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Abstract  

Rheumatoid arthritis and psoriatic arthritis are chronic inflammatory conditions in which 

chronic fatigue persists in the majority of patients despite successful management of disease 

activity. This multidimensional, disabling fatigue correlates with various brain 

characteristics. Current treatments inadequately address fatigue, emphasising the importance 

of exploring its neural underpinnings and what potential imaging the brain has to inform the 

management of fatigue in these inflammatory arthritis conditions. To do so, I applied brain 

measures to stratify inflammatory arthritis patients into fatigue-related subgroups with 

potentially amendable biological differences, identify correlates of different subdimensions 

of fatigue, and predict fatigue follow-up after fatigue-specific or pharmacological treatments 

in different inflammatory arthritis cohorts of rheumatoid and psoriatic arthritis. I 

hypothesised that there are (1) subtypes of fatigue in patients with rheumatoid arthritis, 

illustrated by distinct subgroups stratified by a relationship between neuroimaging brain 

characteristics and fatigue; (2) statistically significant correlates of subcomponents of 

fatigue; (3) statistically significant predictors of fatigue scores after non-pharmacological 

treatments in rheumatoid arthritis; (4) statistically significant predictors of fatigue scores 

after pharmacological treatments in rheumatoid and psoriatic arthritis; (5) models that can 

predict individual fatigue outcomes above chance in a trial of non-pharmacological 

treatments in rheumatoid arthritis using machine learning to combine multiple neuroimaging 

and clinical variables.  

I found a link between neuroimaging brain connectivity and distinct subgroups in 

rheumatoid arthritis related to fatigue subdimensions, albeit only within a specific cohort. 

Associations emerged between brain imaging metrics and baseline fatigue subcomponents, 

showing varied correlations with different metrics. In rheumatoid arthritis patients 

undergoing exercise or cognitive-behavioural interventions, baseline brain imaging 

predictors of fatigue centred on structural connectivity from the precuneus to the anterior 

cingulate cortex.  In contrast, I did not find significant neuroimaging predictors of fatigue in 

rheumatoid arthritis patients who started a new disease-modifying antirheumatic drug. 

However, I did find such predictors in psoriatic arthritis patients, encompassing cortical 

thickness of the visual pericalcarine cortex and functional connectivity within the default 

mode and salience networks, involving the inferior parietal lobule and anterior cingulate 

cortex. Finally, models using diverse neuroimaging and clinical modalities along with 

different machine learning algorithms outperformed models using solely the baseline median 
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fatigue. Significantly, these models did not surpass chance level or replicate their utility in 

usual care patients in an independent rheumatoid arthritis cohort. Overall, despite not finding 

a model that can predict individual fatigue outcomes, this research advanced our 

understanding by pinpointing different fatigue-related brain circuits, delineating associations 

with subcomponents, and identifying group-level predictors of fatigue. If such findings are 

utilised by future studies using molecular and brain stimulation techniques, neuroimaging 

can offer innovative solutions to patients to significantly improve their quality of life.  
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Chapter 1 Introduction 

1.1 Overview  

Patients with inflammatory arthritis (IA) report chronic fatigue as multidimensional and 

disabling (Sumpton et al., 2020). Epidemiological studies reinforce fatigue as multifactorial 

with correlates in clinical and psychosocial domains (Doumen et al., 2022), but current 

treatments fail to alleviate fatigue (Walter et al., 2018). Neuroimaging has associated fatigue 

with brain characteristics of chronic fatigue populations, thus establishing the key role of the 

brain in fatigue processing (Goni et al., 2018). To extend these findings, this thesis will 

address the question of how brain imaging can deconstruct the heterogeneity of fatigue to 

provide pathophysiological insight and inform treatment stratification in IA. This will 

include applying brain measures to stratify IA patients into fatigue-related subgroups with 

potentially amendable biological differences, identify correlates of different subdimensions 

of fatigue, and predict fatigue follow-up after various treatments known to alleviate fatigue, 

in different IA cohorts of rheumatoid and psoriatic arthritis. In this thesis, prediction is 

defined as using some baseline characteristics to infer a future event or outcome. This 

chapter will describe the role of fatigue in IA, review neuroimaging findings in chronic 

fatigue, and discuss the current gaps in knowledge.  

1.2 Inflammatory Arthritis     

1.2.1 Description   

There are multiple forms of arthritis, which vary in origin and phenotype. Osteoarthritis is 

the most prevalent kind of arthritis. Here joint cartilage is degraded, resulting in pain, 

stiffness, and immobility. Mechanical stress induces such changes either through injury or 

accumulated strain. In contrast, joint inflammation drives other common forms of IA, for 

example, rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Patients with PsA also have 

psoriasis, itchy or painful patches of abnormal skin, in addition to their joint symptoms. Both 

are chronic autoimmune diseases in which the immune system incorrectly recognises joint 

constituents as harmful. This leads to inflammation not only in the joints but throughout the 

body (Merola et al., 2018).  
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1.2.2 Epidemiology    

Epidemiological studies estimate the global prevalence of RA and PsA to be 0.46% 

(Almutairi et al., 2021) and 0.13% (Scotti et al., 2018), respectively, although the rates were 

recently recorded to be higher (0.779% and 0.287%) in England (Scott et al., 2022). Also, 

women are twofold to threefold more likely to develop RA than men, but men and women 

are equally likely to develop PsA (Scott et al., 2022). The risk of developing RA is influenced 

by genetics (60% heritability), smoking, and prior infections (Venetsanopoulou et al., 2023). 

People are more likely to develop PsA if they have relatives with the disease (80–100% 

heritability), more severe concomitant psoriasis, or obesity, but data for other factors, like 

smoking, is conflicting (Schett et al., 2022). In RA, 30% to 40% of people experience work 

disability five year after diagnosis and a third of them withdrawal from employment 

(Galloway et al., 2020). The impact of PsA has similar rates on work disability (16–39%) 

and unemployment (20–50%) (Cooksey et al., 2021). Finally, patients with RA and PsA are 

more likely to suffer and die from respiratory and cardiovascular comorbidities than the 

general population since they can worsen their disease activity and treatment response, as 

well as incur additional health costs (Kerola et al., 2022). 

1.2.3 Pathophysiology 

In RA (Figure 1-1), the immune system initially attacks the joint synovium, which disrupts 

the section of fluid from the synovium that nourishes the cartilage and lubricates the joints. 

Inflammation then spreads across the surrounding tissue, deforms the joint, and breaks down 

the bone and cartilage. One notable distinction of the many ways PsA differs from RA is 

that immune cells also infiltrate the entheses where the tendons or ligaments insert into the 

bone, as well as more commonly being asymmetrical and axial in distribution. Local 

inflammation degrades the joint in both disorders but can also spread systemically via pro-

inflammatory signals (cytokines) throughout the body and manifest in symptoms beyond the 

joints, such as in the heart, blood vessels, and lungs.   
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Figure 1-1: Pathophysiology of RA and PsA A: In early RA, autoantibodies can be detected as a 

result of interactions between T and B immune cells. These antibodies target either modified 

endogenous IgG antibodies (rheumatoid factor) or endogenous proteins that have been modified via 

citrullination (anti-citrullinated protein antibodies). These antibodies are not commonly detected in 

PsA but instead have characteristic T-helper cell 17 responses like secreting IL-17 due to stimulation 

from antigen-presenting cells such as dendritic cells and macrophages. B: The initial target of these 

immune responses in RA is the synovium, a membrane that produces synovial fluid for joint 

lubrication and cartilage nutrition. Although inflammation of the synovium can occur in PsA, the 

primary immune targets are the entheses (ligament/tendon attachment sites) on one side of the body, 

compared with joints on both sides in RA (symmetrical distribution). Despite these differences, the 

two processes similarly lead to inflammation at those sites and erode the bone and cartilage of the 

joints. Illustrations are based on Schett et al. (2017), while the figure was partly generated using 

Servier Medical Art, licensed under a Creative Commons Attribution 3.0 (unported license) and 

edited using Inkscape (2020). Abbreviations: ACPA, anti-citrullinated peptides antibodies; IgG, 

immunoglobulin G; IL-17/23, interleukin-17/23; PsA, psoriatic arthritis; RA, rheumatoid arthritis; 

RF, rheumatoid factor; Th17, T helper cell 17.  
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1.2.4 Symptoms  

Both RA and PsA are progressive diseases characterised by swelling and stiffness of the 

joints, pain during motion and throughout the body, and a sense of debilitating fatigue. 

Women with RA exhibit symptoms around middle age, but they appear later in men 

(Alamanos et al., 2006). In PsA, psoriasis is present for typically 10 years before any 

symptoms in the joints occur, typically between 35 and 45 years of age, with PsA affecting 

11–30% of psoriatic patients (Greb et al., 2016). However, the severity of skin symptoms is 

unrelated to the severity of joint symptoms.  

1.2.5 Classification criteria  

To classify RA, trials implement the American College of Rheumatology/ European League 

Against Rheumatism classification criteria (Studenic et al., 2023). Initially, chronic synovitis 

in at least one joint needs to be present in a patient. Afterwards, practitioners evaluate the 

number of affected joints and duration of symptoms, along with evidence of inflammatory 

markers in serum. These include disease-specific autoantibodies such as rheumatoid factor 

and antibodies against cyclic citrullinated peptide. Similarly, the classification criteria for 

PsA  categorise patients according to their personal or family history of psoriasis, psoriatic 

nail dystrophy, and inflammation of the digits. 

1.2.6 Differences  

The two types of IA differ and overlap in symptoms, biomarkers, comorbidities, and 

potential treatments (Table 1-1). Inflammation of the spinal joints and nail dystrophy can 

occur in PsA but not in RA. PsA patients typically test negative for rheumatoid factor and 

cyclic citrullinated peptide antibodies in the blood, compared to approximately 80% of 

positive cases in RA patients (Verheul et al., 2015). Patients with RA also present with 

higher values of acute-phase inflammatory markers like C reactive protein (CRP) and 

erythrocyte sedimentation rate (ESR) while patients with PsA are more likely to be diabetic 

and obese (Labitigan et al., 2014). Although inflammation occurs in both RA and PsA, the 

amount of regulatory immune proteins (interleukins) that are increased differs (Mc Ardle et 

al., 2015). Therapies exploit these differences, such as interleukin (IL)-12 and 23 inhibitors 

for PsA and IL-6 receptor inhibitors for RA (Veale and Fearon, 2015).  



Introduction|5  

1.2.7 Treatments & outcomes  

Care for IA involves both pharmacological and supportive treatments (Smolen et al., 2020, 

Gossec et al., 2020). Corticosteroids and non-steroidal anti-inflammatory drugs relieve 

symptoms of pain, stiffness, and inflammation. Disease-modifying anti-rheumatic drugs 

(DMARDs) control disease activity and the rate of joint damage in the early stages and may 

achieve remission (Glintborg et al., 2011). Although clinicians typically first prescribe 

synthetic DMARDs, newly developed biological DMARDS have drastically improved 

remission chances in patients who fail to respond to these therapies. They are composed of 

injectable “proteins” that target specific pathological immune cells or signals (Scott et al., 

2010), similar to the most recent Janus kinase (JAK) inhibitors, which can be administered 

orally and have been shown to be just as effective (Bechman et al., 2019). Supportive 

interventions aim to improve joint and psychological health through exercise and weight loss 

programmes (van Zanten et al., 2015, Almodovar et al., 2018) and help patients adapt to 

their environment through occupational therapy (Macedo et al., 2009). Nevertheless, both 

types of care do not cure the disease, and for a large cohort of these patients, they are not 

optimal in managing symptoms such as widespread pain and chronic fatigue.  
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Characteristic RA PsA 

Clinical 

Psoriasis  – +++ 

Enthesitis – +++ 

Synovitis +++ ++ 

Serological 

Rheumatoid factor +++ – 

Cyclic citrullinated     
+++ –* 

peptide antibodies 

C-reactive protein +++ ++ 

Erythrocyte sedimentation rate +++ ++ 

TNF-α-driven +++ +++  

IL-17A-driven – +++  

IL-12/23-driven – +++  

IL-6-driven +++ –  

Comorbidities  

Infections    

Osteoporosis    

Overweight/obese +  +++  

Anxiety and depression +  +++  

Synthetic DMARDS  

Methotrexate    

Hydroxychloroquine  –   

Corticosteroids  –  

Biological DMARDs  

TNF-α inhibitors (e.g., Adalimumab)    

IL-17A inhibitors (e.g., Secukinumab) –    

IL-12/23 inhibitors –    

IL-6 receptor inhibitors  –   

Targeted synthetic oral small-molecule DMARDs  

Janus kinase 1/3 inhibitor (Tofacitinib)     

Janus kinase 1/2 inhibitor (Baricitinib)   –   

Table 1-1: Comparison table for rheumatoid and psoriatic arthritis. The two diseases share or 

differ in characteristics of clinical representation, serological testing, and therapeutic strategies, 

which include synthetic, biologic, and small molecule DMARDS. Modified from Merola et al. 

(2018). Abbreviations: DMARD, disease-modifying antirheumatic drug; HLA, human leukocyte 

antigen; IL, interleukin; PsA, psoriatic arthritis; RA, rheumatoid arthritis; Th17, T helper cell 17; 

TNF, tumour necrosis factor. The number of plus signs (+, ++, +++) indicates the frequency of 

occurrence of the category, whereas the dash (–) indicates that the category is uncommon for that 

disease or that the therapy is not approved. *A small percentage of PsA patients can be positive 

(Punzi et al., 2007).  
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1.3 Fatigue    

1.3.1 Role in inflammatory arthritis  

Fatigue varies in chronic illnesses, but it lasts and is more intense than in healthy people. It 

does not require prior exertion, persists even after sleep or rest, and also overwhelms patients 

both physically and mentally. Fatigue is a prevalent and burdensome symptom of IA, but it 

is subjective and difficult to measure. Considered chronic when it lasts for three or more 

months (David et al., 1990), it affects approximately 80% and 49.5% of RA and PsA 

patients, respectively (Pollard et al., 2006, Husted et al., 2009). Furthermore, 50% of people 

with RA and 29% of people with PsA experience severe fatigue. However, due to different 

definitions and measures, these rates vary considerably (Seifert and Baerwald, 2019); for 

instance, an international survey study in rheumatic diseases (N=6120) found 57% of 

patients with PsA and 41% of patients with RA to be severely fatigued (Overman et al., 

2016). Despite differences in how studies measure fatigue, they unequivocally find that 

fatigue, along with pain, debilitates patients with RA and PsA (Feldthusen et al., 2013, Gudu 

et al., 2016).  

Fatigue not only negatively affects physical functioning but also psychological wellbeing 

and work outputs in IA. In RA (n=120), fatigue and emotional representation (an aspect of 

illness perception) explained 58% of the mental quality of life scores (SF-36), after adjusting 

for pain, disease activity, and social support (Berner et al., 2018). Therefore, treating fatigue 

is pivotal for improving the quality of life of these patients, irrespective of assessing other 

clinical and psychosocial characteristics. Fatigue was also independently associated with all 

aspects of work disability in 1747 patients with RA commencing the biologic DMARD 

etanercept (Druce et al., 2018). The disability aspects included presenteeism, activity 

impairment, productivity loss, and absenteeism, supporting the case for targeting fatigue in 

conjunction with disease-modifying treatments to optimise work-related outcomes and so 

provide greater societal returns. Another large cohort study found that PsA had similar 

effects to RA on quality of life and work disability when compared to healthy populations 

(Salaffi et al., 2009). Fatigue plays a key role in debilitating patients with PsA and is 

consequently part of the PsA Core Domain Set of mandatory measures, required in all PsA 

clinical trials and longitudinal observational studies (Orbai et al., 2017).  
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1.3.2 Patient perspective  

IA patients contrast their fatigue with the “tiredness” that they had before the disease or with 

what healthy people experience. They differentiate their fatigue by its intensity, duration, 

and frequency, define it as “unearned” and “unresolving”, and outline the physical, 

cognitive, emotional, and social effects on their lives. Both people with RA and PsA describe 

it as extreme weariness and energy-draining, which could last from minutes to days and be 

very frequent (several times a week, daily) or even constant (Hewlett et al., 2005, Sumpton 

et al., 2020). Physically, fatigue leaves patients feeling heavy and weak, limiting their daily 

activities. Cognitively, they experience difficulties in learning, focusing, solving problems, 

and interacting with others. These effects leave patients with an emotional toll of feeling 

irritable, frustrated, and unmotivated, which restricts their roles in the family and wider 

social circle. Overall, a meta-analysis of qualitative studies in RA summarised fatigue in 

these patients as “A vicious circle of an unpredictable symptom” (Primdahl et al., 2019).  

IA patients express that fatigue leaves them lonely, misunderstood, and without much 

professional support on how to handle these symptoms. Primdahl et al. (2019) also depicted 

that patients use variable language to explain their fatigue to others. However, patients felt 

that their fatigue was not understood and was dismissed by professionals. Furthermore, some 

people with RA thought their efforts at managing fatigue were unsuccessful (Hewlett et al., 

2005), explaining findings of lower self-efficacy for coping with fatigue compared to other 

RA symptoms (Riemsma et al., 1998). Conversely, RA patients who had cognitive-

behavioural therapy (CBT) increased their self-efficacy in managing their fatigue and 

improved their daily lives (Dures et al., 2012). Overall, the perspective of patients is by 

nature subjective and defines their fatigue as qualitatively different from tiredness and far-

reaching into many domains that may not be picked up by standard questionnaires and 

clinical assessments.  

1.3.3 Sources and types of fatigue 

Fatigue due to the peripheral nervous system (PNS) involves alterations at the muscle or 

joint level that make movements difficult. Central fatigue refers to both physically and 

mentally exerting oneself but not being able to sustain movements or perform cognitive tasks 

due to changes at the level of the central nervous system (CNS) (Zwarts et al., 2008). People 

with IA suffer from both types of fatigue (Staud, 2012). As IA is primarily a disease of the 
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peripheral immune system, predicting the basis of fatigue related to these disorders has also 

focused on inflammation. Fatigue can increase with inflammatory disease flares (Pope, 

2020), but serum concentrations of pro-inflammatory cytokines do not predict the intensity 

of fatigue, nor do they explain the similar intensity of fatigue in people with non-

inflammatory diseases (Jaime-Lara et al., 2020).  

Subjective perceptions of fatigue do not consistently correlate with performance on 

demanding tasks in both RA and other chronic diseases, including multiple sclerosis (MS) 

and chronic fatigue syndrome (Jennekensschinkel et al., 1988, Johnson et al., 1997, Beatty 

et al., 2003, do Espirito Santo et al., 2018). To address this discrepancy, some researchers 

have distinguished between trait and state fatigue (Genova et al., 2013). Trait fatigue is a 

stable form that expresses the global status of patients, which does not significantly change 

over time and is usually assessed with fatigue scales. Trait fatigue is a transient condition 

characterised by decreased performance during an acute but sustained effort, typically during 

a task. Overall, to accommodate both the perspective of the patient and the need for objective 

measures by researchers, both task performance and subjective measures of fatigue should 

be investigated (Marrelli et al., 2018).  

1.3.4 Interventions, correlates and predictors of fatigue 

Before assigning fatigue-specific treatments in the context of IA, physicians typically first 

address fatigue-related comorbidities such as anaemia and dysfunctional thyroid 

functioning. The next step to improving chronic fatigue would be to alleviate disease activity 

through pharmacological immune therapies (Almeida et al., 2016). In early RA, patients are 

relieved of fatigue if they achieve remission within three months (Holdren et al., 2019), but 

studies find that most who report fatigue at baseline and improve their disease state will 

remain chronically fatigued at follow-up (Walter et al., 2018). In established RA, up to 70% 

of patients with high disease activity and severe fatigue report a clinically significant 

reduction in fatigue following targeted immune therapy (Druce et al., 2015), and yet 62% of 

those patients who attain full disease remission following these advanced therapies still 

report significant fatigue (Druce et al., 2016). 

The usual care of patients would also include educating them via booklets (e.g., Arthritis 

Research UK (2014)) or other means on how to handle fatigue, such as how to plan and 

prioritise their activities, pace themselves, and set achievable goals. Epidemiological studies 

have reported significant fatigue associations with cardiorespiratory fitness and psychosocial 
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factors, such as coping strategies and illness perception (Treharne et al., 2008), justifying 

the trialling of active interventions that lessen fatigue in some patients. This includes graded 

physical exercise tailored to the physical condition and motivation of the patient (van Zanten 

et al., 2015) and CBT. The latter targets negative beliefs (e.g., all or nothing) and behaviours 

(e.g., activity avoidance) and suggests alternatives to better manage their symptoms via 

written materials and professional consultations (Hewlett et al., 2015).    

Both active types of interventions exhibit positive evidence for lowering fatigue, but further 

improvements are needed. Despite the small effect sizes, a meta-analysis discovered fatigue 

reduction in six studies on physical activity and 13 studies on psychosocial interventions in 

RA (Cramp et al., 2013). To test the applicability of these treatments in routine clinical 

practice, a recent trial of accessible fatigue-specific therapies was conducted in a range of 

inflammatory rheumatic diseases (Bachmair et al., 2022). Patients with IA received 

telephone-delivered physical activity support or cognitive behavioural approaches and 

achieved clinically and statistically significant improvements compared with an educational 

booklet. However, the overall effect sizes were moderate. The trial also followed patients 

for six months and one year after these interventions and found that patients retained their 

improvements. The treatments additionally improved mental health-related quality of life, 

sleep, work disability and depression, which may cumulatively raise general well-being. 

Such factors may maintain the persistence and impact of fatigue and often correlate with this 

symptom.  

Disease activity and fatigue are weakly correlated in RA compared to stronger associations 

in PsA (Pollard et al., 2006, Gudu et al., 2016). However, biological DMARDS in both 

disorders only moderately decrease fatigue (Almeida et al., 2016, Reygaerts et al., 2018), 

which relates to multiple other factors. Fatigue has been associated with a lack of motivation, 

loss of appetite, and bodily pain in PsA (Sumpton et al., 2020). In RA, a study associated 

fatigue severity with pain and poor sleep quality but also with psychosocial factors such as 

role functioning, depressive mood, self-efficacy on fatigue, and helplessness (van 

Hoogmoed et al., 2010). Disease activity and tender joint count were moderately associated 

with fatigue, whereas inflammatory markers, swollen joint count, and anaemia were not. 

Psychosocial factors are amendable to change, such as through CBT, and were the focus of 

a systematic review in RA (Matcham et al., 2015). Mood was most consistently associated 

with fatigue among psychosocial variables, but at the multivariate level, several studies 

found non-significant associations between fatigue and pain, disability, and depression. 

Mood may dilute its influence on fatigue due to its collinearity with other variables such as 
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pain perception, inflammation, and socioeconomic variables. Disease-related and 

psychosocial measures may also interact with contextual factors, which range from 

managing co-morbidities to work and caring responsibilities, with similar conclusions drawn 

in PsA (Rosen et al., 2016). Overall, fatigue is associated with physical and psychosocial 

factors rather than inflammation alone, but longitudinal studies are required to track fatigue 

progression and how its associated factors interact with one another.     

Factors that contribute to fatigue can be both time-dependent associates like inflammation 

that are modifiable with interventions, but also predisposing factors that could support early 

identification of at-risk patients who may not benefit from traditional biotherapy for fatigue 

(Goertz et al., 2021). Predisposing factors are identified through longitudinal studies like one 

trial in patients with early RA during their initial 24 months of treat-to-target therapy (Holten 

et al., 2022). The trial found that early disease remission decreased the risk of fatigue at 

follow-up. They also identified baseline predictors of fatigue at 24 months in low objective 

disease activity, including swollen joints, ultrasound power Doppler score, and a higher 

patient global assessment. Another study in early RA followed patients in a 2-year treat-to-

target trial and its 3-year extension (Doumen et al., 2022). Only one in four patients made 

lasting improvements and 20% even experienced worsening multidimensional fatigue, and 

these patients also reported more pain and impaired mental health over time, irrespective of 

disease activity. Higher pain, patient global assessment, disability, lower mental components 

(SF-36), and fewer swollen joints at baseline predicted higher fatigue over 5 years, while 

early disease remission strongly improved 5-year fatigue, even if relapses occurred. Positive 

association between fatigue and disease activity as well as between early remission and 

resolved fatigue at follow-up may at first contradict the other finding that little inflammation 

at baseline predicted fatigue at follow-up. This contradiction could be explained by the 

existence of two subsets of fatigue: patients where high inflammatory disease activity was 

the cause of fatigue and for whom early, intensive treatment improved fatigue, and patients 

with fatigue at baseline for whom fatigue was triggered by different factors and captured by 

patient global assessment. The association between disease activity and fatigue in the second 

study was mediated by patient global assessment, pain, mental health, and sleep quality, 

implying an indirect relation between fatigue and inflammation. The presence of these 

predictors could thus prompt additional nonpharmacological approaches early on to improve 

fatigue. Overall, longitudinal studies demonstrate that IA fatigue may be a composite of 

inflammation-driven fatigue and fatigue with a stronger psychosocial background with the 

potential for different strategies at the beginning of their disease treatment.  
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Identifying both time-dependent and predisposing factors can inform clinical decisions on 

fatigue. However, individuals differ in which factors contribute to their fatigue, as well as 

the prominence and interplay of these factors. For instance, chronic fatigue occurs in 

conditions without any underlying inflammatory activity (Jaime-Lara et al., 2020), despite 

early disease remission being a strong predictor of fatigue improvement in RA. Furthermore, 

psychosocial factors that may predispose individuals to fatigue are measured through 

subjective self-reported responses to questionnaires. Treatment decisions for fatigue 

therefore require biomarkers—biological factors that are measured at baseline and predict 

future outcomes. One potential biomarker is central sensitization, or the amplification of 

sensory input across multiple sensory systems that can be characterised by amplified pain 

responses, unpleasant sensations to physical stimuli, and heightened sensitivity to 

environmental stimuli, including light and sound. Central sensitization describes enhanced 

sensitivity of the CNS to pain, which may also partially explain the high rates of fatigue 

across inflammatory and non-inflammatory disorders. Chronic fatigue and pain characterise 

fibromyalgia, the prototypical disorder of central sensitization (Boomershine, 2015), while 

IA patients with comorbid fibromyalgia are more likely to experience severe fatigue 

(Overman et al., 2016). In an unselected general population, a study predicted fatigue using 

baseline central sensitization, measured by a wind-up ratio test that compares the pain 

intensity after a single pinprick to that of ten consecutive pin pricks conducted at single-

second intervals within a 1 cm2 area (Druce and McBeth, 2019). The study showed that the 

central sensitization wind-up ratio at the hands and feet predicted fatigue a year later in 290 

volunteers, independently of baseline musculoskeletal pain, fatigue, depression, anxiety, 

physical activity, body fat, and number of medications, thus suggesting the potential of 

central sensitization as a biomarker of fatigue. A summary table (Table 1-2) describes how 

the measure fits with other variables related to fatigue.  
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Type Variables Description References 

Associations disease activity, tender joint count, 

lack of motivation, loss of appetite, 

bodily pain, sleep quality, role 

functioning, mood, self-efficacy on 

fatigue, helplessness, managing co-

morbidities, caring responsibilities 

variables that correlate 

with fatigue, identified 

through cross-sectional 

designs 

(Sumpton et al., 

2020), (Rosen et al., 

2016), (Matcham et 

al., 2015), (van 

Hoogmoed et al., 

2010) 

Predictors early disease remission, low objective 

disease activity, ultrasound power 

Doppler score, patient global 

assessment, pain, disability, mental 

components, wind-up ratio (central 

sensitization) 

variables that predict 

fatigue at a later time 

point, identified through 

longitudinal designs 

(Doumen et al., 

2022), (Holten et al., 

2022), (Druce and 

McBeth, 2019) 

Mediators patient global assessment, pain, 

mental health, sleep quality 

variables that mediated 

an association between 

disease activity and 

fatigue, identified 

through a longitudinal 

design 

(Doumen et al., 2022) 

Table 1-2: Summary table of correlates and predictors of fatigue.  

1.3.5 The brain and fatigue 

Central sensitization may coincide with fatigue due to disrupted brain processing and 

plasticity, which is the ability of focal and widespread neuronal systems to reorganise their 

structure or function to better adapt to the internal or external environment (Poldrack, 2000). 

The role of the brain in central sensitization and potentially fatigue is demonstrated by 

altered brain derived neurotrophic factor (BDNF) levels in fibromyalgia that underline brain 

plasticity (Nugraha et al., 2012) as well as treatments that act on the CNS and improve central 

sensitization, such as antidepressants and gabapentinoids. Furthermore, non-

pharmacological approaches that improve fatigue such as physical activity and behavioural-

cognitive approaches are also applied in fibromyalgia. Central sensitization also links with 

changes in the brain’s chemistry because CNS-acting drugs directly affect neurotransmitters 

like pregabalin, which antagonises excitatory glutamatergic inputs (Becker and 

Schweinhardt, 2012). Studies that measure neurotransmitters or their metabolites in plasma 

or cerebrospinal fluid have demonstrated lower noradrenaline and serotonin levels in chronic 

pain patients compared to healthy populations (Brummett and Clauw, 2011). Similarly, 

fatigue is associated with decreased monoaminergic neurotransmission (Korte and Straub, 

2019), such as diminished dopamine in the cerebrospinal fluid of interferon-α treated 
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patients (Felger et al., 2013). Glutamate changes have also been assessed; studies have 

evaluated changes in components of glutamatergic neurotransmission and used drugs that 

antagonise this pathway to improve depression and fatigue. Ketamine, an antagonist of the 

glutamatergic N methylD-aspartate (NMDA) receptor, has been shown to reduce fatigue in 

patients with bipolar depressive disorder (Saligan et al., 2016) and MS (Fitzgerald et al., 

2021). Serum antibodies against a subunit of the NMDA receptor have been shown to 

correlate with fatigue in patients with systemic lupus erythematosus (Schwarting et al., 

2019). 

Central fatigue itself has been subdivided into physical, motivational, and cognitive 

subcomponents that are localised in different brain regions and pathways and summarised 

by Korte and Straub (2019). These pathways include six inflammatory-related disruptions 

that can interfere with brain communication and provoke neurodegeneration, but other non-

immune mechanisms have also been explored (Matura et al., 2018). The link with 

inflammation stems from fatigue consistently correlating with low mood, anxiety, increased 

sleep, and hyperalgesia, collectively called sickness behaviours, which also emerge after 

immune challenges like interferon-α treatment, but patients continue to report them months 

after their peripheral inflammation had subsided (Russell et al., 2019). Central inflammation 

appears in individuals with sickness behaviours that may arise from peripheral cytokines 

passing the blood-brain barrier or signalling via the vagus nerve and affecting the brain 

(Figure 1-2), based on animals presented with peripheral immune challenges like 

lipopolysaccharide injections (Dantzer et al., 2008). The resulting changes have the potential 

to disrupt brain networks, resulting in various sickness behaviours (Kraynak et al., 2018). 

Given the inherent relationship between fatigue and these behaviours, biological insights 

from these more maturely studied symptoms could be transferred to accelerate our 

understanding of fatigue. Although these findings stem from animal and post-mortem work 

that may be insufficient to describe fatigue mechanisms in live patients, modern 

neuroimaging methods have already assessed sickness behaviours and have the power to 

safely assay neurobiology.   
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Figure 1-2: Theoretical model of fatigue as a multifaceted phenomenon and its management. 

Pre-clinical experiments suggest cytokines such as TNF-α and IL-6 pass the neurovascular barriers 

through receptor-mediated transport, leaky tight junctions, or fenestrated vessels at certain locations 

(e.g., circumventricular organs) while the vagus nerve samples inflammatory mediators and 

indirectly passes these signals to the brain. Monocytes may also gain access to the brain by expressing 

signals like interleukin-1β and interacting with endothelial cells. The trafficking of these cells and 

signals likely interferes with the synthesis, release, reuptake, and breakdown of multiple 

neurotransmitters either directly or through mechanisms such as oxidative stress. Fatigue cannot be 

explained by disease severity, peripheral inflammation (e.g., C-reactive protein, erythrocyte 

sedimentation rate), or phenotypic traits on their own. Immune cells and signals affecting the brain 

and its neurochemistry directly could fill that gap. Multiple interacting factors can generate and 

maintain the neurobiological drive of fatigue in each patient with some effects being more dominant 

in certain groups. Consistently stratifying such groups could inform selection in clinical trials and 

the appropriate treatment, which can be delivered remotely. Illustrations were made using Inscape 

(2020). Abbreviations: CBT, cognitive-behavioural therapy; CRP, C-reactive protein; DMARDS, 

disease-modifying antirheumatic drugs; ESR, erythrocyte sedimentation rate; IL, interleukin; S. 

Inflammation, Systemic Inflammation; TNF-α, tumour-necrosis factor α. 
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1.4 Brain Anatomy & Function  

The brain and spinal cord's primary function is to control and integrate functions. They make 

up the CNS and communicate with the rest of the body via the cranial and spinal nerves of 

the PNS. Glial cells support the neurons in the brain, which are connected to one another by 

their axons and dendrites. The grey matter in the brain consists of glial cells as well as the 

cell bodies, dendrites, and axonal endings of neurons, whereas the white matter is comprised 

of the long myelinated axon tracts of neurons. The brain receives nourishment, mechanical 

support, and immune protection from its vascular and ventricular systems, which circulate 

blood and cerebrospinal fluid (CSF). The human brain itself is anatomically divided into the 

cerebrum, cerebellum, and brain stem. 

1.4.1  Cerebrum 

The cerebrum is separated into a left and a right hemisphere by a fissure and connected by a 

white matter bundle called the corpus callosum. The outer structures of each hemisphere 

constitute the cerebral cortex, while the structures below are referred to as the subcortex. 

The cerebral cortex underlies perception and many conscious processes (Jawabri and 

Sharma, 2019), which are allocated to four lobes (Figure 1-3).  

 
Figure 1-3: The four lobes of the cerebral cortex.  Each hemisphere of the cerebral cortex divides 

into four lobes. The frontal lobe is separated from the parietal lobe by a groove called the central 

sulcus, and the lateral sulcus separates the frontal and parietal lobes from the temporal lobe. The 

parieto-occipital sulcus separates the parietal lobe from the occipital lobe. Each lobe has dedicated 

brain regions associated with specific functions. The figure was created using images from Servier 

Medical Art, licensed under a Creative Commons Attribution 3.0 (unported license).  
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The subcortex (Figure 1-4) consists of the basal ganglia and limbic system brain regions, as 

well as the thalamus and hypothalamus. The cells of the cerebrum are organised into columns 

subdivided into layers of distinct numbers and types of cells (Figure 1-5). The most common 

form is six-layer columns (neocortex), but structures of the limbic system have a three-layer 

(allocortex) organisation (Strominger et al., 2012).   

 
Figure 1-4: Structures of the subcortex.  The structures of the Basal Ganglia and Thalamus are 

visualised on the top and those of the Limbic System on the bottom.  The figure was created using 

images from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 (unported 

license).  
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Figure 1-5: Layer organisation of neuronal columns. The cerebrum divides into a 

phylogenetically older allocortex consisting of three-layered neuronal columns and a more recent 

six-layered neocortex. Each cortical layer contains different neuronal shapes, sizes, and densities as 

well as different organisations of nerve fibers. Images are produced through histological Nissl 

staining (Martin, 2003).  

1.4.2 Cerebellum    

The cerebellum (Figure 1-6) monitors and fine-tunes motor behaviour. This translates to 

learning and conducting precise, coordinated movements rather than their actual initiation 

(Thach et al., 1992). Additionally, the cerebellum contributes to implementing language, 

attention, and the experiences of fear and pleasure (Strick et al., 2009).  

1.4.3 Brain Stem 

The brain stem (Figure 1-6) is a group of structures that lie deep within the brain. 

Anatomically, it divides into the medulla oblongata as a continuation of the spinal cord, the 

pons, and the midbrain. These regions control autonomic functions such as breathing, heart 

rate, blood pressure, and involuntary reflexes such as swallowing, but also interact with the 

motor and associated cortices to manage fine movements of the limbs and face (Angeles 

Fernandez-Gil et al., 2010).     
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The current section discussed general brain anatomy and function to lay the foundation for 
comprehending the role of the brain in fatigue. Before delving into this role, understanding 
magnetic resonance imaging is crucial, as it can non-invasively measure brain structure and 

function. 

 
Figure 1-6: Cerebellum and Brainstem. The brainstem connects the rest of the brain to the spinal 

cord, with the medulla oblongata as its lower extremity, followed by the pons and midbrain. The 

cerebellum sits behind the brainstem. The figure was created using images from Servier Medical Art, 

licensed under a Creative Commons Attribution 3.0 (unported license). 

1.5 Basis of Magnetic Resonance Imaging  

Before the advent of magnetic resonance imaging (MRI), the tools to investigate the brain 

suffered from being indirect (behavioural assessments), invasive (biopsies), or damaging 

(ionizing X-rays). MRI visualises the brain without these limitations by exploiting the 

magnetic properties of water in different tissues (Huettel et al., 2014). The MRI scanner first 

aligns the water molecules' protons to its constant magnetic field, then misaligns those 

protons with a weaker radio frequency pulse. After the pulse ends, the protons align again 

and subsequently emit low-energy photons. The photons are the signal that the scanner 

records as it passes through slices of the brain, creating a set of 2D images that can then be 

used to construct a 3D image of the brain. The intensity of each voxel (3D version of a pixel) 

of the image reflects the intensity of the signal. As thickness and hardness determine the 

time and amount of realignment changes, the produced 3D image can distinguish the location 

and shapes of different tissue types like grey matter, white matter, and CSF. To evaluate 

both the structure and function of these tissues, different modalities of MRI can be used.   
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1.5.1 Structural MRI  

Structural MRI distinguishes between grey matter, white matter, and CSF as the protons in 

white matter realign more quickly than those in grey matter and consequently white matter 

appear brighter, while CSF appears darker because the protons in CSF take longer to reach 

alignment (Figure 1-7). The images produced then enable us to measure the volume and 

thickness of both grey matter and white matter. These properties can inform us of any 

disease-related or developmental processes by investigating any changes in time, differences 

between groups, or associations with other variables.  

 
Figure 1-7: Structural MRI of tissue types. A standard (left) T1-weighted image depicts the 

difference in brightness of the three tissue types. This contrast is due to their different T1-relaxation 

(realignment) times, as shown in the plot on the right, where longitudinal magnetisation is equivalent 

to signal intensity. Adapted from Pooley et al. (2005). 

1.5.2 Functional MRI  

A structural MRI scan results in one high spatial resolution 3D image. In contrast, functional 

MRI (fMRI) creates a timeseries of 3D images that follow changes in brain function within 

a session. The most common signal that fMRI uses as a proxy for brain function is the blood 

oxygenation level-dependent (BOLD) contrast. A signal difference (contrast) arises from 

changes in its magnetic properties as oxygenated blood is deoxygenated to sustain neuronal 

activity (Ogawa et al., 1990). Because the BOLD signal correlates with neuronal activity, 

BOLD images can help locate which brain regions are active (increased oxygen 

consumption) or inactive (baseline oxygen consumption) during tasks.  
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The ability to acquire sequences related to neuronal activity led to many task-based designs 

to map function to defined brain structures. However, it was discovered that even in the 

absence of a task or stimulus (resting-state), synchronous activity between brain regions is 

present termed functional connectivity (Biswal et al., 1995). The brain regions that exhibit 

such similarity can be grouped within resting-state networks, and consequently, many such 

networks have been described and reproduced (Beckmann et al., 2005, Fox et al., 2005, 

Damoiseaux et al., 2006). These include the default mode, dorsal attention, and salience 

networks that are the basis for generating internal thoughts, executing external tasks, and 

filtering sensory cues, respectively. While the default mode network is more active at rest, 

all other networks are still active and can be extracted using independent component analysis 

(Figure 1-8A). The technique maps networks by decomposing the timeseries of BOLD 

signal changes into multiple statistically independent spatial patterns that are then compared 

to templates of networks from previous studies. The classical approach to estimating 

functional connectivity (FC) is to calculate Pearson correlation coefficients between two 

timeseries of BOLD signal changes measured over the duration of the sequence. The 

timeseries are the low-frequency changes in BOLD from a source (seed) and a target 

location. The seed is typically a brain region-of-interest (ROI), which is a set of voxels that 

encompass an anatomically distinct brain region. The target can be the time-course of a 

single voxel, or a time-course averaged across all the voxels of another ROI (Figure 1-8C). 

The correlations are then repeated for every pair-wise connection based on the selected ROIs 

and become part of a connectivity matrix (Figure 1-8D).  

In terms of clinical applications, FC has been proposed as a biomarker for distinguishing 

different disease states. However, this application has been hindered by the high variability 

of FC (Wang et al., 2011), which may require longer scanning times (Anderson et al., 2011). 

Task blocks can also be used to estimate less variable FC as they better focus the attention 

of a participant and instil more homogenous cognitive states (Shah et al., 2016). Conversely, 

studies have used dynamic FC to improve FC biomarker detection, which uses fluctuations 

of FC in direction and strength within a timeseries (Chang and Glover, 2010). These 

fluctuations are detected when the fMRI timeseries are divided into consecutive windows of 

a certain length. Typically, they range from 30 to 60 seconds, with the rule of thumb 

(Leonardi and Van De Ville, 2015) that the minimum should be the inverse of the lowest 

frequency of interest. For example, 0.01 Hz would equate to a 100-second window while 

frequencies lower than 0.01 Hz correspond to scanner noise, such as thermal drift in shims, 

gradients, and radiofrequency components (Yan et al., 2009). One can then extract a series 

of connectivity matrices that span the fMRI sequence (Figure 1-8D). The additional 
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variability of dynamic FC allows for studies to better explain differences in individual 

behavioural and cognitive traits and classify neurological diseases, potentially because 

dynamic FC captures latent functional boundaries, especially in regions with high flexibility 

and adaptability (Peng et al., 2022).  

 
Figure 1-8: Estimation of functional connectivity. Panel A displays a component from 

independent component analysis that can be a network of brain regions. The timeseries of brain 

regions and networks can have high and low connectivity between them (Panel B). Brain networks 

can be seeds in seed to region-of-interest (ROI) or seed to voxel analyses (Panel C). Panel D 

comprises a static functional connectivity matrix that spans the correlation between the same brain 

regions on the x and y axes. The upper triangle after the diagonal (black) is then used to derive a 

single vector of values for each subject. The second image displays dynamic connectivity, where a 

series of connectivity matrices are extracted throughout time, typically under a set window of time. 

Adapted from Scheinost et al. (2017), while the figure was partly generated using Servier Medical 

Art, licensed under a Creative Commons Attribution 3.0 (unported license) and edited using Inkscape 

(2020).  
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1.5.3 Diffusion Tensor Imaging (DTI) 

Water diffuses in different directions in the brain, and diffusion-weighted imaging (DWI) 

can be used to capture the magnitude of that diffusion (Figure 1-9A). When you measure 

diffusion in at least six non-collinear directions, you can compute a diffusion tensor in each 

voxel of the brain: a 3*3 matrix that can be used to calculate the preferred direction of the 

diffusion, often visualised by an ellipsoid with a direction (Figure 1-9C). Compared to grey 

and CSF, white matter fibre bundles constrain the diffusion of water along specific directions 

(anisotropy), which are identified as the tensor. The tensor can be colour-coded, yielding a 

cartography of the tracts’ position, direction, and anisotropy (Figure 1-9B). Fractional 

anisotropy (FA) is a tensor quantification method calculated from the eigenvalue of the 

diffusion tensor that compares the relative strength of the principal component of the tensor 

to the remaining 2 directions, which quantifies the fraction of the tensor that is anisotropic. 

Therefore, FA captures the preferred direction of water movement along the direction of 

axons. Mean diffusivity (MD) measures the average water motion, independent of the 

directionality of tissues. MD is therefore a measure of average restriction to motion or cell 

density. Therefore, DWI studies can be interpreted such that reduced FA or increased MD 

indicate disrupted white matter integrity, with both metrics mapping well onto established 

pathologies like MS lesions. Both FA and MD are sensitive to more subtle differences in 

axonal count, myelination, and organisation, which can be affected by subclinical events like 

atherosclerosis and neuroinflammation but also by adaptive processes of synaptic 

reorganisation in response to long-term physiological or external challenges. 

While DWI measures the magnitude or distance of diffusion inside the brain, diffusion tensor 

imaging (DTI) adds information on the direction of the diffusion by applying multiple 

diffusion gradients. Diffusion tractography (Figure 1-9D) creates an estimation of how 

white matter pathways run through the brain. Starting from a ROI, mathematical algorithms 

look for adjacent voxels whose diffusion direction is continuous with the previous one. This 

is repeated for all surrounding voxels till a path through the brain of highly similar voxels is 

created. These paths are called streamlines. In the same way as a connectivity matrix is 

created in functionality connectivity, the number of paths, or streamlines, connecting two 

ROIs can be determined.  This can be converted to a probability score for each pair of ROIs 

that populate a matrix, similar to FC, called structural connectivity (SC). Clinically, DTI can 

also localise track-specific white matter lesions (Figure 1-10) and tumours, aid in 

neurosurgical planning, and assess white matter maturation during development. However, 



Introduction|24  

there are limits to such mappings. As diffusion effects are averaged over a voxel, it 

complicates the biophysical interpretation of the diffusion tensor. FA is frequently 

interpreted as "white matter integrity," but many factors (e.g., cell death, changes in 

myelination, an increase in extracellular or intracellular water) can cause changes in FA. 

Overall, this difficulty in the interpretation of DTI is because the scale at which diffusion is 

measured with DTI is very different from the size scale of individual axons. Additionally, 

the tensor model is only able to represent one major fiber direction in a voxel; thus, DTI 

tractography can be confounded by regions of crossing fibers (regions in which fibres are 

interdigitating, brushing past each other, curving, bending, or diverging). There are also risks 

of partial volume effects, where two or more types of tissue are present in a voxel and can 

produce a tensor that represents neither tissue well. Finally, in standard streamline 

tractography, all decisions are made locally, so errors can accumulate. Those limitations 

result in the chance of false positive and false negative connections.   

 
Figure 1-9: Diffusion Tensor Imaging (DTI). Based on diffusion-weighted imaging (DWI), an 

initial DWI image (A) can be used to create tracts (B) by estimating tensors (C). Colour-coding of 

the tensors can reveal the tracts’ position, direction (red for right-left, blue for superior-inferior, green 

for anterior-posterior), and anisotropy (as indicated by the tract's brightness). Tractography methods 

use tensors to track fibres along their whole length and reveal the gross anatomy of cortical tracts. 

Images were created using FSLeyes in FSL 5.0.  

