

unafflicted by the footprints of oscillations. 

Finally, in some experimental contexts, the evolution of brain activity with reference 

to clock time is informative in its own right, with brain time warping potentially distorting 

such insights. For example, theta frequencies in the rodent hippocampus covary with running 

speed (Kennedy et al., 2022; McFarland et al., 1975), individual alpha frequencies are higher 

in human participants who display high memory performance (Klimesch et al., 1993), and 

prefrontal oscillatory activity has lower frequencies in schizophrenia patients (Uhlhaas & 

Singer, 2013). 

In short, retuning clock and brain time is necessary depending on the degree to which 

both the mechanisms of study and the analyses used depend on the brain’s internal dynamics. 

On the whole, few electrophysiology studies are exempt from the distorting effects of clock 

time. 

 

3.5.3 Brain time is not unitary 

The phrase “brain time” is used to emphasize the conceptual departure from a format 

extrinsic to the brain. We do not mean to suggest that there is a single brain time. Rather, 
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different cognitive processes are clocked by different groups of oscillations, each with their 

own frequency and source. In this sense, brain time is analogous to a concept like “Earth 

time”, which contrasts itself with time on other planets whilst further decomposing into 

different time zones. Finally, brain time in the present context does not refer to timekeeping 

in the brain. Instead, it refers to the oscillatory dynamics by which the brain coordinates 

cognition generally, of which temporal cognition is a specific instance (Wassenhove, 2016). 

 

3.6 Summary & looking ahead 

In this Chapter, I have argued that rather than imposing a foreign unit of time onto the brain 

while studying its function, the brain is best understood as a system with its own dynamics 

and temporal organization. Upon inspection, the brain operates rhythmically, with brain 

oscillations as a key player. This has important consequences for scientific analysis. If it is 

true that oscillations clock brain activity to coordinate cognition, then their dynamics should 

heavily inform how we study evolving data patterns. In contrast, analysing such patterns in 

the default clock time format is likely to yield a distorted readout as the brain’s internal 

dynamics do not scale linearly to sequences of (milli)seconds. We introduce brain time 

warping as a method to account for disharmony in brain data, dynamically transforming 

electrophysiology data structures in a way that brings them in line with brain dynamics. The 

Brain Time Toolbox implements brain time warping, facilitating analysis on the oscillatory 

dynamics of the cognitive brain. 

 In the next Chapter, I will explore a different method to tackle the same problem. 

Specifically, returning to the context of memory encoding and retrieval, I evaluate whether 

the presentation of striking visual stimuli can reset brain dynamics to regularize neural 

patterns of memory representations across measurements. This method constitutes a 

methodologically more invasive approach to factor in brain dynamics into neuroscientific 

inquiry because it involves the direct interference with oscillatory dynamics rather than post-

hoc algorithmic transformations. 

  

Chapter 4: Evaluating visual perturbation as a 

method to refocus brain dynamics 
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4.1 Introduction 

A central question in memory research is how the brain retrieves information stored in long-

term memory (LTM) in the service of adaptive behaviour. This research topic has inspired 

work from a variety of angles, involving different experimental protocols and methods—

including neuroimaging modalities. Electroencephalography (EEG) and 

magnetoencephalography (MEG) have proven an important part of this project because they 

capture brain dynamics on a sub-second resolution. Such granularity is crucial, given that 

memory retrieval typically unfolds on the order of seconds, with the neural cascades 

underpinning memory retrieval evolving even faster (Staresina & Wimber, 2019). 

 To study the evolution of retrieved contents in the brain, one widely pursued family 

of techniques is multivariate pattern analysis (MVPA)—more broadly known as 

classification or decoding (Haxby et al., 2014; Grootswagers et al., 2017). These tools extract 

and upweight signal dimensions that robustly covary with retrieved memory contents, 

effectively boosting the signal-to-noise ratio of associated neural activity. MVPA has been 

successfully used to enrich our understanding of memory, including how information is 

encoded (Fritch et al., 2020; Kragel et al., 2017; Kuhl et al., 2012), consolidated (Deuker et 

al., 2013; Maguire, 2014; Schreiner et al., 2021), and reinstated during memory recall (i.e., 

pattern completion; Danker & Anderson, 2010; Favila et al., 2020; Rissman & Wagner, 

2012; Xue, 2018). 

 Despite such advancements, the decoding of long-term memory contents in 

electrophysiology data typically remains only slightly above chance, impairing our ability 

to study the evolution of neural patterns of interest. One reason for this limitation is that 

memory processes and their associated brain activity are highly dynamic, which results in 

variable patterns across trials and participants (ter Wal et al., 2021; Madore & Wagner, 2022). 

Indeed, MVPA and most other EEG-based analyses rely for their robust predictions on the 

existence of a detectably constant cascade of neural patterns across measurements (van Bree, 

Melcón, et al., 2022). This clash between variability in neural processes on the one hand and 

the constancy assumption of our analyses on the other may cause us to miss representations 

of interest, or to obtain different results depending on what experimental event we timelock 

EEG data to (e.g., retrieval cues vs button presses; Linde-Domingo et al., 2019). A factor 

that further hampers our ability to robustly decode representations is that retrieval comes 

with fainter neural patterns to begin with compared to perception (Favila et al., 2020; 

Pearson et al., 2015). Together, these points invite creative techniques that improve our 

ability to infer long-term memory representations from dynamic brain activity. 
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In this study, we explore a perturbational method that has the potential to mitigate 

two issues at the same time: low signal fidelity at the level of measurement, and variability 

in neural processing dynamics. Specifically, in this EEG study we evaluated whether the 

presentation of a high contrast visual stimulus—henceforth referred to as a “ping”—during 

LTM retrieval enhances the readout of signatures of retrieved content. In motivating the 

hypothesis that pings boost the decodability of LTM representations, we built directly onto 

recent successful efforts in the domain of working memory (WM). In that context, pings 

have been used to enhance the decodability of the orientation (Wolff et al., 2015, 2017, 2020; 

ten Oever et al., 2020; Yang et al., 2023) and colour (Kandemir et al., 2023) of objects 

actively maintained in WM, as well as anticipated target locations (D. H. Duncan et al., 

2023). An explanation for these findings is that pings produce a robust sweep of activity that 

interacts with WM representations to enhance their SNR, either by cascading through 

networks of activity-silent synaptic traces that encode WM contents (Stokes, 2015; Mongillo 

et al., 2008), or by interacting with generators responsible for memory-specific functional 

activity that persists during the delay period (Barbosa et al., 2021). 

 More broadly, pings may regularize neural dynamics across trials and participants 

by producing a phase reset of brain oscillations that coordinate information processing across 

neuronal populations. In support of this, visual stimuli presented during memory tasks have 

been shown to reset the phase of low-frequency brain oscillations that are implicated in 

encoding and retrieval (Rizzuto et al., 2003; Haque et al., 2015; audiovisual stimuli in Cruzat 

et al., 2021). Thus, by inducing pings at experimentally controlled moments, researchers 

may gain a level of control over variability in synchronized activity across information-

coding neurons, making their dynamics more similar across measurements to improve the 

predictive power of MVPA. 

Importantly however, while ping-based methods have been shown to work in WM 

contexts, to our knowledge it has not been explored whether they generalize to LTM research 

in which information is retrieved from stored representations. The purpose of this study then, 

is to systematically explore the possibility that pings can enhance the readout of reactivated 

long-term memory contents. To this end, we presented participants with pings as memory 

processes were actively engaged during cued recall, evaluating whether retrieved 

representations are more robustly discernible after ping onset. 
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4.2 Methods 

4.2.1 Participants 

We recruited thirty-three volunteers (22 women, Mage = 23.8 years, SDage = 2.6 years, range 

= 18 to 31) with normal or corrected-to-normal vision, and with no history of epileptic 

attacks or neuropsychological conditions that could interfere with the examined study effects. 

The sample size required to derive a reliable effect was estimated based on Wolff et al., 2017, 

though our estimation was limited by the fact all previous work was in a WM context. One 

participant did not finish the experiment because they were unwell, and following data 

inspection, two participants were removed because of poor data quality due to a large number 

of high impedance channels, and one because of stimulus trigger issues. Thus, EEG-based 

analyses were conducted based on 29 participants. For behavioural analyses, the first four 

participants were excluded because of missing button press triggers, which, with the further 

exclusion of the participant who did not complete the experiment, resulted in an analysis of 

28 participants (participants with noisy EEG data were included in the behavioural analysis). 

 Participants were informed about the details of the experiment in advance—

including its duration, protocol, and methods—but were left naïve with respect to the 

purpose and hypotheses associated with the presentation of visual pings. Participants 

provided their written consent, and after the experiment, they were debriefed and given 

information about the central manipulation and hypothesis upon request, and they were 

compensated for their time with £9 per volunteered hour. The study was approved by the 

Ethical committee of the College of Science and Engineering of the University of Glasgow 

(Application number: 300210113). 

 

4.2.2 Stimulus and apparatus 

The presentation of stimuli was controlled using PsychoPy (version 2021.2.3; Peirce et al., 

2019) running on Windows 10. Stimuli were presented on a CRT monitor (53.3 cm; 1024 

by 768 pixels) operating at a refresh rate of 60 Hz. Participants were seated in a magnetically 

shielded room in a chinrest 65 cm from the screen, or at an approximately similar distance 

from the screen outside the chinrest if they experienced discomfort. Throughout the 

experiment, a fixation cross (with a visual angle of 0.44°) was presented in the centre of a 

constantly presented grey background (RGB = 128 128 128; PsychoPy default). All centrally 

presented stimuli overrode the fixation dot. The visual impulse (i.e., ping) was a single full-

contrast bullseye stimulus presented at the centre of the screen for 200 milliseconds (ms; 
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with a diameter of 13° and 0.31° cycles per degree). The ping was generated using MATLAB 

and edited using GIMP (GNU Image Manipulation Program version 2.10.32). 

 In the main memory task, participants learned associations between action verbs and 

images, and were later prompted with the action verb to retrieve the associated image. The 

action verbs were selected based on usage frequency (largely based on Linde-Domingo et 

al., 2019) and the image stimulus set was a combination of 192 colour images collated across 

various royalty free databases, including the Bank of Standardized Stimuli (BOSS, Brodeur 

et al., 2010), and the SUN database (Xiao et al., 2010). The selected 192 images were 

constructed to follow a nested category structure of three embedded hierarchical levels. At 

the top level, the set consisted of 96 objects and 96 scenes, which were in turn composed at 

the middle level of 48 animate and 48 inanimate objects and 48 indoor and 48 outdoor scenes. 

Moving down to the bottom level, each of the middle level categories branched out into 4 

categories (e.g., for animate objects: birds, insects, mammals, and marine animals), each of 

which contained 12 specific instances (e.g., twelve specific birds). We chose this nested 

hierarchy of stimulus categories because we did not know a priori what dimension of 

retrieved memories would be effectively decodable, so we included multiple levels of 

abstraction and chose one level based on pre-defined criteria (See Level Selection). The 

objects were presented on a white square matching in size to scene images (i.e., the visual 

degrees of all stimulus categories were 13°). Key presses were registered using a standard 

QWERTY keyboard. 

 

4.2.3 Procedure 

The main experiment consisted of 8 blocks, each with an encoding, distractor, recall, and 

recognition phase (Fig. 4.1A). In total, the main experiment lasted between approximately 

45 and 65 minutes depending on the duration of self-paced breaks and electrode impedance 

maintenance. Before the main experiment, participants were provided with a practice run 

that covered each phase using example verbs and images that were not used in the main 

experiment. A standardized set of verbal instructions were provided to guide participants 

through the practice run. If the participant reported not understanding the task or if they did 

not give accurate responses, the practice run and instructions were repeated. Then, the main 

experiment commenced, throughout which EEG was acquired. At the start of each 

experimental phase, a screen was presented with a reminder of the task instructions and 

required response keys. 
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In the encoding phase, participants learned to build a mental association between 

action verbs and paired images. First, a verb was presented for 1500 ms (white, OpenSans 

font). Then, after 1000 ms, the associated image was presented until the spacebar was 

pressed to indicate the association was encoded (with a 6000 ms limit). Then, after a 1000 

ms delay, the next verb was presented. During each block’s encoding phase, 10 unique verb-

image pairs were learned in one shot. This resulted in 80 encoded pairs across the full 

experiment, with the images pseudo-randomly selected from the full stimulus set such as to 

maintain an equal distribution of top-level stimulus categories (40 objects and 40 scenes) 

and fully random selection over nested middle and bottom levels. 

 

 

 

Figure 4.1. Paradigm and behavioural results. (A) Experimental paradigm. The encoding 

phase consisted of a word-image pair learning task. This was followed by a distractor task 

intended to wash out working memory effects. Then, during the recall phase, individual 

word-image pairs were retrieved while visual perturbations (pings) were presented in 75% 

of trials. In a fourth phase, recognition performance was tested (not displayed). (B) Reaction 

time during encoding for subsequently recognized and forgotten trials (collapsed across 

participants and blocks). (C) Average recognition performance per participant. (D) Average 

recognition performance per block. 

