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Abstract

This thesis presents a comprehensive approach to contactless human activity recognition (HAR)
using the capabilities of three distinct technologies: radio frequency identification (RFID),
Radar, and universal software-defined radio peripheral (USRP) for capturing and processing
Wi-Fi-based signals. These technologies are then fused to enhance smart healthcare systems.
The study initially utilises USRP devices to analyse Wi-Fi channel state information (CSI),
choosing this over received signal strength for more accurate activity recognition. It employs
a combination of machine learning and a hybrid of deep learning algorithms, such as the super
learner and LSTM-CNN, for precise activity localisation. Subsequently, the study progresses to
incorporate a transparent RFID tag wall (TRT-Wall) that employs a passive ultra-high frequency
(UHF) RFID tag array. This RFID system has proven highly accurate in distinguishing between
various activities, including sitting, standing, leaning, falling, and walking in two directions. Its
effectiveness and non-intrusiveness make it particularly suited for elderly care, achieved using a
modified version of the Transformer model without the use of a decoder. Furthermore, a signif-
icant advancement within this study is the creation of a novel fusion (RFiDARFusion) system,
which combines RFID and Radar technologies. This system employs a long short-term mem-
ory networks variational autoencoder (LSTM-VAE) fusion model, utilising RFID amplitude and
Radar RSSI data. This fusion approach significantly improves accuracy in challenging scenar-
ios, such as those involving long-range and non-line-of-sight conditions. The RFiDARFusion

system notably improves the detection of complex activities, highlighting its potential to reduce
healthcare costs and enhance the quality of life for elderly patients in assisted living facilities.
Overall, this thesis highlights the significant potential of radio frequency technologies with arti-
ficial intelligence, along with their combined application, to develop robust, privacy-conscious,
and cost-effective solutions for healthcare and assisted living monitoring systems.
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Chapter 1

Introduction

1.1 General Background

Human activity recognition (HAR) has significantly evolved over the last two decades, driven by
its applicability in various sectors including healthcare, gaming, security, and surveillance [1].
This growth is attributable to technological advancements that have made it easier and more cost-
effective to monitor daily activities such as cooking, eating, and sleeping. Initially, HAR primar-
ily utilised vision-based methods involving cameras and computer vision algorithms. However,
these methods raised privacy concerns and were dependent on consistent lighting conditions,
leading to a shift towards more discreet and adaptable sensor-based methods [2].

Sensor-based HAR covers three primary categories: wearable sensors, object-tagged sen-
sors, and device-free or dense sensing. Wearable sensors, which are worn or carried by individ-
uals, have become increasingly popular in healthcare and fitness applications. However, their
practicality is sometimes questioned, particularly among elderly users or those who find such
devices obtrusive. Object-tagged sensors, on the other hand, are attached to daily-use objects
and recognize activities based on user interactions with these objects. Though less intrusive than
wearable sensors, their functionality is constrained by dependence on specific tagged objects.

The limitations of wearable and object-tagged sensors have led to the emergence of device-
free sensing methods. This approach involves deploying sensors within an environment to pas-
sively monitor activities without requiring direct interaction or attachment to the user. Despite
its advantages, device-free sensing faces challenges such as electromagnetic interference from
electronics, signal disruptions by physical barriers, and environmental condition variations like
temperature and humidity, which can introduce noise to data. The recent shift towards radio
frequency (RF)-based technologies, such as FM-based, GSM-based, ultrawideband, Bluetooth-
based, audio, light, zigbee, WiFi-based, Radar and radio frequency identification (RFID), for
HAR represents a significant advancement. These technologies exploit the effects of human
body movements on wireless signal propagation, such as reflection and scattering, to capture
human activities. Wi-Fi, Radar, and RFID is referred as ‘TriSense’ selection for study due to

1
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their complementary strengths in HAR. Wi-Fi is widespread, offering an economical option
through existing networks. Radar excels in detecting precise movements and operates effec-
tively in various visibility conditions, ensuring privacy. RFID is valued for its passive operation
and minimal energy requirements, capable of tracking through obstacles, enhancing data rich-
ness. Collectively, these technologies provide a balanced of accuracy, privacy, and efficiency
in diverse environments. Tri-Sense overcome many limitations of wearable and object-tagged
methods by not requiring the target subject to wear or carry any device.

Tri-Sense technologies have a wide range of applications ranging from indoor navigation
and health monitoring to human-computer interactions. They operate effectively without a line
of sight and using the available signals in indoor environments. This allows for accurate capture
of human body movements involved in daily activities. These technologies have also expanded
beyond traditional uses, demonstrating versatility in applications in the indoor healthcare do-
main. Despite the advancements of Tri-Sense technologies, challenges remain, particularly in
scenarios requiring cooperative and equipped subjects. Nevertheless, the development of device-
free sensing methods marks a substantial evolution in the field of HAR. It offers more practical,
privacy-conscious, and user-friendly solutions for monitoring and analysing human activities,
paving the way for smarter, more responsive environments.

In conducting the research presented in this thesis, we adhered to the highest ethical stan-
dards. The ethical approval to conduct these experiments was obtained from the College of
Science and Engineering at the University of Glasgow Research Ethics Committee (approval
no.: 300200232, 300190109). This approval ensures that our research methods and interactions
with subjects fully comply with ethical guidelines, emphasising our commitment to responsible
and respectful research practices.

1.2 Problem Statement

Current HAR systems offer benefits but face several notable limitations. These limitations in-
clude privacy concerns associated with vision-based methods, dependency on environmental
conditions, and practical challenges encountered with wearable sensors. Additionally, the func-
tionality of object-tagged sensors is restricted. Moreover, device-free RF-based sensors, which
are designed to improve privacy and convenience, face challenges often influenced by environ-
mental factors.

This thesis aims to develop an accurate HAR system for monitoring human activities using
radio frequency (RF) TriSense technologies. It focuses on two key aspects to improve accuracy:
employing channel state information (CSI) for WiFi, received signal strength indicator (RSSI)
for RFID, and amplitude for Radar; and developing algorithms that utilize raw CSI, RSSI, phase,
and amplitude information over signal intervals. Traditional methods for indoor human activity
identification and tracking often involve physical contact or invasive techniques, which can lead
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to discomfort, inconvenience, and potential risks. To overcome these issues, this thesis proposes
using Tri-Sense technology, a contactless and non-intrusive approach, to enhance monitoring in
indoor environments. The goal is to create a more effective, efficient, and user-friendly HAR
system by addressing existing limitations and harnessing the capabilities of RF-based technolo-
gies.

1.3 Aims and Objectives

The primary aim of this thesis is to develop a contactless, AI-enabled RF sensing system for
indoor healthcare monitoring. This research pursues several key objectives to achieve this aim:

1. Evaluation of Current Monitoring Systems: To analyze current human activity moni-
toring systems, identifying their strengths and limitations to inform the development of a
more effective system.

2. Application of Advanced Machine Learning Techniques: To implement advanced ma-
chine learning and deep learning algorithms for the accurate classification of human ac-
tivities such as sitting, standing, leaning, walking, and falling.

3. AI Integration in RF Sensing for Healthcare: To augment RF sensing technologies
with artificial intelligence algorithms, enhancing accuracy and performance for healthcare
monitoring applications.

4. Development of an Advanced RF Sensing System: To design an RF sensing system ca-
pable of precise fall detection and activity localization without requiring physical contact
with the individual.

5. Utilization of Tri-Sense Technology for Non-Invasive Monitoring: To leverage WiFi,
Radar, and RFID technologies within the Tri-Sense framework to create a user-friendly
and privacy-aware monitoring solution that surpasses conventional invasive monitoring
methods.

6. Enhancement of Activity Recognition Accuracy: To refine activity recognition preci-
sion by exploiting specific technical parameters, including CSI for WiFi, RSSI for RFID,
and amplitude measurements for Radar.

7. Empirical Validation of Tri-Sense Technology: To conduct empirical research to val-
idate the practicality and effectiveness of Tri-Sense technology in real-world scenarios,
demonstrating its benefits over traditional HAR systems.
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1.4 Contributions

This section highlights our significant advancements in HAR through the TriSense technology
and data fusion techniques for RFID and Radar technology. By leveraging machine learning and
deep learning, we have achieved contactless activity recognition using a comprehensive set of
sensing metrics including CSI, RSSI, phase, and amplitude, along with their synergistic fusion.
Our study delivers key contributions as follows:

1. Developed an Ensemble Machine Learning Algorithm: Developed a super learner al-
gorithm utilizing CSI for indoor activity recognition and localization, achieving superior
accuracy over conventional models.

2. Correlation Between Activity Position and Detection Accuracy: Conducted a com-
prehensive analysis to establish the relationship between activity locations and detection
accuracy, occupancy monitoring, and walking direction, providing insights into spatial
influences on activity recognition systems.

3. Enhanced Sequential and Simultaneous Activity Monitoring: Leveraged UHF RFID
tag arrays (TRT-Wall) to enhance the detection of both sequential and simultaneous activ-
ities, significantly improving monitoring granularity.

4. Deep Learning-Enabled Contactless Fall Detection: Utilized a modified deep learning
Transformer model without a decoder, integrating TRT-Wall and fusing RSSI and phase
data, to accurately detect falls in a contactless manner.

5. Enhanced HAR through Radar and RFID Fusion: Developed a LSTM-VAE fusion
model that combines Radar and RFID data, markedly enhancing activity identification
and localization capabilities. This approach introduces a novel method for comprehensive
activity recognition leveraging the strengths of both technologies.

1.5 Thesis Organisation

This thesis is organised into the following chapters:
Chapter 2 provides an overview of current technologies and literature on human activity

recognition, identification, and localisation using WiFi, RFID, and a fusion of RF sensing with
deep learning algorithms for single and multi-modality applications. It also explores localisa-
tion methods aimed at enhancing the accuracy of identifying elderly individuals’ activities in the
home and healthcare environments, offering a comprehensive comparison of recent approaches,
methods, and technologies for indoor localisation.
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Chapter 3 details how RF sensing-based indoor localisation techniques can be applied for clas-
sifications of human activities and enhancing room occupancy in a contactless manner. The
chapter makes use of traditional ML algorithms (super learner), an ensemble of multiple algo-
rithms, showcasing superior accuracy, improving with distance from the transmitter.

Chapter 4 builds on the previous chapter by presenting a study comparing LSTM, CNN, and
LSTM-CNN models for RF-based indoor activity recognition, focusing on seven activities in a
single-room setting. The LSTM model demonstrated the highest accuracy in utilizing CSI for
effective activity detection, highlighting RF sensing’s potential in non-intrusive human activity
recognition.

Chapter 5 explores the TRT-Wall, employed Impinj RFID readers, as an innovative, cost-
effective, and private way to identify users by their activities without needing tags. It highlights
the use of a data preprocessing technique and an LSTM for accurate activity detection, show-
casing its superiority over existing methods with impressive identification accuracy rates across
various data types, even in complex environments with multiple subjects.

Chapter 6 builds on the previous chapter by presenting a novel RFID-based method for con-
tactless fall detection, utilizing passive UHF RFID tags and avoiding wearables. Employing a
transformer model and early and late fusion technique for data analysis, the system achieved
an impressive accuracy, showcasing its superiority to traditional methods like CNN, RNN, and
LSTM.

Chapter 7 highlights the RFiDAR system’s advancement in HAR, combining RFID and Radar
through a LSTM-VAE model for improved accuracy. It showcases data fusion’s role in overcom-
ing sensor limitations, particularly in challenging environments. RFID’s superior standalone ac-
curacy is balanced by the fusion, underscoring the system’s potential applications in elderly care.

Chapter 8 concludes the thesis and details future work to be considered for expanding the work
discussed throughout the thesis.



Chapter 2

Literature Review

2.1 Human Activity Recognition Technologies

The field of HAR has significant progress due to advancements in sensing technologies. This de-
velopment offers an array of applications ranging from improving interactions in smart homes
and providing care for the elderly, to monitoring health and enhancing security surveillance.
This chapter primarily focuses on the precise recognition of human activity within indoor en-
vironment, which are essential for both daily life and controlled environments. At the heart
of these advancements is the role of artificial intelligence (AI), which processes and classifies
data from different devices. These include wearable sensors [3], smartphone inertial sensors [4],
Kinect camera systems [5], and CCTV [6] devices. The fusion of AI with HAR devices has led
to their application in diverse fields such as healthcare [3, 4], surveillance [7, 8], remote elderly
care [7, 9], and the creation of intelligent environments in homes, offices, and urban areas [4, 7].
This has not only enhanced human safety but also significantly improved quality of life [10].
The employment of sensors, cameras, RFID, and Wi-Fi in HAR, while not entirely new, has
been significantly pushed by rapid advancements in AI, enhancing the capabilities of these tech-
nologies in various domains [11]. This mutualism between AI models and HAR devices, as
evidenced by recent research trends, suggests a move beyond the traditional reliance on single
images or brief video sequences as shown in Figure 2.1. Instead, current advancements have
expanded the potential for broader applications of HAR across different sectors, indicating a
progressive integration of these technologies into daily and controlled environments. This pro-
gression in HAR, underpinned by AI, not only enhances the accuracy and efficiency of activity
recognition within indoor environments but also push the field toward a future where smart en-
vironments are an integral part of enhancing human safety and improving quality of life. The
mutual advancements in AI and sensing technologies continue to drive the HAR field forward,
promising even greater integration and application possibilities in both daily life and controlled
environments.

6
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(a) Publication (b) Trends

Figure 2.1: Research publications in human activity recognition over ten-year trends [12].

2.1.1 Overview of WiFi-based Recognition

Recently, there has been a growing interest in utilizing RF technologies, particularly WiFi, to
detect human activities. WiFi networks connect a variety of devices, including smart speakers,
televisions, thermostats, and security systems, creating a comprehensive indoor network. As
individuals move within these premises, WiFi signals, naturally reflecting off surfaces, undergo
changes in strength and phase. These changes provide meaningful information into human pres-
ence and movement, enabling an innovative approach to monitoring activities without the need
for direct visual observation or wearable sensors. This method leverages existing infrastructure
to offer a non-intrusive, cost-effective means of collecting data on human activity. Further-
more, researchers investigating WiFi signal variations often focus on the physical properties
of the wireless channel, such as RSSI and CSI. They use commercial network interface cards
(NIC) with special software, like the Intel 5300 NIC [13] and the Atheros 9580 NIC [14], to
access these signal properties. For more accurate detection, some researchers employ a platform
known as the universal software radio peripheral (USRP) to fine-tune wireless signals, identify-
ing frequency shifts caused by human motion [15]. They also explore the Doppler effect, where
changes in frequency help track movement, using USRP platforms for precise signal handling
[16].

This thesis explores the advanced applications of WiFi sensing to enhance quality of life
by focusing on detecting human activities and locating people indoors. We categorize these
applications into four main areas: intrusion detection and room occupancy monitoring, activity
and gesture recognition, vital sign monitoring, and user identification and localisation. Intrusion
detection aims to identify unauthorized entries, while occupancy monitoring assesses how many
people are present in a space. Activity and gesture recognition involves identifying common
activities or smaller movements. Vital sign monitoring leverages subtle signal changes to track
health indicators such as breathing and heart rate. User identification and localisation employ
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WiFi signals to determine people’s indoor locations and identify them based on their activity
patterns. Our research primarily focuses on HAR including monitoring occupancy, recognizing
activities, and identifying users with localisation in an indoor environment.

A detailed review of HAR and localisation techniques is summarized in Table 2.1. Fig-
ure 2.2 illustrates a typical process in wireless human activity sensing systems. These systems
detect signal changes caused by human activities using various techniques such as RSSI, CSI,
frequency modulated continuous wave (FMCW), and doppler shift (DS) then clean up the sig-
nals to reduce errors, and finally extract features that machine learning models use to accurately
identify human activities.

Table 2.1: Overview of WiFi sensing for activity recognition and localisation.

Application
Techniques

RSSI CSI FMCW Doppler
Shift

Daily Activity Recognition [17, 18, 19,
20]

[21, 22, 23,
24, 25, 26,
27]

[15] [28, 29]

Indoor Localisation [30, 31, 32,
33, 34, 35,
36, 37, 38]

[39, 40, 41,
42, 43, 44]

- -

Figure 2.2: Workflow of sensing human activity through wireless signals.

2.1.2 WiFi Sensing Techniques

In this section, we explore various WiFi sensing techniques that utilise different physical layer
properties of both commodity devices and customized hardware for human activity sensing.
We focus on four key techniques: RSSI, CSI, FMCW, and Doppler shift. These techniques,
leveraging distinct physical layer attributes, these techniques are essential for effective HAR, as
detailed in Table 2.2.
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Table 2.2: Comparison of WiFi sensing techniques for human activity recognition.

Technique Literature Derived Metrics Additional
Hardware

RSSI-based [45, 17, 18, 19, 20] Wireless signal
strength

No

CSI-based [21, 22, 23, 24, 25, 26,
27]

Channel condi-
tion

No

FMCW-based [15, 28, 29, 16] Frequency shift Yes
DS-based [15, 28, 29, 16] Frequency shift

with speed
Yes

Preliminary

1. Received Signal Strength Indicator (RSSI)

The RSSI is a common feature in WiFi devices that quantifies the signal attenuation, or path loss,
of wireless signals over distance. This attenuation is modeled using the log-normal distance path
loss equation:

P(d) = P(d0)+10γ log
(

d
d0

)
+Xδ , (2.1)

where P(d) denotes the RSSI measurement representing path loss at distance d in decibels (dB),
P(d0) is the path loss at the reference distance d0, γ is the path loss exponent, and Xδ is the
Gaussian noise due to flat fading [46].
RSSI has played an important role in applications like user positioning with portable WiFi de-
vices, due to its ability to sense changes caused by human presence near wireless networks.
This utility has extended RSSI’s use to device-free indoor localisation [38, 47], room occupancy
[45], and respiratory monitoring [48], leveraging its simplicity and availability on standard WiFi
devices without extra hardware. However, its straightforward measure of signal attenuation over
distance can limit reliability, particularly in static environments where the absence of movement
challenges its effectiveness [49].

2. Channel State Information (CSI)

CSI plays an important role in precise human activity sensing within indoor environments. CSI
captures the detailed effects of signal propagation, including scattering, fading, and power de-
cay, which are influenced by the presence or movement of a human body. Unlike the RSSI,
which provides a simple power metric, CSI offers a rich set of complex values that represent
both amplitude and phase information across multiple orthogonal frequency-division multiplex-
ing (OFDM) subcarriers. This fine-grained depiction of wireless channels allows for accurate
tracking of human movements. The IEEE 802.11n standard enables CSI measurement over 52
or 128 subcarriers for 20MHz and 40MHz channel bandwidths, respectively, while the 802.11ac
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standard expands this capacity even further. CSI is essential for detailed channel estimation and
can be mathematically represented as:

H = [H1,H2, . . . ,Hi, . . . ,HN ]
T , i ∈ [1,N], (2.2)

where N is the number of subcarriers and Hi is defined as:

Hi = |Hi|e jθi, θi = ̸ Hi, (2.3)

with |Hi| representing the amplitude and ̸ Hi the phase of the ith subcarrier. Accessible
through modified drivers on standard WiFi interfaces, such as the Intel 5300 NIC [13] and
Atheros 9580 NIC [14], CSI has become increasingly utilised by researchers for a range of sens-
ing applications, from intrusion detection to walking speed estimation and activity recognition
[22].

3. Frequency Modulated Carrier Wave (FMCW)

FMCW technology is used to identify human activities by examining the reflections of radio
waves. Given the fast speed of wireless signals, it’s not feasible to measure the time it takes
for these signals to travel (time of flight, or ToF) directly. FMCW overcomes this challenge
by linking the time differences in signal travel to changes in frequency, thus making ToF mea-
surements possible. In this process, the frequency of the signal sent by the transmitter changes
across a specific range. When this signal bounces off a human body, it returns with a change
in frequency and a slight delay. This change and delay help in determining the position and
movement of the person, as the frequency shift directly relates to the time delay in the signal
received relationship is given by:

∆t =
∆ f
k
. (2.4)

Here, ∆t is the time shift, ∆ f is the frequency shift, and k is the frequency sweep rate. The
round-trip distance is calculated as d = c ·∆t, where c is the speed of light. This technique,
unlike standard WiFi OFDM, requires specialized equipment like USRP for signal generation.
FMCW-based wireless sensing systems have been developed for various applications. These
include tracking human figures through walls [50], 3D motion tracking [15], gait velocity, and
stride length estimation [51], vital signs detection [52], sleep monitoring [53], and emotion
recognition [54], among others.

4. Doppler Shift (DS)

The Doppler shift is an inherent property of wireless signals that plays an important role in
sensing human activities. This phenomenon is observed as a change in the frequency of a wire-
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less signal, attributed to movement. Specifically, when an individual move toward a receiver,
the frequency of the signal perceptibly increases; conversely, it diminishes when the individual
moves away from the receiver. This variation in frequency is directly related to the movement
of an object, such as a hand, moving at a velocity v and at an angle θ with respect to the re-
ceiver, resulting in a DS. This shift is instrumental in accurately detecting and analyzing human
movements, leveraging the dynamic nature of wireless signals to sense activities.

∆ f =
2vcos(θ)

c
f , (2.5)

where c represents the speed of light, and f is the central frequency of the wireless signal.
utilising the DS, WiFi sensing systems built on software-defined radio devices like the USRP
N210 have been developed to detect activities such as walking, running, and hand gestures.

2.1.3 Human Activity Recognition and Localisation

HAR serves as a cornerstone for various applications, such as human-computer interaction, el-
derly care, wellness management, and security surveillance. Traditional methods have depended
on specific sensors like wearables and cameras. In contrast, RF-based methods offer a device-
free approach to activity recognition, covering privacy issue by avoiding the capture of unneces-
sary or sensitive information. Human activities typically fall into two categories: regular (daily
activities) and gesture (movements of the hands, fingers, and head).

Regular Activity Recognition and Localisation

Regular activities within a home environment including walking, sitting, cooking, and watching
television offer valuable information into daily routines. Monitoring these activities can inform
recommendations for healthier lifestyle. Additionally, this surveillance extends to applications
such as elderly care and ensuring the safety of children left at home alone. In the subsequent
sections, we discussed four WiFi-based methods for recognizing these regular activities, show-
casing their potential in fostering a safer and healthier living environment.

1. Received Signal Strength Indicator

RSSI is an imporant metric of RF sensing technology in activity recognition and indoor track-
ing, exploiting the unique patterns of wireless signal fluctuations caused by human movements.
Sigg et al. [17] demonstrated the capability of RSSI-based systems to detect movements and
differentiate between various activities such as lying, standing, and walking without the need
for carrying any device, through analyzing signal characteristics like peaks and employing a
k-nearest neighbors (KNN) classifier. This approach is further refined to distinguish between
static and dynamic activities using both ambient signals and dedicated transmitters, highlighting
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the versatility of RSSI in capturing the essence of human motion [18]. Complementing this, ad-
vancements in radio tomographic imaging (RTI) and variance-based RTI (vRTI), as introduced
by [20], significantly improve the accuracy of motion tracking and recognition by enabling the
visualization of moving targets through sensor networks, thus underscoring the non-invasive
nature of RSSI-based methods in activity recognitio without privacy concern.

Parallel to the development in activity recognition, RSSI has been extensively applied in
indoor tracking and localisation, spearheaded by [30] RADAR system, which correlates signal
strength with distance. The system’s accuracy is further enhanced through the implementation
of the kalman filter in the RSSI propagation model by Güvenc [31], and similar enhancements
by [32]. Moreover, the integration of RSSI with other sensor data like GPS and infrared sen-
sors by C[33], respectively, showcases the potential for more stable localisation solutions. The
inherent sensitivity of RSSI to environmental factors necessitates robust approaches to localisa-
tion, leading to the development of differential RSSI methods using particle filters by [34], and
dynamic techniques by [35]. to counteract environmental variability. To address the challenges
posed by multipath attenuation, Xie et al. [36] employ a KNN scheme based on Spearman
distance, enhancing localisation accuracy. Barsocchi et al. [55] propose a novel virtual cali-
bration technique for signal propagation models, eliminating the need for manual training, and
[56] introduce ArrayTrack, a system that achieves precise RSSI-based localisation without pre-
calibration. Furthermore, the exploration of multi-user localisation through RF tomography of
RSSI measurements by [57] expands the application horizon of RSSI technologies.

2. Channel State Information

CSI has been identified as an alternative to RSSI for HAR, due to its enhanced resolution and
sensing capabilities. Pioneering research, such as Wang et al.’s introduction of E-eyes [21],
used CSI’s granularity to recognise daily activities. E-eyes ingeniously utilizes the correlation
between location and activity traits to distinguish between stationary activities (cooking or sleep-
ing) and locomotive activities (walking between rooms), all through a single WiFi access point.
This distinction is made possible by observing the unique amplitude distributions of CSI, which
vary significantly between different activities [21], and by noting that consistent CSI patterns
emerge for the same walking trajectories, though these patterns change with different paths ,
as depicted in Figure 2.3. However, the initial applications of CSI in activity recognition faced
limitations due to a lack of theoretical foundations linking CSI measurements with specific hu-
man activities. Addressing this, Wang et al. [23] furthered the field with the development of
CARM. Such findings confirm the potential of CSI from WiFi signals to be a reliable indicator
of specific in-place activities or unique walking paths, thereby serving as a feasible method for
recognising routine daily activities.

The importance of detecting abnormal movements, particularly falls, has led to the develop-
ment of specialized systems using CSI for timely elder care. The WiFall system [24] was one
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of the first to distinguish falls from other activities using CSI data, employing a support vector
machine (SVM) for accurate identification. Enhancements to fall detection have been made with
their Anti-Fall system [25], which considers both phase and amplitude of CSI, and by Wang et
al. [26], who found that CSI phase differences between antennas effectively sense falls. Further
advancing the field, Palipana et al. [27] introduced FallDeFi, applying short-time fourier trans-
form (STFT) to extract time-frequency features from CSI and using feature selection techniques
to adapt to environmental changes.

Beyond activity recognition and fall detection, CSI has been instrumental in user identifica-
tion and indoor localisation. Techniques using CSI for user identification distinguish individuals
through unique physiological and behavioral patterns, such as gait. We discuss these CSI-based
approaches and summarize them in Table 2.3. Zhang et al. [58] and Wang et al. [59] have
demonstrated methods to identify individuals by analyzing CSI variations resulting from walk-
ing, while WFID [60] and [61] have extended the application of CSI to device-free authentica-
tion and a wide range of activities through deep learning models. CSI-based indoor localisation
techniques represent a robust improvement over RSSI-based methods. The foundational works
by Wu et al. [39, 40] and Sen et al. [41, 42] have enhanced the precision of indoor localisa-
tion, with advancements like the SAIL system [43] achieving accurate localisation with a single
WiFi access point. Further exploration by Wang et al. [44] into deep learning approaches has
shown the potential for even greater accuracy by using neural networks to interpret CSI data for
localisation purposes.

Table 2.3: Comparison of WiFi-based identification techniques using CSI.

Literature Frequency Accuracy Activity Distance
[58] 2.4-5GHz 93% for 2 Subjects, 77% for 6 Sub-

jects
Walking 2m

[62] 2.4GHz 93% for 2 Subjects, 80% for 6 Sub-
jects

Walking 2-3m

[59] 5GHz 79.28% for top-1, 89.52% for top-
2, 93.05% for top-3

Movement
speed of
different
body part

6m

[60] Not men-
tioned

91.9% for 9 subjects, 93.1% for 6
subjects

standing
and walk-
ing

3.6m

[61] 5GHz 94% for walking and 91% for static walking
and static
activities

10m
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(a) Cooking vs Sleeping (b) Walking Pattern

Figure 2.3: Comparative histogram analysis of specific subcarrier CSI amplitudes for cooking
vs. sleeping activities and consistent patterns in identical walking paths [21].