 
Figure 1-10: Clinical application of diffusion tensor imaging (DTI). In demyelinating diseases 

like multiple sclerosis, DTI can localise both the lesions and affected white matter tracks, as shown 

by Klistorner (2016).  
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1.5.4 Brain atlases 

Beyond delineating grey matter from white matter and CSF, structural scans can be used to 

segment the brain into specific brain regions. Regions on the surface of the brain are termed 

cortical regions, while regions that are deep inside the brain in the form of grey matter nuclei 

are termed subcortical regions. These regions may be defined on the basis of brain atlases 

that are in a common standard space using neuroanatomical boundaries. Brain atlases can 

differ based on parcellation size, neuroanatomical coverage, and complexity of brain region 

shapes while the choosing which atlas to use is dependent on the research question (Revell 

et al., 2022). A commonly used atlas is the Desikan-Killiany anatomical atlas (Desikan et 

al., 2006), which defines 68 cortical regions based on probabilistic information from surface 

landmarks and 16 subcortical regions based on volumetric landmarks (Figure 1-11). These 

regions can also be related to specific brain networks (Table 1-3). The Desikan-Killiany 

atlas is a more course parcellation that addresses regions that can be theoretically targeted in 

potential interventions, and consequently used in these analyses. The other atlas used in this 

thesis was the more fine-grained default atlas used by the CONN toolbox, a software used 

to analyse functional connectivity data. The atlas defines regions that include the Harvard-

Oxford Atlas and cerebellar areas from the AAL atlas, consisting of 132 regions, shown in 

Figure 1-12 and listed in Appendix A.  
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Figure 1-11: Desikan-Killiany atlas. The atlas used for these series of analyses segments the brain 

into 68 cortical and 16 subcortical regions in Free Surfer (https://surfer.nmr.mgh.harvard.edu/).  

 

 

 

 

 

https://surfer.nmr.mgh.harvard.edu/


Introduction|27  

 
Brain Network Regions 

Default Mode Network (DMN) 

Frontal Pole 

Superior Frontal Gyrus 

Posterior Cingulate 

Inferior Parietal Lobule (IPL), Angular Gyrus (AG) 

And Supramarginal Gyrus (SMG) 

Precuneus 

Middle Temporal Gyrus 

Parahippocampal Cortex 

Pars Orbitalis/ Triangularis/ Opercularis 

Bank of the Superior Temporal Sulcus 

Dorsal Attention Network (DAN) 

Superior Parietal Lobule 

Lateral Occipital Gyrus 

Caudal Middle Frontal Gyrus 

Lingual Gyrus 

Salience Network (SN) 
Insula 

Rostral/Caudal Anterior Cingulate 

Sensorimotor Network (SMN) 

Postcentral Gyrus 

Precentral Gyrus 

Paracentral Lobule 

 

 

Lateral Frontoparietal Network (FPN) 

Rostral Middle Frontal Gyrus 

Inferior Temporal Gyrus 

Posterior Cingulate (Midcingulate) 

Precuneus 

Thalamus 

Caudate 

Visual Network 

Cuneus 

Pericalcarine 

Lateral Occipital Gyrus 

Lingual Gyrus 

Table 1-3: Brain networks affiliated to regions in the Desikan-Killiany atlas. The affiliations are 

based from Uddin et al. (Uddin et al., 2019) using a common visual network for better understanding 

of results. Regions in grey are identified as core regions while some brain regions can be part of more 

than one network. Some regions in the atlas are not referenced in the paper and so are not listed here.   

 

 

 

 



Introduction|28  

 
Figure 1-12: : CONN toolbox default anatomical atlas. Different views of the CONN default 

atlas incorporating the Harvard-Oxford Atlas, a probabilistic atlas covering 91 cortical and 15 

subcortical structural areas as well as 26 cerebellar areas from the AAL atlas. Taken from Nieto-

Castanon and Whitfield-Gabrieli (2021).  

1.6 Neurobiological markers of fatigue in 

inflammatory arthritis  

After describing the principles of MRI, using neuroimaging to study fatigue presents several 

challenges when compared to studying cognitive neuroscience in healthy populations or 

other clinical behaviours such as pain. Such challenges include: (1) heterogeneity of groups 

with chronic fatigue in the context of both fatigue expression and primary disease; (2) 

differences between physical and mental fatigue; (3) a limited number of interventions 

frequently not specific to fatigue; (4) a lack of fatigue reporting in studies of relevant cohorts 

that have other primary research objectives; and (5) tasks that induce fatigue during fMRI 

are less established and more difficult to interpret compared with ones for pain and cognition. 

However, clinical studies may have higher statistical power to identify neurobiological 

effects because disease likely affects the brain more than experimental manipulations in 
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healthy participants (Szucs and Ioannidis, 2020). Studies can exploit the heterogeneity in IA 

and compare groups with the same disease but with contrasting levels of fatigue. Finally, 

research on IA fatigue can also benefit from findings and tools from studies in conditions 

with more established neuroimaging literature, like MS, another inflammatory disorder 

where chronic fatigue is a patient priority. 

A study recorded BOLD during a task that involved working memory and emotional 

processing in 23 patients with an IA condition called systemic lupus erythematosus 

(Barraclough et al., 2019). Patients’ BOLD signal strength in the left caudate positively 

correlated with cognitive fatigue, as fMRI frequently associates IA-related fatigue with 

subcortical regions like the caudate. It, along with the putamen, are deep-lying grey matter 

nuclei that receive dopaminergic inputs and are jointly called the dorsal striatum. The 

striatum is part of the basal ganglia, which interacts with other cortical and subcortical 

regions such as the thalamus to execute precise movements but also affects working 

memory, decision-making, and emotional behaviour. FC can integrate such individual 

regions and provide more holistic insights, which is important for complex behaviours like 

fatigue. In 54 patients with RA, current fatigue was positively correlated with FC between 

the dorsal attention network (DAN) and the medial prefrontal cortex, extracted while 

performing a fatigue-inducing task (Basu et al., 2019). This result was reproduced in the 

same cohort six months later. The medial prefrontal cortex is part of the DMN, so these 

results demonstrate that patients with higher current fatigue show stronger synchrony 

between two networks that would typically work in opposition to one another as their activity 

is typically anticorrelated and associated with opposing tasks (Fox et al., 2005). If there is 

chronic excess activation and communication of the basal ganglia and regions of the default 

mode and dorsal attention networks, such functional demands may hypothetically deplete 

the functional reverse of the brain and surface as fatigue in patients, as suggested in MS 

(Capone et al., 2020).  

Consistent with functional findings, structural changes in sub-cortical and frontal brain 

regions have been reported in IA cohorts. In the same 54 study participants with RA, greater 

grey matter volume in the putamen correlated with higher fatigue (Basu et al., 2019), with 

similar results in 20 patients with another IA condition called ankylosing spondylitis (Wu et 

al., 2014). Generally, fatigue is associated with larger volumes of grey matter in specific 

subcortical regions that underlie stronger internal communication within the same region. 

The opposite trend of negative associations with fatigue is observed for cortical regions, such 

as those of the dorsal and default mode networks, with both patterns observed in ankylosing 
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spondylitis. How these alterations arise and generate fatigue is difficult to disentangle, as the 

discussed structural and functional imaging markers are not specific to a single disruptive 

process. The study in people living with ankylosing spondylitis further documented 

differences in white matter integrity between patients and 20 matched controls in the form 

of decreased FA in tracts that connect these regions, such as the superior longitudinal 

fasciculus that links posterior parietal regions (DAN) with frontal areas. The use of DTI can 

thus add further detail by focusing on processes that affect the microarchitecture of white 

matter. Overall, both structural and functional changes of the brain are linked to fatigue in 

IA, while changes in white matter microstructure point towards potential disruptive 

processes like neuroinflammation and the necessity to assess the microenvironment of the 

brain.    

Neuroimaging findings of fatigue still have gaps in knowledge, including more 

comprehensive neurobiological descriptors of fatigue and the potential for brain measures to 

predict treatment responses (Davies et al., 2021). For instance, it is unclear if different 

expressions of fatigue, like physical and cognitive fatigue, have distinct neuroimaging 

correlates. Such explorations could determine if phenotypical differences in fatigue involve 

different brain regions and identify a potential common hub for fatigue in the brain. It is also 

unclear if baseline brain characteristics can predict fatigue levels after pharmacological or 

psychological/physical treatments in IA patients. Additionally, it raises the question of 

whether predictors of fatigue after treatments are common or distinct between different 

diseases, such as RA and PsA. Identifying such predictors could potentially offer insights 

into how patient fatigue should be managed. Neuroimaging investigations could also 

determine if there are neurobiological subgroups of patients with potentially different fatigue 

mechanisms, aiming to guide mechanistic studies and subsequently enhance our 

understanding of fatigue. 

Despite the findings using MRI modalities in IA (Table 1-4), inconsistencies were 

previously observed in brain imaging of chronic fatigue disorders, both when studies 

examined different conditions or the same disease (Goni et al., 2018). Studies used diverse 

methods and lacked both statistical power and stratification. Only 7 of the 26 studies 

reviewed used a longitudinal design, which enables replication of findings. Brain-behaviour 

associations are difficult to reproduce due to an imbalance of both small effect and sample 

sizes (Marek et al., 2022) compared with replicable mappings of brain functions like face 

perception, which have been shown to require only 15 participants (Yovel and Kanwisher, 

2004). Studies in psychiatric and neurological conditions suffer less from low power as they 
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have double or larger mean effect sizes (Cohen’s d = 0.32) than ones in the general 

population (Libedinsky et al., 2022). Although measures like structural MRI strongly 

correlate within repeated sessions of the same individuals (r > 0.8), reliable neuroimaging 

requires a greater number of participants in studies and improvements in the quality of the 

data acquired (Zuo et al., 2019). To identify generalizable brain-behaviour associations, 

steps can be taken to: (1) internally and/or externally validate findings; (2) use within-subject 

longitudinal designs; (3) use both rest and task states tailored to the behaviour of interest in 

functional imaging; (4) use multiple modalities in the same cohort; (5) experimentally 

manipulate behaviour through pharmacological and/or psychological interventions; and (6) 

experimentally manipulate brain signatures via neuromodulatory techniques relevant to the 

behaviour.   

Research area Cohort Key findings References 

Functional 

activity and 

connectivity 

Systemic lupus 

erythematosus (n = 

23) 

Cognitive fatigue positively correlated with 

activity (BOLD signal strength) in the left 

caudate, extracted during a working memory 

task 

(Barraclough 

et al., 2019) 

Rheumatoid arthritis 

(n = 54) 

Current fatigue was positively correlated 

with functional connectivity between the 

dorsal attention network and the medial 

prefrontal cortex, extracted while 

performing a fatigue-inducing task 

(Basu et al., 

2019) 

The result was reproduced in the same 

cohort six months later 

Grey/white 

matter 

characteristics 

Rheumatoid arthritis 

(n = 54) 

Fatigue in the last seven days positively 

correlated with grey matter volume in the 

putamen 

(Basu et al., 

2019) 

Ankylosing 

spondylitis (n = 20, 

healthy controls n = 

20) 

Fatigue impact (Fatigue Severity Scale) 

positively correlated with grey matter 

volume of the putamen and negatively with 

the caudate 

(Wu et al., 

2014) 

Fatigue impact was negatively associated 

with grey matter thickness of regions of the 

dorsal and default mode networks 

Lower white matter integrity (fractional 

anisotropy) in the superior longitudinal 

fasciculus compared to healthy controls that 

links posterior parietal regions (dorsal 

attention network) with frontal areas 

Table 1-4: Summary table of MRI correlates of fatigue in inflammatory arthritis. 
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Some of the already mentioned studies in IA have implemented these strategies, such as 

using fatigue-inducing tasks, combining functional with DTI data, and analysing 

longitudinal data to replicate baseline findings. Longitudinal data also allows for the 

mapping of fatigue correlates via prediction methods that use baseline brain metrics to infer 

future changes in clinical variables. As fatigue correlates are spread throughout the brain in 

IA rather than focusing on a small number of regions, a recent study sought to predict fatigue 

using an agnostic multivariate approach in 54 patients with RA who had both structural MRI 

and DTI (Goni et al., 2022). Specifically, the approach considered 900 neuroimaging 

variables at baseline to classify patients who improved their fatigue levels from those who 

did not after six months. Both structural MRI (67·9%) and DTI (63·8%) performed better 

than chance, unlike when clinical variables were used to make the same predictions. 

Although applying prediction methods does not offer mechanistic insight into fatigue, they 

do provide clinicians with useful biomarker tools to stratify patients and aid in their decision-

making. A significant advancement in creating such tools involves applying machine 

learning to develop high-performing models that make individual predictions, exemplified 

by Goni et al. (2022) in predicting fatigue outcomes in RA. Machine learning can uniquely 

use numerous predictors in a multivariate way, offering a potential method to improve 

fatigue management in IA by accurately predicting treatment response and general fatigue 

outcomes. This approach is the focus of the next section. 

1.7 Machine learning & prognosis 

Computer programs that perform complex tasks such as decision-making, visual perception, 

and translation between languages normally requiring human intelligence, are defined as 

artificial intelligence. If artificial intelligence models use real data to learn rules and modify 

decision thresholds, such models demonstrate machine learning (ML). To improve the 

quality of healthcare, artificial intelligence applications have been tasked with organising 

medical records, improving diagnostics, and discovering new drugs and disease subtypes. 

Prognos Health compiles prescriptions, medical claims, lab results, and other sources to 

create patient profiles (https://prognoshealth.com/products/life-sciences/patient-journey). 

Subtle Medical helps radiologists by improving the quality of images from the head, 

abdomen and breast by increasing the resolution and removing signal noise 

(https://subtlemedical.com/subtlemr/). Insitro builds predictive models from biological data 

to reveal crucial information like disease subtypes that is only available when looking at 

large datasets (https://insitro.com/approach). ML can also improve cost-effectiveness by 

https://prognoshealth.com/products/life-sciences/patient-journey
https://subtlemedical.com/subtlemr/
https://insitro.com/approach
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avoiding medical errors and unnecessary hospital visits, reducing drug discovery and 

treatment costs, and automating remote patient support and healthcare record writing. For 

example, Goldman Sacks estimated that if remote prevention and care tools are applied, it 

could save $200 billion annually in the US, while early diagnosis can cut treatment costs by 

more than 50% in many cancer cases (Aboshiha et al., 2019), with such advantages 

applicable in settings with limited resources (Wahl et al., 2018). Before clinical research 

implements ML in healthcare, it needs to delineate the advantages, disadvantages, and 

interpretability of ML.   

ML develops algorithms that learn from data to predict outcomes of interest and then apply 

the learnt patterns to new data. Patterns are made of features which can be raw images, 

questionnaire scores, or other data attributes that are related to the outcome. ML predicts 

traits of unseen individuals whereas classical statistics would infer traits of a population 

based on a sub-sample from that population. Classical statistics requires choosing an apriori 

model that incorporates our knowledge of the biological system, while ML chooses a 

predictive algorithm from all of those possible from the given data. Therefore, ML and 

traditional statistics differ in purpose as ML attempts to make the prediction as accurate as 

possible with the given data, while classical statistics infer relationships between variables. 

In practice, both goals of traditional statistics and ML can use the same model, but ML allows 

using data with more variables than individuals (high dimensionality) as well as the 

possibility of more complicated, non-linear, relationships.  

High-dimensional data poses a multicollinearity problem where any variable could be 

expressed as a linear combination of other variables. Many possible combinations would 

produce similar results, making the solutions unstable, and even a small change in data 

would create large changes in how a model performs. ML methods overcome high 

dimensionality by forcing models to be simpler. ML methods simplify their final algorithms 

by either penalizing the importance of features used in the model based on their relevance to 

the outcome or by combining multiple models, developed from subsamples of features. To 

use non-linear relationships, ML can employ methods such as kernels, decision trees, or deep 

learning that employ neural networks (Figure 1-13). Kernels transform non-linear 

observations into a higher-dimensional space in which they become separable. Decision 

trees split data multiple times to learn complicated non-linear rules. Random forest 

algorithms form multiple trees from resamples and then average those outputs to improve 

the stability of the final model. The deep learning neural networks consist of an input layer 

that reads the selected features, several hidden layers that perform multiple functions at the 
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same time such as data transformation and feature selection, and an output layer of artificial 

neurons like simple linear regression models. The combinations of millions of such neurons 

learn highly non-linear dependencies between the data. Deep learning frequently performs 

best but requires much more data than available in neuroimaging of most clinical cohorts 

like chronic fatigue diseases and has therefore not been as successful (Koppe et al., 2021).   

 
Figure 1-13: Machine learning methods to detect non-linear relationships.  The top panel 

displays the potential kernels for identifying different classes that can be non-linearly separated by 

projecting the data from 2D to 3D space. The left bottom panel illustrates a simple decision tree to 

distinguish different classes of objects, based on non-linear rules. Agglomerating multiple trees to 

stabilise the final model is performed by the random forest methods. The right bottom panel shows 

the architecture of neural networks that detect non-linear trends by different data transformations, 

performed by hidden layers of artificial neurons. The images were created using Inkscape (2020). 
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ML predicts target variables that can be either a category (e.g., healthy or patient) or a 

continuous measurement (e.g., life expectancy). The final algorithms split into classifier 

models for categories and regression models for continuous variables, but both approaches 

make up supervised learning, where the correct answer is used to increase accuracy. Another 

branch of ML is unsupervised learning, which finds structure without defining a target 

variable. For example, clustering methods assign individuals to groups so that data points 

within groups are closer to each other than data points in other groups using some measure 

of distance. Analysts can then statistically describe the groups, compare them with other 

characteristics, or use them for predictions. Both supervised and unsupervised ML fit certain 

data and research questions better than traditional statistics. Unlike traditional statistics, ML 

methods are free from a priori assumptions such as the type of error distribution or additivity 

of parameters that are often not met in clinical data but are overlooked in the literature. ML 

can analyse various data types (imaging, demographic, laboratory) and integrate them into 

predictions without any prior data transformations. Finally, ML can identify novel targets 

from extensive lists of potential variables without prior knowledge of which variables to 

select. The advantages of ML over conventional statistics have translated into better 

predictions of outcomes like deterioration in the ward (Churpek et al., 2016), mortality in 

acute coronary syndrome (Hernesniemi et al., 2019), survival in patients with ovarian cancer 

(Paik et al., 2019), complications of bariatric surgery (Nudel et al., 2021), and risk of 

metabolic syndrome (Shimoda et al., 2018).  

ML in imaging detects differences that are difficult to see with the naked eye, such as 

predicting an individual's gender or age using brain images (Schulz et al., 2020). In medical 

fields, such as oncology, ML helps combine biomarkers with mechanistic understanding. 

For instance, a study not only developed a highly accurate ML model to predict the stages 

of non-small-cell lung cancer, but also identified which genes regulate disease progression, 

differentiated genes that predicted survival rates, and suggested potential drug candidates 

that affect these genes (Jin et al., 2021). However, ML is more challenging to inform on 

biomarkers and mechanistic insight in illnesses based on symptoms only rather than 

quantifiable biological parameters. This is because the ML patterns discovered might not 

necessarily be connected to the pathophysiological pathways or to modifiable risk factors 

that facilitate the development of new therapies. These biomarkers, however, can be used to 

track treatment efficacy, choose the best treatment plan, direct care to those who need it the 

most, and develop specific treatments by identifying clinically meaningful subtypes.   
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Medical ML applications have some restrictions. Supervised ML lacks consensus on how to 

tailor performance measures to specific research questions. Regression models, for example, 

can be compared based on the average of the absolute difference between predicted and 

actual values, but this metric only provides an idea of the magnitude of errors, not their 

direction. In the absence of such standardisation, models are less comparable across studies. 

Supervised ML can overfit a model to the underlying dataset, causing it to fail to generalise 

to new patients. In addition, developing such models takes significantly more time and 

computational resources than developing traditional statistical models. Unsupervised ML 

methods lack statistical control because they always generate subgroups without first 

determining whether they exist at all. Unsupervised ML also lacks standardisation because 

the criteria used to determine the clustering method and the number of clusters measure 

various characteristics, such as the consistency or separation of the clusters. Finally, the 

purpose of clustering can vary depending on whether it is to identify biologically unique 

subgroups that can be linked to other metrics or clinically significant groups that differ on 

parameters like treatment response.  

Traditional statistics can complement the advantages and disadvantages of ML (Table 1-5) 

in multiple ways. It can compute confidence intervals, serve as feature selection criteria, or 

assess whether the features chosen are connected to the construct of interest (i.e., identify 

false positives used in prediction but not informative). Statistical tools can also evaluate the 

stability and error rates of complex analysis pipelines. For example, Dinga et al. (2019) 

tested the stability of combining steps of feature selection and canonical correlation by 

removing one subject and rerunning the analysis multiple times. They found that doing so 

significantly changed the importance of the features and revealed that their model was 

unstable. Another potential problem with ML is that confounds can conceal models 

predicting something other than the outcome. Recently, Esteva et al. (2017) showed that 

deep learning can be used in dermatology to treat both common skin diseases and particular 

tumours. They did note, however, that if a biopsy image included a ruler, the algorithm was 

more likely to classify the lesion as malignant because a dermatologist would use a ruler 

when suspecting a malignancy. Due to unintended associations with the clinical outcome, 

other factors may influence ML models like scanner type or motion during scanning. 

Traditional statistics can aid ML models by regressing the influence of confounds before 

predicting the outcome. Finally, statistics can assess the cost-benefit of ML to cheaper 

alternatives such as using current symptom severity and compare ML-aided versus present 

decision-making protocols.     
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Because ML makes decisions at the individual level, medical applications are beginning to 

incorporate ML to improve healthcare quality and cost-effectiveness by learning patterns 

that go beyond what conventional statistics can deduce. The shortcomings of ML lie in the 

potential instability and confounding of its outputs. Traditional statistics can compensate for 

ML's limitations, which is especially important when investigating symptom-based traits 

like fatigue that do not associate with biological measures. Although it is still in its infancy, 

ML has the potential to address novel research questions about fatigue by discovering 

biomarkers and how they integrate into mechanistic pathways.  

Term Advantages Disadvantages 

Machine Learning: use 

real data to learn rules and 

modify decision 

thresholds 

• fit certain questions better than 

traditional statistics  

• more variables than individuals 

(high dimensionality) 

• non-linear relationships  

• analyse various data types    

• patterns not necessarily 

connected to mechanistic 

pathways 

• less comparable results across 

studies compared to classical 

statistics  

Supervised Learning: 

predict variables for 

unseen observations 

• more accurate predictions of 

outcomes 

• no prior knowledge needed 

• integrate different data types 

without prior data transformation  

• can overfit and fail to 

generalise  

• can conceal confounding 

effects  

• requires more time  and 

computational resources      

Unsupervised Learning: 

finds structure without 

defining a target variable 

• identify informative subgroups 

• does not require labels  

• can be fast to implement 

• no statistical control  

• no standardisation (lacks gold 

standard criteria) 

Table 1-5: Advantages and disadvantages of machine learning.  

1.8 Aims, rationales, and hypotheses  

Despite the revolution in immunological treatments for IA, the majority of patients still 

experience chronic fatigue. Neuroimaging has found correlates of fatigue, but the potential 

of brain imaging to tailor the management of fatigue in IA is currently unknown. To assess 

this potential, the following aims were set: 

Aim 1: Identify subtypes of fatigue in patients with RA using brain connectivity to determine 

if there are neurobiological subgroups of patients with potentially different fatigue 

mechanisms. 

Fatigue in IA varies in progression and expression even among patients with the same 

diagnosis. Patient comorbidities, like psychiatric illnesses, exacerbate this heterogeneity, 

making it difficult to explore fatigue mechanisms, match patients to current treatments, and 

develop new treatments. Clustering based on clinical data provides insights into trends in 



Introduction|38  

fatigue expressions but may not yield subtypes that reflect biological differences. Clustering 

based on biological data reflects variability that is frequently unrelated to any pathology and 

instead reflects nuisance variance, such as groups with similar brain size, body type, or 

common ancestry. Instead of clustering clinical or biological data separately, a study in 

depression constructed variables that best represent the clinically relevant resting-state FC 

features and then clustered those variables to identify subtypes (Drysdale et al., 2017). The 

aim of this approach is to create clusters based on shared signatures of brain dysfunction. In 

pain, such signatures are used to assess pain as well as explain how different mechanisms 

generate overlapping clinical presentations (Tracey et al., 2019), with similar applications 

possible in fatigue. Each patient subgroup would have homogeneous connectivity patterns, 

the neurophysiological and genetic basis of which could then be investigated in humans and 

animals. Molecular techniques such as optogenetics can assert how the dysfunction of brain 

circuits that comprise the patterns of connectivity affects animal behaviour, whereas human 

studies can modulate connectivity via non-invasive neurostimulation and develop patient-

specific therapeutics. In summary, identifying neurobiological subgroups of patients with 

different fatigue mechanisms can guide mechanistic studies and subsequently enhance our 

understanding of fatigue.  

The use of ML has limits since cluster analysis would always produce subgroups regardless 

of the data structure—even if there were no clusters at all (Liu et al., 2008). Also, using 

subtypes to predict individual treatment responses may be inefficient since it assumes that 

all individuals in a given "biotype" are equally likely to respond. For instance, Drysdale et 

al. (2017) used biotype information to predict response to transcranial magnetic stimulation; 

however, if a patient shifted from biotype 1 to adjacent biotype 2, their projected response 

probability would plummet from 80% to 20%. Even if the biotypes are distinct, the 

probability of a response would vary smoothly with the clustering variables rather than 

discretely with respect to subtypes; thus, models with continuous variables, such as subject-

specific connectivity values, would outperform models that only use subtype information. 

Treatment decisions would therefore depend on the response probabilities of patients rather 

than the average probability of their biotype. For this reason, neurobiological groups of 

patients that reflect different mechanisms of clinical symptoms like fatigue are primarily 

used to better deconstruct the heterogeneity of these symptoms.        

To identify neurobiological subtypes of fatigue in RA using brain imaging, I plan to use 

fMRI connectivity and fatigue scores at baseline from RA patients who received usual care. 
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To validate the results, I will also apply these methods to data from the same patients after 

six months as well as to a different RA cohort. 

Hypotheses: Neurobiological subtypes of fatigue exist in patients with RA, illustrated by a 

relationship between brain connectivity and fatigue, and distinct subgroups when RA 

patients are stratified based on brain connectivity. There will be a significant canonical 

correlation between fMRI connectivity and subdimensions of fatigue in RA patients and a 

cluster analysis on fatigue-related connectivity will reveal distinct subgroups of patients. I 

hypothesise that the individuals will come from multiple continuous distributions, which 

will confirm the presence of subgroups in terms of their brain-fatigue relationship. The 

subgroups will also be statistically different in terms of disease activity, systemic 

inflammation, pain, sleep, and depression since most of these variables link with central 

mechanisms of sickness behaviours. There will be a significant canonical correlation 

between brain connectivity and fatigue and distinct subgroups after cluster analysis in a 

different RA cohort that will externally validate the previous findings.  

Aim 2: Identify associations between brain imaging metrics and baseline scores of 

subdimensions of fatigue in RA patients.  

This aim approaches the challenge of deconstructing the heterogeneity of fatigue, akin to the 

previous aim, but from a different angle. Instead of exploring potential neurobiological 

subgroups and evaluating their phenotypic variations, this approach will begin with different 

fatigue phenotypes that can potentially be neurobiologically distinct. Neuroimaging provides 

a window into the neurobiological foundations of central fatigue, which encompasses 

subtypes like 'motivational', 'physical', and 'cognitive' fatigue (Karshikoff et al., 2017). This 

begs the issue of whether different subtypes of central fatigue have different neurobiological 

associations. At present, there exists no formal categorisation for fatigue subtypes, and 

questionnaires gauging fatigue facets do not distinctly segregate patients into these groups 

(Chorus et al., 2003). It is plausible that subtypes of fatigue may reflect various facets of the 

same symptom rather than being the basis of clinically separate subgroups. Each facet of 

fatigue might be linked to the perturbation of specific neural circuits, which may include the 

mesolimbic (motivational), nigrostriatal (physical), and mesocortical (cognitive) dopamine 

pathways (Korte and Straub, 2019). While these pathways are distinct, a common stressor 

can lead the brain into a fatigued state, impacting multiple neural circuits. Within IA, 

inflammatory cytokines may disrupt neurotransmitter release in various brain regions 

(Soliven and Albert, 1992), or sustained psychosocial stress could alter noradrenaline 
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metabolism (Matsumoto et al., 2021). Nevertheless, no studies have yet compared brain 

imaging correlates of fatigue subdimensions in IA. Here, I will use neuroimaging data to 

identify descriptors of fatigue subdimensions and then discuss their differences. In practical 

terms, while aim 1 would delineate potential biological subgroups informing the selection 

strategy in mechanistic studies, this approach would provide neurobiological descriptors of 

fatigue phenotypes for subsequent exploration of their mechanisms. 

To identify associations between brain imaging metrics and subdimensions of fatigue, I plan 

to use baseline scores of a multidimensional fatigue questionnaire. Furthermore, I will use 

not only FC, but also SC and morphometric metrics of the brain as potential correlates.  

Hypotheses: There are significant predictors of subcomponents of fatigue (physical, living, 

cognitive, emotional) that mostly differ from one another as they are based on different brain 

circuits but also share some common brain regions due to pathological mechanisms affecting 

multiple brain circuits.  

Aim 3: Identify baseline brain imaging predictors of fatigue in RA patients after six months 

of receiving fatigue-specific interventions, including a personalised exercise programme and 

a cognitive-behavioural approach. 

Building predictive models often begins by selecting candidate factors that have previously 

been linked with the outcome of interest. For example, lower cortisol awakening response 

and vitamin D deficiency have been associated with the chronicity of depression (Vreeburg 

et al., 2013, Milaneschi et al., 2014), while BDNF, inflammatory markers, and metabolic 

syndrome were significantly different in depressed patients compared to healthy controls 

(Bus et al., 2014, Vogelzangs et al., 2014). However, predictive models should not solely 

rely on such associations since they do not necessarily underlie the ability of variables to 

predict the outcome. A study demonstrated that CRP, IL-6, cortisone, metabolic measures, 

BDNF, and vitamin D were unable to predict the chronicity of depression, despite using the 

same sample of patients in which the previous findings were made (Dinga et al., 2018). 

Therefore, associations or differences with healthy populations at the group level do not 

imply the ability to make predictions for new cases in individual subjects. This may be 

because the effect sizes are too small to possess sufficient prognostic ability for long-term 

outcomes in individual patients, and biological markers implicated in the aetiology of the 

disorder are not necessarily good prognostic markers.     



Introduction|41  

To explore baseline brain imaging predictors of fatigue in RA, data will be used from RA 

patients who underwent brain MRI before randomisation into usual care (UC) or fatigue-

specific interventions (personalised exercise programme (PEP) or a cognitive-behavioural 

approach (CBA)). The T1, DTI, and fMRI modalities will provide morphometric metrics as 

well as structural and functional connectivity. These metrics will predict fatigue scores after 

six months in the fatigue-specific intervention groups, employing univariate general linear 

models (GLMs). The models will assess as predictors of fatigue both previously identified 

fatigue correlates and agnostically each neuroimaging variable. Also, I will investigate 

whether different subcomponents of fatigue (physical, living, cognitive, and emotional) 

yield different neuroimaging predictors. 

Hypotheses: There will be statistically significant predictors of fatigue scores using the 

agnostic approach. However, previous correlates will not predict fatigue as these are markers 

of current fatigue in patients who did not receive fatigue-specific treatments.  

Aim 4: identify baseline brain imaging predictors of fatigue after starting a new 

pharmacological treatment in RA and PsA cohorts.  

Transdiagnostic approaches aim to address clinically challenging questions by tackling the 

heterogeneity of symptoms within and across different disorders. In neuroimaging, this 

approach can involve identifying brain features that associate or predict symptoms by 

applying the same methodology to different disorders. Focusing on continuous behavioural 

measures rather than diagnostic categories, transdiagnostic results may capture individuals 

along behavioural and biological spectrums, ranging from subclinical to severe symptoms. 

Patients, instead of adhering to a single distinct pattern, exhibit diverse patterns of symptoms 

and comorbidities, posing challenges in treating spectrum behaviours like fatigue due to the 

absence of predefined exemplar patterns. By leveraging brain imaging in diverse samples, 

the goal is to identify a 'transdiagnostic' network that generalises across a range of clinical 

categories. For example, autism spectrum disorder and attention deficit hyperactivity 

disorder share symptoms like attention deficits, the neurofunctional basis of which is 

undefined. A study used whole-brain FC in those clinical conditions to determine disorder-

specific and shared (cross-diagnostic) neurofunctional pathology (Lake et al., 2019). They 

identified patterns that predict disease-specific clinical scores but also patterns that crossover 

between these scores. Although different disease scores implicated different brain circuitry 

(sharing only 2% of connections), components predictive of attention deficits translated 

across disorders. Other studies have combined data not only from different psychiatric 
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disease cohorts but also from healthy participants (Geller et al., 2021, Parkes et al., 2019). 

These studies focused on impulsivity and anhedonia, the reduced ability to experience 

pleasure, and found that these behaviours converged on similar brain connectivity traits 

across participants, which were also important for clinical severity in the subjects with 

diagnosed disease. In turn, focusing on dimensional phenotypes rather than diagnostic 

comparisons can lead to valuable findings in IA fatigue as well. 

Previous research has often avoided transdiagnostic approaches due to uncertainties 

surrounding the specificity of an effect: how much patients drive outcomes relative to 

healthy control participants. Furthermore, mixing patients with different conditions can 

obscure whether transdiagnostic markers reflect the desired phenotype or are driven by 

unmeasured confounds. Nevertheless, the transdiagnostic approach gives unique insights 

into symptoms that can range from average to subclinical to clinical, exhibit dynamic 

fluctuations as disease states change, and rely on the same brain circuits. Furthermore, 

transdiagnostic biomarkers have inspired initiatives to improve treatments such as deep brain 

stimulation by targeting neural circuits linked to functional domains that cut across 

diagnoses (Widge et al., 2017). Although more complex, such approaches have shown early 

evidence of successful stimulation in the context of cognitive control (Basu et al., 2021). The 

ultimate objective of transdiagnostic biomarkers is therefore to provide a translational 

avenue by demonstrating that the underlying brain features can be modulated by current or 

novel therapeutics. 

To identify baseline brain imaging predictors of fatigue scores after starting a new 

pharmacological treatment in PsA and RA, I will reapply the analysis from Aim 3 to a 

different RA cohort and PsA cohort that had brain MRI before starting a new DMARD. The 

brain metrics will include both morphometric features as well as resting-state FC. Predictors 

of fatigue will be compared between the RA and PsA cohorts who started new 

pharmacological treatments. 

Hypotheses: There will be statistically-significant  predictors of fatigue scores after starting 

a new DMARD in both the RA and PsA cohorts. Some brain metrics will be shared between 

results in RA and PsA due to a common transdiagnostic network of fatigue, but others will 

be distinct due to differences between diseases in which brain metrics have the most 

influence on fatigue outcomes.   
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Aim 5: To predict individual fatigue scores in RA patients six months and one year after 

receiving usual care, a personalised exercise programme, or a cognitive-behavioural 

approach by constructing machine learning regression models that use baseline clinical and 

multimodal neuroimaging data. 

ML enables the use of many different types of factors to predict individual outcomes. For 

fatigue, prognostic factors could include genetic, immune, endocrine, neuroimaging, socio-

demographic, and symptom-based information (Figure 1-2). Prognostic models can 

determine not only whether an individual should receive treatment but also what type of 

treatment is most likely to improve their well-being. Examples of ML models that use 

neuroimaging biomarkers to provide differential predictions include selecting CBT or an 

antidepressant (McGrath et al., 2013) or the optimal combination of two antidepressants 

(Williams et al., 2015). Quantitative rather than qualitative measures allow for cut-off points 

to assess levels of severity, which can then be fine-tuned with data from future studies, as 

has previously been shown in the early prediction of sepsis (Amrollahi et al., 2022). Severity 

cut-off points reflect the dimensionality of variables and move away from limiting 

categorical predictions such as whether a person has chronic fatigue or whether fatigue will 

improve. Instead, a dimensional approach can capture the full spectrum of alterations and 

provide a framework to accommodate comorbidity and sub-threshold conditions or changes. 

Overall, correlates of outcomes might not necessarily have strong prognostic value but can 

contribute to ML models. If properly applied, ML can incorporate multiple types of 

predictors, determine the optimal treatment choice for each individual, and estimate the 

magnitude of change, which is more informative for multidimensional outcomes like fatigue.   

To predict individual fatigue scores in RA patients six months and one year after receiving 

UC, PEP, or CBA, I plan to construct multivariate models. Single modality models will use 

brain morphometric, structural or functional connectivity data separately as well as clinical 

data. A multimodal model will also integrate all data modalities, including treatment 

allocation. I will then externally validate the best-performing model in the RA cohort that 

had only UC to test the reproducibility of the model.   

Hypotheses: I hypothesise that the multivariate model will perform better than chance 

through permutation testing; the neuroimaging modalities will perform differently between 

each other shown by Wilcoxon signed-rank tests; the treatment allocation will have high 

discriminative power on performance based on feature importance; and the performance will 

be similar in the different RA cohorts.   



Introduction|44  

1.9   Chapter contents  

The above introduction described IA, the effect fatigue has on patients with such diseases, 

the role of the brain in fatigue, and the pros and cons of using ML in medicine. In the rest of 

the thesis, I will examine the aims in the previous section to widen the scope of tools and 

knowledge on fatigue in IA as a clinically pertinent topic.   

Chapter 2 describes the datasets from all patient cohorts and outlines the ML and MRI 

preprocessing methods used in subsequent analyses. In Chapter 3 (aim 1), I identify 

neurobiological subtypes of fatigue in RA in patients who received UC and internally 

validate the subtypes using data collected in the same patients after six months. Brain 

associations of subdimensions of fatigue are explored in Chapter 4 (aim 2) by using baseline 

brain imaging and clinical data from a larger RA cohort. Chapter 5 (aim 3) focuses on 

baseline brain imaging predictors of fatigue in RA following fatigue-specific interventions 

using the cohort data from the previous chapter. Specifically, this second RA cohort 

underwent brain MRI before being randomised to PEP and CBA groups. Chapter 6 (aim 4) 

explores a third RA cohort as well as a PsA cohort that underwent brain MRI before they 

started a new DMARD, aiming to identify brain imaging predictors of fatigue after the new 

pharmacological treatment and potentially find a transdiagnostic fatigue network. In Chapter 

7 (aim 5) I employ ML techniques to construct regression models in the UC, PEP, and CBA 

RA patient groups, aiming to predict individual continuous fatigue outcomes using brain 

imaging and clinical data. Chapter 8 integrates the findings from previous chapters, 

discussing their contributions to the current understanding of fatigue. Additionally, I 

describe potential novel treatments based on neuroimaging biomarkers and targeted 

modulation of altered brain networks to improve fatigue. Finally, I reflect on the future work 

that needs to be done before neuroimaging can be implemented in the clinical management 

of fatigue. 
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Chapter 2 General Methods  

2.1 Datasets  

2.1.1 RA study dataset 1 

 The dataset was based on an observational cohort study, which approached RA patients who 

attended a UK regional rheumatology service (Schrepf et al., 2018). Inclusion criteria 

required patients to meet the 2010 American College of Rheumatology/ European League 

Against Rheumatism classification and experience clinically significant fatigue (>3 on the 

Chalder scale) for over three months.  Patients with MRI contradictions such as metal 

implants were not included. The exclusion criteria also encompassed alternative medical 

explanations for fatigue (symptomatic cardiorespiratory disease, a history of cancer in the 

previous five years, unstable thyroid disease, beta-blocker prescription) and left-handedness. 

The patients in the study had multimodal imaging (T1-weighted, fMRI BOLD, DTI) and a 

clinical battery of tests. The full procedure was repeated at a second session, six months later 

with recruitment shown in Figure 2-1. The clinical phenotyping included ESR (Wolfe and 

Pincus, 2001) and CRP (Pepys, 1981) measures of inflammation, fatigue (Chalder Fatigue 

Scale, Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire), pain severity 

(measured from a rating scale of 1 to 10), and fibromyalgia (Wolfe et al., 2011). Venous 

blood was drawn by a trained phlebotomist during routine clinical hours (approximately 9 

a.m.–5 p.m.), immediately processed, and analysed for ESR (Westergren method). CRP was 

also analysed promptly from serum using an ADVIA® XPT immunoassay System 

(Siemens). The study adhered to ethical guidelines with approval from the North of Scotland 

Research Ethics Committee. All participants provided informed written consent following 

the Declaration of Helsinki, which is applicable to all the datasets used in this thesis.  

All neuroimaging was conducted in Aberdeen (Scotland, UK) using a 3T Philips Achieva 

system. The study acquired T2*-weighted (fMRI) single-shot echo planar imaging (EPI) 

sequence [repetition time (TR) = 3000 ms, echo time (TE) = 30 ms, flip angle  = 90°, in-

plane SENSE acceleration 2, 1.88 × 1.88 × 5 mm3 voxels, matrix size 128 × 128 with 30 

slices, field of view (FOV) = 240 mm, and 226 volumes] followed by a T1-weighted fast-

field echo 3D structural scan for normalization (TR = 8.2 ms, TE = 3.8 ms, inversion time 

(TI) = 1018 ms flip angle = 8°, 0.94 × 0.94 × 1 mm3 voxels, matrix size 240 × 240 with 160 

slices and FOV = 240 mm). The images during diffusion-weighted tensor sequences were 

acquired along 16 gradient directions (b = 800 s/mm2, number of excitations = 2) along with 



General Methods|46  

an unweighted (b = 0) image with an overall of 17 volumes. DTI images were recorded as a 

series of 66 axial slices, using a single-shot spin EPI sequence with the following parameters: 

TR =7151 ms, TE = 55 ms, flip angle = 90°, voxel size = 2 x 2 x 2 mm3, matrix size = 224 

x 224 x 132 and FOV = 224.  

The fMRI sequence scan was conducted as a block design of 3 × 3 min ‘on’ periods, 

interspersed by 4 × 30 s rest or ‘off’ periods. The ‘on’ periods consisted of the Paced 

Auditory Serial Addition Test (PASAT) task (Cook et al., 2007), employed to temporarily 

induce mental fatigue. During the task, patients are instructed to listen to a sequence of 

numbers from 1 to 9 and sum consecutive numbers such as third to the fourth, and fourth to 

the fifth. Afterwards, participants respond with a press of a button whenever the sum of two 

numbers is 10. Simultaneously, three alternating numbers are used as a distractor on the 

screen which the participants are asked to focus upon. To assess the task, the number of 

correct responses to the calculation task was recorded.   

 
Figure 2-1: Flow chart of RA study 1. RA patients attending a UK regional rheumatology service 

were approached. Patients who showed interest were then screened for eligibility such as fatigue 

levels and contra-indications to MRI. The patients that were considered in the analysis needed to 

have baseline and follow-up MRI as well as fatigue assessments. 
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2.1.2 RA trial dataset (LIFT)  

The dataset consisted of a subset of participants in a randomised control trial 

(NCT03248518) to test the effectiveness of remotely delivered CBA and PEP compared to 

UC (Martin et al., 2019), which was called “Lessening the Impact of Fatigue in Inflammatory 

Rheumatic Diseases: A Randomised Trial” (LIFT). Participants were randomly allocated to 

receive either of the two treatments or UC alone (1:1:1 ratio) using a computer-generated 

sequence. The recruitment consisted of RA patients attending major secondary care 

rheumatology services in the UK and consent to take part in the trial and MRI sub-study. 

Recruitment for the study began in August 2017 and concluded in September 2019 and all 

scanning took place in Aberdeen, Edinburgh, and Glasgow. To participate in the study, 

patients needed to be at least 18 years old, have provided consent for the parent trial 

randomisation, meet the classification criteria for RA per the 2010 American College of 

Rheumatology/European League Against Rheumatism (ACR/EULAR) guidelines, report 

significant fatigue persisting for over three months and rated ≥6 on a 1-10 Visual Analogue 

Scale during screening, and be considered to have stable RA, as defined by unchanged 

immunomodulatory therapy in the preceding three months. Exclusion criteria included 

alternative medical explanations for their fatigue and MRI contradictions. All participants 

had a similar battery of tests to the RA study dataset, along with T1, T2* (resting-state and 

PASAT task) and diffusion MRI sequences (Table 2-1) at baseline and six months follow-

up after the interventions. Recruitment is displayed in Figure 2-2. Research personnel 

undertaking outcome assessments and scans were blind to treatment allocation.   
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Modality sMRI fMRI Diffusion MRI 

Vender Philips 

Achieva 

Siemens 

PRISMA 

Philips 

Achieva 

Siemens 

PRISMA 

Philips 

Achieva 

Siemens 

PRISMA 

Sequence 3D 

SPACE 

3D MP-

RAGE 

T2* FFE-

EPI 

T2* GRE-

EPI 

SE-EPI SE-EPI 

TR (ms) 8.2 2500 1950 1950 7010 7600 

TE (ms) 3.8 4.37 26 26 90 74 

TI (ms) 1025.7 1100     

FA (deg) 8 7 70 70 90  

FOV (mm) 256 x 256 256 x 256 240 x 240 240 x 240 220 x 220 240 x 240 

Matrix size 256 x 256 256 x 256 128 x 128 128 x 128 96 x 96 120 x 120 

Slices 160 160 30 30 60 69 

Voxel size 

(mm) 

0.94 x 0.94 

x 1 

1 x 1 x 1 1.88 × 1.88 

× 3.5 

1.9 x 1.9 x 

3.5 

2.29 × 2.29 

× 2.3 

2 x 2 x 2 

Slice gap (mm) 0 0 1.5 1.5 0 0 

Volumes   308 308   

Gradient 

directions 

    64 (b=1200 

s/mm2) 

64 (b=2000 

s/mm2) 

Volumes (b=0 

s/mm2) 

    8  

Scan time 5:53 3:45 10:12 10:08 09:27 08:38 

Table 2-1: MRI sequences of the RA trial (LIFT) dataset. Abbreviations: FA, flip angle; fMRI, 

functional magnetic resonance imaging; FOV, field of view; sMRI, structural magnetic resonance 

imaging; TE, echo time; TI, inversion time; TR, repetition time.  
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Figure 2-2: Flow chart of RA trial. The randomised control trial approached patients with 

inflammatory rheumatic disease, including RA. The patients with RA could then also participate in 

the MRI sub-study of this trial. Not all MRI sequences were conducted at baseline. Two patients who 

were enrolled in the sub-study, eligible and consented to MRI but subsequently withdrew from the 

study. One patient completed a T1 sequence but did not complete other sequences due to scanner 

technical issues. The PASAT task sequence was not available for patients scanned in Glasgow while 

other patients did not complete the sequence in Aberdeen and Edinburgh. There were drop-outs in 

follow-up fatigue assessments due to unavailability for clinical visits at 6M (six months) and 1Y (one 

year).    