 

 The distractor phase that followed was included to flush out WM effects. Here, 

participants performed an odd-even task lasting 20 seconds. A number between 1 and 99 
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was presented in the centre of the screen (white, OpenSans font), and participants were 

instructed to press left key for odd numbers, and right key for even numbers. Following a 

left or right key press, the next number was presented immediately. Participants’ average 

performance was displayed at the end of the distractor phase, marked as the proportion of 

correct responses. This data was not further analysed. 

 Next in each block, the recall phase tested our central manipulation of a ping-based 

visual perturbation. In this phase, participants recalled the learned verb-image associations 

of the encoding phase. First, one of the ten encoded verbs was presented for 2000 ms, serving 

as the retrieval cue that prompted recall of the associated image. In 75% of trials, a visual 

impulse was presented in either of three time bins: between 500 to 833.33 ms (“early ping”), 

833.34 to 1116.67 ms (“middle ping”), or 1116.68 to 1500 ms (“late ping”) after the onset 

of the retrieval cue, with a uniform distribution of possible ping times within each bin. This 

window was chosen on the basis that previous research on cued recall paradigms suggests 

this is the moment of maximum memory reinstatement (Staresina & Wimber, 2019). In 25% 

of trials, no visual impulse was presented in order to derive a baseline for statistical 

hypothesis testing. Participants pressed the left key to indicate that they had forgotten the 

image associated with the verb cue, or right key to indicate they remembered it. Key presses 

only resulted in a new trial after 1700 ms following retrieval cue onset (i.e., 200 ms after the 

latest possible ping). With presses earlier than that, nothing happened. Participants were 

given a visual indication that key presses were available via disappearance of the retrieval 

cue (at its offset; 2000 ms). During the recall phase, each of the 10 encoded verb-image pairs 

were tested four times, resulting in 40 recall trials per block, and 320 trials in total, 

comprising 160 objects and 160 scenes. Within participants, each of the four conditions—

early, middle, late, and no ping—were configured to present object and scene images equally 

often (i.e., the top-level stimulus category), with the nested mid and bottom-level categories 

randomized. The sequence of presented stimulus level categories, pinging conditions, and 

verb-image pairs was fully randomized within and across blocks to mitigate order effects. 

 Finally, since the cued recall phase only included subjective memory judgments, a 

recognition phase was included to obtain an objective measure of memory performance for 

the verb-image pairs. During this two-alternative forced choice task, one of the 10 encoded 

verbs was presented in the centre of the screen, with two images (visual angle of 7.8°) 

presented underneath, one on the left-hand, and one on the right-hand side of the screen. 

Participants chose which of the two images was paired with the central action verb using a 

left or right key press (with a 5000 ms time limit). The location of the correctly paired image 



65 

 

 

 

was randomized between the left and right location. The lure image was always another old 

image from the immediately preceding encoding phase. Each of the 10 encoded verb-image 

pairs was tested once in a random sequence. Note that we designed this study to expend most 

of the available study time on the recall phase to maximize the statistical power of our main 

analysis, with the recognition phase serving chiefly as a basic check to ensure participants 

were not skipping through the experiment without memorizing verb-image pairs. 

 

4.2.4 EEG acquisition and preprocessing 

The data was recorded using a 64-channel passive EEG BrainVision system (BrainAmp MR; 

Brain Products) with a sampling rate of 1000 Hz. For our recording software we used 

BrainVision Recorder (Brain Products). The 64 Ag/AgCl electrodes were positioned in 

accordance with the extended international 10-20 system. Due to a necessary change in the 

recording system, a different EEG cap type (EasyCap) was used for participants 1 to 14 

(subset 1) and 15 to 33 (subset 2). In the first subset, the ground electrode was located on the 

back of the head, below occipital electrode Oz, and two EOG channels were used to monitor 

eye movements (placed below and next to the eye; VEOG and HEOG). In the second subset, 

the ground electrode was on the midline frontal location AFz, and one EOG channel was 

used to measure eye movements (placed below the eye; VEOG). Furthermore, the cap used 

in the second subset included channels FT9 and FT10. For event related potential analyses, 

we included only electrodes common to both caps to enable a universal visualization of brain 

activity. Most electrode impedances were kept below 25 kiloΩ, and electrodes with outlier 

impedances were removed during preprocessing, with their associated data interpolated (see 

below). 

 Preprocessing was performed using FieldTrip (Oostenveld et al., 2011) in MATLAB 

(the MathWorks). First, the continuous EEG data was split up into two datasets: one with all 

trials epoched relative to retrieval cues, and one with trials epoched relative to pings and no-

ping (defined by randomly sampling ping times of the pinged trials, yielding so-called 

“pseudo-pings”). Put differently, the data was locked once to 𝑡 = 0 defined as the retrieval 

cue, and once to 𝑡 = 0 defined as the manipulation of interest or a baseline alternative. In 

both cases, the epoched trials were 4 seconds in duration (-1 to 3 seconds relative to the event 

of interest). 

 Each dataset was filtered between 0.05 and 80 Hz and downsampled to 250 Hz. Next, 

bad trials and channels with outlier impedance levels were manually removed via visual 

inspection. Subsequently, eye movement and muscle artefacts were identified and removed 
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using ICA decomposition, and removed channels were interpolated using spline 

interpolation (with the FieldTrip function ft_scalpcurrentdensity). Finally, the data was re-

referenced using a common average and a Laplacian method (current source density), 

deriving separate data structures for cue-locked and ping-locked analyses. 

 

4.2.5 Behavioural analysis 

The experiment was designed to result in high or even ceiling memory performance in order 

to obtain a maximal number of successfully remembered trials, and to optimally evaluate the 

central hypothesis of a ping-induced decodability enhancement. We report objective 

performance for the memory test conducted in the recognition phase, both across participants 

(Fig. 4.1C) and across blocks (Fig. 4.1D). We also report subjective judgments during the 

recall phase, quantifying how often participants report remembering versus forgetting the 

word-image pair. Reaction time (RT) during the recall phase is uninformative, because as 

described in the Procedure section, the response key was locked until 1700 ms after cue 

onset, at which point participants likely had already retrieved the associated image (Staresina 

& Wimber, 2019). Indeed, participants reported actively waiting for response buttons to 

become available. Thus, we instead analysed RT during the encoding phase as a function of 

whether the word-image pair was subsequently recognized or not. These RT data were 

collapsed across participants and blocks (Fig. 4.1B). For the proceeding analyses, both 

recognized and forgotten trials were included. 

 

4.2.6 ERP analysis 

For the ERP analyses, only channels common to both electrode cap subsets were used. We 

applied two types of ERP analyses, one locked to (pseudo-)pings and one to retrieval cues. 

FieldTrip was used to downsample the data to 250 Hz and a band-pass filter between 0.2 and 

40 Hz was used. The data was baseline-corrected from -200 ms to 0 ms from events of 

interest. For ERP traces, we calculated the average activity across posterior channels (C3, 

C4, P3, P4, O1, O2, Cz, Pz, Oz, CP1, CP2, C1, C2, P1, P2, CP3, CP4, PO3, PO4, PO7, PO8, 

CPz, POz). For ERP topographies, we used the 61 channels common to both ERP cap types. 

We statistically evaluated whether pings resulted in higher amplitude ERPs compared to no-

ping trials using non-parametric Monte Carlo permutation tests applied to each channel, 

correcting for multiple comparisons using Bonferroni correction as implemented in 

FieldTrip, averaging activity from 200 to 400 ms after pseudo-pings (alpha = 0.05; 105 

randomizations). 
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4.2.7 MVPA analysis 

For MVPA, all available EEG channels available per electrode cap type were used except 

EOG channels. Depending on the analysis, we trained and tested either a multi-class LDA 

using FieldTrip (ft_timelockstatistics), or a binary-class LDA using the MVPA Light toolbox 

(Treder, 2020). We classified EEG data re-referenced using a Laplacian transform on the 

basis that it accentuates local patterns (J. Kayser & Tenke, 2015). All classifier analyses 

were performed on the recall phase, where our main hypothesis could be evaluated. Unless 

specified otherwise, analyses were carried out on the retrieval cue-locked dataset. We 

downsampled the data from 250 Hz to 50 Hz by applying a moving average with a window 

length of 140 ms in length, moving in steps of 20 ms. During each step, a Gaussian-weighted 

mean was applied in which the centre data sample of the window was multiplied by 1, and 

the tail samples by 0.15 (FWHM = ~81 ms). In a subsequent step, sample by sample, the 

data was z-scored across channels (i.e., setting every channel to mean = 0 and standard 

deviation = 1), followed by training and testing using LDA. To evaluate decoder 

performance, we applied k-fold cross validation (5 folds, with 25 repetitions). For binary 

class decoding, we used area under the receiver operating characteristics curve (AUC) as a 

performance metric because it adjusts for class imbalances (Grootswagers et al., 2017; Xie 

& Qiu, 2007). For multi-class decoding, where standard AUC is unavailable, we used 

accuracy and factored in level-specific differences in chance levels. To infer decoding 

performance values under the null hypothesis, depending on the analysis, we either used no-

ping trials or ping trials with shuffled class labels (100 1st-level permutations, each with 3 

repetitions). All analyses were restricted to the period before button presses were made (i.e., 

< 2000 ms). 

 

4.2.8 Level selection 

We used a multi-class LDA on no-ping trials to determine which retrieved stimulus category 

(top, middle, or bottom level) is most robustly detectable in the data when our main 

experimental manipulation was not applied. This level was then locked in for subsequent 

analyses that relate to our key hypothesis of ping-induced decoder enhancement. We selected 

the level with a high baseline performance to offer a conservative starting point from which 

we could establish whether pings are a powerful tool to further enhance decodability. 

However, as we will see in the results, stimulus selection rationales matter minimally 

because we found no reliable level differences in the no-ping decoder across levels to begin 
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with. For statistics, we performed a Wilcoxon rank sum test comparing the empirical and 

shuffled decoding performance for each level, in the way described in the next section. 

 

4.2.9 Main analysis 

For our statistical analysis of our main hypothesis, we used two-level permutation testing for 

the ping versus shuffle decodability comparison, and a Wilcoxon ranked sum test for the 

ping versus no-ping comparison. The former approach, which is based on van Bree et al., 

2022, implemented the following algorithm in pseudo-code—applied window-by-window: 

1) For each 2nd-level permutation (105 times): Grab one random window-specific 

decodability value from the 1st-level distribution of permutations of each participant 

and average the result. This yields 105 permuted averages. 

2) Generate one p-value by calculating the percentile of the average empirical decoding 

value within the distribution of permuted averages. 

The latter approach involved taking the Wilcoxon signed-rank test between the distribution 

of empirical decoder results and 1st-level permutation results across participants. We opted 

for a Wilcoxon test over cluster-based methods because it makes minimal assumptions about 

the distribution of decoding results (Wilcoxon, 1945; Grootswagers et al., 2017). For both 

approaches, we adjusted the resulting p-values across windows for their false discovery rate 

(FDR). Since the p-values are not independent across time, we applied the approach by 

Benjamini & Yekutieli (2001). 

Finally, for ping-locked analyses we restricted statistical analyses between 0 and 500 

ms from ping onset. For analyses locked to retrieval cue, we analysed 500 to 2000 ms from 

cue, which is the approximate range where memory retrieval processes are active (Staresina 

& Wimber, 2019). 

 

4.2.10 Condition-relative decoding peaks 

In addition to our main analysis, we carried out a presumably more sensitive analysis to 

evaluate the possibility of ping-induced decoding enhancements. We reasoned that even if 

visual pings do not offer an enhancement of LTM decoding performance that is strong 

enough to emerge in a direct ping-to-no ping or ping-to-shuffle comparison, there could still 

be a weaker effect that is detectable by factoring in the relative order of pinging conditions. 

Specifically, we tested whether trials with an early, middle, and late ping tended to have, 

respectively, earlier, later, and even later decoding performance peaks. In other words, we 
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tested to what extent decoding peaks captured ping presentation orders (see Linde-Domingo 

et al., 2019; Mirjalili et al., 2021 for similar peak selection approaches). 

First, we took every participant’s SOA-specific decoding time series—early, middle, 

and late—and extracted one peak (specified below). Then, we calculated a peak order 

distance (POD) per participant, defined as the absolute serial distance between the order of 

extracted peaks and true ping presentation order, given by the formula: 

 

𝑃𝑂𝐷𝑛𝑜𝑛−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = ∑ 𝑎𝑏𝑠(𝑝𝑒𝑎𝑘 −  𝑡𝑟𝑢𝑒) 

 

For example, if the decoder peak came first for early ping trials (1 − 1), third for middle 

pings (3 − 2), and second for late ping trials (2 − 3) this would amount to a POD of two. We 

divided PODs by the maximum distance (4), normalizing the score between zero and one:  

 

𝑃𝑂𝐷 =
∑ 𝑎𝑏𝑠(𝑝𝑒𝑎𝑘 −  𝑡𝑟𝑢𝑒)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

 

On this distance metric, lower values indicate a closer correspondence between ping-induced 

peaks and condition presentation order, which in turn confers stronger evidence for ping-

based decoding enhancement. For our statistical evaluation, we used a two-level permutation 

approach (similar to van Bree et al., 2022). Specifically, we compared the distribution of 

empirical PODs with PODs calculated across 106 second-level permutations, randomly 

grabbing from the pool of first-level shuffled decoder time courses. The p-values were 

defined by the resulting percentile of the empirical POD within the distribution of second-

level shuffled PODs (one-sided test, empirical < permuted). 

