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Abstract

As mobile communication systems evolve, the demand for enhanced network efficiency and
pinpoint accuracy in user localization grows, particularly in the context of dynamic environ-
ments such as transport systems. This thesis is motivated by the critical challenge of adapting
beamforming techniques to the rapidly changing positions of users, a task analogous to hitting a
moving target with precision. The aim is to significantly improve cellular network performance
by leveraging advanced beamforming and machine learning (ML) for precise user localization.
A novel dataset, crucial to this endeavor, has been developed from simulations in open spaces
and a digital twin of the University of Glasgow campus, incorporating vital parameters such as
direction of arrival (DoA), time of arrival (ToA), and received signal strength indicators (RSSI).
Our investigation commences with the deployment of Maximum Ratio Transmission (MRT) and
Zero Forcing (ZF) beamforming techniques to evaluate their effectiveness in enhancing network
efficiency through both real and simulated user locations. The application of an adaptive MRT
algorithm in our beamforming strategy resulted in a remarkable 53% increase in Signal-to-Noise
Ratio (SNR), showcasing the potential of contextual beamforming (Cont-BF) using location in-
formation. Furthermore, to refine localization accuracy, deep neural networks were employed,
achieving a localization error of less than 1 meter surpassing conventional methods in accuracy.

This research also introduces technique for user-assisted beam alignment in high-speed sce-
narios, addressing the challenges in dynamic transport systems. Venturing beyond traditional
approaches, it explores the integration of user locations into beamforming decisions via a P4
switch, crafting a dynamic system responsive to user mobility. This is complemented by ex-
tensive data collection from 5G base stations (BS) using a TSMA 6 scanner, which enriches
our analysis with detailed parameters for precision localization. Moreover, the study evaluates
various MIMO beamforming techniques in 5G networks, demonstrating an average through-
put increase from 9 Mbps to 14 Mbps, thereby underscoring the effectiveness of our proposed
solutions. The potential of low-cost Software-Defined Radios (SDR) forDoA estimation and
the design of a beam steering setup was also assessed, aiming to evaluate their utility in high-
frequency beamforming. Despite uncovering limitations in sub-6GHz environments, this explo-
ration led to the successful development of a DoA estimation setup using USRPs and antennas,
alongside a beam steering system crafted through the design of phase shifters and antennas.
By integrating precise location information into adaptive beamforming techniques, especially
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ABSTRACT ii

within the dynamic context of transport systems, this thesis underscores the imperative role of
such integration in significantly enhancing communication efficiency. Our findings, which in-
clude significant improvements in signal-to-interference-to-noise ratio (SINR) (up to 50%) and
received power (up to 40%) through advanced beamforming methods, are pivotal for advancing
high-demand applications, including smart vehicles and immersive virtual reality. This marks
a crucial advancement towards the realization of next-generation cellular networks, paving the
way for more efficient and reliable performance in an evolving technological landscape.
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Chapter 1

Introduction

In an era dominated by mobile technology, the seamless integration of adaptive beamforming
and location-based services emerges as a critical cornerstone across diverse systems. Whether
facilitating communication in telecommunications, enhancing efficiency in smart cities, or en-
suring precision in autonomous vehicles, the impact of these technologies is far-reaching. For
instance, in telecommunications, the adoption of adaptive beamforming and location-based ser-
vices has led to a substantial 40% increase in data transfer rates, addressing the escalating de-
mand for high-speed connectivity [1]. Similarly, in smart cities, the implementation of location-
based services has resulted in a 30% reduction in energy consumption through optimized re-
source allocation [2]. Moreover, the application of these technologies in autonomous vehicles
has demonstrated a remarkable 20% improvement in navigation accuracy, fostering safer and
more reliable transportation [3].

The immediate goal is to establish the broader relevance of adaptive beamforming and
location-based services in systems with mobile users. Through a concise yet comprehensive
overview, this introduction not only outlines the research problem at hand but also sets the stage
for understanding its implications. The ensuing chapters will delve into the intricacies of these
technologies, presenting a structured approach that guides the reader through the nuanced land-
scape of adaptive beamforming and location-based services in transport systems.

1.1 Background and Motivation

In the current era of 5G, characterized by diverse use cases and unprecedented increases in data
volume, connected devices, and user data rates, substantial challenges must be addressed. The
demand for high data speeds, reduced latencies, scalability, minimized signaling overhead, and
energy-efficient operation poses significant hurdles. Network densification, a pivotal strategy in
ultra-dense heterogeneous networks, becomes crucial for the effective deployment of 5G. The
utilization of multi-GHz frequency bands and advanced coexistence techniques is imperative for
enhanced spectrum efficiency [4].

1
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Despite the immense potential of 5G, innovative solutions are required to meet its demands.
Context information, particularly location data, emerges as a promising supplement to estab-
lished and cutting-edge technologies. The 5G network’s ability to achieve location accuracy on
the order of one meter [5] opens up new possibilities and challenges.

1.1.1 Leveraging Location Data for Enhanced Capabilities

The high precision of location data in 5G offers an unprecedented opportunity for applications
such as DoA estimation, location estimation, beam steering, and beamforming. These applica-
tions play a crucial role in optimizing network performance and meeting the diverse require-
ments of emerging use cases.

Consider the analogy of a tennis match, where players strategically position themselves
based on the anticipated trajectory of the ball. Similarly, in the dynamic landscape of 5G, the
precise positioning of antennas and the efficient steering of beams are critical. The proposed
research serves as the skilled player on the court, leveraging prior location information to make
strategic moves and optimize the communication "shots" for an agile and effective network.

1.1.2 Opportunities and Implications

The availability of highly accurate location data in 5G opens up a myriad of opportunities.
Predictive algorithms can anticipate user movements, enabling proactive network optimization.
For instance, by predicting the movement patterns of mobile users, the network can dynamically
adjust beamforming parameters, improving signal quality and reducing interference.

Moreover, the reduction of location accuracy to one meter brings unprecedented benefits.
Enhanced precision allows for more efficient resource allocation, reduced interference, and im-
proved quality of service. Applications such as augmented reality, autonomous vehicles, and
industrial automation stand to gain significantly from this level of accuracy, ushering in a new
era of possibilities.

The integration of location data into the fabric of 5G networks presents not only challenges
but also unparalleled opportunities. The research on DoA estimation, location estimation, and
adaptive beamforming is poised to unlock the full potential of 5G, creating a network that is not
only fast and efficient but also adaptive and intelligent in responding to the dynamic needs of
users and applications.

1.1.2.1 Beamforming in Wireless Communication

In conventional wireless systems, the signals from BS cover a specific area, with power being
maximized only when the beam is exposed to the user. However, with beamforming imple-
mented through algorithms, average power remains constant throughout the user’s movement.
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The primary goals of beamforming include generating a beam of the desired shape, directing a
beam to a specific location in real-time, and suppressing interference.

1.1.2.2 Challenges

The deployment of large array systems at BS introduces complexities, increases power con-
sumption, and necessitates extensive beam training overhead. These factors collectively pose
significant challenges to the efficiency of cellular communications, particularly in dynamic en-
vironments like vehicular networks. This research specifically aims to address these challenges
within the context of vehicular communication. By leveraging prior location information of
vehicles in motion, our goal is to develop a more efficient system. This system will utilize
location-assisted beamforming techniques and adaptive antenna array structures, designed to
dynamically respond to the rapidly changing positions of vehicles, akin to tennis players ad-
justing their strategies based on the movement of the ball. Through this approach, we aspire to
enhance the reliability and efficiency of communication in vehicular networks, paving the way
for advanced vehicular communication technologies and applications.

1.2 Problem Description

The allure of wide bandwidth in wireless communications, particularly at higher frequencies, is
tempered by challenges such as increased path loss and signal absorption. To overcome these
limitations, a modern hybrid approach, combining the strengths of different technologies, is
essential. This approach aims to maximize the benefits of wide bandwidth while addressing the
drawbacks associated with higher frequencies, such as elevated path loss and signal absorption.

However, the deployment of large array systems in BS introduces complexities, substantial
power consumption, and extensive beam training overhead. This array deployment poses a
significant challenge to the efficiency of cellular communication, particularly in the context of
emerging technologies like 5G.

In the context of public transportation systems, the predictability of vehicle routes and sched-
ules presents an opportunity to leverage contextual information. A self-organized framework
at cellular high frequencies becomes essential for delivering Quality of Service (QoS). This
framework involves the development of a self-learned adaptive structure capable of discern-
ing a vehicle’s mobility schedule and dynamically adjusting communication parameters. The
modern hybrid approach, with its integration of diverse technologies, is crucial for overcoming
the challenges posed by higher frequencies, ensuring efficient communication in the dynamic
environment of public transportation systems.
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1.2.1 Modern Hybrid Approach

The modern hybrid approach refers to the integration of traditional wireless communication
methods with advanced technologies, such as adaptive beamforming [6] and smart antenna ar-
rays [7]. These technologies aim to optimize signal propagation and reception in the face of
challenges like increased path loss at higher frequencies. The hybrid approach combines the
strengths of different techniques to achieve improved performance and reliability in wireless
communication.

1.2.2 Self-Organized Framework

The self-organized framework pertains to the establishment of a decentralized and adaptive
structure within the cellular network. This structure is capable of autonomously organizing
and adapting to the dynamic conditions of the environment. In the context of public transporta-
tion, this framework is designed to leverage the predictability of vehicle routes and schedules.
Through self-learning mechanisms, the framework discerns patterns in the mobility schedule of
vehicles, allowing for proactive adjustments in communication strategies to enhance QoS.

In our tennis analogy, addressing these challenges is akin to predicting the precise move-
ment of a tennis ball in a dynamic match. The ball’s trajectory depends on various factors, much
like the challenges in predicting signal propagation and optimizing beamforming in a cellular
network. Just as a tennis player adjusts their strategy based on the ball’s movement, our re-
search adapts and optimizes communication strategies based on dynamic location information,
employing a modern hybrid approach and a self-organized framework to overcome the inherent
challenges in cellular communication.

1.3 Proposed Solution

Our proposed solution aims to revolutionize mobile communication systems, particularly for
dynamic environments like urban transport systems, by implementing a cutting-edge, closed-
loop system. This system capitalizes on prior or estimated locations of vehicles—derived from
channel information like the angle of arrival (AoA), to anticipate and adapt to their mobility
patterns.

Location-Assisted Beamforming Techniques: At the heart of our approach lies the inte-
gration of advanced beamforming techniques. These techniques are tailored to utilize location
data (both prior and estimated) to adjust the direction and strength of the communication beams.
This strategic adjustment ensures that the beams are optimally aligned with the moving vehicles,
enhancing the quality and reliability of the communication.

ML-Driven Predictions: A distinctive feature of our solution is the employment of ML
algorithms. These algorithms are trained on vast datasets of mobility patterns and channel in-
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formation, enabling them to predict future positions of the vehicles with high accuracy. The
system uses these predictions to preemptively adjust beamforming and antenna configurations,
thus maintaining uninterrupted communication.

The incorporation of these technologies aims to significantly reduce latency in mobile com-
munications. By leveraging the precise location information and predictive capabilities of the
system, we can foresee and counteract potential disruptions in communication. This proactive
approach is expected to drastically enhance the network’s responsiveness, ensuring seamless
connectivity for moving vehicles.

To illustrate our research approach, consider the analogy of a tennis player (1.1), equipped
not just with skill but advanced predictive tools. Just as this player can anticipate the trajectory of
an incoming ball and position themselves accordingly, our proposed system uses location infor-
mation and predictive modeling to anticipate the movement of vehicles. This enables the system
to adjust its communication strategies in real-time, ensuring that the network is always a step
ahead, ready to serve the next "ball"—or, in our case, data packet—efficiently and accurately.

Figure 1.1: Tennis Analogy for Self-organised Network

1.3.1 Onsite Experiments at the UofG

The focus on the UofG for onsite experimentation serves as a practical and controlled envi-
ronment for initial testing and validation. The choice of this specific location is motivated by
several factors that contribute to the effectiveness of the proposed solution. The UofG offers a
unique combination of urban and academic environments, providing a diverse setting for testing
adaptive beamforming and location-based services.
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The existing infrastructure and equipment at the UofG create a conducive environment for
seamless integration with the proposed solution. Leveraging the university’s facilities allows for
controlled experiments with well-defined scenarios, ensuring the robustness of the developed
system in a controlled setting. Additionally, familiarity with the local environment facilitates
efficient coordination and data collection, streamlining the initial phases of the experimentation
process.

While the focus is on the UofG for preliminary testing, it’s important to note that the ap-
plicability of the solution extends beyond this specific environment. The study aims to explore
the effectiveness of the proposed solution in diverse settings, and the initial choice of the UofG
provides a foundation for broader validation in real-world scenarios.

1.4 Aim and Objectives

This research leverages prior location information from public transportation systems, employ-
ing a novel machine-learning-based approach to refine beamforming techniques in cellular net-
works. Our strategy is anchored in the use of comprehensive datasets, assembled and evaluated
through advanced ML techniques. A crucial component of our methodology is the implementa-
tion of beam steering, designed to dynamically adapt to the predicted locations of mobile units,
thus significantly enhancing communication efficiency.

A fundamental part of our experimental approach is the utilization of the University of Glas-
gow’s TSMA6 scanner. This sophisticated tool has been crucial in capturing data reflective of
real-world mobility within an urban transportation framework. Such data acquisition has en-
abled the validation of our algorithms in scenarios that closely resemble the complex dynamics
of public transportation systems. Our research includes a series of methodically designed experi-
ments aimed at evaluating the performance of our beamforming and direction-finding algorithms
at various communication layers, specifically the link and Media Access Control (MAC) layers.
These investigative efforts are essential in refining our approach, ensuring that the proposed
system is not merely theoretically robust but also practical and applicable in real-world settings.

The objectives are:

1. Collecting datasets from ray-tracing propagation tools.

2. Testing location prediction using collected datasets from Wireless InSite.

3. Applying beamforming algorithms to true locations.

4. Applying beamforming algorithms to predicted locations.

5. Exploring beamforming algorithms at link and MAC layers to create a closed-loop system.

This research anticipates contributing to the effective and personalized provision of network
services, potentially shaping novel network architectures through protocols.
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1.5 Thesis Outline and Contributions

The thesis is structured to guide the reader through a comprehensive exploration of adaptive
beamforming and location-based services. Each chapter is purposefully designed to contribute
to the understanding of the research domain.

Chapter 2: Systematic Literature Review of the State of the Art

• Objective: Conduct a thorough literature review to identify gaps and limitations in the
fields of adaptive beamforming and location-based services.

• Foundation: Establishes the theoretical groundwork, contextualizing the research within
the broader academic discussion.

Chapter 3: Location-Based Adaptive Beamforming in Multipath Environ-
ments

• Objective: Explore the effectiveness of location-based adaptive beamforming and beam
steering for signal quality optimization in multipath environments.

• Methodology: Employs simulations in varied settings to benchmark techniques against
traditional methods.

• Findings: Demonstrates significant improvements in SINR and received power, showcas-
ing adaptability and energy efficiency.

Chapter 4: Enhancing Location Estimation with Deep Neural Networks

• Objective: Detail the use of deep learning to improve location estimation accuracy with
simulated data.

• Approach: Describes the architecture, training, and evaluation of deep learning models.

• Contribution: Showcases a machine learning-based approach to overcome existing lo-
calization method limitations.

Chapter 5: Integration of Real-World Data Acquisition

• Objective: Outline the methodology for real-data collection to analyze 5G network dy-
namics within a university setting.

• Scope: Covers data collection modalities and network performance analysis around uni-
versity buildings.
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Chapter 6: Utilizing Software-Defined Radio for DoA Estimation

• Objective: Illustrate the use of SDR technology for precise DoA estimation, crucial for
5G localization accuracy.

• Techniques: Focuses on the flexible signal processing capabilities of SDRs to refine lo-
calization techniques.

Chapter 7: Application of Real-Time Data for Localization via Fingerprint-
ing Methods

• Objective: Discuss the application of fingerprinting techniques in localization using real-
time data sets.

• Innovation: Introduces a novel indoor positioning approach using CSI data and ML tech-
niques to improve localization accuracy.

Chapter 8: Extended Research Work

• Objective: Present additional research efforts beyond the thesis’s main scope, detailing
specific contributions.

• Insight: Provides a comprehensive overview of extended research activities.

Chapter 9: Conclusion and Future Work

• Summary: Summarizes key findings, contributions, and the significance of the research.

• Outlook: Outlines potential future research avenues.

Thesis Contributions

1. Introduced techniques in adaptive beamforming, showcasing significant performance im-
provements in multipath environments.

2. Presented a novel deep learning approach for improving location estimation accuracy us-
ing simulated data.

3. Established a comprehensive framework for real-data collection and analysis within a 5G
network context.

4. Introduced the use of SDR technology for accurate DoA estimation, enhancing 5G local-
ization techniques.
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5. Proposed a groundbreaking approach to indoor positioning using CSI data and machine
learning techniques, addressing traditional localization challenges.

6. Broadened the thesis scope by including additional work that enriches the academic value
of the study.



Chapter 2

Systematic Literature Review of the State
of the Art

In this chapter 1, the goal is to conduct a comprehensive review of existing studies and theoretical
concepts related to adaptive beamforming and location-based services [8]. The objective is to
identify gaps and limitations in the current literature, positioning the current research within the
broader academic landscape. This chapter serves as the foundation for the subsequent chapters,
providing a theoretical framework for the study.

2.1 Introduction

Every subsequent generation of cellular communication has brought advancements in data speeds
and capabilities, with each generation offering significant improvements over its predecessor [9].
The first-generation (1G) introduced the concept of cell phones, while the second-generation
(2G) enabled text messaging services. The advent of the third-generation (3G) brought about
internet streaming capabilities, and the fourth-generation (4G) revolutionized the mobile land-
scape with broadband internet coverage. However, as user demands continue to escalate rapidly,
4G networks have reached their capacity limits, necessitating the need for more data to cater to
the growing number of smartphones and smart devices.

The arrival of fifth-generation (5G) cellular technology promises to address these challenges
by providing networks capable of carrying significantly higher traffic volumes than currently
available networks [10]. With 5G networks already underway, their evolution is outpacing
the long-term development of 4G (LTE) by a factor of ten. This rapid advancement holds the
promise of catalyzing breakthroughs in technologies like augmented reality (AR), autonomous
vehicles, and the Internet of Things (IoT) [11]. At the core of 5G technology, there are five
key advancements: full-duplex, massive multi-input multi-output (MIMO), millimetre waves
(mmWaves), smart cell, and beamforming (BF). Smartphones and electronic devices operate

1Part of this chapter has been taken from an accepted work

10
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within radio frequency (RF) frequencies that are typically less than 6 GHz [12, 13, 14]. This
spectral range is becoming increasingly congested due to the proliferation of communication
technologies and multiple mobile carriers. The limited RF spectrum available in the industrial,
scientific and medical (ISM) band poses challenges for accommodating the growing demand for
data transmission, resulting in slower services and more frequent lost connections[15, 16].

To address this issue, researchers have been exploring higher frequency bands ranging from
30 to 300 GHz [15, 16]. Although mmWaves have been utilized in satellite communication
for some time, their use in mobile communications is a fairly recent development. While of-
fering a wider frequency spectrum, mmWave faces a major challenge due to its limited ability
to penetrate obstacles such as built infrastructure. This characteristic leads to signal loss or
absorption when mmWave encounters environmental obstacles [17]. Subsequently, smart cell
networks provide a solution to overcome this problem by employing a network of thousands
of small, low-power access points (APs). Unlike traditional cell connections that rely on large,
high-power cell towers to transmit signals over long distances, these APs are strategically placed
in close proximity and grouped spatially to relay signals around obstructions, effectively miti-
gating the penetration and signal loss issues inherent to mmWave frequencies. By eliminating
reliance on the line of sight (LOS), smart cell networks ensure uninterrupted cellular service,
even when users move behind obstacles. When user equipment (UE) travels behind an obstruc-
tion, it seamlessly switches to a new AP, maintaining a consistent connection.[18, 19, 20, 21].

Another significant advancement in 5G technology is the use of Massive MIMO (Multiple-
Input, Multiple-Output), which involves deploying a higher number of antennas compared to
traditional MIMO systems. Massive MIMO leverages BF techniques to direct wireless signals
towards their intended receivers and enables spatial multiplexing of multiple data streams over
the same frequency band. BF is a signal processing technique that manipulates radio waves to
focus them towards specific locations using electromagnetic beams. This eliminates the need
for physical movements and reduces dependence on the physical structure of antennas. By uti-
lizing BF, Massive MIMO significantly enhances communication performance and can multiply
the capacity of a mobile ad-hoc network by a factor of 22 or more [9, 22]. In a time-division
multiplexing system, UE needs to alternate between transmitting and receiving, which can in-
troduce delays and reduce communication efficiency. In traditional cellular BS, antennas can
only broadcast or receive signals at a given time. Multiplexing can improve performance, but
transmit and receive signals are typically propagated at different frequencies [23]. Conventional
cellular antennas broadcast signals in all directions simultaneously, leading to potential interfer-
ence [24]. Advancements in signal processing techniques have made it possible to manipulate
radio waves and focus them using electromagnetic beams. Figure 2.1 illustrates the BF process
(broadcasting signals in a specific direction) in rural, semi-urban, urban, and highway areas.

BF offers several advantages in cellular communication. It enables more reliable and faster
data transmission by establishing a more direct connection between transmitters and receivers.
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Figure 2.1: A visualization of beamforming patterns adapted for different environments: rural,
semi-urban, urban, and highway scenarios.

BF has become an essential technology in various applications, including the 5G standard for
cellular networks and radar-detection systems[25]. However, implementing BF requires sig-
nificant processing resources, which can pose challenges related to cost, hardware, and energy
consumption. In the past, radar systems relied on mechanically moving and steering antennas to
direct signals [26].

The development of antenna systems for 5G networks must meet the requirements of com-
pact size and low power consumption. To enhance spectrum efficiency and throughput, antenna
arrays with larger dimensions, such as 64 x 64 MIMO and beyond, are being utilized. However,
the accuracy of these antenna arrays significantly affects the performance of BF. As wavelengths
decrease, component sizes, including RF transceivers with features like analog-to-digital con-
verters (ADC), also decrease. Exploring new materials, such as 40 nm Complementary Metal-
Oxide-Semiconductor (CMOS), is helping to reduce the size and power consumption of essential
components in 5G networks. Traditional RF power amplifiers made with materials like gallium
arsenide (GaAs) and other III-V semiconductors are not power-efficient and do not integrate
well with other capabilities. This is where advancements in 40 nm CMOS technology can play
a role in further reducing the size and power consumption of these critical components. More-
over, as the number of beams created by individual next-generation node B (gNB) increases,
more advanced signal processing techniques are required. This pushes power budgets and space
restrictions even further. Despite these challenges, BF holds a promising future in various appli-
cation areas [27].

Cont-BF is a promising technique for enhancing the performance of 5G communication
systems [28, 8]. It enables the use of mmWave frequencies and massive MIMO technologies
to achieve high data rates and low latency. Cont-BF adapts BF parameters in real-time based
on environmental conditions and user requirements. This is achieved through feedback from the
network and user devices, as well as the utilization of ML algorithms to optimize the BF process.
Cont-BF has applications in mobile edge computing (MEC), where low-latency computing and
networking services are provided to mobile users. By dynamically adjusting the BF parameters
based on the location, movement, and traffic conditions of the users, the quality of the wireless
links between the user devices and the MEC servers can be improved. In VR/AR, Cont-BF
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can improve the quality of audio and video streams used in VR/AR applications by selectively
enhancing relevant signals and suppressing irrelevant or distracting ones.

Also, in this line, location-assisted BF is a BF technique that takes advantage of spatial
information about the positions of user devices or antennas to enhance wireless communica-
tion performance [29]. Unlike conventional BF, which typically relies on predefined patterns
or fixed configurations, location-assisted BF uses the knowledge of user locations to dynami-
cally adjust the directionality of transmitted signals. This adjustment aims to optimize signal
reception at the intended devices while minimizing interference and improving overall signal
quality. In comparison to Cont-BF, which considers various factors beyond just user locations
(such as environmental conditions, interference sources, and network load), location-assisted BF
specifically emphasizes the role of physical positioning. It focuses on leveraging the geometric
arrangement of user devices and antennas to improve communication efficiency. In other words,
location-assisted BF is a subset of Cont-BF that places particular emphasis on utilizing user lo-
cation information to enhance the efficiency of wireless communication systems. It utilizes the
geometric arrangement of devices to optimize signal transmission, ultimately improving user
experience and network performance [29].

Apart from this, AI is used in 5G technology to optimize BF [30]. AI and ML are terms
that refer to the simulation of human intelligence processes by machines, particularly computer
systems. AI encompasses a wide range of technologies that enable machines to perform tasks
that typically require human intelligence, such as problem-solving, learning from experience,
speech recognition, and decision-making. ML, a subset of AI, involves the development of
algorithms and statistical models that allow computers to learn from and make predictions or
decisions based on data. DL is a specific subfield of ML that involves neural networks with
multiple layers, enabling them to automatically learn patterns from data.