2.1.3 PsA study dataset  

The study recruited participants with PsA with active disease who fulfilled CASPAR criteria 

(Taylor et al., 2006) and were due to start a new DMARD as part of their standard clinical 

care. Exclusion criteria included any contraindication to MRI or evidence of peripheral 

neuropathy. The study was designed to be part of a series of studies in multiple rheumatic 

diseases to characterise centralised pain. Eligible patients who agreed to participate had to 

attend a clinical research facility in Glasgow at baseline, three and six months. At the 

baseline visit, the patients undertook a clinical assessment, blood samples, questionnaires, 

and an MRI brain scan. Fatigue assessments included the Patient-Reported Outcomes 

Measurement Information System (PROMIS), specifically the Fatigue Fibromyalgia (FM) 

Profile (Kratz et al., 2016). At the three- and six-month visits, only the clinical assessments, 

blood sampling and questionnaire assessments were performed. Recruitment for the study is 

              

           

         

   

              

          

                  
                 

           
       

  

  

         

  

  

                   

  

  

           

  

  

                   
           

                 
                       



General Methods|50  

shown in Figure 2-3. This was a longitudinal study that aimed to investigate centralised pain 

in PsA patients and how it changes with pharmacological treatments.  

The patients undertook scans on a 3 Tesla Siemens PRISMA (Siemens, Erlangen, Germany) 

in Glasgow UK using a 32 channels phased-array head coil. These included a T1-weighted 

fast-field echo 3D structural images for normalization (TR = 2500 ms, TE = 2.88 ms, 

inversion time (TI) = 1070 ms, flip angle = 8°, FOV = 256 mm, with 176 slices, 1 mm iso-

voxel) and a functional images at rest using a T2*-weighted multiband EPI sequence (TR = 

800 ms, TE = 30 ms, flip angle = 52°, FOV = 216 mm, acceleration factor 6, 60 slices, 440 

volumes at 2.4 mm iso-voxel).     

 
Figure 2-3: Flow chart of PsA study. Patients with PsA were approached, confirmed eligible and 

consented. Three patients did not tolerate MRI scanning and while a number of patients did not 

complete follow-up visits at six months to record their fatigue levels. 

2.1.4 RA study dataset 2  

Similar to the PsA study cohort, this study was also designed to characterise centralised pain 

in rheumatic disease patients. Patients in this dataset were recruited as part of a project 

funded by the National Institute of Health (NIH) and run by the University of Michigan 

(Grant code P50AR070600). Patients had to fulfil the 2010 American College of 
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Rheumatology classification. Similar to the PsA cohort, the RA patients in this dataset were 

due to start a new DMARD as part of their standard clinical care but were excluded if they 

had any MRI contraindications or peripheral neuropathy. They also had three- and six-month 

visits in which at least questionnaire measures were recorded, with recruitment shown in 

Figure 2-4. Fatigue was measured using the PROMIS Fatigue-FM Profile. The patients 

undertook compatible scans to ones from the PsA study but on a 3 Tesla Signa Discovery 

MR750 scanner (GE Healthcare) at the University of Michigan using a 32 channels phased-

array head coil. The T1-weighted images were acquired using a spoiled gradient recalled 

echo sequence (TR = 4.9 ms, TE = 2 ms, inversion time (TI) = 1060 ms, flip angle = 8°, 

FOV = 256 mm, with 208 slices, 1 mm iso-voxel). Functional images at rest were acquired 

using the same T2*-weighted multiband EPI sequence as the PsA study cohort (TR = 800 

ms, TE = 30 ms, flip angle = 52°, FOV = 216 mm, acceleration factor 6, 60 slices, 440 

volumes at 2.4 mm iso-voxel).    

 
Figure 2-4: Flow chart of RA study 2. Patients with RA were approached, confirmed eligible and 

consented. A number of patients did not complete follow-up visits at three months to record their 

fatigue levels. 
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2.2 Preprocessing methods  

Preprocessing of functional images was exclusively done using the functional connectivity 

(CONN) toolbox v19 (Nieto-Castanon, 2020), which is based on Statistical Parametric 

Mapping (SPM, https://www.fil.ion.ucl.ac.uk/spm/) and MATLAB (R2019a. The 

MathWorks, Inc., Natick, Massachusetts, United States).  

2.2.1 Realignment   

The procedure co-registers all functional volumes and resamples them to a reference volume 

(first scan) via a b-spline interpolation. This addresses potential susceptibility distortion-by-

motion interactions by estimating the derivatives of the deformation field with respect to 

head movement and resampling the functional data to match the deformation field of the 

reference image. 

2.2.2 Slice-timing correction   

Temporal misalignment between different slices within one volume of the functional data is 

introduced by the sequential nature of the fMRI acquisition protocol. This is corrected by 

time shifting and resampling the functional data using sinc-interpolation to match the time 

in the middle of each acquisition time.  

2.2.3 Outlier-detection  

Tools detect potential outlier scans by thresholding the observed global BOLD signal and 

the amount of subject motion in the scanner that was quantified in the realignment phase. 

Framewise displacement is computed at each timepoint by considering a bounding box 

around the brain and estimating the largest displacement among six control points placed at 

the centre of this bounding box faces. Global BOLD signal change is computed at each 

timepoint as the change in average BOLD signal within the global-mean mask scaled to 

standard deviation units.  
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2.2.4 Coregistration  

Functional data is co-registered to the structural data to improve localisation. This is done 

by estimating an optimal affine transformation between the reference functional image 

(mean BOLD signal) and the reference structural image (T1-weighted volume) that 

maximizes the mutual information between the two, storing this information in the functional 

image voxel-to-world mapping header information without resampling the data.  

2.2.5 Segmentation and normalization (MNI-space)  

Many analysis pipelines use a reference coordinate system. The most used reference space 

is the Montreal Neurological Institute and Hospital (MNI) 152 template based on an average 

of 152 people (Mazziotta et al., 1995). Functional and anatomical data are normalized into 

standard MNI space and segmented into grey matter, white matter, and CSF tissue classes 

using a unified segmentation and normalization procedure. This procedure iteratively 

performs tissue classification, estimating the posterior tissue probability maps from the 

intensity values of the reference functional/anatomical image, and registration, estimating 

the nonlinear spatial transformation best approximating the posterior and prior tissue 

probability maps, until convergence. Direct normalization applies this unified segmentation 

and normalization procedure separately to the functional data, using the mean BOLD signal 

as a reference image, and to the structural data, using the raw T1-weighted volume as a 

reference image. Both functional and anatomical data are resampled to a default bounding 

box, with 2mm isotropic voxels for functional data and 1mm for anatomical data, using 4th-

order spline interpolation. 

2.2.6 Smoothing  

Functional data is smoothed using spatial convolution with a Gaussian kernel of 8mm full 

width half maximum, in order to increase the BOLD signal-to-noise ratio and reduce the 

influence of residual variability in function and anatomy across subjects.  

2.2.7 Subject-space preprocessing 

Alternative to MNI-based preprocessing, the data was also pre-processed in subject-space 

using the outputs the Freesurfer software package v6.0 (http://surfer.nmr. 
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mgh.harvard.edu/), with technical details described elsewhere (Fischl, 2012). Pre-processing 

included motion correction, intensity normalization, Talairach registration, skull stripping, 

subcortical segmentation and labelling, segmentation of white matter, delineation of grey 

matter/white matter and grey matter/CSF boundaries, automated topology correction, 

surface deformation, and cortical surface reconstruction. The reconstructed surfaces of each 

subject were visually inspected for segmentation inaccuracy, such as pial and white matter 

boundary errors, and manually corrected with subsequent repeated processing. Each 

subject’s cortical surface was parcellated into 34 gyral-based ROIs per hemisphere according 

to the Desikan–Killiany atlas (Desikan et al., 2006). Surface area (in mm2), cortical thickness 

(in mm) and cortical grey matter volumes (in mm3) were calculated at the ROI level of each 

subject. Eight subcortical ROIs per hemisphere were segmented using a probabilistic atlas 

(Fischl et al., 2002), and their volumes were extracted. These maps could then be used in the 

CONN toolbox (Figure 2-5).  
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Figure 2-5: Subject-space preprocessing pipelines.  The pipeline includes preprocessing of 

structural (T1-weighted) scan through FreeSurfer software (recon-all command). Its outputs are then 

used by functional connectivity software (CONN toolbox) and structural connectivity software (FSL) 

to extract matrices from DK atlas ROIs in subject-space without normalization. Abbreviations: CSF, 

cerebrospinal fluid; DK atlas, Desikan-Killiany atlas, ROIs, regions of interest. 
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2.2.8 Denoising  

 After the functional data has been pre-processed, the BOLD signal often still contains a 

considerable amount of noise or non-neural variability due to a combination of 

physiological, outlier, and residual subject-motion effects. These residual factors are 

particularly problematic in the context of FC analyses because they introduce very strong 

and noticeable biases in all FC measures.  Because of this, conventional preprocessing steps 

in the context of FC have favoured considerably more conservative strategies than those 

often found in activation-based fMRI analyses, focusing on eliminating or at least 

minimizing the influence of these residual noise components in the BOLD signal. These 

additional strategies are often framed under the general umbrella term of denoising. They 

would include linear regression of potential confounding effects in the BOLD signal and 

temporal band-pass filtering.   

Factors that are identified as potential confounding effects to the estimated BOLD signal are 

estimated and removed separately for each voxel and for each subject and functional 

run/session using ordinary least squares regression to project each BOLD signal timeseries 

to the sub-space orthogonal to all potential confounding effects. An anatomical component-

based noise correction procedure (CompCor) would remove the noise components from 

cerebral white matter and CSF areas (Behzadi et al., 2007). They are defined by a one-voxel 

binary erosion step to the masks of voxels with values above 50% in white matter and CSF 

posterior probability maps. Within each area five potential noise components (Chai et al., 

2012) are estimated: the first computed as the average BOLD signal, and the next four 

computed as the first components in a Principal Component Analysis of the covariance 

within the subspace orthogonal to the average BOLD signal and all other potential 

confounding effects. The regression would also remove subject-motion parameters (Friston 

et al., 1996), as well as identify outlier scans or scrubbing (Power et al., 2014).    

Temporal frequencies below 0.008 Hz or above 0.09 Hz are removed from the BOLD signal 

in order to focus on slow-frequency fluctuations while minimizing the influence of 

physiological, head motion and other noise sources. Filtering is implemented using a discrete 

cosine transform windowing operation to minimize border effects, and performed after 

regression to avoid any frequency mismatch in the nuisance regression procedure (Hallquist 

et al., 2013). The denoising procedure can be run for both the MNI-space and the subject-

space pipelines in the CONN toolbox (Figure 2-6).  
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Figure 2-6: MNI-and subject-space processing of functional imaging data. A schematic displaying the differences between MNI-space and subject-space 

preprocessing and the common denoising pipeline in the functional connectivity (CONN) toolbox (Morfini et al., 2023).  
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2.2.9 Diffusion Tensor Imaging (DTI)   

Diffusion data were pre-processed with the FMRIB Software package (FSL v6.0 and FSL 

Diffusion Toolbox (FDT) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The pre-processing 

procedure included skull stripping, correcting for eddy current distortion and head 

movement, using affine registration of each diffusion-weighted image to the b=0 image, 

calculating FA, estimating the probabilistic distributions of fiber orientations from each 

voxel, using the GPU version of BEDPOSTX tool (Hernandez et al., 2013), and performing 

probabilistic tractography to estimate the connectivity probability among 84 cortical and 

subcortical regions using the PROBTRACKS tool (Behrens et al., 2007). Within each of the 

seed regions, 5000 fiber streamlines per voxel were initiated from the probability distribution 

of the principal fiber direction (estimated by BEDPOSTX) with fiber tracking parameters of 

0.5 mm step size, ±80° curvature threshold, and tracking stopped after a maximum of 2000 

steps. A white matter waypoint mask was provided to consider only streamlines that pass 

through. The connectivity probability between seed region i and target region j was then 

calculated as the ratio of the number of fibers passing through target region j to the total 

number of fibers from seed region i, which yields an 84X84 asymmetrical SC matrix for 

each subject, based on a 84-ROI brain atlas (Figure 2-5). 

2.3 General Linear Model (GLM)    

Linear regression is a simple and powerful method to solve regression problems (Hastie et 

al., 2009). Linear regression is defined by equation (2.1), where y denotes the target outcome 

variable, x the input features, β0 the intercept (value of y when x=0), β the slope coefficients 

of the input features x, and ϵ the error term also called the residual (Figure 2-7).  

 y =  β0  +  β1x1  +  β2x2  +  … + βnxn +  ϵ (2.1)  

 
Figure 2-7: Elements of linear regression.   
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Given a simple linear regression between two variables, such as using height to predict 

weight), the GLM expands this framework so that each of the four terms (x, y, β0, β) can 

represent sets of variables rather than just single ones (Mardia et al., 1980). Consequently, 

the GLM defines a multivariate linear association between a set of explanatory measures (X) 

and a set of outcome measures (Y). In FC analyses, an outcome variable y[n] typically 

comprises a row of FC values from the n-th subject, whereas an explanatory variable x[n] 

consists of a row of behavioural, demographic, or group variables for that same subject 

(Nieto-Castanon, 2020). The matrix B captures the associations between the explanatory and 

outcome measures while the error term accounts for factors predictive of the outcome Y, 

unexplained by the explanatory measures of X. The GLM makes assumptions that the error 

term is independent across individuals and normally distributed, with a mean of zero and an 

arbitrary variance-covariance structure across outcome measures. As matrix B remains 

constant across subjects, having a sufficient dataset enables us to compute an unbiased 

estimate of B through an Ordinary Least Squares solution (2.2).   

 𝐵 ̂ = (𝑋𝑡𝑋)
−1
𝑋𝑡

 (2.2)  

GLMs specify and evaluate hypotheses of the form "CBM'=D", where users define arbitrary 

contrast matrices C, M and D. Because each column in matrix C corresponds to the same 

column in X, it is possible to formulate hypotheses that target specific combinations of 

explanatory measures X. The same principle applies to matrix M and its correspondence to 

outcome columns in Y to hypothesise about different combinations of Y. Finally, D is set to 

zero to test the null hypothesis within the explanatory and outcome measures.  

When working with the C, M and D matrices, the hypothesis CBM'=D is tested using the 

Wilks' Lambda statistic. The statistic compares the ratio of the residuals between the null-

hypothesis model and an unconstrained model, with values spanning from 0 and 1. The 

resulting lambda value would then be set against the Wilks' Lambda distribution, defined as 

the expected lambda values if the null hypothesis was true, and accept the alternative 

hypothesis if the value is over a predetermined threshold of statistical significance (e.g., p < 

0.001). The functional CONN toolbox can implement this framework to apply an array of 

classical analyses, by using GLMs and specifying the X and Y measures as well as the C 

and M matrices (Table 2-2).  

GLMs can be used as predictive models, which here we define as models that estimate a 

mapping function for a future outcome, given the input data recorded at baseline. In the 
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following chapters, GLMs will be mostly used as univariate models that use single imaging 

metrics as a Y column to identify the strongest independent predictors of fatigue in IA 

patients. As X columns, the outcome along with confounding factors like age and gender 

will be used within a C matrix, which controls for confounders while setting the outcome as 

the effect of interest. Such an approach is frequently used to identify predictors of clinical 

outcomes using neuroimaging data (Stoeckel et al., 2014). For example, one study used this 

framework to predict symptom recovery in psychiatric inpatients using baseline FC between 

the amygdala and frontal brain regions, while controlling for age, sex, and length of stay 

(Venta et al., 2018). Another study predicted the response to transcranial direct current 

stimulation for memory improvement in older adults using baseline FC between the 

hippocampus and the temporoparietal cortex (Antonenko et al., 2019). To cope with the false 

positive rate of the multiple comparisons that need to be made across imaging metrics, the 

false discovery rate (FDR) approach is commonly applied in neuroimaging studies 

(Genovese et al., 2002). It considers the proportion of false positives in all the rejected tests 

while assuming independence between tests (Benjamini and Hochberg, 1995). The FDR 

approach is flexible as it can be used with any valid statistical test and results in increased 

power compared to other approaches like the family-wise error rate.  

Term Definition Example 

Subject-

effects 

explanatory 

measures (X 

columns) 

Subject-level covariates (e.g., age, IQ, treatment, placebo, 

behavioural outcome). Additionally, a variable containing the 

value 1 for every subject is used to control for constant effects 

across all subjects. 

Between-

subjects 

contrasts 

explanatory 

measures to be 

evaluated (C 

matrix) 

A vector with as many elements as explanatory measures, 1’s for 

effects of interest and 0's for all other elements (e.g., treatment and 

placebo, a [1, 0] contrast specifies evaluating the treatment effect 

only. A [1, -1] contrast compares the effect of treatment to that of 

placebo. 

Conditions outcome measures 

(Y columns) 

A combination of choosing which first-level functional 

connectivity measures, and which experimental conditions (if 

applicable), we would like to evaluate.  

Between-

conditions 

contrasts 

Outcome measures 

to be evaluated (M 

matrix) 

Similar to between-subject contrasts, but across conditions instead 

of across-subject-effects (e.g., pre- and post-intervention functional 

connectivity). 

Table 2-2: General linear model design in the functional connectivity CONN toolbox.   
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2.4 Prognostic model building and evaluation 

2.4.1 Bias-variance trade-off  

Several challenges arise when the goal is to build a model that can best predict an outcome 

on unseen data given a complex relationship between the outcome and the predictors. Simple 

linear models make strong assumptions about the relationship between predictors and 

outcomes, which facilitates the learning and understanding of the input-output mapping 

function but increases model bias (Hastie et al., 2009). In this context, bias refers to a model's 

inability to capture the true relationship between input and output variables. High-bias 

models typically underfit the data, which indicates they perform poorly on problems that do 

not fulfil the algorithm's simplifying assumptions. To reduce this bias, one can add more 

predictor variables that improve model accuracy, lean more complex data by expanding the 

training sample size, or employ more flexible algorithms that make fewer assumptions and 

can learn non-linear relationships (Greener et al., 2022).     

Model bias manifests in training performance, while model variance—predictions in new 

data. High variance indicates unreliable models that heavily rely on the training data, 

including the number and types of parameters, rather than effectively extracting the 

underlying patterns. Minor changes in training data significantly impact the output of high-

variance models, limiting their ability to generalise to new observations. Therefore, variance 

describes how the input-output mapping function adapts to different training datasets. To 

reduce model variance, one can reduce the number of predictor variables, augment the 

training data diversity to balance model complexity or use simpler models like linear 

regression.   

High-bias models offer consistent but inaccurate predictions on average, while high-variance 

models provide inconsistent but accurate predictions on average. Model bias and variance 

are interdependent; increasing bias reduces variance, and increasing variance reduces bias. 

The trade-off between these two characteristics requires an ideal model to strike a balance 

between a reasonable amount of both bias and variance (Figure 2-8). The choice of 

algorithms and their configuration can adjust the trade-off to align with the underlying 

problem. In practice, real data does not allow us to directly calculate the bias and variance 

due to the unknown nature of the data’s underlying mapping function. Nevertheless, the 

concept of the bias-variance trade-off informs why ML algorithms exhibit certain behaviours 

and offers guidance for improving their performance.  
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Figure 2-8: Bias-variance trade-off based on model fit. The figure depicts the fits of polynomial 

regression models on synthetic data using first-degree (underfit), tenth-degree (overfit), and second-

degree (regular fit) polynomials. These plots act as examples of high bias (underfit) and high variance 

(overfit) models and the necessity for a trade-off between them (regular fit). The figure was created 

in R Studio (code: https://github.com/krisbg95/LIFT/blob/main/ML/Bias_variance.R).     

2.4.2 Feature selection 

Feature selection is the process of reducing the number of input variables when developing 

a predictive model. It addresses the “curse of dimensionality”, the exponential growth in 

computational cost as the dimensionality of data increases (Venkatesh and Anuradha, 2019). 

Feature selection reduces dimensionality by removing irrelevant or redundant features to 

select the best subset of features in a certain prediction problem, leading to an improvement 

in the learning performance and a reduction of the computational cost. Feature selection 

algorithms are divided into three categories: filter, wrapper, and embedded methods 

(Pudjihartono et al., 2022).   

Filter methods perform feature selection independently from the ML algorithm. They 

evaluate the statistical relationship between each input variable and the target variable and 

then select the variables with the strongest relationship to the target variable. The choice of 

statistical measures depends on the data type of both the input and output variables. Filter 

methods can be fast and effective in improving learning performance and have a low risk of 

overfitting. However, they ignore the interaction between features due to their independence 

from the prediction model (Bommert et al., 2020). Wrapper methods rely on the ML 

algorithm performance to select the best subset of features. They create many models with 

https://github.com/krisbg95/LIFT/blob/main/ML/Bias_variance.R
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different subsets of input features and select those features that result in the best-performing 

model according to a performance metric. Since they assess the model during the selection 

process, they can detect feature dependencies and consequently generalize better than filler 

methods. The drawbacks of wrapper methods are that they are more likely to overfit the data 

because they involve training ML models with different combinations of features and require 

both higher computational power and longer training times. Finally, some ML algorithms 

perform feature selection automatically as part of learning the model. These models use 

embedded feature selection and include regularization algorithms like lasso and elastic net 

regression, which introduce additional constraints into the optimization of a predictive 

algorithm that bias the model toward lower complexity (fewer coefficients). Instead of 

additional constraints, random forest models sample both observations and features and keep 

only a random subset of them to build the tree. This sampling results in all trees looking at 

different information to make their decisions, which reduces the correlation between the 

different returned outputs and potentially improves the learning performance in the process.   

Feature selection in this project was performed using Relief F algorithm. Relief algorithms 

are filter feature selection methods that rank features according to how well they discriminate 

an observation from the neighbour of a different class. Relief F is a more recent version 

which addresses more noisy data by using multiple neighbours (Figure 2-9), while the 

regression version differentially weights each observation based on their distance from the 

other observations. As a filter method, it offers faster processing than other feature selection 

methods and functional independence that allows integration with any modelling algorithm 

(Urbanowicz et al., 2018). This is crucial, given that there's no one-size-fits-all modelling 

algorithm, particularly in clinical applications (Watson et al., 2019). Relief algorithms can 

adapt to feature sets of different sizes, as they don't fixate on identifying an optimal minimum 

subset size. While feature construction is another approach for dimensionality reduction, 

where new features are defined as a function of two or more features, it alters the original 

features to the point of making them unrecognizable, posing challenges for downstream 

model interpretability. Unlike other individual evaluation methods that do feature weighting, 

Relief algorithms can capture feature dependencies or interactions. Instead of exhaustively 

searching through feature combinations, they employ the concept of nearest neighbours to 

derive feature statistics that indirectly address interactions. Relief algorithms possess the 

advantages of being nonmyopic, providing estimates of feature quality in the context of other 

features, and non-parametric, making no assumptions about population distribution or 

sample size. The ReliefF algorithm also estimates values that are missing in a dataset based 



General Methods|64  

on the values of existing data points.  On the flip side, Relief algorithms don't address feature 

redundancies, selecting all relevant features regardless of strong correlations.   

 
Figure 2-9: Relief feature selection. The process of Relief algorithms consists of starting with p 

different features and a binary target. Then, we’re starting by initializing a weights vector of length 

p with all 0s. Then, for user-defined m out of n observations, we (1) draw a random example from 

our data, say from class 0, (2) find the closest example in terms of distance, which belongs to the 

same class (called near hit), (3) take the closest point, which belongs to the opposing class (called 

near-miss), (4) update the weight vectors for m iterations and p features. ReliefF algorithm 

considers user-defined k nearest hits and nearest miss neighbours instead of one. This adds weight 

estimate reliability, concretely in noisy data. Additionally, the parameter m is equalized to the 

number of observations n, so all observations in the dataset are selected to be the target observation 

once, which also reliably increases the weight estimates. The figure was created using Inscape 

(2020), adapted from Urbanowicz et al. (2018).    

2.4.3 Machine learning algorithms   

The number of different ML algorithms continues to grow, as computing resources continue 

to improve, and new datasets are acquired. Deep learning is at the forefront of this expansion 

but due to its complexity and lower interpretability, it requires much larger datasets than the 

neuroimaging datasets of interventions in IA, described in Chapter 2.1. The final aim of this 

project was to predict individual fatigue scores in RA patients six months and one year after 

receiving usual care or fatigue-specific treatments using baseline neuroimaging and clinical 

data. Therefore, the selected regression models needed to: (1) use characteristics of the brain 

that are associated with fatigue (e.g., functional and structural connectivity), (2) incorporate 

treatment allocation and clinical data, and (3) identify which predictors were most important 

for the model predictions. I selected models with different underlying methods that can 
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differently detect linear and non-linear relationships (Table 2-3), with similar selections 

used in studies using brain imaging to predict age (Sone and Beheshti, 2022) and depression 

(Lee et al., 2022) or using clinical data to predict outcomes in IA (Madrid-Garcia et al., 

2023). These will be described below and include regularized linear regression, three-based 

methods (random forest, gradient boosting), support vector regression, and the Bayesian 

method of Gaussian process regression.    

Algorithm 

Class 

Examples Description 

Classic 

regression 

Linear regression Linear regression models the relationship between one or more 

features and a continuous outcome by fitting a regression line 

that minimizes the sum of all the residuals, which are the 

distances between each feature in the training data and the line 

being fitted to model them.  

Regularized 

regression 

Lasso, ridge 

regression, elastic net 

An extension of the classic regression algorithms in which a 

penalty is imposed on the fitted model to reduce its complexity 

and decrease the risk of overfitting. 

Tree-based Classification and 

regression trees, 

random forest, 

gradient boosted trees 

Decision trees are a sequence of “if-then-else” splits that are 

derived by iteratively separating the data into groups based on 

the relationship of the features with the outcome. Random forest 

and gradient boosted trees are example of ensemble tree models. 

Ensemble models combine the output of many trained models to 

estimate an outcome.  

Support 

vector 

machines 

Linear, polynomial, 

radial basis kernel 

Represents the data in a multidimensional feature space and then 

fits a “hyperplane” that best separates the data based on the 

outcomes of interest. 

Bayesian Naive Bayes, 

Gaussian Process 

Regression 

 

Use Bayes’ theorem of conditional probability, which is the 

probability that something will happen given that something else 

has already occurred. Bayesian algorithms work by iteratively 

updating the probability of an outcome (or posterior belief) 

given new data. 

Table 2-3: Description of prediction algorithm types. The table is adapted from Sanchez-Pinto et 

al. (2018).   
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Linear regression overfits data when the number of variables surpasses the number of 

observations and inflates the variance of the model. Regularization techniques like ridge and 

lasso address this by shrinking the estimated coefficients towards zero, which in effect 

reduces the variance and performs feature selection (Hastie et al., 2009). Ridge regression 

shrinks coefficients if they are too far from zero, thus enforcing them to be small in a 

continuous way, which decreases model complexity while keeping all variables in the model. 

Alternatively, the lasso regression forces some of the coefficient estimates to be exactly 

equal to zero, discarding predictors with low contributions to the model. Both models use 

tuning parameter λ to enforce their penalties on the coefficients. Due to how they enforce 

their penalties, the lasso regression is optimal when only a few predictors influence the 

outcome while the ridge regression is superior when most predictors impact the outcome. 

The two approaches tackle correlated predictors in different ways. In ridge regression, the 

coefficients of correlated predictors are similar while in lasso regression one of the correlated 

predictors has a larger coefficient, while the rest are zeroed. Elastic net uses a combination 

of both approaches by finding the ridge coefficients, then applying a lasso-type shrinkage 

that doubles the amount of shrinkage, and finally rescales the coefficients to improve the 

prediction performance (Figure 2-10). Therefore, the elastic net adds another tuning 

parameter of α that sets the mixing between ridge (α = 0) and lasso (α = 1) in addition to λ. 

Elastic net tackles multicollinearity, and it can generally outperform both lasso and ridge 

regression under situations with high-dimensional data (Sirimongkolkasem and Drikvandi, 

2019).    

 
Figure 2-10: Regularisation techniques. The figure displays the penalty-constrained regions and 

coefficients for ridge, lasso, and elastic net regression in the context of the residual sum of squares 

(RSS). It visualises how the lasso penalty can force coefficient estimates to be exactly zero compared 

to the ridge penalty and how the elastic net is a mixture of the two. The figure is adapted from Qazi 

(2021). 
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Support vector machines (SVMs) are ML algorithms that perform classification by 

identifying an optimal decision boundary, known as a hyperplane, which effectively 

separates two classes in feature space. SVMs use support vectors, observations that lie 

closest to the hyperplane, while ignoring those farther away (Figure 2-11A). SVMs then 

maximize the margin, the distance between the hyperplane and the support vectors, while 

minimizing the classification error. However, because SVMs rely on a subset of 

observations, noise affecting those observations is likely to compromise the hyperplane for 

the majority of the data. To address this, soft margins are introduced, which relax conditions, 

allowing some points to fall within the margin. This is controlled by the tuning parameter C, 

where lower values result in less penalisation of samples within the margins. When a linear 

boundary proves insufficient, you can expand feature space to a higher dimension, leading 

to a nonlinear boundary in the original space (Figure 2-11C). Kernels can perform this 

expansion, such as the radial kernel, which computes the similarity or how close 

observations are to each other. The radial kernel is optimized by the tunning parameter γ, 

where a large value encompasses a bigger range within which two observations can be 

considered similar. Support vector regression (SVR) extends SVMs to regression tasks 

(Figure 2-11B), fitting a hyperplane within a specified margin of tolerance ε to minimize 

errors beyond ε. Unlike linear regression, which aims to minimize overall error, SVR focuses 

on minimizing errors caused by support vectors outside the margin. SVMs and SVRs excel 

with relatively few examples, as they only consider support vectors, a strength compared to 

other algorithms.      
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Figure 2-11: Support vector methods. Panel A displays a support vector machine, which 

identifies a hyperplane (H) and a maximal margin that jointly separate two classes. Comparatively, 

support vector regression (panel  B) minimizes the difference between observed and predicted 

values, whose gradient goes from dark to light blue as the numerical values decrease. Support 

vectors in both panels are indicated by black circles but while they are located on the margin in the 

support vector machine, support vectors may be outside of the margin of tolerance in support 

vector regression. Panel C displays that if two classes of objects cannot be linearly separated within 

a feature space X, a non-linear mapping ɸ can project the data points into a higher-dimensional 

space H in which a linear hyperplane separating the two classes might be found. Adapted from  

Rodriguez-Perez and Bajorath (2022). 

Instead of support vectors, decision tree classifiers identify a decision boundary by 

iteratively dividing the feature space into subregions. A decision tree, consisting of a root 

node, hidden nodes, and terminal nodes, specifies an optimal feature and corresponding 

threshold that divides the feature space into two subregions for each root and hidden node 

of the tree. It’s computationally infeasible to consider every possible partition of feature 

space, so a top-down approach is used where at each step, the best split is made at the current 

step, rather than forecasting for a better tree in some future step. The decision tree is 

recursively constructed until all training samples in a subregion have the same class or the 
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minimum number of samples per subregion is reached. Regression trees work similarly 

where the average of the values found in the samples represented by the terminal node is 

assigned to the sample. However, decision tree models are sensitive to noise and prone to 

overfitting. Random forests (RFs) address these limitations by building ensembles of 

classification or regression trees. RFs build decision trees on bootstrapped training samples 

and each time a split in a tree is considered, a random selection of predictors is chosen as 

split candidates from the full set of predictors. A fresh selection of predictors is taken at each 

split, where typically the number of predictors considered at each split is approximately 

equal to the square root of the total number of predictors (e.g., 4 out of 12). Through this 

process, RFs decorrelate the trees, reducing the variance as we average across tree 

predictions, thereby increasing the generalization capabilities. Finally, it is possible to rank 

each feature with respect to its importance for the task by identifying the features that are 

most often selected.  

In boosting, trees are grown sequentially: each tree is grown using information from 

previously grown trees. You update your model by adding in shrunken version of the new 

tree. The shrinking factor (λ) is what you tune for. Given the current model, we fit a decision 

tree to the residuals from the model. We then add this new decision tree into the fitted 

function to update the residuals. Each of these trees can be rather small, with just a few 

terminal nodes, determined by the parameter d in the algorithm. By fitting small trees to the 

residuals, we slowly improve the model in areas where it does not perform well. The 

shrinkage parameter λ slows the process down even further, allowing more and differently 

shaped trees to reduce the residuals. The number of trees B: Unlike random forests, boosting 

can overfit if B is too large, although this overfitting tends to occur slowly if at all. Very 

small λ can require using a very large value of B to achieve good performance. The number 

of splits d in each tree controls the complexity of the boosted ensemble. Often d = 1 works 

well, in which case each tree is a stump, consisting of a single split and resulting in an 

additive model. More generally d is the interaction depth, and controls the interaction order 

of the boosted model, since d splits can involve at most d variables. In terms of variable 

importance for bagged/RF regression trees, we record the total amount that the residuals are 

decreased due to splits over a given predictor, averaged over all trees.   
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Figure 2-12: Tree-based methods. Panel A shows the random forest approach in which multiple 

decision trees are constructed on bootstrapped samples of all the data with subsamples of all the 

available features in each tree. The predictions of each tree are averaged, reducing the variance of 

the final model and reducing the chance of overfitting the data. Panel B displays gradient boosting 

in which the constructed trees are not as independent as they are in a random forest model. Instead, 

it starts by building a decision tree and assigning equal weights to all the data points but then increases 

the weights for all the points which are not fitted and lowers the weight for those that are easily fitted 

by using the residuals. A new decision tree is made for these weighted data points. The decision trees 

are normally only a stump (a tree with only one split), whose predictions are then combined into an 

ensemble prediction. Adapted from Rajesh et al. (2023).  

Bayesian algorithms solve classification or regression problems by predicting the most 

probable hypothesis, given the input data. They produce non-parametric models, which  

assume that the data distribution cannot be defined in terms of a finite set of parameters. 
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Unlike many popular supervised ML algorithms that learn exact values for every parameter 

in a function, the Bayesian approach infers a probability distribution over all possible values. 

Given a linear function (y = wx + ϵ), the Bayesian approach would specify a prior 

distribution, p(w), on the parameter w, and relocate probabilities based on the observed data 

using Bayes’ Rule (2.3) explained by (2.4).     

 𝑝(𝑤|𝑦, 𝑋) =  
𝑝(𝑦|𝑋,𝑤)𝑝(𝑤)

𝑝(𝑦|𝑋)
 (2.3)  

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 (2.4) 

The updated distribution p(w|y, X), called the posterior distribution, thus incorporates 

information from both the prior distribution and the dataset. Gaussian processes regression 

is a Bayesian approach that begins with a prior distribution and updates this as data points 

are observed, producing the posterior distribution over functions (Figure 2-13). We select a 

prior distribution over the function f and condition this distribution on our observations, 

using the posterior distribution to make predictions. Therefore, compared to linear 

regression, Gaussian process regression does not match its target function to a specific model 

(e.g., linear, quadratic, or cubic) but instead tries to infer how all the measured data is 

correlated. Given a set of training data (x, y), the Gaussian process regression model uses 

Bayesian inference to learn the distribution of f that is most likely to have generated the data. 

This involves computing the posterior distribution of f given the data, defined by (2.5):     

 𝑝(𝑓|𝑥, 𝑦)  =  
𝑝(𝑦|𝑥, 𝑓)𝑝(𝑓)

𝑝(𝑦|𝑥)
 (2.5)  

 

where (y|x,f) is the likelihood of the data given the function f, p(f) is 

the prior distribution of f, and p(y|x) is the marginal likelihood of the 

data 

 

Once the posterior distribution of f has been learned, the model can make predictions at new 

test points x* by computing the posterior predictive distribution (2.6).  

 𝑝(𝑓∗|𝑥∗, 𝑦, 𝑥)  =  ∫ 𝑝(𝑓∗|𝑥∗, 𝑓)𝑝(𝑓|𝑦, 𝑥)𝑑𝑓 (2.6)  

The Gaussian process regression can also use kernels where for each input variable, the 

kernel function performs a transformation and takes the summation of the transformed 
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values. The distance between each pair of observations is then simultaneously determined 

by the nonlinear transformed difference across all features (Guan et al., 2019).  

 
Figure 2-13: Samples from a Gaussian process prior and posterior. The prior shows samples 

from a Gaussian process prior with a zero-mean, shown as a blue line. The posterior plots each of 

the random predictive, finite samples as grey curves. Training data points are overlayed, along with 

true response at the x locations as a blue line. The predictive mean is in black, and 90% quantiles in 

dashed-red, are added as thicker lines. Adapted from Gramacy (2020).  

In summary, ML algorithms predict labels or continuous outcomes and handle high-

dimensional data through different methods such as regularisation, support vectors, decision 

trees, sequential learning (boosting), and posterior distributions. Some of these methods can 

use kernels to expand feature space to a higher dimension and utilize non-linear relationships 

between features. All of the mentioned ML algorithms require some form of tunning, where 

certain parameters need to be optimised and have both pros and cons for their use (Table 

2-4).  
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Algorithm 

Class 

Hyperparameters Advantages (+) and disadvantages (-) 

Elastic net alpha  = weighting between ridge (0) and 

lasso (1) penalties 

lambda =  w    ti    f          f      

     ti               f   ti   

+ suitable for small datasets   

+ explainable and interpretable   

+ can produce sparse models 

- does not account for non-linear 

relationships 

Support 

vector 

regression 

C = penalisation of samples within the 

margins   

gamma = range of influence of kernel over 

observations (radial kernel) 

+ robust to overfitting and outliers 

+ can provide both linear and non-linear 

solutions   

+ low generalization error 

- results vary based on kernel selection  

- harder to explain and interpret  

Random 

forest 

Number of branches after each split 

Number of variables sampled at each split 

+ handles multicollinearity and non-linear 

relationships 

+ easier to tune than Gradient Boosting  

+ easy to parallelise   

- need larger datasets 

- training complexity can be high 

Gradient 

boosting 

Number of trees   

Shrinking factor  

Tree depth  

Minimum number of observations in 

terminal nodes  

+ handles multicollinearity and non-linear 

relationships 

+ performs well with large number of 

features 

- harder to tune due to many hyperparameters  

- small changes in feature set can greatly 

affect the models  

Gaussian 

process 

regression 

gamma = range of influence of kernel over 

observations (radial kernel) 

+ suitable for small datasets  

+ can capture non-linearity   

+ explainable and interpretable 

+ can quantify the uncertainty of the 

prediction  

- cannot handle high-dimensional data as 

well as others 

Table 2-4: Overview of advantages and disadvantages of selected machine learning algorithms. 

The table is based from Juarez-Orozco et al. (2018). 
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The major attributes to consider when selecting algorithms are interpreting how the model 

generates predictions, handling multicollinearity and a large number of features, being robust 

to overfitting and outliers, and incorporating both linear and non-linear associations. Each 

of the algorithms differently balances these attributes while requiring lower training 

complexity and sample size relative to deep neural networks. Deep learning tends to have 

too many parameters or a structure that is too complex to be effectively trained on the 

described IA datasets because will likely result in high variance as there is not enough data 

to capture the proper patterns with so many parameters. The selected algorithms in this 

project are better equipped at handling smaller datasets and are the following:  

• Elastic net (linear): a linear regression with an imposed penalty to reduce model 

complexity and decrease the risk of overfitting, making it more interpretable and 

suitable for small datasets.  

• Support vector regression: a model that projects data in multidimensional space to 

find the best hyperplane to predict outcomes which makes it robust to outliers and 

produce low generalisation error.   

o Linear kernel  

o Radial (non-linear) kernel   

• Gaussian process regression: a model that updates the probability of an outcome 

given new data, which makes it interpretable and suitable for small datasets 

o Linear kernel  

o Radial (non-linear) kernel   

• Random forest (linear and non-linear): a model that combines the outputs of many 

“if-then-else” tree models that can handle collinearity between features.  

• Gradient Boosting regression (linear and non-linear)  

o gbm: similar to random forest but where each subsequent tree model focuses 

on minimizing the errors made by the previous models. 

o xgbDART: incorporates dropout regularization to gbm, in which it randomly 

drops a subset of trees during each iteration, which helps to prevent 

overfitting and can lead to better generalization but requires more tuning due 

to additional hyperparameters    

Beyond selecting ML algorithms that suit the data, methods of evaluating the models need 

to be robust to overfitting and give reliable estimates of error.  
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2.4.4 Model evaluation   

After statistical models learn the mapping function between the input and output, they 

predict the training observations used to define the function and estimate the training error 

with the actual observations. However, we evaluate predictive models by predicting 

observations that were not used in their training and computing the test error with their actual 

values. The training error rate often differs and underestimates the test error. The best 

solution of a large independent test set to externally evaluate model performance is often not 

available. Instead, we internally evaluate the model where the available data is divided into 

a set for training the model and a set for validating its performance model, with multiple 

potential strategies to construct the two sets (Figure 2-14). 

 
Figure 2-14: Strategies to evaluate models on predictive performance. The figure displays how 

models are built on training sets and evaluated on validation sets. Internal evaluation is used when a 

large independent dataset is not available. Split sample is the simplest approach where you randomly 

split part of the data to fit the model and then use the rest of the data to calculate model performance 

but repeat the process multiple times and aggregate the results. K-fold cross-validation is when you 

randomly divide the data into K equal-sized parts, leave out part k, fit the model to the other K − 1 

parts, and then obtain predictions for the left-out kth part. In leave-one-out cross-validation, also 

called the jackknife procedure, only one observation is left out. Finally, the bootstrap to evaluate 

model performance resamples with replacement from the available data to create multiple datasets 

with the same size. These samples are used to evaluate the model and, at each iteration, use the non-

sampled observations as the independent dataset for evaluating the model fitted with the bootstrap 

sample. Sourced from Guisan et al. (2017). 
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The drawbacks of internal validation are that the estimate of the test error can be highly 

variable, depending on precisely which observations are included in the training set and 

which observations are included in the validation set. This suggests that the validation set 

error may tend to overestimate the test error for the model fit on the entire dataset. The 

approach that provides a good compromise between the bias-variance trade-off (Figure 2-8) 

is five- or ten-fold cross-validation (Hastie et al., 2009). A ten-fold cross-validation means 

that the data is split into ten folds, in each iteration, a single fold is used for testing while the 

other nine folds are used for training the ML model. In the next iteration, another fold is used 

for testing while all other folds, including the one used for testing in the first iteration, are 

used for training. This process is repeated until each fold has been used for testing at least 

once. The results from each run are summarized into an average metric. In comparison, when 

only one observation is left out for validation, the data is not shaken up enough and the 

estimates from each fold are highly correlated thus their average can have high variance.   

One concern during prediction modelling is double dipping: when one portion of the data is 

used twice (Ball et al., 2020). If the entire dataset is used for feature selection and then split 

into folds, the validation set is not independent as some information of it would be leaked 

from the selected features. The same applies to optimising the model hyperparameters 

because when the same cross-validation procedure and dataset are used to both tune and 

select a model, this optimistically biases the model evaluation and likely results in failing to 

generalise to new data. Therefore, you need to divide a sample into a set to train the model 

parameters (e.g., the support vectors), a set to apply feature selection and optimise the hyper-

parameters of the model (e.g., the type of kernel and its parameters), and then a set to validate 

the performance. If there is not enough data available, a nested cross-validation can be used 

(Figure 2-15). The procedure again splits the data into K different iterations of training and 

validation folds but is called the outer loop of cross-validation. The training folds are used 

for feature selection and then a second split into K folds is made with all the data set for 

training called the inner loop. This time, instead of validation, the left-out fold is used to 

select the optimal values for the model hyperparameters. The model is then trained with the 

optimal parameters and tested using the validation fold. Finally, this procedure can be 

repeated multiple times (e.g., 50 or 100) by using different splits of the full data as a single 

run may produce noisy model evaluations due to the specifics of the selected partition. The 

scores from all repetitions can be averaged to get a final model assessment score that is a 

more “robust” model evaluation than performing cross-validation only once while producing 

lower variance compared to other methods such as bootstrapping (Kuhn and Johnson, 2013).   
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Figure 2-15: Repeated nested ten-fold cross-validation. The figure displays how feature selection, 

hyperparameter selection, and model evaluation are embedded within inner and outer loops of cross-

validation. The data is split into ten folds for the outer loop with nine folds for training and one 

(shown in blue) for model evaluation. These training folds are combined and split into another ten 

folds within the inner loop. Nine of those folds are then used for feature selection and model building. 

The tenth fold (shown in green) is used to select which set of hyperparameters produces the smallest 

difference between train and test performance. The optimal set of hyperparameters and features are 

then used to evaluate models in the outer loop built from the initial training folds and evaluated using 

the validation set (blue). The whole procedure can then be rerun using different random splits of the 

full data.    

2.4.5 Performance metrics 

We can quantify the performance of continuous prediction models by associating predicted 

and actual values and comparing the association to that of a perfect prediction. For example, 

ML studies have computed the correlation between the predicted and actual values and 

compared it to a perfect correlation. Such comparative measures are used because they can 

easily determine model success. However, correlations are not suited for most ML problems 

as they overlook data scaling and introduce bias, potentially yielding high correlations 

despite discrepancies between actual and predicted values. As an alternative to correlations, 

another relative metric is the fraction of explained variance, also referred to as the predicted 

R2. Here, model evaluations can again be compared to a perfect score of 1, whereas a model 

with random predictions will have a score close to 0. Unlike correlations, a negative R2 value 

would denote a model performing worse than if it solely used the mean value of the outcome 

for predictions. The fraction of explained variance can be incorrectly computed by squaring 
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the correlation coefficient, which defines R2 in linear regression. The linear regression 

definition reflects the error between the predicted values and the fit to the regression line, 

rather than the error between the predicted and observed values. Although the squared 

correlation coefficient is appropriate when the model is obtained using the same data, it is 

unsuitable for out-of-sample testing (Scheinost et al., 2019). Finally, despite being easily 

interpretable, the predicted R2 cannot be used to compare performances across different 

datasets due to variations in the variance of outcome variables.   

To compare different datasets, we can calculate error measurements by computing the 

difference between the predicted and observed values. Common measures include mean 

squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE).    