For the detection of decoder peaks in this analysis, we detected the maximum peak 

in the derivative of the cumulative sum of decoding time series. We chose this peak detection 

method over more standard approaches—such as simply extracting the largest peak from 

raw decoding series—because independent simulations revealed that this algorithm is most 

powerful at detecting true POD effects, outperforming a range of competing approaches 

(Supplementary Material Chapter 4, section 2). 
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4.2.11 Brain time warping 

As we will see, no compelling evidence was found for category decoding across conditions 

or category levels. Given that brain time warping appears suited to improve the statistical 

reliability of decoding (Chapter 3), we evaluated whether the algorithm increases the number 

of significantly classified timepoints in these data. Specifically, we used the cue-locked no 

ping trials at the top category level as a basis to apply the brain time algorithm. The reason 

to use trials without a ping is that striking ping-evoked activity could interfere with brain 

time warping, which requires a lack of contamination by extraneous signals that could 

impede the phase estimation of warping signals. We used cue-locked data because—as we 

will see—it has higher accuracy values compared to the ping-locked data. We brain time 

warped and classified the top category level (objects versus scenes) for the same reasons as 

with the main analysis (i.e., it affords binary classification). 

 

Warping signal 

We extracted ICA components from the no ping cue-locked trials and ranked them based on 

the average power at alpha frequencies (8 to 12 Hz). Then, we manually selected a warping 

signal based on which candidate warping signals optimally met two criteria: (1) the presence 

of an alpha peak, (2) a topographical profile that suggests media-temporal areas as a possible 

source. The reason for choosing alpha frequencies is that these rates are prominent and 

implicated in memory processing (Klimesch, 1997, 1999). Importantly, in spite of the 

important role of theta oscillations in memory (Chapter 2), we opted against theta-based 

warping signals because we did not observe theta peaks or high theta power in our data. 

After brain time warping, we removed the warping component before classification. 

 

Brain Time Toolbox settings 

The toolbox settings were set as in the analysis described in Chapter 3; Section 3.3.3. 

 

Decoding parameters 

For the decoding of brain time warped data, we used the same configuration as for the main 

analysis on clock time data (Section 4.2.7)—allowing for a direct comparison of the number 

of significantly decoded timepoints. 
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4.3 Results 

4.3.1 Behavioural results 

As expected in light of our experimental design, participants achieved high memory 

performance. This is evidenced by the high rate of remembered to forgotten judgments 

during the recall phase (M = 0.819; SD = 0.022) and the near-ceiling objective performance 

during the recognition phase across participants (M = 0.980, SD = 0.015; Fig. 4.1C) and 

blocks (M = 0.980, SD = 0.009; Fig. 4.1D). The average RT during encoding was 2313 ms 

for subsequently recognized trials (SD = 1041 ms; n = 2194 trials), and 2472 ms for 

subsequently forgotten trials (SD = 1105 ms; n = 46 trials; Fig. 4.1B). 

 

4.3.2 Event-related potentials 

We observed a robust evoked EEG response after pings (Fig. 4.2). Specifically, for each of 

the three stimulus onset asynchrony (SOA) conditions, we observed an extended peak of 

activity across occipitoparietal channels that followed the distribution of ping times for 

retrieval cue-locked data, peaking approximately 200 to 300 ms after pings. To further 

confirm that pings successfully evoked a visual response, we applied a ping-locked analysis 

across all channels and found significantly higher ERP amplitudes after pinged than no-

pinged trials in posterior channels (Fig. 4.2, insets). Together, the ERP analysis suggests 

pings yielded a strong time-locked response that could putatively interact with ongoing LTM 

representations. For cue-locked and ping-locked ERPs for each participant, time-resolved 

topographical plots, and for p-values of each channel in Fig. 4.2 inset topographies, see the 

Supplementary Material Chapter 4; Section 1. 
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Figure 4.2. Ping-induced event-related potential. Average evoked response in posterior 

EEG channels across early (turquoise), middle (blue), and late ping (purple) trials during the 

recall phase. The inset topographies reveal higher posterior amplitudes following ping trials 

as contrasted with no-ping trials (Monte Carlo permutation test; Bonferroni-corrected). 

 

4.3.3 Decoding results 

Stimulus category selection 

We used a multi-class LDA on no-ping trials (25% of the overall recall trials) to determine 

which retrieved stimulus category (top, middle, or bottom level) is most robustly decodable 

when our main experimental pinging manipulation was not present (Fig. 4.3). We found that 

none of the three levels displayed significant windows of decodability during our retrieval 

period of interest from 500 to 2000 ms after cue onset (Wilcoxon signed-rank test; p > 0.11 

for top; p > 0.25 for middle; p > 0.07 for bot). We proceeded with the top-level, which with 

its two classes (objects and scenes) afforded simple binary classification with comparatively 

low variability in decoding performance. Next, during our main analysis, we investigated 

whether pings enhance the decodability of LTM contents. 

 

 

Figure 4.3. Stimulus category selection. Average decoding accuracy across stimulus 

category levels (top, middle, bottom). Decoding accuracy was quantified relative to the 

average performance across shuffled decoding results. No significant differences were 

observed for any level (Wilcoxon signed rank test, controlled for multiple comparisons using 

FDR).  
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Main analysis 

For our central analysis, we compared decoder performance between ping and no-ping trials 

for top-level (objects vs scenes) classification, both with the data locked to retrieval cues, 

and to pings/pseudo-pings (i.e., artificial markers derived from the pool of ping timings; Fig. 

4.4). For the cue-locked analysis, we found no windows where decoding was above chance 

for no-ping trials (two-level Monte Carlo permutation; p > 0.49; Fig. 4.4A), while the ping 

trials showed several significant windows of content decodability (p < 0.05; Fig. 4.4B). To 

validate our analysis we carried out a direct comparison between the ping and no-ping trial 

decoder, as opposed to contrasting each condition with a shuffled baseline. In this analysis, 

we found no evidence for a ping-induced decodability enhancement; neither in the cue-

locked (Wilcoxon signed-rank test; p > 0.99; Fig. 4.4C) nor in the (pseudo-)ping-locked data 

(p > 0.99; Fig. 4.4D). 

 

 

 

Figure 4.4. Main decoder analysis. (A) Cue-locked decoding across no-ping trials 

compared with a shuffled baseline. (B) Cue-locked decoding across ping trials compared 

with a shuffled baseline. (C) Direct comparison between on ping and no-ping trials. (D) 

Same as (C), but with the data time-locked to pings and (artificially marked) pseudo-pings. 

In (A) and (B) the shaded area represents the 5th and 95th percentile of the distribution of 2nd-

level permutations of the shuffled decoder, and in (B) and (C) it represents the SEM of the 

empirical decoder. In (A) and (B), p-values were derived using two-level Monte Carlo 
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permutations, and in (C) and (D) using Wilcoxon signed-rank test (all p-values were 

corrected using FDR). 

 

In light of an important methodological observation, we place more importance on 

the latter analysis, which directly compares the empirical decoding performance for ping and 

no-ping conditions without leveraging shuffled results. Specifically, we observed that the 

standard error of the mean (SEM) of the shuffled distributions varies substantially between 

ping (μSEM = 0.047) and no-ping (μSEM = 0.028), which we speculated could be explained by 

trial number differences alone. We inferred that since the ping trial decoder was trained and 

tested on three times more trials than the no-ping trial decoder, this might naturally shrink 

SEM values of the shuffled distribution and thereby modulate test statistics. In support of 

this interpretation, we build a simulation which confirms that an increase in the number of 

trials (and the number of decoding classes) reduces p-values, but only if there is an effect in 

the data (Supplementary Material Chapter 4; Section 3). Therefore, instead of relying on 

ping-to-shuffle and no-ping-to-shuffle comparisons where power differences might 

misleadingly lead us to infer a ping-related enhancement, we put most credence in the direct 

comparison between ping and no-ping trials in which shuffled results are sidestepped (Fig. 

4.4C & Fig. 4.4D; see the Supplementary Material Chapter 4; Section 3.3 for an extended 

discussion). 

 

Condition-relative decoding peaks 

Next, we turn to the presumably more sensitive peak-order analyses. Qualitatively, we 

observed no ordered structure in decoder peaks when averaging across participants for each 

SOA pinging condition (Fig. 4.5A). For a quantitative analysis, we formally compared peak  

 

 

Figure 4.5. Condition-relative peak analysis. (A) Decoding results specific to for early 

(cyan), middle (blue), and late (purple) ping conditions, averaged across participants. (B) 
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Peak order distance scores for the empirical decoder (red line) among a pool of 2nd-level 

permutations derived from the shuffled decoder (grey distribution). 

 

order structure by comparing POD scores for the empirical and shuffled decoder using two-

level permutation tests. This analysis confirmed the previous result by revealing no 

significant evidence for the hypothesis that pings induce systematic differences in the order 

of decoding peaks (p = 0.357; Fig. 4.5B). 

 

4.3.4 Brain time warping 

Given the lack of compelling evidence for significant decoding across conditions, we applied 

brain time warping under the assumption that it could increase evidence for the read-out of 

neural activity underpinning cognition. We predicted that the cue-locked no ping decoder—

which has no significant windows in clock time (Figure 4.4A)—would have significant 

windows after the application of warping. Contrary to our expectations however, the decoder 

trained and tested on the brain time warped data did not display any windows of significant 

classification either (Figure 4.6; two-level Monte Carlo permutation; p > 0.99). Qualitatively, 

the classifier time series trained and tested on brain time data looks similar to the classifier 

applied to the default clock time version of the no ping trials. Statistically, brain time warping 

does not increase the proportion of decoding windows with AUC values above chance levels 

following multiple testing correction (FDR). This suggests that brain time warping, in this 

experimental and analysis context, is not able to facilitate the readout of neural signatures 

that differentiate between the retrieval of object or scene images. If anything, the fact that 

classification looks qualitatively noisier over time, and the reduction in markedness of the 

late decoding peak (compare with figure 4.4A; circa 1700 ms) suggests that brain time 

warping could have deteriorated the consistency of the neural code in the data. One possible 

reason for this is that alpha oscillations do not coordinate the neural patterns associated with 

paired object and scene memory representations, with hard-to-detect theta oscillations or 

non-oscillatory dynamics orchestrating this neural code instead. 
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Figure 4.6. Brain time warping results. (A) Cue-locked decoding across brain time warped 

top category level no-ping trials compared with a shuffled baseline (i.e., a decoder applied 

to the same data with permuted class labels). As with the decoder trained and tested on clock 

time data, no significant classification windows obtain. (B) The distribution of alpha warping 

frequencies across participants. 

 

4.4 Discussion 

In this study, we set out to systematically evaluate visual perturbation, or ping-based 

stimulation, as a method to dynamically enhance the decodability of reactivated neural 

representations during memory recall. Such an approach could supplement offline analytical 

approaches by adding further read-out enhancements online at the experiment side. Despite 

promising results in the WM literature, in this LTM context we found no evidence for a ping-

based enhancement across several time-resolved decoding analyses. While pings evoked a 

strong brain response, they did not detectably boost neural signatures of memory 

representations in EEG data. We draw this conclusion based on two key results. First, in the 

main comparison between pinged trials and non-pinged trials, we found no significant 

decoding difference regardless of whether the data was locked to (pseudo-)pings or retrieval 

cues. Second, in a more advanced analysis that leverages the constraining information of 

ping presentation timings during the experiment, we also found no evidence for ping-related 

decoding increases. 

 There are three overarching explanations for these null results. First, there could be 

an effect in the data that was left undetected analytically or statistically. Second, there could 

be an effect that manifests across other experimental contexts, but not with this study’s 
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parameters. Third, there could be no effect in principle, with LTM-based retrieval eluding 

the enhancement of representational readouts using pings. We consider each option in turn. 

 First, the signal analysis parameter space is high, with variability in parameters 

across preprocessing and statistical analysis steps potentially altering the results. One 

important source of variability concerns the implementation of decoding techniques. Namely, 

we do not rule out that untested decoding methods such as linear approaches beyond LDA 

or non-linear classifiers would have resulted in performance enhancements induced by pings. 

More trivially, our analyses could have been optimal, with our key statistical results 

containing a type-II statistical error. 