3. Frequency-Modulated Continuous-Wave

FMCW recognition offers a refined approach to activity recognition, distinct from RSSI and
CSI methodologies that utilise standard wireless devices. This technique employs the USRP
platform, modulating transmitted wireless signals across a specific frequency band, like that of
an FMCW radio. It then calculates time differences (∆t) from the reflected signals. The FMCW
radio’s architecture, based on the super-heterodyne principle, provides enhanced sensitivity and
stability for activity recognition. WiTrack system [15] was the first in FMCW-based recognition
which captures radio signals reflected off the human body to track three-dimensional move-
ments. WiTrack employs a T-shaped directional antenna array to localise the human body’s
center in three dimensions and can approximately track body parts, such as estimating the direc-
tion of a pointing hand within a median error of 11.2 degrees. Moreover, WiTrack distinguishes
between different activities, like falling or sitting, by observing the Z-axis value and changes in
elevation, as depicted in Figure 2.4.

Figure 2.4: WiTrack: Monitoring falls through elevation and height changes [15].
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4. Doppler Effect

The Doppler effect is utilised in HAR to detect subtle changes in WiFi signals induced by move-
ments such as running, walking, or other daily activities [29, 28]. Chetty et al. [28] employed
a passive WiFi radar on a USRP platform to monitor Doppler shifts through walls, indicating
human activity. Subsequently, Adib and Katabi [29] enhanced this system by applying MIMO
interference nulling, which mitigates the flash effect in Doppler shifts, thus improving recogni-
tion accuracy. Further advancements by Okamoto and Ohtsuki [63] included using the temporal
phase shift from moving targets, along with MIMO interference, to ascertain the relative veloc-
ity between the target and the antenna. Building on this, Okamoto and Tomoaki [63] leveraged
a bistatic radar model within a MIMO framework to categorize diverse human activities and
track multiple subjects. Successive studies [64] extended these techniques by designing antenna
arrays to measure Doppler shifts from everyday movements of the elderly, such as falling or
sitting, providing valuable insights into their safety and well-being.

Related Work on WiFi-based Human Activity Recognition and Localisation

Recent studies in the field of HAR using RF signals have shown significant advancements, par-
ticularly in healthcare monitoring applications. Iqbal et al. [65] developed a deep-learning-based
system using Wi-Fi sensor data to classify different user movement states, such as forward, back-
ward, and no movement. Similarly, Nipu et al. [66], along with Al et al. [67], employed CSI
from USRP devices to identify various participants, capturing CSI data as individuals walked
across radio frequencies. This data was then subjected to machine learning algorithms like ran-
dom forest and decision trees for accurate activity detection. The effectiveness of USRP devices
in HAR has been further demonstrated through various studies. The use of USRP N210 de-
vices by Wang et al. [68], Zhang et al. [69], and Pu et al. [16] achieved notable accuracy rates
(91-95%) in activity detection. Bokhari et al. [70] utilised two USRPs to propose a deep-gated
recurrent unit model for non-obtrusive HAR, achieving 95% accuracy. Additionally, Taylor et
al. [71] reported 96% accuracy in differentiating sitting and standing activities using USRPs
X300 and X310 and the random forest algorithm.

In the aspect of localisation and tracking using RF signals, the WiTrack2.0 system by Adib et
al. [72] marked a significant development. This multi-person localisation system calculates the
distance between users and antennas using the time taken for reflected wireless signals to travel.
Other experiments in localisation, such as those reported by Shi et al. [73], have achieved sub-
stantial accuracy. The field has also seen progress in WiFi-based sensing for indoor activity,
with Hoang et al. [74] focusing on user location and tracking using WiFi RSSI, which consid-
ers correlation among RSSI measurements in a trajectory. However, challenges remain in the
field, particularly with intrusive methods that, despite their accuracy, are often cumbersome and
unwelcome, especially among sensitive groups like the elderly or children [75]. The demand is
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growing for contactless, long-term health monitoring systems that can efficiently detect activity
in crowded environments [76]. While radar-based solutions have shown precision in detection
and real-time monitoring [77], the high costs and energy consumption associated with these
technologies call for more cost-effective and energy-efficient solutions for broader adoption.

2.1.4 Contactless RFID-based Activity Recognition

RFID technology, originally designed for military use to identify aircraft, has significantly
evolved over recent years. It is now extensively utilised in tracking and supply chain man-
agement. The technology’s range has expanded remarkably, with passive tags reaching up to 15
meters and active tags up to 100 meters. The RFID system comprises two primary components:
the reader and the tags. The reader, equipped with an antenna, sends out radio waves that are
modulated by RFID tags attached to objects. These tags transmit information, like their ID, back
to the reader. There are two types of tags: active tags, which have their power source, and pas-
sive tags, which derive energy from the reader’s radio waves. Active tags generally have a longer
range than passive tags. Due to its simplicity, cost-effectiveness, and non-intrusive nature, RFID
is increasingly utilised in various fields, including human activity recognition research. This
involves posture, gesture recognition, tracking, localisation, and behavior recognition applica-
tions.

Contactless Activity Recognition

This section is focused on exploring device-free approaches that utilize RFID technology, con-
sistent with the classification framework provided. We specifically focused on ’action-based’
approaches, given their significant research importance in addressing the current issue. A
schematic representation of the various research directions in activity recognition, according
to a defined taxonomy, is presented in Figure 2.5. In the domain of device-free (contactless)
activity monitoring, various innovative approaches leveraging RFID technology have been ex-
plored, each with its unique focus and application domain, ranging from gesture-based activity
recognition to posture-based monitoring and tracking customer behavior in retail settings.

Figure 2.5: Taxonomy of human activity recognition.
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Action-based Activity Recognition
Action-based activities are those that involve some action of the human body. This action can
involve either the whole body or a specific portion of a body as shown in Figure 2.6. We pro-
vide an overview of the different solutions proposed for the recognition of action-based human
activities.

Figure 2.6: RF-based action activities recognition .

Gesture-based activity recognition, a key component of human-machine interaction, has seen
significant advancements through RFID technology. Ye et al. [78] introduced a method using
passive RFID tag arrays for gesture recognition, known as the link state indicator (LSI), which
calculates a gesture matrix to represent tag states during different gestures, achieving an average
accuracy of 94% for twelve gestures. However, this approach struggles with similar gestures and
is limited to offline use. Similarly, the Smart Surface technique [79] and Ding et al.’s work [80]
furthered the application of passive RFID tags for recognizing hand motions and handwriting,
respectively, albeit with limitations in gesture complexity and the need for close proximity to
the RFID tag plate. Moreover, GRfid demonstrated the capability to detect six hand gestures
with an accuracy of up to 96.5% through RFID signal phase changes, albeit with its own set of
limitations, including basic gesture recognition and unspecified system latency [81].

Parallel to gesture recognition, posture-based activity recognition offers a more realistic al-
ternative for monitoring without direct contact. RF-Care employs passive RFID tags to detect
activity-related disturbances with high accuracy in steady posture recognition but faces chal-
lenges in latency and transition detection accuracy [82]. Subsequently, techniques such as Yao
et al.’s [83] sparse dictionary-based approach and the R&P method that combines phase and
RSSI values have shown significant accuracy in activity recognition across various scenarios,
though they also face challenges with system complexity and latency [84]. Additionally, the
exploration of passive RFID technology has extended to the retail sector for tracking shopping
behavior. Han et al. developed the CBID system, which analyses RFID tag signals from store
items to identify shopping patterns and item correlations, though its effectiveness with metal-
lic products and latency issues remains unexplored [85]. Similarly, Zhou et al.’s system aims
to mine customer shopping behaviors through the detection of actions such as item browsing
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and picking, based on RFID tag phase changes. This approach, while successful in identifying
trends, faces performance challenges in crowded shopping environments [86].

Related Work on RFID-based Fall Activity Recognition

Falls are a major health concern globally, ranking just behind traffic accidents as a leading cause
of accidental injuries [87]. This issue is especially critical among the elderly, for whom falls are
the main cause of various health problems, including death, disease, weakness, and disability
[88]. It is noteworthy that about 30% of people over 65 fall at least once a year and these falls
often have serious consequences: 90% result in broken hips and 60% in head injuries [87]. A
significant number of these elderly individuals, nearly half, experience what is called a ‘long-lie’
after a fall, where they remain on the ground for an extended time. This situation increases the
risk of serious health issues such as pressure ulcers, cold exposure, lung infections, dehydration,
and even death [89]. Falls that go unnoticed can have particularly grave outcomes, especially
if the person doesn’t receive prompt medical attention. To address this, the implementation
of automatic fall detection systems has been shown to greatly speed up the response time of
medical professionals to these incidents [90].

Fall detection methods are primarily divided into two categories: wearable [91, 92, 93, 94]
and non-wearable [95, 96, 97] systems. Wearable fall detection systems utilise sensors like
gyroscopes and accelerometers, which are attached to the body to monitor changes in activity.
Non-wearable systems, on the other hand, use different techniques such as visual detection [95,
98], environmental sensing, and RFID [99]. Wearable devices provide a detailed monitoring
system, collecting data to represent daily activities. This is achieved through sensors like ac-
celerometers, gyroscopes, and RFID technology. For example, Le and Pan [100] developed a
system specifically for the elderly using wearable acceleration sensors. Vallejo et al. [101] used
MLP for data classification from accelerometers. Micucci et al. [102] applied KNN and SVM
for data categorization. Gjoreski et al. [103] attached accelerometers to sportswear, using Blue-
tooth for data transmission. Wang et al. [104] created a pendant with a three-axis accelerometer
and barometric sensor. Similarly, Xiaoling et al. [105] utilised smartphone sensors for gesture
recognition. These wearable technologies are highly accurate in fall detection but require users
to wear specific equipment on certain parts of their bodies. This necessity could be seen as
a limitation for some users, highlighting a trade-off between convenience and effectiveness in
these systems.

Vision-based systems for detecting falls analyze images from cameras, using either standard
RGB or depth-sensing technologies. These systems have evolved but still face challenges in ac-
curately distinguishing falls from similar movements like lying down or leaning. To enhance fall
detection, various research approaches have been explored. For instance, Rougier et al. [106]
focused on how the human body’s outline changes in images during a fall. Mirmahboub et al.
[107] used cameras to observe falls among the elderly, analyzing behaviors captured in video
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sequences to differentiate between normal activities and falls. Yun and Gu [108] developed a
method to identify falls by examining the changing shape and movement of human figures in
images. Khraief et al. [109] created a 4D-CNN network that processes different types of data
through individual CNN streams for detecting falls. Another innovative approach by Abdo et
al. [110] involved using RetinaNet for tracking movement in video frames, with MobileNets en-
hancing the categorization of movements as falls. These vision-based methods are advantageous
as they don’t require users to wear any devices and can offer a clear visual perspective of falls.
However, they require high-performance computing due to the complexity of their algorithms
and can raise privacy concerns. They are also sensitive to varying light conditions and need a
clear line of sight between the camera and the subject, making their implementation in complex
environments challenging.

Previous studies have primarily focused on tag-based approaches [111, 112, 113, 114] where
RFID tags were attached to humans for activity capture, including object identification and track-
ing [115, 116, 75, 117], which can infer human activities from RFID-labeled objects [118, 119].
However, traditional tag-based systems require specific objects or users to have RFID tags at-
tached to track their movement and infer various activities. This limitation arises when activities
such as pushups, walking, and body rotation do not directly interact with RFID-tagged products
or cause movement in the environment. In contrast, RF based systems, including TriSense, offer
potential solutions to address the limitations of wearable devices and cameras. Among these,
WiFi systems have shown promise in fall detection, leveraging CSI. For instance, Wang et al.
[26] demonstrated real-time automatic data segmentation and fall detection using fine-grained
CSI data from WiFi devices. Another notable system, WiFall [24], utilised WiFi-CSI for fall
detection by measuring predefined motions and employing a one-class SVM and RF for classifi-
cation. While WiFi signal detection effectively addresses challenges related to lighting and user
privacy, its deployment costs can be prohibitive due to sensitivity and stability issues in complex
monitoring environments, thus limiting its widespread implementation for the elderly [120].
On the other hand, Doppler radars have also been employed for fall detection based on human
movement speed. However, they can be influenced by non-fall activities. To address this, Ma et
al. [121] proposed the use of ultra-wideband (UWB) monostatic radar and an LSTM algorithm
for fall detection. Nevertheless, the system’s adaptability to new individuals and environments
is constrained by residual environmental impacts. Tian et al. [122] presented a solution involv-
ing two perpendicular angle-range heat maps to differentiate between human daily activities and
falls, leveraging a large-scale dataset under various scenarios to mitigate environmental impact.

Related Work on RFID-based Daily Activity Recognition

Recent research has been directed toward employing UHF passive RFID tags to enhance the
quality of life for elderly individuals. These applications cover a broad spectrum, including
tracking location and mobility, managing medications, and preventing falls. Researchers have
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Table 2.4: Comparison of different technologies for fall recognition.

Approach Technology Advantages Disadvantages
Wearable Device Accelerometer +

RFID, smartphone,
barometer, magne-
tometer

Low cost Constraint to wear
the device

Device Free Radio devices Low cost Customized hard-
ware required

RFID Low cost, COTS
available, passive

Environmental inter-
ference

investigated both ‘tag-free’ and ‘tag-based’ technologies for monitoring and analyzing daily ac-
tivities of the elderly. In the ‘tag-based’ approach, various studies have been conducted. Raad et
al. [123] introduced a prototype using passive RFID wearable anklets or bracelets. This system
is designed to detect wandering elderly individuals within their homes. Similarly, Shuaieb et
al. [124] proposed a cost-effective indoor location system using RFID tags, aimed at improving
alarm systems in nursing homes and triggering emergency services when needed. Feng et al.
[125] developed a posture-recognition system called ‘SitR’. This system employs RF signals
and lightweight RFID tags placed on the user’s back to identify seven different sitting postures.
The ‘TagCare’ system by [126], is a fall detection system for the elderly that utilises RSSI and
Doppler frequency readings. Another approach for fall detection involves using passive RFID
sensor tags in indoor footwear to monitor RSSI and pressure changes. Toda et al. [127] provided
a comprehensive mechanism for fall detection by analyzing routine activities through shoe sole
pressure data and RSSI fluctuations. Ruan et al. [128] introduced the ‘TagFall’ system, which
detects falls from daily activities using abrupt changes in RSSI values. These examples illustrate
the effectiveness of ‘tag-based’ solutions in recognising various activities and postures.

On the other hand, ‘tag-free’ sensing technologies offer benefits such as lower cost, non-
intrusiveness, and simplicity in structure. Sigg et al. [18] introduced a ‘tag-free’ method using
ambient FM radio signals for activity detection. Similarly, He et al. [129] proposed a technique
to enhance the signal-to-noise ratio of RFID tags for detecting activities in a contactless manner.
Moreover, Zou et al. [81] developed the ‘GRfid’ system for gesture recognition using multi-
tag phase measurement and DTW distance normalization. The ‘RFree-GR’ system by Dian et
al. [130] demonstrated the ability to recognise fine-grained gestures, including 16 American
Sign Language words. Futhermore, Zhao et al. [131] presented the ‘RF-Motion’ system, which
identifies six types of human motion with 87% accuracy, leveraging DTW, synthetic aperture
algorithms, and data slicing techniques. RFID tag arrays have also been used to predict motion
and pose-based activities, though challenges such as occlusions or physical obstructions exist in
wall-mounted systems [83, 132]. The ‘RF-HMS’ system in [133], utilised an RFID tag array
for tag-free human motion monitoring through walls, achieving an average accuracy of 90%.
The ‘IDSense’ system integrates passive RFID tags into everyday objects to detect interactions
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involving motion and touch, particularly near walls [134]. These ‘tag-free’ approaches typically
depend on tags or tag arrays as reference points to detect motion or direction. They often require
proximity to the tags for effective activity recognition, which can limit their applicability.

2.1.5 Human Activity Monitoring on Multi-modal Fusion

The recent advancements in technologies like artificial intelligence, 5G, and the Internet of
Things have significantly altered how we live. These technologies have led to the creation
of intelligent sensors that are now commonly found in wearable devices. These devices over-
come some of the limitations found in computer vision, such as issues with space, time, privacy,
and energy use. Instead, they provide a more effective way of using sensors to monitor human
activities and emotions. These sensors are highly valued for their computational power, small
size, and cost-effectiveness[135]. Focusing on the effectiveness of single sensors in recognising
activities has been a key area in sensor technology research [136, 137]. Single sensors are user-
friendly and durable, but they have limitations in accurately detecting complex movements due
to their focus on localised motion. To address this, recent studies have been exploring ways to
combine data, features, and classifiers to improve the monitoring of health and activities. The
number of sensors used in these systems is an important consideration, balancing efficiency and
user convenience. The decision to use multiple sensors often depends on the user’s comfort and
available space [138].

Data processing in systems that use multiple sensors can be divided into three categories:
data-level, feature-level, and decision-level fusion [139]. Data-level fusion focuses on clean-
ing, extracting features, classifying, and compressing data from various sensors to improve the
system’s reliability and robustness. Feature-level fusion works by creating complex vectors
from different sensor features and uses machine learning to effectively categorize data [140].
Decision-level fusion combines the outcomes from multiple sensors to produce a coherent final
decision, often incorporating information processed in earlier stages [141]. For example, Guo
et al. [142] combined multiple sensor nodes for activity and gesture recognition. This pro-
cess of fusion minimizes errors and improves data categorization by using a variety of methods,
ranging from statistical approaches to machine learning and deep learning algorithms. These
methods are designed to manage both spatial and temporal data. Liu et al. developed a system
for monitoring driving behaviour using motion capture and AI [143]. Similarly, [144] used a
combination of machine learning and deep learning in a fusion framework for recognising hu-
man activities. These developments demonstrate the significant progress in sensor technology
and its wide-ranging applications in our daily lives.
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Related Work on Contactless Multi-modality Sensing Fusion

In the context of device-free HAR, there are two main methods of combining data from multiple
modalities: score fusion and feature fusion. Score fusion involves combining the outcomes or
decisions from different modalities, typically using techniques like weighted averaging [145],
or through learning models [146]. Feature fusion, in contrast, merges distinctive characteristics
from various data sources into a comprehensive feature set that is highly effective for HAR [147].
Furthermore, several studies have explored the integration of different modalities to improve
activity recognition [148, 149, 150, 151], using decision-level fusion techniques that combine
vision-based sensing with Wi-Fi -CSI or wearable sensors for a range of activities.

Recent advancements have shifted towards developing multi-modal fusion systems tailored
for smart sensing applications. For instance, [152] introduced the RF-Focus system, combining
RFID and computer vision (CV) to identify and locate tagged boxes on conveyor belts. How-
ever, this system’s focus on recognising tagged boxes does not align with the broader context of
HARI. Another study by Wu et al. [153] integrates RFID and CV for object detection using dy-
namic Bayesian networks but lacks user interaction and depends on potentially intrusive RFID
reader bracelets. TagVision, proposed in [154], effectively combines RFID and CV for precise
object identification and tracking, especially in motion target tracking using the CV subsystem.
The DEEM system, as described in [155], leverages CV and RFID for assessing fitness effec-
tiveness and user identification but does not focus on detailed gestural action recognition, facing
challenges like low tag reading rates and unknown hand-tag offsets. The ShakeReader system
in [156] connects tags with smartphones using unique reflector polarization models for indirect
tag reading. Similarly, the RF-Grasp system, developed by [157], focuses on robotic tasks and
object localisation using RFID in visual 3D models, but it primarily serves robotic applications
and does not directly address the technical challenges in HAR.

The experimental setup of the RFIDAR system is centered on recognising activities such
as sitting, standing, leaning, and walking within a specific area. This system is designed to
demonstrate its effectiveness for patient monitoring in healthcare and accurate detection of daily
activities. The RFIDAR system underscores the synergistic potential of combining RFID and
radar sensing modalities, thereby boosting the reliability of HAR in indoor environment. This
approach aligns with the recommendations of global public health agencies [158], highlighting
its applicability in healthcare environments where precise indoor activity classification is crucial.

Multi-model Fusion Algorithms

This section focuses on the methods of feature fusion, which are crucial for combining data
from different sensors. We will explore various algorithms used in this process. These include
methods for manual feature extraction, which rely on probability and statistics, as well as tech-
niques that utilise machine learning and deep learning for automatic feature representation. The
structure and classification of these fusion algorithms are illustrated in Figure 2.7. Additionally,
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there is a comprehensive comparison of the advantages and disadvantages of widely-used HAR
methods, presented in Table 2.5.

Table 2.5: Pros and cons of information fusion algorithms.

Methods Pros Cons
HMM Determine the most probable se-

quence of states in a model that re-
sults in a specific output sequence.

HMM are limited by their lack of
memory, restricting them to use
only the immediate previous state
for context. To utilise more ex-
tensive contextual information, it’s
necessary to develop more ad-
vanced HMM models.

CNN CNNs excel in handling local de-
pendencies and are scale-invariant.

Requires a substantial dataset and
extensive hyper-parameter tuning
for optimal feature extraction

RNN RNNs can learn complex nonlin-
ear dynamical mappings, typical in
nonlinear time series prediction.

Real-time activity prediction faces
difficulties with substantial param-
eter updates.

LSTM LSTM networks outperform other
RNNs due to their design, which
allows them to maintain aspects of
their hidden state across extended
time steps.

More parameters, easy to fit

GRU The modified GRU in RNN re-
sembles LSTM but is structurally
simpler, leading to reduced learn-
ing time due to its fewer param-
eters. Additionally, it is capable
of learning effectively from smaller
datasets.

The LSTM outperforms the GRU in
tasks requiring indefinite counting
capabilities.

Figure 2.7: Multi-model sensor fusion information algorithm.
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1. Machine Learning Algorithms
Machine learning techniques significantly improve the accuracy of activity detection. This im-
provement is achieved through a series of steps: data preprocessing, segmentation, feature ex-
traction, dimensionality reduction, and the assessment of different learning algorithms [141].
These steps incorporate various methods including SVM [159, 160], KNN [160, 161], dictio-
nary learning [161, 162], Naive Bayesian [159], decision trees [161, 163], ANN [164], hidden
Markov models [165], linear discriminant classifiers [166], random forests [161, 71] and dy-
namic time regularization. For example, Guo et al. [162] created an algorithm for recognising
aerobic exercises using multiple sensors and dictionary learning. Similarly, Spinsante et al.
[167] utilised decision tree algorithms for monitoring activities to prevent sedentary behavior at
workplaces. Dai et al. [168] introduced a wearable biosensor network for daily emotion recog-
nition, employing technologies like EEG and pulse monitoring. They developed an unbalanced
fuzzy SVM to effectively process datasets with various emotional states. Hidden Markov mod-
els, especially known for their application in speech recognition [169] and HAR [170], have
been demonstrated to be effective in gait analysis. Additionally, Tahir et al. [171] showed that
high accuracy could be achieved in signal variance measurement by extracting multifused mod-
els. Finally, Wu et al. [172] proposed an orientation-independent method for activity and gesture
recognition, specifically tailored for low-power wearable sensors. This method employs DTW
for segmentation and is notable for its high accuracy in real-life situations, irrespective of the
sensor orientation. This approach illustrates the adaptability of machine learning to different
sensor orientations, making it a viable option for practical applications. Experimental results
indicated that this method achieved an average accuracy of 98.2% in daily life recognition and
95.6% in gesture recognition.

2. Deep Learning Algorithms (Relevant Literature)
Deep learning, an end-to-end learning method, begins with raw input data and independently
manages both feature extraction and model learning with a multi-layered network structure.
This approach bypasses the requirement for manually designed features, thus enabling the au-
tonomous learning of effective features. It also facilitates the fitting of complex functions with
fewer parameters and the creation of more intricate models. Deep learning’s advantages lie in
its capacity for feature expression, function modeling, and model generalization. These aspects
highlight the differences and relationships between deep learning and conventional machine
learning in human activity recognition.

The deep auto-encoder (DAE), focused on the unsupervised learning of efficient data en-
codings, consists of two parts: an encoder and a decoder. The encoder transforms input data
into hidden features, and the decoder reconstructs these features back into approximate outputs,
aiming to minimize error rates [173]. DAE has been applied in areas such as smartphone and
health monitoring for feature representation [174]. Innovations in this field include a generative
model for feature learning in motion detection [175], and a stacked auto-encoder for human
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motion recognition, which surpasses traditional neural networks in accuracy [176]. Recent ad-
vancements in auto-encoder feature representation encompass stacked auto-encoders [177], deep
denoising auto-encoders [178], and sparse auto-encoders, particularly in the context of human
activity detection through feature fusion [173]. Sparse auto-encoders, which introduce sparse
term loss functions, excel at representing high-dimensional feature vectors, providing high inter-
pretability and implicit feature selection. DAEs also contribute to effective data representation,
emphasising not only minimal reconstruction errors or sparsity but also robustness against par-
tial data corruption. DDAEs improve coding robustness by incorporating noise and training with
damaged input samples, thus capturing robust data invariants [179].

Convolutional neural networks (CNNs) [180] have been effective in fields like speech recog-
nition [181], image classification [182], and video activity recognition [183]. Their superiority
in HAR, particularly in classifying time series, arises from their local dependency and scale in-
variance. Novel applications include single-channel EEG-based drowsiness detection, real-time
sEMG feature prediction, posture classification, human gesture recognition, fatigue level esti-
mation, and EEG-based fatigue detection using a CNN model [184, 185]. Yang et al. [186]
introduced a novel soft, wear-resistant smart shoe with sensors for learning sports intentions,
employing a convolutional autoencoder for data fusion and feature extraction, combined with
LSTM for comprehensive gait analysis.

Recurrent neural networks (RNNs), suitable for processing time series data like audio [187]
and text [188], transfer information across hidden layer units to capture temporal relationships.
Advances like LSTM networks and GRU networks address the problem of gradient vanishing in
long sequences. LSTM, in particular, has shown leading results in various sequence processing
tasks [189], with applications in gait analysis [190], anomaly detection [191], and more. The
integration of LSTM with other models, such as Tran et al. [192] multi-modal network, en-
hances human activity recognition systems. Combining CNN and LSTM for feature extraction
is increasingly popular, applied in multi-view settings, dual-channel LSTM and CNN models
for various data types [193], and sensor-based activity recognition in sports [194, 195]. GRU
networks, a simpler alternative to LSTM, have shown comparable efficacy in human activity
recognition [196]. These networks, when combined with CNNs, are employed for automatic
feature extraction and activity classification [197], gait type identification [198], and arm ges-
ture recognition using deep convolution and recurrent networks [199].

2.2 Summary

The chapter starts by summarising HAR using contactless methods, with a special focus on
TriSense and fusion technologies. WiFi-based HAR employs signal interaction techniques like
the RSSI and CSI to monitor indoor activities, providing a non-intrusive way to understand
human movements. It is noted that WiFi-based HAR prefers CSI over RSSI due to its higher
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accuracy in detecting activities, due to CSI’s capability to offer a detailed analysis of signal
propagation. On the other hand, RFID-based HAR introduces contactless systems that do not
require tagged objects, enhancing their usability across different settings. The combination of
Radar and RFID technologies marks notable progress in HAR by integrating the strengths of
both to improve detection accuracy and robustness in complex environments. However, this
fusion brings forth challenges like system complexity, increased costs, and privacy issues that
necessitate careful consideration for successful and ethical application.



Chapter 3

Advancing Localisation Techniques: The
Role of Software-Defined Radios in
Non-Invasive Approaches

This chapter explores the use of radio waves for non-invasive indoor human activity detection,
a field with growing relevance in smart healthcare. It examines how activity localisation can
enhance healthcare systems by accurately identifying patient locations. The research utilises CSI
from radio frequencies, a method established as effective for non-invasively detecting human
activities. Our experiments utilised an USRP devices to detect and localise the activities of a
single individual, analysing CSI changes during various actions like sitting, standing, leaning,
and walking forward and backward directions in a room. We also include scenarios with an
empty monitored area for comprehensive analysis. An important aspect of this study is the
application of artificial intelligence, particularly a Super Learner algorithm, which has shown a
96% accuracy rate in localising different activities, outperforming existing methods.