 𝑀𝑆𝐸 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =  
1

𝑛
 ∑(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖  −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

2

𝑛

𝑖=1

 (2.7)  

 𝑅𝑀𝑆𝐸 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = √𝑀𝑆𝐸 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) (2.8)  

 𝑀𝐴𝐸 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =  
1

𝑛
 ∑|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖  − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|

𝑛

𝑖=1

 (2.9) 

When comparing different regression models for the same problem, the superior model is 

likely to demonstrate lower values of each metric. These error measurements should also be 

similar when training and testing the models because discrepancies would signal potential 

underfitting or overfitting of the data. The MAE quantifies the error in the units of the 

original measure and is recommended when the prediction error distribution is highly 

nonsymmetric due to its robustness to outliers. Instead of providing the absolute error, the 

MSE squares the error, which places greater weight on extreme differences between the 

predicted and true outcomes. However, the MSE is difficult to interpret, as the values will 

not have the same unit as the output. The RMSE is widely used because it remains in output 

units yet, like MSE, penalises extreme errors while being more likely than MAE to reveal 

the superior model when the errors follow a Gaussian distribution (Hodson, 2022).    

Cross-validation can evaluate predictive power but cannot indicate the statistical 

significance of the performance of a model or whether it performs better than chance 

(Eriksson et al., 2003). To address the significance of a performance metric, multiple parallel 

models can be created by fitting them to randomly reordered outcomes,  and then assessing 

the real performance metric against a distribution of reordered response samples (Malley et 
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al., 2011). Permutation testing involves fitting a model to a perturbed version of the outcome 

data, yielding a new estimate of the "permuted" performance value. Repeating this process 

establishes a null distribution of performance metrics from random data, aiding in evaluating 

the statistical significance of the parent predictive model's performance values. Statistical 

tests can then inform of the validity of a model by assessing if the actual performance values 

(e.g., RMSE, predicted R2) fall outside the null distribution as the fraction of samples that 

are greater than or equal to the performance observed when using the correct outcomes 

(Pereira et al., 2009). However, if the original outcomes are minimally affected by 

permutation, the permuted outcomes will naturally be highly correlated with the original 

outcomes. Therefore, evaluating correlations between the original and permuted outcome 

variables is required to account for occasional high-performance values in permuted 

outcome data (Eriksson et al., 2003). 

2.5 Model interpretation  

Clinical practice necessitates predictive models that not only exhibit high performance but 

are also comprehensible and can guide meaningful actions (Scott, 2021). Moreover, users 

may require an understanding of how ML models arrive at their predictions, given that these 

predictions can potentially be spurious or biased without explicit insight from the models 

themselves. This understanding should encompass, at the very least, the transparency 

regarding which clinical populations these models may not be applicable to, based on the 

methods used for model training. Tools that provide such interpretability can offer either 

global or local explanations. The distinction between the two lies in the scope of explanation: 

the global type explains the overall functioning of a model, while the local type explains 

how the model arrived at a specific decision (Molnar, 2020). Most often, both explanations 

are done post-hoc and involve training a more interpretable model to approximate the 

behaviour of the task model. These post-hoc models can subsequently uncover crucial 

features and illuminate interactions among them for the entire model, or how they influenced 

the prediction for a specific observation.  

Measuring the explanatory power of features aids in understanding their influence on 

predicted outcomes and facilitates comparisons with clinical prior knowledge. These 

techniques, called attribution methods, typically perturbate the data as is the case in feature 

importance and accumulated local effects (ALE) plots. Both methods can then provide 

global explanations of model behaviour. Feature importance calculates the statistical 
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contribution of features to the performance of a model (Fisher et al., 2019). This is typically 

done by permuting individual feature values, reapplying the model, and ranking features 

based on the resulting increase in prediction error (Altmann et al., 2010). A significant 

decrease in predictive performance from randomly shuffling a variable then implies its 

higher importance to the predictions of the model. Feature importance has assessed clinical, 

biological and sociodemographic predictors of cardiovascular disease risk ((Alaa et al., 

2019) and mental health outcomes (Bokma et al., 2022), as well as fMRI predictors of 

antidepressant response (Nguyen et al., 2022).  Feature importance through permutation 

offers clear, easily understandable explanations and is computationally efficient as it does 

not require repeated model training. However, permutation importance may yield unreliable 

results when a model is using highly correlated variables while also not being able to show 

non-linear relationships between features and outcomes (Strobl et al., 2008).    

ALE plots address the limitations of permuted feature importance by depicting the average 

effect of input features on the output (Apley and Zhu, 2020). They specifically illustrate how 

model predictions fluctuate within a small "window" of the feature around specific values 

for observations within that window. These plots present the “window ”values along the x-

axis and display prediction differences on the y-axis (Figure 2-16). ALE plots remain 

unbiased, ensuring their effectiveness even when dealing with correlated features. Being 

centred at zero, they are easily interpretable, as each point on the ALE curve signifies the 

deviation from the mean prediction. They also excel at depicting non-linear relationships 

between variables and outcomes, as demonstrated in a study discerning clinical variables 

non-linearly classifying individuals with mild cognitive impairment (Basta et al., 2023). 

Such plots have also revealed the relationship between cognitive ability and fMRI activity 

from multiple brain regions, acting as predictors in ML models (Pat et al., 2023). However, 

it's important to note that ALE effects might deviate from the coefficients outlined in a linear 

regression model in cases where features interact and are correlated, as ALE defines first-

order effects differently compared to a linear formula (Molnar, 2020). Therefore, 

constructing a model could provide better insight into how predictions are made for 

individual cases.  
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Figure 2-16: Example of ALE plots. The figure displays ALE (accumulated local effects) plots 

temperature, humidity, and wind speed that act as predictors in a model that predicts bike rentals. 

The temperature greatly affects the prediction. It has a non-linear effect because while the average 

prediction rises with increasing temperature, it falls again above 25 degrees. In comparison, humidity 

negatively affects the prediction. While initially not having an effect, when it goes above 60%, 

increasing humidity relates to lower rented bike difference in the mean prediction. Unlike 

temperature and humidity, wind speed does not meaningfully change the predictions at any point. 

Adopted from Molnar (2020). 

Compared to feature importance and ALE plots, Local Interpretable Model-agnostic 

Explanations (LIME) develop simpler, more interpretable models that mimic the behaviour 

of the model for predicting individual outcomes (Ribeiro et al., 2016). Specifically, the 

LIME model is trained to approximate the predictions of the underlying model by altering 

the input for each observation and tracking how the predictions change. LIME generates a 

new dataset with perturbed samples from the relative distribution of the features along with 

the corresponding predictions of the task model. On this new dataset, LIME then trains an 

interpretable model, weighted by the proximity of the sampled instances to the instance of 

interest. The interpretable model can be any interpretable model type such as a regularised 

regression or a decision tree. LIME produces a list of explanations, indicating the 

contribution of each feature to the prediction of an observation. These results are visualized 

as deconvolution graphs, highlighting the most influential features in predicting a case. This 

method offers local interpretability, and it also alludes to which feature alterations will have 

the most influence on the prediction. For example, Ghafouri-Fard et al. (2019) used LIME 

to identify the most protective and risky genotypes for autism spectrum disorders. What’s 

important to note is that while LIME models should be a precise approximation of ML model 

predictions individually, they don't necessarily need to be a precise global approximation.    
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2.6 Summary 

Overall, the subsequent chapters will follow a method structure of preprocessing the neuroimaging data from the specific dataset (Chapter 2.1) and then 

applying GLMs, unsupervised or supervised ML to address the specific research aims and hypotheses. Depending on the aims and hypotheses, 

neuroimaging data will be pre-processed in either MNI or individual space with appropriate for each modality preprocessing steps (Chapter 2.2). Methods, 

specific to the research aim such as the brain atlas used to define the ROIs will be more extensively described in the dedicated chapter (Figure 2-17).       

 
Figure 2-17: Summary of general methods and chapter specific additions.  
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Chapter 3 Identifying subgroups of fatigue  

3.1 Introduction 

This chapter will explore subgroups identified through neuroimaging data and assess how 

they differ phenotypically. The rationale behind this aim stems from the significant 

heterogeneity within people with RA that impedes identifying subgroups of patients who are 

more likely to benefit from one therapy over another. These patients differentiate in terms 

of disease pathogenesis, development, and symptom profile (Townsend, 2014, Verheul et 

al., 2015). To address this variability, studies have attempted to partition patients based on 

clinical or biological information using data-driven approaches (clustering) rather than 

intuition or experience alone. Lee et al. (2014) clustered patients on pain, fatigue, 

inflammation and psychosocial factors and found three distinct subgroups. However, 

clustering on symptomatology may not reflect any underlying biological differences and 

cannot reliably predict treatment response on an individual level. Conversely, biological data 

more often than not is dominated by uninformative signals and may reflect groups of people 

with similar brain size or gender rather than elements of pathophysiology (Snoek et al., 

2019). Therefore, studies may require both clinical and biological metrics to infer stable and 

relevant subtypes in RA.  

This lack of clinically relevant biological subtypes is also evident in psychiatry and was 

approached by Drysdale et al. (2017) for depression.  In patients with major depressive 

disorder, the study incorporated fMRI and clinical data to identify subgroups of these 

patients.  The advantages of such subtypes can be two-fold: the authors (1) predicted 

response to a specific transcranial magnetic stimulation (TMS) treatment while a review on 

biomarkers in psychiatry suggested using the described heterogeneity to (2) inform larger 

prediction studies of what to expect when validating results on external data (Schnack and 

Kahn, 2016). In RA, depression levels relate to fatigue as they share correlates of higher 

functional interactions between specific brain regions (Basu et al., 2019). Therefore, this 

approach can potentially describe the present RA datasets and advise on how to construct 

and validate prediction models, as described in Chapter 7. 

To validate this approach in RA, a similar methodology to Drysdale et al. (2017) was 

conducted on two RA datasets but modified based on a replication study by Dinga et al. 

(2019). The aim was to identify neurobiological subtypes of fatigue with distinct signatures 
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of brain connectivity patterns using Drysdale and colleagues’ pipeline and validate this 

approach in an independent RA dataset. I hypothesise that:  

• There is a significant brain-behaviour relationship between fatigue subdimensions 

and brain connectivity, illustrated by a significant canonical correlation between 

fMRI connectivity and subdimensions of fatigue. 

• RA patients can be stratified to groups with distinct brain connectivity. This will be 

demonstrated by a cluster analysis on fatigue-related brain connectivity. The 

statistical distribution of the brain connectivity will be different for each subgroup.  

• The subgroups will be statistically different in terms of disease activity, 

inflammation, pain, sleep, and depression as these variables have been shown to 

stratify RA patients with fatigue and relate to centralised symptoms of sickness 

behaviours.  

• These findings will be replicated in a different RA cohort.  
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3.2 Methods   

3.2.1  Patient recruitment and MRI preprocessing  

Patient recruitment and both clinical and MRI data descriptions for the RA study have 

already been described in Chapter 2.1. Pre-processing procedures are described in Chapter 

2.2 and implemented by the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). 

This analysis used the default MNI pipeline to be compatible with Drysdale et al. (2017): 

discarding the first 4 volumes; realignment; functional and structural centralisation to (0,0,0) 

coordinates; slice-timing correction in ascending order; ART-based motion outlier detection 

using a z threshold (global signal) of 9 and movement threshold of 2 mm; functional and 

structural segmentation, MNI normalization and 8-mm smoothing, Subjects’ data were 

excluded if they had over 20% of their total volumes (222) beyond the 2 mm movement 

threshold (invalid volumes >=44 in either session). To remove any spurious correlations due 

to physiological or MRI sources of noise a denoising step on the fMRI data was applied and  

included the regression of 5 dimensions for white matter and CSF and their first-order 

derivatives  (10 dimensions) using the CompCor algorithm (Behzadi et al., 2007); motion 

parameters and their first derivatives (12 dimensions); scrubbing; and band-pass filtering 

(0.008 – 0.09 Hz). 

3.2.2 Dynamic fMRI connectivity 

Both fMRI and clustering analyses were based on a previous study that used FC and clinical 

symptom scores to find neurophysiological subtypes of depression (Drysdale et al., 2017). 

The methods (Figure 3-1) also included recommendations from a study which attempted to 

replicate Drysdale and colleagues’ results in a similar cohort (Dinga et al., 2019). The 

functional data that was further analysed included the “on periods” of the PASAT task. 

CONN’s default atlas defined ROIs that included the FSL Harvard-Oxford Atlas and 

cerebellar areas from the AAL atlas, consisting of 132 ROIs in total.  
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Figure 3-1: Analysis pipeline for identifying patient subgroups.  A: the BOLD signal change 

(activity) is estimated for 132 brain regions-of-interest (ROIs) based on the CONN toolbox default 

atlas which covers cortical, subcortical, and cerebellar areas; B: for each ROI pair (e.g. region 1 and 

2 on the graph), a correlation value over their activity is calculated every 45 seconds (sliding window) 

of the Paced Auditory Serial Addition Test (PASAT) task; C: for each window (consisting of 41 

volumes), a connectivity matrix is created from correlation values for all pairwise comparisons. The 

outputs of this dynamic connectivity are 12 matrices for the whole PASAT task for each patient; D: 

the CONN dyn-ICA analysis performs independent component analysis of the connectivity matrices 

for all patients, returning a predetermined number of brain circuits with similar fluctuations in 

correlation strength across time; E: the variability of 4 circuits are used combined with sub-scores of 

fatigue using a canonical correlation to create 2 summary connectivity values for each patient 

relevant to fatigue. These values are then used by hierarchical clustering algorithms as the basis of 

differentiating subgroups (clusters) with these patients. The significance of the canonical correlation 

and clusters are tested separately, while a cross-validation procedure establishes the stability of the 

correlation with different subsamples of the patients. Abbreviations: BOLD, blood-oxygen-level-

dependent; ICA, independent component analysis; CCA, canonical correlation analysis. 
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Dynamic FC was conducted to create brain measures, previously unexplored in RA patients, 

which could further inform about the fatigue state. While studies using stationary FC have 

aided in identifying resting-state fMRI networks, they often fall short of capturing their 

intricate dynamic changes (Hutchison et al., 2013). Unlike stationary FC, dynamic FC 

reflects the dynamic changes over time within brain states (Zhang et al., 2016) and is 

typically estimated by the variance of FC between networks/regions (Chapter 1.5.2). This 

added variability has been suggested to offer greater insight into the properties of brain 

networks (Allen et al., 2014). Dynamic FC has proven beneficial in explaining individual 

behavioural and cognitive traits, as well as classifying neurological diseases, outperforming 

stationary FC (Peng et al., 2022). This advantage may stem from dynamic FC capturing 

latent functional boundaries, particularly in regions with high flexibility and adaptability.    

The disadvantages of dynamic FC include the complexity of estimating such measures and 

the lack of a standard approach compared to static FC (Preti et al., 2017). Additionally, it 

requires larger volumes of data, although reliable results have been demonstrated with a 

duration of 10 minutes (Zalesky et al., 2014, Betzel et al., 2016). In contrast, static FC is 

limited in highlighting only areas with stable connectivity throughout the acquisition time, 

while dynamic FC can capture the inherent dynamic nature of FC alterations, describing 

changing cognitive states (Preti et al., 2017). Therefore, dynamic FC is particularly suited 

for conditions where excessive variability occurs at different times for the same individual, 

which may potentially be applicable to RA patients and their fluctuating levels of fatigue 

during a fatigue-inducing task. 

Dynamic FC also allowed to reduce the dimensions of the data in an unbiased way, as 

suggested by Dinga et al. (2019). The procedure groups ROI pairs in circuits that have 

similar changes in correlated activity across time (Anteraper et al., 2020). The window 

length for estimating each connectivity time-point was set to 45s (Leonardi and Van De 

Ville, 2015). Dynamic connectivity was estimated for the RA study (baseline and follow-

up) and LIFT (baseline), in the form of mean frequency and variability of the circuits for 

each subject. Whether frequency or variability of dynamic circuits was used for clustering 

in the trial data depended on which metric resulted in the most similar clusters between 

baseline and follow-up of the RA study. 
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3.2.3 Canonical correlation and clustering analyses    

Clinically relevant variables were extracted from connectivity estimates by a canonical 

correlation analysis (CCA, Figure 3-2) with fatigue scores, and then used for partitioning 

patients in R Statistical Software (R Core Team, 2021) based on Dinga et al. (2019). The 

CCA used 4 sub-scores from the Bristol Rheumatoid Arthritis Fatigue Multidimensional 

Questionnaire (BRAF MDQ) which records subdimensions of physical, impact on living, 

cognitive, and emotional fatigue dimensions (Appendix A). To perform reliable CCAs, 4 

connectivity circuits were correlated with the 4 BRAF MDQ sub-scores (total of 8 variables) 

for the 82-subject LIFT trial, meeting a standard of 10 subjects per variable (Leach and 

Henson, 2014). After age, gender, and scanning site (LIFT data) were regressed, CCA 

resulted in two linear combinations of connectivity estimates (connectivity variates) that 

maximally correlated with the fatigue variables. Ward’s D linkage method (hierarchical 

clustering) with Euclidean distance partitioned patients into clusters based on the two 

connectivity variates (Figure 3-2D). To identify the best number of clusters, indexes are 

used to compare clustering solutions on certain characteristics such as maximizing the ratio 

of between-cluster to within-cluster variance. After going over all available index criteria 

(27), the majority of indexes selected the number of clusters to find. The identified clusters 

at baseline were then described in terms of the other clinical variables at baseline.   

 
Figure 3-2: Summary illustration of a canonical correlation analysis (CCA) and clustering. A: 

If several domains of data are acquired from the same subjects, with p and q number of variables 
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respectively, they can be co-decomposed by CCA. In this study, the domains reflect dynamic 

connectivity and BRAF fatigue sub-scores with 4 variables each (p=q). CCA re-expresses the 

variables as latent linear combinations called canonical variates. Each variate from domain 1 is 

maximally correlated with the corresponding variate from domain 2 but completely uncorrelated to 

the next variate. Each pair of variates is called a mode with the number of modes corresponding to 

the number of variables in the lowest-variable domain; B: In each domain, the canonical variate is 

composed of the weighted sum of variables by a canonical vector; C: In a CCA with two domains, 

each subject can be described by two canonical variates per mode, and their canonical correlation 

coefficient (r value). Each consecutive mode has a lower in strength r value. In this study context, 

there are 4 modes with 4 canonical variates for both the dynamic connectivity and fatigue domains. 

D: Hierarchical clustering was based on the first two canonical variates from dynamic connectivity 

depicted in the illustrative plot using Euclidean distance(d) to identify patient subgroups (blue circles 

and black triangles). Adapted from Wang et al. (2018).  

3.2.4 Statistical analyses  

Mann-Whitney U test (non-normal distribution) estimated whether the RA study patients 

differed from LIFT patients at baseline for inflammation (ESR) and fatigue (Chalder 

fatigue). Each CCA outputted a correlation coefficient and a Wilk’s lambda value to test for 

significance. To evaluate the stability of CCA, a 10-fold cross-validation (Varoquaux et al., 

2017) was implemented and the average r value was recorded. Based on Dinga et al. (2019), 

significance testing informed whether the values of the indexes which picked the cluster 

number are significantly different than what would have been expected under the null 

hypothesis of data with no underlying clusters. To create the data, a covariance matrix 

between the two canonical variates was estimated and used to generate random samples of 

the number of observations in the dataset from a bivariate Gaussian distribution defined by 

this covariance matrix. The same clustering procedure was performed on each random 

sample, thus obtaining an empirical null distribution of index criteria values. The optimal 

value for some of these indexes is their maximal value and for some, it is their minimal 

value. Therefore, the p-value was defined as the proportion of the calculated indices in the 

null distribution smaller/bigger (relative to the index) than what is observed in the real data. 

The corrected Rand index (Hubert and Arabie, 1985, Steinley, 2004) was used to estimate 

the similarity between baseline and follow-up clusters, through the fpc R package (Hennig, 

2019). The index assesses the similarity between the two cluster solutions and is a value 

from -1 (no agreement) to 1 (perfect agreement). In terms of clustering based on structural 

and functional MRI, a value of over 0.8 has been shown to be replicated in a reliability study 

on a multi-centre dataset (Hawco et al., 2018). This was the criterion for selecting mean 

frequency or variability when replicating the CCA and clustering steps in LIFT. Finally, to 

investigate differences between clusters on disease activity, ESR, sleep, pain, fatigue or 

depression, a series of Kruskal Wallis tests were implemented. 
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3.3 Results  

3.3.1 Patient characteristics 

From the RA study 1, four subjects were excluded due to excess motion while further 

analyses were carried out in the remaining 50 patients [38 females, mean (SD) age 55.13 

(11.36)]. No patients exhibited excess motion from LIFT, in which 82 subjects completed 

clinical assessments and neuroimaging scans at baseline [60 females, age 59.6 (11.57)]. 

Although comparable on some clinical traits (Table 3-1), the patients of the RA study had 

more inflammation, but less fatigue severity compared to LIFT patients (Figure 3-3). The 

excluded four subjects were not significantly different for age, gender, inflammation or 

fatigue severity (Table 3-2). 

Factor Baseline  

RA study 

6-month  

RA study 

Baseline  

LIFT  

RA disease activity a 3.58 (2.18) 3.16 (2.07) 4.28 (1.65) 

ESR (mm/h) 16.5 (14) 13 (16) 10.5 (11.25) 

Fatigue b 35.5 (16.25) 31 (26.75) 40.22 (16) 

Sleep disturbance d 16 (7.75) 16 (8.75) 12 (9) 

Pain severity e 4 (3) 3 (2.75) 6 (3.75) 

Depression f 7.5 (5) 6 (6) 6 (6) 

Table 3-1: Clinical characteristics of patients in the RA study and LIFT with PASAT fMRI as 

Median (IQR).
 a

DAS-28; 
b
Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire 

(BRAF MDQ) total score; 
d
Jenkin’s sleep scale; 

e
Current pain NRS; 

f
Hospital Anxiety and 

Depression Scale; NRS: numerical rating scale.   
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Figure 3-3: Patients in the RA study are different from patients in the RA trial (LIFT).  The 

boxplots in both panels represent the following: the centre line (the median value), the lower bound 

of the box (25th percentile), the upper bound of the box (75th percentile), and the whiskers (minimum 

and maximum values, or 1.5 times the interquartile range in the presence of outliers, indicated by 

dots). In panel A, a Mann-Whitney U test indicates the patients from the RA study had significantly 

more inflammation (U=1520, p=0.022, rB = -0.24). In panel B, the same test indicated more fatigue 

severity in LIFT patients (U=4057, p<0.0001, rB = 0.98), as measured by the Chalder Fatigue Scale. 

The effects are small and large, respectively.  

Factor Included (Baseline) Excluded (Baseline) 

Sample size 50 4 

Gender (female) 76% 75% 

Age 56 (14) 47.5 (12.55) 

RA disease activity 3.58 (2.18) 5.08 (2.84) 

ESR (mm/h) 16.5 (14) 41 (14.25) 

Chalder Fatigue 9 (2) 11 (0) 

Table 3-2: Differences between the included and excluded patients from RA study 1 as Median 

(IQR). The four patients excluded due to too much movement during MRI scanning did not 

significantly differ (Mann-Whitney U test) from the fifty included patients on age, gender, DAS28 

disease activity, Chalder Fatigue score, and inflammation in the form of erythrocyte sedimentation 

rate.  

3.3.2 Dynamic connectivity is associated with dimensions 

of fatigue in the RA study 

The 4 dimensions of BRAF MDQ fatigue (Physical, Living, Cognitive, Emotional) were all 

combined with the 4 dynamic connectivity estimates (mean frequency or variability) using 

CCA. The CCA with the mean frequency of the 4 dynamic circuits led to a significant 

correlation at baseline (Figure 3-4A) and trend-level correlation for follow-up (Figure 

3-4B), with cross-validation means of 0.38 and 0.28, respectively. 
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Figure 3-4: Significant canonical correlations at baseline and trend level at follow-up.   A: 

Linear combinations (canonical variates) of dynamic connectivity features (mean frequency) that are 

maximally correlated with a linear combination fatigue sub-scores (BRAF MDQ) resulted in a 

significant correlation (r2=0.56, p=0.041) at baseline in the RA study. B: The canonical correlation 

for follow-up data showed a similar trend but was not significant (r2=0.58, p=0.065). Both CCAs 

were conducted after age and gender were regressed from the dynamic connectivity features. 
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3.3.3 Reliable clusters from canonical connectivity scores 

The hierarchical clustering yielded four clusters by majority rule for both baseline (13 

indices, 31:8:6:5 members ratio) and follow-up (16 indices, 31:8:6:5 members ratio) data. 

For baseline, 8 out of 13 indices were significant (p<0.001), while for follow-up: 8 out of 16 

were significant (p<0.001) (Table 3-3). The null distributions for the ptbiserial index at 

baseline and follow-up are illustrated in Figure 3-5. The members of clusters were highly 

similar (corrected Rand Index=0.88) with 41 out of the 50 patients in the RA study staying 

in the same clusters from baseline to follow-up (Figure 3-6).  

Index Baseline  

(index value; p-value) 

Follow-up 

(index value; p-value) 

ch 27.87; 0.8825 29.28; 0.799 

hartigan  46.55; 0.0005*** 49.07; 0.0005*** 

cindex 0.04; 0.1605 0.04; 0.2435 

db 0.88; 0.0005*** 0.91; 0.0005*** 

silhouette 0.68; 0.935 0.68; 0.743 

ratkowsky 0.39; 0.0005*** 0.4; 0.0005*** 

ptbiserial 0.8; 0.0005*** 0.79; 0.0005*** 

mcclain 0.11; 0.0005*** 0.11; 0.0005*** 

gamma 0.93; 0.0005*** 0.93; 0.0005*** 

gplus 9.85; 0.0005*** 9.92; 0.0005*** 

tau 279.38; 0.65 279.23; 0.0685 

sdindex 1.96; 0.779 1.78; 0.3355 

sdbw 0.94; 0.8825 0.64; 0.799 

ccc  4.25; 0.806 

dunn  0.17; 0.3955 

friedman  5.75; 0.0005*** 

Table 3-3: Cluster index criteria values and p-values after comparisons with simulated data. 

The index column lists all the cluster index criteria which choose the 4-cluster solution for the 

baseline or the follow-up data. The columns for the baseline and follow-up data annotate the index 

value from the real data and the p-value based on the null distributions created from repeating the 

clustering procedure on simulated data with the same mean and covariance. For baseline, 8/13 indices 

were significant while for follow-up: 8/16. Based on the NbClust package in R statistical software 

(Charrad et al., 2014); *** annotates values below p<0.001.  
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Figure 3-5: Null distributions and real values of the ptbiserial clustering index for baseline and 

follow-up data. A: The index value (0.8) from the actual data at baseline, annotated by the red line, 

was significantly different compared to data simulated from a distribution with no clusters. B: The 

index value (0.79) from the actual data was also significantly different at follow-up.  
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Figure 3-6: The obtained 4-cluster solution for the RA study. A: The 4 clusters observed after 

hierarchically clustering the first two connectivity variates at baseline. The black dot depicts the 

biggest cluster (31) where all the patients had values close to 0 for variates 1 and 2. The other clusters 

are depicted in blue (8), green (6), and red (5). B: The 4 cluster-solution using the same pipeline at 

follow-up with the same 31:8:6:5 ratio, in which 41 out of 50 patients stayed in the same clusters as 

at baseline.  

 

3.3.4 Baseline clusters did not differentiate on clinical 

traits 

The clusters did not differ based on baseline disease activity, ESR, sleep, pain, or depression 

(Table 3-4) as tested by individual Kruskal Wallis tests. 

 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Number of members 31 8 6 5 

RA disease activity  3.24 (1.8) 4.28 (2.53) 2.91 (1.39) 4.46 (1.46) 

ESR (mm/h) 14 (13) 20 (13) 22 (13.5) 22 (8) 

Fatigue  35(10.5) 49 (30.5) 34 (30.5) 37 (9) 

Sleep disturbance  16 (8.5) 15 (8.25) 15.5 (4) 15 (6) 

Pain severity  4 (3.5) 3 (5.25) 4.5 (3.25) 2 (3) 

Depression  6 (5.5) 7 (4.5) 8.5 (4.75) 9 (3) 

Table 3-4: Clinical characteristics of RA study clusters Median (IQR).
 
The clusters were not 

significantly different on any of the clinical characteristics based on Kruskal Wallis tests (RA disease 

activity H (3) = 2.2, p = 0.5; ESR H (3) = 2.8, p = 0.4; Fatigue H (3) = 1.3, p = 0.7; Sleep H (3) = 

0.7, p = 0.86; Pain H (3) = 1.26, p = 0.7; Depression H (3) = 1.01, p = 0.8).
 a

DAS-28; 
b
Bristol 

Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ) total score; 
d
Jenkin’s 

sleep scale; 
e
Current pain NRS; 

f
Hospital Anxiety and Depression Scale; NRS: numerical rating 

scale.   
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3.3.5 Failed connectivity-fatigue association and cluster 

replication in LIFT  

The CCA in baseline LIFT data yielded a non-significant correlation (Figure 3-7A: r2=0.3, 

p=0.8) which was unstable (cross-validation mean=0.07). The hierarchical clustering led to 

a 3-cluster solution (Figure 3-7C: 37:27:18 ratio) with none of the 8 cluster indices being 

significant above the p<0.001 level (Figure 3-7B). 

 
Figure 3-7: Failed replication in the LIFT (RA trial). A: The CCA plot shows an insignificant 

correlation (r2=0.3, p=0.8) between connectivity (mean frequency) and fatigue variates. The CCA 

was conducted after age, gender, and scanning site were regressed from the connectivity estimates. 

B: Hierarchical clustering of the first two connectivity variates led to insignificantly different 

(p=0.74) clusters to ones from simulated data with no underlying clusters based on the ptbiserial 

index and the other 7 indices (not shown). C: The majority of indices (8) set a 3-cluster solution of 

37:27:18 ratio displayed on the plot.  
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3.3.6 Integral brain regions for clustering patients   

Two out of four groups of brain connections (circuits) mostly formed the clustering variables 

at both timepoints. At baseline (Figure 3-8), these connections included connectivity 

between the precuneus and the left posterior temporal fusiform cortex and between the left 

precentral gyrus and the left anterior parahippocampal gyrus. At follow-up (Figure 3-9), 

connectivity of the precuneus, precentral gurys, and parahippocampal gyrus among others 

again contributed to the two circuits, which mainly defined the clustering variables. 

Additionally, regions like the right posterior supramarginal gyrus and the left and right 

insular cortex also contributed to the most influential circuits either at baseline or follow-up.    

 
Figure 3-8: Brain connections that contribute to patient clustering at baseline. Panel A displays 

correlations between the clustering variables and circuits. These circuits are groups of brain 

connections whose connectivity values change in a similar way across the PASAT blocks of the 

functional imaging sequence. The correlations identify circuits 2 and 3 as contributing the most to 

these clustering variables. Panel B displays the stability of these correlations (absolute value) when 

rerun while leaving one subject out. Panel C and D depict the 5 brain connections that contribute 

the most to each circuit represented as z-scored loadings. Abbreviations: aPaHC l, left anterior 

Parahippocampal Gyrus; Cereb45 l, left Cerebellum 4 5; Cuneal r, right Cuneal Cortex; Forb r, left 

Frontal Orbital Cortex; LG r, right Lingual Gyrus; pSMG r, right posterior Supramarginal Gyrus; 

PreCG l/r, left/right Precentral Gyrus; pTFusC l, left posterior Temporal Fusiform Cortex; TP l/r, 

left/right Temporal Pole.    
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Figure 3-9: Brain connections that contribute to patient clustering at follow-up. Panel A 

displays correlations between the clustering variables and circuits. These circuits are groups of brain 

connections whose connectivity values change in a similar way across the PASAT blocks of the 

functional imaging sequence. The correlations identify circuits 3 and 4 as contributing the most to 

these clustering variables. Panel B displays the stability of these correlations (absolute value) when 

rerun while leaving one subject out. Panel C and D depict the 5 brain connections that contribute 

the most to each circuit represented as z-scored loadings. Abbreviations: aPaHC r, right anterior 

Parahippocampal Gyrus; Cereb6 l, left Cerebellum 6; IC l/r, left/right Insular Cortex; LG l, left 

Lingual Gyrus; PP l, left Planum Polare; PT l, left Planum Temporale; PostCG l, left Postcentral 

Gyrus; pPaHC l, left posterior Parahippocampal Gyrus; PreCG r, right Precentral Gyrus; SubCalC, 

Subcallosal Cortex; TP l, left Temporal Pole; Ver6, Vermis 6. 
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3.4 Discussion 

This is the first instance of using ML to combine brain metrics with clinical data that 

produced neurobiological subgroups of RA patients, but which may not generalise to all RA 

populations. In this study, dynamic brain connectivity correlated with fatigue (BRAF MDQ) 

in RA patients confirming the hypothesis of a significant relationship between brain 

connectivity and fatigue. This association partitioned the patients of the study into 4 distinct 

clusters that replicated using data after 6 months. The clusters were similar in terms of 

disease activity, inflammation, pain, sleep, and depression, which suggests that these 

variables did not significantly affect the neurobiological differences between the subgroups. 

However, both the correlation and cluster results failed to emerge using the baseline data of 

the LIFT trial and externally validate these neurobiological subgroups.  

Although novel in RA, dynamic connectivity has previously been investigated in MS, 

another autoimmune disorder with multiple potential mechanisms of fatigue (Manjaly et al., 

2019). Studies have linked dynamic connectivity of specific brain regions with fatigue (Zhou 

et al., 2016), amongst others like physical and cognitive disability (Valsasina et al., 2019). 

Moreover, cluster analysis on such links has identified aberrant brain networks specific for 

accepted subtypes of MS (Eijlers et al., 2019). In comparison, the cluster analysis in this 

study did the reverse of finding new subgroups of patients using neuroimaging and clinical 

traits. In psychiatry, such an approach using clinical variables has been long established. For 

example, which antidepressant should be selected for a patient would be informed by 

whether a patient exhibits symptoms of atypical or other subtypes of depression (Quitkin et 

al., 1993). More recently, neuropsychiatric research has implemented brain-behaviour 

associations to identify potential “biotypes” and then search for therapeutic relevance in 

psychosis (Planchuelo-Gomez et al., 2020), autism (Hong et al., 2018), attention deficit 

hyperactivity disorder (Barth et al., 2018), depression and anxiety (Williams, 2017). 

However, these biotypes are yet to improve long-term treatment outcomes as hoped (van 

Loo et al., 2014). An alternative approach would be to start with a therapeutic response to 

an anatomically targeted intervention. For instance, differences between anatomical sites of 

TMS were exploited in a study of MDD (Siddiqi et al., 2020). The authors found 

retrospectively the best improvement in two distinct symptom clusters when two different 

brain circuits were stimulated that did not occur in a placebo condition. These findings could 

then be prospectively applied in future clinical trials of this treatment. In a similar fashion, 
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TMS targets in RA could be planned in advance depending on whether patients’ fatigue is 

connected to an inflammatory or cognitive origin.   

Some brain regions overlapped in governing how the clustering algorithm grouped patients 

at baseline and follow-up, regions previously linked to fatigue, pain, or systemic 

inflammation.  These brain regions included the precuneus and parahippocampal gyrus, 

integral regions of the default mode network (DMN), as well as the precentral gyrus, a main 

region of the somatosensory network (SMN). DMN activity indicates introspective 

behaviour, which can enhance cognitive functions, but excessive DMN use may result in 

fatigue. The DMN and SMN are critical networks in pain processing, and a systematic 

literature review identified pain as one of the strongest predictors of RA fatigue (Nikolaus 

et al., 2013). The bilateral insula was also involved in clustering patients. This further 

strengthens the link between fatigue and pain, as connectivity between the insula and the 

DMN in the same patients was previously associated with fibromyalgia—a measure of 

centralised pain (Basu et al., 2018). Unlike other common predictors, pain clusters with 

fatigue across almost all subjects (Basu et al., 2017). Thus, it is unsurprising that fatigue and 

pain appear to share neurobiological mechanisms. Systemic inflammation also consistently 

clusters with fatigue, and in the same RA patients was associated with connectivity of the 

inferior parietal lobule, made up of the supramarginal gyrus and angular gyrus (Schrepf et 

al., 2018). The connectivity of the supramarginal gyrus contributed to identifying fatigue 

clusters of patients at baseline. Direct associations also exist between the inferior parietal 

lobule and fatigue. In MS patients, fatigue was associated with the atrophy of the right 

inferior parietal lobule (Hanken et al., 2016), while fatigue in chronic fatigue syndrome has 

been positively correlated with hyperconnectivity between the inferior parietal lobule and 

the sensorimotor cortex (Boissoneault et al., 2016). Overall, the brain regions identified in 

fatigue clusters of RA patients reinstate how interconnected fatigue is with factors such as 

pain and systemic inflammation and suggest some common neurobiological origins.   

Despite the brain regions that separated the subgroups being previously associated with pain 

or systemic inflammation, these subgroups were not clinically separable. Ambrosen et al. 

(2023) also did not find clinical differences among schizophrenia subgroups based on brain 

connectivity. They highlighted the limitations of cluster analysis as a data-driven method, 

lacking the ground truth of the problem. In this RA analysis, the ground truth is the neural 

circuits implicated in fatigue during patient stratification. Therefore, subgroups may still 

reflect irrelevant traits, even with CCA identifying fatigue-relevant information in 

neuroimaging data. Another study used morphometric MRI from large datasets, Generation 
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Scotland (GS subsample, N = 980), and UK Biobank (UKB, N = 8,900), clustering 

participants and testing whether they differ in depression status and cognitive measures 

(Yeung et al., 2021). No depression status associations were found, attributed to few 

individuals having current depression, but associations with general cognitive ability were 

observed. RA patients in this analysis may not have substantially differed in pain and 

systemic inflammation for the clustering approach to detect. Additionally, unbalanced 

cluster sizes may have reduced statistical power to identify such differences. Overall, 

clustering limitations and potential lack of statistical power may have led to clinically 

inseparable patient clusters despite their underlying neurobiological differences being linked 

to those clinical characteristics in previous research. 

There are several limitations of the methods concerning the high variability of the RA 

datasets and the adopted pipeline. The clustering analysis by Drysdale et al. (2017) was used 

on a homogenous sample of depressed patients that may not be suited for more 

heterogeneous data (Grosenick et al., 2019). Such was the case for this analysis, in which 

patients from the RA study had more inflammation but less fatigue compared to the LIFT 

patients (Table 3-1, Figure 3-3), and the replication study by Dinga et al.  (2019). This is 

consistent with observations of considerable heterogeneity in RA. Even amongst selected 

patients for severe fatigue, four different clusters have emerged and validated using variables 

reflecting pain, fatigue, mental health, disability and inflammation (Basu et al., 2017). The 

pipeline of using dynamic connectivity and ICA may have avoided the overfitting of the 

original paper but possibly resulted in insufficient brain metrics (only 4 variables) to extract 

enough clinically relevant data. This is especially relevant if the underlying biological 

mechanisms differ between the two cohorts. The power to find significant effects would be 

decreased if specific fatigue dimensions have different effects on dynamic connectivity in 

different groups of patients. A possible solution to both limitations is applying contemporary 

versions of CCA that can combine structural and functional brain metrics with behavioural 

symptoms (Ing et al., 2019). If incorporated into rigorous statistical and clinical validation 

(Mihalik et al., 2020), such an approach could extract enough brain-related signals that are 

sufficient to take advantage of the variance in the sample. Once neurobiological subgroups 

of fatigue are identified that can generalise across different IA cohorts, homogeneous 

connectivity patterns can emerge that underlie the brain dysfunction related to fatigue. 

Animal studies could then dissect how manipulating the dysfunctional brain circuits affects 

animal behaviour with molecular techniques such as optogenetics, whereas human studies 

can modulate connectivity via non-invasive neurostimulation and develop patient-specific 

therapeutics. The subsequent findings could then be integrated into clinical practice, such as 
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using clusters like in this study to determine if the brain connectivity profile of a patient can 

be directly affected to improve their fatigue or can be addressed with pharmacological, 

exercise, or psychological interventions.      
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Chapter 4 Neuroimaging markers of 

subdimensions of fatigue  

4.1 Introduction  

This chapter builds on Chapter 3, approaching the same question from a different 

perspective. While the prior chapter explored neurobiological subgroups using 

neuroimaging and assessed their phenotypic variations, this one begins with different fatigue 

phenotypes that can potentially be neurobiologically distinct. Brain imaging can identify 

neurobiological correlates of central fatigue, which can be divided into different subtypes, 

such as ‘motivational’, ‘physical’, and ‘cognitive’ fatigue (Karshikoff et al., 2017). This 

raises the question of whether neurobiological associations differ among central fatigue 

subtypes. Currently, no formal definition exists for fatigue subtypes and questionnaires 

assessing facets of fatigue do not reveal clear subsets of patients with subtypes of fatigue 

(Chorus et al., 2003). Subtypes of fatigue may not underly clinically distinct subgroups, but 

instead represent different aspects of the same symptom. Each fatigue facet could be linked 

to the disruption of a specific neural circuit, such as the mesolimbic (motivational), 

nigrostriatal (physical), and mesocortical (cognitive) dopamine pathways (Korte and Straub, 

2019). Although these pathways are distinct, a common stressor can drive the brain towards 

a fatigued state, affecting multiple neural circuits. In the context of IA, inflammatory 

cytokines can interfere with neurotransmitter release in multiple brain regions (Soliven and 

Albert, 1992), or chronic psychosocial stress can change noradrenaline metabolism 

(Matsumoto et al., 2021). However, no studies have yet compared brain imaging correlates 

of subdimensions of fatigue in IA. This study will use neuroimaging data to identify 

descriptors of fatigue phenotypes and subsequently examine their differences. In practical 

terms, while Chapter 3 outlined potential biological subgroups for mechanistic studies, this 

chapter offers phenotypic neurobiological descriptors.  

To identify brain imaging correlates of fatigue, studies can agnostically test for associations 

across the brain for links with fatigue. However, the agnostic approach suffers from a curse 

of dimensionality since looking at brain structure or connectivity at every voxel would result 

in over 60 billion individual statistical tests. Instead, larger regions of interest (ROIs) from 

brain atlases can be used, followed by ROI-to-ROI connectivity analyses, providing 

sufficient sensitivity while reducing the multiple-comparison problem to focus on a limited 

number of ROIs. Although this approach may compromise spatial specificity, subject-
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specific ROIs extracted from surface-based analyses can partially alleviate this limitation 

(Nieto-Castanon, 2022). Brain imaging analysis can identify fatigue correlates by exploring 

associations across a limited number of subject-specific ROIs that cover the whole brain.   

Another methodological question is whether to use FC from the resting-state or the PASAT 

task. Although initial FC studies emphasised task-related states (Friston, 1994), resting-state 

FC prevails in the field due to the concept of an "intrinsic" functional network, bypassing 

the need to consider numerous task states (Fox and Raichle, 2007). There can be two 

perspectives on this topic (Gratton et al., 2018). One posits that functional networks mirror 

cognitive, perceptual, and motor processes, adapting significantly to context, task demands, 

moods, and fleeting thoughts. However, this implies that networks may be less reliable for 

clinical applications, being strongly influenced by specific measurement conditions like the 

scanner environment, rather than the underlying disease. The alternative view suggests that 

functional networks are fundamentally stable. Therefore, an fMRI scan could measure 

network properties informative about a person's stable traits (e.g., disease status or 

personality) regardless of their thoughts, mood, or task during the scan. If accurate, this 

indicates that functional networks can gauge individual traits and monitor diseases, holding 

potential for personalized medicine, but may have limited utility for assessing cognitive 

content.  

Evidence indicates that fMRI FC undergoes only minimal reconfiguration during tasks 

compared to rest. For instance, one study examined FC between numerous brain regions 

across 64 task states and rest in individual subjects and found an "intrinsic" functional 

network architecture present across many tasks that highly resembles the resting-state 

architecture (Cole et al., 2014). While task-evoked changes in this architecture were common 

across tasks, task-specific FC alterations were relatively small but significant overall. The 

authors replicated their findings in a larger dataset with seven distinct tasks. Additionally, a 

similar study demonstrated a correlation of 0.75 between resting-state FC and FC across 14 

tasks, ranging from passive fixation to increasingly demanding classification tasks (Krienen 

et al., 2014). Sources of variation between rest and task state FC are also differentially 

distributed across the brain, and state-based modulations vary widely across individuals. 

This implies that functional networks are best suited for measuring stable individual 

characteristics, and state changes should be considered in network comparisons (Gratton et 

al., 2018). Furthermore, Hearne et al. (2017) found that increased reasoning demands lead 

to selective patterns of connectivity within cortical networks, supplementing the previously 

mentioned general task-induced architecture. These findings, along with others in healthy 
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and MS cohorts (Gianni et al., 2021, Gonzalez-Castillo and Bandettini, 2018), suggest that 

task-based FC surpasses resting-state FC in task-related networks. Consequently, resting-

state FC might not directly correlate with a behavioural function in the same way that a task-

based measure of connectivity does. Convergent findings from both types of FC have already 

been shown to improve our understanding of adolescent brain network maturation (Stevens, 

2016). Finally, studies have used both resting-state and task FC to complement each other 

(Harrewijn et al., 2020, Bolt et al., 2017, Cohen and D'Esposito, 2016), as was also done in 

this study. 

This chapter will compare brain imaging correlates of fatigue subdimensions in IA. These 

will include morphometric features, FC extracted from fMRI during rest and the PASAT 

task. I will agnostically identify associations with baseline scores of subdimensions of 

fatigue using the same BRAF MDQ questionnaire in RA patients from the LIFT trial. 

Although the previous chapter found no phenotypical differences among the neuroimaging 

subgroups, I expect fatigue phenotypes to differ in neuroimaging correlates in this analysis. 

The subgroups might have exhibited internal heterogeneity, while the fatigue phenotypes in 

this context are inherently distinct and are linked to the functions of different neural circuits. 

Additionally, the methodological approach will examine each fatigue phenotype 

independently to better identify potential differences. I hypothesise that:  

• There are statistically significant correlates of subcomponents of fatigue (physical, 

living, cognitive, emotional)  

• Some significant components will be common across fatigue subcomponents and 

others will be distinct for the different fatigue subcomponents.  
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4.2 Methods   

Patient recruitment, clinical and MRI data descriptions for LIFT have already been described 

in Chapter 2.1.2. T1-weighted scans quantified grey matter morphometric features (volume, 

thickness, surface area) of brain regions while DTI estimated their SC as white matter 

structural integrity between each pair of regions. Functional scans from both resting-state 

and PASAT depicted FC between brain regions. The Desikan-Killiany anatomical atlas 

(Desikan et al., 2006) defined 84 brain regions for all modalities. These regions can also be 

related to specific brain networks (Error! Reference source not found.). The pre-processing 

of the resulting images included surface-based segmentation of grey and white matter (Dale 

et al., 1999) using the Free Surfer 6 software. This was followed by the default surface-based 

CONN pipeline for fMRI which included the same steps as Chapter 3.2.1 apart from 

centralisation and normalization. The FMRIB software packages 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) pre-processed the DTI data which was then fed into 

probabilistic tractography to estimate SC between atlas regions using the BEDPOSTX and 

PROBTRACKS tools (Behrens et al., 2007, Hernandez et al., 2013). The outputs were 

measures of grey matter volumes, thickness, and surface area with two functional and one 

structural connectivity matrices made of values for each pair of regions.  