Conventional BF techniques in cellular communication involve using predefined models or
fixed configurations to direct signals from antennas in specific directions. These techniques
are often based on mathematical formulas and linear optimization methods. While they can
provide satisfactory performance in certain scenarios, they might struggle to adapt to complex
and dynamic wireless environments with multiple users and interference sources.

In contrast, AI, ML and DL-assisted BF involve integrating advanced AI and ML techniques
into the BF process. AI, ML and DL-assisted BF leverages the capabilities of AI and ML to
improve the efficiency, adaptability, and performance of BF processes in wireless communica-
tion systems, especially in dynamic and complex scenarios. This is in contrast to conventional
techniques that are often more static and less adaptable.

2.1.1 State of the Art

The field of Cont-BF in 5G technology is in a constant state of evolution, with ongoing research
and development efforts aimed at improving its efficiency and effectiveness. Pioneering work
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in this domain can be traced back to the seminal work by Islam et al., which laid the foundation
for subsequent investigations [31]. Recent advancements are highlighted in the work of Chen et
al., whose work provides insights into the latest breakthroughs [32].

In recent years, there has been a surge in the use of conventional, ML, and AI techniques for
BF. Notable contributions include the study by ElHalawany et al., demonstrating the growing
interest and applicability of these approaches in the context of Cont-BF [33].

By considering location-unaware systems with benchmarking techniques [34], a location-
aware system can be developed and make location estimation more accurate. Additionally,
opportunistic BF, as used in this context, refers to a technique where smart antennas utilize
channel delay information to optimize their BF strategies based on the prevailing conditions.
The study by Cheng et al. explores leveraging channel delay information as feedback to enhance
the effectiveness of smart antennas dynamically and adaptively [35].

In [36], the authors proposed a recursive matrix shrinkage method to estimate the interference-
plus-noise covariance matrix along with the desired signal steering vector mismatch. A two-
stage design approach was utilized in [37], with the first stage dealing with BF, and the second
with adaptive power allocation and modulation. Another recent study by [38] proposed a novel
and general approach to deriving the statistical distribution of the SNR by exploiting the array
structure, BF type, and slow fading channel coefficients. This approach was used to design
power and modulation adaptation strategies. [39] presented the scheme that uses coordinated
beam search from a small beam dataset within the error offset, and then the selected beams are
used to guide the search for beam prediction.

Additionally, [40] proposed an end-to-end DL technique to design a structured compressed
sensing (CS) matrix that is well-suited to the underlying channel distribution. This technique
leverages sparsity and the spatial structure that appears in vehicular channels. In contrast, [41]
noted that current mmWave beam training and channel estimation techniques do not typically
make use of prior beam training or channel estimation observations. Moreover, [42] presented
that determining the optimal BF vectors in large antenna array mmWave systems necessitates
significant training overhead, which can have a significant impact on the efficiency of these
mobile systems.

As various ML techniques have been adopted for BF, this thesis aims to provide a detailed
review of different ML-based BF techniques. These ML techniques include the procedure to
preprocess the input data and various ML algorithms in any environment. Our thesis goes be-
yond existing literature, showcasing how various ML techniques can be used to screen large
numbers of BF approaches for potential location estimation applications and to optimize the
approaches using high computational power. Accordingly, the following sections will describe
the in-depth analysis of currently popular BF techniques and how AI can improve their overall
performance by mitigating their limitations.
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2.2 Review Methodology

This section of the thesis presents our review methodology depending on the defined research
objectives and questions that were used for shortlisting the relevant research articles on ML
algorithms for Cont-BF techniques.

2.2.1 Research Objectives

The four key objectives of our thesis are:

O1: To review the range of BF techniques and ML-based BF using priori user data.

O2: To identify the ML techniques used specifically for Cont-BF.

O3: From a practical perspective, identify the specific ML and optimization techniques used
for real-time implementation.

O4 : To identify ML algorithms specifically used for the BF for low latency, high throughput,
and SINR.

2.2.2 Research Questions

Our thesis aims to answer the following four research questions:

RQ1: What are the main BF techniques that use location information?

RQ2: What are the different types of ML and AI techniques used for Cont-BF?

RQ3: What are the datasets required for classifying the Cont-BF?

RQ4: How can the Cont-BF models be optimized for real-time processing?

2.3 Results and Analysis of the Review

This section of the thesis summarizes the research articles that are shortlisted using the defined
research objectives and aims to answer the predefined research questions.

2.3.1 What are the main BF techniques that use location information [RQ:1]

With an extensive utilization of global navigation satellite systems (GNSS), such as global po-
sitioning systems (GPS), Galileo, and BeiDou, various BF techniques that use user location
are becoming exponentially important. Adaptive BF, Cont-BF, and location-assisted BF are
techniques used in signal processing to improve the quality of transmitted or received signals.
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Adaptive BF refers to using real-time feedback from the received signal to continuously adjust
the BF algorithm to improve the quality of the signal. This is particularly useful in dynamic
environments where the signal sources or environmental conditions may change over time. On
the other hand, Cont-BF refers to using prior knowledge about the environment to design a BF
algorithm that optimizes the signal quality in that specific environment. This prior knowledge
can include information about the location and number of signal sources, the electromagnetic
or radio frequency properties of the environment, and other factors that can affect the quality
of the received signal. Whereas, location-assisted BF primarily utilizes the spatial positions of
user devices or antennas to dynamically adjust signal directionality, aiming to optimize signal
strength and quality based on geometric relationships. These techniques have their strengths and
weaknesses.

2.3.1.1 Adaptive BF

An adaptive beamformer is a tool for performing adaptive spatial signal processing using an
array of transmitters or receivers. The resulting electromagnetic waves add up in a way that the
signal intensity to and from a specific direction is increased. Signals from and to other directions
are combined constructively or destructively, resulting in the degradation of the signal from and
to the undesired direction. This method is utilised in both RF arrays to achieve directional
sensitivity without physically changing the receivers or transmitters [43, 44, 45].

Adaptive BF was first developed in the 1960s for military sonar and radar applications. There
are various modern applications for BF, with commercial wireless networks such as long-term
evolution (LTE) being one of the most popular. Adaptive BF’s first applications in the military
were primarily focused on radar and electronic countermeasures to counteract the effects of
signal jamming. In phased array radars, BF can be seen. These radar applications use either
static or dynamic/scanning BF; however, they are not truly adaptive. Adaptive BF is used in
commercial wireless standards such as 3GPP LTE and IEEE 802.16 WiMAX to enable important
services within each standard [46]. The concepts of wave transmission and phase relations are
used in an adaptive BF system. A greater or lower amplitude wave is formed, for example, by
delaying and balancing the received signal, using the concepts of superimposing waves.
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Figure 2.2: Basic block diagram of Adaptive BF
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The adaptive BF system is adaptive in real-time to maximize or minimize desirable param-
eters, including the SINR. There are numerous approaches to BF design, the first of which was
achieved by Applebaum in 1965 by increasing the SNR [47]. This method adjusts the system
parameters to maximize the power of the received signal while reducing noise (jamming or
interference). Widrow’s least mean squares (LMS) error method [48] and Capon’s maximum
likelihood method (MLM) [49] introduced in 1969 are two further approaches. The Applebaum
and Widrow algorithms are quite similar in that they both converge on the best option. However,
these strategies have difficulties in terms of implementation. Reed demonstrated a technique
called sample matrix inversion (SMI) in 1974 [50]. Unlike Applebaum and Widrow’s approach,
SMI determines the adaptive antenna weights directly [43, 44, 45].

The Wiener solution [51] can be used to create statistically optimal weight vectors for adap-
tive BF in data-independent BF design methods. On the other hand, the asymptotic 2nd order
statistics of SINR were assumed. Statistics fluctuate over time in cellular networks where the
target is mobile and interferes with the cell area. An iterative update of weights is required to
follow a mobile user in a time-varying signal propagation environment [52]. This enables the
spatial filtering beam to adjust to the time-varying DoA of the target mobile user and to pro-
vide the desired signal to the user. To address the challenge of statistics (which can vary over
time), adaptive algorithms that adapt to changing environments are frequently used to deter-
mine weight vectors. The functional block diagram of an adaptive array of n elements includes
an antenna array of n elements and a digital signal processor with a feedback and/or control
loop algorithm. The signal processing unit receives the data stream gathered by an array and
computes the weight vector using a specific control method.

On the contrary, the adaptive antenna array is divided into two categories: a) steady-state
and b) transient state. These two categories are determined according to the array weights of
the stationary environment and the time-varying environment. If the reference signal for the
adaptive method is known from prior information, the system can update the weights adaptively
through feedback [53]. To change the weights of the time-varying environment at every in-
stance, several adaptive algorithms (mentioned in the further section) can be utilized. Figure 2.2
shows the block diagram for adaptive BF, which consists of a digital signal processor (DSP),
RF chain, splitter, and N-phase shifter, followed by antenna assembly along with an adaptive
system providing feedback to shifters.

While adaptive beamforming presents a promising approach to enhancing signal quality and
network efficiency, there are several limitations to current implementations that warrant further
research. These include the complexity of real-time algorithm implementation, which demands
significant computational resources and rapid processing capabilities. Environmental variabil-
ity, such as user movement and the introduction of new obstacles, poses additional challenges,
requiring adaptive systems to continuously recalibrate to maintain optimal performance. Ad-
ditionally, interference management in densely populated or highly networked areas remains a
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Figure 2.3: A standard procedure of user tracking based on the Kalman filter.

complex issue, with existing solutions often struggling to completely eliminate signal degrada-
tion.

Moreover, the cost and energy consumption associated with the deployment of advanced
adaptive beamforming systems may limit their applicability in resource-constrained settings.
Finally, the need for precise calibration and ongoing maintenance of these systems introduces
additional operational challenges, emphasizing the need for robust and low-maintenance solu-
tions in future developments.

2.3.1.2 Cont-BF

The ability to forecast the next location of the receiver, which is based on tracking previ-
ous movements, can be useful for creating intelligent applications like automobiles, robotics,
AR/VR, etc. The advancement of location prediction apps and services is enabled by the growth
of methodologies for predicting and projecting the receiver’s position in the future [54]. A
wireless system, in general, controls a location-predicting framework by capturing and commu-
nicating critical data before application. The sender must be able to determine the receiver’s
location at any given time to interact effectively with them. ML methods have already been used
to predict the receiver’s location. Context is created by recording, processing, and transcribing
the receiver’s status data at a certain time

The majority of the existing mmWave beam tracking research focuses on communication-
only protocols. The usual beam tracking technique requires the transmitter to send information
to the receiver, which then determines the angular position and sends it back to the transmitter.
It is worth noting that in high-mobility communication circumstances, such as the one depicted
in Figure 2.4, it is not enough to merely track the beam. To meet the crucial latency requirement,
the transmitter should be capable of predicting the beam [55]. An example design with such state
prediction and tracking using the classic Kalman filtering process is demonstrated in Figure 2.3.
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Figure 2.4: Base station to vehicle scenario

The antenna array at the base station is capable of adjusting the direction of the transmitted or
received beam. The mobile user is located at a certain range (r), with specific polar (φ ) and
azimuth (θ ) angles. These angles are crucial for directing the beam towards the user.

The Kalman filter is a recursive algorithm that estimates the state of a dynamic system based
on a series of noisy measurements. In the context of beam tracking, the state we are interested
in includes the range r and angles φ (polar angle) and θ (azimuth angle), denoted as x, which
we want to estimate over time.

The Kalman filter equations for a simple 2D system (tracking φ and θ ) can be represented
as follows:

1. State Prediction:
x̂k|k−1 = F · x̂k−1 (2.1)

2. Error Covariance Prediction:

Pk|k−1 = F ·Pk−1 ·FT +Q (2.2)

3. Estimation:
Kk = Pk|k−1 ·HT ·

(
H ·Pk|k−1 ·HT +R

)−1
(2.3)

4. State Update:
x̂k = x̂k|k−1 +Kk ·

(
zk −H · x̂k|k−1

)
(2.4)

5. Error Covariance Update:
Pk = (I −Kk ·H) ·Pk|k−1 (2.5)

• x̂k is the state estimate at time k (includes φ , θ , and r).

• F is the state transition matrix.
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• Pk|k−1 is the predicted state covariance.

• Q is the process noise covariance.

• Kk is the Kalman gain.

• H is the measurement matrix.

• zk is the measurement at time k (includes φ , θ , and r).

• R is the measurement noise covariance.

Some potential applications of Cont-BF for 5G technology include:

1. Improved coverage: Cont-BF can help extend the coverage of 5G networks by focusing
the transmission beam towards the receiver. This can help overcome obstacles such as
buildings and trees that may obstruct the signal.

2. Higher data rates: By directing the signal towards the receiver, Cont-BF can help in-
crease the data rates of 5G networks. This can enable faster downloads and uploads, as
well as smoother streaming of high-definition content.

3. Reduced interference: Cont-BF can help reduce interference from other devices or net-
works by steering the transmission beam away from sources of interference. This can
improve the reliability and quality of 5G connections.

4. Energy efficiency: By directing the transmission beam towards the receiver, Cont-BF can
reduce the amount of energy required to transmit the signal. This can help improve the
energy efficiency of 5G networks, which is an important consideration for mobile devices
that rely on battery power.

Despite the promising advancements in Cont-BF for enhancing mobile communication, es-
pecially in mmWave systems, there are several limitations and challenges that need to be ad-
dressed:

1. Prediction Accuracy: The success of Cont-BF is highly dependent on the precision of
the receiver’s location and movement predictions. Inaccuracies in the prediction algo-
rithms, particularly in dynamic and unpredictable environments, can lead to significant
performance degradation. This aspect challenges the reliability of Cont-BF in critical
applications.

2. Computational Complexity: The algorithms used for predicting the receiver’s future
position, including machine learning models and the Kalman filter, introduce significant
computational overhead. This complexity might hinder the real-time application of Cont-
BF, especially in resource-constrained devices and systems.
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3. Energy Consumption: While one of the goals of Cont-BF is to improve energy efficiency
by optimizing beam direction, the process of tracking and predicting the receiver’s posi-
tion consumes extra energy. This additional energy expenditure may offset the benefits of
energy efficiency, especially in battery-operated mobile devices.

4. Environmental Impact: External factors such as physical obstructions, reflective sur-
faces, and atmospheric conditions can adversely affect the beam’s path. These environ-
mental impacts pose a significant challenge to maintaining the accuracy and effectiveness
of Cont-BF in various scenarios.

5. Interference Management: Despite the aim of Cont-BF to minimize interference by
precise beam steering, the dynamic nature of mobile environments, coupled with multi-
ple users and reflective objects, complicates interference management. This requires the
development of more sophisticated algorithms to ensure optimal performance under all
conditions.

These limitations highlight the need for ongoing research and development to enhance the
efficiency, reliability, and applicability of Cont-BF in future wireless communication systems.

2.3.1.3 Location-assisted BF

A-priori information on the location of the user can enable the system to work more efficiently.
The sorting of the prior information can reduce energy footprints. As an example, the branch pre-
dictor [56] in computer architectures can improve the flow in the instruction pipeline to achieve
highly effective performance. In the case of location-aided or location-aware BF, a similar con-
cept has been seen. Figure 2.5 shows the block diagram for predictive or location-assisted BF
which consists of a digital signal processor (DSP), RF chain, splitter, and N-phase shifter fol-
lowed by antenna assembly along with a feedback loop providing current target user location to
shifters. Line of sight (LoS) communication in mmWave transmission systems provides multi-
gigabit data transmission with BF toward the user direction to mitigate the substantial propa-
gation loss. However, abrupt performance degradation caused by human obstruction remains a
major issue, thus using possible reflected pathways when blocking occurs should be considered
[57].

The usage of location-aware BF and interference mitigation techniques in ultra-dense 5G
networks composed of densely scattered access nodes (AN) has been investigated in the liter-
ature. The development of user environment area networks (UEAN) with short distances in a
packed environment results in higher levels of signal interference, but network densification en-
hances the chance of LoS and, as a result, leads to more accurate UE placement. This enables
the use of spatial dimensions by BF and interference reduction. The accuracy of radio network
positioning systems currently available is inferior to that of fibre optic communication systems
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Figure 2.5: Basic block diagram of Location-Assisted BF

in radar stations and atomic clock-based satellite navigation systems. Future 5G networks are
expected to provide positioning accuracy on the order of one meter. Lu et al [34] proposed
approaches such as weighted centroid geometric (WCG) and a joint positioning and tracking
framework based on the extended Kalman filter (EKF) to achieve accurate and reliable 3D po-
sitioning for industrial IoT systems where anchor locations are not precisely known. They also
suggested a position-aided BF (PA-BF) approach that outperforms conventional BF in terms of
initial access latency and spectral efficiency, especially for UE moving at a speed greater than
0.6 m/s.

Sellami et al [58] proposed a neighbor-aided localization algorithm for outdoor UEs operat-
ing in challenging channel conditions. The algorithm selects two neighbours based on reference
signal power measurement, and the BS performs BF over an angular interval determined by the
calculated distance and AoA of the first neighbour to discover two candidates for the UE post.
[59] provided location assistance (LA) DoD-based BF technique that is appropriate for wireless
communication in high-speed rail (HSR). The algorithm’s goal is to modify the phase at the
transmitter to increase the output SNR at the receiver. Both the performance of ideal DOD BF
and approximated DOD with location error-related variation are assessed.

The study described in [60] suggests LAMA (LocationAssisted Medium Access), a Medium
Access Control (MAC) protocol based on locally shared position data for position awareness
beaconing. Their contention-free method manages to effectively minimize interference, espe-
cially hidden-terminal type, through coordinated spatial reuse and scales effectively with high
neighbour numbers. In [61], the authors implemented location-aware BF and interference miti-
gation techniques in 5G ultra-dense radio networks to improve the use of space. They also esti-
mated the positioning accuracy limitations of the UE using the direction of arrival measurement
processing in three-dimensional space with metrics of the Cramer-Rao lower bound ellipsoid.

Similarly, [62] proposed a location-aware BF design for the reconfigurable intelligent surface
(RIS)-aided mmWave communication system without the channel estimation process, which
took into account the limitations of the conventional channel state information (CSI) acquisition
techniques for the RIS-aided communication system. They also created a worst-case robust BF
optimization problem to counteract the impact of location inaccuracy on the BF design.
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The likelihood of positioning-aided BF systems experiencing an outage was investigated in
[63]. The authors took into consideration positioning error, link distance, and beamwidth to
generate closed-form outage probability constraints. They demonstrated that the beamwidth
should be maximized with the transmit power and connection distance to reduce the likelihood
of an outage. In [64], a DL-based location-aware predictive BF technique was proposed to
follow the beam for unmanned aerial vehicle (UAV) communications in a dynamic environment.
They developed a long short-term memory (LSTM)-based recurrent neural network (LRNet) to
predict the UAV’s expected location, which could be used to calculate a forecast angle between
the UAV and the base station for efficient and quick beam alignment.

In a multi-cell, MIMO communication system aided by optical positioning, [59] suggested
a location-based energy-efficient optimization approach for the BF matrix. They increased the
system’s achievable ergodic rate by estimating the channel coefficient matrix based on the loca-
tion data. In [29], position-aided BF (PABF) architecture was proposed for improved downlink
communications in a cloud-oriented mmWave mobile network. The authors demonstrated that
the proposed PABF outperformed the traditional codebook-based BF in terms of effective trans-
mit ratio and initial access latency, demonstrating its potential to accommodate high-velocity
mobile users.

Finally, [65] proposed an effective beam alignment solution for mmWave band communica-
tions by utilizing the mobile user’s location data and potential reflectors. The suggested method
enabled the base station and mobile user to jointly search a small number of beams within the
error bounds of the noisy location information. Additionally, [66] proposed a method for BF that
tracked the spatial correlation of the strong pathways that were currently accessible between the
transmitter and the receiver. They demonstrated the robustness of their approach to position
information uncertainty and how it could reliably maintain a connection with a user who was
travelling along a trajectory.

The research on location-aware beamforming and interference mitigation in 5G networks
surfaces several limitations. Firstly, the existing positioning accuracy falls short when com-
pared to more established systems like fiber optic communication in radar stations and satellite
navigation, which compromises the efficiency of beamforming strategies. Secondly, achieving
a balance between reducing initial access latency and enhancing spectral efficiency presents a
significant challenge that directly impacts network performance. Thirdly, the dynamic nature
of environments, especially at high speeds, demands beamforming approaches that are both
more robust and adaptable. Additionally, the accuracy of location information critically influ-
ences beamforming design, calling for sophisticated optimization techniques to counteract the
negative effects of location inaccuracies. Lastly, the complexity of managing interference in
ultra-dense network environments, particularly with a high number of neighbors, underscores
the need for innovative solutions to maintain network integrity and performance.
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2.3.2 AI, ML and DL approaches for Cont-BF [RQ:2]

AI is a term that encompasses a vast array of techniques and technologies that grant machines
the ability to perform tasks that would usually demand human intelligence, such as learning,
problem-solving, and decision-making. Within AI, there are two primary categories: narrow or
weak AI and general or strong AI. Narrow or weak AI machines are designed to accomplish
specific tasks, while general or strong AI strives to create machines capable of performing any
cognitive task a human can do. In contrast, ML is a subfield of AI that specializes in the develop-
ment of algorithms and statistical models that enable machines to improve their performance on
a task over time by learning from data. ML algorithms can be classified into three primary cat-
egories: supervised learning, unsupervised learning, and reinforcement learning. In supervised
learning, the algorithm is trained on labelled data, where the correct output is already known, to
forecast new outputs for unseen data. In unsupervised learning, the algorithm is trained on unla-
beled data to identify patterns or structures in the data. In reinforcement learning, the algorithm
learns through trial and error, receiving feedback in the form of rewards or penalties based on its
actions. AI finds application in various domains, including natural language processing (NLP),
image recognition, and robotics [67].

Regarding BF, AI can refer to any technique that allows machines to enhance the quality
or efficiency of BF by learning from data, making predictions or decisions based on that data,
and adapting to changing conditions. The amalgamation of BF and AI represents a compelling
advancement in signal processing and communication systems. BF, a technique used in radio
communications and signal processing, involves the direction of a signal toward a particular
location or direction. By integrating signals from multiple antennas, BF amplifies signals in the
desired direction while suppressing interference from other directions. On the other hand, AI
employs computational algorithms and computer programs that can learn from existing data to
make decisions or predictions.

By combining BF and AI, communication systems can witness remarkable improvements
in their performance. AI algorithms can scrutinize signals received by multiple antennas and
determine the optimal BF configuration for a given situation. This can result in enhanced signal
quality and reduced interference. Additionally, AI can dynamically adjust BF parameters in re-
sponse to current environmental and signal characteristics using reinforcement learning or other
AI techniques, which is particularly useful in complex and dynamic environments where tradi-
tional BF techniques may struggle to adapt. AI is also beneficial for optimizing BF algorithms
themselves by adjusting the parameters employed to combine signals from different antennas.
This can enhance the accuracy and efficiency of the BF process, leading to more reliable commu-
nication. Furthermore, BF and AI can significantly improve the performance of communication
systems in various applications, from cellular networks to satellite communication systems.

Recent research has delved into AI-assisted Cont-BF, which can be optimized using AI al-
gorithms to filter out unwanted noise from the signal or to automatically identify the location of
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a sound source. This can be accomplished by training models on datasets of sound signals and
corresponding locations and using the models to predict the location of new sound sources or
to identify and remove noise from new signals. By pointing the microphone array towards the
predicted location, sound can be captured more effectively. In multi-user multiple-input-single-
output (MISO) systems, BF is a useful way to improve the quality of incoming signals. Tradi-
tionally, finding the best BF solution has relied on iterative techniques, which have significant
processing delays and are unsuitable for real-time applications [68]. With recent advancements
in DL algorithms, identifying the best BF solution in real-time while taking into account both
performance and computational delay has become possible [68]. This is accomplished by of-
fline training of neural networks before online optimization, allowing the trained neural network
to identify the optimal BF solution. This approach reduces computational complexity during
online optimization, requiring only simple linear and nonlinear operations [68].

Figure 2.6 illustrates the neural network architecture for BF, which comprises input, hidden
layers, and output to extract features for further processing. The architecture comprises two
primary modules: the Neural Network Module and the BF Recovery Module. The former en-
compasses layers such as the input layer, convolutional (CL) layers, batch normalization (BN)
layers, activation (AC) layers, a flattened layer, a fully connected (FC) layer, and an output
layer. The latter, the BF Recovery Module, has the design of its functional layers based on ex-
pert knowledge of BF optimization, aiming to map the output key features from the previous
module to the BF matrix. Note that such expertise is problem-specific and lacks a standardized
form while proven to be highly useful in significantly reducing the number of variables to be
predicted. A typical example of this expert knowledge for BF is the uplink-downlink duality
[68].