3.1 Introduction

Indoor localisation systems, aimed at estimating the location of entities within indoor environ-
ments, utilise technologies such as WiFi, UWB, Bluetooth, RFID, Infrared, inertial sensors, and
cameras [200, 201, 202, 203]. Recently, these applications have broadened and extended to
battlefield surveillance, disaster prediction, intelligent traffic, and indoor navigation [204, 205].
In healthcare monitoring, these systems are becoming essential and desirable, especially con-
sidering the growing elderly population [206, 207]. Indoor localisation is challenged by factors
such as noise, signal fluctuation, and the presence of obstacles like furniture. Despite these chal-
lenges, significant advancements have been made due to technological developments in wireless
communication, computing, and detection techniques. The field includes various approaches
such as wearable device-based, context-aware, and contactless device-based systems. Wearable
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devices, for instance, are known for their ability to recognise human activity without compromis-
ing privacy [208]. Context-aware systems, which utilise sensors like floor sensors and cameras,
have limitations once the user leaves the monitored area and can raise privacy concerns, leading
to legal restrictions in some countries [209].

The chapter further discusses how indoor localisation contrasts with outdoor environments,
where advanced satellite systems like Beidou and GPS provide more precise location services.
This difference is attributed to issues like weak satellite signals and low penetration indoors. In
the field of indoor localisation, RF is often used due to the widespread application of low-power
sensors. Researchers have explored technologies like UWB, WiFi, Bluetooth, audio, light, Zig-
bee, and RFID for effective indoor localisation [200, 201, 203]. This chapter specifically focuses
on RF-based Wi-Fi sensing for indoor localisation, leveraging existing Wi-Fi infrastructures, and
avoiding the need for additional sensing equipment. The discussion includes the use of CSI and
RSSI for activity detection and localisation, with a preference for CSI due to its detailed data
capture [210, 211]. The experiment conducted uses USRP devices to collect CSI data, aiming
to localise human activities within a defined indoor environment.

The objective of this study is to use two USRP devices, one serving as a Tx and the other as
the Rx to collect CSI data on a single human subject performing activities in different locations
of a single room. The room is divided into three zones both horizontal and vertical directions
(3x3 zones) shown in Figure 3.1. Each intersection point is referred to as a location. The six
activities (empty room, no-activity, sitting, standing, leaning, walking forward and backward)
are carried out in all nine locations. The amplitude changes observed in the CSI differentiate be-
tween activities performed in each location. This allows for CSI to be used in the localisation of
a subject as the radio signals are affected differently in human movements occurring in different
locations.

Figure 3.1: Experiment setup diagram showing the position of the horizontal and vertical zones.
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3.2 Materials and Methods

This section covers materials and methods, as well as how data is collected using an experi-
mental setup to produce various test cases before applying machine learning. The hardware and
software subsection describes the components that are designed and used to collect CSI data
depicting human activity from the sensing devices.

A. Hardware Specification

The hardware setup for data collection consists of two USRP devices, specifically national in-
strument (NI) X310/X300 models. These devices communicate with each other within their
coverage area during the activity. They are connected to two PCs using 1G Ethernet cables.
Each USRP is equipped with extended-bandwidth daughterboard slots, covering a range from
DC to 6 GHz and supporting up to 120 MHz of baseband bandwidth. The PCs used in this setup
are powered by Intel(R) Core(TM) i7-7700 3.60 GHz CPUs and equipped with 16 GB RAM.
They run on an Ubuntu 16.04 virtual system as the operating system. For wireless communica-
tion, the USRPs are outfitted with VERT2450 omnidirectional antennas.

B. Software Specification

The USRP devices are configured with software to enable transmission from the transmitting
USRP device to the receiving one. The GNU Radio software package, a free and open-source
signal processing tool widely used in research, is utilised for configuring the software that fa-
cilitates USRP communication [212]. It offers examples of orthogonal frequency division mul-
tiplexing (OFDM) signal processing, which can be adapted for use with USRP devices, facili-
tating the extraction of CSI. GNU Radio allows the setting of various parameters for the USRP,
such as the center frequency at 3.75 GHz, the use of 64 OFDM subcarriers, and gain levels set at
70dB for the transmitter (Tx) and 50dB for the receiver (Rx), chosen to optimise data transmis-
sion efficiency and signal robustness. The flow diagram created in GNU Radio is transformed
into a Python script, which initiates OFDM communication on the USRP devices. This script
outputs the CSI collected during the transmission, represented as complex numbers. To calculate
the amplitude of these signals, the absolute value of these complex numbers is taken, prioritising
amplitude data for its robustness and computational efficiency while phase is sensitive, which
is essential for processing and machine learning applications. This CSI amplitude data is then
converted into CSV files, which are compiled into datasets for training and testing machine-
learning algorithms. The data flow diagram for data collection across the six classes of activities
is illustrated in Figure 3.2.
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Figure 3.2: Data flow diagram showing the process of how the human movement is recorded as
CSI and compiled into a dataset for ML classification

3.2.1 Experimental Setup

The experiments presented in this chapter are carried out in a 3.8 ∗ 5.2m2 room in the James Watt
South Building at the University of Glasgow, where an active and approved ethics application
is in place. The experiment is conducted in an office setting where the room is divided into
three zones and locations, both in the horizontal and vertical directions (see Figure 3.1). The
three zones are separated by one meter, where all the activities take place. The Tx and Rx USRP
devices are positioned in opposite corners, angled at 45° to each other, to capture all movement.
The data is collected using the same single subject to perform the activities in each of the zones.
This ensures that the only variables in the data collection are the activities and the location where
the activity is performed.

3.2.2 Data Collection

This section explains the data collection process using the setup from section 3.2.1, essential for
developing machine learning datasets. The experiment involves seven activities: sitting, stand-
ing, leaning, no activity, walking from Tx to Rx and vice versa, and an ‘empty’ classification.
Data for the first four activities are collected from each zone shown in Figure 3.1, while the
walking activities are observed as the subject travels diagonally across areas between the Tx and
Rx devices. The ‘empty’ category involves data collection with no subject present.

Figure 3.3 illustrates CSI amplitude patterns for all six activities and the empty classifica-
tion. In these visual representations, each color denotes a subcarrier during an activity, with the
amplitude of the subcarrier on the y-axis and the packet count on the x-axis. Each data sample
represents 3 seconds of OFDM communication, roughly equating to 1200 packets. In total, 100
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samples are collected for each activity, culminating in 4300 data samples. This includes 100
samples each for sitting, standing, leaning, and no activity, collected from each area shown in
Figure 3.1, amounting to 3600 samples (4 Activities x 100 samples x 9 areas). For the walking
activities, 600 samples are collected (300 samples for each direction), considering the inclusion
of 3 areas for each walking activity and the two different directions, resulting in 600 samples
to represent 100 samples for each area in each direction. Additionally, 100 empty samples are
gathered (1 activity x 100 samples). During the empty sample collection, the subject exits the
room completely to ensure the integrity of these samples. This results in a total of 43 classifi-
cations, each with 100 samples. The samples are labelled according to their respective zones
and locations, for instance, L2Z1 indicates a sample collected at location 2 and zone 1. Table
3.1 provides a comprehensive overview of the 43 classes and the total number of data samples
collected for each location.

Table 3.1: Overview of data classes and their description.

S. No Class Class Description No. of
Classes

No. of
Samples

1 Empty Activity No human subject in the activity area 1 100
2 No Activity No activity performed by human 9 900
3 Sitting The action of "Sitting" at the desig-

nated location within Zone
9 900

4 Standing The action of "Standing" at the des-
ignated location within Zone

9 900

5 Leaning Leaning forward with the upper body
at the designated location within
Zone

9 900

6 Walking Rx-Tx
and Tx-Rx

Walking from the USRP X310 Rx
side to USRP X300 Tx side and vice
versa

3*2 600

System Hypothesis

The hypothesis is summarised as follows:

1. The accuracy of determining the position of an activity within a room is expected to be
100% as movements are made either vertically or horizontally.

2. The hypothesis posits that the accuracy of detecting walking activity is higher compared
to sitting or standing when movements occur vertically or horizontally.

3. It is anticipated that the horizontal and vertical distances between the transmitter (Tx) and
receiver (Rx) will influence the accuracy of detecting the activity.
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This study aims to evaluate the capability of AI in precisely recognising different activities
and pinpointing their precise locations in a room through the analysis of RF signal data. It
explores the effectiveness of AI in detecting and localising activities by interpreting the subtle
variations in RF signals.

(a) Empty (b) No Activity (c) Sitting

(d) Standing (e) Leaning (f) Walking

Figure 3.3: CSI examples for all six activities showing the amplitude values for all 64 subcarriers
(represented in each colour) in the OFDM communication

3.2.3 Test Cases

In this section, several test cases are presented, which are used to apply different ML approaches
for activity localisation. In this study, A total of two test cases are presented based on the data
collected as shown in Table 3.2.

The test cases for the data collection are reported in Table 3.2. The dataset description is
given below.

• L1L2Zone1: The dataset contains data from locations 1 and 2 for Zone 1, with a total of
11 classes of activities from both locations.

• L1L3Zone1: The dataset contains data from locations 1 and 3 for Zone 1, with a total of
11 classes of activities from both locations.

• L2L3Zone1: The dataset contains data from locations 2 and 3 for Zone 1, with a total of
11 classes of activities from both locations.

• L1L2L3Zone1: The dataset contains data from locations 1, 2, and 3 for Zone 1, with a
total of 15 classes of activities from three locations.
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Table 3.2: Test cases of (Figure 3.1)

Test case Dataset Test case description
The relationship between the activity’s location and the detection accuracy

Test-1.1 Zone 1 (L1L2Zone1, L1L3Zone1,
L2L3Zone1)

To check the co-relation between
zones and locations when we move
horizontally or vertically from Tx
towards Rx

Test-1.2 Zone 2 (L1L2Zone2, L1L3Zone2,
L2L3Zone2)

Test-1.3 Zone 3 (L1L2Zone3, L1L3Zone3,
L2L3Zone3)

Test-1.4 Location wise combination
Location1-Z1Z2Z3, Location2-
Z1Z2Z3, Location3-Z1Z2Z3)

To check localisation overall accuracy
Test-2.1 Combined location and Zones

(L1L2L3−Zone123)
To check the localisation accuracy
of all the activities within Room

• Location1-Z1Z2Z3 The dataset contains data from Zones 1, 2, and 3 for location 1, with
a total of 19 classes of activities from three locations.

• L1L2L3-Zone123 The dataset contains data from all areas, with a total of 43 classes of
activities from nine locations.

3.2.4 Data Pre-processing and Machine Learning

This section provides an overview of the data preprocessing and ML approaches that have been
designed and implemented.

Data Preprocessing

In this chapter, we use Scikit, a popular Python data analysis toolkit [213], and Pandas, a Python
library for parsing CSV files and converting them into data frames for analysis with Scikit-
learn [73]. Data frames are labeled, and we address not a number (NaN) values, resulting from
packet mismatches between USRP devices, by replacing them with the row mean using Scikit’s
‘SimpleImputer’ function. This data cleansing step ensures the integrity of the overall data
pattern before applying ML algorithms.

Machine Learning

The evaluation of the proposed Indoor localisation system for HAR is conducted using seven
different ML algorithms, focusing on the accuracy of localising various human activities. In our
experiment, we measure the performance of each algorithm using the accuracy metric, calcu-
lated independently for each test case dataset. To ensure a comprehensive analysis, we employ
two approaches: (i) k-fold cross-validation and (ii) the train-test split method.



CHAPTER 3. NON-INVASIVE LOCALISATION USING SDR 34

K-fold cross-validation, a widely used technique in ML, involves dividing the dataset into
k groups for testing the efficacy of the ML approach [71]. In this experiment, we set k to 10,
meaning the dataset is split into 10 groups. Each group serves once as the testing set while the
remaining 9 groups are combined to form the training set. This process is repeated for each
group, and the classification results from all groups are used to evaluate the performance across
the entire dataset. The train-test split technique, on the other hand, divides the dataset into
separate training and testing sets. Here, the ML model is trained using the training data and then
makes predictions on the testing data. This method allows the algorithm to apply what it has
learned from the training data to unseen data. In our study, we allocate 80% of each dataset for
training purposes and reserve the remaining 20% for testing. The specific parameters used to
configure the algorithms are detailed in Table 3.3.

Table 3.3: The parameters of machine learning algorithms.

Algorithm Hyper-parameters N estimator
Support Vector Machine Kernel = rbf and sigmoid gamma=‘scale’
K-Nearest Neighbors Euclidean distance and K = 3,7 n-repeat = 3
Bagging max-features, default= 1.0 n-estimators=20
Random Forest max-features: [‘auto’, ‘sqrt’] n-estimators=20
Extra Trees max-features = auto, sqrt n-estimators=20
Super Learner multi-threading n-estimators=20

3.3 Results and Discussion

This section presents and discusses the results of the test cases shown in Table 3.2.

3.3.1 Test-1.1

The results of Test-1.1 are shown in the below Table 3.4. These results show the relationship
between localising and identifying activities across the horizontal zones of:

• L1Zone1 and L2Zone1

• L1Zone1 and L3Zone1

• L2Zone1 and L3Zone1

In Test-1.1, the super learner (SL) algorithm consistently demonstrated the highest accu-
racy across all three experiments. Notably, the experiments involving L1Zone1 and L3Zone1
showed the most impressive accuracy scores with all the algorithms, surpassing the results from
L1Zone1 and L2Zone1, as well as L2Zone1 and L3Zone1. The SL algorithm, in particular,
achieved a remarkable accuracy score of 95.90% in the L1Zone1 and L3Zone1 experiments.
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Table 3.4: ML algorithms comparison using Cross-validation on test case 1.1 in (Table 3.2)

Algorithm L1L2Zone1
Accuracy

L1L3Zone1
Accuracy

L2L3Zone1
Accuracy

Multilayer Perceptron 66.87% 73.42% 72.70%
Support Vector Machine 74.28% 84.71% 79.40%
K- Neighbors Classifier 78.70% 84.95% 82.25%
Bagging Classifier 79.56% 86.38% 82.68%
Random Forest 80.95% 87.60% 84.44%
Extra Trees 86.00% 92.93% 89.08%
Super Learner 87.27% 95.90% 91.12%

These findings suggest that the ability of the algorithms to distinguish between different loca-
tions improves when there is a greater spatial separation between them. This improvement is
likely attributed to the more significant fluctuations in CSI as the distance from the transmitter
increases. In contrast, locations situated closer to each other exhibit less variation in CSI fluc-
tuations, yet the algorithms, especially the SL algorithm, still attain high accuracy levels. This
indicates the effectiveness of the SL algorithm and others in accurately detecting and differen-
tiating activities in various indoor locations, despite the proximity of these locations to each
other.

3.3.2 Test-1.2

The results of Test-1.2 are shown in the below Table 3.5. These results show the relationship
between localising and identifying activities across the horizontal zones of:

• L1Zone2 and L2Zone2

• L1Zone2 and L3Zone2

• L2Zone2 and L3Zone2

Table 3.5: ML algorithms comparison using cross-validation on test case 1.2 in (Table 3.2)

Algorithm L1L2Zone2
Accuracy

L1L3Zone2
Accuracy

L2L3Zone2
Accuracy

Multilayer Perceptron 68.76% 87.59% 88.17%
Support Vector Machine 82.92% 82.22% 92.93%
K- Neighbors Classifier 85.98% 85.56% 90.84%
Bagging Classifier 85.58% 87.77% 90.47%
Random Forest 86.54% 87.81% 91.87%
Extra Trees 91.69 % 91.60% 95.07%
Super Learner 95.54 94.23% 96.36
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The results from Test-1.2 demonstrated the most accurate outcomes in the experiment for
L2Zone2 and L3Zone2. In these specific trials, the SL algorithm outperformed other methods,
achieving the highest accuracy rate of 96.36% in both L2Zone2 and L3Zone2. These results
suggest that as the subject moves farther from the transmitter, the fluctuations in CSI become
more pronounced in the nearby locations. This pattern highlights the effectiveness of the SL al-
gorithm in accurately detecting position changes based on CSI variations, especially in scenarios
where the subject is at a greater distance from the transmitter.

3.3.3 Test-1.3

The results of Test-1.3 are shown in the below Table 3.6. These results show the relationship
between localising and identifying activities across the horizontal zones of:

• L1Zone3 and L2Zone3

• L1Zone3 and L3Zone3

• L2Zone3 and L3Zone3

Table 3.6: ML algorithms comparison using cross-validation on test case 1.3 in (Table 3.2)

Algorithm L1L2Zone3
Accuracy

L1L3Zone3
Accuracy

L2L3Zone3
Accuracy

Multilayer Perceptron 56.65% 71.88% 77.91%
Support Vector Machine 74.61% 82.58% 85.62%
K- Neighbors Classifier 77.61% 84.16% 84.64%
Bagging Classifier 80.37% 84.68% 85.65%
Random Forest 81.33% 86.21% 88.35%
Extra Trees 82.27 % 87.22% 90.45%
Super Learner 85.00% 92.27% 93.18%

The results from Test-1.3 align with those of Test-1.2, indicating that as the subject moves
further from the transmitter, the CSI fluctuations become more pronounced in adjacent loca-
tions. This pattern is evident in the L2Zone3 and L3Zone3 experiments. In these tests, all algo-
rithms demonstrated improved accuracy, with the SL algorithm achieving the highest accuracy
of 93.18%, surpassing the performance of other algorithms.

3.3.4 Test-1.4

The cross-validation results of Test-1.4 are shown in the below Table 3.7. These results show
the relationship between localising and identifying activities across the vertical zones of:

• Location1Z1, Location1Z2 and Location1Z3
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• Location2Z1, Location2Z2 and Location2Z3

• Location3Z1, Location3Z2 and Location3Z3

Table 3.7: ML algorithms comparison using cross-validation on test case 1.4 in (Table 3.2)

Algorithm Location1-
Z1Z2Z3
Accuracy

Location2-
Z1Z2Z3
Accuracy

Location3-
Z1Z2Z3
Accuracy

Multilayer Perceptron 47.07% 64.46% 82.81%
Support Vector Machine 66.66% 75.45% 91.08 %
K- Neighbors Classifier 66.66% 69.00 % 91.08 %
Bagging Classifier 71.66 % 76.65% 89.46%
Random Forest 75.66 % 78.66% 91.14%
Extra Trees 77.00 % 83.36% 93.66%
Super Learner 81.66 % 86.66% 96.66%

The results from Test-1.4 provide further evidence supporting increased accuracy as the dis-
tance between the subject and the transmitter grows, corroborating the results observed in Test-
1.2 and Test-1.3. Notably, the experiments conducted at Location3Z1, Location3Z2, and Loca-
tion3Z3 during Test-1.4, as well as in the previous tests of Test-1.2 and Test-1.3, demonstrated
the highest accuracy levels. In these tests, the SL algorithm consistently outperformed other
algorithms, achieving an accuracy of 96.66%. Consequently, the dataset from Location3Z1,
Location3Z2, and Location3Z3 has been selected for further analysis using the train-test split
technique. The results obtained through this technique are presented in Table 3.8.

Table 3.8: ML algorithms comparison using train test on test case 1.4 in Table 3.2

Algorithm Location3-
Z1Z2Z3
Accuracy

Precision Recall F1 score Time (sec)

Multilayer Perceptron 66.00% 67.00% 67.00% 68.00 % 0.68
Support Vector Machine 91.66% 92.00% 91.00 % 91.00 % 0.77
K- Neighbors Classifier 89.66% 91.00 % 90.00 % 90.00 % 0.09
Bagging Classifier 88.87 % 89.00% 89.00% 88.00% 31.93
Random Forest 90.66 % 91.00 % 91.00 % 91.00 % 1.07
Extra Trees 94.33 % 95.00% 94.00 % 94.00 % 1.32
Super Learner 95.33 % 95.00% 95.00 % 95.00 % 1.50

In the train-test split results, the SL algorithm emerged as the superior performer among
all algorithms, achieving an impressive accuracy of 95.33%. This was closely followed by the
Extra Trees (ET) classifier, which secured an accuracy of 94.33%. The Support Vector Machine
(SVM) and Random Forest algorithms also showed commendable results with accuracies of
91.66% and 90.66% respectively. As depicted in Figure 3.4, Bagged Trees and the K-Nearest
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Neighbors (KNN) algorithm recorded the lowest accuracies, with scores of 88.87% and 89.66%
respectively. Notably, the Multi-Layer Perceptron (MLP) demonstrated the least satisfactory
performance, achieving an accuracy of only 66%.

Figure 3.4: Accuracy and time comparison of the tested machine learning algorithms on test
case 1.4 in Table 3.2.

Figure 3.5 shows the confusion matrix of the results achieved using the train-test split tech-
nique for the SL algorithm.

Figure 3.5: The confusion matrix of the SL algorithm on test case 1.4 Location3-Z1Z2Z3 (see
Table 3.2) shows how the algorithm classified each sample of data.

3.3.5 Test-2.1

In this chapter, the main contributions are showcased in the results of Test-2.1. The initial exper-
iment encompasses data from all locations and zones. To provide a comprehensive comparison,
two additional experiments were conducted. The first of these focuses on all zones within lo-
cations 1 and 3, while the second examines all zones in locations 2 and 3. The accuracy of



CHAPTER 3. NON-INVASIVE LOCALISATION USING SDR 39

each algorithm used in these experiments is detailed in Table 3.9, offering a clear view of their
performance across different scenarios.

Table 3.9: ML algorithms comparison using cross-validation on test case 2.1 in (Table 3.2)

Algorithm Accuracy L1L2L3 −
Zone123

Accuracy
L1L3−Zone123

Accuracy
L2L3−Zone123

Multilayer Perceptron 57.44% 68.00% 71.00%
Support Vector Machine 62.33% 70.15% 76.97 %
K- Neighbors Classifier 63.66% 71.66% 72.57%
Bagging Classifier 68.66% 75.90% 76.66%
Random Forest 68.15% 77.12% 75.60%
Extra Trees 76.11% 82.27 % 81.97%
Super Learner 79.00% 85.60% 85.60%

The SL algorithm demonstrated a high proficiency in identifying activities and locations with
a 79% accuracy rate, outperforming other experiments. This superior performance is attributed
to its integration of multiple classifiers, including SVM, KNN, Bagged Trees, Random Forest,
and Extra Trees. This result aligns with the outcomes observed in previous test cases. Addition-
ally, the SL algorithm maintained its status as the top performer in other experiments conducted
in Test-2.1.

3.4 Summary

This chapter presents an indoor localization system that employs RF sensing technology to clas-
sify seven distinct activities within a room. The system is engineered to accurately locate activi-
ties, identify the nature of these activities, and determine room occupancy achieved through the
use of non-contact RF sensing methods, thus eliminating the need for wearable devices. A sig-
nificant highlight of this study is the exceptional performance of the super learner classifier, an
ensemble of multiple algorithms, demonstrating a notable increase in activity detection accuracy
with the distance from the transmitter. Specifically, the findings include a 3% improvement in
horizontal accuracy and a 14% enhancement in vertical accuracy per meter. Further study linked
to research that underscores the benefits of utilising Wi-Fi CSI over traditional vision-based
systems, which are often invasive to privacy. The referenced study emphasizes Wi-Fi CSI’s
cost-effectiveness and seamless integration with existing infrastructures. Through experiments
involving the collection of CSI data via USRP, the research evaluates different deep learning
models such as CNN, LSTM networks, and a hybrid LSTM-CNN approach, in the context of
accurate activity detection.



Chapter 4

Advances in Human Activity Recognition:
A Deep Learning Approach with Flexible
and Scalable Software-Defined Radio

This chapter explores the growing field of ambient computing, particularly its application in
healthcare technology advancements. It focuses on the use of Wi-Fi CSI for non-intrusive human
activity recognition in an indoor environment. The study highlights the advantages of Wi-Fi CSI
over traditional, privacy-invasive vision-based systems, emphasizing its cost-effectiveness and
ease of integration with existing infrastructure. Through experiments using universal software-
defined radio to collect CSI data, the research assesses various deep learning approaches, in-
cluding CNN, LSTM, and a hybrid model, for accurate activity detection. LSTM is identified as
the most accurate model, promising future exploration in multi-user environments and dynamic
settings.

4.1 Introduction

In recent years, there has been a growing interest in human activity recognition (HAR) due to the
increasing need to monitor human behavior and activities indoors. This surge has led to various
applications, including assisting individuals with health conditions, sports, augmented reality
treatments, and a focus on preventing falls among the elderly and disabled. HAR systems can be
categorized into three main types based on the sensors used to collect data on human behavior:
radio frequency (RF)-based systems [23], wearable sensor-based systems [214], and vision-
based systems [215]. RF-based approaches have gained attention for capturing changes caused
by human activity. These systems work on the principle that RF signals bounce off human bodies
and cause fluctuations in ambient RF signals. Unlike vision and wearable sensor-based systems,
RF-based systems don’t require users to wear sensors and address privacy concerns. They are
especially useful for recognizing indoor activities in healthcare [23, 216]. Radar-based HAR
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systems offer high bandwidth and precise spatial resolution, making them suitable for detecting
fine-grained human activities [217]. However, their expensive hardware limits their widespread
use. On the other hand, HAR systems using Wi-Fi don’t require specialized hardware and can
be easily integrated into existing Wi-Fi setups [218].

The widespread use of Wi-Fi routers at home has made it possible to use the received signal
strength indicator (RSSI) and channel state information (CSI) for environmental sensing. This
study explores the potential of using Wi-Fi CSI with deep learning (DL) for HAR. A Wi-Fi CSI
and DL-based system could enhance security by detecting individuals in complete darkness,
identifying falls in elderly individuals, recognizing suspicious activities, and triggering timely
assistance. However, RSSI is unstable, varies between individuals [15], and can’t detect signal
fluctuations caused by human activities when users aren’t precisely positioned between an ac-
cess point and a Wi-Fi router. In contrast, CSI provides detailed data [219], including amplitude
and phase distortions at different frequencies. It can identify human activity by analyzing ampli-
tude fluctuations in RF signals within the Wi-Fi context [220]. This chapter aims to collect CSI
data from a single person performing various activities in different parts of a room. Two univer-
sal software radio peripheral (USRP) devices, one acting as a transmitter (Tx) and the other as a
receiver (Rx), are used for this purpose. Changes in CSI amplitude can distinguish between ac-
tivities, enabling the recognition of human activity based on RF signal changes. DL algorithms,
including long short-term memory (LSTM), convolutional neural networks (CNN), and LSTM-
CNN hybrids, are employed to classify six different activities in a single room. An additional
class is introduced to detect an empty room. This study’s contributions lie in the effective use
of DL algorithms to accurately identify six distinct activities in an indoor environment based on
CSI data collected from USRP devices.

4.2 Data and Methods

This section presents the experimental setup used to collect CSI data from contactless sensing
devices for HAR. Additionally, it includes information on the techniques employed for data
collection and pre-processing.

4.2.1 Data Collection

The data collection in this experiment involved two USRP devices positioned at opposite corners
of a room, as shown in Figure 4.1, to transmit Wi-Fi signals and receive CSI. A participant
performed various activities for data capture. The transmitting device (Tx) operated at 3.75 GHz
with 64 OFDM sub-carriers at a 70dB gain and the receiver (Rx) at 50 dB. Data capture was
managed through a GNU radio flow diagram converted to a Python script. Each data packet
contained Tx,Rx, and CSI information. Figure 3.3 depicts six activities and an empty class,
analyzed through CSI amplitude, with each sub-carrier color-coded for activity identification.
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Figure 4.1: Experiment setup diagram.

The study collected 700 samples, each a three-second OFDM transmission with 1200 packets,
distributing 100 samples across each activity.