This study used FC during both rest and the PASAT task. Firstly, this enabled comparisons 

between results in this thesis as the LIFT trial had both modalities but others like the RA 

study dataset 2 and the PsA dataset had only resting-state fMRI while the RA study dataset 

1 had only PASAT fMRI. Secondly, while rest and task FC offer similar information, their 

distinct characteristics have been shown to provide unique insights into the investigated 

behaviour (Schultz and Cole, 2016). Specifically, the PASAT task has previously been 

shown to cause temporary mental fatigue in conditions such as chronic fatigue syndrome 

(Cook et al., 2007) and the autoimmune disease granulomatosis with polyangiitis (Basu et 

al., 2014), potentially reflecting connectivity relevant to clinical features such as 'mental fog'. 

However, the intention here is not to differentiate patterns of the "intrinsic" functional 

network architecture from task-specific architecture but rather to offer complementary 

information. Also, while the PASAT was chosen for its fatiguing nature, the experience of 

the MRI scanner itself can be fatiguing and may contribute to patient fatigue. The task may 

also engage other cognitive dimensions, and it remains unclear whether the fatigue observed 

is clinically significant or similar to normal tiredness. Nevertheless, previous research has 

indicated that the PASAT task may more effectively engage attention networks than resting-
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state (Basu et al., 2019, Audoin et al., 2005), which could be a key contributor for one or 

several subcomponents of fatigue, central to the focus of this study.  

To analyse the data in a univariate way, I employed GLMs that associate fatigue levels with 

a single neuroimaging variable while controlling for variables of no interest (age, gender, 

MRI imaging site). GLMs are an extension to the simple linear regression that can explore 

non-linear relationships and whose error distribution of the target variable is not limited to a 

Gaussian distribution (Schmettow, 2021). The resulting analysis tests the null hypothesis 

that the coefficient for the selected variable is zero. Because each variable is modelled 

individually, all tests are controlled for multiple comparisons. This method was implemented 

using a custom MATLAB code based on the “conn_glm” function of the CONN toolbox 

(Whitfield-Gabrieli and Nieto-Castanon, 2012) that can be found: 

https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Uni

variate_KS/BRAF   

Baseline neuroimaging variables from the same 84 brain regions from Desikan-Killiany atlas 

were individually tested whether they associate with sub-scores of BRAF fatigue (Appendix 

A) that measure the physical, impact on living, cognitive and emotional fatigue. To achieve 

this, the covariates (mean effect, gender, age, site, fatigue) were used in a design matrix 

within a general linear model. For grey matter features only, total intracranial volume (TIV) 

was also used as a covariate. Because this analysis was an agnostic approach, all p values 

were adjusted for multiple comparisons using FDR. The significance level for the 

morphometric features and FC was set at p<0.05. For SC, this was set at p<0.025 because 

twice as many connections are tested per region.  

 

 

 

 

 

 

 

 

 

https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Univariate_KS/BRAF
https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Univariate_KS/BRAF
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4.3 Results  

Before RA patients were allocated to the UC, PEP, or CBA treatment groups, they completed 

the BRAF MDQ questionnaire, which measures fatigue levels as a sum of physical (median 

= 15.87, IQR = 5), impact on living (median = 10.04, IQR = 6), cognitive (median = 7.31, 

IQR = 5), and emotional (median = 5.96, IQR = 4.25) dimensions of fatigue. All sub-scores 

were significantly correlated with each other although the strength of their association varied 

(Figure 4-1). The physical and cognitive dimensions shared the least variance while the 

emotional scores had the strongest correlations with both the living and the cognitive scores. 

Each of these sub-scores was then used as outcome variables in general linear models to find 

correlates of subdimensions of baseline fatigue using grey matter volumes, thickness, and 

surface area with two functional and one structural connectivity matrices.  

 
Figure 4-1: Correlation matrix and scatterplots of fatigue subdimensions. The figure displays 

the correlation matrix (Spearman's rank correlation) and scatterplots of the four sub-scores of the 

Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ): Physical, 

Living, Cognitive, and Emotional. Each scatterplot represents the relationship between two sub-

scores, with regression lines and their 95% confidence intervals. The significance stars denote the 

strength of the associations while the histograms along the diagonal show the distributions of each 

sub-score. Density curves are displayed in turquoise. p < 0.001 *** 
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Looking at morphometric brain metrics, grey matter thickness of the left insula and right 

lingual gyrus negatively correlated with cognitive fatigue scores (Table 4-1). Structural 

connectivity of the right paracentral lobule to multiple areas was negatively associated with 

living subdimensions of fatigue, along with connectivity of the right and left pericalcarine 

cortex, the right lingual gyrus and the left middle temporal gyrus (Table 4-2). Connectivity 

of the right lingual gyrus also correlated with physical fatigue while that of the right 

pericalcarine cortex – with emotional fatigue scores.   

All fatigue sub-scores correlated with resting-state FC of frontal areas (Table 4-3), including 

the left lateral orbitofrontal cortex, the right caudal middle frontal gyrus, and the left pars 

orbitalis. While most of the FC of the frontal areas was positively correlated with fatigue 

scores, connectivity between the left pars orbitalis and the left supramarginal gyrus was 

negatively correlated with both cognitive and emotional fatigue scores. In comparison, 

PASAT FC resulted in multiple positive correlates of physical fatigue with connectivity of 

sensorimotor regions, including the right and left postcentral gyrus and the right precentral 

gyrus (Table 4-4). Additionally, the living fatigue sub-scores were positively associated 

with connectivity of the left and right fusiform gyrus as well as the left pars triangularis, left 

nucleus accumbens, and left cuneus. FC of the left frontal pole with the left paracentral 

lobule was also associated with the living fatigue sub-scores while connectivity with the 

right paracentral lobule was correlated with the emotional fatigue sub-scores. 

Grey Matter Thickness 

ROI Seed t statistic p value  Effect size  

Cognitive Fatigue Score    

Right Lingual -3.76 0.02 0.15 (small) 

Left Insula -3.30 0.05 0.12 (small) 

Table 4-1: Morphometric correlates of fatigue subdimensions. Significant results (p<0.05) using 

general linear models on baseline grey matter thickness variables to associate with baseline 

subcomponents of fatigue scores in all RA patients from the LIFT study (n=88). The fatigue scores 

are based on the Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF 

MDQ) which has sub-scores of physical, living, cognitive, and emotional dimensions. All analyses 

were adjusted for age, gender, imaging site, and total intracranial volume. The p values are after false 

discovery rate (FDR) correction. Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, 

medium>=0.25, large >0.37 (Goss-Sampson, 2019).   
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Structural Connectivity 

ROI Seed ROI Target t statistic p value  Effect size  

Physical Fatigue Score 

Right Lingual 
Right Bank of the Superior 

Temporal Sulcus 
-4.68 <0.001 0.21 (small) 

Left Transverse Temporal 

Gyrus 

Right Pericalcarine 
-3.91 0.016 0.16 (small) 

Living Fatigue Score 

Right Paracentral Lobule 

Right Inferior Parietal Lobule -3.62 0.012 0.14 (small) 

Right Parahippocampal -3.62 0.012 0.14 (small) 

Right Hippocampus -3.60 0.012 0.14 (small) 

Right Pericalcarine -3.59 0.012 0.14 (small) 

Right Lateral Occipital Gyrus -3.50 0.012 0.13 (small) 

Right Supramarginal Gyrus -3.25 0.023 0.11 (small) 

Right Pericalcarine Left Transverse Temporal 

Gyrus 
-4.17 0.006 0.18 (small) 

Left Pericalcarine -3.86 0.012 0.15 (small) 

Left Isthmus Cingulate -3.86 0.018 0.15 (small) 

Right Lingual Left Middle Temporal Gyrus -4.05 0.010 0.17 (small) 

Left Superior Temporal Gyrus -4.05 0.009 0.17 (small) 

Left Pericalcarine Right Cuneus -3.80 0.012 0.15 (small) 

Left Middle Temporal Gyrus Left Amygdala -3.61 0.022 0.14 (small) 

Emotional Fatigue Score 

Right Pericalcarine Right Paracentral Lobule -3.68 0.017 0.14 (small) 

 Left Hippocampus -3.68 0.017 0.14 (small) 

Table 4-2: Structural connectivity correlates of fatigue subdimensions. Significant results 

(p<0.025) using general linear models on baseline structural connectivity variables to associate with 

baseline subcomponents of fatigue scores in all RA patients from the LIFT study (n=87). The fatigue 

scores are based on the Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire 

(BRAF MDQ) which has sub-scores of physical, living, cognitive, and emotional dimensions. All 

analyses were adjusted for age, gender, and imaging site. The p values are after false discovery rate 

(FDR) correction. Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, medium>=0.25, 

large >0.37 (Goss-Sampson, 2019).  
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Resting-state Functional Connectivity 

ROI Seed ROI Target t statistic p value Effect size  

Physical Fatigue Score 

Left Lateral Orbitofrontal Cortex Left Medial Orbitofrontal 

Cortex 

3.60 0.045 0.14 (small) 

Living Fatigue Score 

Right Caudal Middle Frontal Gyrus 

Right Parahippocampal 3.67 0.024 0.14 (small) 

Left Bank of the Superior 

Temporal Sulcus 
3.58 0.048 0.14 (small) 

Right Hippocampus 3.38 0.026 0.12 (small) 

Left Fusiform 3.27 0.027 0.12 (small) 

Left Pallidum Left Postcentral Gyrus 4.08 0.009 0.17 (small) 

Right Ventral Diencephalon Left Fusiform 3.61 0.043 0.14 (small) 

Cognitive Fatigue Score 

Left Pars Orbitalis Left Supramarginal Gyrus -4.12 0.007 0.17 (small) 

Emotional Fatigue Score 

Left Pars Orbitalis Left Supramarginal Gyrus -3.71 0.032 0.14 (small) 

Table 4-3: Resting-state functional connectivity correlates of fatigue subdimensions.  

Significant results (p<0.05) using general linear models on baseline resting-state functional 

connectivity variables to associate with baseline subcomponents of fatigue scores in all RA patients 

from the LIFT study (n=87). The fatigue scores are based on the Bristol Rheumatoid Arthritis Fatigue 

Multi-Dimensional Questionnaire (BRAF MDQ) which has sub-scores of physical, living, cognitive, 

and emotional dimensions. The common regions between fatigue subdimensions are highlighted in 

grey. All analyses were adjusted for age, gender, and imaging site. The p values are after false 

discovery rate (FDR) correction. Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, 

medium>=0.25, large >0.37 (Goss-Sampson, 2019).  
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PASAT Functional Connectivity 

ROI Seed ROI Target t statistic p value Effect size  

Physical Fatigue Score 

Right Precentral Gyrus 

Left Postcentral Gyrus 3.67 0.018 0.15 (small) 

Right Paracentral Lobule 3.64 0.021 0.15 (small) 

Left Paracentral Lobule 3.34 0.028 0.13 (small) 

Right Fusiform 3.38 0.047 0.13 (small) 

Left Fusiform 3.07 0.036 0.11 (small) 

Right Postcentral Gyrus 

Left Fusiform 3.65 0.039 0.15 (small) 

Right Fusiform 3.55 0.047 0.14 (small) 

Right Paracentral Lobule 3.36 0.034 0.13 (small) 

Left Paracentral Lobule 2.78 0.043 0.09 (trivial) 

Left Postcentral Gyrus 
Right Paracentral Lobule 3.89 0.017 0.16 (small) 

Left Paracentral Lobule 3.44 0.028 0.13 (small) 

Left Amygdala Left Lateral Occipital Gyrus 3.82 0.022 0.16 (small) 

Living Fatigue Score 

Left Fusiform 

Right Cuneus 3.42 0.031 0.13 (small) 

Left Postcentral Gyrus 3.30 0.031 0.12 (small) 

Right Lateral Occipital Gyrus 3.30 0.031 0.12 (small) 

Right Fusiform 
Right Cuneus 3.59 0.042 0.14 (small) 

Left Cuneus 3.23 0.043 0.12 (small) 

Left Pars Triangularis 

Left Rostral Anterior 

Cingulate 
4.42 0.003 0.2 (small) 

Right Rostral Anterior 

Cingulate 
3.88 0.009 0.16 (small) 

Left Accumbens 

Left Bank of the Superior  

Temporal Sulcus 
4.02 0.011 0.17 (small) 

Left Pars Opercularis 3.64 0.020 0.15 (small) 

Left Cuneus Right Middle Temporal Gyrus 3.69 0.035 0.15 (small) 

Left Frontal Pole  Left Paracentral Lobule 3.67 0.037 0.15 (small) 

Emotional Fatigue Score 

Left Frontal Pole Right Paracentral Lobule 3.68 0.035 0.15 (small) 

Table 4-4: PASAT functional connectivity correlates of fatigue subdimensions. Significant 

results (p<0.05) using general linear models on baseline functional connectivity variables, extracted 

from activity during the Paced Auditory Serial Addition Test, to associate with baseline 

subcomponents of fatigue scores in all RA patients from the LIFT study (n=87). The fatigue scores 

are based on the Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF 

MDQ) which has sub-scores of physical, living, cognitive, and emotional dimensions. All analyses 

were adjusted for age, gender, and imaging site. The p values are after false discovery rate (FDR) 

correction. Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large 

>0.37 (Goss-Sampson, 2019). 
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Overall, correlates of fatigue subdimensions differed within SC as well as FC extracted from 

activity during resting-state and the PASAT task (Figure 4-2) despite significant 

correlations between all of the fatigue sub-scores. The physical and living fatigue scores 

produced the majority of the correlates with many of them focused on the paracentral lobule. 

Connectivity of the paracentral lobule also correlated with emotional fatigue scores. The 

resting-state functional connection between the left pars orbitalis and the left supramarginal 

gyrus was the only connection that correlated with two different scores in the cognitive and 

emotional subdimensions.  

 
Figure 4-2: Brain connectivity correlates with subdimensions of fatigue.  All analyses used a 

general linear model, adjusted for age, gender, and imaging site. Abbreviations: L/R, left/right; i/s,  

inferior/superior; m/l, medial/lateral; C, cortex; G, gyrus; CACC, caudal anterior cingulate cortex; 

CMFG, caudal middle frontal gyrus; RACC, rostral anterior cingulate cortex; RMFG, rostral middle 

frontal gyrus; OFC, orbitofrontal cortex. The brain images were created using BrainNet software 

v1.7 (Xia et al., 2013), and the diagram was constructed using circlize R package (Gu et al., 2014).  
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4.4 Discussion  

This was the first study to compare brain imaging correlates of subdimensions of fatigue in 

IA. The fatigue subdimensions exhibited mostly distinct associations with various brain 

imaging metrics, despite significant correlations between the subdimensions themselves. 

These associations could be attributed to separate circuits underlying fatigue subdimensions. 

Brain circuits can classify central fatigue into motivational, physical, and cognitive subtypes 

(Korte and Straub, 2019), reflected by BRAF sub-scores. The living score assesses the 

impact of fatigue on patient motivation by asking whether fatigue affected the planning of 

activities (Appendix A), while it has been shown to correlate with other questionnaires that 

measure motivation, such as the Short Form 36 General Health Survey (Nicklin et al., 2010, 

Stansfeld et al., 1997). The living score correlated with FC of the left accumbens and frontal 

areas, including the caudal and rostral middle frontal gyrus, the frontal pole, the left pars 

opercularis and triangularis, as well as the rostral anterior cingulate cortex and the isthmus 

cingulate cortex. These findings may underlie changes in the mesolimbic pathway, which 

consists of dopamine neurones in the ventral tegmental area projecting to the nucleus 

accumbens, and subsequently to the orbitofrontal cortex and the anterior cingulate cortex 

(Koob and Volkow, 2016). This circuit determines the drive for incentives, shaping 

behavioural responses to rewards based on a cost-benefit analysis of internal and external 

information. Changes in this circuit are associated with anhedonia (Clery-Melin et al., 2019), 

which forms a major part of depression symptoms that also correlate with the BRAF living 

dimension (Nicklin et al., 2010). The brain circuit that induces motivational fatigue could 

thus increase the perception of energy costs of actions and/or decrease the expectation of 

rewards.  

The living fatigue sub-scores also negatively correlated with SC from the paracentral lobule 

to six different regions, whereas physical fatigue levels were positively associated with FC 

between the paracentral lobule and the motor cortex (precentral gyrus) and the 

somatosensory cortex (postcentral gyrus). The paracentral lobule receives motor and sensory 

innervations and forms part of the SMN, which also includes the motor and somatosensory 

cortices. In healthy subjects, FC of the left paracentral lobule with both the insula and the 

ventromedial prefrontal cortex has previously been positively associated with fatigue, 

induced by a working memory task (Chen et al., 2020, Wylie et al., 2020). Weaker 

paracentral lobule connections may predispose people to fatigue, which some theoretical 

accounts assign to changes in brain systems involved in performing cognitive or motor 
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operations such as the paracentral lobule (Muller and Apps, 2019). This framework also 

suggests that the internal states of the task networks can be monitored by a more general 

network composed of the dorsal anterior cingulate cortex, the dorsolateral prefrontal cortex, 

and the anterior insula due to their widespread connectivity profile and involvement in 

interoception, cognitive control and metacognition. For example, interoceptive attention to 

heartbeats enhances activity in the anterior insula during subsequent judgements of 

emotional faces (Ernst et al., 2013). Cognitive control is the ability to adapt behaviour in 

pursuit of a goal. Activity in the dorsolateral prefrontal cortex has been associated with 

cognitive control in the form of switching between tasks (Swainson et al., 2003). 

Metacognition is a specific form of cognitive control in which control stems from self-

awareness of one’s own abilities (Shea et al., 2014). Activity in both the dorsolateral 

prefrontal cortex and dorsolateral anterior cingulate cortex was associated with 

metacognition by distinguishing participants who were informed that their cognitive ability 

was being assessed from subjects performing the same task but without that knowledge 

(Bengtsson et al., 2009). This general network of the insula, prefrontal and cingulate cortices 

may then amplify the effort a person perceives in carrying out subsequent behaviours. 

Changes in the paracentral lobule may thus induce physical fatigue due to its function within 

a task-related network such as the SMN but also associate with motivational fatigue because 

of the influence of regions like the insula and prefrontal cortex that monitor the internal state 

of the somatosensory network.  

Among the fatigue sub-scores, only cognitive fatigue correlated with the structural properties 

of grey matter, wherein reduced thickness of the insula and lingual gyrus corresponded to 

higher fatigue levels. The lower thickness of the insula and lingual gyrus might suggest a 

consistently higher cognitive load, as FC of the lingual gyrus has been associated with 

fatigue in SLE (Barraclough et al., 2021) while anterior insula activity co-varies with the 

amount of cognitive and physical effort required in healthy cohorts (Chong et al., 2017b). 

The insula acts as a main hub for interoception—perceiving the physiological condition of 

the body (Craig, 2002). Interoceptive accuracy, an objective measure of behavioural 

performance on interoceptive tasks such as counting heartbeats, positively correlates with 

activity and grey matter volume of the insula (Critchley et al., 2004) as well as insular FC 

(Chong et al., 2017a). Inflammation is one pathway that may induce interoceptive 

dysfunction through functional or structural changes in the insula (Hanken et al., 2014). 

These insular changes may lead to abnormal representations of bodily signals that then 

exacerbate the rapid development of fatigue (Karshikoff et al., 2017). Interoceptive 

processing has already been associated with fatigue (Harrison et al., 2009), including in 
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chronic fatigue disorders like MS (Gonzalez Campo et al., 2020). However, fatigue has had 

mixed results in associating with interoceptive awareness, the correspondence between the 

accuracy and the confidence in interoceptive ability, as measured by a subjective 

questionnaire (Garfinkel et al., 2015). Although fatigue was negatively associated with 

interoceptive awareness in MS (Rouault et al., 2023), another MS study failed to find a 

statistically significant relationship (Ware et al., 2023). While both had a similar number of 

patients and used the Fatigue Severity Scale, one study (Ware et al., 2023) additionally 

selected participants who consider themselves physically active. Also, Ware et al. (2023) 

used the total score from the eight-subscale Multidimensional Assessment of Interoceptive 

Awareness questionnaire (Mehling et al., 2018) compared to Rouault et al. (2023) that used 

only the “not-worrying” and “trust” subscales to assess the feelings of being in homeostasis 

and control. In essence, while the link between interoception and fatigue is apparent, further 

work needs to elucidate the process of how interoceptive changes generate fatigue and which 

factors are pivotal for this relationship.   

Cognitive fatigue in this study was not only associated with the cortical thickness of the 

insula but also with that of the lingual gyrus, a brain region involved in internally directed 

attention (Benedek et al., 2016). FC within an attention network significantly predicted the 

subjective intensity of an interoceptive task in a healthy cohort (Wu et al., 2019). Notably,   

Haruki and Ogawa (2021) found that while activity in the anterior insula correlated with 

interoceptive accuracy during a heartbeat counting task, activity in the mid insula 

differentiated attention to the interoceptive task from that of a control attention task. 

Interoceptive disturbances have also been associated with major depressive disorder (Dunne 

et al., 2021), which has established changes in the insula (Namkung et al., 2017). 

Furthermore, antidepressants have been shown to improve interoceptive function (Eggart 

and Valdes-Stauber, 2021), suggesting that affecting interoception may be a potential avenue 

to ameliorating sickness behaviours like depression and fatigue. In the context of this study, 

inflammation in some RA patients may promote changes in interoception and attention, 

reflected in neurobiological differences, and enhance and maintain a chronic fatigue state, 

which can potentially be mitigated by affecting interoceptive processes.   

Cognitive fatigue was also negatively associated with the resting-state FC between the left 

pars orbitalis and left supramarginal gyrus, both integral regions of the DMN (Uddin et al., 

2019). The same link was observed in the emotional scores, which showed the strongest 

correlation with cognitive scores, suggesting that emotional and cognitive fatigue may 

agglomerate into regions of the DMN, central to both affective and cognitive processes 
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(Yeshurun et al., 2021). DMN activity differentiated stable SLE patients with high fatigue 

from healthy controls using fMRI data from both a cognitive working memory task and an 

emotional facial recognition task (Barraclough et al., 2019). Activity in the DMN decreases 

progressively with task difficulty, thus acting as an indicator of attentional resources, whose 

overuse can lead to cognitive fatigue (Wylie and Flashman, 2017). Also, FC within the DMN 

negatively correlates with fatigue in conditions such as traumatic brain injury (Zhou et al., 

2012) and MS (Sjogard et al., 2021). Additionally, traumatic brain injury patients with lower 

DMN FC and greater fatigue show more evidence of diffuse axonal injury in the form of 

mean diffusivity within the adjacent corpus callosum (Sharp et al., 2011). Overall, DMN 

connectivity correlating with fatigue in this study is consistent with the previous literature in 

autoimmune and neurological disorders, but future work needs to strengthen these findings 

in IA and determine whether this biomarker changes in response to treatment.   

These findings are restricted to the clinical cohort, the BRAF measure, and the nature of 

univariate analyses. The LIFT cohort has relatively low systemic inflammation that is not 

representative of a typical RA population and thus certain brain circuits may be more 

affected than others. Also, the utilized BRAF MDQ questionnaire is a subjective measure of 

different aspects of fatigue rather than the severity of fatigue that treatments aim to target. 

Here, the univariate cross-sectional analysis found independent biomarkers that have the 

strongest effect on different dimensions of fatigue. Although these biomarkers were different 

between fatigue subdimensions, common patterns of structural or functional brain changes 

may emerge if tested in a multivariate way. This approach would replace testing 

independently each brain variable with testing brain patterns that account for dependencies 

between brain variables. These patterns are derived from dimensionality reduction 

techniques such as principal component analysis and can be set to best capture the variability 

across individuals in relation to different types of fatigue as it has been done for reduction 

of depressive symptoms after treatment (Paolini et al., 2023). Overall, how much fatigue 

interfered with daily living was associated with the connectivity of motivational brain 

regions, physical fatigue with SMN regions, and cognitive and emotional fatigue with DMN 

regions, implying that specific brain circuits may be responsible for these facets of fatigue.
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Chapter 5 Predictors of fatigue in RA after 

non-pharmacological interventions    

5.1 Introduction  

In IA, fatigue is associated with structural and functional brain metrics, which describe the 

state of the brain relevant to fatigue. Cross-sectional studies have found these associations 

by correlating fatigue with different brain measures or differentiating patients with chronic 

fatigue from healthy cohorts. However, fatigue correlates may not be valuable in predicting 

how different treatments will affect fatigue. Management of fatigue in IA currently lacks 

predictive neurobiological markers that are associated with response to fatigue-specific 

treatments. Predictive markers would help identify patient subgroups benefiting most from 

treatment or at high risk of unfavourable outcomes. Brain imaging can thus offer 

neurobiological predictors of fatigue that may inform how IA patients should be treated. To 

identify brain imaging predictors of fatigue, studies can either use previously found 

correlates of fatigue or agnostically test for associations across the brain for links with 

fatigue or treatment response. Neuroimaging studies have used such methods to 

discover biomarkers of Alzheimer’s disease (Ruan et al., 2016), markers of treatment 

resistance in schizophrenia (Molent et al., 2019) and treatment response in depression (Levy 

et al., 2019, Kang and Cho, 2020).  

This chapter will focus on finding neurobiological markers that predict response to 

fatigue-specific treatments in IA. Potential predictors of fatigue in this study included 

FC derived from fMRI during rest or the PASAT task. This choice aligned with the 

rationales from Chapter 4, which were to provide complementary information and 

offer cross-study comparisons within this thesis. In addition, task-based FC can carry 

implications for generating predictions. Firstly, resting-state FC can predict task-

induced BOLD activity in individuals (Mennes et al., 2010). Secondly, task FC enhances 

predictions of various traits and behaviours. For example, a study predicted fluid 

intelligence across two large independent datasets using cognitive task FC (Greene et 

al., 2018). They demonstrated that task-based fMRI data outperformed resting-state 

data in modelling trait-relevant individual differences in FC. The best model explained 

over 20% of the variance, compared to <6% for rest-based models. These results 

suggest that inducing the appropriate brain state during fMRI can better reveal brain-
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behaviour relationships. This approach offers an opportunity to comprehensively 

characterise individual differences in the neural circuitry underlying complex traits, 

yielding valuable behavioural predictions. Lastly, a study highlighted the clinical utility 

of combining resting-state and task FC in predicting attention symptoms in attention 

deficit hyperactivity disorder (Rosenberg et al., 2016). They initially identified 

functional brain networks whose strength during a sustained attention task predicted 

performance differences. Models based on these networks generalised to new 

individuals, even predicting performance from resting-state connectivity alone. These 

models then predicted the clinical measure of attention symptoms from resting-state 

connectivity in an independent sample of children and adolescents. Overall, these 

findings highlight to potential of using both resting-state and PASAT FC in predicting 

fatigue. 

To address the aim of identifying neuroimaging predictors of response to fatigue-

specific treatments in RA, I constructed univariate general linear models based on a 

preselected and an agnostic approach using subject-specific ROIs. The former 

investigated fatigue markers from earlier findings (Basu et al., 2019) in RA patients who 

had 6 months of a personalised exercise programme (PEP) or a cognitive behavioural 

approach (CBA). The previous study found functional neuroimaging correlates of 

current fatigue in RA that replicated on repeat scanning after 6 months. It also 

identified grey matter volume associations with average fatigue over a week. 

Alternatively, the agnostic approach searched through every neuroimaging variable 

within the structural/resting-state/PASAT connectivity and structural grey matter 

metrics. I hypothesised that:  

• The previous correlates will not predict fatigue as these are markers of current 

fatigue in patients who did not receive fatigue-specific treatments. 

• There are statistically significant predictors of fatigue scores using the agnostic 

approach.   
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5.2 Methods 

Patient recruitment, clinical and MRI data descriptions for LIFT have already been described 

in Chapter 2.1.2. A mixed ANOVA determined whether time (baseline, follow-up) and 

treatment groups interacted in reducing Chalder fatigue (Appendix C) adjusting for gender, 

age, and imaging site. Post-hoc t-tests with Bonferroni corrections then identified which 

groups had an effect. Brain imaging metrics were extracted using the same preprocessing 

pipeline as outlined in Chapter 4.2 while similar general linear models were also used 

(https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Uni

variate_KS/Chalder). Each neuroimaging variable acted as a predictor of post-treatment 

Chalder fatigue while controlling for baseline levels of fatigue as well as age, gender, and 

MRI imaging site. These models are useful for finding relevant associations but not 

individual predictions.  

5.2.1 Pre-selected approach 

In the previous study in RA (Basu et al., 2019), univariate models depicted that patients with 

greater grey matter putamen volumes reported higher average over-the-week fatigue levels. 

The study observed the same positive relationship with current fatigue for PASAT 

connectivity between the DAN and the bilateral medial prefrontal cortex. This result was 

replicated on repeat scanning after six months.  General linear models tested whether these 

biomarkers predict follow-up Chalder fatigue in the PEP and CBA groups while correcting 

for confounding variables like age, gender, imaging site, total intracranial volume and 

baseline Chalder fatigue. As the neuroimaging variables were preselected based on a 

previous study, no correction for multiple comparisons was applied (Streiner, 2015). The 

findings from Chapter 4 were not included in the pre-selected approach as they represented 

correlates of subdimensions of fatigue rather than fatigue severity that treatments target.    

5.2.2 Agnostic approach  

Before constructing predictive models, some adjustment for baseline outcome values is 

necessary because subjects with extreme scores at baseline tend to improve more than those 

with average scores, a phenomenon termed regression to the mean. For this reason, studies 

either adjust for the baseline and predict the raw outcome or predict the difference between 

the outcome and baseline (change scores). Adjusting for baseline is sometimes preferred 

https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Univariate_KS/Chalder
https://github.com/krisbg95/LIFT/tree/f086a8b0bb4981c19d675299f7ba9b6f2c0f74f0/Univariate_KS/Chalder
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because change scores do not control for baseline imbalances between groups. The 

ANCOVA adjusts each subject’s follow-up score for their own baseline score but is 

unaffected by chance baseline differences and regression to the mean that can occur in 

adjusted models (Vickers and Altman, 2001). Even if imbalances are controlled for by 

randomisation in clinical trials, the expected marginal but non-zero imbalance still has the 

potential to impact power, type I error rate, and bias in marginal intervention effect estimates 

(Ciolino et al., 2019). It is recommended to adjust for baseline measures correlated with the 

outcome, including by the European Medicines Agency (Committee for Medicinal Products 

for Human Use, 2015). Changed scores negatively correlate with baseline scores so if any 

potential predictor is correlated with the baseline, that predictor will tend to have a spuriously 

negative relationship with changed scores.  

Proponents of change scores exhibit that adjusting for baseline can inflate ANCOVA 

estimates (Glymour et al., 2005), known as Lord’s paradox (Kim, 2018). They additionally 

argue that if the predictor is uncorrelated with the transient component of baseline scores, 

the change score approach is superior (Allison, 1990). Guidelines observe that if treatment 

is not randomised, change scores should be considered. This is especially the case if selection 

into treatment is correlated with baseline value, and change scores are preferred because any 

time-invariant predictors of the outcome are controlled for. However, if change scores are 

used, they should not be used while adjusting for baseline. This is because, by construction, 

the baseline score is correlated with the error term when the change score is used as the 

dependent variable, hence the estimated effect of the baseline on the change score is 

uninterpretable.   

Using the data from the two treatment groups only, baseline neuroimaging variables from 

the same brain regions of the Desikan Killiany atlas were individually tested whether they 

predict future post-treatment Chalder fatigue. To achieve this, the covariates (mean effect, 

gender, age, imaging site, baseline, raw outcome) were used in a design matrix within a 

general linear model. For morphometric features, TIV was also used as a covariate. Because 

this analysis was an agnostic approach, all p values were adjusted for multiple comparisons 

using FDR. The significance level for the morphometric features and FC was set at p<0.05. 

For SC, this was set at p<0.025 because twice as many connections are tested per region. 

The results of using change scores are reported in the appendix (Appendix D). Additionally, 

the same analysis was performed for PEP and CBA separately as well as looking into 

correlates of baseline Chalder fatigue in all RA patients (Appendix D).  
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5.3 Results 

5.3.1 Patient characteristics and treatment effects 

In LIFT, 88 subjects completed clinical assessments (Table 5-1) and at least a T1-weighted 

scan at baseline [66 females, age 59.3 (11.76)], 87 completed resting-state and DTI, and  82 

completed a PASAT scan.  

Factor Baseline  

LIFT  

6-month  

LIFT 

RA disease activity a 4.29 (1.64) 4 (1.82) 

ESR (mm/h) 11 (10.75)  11 (11.5) 

Fatigue (severity) b 22 (8.13)  16 (10) 

Sleep disturbance c 12 (8.5) 9 (8.25) 

Pain severity d 6 (3) 5 (4) 

Depression f 6 (6) 5 (5) 

Table 5-1: Clinical characteristics of patients in the LIFT trial as Median (IQR). 
a
DAS-28 

(disease activity score); 
b
Chalder fatigue scale; 

c
Jenkin’s sleep scale; 

d
Current pain NRS; 

e
Hospital 

Anxiety and Depression Scale; NRS: numerical rating scale. 

Patients were balanced (N, missing at follow-up) across the UC (29, 4), PEP (31,6), and 

CBA (28,5) groups. The 15 patients who did not complete follow-up data did not differ by 

age, gender, baseline inflammation or baseline Chalder Fatigue but were significantly 

different on disease activity compared to the 73 patients who completed follow-up (Table 

5-2).  

Factor Complete Missing 

Sample size 73 15 

Gender (female) 76% 66% 

Age 62 (19) 58 (9.5) 

RA disease activity** 4.25 (1.56) 5 (1.1) 

ESR (mm/h) 10 (11) 13 (9) 

Chalder Fatigue 21 (7) 22 (8.75) 

Table 5-2: Comparison between patients with completed and missing follow-up data as Median 

(IQR). The 15 patients with missing follow-up did not significantly differ (Mann-Whitney U test) 

from the 73 patients who completed follow-up on age, gender, Chalder Fatigue score, and 

inflammation in the form of erythrocyte sedimentation rate (ESR). They did differ in terms of DAS28 

disease activity (U = 303, p = 0.008, rank biserial effect size rB = -0.44). ** p < 0.01. 
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Treatment allocation affected Chalder fatigue scores over the difference between baseline 

and follow-up with a medium effect size (Figure 5-1). Specifically, PEP and CBA but not 

UC significantly reduced fatigue.  

 
Figure 5-1: Treatment by time interaction in LIFT. The plot displays Chalder fatigue means and 

95% confidence intervals of the 3 groups at baseline and 6-month follow-up. Based on a mixed 

ANOVA, there was a significant Time x Group interaction (F (2, 67) = 3.88, p=0.025, effect size 

Partial Eta squared ηp
2=0.104), adjusted for age, gender, and imaging site. Bonferroni corrected post 

hoc testing showed that PEP (t (24) = 4.863, p<0.001) and CBA (t (22) = 4.355, p<0.001) 

significantly reduced fatigue but not Usual Care (t (24) = 1.466, non-significant). Results are 

averaged over levels of gender and imaging site. Abbreviations; PEP, personalised exercise 

programme; CBA, cognitive behavioural approach.    

5.3.2 Previous fatigue correlates were not predictive of 

post-treatment fatigue 

Previous findings of larger right putamen volumes associating with higher current fatigue 

failed to predict Chalder fatigue after six months in the active treatment patients (Figure 

5-2). 

 

Seed Region General Linear Model   

 

Right 

Putamen 

 

Follow-up fatigue:  

t = -0.74, p = 0.5 

 

Left  

Putamen 

  

Follow-up fatigue:  

t = -0.45, p = 0.7 

Figure 5-2: Putamen volume analyses based on the RA study. The figure illustrates the left 

(purple) and right (green) putamen volumes based on the Free Surfer segmentation scheme in the 

software’s provided subject “Bert”. The table describes putamen volume models of future fatigue 

based on the previous RA study. General linear models that test whether putamen volume is 

predictive of follow-up Chalder fatigue in patients with active treatment (n=48) without multiple 

comparison corrections
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Previous findings of higher current fatigue correlating with higher PASAT connectivity 

between the DAN and the bilateral medial prefrontal cortex also did not predict Chalder 

fatigue after six months (Figure 5-3).  

 

Seed Region General Linear Model   

 

Right medial 

prefrontal 

cortex 

 

Follow-up fatigue:  

t = 0.13, p = 0.9 

 

Left medial 

prefrontal 

cortex 

 

Follow-up fatigue:  

t = -0.65, p = 0.5 

Figure 5-3: Dorsal attention network (DAN) connectivity with medial prefrontal cortex 

(mPFC) and fatigue. The figure illustrates the regions-of-interest of DAN and bilateral mPFC and 

their functional connectivity. The table describes the results of GLM analyses on PASAT functional 

data in MNI space using the connectivity between the DAN and 8-millimetre spheres of the bilateral 

mPFC based on coordinates from the previous RA study (left -10, 50, right -12; 8, 54, 0). It lists 

models that attempt to predict follow-up Chalder fatigue (n=43) without multiple comparison 

corrections.  

5.3.3 Structural and PASAT connectivity fatigue predictors  

There were no predictors of future Chalder fatigue using grey matter volumes or resting-

state connectivity in patients (n=48) with active treatments (PEP, CBA). For SC, more fibers 

from the precuneus (a major region of the default mode network) to the anterior cingulate 

cortex (a major region in the salience network) were predictive of lower fatigue levels after 

six months in patients with active treatments (Table 5-3), visualised as arrow connections 

in Figure 5-4. For PASAT FC, strong predictors of future fatigue included connectivity 

between two visual areas (left cuneus-right pericalcarine cortex) and between the anterior 

cingulate cortex and the frontal pole (Table 5-4), drawn as dashed connections in Figure 

5-4.  
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Structural connectivity 

Seed region Target region t statistic p value Effect size 

Left Precuneus Left Caudal Anterior Cingulate  -4.16 p=0.01 0.29 (medium) 

Right Rostral Anterior Cingulate -3.97 p=0.01 0.27 (medium) 

Right Precuneus Right Caudal Anterior Cingulate  -4.05 p=0.01 0.28 (medium) 

Right Rostral Anterior Cingulate -3.99 p=0.01 0.27 (medium) 

Right Superior Temporal 

Gyrus 

Right Lateral Occipital Gyrus -4.01 p=0.02 0.28 (medium) 

Table 5-3: Agnostic structural connectivity predictors of future fatigue. Significant results 

(p<0.025) using baseline single structural connectivity variables to predict future Chalder fatigue in 

patients with active treatments (n=48). Seed regions indicate the brain regions where the structural 

connection begins and target regions – where it ends. The results are after controlling for confounds 

(age, gender, imaging site, baseline fatigue) and correction for multiple comparisons using false 

discovery rate (FDR). Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, 

medium>=0.25, large >0.37 (Goss-Sampson, 2019). 

PASAT Functional connectivity 

Seed region Target region t statistic p value Effect size 

Left Rostral Anterior 

Cingulate  

Right Frontal Pole -4.37 p=0.008 0.34 (medium) 

Left Cuneus  Right Pericalcarine 4.21 p=0.013 0.32 (medium) 

Table 5-4: Agnostic PASAT functional connectivity predictors of future fatigue.   Significant 

results (p<0.05) using baseline single PASAT functional connectivity variables to predict future 

Chalder fatigue in patients with active treatments (n=43). Seed regions indicates brain regions whose 

connections were tested for predicting fatigue while controlling for multiple comparisons using false 

discovery rate (FDR). Target regions indicates which connections with the seed regions were 

significant.  The results are after controlling for confounds (age, gender, imaging site, baseline 

fatigue). Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37. 
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Figure 5-4: Fatigue associations within and across treatment groups. Panel A displays the five 

structural connectivity and two PASAT functional connectivity associations with fatigue follow-up 

found across the PEP and CBA groups. Panel B and C show the resting-state connectivity 

associations with follow-up fatigue in the PEP and CBA groups, respectively. All analyses used a 

general linear model, adjusted for age, gender, imaging site, and baseline fatigue. Abbreviations: 

L/R, left/right; i/s, inferior/superior; m/l, medial/lateral; C, cortex; G, gyrus; RACC, rostral anterior 

cingulate cortex; CACC, caudal anterior cingulate cortex; RMFG, rostral middle frontal gyrus. The 

brain images were created using BrainNet software v1.7 (Xia et al., 2013), and the diagram was 

constructed using circlize R package (Gu et al., 2014).  
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5.3.4 Results across treatment groups did not overlap 

between groups  

After applying the agnostic approach to the treatment groups individually, the PEP group 

had one association between follow-up fatigue and resting-state connectivity of two regions 

(Table 5-5). These were different to those found in the CBA group which had predictors in 

the other modalities (Appendix D). Overall, the associations found when using both groups 

were different from those using single groups (Figure 5-4).  

Resting-state associations in PEP group 

Seed region Target region t statistic p value Effect size 

Right Inferior Temporal 

Gyrus 

Right Paracentral -4.14 p=0.046 0.47 (large) 

Resting-state associations in CBA group 

Left Superior Frontal 

Gyrus 

Right Inferior Temporal Gyrus 4.62 p=0.02 0.56 (large) 

Right Amygdala Left Rostral Middle Frontal Gyrus 4.53 p=0.025 0.55 (large) 

Right Medial 

Orbitofrontal Cortex 

Right Frontal Pole -4.46 p=0.029 0.54 (large) 

Table 5-5:Analysis in single treatment groups. Significant results (p<0.05) using general linear 

model on baseline single resting-state functional connectivity variables to predict future Chalder 

fatigue in PEP (n=25) and CBA (n=23) groups individually. Seed region indicates brain region whose 

connections were tested for predicting fatigue while controlling for multiple comparisons using false 

discovery rate (FDR). Target region indicates which connection with the seed region was significant. 

Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37 (Goss-

Sampson, 2019). 
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5.4 Discussion 

This is the first study to use multimodal neuroimaging in RA patients who underwent fatigue 

interventions within a clinical trial. It aimed to identify metrics at baseline that link with 

fatigue after 6 months, which was lowered by both treatments compared to UC. Previously 

found markers of current fatigue did not associate with future fatigue in the trial. An agnostic 

approach, which searched through multiple brain regions, found five SC and two PASAT 

FC correlates but none using resting-state FC or grey matter volumes. In patients who 

underwent PEP or CBA, lower fatigue at follow-up was related to stronger physical 

precuneus-anterior cingulate cortex connections at baseline. Lower future fatigue was also 

associated with weaker (left cuneus and right pericalcarine cortex) and stronger (anterior 

cingulate cortex and frontal pole) correlated activity during the PASAT task. Finally, the 

two treatment groups differed on resting-state connectivity predictors of fatigue.  

Neuroimaging modalities expectedly produced distinct results as SC and FC only 

moderately (r ⋍0.3) correlate with each other (Sadaghiani and Wirsich, 2020). This 

relationship strengthens with longer scanning times and/or higher integrated FC states such 

as during rest compared to when performing a task. Despite this stronger SC-FC relationship 

during rest, PASAT rather than resting-state functional data identified predictors in this 

study. This discrepancy may indicate the differences between the two treatment groups on 

predictors of fatigue, present in the resting-state data. While results from the RA study 

pinpoint FC as reflective of current fatigue, SC may be better equipped to predict future 

fatigue levels. Genova et at. (2013) observed something similar in MS as fMRI brain activity 

discerned task-based fatigue while DTI was associated with long-term fatigue. Within the 

context of RA and LIFT, white matter changes may have preceded functional ones and better 

reflected how susceptible patients are to clinical interventions.  

In previous literature, white matter changes have preceded functional changes in MS 

(Koubiyr et al., 2019), major depressive disorder (Yao et al., 2019), and typical 

neurodevelopment (Wendelken et al., 2017) while grey matter changes have occurred last 

(Forouzannezhad et al., 2019). These studies observed that baseline SC rather than FC either 

correlated or predicted future clinical variables/cognitive abilities. This distinction may 

reflect differences between state and trait fatigue. State fatigue measures the current but 

likely temporary level of fatigue that can fluctuate during tasks,  whereas trait fatigue 

represents the stable, overall fatigue status of patients that minimally changes over time 
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(Genova et al., 2013). Correlates of these two types of fatigue, both in location and modality, 

have been shown to differ in MS (Jameen et al., 2019) while also being the targets of brain 

stimulation (Linnhoff et al., 2019). Furthermore, some views have implied that functional 

brain changes would better represent state fatigue while psychological factors like 

depression and anxiety may better explain state fatigue in MS (Schreiber et al., 2015). 

Alternatively, FC preceded SC changes in other disorders such as attention deficit 

hyperactivity disorder (Bos et al., 2017) and epilepsy (Vaessen et al., 2014), however, both 

sequences may appear like in Alzheimer’s disease (Balachandar et al., 2015, Shu et al., 

2016). These inconsistencies may derive from both disease-specific mechanisms and 

differences in acquiring and analysing neuroimaging data (Straathof et al., 2019). Overall, 

although SC appeared as the best correlate of future fatigue in LIFT, previous literature limits 

these conclusions to the RA cohort and methodology.    

Structural connectivity in LIFT revealed that low follow-up fatigue was associated with 

higher baseline integrity of white matter tracts from the precuneus to the anterior cingulate 

cortex. This negative fatigue-fibre integrity relationship complies with many studies in MS 

(Jameen et al., 2019). Baseline FC had a similar negative relationship between fatigue and 

the coherence of the frontal pole and anterior cingulate cortex but a positive one using 

connectivity between the left cuneus and right pericalcarine cortex. Such mixed results 

appear in MS and concern differences in methodology. However, these varied responses also 

involve how FC changes with different stages of the disease (Capone et al., 2020), which 

can apply to how RA fatigue progresses as well. Inadequate questionnaires/tasks may further 

confound results as they fail to distinguish transient perceptions from consistent feelings of 

fatigue (Baran et al., 2020). Overall, these technical and biological complexities hinder 

discoveries of consistent fatigue biomarkers not only in RA but in all chronic disorders that 

suffer from fatigue (Goni et al., 2018).    