In complex indoor or outdoor contexts with multiple pathways, propagation loss, noise,
and Doppler effects create additional issues. Chong Liu’s approach involves employing an ML
regression method based on efficient BF transmission patterns to predict the position of users on
the move, following the collection of large volumes of LoS and non-line-of-sight (NLoS) data
[69]. In the domain of location estimation, Bhattacharjee et al. presented two distinct approaches
for training neural networks, one using channel parameters as features and the other using a
channel response vector, and evaluated the results using preliminary computer simulations [70,
71]. The same group also conducted experimental work on the localization of drones and other
application areas using different approaches [72]. Wang et al. proposed a weighted loss function
to enhance the performance of localization with sparse sensor layouts, achieving an accuracy
boost of over 50% [73]. We also presented results for future location estimation of mobile users
using a deep neural network in [74].

As a typical application scenario, 5G vehicular communication has seen Cont-BF imple-
mentation using various ML and AI techniques. The performance and precision of BF systems,
which are essential for efficient communication in moving situations, are to be improved by
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Figure 2.6: A Basic Architecture of a deep neural network that consists of input (extracted
features), hidden layers(as per required framework), output (desired results) and a feed for post-
processing.

these techniques. ML has the potential to significantly advance 5G technology, as evidenced by
the growing complexity of constructing cellular networks. DL has demonstrated effectiveness in
ML tasks like speech recognition and computer vision, with performance growing as more data
is accessible. The proliferation of DL applications in wireless communications is constrained by
the scarcity of huge datasets. To create channel realisations that accurately depict 5G scenarios
with mobile transceivers and objects, this study describes an approach that combines a car traffic
simulator with a raytracing simulator. The following section of the review offers a unique dataset
along with various ML as well as AI techniques used for examining millimetre wave beam se-
lection methods for car-to-infrastructure communication. The application of datasets produced
with the suggested methodology is demonstrated by experiments including DL in classification,
regression, and reinforcement learning problems [75]. Also, Table 2.1 shows the performance
of different Cont-BF techniques based on results from various studies and Table 2.2 summarizes
the advantages and disadvantages of different types of ML and AI techniques used in Cont-BF.

Table 2.1: Performance comparison of different Cont-BF techniques based on results from var-
ious sources

Technique Name Description Advantages Limitations Type of Data Required

Geometric-Based
Determines the location of the
user using the arrival times
of signals from multiple antennas

-Low computational cost

-Limited accuracy in indoor
environments
-Vulnerable to multipath
fading

-Antenna array data
-User location data

Channel State Information
(CSI)-Based

Uses CSI data from multiple
antennas to estimate the user’s
location

-High accuracy
-Robustness to multipath
fading

-Requires high-quality
CSI data
-Complex algorithms

-CSI data from multiple
antennas
-User location data

Hybrid-Based
Combines geometric and
CSI-based techniques to improve and robustness

-High accuracy
-Robustness to multipath
fading and noise

-Requires complex algorithms
-May have high
computational cost

-Antenna array data
-CSI data from multiple
antennas
-User location data

ML-Based

Uses ML algorithms
to learn the relationship between
antenna array data and user
location

-High accuracy
-Can adapt to changing
environments

-Requires large amounts of
training data
-May have high computational
cost during training

-Antenna array data
-User location data for
training

DL-Based

Uses DL algorithms to
learn the relationship between
antenna array data and user
location

-High accuracy
-Can adapt to changing
environments
-Can handle large amounts
of data

-Requires even larger
amounts of training data
than ML-based
techniques
-May have high computational
cost during training

-Antenna array data
-User location data for
training
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2.3.2.1 DL

The extraction of valuable characteristics from input signals and the provision of more precise
predictions have been accomplished using DL techniques like convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) [76].

For instance, Wang et al. used DL to simplify BF weight estimation in 5G systems [73].
They developed a channel model and trained convolutional neural networks on generated data.
The networks predicted BF weights based on channel data, reducing complexity. Results show
the potential of DL for digital and hybrid BF, and performance comparison with conventional
techniques was presented [77]. Also, [78] proposed a method that aims to improve the perfor-
mance of Random Forest, Multilayer Perceptron, and k-Nearest Neighbors classification models
by increasing the amount of data through synthetic data inclusion. Their experimental results
showed that the inclusion of synthetic data improved the macro F1 scores of the models. The
Random Forest, Multilayer Perceptron, and k-Nearest Neighbors achieved macro F1 scores of
0.9341, 0.9241, and 0.9456, respectively, which are higher than those obtained with the original
data only, thus indicating better performances.

Huang et al. [79] proposed a DL-based fast-BF design method for sum rate maximiza-
tion under a total power constraint. The method was trained offline using a two-step training
strategy. Simulation results demonstrated that the proposed method is fast while obtaining com-
parable performance to the state-of-the-art method. They derived a heuristic solution structure
of the downlink BF through the virtual equivalent uplink channel based on the optimum MMSE
receiver. BPNet is designed to perform the joint optimization of power allocation and virtual
uplink BF (VUB) design and is trained offline using a two-step training strategy. A DL-enabled
BF neural network (BFNN) is proposed, which can optimize the beamformer to attain better
spectral efficiency. Simulation findings reveal that the proposed BFNN achieves significant per-
formance gain and high robustness to imperfect CSI. The proposed BFNN greatly decreases
the computational complexity compared to conventional BF algorithms. Spectral Efficiency,
Performance Gain, Robustness To Imperfect CSI, and Computational Complexity (Measured In
Floating Point Operations) are the main outcomes of BFNN [80].

Xia et al. [68] proposed a BF neural network (BNN) for the power minimization problem in
multi-antenna communication systems. The BNN was based on convolutional neural networks
and the exploitation of expert knowledge. It achieved satisfactory performance with a low com-
putational delay. A deep fully convolutional neural network (CNN) was used for BF, providing
considerable performance gains. The CNN was trained in a supervised manner, considering both
uplink and downlink transmissions, with a loss function based on UE receiver performance. The
neural network predicted the channel evolution between uplink and downlink slots and learned
to handle inefficiencies and errors in the whole chain, including the actual BF phase [81]. A DL
model is employed to learn how to use these signatures for predicting the BF vectors at the BS
[42]. Additionally, [42] discussed a novel integrated ML and coordinated BF solution to support
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highly mobile mmWave applications. The solution used a DL model to learn how to use signa-
tures to predict the BF vectors at the BS. This rendered a comprehensive solution that supports
highly mobile mmWave applications with reliable coverage, low latency, and negligible training
overhead.

Hameed et al. [82] proposed a DL-based energy BF scheme for a multi-antennae wireless
powered communication network (WPCN). We used offline training for the deep neural network
(DNN) to provide a faster solution to the real-time resource allocation optimization problem.
Simulation results showed that the proposed DNN scheme provided a fair approximation of the
traditional sequential parametric convex approximation (SPCA) method with low computational
and time complexity.

When exploring the application of Deep Learning (DL) techniques in beamforming, it is
crucial to consider several limitations that can impact the effectiveness and practicality of these
approaches. DL models heavily rely on extensive and high-quality datasets for training, posing a
challenge when faced with limited or biased data that may hinder generalization and real-world
performance. Additionally, the inherent complexity of deep neural networks often results in
black-box models, making it difficult to interpret the decision-making process and potentially
reducing trust in the beamforming outcomes. The computational demands of training DL mod-
els for beamforming can be significant, requiring substantial processing power and time, which
may limit their deployment in resource-constrained environments. Overfitting, a common issue
with DL models, can lead to suboptimal performance on unseen data, emphasizing the need for
robustness to varying channel conditions and environmental factors. Ensuring the quality and
representativeness of training data is essential for effective DL-based beamforming, as noisy or
incomplete datasets can compromise performance. Transferability of DL models across different
scenarios and environments presents a challenge, highlighting the importance of adaptability in
diverse deployment settings. Moreover, handling interference sources effectively remains a crit-
ical aspect where DL models may encounter difficulties, impacting overall beamforming system
performance. By acknowledging and addressing these limitations, researchers can enhance the
reliability, efficiency, and applicability of DL-based beamforming solutions in practical wireless
communication systems.

2.3.2.2 Supervised Learning:

Different kinds of RF environments have been classified and predicted using supervised learning
methods like the support vector machine (SVM) and decision trees. A modified SVM technique
is proposed for 3D MIMO BF in 5G networks. The Advanced Encryption Standard algorithm
is employed for more security, and interference is reduced in two stages. The suggested ML-
3DIM method outperforms existing methods in terms of throughput, SINR, and SNR by up to
20%, 30%, and 35%, respectively, according to simulation results [83]. [84] investigated the
ML-based BF design in two-user MISO interference channels. It proposed an ML structure
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that takes transmit power and channel vectors as input and then recommends two users’ choices
between MRT and ZF as output. The numerical results showed that proposed ML-based BF
design found the best BF combination and achieved a sum rate of more than 99.9% of the best
BF combination.

Ramon et al. [85] introduced an SVM-based approach for linear array processing and BF.
It showed how the new minimization approach can be applied to the problem of linear BF with
BER performances of the adopted LS and SVM for various noise levels ranging from 0 to 15
dB.

ML BF approach based on the k-nearest neighbors ( k -NN) approximation has been consid-
ered, which was trained to generate the appropriate BF configurations according to the spatial
distribution of throughput demand. Performance was evaluated statistically via a system-level
simulator that executes Monte Carlo simulations in parallel. The ML-assisted BF framework
achieved up to 5 Mbits/J and 36 bps/Hz in terms of energy efficiency (EE) and spectral effi-
ciency (SE), respectively, with reduced hardware and algorithmic complexity [86]. BeamMaP
was a BF-based ML model for positioning in massive MIMO systems [87]. Simulation results
showed that BeamMaP achieved Reduced Root-Mean-Squared Estimation Error (RMSE) per-
formance with an increasing volume of training data. BeamMaP was more efficient and steady
in the positioning system compared with k-NN and SVM [87].

Singh et al. [88] discussed an ML method for BF at the receiver side antennas for deploying
LOS communication in satellite communication (Satcom). It described how the antenna array
weights are pre-calculated for a number of beam directions and kept as a database. The signal
weights that were calculated for each array element by using their progressive measured phase
difference were due to the arriving signal, which was given as input to a linear regression ML
model, and the DoA of the signal is predicted. A method for determining an appropriate precoder
based on knowledge of the user’s location was proposed. The proposed method involved a
neural network with a specific structure based on random Fourier features, allowing us to learn
functions containing high spatial frequencies. The proposed method was able to handle both
LOS and NLoS channels [89].

2.3.2.3 Unsupervised Learning

Unsupervised learning methods like clustering and principal component analysis (PCA) have
been used to spot trends and put related data points in one category. For instance, [90] proposes
a BF algorithm for fifth-generation and later communication systems. The approach combines
the benefits of conventional optimization-based BF techniques with DL-based techniques. To
create the initial BF, a novel architecture is proposed, and performance is increased by building
a deep unfolding module. The entire algorithm is unsupervised and trained, and simulation
results demonstrate enhanced performance and reduced computing complexity when compared
to current approaches.
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Hojatian et al. [91] proposed a novel unsupervised learning approach to design the hybrid
BF for any subarray structure while supporting quantized phase shifters and noisy CSI. No BF
codebook was required, and the neural network was trained to take into account the phase-shifter
quantization. Simulation results showed that the proposed DL solutions can achieve higher sum
rates than existing methods.

2.3.2.4 Reinforcement Learning (RL)

Cont-BF system performance has been enhanced using reinforcement learning techniques like
Q-learning and policy gradient methods [92]. For instance, to make network design and main-
tenance more straightforward, a brand-new intelligent algorithm for massive MIMO BF perfor-
mance optimisation is proposed in this research. To produce accurate user mobility patterns,
pertinent antenna designs, and an estimate of the effectiveness of the generated antenna dia-
grams, the system uses three neural networks that apply a deep adversarial reinforcement learn-
ing workflow. This method has the advantage of learning independently and without requiring
big training datasets [93].

Sun et al. investigated the use of deep reinforcement learning to predict coordinated BF
strategy in an ultra-dense network and found that the optimal solution is a balanced combination
of selfish and altruistic BF [94]. The BF vectors were obtained efficiently through the learned
balancing coefficients. RL-based algorithm for cognitive BF was proposed for multi-target de-
tection in massive MIMO (MMIMO) cognitive radars (MMIMO CR). The proposed RL-based
algorithm outperformed the conventional omnidirectional approach with equal power allocation
in terms of target detection performance. The performance improvement was even more re-
markable under environmentally harsh conditions such as low SNR, heavy-tailed disturbance
and rapidly changing scenarios [95].

Raj et al. [96] proposed a blind beam alignment method based on RF fingerprints of UE
obtained from BS. They used deep reinforcement learning on a multiple-base station cellular
environment with multiple mobile users. Achieved a data rate of up to four times the data rate
of the traditional method without any overheads. [97] proposed a novel multiagent reinforce-
ment learning (MARL) formulation for codebook-based BF control. It took advantage of the
inherently distributed structure in a wirelessly powered network and laid the groundwork for
fully locally computed beam control algorithms. A cognitive BF algorithm based on the RL
framework is proposed for colocated MIMO radars. The proposed RL-based BF algorithm is
able to iteratively sense the unknown environment and synthesize a set of transmitted waveforms
tailored to the acquired knowledge. The performance of the proposed RL-based BF algorithm
is assessed in terms of probability of detection (PD) [98].

Nasim et al. [99] proposed an RL approach called the combinatorial multi-armed bandit
(CMAB) framework to maximize the overall network throughput for multi-vehicular communi-
cations. They proposed an adaptive combinatorial Thompson sampling algorithm, namely adap-
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tive CTS, and a sequential Thompson sampling (TS) algorithm for the appropriate selection of
simultaneous beams in a high-mobility vehicular environment. Simulation results showed that
both of their proposed strategies approach the optimal achievable rate achieved by the genie-
aided solution.

The results discuss the application of machine learning and deep learning techniques in the
context of millimeter wave technology, particularly focusing on antenna design and beamform-
ing. These technologies offer advantages such as flexibility, high bandwidth, and improved
system performance. Machine learning algorithms are utilized to enhance the design and op-
eration of millimeter wave antennas, enabling more efficient wireless communication systems.
The research highlights the use of reinforcement learning algorithms for spatial beam selection,
hybrid beamforming architectures, and the optimization of beam patterns. Despite the advance-
ments in utilizing deep learning for antenna design, challenges related to data security, system
vulnerability, and training complexity remain prevalent in these systems [100].

Table 2.2: Table summarizing the different types of ML and AI techniques used in Cont-BF

Technique
Name

Description Advantages Limitations

Support Vec-
tor Machines
(SVM)

Supervised learning algorithm
that learns a decision boundary
between classes

-Can handle high-dimensional
data
-Effective in binary classification
tasks

-May overfit with noisy or
imbalanced data

Random For-
est (RF)

Ensemble learning method that
combines multiple decision
trees to improve performance

-Can handle high-dimensional
data,
-Can handle missing or noisy
data
-Can provide feature importance
measures

-May overfit with noisy or
imbalanced data

Convolutional
Neural Net-
works (CNN)

Neural network architecture
that uses convolutional layers
to extract features from input
data

-Highly effective for image and
signal processing tasks
-Can learn complex spatial
patterns

-May require large amounts
of training data
-Maybe computationally
expensive

Recurrent
Neural Net-
works (RNN)

Neural network architecture
that can process sequential
data by maintaining a memory
of past inputs

-Effective for time-series data
and natural language processing
tasks
-Can handle variable-length
inputs

-May be prone to vanishing
or exploding gradients
-May require large amounts
of training data

Reinforcement
Learning
(RL)

Learning paradigm in which an
agent learns to make decisions
through trial and error in an
environment

-Can adapt to changing
environments
-Can handle complex decision-
making tasks

-May require significant
computational resources
-May require careful tuning
of hyperparameters

2.3.2.5 Hybrid Learning

Cont-BF system performance has also been improved using hybrid methods that incorporate sev-
eral ML and AI techniques, such as deep reinforcement learning. To address the hybrid BF issue
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in huge MIMO systems, deep reinforcement learning is suggested. The suggested techniques
reduce computing complexity while achieving spectral efficiency performance that is close to
ideal [101]. Hybrid BF, combining digital baseband precoders and analog RF phase shifters,
is an effective technique for mmWave communications and massive multiple-in-multiple-out
(MIMO) systems. ML techniques can be used to improve the achievable spectral efficiency of
hybrid BF systems. The proposed two-step algorithm can attain almost the same efficiency as
that can be achieved by fully digital architectures [102].

Aljumail et al. [103] described the design of ML-based hybrid BF for multiple users in sys-
tems that use mmWaves and massive MIMO architectures. The simulation results showed that
the ML-based hybrid BF architecture can achieve the same spectral efficiency (bits/sec/Hz) as
the fully digital BF designs with negligible error for both single-user and multi-user Massive-
MIMO scenarios. [104] proposed a novel RSSI-based unsupervised DL method to design the
hybrid BF in massive MIMO systems. They proposed a method to design the synchronization
signal (SS) in initial access (IA) and a method to design the codebook for the analog precoder.
They showed that the proposed method not only greatly increases the spectral efficiency, espe-
cially in frequency-division duplex (FDD) communication, by using partial CSI feedback, but
also has a near-optimal sum rate and outperforms other state-of-the-art full-CSI solutions.

Deep neural networks (DNNs) can be used to approximate the singular value decomposition
(SVD) and design hybrid beamformers. DNN-based hybrid BF improved rates by up to 50–70%
compared to conventional hybrid BF algorithms and achieved a 10–30% gain in rates compared
with the state-of-the-art ML-aided hybrid BF algorithms. The proposed approach had low time
complexity and memory requirements [105].

The research on hybrid beamforming (BF) systems utilizing machine learning (ML) and ar-
tificial intelligence (AI) techniques for massive MIMO and mmWave communications reveals
promising advancements yet encounters limitations. Key challenges include the computational
complexity and the efficiency trade-off, reliance on channel state information (CSI), and the per-
formance under multi-user scenarios. Although these methods, as cited in various studies, aim
to achieve spectral efficiency close to fully digital BF systems with reduced complexity, the bal-
ance between practicality and optimal performance remains a significant hurdle. Furthermore,
the dependency on CSI, especially in dynamic environments, introduces additional complexity
regarding feedback and accuracy. The adaptability of these ML and AI-driven approaches to
diverse and unpredictable network conditions also raises concerns about their scalability and
real-world applicability.

2.3.3 Datasets for Cont-BF Classification [RQ:3]

Researchers often need datasets that contain location data, RF signals, and other pertinent ele-
ments to identify Cont-BF approaches. The following are a few examples of datasets that have
been applied in earlier research:
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2.3.3.1 Vehicular Networks Dataset (VeND)

The University of California, Los Angeles (UCLA) created this dataset [106], which includes
observations from a vehicular network testbed. The dataset contains data about the cars and their
movements in addition to details about the wireless channel, such as the SNR and the channel
impulse response (CIR) [107].

[108] presented a realistic synthetic dataset, covering 24 hours of car traffic in a 400− km2

region around the city of Koln, in Germany. The dataset captures both the macroscopic and
microscopic dynamics of road traffic over a large urban region. Incomplete representations of
vehicular mobility may result in over-optimistic network connectivity and protocol performance.

2.3.3.2 5G-VICTORI

is a project financed by the European Union that aims to create 5G technologies for a range
of applications, including vehicular communication. With regard to vehicular communication,
the project has created a number of datasets, including assessments of the radio frequency (RF)
channel and network performance in practical settings [109].

Bassbouss et al. [110] discussed how the new 5G network technology would impact the
digitalization of various industries, including modern railway transportation. The Future Rail-
way Mobile Communication System (FRMCS) service requirements and system principles were
well-mapped to 5G concepts, but deployment paradigms needed to be established to prove their
effectiveness. The 5G-VICTORI project aimed to deliver a complete 5G solution for railway
environments and FRMCS services, and this work discussed the key performance indicators and
technical requirements for an experimental deployment in an operational railway environment
in Greece.

2.3.3.3 5G-EmPOWER

This EU project aims to develop 5G technology for a range of applications, including vehicular
communication. With regard to vehicular communication, the project has created a number of
datasets, including assessments of the RF channel and network performance in practical settings
[111].

3GPP is embracing the concept of Control-User Plane Separation (a cornerstone concept
in software-defined network (SDN) in the 5G core and the Radio Access Network (RAN). An
open-source SDN platform for heterogeneous 5G RANs has been introduced, which builds on
an open protocol that abstracts the technology-dependent aspects of the radio access elements.
The effectiveness of the platform has been assessed through three reference use cases: active
network slicing, mobility management, and load-balancing [111].
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2.3.3.4 ns-3

The Network Simulator 3 (ns-3) is an open-source network simulator that is useful for simu-
lating and modelling vehicular communication in 5G networks. In addition to mobility models
for simulating the movement of vehicles, NS-3 has various built-in modules for modelling the
wireless channel [112].

Perrone et al. [113] presented a framework for the ns-3 network simulator for capturing
data from inside an experiment, subjecting it to mathematical transformations, and ultimately
marshalling it into various output formats. The application of this functionality is illustrated and
analyzed via a study of common use cases. The design presented provides lessons transferrable
to other platforms.

2.3.3.5 Connected automobiles and Cities

The National Renewable Energy Laboratory (NREL) created this dataset, which contains in-
formation from a field investigation of connected automobiles in a smart city setting. The
dataset contains details about, among other things, network performance, traffic flow, and vehi-
cle trajectories[114].

In [115], big data from the cellular network of the Vodafone Italy Telco operator can be
used to compute mobility patterns for smart cities. Five innovative mobility patterns have been
experimentally validated in a real industrial setting and for the Milan metropolitan city. These
mobility patterns can be used by policymakers to improve mobility in a city, or by Navigation
Systems and Journey Planners to provide final users with accurate travel plans.

2.3.3.6 DeepSense6G

DeepSense 6G is a collection of data that includes different types of sensing and communi-
cation information, such as wireless communication, GPS, images, LiDAR, and radar. This
data was gathered in real-life wireless environments and represents the world’s first large-scale
dataset of this kind. The dataset contains over one million samples of this multi-modal sensing-
communication data and was collected in over 30 different scenarios to target various appli-
cations. The collection of data was done at several indoor and outdoor locations with high
diversity and during different times of the day and weather conditions. Additionally, there are
tens of thousands of data samples that have been labelled both manually and automatically.

Also in [116], the DeepSense 6G dataset is a large-scale dataset based on real-world mea-
surements of co-existing multi-modal sensing and communication data. The DeepSense dataset
structure, adopted testbeds, data collection and processing methodology, deployment scenarios,
and example applications are detailed in the work. The work aims to facilitate the adoption and
reproducibility of multi-modal sensing and communication datasets. The researchers ([117])
had a 400 GB dataset containing hundreds of thousands of WiFi transmissions collected "in the
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wild" with different SNR conditions and over different days. They also had a dataset of trans-
missions collected using their software-defined radio testbed, and a synthetic dataset of LTE
transmissions under controlled SNR conditions.

2.3.3.7 SUMO

The Simulation of Urban MObility (SUMO) is an open-source traffic simulation software that
allows modelling and simulating traffic flow in urban areas. It can simulate individual vehicles,
pedestrians, public transportation, and various road networks. SUMO has a variety of applica-
tions, including traffic planning, intelligent transportation systems, and autonomous driving. A
synthetic dataset generator was developed to support research activities in mobile wireless net-
works. The generator uses traces from the SUMO simulator and matches them with empirical
radio signal quality and diverse traffic models. A dataset was created in an urban scenario in
the city of Berlin with more than 6h of duration, containing more than 40000 UEs served by 21
cells [118].

2.3.4 Miscellaneous Datasets

2.3.4.1 5G3E Dataset

[119] introduced the 5G3E dataset, designed to contain thousands of time series related to the
observation of multiple resources involved in 5G network operation. This dataset was specifi-
cally created to support 5G network automation, encompassing a variety of collected features
ranging from radio front-end metrics to physical server operating system and network function
metrics. The testbed associated with the dataset was deployed to facilitate the generation of
traffic, starting from real traffic traces of a commercial network operator.

2.3.4.2 5G Trace Dataset

Another dataset is the 5G trace dataset from a significant Irish mobile operator introduced by
[120]. This work presented a 5G trace dataset collected from a major Irish mobile operator. The
dataset was generated from two mobility patterns (static and car) and across two application
patterns (video streaming and file download). The dataset was composed of client-side cellular
key performance indicators (KPIs) comprised of channel-related metrics, context-related met-
rics, cell-related metrics, and throughput information. Additionally, The authors provided a 5G
large-scale multi-cell ns-3 simulation framework to supplement our real-time 5G production net-
work dataset. This framework allowed other researchers to investigate the interaction between
users connected to the same cell through the generation of their synthetic datasets.
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2.3.4.3 SPEC5G Dataset

[121] curated SPEC5G, the first publicly accessible 5G dataset for natural language processing
(NLP) research. The dataset contains 134 million words in 3,547,587 phrases taken from 13
online websites and 13094 cellular network specs. The authors utilized this dataset for security-
related text categorization and summarization by utilizing large-scale pre-trained language mod-
els. For protocol testing, pertinent security-related attributes were also extracted using text clas-
sification techniques. Additionally, [122] presented a novel mobility dataset generation method
for 5G networks based on users’ GPS trajectory data. It aggregated the user’s GPS trajecto-
ries and modeled his location history by a mobility graph representing the cell BS he passed
through. The generated dataset contained the mobility graph records of 128 users. The user mo-
bility dataset for 5G networks based on GPS geolocation is valuable for predicting user mobility
patterns.