In the preprocessing step of our study, we organised data to facilitate algorithmic process-
ing, replacing missing values ‘NaN’ with the mean to maintain data integrity. Using Python’s
‘scikit’ library and ‘pandas’ package, we processed raw data from CSV files and analysed them
with ‘Scikit-learn’. Dimensionality reduction was achieved using PCA’s ‘fit-transform’ method,
complemented by feature selection through ‘selectKBest’ and ‘ANOVA f-test’. We applied a
Butterworth filter using the ‘butter(1, 0.05)’ function for signal processing. Label encoding was
implemented on the categorical values in the first column of data frames for efficient integration
in Deep Learning algorithms. The output, CSI data represented as complex numbers, was pro-
cessed to extract amplitude information and converted into CSV files for algorithm training and
testing. This entire process, including the data flow for the seven activity classes, is depicted in
Figure 4.2.

Figure 4.2: Data flow diagram depicting human activity captured as CSI & compiled into a
dataset for classification.
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4.2.2 Human Activity using Deep Neural Networks

Deep learning methods are increasingly used to automatically extract features from CSI im-
pacted by various activities. Although multi-layer neural networks enhance classification accu-
racy, they risk overfitting and performance decline with limited data. Traditional solutions like
adjusting learning rates, reducing batch sizes, and weight decay often fall short in addressing
these issues. Consequently, WiFi-based systems require a tailored number of neural layers for
optimal performance. Our study employed DL models optimised for small datasets, offering
both effectiveness and reduced processing time.

Human Activity using LSTM

This chapter employed LSTM networks, a type of artificial RNN, recognized for their efficacy
in handling time-series data, as suitable for our context per [221, 222]. The LSTM’s primary
role was to extract CSI values and reduce noise. We fed the raw CSI amplitude from each of the
64 subcarriers into a 64-dimensional feature vector. The network’s hidden layer was configured
with dimensions (20,50) and utilized the ‘tanh’ activation function. Optimisation was achieved
using the Adam optimizer, with parameters set at a batch size of 64, a learning rate of 0.01, and
a decay rate of 1e−6. A key advantage of using LSTM in our classification task was its ability
to directly learn from raw series data, obviating the need for manual feature engineering and
providing greater flexibility for domain experts.

Human Activity using CNN

CNN is one of the most popular DL architectures due to its ability to automatically extract deep,
high-dimensional features as compared to just a few shallow ones [223, 224]. We contend that
CNN and LSTM are compatible DL techniques based on the work [225]. Although LSTM
is better suited for time-domain analysis and responds better to short-duration movement, CNN
focuses primarily on changes in the frequency domain and has a greater reaction to long-duration
movement. The size of the hidden layers was maintained at (20,32), the maximum pooling size
was set at (3,1), and the activation is ‘tanh’. At this stage, we can make the final classification
prediction in the output layer by adopting the general CNN design principle.

Human Activity using LSTM-CNN

The LSTM, a variant of RNNs, excels in handling continuous temporal relationships, making it
suitable for time series processing. Meanwhile, CNNs are adept at reducing frequency domain
changes and extracting spatial features, as detailed in [226]. In our approach, we integrate the
advantages of both LSTM and CNN into a single LSTM-CNN model. This study highlights
that various LSTM configurations yield differing results with CSI data as input. We compare
the LSTM and LSTM-CNN models specifically for human activity recognition. The LSTM
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Table 4.1: Hyper-parameters of deep learning algorithms

S.No Algorithms Hyper Parameters
1 LSTM optimizer=‘adam’, Activation = tanh, lr=(0.1,0.01), decay= 1e−6,

epochs=(20,50), hidden-layer-size=(20,50), Dropout=0.2 , batch-
size=32, connected-layer-activation:‘softmax’

2 CNN optimizer=‘adam’, Activation = tanh, lr=(0.1,0.01),
loss = ‘binary-crossentropy’, hidden-layer-size=(20,32),
epochs=(20,50), batch-size=32, Max-pooling-size = (3,1),
connected-layer-activation:‘softmax’

3 LSTM-CNN optimizer=‘adam’, Activation = tanh, lr=(0.1,0.01), loss =
‘binary-crossentropy’, epochs=(20,50), LSTM hidden-layer-
size= (20,50), CNN hidden-layer-size= (50,32), Max-pooling-
size = (3,1)

layer first processes the input, using signal fluctuation changes to gather data and extract time-
domain characteristics from the initial signal. This is followed by the application of a 1D-CNN
layer to the LSTM’s output. Through convolution, this layer extracts high-dimensional implicit
features. These features are then refined by a maximum pooling layer, which helps in forming
an optimal feature sequence that serves as the basis for final classification. The LSTM-CNN
model’s specifications, including LSTM hidden layer sizes (20,50), CNN hidden layer sizes
(50,32), 1D max-pooling sizes (3,1), and activation functions ‘tanh’ and ‘softmax’, are detailed
in Table 4.1.

4.3 Result

4.3.1 Deep Learning Parameters and Evaluation Metrics

In this section, we evaluate the model’s performance for multi-classifications using several met-
rics, including accuracy, loss, and confusion matrices. In the experiment, 700 samples of data
were collected for training and testing, comprising two groups of static data (Empty and No
activity) and 500 samples of dynamic data (sitting, standing, leaning forward, and walking in
two directions).

The three important parameters in DL are the number of epochs, which dictates how many
times the model processes the entire training dataset; the batch size, which determines how
much training data to process before updating the model’s internal parameters; and the learning

rate, which governs the amount of change in the model weights following an estimated error
update. Our experimental results indicate that modifying the batch size to 32 and reducing
the vector learning rate to 0.01 gives a noteworthy enhancement in the network’s classification
performance.
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Our results show that vector selection is important to network performance and that hyper-
parameter optimization can increase classification accuracy. Table 4.2 shows that after 50 iter-
ations of varying experimental conditions, the rate of change shows minimal variation while
keeping a training size of 0.80. The Keras DL library supports the ‘scikit-learn’ module’s
make_multilabel_classi f ication() function and utilises the ‘ReLU’ and ‘softmax’ activation
functions in the hidden layer.

Table 4.2: Classification accuracy of deep learning algorithms

S.No Algorithms Accuracy F1 Score Precision Recall
1 LSTM 95.3% 0.78 0.82 0.74

2 LSTM-CNN 91.0% 0.60 0.85 0.46

2 CNN 86.5% 0.20 0.40 0.14

4.3.2 Comparison with other Models

To evaluate the classification performance, we compared the LSTM network with that of the
LSTM-CNN and CNN networks. Both of them use the TensorFlow library in the Python en-
vironment, and the number of LSTM hidden layers they employ matches the input data. The
LSTM network has a better classification result, as demonstrated in Figure 4.3. The average
loss value for multi-classification is 12.5%, the average accuracy rate is 95%, and all indices
outperform LSTM-CNN which has 91%, and CNN which has 86%. The average loss values
for LSTM-CNN and CNN are 20.3% and 27.3% respectively. The learning rate and epochs are
slightly changed, leading to accuracy degradation, as shown in Table 4.3. In conclusion, com-
pared to other algorithms in the same family, the suggested LSTM network provides a straight-
forward, effective, and highly accurate approach for recognizing seven different activities.

Table 4.3: Learning rate vs. epochs.

epochs= 50 learning rate = 0.01 learning rate = 0.1

Algorithms Accuracy Loss Accuracy Loss
LSTM 95.3% 12.5 93.4% 14.7
LSTM-CNN 91.0% 20.3 75% 1.85
CNN 86.5% 27.3 77% 1.59
epochs= 20 learning rate = 0.01 learning rate = 0.1

Algorithms Accuracy Loss Accuracy Loss
LSTM 93.5% 11 89.4% 23
LSTM-CNN 88% 23 74% 1.38
CNN 84% 31 74% 1.61
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Figure 4.3: Comparison of deep learning Algorithms.

4.3.3 Discussion

The confusion matrix of the final results of the LSTM, CNN, and LSTM-CNN models on multi-
classifications is shown in Figure 4.4. The classification performance generated by the "empty"
and "standing" activities is optimal. However, the classification performance of "walking" is
poor. It is evident that certain "walking" actions are subdivided into "forward and backward,"
most likely because the two signals don’t have clear classification criteria and have more compa-
rable amplitude and frequency. Overall, the classification accuracy rate remains steady at above
95%, indicating a positive classification performance.

4.4 Summary

In this chapter, we have conducted a comprehensive study comparing the effectiveness of LSTM,
CNN, and LSTM-CNN network models in radio frequency-based indoor human activity recog-
nition using channel state information data. The focus of our research was to recognize seven
distinct activities within a single-room environment. Our results demonstrate that radio fre-
quency sensing serves as a reliable and contactless method for human activity recognition. Key
steps in our methodology included preprocessing the data, extracting relevant features, and im-
plementing a robust system for CSI data collection. Among the models tested, the LSTM model
exhibited superior classification accuracy. It was particularly effective in extracting hidden fea-
tures from the CSI data, thereby enhancing the performance of activity recognition. These
results underscore the significance of our approach in advancing the field of human activity
recognition, particularly highlighting the potential of radio frequency sensing as a tool for in-
door activity recognition.
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(a) Normalised confusion matrix of LSTM (b) Normalised confusion matrix of CNN

(c) Normalised confusion matrix of LSTM+CNN

Figure 4.4: The deep learning model’s normalized confusion matrix for multi-classification.



Chapter 5

AI-Enhanced Transparent RFID Tag
(TRT-Wall) for Assisted Living

This chapter discusses the challenges faced by current assisted living technologies, which are of-
ten seen as complex, expensive, and intrusive. These characteristics can lead to a lack of practi-
cality and acceptance among users. However, with the development of artificial intelligence and
advances in wireless technology, there’s a great chance to make assisted living systems better.
Such improvements could help reduce healthcare costs and the need for hospital stays by more
efficiently spotting, tracking, and pinpointing dangerous activities, allowing for quick action in
emergencies. To address these issues, we present an innovative system called the Transparent
RFID Tag Wall (TRT-Wall). This new system uses a passive ultra-high-frequency (UHF) RFID
tag array along with deep learning methods to monitor human activities in a contactless man-
ner. The TRT-Wall has undergone thorough testing for five different activities: sitting, standing,
walking in both directions and being inactive. The experiments have shown very promising
results, with the TRT-Wall being able to identify these activities with an impressive average ac-
curacy of 95.6%. These findings suggest that the TRT-Wall, as a non-intrusive assisted living
system, offers significant promise for improving assisted living conditions for the elderly.

5.1 Introduction

Human activity recognition plays an important role in enabling remote health monitoring for
elders desiring to live independently at home. With an aging population, there’s a growing need
for assistance among individuals seeking to preserve their autonomy, as highlighted by United
Nations estimates [227]. These estimates predict a decrease in the ratio of individuals aged 15
to 64 to those over 65 from 7:1 in 2020 to 4:1 by 2050, indicating a global elderly population of
approximately 2 billion by 2050 [228]. This demographic trend suggests a looming workforce
shortage in elderly care, emphasizing the importance of AAL research [229]. AAL incorporates
various technologies to support caregivers, addressing challenges like limited mobility, chronic
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disease monitoring, reducing social isolation, and managing medication services [230]. The col-
lected medical data from these technologies is essential in the context of the growing demand for
technology-driven healthcare solutions, particularly for disabled patients in indoor environments
[231].

In recent years, human activity has been recognized using camera systems or on-body sen-
sors such as infrared, accelerometers/gyroscopes, and FMCW radar [232, 233]. However, these
systems face challenges [234, 235]. For example, camera-based monitoring can encounter issues
like occlusion, restricted perspective, low lighting and frame resolution, and high computational
demands for video processing. Privacy is also a major concern with these systems, although
studies indicate a willingness among the elderly to trade some privacy for increased autonomy
[234]. Moreover, wearable sensors can be burdensome during activities like sleep or physical
exercise, and there’s a risk of users forgetting or losing interest in wearing them [113]. As an
alternative, contactless (tag-free) sensors using TriSense technologies offer benefits such as en-
hanced privacy and better performance in complex indoor environments with various obstacles
and moving objects, which create multiple signal paths [210]. While radar-based solutions with
large antenna systems and wide bandwidths have been successful in accurate, real-time activity
monitoring, they are often expensive, power-hungry, and not widely accessible [236]. A more
economical option is to use UHF RFID readers in combination with battery-less and compact
RFID tags.

RFID technology is a practical and cost-effective solution for remotely monitoring elderly
healthcare [237]. Its benefits include low cost, compact size, scalability, shareability, and
battery-free operation [238]. Recent advances have produced inexpensive, highly sensitive
passive tags with read ranges exceeding 10m, supporting their use as an economically viable
solution for pervasive healthcare [231]. The emergence of ‘tag-free’ sensing, which employs
contactless technology instead of attaching tags directly to the human body [239], presents a
potential solution for AAL challenges [240]. This approach is less cumbersome and invasive
for recognizing fundamental activities like standing, sitting, running, and walking, which are
essential for well-being. These systems retrodict target objects or events by analyzing signal
characteristic changes, such as RSSI and phase shift. Commonly, coarse-grained measurements
of RSSI and phase value are used for sensing [111], but accurate results for indoor AAL and
positioning require consideration of factors such as obstacles causing non-line-of-sight (NLOS)
conditions, signal weakening due to rapid fading, and multipath effects from indoor construc-
tion materials, along with climate changes impacting signal propagation speed. These factors
collectively affect the accuracy and reliability of AAL and positioning systems in indoor envi-
ronments.

This chapter introduces a monitoring system that uses COTS UHF RFID technology, oper-
ating within the frequency range of 860 to 950 MHz. The main goal is to develop intelligent
walls equipped with RFID tag arrays on each side to distinguish five distinct human activities:
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sitting, standing, walking in two directions, and no-activity. Our proposed TRT-Wall system
hypothesizes that the presence and movement of the human body within the radio field will
result in recognizable RFID signal patterns due to attenuation, diffraction, reflection, and multi-
path effects. Notably, the TRT-Wall approach enables monitoring the daily activities of elderly
patients using pseudo-localization, reusing low-cost printed RFIDs and existing RFID readers
for indoor activity recognition. Additionally, it ensures simple deployment using COTS RFID
readers, requiring only a single UHF reader with a single antenna.

Specific contributions to this chapter are:

1. We propose TRT-Wall that uses contactless UHF RFID tags for sequential and simultane-
ous activity detection. Specifically, we collected a dataset for four different activities i.e.,
including sitting, standing, and walking (forward and backward).

2. The propose TRT-Wall leverages RSSI and phase data fluctuations for activity localization.

3. We perform an extensive evaluation of the collected dataset to determine the walking
direction (i.e., forward or backward).

4. We calculate the speed of the moving object in order to establish a relationship between
detection and activity location.

5.2 Data and Methods

This section presents the methodologies and materials used for collecting information through
an experimental setup, which involved creating multiple test scenarios before applying machine
learning (ML) and deep learning (DL) techniques for predictive analytics. The hardware and
software components that were meticulously organised and utilised to collect RSSI and Phase
information from the RFID UHF passive tags array using reader sensing devices that indicate
human activity are expounded upon in subsections 5.2.1 and 5.2.1. Our proposed methodology
is depicted in Figure 5.1, which comprises four major components that are elaborated upon
below.

5.2.1 Experimental Setup

The experiments presented in this paper were conducted in accordance with ethical approval,
within a 10×10m2 room located in the James Watts South building at the University of Glasgow.
The experimental setup implemented a TRT-Wall structure, typical of a room with dimensions of
1.5× 1.5 m2, which included several metal storage boxes and writing tables, thus offering rich
multipath characteristics and a strong NLoS environment. The TRT-Wall is segregated into five
columns, each consisting of three tags, and three rows, with a total of fifteen tags being utilised.
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Figure 5.1: Data flow diagram: RSSI and phase capture for human activity, dataset compilation
for ML/DL classification.

The circularly polarized antenna was placed at horizontal distances of 2,2.5,3.5, and 4.5 meters
from the center of the TRT-Wall, while the subject was positioned 0.5 meter away from the TRT-

Wall. The height of the antenna was maintained at 0.75 meters above the floor surface while the
subject was instructed to perform activities at designated locations. The only factors involved
in the data collection were the activities and the surrounding environment. The data collection
setup has two components, i.e., hardware and software setup, which are described below.

(a) Experimental Setup (b) Sitting (c) Standing (d) Walking L->R (e) Walking R->L

Figure 5.2: Experimental setup in a mocked room for activity recognition and localisation using
TRT-Wall.

Hardware Setup

The proposed TRT-Wall for the AAL system utilises COTS UHF Gen-2 RFID devices without
any hardware or firmware modifications. The system comprises a UHF passive RFID tag array
and an RFID reader (Impinj R700). The reader operates between 865− 868 MHz using time-
division multiplexing mode, is capable of reading up to 1100 tags per second, and is compliant
with the EPC Class 1 and Gen 2 standard tags. These tags are attached to a board with a size
of 3×5 grid points, where each tag is placed uniformly at 30cm apart, numbered from 1 to 15,
arranged from left to right, and top to bottom. A circularly polarised antenna with dimensions
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of 250 mm × 250 mm × 14 mm and an 8.0dBi gain is connected to the reader. The wavelength
λ is set at 0.34 m, and the RF transmitter power is set to 30dBm. The model training backend
module runs on a laptop with an Intel® Core i7−10850H CPU running at 2.7 GHz, dual-core,
and 16 GB of RAM.

Software Setup

To collect data, the reader’s data collection program is run on a laptop using the Impinj ItemTest
Software1. The process involves the reader interrogating tags repeatedly and capturing RSSI and
phase information from the back-scattered signals. The transmitter then transmits the received
measurements of RSSI and phase information from the tag array through a laptop’s RS232 serial
port in a continuous manner. The streamed readings are received by the backend module and
processed there.

5.2.2 Data Collection and Preprocessing

This section delineates the methodology employed for data collection. Firstly, we expound
upon the various scenarios that were taken into consideration for data collection. This study has
considered four distinctive test scenarios, which are explained below.

Test Scenario 1: One subject performing activities (reader & antenna 2m from subject, subject-
TRT-Wall distance 0.5m).

Test Scenario 2: One subject performing activities (reader & antenna 2.5m from subject,
subject-TRT-Wall distance 0.5m).

Test Scenario 3: Three subjects performing activities (reader & antenna 3.5m from subject,
subject-TRT-Wall distance 0.5m).

Test Scenario 4: Three subjects performing activities (reader & antenna 4.5m from subject,
subject-TRT-Wall distance 0.5m).

Data Collection

This chapter considered three subjects to conduct experiments with varying ages, height, and
weight. To maintain consistency in both training and testing data, the subjects were instructed to
perform four distinct activities, including sitting, standing, and walking (forward and backward)
at their natural pace between the antenna and the TRT-Wall, as depicted in Figure 5.2. Every
subject in the study gave their consent through the signing of an ethical approval form, which
was authorized by the University of Glasgow’s institutional review board. It is important to note

1https://support.impinj.com
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that the data collection was carried out for each scenario, with the subject completing all activi-
ties while being mindful of their proximity to the TRT-Wall and antenna. Each activity having 20
samples, including RSSI and phase information, was collected for each subject. Only one sub-
ject was allowed to perform each activity as simultaneous recognition of multiple subjects was
not the intention of this study. As a result, the data matrix contains information from a total of
15 tags. The data was collected when the subject was at a distance of 2,2.5,3.5, and 4.5 m from
the antenna. It is emphasized that each subject’s role in collecting data was equally valuable
while the inclusion of three subjects aimed to enhance diversity in the collected dataset. A total
of 1200 valid training and testing activity samples were collected in four distinct scenarios, and
each tag was read approximately 30−36 times during a 3-second interval. These collected raw
RSSI and radian are parsed using a Python script to extract relevant information for further pre-
processing before they can be utilised for the training and testing of various ML/DL algorithms.
A summary of the collected dataset is presented in Table 5.1.

Table 5.1: Dataset summary using TRT-Wall: scenarios, subjects, and activities performed.

Activity 4.5 meters 3.5 meters 2.5 meters 2 meters
RSSI Phase RSSI Phase RSSI Phase RSSI Phase

Empty Room 20 20 20 20 20 20 20 20
Sitting 20 20 20 20 20 20 20 20
Standing 20 20 20 20 20 20 20 20
Walking Forward 20 20 20 20 20 20 20 20
Walking Back-
ward

20 20 20 20 20 20 20 20

Data Preprocessing

Data preprocessing is an essential step in analysing raw RSSI data, as it involves cleaning, for-
matting, and transforming the data into a structured format that can be used for further analysis.
As we collected raw data, we used essential mathematical/statistical techniques such as moving
average window and signal processing methods including bandpass, low-pass, and high-pass
filters to concentrate on a certain pattern. Initially, we processed the data using the following
mathematical expression.

Tf
y(k)− y(k−1)

T
+ y(k) = x(k), (5.1)

y(k) =
T

Tf +T
x(k)

Tf

Tf +T
y(k−1) = ax(k)+(1−a)y(k−1). (5.2)

The collected data for each activity was formatted in the form of a 2D matrix, where each row
contained an observation and the columns represented the corresponding RSSI and phase tags.
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To refine and ensure the quality of the data, we applied standard preprocessing functions from
well-known libraries (i.e., Scikit and Pandas). The data for each activity was then stored in a data
matrix with 540 columns of RSSI data (15 tags x 36 columns) when the activity was performed
without any blockages. To ensure robust and unbiased training of ML/DL models, we consider
generating synthetic data using generative adversarial network (GAN) and conditional tabular
generative adversarial network (CTGAN) that helped in standardizing the number of samples
for each activity class [241]. To handle the data, we saved the phase and RSSI data for activity
as separate data files with a frame size of 36 (representing roughly 36 times in three seconds).
During various activities such as sitting or standing, the corresponding tags were either partially
or fully read. To ensure a 36-time tag reading, any missing data for each tag was replaced with
zeros and included in the data matrix. The analysis of collected data revealed that no tag was
read more than 36 times and NaN values were imputed with the mean of each row using the
SciKit built-in SimpleImputer function. Then, we applied the pandas unique functions to divide
the timestamp into seconds and monitored the correct reading of each tag for three seconds.

5.2.3 Activity recognition using RSSI

The use of passive UHF RFID tags in indoor activity localisation for AAL is activated by a
reader employing an air interface protocol such as EPC class1 Gen-2 and ISO-18000-6c for data
transmission and reception [242]. Within the realm of passive tag-based AAL, the RSSI RF
capability can be effectively harnessed with COTS readers. In practical applications, passive
RFID tags furnish the reader with raw data in a 5-tuple format, encompassing RSSI, timestamp,
EPC, TID, and frequency. This raw data is collected from the tags. Nevertheless, the process
of creating an RSSI dataset entails several steps outlined in Algorithm 1. The transformation
required for solving the indoor propagation path loss model, which is utilized in various studies
about RSSI distance transformation, can be derived through a simplified derivation.

Power (distance )dBm = P(d0)dBm−10n log
(

d
d0

)
+XdBm, (5.3)

d = 10
P(d0)dBm−P(d)dBm

10n , ∀ d0 = 1 and XdBm = 0 (5.4)

where P(d0)dBm is received power along the propagation path of relative distance d, and P(d0)dBm

along the propagation path of reference distance d0(1m).
The recognition of AAL was made possible through a series of carefully planned activities,

as illustrated in Figure 5.2. Specifically, five distinct activities were performed in the designated
area in front of the TRT-Wall. For instance, the walking activity was performed from the first
column to the fifth, with the main focus being on columns 3rd and 4th for sitting and standing
activity. Figure 5.3 presents the results of the performed AAL, showing that the RSSI variations
can be used to easily recognise each activity in the same location, with tags being blocked caus-
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Algorithm 1 Pseudo code for RSSI Dataset Creation
Input : filePath, columns, groupCol, valueCol, keys, defaultValue, outputPath
Output: flattened

1 data← Read CSV( f ilePath)
selected← Select Columns(data,columns)
groups← Group Values(selected,groupCol,valueCol)
dict← Create Dictionary(keys,de f aultValue)
for key in groups.keys() do

2 if key in dict then
3 dict[key]← groups[key]
4 end
5 end
6 for values in dict.values() do
7 f lattened← Flatten(dict)
8 end
9 Save Data( f lattened,out putPath)

ing the drop in the RSSI values. Notably, the threshold for RSSI strengths was determined by
observing the maximum and minimum values, which were recorded at −55dbm and −69dbm

respectively. The latter value, −69dbm, was selected as the threshold, taking into account po-
tential instances of non-reading or blocking of tag activity detection. Instances where RSSI data
wasn’t read or an activity wasn’t recognized are indicated by the color green. Specifically, in
Figure 5.3 (a), the RSSI values for an empty room are displayed. Following this, Figures 5.3 (b)
and (c) showcase sitting and standing activities in front of columns 3rd and 4th. Walking patterns
from right to left and left to right are depicted in Figures 5.3 (d) and (e), respectively.

(a) No Activity (b) Sitting (c) Standing (d) Walking L->R (e) Walking R->L

Figure 5.3: Illustration showcasing the diversity of activity recognition data through RSSI dis-
tribution and magnitude analysis.

RSSI-based Walking Direction Analysis

To provide clarity regarding the walking direction, we partitioned the RSSI data for the walking
patterns into one-second intervals and distinguished the data for each second using two distinct
colors, as shown in Figure 5.4. In Figure 5.4 (a), during the 1st second (represented in orange),
the subject began walking from column-1 towards column-5, as indicated by the orange color,
while during the 2nd second (represented in blue), moved from column-2 towards column-5.
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(a) Walking Forward (b) Walking Backward (c) Walking Speed

Figure 5.4: Illustration of walking speed and direction recognition via RSSI method with time
split.

Similarly, in Figure 5.4 (b), during the 1st second, the subject walked from column-5 towards
column-1, with a clear indication from column-5 to column-3, whereas during the 2nd second,
they walked from column-2 to column-1. This partitioning and color-coding approach effec-
tively illustrates the walking direction in the RSSI data.

Walking Speed Estimation

To accurately estimate walking speed, we acquired RSSI measurements at 3-second intervals
and collected data from three subjects for preprocessing to address noise issues and enhance the
precision of speed calculations. This preprocessing step encompasses the removal of outliers,
filtering out unreliable readings, and applying smoothing techniques to mitigate the impact of
measurement fluctuations caused by environmental factors. The calculation of walking speed
involves analyzing changes in the distance over these 3-second intervals, as depicted in Figure
5.4 (c). This speed calculation is performed using a basic geometric formula: v = ∆d

∆t .

5.2.4 Activity Recognition using Phase

The utilisation of RF backscatter enables the signal to traverse a distance of 2d in dual direc-
tions, thereby facilitating the monitoring of human activity through the analysis of RF features’
phase differences using cross co-relationship. The subsequent formula elucidates the correlation
between distance, antenna phase rotation, and tag phase rotation:

θ = (2π
2d
λ

+θAnt +θTag)mod(2π)λ . (5.5)

The phase is a periodic function of 2π radians occurring every λ/2 in the RF communication
distance. The rotations of the antenna and tag phases are described by θAnt and θTag, respectively.

It is essential to assess the precision and discriminatory nature of phase difference calcu-
lations during activity. The significance of this is demonstrated in Figure 5.5, which displays
phase difference patterns during sitting and empty activities in front of columns 3rd and 4th using
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numpy np.corrcoef(x,y). The cross co-relationship function is explained in Algorithm 2. The co-
relationship difference pattern suggests an effective method for modeling activities. The smooth
variation of phase differences across blocking tags during sitting highlights their accuracy and
reliability. The visualisation results indicated that the calculated phase differences are reliable
and sensitive to AAL activity. To quantify the strength of the relationship between two different
activities performed against the same tag (each tag has 36 phase reading values), the following
formula can be used to calculate the correlation coefficient:

rxy =
∑(xi− x)(yi− y)√

∑(xi− x)2 ∑(yi− y)2
, (5.6)

where rxy represent the correlation coefficient of the linear relationship between the tag value
of empty activity and sitting activity tags, xi, yi the values of the empty and sitting activity tags
values whereas x and y denotes the mean of the values respectively.