The design and multimodal imaging of this study addressed some of the hindrances It 

identified correlates of future fatigue while controlling for confounder effects because 

patients were followed in time. Longitudinal methods produce more reliable results but only 

7 of 26 studies used this design within a systematic review of research on neural indicators 

of fatigue in chronic diseases (Goni et al., 2018). None of these studies integrated structural 

MRI, fMRI, and DTI modalities that broaden our insight into detrimental brain processes, 

as demonstrated in other diseases (Liu et al., 2015). Additionally, having a control group and 

two interventions introduced fatigue changes that better reflect the clinical setting compared 

to observational methods. However, the study did not manipulate brain activity to determine 
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if the identified neural changes can alleviate fatigue. Finally, conclusions are limited on 

whether we can reliably predict fatigue due to the lack of non-neuroimaging variables and 

the use of univariate approaches. 

The results of this study were discussed in terms of which brain features predict low fatigue 

outcomes. This can be reversed; higher or lower baseline SC between the precuneus and the 

anterior cingulate cortex predicts lower or higher follow-up fatigue, respectively. 

Corresponding brain metrics of fatigue change through the use of change scores are in 

Appendix D. Clinically, it would be useful to identify which brain region characteristics at 

baseline can predict whether a patient after a fatigue-specific PEP or CBA intervention will 

have low fatigue. However, to create a comprehensive understanding of fatigue, future 

studies should incorporate additional variables. These could include biochemical, whose 

changes relate to fatigue in MS (Jameen et al., 2019), and genetic, as previous research 

established both hereditary factors (MacGregor et al., 2000) and epigenetic modifications 

(Liu et al., 2013) in RA. Furthermore, techniques like repetitive TMS or direct current 

stimulation could influence brain activity and thus elucidate pathways of fatigue induction 

or suppression, as applied in MS (Snow et al., 2019, Chalah et al., 2015). Finally, the use of 

multivariate instead of univariate analysis could construct models based on multiple 

variables to make reliable predictions of how fatigue will change in individual patients and 

what treatment would best suit them. Testing the plausibility of such a tool that combines 

imaging and clinical data to estimate the chances of a treatment response is subsequently the 

aim of Chapter 7.    

Despite the limitations of the analysis, the results implicate SC and thus white matter 

integrity, as a reliable metric for predicting future fatigue, measured as a trait characteristic 

rather than the current state of the RA patient. FC at rest could also inform how fatigue will 

persist potentially because of stronger coherence with SC. Based on previous findings, FC 

during a task may be better suited for understanding current perceptions of fatigue. 

Therefore, to improve both our predictions and understanding of fatigue, clear distinctions 

should be made between trait and state fatigue and how they relate to each neuroimaging 

modality. In conclusion, although the existence of single biomarkers of fatigue is unlikely, 

this study demonstrated the potential of multimodal imaging to inform how a patient may 

react to a fatigue intervention.     
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Chapter 6 Predictors of fatigue in RA and PsA 

after pharmacological interventions   

6.1 Introduction  

The pathophysiologies of PsA and RA differ, yet patients with both diseases struggle with 

chronic fatigue (Chapter 1.2). Although PsA treatment involves synthetic and biological 

DMARDs with discrete modes of action from RA (Chapter 1.2.7), targeted therapies yield 

comparable response rates across these IA conditions. This universal response limits 

therapeutic efficacy as approximately 40% of IA patients do not respond to treatment and 

75% cannot maintain remission (Pitzalis et al., 2020). Non-responders often experience 

chronic fatigue, alongside other clinical manifestations of CNS dysfunction such as 

depression and centralised pain. These CNS symptoms contribute similarly to poor response 

in both inflammatory (e.g., swollen joint counts and acute phase reactants) and subjective 

dimensions (e.g., patient global assessments) of IA disease activity measures (Matcham et 

al., 2018). Thus, the brain may regulate the response to inflammatory and subjective IA 

dimensions, and thereby explain the ceiling effect of existing therapies in both RA and PsA.  

While brain imaging research has explored fatigue in RA (Chapter 1.5.4), less is known in 

PsA. Also, PsA and RA patients respond similarly to DMARDs, and CNS dysfunction 

symptoms predict poor response to treatment (Michelsen et al., 2017), but it remains 

unknown whether brain imaging measures can predict fatigue follow-up after such 

pharmacological interventions. Looking at both RA and PsA adopts a transdiagnostic 

approach, which seeks to assimilate the heterogeneity of symptoms within and across 

different disorders to answer clinically challenging questions. Transdiagnostic analyses in 

neuroimaging aim to find generalisable brain features rather than those that fit a specific 

disorder. Patients exhibit different patterns of symptoms and comorbidities rather than a 

single distinct pattern, which makes treating spectrum behaviours like fatigue difficult as 

patients frequently do not meet any set exemplar patterns. To address the challenge of fatigue 

in IA, clinical research would need to identify a “transdiagnostic” network of fatigue that 

predicts symptoms and generalises across a spectrum of clinical categories.  

The transdiagnostic approach informs if symptoms rely on the same brain networks even if 

they range from average to subclinical to clinical and dynamically increase and decrease as 

the disease state changes. In the context of fatigue in IA, this would be shared predictors of 
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fatigue between RA and PsA. The agnostic approach used in Chapter 5 was applied to an 

RA cohort and PsA cohort, which were part of “Characterising the Centralised Pain 

Phenotype in Chronic Rheumatic Disease” (CENTAUR) study. The analyses included 

finding predictors of fatigue after starting a new DMARD by agnostically searching through 

every neuroimaging variable within resting-state connectivity and grey matter properties. I 

hypothesised that:  

• There will be statistically significant predictors of fatigue after starting a new 

DMARD in both the RA and PsA cohorts.  

• Some brain regions will be shared between results in RA and PsA due to a common 

transdiagnostic network of fatigue, but others will be distinct due to differences 

between diseases in which brain metrics have the most influence on fatigue 

outcomes.  
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6.2 Methods  

Patient recruitment and both clinical and MRI data descriptions for the RA and PsA cohorts 

have already been described in Chapter 2.1. Clinical characteristics of patients with PsA 

were recorded at baseline and 6 months after starting a new DMARD, a similar time window 

to the non-pharmacological approaches in RA of Chapter 5. Follow-up data of patients with 

RA was used for 3 months (n=17) after starting a new DMARD due to the low number of 

patients (n=7) who have completed a 6-month follow-up. However, treatment response to 

DMARDS generally occurs within 3 months thus allowing enough time for any changes to 

be comparable with a 6-month follow-up change (Smolen et al., 2023). Fatigue was 

measured using the PROMIS Fatigue-FM Profile (Kratz et al., 2016). This is a 16-item 

measure that represents fatigue experience in three subdomains—social, cognitive, and 

motivation (Appendix E). Pairwise t-tests or Wilcoxon signed rank tests (if non-normal 

data) determined whether treatment changed the clinical characteristics between baseline 

and follow-up.  

T1-weighted scans quantified grey matter properties of brain regions. Functional scans from 

resting-state depicted FC between brain regions. The Desikan-Killiany anatomical atlas 

(Desikan et al., 2006) defined the brain regions for both modalities. The pre-processing of 

the resulting images included surface-based segmentation of grey and white matter (Dale et 

al., 1999) using the Free Surfer 6 software. This was followed by the default surface-based 

CONN pipeline for fMRI. The outputs were measures of grey matter volume, thickness, and 

surface area and a FC matrix, made of values for each pair of regions.  

To analyse the data in a univariate way, I employed a general linear model that controls for 

variables of no interest (age, gender) and baseline PROMIS fatigue. The univariate model 

tested whether the outcome and a single feature are predictive of one another. Because each 

variable is modelled individually, all tests are controlled for multiple comparisons. Similarly 

to Chapter 4 and Chapter 5, this method was implemented using a custom MATLAB code 

based on the “conn_glm” function of the CONN toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2012) which can be seen here: https://github.com/krisbg95/CORT.git.   

Baseline neuroimaging variables from the same brain regions were individually tested 

whether they predict future PROMIS fatigue. To achieve this, the covariates (mean effect, 

gender, age, baseline, raw outcome) were used in a design matrix within a general linear 

model. For grey matter properties only, TIV was also used as an additional covariate. 

https://github.com/krisbg95/CORT.git
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Because this analysis was an agnostic approach, all p values were adjusted for multiple 

comparisons using FDR. The significance level for the morphometric metrics and FC was 

set at p<0.05. Additionally, predictors of baseline fatigue are also described in Appendix F. 
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6.3 Results  

There were 47 patients with PsA who completed baseline neuroimaging, 24 of whom were 

female, with a mean (SD) age of 48.79 (11.1). The new DMARD treatments significantly 

reduced the disease activity of patients after six months in PsA (Table 6-1). Other clinical 

characteristics did not statistically significantly change but fatigue displayed trends of 

decreasing (t (37) = 1.684, p = 0.101), with 5 points lower score being in excess of recognised 

minimally important differences (Sedaghat, 2019). In comparison, there were 25 RA patients 

who completed baseline neuroimaging and the fatigue questionnaire, 23 of whom were 

female, with a mean (SD) age of 49.36 (12.51). While not enough patients completed disease 

activity examination at follow-up (n=3) to test for change, fatigue again displayed trends of 

lowering (t (16) = 2.008, p = 0.062) after the RA patients started their new pharmacological 

treatment. Patients who did not complete follow-up assessment in both cohorts did not differ 

from those who had a follow-up visit (Table 6-2). 

Factor Baseline RA Three months RA Baseline PsA  Six months PsA  

Disease activity** a 5.77 (0.86) NA 35.7 (23.45) 21.8 (24.7)** 

CRP (mg/L) 0.9 (1.5) NA 0.4 (0.57) 0.3 (0.3) 

Fatigue b 51 (16) 44 (23) 53 (26.5) 48 (24.5) 

Sleep c 24 (9) 19 (7) 24 (10) 24 (10.75) 

Fibromyalgianess d 10 (6) 8 (4) 12 (8.5) 11 (7.5) 

Depression e 17 (11.25) 16 (15) 18 (13.5) 16 (12.75) 

Table 6-1: Clinical characteristics of patients with rheumatoid and psoriatic arthritis as 

Median (IQR). The disease activity of psoriatic patients was significantly lower six months after 

starting a new DMARD treatment (W=381, p<0.001, rank biserial effect size rB = 0.75).  aDAPSA 

(disease activity in psoriatic arthritis), DAS28 (disease activity in rheumatoid arthritis); bPROMIS 

FatigueFM Profile 16-item; cPROMIS Sleep Related Impairment Short form 8a; d2011 Fibromyalgia 

survey criteria; ePROMIS Emotional Distress – Depression Short form 8a; ** p < 0.001. 

Factor RA Complete RA Missing PsA Complete PsA Missing  

Sample size 17 8 39 8  

Gender (female) 94% 75% 49% 62%  

Age 51 (19) 51 (21) 49 (14) 40.5 (13.5)  

Disease activitya 5.96 (0.92) 5.53 (0.53) 35.7 (25.75) 31.65 (11.65)  

CRP (mg/L) 0.9 (1.4) 0.6 (1.15) 0.3 (0.45) 0.67 (0.38)  

PROMIS Fatigueb 51 (9) 48 (23.75) 53 (27) 61 (14.25)  

Table 6-2: Comparison between patients with completed and missing follow-up data in cohorts 

starting a new DMARD treatment as Median (IQR). The 8 RA patients with missing follow-up 

did not significantly differ (Mann-Whitney U test) from the  17 patients who completed follow-up 

on age, gender, disease activity, PROMIS Fatigue, and inflammation in the form of C reactive protein 

(CRP).  ). aDAPSA (disease activity in psoriatic arthritis), DAS28 (disease activity in rheumatoid 

arthritis); bPROMIS FatigueFM Profile 16-item. 
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Both structural and functional brain metrics predicted PROMIS fatigue 6 months after 

starting a new DMARD treatment in PsA (Table 6-3), visualised in Figure 6-1 but failed to 

do so in RA three months after starting a new DMARD treatment. Specifically, higher grey 

matter thickness of the visual right and left pericalcarine predicted higher fatigue at follow-

up. Higher connectivity between the visual lingual gyrus and the right caudal anterior 

cingulate cortex also predicted higher fatigue at follow-up as well as higher connectivity 

between the left inferior parietal lobule and the left bank of the superior temporal sulcus.  

Grey Matter Thickness 

ROI Seed  t statistic p value Effect size 

Right Pericalcarine  4.01 0.022 0.33 (medium) 

Left Pericalcarine  3.6 0.035 0.28 (medium) 

Resting-state Functional Connectivity 

ROI Seed ROI Target t statistic p value Effect size 

Left Bank of the Superior 

Temporal Sulcus 

Left Inferior Parietal 

Lobule 

3.87 0.039 0.31 (medium) 

Left Lingual Right Caudal Anterior 

Cingulate 

3.65 0.024 0.28 (medium) 

Table 6-3: Neuroimaging predictors of fatigue after pharmacological interventions in psoriatic 

arthritis. Significant results (p<0.05) using general linear models on baseline grey matter volume, 

thickness, surface area and resting-state single functional connectivity variables to predict future 

PROMIS fatigue in patients after six months of starting a new disease-modifying antirheumatic drug 

(n=39). Seed region indicates brain region whose grey matter properties or connections were tested 

for predicting fatigue while controlling for multiple comparisons using false discovery rate. Target 

region indicates which connection with the seed region was significant.  The results are after 

controlling for confounds (age, gender, baseline fatigue) for connectivity and total intracranial 

volume for grey matter measures. Effect sizes are eta squared labelled as trivial<0.1, small>=0.1, 

medium>=0.25, large >0.37 (Goss-Sampson, 2019). Abbreviations: ROI, region of interest.   
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Figure 6-1: Neuroimaging predictors of fatigue after pharmacological interventions in 

psoriatic arthritis. The figure displays the resting-state connectivity and grey matter thickness 

predictors of PROMIS fatigue 6 months after starting a new disease-modifying antirheumatic drug. 

All predictors were positively associated with fatigue, while the strength of the association (t statistic) 

is reflected in the colouring of the connection or semicircle of the thickness measure. All analyses 

used a general linear model, adjusted for age, gender, and baseline fatigue while the structural 

measures were additionally corrected for intracranial volume. Abbreviations: L/R, left/right; CACC, 

caudal anterior cingulate cortex.     
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6.4 Discussion   

In this study, higher thickness of the bilateral pericalcarine cortex (primary visual cortex) 

predicted greater fatigue 6 months after starting a new DMARD in PsA. Higher pericalcarine 

thickness distinguishes individuals with fibromyalgia, a centrally driven pain disorder, from 

healthy controls (Nhu et al., 2023, Aster et al., 2022). Altered structural pericalcarine 

properties may indicate dysfunctional CNS processing, potentially explaining why 

conventional DMARDs did not mitigate fatigue in PsA patients within this study. Both PsA 

and fibromyalgia patients endure chronic fatigue, and fibromyalgia’s hallmark of CNS 

involvement—widespread pain—alongside comorbid fibromyalgia are predictors of severe 

fatigue in IA (Overman et al., 2016). Compared to healthy controls, fibromyalgia patients 

exhibit reduced resting-state fMRI connectivity of the primary visual cortex, correlating with 

self-reported pain (Pujol et al., 2014) and resiliency towards pain (Flodin et al., 2014). Other 

aspects of CNS involvement, such as low mood and cognitive deficits, relate to fatigue in 

PsA (Sumpton et al., 2020). These symptoms also associate with the pericalcarine cortex. 

Depression severity negatively correlates with the thickness of the right pericalcarine cortex 

in fibromyalgia (Jensen et al., 2013), and reduced microstructural integrity of the 

pericalcarine cortex differentiates cognitively impaired from cognitively normal MS patients 

(Pitteri et al., 2021). Cognitive impairment may arise from the role of the pericalcarine cortex 

in attention, as evidenced by a study that negatively correlated SC between the right 

pericalcarine cortex and the left pallidum with the visual attention task performance in MS 

(Llufriu et al., 2017). In summary, changes in the pericalcarine cortex may predict fatigue 

by serving as an indicator of CNS involvement and its associated symptoms. 

Elevated fatigue at follow-up in PsA was associated with increased FC between the right 

caudal anterior cingulate cortex and the left lingual gyrus, and between the left inferior 

parietal lobule and the left bank of the superior temporal sulcus. The anterior cingulate 

cortex, in conjunction with the insula, constitutes the salience network responsible for 

evaluating the relevance of internal and external stimuli (Menon and Uddin, 2010). Lopez-

Sola et al. (2014) showed augmented activity of the insula and the lingual gyrus following 

non-nociceptive sensory stimulation (auditory, visual, and tactile) among 35 fibromyalgia 

patients, who also displayed multisensory hypersensitivity compared to 25 healthy controls. 

In the current study, enhanced connectivity between the anterior cingulate cortex and lingual 

gyrus predicted fatigue potentially because it acted as a biomarker of multisensory 

hypersensitivity. Fibromyalgia pain implicates central sensitization, amplified responses to 
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sensory stimuli due to altered processing and/or rewiring of the CNS (Harte et al., 2018). 

However, hypersensitivity to nonpainful stimuli circumvents peripheral and spinal pain 

pathways, signifying a form of top-down central sensitization that, unlike bottom-up 

mechanisms, persists independently of nociceptive input (Harte et al., 2018). As evidence 

exists of central sensitization in chronic pain and chronic fatigue conditions (Meeus and Nijs, 

2007), top-down mechanisms of central sensitization may have predisposed PsA patients to 

fatigue in this study, independent of peripheral nociception. The other key finding that future 

fatigue was predicted by hyperconnectivity between the inferior parietal lobule and the 

superior temporal sulcus, both part of the DMN (Uddin et al., 2019), suggests that DMARDs 

may have failed to address aberrant connectivity within this network. Enhanced DMN FC 

has been shown to drive fatigue in MS (Bisecco et al., 2018). FC analyses have also 

demonstrated that symptoms of fatigue and depression reflect altered DMN connectivity and 

that higher DMN activity is observed in MS patients with fatigue, even with low depression 

scores (Hogestol et al., 2019). Finally, the DMN may encapsulate general mechanisms of 

fatigue, as subjective mental fatigue in a healthy cohort correlated with increased on-task 

activity and resting-state FC within the DMN (Gergelyfi et al., 2021).   

The neuroimaging variables did not predict fatigue post-DMARD treatment in the RA 

cohort. This could stem from the limited number of RA patients compared to those with PsA 

in the study, especially those who completed follow-up. Small samples (≤ 20) struggle to 

show brain-behaviour associations due to their effect sizes, ranging from very small 

(Cohen’s d ≈ 0.15) in healthy subjects (Marek et al., 2022) to double in psychiatric and 

neurological patients (Cohen’s d ≈ 0.32), yet still considered small effects (Libedinsky et al., 

2022). These limited effects result from factors such as the brain's complex structure and 

function, the inverse relationship between spatial and temporal resolution in neuroimaging, 

the high dimensionality of even extracted features like connectivity matrices, and the 

variability across subjects and studies (Zhu et al., 2023). The brain is affected not only by 

disease but also by age, genes, race, and environmental factors. Additionally, scanner effects, 

acquisition parameters, and motion or thermal noise impact the neuroimaging signal. 

Moreover, different analysis pipelines can yield diverse findings, exemplified by an article 

where 70 independent neuroimaging teams varied in half of their results when testing the 

same hypotheses with identical neuroimaging data (Botvinik-Nezer et al., 2020). 

Nevertheless, standard GLM analyses, as applied here, have shown high test-retest reliability 

of subject-specific results (Brown et al., 2011, Friedman et al., 2008). Despite the small 

sample, this study aimed to optimize reliability and statistical power through subject-space 

processing and employing the Desikan-Killiany atlas. Subject-level analyses preserve fine-
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grained anatomical details often lost in spatial normalization, thus better maintaining 

individual variability (Magalhaes et al., 2015). The Desikan-Killiany atlas, a relatively 

coarse brain parcellation, reduces parallel tests and minimizes variance due to 

methodological error (Helwegen et al., 2023). 

Overall, predictors of PsA fatigue point to CNS involvement akin to conditions like 

fibromyalgia and MS, along with centralised symptoms like depression and cognitive 

impairment. Structural and functional findings focus on default mode and salience networks, 

implicated in hypersensitivity to non-painful stimuli and interoception. These associations 

suggest a potential role of top-down mechanisms, typically linked with centralised pain, in 

predisposing and sustaining fatigue in PsA. Although these results were discussed in terms 

of which brain features predict high fatigue outcomes, the reverse can also be applied such 

as having higher or lower baseline thickness of the pericalcarine cortex predicted higher or 

lower fatigue follow-up, respectively. Additionally, identical analyses that identify brain 

metrics of fatigue change by using change scores are in Appendix F. In the context of 

starting a new DMARD to reduce disease activity, identifying which brain region 

characteristics at baseline predict persistent high fatigue can guide early implementation of 

non-pharmacological fatigue-specific therapies in conjunction with pharmacological 

treatments. In comparison to PsA, imaging variables did not predict fatigue after starting a 

new DMARD in the RA cohort and thus failed to support the hypothesis of a common 

transdiagnostic network of fatigue. However, the lower number of RA patients, particularly 

those with follow-up fatigue data, limited the ability to delineate a transdiagnostic fatigue 

network within the RA and PsA cohorts. Future transdiagnostic studies would need to record 

longitudinal neuroimaging data to pinpoint specific CNS mechanisms of IA fatigue, probe 

pharmacological bottom-up and cognitive top-down interventions and assess the impact of 

factors such as centralised pain, low mood, and cognitive deficits that contribute to fatigue.           
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Chapter 7 Prognostic models of fatigue of 

non-pharmacological interventions in RA   

7.1 Introduction  

In the previous chapters, GLMs identified univariate predictors of fatigue that reflect 

associations between neuroimaging variables and treatment outcomes in RA and PsA. While 

univariate models aid in predicting treatment response, they cannot generalise to individual 

patients. Their main benefit lies in the interpretability of their features. For example, 

univariate analyses have highlighted connectivity changes in depression and linked these 

changes to different symptoms. Anhedonia demonstrates stronger associations with the 

reward network, whereas rumination is more tied with the DMN, suggesting how patients 

may differentially respond to treatments (Chahal et al., 2020, Li et al., 2018). Univariate 

findings can thus guide treatment decisions as well as inform the development of new 

treatments by uncovering why certain treatments may prove ineffective for specific 

individuals. Despite advancing our understanding of neural mechanisms, univariate brain 

activation and connectivity markers on their own fail to predict individual treatment 

outcomes accurately and consistently in complex symptoms like fatigue and depression. 

These limitations arise because, unlike univariate studies that build and evaluate their models 

within the same sample, studies that aim to predict individual outcomes incorporate 

validation techniques (e.g., cross-validation or external validation), where model evaluation 

uses a different sample from model building. Validation techniques enhance generalisability, 

but prediction models also require high accuracy. One way to bolster accuracy is to increase 

the number of predictors, an aspect that ML offers (Chapter 1.7). In the context of RA, this 

chapter will aim to predict individual fatigue treatment responses using ML to incorporate 

multiple prognostic factors, including immune, neuroimaging, and symptom-based 

information.  

Often studies predict treatment response by categorising the outcome, such as defining 

responders as those with a ≥50% reduction in symptoms. However, this dichotomisation of 

continuous variables strips out information and subsequently reduces the power to detect 

predictor-outcome associations (Altman and Royston, 2006). MacCallum et al. (2002) 

demonstrated this limitation by splitting observations using the median of a variable to 

“high” and “low” groups, which resulted in reducing power by the same amount as 

discarding 36% of observations. In addition to diminishing statistical power, categorisation 
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neglects the nuanced variability within groups. For instance, a patient experiencing a 49% 

symptom reduction would be in the same bracket of “non-responders” as one with no 

reduction, despite being much closer to a “responder” with a 50% reduction. 

Dichotomisation also conceals any non-linearity between the predictor and outcome, 

diminishing a potential strength of ML to learn non-linear relationships. Collectively, these 

limitations of categorisation can misinform which features are predictive (Austin and 

Brunner, 2004) and reduce the accuracy of predictions but can be addressed by regression 

models. A study compared classification to regression using fMRI data from 82 young adults 

seeking treatment for psychological distress and 72 matched healthy controls (Portugal et 

al., 2019). Specifically, they demonstrated that using a similar ML approach, regression 

models predicted depression and anxiety scores significantly above chance unlike 

classification models, which failed to differentiate healthy from distressed individuals. The 

study demonstrated that regression algorithms exhibit greater sensitivity than classification 

approaches in identifying relationships between continuous symptoms and neural measures 

within heterogeneous samples, also applicable in the context of RA fatigue.  

Studies typically construct models that predict response to a single treatment. In clinical 

practice, a more valuable prediction would involve differential treatment response, 

determining which among several interventions is most likely to improve a patient's 

condition rather than only whether an individual should receive an intervention  (Perlman et 

al., 2019). Devising a differential prediction could comprise developing individual models 

for each treatment and then aggregating their outputs. However, this process can become 

significantly more time-consuming and resource-intensive when different models rely on 

distinct data modalities and require separate validations. A far more practical solution would 

encompass a single model that can consistently predict outcomes across multiple treatment 

options. To provide differential predictions, studies have used ML models with 

neuroimaging biomarkers to select CBT or an antidepressant (McGrath et al., 2013) or the 

optimal combination of antidepressants (Williams et al., 2015). Ideally, studies of RA fatigue 

would establish predictions of differential treatment response, encompassing a broader range 

of treatments, including exercise, different DMARDs, centrally acting drugs like pregabalin, 

as well as CBT. Finally, it would be more advantageous when studying more heterogeneous 

clinical populations to compare different types of treatments than comparing very few 

treatments with similar mechanisms of action.   

Based on the discussed points above I plan to: (1) predict treatment response with high 

accuracy that generalises to individual patients by using ML and validation techniques rather 
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than GLMs; (2) address the dimensionality of fatigue in heterogenous populations like RA, 

by using regression instead of classification; and (3) develop a more clinically practical 

model by building a single model that can consistently predict outcomes across different 

types of interventions. Specifically, I will predict individual fatigue scores in RA patients 

six months and one year after receiving either usual care (UC), a personalised exercise 

programme (PEP), or a cognitive-behavioural approach (CBA) from the LIFT trial, using 

ML regression models. Single modality models will use brain morphometric, SC or FC data 

separately as well as clinical data. A multimodal model will also integrate all data modalities, 

including treatment allocation. I will then externally validate the best-performing model in 

the RA study cohort that had only usual care to test the reproducibility of the model. I 

hypothesise that:  

• The multivariate model will perform better than chance through permutation testing. 

• The neuroimaging modalities will perform differently from each other.  

• The treatment allocation will have high discriminative power on performance based 

on feature importance. 

• The external validation in the first RA cohort will show similar performance to the 

patients who had usual care in the internal validation RA cohort.    
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7.2 Methods  

7.2.1  Datasets and modalities   

The datasets used in this analysis included the LIFT trial and the RA study, described in  

Chapter 2.1. The model was built and internally evaluated using the LIFT dataset, while it 

was externally evaluated on the RA study dataset. The LIFT data included clinical variables 

along with the neuroimaging modalities of morphometric features, SC, and FC from the 

resting-state or the PASAT task. The neuroimaging variables were extracted using the same 

preprocessing procedure described in Chapter 2 and Chapter 4. The same preprocessing 

steps were conducted in the RA study dataset. Overall, the features that were used as input 

to feature selection included:  

Clinical (18 features): treatment allocation, age, gender, MRI site, physical activity, CRP, 

ESR, haemoglobin levels, DAS28, disease duration, Charlson comorbidity index, ACR 

Fibromyalgia scale, HADS depression, HADS anxiety, current pain NRS, sleep disturbance, 

baseline Chalder fatigue. These variables were selected based on previous predictive factors 

of fatigue (Chapter 1.3.4) like sickness behaviours (depression, anxiety, pain, sleep, 

fibromyalgia), inflammation (CRP, ESR), disease activity and confounding factors (DAS28, 

disease duration, comorbidity) and sociodemographic factors (age, gender, physical 

activity).  

Morphometric (220 features): grey matter volume (84 ROIs), grey matter thickness (68 

ROIs), grey matter surface area (68 ROIs). Thickness and surface area could be extracted 

only from 68 cortical regions while volumetric measurements additionally included 16 

subcortical structures. The TIV was regressed out of the volumetric features within each 

cross-validation fold to control for the effects of brain volume, as suggested when running 

ML models on structural MRI data (Dhamala et al., 2023b).    

Structural connectivity (6972 features): asymmetrical matrix between 84x84 ROIs, 

excluding self-connections. Structural connectivity is asymmetrical as connections between 

two regions can be different across the two directions.   

Functional connectivity (3486): upper triangle of symmetrical matrix between 84x84 ROIs, 

excluding self-connections. There is no directionality in functional connections so only the 

upper triangle of the matrix is used. The LIFT dataset has functional MRI recorded during 
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both rest and the PASAT task, but the RA study only has functional MRI data during the 

PASAT task. Analysis was alternatively conducted with either PASAT or resting-state FC 

in the LIFT data set instead of combining both modalities.   

7.2.2  Feature selection  

Feature selection was implemented using two filer methods of a Relief algorithm and a 

canonical correlation. Before these steps, a filter was applied to discard any features with 

near zero variance and over 25% missing data. The first feature selection method included 

the regression ReliefF algorithm, which was run using the “attrEval” function of the 

CORElearn R package (Robnik-Sikonja et al., 2013). It was setup using a set number of 

neighbours using the total number of observations (m): 𝑘 = 0.154 × (𝑚 − 1). The 0.154 

pre-factor yields an approximation to a fixed radius that contains neighbours within a half 

standard deviation of a sample’s radius in the attribute space  (Le et al., 2019). This value 

has been shown to provide a good balance for detecting main effects and interaction effects. 

Because the ReliefF algorithm was used as a screener, the selected number of features was 

separately tested as all positively ranked features as well as the top half or top quarter of 

positively ranked features rather than a sparser number of features (Windle, 2016). Since 

features in this study like FC are typically collinear, not addressing redundancies can be a 

potential advantage. If reducing redundancy is a concern in a specific problem, there are 

various methods that can be applied before, after, or integrated with Relief feature selection. 

This was achieved by first running Relief and then running sparse generalized canonical 

correlation analysis (SGCCA).   

CCA maximizes the correlation between variables, as shown in Chapter 3.2.3. However, it 

cannot be applied in cases where features outnumber samples, and it only relates to two sets 

of variables. SGCCA addresses these limitations and acts as a component-based method for 

exploring data organised in variable blocks and has already been shown to identify brain-

behaviour associations in high-dimensional data (Ing et al., 2019). Here, the neuroimaging 

and clinical data naturally fall into distinct blocks, each recorder from the LIFT RA patients. 

Rather than operating sequentially on parts of the measurements, SGCCA aims to 

encapsulate complementary information within and between these blocks (Garali et al., 

2018). It leverages a priori knowledge to establish connections, aligning with biological 

hypotheses. SGCCA condenses the variable blocks by finding, for each block, a weighted 

composite of variables (called block component) that explains well their own block and/or 

block components assumed to be connected. The process involves a design matrix that 
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defines which blocks are supposed to be linked to one another, thus reflecting hypotheses 

about the biology underlying the data blocks. Here, the design was set so that instead of 

optimizing the associations between different neuroimaging measures, only the associations 

between the outcome and the neuroimaging measures were optimized.  SGCCA standardizes 

the block weights vectors and utilizes the covariance between blocks, which stabilises the 

component (large variance) while simultaneously accounting for the correlations between 

blocks. Its sparsity component functions as a variable selection mechanism, identifying 

pertinent features. It detects significant variables within blocks that actively participate in 

inter-block relationships, using a penalty akin to lasso regression's regularization (Chapter 

2.4.3).  

While SGCCA has advantages over classical CCA in handling multiple variable sets with 

more features than observations, it may face instabilities due to the lasso penalty's 

introduction of sparsity. Stability selection addresses this concern through the repeated 

application of a model over multiple resamples, where the features with actual effects are 

consistently chosen, distinguishing them from mere noise (Meinshausen and Buehlmann, 

2010). Here, stability selection divided the data into random subsamples, each half the size 

of the total training set, and performed SGCCA a hundred times on each resample. Features 

that emerged more frequently were regarded as more stable, similar to the approach taken 

by Ing et al. (2019). This process was parallelized by concurrently re-applying SGCCA to 

multiple resamples of the same data. The SGCCA analysis was run using the “sgcca” 

function in the RGCCA package in R (Girka et al., 2023). Notably, stability selection is 

insensitive to tuning parameters, such as the lasso penalty in SGCCA. The parameter was 

therefore set based on the number of features for each set of variables using the 

“tau.estimate” function also implemented in the RGCCA package, which uses a formula for 

estimating the optimal shrinkage parameter (Schafer and Strimmer, 2005). Determining 

feature stability necessitates deciding what proportion of resamples variables must be present 

in to be deemed stable. In this study, variables needed to be present in either 50% or 70% of 

resamples to be considered stable. While the specific threshold for retaining variables can 

vary, stability selection's effectiveness has been demonstrated across a reasonable range of 

thresholds (Meinshausen and Buehlmann, 2010), like the 50-70% range utilized in this study.   

Combining all modalities into a single feature set may seem intuitive, but it's problematic 

due to their varying feature counts. For example, SC data has 6972 features, while 

morphometric and clinical data have only 220 and 18 features respectively. Merging 

modalities would thus result in SC overpowering the others. Therefore, the Relief algorithm 
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was applied separately to each modality while the SGCCA benefited from having separate 

blocks of clinical, morphometric, SC and FC features. Only after completing Relief and 

SGCCA, were the remaining features collapsed into a unified set. Before the next step of 

parameter tuning, these features were normalised by subtracting the mean and then dividing 

the standard deviation of the values of every feature column. Applying this transformation 

prevents inconsistencies when establishing feature associations by removing data 

redundancy (Sree and Bindu, 2018). To prevent overfitting, feature selection and parameter 

tuning occurred within the inner loop of a nested 10-fold cross-validation. This process was 

then repeated 100 times through random splits of the data (Figure 2-15). The repeated cross-

validation procedure was conducted using alternative options for Relief and stability 

selection, PASAT or resting-state modality for FC, and clinical outcomes of either six 

months or one-year follow-up (Table 7-1).  

Run Relief proportion Stability selection Functional modality Clinical outcome 

1 0.25 50 PASAT 6 months 

2 0.5 50 PASAT 6 months 

3 1 50 PASAT 6 months 

4 0.25 70 PASAT 6 months 

5 0.5 70 PASAT 6 months 

6 1 70 PASAT 6 months 

7 0.25 50 Resting-state 6 months 

8 0.5 50 Resting-state 6 months 

9 1 50 Resting-state 6 months 

10 0.25 70 Resting-state 6 months 

11 0.5 70 Resting-state 6 months 

12 1 70 Resting-state 6 months 

13 0.25 50 PASAT 1 year 

14 0.5 50 PASAT 1 year 

15 1 50 PASAT 1 year 

16 0.25 70 PASAT 1 year 

17 0.5 70 PASAT 1 year 

18 1 70 PASAT 1 year 

19 0.25 50 Resting-state 1 year 

20 0.5 50 Resting-state 1 year 

21 1 50 Resting-state 1 year 

22 0.25 70 Resting-state 1 year 

23 0.5 70 Resting-state 1 year 

24 1 70 Resting-state 1 year 

Table 7-1: Alternative runs of cross-validation. The table displays the 24 different runs of repeated 

10-fold cross-validation for the multivariate (all modalities) and functional connectivity models. This 
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included using all positively ranked features from running Relief and using the top half (0.5) or top 

quarter (0.25) of those features. The stability selection retained features that were in at least 50% or 

70% of all resamples while the clinical outcomes could be either six months or one-year follow-up. 

For single modality models using separately the clinical, morphometric, or structural connectivity 

measures, only 12 runs were run since the functional modality settings were not applicable. 

7.2.3   Algorithm and parameter tuning  

After feature selection, the unified set of features was then used to build models using a 

number of algorithms with different hyperparameters. The fulfil the research aim of 

predicting individual fatigue scores in RA patients after receiving usual care or fatigue-

specific treatments, I opted for regression models that: (1) leveraged fatigue-associated brain 

features, (2) integrated treatment allocation and clinical data, and (3) ranked the variables 

according to importance to the predictions. These models had distinct capacities to discern 

both linear and non-linear relationships (Chapter 2.4.3), each with its advantages and 

disadvantages (Table 2-4). Furthermore, similar algorithms have demonstrated efficacy in 

using brain imaging to predict age (Sone and Beheshti, 2022) and depression (Lee et al., 

2022), as well as using clinical data to predict outcomes in IA (Madrid-Garcia et al., 2023). 

The models included the following:    

• Elastic net (linear): a linear regression with an imposed penalty to reduce model 

complexity and decrease the risk of overfitting, making it more interpretable and 

suitable for small datasets.  

• Support vector regression: a model that projects data in multidimensional space to 

find the best hyperplane to predict outcomes which makes it robust to outliers and 

produce low generalisation error.   

o Linear kernel  

o Radial (non-linear) kernel   

• Gaussian process regression: a model that updates the probability of an outcome 

given new data, which makes it interpretable and suitable for small datasets 

o Linear kernel  

o Radial (non-linear) kernel   

• Random forest (linear and non-linear): a model that combines the outputs of many 

“if-then-else” tree models that can handle collinearity between features.  

• Gradient Boosting regression (linear and non-linear)  

o gbm: similar to random forest but where each subsequent tree model focuses 

on minimizing the errors made by the previous models. 
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o xgbDART: incorporates dropout regularization to gbm, in which it randomly 

drops a subset of trees during each iteration, which helps to prevent 

overfitting and can lead to better generalization but requires more tuning due 

to additional hyperparameters    

All of the model algorithms were implemented using the caret R package (Kuhn, 2008) and 

structured within a single framework using the modelgrid R package (Kjeldgaard, 2018). 

The models are applied to each training set and then evaluated on the subsequent test set. 

This is done for each possible value within a grid of hyperparameters, displayed in Table 

7-2. The selected features and parameters with the the minimum difference between train 

and test performance, are then conveyed to the outer loop of the cross-validation.   

Algorithm Hyperparameters Rationale and sources 

Elastic net alpha  = weighting between ridge (0) and lasso (1) penalties: 

0.1-1 (0.1 increments) 

lambda =  weighting of the sum of both penalties: 0.002 

0.005 0.011 0.026 0.06 0.139 0.322 0.744 1.72 

Based on a reasonable 

parameter length of 10, 

using the default values from 

Kuhn (2008).  

Support 

vector 

regression 

C = penalisation of samples within the margins: 1e-07, 1e-

06, 1e-05, 1e-04, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 2000   

gamma = range of influence of kernel over observations 

(radial kernel): a sequence from 1e-04 to 0.015 with a total 

length of 20 

The default range for C and 

gamma from caret was a 

single value, so a range was 

chosen based on Thakur 

(2020) 

Gaussian 

process 

regression 

gamma = range of influence of kernel over observations 

(radial kernel): a sequence from 1e-04 to 0.015 with a total 

length of 20 

The default range for gamma 

from caret was a single 

value, so a range was chosen 

based on Thakur (2020) 

Random 

forest 

Randomly Selected Predictors: a sequence from 1 to one 

third of the total number of features in the training set with a 

total length of 10  

A suggested value for 

regression problems by 

Kuhn (2008) 

Gradient 

boosting 

Boosting iterations: 50-500 (50 increments)  

Maximum tree depth: 1:10 (1 increments)  

Shrinkage: 0.1  

Minimum terminal node size (only gbm): 10   

Only in xgbDART 

Minimum loss reduction: 0  

Subsample percentage: 0.5 

Subsample ratio of columns: 0.6, 0.8  

Fraction of trees dropped: 0.01, 0.5  

Probability of skipping drop-out: 0.05, 0.95  

Minimum sum of instance weight: 1 

Based on a reasonable 

parameter length of 10 for 

gbm and 1 for xgbDART 

using the default values from 

Kuhn (2008). 
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Table 7-2: Machine learning algorithms and hyperparameter search. The table notes the specific 

hyperparameter range for each algorithm used in this study. The last column describes the reason for 

choosing that range and the supporting source. 

7.2.4   Imputation of missing values  

Missing data inflates standard errors due to a smaller sample size but doesn't necessarily 

introduce bias (Sterne et al., 2009). An incomplete dataset can still represent the entire 

dataset but assuming no bias of missing data can be unrealistic in clinical datasets. Most ML 

algorithms struggle with training data containing missing values as they cannot deal with 

them directly (Lo Vercio et al., 2020). Instead,  imputation methods can fill in the missing 

values. A common approach is replacing missing values with the feature's average or 

median. This is a form of single imputation, where missing values are replaced by a specific 

rule. Variants include 'last observation carried forward' and 'worst observation carried 

forward,' as well as simple mean imputation. Single imputations can also be model-based, 

such as the K-Nearest Neighbour method, which similar to Relief uses a distance function. 

The method randomly selects values from the 𝑘 nearest similar cases, using the closest one 

to replace the missing value (Zhang, 2012). When the data distribution is unknown, it is 

suitable to use K-Nearest Neighbour (Joel et al., 2022). However, single imputation methods 

often underestimate variability because unobserved values weigh equally in the analysis 

(Dziura et al., 2013). Single imputations assume specific conditions, like assuming missing 

values are identical to the last observed value. These assumptions are often unrealistic, 

making single imputation a potentially biased method.    

A second option involves determining the range or actual distribution of available values for 

a missing data point, and then replacing it with a randomly sampled value from this 

distribution. A more advanced method for this is multiple imputation, which produces 

several imputed values for each missing data point, incorporating uncertainty into the 

estimates (Azur et al., 2011). It detects missing values and substitutes them with a randomly 

selected set of plausible values using all of the other variables as predictors. This process 

generates multiple completed datasets using a chosen imputation model. Subsequently, the 

prediction model is separately constructed and executed for each dataset produced during 

the imputation phase.  The results obtained from each completed data analysis are 

agglomerated into multiple outputs that can better represent the uncertainty of the 

imputations. ML models can also be trained on the complete samples to predict single 

missing feature values, such as random forest (Stekhoven and Buehlmann, 2012). Lastly, 

ML algorithms can serve as imputation models within a multiple imputation framework, 
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particularly beneficial for handling higher-dimensional data with non-linearities (Feng et al., 

2021). Multiple imputation methods require more computational time than single imputation 

methods, especially using multiple predictor variables and ML algorithms as imputation 

models. 

If possible, removing incomplete observations offers a straightforward approach to handling 

missing data. However, this can severely diminish the sample size and statistical power as 

well as introduce bias if the values are not missing at random (Demissie et al., 2003). This 

complete case analysis is effective when missing data is negligible such as no more than 5%, 

according to general guidelines. It's also applicable when only the dependent variable has 

missing values and we haven't identified auxiliary variables—features not considered in the 

analysis but correlated with a variable exhibiting missing values and/or linked to its absence 

(Jakobsen et al., 2017). In such cases, techniques like multiple imputation may not provide 

significant advantages but only inflate standard errors due to the uncertainty introduced by 

the imputation method. If the outcomes are missing within a cross-validation framework, 

you can train an imputation model exclusively on the training set and then impute the missing 

features in both the training and test sets (Mertens et al., 2020). Specifically, for each fold 

you perform multiple imputations separately for the predictor variables and the outcome 

variable, but the imputation process remains blind to the testing set. This ensures that 

information from the training set does not affect the test set and thus avoids double dipping 

but also maintains the sample size and statistical power of the full dataset (Jaeger et al., 

2020).  

In this study, the K-Nearest Neighbour method imputed missing clinical predictors before 

feature selection and hyperparameter tuning, using only cases with complete outcome data 

within the inner loop of the cross-validation. A single imputation method was used to avoid 

unnecessary computation time as the inner loop prioritized a solution that minimizes 

overfitting over one that seeks the best predictive performance. For missing values in both 

predictors and outcomes in the outer loop of the cross-validation, multiple imputation was 

used. Imputation models were constructed solely with the training set observations and then 

applied to impute missing values in both the training and testing sets, as illustrated in Figure. 

Predictive models were then built on the training set and evaluated against ten different 

imputed testing sets to account for imputation uncertainty. This process was conducted 

through the mice R package (Van Buuren and Groothuis-Oudshoorn, 2011) using random 

forest as its underlying imputation method to accommodate the high-dimensional input data. 

Each out of ten imputed datasets was completed using 20 iterations to attain stable results 
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(Van Buuren, 2018), while the range of outcome values was restricted to the range of the 

Chalder fatigue scale of 0 to 33.    

 
Figure 7-1: Framework of multiple imputation within a repeated 10-fold cross-validation.   
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7.2.5  Model evaluation, comparisons, and significance 

Model development and assessment commenced only after the inner loop determined the 

optimal features and hyperparameters for each ML algorithm and the imputation model 

generated 10 separate training and testing sets for that fold. These steps involved fitting the 

ML algorithms to each imputed train set using the selected features and evaluating the 

algorithms on the imputed test sets based on the RMSE metric. The error measurement 

RMSE was chosen as the main performance metric over relational accuracy measures like 

predicted R2 because it is a more appropriate metric for evaluating predictions in individuals 

(Nielsen et al., 2020). As an error measurement, RMSE offers advantages in terms of 

interpretability and its ability to penalise extreme errors (Chapter 2.4.5). This process 

yielded ten performance metrics for each outer fold. Over ten repeats of the 10-fold cross-

validation, a total of 1000 performance measures were collected for all 8 ML algorithms. 

These performance measures were recorded for 24 distinct feature selection and outcome 

measures in the FC models and the multimodal models, which incorporated all modalities 

(Table 7-1). Additionally, 12 different feature selection and outcome measures were applied 

to models using only clinical, morphometric, or SC data. 

The best performance models were selected using the lowest median RMSE for the 

multimodal model and each of the single modality models. Their performance was compared 

against baseline models, which predicted the testing set outcomes solely based on the median 

baseline Chalder fatigue in the training sets. Non-parametric Wilcoxon signed-rank tests 

quantified these comparisons as both the baseline and ML models evaluated the same testing 

sets. Subsequently, a non-parametric Kruskal-Wallis test assessed if the performance 

differed significantly between the best-performing models, which were evaluated on 

different train and test sets. The models were then compared pairwise using post-hoc Dunn 

tests. Here, the Dunn tests were preferred over Mann-Whitney U tests because they 

preserved the rank sums of the Kruskal-Wallis (Dinno, 2015). I also compared these models 

with their opposite clinical outcome to investigate differences when using outcomes at six 

months and one year, employing Mann-Whitney U tests. A similar comparison was made 

between the PASAT and resting-state functional feature variants of the best-performing 

functional and multimodal models. To determine if combining clinical and neuroimaging 

data can significantly predict fatigue, I tested whether the best-performing multimodal model 

predicted the outcome significantly better than chance. This was implemented using 

permutation testing that repeated the fitting process using shuffled outcome values (Chapter 
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2.4.5). Finally, the best-performing multimodal model that used FC from PASAT data to 

predict fatigue after six months was externally validated using the data from RA study 1, 

where all patients were coded as usual care for treatment allocation.    