 Second, the parameter space on the experimental side is also high. Here, we opted 

for a word-image association task, which has previously been shown to afford classification-

based inferences about memory processing in the brain (Linde-Domingo et al., 2019; Martín-

Buro et al., 2020; Mirjalili et al., 2021). However, other LTM tasks might be better situated 

to reveal ping-based enhancements. Besides the memory task itself, a key set of parameters 

concerns the presentation of pings. In this study, we chose a high-intensity, short-lasting 

ping presented with a uniform distribution between 500 and 1500 ms after retrieval cues. 

This time window was selected based on a review of the timeline of memory reactivation 

during cued recall, which suggested a maximal content reinstatement within this period 

(Staresina & Wimber, 2019). However, we observed that decoding was highest late within 

and even after this range, at approximately 1200 – 2000ms after cue (see Fig. 4.4D). 

Decoding plateaus that exceed 1500ms have also been observed in recent work that 

employed a similar task and analysis pipeline (Kerrén et al., 2022). This raises the possibility 

that the aforementioned 500 to 1500 ms window is biased to be too early—perhaps because 

it was estimated based on intracranial EEG research where recordings tend to focus on the 

hippocampus and other regions that activate early during retrieval (Merkow et al., 2015; 

Mormann et al., 2005). Put differently, it is possible that we did not find significant effects 

because the signatures of retrieved contents tended to arise robustly only after our ping 

presentation times. We recommend that future work considers later ping times, potentially 

informed by maximum decodability periods found in this and other work, or ideally in newly 

acquired pilot data. Moreover, additional research could explore parameters such as ping 

duration, intensity, and strength. Furthermore, besides visual pings, a plethora of other 

perturbational approaches are on stock that could realize the ping’s proposed effects. Also 

inspired by WM research, stimulation using auditory impulses might offer a multimodal 

route to improving the readout of LTM contents (Kandemir & Akyürek, 2023). Furthermore, 
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brain stimulation methods like transcranial magnetic and ultrasound stimulation have the 

potential to regularize brain activity through the induction of a dynamics-altering magnetic 

or ultrasound pulse (Moliadze et al., 2003; Mueller et al., 2014).  

 A third possibility is that none of these factors explain our null results, with ping-

based approaches restricting their utility to WM tasks. One specific possibility could be that 

WM and LTM differ in their mechanisms of action, with separate kinds of neural processes 

underpinning them. Indeed, classically WM is believed to involve the active maintenance of 

stimulus-induced information (Fuster & Alexander, 1971; Goldman-Rakic, 1995), whereas 

LTM is assumed to be based on a generative reconstruction of past experience based on the 

activation of silent information-storing engrams (Josselyn & Tonegawa, 2020). Perhaps the 

sweep of activity associated with the ping interacts more effectively with functional brain 

activity maintained continuously from stimulus onset, thus explaining WM-to-LTM 

differences. Speaking against this interpretation is work that suggests WM representations 

are encoded in activity-silent networks through short-lasting synaptic changes (Kamiński & 

Rutishauser, 2020; Masse et al., 2020; Stokes, 2015), which would not be fundamentally 

different from how LTM works. Contradicting this in turn is a critique which argues that 

evidence for activity-silent networks in WM tasks could alternatively be explained by LTM 

processes kicking in (Beukers et al., 2021). Thus, since it is both unclear to what extent the 

mechanisms of WM and LTM differ and to what extent WM and LTM intertwine in studies 

where ping-based effects have been demonstrated, we avoid firm interpretations in this part 

of the possibility space. In summary, although pings unambiguously elicited expected 

patterns of visual activity (Fig. 4.2), we failed to observe effects on memory decoding, either 

because they were left undetected in our analysis, because they do not show up in our 

experimental protocol, or because they do not exist. 

 This study builds on decoding research that investigates the physical basis of memory, 

leveraging its findings for a strictly instrumental purpose: the systematic enhancement of 

LTM readouts. This undertaking is key because the field presently lacks temporally sensitive 

neuroimaging methods that enable the consistent and clear readout of memory 

representations, which is needed to explain how the brain implements memory processes. 

Thus far, most efforts to improve memory-readouts from electrophysiology data have been 

restricted to the signal analysis end. Here, we advocate for research that explores online 

manipulations as memory tasks are unfolding, which has previously shown to complement 

or synergize with decoding techniques. For long-term memory decoding in particular 

however, such interventions are scarce, which limits research because memory involves low 
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decodability to begin with. Thus, even if a further carving out of the parameter space does 

not demonstrate a notable benefit of visual perturbations, future research should creatively 

explore alternative online methods such as multimodal stimulation and non-invasive brain 

stimulation. 
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Chapter 5: General discussion 

5.1 Retrospective 

Let us return to the five most central claims of this manuscript: 

1) Scientists study evolving neural patterns to investigate how cognition is implemented by 

the brain. 

2) Oscillatory dynamics strongly influence or covary with the evolution of neural patterns 

of cognition. 

3) As such, oscillatory dynamics offer a reference point or anchor by which the study of 

neural patterns can be improved. 

4) We can adopt this reference point algorithmically by transforming recorded brain data in 

concordance with coordinating oscillations of interest. 

5) Alternatively, we can adopt it by experimentally regularizing oscillatory dynamics during 

data acquisition. 

The first claim has been given comparatively little treatment because it is 

uncontroversial, and more akin to a starting point. With that said, we have seen that 

neuroscientists have developed methodologies to parse neural activity under oscillatory and 

non-oscillatory regimes, with elaborate quantification methods to specify how such activity 

evolves. Furthermore, the veracity of claim (1) is underscored by the large body of discussed 

neuroimaging research that utilizes pairwise correlations, multivariate techniques, and other 

linear approaches to detect neural activity which is consistently correlated with cognition. 

The second claim (2) was principally covered in Chapter 1 and 2, and to some extent 

in Chapter 3. First, we saw that oscillations impose (or at minimum reflect) excitability 

fluctuations across populations of neurons. This induces alternating temporal windows 

during which message-passing becomes promoted or inhibited, and this contributes to the 

grammar of neuronal computation. Second, for cognitive functions such as memory, 

oscillations play a distinctive role. The phase of theta oscillations indexes excitability states, 

and using self-organizational principles these states are leveraged to generate coding 

schemes along which memory representations get slotted. These phase-based coding 

schemes dynamically update with goal-directed behaviour, and they appear to give 

ensembles access to sequence and positional information. Theta phase also allows neural 

circuits to compute over confoundable internal and external representations through a 

delegation of these processes to opposing phases. Beyond dynamic phase codes and a phase-

based switch, theta oscillations also phase-synchronize across distributed networks to 
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promote functional communication. This makes it easier for memory integration to happen 

and for retrieval processes to successfully reinstate dispersed neural representations. 

 In support of claim (3), the aforementioned points sketch a picture where excitability 

fluctuations become a kind of coordinate system by which external observers can parse 

neural patterns of cognition. The logic is roughly this: if neural patterns of cognition are 

generated by neuronal ensembles, and if the timing and way in which such ensembles operate 

depends on oscillatory phase and other spectral measures, then such measures offer a system-

centric way by which spectators can parse the emerging patterns. Bolstering this point, the 

clock time by which we currently analyse our data seems inadequate in most cases, firstly 

because the brain lacks direct access to clock time, and secondly because from the 

perspective of neural mechanisms, milliseconds are less consequential than oscillatory 

cycles. 

 Insofar one accepts these arguments, one might ask what solutions are on offer to 

facilitate the brain-centric analysis of neuroimaging data. Further than that, even if one does 

not fully accept these arguments, one might nevertheless wish to try out analyses based on 

internal brain metrics to see if additional insights can be gleaned. Toward this end, I have 

presented two techniques. First, brain time warping offers a way to analytically bring neural 

activity closer in line with oscillatory components hypothesized to be relevant or informative 

to cognitive phenomena of interest (claim 4). We found that the resampling of 

electrophysiology data based on the dynamics of these key oscillations produces evidence 

for neural patterns of cognition that are harder to pick up in clock time. Second, visual 

perturbational methods might be used to regularize oscillatory dynamics on the fly. However, 

we disappointingly did not find evidence that visual pings detectably improve the readout of 

neural patterns of interest under the attempted experimental, analytical, and stimulus 

parameters. Thus, while this thesis confirmed claim (4), our own research found no evidence 

to support claim (5). With that said, as evidenced by a review of the literature in Chapter 4, 

point (5) still stands in light of promising applications in working memory tasks shown by 

other research groups. 

 

5.2 Intellectual roots and targets 

In essence, this thesis suggests that a brain-centric methodology for cognitive neuroscience 

is both required and feasible. This idea builds onto a series of previous contributions. First, 

these writings have benefitted significantly from György Buzsáki’s book The Brain from 

Inside Out, which sketches an ambitious agenda for a neurally inspired science (Buzsáki, 
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2019). Furthermore, contributions before mine have already introduced the issue of 

experimenters imposing their interpretation of space and time onto ensembles, arguing that 

for those ensembles, space and time are instead grounded in interneural communication 

dynamics (Scharnowski et al., 2013). Interestingly, this work introduces the term 

Neurorelativity, which intuitively captures the points of this thesis and the emerging 

perspective with a single word. 

I would like to take this term and use it to reiterate a distinction between two kinds 

of views. First, Methodological Neurorelativity considers the merits of a brain-centric 

approach in scientific experimentation, analysis, and methodology in general. Second, 

Ontological Neurorelativity considers the merits of a data-driven revision of psychological 

terms, especially their potential replacement with neural concepts (Buzsáki, 2019). I will 

take a brief moment to sharpen this distinction further. 

Methodological Neurorelativity takes a fixed explanandum, such as cognition or 

goal-directed behaviour, and asks a series of questions about scientific approach. What 

methodological tension exists between experimental and neural dimensions? How might this 

lead us to miss out on neural patterns in our analysis, and what ramifications does it have for 

our scientific interpretations? What experimental and analytical solutions are available that 

bring neuroscience methods toward the language of neural information processing? In which 

situations is it safe to parse brain activity with reference to external temporal or spatial 

measurement units, and when is this prohibitive towards our goals? 

Ontological Neurorelativity on the other hand concentrates on explananda 

themselves, asking questions of the following kind. What evidence does neuroimaging data 

provide for the integrity of concepts like attention? What do cytoarchitectonic, connectomic, 

and functional data tell us about the makeup of the human mind (Poldrack, 2006; Poldrack 

& Yarkoni, 2016)? What does the evolution of neural structures suggest about the nature and 

parts list of mental function (Cisek, 2019)? Essentially, Ontological Neurorelativity places 

significant evidential weight to brain data. So for example, if the question is whether imagery 

and retrieval are identical or separate processes, possible overlap in neural correlates and 

circuitry matters more than psychological findings on the cognitive-behavioural level. 

Importantly, one can coherently maintain both, one, or neither of these two views. In 

this thesis, I advocate for Methodological Neurorelativity, but I remain agnostic to 

Ontological Neurorelativity. That is to say, it does not matter for any of my writings here 

whether neuroscience’s explanandum is cognition in psychological terms, cognition in 



83 

 

 

 

neural terms, or a less metatheoretically loaded explanandum like goal-directed behaviour. 

In each case, the conflation of internal and external variables is on the lure. 

 

5.3 Future directions 

In general, if the problem identified across these writings is the illicit collapse of neural and 

worldly dimensions, then the solution naturally consists in neuroscientific approaches that 

avoid that. This calls for brain-inspired methodologies where variables related to oscillatory 

and non-oscillatory forms of brain activity are placed in the foreground, and where clock 

time and metric space are moved backwards. Encouragingly, research across cognitive and 

systems neuroscience is already moving in this direction. For example, spectral units like 

phase, power, frequency, phase synchronization, and phase-amplitude coupling are 

increasingly seen as not only basic variables with which cognitive correlations can be 

established, but also as a reflection of deeper principles by which activity patterns are 

organized (Bressler & Kelso, 2001). Indeed, as we have seen in Chapter 2 and Chapter 3 

(Section 3.2.4), phase is not only being used as a covariate or behavioural correlate, but also 

as a theoretically relevant index of excitability states which influence how information is 

neurally represented and manipulated. The same goes for non-oscillatory dynamics, where 

the 1/f trend in the frequency spectrum of neuroimaging data is seen as not merely a cognitive 

correlate, but also as a proxy of the contributions of excitatory and inhibitory synaptic 

currents—which unquestionably determine how neural patterns of cognition unfold (Gao et 

al., 2017; Lombardi et al., 2017). I expect that this shift will continue, especially with 

technological advances that make it easier to track brain dynamics with high temporal and 

spatial precision (Trautmann et al., 2023; Ye et al., 2023). 