(a) No Activity (b) Empty-Sitting (c) Empty-Standing (d) Empty-Walking

Figure 5.5: Illustration of activity recognition using phase difference with co-relationship

Algorithm 2 Pseudo Code for Phase Correlation
Input : file paths 1 and 2, header=None, rowIndex, start, end, step, size
Output: correlations list

10 data1 ← Read CSV( f ile path 1,header = None) data2 ← Read CSV( f ile path 2,header =
None) row1 ← extractRow(data1, rowIndex) row2 ← extractRow(data2, rowIndex)
correlations← []

11 for i← start to end by step do
12 subrow1← extractSubArray(row1, i, i+size) subrow2← extractSubArray(row2, i, i+size)

corr← calcCorr(subrow1,subrow2) correlations← append(corr)
13 end

5.2.5 Activity Recognition using FeatureSet

The performance of AI models may be improved significantly by feature engineering. Flexible
features allow for the development of models that are less complicated and easier to maintain,
which leads to better performance. Moreover, feature engineering reduces the amount of time
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required for variable extraction, enabling the extraction of several variables. This research fo-
cuses on processed matrix data, which is made up of rows that indicate activities or occurrences.
There are 540 columns for each activity, with each row including 36 RSSI/phase samples (frame
sizes) that were collected using 15 tags during a 3-second timeframe. The objective is to extract
high-order features from the CSV file that may significantly reduce data dimensions and boost
the robustness and classification accuracy of the system. By combining frequently used statisti-
cal features such as mean, median, mean absolute value, standard deviation, variance, minimum,
maximum, skewness, kurtosis, count, entropy, trimmed mean, trimmed variance, trimmed mini-
mum, trimmed maximum, trimmed standard deviation, trimmed standard error, variation, score
at percentile, and correlation coefficient, the study determines the optimal feature subset for
AAL classification. Figure 5.6 demonstrated activity recognition by highlighting the standard
deviation of empty activity with sitting, empty with standing, and empty with walking.

(a) Empty-Sitting Mean (b) Empty-Sitting Std Dev (c) Empty-Standing Std Dev (d) Empty-Walking Std Dev

Figure 5.6: Illustration of activity recognition using standard deviation on the feature set.

5.3 Evaluation and Results

This section presents the results of four distinct experimental scenarios using four distinct ap-
proaches, each involving different subjects performing various activities, as depicted in Figure
5.2. The evaluation of the experimental results comprises an assessment of both the overall
performance and the impact of reader-subject and subject-tag distances, as well as the type of
activity on the accuracy of the system. Tables 5.2 and 5.3 provide a comprehensive evaluation
that is utilised to assess the system’s robustness.

5.3.1 Artificial Intelligence Model Development

The development of an artificial intelligence (AI) model to provide assistance and support to
individuals with limited mobility or disabilities, allowing them to perform daily activities in a
contactless manner. One of the key challenges in developing an AI model for contactless AAL
is to ensure the privacy and security of the user’s data.
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Table 5.2: Deep learning classification accuracy in multi-distance scenarios.

Subjects 4.5 meters 3.5 meters 2.5 meters 2 meters
RSSI Phase FeatureSet RSSI Phase FeatureSet RSSI Phase FeatureSet RSSI Phase FeatureSet

LSTM Accuracy
1 81.2% 68.3% 75.2% 87.4% 81.2% 62.5% 60.6% 62.7% 74.1% 53.5% 62.9% 69.5%

2 91.6% 75.2% 88.6% 91.8% 87.7% 85.7% 72.4% 68.5% 79.8% 66.8% 66.3% 73.4%

3 93.7% 92.1% 90.3% 95.6% 94.3% 91.6% 76.4% 73.5% 82.4% 70.2% 70.3% 76.4%

CNN Accuracy
1 78.7% 75.3% 78.1% 68.2% 86.6% 81.4% 63.4% 66.5% 61.3% 60.3% 66.5% 70.4%

2 82.3% 81.3% 79.5% 89.5% 88.4% 87.6% 69.3% 67.5% 64.3% 64.8% 70.4% 70.4%

3 89.3% 93.2% 85.7% 93.5% 92.6% 87.5% 76.5% 76.6% 84.4% 73.7% 74.5% 76.3%

LSTM+CNN Accuracy
1 79.6% 75.7% 78.4% 86.6% 68.7% 81.5% 63.4% 66.9% 61.6% 60.5% 66.8% 70.5%

2 81.6% 82.7% 79.4% 88.5% 87.7% 87.6% 67.5% 69.8% 64.3% 64.5% 70.3% 70.7%

3 92.3% 89.5% 85.6% 92.6% 91.7% 87.6% 76.5% 76.5% 84.6% 73.6% 74.6% 76.4%

Table 5.3: Machine learning classification accuracy in multi-distance and multi-subject.

Subjects 4.5 meters 3.5 meters 2.5 meters 2 meters
RSSI Phase FeatureSet RSSI Phase FeatureSet RSSI Phase FeatureSet RSSI Phase FeatureSet

SVM Accuracy
1 80.2% 78.4% 70.5% 85.4% 84.5% 75.6% 76.5% 74.8% 70.6% 66.7% 67.6% 65.5%

2 81.6% 82.7% 73.7% 90.5% 85.7% 81.6% 76.5% 73.6% 72.7% 66.6% 65.5% 63.8%

3 89.4% 89.6% 82.6% 91.6% 89.6% 84.5% 81.5% 83.6% 77.6% 70.4% 72.9% 68.4%

RF Accuracy
1 73.7% 71.6% 71.0% 76.6% 74.2% 73.3% 69.3% 66.9% 65.5% 61.4% 59.4% 63.4%

2 81.2% 73.2% 74.5% 79.3% 81.4% 73.4% 71.8% 66.4% 70.3% 65.5% 63.5% 63.9%

3 81.7% 78.7% 76.3% 90.8% 85.4% 81.4% 78.6% 78.5% 73.5% 67.7% 66.5% 66.9%

DT Accuracy
1 73.5% 70.5% 77.4% 74.7% 75.6% 78.4% 70.5% 63.2% 68.6% 66.3% 60.3% 63.5%

2 77.4% 75.5% 81.4% 79.5% 77.4% 80.5% 73.4% 67.5% 71.6% 65.5% 62.6% 64.6%

3 85.6% 81.3% 85.4% 79.2% 82.3% 82.6% 79.8% 74.7% 76.4% 68.6% 70.8% 66.4%

Data Analysis using DL Models

To assess the efficacy of the system, experiments were conducted on datasets collected from a
scenario-based environment. The front layers of the RSSI and Phase profiles were exclusively
used for all activities. The performance of the system was evaluated through the application
of three distinct DL models, including long short-term memory (LSTM), convolutional neural
network (CNN), and a combination of the two (LSTM+CNN). Before training an LSTM-CNN
network, a series of raw RSSI data was transformed into a stack of matrices with dimensions of
5×3, corresponding to the size of the tag array. The experiment data was simplified by focusing
solely on the 1D layer rather than converting to 3 levels using the timestamp dimension. The
instantaneous RSSI value for each RFID tag was entered into the ith row and jth column of a
matrix. If certain tags failed to provide RSSI readings due to blockage caused by human activity,
the corresponding value defaulted to 0. The processed data was normalized with a mean of 0 and
a standard deviation of 1 before being passed into the network as input. The proposed hybrid
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DL models incorporated a single LSTM layer with a single dropout and flatten layer, while the
CNN model utilised a 1D convolution layer due to the linear data structure. Two equally sized
1D convolutional layers and two identically sized max pooling layers were utilised, with a dense
layer employed between the f latten and output layers. For the third model, fully connected
layers were used to merge the LSTM and CNN models. The optimizer utilised was adam, with
a decay of 1e−6 and a learning rate of 0.01. The activation function was set to tanh. The models
were trained across 50 epochs, with user recognition being addressed as a problem of multi-class
classification. The parameters tracked during the training included accuracy and loss.

Data Analysis using ML Models

In addition to DL algorithms, three classical ML algorithms, namely SVM, random forest, and
decision tree classifier were applied in the current experiments to evaluate the collected dataset.
Accuracy was assessed using a train-test split technique, where predictions were generated using
data that was not used for model training. The data was divided into training and testing subsets,
with a train-test ratio of 0.8, which indicates that 80% of the data was utilised for training, and
the remaining 20% was utilised for testing as mentioned in Table 5.4.

Table 5.4: Hyper-parameters of ML/DL algorithms

S.No Algorithms Hyper Parameters
1 LSTM optimizer= adam, hidden-layers-activation = tanh, lr= 0.01, loss = binary-

crossentropy, batch-size = default, hidden-layer-size(15,50), dropout = 0.2,
out-layer-activation = softmax, epochs= 50

2 CNN optimizer= adam, hidden-layers-activation = tanh, lr= 0.01, loss = binary-
crossentropy, batch-size = default, hidden-layer-size(15,32), max-pooling-
layer-size = (3,1), out-layer-activation = softmax, epochs= 50

3 LSTM+CNNoptimizer= adam, hidden-layers-activation = tanh, lr= 0.01, loss = binary-
crossentropy, batch-size = default, LSTM-hidden-layer-size(15,50), CNN-
hidden-layer-size(15,50), dropout = 0.2,max-pooling-layer-size = (3,1), out-
layer-activation = softmax, epochs= 50

4 SVM degree = 3, gamma = auto, kernel = linear, tol = 0.001, shrinking = true, C =
1.0

5 RF n-estimator = 10, criterion = gini, max-features = auto, min-samples-leaf =
1, minimpuritydecrease = 1e−7,n− jobs = 1

6 ET min-samples-leaf = 1, splitter = best, minimpuritydecrease =
none,criterion = gini

5.3.2 User Recognition’s Overall Performance

To evaluate the effectiveness of user recognition with our collected dataset, we have employed
the k-fold cross-validation technique. This method involves dividing the dataset into k groups
of equal size and randomly shuffling them. In each fold, k-1 groups are used for training the
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model, while the remaining group is reserved for validation. The process is repeated k times,
and the average of the outcomes serves as the final estimate. In this study, we have chosen k=5,
resulting in each fold consisting of eight samples from each user for testing (240 samples total;
20%), while the remaining samples (960 samples total; 80%) are used for training. As a result,
960 samples are used precisely once as validation data after all five folds. The overall results
and normalized confusion matrix are depicted in Figures. 5.7 and 5.8.

Figure 5.7: Comparison of DL and ML algorithms across various scenarios and approaches.

(a) SVM (b) LSTM

Figure 5.8: A normalized confusion matrix of various activities recognition using SVM and
LSTM.

5.4 Discussion

This study assessed six algorithms, namely LSTM, CNN, LSTM+CNN, SVM, RF, and DT, for
contactless RFID human activity recognition across four distinct scenarios, employing three dif-
ferent approaches as detailed in section 5.3. The results revealed that in scenario 1, where the
reader and antenna were 2 meters from the subject and the subject-TRT-Wall distance was 0.5
meters, deep learning algorithms (LSTM, CNN, and LSTM+CNN) outperformed the machine
learning algorithms (SVM, RF, and DT). In contrast, in scenario 2, characterised by noise and
a weak line of sight (LoS) situation, the machine learning algorithms demonstrated performed
better, with SVM achieving the highest accuracy of 83.6%. Moving on to scenario 3, which
entailed a strong NLoS environment, the deep learning algorithms, particularly LSTM, outper-
formed the machine algorithms, boasting an impressive accuracy of 95.6%. In scenario 4, where
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the reader and antenna were positioned 4.5 meters from the subject, the deep learning algorithms
again exhibited better performance, with LSTM achieving the highest accuracy of 93.7%. Cross-
validation further affirmed the reliability of both SVM and LSTM algorithms, yielding average
accuracies of 91.6% and 95.6% respectively, as demonstrated in Figure 5.8. The normalised
confusion matrix underscored the LSTM model’s consistent recognition accuracy, surpassing
91% for all subjects. This observation reinforces the potential of the proposed approach for
practical implementation in user recognition applications, as depicted in the Figures 5.7, 5.9,
and 5.11. Overall, the performance of deep learning and machine learning algorithms for con-
tactless RFID human activity recognition is dependent on the distance from TRT-Wall to the
reader antenna. Deep learning algorithms are better suited for scenarios where there is a need
to capture the temporal dynamics of human activities, while machine learning algorithms are
better suited for scenarios where the data is noisy or the distance is limited.

5.4.1 Ablation Studies

The section systematically investigated key factors influencing RFID-based human activity recog-
nition. It concluded that maintaining a 0.5 meter proximity between TRT-Wall and antenna set-
tings is optimal. Additionally, it highlighted the significance of reducing the number of tags for
more efficient activity data transmission. The study also explored the influence of subject quan-
tity on detection accuracy, revealing a non-linear relationship. Lastly, it emphasized the critical
role of antenna height in optimizing system performance, concluding that a default height of
0.75 meters ensures robust outcomes.

Impact of Distance from TRT-Wall to Antenna Settings

The study adopts the TRT-Wall approach, which employs an array of tags to decouple activity
recognition of subjects. Throughout the experiments, accuracy is measured at different distances
between the antennas and tags, spanning from 2 to 4 meters. The results reveal a statistically
significant correlation between the TRT-Wall distance and the antenna. Notably, a TRT-Wall

distance of 1.0 and 2 meters proximally causes severe distortion in RSSI and Phase waves,
resulting in false positives during recognition. The initial tag distance between the subject and
the TRT-Wall is set at 0.5 meters. Subsequently, the accuracy of activity recognition is further
tested at various subject-to-antenna distances, ranging from 2 to 4.5 meters. The results indicate
that the accuracy decreases with decreasing distance for unobstructed readings and beyond 3.5
m, various factors such as weak signals and the lower reading rate of RFID tags affect accuracy.
To address the impracticality at shorter distances, the proposed study maintains a default setting
of 0.5 meters between tags and subjects. Meanwhile, the distance between the subject and the
antenna is tested at 2,2.5,3.5, and 4.5 meters.
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Figure 5.9: Assessing LSTM accuracy through four different scenarios and approaches.

Impact of Number of Tags

Increasing the number of tags leads to a greater number of reflected signals, broader pathway
coverage, and enhanced data collection for activity detection. Our experiments reveal that a
reduced tag count facilitates efficient coupling and transmission of activity data. By eliminating
two rows containing five tags each, we bring the total tag count down to 15 (arranged in 3 rows
and 5 columns) from the initial 25 (arranged in 5 rows and 5 columns). This reduction not
only provides supplementary information but also enhances activity prediction performance, as
depicted in Figure 5.10 (a) illustrating sitting activity and Figure 5.10 (b) showcasing walking
activity. If the goal is to augment the environmental path complexity, it is advisable to augment
the number of tags in the columns. Additionally, within indoor environments, the incremental
cost of adding more tags is marginal compared to the expense of incorporating additional readers
with antennas [243]. To implement this, our study employs a default configuration comprising
a single circularly polarized antenna and 15 passive UHF tags.

(a) Sitting 3×5 vs 5×5 (b) Walking 3×5 vs 5×5

Figure 5.10: Impact of a number of tags.
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Figure 5.11: A comparison of DL and ML algorithms on Scenario 3.

Impact of Number of Subjects

This section examines how the number of subjects affects performance and concludes that de-
tection accuracy does not increase linearly with the number of subjects, but rather gradually.
Since fewer subjects indicate less variation in user characteristics, this result is consistent with
our expectations. We assess a number of parameters in our study, including RSSI, Phase, and
feature values. When there are three subjects involved, our suggested method has an accuracy
of 96%, but when there is just one subject, it only has an accuracy of 81.20%. Nevertheless,
WiFi-ID [58] and WiWho [62] outperform our method when detecting six subjects at a single
distance using Wi-Fi signals, achieving accuracy levels of 77% and 80%, respectively. As shown
in Table 5.5, RFree-ID [244], TagFall [128], and [245, 246] respectively, achieved high accuracy
levels of 93%, 94%,94%, and 95% for detecting human activities such walking or falling using
RFID. It needs to be noted that it may not be practical or convenient to enable subjects to do
activities at a distance of 4.5 m for proper recognition.

Table 5.5: Analysis of different user activity recognition approaches.

Approach Technology Group Size Antenna Accuracy
WiFi-ID [58] WiFi 6 1 77%
WiWho [62] WiFi 6 3 80%

RFree-ID [244] RFID 5 1 93%
TagFall [128] RFID 1 4 94%

Ruan et al. [245] RFID 1 1 94%
Wenjie et al. [246] RFID 1 4 95%

TRT-Wall RFID 3 1 95.6%

Impact of Antenna Height

This study examines how the performance of RFID tag reading systems is affected by an-
tenna height. The system’s range and precision are significantly influenced by the antenna
height. Raising the antenna height to ensure visibility of all tags enhanced system performance.
Nonetheless, we ran an experiment to examine three different antenna placement scenarios in
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our RFID tag reading system. The first case included mounting the antenna against a 1.5×1.5m2

wall on the ground level. Our research showed that the tags on the top row were not properly
read can reduce the recognition accuracy. Secondly, we then adjusted the antenna height to im-
prove the read range of the system to 0.75 m, which was the centre of the wall and had an LoS.
This was created as it was thought that a small change in antenna height would have essentially
little impact on accuracy. Nevertheless, we noticed a decrease in the tag signal strength when
the antenna height was raised further from 0.75 m to 1.5 m. The reason for this was that the
reader’s signal was insufficiently strong to reach the lower row of tags. According to the findings
of our experiments, maintaining the default antenna height of 0.75 m, or mid-height of the wall,
is necessary to achieve optimal system performance. After experimental verification, it is clear
that the system is robust.

5.5 Limitations and Future Directions

The TRT-Wall approach is a key step toward making it possible to accurately detect indoor
activities without requiring users to wear or carry any RFID tags. However, there are a lot of
opportunities to strengthen the basic TagFree concept in the future.

5.5.1 System Flexibility

The study investigated the precision with which TRT-Wall can detect each subject’s activity.
Nonetheless, it is expected that the system’s scope could expand to monitor multiple subjects
simultaneously owing to the complex subject interactions. This would need more extensive data
pre-processing and analysis. According to our preliminary study, DL algorithms are better at
detecting individual activities than conventional methods. Moreover, the TRT-Wall range is lim-
ited to 12 meters when using a single antenna. This reading range can be extended by installing
larger antenna arrays using an Impinj antenna hub and using many RFID tags as references for
wider coverage.

5.5.2 Model Generalisation

The implementation of our proficient DL model is limited to non-uniform antenna configura-
tions or tag placements. In consequence, the model necessitates retraining to accommodate
heterogeneous environments. An alternative approach for enhancing the predictive outcome in-
volves tuning the model through Federated learning. Federated learning facilitates the training
of the model on various room samples, presuming that certain activities transpire in a partic-
ular sequential order, resulting in a generalized and uniform trained model, adaptable to any
heterogeneous environment
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5.5.3 User Authentication

The ability of the current approach to distinguish between a limited number of activities and user
detection is limited. In the future, it could be possible to get around this limitation by developing
a user identification and recognition model that makes use of strong and complete user attributes
rather than an activity-centric one.

5.6 Summary

This chapter presents a study on using commercial Impinj RFID readers to create TRT-Wall,
a cost-effective, non-invasive, and privacy-preserving user identification mechanism leveraging
multipath signals from various activities. This tag-free model uses a data preprocessing tech-
nique for detailed activity recognition and employs a long short-term memory network to effec-
tively detect activities without tagging targets. Extensive experiments with commercial RFID
devices demonstrate that TRT-Wall surpasses existing methods, achieving average activity iden-
tification accuracy rates of 95.6% with RSSI data, 94.3% with phase difference, and 91.6% with
features, even in multipath-rich environments with up to three subjects. Further extending the
applications of RFID technology, the study introduces an innovative method for fall detection
in elderly individuals using RFID technology, employing passive RFID tags that operate by
querying these tags and analysing the RSSI and phase data. This data is then processed using
a sophisticated transformer model combined with data fusion techniques before comparing the
results with CCNN, RNN, and LSTM networks.



Chapter 6

TFree-FD: Tag-Free Fall Detection in
Indoor Environments using Fusion
Approach with Transformer Encoders

This chapter introduces an innovative method for fall detection in elderly individuals using radio
frequency identification (RFID) technology. This technique offers a convenient and effective al-
ternative to traditional wearable devices, which often cause discomfort and negatively impact
user experience. The proposed system employs passive RFID tags placed in strategic locations
to facilitate unobtrusive monitoring. It operates by querying these tags and analyzing the signal
strength (RSSI) and phase data. The data is then processed using a sophisticated transformer
model combined with data fusion techniques, resulting in enhanced accuracy in both activity
recognition and non-contact fall detection. Remarkably, this method achieves an impressive av-
erage accuracy rate of over 96%, surpassing the effectiveness of other prevalent technologies like
convolutional neural networks (CNN), recurrent neural networks (RNN), and long short-term
memory (LSTM) networks. This high level of accuracy demonstrates the method’s reliability
and its significant potential for real-world application.

6.1 Introduction

Falls are a significant global health concern, particularly among the elderly population. As the
second most common cause of accidental injury after traffic accidents, falls pose a serious threat
to the elderly, leading to injuries, mortality, morbidity, frailty, and disability in individuals over
65 [87, 88]. Statistically, around 30% of the elderly experience at least one fall annually, with
90% of these falls resulting in hip fractures and 60% leading to head injuries [87]. Moreover,
the phenomenon of ‘long-lie’ elderly individuals remaining on the ground for extended periods
post-fall exacerbates risks like pressure sores and hypothermia [89]. In light of these concerns,
the implementation of automatic fall detection systems is crucial, as they significantly reduce

67
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response times for medical assistance, thereby mitigating the impacts of falls [90].
Fall detection methods are broadly categorized into wearable and non-wearable approaches.

Wearable systems integrate sensors like gyroscopes and accelerometers, attached to the body, to
monitor activity changes [91, 92, 93, 94]. Non-wearable methods include visual detection using
cameras, environmental sensor placement, and RFID-based detection [95, 96, 97]. RFID tech-
nology, in particular, has been noted for its affordability and non-intrusive nature. Traditional
RFID systems are tag-based, where activities are tracked by attaching RFID tags to objects or
individuals [111, 112, 113, 114, 115, 116, 75, 117]. However, these systems face limitations in
tracking untagged activities like walking or body rotation. To overcome the constraints of ‘tag-
based’ systems, recent advancements have led to the development of ‘tag-free’ solutions. These
systems utilize multiple stationary RFID tags as reference points, with their signals influenced
by human activities nearby [247, 248, 249]. Deep learning approaches have been employed to
analyze the signal fluctuations caused by activities, offering a more nuanced understanding of
the environment [250, 251, 249]. However, these methods are not without challenges; they are
sensitive to environmental changes and require extensive training data for neural networks.

Introducing our tag-free fall detection TFree-FD system marks a significant advancement
in fall detection technology. This system leverages a passive RFID tag array and a neural net-
work to detect falls more precisely and reliably. By processing raw radian and RSSI data into
spectrum frames, TFree-FD utilizes supervised learning for accurate activity classification, in-
cluding various fall scenarios and normal activities like standing or leaning. The system is built
on a transformer architecture, notable for its efficiency and reduced training time compared to
LSTM and CNN models [252, 253]. This approach not only improves fall detection accuracy
but also holds potential for smart home applications, such as temperature control and gym equip-
ment assistance. Importantly, TFree-FD is compatible with standard RFID readers, making it a
cost-effective and practical solution for indoor activity monitoring.

6.2 Data and Methods

This section presents an extensive overview of the methodologies and materials utilized in the
experimental setup for data collection, specifically aimed at predictive analytics using deep
learning techniques. Before applying these techniques, two test scenarios were designed to
facilitate the data collection process. Subsections ‘hardware setup’ and ‘software setup’ pro-
vide detailed information on the hardware and software components meticulously organized
and employed to capture RSSI and phase information from the RFID UHF passive tags array.
Our proposed methodology, comprising five major components, is illustrated in Figure 6.1, with
each component thoroughly explained in the subsequent sections.
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Figure 6.1: Integrated workflow for intelligent experimentation from experimental setup to
transformer model development.

6.2.1 Experimental Setup

The experimental setup for this study is identical to the one described in Chapter 5, Section
5.2.1, with a focus exclusively on the last two scenarios, which are at distances of 3.5 and 4.5
meters.

Hardware Setup

The hardware setup for this study is identical to the one described in Chapter 5, Section 5.2.1,
are outlined in Figure 6.2.

(a) Reader (b) A5010 Antenna (c) UHF Tag

Figure 6.2: Hardware used in experimental setup

Software Setup

In this study, we processed the collected data and trained our fall detection transformer model
using the TensorFlow 2.0 development platform and the Python programming language on a
laptop. To facilitate this process, we utilized the Impinj ItemTest Software1 to continuously
transmit the collected measurements of RSSI and phase information from the tag array through
the laptop’s RS232 serial port by the transmitter. Figure 6.3 provides a visual representation of
the experimental scene, offering a contextual view of the testing environment.

1https://support.impinj.com/hc/en-us/articles/204059593-Impinj-ItemTest-Software
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(a) Experimental Setup (b) Standing (c) Leaning (d) Normal Fall (e) Walk Fall

Figure 6.3: Experimental setup and fall-related activities scenario.

6.2.2 Data Collection and Preprocessing

In this section, we discuss the methodology applied for data collection, which involved two
distinct test scenarios:

Test Scenario 1: The subject performed activities with the reader and antenna positioned
3.5 meters away from the subject, while the subject-TRG-Wall distance was maintained at 0.5
meters.

Test Scenario 2: The subject performed activities with the reader and antenna placed 4.5
meters away from the subject, and the subject-TRG-Wall distance was also kept at 0.5 meters.
These two carefully selected test scenarios captured different configurations and distances be-
tween the subject, reader, antenna, and the TRG-Wall, aiming to collect data that represented
real-world situations and variations in the experimental setup.

Data Collection

In this study, we conducted an experiment involving three subjects who varied in terms of age,
weight, and height. In the absence of a publicly available RFID-based dataset, we proactively
create our own dataset. To ensure the reliability of our results, each subject performed five dis-
tinct activities: no-activity, standing, leaning, normal fall, and walking fall. These activities were
performed at a natural pace within the designated area between the antenna and the TRG-Wall,
as illustrated in Figure 6.3. During data collection, we took meticulous care to ensure subjects
consistently maintained their proximity to both the TRG-Wall and the antenna. To maintain ex-
perimental control and focus on individual recognition, only one subject performed the activities
at a time, resulting in data from a total of 15 RFID tags. All subjects in the experiment provided
their consent by signing an ethical approval form sanctioned by the institutional review board
of the University of Glasgow. The data collection process resulted in a total of 2600 valid train-
ing and testing samples across two distinct scenarios. Each RFID tag was read approximately
32−36 times within a 3-second interval. Subsequently, we utilized a Python script to parse the
50 collected samples of each activity, extracting pertinent information for further pre-processing.
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Table 6.1: Dataset Summary using TRG-Wall: scenarios, subjects, and activities performed.

Activity Senario-1 (3.5 m) Senario-2 (4.5 m)
RSSI Phase RSSI Phase

Empty Room 50 50 50 50
Standing 50 50 50 50
Leaning 50 50 50 50
Normal Fall 50 50 50 50
Walk Fall 50 50 50 50

The processed dataset was then employed to train and test DL algorithms. A summary of the
collected dataset, including its composition and structure, is provided in Table 6.1.

Data Preprocessing

To ensure accurate fall detection, the reflected signal from the RFID reader undergoes sev-
eral essential preprocessing steps. This encompasses raw RSSI and phase values, meticulously
calibrated to address environmental and system-specific factors. Advanced filtering methods,
including adaptive filtering and wavelet denoising, are then employed to eliminate initial phase
and RSSI noise. A signal segmentation process, utilizing techniques like adaptive thresholding
and dynamic time warping, is applied to isolate fall-relevant segments. Subsequently, compre-
hensive normalization standardizes the data, reducing potential biases. These steps form a robust
foundation for reliable fall detection algorithms, significantly enhancing accuracy and efficiency.
This preprocessing ensures subsequent stages of the fall detection algorithm operate on a refined
and optimized dataset, resulting in a more dependable system.

1) Phase Normalisation: We employ neighboring phase averaging to mitigate hardware-
induced thermal noise, aligning and refining phase values for improved accuracy (Eq. 6.1).