2.3.4.4 Labelled Dataset for 5G Network

In another study, [123] discussed a methodology for collecting a labelled dataset for a 5G net-
work. It described how to build a 5G testbed and use it to collect data. This data can then be used
to construct a 5G-based labelled dataset. A 5G testbed was built to observe 5G network features
by replaying the collected data. A specialized network collector system was implemented to col-
lect 5G edge network traffic data. A re-collecting methodology using the proposed 5G testbed
and network collector can be used to construct a 5G-based labelled dataset for supervised learn-
ing methods.

2.3.4.5 5G Users Measurement Campaign

Also, [124] utilized the results from a publicly available measurement campaign of 5G users
and analyzed various figures of merit. The findings indicated that the downlink and uplink rates
for static and mobile users can be represented by either a lognormal or a generalized Pareto
distribution. Moreover, the time spent in the same cell by a mobile (driving) user was observed
to be best captured by a generalized Pareto distribution. Additionally, the prediction of the
number of active users in the cell was found to be feasible.

2.3.4.6 5G Tracker

Furthermore, [125] discussed 5G Tracker, a crowdsourced platform that includes an Android
app to record passive and active measurements tailored to 5G networks and research. It has
been used for over 8 months and has collected over 4 million data points. The platform is useful
for building the first-of-a-kind, interactive 5G coverage mapping application. 5G Tracker is
a crowdsourced platform to enable research using commercial 5G services. 5G performance is
affected by several user-side contextual factors, such as user mobility level, orientation, weather,
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location dynamics, and environmental features. 5G Tracker has been used to collect over 4
million data points, consuming over 50 TB of cellular data across multiple 5G carriers in the
U.S.

2.3.4.7 Mobile Edge Computing in 5G

Moreover, bringing computational and storage technologies closer to end users with strategically
deployed and opportunistic processing and storage resources, mobile edge computing in the 5G
network was developed by [126] as a very attractive computation architecture. This work used
data mining and statistical methods to analyze Baidu website data. The analysis results gave
suggestions to improve the design and development of 5G services. Data mining and statistical
analysis of Baidu cloud services in the 5G network revealed that clustering, outlier detection,
prediction, and statistical methods can be used to evaluate smart city services. The analysis
results provided insights into the design and development of 5G services (API website). The
findings suggested that mobile edge computing in 5G networks can be used to improve the
performance of smart city services.

2.3.4.8 5G+ Industrial Internet

Finally, [127] discussed a project to collect "three-level" edge layer data from equipment man-
ufacturers, equipment users, and spare parts manufacturers. The goal was to establish a unified
data standard and help companies build general services around equipment data. 5G+ Industrial
Internet is used to collect data from three levels of edge layers: spare parts manufacturers, equip-
ment manufacturers, and equipment users. Data is assimilated and unified into a single standard.
A large-scale and shallow informatization project of incremental equipment is implemented in
the Yangtze River Delta in a short period of time.

Table 2.3: Table listing datasets related to User Location

Dataset Name Source Characteristics
IEEE 802.11n
Channel Measurement

IEEE 802.11n
working group

Channel state information (CSI)
from multiple antennas

KTH Localization
Dataset

KTH
Royal Institute of Technology

Received signal strength (RSS) and
AoA from multiple antennas
Ground truth location data

CSI-Hotel Dataset
University of California,
Santa Barbara

CSI data from multiple antennas
in an indoor environment

DeepMIMO Dataset Arizona State University
Synthetic data generated by a ray-tracing tool
for a variety of scenarios, including urban and
indoor environments

iNEMO Dataset STMicroelectronics
Acceleration, magnetic field, and
angular velocity data,
along with ground truth location data
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Also, Table 2.3 lists some 5G data sets consisting of channel state information (CSI), phase,
received power, etc. that can be used for user localization.

2.3.5 Optimization techniques for Cont-BF [RQ:4]

While using AI-based techniques, system optimization is a crucial step. AI-based Cont-BF
models can be optimised using various strategies to ensure real-time processing. One method to
accelerate computations is through hardware acceleration techniques like GPU processing. Ad-
ditionally, pre-trained models or reducing the number of parameters in the model design can be
used to optimize the model. To decrease the model size and boost computational effectiveness,
techniques like pruning, quantization, and knowledge distillation can be applied. Improving the
feature extraction and input data pre-processing phases can also help with real-time processing.
Creating specialised algorithms and optimisation strategies adapted for certain hardware and
deployment conditions can also enhance the performance of Cont-BF models.

Figure 2.7 shows some of the possible ways to optimise Cont-BF models for real-time pro-
cessing, which are explained in detail below:

2.3.5.1 Model simplification:

Simplifying the model architecture, such as reducing the number of layers or the number of
neurons in each layer, can improve computational efficiency and reduce processing time. For
instance, the research suggests a strategy that uses ML and hardware performance counter data
to optimise power and performance for GPU-based systems. The model can accurately detect
power-performance bottlenecks and provide optimization techniques for a variety of sophisti-
cated compute and memory access patterns. The model, which has been validated on NVIDIA
Fermi C2075 and M2090 GPUs as well as the Keeneland supercomputer at Georgia Tech, is
more reliable and accurate than existing GPU power models [128].

2.3.5.2 Hardware acceleration:

Dedicated hardware, such as graphics processing units (GPUs), field-programmable gate arrays,
or application-specific integrated circuits, etc., can speed up the processing of Cont-BF models
by performing parallel computations. To determine the direction of incoming signals, BF is a
signal processing technique that combines signals from a number of receivers. Although it over-
comes noise interference, adaptive BF (ABF) is computationally expensive. In current GPUs,
ABF can be implemented in parallel. ABF can be parallelized on an NVIDIA GPU using the
author’s method, which has a lower throughput than the serial implementation but is still able to
be improved [129].
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Figure 2.7: Optimization Techniques for Cont-BF

2.3.5.3 Optimization techniques:

Various optimization techniques, such as weight pruning, quantization, and knowledge distilla-
tion, can be applied to Cont-BF models to reduce their computational complexity and memory
footprint without significant loss in accuracy. This research [130] explores the use of the deep
neural network (DNN) model as the teacher to train recurrent neural networks (RNNs), specif-
ically long short-term memory (LSTM), for automated voice recognition (ASR). The method
successfully trains RNNs without the use of additional learning methods, even with a small
amount of training data.

2.3.5.4 Preprocessing and postprocessing:

Preprocessing the input data to reduce its dimensionality or complexity, and postprocessing the
output data to refine the results or reduce noise can help improve the performance and effi-
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ciency of Cont-BF models. With the use of DL, a low-complexity precoding design approach
for multiuser MIMO systems is suggested in [131]. The suggested method uses methods such as
input dimensionality reduction, network pruning, and recovery module compression to produce
a performance that is comparable to the conventional WMMSE algorithm with relatively little
computational cost.

2.3.5.5 Real-time learning:

Using online or incremental learning algorithms instead of offline or batch learning can enable
Cont-BF models to adapt to changing conditions in real-time and reduce the need for frequent
retraining. In [132], two adaptive learning approaches such as ADAM and RAL are proposed for
the real-time detection of network assaults in Internet network traffic. These methods achieve
excellent detection accuracy even in the presence of idea drifts by dynamically learning from
and adapting to non-stationary data streams while lowering the demand for labelled data.

2.3.5.6 Model parallelism:

Breaking the model into smaller sub-models and processing them in parallel can improve the
overall processing speed of Cont-BF models. This can be done using techniques such as data
parallelism or model parallelism. With a focus on model and data parallelization, [133] ad-
dresses distributed ML architecture and topology. It analyses ML algorithms and offers paral-
lelization suggestions. The specific needs and demands of communications networks, such as
resource allocation and trade-offs between privacy and security, are not addressed.

2.3.5.7 Early termination:

Stopping the model’s processing early when a certain threshold is reached can reduce unneces-
sary computation, especially in cases where the output has already converged. [134] promotes
early pausing before convergence to prevent overfitting and suggests the use of cross-validation
to detect overfitting during neural network training. The study uses multi-layer perceptrons
with resilient backpropagation (RPROP) training to assess the effectiveness and efficiency of 14
distinct automatic stopping criteria from three classes for a variety of activities. The findings in-
dicate that slower stopping criteria slightly improve generalisation, although training time often
increases by a factor of four.

The choice of optimization techniques will depend on the specific requirements of the appli-
cation and the constraints of the hardware platform. A combination of these techniques can be
used to achieve the best balance between performance and efficiency for the real-time processing
of Cont-BF models.

In this chapter, we delved into the state-of-the-art methodologies demonstrating the critical
role of location information in optimizing beamforming strategies, particularly through the ap-
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plication of artificial intelligence (AI) techniques. We discussed how leveraging user location
data can significantly refine adaptive beamforming (BF) processes, enhancing the overall per-
formance of wireless networks. Moreover, we explored the integration of deep learning (DL)
into BF strategies, showcasing its potential to address the challenges posed by dynamic envi-
ronments, network heterogeneity, and varying user mobility patterns. This examination sets a
foundation for future research aimed at advancing the implementation and effectiveness of AI-
enhanced beamforming in real-world scenarios, underpinning the ongoing evolution of mobile
communication systems.



Chapter 3

Location-Based Adaptive Beamforming

This work report delves into exploring location-based adaptive beamforming and beam steer-
ing within the realm of mobile communication in multipath environments, aiming to advance
beyond conventional methodologies. In the contemporary landscape of heightened reliance on
mobile communication, optimizing signal quality stands as a paramount concern. Through ex-
tensive simulations conducted in diverse settings, encompassing both open spaces and a digital
twin of a university campus, we scrutinized the efficacy of these innovative techniques in com-
parison to traditional methods. The results are compelling, showcasing notable improvements
of up to 40% in SINR and up to 30% in received power in open space scenarios. The virtu-
alized university campus scenario witnessed even more substantial enhancements, with SINR
and received power improvements reaching up to 50% and 40%, respectively. Crucially, these
groundbreaking strategies exhibit adaptability to user mobility while emphasizing energy effi-
ciency. However, it is imperative to recognize the study’s limitations, including its dependence
on precise location information and susceptibility to interference from neighboring cells and
users.

3.1 Introduction

As wireless communication technologies rapidly evolve, the imperative for innovative solutions
becomes crucial to address the escalating demands of users, the dynamism of environments, and
the diversity of communication devices [135]. Emerging 6G communication systems, charac-
terized by their promise of high data rates and ultra-low latency, necessitate efficient spectrum
utilization and sophisticated adaptive beamforming techniques [136]. This research is dedicated
to exploring the application of advanced beamforming techniques, namely,MRT and ZF, in the
context of location-based adaptive beamforming and beam steering.

MRT and ZF are pivotal in directing beams optimally for power distribution among users
and minimizing interference, respectively, thereby enhancing overall system performance [137,
138]. These techniques play a critical role in overcoming challenges such as multipath propaga-

42
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tion, dynamic user mobility, and the complexities of urban environments, thereby improving sig-
nal quality and reducing interference [139, 140]. Our investigation employs simulations within
a virtualized University of Glasgow campus (referred to as a digital twin) and open spaces to
assess the efficacy of MRT and ZF techniques. The overarching goal is to enhance SINR and
received power, with a focus on the practical ramifications for mobile communication scenarios
in the real world.

This study endeavors to bolster the reliability of wireless communication systems, partic-
ularly under challenging propagation conditions. By employing adaptive beamforming, where
beam patterns dynamically adjust based on user locations, we aim to address the hurdles of sig-
nal attenuation, multipath fading, and interference. This approach not only enhances SINR and
resource efficiency but also aligns seamlessly with dynamic user movements, ensuring highly
responsive and reliable communication networks.

3.2 Related Work

Adaptive beamforming and location-based communication within wireless systems have been
the subjects of significant research, yielding seminal contributions aimed at enhancing system
efficiency and reliability.

Fundamental to this area, MRT maximizes signal power at the receiver by intelligently
weighting signals from multiple antennas, while ZF beamforming focuses on eliminating in-
terference by directing the beam toward the intended user [137, 138]. Noteworthy advance-
ments such as Minimum Mean Square Error (MMSE) and Regularized Zero Forcing (RZF)
have emerged, offering a balance between signal quality and interference mitigation [141, 142].

The integration of geographical information has been shown to optimize adaptive beam-
forming in dynamic scenarios, with Onrubia et al. utilizing Global Navigation Satellite System
(GNSS) coordinates for real-time beam steering [143]. Kela et al. have extended the application
of location-based beamforming to urban environments, tackling the challenges introduced by
structures and multipath propagation [144].

The utilization of digital twins, as demonstrated by Tao et al.’s virtualization of the Univer-
sity of Glasgow campus, offers realistic environments for simulating communication systems,
bridging the gap between theoretical studies and practical implementations [145]. Despite the
foundational work laid by existing literature, there remains a gap in comprehensive evaluations
of adaptive beamforming and location-based communication under authentic, real-world condi-
tions. This study seeks to bridge that gap by assessing the performance of advanced beamform-
ing techniques in dynamic and complex mobile communication environments.

Key contributions of this research include:

1. Employing a digital twin provides a realistic setting for evaluating location-based adaptive
beamforming.
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2. The incorporation of precise geolocation data enables effective beam steering based on
user locations.

3. This research takes into account real-world complexities, such as multipath propagation
and weather conditions, for a comprehensive evaluation.

4. By applying MRT and ZF techniques, this study aims to enhance signal quality through
beam steering while simultaneously mitigating interference.

3.3 Methodology

This chapter elucidates the methodology underlying our investigation into the implementation
and effectiveness ofMRT and ZF beamforming techniques (Figure 3.1). Utilizing a sophisticated
system model, alongside simulations within a digital twin ([146]) of the University of Glasgow
campus, this study aims to enhance our understanding of adaptive beamforming’s impact on
signal integrity and network performance in urban environments.

Figure 3.1: Description of MRT and ZF beamforming techniques.

3.3.1 System Model

Our model primarily focuses on the downlink scenario, where the base station serves multiple
users by transmitting signals directly tailored to each user’s channel conditions while mitigat-
ing interference to others. This scenario necessitates a comprehensive understanding of the
downlink channel matrix representation and sophisticated power allocation strategies to opti-
mize system performance. We utilized two key beamforming techniques:
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MRT([137]): A beamforming technique that optimizes power distribution across UE by
directing beams towards all user antennas, thereby maximizing signal gain for each user. The
weighting vector wk for user k is defined as:

wk =
hk

|hk|
√

pk (3.1)

where hk represents the channel vector from the transmitter to user k, and pk denotes the
power allocated to user k.

ZF([138]): This technique aims to minimize inter-user interference by carefully shaping the
transmitted beam toward intended receivers while nullifying potential interference, enhancing
system performance. The beamforming matrix W is given by:

W = H(HH)−1
Λ
−1
√

P (3.2)

where H is the channel matrix, Λ is a diagonal matrix with regularization parameters, and P

represents the power allocation matrix.
To evaluate the performance of our proposed schemes, we calculated the SINR for each user

in the system. The SINR accounts for both the desired signal and interference from other users,
along with background noise. It is calculated as follows:

SINRk =
|gkwk|2

∑
K
i̸=k |gkwi|2 +σ2

(3.3)

where gk is the channel gain vector for user k, and σ2 is the noise power.

3.3.2 Simulation Setups and Proposed Solution

To evaluate the efficacy of location-based beamforming techniques within complex multipath
environments, we deployed simulations within a virtualized representation of the University of
Glasgow (UofG) campus. This simulation, known as a digital twin, replicates the actual campus
layout and architecture, offering an authentic backdrop for our analyses [145].

Multipath environments are characterized by the propagation phenomenon where transmit-
ted signals reach the receiving antenna through multiple paths. These paths can result from
reflections, diffraction, and scattering off surfaces such as buildings, vehicles, and other ob-
stacles. Multipath can lead to interference and fading, posing significant challenges for signal
integrity and network performance. A digital twin of an urban campus like UofG provides an
ideal scenario to study these effects due to its inherent structural complexity.

The choice of a 16x16 Multiple Input Multiple Output (MIMO) antenna array for open
space scenarios is strategic. This configuration balances the complexity and performance trade-
offs, offering substantial beamforming gains and spatial multiplexing capabilities without the



CHAPTER 3. LOCATION-BASED ADAPTIVE BEAMFORMING 46

prohibitive computational overhead associated with larger arrays. The 16x16 array enables
fine-grained beam steering and signal focusing, essential for mitigating multipath effects and
enhancing signal reception in cluttered urban environments.

Regarding the antenna array’s orientation and element spacing:
Orientation: The antennas are typically oriented to maximize coverage and signal quality,

considering the environmental layout and expected user positions.
Element Spacing: The element spacing within the antenna array is often set to half the

wavelength (λ/2) of the carrier frequency to prevent grating lobes and ensure a uniform radi-
ation pattern. For a carrier frequency of 3.75 GHz, this results in spacing that supports both
beamforming effectiveness and spatial resolution.

The selection of 16-QAM (Quadrature Amplitude Modulation) as the modulation scheme
strikes a balance between spectral efficiency and resilience to noise and interference. While
higher-order modulation schemes like 64-QAM or 256-QAM offer greater data rates by packing
more bits into each symbol, they are also more susceptible to errors in challenging multipath
conditions due to their tighter constellation spacing. 16-QAM is chosen as a compromise, pro-
viding a fourfold increase in data rate over QPSK (Quadrature Phase Shift Keying) while still
maintaining a level of robustness suitable for the expected urban multipath environment.

Proposed Algorithm: To systematically assess the performance of MRT and ZF beamform-
ing, we implement a structured simulation algorithm. This algorithm incorporates real-world
elements such as line-of-sight calculations, advanced ray tracing, and environmental effects like
buildings and terrain into the simulation process, offering a nuanced view of beamforming effi-
cacy in complex urban settings.

The algorithm, outlined in Algorithm 1, encompasses several critical steps from initializing
the simulation environment with accurate geospatial data to calculating received power under
various weather conditions and with beam steering techniques. This comprehensive approach
ensures a thorough evaluation of how adaptive beamforming can improve communication relia-
bility and quality in dynamic urban environments.

Through this detailed methodology, combining a rigorous system model with sophisticated
simulations, our research aims to contribute valuable insights into the design and optimization
of future wireless communication systems, particularly in the context of burgeoning 6G tech-
nologies.

3.4 Results

This section delves into the simulation outcomes for location-based adaptive beamforming and
beam steering within multipath scenarios. We benchmark these outcomes against a control
scenario termed "open space," which is characterized by an environment devoid of significant
obstructions that influence signal propagation. Our analysis leverages key performance indica-
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Algorithm 1 Proposed Algoritm
Load the site viewer with the building map.
Set up a small cell transmitter (tx) with specific parameters.
Display the transmitter.
Set up a ray-tracing propagation model with concrete buildings and terrain.
Initialize an empty array P_gu.
Set locations for small cell receivers (rx).
for each receiver in the list do

Set up a receiver at the specified location.
Calculate line-of-sight between transmitter (tx) and receiver.
Set up another receiver at a different location.
Create a composite model with additional gas and rain effects.
Perform ray tracing between transmitter and receivers in different weather conditions.
Calculate received power considering weather effects.
Configure antenna properties for beam steering.
Perform ray tracing with beam steering.
Calculate and display received power with beam steering.
Generate coverage data for the transmitter in different weather conditions.
Update the P_gu array with the coverage data.

end for

tors (KPIs) such as SINR, Received Power, and Energy Efficiency to assess the efficacy of our
proposed schemes.

The primary motivation for employing location-based beamforming and steering techniques
arises from the need to enhance communication link quality in complex environments. Such
environments, exemplified by a digital twin of a university campus, present unique challenges
due to multiple signal paths and potential obstructions. By dynamically adjusting the beam’s
direction based on the receiver’s location, the proposed schemes aim to optimize signal quality
(SINR) and strength, thereby ensuring robust wireless communication.

3.4.1 Proposed Scheme

The proposed schemes encompass advanced implementations ofMRT and Zero-Forcing (ZF)
beamforming techniques. These implementations are uniquely optimized through the integra-
tion of location information, enabling adaptive beam steering that significantly reduces interfer-
ence and improves signal reception quality. Through these techniques, our analysis demonstrates
that the proposed schemes are highly effective in navigating the challenges posed by multipath
and obstruction-laden environments.

3.4.1.1 User Mobility and Energy Efficiency

The resilience of the proposed schemes against user mobility was also put to the test, with
results indicating an admirable adaptation to dynamic user movements, maintaining high SINR
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and received power levels with minimal interference. Table 3.1 encapsulates these findings,
offering a comparative glimpse at the mean values of received signal power, interference power,
and SINR for both MRT and ZF techniques.

Table 3.1: Performance Table

Scenario Parameters MRT ZF
Digital Twin Received Power (dBm) -47.0 -61.1

Received Interference Power (dBm) -45.9 -10.0
SINR (dB) -3.0 17.0

Open Space Received Power (dBm) -54.0 -69.1
Received Interference Power (dBm) -53.9 -10.0

SINR (dB) -3.9 15

Moreover, the exploration into the trade-off between performance and energy efficiency un-
veiled that the proposed schemes not only achieve remarkable performance metrics but also
enhance energy efficiency by up to 20% in comparison to scenarios without beam steering. The
efficiency metrics were derived using a formula documented in [147].

Despite the pronounced benefits, the dependency on precise location information emerges
as a limitation, prompting future research directions towards developing more robust location
estimation methodologies. Additionally, the schemes’ susceptibility to interference from ad-
jacent cells underscores another area for future exploration, particularly in devising effective
interference management strategies.

3.4.2 Detailed Insights into Open Space and GU Campus Scenarios

3.4.2.1 Open Space

Within the bounds of an open area, our approach harnesses an antenna with a robust 50-meter
coverage capability, meticulously oriented to accommodate users in both line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions. The application of sophisticated beamforming methods,
inclusive of position-to-angular conversion and the MUSIC algorithm, is showcased in Figures
3.2, 3.3, and 3.4. These figures illuminate the precision in location estimation, a pivotal factor in
optimizing the beam’s direction towards the desired user while mitigating potential interference.
Our analysis reveals that through MRT and ZFBF, signal coverage is significantly enhanced,
even in scenarios populated with interfering users, as depicted in Figure 3.7 for MRT, and Figure
3.8 for ZFBF. These methodologies’ prowess in ensuring consistent and reliable communication
is demonstrated, emphasizing their ability to maintain signal integrity.
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Figure 3.2: Beam coverage area of the base station placed on JWS rooftop of the University of
Glasgow in the presence of the target user.

Figure 3.3: Beam propagation from the base station to the target user in LOS.

3.4.2.2 GU Campus Scenario

Transitioning to the complex environment of the GU Campus, the simulation employs a 16x16
Uniform Rectangular Array (URA) antenna, strategically oriented and utilizing three-dimensional
ray tracing to craft a realistic channel model. This model is vital for adapting beamforming
weights in response to dynamic target movements, encapsulated in Figures, 3.10, and 3.9. The
simulations undertaken within this virtual campus environment reveal the nuanced challenges
of urban beamforming, from the necessity of precise channel information to the computational
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Figure 3.4: Beam pointing towards the target user in NLOS.

Figure 3.5: Location estimation using MRT and ZF BF.
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Figure 3.6: Beam pointing towards the target user when MRT BF is used with a single user
moving at a constant speed.
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Figure 3.7: Beam pointing towards the target user when MRT BF is used with interfering users.

intensity required for simulating realistic multipath scenarios. Notably, the adaptability of ZF
in nullifying signals towards interfering users exemplifies the advanced capabilities of current
beamforming techniques to maintain high-quality communication paths in the face of urban
complexities, as illustrated in the movement and radiation pattern coverage in Figures 3.10 and
3.9.

In summary, the results section provides a thorough examination of the methodologies’
effectiveness in enhancing wireless communication networks’ performance through advanced
beamforming techniques. The findings not only underscore significant improvements in key
performance metrics but also chart potential avenues for future research aimed at overcoming
the identified limitations.
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Figure 3.8: Beam pointing towards the target user when ZF BF is used with interfering users.

55.868 55.869 55.87 55.871 55.872 55.873 55.874

latitude

-4.294

-4.292

-4.29

-4.288

-4.286

-4.284

-4.282

lo
n

g
n

it
u

d
e

MRTBF 

-160

-140

-120

-100

-80

-60

-40

-20

Target User

Interence User

Figure 3.9: Beam pointing towards target user when MRT BF is used.

3.4.3 Conclusion

The comparative analysis presented underscores the significant performance and energy ef-
ficiency benefits offered by the proposed location-based beamforming and steering schemes.
While the reliance on accurate location information and potential interference from neighbor-
ing cells present challenges, these limitations offer avenues for future research, including the
development of robust location estimation techniques and interference management strategies.
Overall, the findings advocate for the continued exploration and refinement of location-based
adaptive beamforming techniques as a means to enhance wireless communication in complex
environments.
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Figure 3.10: Beam pointing towards target user when ZF BF is used.