 In this manuscript, I have explored brain-inspired techniques that can be leveraged 

during data analysis (Chapter 3) and acquisition (Chapter 4). In a nutshell, we found that an 

approach falling in the former category managed to align brain dynamics to support the 

extraction of neural codes. On the other hand, we found no readout enhancements for a 

perturbational method applied during data acquisition. In my estimation, this is poetically 

reflective of the broader methods literature, in which algorithmic innovation is running ahead 

of approaches implemented while the experiment is ongoing. To be clear, the field of brain 

stimulation is flourishing, but much of this work seeks to establish causal relations between 

parts of the brain and cognition. A fruitful future avenue is to systematically explore whether 

and how these interventionist techniques can control brain dynamics for the express reason 

of improving the readout of unfolding neural patterns of cognition. Ultimately, the most 
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effective course of action may be for the field of cognitive neuroscience to encourage and 

explore creative pursuits that have a potential to bridge variables inside and outside the brain. 
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Appendix 

 

Note: Unless otherwise stated, sections in the Appendix denote sections within the 

Supplementary Material. For example, if section 2.1 is called, this refers to section 2.1 within 

the Supplementary Material of the associated Chapter, not the main body of text. References 

to the main body are explicitly phrased with the term “main”. 

 

Supplementary material Chapter 3 

1. Additional analyses 

1.1. Control analysis 

 

 

Supplementary Figure 1: Advanced control analysis of the simulation dataset. (A) We 

found no significant periodicity when warping to the golden mean of each participant’s alpha 

oscillation. (B) Summary statistics of the warping frequency across participant. 

 

Advanced analysis 

To test for the specificity of brain time warping, we warped to the golden mean of each 

participant’s warping frequency as obtained in the main analysis (Supplementary Figure 1). 

The logic is that if brain time warping is non-specific and prone to false positive results by 

trivially imposing oscillatory structure, then it should do so even for frequencies predicted 

to not have a clocking role in cognition. To test this possibility, we repeated the main analysis 

by warping to the golden mean of each participant’s warping frequency (≈
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 𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ×  1.618). We chose the golden mean as our control frequency 

because, at this frequency, the warping signal (which is predicted to be the clocking 

oscillation) is least expected to synchronize to different oscillations (Pletzer et al., 2010). 

The control analysis changed the warping frequencies from alpha (8 to 12 Hz) to 

approximately 12.9 Hz to 19.4 Hz. All other parameters were unchanged from the main 

analysis. The control analysis does not show significant periodicity at any frequency. We 

provide TGMs, autocorrelation maps and first-level periodicity spectra in 3.1.3. 

These results demonstrate that brain time warping does not trivially impose 

oscillatory structure in high-level analyses by virtue of warping to a specific frequency if 

there are no such signatures hidden in the data. We next established whether the same 

conclusion extends to the family of basic analyses. Specifically, warping should not manifest 

in prominent peaks in the power spectrum, or high values in the ITC, at warping frequencies 

when those frequencies are only minimally present in the data. 

 

Basic analysis 

We repeated the control analysis to test for the effects of brain time warping on basic results 

like power spectra and ITC. As explained in the main text (Is retuning using brain time 

warping circular?), we expect brain time warping to at least show some increased power 

and ITC at any frequency because electrophysiology data is made up of different frequencies 

of oscillations which each have at least some non-stationarities that can be reduced. However, 

it should be the case that warping to oscillations not primarily simulated should result in 

lower power and ITC increases than warping to oscillations primarily simulated. To test this, 

we changed the main frequency of the random (1/f) dipoles to match the individual alpha 

frequency of the primary dipoles – strongly clustering the ground truth signals around alpha. 

We then again warped to the golden mean of alpha. We found that brain time warping to 

control frequencies only resulted in low spectral peaks and ITC at the control frequency 

(Supplementary Figure 2). In the power spectra, the primarily simulated frequency 

overshadows the brain time data even when warping to control frequencies. 
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Supplementary Figure 2. Basic control analysis for the simulation dataset. Brain time 

warping to control frequencies (i.e., at the golden mean of the primarily simulated frequency) 

resulted in weak increases of power and ITC at control frequencies. The brain time data 

shows stronger peaks at the primarily simulated frequency. The color axis of ITC is held 

constant from the main analysis to enable visual inspection of the difference in magnitude 

between main and control analyses. 

 

 

1.2 Nested oscillations 
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Supplementary Figure 3. Dipole configuration for the nested oscillation simulated 

dataset. (A) Dipole configuration for the nested oscillation simulation. A high and low 

frequency oscillator in each hemisphere were nested by means of phase-amplitude and 

phase-phase coupling. The two sets of nested oscillators had an anti-phase relationship with 

respect to each other, resulting in a classifiable neural signature that varies between left and 

right hemifield conditions. (B) Brain time warping shows a stronger peak at the frequency 

of the nested oscillator that was not apparent in clock time. These results are inconsistent 

across repetitions. 

 

What is the effect of brain time warping if there are multiple nested oscillations that 

coordinate cognition? To address this question, we simulated a single dataset with two sets 

of nested oscillators that were cross-frequency coupled (Jensen & Colgin, 2007). 

Specifically, the nested oscillators were phase-amplitude coupled, and we added phase-

phase coupling to further enhance the nested nature of the oscillators (Siebenhühner et al., 

2016). One set of oscillators was in the left, and one set was in the right hemisphere 

(Supplementary Figure 3A). Within each set, one oscillator fluctuated at a high frequency 

and one at a lower frequency. As with the primary attentional dataset simulation, we 

generated a different phase relation between two hemifield conditions to create a classifiable 

neural signature. We tested whether warping to the lowest frequency oscillator reveals 

periodicity at the frequency of the nested high frequency oscillator. This simulation script is 

added in braintime under bt_dipsim_cfc and the relevant analyses are provided and 

documented in tutorial8_crossfrequency. 
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 We found that brain time warping is able to reveal the high frequency oscillator when 

warping to the low frequency oscillation’s frequency under some circumstances 

(Supplementary Figure 3B). However, the magnitude of the effect is small compared to 

standard analyses where we tested for periodicity at the warped frequency (i.e., in the 

simulation where no nested oscillations are present; main manuscript). Moreover, generating 

the same dataset several times – which introduces slight ground truth variability due to 

randomness in the simulation – showed that warping-induced periodicity increases around 

the coupled high frequency arose inconsistently across analyses. This suggests that while 

brain time warping can be used to study cross-frequency coupling, it is not optimally suited 

to do so and better methods are available (see Hülsemann et al., 2019 for an overview). From 

a different perspective, these results do demonstrate that if one is solely interested in the 

brain dynamics orchestrated by a single class of oscillators, brain time warped results are 

unlikely to be contaminated by extraneous brain dynamics – because even maximally 

coupled oscillators infrequently impinge on each other. 

 

2. Toolbox 

2.1 Introduction 

 

Supplementary Figure 4. the default Brain Time Toolbox pipeline. Braintime has two 

primary operations. (Top row) For brain time warping, the user first loads a FieldTrip 

formatted data structure that will be transformed (clock time data). Separately, a data 

structure with warping sources is required. This structure contains potential warping signals 

– the oscillation used to transform the data. The warping sources may be loaded separately 

(option 1) or extracted from the clock time data (option 2). bt_analyzesources 

analyzes each warping source for warping signals based on user parameters. Next, using 

bt_selectsource, the user can inspect each warping source’s characteristics (such as 
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spectral information) and designate a warping signal as brain time. Finally, 

bt_clocktobrain dynamically time warps (DTW) the warping signal to either a 

stationary sine wave or the warping source’s average waveshape. The resulting warping path 

is applied to the clock time data, cycle-by-cycle, and resized to the original length. The 

function also sets the time axis from seconds to cycles of brain time. (Bottom row) For the 

periodicity analysis, braintime first calls MVPA Light to test a classifier on two classes of 

data, prespecified by the user. The resulting output is one dimensional for 

mv_classify_across_time, or two dimensional, when testing for time generalization 

of the classifier using mv_classify_timextime. Then, across this output, 

bt_quantify tests for periodic patterns in classification performance, resulting in a 

periodicity spectrum. Next, bt_statslevel1 performs first-level statistics by comparing 

the empirical spectrum with a user-specified number of permuted spectra (obtained by 

shuffling class labels). Finally, bt_statslevel2 obtains group level results of the 

classifier’s periodicity, and calls MVPA Light to perform cluster correction over the 

classifier’s performance. 

 

The Brain Time Toolbox, abbreviated braintime, is a MATLAB software library designed 

for use with electroencephalography (EEG), magnetoencephalography (MEG), and single 

and multiunit intracranial recordings (Supplementary Figure 4). The toolbox has two 

primary uses: brain time warping data structures (transforming them from clock to brain 

time; operation 1) and testing for periodic patterns in the data that reflect dynamic cognition 

(operation 2). The standard pipeline is to brain time warp data and test for a change in 

periodicity at frequencies of interest. However, each operation can be carried out without the 

other – brain time warped data may be analysed outside the toolbox and periodic patterns 

may be tested on data that has not undergone warping (clock time data). 

 In this manuscript, we describe braintime in extensive technical detail with limited 

emphasis on user flow. For a practical guide, we recommend the more concise and step-by-

step documentation on braintime’s Github page 

(https://github.com/sandervanbree/braintime). For a quick start, we recommend braintime’s 

tutorials. 

 

2.1.1 Requirements 

Braintime interfaces with the following software packages, requiring each to be installed: 

• MATLAB Signal Processing Toolbox (The MathWorks) 

• FieldTrip (Oostenveld et al., 2011) 

• MVPA Light (Treder, 2020) 

https://github.com/sandervanbree/braintime
https://www.mathworks.com/products/signal.html
https://github.com/fieldtrip/fieldtrip
https://github.com/treder/MVPA-Light
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Besides these software dependencies, braintime requires the electrophysiology data to be 

structured in a FieldTrip format. For data structures that are not in this format, FieldTrip has 

built-in tools to convert a wide array of common file types. See the FieldTrip documentation 

for information on how to convert data. 

In case braintime’s second operation will be used (testing for periodicity), the input 

clock time data needs to consist of two classes of data hypothesized to yield the neural 

signature of the studied cognitive process. Moreover, trials in the data structure need to be 

labelled based on their class membership. For more details on how to do this, see section 2.3. 

 

2.1.2 Download and installation 

Before setting up braintime, ensure FieldTrip and MVPA Light are downloaded and fully 

initialized (download links above). Braintime can be downloaded on the toolbox Github page. 

First, download the ZIP folder and unzip it to a preferred path. Then, run the function 

setup_braintime (in the setup folder). To get started with the toolbox, see braintime’s 

tutorials. 

 

2.2 Operation 1: Brain time warping 

Brain time warping transforms data according to the phase dynamics of an oscillation 

hypothesized to clock the studied cognitive process. This changes the time axis of the data 

from seconds to cycles of the warping frequency.  

 

2.2.1 Obtaining warping sources 

Warping sources may either be ad hoc extracted from the clock time data or loaded from a 

separate data structure. The warping sources contain warping signals – potential oscillations 

used for brain time warping. There are only two restrictions to what constitutes warping 

sources: the data structure needs to be in a FieldTrip format, and the data needs to align in 

time with the to-be-warped clock time data. Users are encouraged to decide on a case-by-

case basis what data serve as the best warping sources. Below, we describe two methods of 

obtaining warping sources, and provide several examples for each. 

 

Ad hoc extraction 

https://www.fieldtriptoolbox.org/faq/how_can_i_convert_one_dataformat_into_an_other/
https://github.com/sandervanbree/braintime
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Warping sources may be extracted from clock time data on the fly, for example using 

independent component analysis (ICA). ICA is a popular method to decompose 

electrophysiology data into additive subcomponents (Makeig et al., 1995). The resulting 

components aggregate data with statistically uncorrelated spectral characteristics, making 

for suitable warping sources. Each component contains potential warping signals. The 

toolbox automatically detects when the warping sources are ICA components, and suggests 

removal of the selected component from the brain time warped data when continuing 

analyses outside the toolbox. For single- and multiunit recordings, an example of ad hoc 

extraction is to separate one (or more) local field potential channels into a warping source(s) 

structure. 

 

Preloaded data structure 

Warping sources may also be obtained from a separate preloaded data structure, in the form 

of previously extracted data. An example could be a study where magnetometer and 

gradiometer channels underwent separate preprocessing steps, with their data saved in 

separate files. Or perhaps a user has created a set of virtual channels using source localization, 

intending to warp sensor-level data using source-level phase estimation. Warping sources 

may also be obtained from a separate recording altogether. For example, a user may opt to 

warp EEG data using warping signal obtained from MEG data, or vice versa. 

 

2.2.2 Analysing warping source 

In bt_analyzesources, braintime uses FieldTrip to perform time frequency analyses 

on each warping source. Users may choose between a variety of time frequency analysis 

parameters based on FieldTrip’s ft_freqanalysis, and may opt to include 1/F 

correction. In addition, users select a range of frequencies predicted to contain the 

coordinating oscillation. For example, a user interested in spatial attention may specify a 

range of 8 to 12 Hertz (Hz). The toolbox estimates the phase of high power oscillations in 

this range in anticipation of brain time warping. Upon completion of the time frequency 

analyses, the toolbox sorts the warping sources based on power in the range of interest. 