α =

(
4πd

λ
+ k ·2π

)
mod (2π). (6.1)

a) Noise Reduction: Gaussian smoothing complements phase normalization, reducing high-
frequency noise for enhanced clarity in phase-distance relationships.

b) Temporal Segmentation: Data is partitioned into discrete time intervals to isolate and
analyze specific activities, including falls.

c) Quality Control: Checks identify and rectify anomalies in RFID data, ensuring data in-
tegrity through validation for missing or erroneous readings.

d) Signal Alignment: Dynamic alignment synchronizes data from multiple RFID tags for
temporal consistency, critical for accurate fall detection.

For data consistency, we assume ∆d ≤ λ = 4 as the tag’s distance difference between con-
secutive sampling points, given the short time delay between rounds.
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α =

(
4πd

λ
+ k ·2π +∆α

)
mod (2π)

∆α =

(
4π∆d

λ
−∆φ

)
mod (2π).

(6.2)

2) RSSI Signal Noise Reduction:
Wavelet filtering comprises three main steps: decomposition, thresholding, and reconstruc-

tion, aimed at analyzing patterns in RSSI data. To achieve this, we utilized the discrete wavelet
transform (DWT) to decompose the signal into wavelet coefficients, which capture frequency
content at different scales. The DWT convolves the signal with wavelet basis functions, denoted
by ψ j,k and φ j,k, operating at various scales and positions. Specifically, we employed the Coiflet-
5 (coif5) wavelet to divide the raw data into five layers during the decomposition process. The
decomposition equation is provided as follows:

X =
J−1

∑
j=0

∑
k
⟨X ,ψ j,k⟩φ j,k + ⟨X ,φJ,k⟩φJ,k

X =
J−1

∑
j=0

∑
k
⟨X ,ψ

coi f 5
j,k ⟩φ coi f 5

j,k + ⟨X ,φ
coi f 5
J,k ⟩φ coi f 5

J,k

X =
J−1

∑
j=0

∑
k
⟨X ,ψ jk⟩φ jk.

(6.3)

During the DWT procedure, the initial signal X is subjected to decomposition, generating
wavelet and scaling components across various levels, limited by a maximum level J. The
inner products ⟨X ,ψ j,k⟩ and ⟨X ,φJ,k⟩ represent correlations between the signal and the wavelet
and scaling functions, respectively. This decomposition facilitates the examination of RSSI
data across diverse scales and a thresholding phase contrasts each data point in the RSSI signal
with a predefined threshold of −70 dBm. Crossing the threshold indicates noteworthy activity
detection, whereas points below the threshold imply the absence of detection.

f (X(t)) =

X(t) if X(t)≥ T

Not detect if X(t)< T

Assessing the Feasibility for Fall Detection

A feasibility study used an RFID UHF tag array to detect various fall postures and prepare
data for DL models as shown in Figure 6.4. The study focused on how different body move-
ments affect RFID signal waveforms, particularly RSSI. The graphical representation in Figure
6.4a showed strong correlations in RSSI waveforms for repeated instances of the same leaning
activity. Figure 6.4b demonstrated how various daily activities influence RSSI waveforms, dis-
tinguishing between leaning and no-activity. Clear fluctuations due to human activities were vis-
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ible, while consistent patterns were evident without interference before or after activity. These
results highlight the potential of using the RFID phase and RSSI waveforms to classify human
activity attributes for detection.
The feasibility analysis confirmed that RFID signals can effectively capture and differentiate
various fall and fall-related activities. However, to optimize system performance, addressing
signal noise and implementing precise action segmentation methods during data preprocessing
are critical challenges.

(a) Leaning Activities (b) Leaning and No Activity

Figure 6.4: Data curves: Distinguishing between the same and different activities.

6.3 System Methodology

In this section, we employed the attention-based transformer model, which entirely avoids the
use of decoder, recurrence, and convolutions. The proposed transformer architecture follows
an encoder structure, effectively capturing their behavioral characteristics. To elaborate, the
encoder, situated on the left side of the transformer architecture, maps an input sequence into
continuous representations. Figure 6.6 illustrates the components of the transformer, showcasing
stacked self-attention and point-wise fully connected layers in the encoder section, as depicted
in the left half of Figure 6.5.

6.3.1 Model Architecture

Below is a detailed description of the model architecture:

a) Input Layer: The feature matrix (X) is fed into the model with a shape of (number_of_features,
1), where number_of_features represent the number of columns in the feature matrix.

b) Transformer Blocks: The core of the model consists of four identical transformer blocks,
each comprising the following components:

- LayerNormalization followed by a MultiHeadAttention layer and a Dropout layer.
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- The output of the Dropout layer is combined with the input of the transformer block
using a residual connection.

- Another LayerNormalization layer follows.

- Two Conv1D layers, where the first one employs ReLU activation. The output of
the second Conv1D layer is merged with the output of the first LayerNormalization
layer using another residual connection.

c) GlobalAveragePooling1D Layer: This layer is implemented to reduce the model’s output
dimensions.

d) Dense Layers: The standard fully connected layers with gelu activation function are used.
The number and sizes of these layers are determined by the mlp_units parameter.

e) Output Layer: The final layer of the model is another Dense layer, containing the same
number of neurons as the number of classes. The activation function used is softmax,
making this model suitable for multiclass classification tasks.

Figure 6.5: Comparative rrchitecture: Original Encoder-Decoder in the center with modified
encoder-only versions on both sides

Figure 6.6: Proposed transformer encoder structure
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6.3.2 Transformer Architecture Encoder Structure

The encoder consists of N = 4 identical layers, each containing two sublayers:

a) The first sublayer uses a 4-headed multi-head self-attention mechanism, with each head
processing unique linear projections of queries, keys, and values, contributing to the final
output.

b) The second sublayer includes two Conv1D layers, with the first layer utilizing a ReLU

activation function.

FFN(x) = ReLU(W1x+b1)W2 +b2 (6.4)

In the transformer architecture, each sublayer is augmented with a residual connection and fol-
lowed by a LayerNormalization layer. This ensures proper normalization of the sublayer’s input,
denoted as ‘x’, and its output, sublayer(x). However, the transformer architecture lacks inherent
positional awareness due to its non-recurrent nature. To address this, positional encodings are
introduced by adding them to the input embeddings, providing essential positional information.

LayerNormalization (input+ sublayer(output)) (6.5)

6.3.3 The Transformer Multi-Head Attention

The attention function operates on query and key-value pairs, generating an output represented
as vectors. The output is obtained through a weighted summation of values, with the weights
determined by a compatibility function applied to the query and key. To retain the spatial infor-
mation of RSSI and phase data, we avoid the use of positional embedding [254].

The feature extraction module of the transformer comprises two sub-layers: multi-head self-
attention and multiscale residual CNN with adaptive scale attention. These sub-layers utilize
a residual connection (Add) [255] and layer normalization (LayerNorm) [256]. Self-attention
effectively handles long-term dependencies in sequences, surpassing the limitations of RNN and
LSTM models. It captures global information from the entire sequence and overcomes the con-
straints of CNN’s perception field and reliance on time-domain information. In the transformer,
the input contains (queries, keys, and values), each having dimensions dk and dv respectively.
These inputs undergo a softmax function to derive attention weights, which are then used to scale
the values through weighted multiplication. The multi-head attention blocks in the transformer
execute a scaled dot-product attention operation. This process can be summarized as follows:

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V (6.6)
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The attention mechanism in the transformer enables capturing dependencies between data
sequence elements and extracting pertinent features for subsequent processing.

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

where headi = Attention(QW Q
i ,KW K

i ,VWV
i )

(6.7)

In this study, we employ 8 parallel attention layers (or heads) with h = 8, each having 64
dimensions. This reduction in dimensionality ensures a computational cost similar to that of
single-head attention with full dimensionality.

6.3.4 Architecture Comparison

The proposed architecture is adapted from Vaswani et al.[252] transformer model, as depicted
in Figure 6.6. However, it differs from the comprehensive transformer model shown in Figure
6.5 as follows:

1. Encoder Only vs. Encoder-Decoder: The proposed model exclusively uses transformer
Encoder blocks, similar to BERT [254]. In contrast, the original transformer incorporates
both Encoder and Decoder blocks, primarily for sequence-to-sequence tasks like transla-
tion.

2. Global Average Pooling: The proposed architecture includes a GlobalAveragePooling1D

layer after the transformer blocks to reduce output dimensionality for classification tasks.

3. Fully Connected Layers: The proposed architecture introduces Dense layers with dropouts
after the transformer blocks, setting it apart from the original transformer.

4. Output Layer: For multi-class classification, the proposed architecture utilizes a Dense
layer with softmax activation, while the original transformer uses a final linear layer fol-
lowed by softmax for sequence-to-sequence tasks, predicting the next word in a sequence.

5. Positional Encoding: Unlike the original transformer model, the proposed architecture
does not employ positional encoding.

6.4 Performance Evaluation

This section aims to assess the fall detection system’s performance by employing diverse fea-
tures, including RSSI, phase, and fusion of both (RSSI + phase). The effectiveness and accuracy
of the proposed contactless RFID-based fall detection approach, utilizing an early fusion trans-
former model, will be evaluated through a set of comparative experiments.
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6.4.1 Activity Recognition Methods

Activity recognition methods play an important role in precisely detecting and classifying human
daily living activities, especially in indoor environments. In this subsection, we explore three
essential approaches for activity recognition: Activity Recognition using RSSI, Activity Recogni-

tion using Phase, and Activity Recognition using Fusion. These approaches greatly enhance the
accuracy and comprehension of various human activities within an indoor environment.

Activity Recognition using RSSI

The literature extensively discusses the use of passive UHF RFID tags for indoor activity recog-
nition, particularly in fall detection. These RFID tags are activated by readers using air interface
protocols (EPC Class 1 Gen-2 and ISO-18000-6c) for data transmission and reception [242].
During practical scenarios, passive RFID tags provide raw data to the reader in a 5-tuple format,
consisting of RSSI, timestamp, EPC, TID, and frequency. Nevertheless, the process of creat-
ing an RSSI dataset entails several steps outlined in Algorithm 1. To generate an RSSI dataset,
several preprocessing steps are performed as outlined in subsection 6.2.2.

In this study, the recognition of falls’ activities is conducted using a meticulously designed
experimental setup as depicted in Figure 6.3. A designated area in front of the TRG-Wall was
used to perform five distinct activities, and the data collected for each activity is presented in a
tabular format. To provide a comprehensive analysis of the collected data, we employed both
column-wise and row-wise presentations of the tag arrangement data. Column-wise visualiza-
tion proved effective in illustrating standing and leaning activities, while the row-wise represen-
tation is better suited for depicting falls and fall-related activities. Specifically, this was observed
about normal falls and walking falls, with a particular emphasis on rows 2nd and 3rd . In con-
trast, columns 1st and 2nd primarily depicted leaning and standing activities, exerting minimal
influence on the remaining columns.

Building upon these insights, the compelling evidence supporting accurate fall and fall-
related detection in shared spatial environments is presented in Figure 6.7. Recorded RSSI
strengths ranged from −50dBm to −69dBm, with obstructed tags leading to decreased RSSI
readings. The red dotted line serves as an activity recognition threshold, meticulously set to
address scenarios involving non-reading or tag-blocking. The use of green highlights instances
of RSSI data reading obstruction or activity recognition challenges. Specifically, Figures 6.7b
and 6.7c depict RSSI values for standing and leaning activities, respectively, in rows 2nd and
3rd . Meanwhile, Figures 6.7d and 6.7e showcase normal and walking fall activities performed
in the same location.

To enhance the representation of falling events, we split the RSSI data linked with three-
second falling patterns into one-second intervals and employ distinct color codes for visual clar-
ity. The color scheme is as follows: blue for the 1st second, green for the 2nd second, and black
for the 3rd second of the falling pattern data. This visual representation effectively demonstrates
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(a) No Activity (b) Standing (c) Leaning (d) Normal Fall (e) Walk Fall

Figure 6.7: Analysis of falling activity recognition: Distribution and magnitude of RSSI (row-
wise and column-wise)

(a) Normal Fall (b) Walk Fall

Figure 6.8: Visual representation: Analysis of falling per second.

the sequential progression of the fall activity. For instance, in Figure 6.8, the initiation of the
fall by the subject is evident during the 1st second (blue color) from row-1 to row-3. This is
followed by movement observed during the 2nd second (green color) and the 3rd second (black
color) from row-2 to row-3, signifying the progression of the fall activity in a row-wise manner.

Activity recognition using Phase

RF backscatter technology enables bidirectional signal transmission over a distance of 2d, mak-
ing it possible to monitor human activity by analyzing phase differences in RF features using
cross-correlation. The relationship between distance, antenna phase rotation, and tag phase ro-
tation can be mathematically described in Equations 5.5 and 5.6.

Figure 6.9 showcases the analysis of falling activity recognition, both row-wise and column-
wise, utilizing phase information. Figure 6.10 illustrates the significance of phase difference pat-
terns in fall activities. These patterns were obtained using the numpy function np.corrcoe f (x,y),
which quantifies the cross-correlation between two sets of data. For instance, in Figure 6.10b,
the standing activity demonstrates the phase difference between an empty state and a standing
position. The red cross indicates the detection or blockage of phase, signifying the occurrence
of activity detection. The resulting cross-correlation difference pattern proves to be an effective
method for modeling activities. Notably, the smooth variation of phase differences observed
when blocking tags were present during sitting activities emphasizes the accuracy and reliability
of the measurements.
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(a) No Activity (b) Standing (c) Leaning (d) Normal Fall (e) Walk Fall

Figure 6.9: Phase-based analysis of falling activity recognition: Row-wise vs Column-wise

(a) No Activity (b) Standing (c) Leaning (d) Normal Fall (e) Walk Fall

Figure 6.10: Phase difference-based analysis of falling activity recognition: Row-wise vs
Column-wise

Activity recognition using Fusion

Activity recognition through fusion involves integrating data from multiple modalities to en-
hance accuracy, specifically by leveraging both RSSI and phase-based information to optimize
activity recognition algorithms. This fusion process can be accomplished using two primary
concepts: early fusion and late fusion.

1) Early Fusion in RFID-based Activity Recognition: Early fusion, or feature-level fu-
sion, combines unprocessed RSSI and phase data from RFID tags before classification. This
integration reduces redundancy and complexity in features, resulting in more efficient models
for quicker inference and reduced computational overhead. It enhances accuracy, robustness,
and adaptability in RFID-based human activity detection, enabling effective recognition of var-
ious activities in indoor environments.

The algorithm for early fusion in RFID-based activity recognition involves the following
steps:

1. Initialize empty datasets for RSSI and phase data: DRSSI and DPhase.

2. Preprocess RSSI and phase data separately to create DRSSI and DPhase.

3. Combine DRSSI and DPhase to create DCombined containing integrated information.

4. Extract features from DCombined using the feature_extraction method, resulting in FCombined.

5. Perform classification on FCombined to predict activity labels, storing them in YPred.

The algorithm for early fusion in RFID-based activity recognition can be concisely summarized
as follows:
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Algorithm 3 : Pseudo code for early fusion
Initialize empty datasets: DRSSI , DPhase, and DCombined
DRSSI ← RSSI_data_preprocessing(D)
DPhase← Phase_data_preprocessing(D)
DCombined ← combine_data(DRSSI,DPhase)
FCombined ← feature_extraction(DCombined)
Perform classification: YPred ← classification(FCombined)
return YPred

2) Late Fusion with merit in RFID-based Activity Recognition: Late fusion, or decision-
level fusion combines independent decisions from RSSI and phase data for falling and daily
living activity prediction. Separate classifiers are trained for each modality (RSSI and phase).
One classifier recognizes falling patterns using RSSI, and the other relies on phase data. These
classifiers make independent predictions. Late fusion employs two methods: voting-based and
merit-based. In the voting-based approach, the final decision is based on majority votes from in-
dividual classifiers while merit-based fusion optimizes modality weights based on performance
and reliability measures. We use merit-based to avoid bias in classifiers. This approach lever-
ages the complementary information from RSSI and phase data, enhancing robust falling event
detection, especially in complex indoor environments. The pseudo-code of late fusion with a
merit-based algorithm is summarized as follows:

Algorithm 4 : Pseudo code of merit-based late fusion
DRSSI← RSSI_data_preprocessing(D)
DPhase← Phase_data_preprocessing(D)
FRSSI← feature_extraction(DRSSI)
FPhase← feature_extraction(DPhase)
YPred_RSSI ← classification(FRSSI)
YPred_Phase← classification(FPhase)
MRSSI← calculate_merit(YPred_RSSI)
MPhase← calculate_merit(YPred_Phase)
YPred_Combined ← fusion_with_merit(YPred_RSSI,YPred_Phase,
MRSSI,MPhase)
return YPred_Combined

6.4.2 Experimental Results

We evaluated our contactless TFree-FD method using an 80 : 20 train-test split (random state:
42), with 32 batch size, 50 epochs, and a dropout rate of 0.01 during training. For a compre-
hensive view of network hyperparameters, discussed in Table 6.2. Our approach was compared
against four prominent deep learning models: RF-finger [257], LiteHAR [258], Tagfree [251],
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and Dense-LSTM [259]. These models represent benchmarks for device-free RF-based activity
detection using traditional deep-learning methods

Table 6.2: Proposed transformer model hyperparameters.

S.No Components Parameters
1 LayerNormalization gamma (1) and beta (1)
2 Multi-Head Attention Kernel (1×4×64), bias (4×64)
3 Dense-gelu Kernel (100×32), bias (32)
4 Dense-Softmax Kernel (32×10), bias (32)
5 Conv1D Kernel (1×1×64), bias (4×64), ReLU

Overall Performance of TFree-FD

The effectiveness of the TFree-FD technique, which employs a transformer, is demonstrated in
Figure 6.11. The confusion matrix in the figure reveals a distinct diagonal pattern for RSSI,
phase, early fusion, and late fusion results. The Figure 6.11a achieves an accuracy of 93.3%.
Similarly, Figure 6.11b achieves 94% accuracy for RSSI, while the transformer model fused
with late fusion in Figure 6.11c shows 86.2%. Remarkably, the late fusion in Figure 6.11d
achieves the highest accuracy at 96.5%. Comparing these results to the baselines in Table 6.3,
the transformer outperforms significantly, consistently achieving the highest accuracy and F1
score across all categories. Specifically, it establishes new benchmarks on our experimental
dataset, surpassing RF-finger, Dense-LSTM, LiteHAR, TagFall, and Tagfree by 11.1%, 6.5%,
5.5%, 4.8%, and 3.7% in average accuracy, respectively. Moreover, our proposed F1-score
outperforms RF-finger, TagFall, Tagfree, Dense-LSTM, and LiteHAR by 12.1%, 8.7%, 5.6%,
4.0%, and 2.9%, respectively. These results underscore the exceptional performance of our
proposed encoder-based transformer architecture in fall detection.

(a) Phase (b) RSSI (c) Late Fusion (d) Early Fusion

Figure 6.11: Visualization of the normalized confusion matrix pre and post fusion.

Comparative Analysis of Existing Methods

We compared our fusion-based transformer model with common models (CNN, RNN, LSTM)
using accuracy and prediction time. Results in Table 6.4 and 6.5 show our model’s superior
accuracy and F1-scores (epochs = 50). Unlike CNN, RNN, and LSTM using convolutional
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Table 6.3: Comparing performance of the proposed model with baselines.

S.No Appraoch Accuracy F1 Score
1 RF-finger [257] 85.4 % 83.6
2 Dense-LSTM [259] 90 % 87.0
3 LiteHAR [258] 91 % 90.1
4 TagFall [128] 91.7 % 91.7
5 Tagfree [251] 92.8 % 92.8
6 Proposed 96.5 % 95.7

layers, our transformer model stands out with self-attention mechanisms for better accuracy.
However, due to its extensive self-attention use and parameters, the transformer requires more
computational resources, leading to less efficient prediction times compared to other methods.

Table 6.4: Comparing accuracies among different algorithms

Algorithms Scenario-1 Moderate SNR (3.5) Scenario-2 High SNR (4.5)
RSSI Phase RSSI Phase

CNN 82.3% 79.5% 73.7% 71.9%
RNN 85.1% 78.2% 77.5% 70.7%

LSTM 88.8% 75.1% 80.6% 74.8%
Transformers 94% 93.3% 84.1% 77%

Transformers (Late Fusion) 86.2% 81.4%
Transformers (Early Fusion) 96.5% 87.9%

Table 6.5: Comparing F1-scores among different algorithms

Algorithms Scenario-1 Moderate SNR (3.5) Scenario-2 High SNR (4.5)
RSSI Phase RSSI Phase

CNN 0.64 0.58 0.46 0.43
RNN 0.70 0.56 0.54 0.41

LSTM 0.78 0.50 0.60 0.48
Transformers 0.88 0.86 0.68 0.54

Transformers (Late Fusion) 0.72 0.62
Transformers (Early Fusion) 0.93 0.74

Comparing Head Count’s Influence on Transformer Model Accuracy

The effectiveness of transformer models is notably impacted by the number of attention heads
within their architecture. This effect is demonstrated in Table 6.6, offering a comparative ac-
curacy analysis for different head counts (epoch = 10). The accuracy of the model fluctuates
with varying head counts, highlighting the influential role of headcount in determining model
effectiveness. The results reveal a discernable pattern where increasing headcount generally im-
proves accuracy, although this relationship may not be strictly linear. For example, as headcount
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increases from 2 to 6, accuracy consistently rises, peaking at 100%. However, further increasing
the headcount to 8 leads to a slight accuracy reduction. This underscores the complex interplay
between model complexity, attention mechanisms, and accuracy. Therefore, consideration of
headcount is important when optimizing transformer models for optimal performance.

Table 6.6: Comparing number of heads (epoch =10)

Number of heads 2 4 6 8 10
Accuracy 76.3% 92.5% 100% 86.0% 81.2%

Comparing Convolution Utilization and Analyzing 1D and 2D Techniques’ Impact on Ac-
curacy

We conducted an extensive study to compare the impact of utilizing 1D and 2D convolutions
on model accuracy. The analysis spanned ten epochs and employed four attention heads. The
results, presented in Tables 6.7 and 6.8, reveal a significant accuracy difference between the two
convolution types across epochs. Specifically, 1D convolution demonstrated robust accuracy at
92.5%, surpassing the comparatively modest 68.1% accuracy achieved by 2D convolution. This
contrast underscores the intricate interplay of convolution methodologies and underscores the
pivotal role of selecting an appropriate technique to enhance transformer model precision.

Table 6.7: Comparing 1D and 2D convolution ( epochs = 10 vs 50 and heads = 4)

Convolution Configuration Epochs = 10 Epochs = 50
Convolution Type 1D 2D 1D 2D

Accuracy 92.5% 68.1% 96.5% 75.4%

Table 6.8: Comparing epochs vs accuracy’s

Epochs 10 30 40 50 70 100
Accuracy 91.9% 90.7% 93.7% 96.5% 100% 100%

6.5 Discussion

This study undertook a comprehensive evaluation of four deep learning-based models—CNN,
RNN, LSTM, and the attention-based transformer—leveraging both early and late fusion method-
ologies for RFID-based fall activity recognition across two distinct scenarios. The investiga-
tion encompassed three well-defined approaches (RSSI, Phase, and fusion), expounded upon in
Section 6.4.1. The findings illuminate the transformer model’s exceptional performance when
coupled with the early fusion technique, surpassing the capabilities of CNN, RNN, and LSTM



CHAPTER 6. TFREE-FD FUSION APPROACH FOR FALL DETECTION 84

across both scenarios. These scenarios entailed the strategic placement of a reader and antenna
at a 3.5-meter distance from the subject, with an additional subject-TRG-Wall distance of 0.5
meters. Analysis of the normalized confusion matrix unveils the transformer model’s capacity
to achieve recognition accuracy exceeding 99% for the majority of activities, with the exception
of walk fall, which demonstrated confusion with leaning activity. This observation underscores
the potential of the proposed approach for practical user recognition applications, as highlighted
in Table 6.4. Significantly, the efficacy of the transformer model, particularly when coupled
with early fusion, for contactless RFID human activity recognition, remains contingent on the
distance between the TRG-Wall and the reader antenna.

6.5.1 Ablation Studies

The ablation study systematically analyzes components affecting system performance. It as-
sesses user diversity and location impacts, explores antenna height effects on RFID tag reading,
and examines the advantages of combining RSSI and phase data. These insights contribute to
robust fall detection.

Impact of User Diversity and Location on Performance

To assess the system’s stability and generalization ability, we conducted experiments with mul-
tiple subjects, utilizing distinct fall-related activity data without any training or validation sets.
Under the same system deployment mode, there are five distinct activities, including falls, with
predefined distances of 3.5 and 4.5 meters between the antenna and the tag. Figure 6.12 illus-
trates the model’s adaptability for fall detection across different activities. We further examined
the impact of the target subject’s position within the fall perception system on detection accu-
racy. At 3.5 meters, accuracy exceeded 98%, except WalkFall achieving 94%. This variation
indicates that RFID signals are influenced by the multipath effect in the physical environment,
leading to a slight decline in recognition accuracy for non-preset positions. Nevertheless, the
system maintains satisfactory recognition performance. This underscores the robustness of the
proposed fall detection method, ensuring optimal performance in indoor environments.

Impact of Antenna Height

This study explores the impact of antenna height on RFID tag reading performance. Antenna
placement has a significant effect on range and precision. Two placements were tested: The
initial setup mounted the antenna on a ground-level wall measuring 1.5×1.5 m2. This affected
the reading of top-row tag RSSI/phase data. Adjusting the height to 0.75m, aligning with the
wall’s center and LoS, aimed to extend the range with minimal accuracy impact. However,
raising it further to 1.5m weakened the signal to the lower tag row due to insufficient reader
strength. Results suggest maintaining the default 0.75m height for optimal system performance.
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Figure 6.12: Comparison of class-wise accuracies between 3.5-meter and 4.5-meter datasets.

Impact of Multimodal Analysis

In this section, we explore the impact of multimodal features on recognition accuracy. To eval-
uate the system’s performance, we initially select RSSI, phase, and fusion signals as sample
data. The incorporation of multiple signal types aims to harness a broader spectrum of features,
potentially leading to enhanced recognition accuracy. We proceed by training and validating
the model using three datasets. The accuracy curve of the test set during the training process
is depicted in Figure 6.13a. The results indicate that, under identical training conditions, the
combination of RSSI and phase data as feature inputs facilitates faster convergence and yields
higher accuracy during the training process. Our experimental findings demonstrate that the
fused feature data outperforms the individual phase or RSSI features in terms of fitting speed
and final accuracy, as illustrated in Figure 6.13b. This superiority arises from the fact that the
phase signal is more sensitive to environmental factors, while the RSSI resolution diminishes
with increasing distance from the antenna. Therefore, employing fused data features becomes
preferable for the fall detection system.

Figure 6.13b demonstrates that combining RSSI and phase data yields higher accuracy com-
pared to using either RSSI or phase data alone. Building on this finding, we investigate the
impact of distance and the number of tags on the system’s recognition performance. The ac-
curacy results are presented in Table 6.4. The experiment reveals that increasing the distance
from 3.5 to 4.5 adversely affects the model’s recognition effectiveness. As the fall detection
system prioritizes swift recognition, incorporating additional RFID tags in close proximity to
the activity area significantly reduces the system’s sampling rate, while also imposing a higher
computational burden on the model. Therefore, to maintain a reasonable computational cost
and meet the fall detection requirements in indoor scenarios, we have adopted a layout with fif-
teen tags, as confirmed in this study. This configuration satisfies the system’s needs and ensures
efficient fall detection.
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(a) Impact of Phase, RSSI, and Fused (Phase + RSSI)
Data on Model Performance

(b) Assessment of accuracy across multimodal data fea-
tures.

Figure 6.13: Comparison of model performance based on different data representations.