Chapter 4

Enhancing Location Estimation with DNN

This chapter focuses on the application of simulated data 1 through deep neural networks for
location estimation. The primary objective is to describe the architecture, training process, and
evaluation metrics employed to enhance location accuracy. By delving into the intricacies of
the DL approach, the chapter aims to showcase the effectiveness of simulated data in improving
location estimation. This chapter introduces machine learning (ML)-based approach aimed at
overcoming the limitations observed in existing localization methods, notably those identified
in the works of Anjinappa et al. [148] and Bhattacherjee et al. [70]. We detail the process of
transforming channel characteristics and positional data derived from a ray-tracing model into
a format conducive for training a Deep Neural Network (DNN) on the Base Station (BS) side.
The methodology emphasizes the calculation of Multipath Components (MPCs) and the impact
of varying the number of MPCs on localization accuracy.

The key contributions of this study are as follows:

• Machine Learning-Enhanced Localization: We introduce a novel approach that lever-
ages machine learning (ML) to significantly enhance the localization process in wireless
communication networks. Our method reduces run-time complexity while maintaining
high accuracy in determining UE positions within the network.

• Improved Localization Performance: We demonstrate how ML techniques, when pro-
vided with sufficient training data, can effectively overcome the limitations of previous
localization methods. By utilizing ML features, we enhance the precision of location
estimation, particularly in complex indoor and outdoor environments.

• Practical Application in 5G Networks: Our research addresses the demands of 5G net-
works, where efficient and accurate localization is crucial for enabling advanced features
and services. By proposing a machine-learning-based solution, we contribute to the prac-
tical implementation of 5G applications.

1Data Tool and Data extraction process is described in appendix
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• Potential for Future Developments: We lay the foundation for further advancements in
localization techniques by exploring the promise of ML in this context. This study opens
the door to continued research and innovation in the field of wireless communication.

4.0.1 Methodology

In this section, we elucidate the transformation of channel features and position information,
provided by the ray-tracing model, into input features and output labels for training a DNN on
the base station side. Our approach will be compared with existing methods, particularly the
proposals of ([148]) and ([70]).

As depicted in Fig. 4.1, the green dot signifies the location of the BS, while the red line traces
the trajectory of the UE. Our study takes place in the UofG environment, involving a BS and
mobile UE. The BS remains stationary, while we consider a random trajectory for the UE. Both
the BS and the UE employ single and multi-element directional antennas, operating at various
frequencies, allowing us to explore single input single output (SISO), single input multi output
(SIMO), multi input single output (MISO), and multi input multi output (MIMO) scenarios. To
configure the localization algorithm, we conducted multipath component (MPC) calculations.

Figure 4.1: UofG scenario for angular and temporal correlation.
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4.0.2 MPCs Calculation and Localisation Accuracy

The propagation environment between the transmitter and receiver is pivotal in determining lo-
calization accuracy. We define this environment through the channel impulse response, adopting
the model from Anjinappa et al. [148]:

h(t,τ,ψ,θ) =
K̃(t)

∑
k=1

ρke− jφkδ (τ − τk)δ (ψ −ψk)δ (θ −θk) (1)

This equation serves as the cornerstone for analyzing the multipath effects within a wireless
communication system, thereby enhancing the localization techniques through machine learning
(ML). Each term in the equation is meticulously designed to represent different aspects of the
signal’s propagation and interaction with the environment:

• h(t,τ,ψ,θ) encapsulates the total multipath environment effect on the transmitted signal,
presenting a complex relationship between time, delay, and angles of arrival and departure.

• ∑
K̃(t)
k=1 aggregates the contributions from all significant multipath components (K̃(t)), which

dynamically change over time, reflecting the non-static nature of the environment.

• Amplitude and Phase (AnP) term (ρke− jφk) distinguishes each multipath component’s
amplitude (ρk) and phase shift (e− jφk), which are crucial for understanding signal behavior
due to material interactions and propagation delays.

• The ToA, Angle of Arrival (AOA), and Angle of Departure (AOD) terms are integral
for precise localization, indicating the path’s arrival time, and its direction at the receiver
and transmitter, respectively.

A pivotal aspect of our study is the adaptability in the number of MPCs (K̃(t)) used for
localization, which contrasts with the fixed numbers typically employed in prior research. Our
methodology dynamically selects the optimal subset of MPCs, informed by a comprehensive
analysis of the propagation environment and the specific characteristics of the University of
Glasgow (UofG) scenario. This adaptability not only enhances localization accuracy but also
demonstrates the model’s robustness across various conditions.

Our experimental analysis spans several communication paradigms, including SISO, SIMO,
MISO, and MIMO configurations, with a default of 25 paths considered for MPCs. However,
this number is not rigid; our approach evaluates and selects the most effective combination of
MPCs based on the scenario, thus ensuring the independence of localization accuracy from a
fixed number of MPCs. The empirical evidence showcases our approach’s efficacy, revealing a
consistent relationship between the flexible number of MPCs and enhanced localization preci-
sion, particularly within the dynamic and complex UofG scenario.
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This flexibility and the subsequent results underscore our contribution to the field of wireless
communication, highlighting the potential of ML in advancing localization techniques within
varying and unpredictable environments.

To comprehensively evaluate the system’s performance across different frequencies, we con-
ducted simulations at six distinct frequency bands: 0.9 GHz, 1.8 GHz, 2.1 GHz, 5 GHz, 5.9
GHz, and 28 GHz. The selection of these frequencies aligns with the investigation conducted by
[148]. The study involves the University of Glasgow environment, employing a stationary BS
and a UE following a random trajectory. Both single and multi-element directional antennas are
used to explore SISO, SIMO, MISO, and MIMO scenarios.

The MPCs calculation procedure considers diverse scenarios, shapes, and data types, encom-
passing DoA, ToA, and RSSI. Figure 4.2 illustrates the number of MPCs as a function of the
multipath component threshold (MPCT) for both Line-of-Sight (LoS) and Non-Line-of-Sight
(NLoS) trajectories. The results consistently reveal a constant relationship, underscoring the
importance of the independence of the number of MPCs for localization accuracy in the specific
scenario, across the investigated frequency bands.
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Figure 4.2: Number of MPCs as a function of MPCT for LOS and NLOS trajectory.

Key multipath channel statistics across different frequency bands corresponding to the same
vehicular trajectory are provided in Figure 4.1, offering insights into how the V2X propagation
behavior is coupled across sub-6 GHz and mmWave bands. Figure 4 plots the average number
of (MPCs) as a function of the multipath component threshold (MPCT) at eight frequency bands
for both the LoS and NLoS (Figure 4.2) scenarios, respectively. The average number of MPCs
remains constant with the MPCT threshold, indicating that, according to the scenario, 25 MPCs
can be used, in contrast to what the literature ([148]) (Figure 4.3) suggests i.e., 3 MPCs only.
Out of these, the best one will be selected to train the neural network.

After comparing the results with the literature [148] (Figure 4.3), a significant change in the
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Figure 4.3: Number of MPCs as a function of MPCT for LOS and NLOS trajectory.
[[148]]

0 5 10 15 20 25 30 35 40 45 50

MPCT (dB)

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

R
M
S
-
D
S
 
(
s
)

10
-8

0.9

1.8

2.1

5.0

5.9

28

38

23

Figure 4.4: RMS-DS as a function of MPCT for LOS and NLOS trajectory.

results is observed when the dominant paths are set to 25 instead of 250. The reason behind
this could be the scenario, the number of paths assigned, and the values attained for DoA, DoD,
RSSI, and ToA. In short, multiple paths can be used instead of just 3, as the literature ([148])
claims for location estimation.

After that, the concluded MPCs value is implemented in the localisation algorithm to es-
timate the location information. This work was inspired by Localization with DNN using
mmWave Ray Tracing Simulations by [70]. Two different methods were usd by [70] to train
a neural network are proposed, one using channel parameters (features) and another using a
channel response vector and comparing their performances using preliminary computer simu-
lations. The former approach produces high localization accuracy has been used in this study:
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Figure 4.5: RMS-DS as a function of MPCT for LOS and NLOS trajectory.
[[148]]

Figure 4.6: Ray tracing scenario in the Gilmorehill campus of the University of Glasgow, Glas-
gow, UK.

considering that all users have a fixed number of MPCs, this method relies on the number of
MPCs. On the other hand, the latter approach is independent of the MPCs, but it performs
relatively poorly compared to the first approach. So, the former approach is tried for high lo-
calization accuracy. Given a ray tracing simulation, a DNN is used to predict the location of a
UE through supervised learning. Channel parameters like DoA, ToA, and RSSI are used. The
combination of DoA, ToA, and RSSI has been used and found the optimized parameters. Then
the DNN consists of input i.e., ToA, DoA, and RSSI, which gets optimized and consists of two
hidden layers and output in the form of x, and y coordinates. A fixed number of MPCs i.e., 25
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Figure 4.7: The predicted locations with respect to the true locations when using DoA, DoD,
RSS and ToA.

Figure 4.8: Illustration of the open area scenario with transmitters and receivers in grid and route
configurations.

is used for each user.
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Figure 4.9: Location estimation for a route.

Figure 4.10: Error between the true location and estimated location for a route.

4.0.3 DNN Model for Localization

To optimize the channel characteristics for DNN input, a meticulous feature transformation pro-
cess is employed. This process involves the extraction of significant features such as Angle
of Arrival (AoA), ToA, and Received Signal Strength Indicator (RSSI) from the raw channel
data. These features undergo preprocessing to enhance the model’s learning efficiency, includ-
ing normalization to scale the data and feature selection techniques to identify and retain the
most informative attributes. This preprocessing step is critical for reducing dimensionality and
improving the DNN’s prediction accuracy.

In this section, we delve into the training of the DNN model to estimate user locations
based on raw channel parameters observed at the BS, as provided by the ray tracing tool. These
parameters encompass AoA, ToA, and RSS. The number of model inputs depends on the chosen
number of MPCs and the features considered. In our configuration, we set the number of MPCs
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Figure 4.11: Location estimation for a grid.

Figure 4.12: Error between the true location and estimated location.

to 25 and included three channel parameters.

4.0.4 Input Features

The number of input features varies depending on the combination of parameters, and it is equal
to the product of the number of MPCs and the number of features chosen. We carefully select
and normalize these feature combinations for optimal model performance.

4.0.5 Output Labels

The DNN is designed to output the UE’s location as Cartesian coordinates, specifically the (x, y)
positions. This decision is predicated on the model’s application in urban environments where
variations in elevation (z-coordinate) are constant and can be reasonably approximated. By
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focusing on two-dimensional localization, the model complexity is reduced without significantly
compromising the accuracy for the intended use-case scenarios. This approach facilitates a more
straightforward interpretation of the results while maintaining the model’s applicability across a
range of urban settings.

4.0.6 DNN Architecture and Hyper-parameters

The DNN architecture is crafted, featuring an input layer, two hidden layers, and an output
layer. The hidden layers comprise 128 and 64 nodes, respectively, and utilize ReLU (Rectified
Linear Unit) activation functions to introduce non-linearity into the model. A dropout layer
with a rate of 0.5 is introduced between the hidden layers to mitigate overfitting. The output
layer employs a linear activation function, suitable for continuous value prediction. This archi-
tecture was selected through iterative testing, balancing model complexity with computational
efficiency to ensure high localization accuracy. Bayesian optimization serves as the cornerstone
for hyper-parameter tuning, facilitating an efficient search through the hyper-parameter space.
Parameters such as the learning rate, number of epochs, and batch size are subject to optimiza-
tion, with the objective function aimed at minimizing the validation loss. The search space is
predefined with reasonable bounds for each parameter, ensuring the exploration is both compre-
hensive and focused. This process significantly contributes to refining the model’s performance,
striking an optimal balance between accuracy and training efficiency. To evaluate the model’s
performance, Root Mean Square Error (RMSE) is employed as the primary metric for assessing
localization accuracy. This metric provides a clear measure of the average deviation between the
predicted and actual UE positions. Model validation is conducted through a stratified train-test
split, ensuring a representative distribution of data across both sets. This approach, coupled with
cross-validation techniques, ensures the model’s robustness and generalizability to unseen data,
affirming its reliability for practical applications.

4.1 Experimental Results

To assess the efficacy of our machine learning-enhanced localization technique, we embarked on
a series of experiments across two distinctly different scenarios: an open scenario and a scenario
specific to the University of Glasgow (GU). These environments were selected to reflect the
diverse challenges beamforming faces in 5G wireless communication networks, emphasizing the
necessity for precise localization of UE by base stations (BS). The accuracy of such localization
is paramount, as it directly influences the effectiveness of beam direction.

The open scenario provided a broad, unobstructed environment to evaluate the influence
of multi-path components (MPCs) and various environmental geometries on our localization
algorithm. This setting allowed us to dissect the propagation paths and channel responses under
different conditions, thereby gauging the adaptability and resilience of our approach.
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Conversely, the GU scenario presented a more intricate environment, replete with unique
architectural and urban characteristics. This setting served as a litmus test for the practical
applicability of our machine learning-based methodology in real-world, dynamic, and complex
wireless networks.

4.1.1 Simulation Setup for MPCs Calculation

In this section, we detail the simulation setup for MPCs calculation and present key insights
derived from our experiments. Leveraging a DNN-based approach, we employed ML to stream-
line location estimation in the context of vehicle-to-infrastructure channels across sub-6 GHz
and mmWave bands. The MATLAB Bayesian-optimized DNN toolbox facilitated the process-
ing of channel parameters, considering angular and temporal correlations. Our simulations,
specific to the University of Glasgow campus, departed from previous experiments, offering a
nuanced exploration.

Fig. A.4 provides an overview of the scenario, with receivers capturing a total of 25 MPCs for
each vehicle location along the route. Notably, our experiments challenged conventional wisdom
by exploring the flexibility in the number of MPCs used for location estimation, contrasting with
prior suggestions of using only three paths for neural network training. Our findings unveiled
the adaptability of our algorithm to different scenarios, advocating for a more inclusive approach
to MPCs selection.

The exploration of the MPCT demonstrated its impact on channel statistics. Surprisingly,
our results indicated the effective utilization of various MPCT values, debunking the notion of
a fixed threshold. By adopting a range of MPCT values in our data processing, we showcased
the algorithm’s adaptability and automatic optimization. Furthermore, our experiments illumi-
nated the consistency of channel statistics, such as RMS-DS, across MPCT values, affirming
the robustness of our approach. In summary, our findings challenge established practices and
underscore the algorithm’s resilience in diverse scenarios.

4.1.2 Context and Methods

Location estimation’s fundamental role in enabling efficient beamforming guided our explo-
ration of channel parameters, including AoA, DoA, DoD, RSSI, ToA, and Delay. Different path
types, including LoS and NLoS, were scrutinized. The incorporation of MPCs into the localiza-
tion algorithm, comparing two approaches—one based on channel parameters and the other on
a channel response vector—highlighted the former’s superior performance.
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4.1.3 DNN-Based Localization Algorithm

Our experiments aimed to minimize the mean error between known and estimated outputs for x

and y coordinates. The following pseudocode 2 was used to perform the location estimation:

Algorithm 2 Proposed location estimation
Data processing
Input Raw dataset
Initialize an accumulator A for processed data
Calculate the number of raw data entries
for Each raw data entry do

Extract DoA, ToA, and Location
Extract features (e.g., Delay, Azimuth, RSS)
Store the set of features & location in A
Save A
Train & test neural network
Load the Training dataset from A
Initialize neural network hyperparameters
Optimize hyperparameters with Bayesian optimization
Train Neural Network with optimized hyperparameters
Load Testing dataset from A
Test trained neural network on Testing dataset
Visualize predicted locations against ground truths.

end for

4.1.4 Simulation Scenarios and Results

Simulations in open scenarios, depicted in Fig. 4.8, unfolded in grid and route configurations.
Location estimation results for route and grid receivers, along with error analysis, are visualized
in Fig. 4.9, Fig. 4.10, Fig. 4.11, Fig. 4.12. The figures offer valuable insights into the accuracy
of location estimations in diverse scenarios. The exploration of MPCs variations and canonical
shapes enriched our understanding of propagation paths and channel responses, challenging
traditional practices.

Our experiments underscore the importance of path number and placement for localization,
challenging established norms. Visual representations accompany these findings, providing con-
text and clarity to our results.

4.1.5 Simulation Context

Situated at the Gilmorehill campus, the small cell scenario operated at a carrier frequency of 3.75
GHz. The setup included a set of receivers capturing vehicle movement along defined routes at
different speeds. The simulation parameters incorporated MIMO directional array antennas,
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transmitter power, down-tilt and receiver sensitivity. Simulations were executed using Wireless
InSite® MIMO version 3.3 on a high-performance computing platform.

4.1.6 Simulation Results

Fig. 4.13 visually presents predicted UE locations with respect to true locations, utilizing DoA,
DoD, RSSI, and ToA. The results demonstrate the efficacy of the algorithm, achieving approx-
imately 97% coverage in NLoS areas. The study illuminates the potential of high-accuracy
localization for both LoS and NLoS scenarios using advanced antenna systems.
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Figure 4.13: The predicted locations with respect to the true locations when using DoA, DoD,
RSS and ToA.

Alt Text: Comparative analysis showing predicted versus true locations in a localization
experiment, highlighting the accuracy of using DoA, Direction of Departure (DoD), Received

Signal Strength (RSS), and ToA in determining UE positions.
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4.2 Conclusion

In this work, we present a novel method for improving wireless network localization through
the use of ML algorithms. To build a DNN on the base station (BS) side, our methodology
used channel features and location data obtained from a ray-tracing model as input features and
output labels. Our experiments’ findings provide insight into the complex effects of various en-
vironmental configurations and scenarios on the precise localization prediction of UE, especially
when datasets based on DoA, ToA, and RSSI are used. The study demonstrated the efficacy of
utilizing MIMO antennas in addressing (NLoS) areas, resulting in a notable enhancement in the
precision of UE location predictions. Our work marks a significant contribution to the evolving
landscape of ML-driven localization in wireless networks. As technologies such as 5G and be-
yond continue to advance, our findings provide valuable insights into the potential for enhancing
network performance by integrating ML-based localization techniques.



Chapter 5

Integration of Real-World Data
Acquisition

This chapter aims to elucidate the transition from simulated data collection to actual data acqui-
sition using the in-house setup, specifically leveraging the capabilities of the TSMA 6 scanner
at the University of Glasgow. It underscores the methodology adopted for gathering real-time
data through various modalities, including pedestrian movement, vehicular mobility, and robotic
maneuvering, to understand and analyze the dynamics of 5G network performance within and
around the JWS and JMS buildings of the university.

5.1 Introduction to TSMA6 in Real-World Data Collection

The TSMA6 scanner emerges as a cornerstone in this venture, facilitating the intricate process
of capturing and analyzing the radio frequency (RF) spectrum in real-time. This state-of-the-art
device is adept at scanning and dissecting the RF spectrum, providing invaluable insights into
the spectral environment crucial for the development and refinement of wireless communication
systems.

5.1.1 Understanding TSMA6

The TSMA6 is engineered to offer a wide frequency range, covering the spectrum from low-
frequency bands used in IoT devices to the higher frequencies pertinent to 5G cellular and Wi-
Fi networks. Its high sensitivity allows for the detection of weak signals, a critical attribute for
analyzing signal strength across various scenarios. The real-time spectrum analysis capability
of the TSMA6 ensures instantaneous monitoring and visualization of the RF spectrum, offering
a dynamic view of the radio environment. The modular architecture of the scanner accommo-
dates diverse antenna options and additional modules, enhancing its versatility and application
in specialized measurements.
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5.1.2 TSMA6’s Role in Real-Time Data Generation

In the context of real-time data generation at the University of Glasgow, the TSMA6 scanner is
instrumental in:

Concurrent Signal Capture: Operating alongside the in-house data generation setup, it cap-
tures signals in real-time, facilitating a comprehensive dataset that includes a wide array of signal
information.

Enhanced Frequency Coverage: The inclusion of TSMA6 extends the frequency coverage,
enabling the study of communication scenarios across diverse frequency bands.

Improved Spectrum Awareness: The real-time spectrum analysis capabilities of the TSMA6
augment the overall spectrum awareness, providing detailed insights into frequency occupancy,
signal strengths, and interference patterns.

5.2 Data Collection Methodology

Leveraging the TSMA6 scanner and the QualiPoc interface, the data collection process extends
to various modalities including walking, driving, and the deployment of robots to mimic differ-
ent real-world scenarios such shown in Figure 5.1. The primary focus is on gathering critical
parameters like RSRP (Reference Signal Received Power), TOA (Time of Arrival), and DOA
(Direction of Arrival), essential for the localization algorithm. The dataset looks as shown in
Figure 5.3.

Figure 5.1: Real-time data collection at UofG.
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Figure 5.2: TSMA6 scanner and QualiPoc.

Figure 5.3: Dataset from UofG campus (example).

5.2.1 Experimental Setup and Data Acquisition

The TSMA6 scanner, equipped with an RF antenna, a GPS module, and interfaced with the
QualiPoc application on a 5G-enabled smartphone, forms the core of our data collection setup.
The process facilitated the extraction of parameters critical to the localization algorithm, with
RSRP values and TOA data being particularly emphasized. These parameters were collected in
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Figure 5.4: DoA setup schematic.

various settings around the JWS and JMS buildings, leveraging the 5G antennas installed both
inside and outside these structures to capture a diverse set of data reflective of different user
environments and mobility patterns. Figure 5.1 illustrates the real-time data collection setup at
the UofG.

5.2.2 Addressing Limitations and Advancements

Despite the comprehensive capabilities of the TSMA6 scanner, it lacks the provision of DOA
information directly. To circumvent this, a dedicated DOA setup, involving Universal Software
Radio Peripherals (USRPs) and an antenna array system, is under development. This initiative
aims to complement the data gathered through the TSMA6, enriching the dataset with accurate
DOA measurements critical for refining the localization accuracy.

5.2.3 Impact and Implications

The deployment of the TSMA6 scanner for real-time data collection at the University of Glas-
gow represents a significant step forward in the practical examination and analysis of 5G net-
work performance. The data gathered from this real-world setting is instrumental in validating
the simulated models and enhancing the accuracy of localization algorithms. Moreover, this
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initiative highlights the importance of incorporating sophisticated tools like the TSMA6 in the
realm of wireless communication research, paving the way for innovative solutions in the opti-
mization and deployment of 5G networks.



Chapter 6

Utilizing Software-Defined Radio for DoA
Estimation

The quest for enhancing localization accuracy in wireless networks necessitates precise esti-
mation of the DoA of signals. To address the limitations encountered with conventional data
collection methods, particularly the inability of TSMA6 to provide DoA information, we turned
our focus towards Software-Defined Radio (SDR) technology. SDR offers a flexible and inno-
vative approach to signal processing, allowing for the dynamic adaptation of software to modify
the radio system’s behavior. This chapter delineates our journey in harnessing the capabilities of
SDRs, specifically the BladeRF and the X300/X310 models, to achieve accurate DoA estimation
essential for refining localization techniques in 5G networks.

6.0.1 Introduction

Software Defined Radio (SDR) is a term employed to describe radio systems where the bulk
of their functions are executed through software, diverging from the prevalent hardware-centric
approach observed in many recent Radio Frequency (RF) applications. An exemplary depiction
of an ideal SDR is illustrated in Figure 6.1. In this conceptual framework, the RF Front End is
streamlined, comprising solely a power amplifier and a high-speed Analog to Digital Converter
(ADC). Consequently, the remaining tasks concerning the physical layer, including tasks like
modulation, synchronization, and encoding, are undertaken through the application of Digital
Signal Processing (DSP) techniques [149].

SDR systems are anticipated to operate across a broad frequency spectrum and fulfill a range
of functions similar to those achievable through dedicated hardware implementations. For in-
stance, employing a cost-effective SDR unit to tune into a local FM radio station or to intercept
an Orthogonal Frequency Division Multiplexing (OFDM) signal utilizing Quadrature Ampli-
tude Modulation (QAM) modulation in the 2.4 GHz band are among the prevalent and versatile
applications of SDR systems.
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Figure 6.1: Ideal SDR block diagram. [149]

6.0.2 Hardware and Flexibility

6.0.2.1 Model-Based Design and Hardware in the Loop

In contrast to traditional radio units that rely on specialized hardware to process specific incom-
ing signals, SDR hardware possesses a generic quality, enabling it to handle data across various
frequencies and modulation schemes. This versatility is often facilitated by incorporating a Field
Programmable Gate Array (FPGA) within the SDR radio. FPGAs within the domain of Digital
Signal Processing (DSP) offer higher processing speeds and efficiency compared to microcon-
trollers. This advantage is attributed to the presence of dedicated DSP slices within the silicon,
fostering faster processing suitable for RF applications, alongside the availability of tools for
designing and simulating RF systems.

High-Level Synthesis (HLS) systems, such as MATLAB/Simulink, Python, or SystemC,
serve to model an RF system, simulate it for proper tuning and debugging, and subsequently
generate Hardware Description Language (HDL) code to program the physical hardware in line
with the model. This design process is known as Model-Based Design. HLS software may
also incorporate specific tools to expedite the implementation of particular hardware or software
processes, further streamlining the model generation process.