To elucidate the decision-making process of the best multimodal model, several 

interpretability methods were applied (Chapter 2.5). Specifically, permutation feature 

importance (Altmann et al., 2010) was used to provide straightforward explanations about 

the significance of selected features; ALE plots (Apley and Zhu, 2020) were employed to 

potentially illustrate non-linear relationships with fatigue outcomes; and  LIME models 

(Ribeiro et al., 2016)  were constructed to depict model decisions at the single case level. 

For each feature, permutation importance substituted its values with random values from the 

same data distribution, ranking the features based on their impact on prediction accuracy 

when applied to the permuted data. ALE plots were subsequently constructed to depict the 

average effect of input features on the output. These plots included the four most influential 

features from the feature importance method, along with the features for treatment 

allocation. The ALE plots for the remaining features were categorized into three groups: SC, 

FC, and a combined group of clinical and morphometric features. To represent single-case 

predictions, I selected the five patients with the greatest actual fatigue change and built 

interpretable LIME models that emulate the original model. The LIME method adjusts 

feature values and uses the resulting impact on the output to evaluate the contribution of 

each feature to the prediction of the outcome. LIME plots were constructed for the five most 

influential features in the patient with the greatest fatigue change, as well as the two most 

influential features across the five patients. For these explanatory analyses, the iml R 

package (Molnar et al., 2018) was used for feature importance and ALE plots, applying the 

default 1000 permutations. Additionally, the lime R package (Hvitfeldt et al., 2022) was 

used to build the LIME models, utilising 5000 permutations according to the default function 

settings.   

All of the data prepared for ML, the scripts implemented to run the analyses, and the final 

models can be found at:    

https://github.com/krisbg95/LIFT/tree/41095c2292bdb45cc59e01170f232452cbe8e588/M

L   

 

https://github.com/krisbg95/LIFT/tree/41095c2292bdb45cc59e01170f232452cbe8e588/ML
https://github.com/krisbg95/LIFT/tree/41095c2292bdb45cc59e01170f232452cbe8e588/ML
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7.3 Results   

7.3.1  Patient characteristics  

At baseline, 81 RA patients completed all four modalities in LIFT: T1, DTI, PASAT and 

resting-state fMRI. They were randomised to the three treatment groups: PEP (n = 28), UC 

(n = 28), or CBA (n = 25) group. Some patients did not complete follow-up Chalder Fatigue 

assessments: PEP (six months, n = 6; one year, n = 6), UC (six months, n = 4; one year, n = 

1), and CBA (six months, n = 4; one year, n = 1). For the validation dataset (RA study 1), 50 

patients completed baseline neuroimaging and clinical data, along with a six-month Chalder 

fatigue follow-up. The trial patients exhibited higher baseline compared to the RA study 1 

patients (Figure 7-2A) while fatigue was significantly reduced in the PEP and CBA groups 

using both six-month and one-year outcomes (Figure 7-2B). The fatigue change in the UC 

group in the trial did not significantly differ from that of the RA study 1 patients (Figure 

7-2C), who effectively received only standard care.            

 
Figure 7-2: Fatigue characteristics in the trial and study RA cohorts. Panel A displays boxplots 

of baseline Chalder Fatigue for the three groups in the LIFT trial prior to treatment initiation, 
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alongside the patients from RA study 1, whose data served for final model validation. There were no 

significant differences between the three trial groups, but the study patients had significantly lower 

fatigue, as compared using independent sample t-tests. Panel B visualises significant changes in 

fatigue at both six months and one year after starting treatment for the personalised exercise 

programme (PEP) and cognitive behavioural approach (CBA) groups but not for the usual care (UC) 

group), as confirmed by paired samples t-tests. Panel C illustrates that fatigue differences at six 

months were not significantly different between the UC trial group and the RA study patients, as 

assessed by independent sample t-tests.   

7.3.2 All model descriptions 

Models employing different modalities and ML algorithms exhibited very similar 

performance in terms of RMSE (Figure 7-3). All of the algorithms performed similarly 

when predicting six-month or one-year outcomes across feature selection and modality 

options (Figure 7-4). The best-performing model for each modality used a different 

configuration of feature selection and/or clinical outcome (Table 7-3). Notably, the Gaussian 

process regression with a radial kernel emerged as the algorithm of choice for all modalities 

except the morphometric feature model, which employed a random forest algorithm instead. 

The top-performing models based on MAE or predicted R2 are depicted in Appendix G.   

Modality RMSE  Algorithm Outcome FC Feature selection 

Relief SGCCA 

Clinical 6.25 gaussprRadial 1 year N/A 1:1 50% 

FC 6.60 gaussprRadial 6 months Resting-state 1:1 50% 

Multimodal 6.74 gaussprRadial 6 months Resting-state 1:4 70% 

SC 6.57 gaussprRadial 1 year N/A 1:1 70% 

Morphometric 6.64 rf 1 year N/A 1:4 50% 

Table 7-3: Configuration of the best model for each modality. Each row represents the 

configuration for the best-performing model in the respective modality, determined by the median 

root mean squared error (RMSE). The top-performing models employed either the Gaussian process 

regression with a radial kernel (gaussprRadial) or a random forest algorithm. The configuration 

includes the timing of the clinical outcome, which can be either six months or one year after treatment 

allocation. The feature selection column specifies whether all positive features (1:1) were included 

post RRelief F, or if it was narrowed down to the top half or quarter (1:4) of positive features. It also 

indicates whether 50% or 70% of resamples had to include the features during the stability selection 

for the sparse generalized canonical correlation analysis (SGCCA). In specific cases of functional 

connectivity (FC) and multimodal models, the selection of the source of FC was an additional 

consideration. The models could use either FC estimated from fMRI during resting-state or from the 

Paced Auditory Serial Addition Test (PASAT) task.  
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Figure 7-3: Cross-validation performance across modalities. Each panel within the figure 

showcases the performance of models within individual modalities, assessed by the root mean square 

error (RMSE). The modalities include clinical, functional connectivity (FC), structural connectivity 

(SC), morphometric features and a multimodal panel integrating all the features. The models are 

colour-coded based on the algorithm employed, which includes elastic net (glmnet), random forest 

(rf), support vector regression (svm), Gaussian process regression (gausspr) with linear and radial 

kernels, as well as gradient boosting (gbm) and extreme gradient boosting with dropout (xgbDART). 

Additionally, a 'Base' model relying solely on the median of the training set's baseline Chalder fatigue 

score is presented as a baseline reference.  
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Figure 7-4: Cross-validation performance across time. In each panel, the performance of a single 

algorithm is presented as the root mean square error (RMSE), using Chalder fatigue outcomes at 

either six months or one year after treatment allocation.  The results are agglomerated across different 

feature modalities. These algorithms include elastic net (glmnet), random forest (rf), support vector 

regression (svm) and Gaussian process regression (gausspr) using linear and radial kernels as well 

gradient boosting (gbm) and extreme gradient boosting using drop out (xgbDART). Additionally, a 

model (Base) solely using the median of the training set baseline Chalder fatigue score is also 

depicted as a baseline reference.   
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7.3.3 Best model descriptions  

The best-performing model for each modality exhibited a significantly lower RMSE 

compared to the baseline model, which employed only the median (Figure 7-5). 

Specifically, the clinical model demonstrated a large effect size, the FC model displayed a 

medium effect size, whereas the multimodal, SC, and morphometric models demonstrated 

small effect sizes (Goss-Sampson, 2019). While these best-performing models were 

significantly different, that distinction primarily stemmed from differences with the clinical 

model (Figure 7-6). A trend level difference (p = 0.08) was also observed between the FC 

and SC models. The clinical model used as predictors treatment allocation, baseline Chalder 

Fatigue, ACR Fibromyalgia scale, and current pain when applied to the full dataset.  

 
Figure 7-5: Best model against baseline median performance. For each modality, the figure 

displays the comparison between the best model and the corresponding median performance for the 

identical test sets. Above each plot, the results of a Wilcoxon signed-rank test are presented, 

comprising the test statistic (W), p-value, and effect size denoted by rank-biserial correlation (rB). 

Effect sizes can be categorised as follows: trivial<0.1, small>=0.1, medium>=0.3, and large >0.5 

(Goss-Sampson, 2019).  
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Figure 7-6: Best model comparison across all modalities. The plot displays the performance in 

root mean squared error (RMSE) of the best model for each modality. Along the x-axis, the modality 

and corresponding algorithm are displayed, including the Gaussian process regression 

(gaussprRadial) and the random forest (RF) algorithms. Atop the plot, a non-parametric, Kruskal-

Wallis test demonstrates significant differences in model performances across modalities. This 

comprises of the test statistic (H), p-value, and a medium epsilon squared effect size (Valladares-

Neto, 2018). The p-values of post hoc comparisons using Dunn tests are also presented. 

The best models varied in the clinical outcome they predicted. The FC and multimodal 

models performed best in predicting the six-month Chalder Fatigue outcome, while the 

others were more adept at predicting the one-year outcome  (Table 7-3). To evaluate the 

effect of outcome choice, I compared these models to ones with opposite outcomes (Figure 

7-7). For example, the best-performing FC model that predicted six-month outcomes was 

compared to the same configuration model that predicted one-year outcomes. Although the 

clinical and morphometric modalities did not show significant differences, the remaining 

modalities were significantly different, albeit with small effect sizes. Similar comparisons 

were made for FC and multimodal models using FC, extracted from fMRI either during 

resting-state or the PASAT task (Figure 7-8). In both cases, the top-performing models 

utilized resting-state FC, and they demonstrated significant differences with small effect 

sizes when compared to identical models employing PASAT FC.  
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Figure 7-7: Best model outcome comparison. For each modality, the figure displays the 

comparison between the best model and an identical model that predicts the opposite outcome. Above 

each plot, the results of a Mann-Whitney U test are presented, comprising the test statistic (U), p-

value, and effect size denoted by rank-biserial correlation (rB). Effect sizes can be categorised as 

follows: trivial<0.1, small>=0.1, medium>=0.3, and large >0.5 (Goss-Sampson, 2019). 

 
Figure 7-8: Functional connectivity modality effect. For the functional connectivity and 

multimodal models, the figure displays the comparison between the best model and an identical 

model that uses a different FC modality (fMRI during resting-state or PASAT). Above each plot, the 

results of a Mann-Whitney U test are presented, comprising the test statistic (U), p-value, and effect 

size denoted by rank-biserial correlation (rB). Effect sizes can be categorised as follows: trivial<0.1, 

small>=0.1, medium>=0.3, and large >0.5 (Goss-Sampson, 2019).  
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7.3.4 Best model significance and validation  

To assess whether the best multimodal model performed better than chance, the model was 

compared to a null distribution made from shuffling (permuting) the outcome value (Figure 

7-9). Each set of permuted values was correlated with the actual values, ensuring none 

exceeded a set correlation value (r = 0.1), thus confirming the effectiveness of the 

permutation. However, the actual model performance was inferior to what would be 

expected by chance alone.  

 
Figure 7-9: Best model significance. The figure depicts the sampling distribution of the root mean 

squared error (RMSE) for the best-performing multimodal model under the null hypothesis. This 

distribution is generated by applying the model to 1000 permutations of the outcomes and assessing 

its performance through 10 repeated cross-validations. Every value in the histogram represents the 

median performance across the validation procedure. The black dotted line indicates the mean of 

these values. The blue dotted line corresponds to the actual model's performance (RMSE = 6.74). 

Values in grey indicate higher error rates compared to the actual model, while those in black represent 

lower errors. The red dotted line, at an RMSE of 6.52, signifies the threshold below which 

performance would be deemed better than chance at a significance level of 0.05. This value 

represents the top 50 out of 1000 permuted performances. The actual model performed worse than 

what would be expected by chance (p = 0.13).   
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The top-performing model used resting-state FC, but the validation set only had FC from 

PASAT fMRI. Therefore, the best-performing multimodal model using PASAT FC was 

used for validation in the RA study 1 cohort. The two models also had differences in the 

configuration (Table 7-4) and selected features (Appendix H). While the SC and 

morphometric features overlapped, the clinical features did not. The functional connection 

between the left frontal pole and left insula appeared in both the resting-state and PASAT 

FC features of both models. When the multimodal PASAT FC model was used to predict 

Chalder Fatigue after six months in the RA study cohort 1, it resulted in a higher error rate 

(RMSE = 8.21) than in the trial cohort (RMSE = 6.87).   

Model RMSE  Algorithm Outcome Total features Feature selection 

Relief SGCCA 

Multimodal rsFC 6.74 gaussprRadial 6 months 44 1:4 70% 

Multimodal PASAT FC 6.87 gaussprRadial 6 months 237 1:1 70% 

Table 7-4: Best-performing multimodal models using resting-state and PASAT functional 

connectivity. The table lists the performance in median root mean square error (RMSE) along with 

the algorithm and its feature selection configuration. It also depicts the total number of features 

selected after applying the feature selection to the whole trial data. 

7.3.5 Model interpretation  

After evaluating its performance, permutation feature importance and ALE plots were 

applied to clarify the global behaviour of the best-performing multimodal model and uncover 

the reasons behind its performance. The permutation feature importance analysis highlighted 

the HADS depression score as the most influential feature among all 44 features. (Figure 

7-10). Subsequently, SC from the medial orbitofrontal cortex to the frontal pole, FC between 

the pars triangularis and the pars orbitalis, and FC between the bank of the superior temporal 

sulcus and the middle temporal gyrus were identified as significant contributors (Figure 

7-12). Permuting the remaining features resulted in similar increases in error, emphasizing 

the model's reliance on most of the features rather than a few selected variables. In contrast 

to feature importance, ALE plots can illustrate non-linear relationships. These plots focused 

on the top four variables identified by feature importance, along with treatment allocation 

(Figure 7-11). The plots illustrated how changes in these variables while keeping others 

constant, influenced the average prediction of the outcome. The ALE plots for the remaining 

features are in Appendix I. The plots displayed that being allocated to the CBA group, along 

with higher SC from the left medial orbitofrontal cortex to the left frontal pole, led to a 

decrease in the predicted fatigue levels. Conversely,  elevated values for the remaining four 
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features were indicative of higher fatigue score predictions. Notably, all these relationships 

exhibited a linear nature. 

 
Figure 7-10: Feature importance. The figure displays the permutation feature importance of all 44 

features included in the best-performing multimodal model, using a Gaussian process regression to 

predict Chalder Fatigue after six months in the trial data. The HADS depression score emerged as 

the most important feature, which when permuted resulted in an increase in RMSE by 1.06. The bars 

represent permutation variability, reflecting the median error across all repetitions, and 95% 

confidence intervals. Abbreviations: CBA, cognitive behavioural approach; LH, left hemisphere; 

rsFC, resting-state functional connectivity; RH, right hemisphere; SC, structural connectivity.  

 
Figure 7-11: Accumulated local effects (ALE) plots of the four most influential features and 

treatment allocation. The plots display the main effects of the six features on the prediction of 

Chalder Fatigue after six months. The y-axes represent the size of the mean effect each feature has 

on the fatigue prediction relative to the overall model prediction. Abbreviations: LH, left hemisphere; 

RH, right hemisphere; rsFC, resting-state functional connectivity; SC, structural connectivity.   



Fatigue prognostic models|165  

 
Figure 7-12: Visualisation of top imaging features.  The plot displays the top three imaging 

features according to permutation feature importance, with HADS depression scores being the first. 

Structural connectivity is outlined with an arrow while functional connectivity is depicted as a single 

line. The colouring of the connections is based on their ranking. Abbreviations: L, left; R, right; m, 

medial; S, superior; G, gyrus; OFC, orbitofrontal cortex.   
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LIME models next offered insight into individual predictions of the multimodal model and 

identified key variables for specific observations. For the patient with the largest actual 

fatigue change (change score = -24), I constructed a LIME model to highlight the most 

influential features contributing to a low fatigue score. This LIME model was based on the 

top five contributing features (Figure 7-13) and comprehensively captured the actual 

model's behaviour (R2 = 0.99). Four of the five features led to a lower predicted fatigue level 

prediction, with allocation to the CBA group exerting the most significant effect. 

Additionally, SC from the precuneus and supramarginal gyrus to the anterior cingulate 

cortex played a substantial role in this patient's outcome prediction. LIME models were then 

generated for this patient and four others with the greatest fatigue change, using the top two 

contributing features for each. Heat maps of these models revealed common features 

influencing predictions for these patients  (Figure 7-14). The sole feature shared among two 

or more patients was allocation to the CBA group. It played a significant role in two patients 

yet reduced the predicted fatigue score in the patient with the most substantial fatigue change 

(case 60), while conversely increasing it in another patient (case 7). Furthermore, allocation 

to the usual care group predicted a lower fatigue outcome in a third patient (case 62). Finally, 

SC to the cingulate cortex from different regions emerged as one of the two most important 

features in two patients.  

 
Figure 7-13: Model behaviour over the case with the greatest fatigue change. The plot delineates 

the 5 most influential features that best explain the linear model for the specific case. The colour of 

the bars depicts whether the feature brings an increase (positive) or decrease (negative) in the average 

predicted value for Chalder Fatigue at six months. The x-axis visualises the weighted importance of 

each variable to the case prediction. The plot also displays how well the linear interpretable model 

explains the actual model in R2 (Explanation Fit = 0.99), the baseline fatigue score (25), the predicted 

fatigue score (7.5), and the actual follow-up fatigue score (1). Each feature is dichotomised for 

interpretation, such as structural connectivity from the right precuneus to the right rostral anterior 

cingulate cortex being either below or above 0.0024. Next to each feature is the actual value for that 

case in brackets. Abbreviations: LH, left hemisphere; RH, right hemisphere, rsFC, resting-state 

functional connectivity; SC, structural connectivity.  
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Figure 7-14: Model behaviour over the five cases with the greatest fatigue change. This figure 

is a heatmap showing how the top 2 features selected across all the observations influence each case. 

The interpretability models that used the two most influential features explained the actual model in 

R2 differently for each case (case 5 = 0.46, case 7 = 0.95, case 40 = 0.51, case 60 = 0.95, case 62 = 

0.85). Abbreviations: LH, left hemisphere; RH, right hemisphere; rsFC, resting-state functional 

connectivity; SC, structural connectivity.   
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7.4 Discussion 

This study uniquely applied ML to predict fatigue in a trial of non-pharmacological 

interventions in RA, yielding several findings. Fatigue significantly reduced in the PEP and 

CBA groups at both six months and one year. Models using diverse neuroimaging and 

clinical modalities along with different ML algorithms, demonstrated comparable 

performance. The best-performing model in each modality showed significantly lower error 

rates than the baseline model, which relied solely on the median. While these top models 

exhibited statistical differences, this primarily stemmed from differences between the 

clinical and the other modality models. Moreover, the performance of the top-performing 

multimodal model fell below what would be expected by chance alone. Fatigue changes in 

the trial UC group did not significantly deviate from those of the RA study 1 patients, whose 

data served as validation. The highest-performing model utilized resting-state FC, yet the 

validation set only had FC from PASAT fMRI. Consequently, the best-performing 

multimodal model using PASAT FC was employed for validation in the RA study 1 cohort. 

When this multimodal PASAT FC model predicted Chalder Fatigue after six months in the 

RA study cohort 1, it exhibited a much higher error rate compared to the trial cohort. 

Interpretability methods highlighted depression scores, along with specific structural and 

functional connections, as the four most influential factors, with most indicating higher 

fatigue predictions. They also emphasized treatment allocation. While allocation to an active 

treatment group suggested a lower fatigue score prediction at a global model behaviour level, 

an examination at the individual case level revealed a more ambiguous relationship. CBA 

group allocation was associated with both a decrease and increase in fatigue level predictions 

in different patients. Finally, interpreting local predictions also revealed that usual care could 

lead to a lower fatigue level prediction in some patients compared to the global model 

predictions of higher fatigue.  

Despite the multimodal model incorporating clinical variables alongside neuroimaging 

variables, it was the clinical model that performed best. The clinical model demonstrated a 

large effect size when compared to a baseline reference, whereas the multimodal model 

showed a small effect. When applied to the full dataset, the clinical model selected treatment 

allocation, baseline Chalder Fatigue, ACR Fibromyalgia scale, and current pain as 

predictors. In comparison, the multimodal model also utilized treatment allocation but 

included only depression and disease duration as additional clinical variables. In the full trial, 

both treatment groups significantly reduced fatigue outcomes, and the PEP group notably 
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lowered depression scores at one year (Bachmair et al., 2022). However, neither intervention 

substantially reduced pain compared to the UC group. Pain and depression are commonly 

recognized as predictors of fatigue across chronic fatigue conditions (Davies et al., 2021) 

and so might be predictive of fatigue outcomes irrespective of the administered treatment. 

The difference between the clinical and multimodal performance may be partially attributed 

to the clinical model's inclusion of baseline fatigue as a predictor, a factor known to be 

longitudinally linked to fatigue outcomes (Holdren et al., 2019).  

Why did models perform similarly across modalities? In each modality, the leading model 

adopted a distinct configuration for feature selection and clinical outcome options. While 

these models varied in FC modality and predicted clinical outcomes, these variations exerted 

a significant but small effect on performance. What remained consistent across best-

performing models was the use of Gaussian process regression with a radial kernel, except 

for the morphometric feature model, which opted for a random forest algorithm. Gaussian 

process regression thrives with smaller datasets (Li et al., 2021). This was exemplified by a 

study encompassing multiple ML algorithms, including elastic net and random forest, 

demonstrating the superiority of the Gaussian process regression with fewer observations (n 

= 50-400) and more features (400-1000) (Jollans et al., 2019). These results were 

demonstrated by using both simulated data, designed to have large effect sizes, and real data 

predicting participant age with established moderate-to-large effects. Notably, the study also 

indicated that the random forest algorithm excelled in scenarios with small effect sizes, 

potentially explaining the superior performance of the morphometric model in predicting 

fatigue in this study. Gaussian process regression models have found extensive application 

in predicting brain age (Cole et al., 2017). They have also been successful in using fMRI 

data to predict anxiety (Portugal et al., 2019) and pain scores (Marquand et al., 2010), both 

of which are multifaceted behaviours akin to fatigue. Furthermore, when Portugal et al. 

(2019) predicted anxiety scores, they depicted that predictions were based on the overall 

pattern rather than on a small combination of features.  This aligns with the findings of 

feature importance in this study, where all features contributed similarly to error increases, 

emphasizing the model's reliance on a comprehensive feature set. Finally, while Portugal et 

al. (2019) worked with a smaller sample, studies have also documented success in 

implementing Gaussian process regression in larger datasets (Chen et al., 2022a, Dunas et 

al., 2021, Niu et al., 2020).  

The failure of the multimodal model to exceed chance performance or externally validate in 

the RA study cohort raises questions about its construction. First, differences emerged in the 
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configuration and selected features of the best resting-state multimodal and PASAT 

multimodal models. While the SC and morphometric features overlapped, the clinical 

features did not align. The fact that the model did not perform better than chance indicates 

its limited capacity to offer predictive value in this dataset. A previous study highlighted 

similar challenges, demonstrating that even previously successful ML and linear models 

struggled to outperform chance levels in predicting relapse for stimulant dependence using 

fMRI and clinical data (Gowin et al., 2019). The authors attributed this to both the small size 

of the training sample and unique sample characteristics. Second, the performances of the 

imaging models could also have been a result of the Desikan-Killiany atlas's limitations in 

capturing functionally maximally distinct brain regions. A study demonstrated that common 

anatomical parcellations, including the Desikan-Killiany atlas, failed to surpass chance 

levels in predicting functional boundaries for both task-based and resting-state fMRI datasets 

(Zhi et al., 2022). This was attributed to task-based functional boundaries not aligning well 

with sulcal landmarks. In contrast, parcellations based on resting-state fMRI data showed 

promising performance, in some cases rivalling parcellations defined on the evaluation data 

itself. Furthermore, multi-modal parcellations combining functional and anatomical criteria 

fared considerably worse than those based on functional data alone, suggesting that 

functionally homogeneous regions often span major anatomical landmarks, which may have 

also happened in this study.      

The nature of fatigue also likely contributed to the lack of success of the multimodal model. 

Being an internalised state, fatigue may be more difficult to predict compared to other 

behaviours. Research has shown that internalising behaviours, such as withdrawal, are 

inherently more challenging to predict compared to externalising behaviours like aggression 

and attention, as evidenced by a study utilizing FC (Dhamala et al., 2023a). Moreover, 

combining resting FC and task FC significantly improves predictions related to externalised 

cognition and personality scores, but not internalised mental health scores (Chen et al., 

2022b). Another study employing ML models failed to outperform chance levels when 

predicting antidepressant response using genetic and clinical characteristics (Maciukiewicz 

et al., 2018). While the authors partially attributed these results to unbalanced responder and 

non-responder groups, the low performance may have been rooted in the multi-causal nature 

of depression and treatment response, affirming the widely accepted notion that depression 

onset, presentation, and reduction involve a complex interplay of various factors (Scala et 

al., 2023). Such notions can similarly be applied to fatigue and explain the modest 

performance of the models predicting fatigue in this study.     
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Permutation feature importance and ALE plots provided further insight into the findings. 

Depression scores proved most influential, followed by SC from the medial orbitofrontal 

cortex to the frontal pole, FC between the pars triangularis and pars orbitalis, and FC between 

the bank of the superior temporal sulcus and middle temporal gyrus. CBA group allocation, 

along with higher SC from the left medial orbitofrontal cortex to the left frontal pole, 

predicted lower fatigue levels. Conversely, UC group allocation, along with elevated values 

for the two FC features, predicted higher fatigue scores. These observations centred on the 

frontal cortex, which along with the basal ganglia, exhibit grey matter pathology, glucose 

hypometabolism, hypoperfusion, and metabolic abnormalities, in the context of fatigue in 

neuroinflammatory and autoimmune diseases (Morris et al., 2015). These findings are also 

mirrored in depression, potentially suggesting why depression scores emerged as the prime 

predictor in this study. Dysfunction in the frontostriatal neurocircuitry has been suggested to 

lead to an increase in effort perception and consequently fatigue (Kuppuswamy, 2022). 

Frontal regions have subsequently become focal points for brain stimulation therapies for 

fatigue in both MS and Parkinson’s disease (Zaehle, 2021).  Characteristics of frontal regions 

have also been shown to predict fatigue. For example, baseline FC between the dorsolateral 

prefrontal cortex and the caudate predicted modafinil-associated decreases in poststroke 

fatigue within a randomized controlled trial (Visser et al., 2019). Apart from frontal regions, 

feature importance also highlighted the DMN in this study. The FC between the bank of the 

superior temporal sulcus and the middle temporal gyrus, both components of this network 

(Uddin et al., 2019), was the third most influential feature in the multimodal model. As 

discussed in the previous chapter on fatigue predictors in PsA, augmented DMN FC has been 

shown to drive fatigue in MS (Bisecco et al., 2018) and correlate with subjective mental 

fatigue in healthy cohorts (Gergelyfi et al., 2021).  

The LIME model for the patient with the largest actual fatigue change identified four key 

features leading to lower predicted fatigue levels, with CBA group allocation being the most 

influential. Among the four other patients with substantial fatigue change, CBA group 

allocation was the sole shared feature. While it played a significant role in two patients, it 

reduced predicted fatigue scores in one and increased them in another. Allocation to the UC 

group predicted lower fatigue in a third patient. These contradicting feature effects may 

explain why the model ultimately failed to predict fatigue outcomes better than chance. 

While ALE plots suggested CBA group allocation generally predicted lower fatigue and UC 

group allocation predicted higher fatigue, individual cases did not consistently follow this 

pattern. In a similar vein, a study used comparable interpretability methods to identify why 

ML models occasionally made false-negative predictions regarding the severity of SARS-
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CoV-2 infections (Wu et al., 2021). The authors developed models to predict infection 

severity based on baseline symptoms and inflammatory markers. They discovered that initial 

asymptomatic presentations led the models to incorrectly classify patients with severe 

outcomes as normal cases. Conversely, models that made the correct predictions were less 

influenced by symptom data, focusing instead on the elevated baseline inflammatory 

markers in these patients. Another study used interpretability methods on models that 

predicted mortality from perioperative cardiac arrest prior to hospital discharge (Shang et 

al., 2022). The authors identified that the values of either CPR duration or haemorrhage 

variables overpowered other factors in instances of false-positive or false-negative 

predictions.  

This study had several strengths and limitations. This includes the inherent challenge of 

collecting and scanning patients for neuroimaging datasets, which tend to be relatively small 

due to the associated costs and time investments. Nevertheless, this study uses the largest 

neuroimaging database to date of RA patients who have undergone a trial of non-

pharmacological fatigue-specific treatments. Also, the study used the Chalder Fatigue Scale 

as the main outcome, which is a self-assessment questionnaire that inevitably introduces 

some bias from the subjective individual perception of fatigue. Alternatively, this could be 

addressed by focusing on fatigue measures that consistently associate with neurobiological 

metrics so as to maximise the predictive potential of models using neuroimaging. The 

integration of multimodal data presented a challenge, requiring careful consideration of 

heterogeneities between different modalities. This encompassed differences in data 

distributions, varying feature counts, and distinct discrimination capacities for fatigue 

changes. Despite applying feature selection to each modality in isolation, the study might 

have still failed to overcome the multimodal heterogeneity. To address this issue, alternative 

integration strategies could be used such as multikernel or stacked learning that construct 

representations for each modality (Chen et al., 2022c). These representations could then 

serve as inputs for the final algorithm, a strategy previously suggested in psychiatry (Chen 

et al., 2023). A strength of the study was the regression strategy, which as opposed to a 

classification approach, offered more clinically pertinent insights into patient progression. 

Furthermore, while all patients were locally recruited (Scotland, UK), potentially limiting 

universal applicability due to environmental variations, the inclusion of data from two 

imaging sites, accounted for differences in scanning parameters, and subsequently enhanced 

ecological validity. Although the results did not support combining different MRI data, the 

integration of additional biomarker sources, such as genetic or metabolic information, holds 

promise for improving predictive accuracy and uncovering novel fatigue biomarkers. 
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Overall, this study built a ML model to predict fatigue in RA patients who underwent non-

pharmacological interventions, which significantly reduced their fatigue at follow-up. 

Different models using neuroimaging and clinical data showed comparable performance, 

potentially because most used the same algorithm while the effects of imaging modality time 

of outcome were not large. The clinical model performed best probably because of its few 

but very influential features, including baseline fatigue which the multimodal model did not 

use. The multimodal model also failed to exceed chance performance or validate in a 

separate RA cohort potentially due to a small training sample size, the limitations of the 

brain region atlas used, and the inherent difficulty in predicting internalised behaviours like 

fatigue. Despite its low performance, the model highlighted the importance of frontal regions 

and the DMN in predicting fatigue in coherence with previous findings. Interpretability 

methods revealed contradictory feature effects and inconsistent patterns in individual cases, 

which may explain the failure of the multimodal model to predict fatigue outcomes 

accurately. Nevertheless, this study showcased the feasibility of predicting fatigue outcomes 

in the context of non-pharmacological interventions combining neuroimaging with clinical 

data and where further improvements can be made. 
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Chapter 8 Conclusions 

8.1 New knowledge   

This thesis presented several novel findings. It established a link between neuroimaging 

brain connectivity and distinct subgroups in RA (rheumatoid arthritis) related to fatigue 

subdimensions, albeit only within a specific cohort. Some brain regions overlapped in 

governing how patients were grouped, including the default mode network regions of the 

precuneus and parahippocampal gyrus. I also found associations between brain imaging 

metrics and baseline subdimensions of fatigue in RA, with different subcomponents 

correlating with different metrics. Emotional and cognitive fatigue did converge on the same 

resting-state FC (functional connectivity) between the frontal pars orbitalis and a part of the 

inferior parietal lobule called the supramarginal gyrus. Chapter 5 identified baseline brain 

imaging predictors of fatigue in RA patients undergoing either an exercise or cognitive-

behavioural intervention. In both fatigue-specific treatments, lower fatigue at follow-up was 

predicted by stronger SC (structural connectivity) from the precuneus to the anterior 

cingulate cortex as well as stronger PASAT (Paced Auditory Serial Addition Test) task FC 

between the anterior cingulate cortex and the frontal pole. In contrast, significant 

neuroimaging predictors of fatigue were not found in RA patients who started a new 

DMARD (disease-modifying antirheumatic drug) treatment. However, I did find such 

predictors in PsA (psoriatic arthritis) patients. These were comprised of cortical thickness of 

the visual pericalcarine cortex and FC of regions of the default mode and salience networks, 

including the inferior parietal lobule and the anterior cingulate cortex. Finally, models using 

diverse neuroimaging and clinical modalities along with different ML (machine learning) 

algorithms, demonstrated comparable performance in predicting individual fatigue follow-

up scores in the same trial data from Chapter 5, with the inclusion of the control usual care 

group. Although the best multimodality model outperformed the model using solely the 

baseline median fatigue, it neither surpassed chance level nor did it replicate its utility in 

usual care patients in an independent RA cohort. Interpretation methods indicated that while 

this model heavily relied on treatment allocation, it showed contradictory feature effects and 

inconsistent patterns in individual cases.   

The results discussed highlight multiple brain regions and their affiliated networks (Table 

8-1). This could be attributed to the sporadic nature of findings inherent in human brain-

behaviour neuroimaging research. However, it may also in part be due to the involvement 
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of multiple potential mechanisms. This may elucidate why even the default mode network 

(DMN), the one consistent brain network across all studies, is typically discussed in relation 

to various mechanisms. Firstly, the dynamic FC of the DMN played a crucial role in 

clustering patients alongside the SMN and insula. These components share a role in pain 

processing, with the sensorimotor network (SMN) contributing to peripheral pain pathways, 

while associations between the DMN and insula serve as the most frequently cited 

biomarkers of centralised pain (Kaplan et al., 2019). Consequently, these results may reflect 

that the impact of fatigue in RA patients hinges on the influence of each type of pain. 

Furthermore, the connectivity of the DMN,  particularly the inferior parietal lobule, has been 

previously associated with systemic inflammation in the same RA cohort (Schrepf et al., 

2018). Interestingly, hyperconnectivity of the inferior parietal lobule predicted high fatigue 

in the PsA cohort that underwent new immunological DMARD treatment. Also, as this was 

connectivity with another region of the DMN, it also implied the role of the DMN as an 

indicator of attentional resources (Wylie and Flashman, 2017). This role could be important 

in non-pharmacological fatigue treatments, as connectivity within the DMN also predicted 

fatigue in RA patients who underwent exercise or cognitive-behavioural interventions. 

Despite its implications in disease, the DMN may also be influential in capturing a general 

mechanism of tiredness, as observed in healthy cohorts (Gergelyfi et al., 2021).   

Multiple mechanisms were also suggested as a result of different associations with 

subdimensions of fatigue. The impact of living with fatigue (BRAF MDQ), which measures 

motivation, implicated both the nucleus accumbens, a prime region of the mesolimbic 

pathway, and limbic anterior cingulate areas as well as prefrontal regions which regulate this 

pathway. Due to its functions, the mesolimbic pathway may induce fatigue by heightening 

the perception of energy costs for actions and/or reducing expectations of rewards. This 

aligns with a central mechanism believed to underlie anhedonia in depression (Clery-Melin 

et al., 2019). Physical and cognitive fatigue, on the other hand, implicated regions within 

task networks that are related to their respective behaviours. Theoretically, both types of 

fatigue can emerge when connectivity within task networks is disrupted, coupled with 

amplified interoceptive and cognitive control signals from a general monitoring network 

(Muller and Apps, 2019). This network comprises of the dorsolateral prefrontal cortex, 

dorsal anterior cingulate cortex, and the anterior insula. Inflammation may serve as one 

pathway to disrupt this monitoring network, particularly through cytokine-induced 

interoceptive changes in the insula (Hanken et al., 2014). One potential avenue of alleviating 

fatigue may therefore be improving interoceptive processes, which have been shown to 

associate with treatment response in depression (Eggart and Valdes-Stauber, 2021).  
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In PsA, higher cortical thickness of the primary visual cortex (pericalcarine) predicted 

greater fatigue six months after starting a new DMARD. This region's structural 

characteristics may signal general centralised symptoms, as it is linked to fibromyalgia, low 

mood, and cognitive deficits (Nhu et al., 2023, Aster et al., 2022, Pitteri et al., 2021, Jensen 

et al., 2013). Fibromyalgia, known for being primarily driven by top-down mechanisms, 

shares chronic fatigue as a prominent feature. FC between the pericalcarine and the cuneus, 

both parts of the primary visual cortex, also predicted fatigue, but in RA patients after 

receiving non-pharmacological interventions. In PsA, FC between the anterior cingulate 

cortex (a region of the SLN) and the lingual gyrus served as a neuroimaging marker for 

multisensory hypersensitivity—an amplified response to non-painful sensory stimuli 

(Lopez-Sola et al., 2014). This suggests that top-down mechanisms might predispose PsA 

patients to fatigue, irrespective of nociceptive input. Conversely, higher baseline SC from 

the precuneus to the anterior cingulate cortex predicted lower fatigue after non-

pharmacological interventions in RA, indicating that patients with such characteristics may 

be more receptive to these treatments. Overall, SC was more prevalent than FC in predicting 

fatigue after exercise or cognitive behavioural interventions, possibly due to its better 

reflection of trait fatigue (Genova et al., 2013). On the other hand, FC may be more adept at 

characterising current state fatigue. In MS, functional changes are postulated to signify 

different stages of fatigue progression in brain circuits (Capone et al., 2020). Finally, apart 

from differences between SC and FC, another noteworthy methodological variation lies in 

the use of multivariate analyses, which led to a more comprehensive, interdependent set of 

variables predicting fatigue, as opposed to a single hub in the brain.         

 

 

 

 

 

 

 



Conclusions| 177  

Brain regions related to fatigue  Affiliated brain networks or pathways 

Neuroimaging clusters of fatigue in Chapter 3 (associations) 

precuneus 

parahippocampal gyrus  

precentral gyrus  

insula 

supramarginal gyrus (inferior parietal lobule) 

DMN 

SMN 

SLN 

Correlates of fatigue subdimensions in Chapter 4 (associations) 

impact on living (motivational) fatigue  

nucleus accumbens 

caudal and rostral middle frontal gyrus 

frontal pole 

pars opercularis and triangularis 

rostral anterior cingulate 

isthmus cingulate  

paracentral lobule 

mesolimbic pathway  

SLN 

SMN 

physical fatigue  

paracentral lobule  

precentral and postcentral gyrus  

SMN 

cognitive fatigue  

insula  

lingual gyrus  

pars orbitalis  

supramarginal gyrus (inferior parietal lobule) 

SLN 

DAN   

DMN 

emotional fatigue 

pars orbitalis  

supramarginal gyrus (inferior parietal lobule) 

DMN 

Fatigue predictors in RA after non-pharmacological interventions in Chapter 5 

precuneus 

caudal and rostral anterior cingulate  

frontal pole  

cuneus  

pericalcarine cortex 

DMN 

SLN  

Visual network 

Fatigue predictors in PsA after pharmacological interventions in Chapter 6 

pericalcarine cortex  

caudal anterior cingulate  

lingual gyrus  

inferior parietal lobule  

bank of the superior temporal sulcus 

Visual network  

SLN  

DAN  

DMN  

 

Fatigue prognostic models in Chapter 7 

medial orbitofrontal cortex  

frontal pole  

pars triangularis and orbitalis  

bank of the superior temporal sulcus  

middle temporal gyrus 

DMN 

Table 8-1: Summary of brain regions found across thesis results and their affiliated brain 

networks. The table is segregated according to the results of each chapter. In the case Chapter 4, this 
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is further subdivided according to the sub-score of fatigue. The brain networks are derived from 

Uddin et al. (2019) and listed in Error! Reference source not found.. Abbreviations: DMN, default 

mode network; DAN, dorsal attention network; PsA, psoriatic arthritis; RA, rheumatoid arthritis; 

SLN, salience network; SMN, sensorimotor network. 

8.2 Limitations  

Limitations across the studies in this thesis relate first to the neuroimaging methodology. 

Neuroimaging encounters inherent challenges due to the intricate nature of the brain, the 

inverse spatial-temporal resolution relationship of these techniques, the high dimensionality 

of features like connectivity matrices, and subject and study variability (Zhu et al., 2023). 

The brain's state is influenced by disease, age, genes, race, and environmental factors. 

Scanner effects, acquisition parameters, and noise from motion or thermal factors affect the 

neuroimaging signal. Neuroimaging results can be sensitive to preprocessing and analysis 

pipelines (Botvinik-Nezer et al., 2020). Small sample sizes (≤ 20) in neuroimaging struggle 

to demonstrate brain-behaviour associations due to their small effect sizes (Libedinsky et al., 

2022). This applies to the limited number of RA patients compared to PsA who underwent 

new DMARD treatment, especially those who completed follow-up. Although not small in 

univariate contexts, the LIFT dataset did not afford a good sample size to train ML 

algorithms. While not small in univariate contexts, the LIFT dataset did not provide a robust 

sample size for training ML algorithms. Despite no overfitting, such sample sizes have 

shown inflated error bars in ML prediction (Varoquaux, 2018). These sample size challenges 

arise from the difficulty in collecting and scanning patients for neuroimaging datasets, due 

to associated costs and time commitments. Although dataset sizes aligned well with 

established univariate analysis methodology, they primarily identify independent 

biomarkers. For subdimensions of fatigue, they might have pinpointed variables with the 

strongest effect on different dimensions of fatigue, but common patterns may emerge with 

multivariate testing. The Desikan-Killiany atlas was suitably paired with the univariate 

approach as a coarse anatomical parcellation capable of distinguishing large brain regions 

for future treatment targeting. However, in the ML context, it has limitations in capturing 

functionally distinct brain regions, as functionally homogeneous regions often span major 

anatomical landmarks (Zhi et al., 2022). Finally, integrating multimodal data in ML models 

posed a challenge due to heterogeneities between different modalities in their data 

distributions, varying feature counts, and distinct discrimination capacities for fatigue 

differences.  
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Limitations apply due to the characteristics of the cohorts and their alignment with the 

analysis pipelines as well as the concept of fatigue. Sub-dimensional fatigue findings are 

confined to the LIFT cohort, characterised by relatively low systemic inflammation, which 

may not represent the broader RA population. Thus, certain brain circuits may be more 

affected by fatigue than others. Moreover, correlation and clustering results did not hold 

when exclusively using baseline imaging and clinical data from LIFT. The clustering 

analysis in this thesis may not have been optimal for more heterogeneous data. Patients from 

RA study 1, where this pipeline was effective, exhibited more inflammation but less fatigue 

compared to those in the LIFT trial. While the adapted clustering pipeline may have reduced 

overfitting, it potentially resulted in insufficient brain metrics for extracting clinically 

relevant data, especially if underlying biological mechanisms differ between the cohorts.  

Findings of brain correlates of subdimensions of fatigue are confined to the BRAF measure, 

as no other multidimensional questionnaire was used. Additionally, while the living sub-

score in this questionnaire gauges how fatigue impacts planned behaviour and motivation, it 

is designed to measure impact rather than motivational fatigue specifically. The Chalder 

Fatigue Scale, though valid for assessing fatigue severity, aligns with the study's focus but 

remains a self-assessment questionnaire, introducing inherent bias from subjective 

individual perceptions of fatigue. Such questionnaires may still struggle to distinctly discern 

transient perceptions from persistent feelings of fatigue. The intrinsic nature of fatigue adds 

complexity to brain-based investigations. Being an internalised state, predicting fatigue is 

more challenging compared to more externally observable behaviours like aggression 

(Dhamala et al., 2023a). Mainly, the multi-causal nature of fatigue means that its onset, 

presentation, and reduction involve a complex interplay of various factors. Lastly, while 

these studies leveraged applicable pharmacological and non-pharmacological treatments to 

determine fatigue predictors, they did not manipulate brain activity to determine if the 

identified neural signatures can alleviate fatigue and thus inform directly on its mechanisms. 

8.3 Alternative approaches  

The rationales behind the pipelines of each study have been discussed, yet there are 

alternative approaches to address the same research questions with the existing data. Firstly, 

while clustering methods lack definitive standards, recent efforts have aimed to establish 

better guidelines, particularly in mental health research (Gao et al., 2023). In Chapter 3, 

considering the high-dimensional imaging data, although the employed dimensionality 

reduction technique was suitable, it is not specifically tailored for cluster identification, 



Conclusions| 180  

potentially omitting important information. In this context, utilizing subspace clustering 

could have been more effective in identifying variables that best segregate potential clusters 

(Sim et al., 2013). Another option could have been to implement multi-view clustering (Chao 

et al., 2021), also replacing the canonical correlation analysis in the process. This method 

leverages naturally occurring views of data representations (such as brain connectivity and 

fatigue subdimensions), and the combined clustering information from individual views 

could then be consolidated to yield a final cluster solution. Notably, while the study adhered 

to an already published and statistically sound pipeline, I could have devised a unique 

workflow, entirely based on the research question and available data.  

Brain imaging associations varied among fatigue subdimensions in Chapter 4, but 

employing a multivariate approach might have revealed common structural or functional 

brain patterns. This could be particularly impactful for FC, which reflects state fatigue. One 

alternative would be to use functional connectivity Multi-Variate Pattern Analyses (fc-

MVPA) in the CONN toolbox, which makes brain-wide connectome inferences (Nieto-

Castanon, 2022). This method evaluates, for each voxel separately, the complete multivariate 

pattern of functional connections between that voxel and the rest of the brain and then repeats 

the analysis for each voxel and repeats these analyses across all voxels. This creates an FC 

map for each subject, which is then characterised by lower dimensional scores that best 

capture the observed voxel-specific variability across subjects. Unlike other multivariate 

approaches, this method uses a forward model of the data which enables to make statistical 

inferences about individual voxels in the brain and a behaviour of interest like fatigue. This 

offers insights into whether the configuration of FC patterns alters with varying levels of 

fatigue. Consequently, it enables the identification of specific regions where FC plays a 

pivotal role in fatigue and which part of the brain drives this connectivity pattern.  