6.6 Conclusion, Limitations and Future Directions

This paper investigates the impact of RFID tag signals on monitoring the activity of the elderly
in a contactless manner. The study focuses on using phase and RSSI features as inputs for a
deep neural network, specifically a transformer model, to develop a fall detection method. We
collected a dataset comprising multimodal data, including phase and RSSI, from five different
daily human activities. The data underwent preprocessing steps, such as phase calibration, noise
reduction, action segmentation, and normalization, before training the transformer model. The
trained model achieved a high accuracy of 96.5% in two distinct scenarios. The experimental
results demonstrate the robustness of the contactless fall detection system against variations in
users and locations. However, the proposed fall detection method in this paper still has certain
limitations that require further improvement in future research.

1. Multi-subject Fall Detection: The proposed method detects falls in one person only and
doesn’t address detecting falls in multiple individuals due to challenges with contact-less
deployment and signal separation. Research is ongoing to explore contactless real-time
fall detection for multiple users using human body feature signals.

2. Collecting Authentic Human Fall Data: The collected fall data may not fully represent
real falls due to challenges in collecting authentic human fall data. Falls can be catego-
rized as object-related or fainting-induced, with real falls being sudden and unpredictable.
Controlled environments in experiments capture diverse fall actions but differ from real
falls. Training the system on simulated data may lead to deviations when detecting sud-
den falls in real bodies. Collecting more real fall data is vital for enhancing the system’s
accuracy in detecting unforeseen falls.

3. Scalability and Application Potential: The proposed system, initially tested in a 10×10
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m2, excels at detecting falling-related activities within designated area. The contactless
RFID-based scheme, known for its remarkable scalability, can easily extend its cover-
age to larger spaces by adding more tags and antennas. This scalability not only main-
tains a low average cost but also positions it as an ideal solution for healthcare facili-
ties, nursing homes, smart homes, and other environments where cost-effectiveness and
non-intrusiveness are essential, making RFID tags a viable and adaptable solution for
widespread adoption.

4. Environment Dependency and Training Costs: The phase and RSSI signals depend on
the deployment environment of the system, which can vary in practical applications (e.g.,
hospitals, homes, and nursing homes). Different objects and environments can reduce ac-
curacy. Adding sample data or training models in new environments incurs high learning
and training costs for RFID. Future work should prioritize passive sensing across diverse
environments and devices.

6.7 Summary

This chapter summarised an innovative RFID-based method for contactless fall detection in the
elderly, employing strategically placed passive UHF RFID tags. The system operates with-
out the need for uncomfortable wearables. Through tag querying and data processing using a
transformer model and early fusion technique, we achieved a remarkable average accuracy rate
surpassing 96.5%, thus demonstrating the efficacy and practicality of our approach over con-
ventional methods like CNN, RNN, and LSTM. Furthermore, the study introduces RFIDAR,
an innovative fusion system that marks a critical advancement in HARI within indoor environ-
ments, by combining RFID with Radar technology to address the privacy and cost limitations of
single-sensor systems. This fusion capitalizes on the unique sensing capabilities of both systems,
employing a sophisticated algorithm to accurately identify complex human activities, especially
in long-range and non-line-of-sight scenarios.



Chapter 7

Enhancing Human Activity Recognition
with RFiDAR: Integrating RFID and
Radar Data for Contactless Detection

This chapter introduces the innovative fusion system RFIDAR, a critical advancement in hu-
man activity recognition HAR within indoor environments. Addressing the privacy and cost
limitations of single-sensor systems, RFIDAR combines radio frequency identification (RFID)
with radar technology. This fusion leverages the unique sensing capabilities of both systems,
using a sophisticated algorithm to accurately identify complex human activities, especially in
long-range and non-line-of-sight scenarios. Our research involved testing RFIDAR on indi-
viduals performing a range of activities, including sitting, standing and walking direction. We
employed an advanced LSTM-based variational autoencoder (LSTM-VAE) fusion model by its
superior capability in capturing long-term dependencies and temporal features from sequential
sensor data. Additionally, we explored two different data fusion algorithms, finding significant
improvements in HAR accuracy, with increases of 5.8%, and 7.9%, for data-level and feature-
level fusion algorithms, respectively. The non-intrusive, passive nature of RFIDAR, combined
with its precision and robustness, demonstrates its immense potential to enhance the quality of
life for elderly patients in assisted living environments.

7.1 Introduction

Human activity recognition in an indoor environment is imperative for advancing modern liv-
ing standards and preemptive safety measures. The demand for an accurate, cost-effective, and
unobtrusive monitoring solution has highlighted the importance of contactless RF sensing tech-
nologies. Leveraging RFID and radar-based methodologies presents a promising pathway to
elevate monitoring capabilities while prioritising individual privacy and comfort. These method-
ologies offer versatile applications across various medical domains, including elderly monitor-

88
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ing [260, 261], smart living [262], and health care [263]. Existing HAR methodologies can
be classified into vision-based and sensor-based approaches. Sensor-based methods encompass
wearable, object-tagged, and device-free sensors [264]. Vision-based methods, while offering
accurate results by analysing recorded videos, face challenges related to occlusion, viewpoint
restrictions, lighting dependencies, and privacy concerns [234, 265]. Wearable sensors (gyro-
scopes, accelerometers, and heart rate monitors), widely utilised due to their diversity and af-
fordability, encounter issues of discomfort and reliability, especially among neurodegenerative
patients and the elderly [266]. Object-tagged sensors, which involve tags attached to daily-use
objects for activity recognition, address the obtrusiveness of wearable sensors but rely on user
interactions [267]. In contrast, device-free sensors employing technologies such as Wi-Fi, radar,
and RFID offer an appealing alternative offering improved privacy and performance in com-
plex indoor settings with multiple signal paths [268, 269]. However, wearable sensor-based
approaches, although precise, lack practicality in real-life situations, particularly for elderly
individuals or those with dementia. Notably, radar-based solutions exhibit accurate real-time
monitoring in scenarios involving multiple targets [236]. A cost-effective approach combines
UHF RFID readers with battery-less and compact RFID tags, making it advantageous for HAR
applications. Table 7.1 summarises the pros and cons of various HAR methods.

Table 7.1: Comparison of sensors used for human activity recognition.

Methods Examples Pros Cons
Wearable Accelerometer, gyro-

scope, microphone,
smartphone, etc

preserve privacy, low
cost, usable for vi-
tal sign acquisition and
good accuracy

battery-powered, intru-
sive, power consump-
tion and sensor speci-
fied to activity

object-
attached

RFID, Proximity sen-
sors

unobtrusive, preserve
privacy, low sensitive
to static objects, good
accuracy

limited to tag objects,
limited to activities and
relatively costly

Vision-based RGB-D camera, Ki-
netic, etc

unobtrusive, good ac-
curacy

sensitive to occlusion,
illumination, require
LoS, high cost and
computational re-
sources

Device-free pyroelectric infrared
sensors, RFID, WiFi,
Radar, etc

better performance in
complex environments,
privacy preserve, unob-
trusive, low cost

sensitive to static ob-
jects, low accuracy, and
sensitivity to noise.

Device-free human sensing encompasses various sensing technologies such as motion sen-
sors, cameras, thermal imagers, light sensors, and others. However, certain sensors like motion
detectors, thermal imagers, and cameras, require specific deployment for human sensing, mak-
ing their ubiquitous availability limited. Furthermore, privacy concerns arise with sensors like
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microphones and cameras. In contrast, radio signals offer unique advantages; they are widely
available, including WiFi signals at home, and are non-intrusive regarding privacy compared
to cameras and microphones. Radio signals possess unique capabilities, allowing penetration
through walls and functioning in darkness. RF-based device-free human sensing has emerged
as a significant area of research with considerable advancements, with emerging commercial
solutions by various startups [270, 271, 272] applications such as sleep monitoring, vital sign
monitoring, fall detection, localisation, and tracking, activity monitoring, and people counting.

In recent years, RFID and radar have gained significant attention due to their cost-effectiveness
and non-intrusive nature in human sensing and monitoring. RFID technology, widely used in
remote elderly healthcare monitoring [237], is known for its cost-effectiveness, compactness,
scalability, shareability, and battery-free operation [238]. Recent advancements include highly
sensitive passive tags with a read range exceeding 10 meters, making it viable for pervasive
healthcare solutions [231]. The innovation of ‘tag-free’ sensing in RFID, eliminating the need
for direct tag attachment, addresses challenges in ambient assisted living (AAL) [240], facilitat-
ing the recognition of activities like standing, sitting, running, and walking without the cumber-
some nature of attaching tags [264]. However, RFID sensors have limitations such as limited
information, space constraints, and deployment complexity due to managing various commu-
nication protocols. Nonetheless, accurate results for indoor AAL and positioning necessitate
accounting for various factors such as non-line-of-sight (NLOS) conditions, signal weakening,
indoor material effects inducing signal reflection and refraction, and climate-induced changes
affecting signal propagation speed. Meanwhile, radar, an active sensing technology, operates
by transmitting and capturing electromagnetic waves from objects. Continuous-wave radars
like Doppler [273] and frequency-modulated continuous wave (FMCW) [274] radars are widely
utilised in HAR. Doppler radars determine body part velocities, generating micro-doppler signa-
tures essential for HAR, while FMCW radars measure target distances efficiently. Radar spectro-
grams offer resilience in various environments, ensure visual privacy, and enable through-wall
detection. Challenges like lack of precise range information due to its narrowband nature in
continuous-wave (CW) radar [275] and indoor performance issues in FMCW radars due to mul-
tipath interference [276] are addressed by alternative solutions like ultra-wideband impulse radar
(UWB), offering higher resolution information through high-frequency pulse signals [275].

Earlier studies in RF-based human sensing made extensive use of conventional machine-
learning (ML) techniques to classify human actions and contexts by extracting manually de-
signed features from radio signals [277]. While these methods showed promise in smaller-scale
experiments, their accuracy struggled when deployed on a larger scale. Presently, researchers are
increasingly turning to advancements in deep learning (DL) to enhance the accuracy, scalability,
and universality of RF sensing. This transition is evident from the growing number of publica-
tions in prominent conferences and journals (as illustrated in Figure 7.1), which explore various
deep neural network architectures and algorithms to advance RF-based human sensing. Recent
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observations highlight the superior suitability of DL intricate network structures for supervised
and incremental learning, outperforming traditional machine learning approaches [278]. Deep
learning, being instrumental in comprehending complex information embedded in raw RFID
and radar data, assumes significance due to the complex variations inherent in the data [279,
280]. Specifically in HAR applications, DL’s capacity to automatically extract intricate features
surpasses that of traditional methods [281]. Notably, recurrent neural network (RNN) models
have demonstrated efficacy in processing time-series data and recognizing diverse human ac-
tions, encompassing gestures, gaits, and language [282, 283]. Incorporating long short-term
memory (LSTM) units into RNNs has addressed challenges associated with long-term learning
[284]. Given the success of deep learning models and considering the time-dependent nature
of RFID and radar data, the proposed LSTM-based variational autoencode (LSTM-VAE) model
augmented with LSTM units holds promise for precise HAR classification within the RFiDAR
system.

Figure 7.1: Recent growth in deep learning application for RF-based human sensing publica-
tions. [285]

Several single-modality and single-type ambient sensing solutions rely on DL algorithms for
accurate HAR. However, these solutions have limitations when using only one sensor or relying
on a specific sensor [286]. For instance, low recognition accuracy may persist for similar activ-
ities, and specific sensor solutions are susceptible to external interference such as temperature
variations, multipath interference, LOS issues, and long detection ranges. Each sensor type also
faces its challenges; for instance, RFID systems are influenced by LOS dependence and environ-
mental factors while radar systems may face challenges in precisely detecting human movement
over long distances. Addressing these challenges and aiming to provide a highly accurate HAR
system suitable for long-term human monitoring, we propose RFiDAR, a signal fusion system
leveraging information from RFID devices and radar radiation. RFiDAR adopts an LSTM DL
model with VAE units to comprehend complex scenarios in multiple data streams. This fusion
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approach was validated using data from ten subjects performing five different activities. This
system underscores the effectiveness of the sensor fusion framework for independent, long-term
human monitoring solutions at home.

To ensure interpretability and transparency in predictions made by the initial black-box sys-
tem. For interpretability, which refers to connecting data input to AI predictions, and trans-
parency, enabling human users to understand the algorithm’s process. The contributions of this
work are outlined below:

• Introduction of RFiDAR - an interpretable, passive, and non-intrusive fusion system for
accurate and transparent HAR, designed to be inexpensive.

• Mitigation of limitations seen in single modality solutions, such as RFID LOS and ambient
dependence, and radar susceptibility to electronic interference. RFiDAR offers a robust
and reliable classification system for HAR.

• Utilisation of LSTM-VAE Fusion to demonstrate the system’s ability to reduce the impact
of LOS and detection range, ambient dependence, and electronic interference, thereby
enhancing visual application prospects.

7.2 System Model and Preliminaries

This section introduces the conceptual framework and fundamental components of the RFiDAR
system, setting the stage for a detailed exploration of its innovative multi-modal approach to
HAR in challenging environments.

7.2.1 System Model

This chapter presents a novel multi-modal system, RFiDAR, tailored for HAR, addressing limi-
tations in RFID and radar-based systems, especially in long-range and LOS environments. The
RFiDAR system combines an RFID reader and antenna, RFID tags on a wall, and a UWB Xethru
radar connected to a laptop. Subjects engage in distinct activities while RFID readers and radar
collect data in a contactless manner, capturing tag ID, phase angle, RSSI, Doppler frequency,
timestamps, and raw IQ data, all stored in CSV and .dat formats. This time-series data enables
the RFiDAR system to identify subject-tag interactions and activities within the designated area.
Integrating UWB radar and RFID data, our system employs data-level and feature-level fusion
techniques to heighten accuracy. Fundamental to our approach is sensor calibration through data
and signal level fusion, coupled with the collection and preprocessing of diverse human activity
data from multiple sensors to prepare inputs for our model. For precise HAR, we propose an
LSTM-VAE model complemented by fusion algorithms for data classification, yielding defini-
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tive outcomes. A visual representation of our multi-sensor system is depicted in Figure 7.2.

Figure 7.2: Experimental setup of RFiDAR system.

7.2.2 Preliminaries

In this section, we will describe the foundational aspects of RFID technology and Xethru radar.
RFID The reader uses backscatter communication to interrogate tags. In this process, elec-

tromagnetic waves emitted from the reader antenna interact with a tag, causing the tag’s tiny
antenna to modulate its resonant properties and embed ID information into the backscattered
signal. When multiple tags simultaneously backscatter signals, signal collisions occur on the
reader side, resulting in the reader receiving no meaningful data. To address this issue, various
anti-collision protocols, such as framed slotted Aloha protocols or tree-walking protocols [287],
were proposed. Subsequently, following each successful tag reading, the reader can report not
only the tag ID but also certain low-level data related to tag signals, including phase, RSSI,
doppler frequency, and timestamp. The RSSI value, measured in dBm, ranges from negative
values up to 0, with 0 representing ideal conditions where a tag receives the full signal from
the antenna. In an ideal scenario, when an antenna scans through tags, its RSSI values exhibit
periodic and hierarchical patterns. Figure 7.3 [288] illustrates this with five differently colored
lines, each representing a tag. The left-right relationship between any two tags is distinctly vis-
ible in the figure. RSSI and Phase are influenced by factors like distance, medium, and others,
commonly following the log-distance path loss model [289].

PL(d)(dB) = PL(d0)+10n lg
(

d
d0

)
+Xσ , Xσ ∼N (0,σ) (7.1)

θ =

(
2π

2d
λ

+θT +θR +θTag

)
mod 2π. (7.2)

where PL(d) represents path loss at distance d from transmitter to receiver, while PL(d0) is
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the reference path loss at a close distance established through actual testing. ‘n’ signifies the
path loss factor influenced by the environment. Additionally, Xσ is a normal random variable
with a standard deviation of σ . The right side equation represents the distance between the
reader antenna and the tag, denoted as d, with a wavelength of λ . A signal’s round-trip distance
from transmitter to receiver is 2d. Phase shifts θT + θR + θTag are respectively introduced by
the reader’s transmitter circuit, receiver circuit, and tag’s reflective traits [290]. Similar to RSSI,
actual phase values significantly differ from theoretical ones, leading to interleaved tag data and
occasional data absence.

(a) Comparison between predicted and observed
RSSI variations

(b) Comparison between predicted and observed
phase variations

Figure 7.3: Illustrating the dynamics of RSSI and Phase in response to Antenna movement

Radar The ultra-wideband radar functions by emitting ultra-short impulses lasting nanosec-
onds or picoseconds, enabling high pulse repetition frequencies for excellent range resolution.
These rapid pulses are transmitted by a UWB impulse radar, propagating via a transmitter [276].
Upon reaching the target, the reflected pulse returns to the receiver, forming an echo composed
of varied time delays from human scattering centers (e.g., limbs, torso) and environmental ele-
ments (e.g., ground, windows). This leads to diverse scattering coefficients [291]. The Novelda
Xethru X4M03 UWB impulse radar module initially used a direct-RF synthesizer to generate
Gaussian pulses with an analytic signal shape [275]. These pulses were then broadcasted in an
analytic signal form into the operational area from the transmitter side, as stated in Eq 7.3.

g(t) = Aexp( j2π fot)exp
(
−t
Tp

)2

x[n] = exp( j2π fonτ)exp
−(n−nτ)

2

Tp2 . (7.3)

The RF data can be read directly or processed through on-chip digital down-conversion
to obtain the baseband analytic signal. This signal, illustrated in Eq 7.3, consists of in-phase
(I) component, xl[n] = rex[n], and quadrature (Q) component, xQ[n] = imx[n]. The raw UWB
baseband signal represents the data collected during various human activities after collection.

7.3 Detailed Design of RFiDAR System

This section will begin with an overview of the proposed RFiDAR system, followed by a de-
tailed, sequential explanation of its core components.
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7.3.1 System Overview

Figure 7.4 illustrates the proposed RFiDAR system comprising five primary building blocks:
experimental setup, data collection, pre/post-processing, fusion model, and model deployment
and evaluation.

Figure 7.4: Overview of the RFiDAR system.

• Experimental Setup: This block outlines the experimental framework for the RFiDAR
system. It details the specific hardware and software configurations employed, providing
a foundation for the subsequent data collection and analysis processes.

• Data Collection: This block is dedicated to establishing the data structures necessary for
storing radar and RFID data. It involves setting up tag arrays for RFID data and defining
the parameters for radar data collection, ensuring all relevant data is captured effectively.

• Pre/post-processing: The focus here is on the steps involved in processing the data, both
before and after the main analysis. This process includes the initial handling of raw data,
its normalisation, and the preparation for input into the fusion model.

• Fusion model: In this part, the intricacies of the LSTM-VAE fusion model are discussed.
The discussion revolves around how the model integrates and processes the data from both
radar and RFID sources, highlighting its role in the effective fusion of these diverse data
streams.

• Model deployment and evaluation: This final block discusses the deployment of the
system model and a detailed examination of the results obtained. It includes an evaluation
of the model’s performance, assessing its efficacy in the context of the objectives set forth
for the RFiDAR system.

7.3.2 Experimental Setup

The experiments conducted in this study followed ethical approval within a controlled envi-
ronment, a room measuring 10× 10m2 in the James Watts South building at the University of
Glasgow. To mimic typical room conditions, we built a structure called the RFiDAR-Wall, sized
at 1.5×1.5m2. This setup intentionally included various items, such as metal storage boxes and
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tables, to create different signal paths and simulate a strong NLOS environment. The RFiDAR-

Wall had five columns, each containing three tags, totaling fifteen tags used for our experiments.
The hardware for our RFiDAR-Wall system (shown in Figure 7.2) comprised an Impinj R700
series reader, an Impinj Times-7 A5010 slim circular polarized UHF antenna, UHF RFID tags,
and a Novelda Xethru X4M03 UWB radar. This system cost around £3,500, broken down as
follows: Impinj reader (£2000), antenna (£150), tag (£0.03), X4M03 (£350), and laptop server
(£1000). We implemented the RFiDAR-Wall system using MATLAB and Python frameworks,
incorporating software components like Impinj for RFID reader control, X4M03 for HAR, and
our algorithms and models. The RFID reader operated between 865MHz and 868MHz and has
a transmission power range of 10dBm to 32.5dBm. We set the reader to work at 865.5MHz
frequency with a default transmission power of 32.5dBm. In a controlled lab setting, we placed
fifteen Impinj tags strategically for our RFiDAR system. The circularly polarized antenna, Nov-
elda Xethru X4M03, was positioned at distances of 2 and 3.0 meters from the center of the
“RFiDAR-Wall". Meanwhile, the participants involved in activities stayed 0.5 meters away from
the wall. Positioned 0.75 meters above the floor, the antenna captured the activities performed
by the participant. Data collection focused solely on these activities and their immediate sur-
roundings. Our setup comprised two main components: the hardware, including the circularly
polarised antenna and Novelda Xethru X4M03, and the software for collecting and analysing
data.

Hardware Setup

The AAL’s RFiDAR system integrates the Impinj R700 reader, functioning at 865− 868 MHz,
and the Novelda Xethru X4M03 UWB radar within the 6−8.5GHz range. A UHF passive RFID
tag array, arranged in a 3×5 grid with 30 cm spacing, supports swift reading of up to 1100 tags
per second. The radar operates at 50 frames per second alongside a circularly polarized antenna
boasting an 8.0 dBi gain and a 30 dBm RF transmitter. Data collected by the reader seamlessly
transmits to a connected laptop, where it interfaces with the radar system for further processing.
The Impinj ItemTest Software1 manages continuous RSSI data capture, while a developed script
captures IQ data from back-scattered signals emitted by tags and subjects. This information is
relayed via the laptop’s RS232 serial port to a dedicated backend module for thorough analysis
and processing.

Software Setup

The system’s programming, written in Python 3.6, utilizes essential packages including tensorflow-
gpu 1.1.0, keras 2.1.2, numpy 1.12.1, pandas 0.23.0, and matplotlib 2.2.2. This programming
framework operates efficiently on a robust Dell PC equipped with an Intel® Core i7−10850H

1https://support.impinj.com
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CPU (2.70 GHz, 4 cores), and 16 GB of RAM. These specifications ensure high-performance
execution for complex machine-learning algorithms and data analysis tasks.

7.3.3 Data Collection

Following this, we delineate the RFID data collection procedures and radar data collection pro-
cedures within the RFiDAR system separately.

RFID Data Collection

The system’s RFID reader continuously scans tags within the monitoring area, relaying tag ID,
RSSI, phase, and timestamp data. This communication occurs through a narrow RFID channel,
allowing numerous tags to coexist but providing limited reading chances as the number of tags
increases. As a consequence, the reading rate of a target tag significantly decreases with an
increase in tag numbers. The sparsity of tag RSSI data has a notable impact on accurate RSSI
unwrapping, crucial for methods such as localization or activity recognition. Improving reading
rates for target tags in such scenarios is a non-trivial challenge. For experimental purposes, the
study involved five subjects of varying ages, heights, and weights. These subjects were directed
to perform sitting, standing, leaning, and walking activities at their natural pace between the
antenna and the RFiDAR-Wall, depicted in Figure7.2. Each subject completed these activities
near the RFiDAR-Wall and antenna, resulting in 50 samples for each activity, containing RSSI
information. The study’s focus was on one subject per activity rather than simultaneous recogni-
tion of multiple subjects, resulting in data from a total of 15 tags. Including five subjects aimed
to diversify the dataset, producing 1000 valid samples across four scenarios. Within a 3-second
interval, each tag was read approximately 30-36 times. Following data collection, raw RSSI
data underwent processing using a Python script to extract relevant information necessary for
subsequent preprocessing. The goal was to prepare the data for training and testing algorithms
effectively.

Radar Data Collection

The HAR data collection employed the Novelda Xethru X4M03 UWB radar operating in the
6-8.5GHz range. It captured various activities (sitting, standing, leaning, walking in two direc-
tions) using integrated scripts, recording 50 basebands per second. These basebands depicted
reflection amplitude across distances ahead of the radar, with each containing 184 values within
the range of [0.4–9.8 m]. The fast-time rate of 23.328 GHz sampled these values, defining each
as a range bin and totaling 184 range bins per scan. A hundred radar frames accumulated each
second, resulting in a slow-time range from 0.0 to 2.0 s. The data underwent processing through
programmed scripts, saved as NumPy arrays based on a guided algorithm described in Table 7.2.
Participants completed multiple rounds of activities, producing six distinct output files (one for
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each activity), adhering to the data collection protocol. This process ensured a unified dataset,
effectively documenting all activities as per the collection policy.

Table 7.2: Dataset summary using RFiDAR-Wall: scenarios, subjects, and activities performed.

Activity 2 meters 3 meters
RSSI Amplitude RSSI Amplitude

Empty Room 50 50 50 50
Sitting 50 50 50 50
Standing 50 50 50 50
Walking Forward 50 50 50 50
Walking Backward 50 50 50 50

iii. System Calibration

System calibration serves as an essential step in fusing diverse modality data. An important as-
pect of this integration is time calibration, especially in multi-sensor data fusion scenarios where
inconsistent exist in data collection frequencies across sensors. For instance, the continuous-
wave radar records data at a rate of 50 frames per second, while the RFID operates at a speed
of 12 samples per second. As the collection sample rate of the radar is much higher than that of
the RFID, downsampling the radar data is necessary to match its time stamp with the RFID data
collection frequency. This time calibration process is demonstrated in detail in Figure 7.5.

Figure 7.5: Calibrating Time for Data Alignment.

7.3.4 Data Preprocessing

RFID Data Preprocessing The data preprocessing phase is important for analyzing raw RSSI
data, involving cleaning, formatting, and transforming it into a structured format suitable for
further analysis. Various mathematical and signal processing techniques such as moving aver-
age window, bandpass, low-pass, and high-pass filters were applied to focus on specific patterns
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within the collected raw data. Initially, the data underwent processing using mathematical ex-
pressions defined by Equations 7.4.

Tf
y(k)− y(k−1)

T
+ y(k) = x(k), (7.4)

y(k) =
T

Tf +T
x(k)

Tf

Tf +T
y(k−1) = ax(k)+(1−a)y(k−1). (7.5)

The raw data for each activity is organized into a 2D matrix format, where rows represent activity
samples and columns represent RSSI data. Standard preprocessing functions and libraries such
as (Scikit and Pandas) were employed to refine and ensure data quality. Each activity’s data was
formatted into a matrix with 540 columns of RSSI data (15 tags x 36 columns) when the activity
occurred contactless.

To maintain uniformity in sample numbers for each activity class and enable robust training
of ML/DL models, synthetic data generation using generative adversarial network (GAN) and
conditional tabular generative adversarial network (CTGAN) methods is considered [241]. The
RSSI data for each activity were stored separately in data files with a frame size of 36, repre-
senting approximately 36 readings within three seconds. During different activities (e.g., sitting
or standing), some tags were partially or fully read. To ensure a consistent 36-time tag reading,
any missing tag data was replaced with zeros within the data matrix. Analysis indicated that
no tag was read more than 36 times, and missing values (NaN) were imputed with the mean
of each row using the built-in SimpleImputer function from SciKit. Subsequently, the pandas
unique function was used to segment the timestamp into seconds, enabling the monitoring of tag
readings for a precise three-second duration.

Radar Data Preprocessing: The process of Radar data processing involves transforming col-
lected amplitude data into range-time radar frames to depict human activity and position within
specific time frames. The method includes frame buffering and clutter removal techniques, as
depicted in Figure 7.6b. For signal observation across various activities, baseband data from all
range bins was organized per second, utilizing the X4 radar with a range resolution of approxi-
mately 5.35 centimeters. Data was recorded at distances of 2.0 and 3.0 meters, forming a 1500
column data matrix. The frame rate was set at 50 frames per second, creating 50 rows for each
radar range-time frame, as illustrated in Figure 7.6c.

The xethru X4M03 UWB module captures reflection signals from the target, including re-
ceiver noise, atmospheric interference, and surrounding environmental factors within the detec-
tion area [292]. These reflections significantly impact HAR’s performance. Initially, utilising
raw UWB radar data for HAR led to a 19% lower performance compared to reported results,
necessitating data processing for enhanced accuracy. Clutter removal, crucial for eliminating
non-focusing target signals, involves DC noise removal and background subtraction. DC noise,
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(a) Building Blocks (b) Preprocessing (c) Range-time matrix (d) Mean values over time.