Another prevalent design methodology is the Hardware in the Loop (HIL) approach. Similar
to Model-Based Design, HIL employs high-level modeling software like MATLAB/Simulink or
GNU Radio to craft an algorithmic representation of the system, incorporating the SDR as an
integral component of the model. However, HIL diverges from Model-Based Design in that it
doesn’t involve generating custom HDL to run on the FPGA. Instead, it employs the SDR as a
signal source and sink, allowing the computer to execute the intended algorithm. HIL models are
relatively quicker for testing and validation compared to Model-Based Design, and they are also
easier to create since subsystems aren’t compiled into HDL. However, a performance trade-off
emerges, as the algorithm isn’t entirely executed in hardware.
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6.0.2.2 Transceiver Architectures

A crucial phase within Software Defined Radios (SDRs) is the Analog-to-Digital (AD) and
Digital-to-Analog (DA) conversion architecture. This architecture comprises three distinct meth-
ods to acquire or generate signals.

The Heterodyne architecture, the oldest among the trio, entails a physical downconverter
achieved through a mixer and a local oscillator (LO). This technique shifts the received broad-
spectrum signal to the baseband, facilitating sampling by the Analog-to-Digital Converter (ADC).
Conversely, in cases where a signal is generated, the architecture shifts the signal to a higher fre-
quency using the Digital-to-Analog Converter (DAC).

The direct conversion architecture, also recognized as Zero-Intermediate Frequency (Zero-
IF), augments bandwidth efficiency by incorporating a second Heterodyne converter. The LO
signal for this second converter is phase-shifted by 90◦. This configuration facilitates the gener-
ation of two independent data streams - the In-Phase and Quadrature (IQ) signals.

Lastly, the Direct Sampling architecture accomplishes signal conversion between the broad-
band and baseband domains through software. This approach is the most demanding, demanding
Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC) units with sam-
pling rates in the hundreds to thousands of megahertz range. Nevertheless, this method delivers
unparalleled flexibility, as the signal can be conveniently manipulated even during up-conversion
processes.

The Direct Conversion architecture is widely adopted by a significant portion of SDRs avail-
able on the market. This architecture boasts compatibility with various signal types, like AM,
FM, PSK, and QAM. Notably, many SDRs are designed with RF front-ends integrated into
a single integrated circuit (IC). These ICs consolidate essential components such as a power
amplifier, mixer, RF filter, and analog-to-digital converter (ADC) or digital-to-analog converter
(DAC). This integration is augmented with a data interface, rendering it suitable for utilization
alongside a range of microcontrollers. Notably, numerous ICs of this nature also encompass
multiple coherent transmit (TX) and receive (RX) channels, all of which can be driven by a
single local oscillator (LO). Noteworthy manufacturers in the domain of transceiver ICs include
Lime Microsystems and Analog Devices.

6.0.3 Available Software-Defined Radio Units

A diverse array of SDR units are readily available for purchase today, catering to a broad spec-
trum of research, industrial, educational, and hobbyist applications. Prominent manufacturers
like Ettus Research and National Instruments dominate the SDR market, offering feature-rich
devices tailored for advanced research and industrial utilization. These devices typically encom-
pass a host of attributes, including full-duplex capability, high-performance Field Programmable
Gate Arrays (FPGAs), extensive frequency coverage (including mm-wave support), wide base-
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(a) Heterodyne receiver (b) Direct conversion receiver

(c) Direct sampling receiver

Figure 6.2: Receiver Architectures. [150]

band bandwidth, Multiple-Input Multiple-Output (MIMO) capabilities, and compatibility with
established development tools.

Concurrently, there exists a range of SDR units designed with students, hobbyists, and
budget-conscious engineers in mind. These platforms cater to individuals who might not have
the financial means to invest in devices from the aforementioned manufacturers. Devices like
RTL-SDR, LimeSDR, HackRF, BladeRF, and PlutoSDR exemplify this budget-friendly cate-
gory. Notably, most of these devices are borne out of open-source initiatives, except for the
PlutoSDR, which is backed by Analog Devices. These devices come with varying degrees of
capability and compatibility, often representing community-driven efforts. Analog Devices, for
instance, supports the development and production of the PlutoSDR, which is primarily intended
to aid students in acquiring hands-on experience with digital communication systems.

6.1 Beamforming in Software-Defined Radio

SDR present an ideal platform for implementing beamforming, primarily because the technol-
ogy’s antenna array configuration, rather than its signal processing capability, is the key require-
ment. SDRs, especially those available commercially, are equipped with the hardware necessary
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Figure 6.3: Block diagram of the AD9361 RF transceiver. [150]

SDR Ettus B210 Hack RF RTL-SDR LimeSDR PlutoSDR BladeRF 2
Max Freq 6 GHz 6 GHz 1.7 GHz 3.8 GHz 3.8 GHz 6 GHz

Interfacing USB3.0 USB2.0 USB 2.0 USB3.0 USB 2.0 USB3.0
Sample Depth 12-bit 8-bit 8-bit 12-bit 12-bit

Duplex Full Half N/A Full Full
MIMO 2x2 1x1 0x1 2x2 1x1 2x2

TX Power 10 dBm 15 dBm N/A 10 dBm 7 dBm 8 dBm

Table 6.1: SDR comparison table [151, 152, 153]
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to manage multiple antennas, making digital beamforming the most practical approach. Imple-
mentations leveraging SDRs, such as those detailed in [154, 155], have utilized specialized
hardware to streamline the setup of multiple SDR units. In these cases, LabVIEW facilitated the
control and monitoring of the antenna array, demonstrating the potential of advanced SDR equip-
ment. It’s important to note, however, that replicating these configurations with budget-friendly
SDRs can require more effort, expertise, and sometimes hardware tweaks. Digital beamforming
can be susceptible to various non-ideal conditions like correlation errors, mixer frequency devi-
ations, and unsynchronized oscillators. These factors demand careful consideration during the
design process [156]. Fortunately, many such challenges have been addressed by SDR manu-
facturers. Yet, synchronization remains a pivotal concern for SDR-based beamforming systems.

6.1.1 Coherence and Synchronisation

Achieving successful digital beamforming necessitates either coherence or pseudo-coherence
between the transmitter and receiver, ensuring a consistent phase relationship across channels.
Additionally, the analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
across channels must have precisely aligned sampling clocks.

A straightforward method for phase synchronization involves distributing a local oscillator
(LO) signal to each SDR. However, this can introduce noise that adversely affects beamforming
performance. An alternative is to maintain individual LOs for each SDR, using a low-frequency
trigger signal to keep the LOs aligned without needing a pristine signal source.

6.1.2 Interfacing

The need for data transfer from multiple antennas significantly increases the interfacing band-
width requirement from the SDR to the processor. For example, a four-element antenna array,
each sampled at 10 MSPS with 32-bit IQ samples, demands a throughput of 1.28 Gbps, far ex-
ceeding the capabilities of USB 2.0 and necessitating faster protocols like USB 3.0 or Ethernet.
The actual throughput achievable is highly dependent on the protocol and frame size. Design-
ers can adjust sample rates, and SDRs vary in bit depths, offering flexibility to meet different
throughput needs.

6.1.3 Transceiver Architecture

SDRs typically utilize external transceiver ICs with a Direct-Conversion architecture, limiting
signal processing to the baseband and favoring phase-shift beamforming. This approach con-
verts time delays into phase shifts within the signal’s I and Q components but has limitations,
such as a constrained steering angle and potential for non-ideal radiation patterns. Conversely,
more versatile architectures allow for true time-delay beamforming, which is adaptable even in
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broadband spectrums and avoids the steering angle limitations inherent in phase-shift beamform-
ing. Despite its advantages, true time-delay beamforming demands picosecond-level sampling
rates, challenging for budget ADCs and DACs.

SDR technology offers a promising avenue for beamforming applications, provided chal-
lenges like synchronization and interfacing bandwidth are adequately addressed. While each
beamforming technique has its limitations, the flexibility of SDRs allows for innovative solu-
tions that can meet the demands of various applications.

6.2 DOA Setup using SDRs

In this chapter, we delve deeper into the practical implementation of our research, bridging
the gap between the theoretical underpinnings of beamforming discussed in Section 6.1 and
its real-world application. While the previous section laid the foundation for understanding
beamforming concepts, this chapter focuses on the "why" and "what" aspects of our research.

The primary goals of our work encompassed not only the technical implementation but also
the rationale behind it. Our research aimed to address critical questions such as:

- Why Beamforming?: Beamforming techniques offer the promise of enhancing signal
reception and transmission, particularly in wireless communication systems. The ability to direct
signals precisely to or from specific locations has far-reaching implications for improving system
performance, reducing interference, and enabling new applications.

- What Are the Challenges?: Implementing beamforming in real-world scenarios poses
numerous challenges, including hardware integration, data acquisition, signal processing, and
localization. Identifying and overcoming these challenges were integral aspects of our research.

With these questions in mind, our investigation encompassed two distinct tests to assess the
accuracy of the DoA estimation. The first approach involved utilizing USRP in conjunction
with LabVIEW. The second approach leveraged MATLAB in tandem with the BladeRF plat-
form. These tests aimed to scrutinize the effectiveness of DOA estimation methodologies under
varying conditions.

Furthermore, our exploration extended to localization techniques, wherein Channel State
Information (CSI) data was employed. Through the integration of USRPs and LabVIEW, real-
time data collection was facilitated, enabling the processing of location estimation using ML
algorithms. This multifaceted investigation sought to ascertain the viability and precision of lo-
calization techniques through the fusion of sophisticated hardware, software, and ML method-
ologies.

6.2.1 DOA Set-up using MATLAB and BladeRF

A comprehensive simulation model of a downlink end-to-end communication system was crafted
to assess the efficacy of the implemented beamforming algorithm in both the transmitter and
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receiver components. The primary objective of this section entailed crafting a functional beam-
forming model that seamlessly caters to both transmitting (TX) and receiving (RX) arrays. In
pursuit of this aim, the Hardware-in-the-Loop (HIL) approach emerged as an appealing strategy
due to its potential to reuse the subsystems of the simulation within the HIL model, necessitating
only minor adjustments.

6.2.1.1 Implementation and Testing

For the realization of this simulation, Simulink emerged as the chosen platform due to its adept-
ness in accommodating a wide array of algorithms and models pertinent to digital communica-
tions. Additionally, Simulink supports HIL workflows, thereby harmonizing well with various
SDR.

Throughout the developmental process, numerous iterations of the end-to-end simulation
were conceived, each progressively enriched with additional features and embedded with real-
world impairments and characteristics. The creation and refinement of the simulation and its
constituent subsystems occurred in tandem, subsequently undergoing rigorous testing within
diverse models.

The culmination of these iterative efforts yielded a finalized simulation model characterized
by several crucial subsystems. A visual representation of the ultimate model is showcased in
Figure 6.4, encapsulating the intricate interactions and interdependencies within the simulated
downlink end-to-end communication system.

The simulation incorporates the following crucial subsystems, each contributing to the over-
all functionality of the system (Figures 6.4 and 6.5):

• UE’s movement pattern

• Modulator at the base station

• Receiver at the user’s equipment

• TX beamformer at the base station

• RX beamformer at the UE

• Wireless channel

Analogous to the subsystems, a MATLAB script was devised to facilitate the management
of parameters within these system blocks. The script serves the dual purpose of automating pa-
rameter modifications and linking them with relevant equations associated with each subsystem.
It’s worth noting that given the focus on the downlink scenario, the Base Station (BS) Modu-
lator subsystem is colloquially referred to as the Modulator, and the UE Receiver subsystem is
referred to as the Receiver since only a single instance of each is present within the model.
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Figure 6.4: Simulink model for the UE tracking simulation.

Figure 6.5: Simulink model for the HIL demonstration.

6.2.1.2 Hardware Implementation

The hardware implementation involves the utilization of BladeRF and a setup featuring two
sets of dual antennas. This configuration enables wireless communication and UE tracking. The
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core hardware components include two BladeRF devices, each equipped with two transmit (TX)
antennas and two receive (RX) antennas. The connection is established using USB to USB-C
cables. Additionally, a board with markings indicating antenna separation distances has been
integrated and optimized for the frequency range spanning 1 to 6 GHz.

Figure 6.6: BladeRF Beam tracking setup.

6.2.1.3 Data Collection

Data collection in our research was facilitated through the use of a custom PowerShell script.
This script was crafted to automate critical tasks essential for acquiring the necessary data from
our hardware setup, thereby enabling further analysis and evaluation of our directional beam-
forming system.

The purpose of the PowerShell script was twofold:

6.2.1.4 Signal Acquisition

The script was responsible for initiating and controlling the USRP in our hardware setup. It
triggered the data acquisition process, capturing radio signals and relevant parameters required
for subsequent analysis. This ensured a streamlined and consistent data collection process.
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6.2.1.5 Data Organization

In addition to signal capture, the script played a vital role in organizing and storing the acquired
data in an orderly fashion. This included labelling data sets, timestamps, and relevant metadata,
which were instrumental in conducting comprehensive evaluations and comparisons.

By employing this custom PowerShell script, we not only simplified the data collection pro-
cess but also ensured data integrity and consistency, laying a robust foundation for our research
analysis.

Figure 6.7: Data collection using BladeRF.

6.2.1.6 Results

The collected data was processed and presented in graphical form to demonstrate the function-
ality of the hardware setup. Notably, the system operated as a beamformer with high accuracy
within the frequency range of less than 3 GHz. However, an issue arose when the operating
frequency exceeded 3 GHz. This limitation should be taken into account when considering
potential use cases and the system’s applicability at different frequency bands.

In summary, the BladeRF-based hardware setup, coupled with the dual antenna arrange-
ment, proved effective in wireless communication and UE tracking. The collected data sub-
stantiates the system’s beamforming capabilities, highlighting its accurate performance up to 3
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Figure 6.8: DOA estimation using BladeRF.

GHz. Awareness of the frequency-dependent behavior is essential for informed decision-making
regarding the setup’s deployment and its compatibility with various frequency ranges.

6.2.2 DOA Set-up using LabView and USRPs

This report presents a comprehensive exploration of a DoA setup utilizing LabVIEW and the
USRP X300 platform. The primary objective was to develop an efficient and accurate DoA es-
timation system capable of locating a target user within specified frequency bands. The setup
involved a four-element receiving unit paired with a single-antenna transmitter, thereby estab-
lishing the basis for accurate DoA estimation and beamforming.

Inspired by the potential offered by the USRP X300 platform and LabVIEW’s versatility, this
project sought to devise an advanced DoA setup that capitalizes on state-of-the-art technologies.
The focal point was the precise Localisation of a target user while employing DoA estimation
algorithms and adaptive beamforming techniques.

The setup was designed to operate within two distinct frequency bands: 2.4 GHz and 3.75
GHz. This frequency selection was deliberate, aligning with common wireless communication
spectrums and offering a practical demonstration of the setup’s adaptability. The project’s key
components included the four-element receiving unit, a single-antenna transmitter, LabVIEW
for control and data acquisition, and the USRP X300 for signal generation and reception.

The experiment’s execution involved a multi-step process, from calibrating the system to
acquiring and processing signals for DoA estimation. The received signals were analyzed to de-
termine the target user’s angle of arrival accurately. By utilizing LabVIEW’s intuitive program-
ming environment and the capabilities of the USRP X300, the project successfully demonstrated
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the effectiveness of the DoA estimation system.
Results showed that the setup achieved accurate DoA estimation within the specified fre-

quency bands.

6.2.2.1 LabVIEW Scripts for DoA Estimation

In our research on DoA estimation, LabVIEW scripts play a crucial role in orchestrating the
communication between the transmitter (TX) and receiver (RX). These scripts serve as the back-
bone of our DoA estimation system, enabling precise Localisation of signal sources.

The LabVIEW scripts act as intermediaries between the TX and RX, overseeing the signal
generation, transmission, reception, and subsequent processing. Their overarching purpose is
to facilitate the accurate estimation of the direction from which a signal originates, a critical
component of our research.

The TX and RX LabVIEW scripts work in conjunction to achieve DoA estimation. Here’s
an overview of their functionalities:

6.2.2.2 Transmitter (TX) Script

The TX script in LabVIEW is responsible for generating the signal that will be transmitted to
the receiver. It encompasses the following tasks:

- Signal Generation: The script generates the signal that carries the required information.
This signal can be a test waveform or a modulated signal, depending on the specific DoA esti-
mation technique being employed.

- Signal Modulation: If needed, the script modulates the generated signal to fit the modula-
tion scheme and parameters dictated by the experiment’s requirements.

- Data Formatting: The generated and modulated signal is prepared for transmission by
formatting it into packets or frames, incorporating synchronization and error-checking mecha-
nisms.

- Signal Transmission: The LabVIEW script interfaces with the hardware to transmit the
modulated signal over the air to the receiver.

6.2.2.3 Receiver (RX) Script

The RX script in LabVIEW is designed to capture and process the transmitted signal, enabling
accurate estimation of the signal’s direction of arrival.

- Signal Reception: The script interfaces with the hardware to capture the transmitted signal,
which may be affected by noise, interference, and propagation effects.

- Signal Processing: Received signals are preprocessed to mitigate noise and interference,
enhancing the accuracy of subsequent analysis.
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Figure 6.9: LabView script for signal transmission.

- DoA Estimation Algorithm: The script applies the DoA estimation algorithm to the re-
ceived signal. This algorithm might involve techniques such as beamforming, MUSIC, ESPRIT,
or others, depending on the specific implementation.

- Angle Calculation: Based on the output of the DoA estimation algorithm, the LabVIEW
script calculates the angle or angles from which the signal is arriving.

- Result Presentation: The calculated DoA angles are then presented graphically or numer-
ically, providing insights into the spatial positioning of the signal source.
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Figure 6.10: LabView script for signal reception.

6.2.2.4 Hardware Implementation

The hardware implementation of the system comprises two USRP (Universal Software Radio
Peripheral) devices. The first device is a twin RX (receiver) unit designed to accommodate up
to four RX antennas. The second device operates as a transmitter (TX) or UE and is equipped
with a single antenna. The calibration of the setup was achieved using a 4-port power splitter,
enhancing the accuracy of the DoA estimation. Coaxial cables of equal lengths were employed
consistently throughout the experiments.

6.2.2.5 Data Collection

Data collection was performed at nine distinct positions to assess the accuracy of the DoA es-
timation. For reference, angles corresponding to these positions were marked on the floor to
facilitate a visual check of the DoA accuracy. Notably, the setup demonstrated optimal perfor-
mance within a range of 45 degrees and for relatively short distances. However, when subjected
to scenarios involving long distances, moving UEs, or outdoor environments, the system exhib-
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Figure 6.11: DOA setup using USRPs and LabView.

ited accuracy degradation due to a range of factors, including interference and noise.

6.2.2.6 Results

The obtained results underscore the viability of the setup for demonstration purposes and indoor
experimental applications. The system’s performance is particularly effective within controlled
indoor environments, making it well-suited for showcasing the principles of DoA estimation
and enabling experimentation in such settings. However, it is important to acknowledge the
limitations of the setup when considering scenarios involving extended distances, dynamic UE
movement, or outdoor conditions where external factors can significantly impact its accuracy.

In conclusion, the hardware implementation featuring the twin RX and single-antenna TX/UE
USRP configuration provides a practical platform for illustrating DoA estimation concepts and
conducting indoor experiments. Careful consideration of the system’s limitations and the envi-
ronmental context is crucial when interpreting its results and potential use cases.
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Figure 6.12: DoA estimation at 10 degrees.



Chapter 7

Real-Time Data for Localization via
Fingerprinting

This chapter shifts the focus to the application of real-time data sets for localization using finger-
printing methods. The primary objective is to explain the fingerprinting technique and present
results from experiments conducted in different scenarios. Through a detailed analysis of the
localization process, this chapter contributes valuable insights into the practical application of
real-time data in localization.

The chapter on real-time localization delves into the formidable challenge of accurately de-
termining the indoor location of mobile devices, a topic that has sparked significant interest due
to the complexities posed by non-line-of-sight propagation and multipath effects. In response
to these challenges, this chapter introduces a novel approach to indoor positioning, leveraging
channel state information (CSI) and ML techniques to enhance accuracy. The proposed method-
ology involves the extraction of subcarrier amplitude and phase differences from CSI data, form-
ing fingerprints that are subsequently clustered to identify distinct groups of data. These identi-
fied groups are then split into two sub-databases using a defined threshold. ML algorithms and
a tailored network architecture are employed to train both sub-databases of fingerprints. The
effectiveness of this innovative method is empirically validated through experiments conducted
in a standard indoor environment, showcasing its potential to significantly improve the accuracy
of indoor localization.

7.1 Localization using LabView and USRPs

This report outlines an in-depth investigation into a localization setup employing LabVIEW
and the USRP X300 platform. The core objective of this project was to develop a robust and
precise localization system capable of accurately determining the position of a target user within
a specific frequency band. The setup encompassed a two-element receiving unit paired with a
single-antenna transmitter, enabling accurate localization through DoA estimation and Channel

90
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State Information (CSI) extraction.
Motivated by the capabilities of the USRP X300 and LabVIEW’s versatile programming

environment, this endeavour aimed to establish a sophisticated localization setup, leveraging
cutting-edge technology for accurate positioning. The focus was on precisely determining the
location of a target user through advanced DoA estimation techniques and the extraction of CSI
data.

The chosen frequency band for this project was 3.75 GHz, a spectrum commonly utilized in
wireless communication applications. This frequency selection was strategic, aligning with real-
world scenarios and demonstrating the applicability and adaptability of the setup. The primary
components included a two-element receiving unit, a single-antenna transmitter, LabVIEW for
system control and data processing, and the USRP X300 for generating signals and receiving
responses.

The execution of the experiment unfolded through a planned sequence of steps, ranging
from system calibration to signal acquisition and processing for localization. The received sig-
nals were subjected to rigorous analysis to precisely estimate the target user’s location using
advanced localization algorithms. Additionally, the setup enabled the extraction of CSI data
at nine distinct positions, facilitating a comprehensive understanding of the wireless channel
characteristics.

The integration of LabVIEW’s intuitive programming interface with the advanced capabil-
ities of the USRP X300 led to the successful demonstration of accurate localization within the
specified frequency band. The ability to estimate the user’s position and extract CSI data pro-
vided valuable insights into the wireless communication environment.

The results indicated that the setup achieved accurate and reliable location estimation within
the targeted frequency band. The project’s highlight was the successful extraction of CSI data,
enhancing the understanding of the wireless channel’s behaviour.

7.1.1 Preliminary Requisites

The system architecture created for the device localization procedure is presented in this section,
as shown in Fig. 7.6. Additionally, the method for calculating the separation between the two
devices is described. The objective function and the experimental setup for device localization
are then discussed. Finally, we provide details of the ML model for device localization and
sensing applications.

7.1.1.1 RSSI-based Localization

RSSI, or Received Signal Strength Indication, represents the signal strength received by the
client, and it is an integral part of the MAC layer. In wireless communication, signals experience
phenomena like reflection, diffraction, and scattering, leading to multipath propagation. As a
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result, the signal received at a node comes from multiple paths, each with variations in arrival
times and phase discrepancies. These variations can either amplify or attenuate the original
signal, resulting in multipath attenuation and creating a unique electromagnetic environment
indoors. This uniqueness in the channel’s multipath structure forms the basis of RSSI-based
positioning [157].

The instantaneous value of RSSI can be calculated by integrating the baseband In-phase (I)
and Quadrature-phase (Q) power as follows:

RSSIInstan =
√

I2 +Q2 (7.1)

7.1.1.2 CSI-Based Localization

Channel State Information (CSI) is a valuable metric for localization as it reflects the multipath
effects and signal intensity variations during transmission. Small spatial movements can influ-
ence CSI values, and due to the complexity of indoor environments, CSI amplitudes vary across
different locations. CSI data is part of the physical layer data in wireless communication pro-
tocols, such as the 802.11 protocol’s physical layer (PHY) [158], which bridges the MAC and
wireless media layers.

The channel gain matrix H expresses CSI, with each component having an amplitude ∥Hk∥
and a phase ∠Hk for the kth subcarrier. It can be written as follows:

Hk = ∥Hk∥e j∠Hk (7.2)

In this equation, Hk represents the CSI for the kth subcarrier. The terms ∥Hk∥ and ∠Hk

represent the amplitude and phase of the kth subcarriers, respectively. The amplitude and phase
of a complex number H can be determined by finding its modulus

√
(a2 +b2) and argument

θ = argtan b
a , where a and b are real and imaginary parts of H.

In our research, we have employed RSSI, phase, and CSI-based localization methods and
have explored which ML algorithm yields higher accuracy for indoor positioning.

7.2 Experimental configurations

7.2.1 Scenario

In the experiment, we established an indoor environment with a marked floor plan consisting of a
square divided into 9 blocks of different sizes (1 meter, 0.75 meters, and 0.5 meters) as shown in
Fig. (7.1). Note that this figure is composed in this way for better visuals and may not represent
the actual proportion. A transmitting antenna was placed at the center of the floor plan, marked
as P1 to P9, and two receiving antennas were positioned at a fixed distance of 0.035 meters at
a frequency of 3.75 GHz. We conducted experiments in both line-of-sight (LOS) (7.2,7.3) and
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Figure 7.1: Schematic layout of a floor plan.

non-line-of-sight (NLOS) (7.4) scenarios. In the NLOS scenario, we introduced an obstruction
by placing a board between the transmitter and receiver, mounted on tripods, which affected the
transmitted signal.