Optionally, for EEG and MEG, the sorting of warping sources may be weighted by the 

hypothesized topographical activity of warping sources. For example, a researcher may want 

to focus on warping sources with parietal activity, or a lateralized source. To enable 

topography weighting, users first call bt_templatetopo and draw a topographical 

https://www.fieldtriptoolbox.org/reference/ft_freqanalysis/
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profile on a template layout. Braintime then loads the template topography and adapts the 

ranking of warping sources to their topography’s correlation with the template topography, 

instead of the default setting which sorts solely by maximum power at frequencies of interest. 

 

Asymmetry and waveshape 

For each warping source, braintime detects the average waveshape and the asymmetry of 

each cycle in it. This allows users who have predictions about the symmetry of their 

coordinating oscillation to decide between warping sources. In addition, the amount of 

asymmetry may also inform parameter selection during subsequent steps in braintime. 

The waveshape and asymmetry of data are obtained via the following steps. First, 

braintime applies a band-pass filter in a 2 Hertz (Hz) window around the warping frequency. 

Then, trial-by-trial, the toolbox finds local minima and maxima in the filtered data, reflecting 

troughs and peaks, respectively. Then, based on the location of these minima and maxima, 

braintime extracts associated data in the (non-filtered) warping sources, calculating a peak-

triggered wave. Thus, the peaks are located in the filtered data, while the shape of waves 

themselves are obtained by extracting data samples in the raw data around the peak locations. 

This is repeated for all cycles. Then, the asymmetry is calculated for each cycle, while the 

average waveshape is obtained by averaging each cycles’ data. We defined asymmetry as 

the difference in duration between the ascending and descending flank of a cycle, normalized 

by its duration (Belluscio et al., 2012): 

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 =
(𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑡𝑟𝑜𝑢𝑔ℎ𝑙𝑒𝑓𝑡

) − (𝑡𝑡𝑟𝑜𝑢𝑔ℎ𝑟𝑖𝑔ℎ𝑡
− 𝑡𝑝𝑒𝑎𝑘)

𝑡𝑐𝑦𝑐𝑙𝑒
  

The toolbox visually displays the average waveshape during warping signal selection 

(2.2.3). To aid the visual inspection of waveshape asymmetry, peak-triggered averages are 

rescaled to a fixed number of samples regardless of their frequency—i.e., the signal is 

displayed in phase instead of clock time. 

 

2.2.3 Selecting a warping signal 

In bt_selectsource, the user selects a warping source and its associated warping 

signal, designating brain time. In this step, braintime creates a graphical user interface that 

displays each warping source’s information as calculated by bt_analyzesources 

(Supplementary Figure 5). This information comprises (1) a textbox with recommended 
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criteria for warping source selection and browsing instructions, (2) the topography of the 

warping source (if requested), (3) the asymmetry and shape of the average waveshape, (4) 

the time frequency representation of the warping source’s data, and (5) its power spectrum. 

Users may visually inspect each warping source and combine all information to designate 

the warping signal predicted to clock the studied cognitive process of interest, in keeping 

with a hypothesis-driven approach. 

 

Supplementary Figure 5. Selecting a warping source. The graphical user interface 

generated by bt_selectsource. (Top row) A textbox is displayed with suggested 

criteria for warping source selection, as well as instructions for browsing. Next, optionally 

for EEG and MEG, the topography is displayed. On the right, the average asymmetry of 

cycles in each warping source is displayed (one dot represents one cycle in the warping 

source). This serves two purposes: users may want to discriminate between sources based 

on their asymmetry, or check levels of asymmetry to inform parameter selection during 

subsequent steps. (Bottom row) The warping source’s time frequency representation is 

displayed, along with the power spectrum. For both plots, the borders of the frequency range 

of interest and the location of the warping signal are highlighted. 

 

2.2.4 Warping clock to brain time 

In bt_clocktobrain, the phase of the selected warping signal is used to warp the clock 

time data structure (Supplementary Figure 6). Here, we discuss two parameters that 

determine what DTW is applied to. 
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Supplementary Figure 6. Warping clock to brain time. Braintime prints a series of plots 

upon completion of bt_clocktobrain to show the application of brain time warping to the data 

at hand. (A) In this example, the user has set braintime to warp to the smoothed average 

waveshape of the selected warping source (top). The toolbox extracts the angle of its Hilbert 

transform (middle) and unwraps the phase in preparation for warping (bottom). (B) The 

unwrapped phase vector of the warping signal and the stationary sine wave (representing 

clock time) are displayed (top), and so is their alignment after applying dynamic time 

warping (bottom). (C) Here, the warping path has been applied to the original clock time 

data, yielding a dynamic resampled version of the original data based on the brain’s 

dynamics. 

 

Warp method 

We define clock time as a stationary oscillation, oscillating away faithfully to seconds. This 

is what the warping signal will be dynamically time warped onto. We implement two ways 

of generating this stationary oscillation. First, users may choose the default method, where 

a stationary sine wave is generated with MATLAB. However, for data with asymmetric 

waveshapes, using a sine wave with perfect symmetry may impede DTW’s attempt to 

minimize Euclidean distance between the phase of clock and brain time. Thus, we include 



96 

 

 

 

the option to warp using a concatenation of the smoothed average waveshape of the warping 

source, yielding a sinusoid with matching asymmetry (Supplementary Figure 6). 

 

Phase method 

Besides control over what constitutes clock time phase, users may opt to estimate brain 

time’s phase in two ways. The standard way of estimating brain time’s phase is by 

calculating the phase of the Hilbert transform of band-pass filtered data of the warping 

source, where the filter is centred on the warping frequency. However, the toolbox also offers 

Generalized Eigenvalue Decomposition (GED) as an alternative method to estimate the 

warping frequency’s phase holistically across all warping sources. This method is 

appropriate when the warping sources are all considered to contain information about brain 

time. For example, the user’s warping sources may be local field potential channels in the 

hippocampus. In this case, the user may not want to choose one local field potential channel 

given their interest in the phase of theta oscillations across the entire hippocampus. Similarly, 

a user may have source localized parietal cortex channels which each provide valuable phase 

information. In these cases, GED is the optimal choice. GED finds a spatiotemporal filter 

that differentiates all the warping source data into components with high and low power of 

the warping frequency (Cohen, 2017; Parra et al., 2005). When users specify this option, 

braintime extracts the component with the highest weight, yielding a time series of the GED 

component (after which the phase is again estimated via the Hilbert transform). To perform 

GED, the toolbox uses a modified version of the functions provided by Mike X Cohen 

(reported in Cohen, 2017). In short, FFT offers a classical and source-specific phase 

estimation of the warping frequency, while GED estimates the warping frequency’s phase 

holistically across warping sources. 

 

2.3 Operation 2: Periodicity analysis 

Braintime allows users to test for dynamic patterns of information using machine learning 

techniques. This requires the data to contain two classes of conditions, which, when taking 

their difference in neural activity, reflects the studied cognitive process. We define this 

difference as the neural signature. The assumption of operation 2 is this: if the warping 

signal clocks the cognitive process, then the warped data should show an increase in the 

periodic dynamics of the neural signature. Thus, we compare the periodicity of a classifier’s 

performance between clock and brain time data to test for a difference in such patterns. The 
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general pipeline is that each participant’s clock and brain time data undergoes classification 

(2.3.1), quantification of classifier performance (2.3.2), and first-level statistics (2.3.3). Then, 

second-level statistics can be initiated on the first-level results (2.3.4). 

 

Requirements 

To get started with the second operation, both the clock time and brain time warped data 

need to have each trial’s class membership labelled. This is necessary for MVPA Light and 

braintime to understand the class structure present in the data. Braintime’s tutorials describe 

how to do this using example code, but briefly, the user sets bt_data.trialinfo and 

ct_data.trialinfo to a vector of 1’s and 2’s in line with the trial structure (class 

labels). For example, for a dataset on motor processing, a triplet of trials that are in left, right, 

and left movement conditions would need to be labelled as [1 2 1] or [2 1 2]. 

 When using the second operation, it is important for users to establish the 

absence of high-pass filtering artefacts in the data. In a recent publication, it is reported that 

high-pass filtering may result in temporal displacement of information, causing leakage of 

classification performance (van Driel et al., 2021). These artefacts may influence the 

periodicity analysis. In light of this, we suggest using high-pass filtering with care, testing 

for a temporal leakage of classification performance (e.g., by testing whether filtering 

introduces classification peaks before stimulus presentation). Alternatively, trial-masked 

robust detrending may be applied as an artefact-free method of removing low frequencies 

(van Driel et al., 2021). Users are made aware of potential high-pass filtering artefacts in all 

sources of braintime’s documentation. 

  

2.3.1 Classifying the data 

To perform pattern classification, braintime calls MVPA Light (Treder, 2020). MVPA Light 

can be used to perform multivariate pattern analysis using different models (e.g., support 

vector machines, logistic regression, and linear discriminant analysis; LDA), classification 

metrics (e.g., accuracy, area under the curve, fidelity values), and cross-validation methods 

(e.g., k-fold, hold-out, leave one out). Classification may be performed in the standard way 

using mv_classify_across_time or with temporal generalization using 

mv_classify_timextime (Supplementary Figure 7). The former results in a one-

dimensional (1D) time series that reflects how a classifier trained on each timepoint performs 
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when tested on that timepoint in held out data. The latter results in a two-dimensional (2D) 

temporal generalization matrix (TGM) that reflects how performance generalizes from each 

trained timepoint to all other timepoints in held out data (King & Dehaene, 2014). The 

diagonal of the TGM is identical to 1D classification, while the off-diagonal provides 

information about generalization of performance. This provides information about the 

degree of constancy of the neural code (“temporal generalization”). As such, 

mv_classify_across_time is appropriate when the neural signature is predicted to 

evolve beyond classifier recognition from one moment to the next, while 

mv_classify_timextime is appropriate when there is some constancy of the neural 

code across time. For analysis with braintime, if some constancy is expected, we strongly 

recommend mv_classify_timextime as it yields exponentially more data to perform 

periodicity analysis over – substantially increasing the power of the analysis. 

 

 

Supplementary Figure 7. Two types of classification 

Braintime calls MVPA Light to perform standard classification across time (1D; left) or 

temporal generalization (2D; right). The classification timecourse on the left equals the 

diagonal of the TGM on the right. The off-diagonal represents how well classification 

generalizes when trained on one timepoint and generalized to each other timepoint in held-

out data. Braintime can perform periodicity analyses over both types of classification. (acc 

= accuracy). 

 

2.3.2 Quantifying classifier periodicity 

In bt_quantify, classifier periodicity is quantified by an FFT over the classifier 

timecourse (1D results), or over each row and column of the time generalized classifier 

performance (TGM; 2D results). We use FieldTrip to apply the FFT using a multitaper 



99 

 

 

 

frequency transformation (using discrete prolate spheroidal sequences and Hanning window 

tapers). The FFT is performed across frequency ranges specified by the user. 

 For the time generalized classifier performance, users can specify whether the 

periodicity is done over the rows and columns of the TGM itself, or over its autocorrelation 

map (Supplementary Figure 8). The autocorrelation map correlates the TGM with all shifted 

versions of itself. That is, it iteratively shifts the TGM in each X and Y direction and plots 

the correlation of the shifted map with itself in coordinate space. The most powerful option 

depends on the uniformity of periodic patterns.  Generally, the autocorrelation map is a more 

powerful approach, as it accentuates periodic patterns that are present in the TGM. However, 

when multiple periodicity rates are present in the TGM, the autocorrelation may drown out 

the weaker periodicity. Similarly, when periodicity is present in only a small part of the 

TGM, changing its rate or disappearing across time, the autocorrelation map may fail to 

detect it. In short, when uniform periodicity patterns in the data are expected, analysing the 

autocorrelation map of TGMs is a powerful approach. When the pattern is expected to only 

be present partially, or when multiple rates are predicted, it is more powerful to analyse the 

TGM itself. 

 

Periodicity referenced to brain time 

For brain time data, just as the time axis has been changed from seconds to cycles, periodicity 

is redefined from clock time to brain time. Specifically, each participant’s periodicity is 

(
𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
). For example, if a user decides to quantify periodicity between 5 and 13 

Hz for a participant with a 9 Hz warping frequency, the resulting periodicity will range from 

0.56 Hz (= 5 / 9 Hz) and 1.44 Hz (= 13 / 9 Hz), see Supplementary Figure 8 (bottom). This 

referencing to brain time allows participants to be compared with reference to each brain’s 

own dynamics. For example, if periodicity across participants were to cluster at 0.5 Hz, this 

would mean participants tend to show periodic patterns in their neural signature at half the 

rate of their clocking oscillations. 
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Supplementary Figure 8. Two ways of performing 2D periodicity analysis. (Top) Row-

by-row and column-by-column, braintime performs an FFT over the TGM by itself, or its 

autocorrelation map. The former is more powerful when periodicity is present in small 

segments of the TGM, or if multiple periodicity frequencies are present. The latter is more 

powerful when the periodic pattern is present in most of the TGM (as is the case in this 

dataset). (Bottom) The resulting power spectra are averaged across all rows and columns, 

resulting in one participant’s “periodicity spectrum”. (corr = correlation) 

 

 

2.3.3 First-level statistics of periodicity 

In bt_statslevel1, quantified periodicity is subjected to first-level statistics to establish 

its statistical robustness. The user specifies a range of frequencies that will be tested, and the 

desired number of first-level permutations (numperms1). Braintime obtains a null 

distribution by repeating data classification (2.3.1) and quantification of its periodicity 

(2.3.2) numperms1 times with the class labels shuffled randomly (destroying 

correspondence between trials and their associated condition). This yields a pool of permuted 

periodicity spectra that offers a confidence interval for each frequency. P-values are not 

provided until the second-level statistics are completed. 