Figure 7.6: Visual representation of radar data processing: Blocks, preprocessing, range-time
matrix, time-averaged range bins.

a constant signal, is eliminated by computing the mean of each time step in every range bin and
subtracting it from the original signal using Eq 7.6,

X [:,n] = X [:,n]− X̄ [:,n] (7.6)

where X [:,n] represents baseband data for all time steps in each range bin, and X̄ [:,n] denotes
the mean of all time steps in each range bin.

7.4 MultiModality Sensing Fusion System

Multi-sensor data fusion involves combining information from multiple sensors to improve an
HAR system’s accuracy, reliability, and overall effectiveness. This combination addresses limi-
tations inherent in single-sensor data, including environmental constraints. Our study explored
two specific data fusion algorithms: data level fusion and feature level fusion fusion, and con-
ducted experiments to compare their performance.

The LSTM-VAE fusion architecture, as illustrated in Figures 7.7 and 7.8, represents a state-
of-the-art approach for the combination of heterogeneous sensor data, specifically from RFID
and radar modalities. The system begins with distinct LSTM encoding layers, each fine-tuned
to handle the temporal sequences of 4,301 time steps from XeThru radar and 4,525 time steps
from RFID sensors. In these initial layers, a descending neuron arrangement (100, 80, and 60)
precisely encapsulates the high-dimensional time series into a compact set of features. Fol-
lowing the initial transformation, these features are fused into a single 120-dimensional feature
vector with a concatenation layer. This vector is then processed through a dense layer, impor-
tant to the fusion mechanism, which computes the mean and log variance—crucial for the latent
distribution that is central to the VAE framework. A sophisticated sampling function then repa-
rameterizes this integrated feature space, resulting in a latent representation secure for decoding.

The model’s symmetrical design is reflected in the decoding phase, where another suite of
dense layers and LSTM units with 60 neurons each is employed to reconstruct the modality data.
The model ensures the reliability of the original data by replicating the dense outputs to the time
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series dimensions specific to each modality, followed by an LSTM processing stage that crafts
the final output to closely resemble the original data. This complex process is managed by the
LSTM-VAE model’s forward method, which seamlessly transitions from encoding the input data
through reparameterization of the latent space to decoding and reconstructing the input data. The
result is a balanced fusion and accurate reconstruction of data from the radar and RFID sensors.
By leveraging the sequential data handling capabilities of LSTM and the generative properties of
VAE, the model adeptly fuses and restores complex temporal data, demonstrating the robustness
of the LSTM-VAE framework in multi-sensor data integration.

Figure 7.7: High level diagram of LSTM-VAE.

Data Level Fusion:

The data level fusion method manages raw data at the system’s foundation, ensuring minimal
data loss and optimal reliability. However, its effectiveness greatly depends on the sensor type
in use. Inconsistencies in sensor information can complicate the fusion process. By employing
timestamp validation and channel stacking, data level fusion integrates varied sensor data. The
resulting fused data is then fed into the model for training and classification, as shown in the
block diagram (Figure 7.9a) illustrating the data level fusion process.

Feature Level Fusion:

Feature-level fusion does not directly combine original data from diverse sensors. Rather, it en-
tails extracting distinct features from the data processed by individual sensors and combinations
of these features for recognition during the fusion process. Our methodology employed two
separate LSTM networks: one specialized in extracting radar features, and the other focused
on extracting RFID features. These extracted feature maps were then amalgamated using an
addition operation. After adjusting the feature map sizes for consistency, they were effectively
merged within a VAE model as shown in Figure 7.9b.

7.5 Results and Discussion

This section presents the performance evaluation of radar and RFID data fusion using LSTM-
VAE models. We conducted experiments that entailed comparing the Fusion model against
single-domain models. The results of our study on the fusion of radar and RFID data utilising



CHAPTER 7. RFIDAR: ENHANCING HAR WITH CONTACTLESS RFID-RADAR FUSION 102

Figure 7.8: Structure of the implemented LSTM-VAE architecture diagram.

(a) Data Level (b) Feature Level

Figure 7.9: Illustration of data-level and feature-level fusion algorithms.
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LSTM-VAE models. Additionally, we aim to demonstrate the efficacy of various algorithms,
namely CNN, LSTM, and RNN. Each was applied to the datasets obtained from the radar and
RFID sensors to evaluate their individual and combined performance in activity recognition
between five distinct activities at a proximity of 2 and 3 meters from the setup.

7.5.1 Assessment Indicators

The assessment of the proposed model’s performance in this chapter utilised two metrics: accu-
racy and confusion matrix. These metrics are applied and performed on the two distinct scenar-
ios. In addition, the assessment indicators of individual activities are shown using the confusion
matrix, commonly referred to as the error matrix. Presenting the confusion matrix as a graphical
representation offers a more distinct perspective on the model’s classification outcomes for each
activity. Within the confusion matrix, the column elements signify the actual activity type, while
the row elements represent the predicted activity type. Specifically, activities such as no-activity,
sitting, standing, leaning, and walking forward and backward correspond to labels.

Accuracy =
T P+T N

T P+FN +T N +FP
, (7.7)

where TP and TN represent the count of accurately and inaccurately predicted samples within
positive cases, whereas FP and FN signify the count of accurately and inaccurately predicted
samples within negative cases.

7.5.2 Evaluation of Model Performance in Human Activity Recognition

In this study, we investigate the effectiveness of deep learning models in identifying human
activities using data from RFID tags and radar under two scenarios: at distances of 2 meters
and 3 meters. We systematically compare the accuracies achieved by CNN, RNN, and LSTM
models across distances of 2 meters and 3 meters for individual sensing technologies. We also
examine the benefits of combining this data through a method known as LSTM-VAE fusion to
improve the accuracy of activity recognition.

Individual Sensing Accuracy

Our analysis starts by assessing the accuracy of activity recognition using data from either RFID
or radar sensors alone, processed through CNN, RNN, and LSTM models as detailed in Tables
7.3 and 7.4. The LSTM model emerged as the top performer, achieving an impressive average
accuracy of 91.5% at 2 meters (91% for RFID and 92% for radar) and 90% at 3 meters (87% for
RFID and 93% for radar). This indicates the LSTM model’s strong capability of capturing the
temporal patterns of human activities.
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LSTM-VAE Fusion Model Performance

Our next step is to explore the impact of merging RFID and radar data using the LSTM-VAE
fusion approach. This approach led to a significant increase in accuracy as shown in Tables
7.6 and 7.7. At 2 meters, simple data fusion raised the accuracy to 96%, while a more intri-
cate feature-level fusion boosted it to 98%. At a distance of 3 meters, we observed similar
improvements, with accuracy reaching 95.8% for basic data fusion and 97.9% for feature-level
fusion. These findings underscore the value of integrating data from both sensors to achieve
more precise activity recognition.

Moreover, it is important to highlight the key results of the data-level and feature-level fusion
strategies:

• Data fusion at 2 meters resulted in a 4.5% increase in accuracy over the baseline, whereas
feature-level fusion showed a 6.5% improvement.

• Feature-level fusion notably enhances the accuracy for specific activities, achieving nearly
reasonable accuracy scores in some cases.

• At 3 metres, the enhancements are even more pronounced, with feature-level fusion show-
ing a 7.9% improvement over the baseline accuracy.

The comparison reveals that the fusion models, particularly those employing feature-level
integration, significantly outperform the single-sensor models. This demonstrates the substantial
benefits of synthesising sensor data for improved accuracy in activity recognition.

Overall Performance Comparison

A detailed examination highlights that LSTM models process radar data slightly more effectively
than RFID data, particularly in dynamic activities, likely due to radar’s superior motion detection
capabilities. This advantage is more evident at the 3-meter distance, where radar data processed
by LSTM models achieves an accuracy of 93%.

Overall, our results confirm that LSTM models are exceptionally effective in interpreting
data for activity recognition, both when using data from individual sensors and when employing
a fusion-based approach. By integrating data from RFID and radar sensors, especially through
feature-level fusion, we significantly enhance our ability to accurately recognize human activi-
ties, showcasing the potential of advanced AI models in pushing the boundaries of technology
in this area.

Individual Sensing Accuracy

The individual accuracies for both Radar and RFID, as assessed by CNN, LSTM, and RNN
models, are presented in Tables 7.3 and 7.4 respectively. These accuracies are important for
understanding the baseline performance of each sensor before fusion.
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Table 7.3: Individual sensor accuracy for 2 Meters Scenario

Sensor Input Data Model Overall
Accuracy

Empty Sitting Standing Walking
Forward

Walking
Back

RFID RSSI CNN 82% 100% 74% 71% 83% 82%
LSTM 91% 100% 90% 90% 90% 95%
RNN 86% 100% 87% 78% 85% 90%

Radar Amplitude CNN 76% 100% 60% 60% 75% 65%
LSTM 92% 100% 90% 90% 98% 92%
RNN 88% 100% 88% 82% 89% 81%

Table 7.4: Individual sensor accuracy for 3 Meters Scenario

Sensor Input Data Model Overall
Accuracy

Empty Sitting Standing Walking
Forward

Walking
Back

RFID RSSI CNN 78% 100% 70% 67% 79% 78%
LSTM 87% 100% 85% 85% 85% 90%
RNN 82% 100% 82% 73% 80% 85%

Radar Amplitude CNN 77% 100% 62% 62% 77% 67%
LSTM 93% 100% 91% 91% 97% 93%
RNN 87% 100% 87% 80% 88% 80%

Fusion Accuracies

Table 7.5 delineates the accuracies obtained through data-level and feature-level fusion tech-
niques implemented using the LSTM-VAE model. These techniques enhance the model’s ca-
pacity to leverage the strengths of each sensor modality.

Table 7.5: Fusion accuracy’s using LSTM-VAE

Fusion Techniques Fusion Accuracy (2 meters) Fusion Accuracy (3 meters)
Data-level Fusion 94% 95.1%

Feature-level Fusion 97% 97.8%

Fusion Classification Accuracy

Post-fusion, the classification accuracies for each activity, as discerned by the fusion of radar
and RFID data, are summarized in the Tables 7.4 below. The fusion methodologies amplify the
robustness of activity recognition.
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Table 7.6: Classification accuracies after fusion (2 meters)

Fusion Model Overall
Accuracy

Activities

Empty Sitting Standing Walking Walking Back

Data level
CNN 87% 100% 89% 76% 85% 80%
LSTM 96% 100% 97% 93% 99% 94%
RNN 82% 100% 70% 60% 70% 70%

Feature Level
CNN 81% 100% 80% 75% 80% 80%
LSTM 98% 100% 98% 98% 99% 99%
RNN 93% 100% 92% 92% 94% 94%

Table 7.7: Classification accuracies after fusion (3 meters)

Fusion Model Overall
Accuracy

Activities

Empty Sitting Standing Walking Walking Back

Data level
CNN 87.2% 100% 89.2% 76.1% 85.4% 80.3%
LSTM 95.8% 100% 97.2% 93.2% 98.8% 94.1%
RNN 82.4% 100% 70.5% 60.8% 70.7% 70.3%

Feature Level
CNN 81.3% 100% 80.5% 75.6% 80.2% 80.7%
LSTM 97.9% 100% 98.1% 97.7% 98.9% 98.6%
RNN 92.7% 100% 91.8% 92.3% 93.6% 93.9%

7.6 Limitation and Practical Issues

7.6.1 Active Tags vs. Passive Tags

Generally, there are two types of RFID tags: active tags, which incorporate internal batteries, and
passive tags, capable of harvesting energy from reader radio waves. Active tags typically offer
longer communication ranges but require battery replacement or recharging, posing manpower
challenges in large-scale RFID systems. In contrast, passive tags, as thin as paper, are easier to
attach to objects than active tags. Additionally, passive tags are generally more cost-effective.

7.6.2 Optimizing RFID and Radar Integration for Large-Scale Monitor-
ing

In large monitoring areas with numerous tags, multiple antennas, multiple readers, and radar, a
common issue arises with the shared narrow communication channel among a large number of
tags, leading to reduced tag reading rates. This paper proposes a Radar-assisted RFID scheduling
mechanism to ensure high reading rates for targeted tags of interest. Moreover, due to the limited
communication range of RFID, deploying multiple readers with overlapping coverage becomes
necessary. However, adjacent readers may interfere with each other. Some existing works have
proposed strategies to optimize reader deployment and mitigate reader collisions [293]. When
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Figure 7.10: Comaprison of LSTM-based accuracy by scenario and fusion technique.

deploying multiple radars, the locations and radiation directions can be predetermined. For
subjects within the monitoring region, their relative positions and orientations concerning the
radar can be known. Integrating data from multiple radars enables effective subject tracking,
possibly consolidating data into a single super radar with adequate monitoring range.

7.6.3 Optimizing RFID and Radar Systems for Efficient Monitoring in
Large-Scale Environments

For long-term monitoring applications, energy conservation holds significance for environmen-
tal and economic reasons. To reduce energy consumption to some extent, a simple approach
is proposed. Initially, when no subject is in the monitoring region, the RFID reader operates
in a low-duty cycle mode to save energy. Similarly, the radar can be configured initially in a
sleeping status. Upon a subject entering the monitoring region, changes in phase data of certain
tags can serve as a signal to awaken the radar, thus further reducing the energy consumption of
the RFID-Radar system.

7.7 Summary

This chapter summarises the significant advancement of the RFiDAR system in HAR, smoothly
merging RFID and radar technologies to address the challenges inherent in single-sensor solu-
tions. Central to this system is the LSTM-based variational autoencoder (LSTM-VAE) model,
adept at extracting and analysing temporal features from both RFID and radar data. This model
significantly improves HAR accuracy through data-level and feature-level fusion techniques.
RFiDAR’s fusion approach not only upholds the high accuracy of individual sensors but also
enhances it, especially in complex non-line-of-sight scenarios. Notably, RFID demonstrates su-
perior accuracy over radar in standalone evaluations, a disparity that diminishes with fusion.
The effectiveness of the LSTM-VAE model in harmonizing diverse data sets, combined with
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RFiDAR’s unobtrusive and passive nature, positions it as an invaluable tool for applications
such as elderly care in assisted living environments. Overall, RFiDAR emerges as a reliable,
precise, and cost-effective system for long-term, autonomous human monitoring, showcasing
the transformative impact of integrating multi-sensor data fusion in elevating safety and quality
of life.



Chapter 8

Conclusion and Future Work

The Ph.D. thesis titled “TriSense: USRP, RFID, and Radar-Based Hybrid Sensing System for
Enhanced Sensing and Monitoring" explores the integration of RFID, Radar, and USRP tech-
nologies to refine indoor human activity monitoring systems. This research aims to solve issues
like enhancing system accuracy, reliability, signal interference, and non-intrusiveness, thereby
marking a significant advancement in the detection and classification of indoor activities.

8.1 Comprehensive Summary

This thesis contributes to the field of human activity monitoring by developing an RF signal-
based system that integrates machine learning and deep learning techniques. Initially, it con-
trasts contact-based methods, like wearables, which are accurate but often impractical due to
discomfort and compliance issues, especially in elderly care, with contactless methods for their
ubiquity and privacy advantages. Specifically, it explores the use of Wi-Fi’s CSI for detect-
ing activities through signal disruption, advancing RFID from traditional tag-based systems to
‘tag-free’ monitoring through signal variation interpretation, and exploring radar’s potential for
movement monitoring with privacy concerns. The thesis ‘TriSense’ then presents a novel inte-
gration of RFID, and radar to overcome their drawbacks. This fusion achieves enhanced accu-
racy in detecting a wide range of activities by leveraging the unique strengths of each technol-
ogy: RFID’s cost-effectiveness, radar’s broad-area motion detection, and the precision of USRP.
Challenges like hardware limitations and signal processing complexities were tackled through
innovative solutions. The thesis underscores the need for further machine learning advance-
ments to refine this integrated approach, aiming for broader deployment and greater accuracy in
real-time applications.
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8.1.1 Advancements in Non-Invasive Human Activity Recognition using
USRP and Deep Learning Technologies

Our research has significantly contributed to the advancement of HAR by utilising USRP de-
vices to capture Wi-Fi CSI, introducing a non-intrusive method for accurately monitoring and
identifying human activities within indoor environments. This enhancing approach leverages
the ubiquitous availability of Wi-Fi, providing a scalable and privacy-conscious alternative to
conventional HAR techniques that are often perceived as intrusive. The result of our study
highlights the potential of combining AI technologies with RF signal analysis to enhance the
accuracy of activity detection, offering a promising solution for the development of intelligent
healthcare systems.

The first part of our study successfully leveraged CSI captured through USRP devices, show-
casing its efficacy in the precise localisation and identification of various indoor activities, in-
cluding sitting, standing, and walking. By applying machine learning techniques, specifically
a super learner algorithm, we achieved an accuracy rate of 96% in activity localisation, signifi-
cantly outperforming existing methods. This illustrates the robust capability of AI in enhancing
HAR systems, making it a viable solution for smart healthcare applications that require precise
monitoring and assistance without compromising patient privacy. Furthermore, our subsequent
research explored the application of deep learning models, including LSTM, CNN, and a hybrid
LSTM-CNN model, to further enhance the accuracy and reliability of HAR systems. The LSTM
model, in particular, proved exceptionally adept at processing the complex patterns present in
CSI data, achieving a classification accuracy of 95.3% for a range of indoor activities. This
highlights the strength of deep learning techniques in deciphering the subtle nuances of human
movement and the flexibility of USRP devices in capturing these dynamics for real-time activity
recognition.

Moreover, our research highlights the revolutionary potential of integrating software-defined
radio technology with AI in the domain of HAR. The combination of CSI data and the analyt-
ical power of machine learning and deep learning algorithms offers a comprehensive solution
that markedly improves the accuracy, reliability, and applicability of HAR systems. Moving
forward, the exploration of multi-user environments, dynamic settings, and the inclusion of a
broader spectrum of activities presents exciting opportunities to further enhance the sophisti-
cation and responsiveness of HAR systems. Such advancements hold significant promise for
the development of smarter, more responsive healthcare solutions, ultimately contributing to the
enhanced welfare and independence of individuals across various environments.

8.1.2 Enhancing Assisted Living with AI-Enhanced RFID Technologies

Our research has made significant contributions to the recent developments in technologies for
assisted living, focusing on the integration of AI with RFID technology and transformer-based
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models. This study focuses on elderly care with non-intrusive, accurate activity and fall detec-
tion systems. By using the AI-powered transparent RFID tag wall (TRT-Wall) and the TFree-FD
system employ a passive UHF RFID tag array and deep learning techniques to accurately mon-
itor human activities like sitting, standing, and walking in a contactless manner, achieving an
impressive 95.6% accuracy. This is a significant step in enhancing non-intrusive assisted living
technologies, promising to improve elderly care by combining simplicity with a non-intrusive
approach. In addition, the TFree-FD system presents an innovative approach to tag-free fall
detection by integrating a transformer model with RFID tag data, including RSSI and phase
information, to achieve high precision in fall detection. With an accuracy exceeding 96%, it es-
tablishes a new standard in the field, surpassing traditional models through effective analysis of
signal variations caused by human movements. This advancement is particularly significant for
elderly care, offering swift and accurate fall detection. The system’s innovative fusion strategy,
combining both early and late fusion techniques, supports its reliability and versatility across
different indoor environments, enabling it to accurately identify a broad spectrum of activities
and fall incidents.

These developments signify a transformative approach to activity monitoring and fall detec-
tion within assisted living environments. By harnessing the power of AI and RFID technology,
these systems not only promise to reduce the healthcare burden associated with elderly falls but
also to improve the quality of life for the elderly, allowing them to live independently and safely
in their homes. The integration of these advanced technologies into everyday care practices
is secure to redefine the standards of elderly care, emphasizing the importance of innovation,
accuracy, and non-intrusiveness in assisted living solutions.

8.1.3 Contactless Human Activity Recognition Through RFID and Radar
Fusion

The fusion of RFID and radar (RFiDAR) system represents a significant advancement in indoor
human activity recognition to overcome traditional monitoring systems’ privacy and efficiency
issues. This method enhances privacy by avoiding intrusive devices and reduces monitoring
costs. RFiDAR excels in detecting diverse activities accurately, even in challenging conditions
where conventional methods struggle due to long-range and non-line-of-sight scenarios. The
RFiDAR system’s effectiveness is driven by a sophisticated LSTM-VAE model that extracts
temporal features from different modality data to improve activity recognition. This fusion
model employes deep learning to improve recognition accuracy through sophisticated data fu-
sion algorithms, including both data-level and feature-level fusion. Moreover, the integration of
RFID and radar data through RFiDAR effectively addresses the individual limitations of these
technologies, such as difficulties in non-line-of-sight conditions and signal degradation due to
environmental factors. This fusion facilitates the detection of complex human activities with
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high precision, paving the way for its application across various domains. It holds particular
promise for enhancing the quality of life for elderly individuals in assisted living situations,
offering a new paradigm in indoor monitoring technology.

8.2 Limitation and Future Direction

This thesis presents an RF signal-based system for detecting, recognising, identifying, and lo-
calising human activities, highlighting the potential for further enhancement. It meticulously
documents experiments using CSI from WiFi, RSSI from RFID, and radar amplitude across
predetermined, controlled environments. To elevate the system’s efficacy, future endeavors will
focus on diversifying the dataset with a broader array of positions and orientations. Enhanc-
ing signal processing techniques will be essential, aiming to diminish noise within CSI/RSSI
readings and achieve precise activity classification. Future initiatives will explore deployment
in dynamic environments like shopping malls and integrate technologies to harness each modal-
ity’s strengths. While acknowledging the high costs and complexity of SDRs and the limitations
posed by RFID’s line-of-sight requirements, it proposes employing more cost-effective solu-
tions, such as Raspberry Pis, for RF signal capture and cloud server integration for enhanced
RSSI data management.

Our research analysis explores the fine roles of CSI and RSSI in indoor monitoring, specifi-
cally for detecting occupancy, recognising activities, and localisation. While RSSI is widely sup-
ported across a diverse range of devices, from IoT to WiFi, offering a straightforward approach
to sensing, CSI processing stands out in WiFi-enabled devices equipped for multi-antenna op-
erations. This investigation aims to delineate the comparative strengths and limitations inherent
in both methods.

CSI Advantages

1. Precision: CSI enables precise detection of people’s presence and activities by providing
detailed information about signal propagation characteristics, including phase shifts and
attenuation.

2. Non-Intrusive Monitoring: CSI processing is non-intrusive and can be implemented
using readily available WiFi infrastructure, which is widespread in indoor environments.

3. Environmental Resilience: CSI relies on the signal’s physical properties, making it re-
silient to environmental variations like temperature and humidity.
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CSI Limitations

1. Coverage Constraints: The limited coverage of WiFi signals within indoor environments
restricts CSI processing.

2. Interference Sensitivity: The accuracy of CSI may be compromised by electronic dis-
turbances such as microwaves and Bluetooth devices, which can degrade the accuracy of
occupancy detection.

3. Scalability Challenges: The extensive monitoring setups may face limitations in applying
CSI due to its heavy data processing demands.

RSSI Advantages

1. Implementation Ease: RSSI processing is a straightforward and readily implementable
method for occupancy detection, as it solely entails measuring the total strength of the
received signal. In contrast, CSI processing, even when phase information is disregarded
(as is typical), necessitates consideration of the signal strength across all sub-carriers.

2. Energy Efficiency: Processing RSSI is a low-power technique, as it demands minimal
processing power and can be executed using inexpensive hardware.

3. Extensive Reach: RSSI processing enables the detection of signals from multiple access
points, allowing a single device to cover a large area.

RSSI Limitations

1. Low Accuracy: RSSI processing is less precise compared to CSI processing as it solely
indicates signal strength while disregarding other signal attributes.

2. Resolution Limitations: RSSI processing is limited in resolution as it merely offers a
coarse estimation of the signal source’s location.

3. Density Dependence: To attain precise outcomes, RSSI processing might require a high
node density, potentially escalating the system’s expenses and intricacy.

The choice between CSI and RSSI depends on balancing accuracy, system complexity, and
deployment costs. However, other factors such as network topology and the potential to integrate
signal amplitude with phase information also play a role. This comparison highlights the need
for a strategic approach to integrating these technologies into indoor monitoring systems, aiming
for a balanced solution that meets project requirements and constraints effectively.
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8.2.1 Future Directions in USRP-Based Human Activity Detection

1. Advanced Signal Processing for Enhanced Differentiation: Improve signal processing
algorithms to accurately distinguish between multiple subjects using deep learning and
pattern recognition techniques, particularly in crowded environments.

2. Improved Penetration and Range with Frequency and Antenna Innovations: Explore
a wider range of frequencies and innovative antenna designs to enhance the USRP’s abil-
ity to detect activities over long ranges and through obstacles. Investigate sub-terahertz
frequencies and metamaterials for antennas to address these challenges.

3. Real-Time Processing Enhancements: Focus on hardware and software optimizations to
achieve near real-time data processing. This involves utilizing more powerful computing
resources, efficient data handling algorithms, and implementing edge computing strategies
to minimize latency.

8.2.2 Future Directions in RFID-Based Monitoring

1. Enhanced Localisation Precision: Improve RFID-based localisation and tracking accu-
racy through the integration of machine learning models capable of interpreting fluctuating
RSSI values more accurately. This may entail developing algorithms that adapt to envi-
ronmental changes and distinguish between human-induced signal variations and those
caused by non-human factors.

2. Integrated Multi-Sensor Monitoring: Augment RFID systems by integrating data from
additional sensing modalities (e.g., WiFi-RSSI or radar amplitude) of subjects. This mul-
timodal approach offers richer contextual information, enhancing the system’s ability to
monitor complex activities and interactions.

3. Energy-Efficient Sustainability: Innovate in RFID tag and reader design to minimise
energy consumption and prolong operational lifespan. Exploring energy harvesting tech-
nologies capable of powering RFID systems from ambient sources (e.g., solar, RF energy)
could revolutionize long-term monitoring applications.

8.2.3 Future Directions in Radar-Based Monitoring

1. Enhanced Radar Resolution: Invest in research to improve the resolution of radar-based
monitoring systems, enabling better detection of fine-grained human activities and subtle
movements in complex scenarios.

2. Refined Through-Wall Imaging: Develop and enhance through-wall radar imaging tech-
niques, possibly utilising UWB radar systems for improved penetration and resolution in
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detecting activities obstructed by barriers.

3. AI-Enabled Activity Recognition: Integrate artificial intelligence and machine learning
algorithms with radar data to enhance the classification and recognition of human activi-
ties, leveraging diverse datasets to improve real-time activity differentiation.

8.2.4 Future Directions in Fusion of USRP, RFID, and Radar Technolo-
gies

1. Unified Sensing Framework Development: Design a single framework to integrate data
from USRP, RFID, and radar sensors. This framework should synchronise data collection,
process inputs from different modalities, and extract meaningful insights using fusion
algorithms.

2. Advanced Cross-Modal Fusion Algorithms: Develop sophisticated algorithms to fuse
data from USRP, RFID, and radar sensors effectively. These algorithms should leverage
the strengths of each modality, enhancing accuracy and reliability in human activity de-
tection and monitoring.

3. Privacy-Preserving Data Analysis Implementation: Integrate privacy-preserving mech-
anisms into the sensing framework. This is important for maintaining individuals’ privacy
and trust, particularly in sensitive environments. Techniques like anonymization, encryp-
tion, and secure multi-party computation can safeguard individual privacy while enabling
comprehensive activity monitoring.

Advancing these future directions necessitates a multidisciplinary strategy that integrates exper-
tise in signal processing, hardware design, artificial intelligence, and privacy technologies. By
concentrating on these domains, substantial progress can be made in enhancing the state-of-the-
art in human activity detection and monitoring using USRP, RFID, radar, and their integration,
thus surpassing existing constraints and unlocking novel opportunities for applications in health-
care, security, and smart environments.
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