Finally, as the multimodal ML model failed to predict fatigue, there are potential solutions 

that could address its limitations. First, adopting alternative integration strategies could 

address potential heterogeneities across different modalities. Such strategies include 

multikernel or stacked learning that construct representations for each modality (Chen et al., 

2022c). These representations could then serve as inputs for the final algorithm, a strategy 

previously proposed in psychiatry (Chen et al., 2023). Second, the Desikan-Killiany atlas 

may have limitations in capturing functionally distinct brain regions. Parcellations based on 

resting-state fMRI data may offer superior performance and could be on par with 

parcellations defined on the evaluation data itself. To enhance predictive accuracy, selecting 
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a fatigue measure based on the predictive performance of neuroimaging variables in the other 

datasets could maximize the potential of ML models employing neuroimaging in LIFT. 

8.4 Future directions 

The primary aim of this thesis was to address the question of how brain imaging can 

deconstruct the heterogeneity of fatigue and provide both pathophysiological insights and 

inform treatment stratification in IA. Although none of the findings can currently translate 

to ready-to-use applications, it does devise innovative patient solutions. 

Solutions for patients could entail integrating insights from individual neuroimaging models 

with direct human brain modulation methods. Neuromodulation, like TMS, offers an 

expanded toolkit for combating chronic fatigue. In TMS, electromagnetic coils directly 

modulate brain activity (Hallett, 2007). In clinical settings, a repetitive TMS protocol is 

frequently utilized, involving the administration of repetitive pulses over a variable 

timeframe to either excite (high-frequency) or inhibit (low-frequency) brain activity that has 

been previously implicated in the targeted behaviour or symptom. Repetitive TMS targets 

enduring biological substrates, including neural oscillations or neurochemistry, impacting 

not only the target but also its connectivity with other brain regions (Beynel et al., 2020). 

Integration with neuroimaging insights can be accomplished in ways previously proposed in 

psychiatric research (Oliver et al., 2022). For instance, ML models that seek to identify 

predictive features using neuroimaging data, such as the one in Chapter 7, can subsequently 

map the associated neural circuitry and identify the stimulation target. Alternatively, patients 

can also be stratified for treatment based on biotypes, such as in Chapter 3, which share 

signatures of brain circuit dysfunction. However, TMS targets derived from individual 

connectivity to a region of interest lack reproducibility to offer an advantage over group-

based connectivity due to low signal-to-noise ratio (Fox et al., 2013). Recent trials in 

depression have addressed this by targeting connectivity to a network, rather than a single 

heterogeneous region, resulting in robust individualised targets (Cash et al., 2021). Given 

the application of TMS treatments in reducing fatigue in MS (Korzhova et al., 2019, Gaede 

et al., 2018), such treatments hold promises of fatigue improvement in IA as well.  

The outcomes of this thesis offer insights for guiding animal experiments. Studies could 

delve into how manipulating equivalent dysfunctional brain circuits in animals, like the 

mesolimbic pathway in motivational fatigue, impacts animal behaviour using molecular 

techniques such as optogenetics and chemogenetics. Similar attempts at reverse translation 
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research have already been undertaken in psychiatric conditions to refine neuromodulation 

research and elucidate fundamental questions about their mechanisms of action (Rudebeck 

et al., 2019). Furthermore, methods like resting-state FC and DTI in humans can be similarly 

employed in animals to estimate and compare connections. This approach was used to 

reverse-translate a satiation network from humans to mice, which then unveiled the 

molecular foundations of the network (Low et al., 2021). While considerably more 

challenging, this approach could also be extended to investigate a complex, internal 

behaviour like fatigue. Interoceptive models of fatigue in animals are already in use, 

achieved by employing immunological stimulation to induce sickness-like behaviours 

(Lasselin, 2021). The findings from such pre-clinical work can then pinpoint pertinent 

molecular mediators and examine their temporal interrelationships. These mediators may 

well offer valuable insights for rational drug development.  

Finally, although the work here failed to find a transdiagnostic fatigue network, future 

studies would need to adopt such an approach to address the multi-causal nature of fatigue. 

Heterogenous findings have confounded neuroimaging studies of fatigue in IA and chronic 

fatigue conditions overall, but this can be counteracted via a long-term strategy in design 

and applications. Longitudinal neuroimaging data would need to pinpoint specific CNS 

mechanisms of IA fatigue, probe pharmacological bottom-up and cognitive top-down 

interventions and assess the impact of factors such as centralised pain, low mood, and 

cognitive deficits that contribute to fatigue. Such steps can hopefully then make way for 

personalised management of fatigue in IA.     

 



Conclusions| 183  
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Appendices  

Appendix A  CONN toolbox default atlas regions 

NO. REGION 

CORTICAL REGIONS 

1 Frontal Pole Right/Left 

2 Insular Cortex Right/Left 

3 Superior Frontal Gyrus Right/Left 

4 Middle Frontal Gyrus Right/Left 

5 Inferior Frontal Gyrus, pars triangularis Right/Left 

6 Inferior Frontal Gyrus, pars opercularis Right/Left 

7 Precentral Gyrus Right/Left 

8 Temporal Pole Right/Left 

9 Superior Temporal Gyrus, anterior division Right/Left 

10 Superior Temporal Gyrus, posterior division Right/Left 

11 Middle Temporal Gyrus, anterior division Right/Left 

12 Middle Temporal Gyrus, posterior division Right/Left 

13 Middle Temporal Gyrus, temporooccipital part Right/Left 

14 Inferior Temporal Gyrus, anterior division Right/Left 

15 Inferior Temporal Gyrus, posterior division Right/Left 

16 Inferior Temporal Gyrus, temporooccipital part Right/Left 

17 Postcentral Gyrus Right/Left 

18 Superior Parietal Lobule Right/Left 

19 Supramarginal Gyrus, anterior division Right/Left 

20 Supramarginal Gyrus, posterior division Right/Left 

21 Angular Gyrus Right/Left 

22 Lateral Occipital Cortex, superior division Right/Left 

23 Lateral Occipital Cortex, inferior division Right/Left 

24 Intracalcarine Cortex Right/Left 

25 Frontal Medial Cortex 

26 Juxtapositional Lobule Cortex -formerly Supplementary Motor Cortex- Right/Left 

27 Subcallosal Cortex 

28 Paracingulate Gyrus Right/Left 

29 Cingulate Gyrus, anterior division 

30 Cingulate Gyrus, posterior division 

31 Precuneous Cortex 

32 Cuneal Cortex Right/Left 

33 Frontal Orbital Cortex Right/Left 

34 Parahippocampal Gyrus, anterior division Right/Left 

35 Parahippocampal Gyrus, posterior division Right/Left 

36 Lingual Gyrus Right/Left 

37 Temporal Fusiform Cortex, anterior division Right/Left 

38 Temporal Fusiform Cortex, posterior division Right/Left 

39 Temporal Occipital Fusiform Cortex Right/Left 

40 Occipital Fusiform Gyrus Right/Left 

41 Frontal Operculum Cortex Right/Left 

42 Central Opercular Cortex Right/Left 

43 Parietal Operculum Cortex Right/Left 

44 Planum Polare Right/Left 

45 Heschl's Gyrus Right/Left 

46 Planum Temporale Right/Left 

47 Supracalcarine Cortex Right/Left 

48 Occipital Pole Right/Left 

SUBCORTICAL REGIONS 

1 Thalamus Right/Left 

2 Caudate Right/Left 

3 Putamen Right/Left 

4 Pallidum Right/Left 

5 Hippocampus Right/Left 

6 Amygdala Right/Left 

7 Accumbens Right/Left 
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8 Brain-Stem 

CEREBELLAR REGIONS 

1 Cerebelum Crus1 Right/Left 

2 Cerebelum Crus2 Right/Left 

3 Cerebelum 3 Right/Left 

4 Cerebelum 4 5 Right/Left 

5 Cerebelum 6 Right/Left 

6 Cerebelum 7b Right/Left 

7 Cerebelum 8 Right/Left 

8 Cerebelum 9 Right/Left 

9 Cerebelum 10 Right/Left 

10 Vermis 1 2 

11 Vermis 3 

12 Vermis 4 5 

13 Vermis 6 

14 Vermis 7 

15 Vermis 8 

16 Vermis 9 

17 Vermis 10 
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Appendix B BRAF-MDQ  

Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire V2 05/09/12  

Dimension Questions Range Score  

 

Physical 1 NRS (numerical rating scale) fatigue 0-10   

2 How many days? 0-7  

3 How long on average has each episode of fatigue lasted? 0-2  

4 Have you lacked physical energy because of fatigue? 0-3  

Physical total (0-22)  

 

Living 5 Has fatigue made it difficult to bath or shower? 0-3   

6 Has fatigue made it difficult to dress yourself? 0-3  

7 Has fatigue made it difficult to do your work or other daily activities? 0-3  

8 Have you avoided making plans because of fatigue? 0-3  

9 Has fatigue affected your social life? 0-3  

10 Have you cancelled plans because of fatigue? 0-3  

11 Have you refused invitations because of fatigue? 0-3  

Living total (0-21)  

 

Cognition 12 Have you lacked mental energy because of fatigue? 0-3   

13 Have you forgotten things because of fatigue? 0-3  

14 Has fatigue made it difficult to think clearly? 0-3  

15 Has fatigue made it difficult to concentrate? 0-3  

16 Have you made mistakes because of fatigue? 0-3  

Cognition total (0-15)  

 

Emotion 17 Have you felt you have less control because of fatigue? 0-3   

18 Have you felt embarrassed because of fatigue? 0-3  

19 Has being fatigued upset you? 0-3  

20 Have you felt down or depressed because of fatigue? 0-3  

Emotion total (0-12)  

BRAF-MDQ Total score (0-70)  

• Questions 1 and 2 are compulsory.  

• Only 1 question may be missing from each dimension (maximum of 3 overall). 

Replace the missing question score with the average score for that dimension.  

• For the Physical Fatigue dimension, a weighted average score is used to account for 

the varying item score ranges: Total the 3 completed scores, divide by the total max 

possible score for those 3 questions, then multiply by the maximum score possible 

for all 4 questions (22). 
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Appendix C Chalder Fatigue Severity  

We would like to know more about any problems you have had with feeling tired, weak or 

lacking in energy in the last month. Please answer ALL the questions by ticking the answer 

which applies to you most closely. If you have been feeling tired for a long while, then 

compare yourself to how you felt when you were last well. Please tick only one box per line.  

 less than 

usual 

no more than 

usual 

more than 

usual 

much more 

than usual 

do you have problems with 

tiredness? 

    

do you need to rest more?     

do you feel sleepy or drowsy?     

do you have problems starting 

things? 

    

do you lack energy?     

do you have less strength in your 

muscles? 

    

do you feel weak?     

do you have difficulties 

concentrating? 

    

do you make slips of the tongue 

when speaking? 

    

do you find it more difficult to find 

the right word? 

    

 better than 

usual 

no worse than 

usual 

worse than 

usual 

much worse 

than usual 

how is your memory?     

• The questionnaire is scored in “Likert” style 0, 1, 2 & 3 with a range from 0 to 33.  

• The first 10 questions are scored as less than usual (0), no more than usual (1), more 

than usual (2), much more than usual (3).  

• The last question is scored as better than usual (0), no worse than usual (1), worse 

than usual (2), much worse than usual (3).  

• The total score (0-33) is the sum of every question. 
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Appendix D Non-pharmacological predictors 

Predictors in both treatment groups (PEP and CBA) using change 

scores       

Corrected for multiple comparisons using false discovery rate (FDR) at p<0.05 except 

structural connectivity, which is corrected at the p<0.025 level. Effect sizes are eta squared 

labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37. The design and contrast 

matrix are: covName= ['subj' 'gender' 'age' 'site' 'change score']; C= [0 0 0 0 1] 

Baseline Structural connectivity to predict future fatigue (Chalder) in 48 patients with 

either CBA or PEP in the LIFT dataset: 

Seed region Target region t statistic p value Effect size 

Left Precuneus Left Caudal Anterior Cingulate  -4.1 p=0.015 0.28 (medium) 

Left Superior Frontal Gyrus -3.83 p=0.017 0.26 (medium) 

Right Frontal Pole Left Posterior Cingulate -3.95 p=0.024 0.27 (medium) 

Left Parahippocampal Left Temporal Pole -3.94 p=0.024 0.27 (medium) 

Right Rostral Middle  

Frontal Gyrus 

Right Supramarginal Gyrus -3.94 p=0.025 0.27 (medium) 

Baseline Resting-state functional connectivity to predict future fatigue (Chalder) in 48 

patients with either CBA or PEP treatments in the LIFT dataset: Nothing significant (p<0.05 

level) 

Baseline PASAT functional connectivity to predict future fatigue (Chalder) in 43 

patients with either CBA or PEP in the LIFT dataset: 

Seed region Target region t statistic p value Effect size 

Left Cuneus Right Pericalcarine 3.91 p=0.03 0.28 (medium) 

Baseline grey matter volumes to predict future fatigue (Chalder) in 48 patients with 

either CBA or PEP treatments in the LIFT dataset: Nothing significant (p<0.05 level) 
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Correlates of baseline fatigue in all patients   

Corrected for multiple comparisons using false discovery rate (FDR) at p<0.05 except 

structural connectivity, which is corrected at the p<0.025 level. Effect sizes are eta 

squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37. The design and 

contrast matrix are: covName= ['subj' 'gender' 'age' 'site' 'baseline’]; C= [0 0 0 0 1] 

Baseline Structural connectivity to associate with baseline fatigue (Chalder) in 

87 patients in the LIFT dataset: Nothing significant (p<0.025 level) 

Baseline resting-state functional connectivity to associate with baseline fatigue 

(Chalder) in 87 patients in the LIFT dataset:    

Seed region Target region t statistic p value Effect size 

Right Hippocampus Right Pars Orbitalis 4.07 p=0.009 0.17 (small) 

Left Pars Orbitalis 3.78 p=0.012 0.15 (small) 

Left Pars Triangularis 3.55 p=0.018 0.13 (small) 

Left Precuneus Right Cuneus 3.65 p=0.023 0.14 (small) 

Left Cuneus 3.59 p=0.023 0.14 (small) 

 

Baseline PASAT functional connectivity to associate with baseline fatigue 

(Chalder) in 82 patients in the LIFT dataset: Nothing significant (p<0.05 level) 

Baseline grey matter volumes to associate with baseline fatigue (Chalder) in 88 

patients in the LIFT dataset: Nothing significant (p<0.05 level)  
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Sensitivity analysis (individual group predictors)  

Corrected for multiple comparisons using false discovery rate (FDR) at p<0.05 except 

structural connectivity, which is corrected at the p<0.025 level. Effect sizes are eta 

squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37. The design and 

contrast matrix for adjusting for baseline fatigue are: covName= ['subj' 'gender' 'age' 

'site'   'baseline' 'follow-up score'];  C= [0 0 0 0 0 1]. The design and contrast matrix for 

change score are: covName= ['subj' 'gender' 'age' 'site' 'change score'];  Change score: 

C= [0 0 0 0 1]. 

Group 1 (Personalised exercise programme [PEP]) 

Baseline structural connectivity to predict future fatigue (Chalder) in 25 patients 

(PEP group) in the LIFT dataset:  

• Adjusted for baseline fatigue: Nothing significant (p<0.025 level) 

• Using change scores: Nothing significant (p<0.025 level) 

Baseline resting-state functional connectivity to predict future fatigue (Chalder) 

in 25 patients (PEP group) in the LIFT dataset:     

• Adjusted for baseline fatigue: 

Seed region Target region t statistic p value Effect size 

Right Inferior Temporal Gyrus Right Paracentral 

Lobule 

-4.14 p=0.046 0.47 (large) 

• Using change scores:      

Seed region Target region t statistic p value Effect size 

Left Supramarginal Gyrus Right Paracentral Lobule -4.15 p=0.041 0.48 (large) 

Baseline PASAT functional connectivity to predict future fatigue (Chalder) in 22 

patients (PEP group) in the LIFT dataset:      

• Adjusted for baseline fatigue: Nothing significant (p<0.05 level) 

• Using change scores: Nothing significant (p<0.05 level) 
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Baseline grey matter volumes to predict future fatigue (Chalder) in 22 patients (PEP 

group) in the LIFT dataset:      

• Adjusted for baseline fatigue: Nothing significant (p<0.05 level) 

• Using change scores: Nothing significant (p<0.05 level) 

 

Group 3 (Cognitive-behavioural approach [CBA])  

Baseline structural connectivity to predict future fatigue (Chalder) in 23 patients 

(CBA group) in the LIFT dataset:  

• Adjusted for baseline fatigue:   

Seed region Target region t statistic p value Effect size 

Left Entorhinal Left Lateral Occipital Gyrus -5.19 p=0.006 0.61 (large) 

Left Caudate -4.43 p=0.015 0.54 (large) 

Left Pars Triangularis Left Pericalcarine -5.08 p=0.008 0.6 (large) 

Right Pars Triangularis Right Fusiform -4.73 p=0.016 0.57 (large) 

Left Caudal Anterior Cingulate Left Precuneus -4.37 p=0.021 0.53 (large) 

Left Lingual -4.28 p=0.021 0.52 (large) 

• Using change scores:    

Seed region Target region t statistic p value Effect size 

Left Pars Triangularis Left Pericalcarine -4.69 p=0.015 0.57 (large) 

Left Entorhinal Left Lateral Occipital Gyrus -4.64 p=0.017 0.57 (large) 

Baseline resting-state functional connectivity to predict future fatigue (Chalder) 

in 23 patients (CBA group) in the LIFT dataset:     

• Adjusted for baseline fatigue:  

Seed region Target region t statistic p value Effect size 

Left Superior Frontal Gyrus Right Inferior Temporal Gyrus 4.62 p=0.02 0.56 (large) 

Right Amygdala Left Rostral Middle Frontal 

Gyrus 

4.53 p=0.025 0.55 (large) 

Right Medial Orbitofrontal 

Cortex 

Right Frontal Pole -4.46 p=0.029 0.54 (large) 
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• Using change scores:     

Seed region Target region t statistic p value Effect size 

Right Amygdala Left Rostral Middle Frontal Gyrus 4.36 p=0.03 0.52 (large) 

Baseline PASAT functional connectivity to predict future fatigue (Chalder) in 21 

patients (CBA group) in the LIFT dataset:      

• Adjusted for baseline fatigue:   

Seed region Target region t statistic p value Effect size 

Left Paracentral Lobule Right Pars Opercularis 5.47 p=0.005 0.67 (large) 

• Using change scores: Nothing significant (p<0.05 level) 

 

Baseline grey matter volumes to predict future fatigue (Chalder) in 23 patients (CBA 

group) in the LIFT dataset:      

• Adjusted for baseline fatigue: Nothing significant (p<0.05 level) 

• Using change scores: Nothing significant (p<0.05 level) 
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Appendix E PROMIS Fatigue-FM Profile  

No. 
In the past 7 days… Not at 

all 

A 

little 

bit 

Somewhat 
Quite 

a 

bit 

Very 

much 

 

E1 
How tired did you feel on 

average? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

E2 

How fatigued were you on 

average? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

E3 

How exhausted were you on 

average? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

S1 

To what degree did fatigue 

interfere with your social 

activities? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

S2 

To what degree did fatigue 

interfere with your recreational 

activities? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

M1 

To what degree did you have 

trouble starting things because of 

fatigue? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

M2 

To what degree did you have 

trouble finishing things because 

of fatigue? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

C1 

To what degree did fatigue make it 

difficult to make decisions? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

C2 

To what degree did fatigue make 

you feel slowed down in your 

thinking? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 
In the past 7 days… 

Never Rarely Sometimes Often Always 

 

 

M3 

How often were you less effective 

at home due to fatigue? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

M4 

How often did you have to push 

yourself to get things done 

because of your fatigue? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

 

S3 

How often did you have to limit 

your social activities because of 

fatigue? 

☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

S4 

How often were you too tired to 

socialize with your friends? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

C3 

How often were you too tired to 

think clearly? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 

C4 

How often did fatigue make 

you more forgetful? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

 
In the past 7 days… None Mild Moderate Severe 

Very 

Severe 

 

E4 

What was the level of your 

fatigue on most days? 
☐ 

1 

☐ 

2 

☐ 

3 

☐ 

4 

☐ 

5 

• The No notes the short form dimensions for Experience (E), Social Impact (S), 

Motivational Impact (M), and Cognitive Impact (C)  

• The total score is the sum of all the individual scores on each question  
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Appendix F  Pharmacological predictors 

Predictors of fatigue after DMARD treatment using change scores       

Corrected for multiple comparisons using false discovery rate (FDR) at p<0.05 Effect sizes 

are eta squared labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37. The design 

and contrast matrix are: covName= ['subj' 'gender' 'age' 'site' 'change score']; C= [0 0 0 0 1]   

• No significant predictors of PROMIS fatigue 3 months after starting DMARD 

treatment in PsA. 

• Predictors of PROMIS fatigue 6 months after starting DMARD treatment in PsA 

Grey Matter Thickness 

ROI Seed  t statistic p value Effect size 

Right Pericalcarine  4.29 0.009 0.35 (medium) 

Left Pericalcarine  3.66 0.028 0.28 (medium) 

Grey Matter Volume 

Left Pericalcarine  3.98 0.028 0.32 (medium) 

Right Pericalcarine  3.69 0.032 0.28 (medium) 

Resting-state Functional Connectivity 

ROI Seed ROI Target t statistic p value Effect size 

Right Bank of the Superior 

Temporal Sulcus 

Left Caudate -4.49 0.006 0.36 (medium) 

 

 

Right Caudal Anterior Cingulate 

Right Cuneus 4.33 0.005 0.35 (medium) 

Right Lingual Gyrus 4.21 0.005 0.34 (medium) 

Left Lingual Gyrus 4.16 0.016 0.33 (medium) 

Left Cuneus 3.97 0.028 0.31 (medium) 

• No significant predictors of PROMIS fatigue 3 months after starting DMARD 

treatment in RA.   
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Correlates of baseline fatigue in PsA and RA 

Correlates of baseline fatigue in PsA patients are depicted in the table and figure below. 

Fatigue was negative associated with grey matter thickness of the right inferior temporal 

gyrus as well as connectivity between the visual right cuneus and the frontal right pars 

opercularis. Higher fatigue at baseline corresponded to higher connectivity between the left 

thalamus and the left transverse temporal gyrus. In the 25 RA patients, higher baseline 

fatigue was associated with weaker functional connectivity between the left caudal middle 

frontal gyrus and the right inferior parietal lobule (t (21) = -4.06, FDR p = 0.46, eta squared 

effect size = 0.44 (large)).   

Grey Matter Thickness 

ROI Seed  t statistic p value Effect size 

Right Inferior Temporal Gyrus -3.67 0.046 0.24 (small) 

Resting-state Functional Connectivity 

ROI Seed ROI Target t statistic p value Effect size 

Left Thalamus Left Transverse Temporal Gyrus 3.92 0.026 0.26 (medium) 

Right Cuneus Right Pars Opercularis -3.85 0.033 0.26 (medium) 

Significant results (p<0.05) using general linear models on baseline grey matter volume, thickness, 

surface area and resting-state single functional connectivity variables to associate with baseline 

PROMIS fatigue in patients of the CENTAUR study (n=47). Seed region indicates brain region 

whose grey matter properties or connections were tested for predicting fatigue while controlling for 

multiple comparisons using false discovery rate. Target region indicates which connection with the 

seed region was significant.  The results are after controlling for confounds (age, gender) for 

connectivity and total intracranial volume for grey matter measures. Effect sizes are eta squared 

labelled as trivial<0.1, small>=0.1, medium>=0.25, large >0.37 (Goss-Sampson, 2019).  
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The figure displays the resting-state connectivity and grey matter thickness associations with baseline 

PROMIS fatigue. The strength (t statistic) and direction of the association is reflected in the colour 

of the connection or semicircle of the structural measure, with blue indicating the higher the metric 

the lower the fatigue while red displays metrics that are high when fatigue is high. All analyses used 

a general linear model, adjusted for age and gender while the structural measures were additionally 

corrected for intracranial volume. Abbreviations: L/R, left/right; G, gyrus. 
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Appendix G   Machine learning configuration 

Modality Predicted R2  Algorithm Outcome FC Feature selection 

Relief SGCCA 

Clinical 0.197 glmnet 6 months N/A 1:1 50% 

FC 0.119 svmLinear 1 year PASAT 1:1 70% 

Multimodal 0.104 svmRadial 6 months Resting-state 1:4 70% 

SC 0.101 gbm 1 year N/A 1:4 50% 

Morphometric 0.107 svmLinear 1 year N/A 1:2 50% 

Each row represents the configuration for the best-performing model in the respective 

modality, determined by the highest predicted R2. The top-performing models employed an 

elastic net (glmnet), a support vector regression with a linear (svmLinear) or radial 

(svmRadial) kernel or a gradient boosting (gbm) algorithm. The configuration includes the 

timing of the clinical outcome, which can be either six months or one year after treatment 

allocation. The feature selection column specifies whether all positive features (1:1) were 

included post RRelief F, or if it was narrowed down to the top half (1:2) or quarter (1:4) of 

positive features. It also indicates whether 50% or 70% of resamples had to include the 

features during the stability selection for the sparse generalized canonical correlation 

analysis (SGCCA). In specific cases of functional connectivity (FC) and multimodal models, 

the selection of the source of FC was an additional consideration. The models could use 

either FC estimated from fMRI during resting-state or from the Paced Auditory Serial 

Addition Test (PASAT) task. 

Modality MAE  Algorithm Outcome FC Feature selection 

Relief SGCCA 

Clinical 5.01 glmnet 6 months N/A 1:1 50% 

FC 5.35 gaussprRadial 6 months Resting-state 1:1 50% 

Multimodal 5.45 gaussprRadial 6 months Resting-state 1:4 70% 

SC 5.51 gaussprRadial 1 year N/A 1:4 50% 

Morphometric 5.45 rf 6 months N/A 1:1 50% 

Each row represents the configuration for the best-performing model in the respective 

modality, determined by the lowest predicted mean absolute error (MAE). The top-

performing models employed an elastic net (glmnet), a Gaussian process regression with a 

radial kernel (gaussprRadial) or a gradient boosting (gbm) algorithm. The configuration 

includes the timing of the clinical outcome, which can be either six months or one year after 

treatment allocation. The feature selection column specifies whether all positive features 

(1:1) were included post RRelief F, or if it was narrowed down to the top half or quarter 
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(1:4) of positive features. It also indicates whether 50% or 70% of resamples had to include 

the features during the stability selection for the sparse generalized canonical correlation 

analysis (SGCCA). In specific cases of functional connectivity (FC) and multimodal models, 

the selection of the source of FC was an additional consideration. The models could use 

either FC estimated from fMRI during resting-state or from the Paced Auditory Serial 

Addition Test (PASAT) task.  

Appendix H  Best performing features  

• Best-performing multimodal model using resting-state functional connectivity 

(rsFC) 

NO. FEATURE 

1 Usual Care Group 

2 CBA Group 

3 Depression 

4 Disease duration 

5 rsFC RH Caudate - LH Parahippocampal 

6 rsFC LH Bank of the Superior Temporal Sulcus - RH Middle Temporal Gyrus 

7 rsFC LH Entorhinal - LH Insula 

8 rsFC LH Medial Orbitofrontal - RH Bank of the Superior Temporal Sulcus 

9 rsFC LH Parahippocampal - RH Bank of the Superior Temporal Sulcus 

10 rsFC LH Paracentral - RH Lateral Orbitofrontal 

11 rsFC LH Pars Triangularis - RH Pars Orbitalis 

12 rsFC LH Posterior Cingulate - RH Lateral Orbitofrontal 

13 rsFC LH Pallidum - LH Pars Orbitalis 

14 rsFC LH Frontal Pole - LH Insula 

15 rsFC LH Hippocampus - RH Hippocampus 

16 rsFC LH Hippocampus - RH Amygdala 

17 rsFC RH Bank of the Superior Temporal Sulcus - RH Parahippocampal 

18 rsFC RH Caudal Anterior Cingulate - RH Lateral Orbitofrontal 

19 rsFC RH Cuneus - RH Pars Triangularis 

20 rsFC RH Lateral Orbitofrontal - RH Superior Frontal Gyrus 

21 rsFC RH Pars Orbitalis - RH Precuneus 

22 rsFC LH Accumbens - RH Pars Triangularis 

23 rsFC LH Accumbens - RH Posterior Cingulate 

24 rsFC LH Accumbens - RH Supramarginal Gyrus 

25 rsFC LH Accumbens - RH Transverse Temporal Gyrus 

26 rsFC RH Thalamus - RH Entorhinal 

27 SC LH Inferior Parietal Lobule - LH Isthmus Cingulate 
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28 SC LH Isthmus Cingulate - LH Caudal Anterior Cingulate 

29 SC LH Isthmus Cingulate - LH Accumbens 

30 SC LH Medial Orbitofrontal - LH Frontal Pole 

31 SC LH Posterior Cingulate - RH Rostral Anterior Cingulate 

32 SC LH Precuneus - LH Isthmus Cingulate 

33 SC LH Precuneus - RH Rostral Anterior Cingulate 

34 SC LH Supramarginal Gyrus - RH Rostral Anterior Cingulate 

35 SC RH Bank of the Superior Temporal Sulcus - RH Rostral Middle Frontal Gyrus 

36 SC RH Medial Orbitofrontal - LH Postcentral 

37 SC RH Paracentral - RH Caudal Anterior Cingulate 

38 SC RH Precuneus - LH Medial Orbitofrontal 

39 SC RH Precuneus - LH Rostral Anterior Cingulate 

40 SC RH Precuneus - RH Caudal Anterior Cingulate 

41 SC RH Precuneus - RH Rostral Anterior Cingulate 

42 SC RH Superior Parietal Lobule - RH Caudal Middle Frontal Gyrus 

43 Thickness LH Postcentral 

44 Volume LH Temporal Pole 

• Best-performing multimodal model using PASAT functional connectivity (PFC) 

NO. FEATURE 

1 Usual Care Group 

2 CBA Group 

3 Anxiety 

4 PFC RH Caudate - LH Frontal Pole 

5 PFC RH Caudate - RH Frontal Pole 

6 PFC RH Pallidum - RH Ventral Diencephalon 

7 PFC RH Pallidum - RH Rostral Anterior Cingulate 

8 PFC RH Accumbens - RH Supramarginal Gyrus 

9 PFC RH Accumbens - RH Frontal Pole 

10 PFC LH Bank of the Superior Temporal Sulcus - RH Entorhinal 

11 PFC LH Caudal Anterior Cingulate - LH Frontal Pole 

12 PFC LH Caudate - LH Posterior Cingulate 

13 PFC LH Cuneus - LH Precentral 

14 PFC LH Cuneus - LH Rostral Middle Frontal Gyrus 

15 PFC LH Cuneus - LH Temporal Pole 

16 PFC LH Cuneus - RH Caudal Anterior Cingulate 

17 PFC LH Cuneus - RH Transverse Temporal Gyrus 

18 PFC LH Entorhinal - RH Transverse Temporal Gyrus 

19 PFC LH Inferior Parietal Lobule - LH Paracentral 

20 PFC LH Inferior Parietal Lobule - LH Rostral Anterior Cingulate 

21 PFC LH Inferior Parietal Lobule - RH Caudal Anterior Cingulate 



201  

22 PFC LH Lateral Occipital Gyrus - LH Temporal Pole 

23 PFC LH Lateral Occipital Gyrus - RH Temporal Pole 

24 PFC LH Medial Orbitofrontal - RH Medial Orbitofrontal 

25 PFC LH Medial Orbitofrontal - RH Frontal Pole 

26 PFC LH Putamen - LH Bank of the Superior Temporal Sulcus 

27 PFC LH Putamen - LH Superior Parietal Lobule 

28 PFC LH Putamen - RH Entorhinal 

29 PFC LH Putamen - RH Lateral Occipital Gyrus 

30 PFC LH Paracentral - LH Frontal Pole 

31 PFC LH Paracentral - RH Rostral Anterior Cingulate 

32 PFC LH Paracentral - RH Rostral Middle Frontal Gyrus 

33 PFC LH Pars Orbitalis - LH Rostral Middle Frontal Gyrus 

34 PFC LH Pericalcarine - LH Rostral Middle Frontal Gyrus 

35 PFC LH Pericalcarine - RH Entorhinal 

36 PFC LH Postcentral - LH Insula 

37 PFC LH Postcentral - RH Inferior Temporal Gyrus 

38 PFC LH Pallidum - LH Rostral Anterior Cingulate 

39 PFC LH Precuneus - RH Precuneus 

40 PFC LH Rostral Anterior Cingulate - LH Frontal Pole 

41 PFC LH Rostral Anterior Cingulate - RH Medial Orbitofrontal 

42 PFC LH Rostral Anterior Cingulate - RH Transverse Temporal Gyrus 

43 PFC LH Rostral Middle Frontal Gyrus - RH Pars Orbitalis 

44 PFC LH Superior Temporal Gyrus - LH Temporal Pole 

45 PFC LH Superior Temporal Gyrus - RH Entorhinal 

46 PFC LH Superior Temporal Gyrus - RH Temporal Pole 

47 PFC LH Frontal Pole - LH Insula 

48 PFC LH Frontal Pole - RH Lateral Orbitofrontal 

49 PFC LH Temporal Pole - RH Inferior Temporal Gyrus 

50 PFC LH Temporal Pole - RH Precentral 

51 PFC LH Temporal Pole - RH Frontal Pole 

52 PFC LH Hippocampus - LH Superior Parietal Lobule 

53 PFC LH Insula - RH Entorhinal 

54 PFC RH Caudal Anterior Cingulate - RH Inferior Parietal Lobule 

55 PFC RH Caudal Anterior Cingulate - RH Superior Parietal Lobule 

56 PFC RH Cuneus - RH Rostral Anterior Cingulate 

57 PFC RH Entorhinal - RH Middle Temporal Gyrus 

58 PFC RH Entorhinal - RH Pericalcarine 

59 PFC RH Entorhinal - RH Postcentral 

60 PFC RH Entorhinal - RH Precentral 

61 PFC LH Amygdala - LH Medial Orbitofrontal 

62 PFC LH Amygdala - LH Rostral Anterior Cingulate 

63 PFC LH Amygdala - RH Inferior Temporal Gyrus 
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64 PFC LH Amygdala - RH Medial Orbitofrontal 

65 PFC RH Lateral Orbitofrontal - RH Rostral Anterior Cingulate 

66 PFC RH Paracentral - RH Frontal Pole 

67 PFC LH Accumbens - RH Lingual 

68 PFC RH Postcentral - RH Frontal Pole 

69 PFC RH Precentral - RH Frontal Pole 

70 PFC RH Precentral - RH Temporal Pole 

71 PFC RH Rostral Anterior Cingulate - RH Transverse Temporal Gyrus 

72 PFC LH Ventral Diencephalon - RH Supramarginal Gyrus 

73 PFC RH Frontal Pole - RH Transverse Temporal Gyrus 

74 PFC RH Thalamus - RH Pericalcarine 

75 SC LH Thalamus - RH Middle Temporal Gyrus 

76 SC RH Caudate - RH Ventral Diencephalon 

77 SC RH Caudate - LH Lateral Occipital Gyrus 

78 SC RH Caudate - RH Pericalcarine 

79 SC RH Hippocampus - LH Inferior Temporal Gyrus 

80 SC RH Amygdala - LH Frontal Pole 

81 SC RH Accumbens - LH Rostral Middle Frontal Gyrus 

82 SC RH Accumbens - LH Superior Frontal Gyrus 

83 SC RH Ventral Diencephalon - RH Temporal Pole 

84 SC LH Caudal Anterior Cingulate - LH Precuneus 

85 SC LH Caudal Anterior Cingulate - LH Rostral Anterior Cingulate 

86 SC LH Caudal Anterior Cingulate - RH Precuneus 

87 SC LH Caudal Anterior Cingulate - RH Insula 

88 SC LH Caudal Middle Frontal Gyrus - RH Superior Temporal Gyrus 

89 SC LH Caudate - LH Superior Frontal Gyrus 

90 SC LH Cuneus - LH Temporal Pole 

91 SC LH Cuneus - RH Inferior Temporal Gyrus 

92 SC LH Entorhinal - LH Lateral Occipital Gyrus 

93 SC LH Entorhinal - LH Parahippocampal 

94 SC LH Fusiform - LH Entorhinal 

95 SC LH Inferior Parietal Lobule - LH Caudate 

96 SC LH Inferior Parietal Lobule - LH Isthmus Cingulate 

97 SC LH Inferior Parietal Lobule - LH Putamen 

98 SC LH Inferior Parietal Lobule - LH Pars Triangularis 

99 SC LH Inferior Parietal Lobule - RH Middle Temporal Gyrus 

100 SC LH Inferior Parietal Lobule - RH Pars Orbitalis 

101 SC LH Inferior Parietal Lobule - RH Precuneus 

102 SC LH Inferior Parietal Lobule - RH Thalamus 

103 SC LH Isthmus Cingulate - LH Caudal Anterior Cingulate 

104 SC LH Isthmus Cingulate - LH Precuneus 

105 SC LH Isthmus Cingulate - RH Medial Orbitofrontal 
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106 SC LH Isthmus Cingulate - LH Accumbens 

107 SC LH Isthmus Cingulate - RH Rostral Anterior Cingulate 

108 SC LH Lateral Occipital Gyrus - LH Entorhinal 

109 SC LH Lateral Occipital Gyrus - LH Amygdala 

110 SC LH Lateral Orbitofrontal - LH Amygdala 

111 SC LH Lateral Orbitofrontal - RH Lateral Occipital Gyrus 

112 SC LH Lateral Orbitofrontal - RH Middle Temporal Gyrus 

113 SC LH Lingual - LH Isthmus Cingulate 

114 SC LH Lingual - LH Temporal Pole 

115 SC LH Medial Orbitofrontal - LH Frontal Pole 

116 SC LH Medial Orbitofrontal - LH Insula 

117 SC LH Putamen - LH Caudate 

118 SC LH Putamen - LH Rostral Middle Frontal Gyrus 

119 SC LH Middle Temporal Gyrus - LH Posterior Cingulate 

120 SC LH Middle Temporal Gyrus - LH Superior Frontal Gyrus 

121 SC LH Middle Temporal Gyrus - RH Paracentral 

122 SC LH Paracentral - LH Rostral Anterior Cingulate 

123 SC LH Paracentral - LH Accumbens 

124 SC LH Paracentral - RH Rostral Anterior Cingulate 

125 SC LH Pars Orbitalis - RH Postcentral 

126 SC LH Pars Triangularis - LH Middle Temporal Gyrus 

127 SC LH Pars Triangularis - LH Pallidum 

128 SC LH Pericalcarine - LH Lateral Orbitofrontal 

129 SC LH Pericalcarine - LH Temporal Pole 

130 SC LH Postcentral - RH Insula 

131 SC LH Posterior Cingulate - LH Precuneus 

132 SC LH Posterior Cingulate - RH Rostral Anterior Cingulate 

133 SC LH Precuneus - LH Caudal Anterior Cingulate 

134 SC LH Precuneus - LH Isthmus Cingulate 

135 SC LH Precuneus - RH Caudal Anterior Cingulate 

136 SC LH Precuneus - RH Medial Orbitofrontal 

137 SC LH Precuneus - RH Rostral Anterior Cingulate 

138 SC LH Rostral Anterior Cingulate - RH Precuneus 

139 SC LH Rostral Middle Frontal Gyrus - LH Putamen 

140 SC LH Superior Frontal Gyrus - RH Lateral Orbitofrontal 

141 SC LH Superior Parietal Lobule - LH Supramarginal Gyrus 

142 SC LH Supramarginal Gyrus - LH Isthmus Cingulate 

143 SC LH Supramarginal Gyrus - LH Rostral Anterior Cingulate 

144 SC LH Supramarginal Gyrus - RH Rostral Anterior Cingulate 

145 SC LH Frontal Pole - LH Pars Orbitalis 

146 SC LH Frontal Pole - RH Pars Triangularis 

147 SC LH Frontal Pole - RH Pericalcarine 
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148 SC LH Frontal Pole - RH Postcentral 

149 SC LH Temporal Pole - LH Lingual 

150 SC LH Insula - LH Paracentral 

151 SC RH Bank of the Superior Temporal Sulcus - RH Pallidum 

152 SC RH Bank of the Superior Temporal Sulcus - RH Ventral Diencephalon 

153 SC RH Bank of the Superior Temporal Sulcus - RH Caudal Middle Frontal Gyrus 

154 SC RH Bank of the Superior Temporal Sulcus - RH Inferior Parietal Lobule 

155 SC RH Bank of the Superior Temporal Sulcus - RH Rostral Middle Frontal Gyrus 

156 SC RH Caudal Anterior Cingulate - LH Fusiform 

157 SC RH Caudal Anterior Cingulate - LH Isthmus Cingulate 

158 SC RH Caudal Anterior Cingulate - RH Precuneus 

159 SC RH Caudal Middle Frontal Gyrus - RH Bank of the Superior Temporal Sulcus 

160 SC RH Cuneus - RH Pars Orbitalis 

161 SC RH Entorhinal - LH Isthmus Cingulate 

162 SC RH Entorhinal - LH Lateral Orbitofrontal 

163 SC RH Entorhinal - LH Accumbens 

164 SC RH Fusiform - RH Pallidum 

165 SC RH Inferior Parietal Lobule - LH Rostral Anterior Cingulate 

166 SC RH Inferior Parietal Lobule - RH Inferior Temporal Gyrus 

167 SC RH Inferior Temporal Gyrus - RH Pallidum 

168 SC RH Inferior Temporal Gyrus - LH Caudate 

169 SC RH Inferior Temporal Gyrus - LH Fusiform 

170 SC RH Inferior Temporal Gyrus - LH Transverse Temporal Gyrus 

171 SC RH Isthmus Cingulate - RH Medial Orbitofrontal 

172 SC RH Isthmus Cingulate - LH Accumbens 

173 SC RH Lateral Occipital Gyrus - LH Inferior Temporal Gyrus 

174 SC RH Lateral Occipital Gyrus - LH Precuneus 

175 SC RH Lateral Orbitofrontal - LH Inferior Temporal Gyrus 

176 SC RH Lingual - RH Inferior Temporal Gyrus 

177 SC RH Medial Orbitofrontal - RH Amygdala 

178 SC RH Medial Orbitofrontal - LH Isthmus Cingulate 

179 SC RH Medial Orbitofrontal - LH Paracentral 

180 SC RH Medial Orbitofrontal - LH Postcentral 

181 SC RH Medial Orbitofrontal - LH Precentral 

182 SC RH Medial Orbitofrontal - LH Temporal Pole 

183 SC RH Middle Temporal Gyrus - LH Pericalcarine 

184 SC RH Middle Temporal Gyrus - RH Cuneus 

185 SC RH Middle Temporal Gyrus - RH Isthmus Cingulate 

186 SC RH Middle Temporal Gyrus - RH Thalamus 

187 SC RH Paracentral - LH Rostral Anterior Cingulate 

188 SC RH Paracentral - LH Superior Parietal Lobule 

189 SC RH Paracentral - RH Caudal Anterior Cingulate 
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190 SC RH Paracentral - RH Lateral Orbitofrontal 

191 SC RH Paracentral - RH Posterior Cingulate 

192 SC RH Pars Triangularis - RH Superior Temporal Gyrus 

193 SC LH Accumbens - LH Superior Parietal Lobule 

194 SC LH Accumbens - RH Pericalcarine 

195 SC LH Accumbens - RH Rostral Middle Frontal Gyrus 

196 SC RH Pericalcarine - LH Frontal Pole 

197 SC RH Pericalcarine - LH Temporal Pole 

198 SC RH Postcentral - LH Rostral Anterior Cingulate 

199 SC RH Postcentral - LH Frontal Pole 

200 SC RH Posterior Cingulate - LH Middle Temporal Gyrus 

201 SC RH Posterior Cingulate - RH Precuneus 

202 SC RH Precuneus - LH Caudal Anterior Cingulate 

203 SC RH Precuneus - LH Medial Orbitofrontal 

204 SC RH Precuneus - LH Rostral Anterior Cingulate 

205 SC RH Precuneus - LH Superior Frontal Gyrus 

206 SC RH Precuneus - RH Caudal Anterior Cingulate 

207 SC RH Precuneus - RH Medial Orbitofrontal 

208 SC RH Precuneus - RH Rostral Anterior Cingulate 

209 SC RH Precuneus - RH Frontal Pole 

210 SC RH Rostral Middle Frontal Gyrus - RH Bank of the Superior Temporal Sulcus 

211 SC RH Superior Parietal Lobule - LH Lateral Occipital Gyrus 

212 SC RH Superior Parietal Lobule - RH Caudal Middle Frontal Gyrus 

213 SC RH Superior Temporal Gyrus - RH Pars Triangularis 

214 SC RH Superior Temporal Gyrus - RH Postcentral 

215 SC LH Ventral Diencephalon - LH Superior Frontal Gyrus 

216 SC LH Ventral Diencephalon - LH Temporal Pole 

217 SC RH Supramarginal Gyrus - LH Rostral Anterior Cingulate 

218 SC RH Temporal Pole - RH Caudate 

219 SC RH Temporal Pole - RH Putamen 

220 SC RH Insula - RH Postcentral 

221 SC RH Thalamus - RH Middle Temporal Gyrus 

222 Surface Area LH Medial Orbitofrontal 

223 Surface Area LH Pericalcarine 

224 Surface Area RH Medial Orbitofrontal 

225 Surface Area RH Pars opercularis 

226 Thickness LH Inferior Temporal Gyrus 

227 Thickness LH Isthmus Cingulate 

228 Thickness LH Postcentral 

229 Thickness RH Middle Temporal Gyrus 

230 Thickness RH Pars Triangularis 

231 Thickness RH Postcentral 
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232 Thickness RH Rostral Middle Frontal Gyrus 

233 Volume LH Lateral Orbitofrontal 

234 Volume LH Temporal Pole 

235 Volume RH Fusiform 

236 Volume RH Parahippocampal 

237 Volume RH Postcentral 
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Appendix I Feature effect on fatigue   

• Accumulated local effects (ALE) plots of the resting-state functional connectivity 

(rsFC) features in the best-performing multimodal model.  The plots display the main 

effects of the features on the prediction of Chalder Fatigue after six months. The y-

axes represent the size of the mean effect each feature has on the fatigue prediction 

relative to the overall model prediction. 
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• Accumulated local effects (ALE) plots of the structural connectivity (SC) features in 

the best-performing multimodal model.  The plots display the main effects of the 

features on the prediction of Chalder Fatigue after six months. The y-axes represent 

the size of the mean effect each feature has on the fatigue prediction relative to the 

overall model prediction. 

  

 

 



209  

• Accumulated local effects (ALE) plots of the morphometric and clinical features in 

the best-performing multimodal model.  The plots display the main effects of the 

features on the prediction of Chalder Fatigue after six months. The y-axes represent 

the size of the mean effect each feature has on the fatigue prediction relative to the 

overall model prediction.  
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