 

2.3.4 Second-level statistics of periodicity 
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Upon completion of the previous steps for all participants, users are requested to combine 

the first-level periodicity data structure of each participant into one superstructure. Next, in 

anticipation of bt_statslevel2, users specify the number of second-level permutations 

(numperms2) and the desired method of multiple testing correction across periodicity 

frequencies (false discovery rate; FDR, Bonferroni correction, or no correction). 

bt_statslevel2 undertakes the following steps: 

 

Z-scoring 

Braintime performs z-scoring on each participant’s periodicity spectra for two reasons. First, 

the output of FFT has amplitudes with arbitrary values, creating arbitrary differences in 

amplitude between participants. Second, we want to avoid participants with high periodicity 

(even after correcting for arbitrary differences) to drive a group effect. The toolbox 

implements z-scoring by normalizing both the permuted spectra and empirical spectra to the 

mean and standard deviation of the permuted spectra (i.e., by subtracting the mean and 

dividing by the standard deviation). With this method, the permuted spectra are considered 

a noise floor for which the empirical spectra are corrected. 

 

Filtering to common frequencies 

As discussed before (2.3.2), participants’ range of tested periodicity frequencies are 

normalized to their warping frequency. This creates some variability in the range of tested 

frequencies across participants. For second-level statistics, braintime filters each 

participant’s spectra to the frequencies that are common to all participants. For example, 

when quantifying periodicity between 5 and 13 Hz for a participant with a 9 Hz warping 

frequency in clock time, the evaluated frequencies for periodicity normalized to brain time 

will range from 0.56 Hz (= 5 / 9 Hz) and 1.44 Hz (= 13 / 9 Hz). If another participant has a 

different warping frequency (e.g., 8 Hz), the emerging frequency range in brain time will be 

slightly different (e.g., 0.62 Hz to 1.63 Hz). To enable cross-participant analyses, we bring 

periodicity spectra into the same range by cropping to brain time frequencies that are shared 

across all participants. Finally, to overcome potential variations in the frequency resolution 

between participants, braintime uses imresize to interpolate all participants’ spectra 

according to the mode spectral resolution across participants. This establishes an equal 

number of samples for the application of multiple testing correction. 

 



102 

 

 

 

Obtaining p-values 

On the second-level, each clock and brain time periodicity frequency is statistically tested 

across participants. This is done in the following way. For each participant, the toolbox grabs 

one random spectrum of each participant’s numperms1 permuted spectra. This is repeated 

numperms2 times, yielding a pool of numperms2 new spectra. For each frequency, 

braintime compares the average empirical periodicity power to the distribution of power in 

the numperms2 pool spectra. The p-value of each frequency is defined as the proportion of 

numperms2 power values that are equal or higher to the average empirical power value (p 

= 
𝑁 

𝑛𝑢𝑚𝑝𝑒𝑟𝑚𝑠2
 , where N is the number of times the permuted pool equals or exceeds empirical 

power). 

 

Multiple testing correction 

Users may correct for multiple comparisons (where the comparisons are the tested 

frequencies) by using false discovery rate (FDR) or Bonferroni correction. For brain time 

spectra, three frequencies are exempted by default for multiple testing correction because, 

in line with the hypothesis-driven approach of braintime, periodicity is a priori expected at 

these rates. Specifically, these are at 0.5×, 1×, and 2× the warping frequency (i.e., 0.5 Hz, 1 

Hz, and 2 Hz) in the brain time spectra. Depending on both the underlying dynamics and the 

classifier method used (mv_classify_across_time or 

mv_classify_timextime), periodicity is predicted at one or more of these rates (if the 

warping signal clocks the cognitive process of interest). In this sense, braintime performs 

two statistical tests: one primary test across the three hypothesized frequencies, and an 

additional one across the specified frequency range of interest. In the second-level 

periodicity spectra, the uncorrected p-values at the three frequencies of interest are combined 

with the corrected p-values of the remaining frequencies of interest.  

 

Cluster statistics 

Besides establishing the statistical robustness of periodicity in the classifier’s performance, 

braintime also displays robustness of classifier performance per se. That is, it displays at 

which timepoints the classifier is able to differentiate the two classes of data above chance. 

The toolbox calls MVPA Light to perform cluster correction over the results obtained from 

mv_classify_across_time or mv_classify_timextime. Users may specify a 
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variety of parameters for cluster correction that are read and implemented by MVPA Light, 

including test methods (e.g., binomial or permutation based-cluster correction) as well as the 

number of permutations used to determine significant clusters. MVPA Light implements 

cluster correction as described by (Maris & Oostenveld, 2007). More information on cluster 

correction in MVPA Light can be found on its Github page. 

 

2.4 Methodological considerations 

Here, we describe several methodological concerns and considerations when using 

braintime. 

 

2.4.1 Circularity concerns 

As mentioned in the main text, a concern with brain time warping could be that it trivially 

imposes oscillatory structure at the warping frequency, causing either the activity or neural 

signature of a cognitive process to fluctuate even when warping to oscillations that do not 

clock it. A first point is that the warping path generated by DTW is not oscillatory, but 

instead represents how the warping signal needs to be transformed to reduce its non-

stationarity. That is to say, application of the warping path to a random signal is not expected 

to alter its oscillatory structure in any way. Nevertheless, the concern persists. If the warping 

signal is present in the data, the oscillatory structure of the data is likely enhanced because 

the warping signal has its non-stationarities removed as a consequence of the path being 

applied to all the data. Below, we describe for which analyses circularity could be a concern, 

and how it can be avoided. 

 

Analysis 

Circularity is not a concern when testing for periodic patterns using the toolbox (operation 

2). This is because of braintime’s method of obtaining a null distribution against which 

empirical periodicity is tested. Specifically, the only difference between this permuted pool 

and the empirical data is the shuffling of class labels. Besides this difference in data-to-

condition allocation, the trials themselves remain unchanged. As a consequence, any trivially 

imposed oscillatory structure into the data is present equally between the permuted and 

empirical set. To the extent a classifier is able to exploit circular patterns (if they are present), 
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it will be able to do so for both dimensions. Thus, where circularity is present, it is expected 

to cancel out through braintime’s statistical method. 

 However, when using brain time warped data outside the toolbox, it may be that a 

researcher’s analyses tap into the circular patterns (if they are present). Following the same 

logic, circularity is an issue to the extent it differentially affects the empirical and null 

distribution. 

 

Dependence 

Since circularity may arise from the warping signal, whether circularity is present at all 

critically depends on whether the warping signal is present in the transformed data. We call 

this concept data dependence. If the warping signal is present in the transformed data, the 

transformed data are said to be dependent. Below, we provide several examples with varying 

levels of dependence. Most caution and vigilance is needed for highly dependent data. To 

emphasize, the level of dependence is only relevant when analysing brain time warped data 

outside braintime, and only with analyses that can exploit circular patterns. 

 

     High dependence 

H1) The warping signal was obtained from a channel in the clock time data, and it is still 

present in the brain time data. 

H2) The warping signal was obtained from an ICA component in the clock time data, 

and it is still present in the brain time data. 

  

     Medium dependence 

M1) The warping signal was obtained from source localized virtual channels obtained 

from within the clock time data, and these channels are still present in the brain time data. 

M2) The warping signal comes from a set of anterior channels of an EEG or MEG dataset, 

which was used to warp posterior sensors. 

M3) The warping signal is from low pass filtered MEG data, which is used to warp high 

pass filtered data. 

 

     Independence 
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These include all cases where the signal used for warping is absent from the brain time 

data. For example: 

L1) The warping signal is obtained from local field potentials (LFP) in multi-unit 

recordings, which is used to warp single-cell recordings. 

L2) The warping signal is from an ICA component that is absent in the brain time data. 

L3) The warping signal is from a channel that is absent and spectrally orthogonal to 

channels in brain time data. 

 

Solution 

Circularity can be minimized by removing the warping source from the brain time warped 

data. An obvious example is the case where the warping source structure comprises ICA 

components (H2). Braintime automatically detects when warping sources are ICA 

components, and both recommends their removal and assists in this process (H2 → L2). 

Similarly, most of the aforementioned examples can be made independent. For example, in 

example M1, the spatial filters used for virtual channel generation could be used to filter 

those channels from brain time warped data. Or, if a brain time warped data structure 

comprises both LFP and single-unit channels, and the LFP channels were used to warp, then 

these channels can be removed from the brain time warped data. 

 

2.4.2 Warping artefacts 

Sometimes, brain time warping introduces a long series of sample repetitions at the start 

and/or end of the data that are too extended for the cycle-by-cycle resizing operation to 

compress them (Supplementary Figure 9). These extended data repetitions tend to occur at 

the start of brain time warped data, because this is where DTW attempts to repair initial 

differences in the phase between clock time and the warping signal. In other words, typically 

clock and brain time start out of tune, and so brain time warping repeats brain time data from 

the get-go until the two dimensions fall back in tune. These data repetitions are not 

intrinsically artefactual – they represent a true mismatch between the brain’s dynamics and 

clock time that brain time warping accounts for. Nevertheless, they could in principle affect 

subsequent analyses, such as braintime’s periodicity analysis, causing them to exert an 

artefactual low-frequency footprint on it. For simplicity, we therefore refer to these data 

repetitions as warping artefacts. 
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 Generally, warping artefacts are too small to exert an effect on braintime’s 

periodicity analysis. Their effects on analyses outside the toolbox depends on the degree to 

which the data repetitions affect it. The toolbox has built-in tools to avoid the artefact, if so 

desired. Specifically, the toolbox has a “cutartefact” parameter that brain time warps an 

additional 0.5 seconds before and after the specified window of interest, which is 

subsequently removed at the end of bt_clocktobrain. Here, the data repetitions at the 

start (end) of the brain time warped data (shown in Supplementary Figure 9) are shifted to 

the 0.5 seconds before (after) the window of interest. The advantage of this method is that 

the warping artefact is cut. The downside of this method is that because a longer time 

window of data is brain time warped (e.g., -0.5 to 1.5 seconds, instead of 0 to 1 seconds), 

more parts of the data are brought away from its default clock time format, making it 

increasingly difficult to consistently identify for example t = 0 seconds across trials. As such, 

there is also an increase in the amount of mismatch across trials in the true and specified 

clock time window of interest in the order of several milliseconds (for this reason, the default 

method that implements no artefact cutting is called “consistenttime”). Researchers may 

decide on a case-by-case basis which method is appropriate – cutartefact or consisttenttime 

– depending on the relative importance of the absence of warping artefacts and the constancy 

of the data’s timing. 

The two methods warp over different time periods and may therefore vary in their 

determination of which data belong to which cycle (the cycle-by-cycle resizing step, see 

2.2.4). Braintime has a special function (bt_checkallocation) that visualizes how 

each of the two methods allocates data to cycles, allowing users to make informed decisions 

about which method to use and how much they diverge. 
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Supplementary Figure 9. Warping artefacts. Brain time warping may repeat samples for 

an extended period at the start and end of the data, depending on the disharmony between 

clock and brain time at the onset of trials (purple boxes). Braintime includes a method to 

remove the artefact, which warps additional data before and after the window of interest 

which is subsequently removed.  

 

3. Supplementary results 

For the plots of each dataset analysis, the y-axis of periodicity spectra and the colour scale 

of TGMs and autocorrelation maps are fixed to a constant range across (1) participants and 

(2) clock and brain time results to enable a visual comparison of magnitude. For a description 

of each type of classification plot, see section 2.3. 

 

Note: Subsequent Supplementary figures are not numbered. Figure numbering returns in the 

Supplementary material for Chapter 4. 

 

3.1 Simulation 

 

3.1.1 ERP difference 

To test whether the simulation yielded a fluctuating signature, we analysed the difference in 

average activity (event-related potentials; ERP) between left and right hemifield conditions. 

When using brain time warping to mitigate non-stationarities and other spectral eccentricities, 

the simulated periodic neural signature becomes unveiled. 
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These frequency spectra concern the event-related potential. 

 

3.1.2 Advanced (main analysis) 

 

Brain time TGM 

 

Brain time autocorrelation 
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Brain time periodicity spectra (1st level) 

 

Periodicity spectra quantify rhythmic fluctuations in the temporal generalization matrix. 