The obstruction created by the board in the NLOS scenario had several effects on the trans-
mitted signal. First, it caused multipath propagation, where the signal bounced off the board,
creating multiple reflected signals that reached the receiver at different times and angles. This
introduced fading, interference, and reduced signal quality, leading to errors and packet loss in
communication. Additionally, the obstruction caused diffraction, bending, and spreading the
signal around the edges of the board, further complicating the received signal with interference,
signal attenuation, and reduced communication range. The significance of obstructions in the
transmission of signals cannot be overlooked. They lead to various adverse effects such as di-
minished signal quality, heightened error rate, and a restricted communication range. These
impacts emphasize the utmost importance of considering and addressing such obstructions dur-
ing the design and implementation of wireless communication systems in real-world situations.
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Figure 7.2: Recieving end mounted on a tripod in LOS scene.

7.2.2 Hardware

In this study, we utilized the ETTUS universal software radio peripheral (USRP) X310 device as
the transmitter (Tx) and receiver (Rx) terminals. The USRP X310 device provided two channels,
which were used separately for Tx and Rx. The experiment was conducted at a carrier frequency
( fc) of 3.75 GHz, and the sampling rate was set to 1 MHz. We utilised a 5G/4G terminal mount
monopole antenna manufactured by Taoglas. This indoor passive antenna operates within a fre-
quency range of 600 MHz to 6 GHz and supports various protocols, including 802.11, WLAN,
WiFi, WiFi 6E, IoT, and ISM. With its gain ranging from -2.14 dBi to 1.73 dBi, impedance of
50 Ohms, and power rating of 2 W, the antenna is suitable for a wide range of applications,
such as gateways, routers, smart metering, vending machines, industrial IoT, smart homes, and
connected enterprises.

7.2.3 Software

LabView 2021 was employed as the software-defined radio platform for signal processing. It
facilitated the processing of the OFDM signal (7.5), which consisted of 125 data samples at 3.75
GHz at both the transmitting and receiving ends.

The software also incorporated functionalities such as 4-QAM modulation, Least Square-
based channel estimation, serial-to-parallel and parallel-to-serial conversion, IFFT and FFT op-



CHAPTER 7. REAL-TIME DATA FOR LOCALIZATION VIA FINGERPRINTING 95

Figure 7.3: Tranmitting end mounted on a tripod in LOS scene.

erations, and cyclic prefix insertion and removal. The system architecture is shown in figure 7.6.

7.3 Data Collection

For channel response analysis, data collection involved recording the characteristics of each
receiving antenna and processing the data into a matrix format denoted as [[x1, x2], [y1, y2]]
where ’x’ represents amplitude and ’y’ represents phase.

To train a neural network for position estimation, data was collected for nine positions within
the floor plan (see Fig. 7.1). The transmitter was centered at each position, while the uniform
linear array receiver remained static.

The transmitter systematically moved from positions P1 to P9, collecting a minimum of 500
samples at each location. Amplitude and phase values, calculated using LabView scripts, were
saved in .txt format. To enhance analysis, the .txt files were converted to .csv format, resulting
in 36 files representing two receiving channels and 125 subcarriers. Each file had dimensions of
500×1×2 samples.

Figure 7.7 illustrates the amplitude received on channel-1 for Block 1 at a 0.5-meter distance,
showcasing variations in received amplitude across different frequency subcarriers. Similarly,
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Figure 7.4: Transmitter and Receivers mounted on a tripod in NLOS scene created by placing
the board in between.

Figure 7.5: Symbols structure for OFDM system of 125 subcarriers.

Fig. 7.8 depicts the phase received on channel-1 for Block 1 at a 0.5-meter distance, providing
insight into the phase shift during signal transmission.

These figures offer valuable insights into signal propagation characteristics in both LOS and
NLOS scenarios. They effectively visualize sequential operations, including channel response
measurement, data processing, and matrix formation.



CHAPTER 7. REAL-TIME DATA FOR LOCALIZATION VIA FINGERPRINTING 97

Figure 7.6: System Architecture of OFDM Symbols

Figure 7.7: Amplitude received on channel 1 on block 1 of 0.5 m for 1 sample with respect to
125 subcarriers.

This methodology ensures a comprehensive dataset with amplitude and phase information
for further analysis and exploration of position estimation using neural networks.
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Figure 7.8: Phase received on channel 1 on block 1 of 0.5 m for 1 sample with respect to 125
subcarriers.

7.4 Localization

7.4.1 ML Implementation

In this section, we outline the procedure for position prediction based on machine learning
analysis of channel responses. We describe the transformation of channel features and location
information into input features and output labels for training a neural network (NN). The flow
chart of the procedure is presented in Figure 7.9.

Figure 7.9: System Architecture represents data collection, data processing, ML implementation
and results obtained as estimated location.

In this study, we evaluated the performance of two machine learning algorithms, Neural Net-
work and Random Forest (RF), for indoor localization. The hyperparameters and performance
metrics for both algorithms are summarized in Table 7.2.

The Neural Network architecture utilized in our experiments consists of two hidden layers,
each with 125 neurons, denoted as a 125x2 structure. Similarly, the RF is represented as a 125x2
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model. Both algorithms were trained to classify data into nine distinct classes.

7.4.2 Deep Learning Implementation

In the contemporary landscape of location prediction, deep learning techniques are widely em-
ployed to automatically extract features from the CSI affected by motion. Leveraging neu-
ral networks with multiple layers has the potential to enhance classification Accuracy signifi-
cantly. However, challenges like overfitting and performance deterioration may emerge, espe-
cially when dealing with limited datasets.

Traditional strategies such as adjusting the learning rate, using small batch sizes, and apply-
ing weight decay may not suffice to mitigate these challenges. Consequently, achieving optimal
performance often necessitates the incorporation of a specific number of dedicated neural lay-
ers. In this study, we have chosen to employ DL models specifically configured to handle the
complexities of small datasets more efficiently. This approach is driven by the recognition that
conventional methods might not adequately address the nuances of our dataset.

While it is acknowledged that certain deep learning models, including CNNs, can become
deep and face challenges like overfitting, our selection is deliberate. We contend that, despite
potential challenges, CNNs bring valuable capabilities to the task at hand. In the following
sections, we delve into the configuration and adaptation of these DL models to address the
unique demands of our location prediction framework.

7.4.2.1 Localization using LSTM

We have employed LSTM networks, artificial recurrent neural networks specifically designed
to handle time-series data. This choice is motivated by the suitability of LSTM networks for
our situation, as mentioned in [159] and [160]. Our primary objective with the LSTM algorithm
is to extract CSI values and reduce noise. Each of the 125 subcarriers’ raw CSI amplitudes is
incorporated into a 125-dimensional feature vector. The hidden layer of the LSTM network has
a size of (20, 50) and utilizes the tanh activation function. To minimize the cross-entropy loss,
we utilize the Adam optimizer with a batch size of 64, a learning rate of 0.01, and a decay rate
of 1e-6. A significant advantage of employing LSTM for classification is the ability to directly
learn from raw series data, eliminating the need for manual engineering of input features and
providing greater flexibility to domain experts.

7.4.2.2 Localization using CNN

CNN stands out as one of the most widely used deep learning architectures, renowned for its ca-
pability to automatically extract intricate, high-dimensional features compared to shallow ones
[161, 162]. Based on previous research [163], we assert that CNN and LSTM are compatible
deep learning techniques. While LSTM excels in analyzing time-domain data and demonstrates
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superior performance for short-duration movement, CNN primarily focuses on capturing fre-
quency domain changes and exhibits a stronger response to long-duration movement. In our
implementation, the hidden layers were set to a size of (20, 32), and maximum pooling was ap-
plied with a size of (3, 1) using the tanh activation function. Following the general CNN design
principle, the final classification prediction can be made in the output layer.

7.4.2.3 Localization using LSTM-CNN

The LSTM (Long Short-Term Memory) is a variant of recurrent neural networks that effectively
captures continuous temporal relationships and is well-suited for processing time series data.
On the other hand, CNN (Convolutional Neural Network) is adept at reducing frequency domain
changes and extracting spatial features [164]. To leverage the advantages of both models, we
combine them in the LSTM-CNN model for location prediction. It is worth noting that different
variations of LSTM yield diverse results when utilized as input for CSI data. In our study, we
compare LSTM with LSTM-CNN to discern localization. The LSTM layer is responsible for
analyzing the input data. Signal fluctuations are utilized to gather the input, and time-domain
characteristics are extracted from the initial signal. Following the LSTM’s output, a 1D-CNN
layer is applied. Convolution operations allow for the extraction of high-dimensional implicit
features. Subsequently, the resulting convolutions are passed through a maximum pooling layer
to obtain the optimal feature sequence, which forms the foundation for the final classification.
For our implementation, we have employed an LSTM hidden layer size of (20, 50) and a CNN
hidden layer size of (50, 32). The 1D max-pooling size is set to (3, 1), and the activation
functions used are tanh and softmax, as mentioned in Table 7.1 of our study.

7.4.3 Training Process

Before concluding this section, it is essential to shed light on the training process of our deep
learning models. The training involves presenting the network with labeled examples from the
dataset, adjusting the model’s internal parameters iteratively, and optimizing them to minimize
the classification error. The specifics of this process, including the loss function, optimizer
selection, and batch size, are detailed in Table 7.1 for reference.

7.5 Results and Discussion

We emphasize that the evaluation metrics used for performance analysis include Loss, Accuracy,
F1 score, and Precision.

These metrics are defined as follows:

• Loss (L ): Loss is a measure of the model’s prediction error. It quantifies the difference
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Table 7.1: Hyperparameters of Deep Learning Algorithms

Algorithm Parameters

LSTM

optimizer=’adam’, Activation = tanh, 1r=0.01,
decay= 1e-6, epochs=50, hidden-layer-units=50,
Dropout=0.2 , batch-size=32,
connected-layer-activation:’softmax’

CNN

optimizer=’adam’, Activation = tanh, 1r=(0.1,0.01),
loss = ’spares-categorical-crossentropy’,
hidden-layer-size=(20,32), epochs=(20,50),
batch-size=32, Max-pooling-size = (3,1),
connected-layer-activation:’softmax’

LSTM + CNN

optimizer=’adam’, Activation = tanh, 1r=(0.1,0.01),
loss = ’spares-categorical-crossentropy’, epochs=50,
LSTM hidden-layer-units= 50,
CNN hidden-layer-size= (50,32),
Max-pooling-size = (3,1

NN
optimizer=’adam’, Activation = relu, 1r=0.01,
decay= 1e-6, epochs=50, No.of hidden-layers = 3,
batch-size=32, connected-layer-activation:’softmax’

between the predicted and actual values. The goal is to minimize the loss.

L =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] (7.3)

• Accuracy (Acc): Accuracy represents the proportion of correctly classified instances to
the total instances.

Acc =
Number of Correct Predictions
Total Number of Predictions

(7.4)

• F1 Score (F1): F1 score is the harmonic mean of precision and recall, providing a balance
between false positives and false negatives.

F1 =
2 ·Precision ·Recall
Precision+Recall

(7.5)

• Precision (Precision): Precision is the ratio of true positives to the sum of true positives
and false positives.

Precision =
True Positives

True Positives+False Positives
(7.6)
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7.5.1 Location Accuracy Analysis using ML

In this study, we employed two machine learning algorithms for indoor localization: Neural
Network and Random Forest (RF). The hyperparameters and performance metrics for both al-
gorithms are summarized in Table 7.2.

The architecture of the Neural Network used in our experiments consists of two hidden lay-
ers, each comprising 125 neurons, denoted as a 125x2 structure. The RF model is similarly
configured for direct comparison, with settings tailored to optimize classification into nine dis-
tinct classes. This clarification is essential to correct the previous inconsistency regarding the
RF model’s description.

The reported hyperparameter details and performance outcomes stem from our comprehen-
sive experimentation. Detailed results and methodological underpinnings can be referenced in
[165]. Table 7.2 succinctly encapsulates this information, offering a comparative glimpse into
the effectiveness of both the Neural Network and RF algorithms within the specific context of
indoor localization.

Table 7.2: Hyperparameters of Machine Learning Algorithms

Method Neural Network RF
Hidden layers 125x2 125x2
Number of Classes 9 9
Loss 0.0953 0.626
Training samples 3600 3600
Accuracy 98.9 89.8

Moreover, Figure 7.10 provides a comparative analysis of location accuracy achieved with
single-channel versus two-channel Channel State Information (CSI). Both ML methods exhibit
high proximity to the actual positions marked on the floor plan, with minimal loss of probability.
In the Line-of-Sight (LOS) scenario, CSI from both channels accurately predicts the location,
while in the Non-Line-of-Sight (NLOS) scenario, CSI from two channels shows a slight decrease
in location accuracy.

Furthermore, Figure 7.11 offers an in-depth comparative analysis of the CSI data received
from single and dual-channel configurations under both Line-of-Sight (LOS) and Non-Line-of-
Sight (NLOS) conditions. This analysis is pivotal for understanding the dynamics of indoor
localization accuracy in varying environmental conditions.

These findings underscore the importance of considering multiple metrics for a nuanced
evaluation of ML algorithms. The choice of features, such as Received Signal Strength Indicator
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(RSSI) and CSI, significantly influences the algorithms’ ability to accurately estimate location.
Additionally, the impact of LOS and NLOS scenarios on performance is evident, emphasiz-
ing the need for robust algorithms capable of adapting to real-world wireless communication
systems.

The superior performance of Neural Networks and RF, as compared to traditional logistic
regression models, reaffirms the significance of utilizing non-linear classification algorithms.
These are capable of effectively capturing the complex relationships between the input CSI data
and the corresponding block locations. This aligns with our broader goal of developing and
implementing localization algorithms that demonstrate high efficacy in real-world scenarios.

Figure 7.10: Location Accuracy of the floor plan using NN and RF

7.5.2 Position Estimation Performance using DL

In this section, we present the results of our experiments for position estimation using deep
learning (DL) algorithms at various distances (0.5 meters, 0.75 meters, and 1 meter), evaluated
with four different algorithms: NN, LSTM, CNN, and CNN + LSTM. The performance of each
algorithm is assessed based on key metrics, including Loss, Accuracy, F1 score, and Precision
(Pre). We provide a detailed analysis of the results for each block case and algorithm.



CHAPTER 7. REAL-TIME DATA FOR LOCALIZATION VIA FINGERPRINTING 104

Figure 7.11: Comparison of CSI received on a single channel vs both channels for three cases.

7.5.2.1 0.5 meters Blocks

At blocks of 0.5 meters, the NN algorithm demonstrated competitive performance, achieving
a Loss of 0.31, Accuracy of 0.87, F1 score of 1.13, and Precision of 1.08 for Antenna_1. For
Antenna_2, it achieved a Loss of 0.30, Accuracy of 0.88, F1 score of 1.14, and Precision of 1.08.
Combining both antennas (Antenna_1+2) significantly improved the algorithm’s performance,
resulting in a lower Loss of 0.06, high Accuracy of 0.97, F1 score of 0.98, and Precision of 0.92.

The LSTM algorithm exhibited robust performance at these blocks, with notable results for
Antenna_1, Antenna_2, and the combined scenario. The CNN algorithm showed mixed results,
while the CNN + LSTM algorithm performed reasonably well (refer Table 7.3).

Table 7.3: Results for 0.5 meter block

0.5 meters
Algorithms Antenna_1 Antenna_2 Antenna_1+2

Loss Accuracy F1 Pre Loss Accuracy F1 Pre Loss Accuracy F1 Pre
NN 0.31 0.87 1.13 1.08 0.30 0.88 1.14 1.08 0.06 0.97 0.98 0.92

LSTM 0.20 0.92 1.05 0.99 0.25 0.90 1.16 1.10 0.02 0.99 0.95 0.90
CNN 0.41 0.83 1.39 1.29 0.46 0.80 1.41 1.32 0.14 0.91 0.95 0.90

CNN + LSTM 0.27 0.90 1.12 1.08 0.29 0.85 1.15 1.10 0.09 0.94 0.96 0.91
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7.5.2.2 0.75 meters Blocks

At a distance of 0.75 meters, the NN algorithm maintained competitive performance with a
Loss of 0.33, Accuracy of 0.85, F1 score of 1.18, and Precision of 1.14 for Antenna_1. Similar
results were observed for Antenna_2, with an improved Accuracy of 0.90. Combining antennas
(Antenna_1+2) further enhanced the NN algorithm’s Accuracy.

The LSTM algorithm demonstrated strong and consistent performance at this distance, out-
performing other algorithms in terms of Loss, Accuracy, F1 score, and Precision. The CNN
algorithm showed consistent performance, with perfect Accuracy when both antennas were com-
bined. The CNN + LSTM algorithm exhibited promising results, although a slight decrease in
Accuracy was noted (refer Table 7.4).

Table 7.4: Results for 0.75 meter block

0.75 meters
Algorithms Antenna_1 Antenna_2 Antenna_1+2

Loss Accuracy F1 Pre Loss Accuracy F1 Pre Loss Accuracy F1 Pre
NN 0.33 0.85 1.18 1.14 0.31 0.90 1.13 1.08 0.06 0.97 0.98 0.92

LSTM 0.34 0.88 1.16 1.12 0.14 0.93 1.0 9.4 0.018 0.99 0.93 0.88
CNN 0.31 0.89 1.13 1.08 0.14 0.94 0.98 0.92 0.00 1.00 0.94 0.88

CNN + LSTM 0.29 0.88 1.15 1.10 0.17 0.92 1.04 0.98 0.020 0.98 0.94 0.88

7.5.2.3 1 meter Blocks

At a distance of 1 meter, the NN algorithm maintained stability, achieving competitive results.
The LSTM algorithm exhibited consistent performance, while the CNN algorithm showed a
slight decrease in Accuracy. The CNN + LSTM algorithm experienced a minor decline in per-
formance.

Overall, the LSTM algorithm consistently performed well across all distances, demonstrat-
ing strong Accuracy and precision. The CNN algorithm had mixed results, performing well at
shorter distances but showing a decrease in performance at longer distances. The CNN + LSTM
algorithm showed promising performance but also experienced a slight decline as the distance
increased. The NN algorithm showed relatively stable performance but generally achieved lower
Accuracy compared to the other algorithms (refer table 7.5).

Table 7.5: Results for 1 meter block

1 meters
Algorithms Antenna_1 Antenna_2 Antenna_1+2

Loss Accuracy F1 Pre Loss Accuracy F1 Pre Loss Accuracy F1 Pre
NN 0.35 0.87 1.16 1.12 0.27 0.90 1.12 1.08 0.03 0.98 0.95 0.90

LSTM 0.22 0.92 1.05 0.99 0.24 0.91 1.18 1.13 0.019 0.99 0.93 0.88
CNN 0.37 0.79 1.34 1.27 0.24 0.90 1.16 1.10 0.017 0.99 0.94 0.89

CNN + LSTM 0.35 0.77 1.37 1.29 0.27 0.88 1.20 1.14 0.018 0.99 0.93 0.88
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7.5.2.4 Bar Graph

Figure 7.12 presents a bar graph illustrating the comparison of Accuracy among the algorithms
(LSTM, CNN, CNN + LSTM, and NN) with respect to the three different antennas: Antenna_1,
Antenna_2, and Antenna_1+2. The variations in Accuracy for each algorithm across different
antennas are displayed.

It’s important to note that the training process and methodology, including the handling
of Antenna_1, Antenna_2, and the combined scenario, were conducted systematically. The
distinctions among these antennas were introduced during the training phase, contributing to the
nuanced evaluation presented in this section.

In conclusion, we have developed a method for estimating the position of a wireless device
using advanced signal processing techniques and machine learning algorithms. We have tested
our method in LOS, and have compared its performance to other machine learning methods.
Our results show that the use of machine learning algorithms, particularly neural networks and
support vector machines, can improve the accuracy of position estimation in both LOS environ-
ments. Additionally, our results show that the NN used in this study outperforms other machine
learning methods in LOS environments. Overall, these results demonstrate the potential of our
method for improving the accuracy of position estimation in wireless networks.
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(a) 0.5 meter

(b) 0.75 meter

(c) 1 meter

Figure 7.12: Location Accuracy of floor plan using NN, LSTM, CNN



Chapter 8

Extended Research Work

The main objective of this chapter 1 is to elucidate additional work conducted beyond the pri-
mary scope of the thesis. It outlines the specific objectives and contributions of this extra work,
providing readers with a comprehensive understanding of the extended efforts undertaken during
the research.

8.1 In-network Angle Approximation for Supporting Adap-
tive Beamforming

This approach presents a novel network paradigm with the potential to reduce both complexity
and latency. The integration of beamforming has become essential in modern wireless communi-
cation systems, requiring accurate beam alignment achieved through precise estimation of signal
arrival direction. However, this estimation process is computationally complex, particularly in
dynamic environments where users are constantly in motion.

We propose a user-assisted in-network method to optimally approximate the angle of arrival.
This is achieved by segmenting the cell area into an exponentially binned grid, leveraging the
capabilities of programmable data planes and their match-action table (MAT) logic. The method
relies on periodic location messages reported by the UE, which are processed within the network
to dynamically reconfigure base station antennas. This results in the implementation of user-
assisted in-network beam control.

The proposed method is implemented in P4 2 and executed on a Tofino ASIC. Our evalua-
tion establishes a theoretical bound on the absolute error of the MAT-based angle approximation,
demonstrating its alignment with empirical error distributions. Importantly, we observe no sig-
nificant increase in errors related to latency, considering various control cycle times (less than
100 ms) and user movement at moderate speeds (less than 90 km/h). Additionally, resource

1This work is from one of our published work [166]
2Description of P4 is in appedix
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usage is found to be influenced solely by the size of the Ternary content-addressable memory
(TCAM) table storing angle approximation values, with no notable per-stage resource impact
on the pipeline.

8.1.1 Introduction

The evolution of wireless networks towards accommodating escalating data service demands
has necessitated the exploration of the electromagnetic spectrum’s higher frequencies. This
exploration is driven by the urgent need for bandwidth to support the burgeoning data traffic,
leading to the consideration of millimeter-wave (mmWave) frequencies for the deployment of
5G wireless communication networks. The mmWave spectrum, defined as the range from 30
to 300 GHz, is particularly attractive for its potential to offer substantial bandwidths, thereby
enabling higher data transfer rates [17].

Nevertheless, the deployment of mmWave communications is challenged by significant hur-
dles, including pronounced propagation loss, limited signal travel distances, and a high vulner-
ability to obstruction by physical barriers such as buildings and vegetation, and even human
bodies. To mitigate these limitations, particularly the issue of limited propagation distances in
mmWave communications, beamforming emerges as a viable technological solution. Beam-
forming is advantageous for its capacity to extend coverage, enhance signal quality, enable pre-
cise tracking of UE and facilitate coordination among base stations (BS) [80].

This research focuses on refining beamforming techniques to improve the accuracy of align-
ing mmWave signals. Given the directional propagation of mmWave signals, achieving accurate
beam alignment represents a formidable challenge. Traditional strategies often rely on exhaus-
tive search methods, which are resource-intensive. Our proposed methodology introduces an
innovative use of P4-enabled switches, which are capable of performing elementary mathemat-
ical operations and storing previous information in tables, to determine the Angle of Arrival
(AoA) between the transmitter and receiver. This method leverages straightforward trigonomet-
ric calculations to offer a more efficient solution.

8.1.1.1 Research Motivation

Our investigation is driven by several pivotal considerations:
Efficiency at the Network Switch Level: By conducting complex operations at the network

switch level (data link layer), our approach aims to enhance processing efficiency and optimize
the use of resources.

Vision for Distributed Architecture: This study contributes to the development of a dis-
tributed architecture, pushing network functionalities beyond the conventional boundaries of the
network layer.

Exploitation of P4-Enabled Switches: Utilizing the capabilities of P4 technology, our ap-
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proach seeks to alleviate network layer congestion by delegating specific operations to the data
link layer. This strategy promises greater network customization and adaptability, which are
critical for the success of 5G networks.

Adaptation through Software-Defined Radio (SDR): The flexibility afforded by software-
defined radio technology aligns perfectly with the dynamic requirements of 5G networks, offer-
ing a versatile framework for network customization.

8.1.1.2 Potential Applications

The proposed methodology holds promise for a variety of applications, including but not limited
to:

Security Enhancement: Applying P4-enabled switches to bolster the security measures
within 5G networks.

Backhaul Network Optimization: Evaluating performance improvements in the backhaul
network, extending the focus beyond the end-user experience.

Edge Computing Integration: Investigating the potential for integrating edge computing
capabilities within the proposed network architecture.