 

Brain time clusters 

For the simulated dataset, we found few significant clusters with an alpha set at 0.05 and a 

critical t-value set at 1.96. We interpret these findings as indicating that the difference in 

simulated activity between left and right hemifield conditions is too small to be robustly 

detected by the classifier. However, since we know there is a difference in the ground truth 

between classes, we know this lack of significant results reflects a type II error. The fact that 
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the periodicity analysis does show significant results indicates that, between empirical and 

permuted data, differences in the fluctuations of the neural signature are easier to detect than 

a mean baseline shift in signature fidelity. 

 

 

Clock time TGM 
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Clock time autocorrelation 

 

Clock time periodicity spectra (1st level) 

 

 

Clock time clusters 
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3.1.3 Advanced (control analysis)  

In control analyses, we brain time warped to control frequencies. Specifically, we repeated 

the main analysis by warping to the golden mean of each participant’s warping frequency (≈ 

warping frequency × 1.618), in which no harmonics are expected to be present. The purpose 

of this analysis was to test whether brain time warping artificially induces effects where no 

strong effects are present in the ground truth brain activity. 

 

Control brain time TGM 
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Control brain time autocorrelation
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Control brain time periodicity spectra (1st level) 

 

Control brain time clusters 

 

 

3.2 Rodent 

3.2.1 Basic (main analysis) 
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Power spectrum displays the power across frequencies in the local field potential of the 

entorhinal recordings. 

 

3.2.2 Grid cells 

 

Smoothed firing rate maps 
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3.2.3 Spike-field coupling 

 

 

3.2.4 Advanced 

Brain time TGM 

 

 

Brain time autocorrelation 
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Brain time periodicity spectra (1st level) 

 

Brain time clusters 

In line with our prediction, significant clusters occur in the period around t = 0, where the 

data was defined to contain a class difference. 
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Clock time TGM

 

 

Clock time autocorrelation
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Clock time periodicity spectra (1st level) 

 

Clock time clusters 

 

 

3.3 Human 

3.3.1 Basic (main analysis) 
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Power spectrum displays the power across frequencies in the EEG data across channels. 

 

3.3.2 Advanced (main analysis) 

 

Brain time TGM
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Brain time autocorrelation 

 

 

Brain time periodicity spectra (1st level)
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Brain time clusters 

 

 

Clock time TGM
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Clock time autocorrelation

 

 

Clock time periodicity spectra (1st level)

 

 

Clock time clusters 
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Supplementary material Chapter 4 

1. Event-related potential 

 

 

Supplementary Figure 1. Retrieval cue-locked ERP 

 

 

 

Supplementary Figure 2. Retrieval ping-locked ERP 
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Supplementary Figure 3. Retrieval cue-locked topographies 

 

 

 

 

Supplementary Figure 4. Retrieval ping-locked topographies (ping vs. no ping trials) 
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Channel Early ping (p-val) Middle ping (p-val) Late ping (p-val) 

Fp1 0.032 0.616 0.246 

Fpz 0.089 0.079 0.011 

Fp2 0.042 0.537 0.115 

AF8 0.119 0.422 0.318 

AF7 0.014 0.272 0.954 

AF3 0.439 0.23 0.123 

AF4 0.712 0.541 0.014 

F7 0.002 0.346 0.358 

F5 0.068 0.439 0.33 

F3 0.119 0.477 0.693 

F1 0.597 0.662 0.119 

Fz 0.053 0.551 0.003 

F2 0.013 0.473 0 

F4 0.341 0.939 0.049 

F6 0.427 0.559 0.707 

F8 0.131 0.826 0.825 

FT8 0.001 0.097 0.049 

FC6 0.177 0.142 0.78 

FC4 0.962 0.176 0.881 

FC2 0.245 0.276 0.09 

FC1 0.969 0.503 0.881 

FC3 0.176 0.279 0.28 

FC5 0.011 0.083 0.112 

FT7 0.002 0.298 0.127 

T7 0.004 0.047 0.043 

C5 0.013 0.027 0.051 

C3 0.002 0.022 0.01 

C1 0.148 0.049 0.04 
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Cz 0.144 0.155 0.114 

C2 0.305 0.182 0.104 

C4 0.02 0.004 0.014 

C6 0.003 0 0.003 

T8 0.002 0.002 0.003 

TP10 0.002 0 0 

TP8 0 0 0 

CP6 0 0 0 

CP4 0.001 0 0.001 

CP2 0.006 0.001 0.001 

CPz 0.019 0.006 0.01 

CP1 0.272 0.002 0.003 

CP3 0 0 0.001 

CP5 0.002 0.001 0.001 

TP7 0.002 0.008 0.001 

TP9 0 0 0 

P7 0 0 0 

P5 0 0 0 

P3 0 0 0 

P1 0 0 0 

Pz 0.001 0 0 

P2 0.001 0 0 

P4 0 0 0 

P6 0 0 0 

P8 0 0 0 

PO8 0 0 0 

PO4 0 0 0 

POz 0 0 0 

PO3 0 0 0 

PO7 0 0 0 

O1 0 0 0 

Oz 0.001 0 0 

O2 0 0 0 
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Supplementary Table 1. P-values associated with inset topographies in main text Fig. 2; 

rounded to three decimal points. 

 

 

2. Peak order analysis simulation 

2.1 Time series simulation 

We used MATLAB (the MathWorks) to generate time series with two components: (1) a 

peak at a fixed time point (1000 ms), and (2) autocorrelated noise generated using a random 

walk procedure. We matched several characteristics of the simulated time series to our 

empirical decoding data, including the analysis period (500 to 2000 ms), sampling rate (50 

Hz), and the number of (virtual) participants (N = 29). The signal-to-noise (SNR) ratio of 

the simulation was set to 1.15, qualitatively matching peaks observed in the empirical data. 

We found that varying the SNR does not significantly alter the results. We generated 1000 

trials per participant, resulting in 29000 trials in total. 

 

2.2 Analysis 

We included a smoothing parameter that implemented one of four smoothing methods: no 

filter, a Gaussian filter, a Savitzky-Golay filter, and a median filter. We also included a 

window size for smoothing, set to 10 samples for our main analysis. We compared the 

performance of eight peak detection methods, evaluating each of them based on the absolute 

distance between estimated peaks and true peaks—amounting to a simplified version of the 

peak order distance score described under condition-relative decoding peaks in the main 

text. The winning method was locked in for our empirical analysis. We tested eight peak 

detection methods: 

(1) Low-pass approach, where the maximum peak was computed after a low-pass filter 

was applied to the time series. 

(2) Maximum value approach, which simply computed the maximum value per time 

series regardless of whether the surrounding data was peak-like. 

(3) Cumulative sum approach, which computed the maximum peak in the derivative of 

the cumulative sum of the data. 

(4) Cumulative integral approach, which computed the maximum peak in the cumulative 

integral of the data via the trapezoidal method. 

(5) Integral cumulative sum approach, which worked as the previous method but which 

operates over the cumulative sum rather than raw time series. 
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(6) Wavelet transform-based method, which finds the maximum peak in a wavelet 

decomposed version of the data. 

(7) Hilbert transform-based method, which find the maximum peak in the amplitude 

fluctuations in the envelope of the time series. 

(8) Cross-correlation method, which finds the time lag with a maximal correlation 

between the signal and iteratively shifted versions of itself. 

 

2.3 Results 

We found that approach 5—the integral cumulative sum approach—reliably achieves low 

absolute distance errors across parameters (Supplementary Figure 5). These results were 

generally unchanged across adjustments of the parameters (to evaluate this, we refer to the 

code published with this manuscript). Thus, we used approach 5 in our main peak order 

detection analysis. 

 

 

Supplementary Figure 5. In simulated time series, the integral cumulative sum approach 

works best for detecting a peak in noisy time series. The red circle indicates the best-

performing method, and yellow the second best-performing method. Errors were computed 

based on the absolute distance in milliseconds (ms) between estimated and true peak location. 

 

3. Class and trial number decoding simulation 

We speculated based on a qualitative inspection of the empirical decoding results that the 

number of trials (Ntrials) and classes (Nclasses) reduces the statistical significance of decoding 

results. We evaluated this intuition by demonstrating using simulations that these two 
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parameters do indeed influence the variance of shuffled and empirical results, which in turn 

affects p-values but only if there is a true effect in the data. 

 

3.1 Time series simulation 

Using MATLAB, we generated one ground truth vector of class labels which represented 

the true class structure in the simulated data. This vector contained a random sequence of 

integers randomly grabbed between the interval 1 and Nclasses. For example, with 16 classes, 

the ground truth pattern might have contained a sequence of [2,7,15,4,13,17] and with 2 

classes a sequence of [2,2,1,2,1,2]. 

 Then, to simulate shuffled decoding results, we generated a distribution of random 

sequences of integers identical the ground truth procedure, but with newly generated random 

integers. These random sequences represented shuffled decoding results and were scored 

based on their average element-wise correspondence to the ground truth pattern—which is 

how decoding accuracy is normally computed. For example, if the permuted vector is 

[2,1,2,2,1,1] and the true sequence is [2,2,1,2,1,2], the accuracy would be 50% because half 

of the class labels correspond to the true structure. Trivially, with increasing repetitions the 

shuffled distribution will approach chance level predictions of the ground truth pattern (i.e., 

the expected value is exactly at 1/ Nclasses). 

 Finally, to simulate empirical decoding results, we again generated a distribution of 

random integers identical to the procedure for shuffled and ground truth decoding results. 

However, for these data we manually injected between 0% and 60% of the ground truth 

pattern into the otherwise random vector, effectively modulating decoding accuracy. With 

0% of the ground truth injected, there is no statistically detectable difference in accuracy 

between empirical and shuffled decoding results, because the vectors are equally random. 

With 60%, the encoding results are substantially more accurate than shuffled results, 

yielding above chance decoding accuracy. 

We simplified our simulation by operationalizing the variable Ntrials as the number of 

elements in the vector, allowing us to efficiently investigate how the number of observations 

influences statistical tests. We also compared Nclasses = 2 and Nclasses = 16, which respectively 

match the number of classes for top- and bottom-level category decoding in our main 

experiment. Both Ntrials and Nclasses were independently manipulated in a 2x2 factorial design, 

allowing us to evaluate the contribution of each variable toward statistical outcomes (as a 

function of effect size). 
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3.2 Results 

First, with respect to Nclasses, we found that increasing the number of classes reduces the 

spread of both shuffled and empirical decoding results (Supplementary Figure 6; columns). 

This happens both if there is no true effect in the empirical data, and when a significant 

proportion of the ground truth is inserted into the empirical data. Second, we found that Ntrials 

similarly reduces the variance of both shuffled and decoding results, both across low and 

high Nclasses (Supplementary Figure 6; top and bottom half). Thus, we conclude that both 

factors modulate the likelihood of finding a significant difference between empirical and 

shuffled results, but only if there is a true effect in the data. Indeed, as we can glean from the 

results based on non-existent effects, the distributions of empirical and shuffled will overlap 

regardless of Ntrials or Nclasses (Supplementary Figure 6; left half). In contrast, if there is an 

effect (60% injected ground truth), both Ntrials and Nclasses independently increase the 

distributional distance between empirical and shuffled accuracy values.  
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Supplementary Figure 6. The effects of class and trial number on decoding accuracy. Both 

the number of classes (columns) and trials (top vs. bottom half) influences the distance 

between shuffled and empirical distributions—but only if there is an effect in the data (left 

vs. right half). 

 

3.3 Discussion 

We found that Ntrials and Nclasses independently reduce the variance of accuracy results, which 

will affect statistical tests between empirical and shuffled distributions but only if there is an 

effect in the data. As suggested in the main text, these findings suggest that statistical 

analyses that depend on variance comparisons between empirical and shuffled distributions 

should be interpreted with care if it is done across conditions with varying Ntrials and Nclasses. 

With regard to our main analysis for example, the fact that the decoder based on pinged trials 

yields more significant decodability compared to the decoder based on no-pinged trials 

should be interpreted with caution because there are differences in Ntrials between the two 

conditions that could partially or fully explain this effect. More generally, we found that the 

condition with more trials or more classes is by default more likely to yield significant p-

values—but only if a true effect exist. 

These findings may be a manifestation of the classical notion of statistical power in 

statistical analysis but within the less intuitive context of decoding accuracy. Our 

interpretation then is not that Ntrials and Nclasses must necessarily be equal between conditions 

for a statistical comparison to be meaningful. Rather, we wanted to err on the side of caution 

and ensure that analyses where power differences could possibly explain condition 

differences (e.g., Fig. 4.3 and Fig. 4.4A and 4B in the main text) do not inform subsequent 

analyses and scientific interpretations by themselves. Instead, we supplemented each of the 

implicated analyses with additional rationale (in the case of Fig. 4.3 main text) or analyses 

that do not involve empirical-to-shuffle decoding comparisons. Indeed, main text Fig. 4.4C 

and Fig. 4.4D involve direct comparisons between empirical and shuffled distributions, 

sidestepping the issue altogether. 
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