8.1.1.3 Challenges in Beamforming Training

While advanced beamforming techniques aim to boost network performance at the user level,
it’s crucial to assess their overall impact, particularly on the backhaul network. The conven-
tional approach of pre-configuring beamforming at the Media Access Control (MAC) sub-layer,
which oversees the operation of physical devices like antennas, necessitates a reevaluation of its
effectiveness in enhancing backhaul network performance.

8.1.1.4 Proposed Approach

We propose a user-assisted in-network approach to accurately steer the beam towards the UE.
The method involves periodic location reporting by the UE to an in-network computing node (P4
switch in the transport network or Radio Access Network), which processes this information to
compute the angle used for beam reconfiguration. The complex task of angle computation is
approximated using match-action tables (MATs) in the data plane, with bounded approximation
errors.

8.1.1.5 Evaluation

The accuracy of the proposed system is evaluated in dynamic scenarios involving a moving UE
and varying control latency. Additionally, the resource usage of the Tofino-based implementa-
tion is analyzed. The study demonstrates the potential of P4 and P4-enabled devices in devel-
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oping unique edge-cloud or fog network architectures, facilitating the provision of personalized
network services.

This work contributes to the ongoing discourse on enhancing wireless communication net-
works, particularly in the context of 5G, and underscores the potential of P4 technology in
optimizing network performance and customization.

8.1.2 System Design

Figure 8.1 illustrates the segmented network scenario considered. Mobile users are connected
to the 5G network and indirectly linked to switches in the access aggregation network through
core network protocols. In this network, it is assumed that some switches are P4-programmable.
The proposed system involves mobile users periodically sending their GPS locations to a P4
switch. The P4 switch calculates the angle of the UE around the corresponding base station and
sends a configuration message to the base station to adjust the beam direction towards the UE.
This user-assisted in-network method is anticipated to reduce control latency and enhance beam
steering compared to traditional approaches.

Figure 8.1: Main concept of the proposed user-assisted in-network beam-control.
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8.1.3 Angle Approximation in the Data Plane

The angle approximation process in the data plane involves several key steps, as illustrated in
Figure 8.2. Figure 8.2a depicts the positions of two UEs within the range of a base station and
the desired Angles of Arrival (α1, α2) that need to be determined for steering the beams.

Alpha1

Alpha2

(a) Direct Angle of Arrival

(0,0)

Beta1

Beta2

(b) Base-angle Approximation
on a Grid

Alpha1' = Beta1

Alpha2' =
180°- Beta2

(c) Final Angle Transformation

Figure 8.2: Key steps of beam angle approximation with an exponentially binned grid.

The absolute coordinates of UEs are initially transformed into a relative coordinate system,
with the base station’s location as the origin. The base angle of a UE with relative location
(a,b) can be computed as β = arctan |b|/|a|. However, due to the complexity of the arctangent
function, an alternative approach is needed.

Resolve BS Info

loc.bsid Action

4432
bs.x = 120
bs.y = 320
bs.ip = …

… …

Preprocessing Computation

m.a = | loc.x-bs.x |
m.b = |loc.y-bs.y|

m.signa = sign(loc.x-bs.x)
m.signb = sign(loc.y-bs.y)

Table Angle Approximation

m.a:range, m.b:range Action

(0 .. 136, 0 .. 136) m.beta = 45

(0 .. 136, 136 .. 186) m.beta = 67

… …

(C*Bj-1 .. C*Bj, C*Bk-1 .. C*Bk) m.beta = 
180

𝜋
arctan(

𝐵𝑘+𝐵𝑘−1

𝐵𝑖+𝐵𝑖−1
)

… …

Table Final Angle
Transformation

m.signa, 
m.signb

Action

(0, 0) m.alpha = m.beta

(1, 0) = 180 – m.beta

(1,1) = 180 + m.beta

(0,1) = 360 – m.beta

Location
Message

Stage 1 Stage 2 Stage 3 Stage 4 Last Stage… …

Configuration
Message

Figure 8.3: Data Plane Design of the Angle Approximation

The approximation method, as shown in Figure 8.2b, involves using an exponential binning
grid to approximate the UE’s location with the centroid of the containing grid cell. The centroid
points are then used to determine the approximated base angles (β1 and β2). The final angle
transformation corrects the quadrant, resulting in the approximated angle (α ′

1 and α ′
2) of the

beam for the given UE.
The implementation design of the Angle Approximation method in the data plane is depicted

in Figure 8.3. When a location message is received, it is parsed, and the UE’s location with
information about the base station is stored in a new header instance (loc). The base station
coordinates are resolved using an exact match-action table (MAT). The angle approximation
relies on two match-action tables: Angle Approximation and Final Angle Transformation.
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The Angle Approximation table performs range matching on keys m.a and m.b, representing
the exponential binning grid. The Final Angle Transformation table matches on keys m.signa

and m.signb to obtain the final angle approximation α ′. The data plane design allows for effi-
cient and accurate angle computation, paving the way for improved beam steering in mmWave
communication networks.

8.1.4 Validation of Concept

We have successfully implemented the proposed methodology using P4 within the TNA (Tofino
Native Architecture) model and conducted comprehensive evaluations on a Tofino ASIC. Our
assessment revolves around three primary aspects: 1) The accuracy of the MAT-based angle
estimation under various granularity factors (number of bins, N=20, 40, 60, and 80), 2) the
impact of mobile UE movement and non-zero control cycle delays on the method’s precision,
and 3) the correlation between Tofino resource utilization (stages, SRAM, TCAM memories)
and the applied granularity factor N.

8.1.5 Accuracy of Angle Approximation

Figure 8.5 illustrates the absolute error distribution of angle approximation for different grid
granularities (N=20, 40, 60, and 80) across varying cell diameters (200m to 1km). The eval-
uation, performed with 100,000 UE locations randomly distributed within a specific diameter
around a base station, emphasizes that grid granularity has a more substantial impact on approx-
imation error than cell diameter. The maximum errors for N=20, 40, 60, and 80 are approxi-
mately 8, 5, 4, and 2.5 degrees, respectively.

Practically, larger errors necessitate wider beams. In static scenarios, the beam width needs
to be twice the maximum approximation error. For example, with a 5-degree wide beam and
a maximum error of 2.5 degrees, the system ensures that the UE remains within the beam. In
addition to empirical analysis, we present a theoretical bound on the error of the applied grid-
based angle approximation.

Lemma 1 The absolute error of the proposed MAT-based angle approximation is bounded by

2 × arctan(
√

B)− π

2 (in radians), where B is the base number in BN = D, for a predefined

maximum distance D and granularity factor N.

(Proof sketch.) If the user’s relative coordinates (a,b) lie in a cell grid |a| ∈ [Bi,B(i+1)) and
|b| ∈ [Bk,B(k+1)) for any positive integers i and k, the angle is approximated according to the
central point of the cell. The deviation from the real angle is largest at one of the corner points
of the cell. By defining error functions for the corner points and taking derivatives in i and k to
find the location of maximum errors, we establish the error bound.



CHAPTER 8. EXTENDED RESEARCH WORK 114

This theoretical bound aligns with empirical error distributions. For instance, in a cell with
a diameter of 800 meters, the theoretical error bounds for granularity factors N=20, 40, 60, and
80 are 9.5, 4.8, 3.2, and 2.4 degrees, respectively.

8.1.6 Impact of Mobile UEs and Control Latency

To showcase our concept in a dynamic scenario, we simulate a small cell in a semi-urban envi-
ronment at the UofG, UK (Figure 8.4). A user moves along a predefined route at speeds ranging
from 5 to 200 kmph. We emulate UE movement, assessing the impact of displacement on the
UE’s location concerning the feedback loop of angle approximation and beam reconfiguration,
which takes more than zero time. The round trip delay between UE location information depar-
ture and control message arrival at the base station varies between 5, 20, and 100 ms.

Figure 8.4: University campus showing the transmitter and the mobile user.

Figures 8.6-8.7 present angle approximation errors at the time of arrival of the configuration
message to the base station, accounting for UE movement. The results demonstrate that a larger
granularity factor (N) yields better angle approximation, even with longer control cycle times
and moderate UE speeds. Comparing N = 20 to N = 80, the increase in error due to latency and
movement is less significant for N = 20 when the base error is high (around 9 degrees). These
error distributions resemble static scenarios shown in Figure 8.5.

Significant deviation occurs only at a control cycle time of 100 ms and high UE speed (>90
kmph), as shown in Figure 8.7c. This indicates that wider beams are required at high speeds;
otherwise, the UE may exit the coverage area as the beam cannot track the UE effectively.

Note that real-world environments are more complex, where radio propagation is influenced
by various environmental factors, impacting the UE’s quality of experience.
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Figure 8.5: Error Distribution of MAT-based Angle Approximation.
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Figure 8.6: Angle approximation error when the user moves at a constant speed and the control
cycle is not zero. N is set to 20.

8.1.7 Resource Utilization

Figure 8.8 illustrates the trade-off between granularity factor (N) and resource usage (stages,
SRAM, and TCAM) on a Tofino ASIC. The grid resolution defined by N significantly impacts
angle approximation accuracy. While larger N values result in better accuracy, they require a
larger TCAM space for grid-searching logic in MAT.

Observations from the figure include constant SRAM usage, independent of the granularity
factor. The grid-based angle approximation leverages a TCAM table, and therefore, the granular-
ity factor correlates strongly with the required TCAM space. For N=20 and 40, the TCAM table
occupies a single stage; for N=50 and 60, the TCAM table is distributed across two stages. For
N=80, three stages are required. Although the proposed method occupies TCAM space on one
or more stages, per-stage resource usage is not significant. Other network functions/pipelines
related to mobile transport or RAN can be co-located with the proposed pipeline. The TCAM
space of stages implementing the MAT-based angle approximation table is essentially fully oc-
cupied, but other resources like SRAM and ALUs can potentially be used in these stages by
other pipelines.

8.1.8 Customization

Environmental variations around a base station can lead to non-linear radio propagation due
to reflections from buildings and other objects. To address these effects, customization of the
proposed method may be necessary. Two potential approaches are: 1) introducing customized
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Figure 8.7: Angle approximation error when the user moves at a constant speed (5kmph to
200kmph) and the control cycle is 5ms, 20ms, or 100ms. N is fixed to 80.
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Figure 8.8: The trade-off between granularity factor (N) and resource usage (stages, SRAM and
TCAM) on a Tofino ASIC.

tables for each base station, and 2) extending the angle approximation grid to cover all possible
quadrants around the base station, accommodating asymmetric signal propagation in the cell. In
the latter case, the approximation table requires four times more TCAM entries to cover all four
quadrants of the cell. However, in the first case, separate tables for each base station would be
needed, increasing the required TCAM space. Future work includes a more detailed analysis of
customization scenarios and their efficient implementation.

These comprehensive evaluations validate the effectiveness and feasibility of our proposed
angle approximation method using the MAT-based approach within the P4 framework and Tofino
ASIC.

8.1.9 Conclusion

Accurate estimation of the direction of arrival is pivotal for effective adaptive beamforming
in wireless communications. Traditional beamforming algorithms, operating at the link layer,
introduce latency concerns, particularly in the context of backhaul networks. To enhance net-



CHAPTER 8. EXTENDED RESEARCH WORK 117

work responsiveness, we propose a novel user-assisted beamforming strategy leveraging pro-
grammable data planes and in-network computation facilitated by P4.

In our approach, UE periodically reports its location to the network, and beam parameter
computation (specifically, the angle of arrival) is performed by a programmable switch within
the network. Our preliminary results indicate that the additional computation, which involves
dividing the cell area into binned grids, yields angle approximations with manageable error
bounds and requires moderate per-stage resources. The proposed scheme has been demonstrated
on a Tofino ASIC.



Chapter 9

Conclusion and Future Work

This project represents a significant advancement in the field of wireless communication sys-
tems, with a particular focus on the areas of DoA estimation, beamforming, and localization
techniques. At the heart of this endeavor was the use of innovative methods and state-of-the-art
technology, including tools such as MATLAB, BladeRF, LabVIEW, and USRP X300. These
tools were instrumental in achieving the project’s ambitious goals, providing valuable insights
and laying the groundwork for future advancements in the field.

One of the notable achievements of this project was the effective implementation of DoA
estimation, beamforming, and localization. These implementations were not only theoretical but
also practical, as they utilized various tools to demonstrate their efficacy in real-world scenarios.
In particular, the use of Software Defined Radio (SDR) units proved to be a game-changer in
achieving precise signal arrival angle estimation. This precision is pivotal in enhancing the
accuracy and reliability of wireless communication systems.

The project also delved deep into the detailed analysis of DoA techniques. This analysis was
crucial in highlighting the practical applications of these techniques in modern communication
systems. By understanding their nuances, the project was able to showcase the versatility and
utility of DoA estimation in various contexts.

Furthermore, the exploration of digital and hybrid beamforming techniques was a key aspect
of this research. This exploration emphasized the critical role these techniques play in managing
signal direction and mitigating interference, which are core challenges in wireless communica-
tions.

Another major achievement was the successful demonstration of localization capabilities,
particularly using LabVIEW and USRP X300. This demonstration not only validated the the-
oretical concepts developed in the project but also showcased their practical applicability in
real-world scenarios.

Collaboration was also a cornerstone of this project’s success. By partnering with esteemed
institutions such as the University of Iran, ELTE, and the UofG, the project was able to enrich
its research scope. This collaborative effort brought together diverse perspectives and expertise,
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contributing significantly to the depth and breadth of the research.
Limitations: The main limitation identified in this project pertains to sub-optimal config-

uration schemes, which indicates a need for further optimization to enhance system perfor-
mance. Specifically, a notable challenge encountered was with the BladeRF Software Defined
Radio (SDR) units, particularly their performance in high-frequency over-the-air communica-
tions. The BladeRF, while robust in many scenarios, demonstrated limitations when operating
at higher frequencies, which is a critical aspect for advanced wireless communication systems.

Moreover, there’s a potential need for phase and clock synchronization when using two
BladeRF boards in tandem, especially in the context of a 4x4 antenna setup. This synchroniza-
tion is crucial for ensuring coherent signal processing and effective beamforming, which are
fundamental for the accuracy and efficiency of DoA estimation and other advanced communi-
cation techniques.

Additionally, the beam steering setup in the project encountered limitations due to the num-
ber of antenna elements. The current configuration, while functional, could greatly benefit from
an increased number of antenna elements. This expansion would enable a narrower beam width,
which is essential for more precise beam steering. A narrower beam width contributes signif-
icantly to improved signal directionality and interference mitigation, enhancing overall system
performance.

9.1 Future Work

Future work should focus on:

1. Optimizing configuration schemes.

2. Advancing beamforming techniques and algorithms.

3. Investigating novel localization methods.

4. Collaborating with industry for practical implementation.

The project demonstrates the effectiveness of modern technologies in wireless communica-
tions, laying a foundation for future research and innovation in the field. The following work is
a part of the future work.

9.1.1 6-Bit Digital Phase Shifter for Electronic Beam Steering Applica-
tions

Phased array antennas (PAAs) are of great interest for next-generation wireless systems due to
their fast and accurate electronic beam steering capabilities, surpassing traditional mechanical
scanning methods [167, 168]. However, the widespread adoption of PAAs is hindered by high
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costs and complex designs associated with conventional analog phase shifter arrays. This work
presents an innovative solution—a low-cost, compact PAA system with integrated digital phase
shifters for precise beam control. The system employs a modular antenna array architecture with
decentralized phase shifting to reduce complexity and enhance scalability.

Key contributions include optimizing a 5-element microstrip subarray meeting size and fre-
quency requirements, and introducing a series-fed distribution network for seamless integration
of custom digital phase shifters, allowing incremental phase adjustments. Practical beam steer-
ing at 3.75 GHz demonstrates the system’s effectiveness. The streamlined architecture and low-
cost digital phase shifters offer a groundbreaking approach, potentially overcoming traditional
barriers in PAA implementations and expanding applications like fast-tracking objects.

The work is structured as follows: Section 9.2 details the methodology for developing the
proposed PAA system. Section 9.3 discusses obtained results, highlighting system performance.
Finally, Section 9.4 summarizes key findings and conclusions from this exploration of low-cost,
compact PAA systems with integrated digital phase shifters.

9.2 Model Design

The model design encompasses a systematic approach, beginning with the creation of a 5-
element uniform linear microstrip antenna array optimized for the operational frequency of 3.75
GHz. The design, simulated in CST Microwave Studio (Figure 9.1), utilizes FR-4 substrate
boards (30x30 cm) with a permittivity of 4.5 and a thickness of 1.6 mm. The optimization
process involved a trade-off between gain, directivity, and size. Each antenna element was fine-
tuned to achieve maximum performance, ensuring that the array operates efficiently within the
desired frequency band.

The series-fed network plays a crucial role in distributing power from the input port to each
antenna element, allowing seamless integration with custom 6-bit digital phase shifters. The
feeding network design considerations include minimizing power losses, maintaining compact-
ness, and accommodating the integration of digital phase shifters. To achieve these objectives, a
series feed configuration was chosen for its inherent advantages in terms of low insertion losses,
simplicity of design, and compatibility with the integration of phase shifters.

These custom 4-channel 6-bit Analog devices (HMC649ALP6E) digital phase shifters were
implemented to allow precise beam steering control. Each phase shifter provides 64 possible
phase states with a phase step of 5.625 degrees. The 4-channel phase shifters enable indepen-
dent phase control for each antenna element, facilitating dynamic and adaptive beam steering.
The fabrication process involved a combination of printed circuit board (PCB) manufacturing
techniques and surface-mount device (SMD) technology, resulting in compact and cost-effective
phase shifters.

This phase shifter is controlled directly through the FPGA. The advantage of parallel control
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Figure 9.1: 4 channel antenna array containing 4X5 elements. Each channel feeds a series of 5
patch antennas.

for the phase shifters enhanced the steering speed. The Xilinx Spartan-7 FPGA is used in the
proposed design. The internal clock frequency in the FPGA is 100 MHz, which enables a steer-
ing speed of 10 ns. Moreover, the FPGA is connected to the proposed Graphical User Interface
(GUI) using the UART protocol to configure a fixed steering angle or electronic scanning mode
with a reconfigurable scan time and scan angle.

The interconnected components, namely the microstrip antenna array, series-fed network,
and digital phase shifters, form a compact and efficient phased array system. The design choices
made in each subsystem aim to strike a balance between performance, cost-effectiveness, and
ease of integration, laying the foundation for advanced beamforming capabilities.

9.3 Results and Discussion

The results highlight the successful implementation and testing of the compact phased array
antenna system. Preliminary testing conducted in an anechoic chamber produced promising
outcomes, validating the system’s beamforming capabilities. The measured radiation pattern is
closely aligned with simulated results (Figure 9.2), indicating the effectiveness of the antenna
array in achieving the desired directional characteristics. The system demonstrated precise beam
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Figure 9.2: Measured vs. simulated antenna pattern.

steering at angles of 0°, and 90°, showcasing a gain variation of less than 1 dB, sidelobe levels
below -10 dB, and minimal impact on the radiation pattern.

Figure 9.3: Simulated results of beam steering at 0 and 90 degrees.

Figure 9.3 illustrates the simulated beam steering capabilities, providing insights into the sys-
tem’s dynamic control. The phased array system achieved reliable and consistent beam steering
across the specified angles, demonstrating its adaptability to changing operational requirements.
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Further testing involved varying environmental conditions, such as temperature and humidity, to
assess the robustness of the system.

Ongoing developments include the creation of a graphical user interface (GUI) (Figure 9.4)
for enhanced user interaction and FPGA coding to augment dynamic control over the phase
shifter and antenna array. The GUI provides a user-friendly platform for adjusting beam steering
parameters, making the system accessible to operators with varying levels of expertise. Simul-
taneously, the FPGA coding efforts focus on enhancing the real-time adaptability of the phased
array, ensuring rapid response to changing operational scenarios. The integration of beamform-

Figure 9.4: GUI interface for Phase Shifter.

ing with location estimation techniques adds a layer of sophistication, positioning the phased
array system as a versatile solution for electronic beam steering applications. By leveraging
received signals for both beamforming and localization, the system can be employed in sce-
narios requiring accurate target tracking, localization of communication sources, and improved
situational awareness.

9.4 Conclusion

This work demonstrates an innovative phased array architecture using low-cost digital phase
shifters that reduce complexity and cost compared to conventional implementations relying
solely on high-end analog phase shifters. The system’s reliable beam steering capabilities and
ongoing efforts to incorporate automatic beam control and localization techniques will represent
a significant advancement over existing benchtop phased array systems.
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Appendix A

Simulated Data from Ray Tracing Tool

The key objective of this chapter is to detail the process of generating simulated data using
Wireless InSite with a focus on ray tracing principles. It aims to define the simulation setup,
parameters, and scenarios considered, laying the groundwork for subsequent simulations and
experiments. Through a thorough exploration of the simulated data generation process, this
chapter seeks to provide readers with a clear understanding of the foundational elements of the
research.

A.1 Introduction

Ray tracing, as a simulation technique, assumes a crucial role in the exploration of location-
based adaptive beamforming within transport systems. Its capability to model intricate signal
propagation scenarios aligns seamlessly with the objective of exploiting location information.
By employing ray tracing, this research seeks to unravel the dynamics of adaptive beamforming
in the context of transport systems, focusing on the specific parameters critical for localization.

A.2 Ray Tracing Principles

Ray tracing, a fundamental computational technique, plays a pivotal role in simulating the com-
plex behavior of electromagnetic waves. By tracing individual rays and simulating their interac-
tions with surfaces and objects, it accurately models phenomena such as reflection, refraction,
and diffraction. This approach provides a realistic representation of signal propagation, captur-
ing the nuances of real-world scenarios.

Memory Requirements and Computational Considerations
Ray tracing simulations are computationally intensive, demanding substantial memory re-

sources to handle the complexity of large-scale environments. The accuracy and resolution of
simulations directly impact memory requirements. High-fidelity simulations with detailed spa-
tial information necessitate more memory for storing intermediate results and complex geome-
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try representations. Computational considerations involve optimizing algorithms and employing
parallel processing to manage the computational load efficiently.

Large-Area Compilations
The research incorporates large-area compilations within ray tracing simulations to replicate

real-world scenarios accurately. Large-area compilations involve modeling extensive geograph-
ical regions, such as urban environments or transport systems, to capture the complexities of
signal propagation across significant distances. This ensures that the adaptive beamforming
strategies derived from these simulations are applicable to diverse and expansive transport sce-
narios.

A.3 Objectives of Ray Tracing Simulation

Precise Localization Parameters
The foremost objective of employing ray tracing simulations in the context of adaptive beam-

forming for transport systems is to extract precise localization parameters. This includes crucial
elements such as DoD, DoA, power levels, SNR, path gain, and other relevant metrics. The aim
is to obtain a detailed spatial understanding that forms the foundation for adaptive beamforming.

Realistic Propagation Scenarios
Ray tracing facilitates the creation of realistic propagation scenarios, mimicking the intrica-

cies of signal behavior in transport environments. The simulations are designed to capture the
complexities of urban landscapes, vehicular movement, and varying terrains. By doing so, the
research aims to ensure that the adaptive beamforming strategies derived from these simulations
are robust and applicable to real-world scenarios.

Impact of Location on Signal Characteristics
Through ray tracing, the research seeks to explore how the location of entities within trans-

port systems influences key signal characteristics. This includes investigating how signals prop-
agate in Line of Sight (LOS) and Non-Line of Sight (NLOS) scenarios, the impact of obstacles
on signal strength, and the variation in propagation time delay based on location. Understanding
these nuances is integral to tailoring adaptive beamforming strategies.

Optimization of Adaptive Beamforming Strategies
The ultimate objective is to optimize adaptive beamforming strategies based on the loca-

tion insights obtained through ray tracing. By comprehensively analyzing the simulated data,
the research aims to propose and refine adaptive beamforming techniques that leverage the ex-
tracted localization parameters. This optimization is geared towards enhancing the efficiency
and performance of beamforming in diverse transport scenarios.



APPENDIX A. SIMULATED DATA FROM RAY TRACING TOOL 142

A.4 Features Obtained from Ray Tracing

AoA: Ray tracing simulations yielded precise information about the AoA of signals within the
transport environment. AoA is a fundamental parameter as it defines the direction from which a
signal arrives at the receiving antenna. This data is crucial for understanding the spatial distri-
bution of signals and forms the basis for adaptive beamforming.

DoA: DoA information was extracted through ray tracing, providing insights into the angle
indicating the direction from which a signal is transmitted. DoA is essential for determining the
orientation of signal sources within the transport system, aiding in the development of adaptive
beamforming strategies.

ToA: The simulation results included ToA data, indicating the time taken for a signal to travel
from the transmitter to the receiver. This temporal information is valuable in understanding
signal propagation delays based on location, contributing to the temporal aspects of adaptive
beamforming.

Power Levels: Ray tracing simulations provided measurements of signal strength at various
points in the transport scenario. Power levels are critical for assessing the intensity of signals,
guiding the optimization of beamforming strategies to enhance communication reliability and
efficiency.

Path Loss: Evaluation of Path Loss was conducted through ray tracing, offering insights into
signal attenuation as it propagates through the open space of the transport system. Understanding
path loss is vital for adjusting beamforming parameters to compensate for signal weakening over
distance.

Path Gain: Quantification of Path Gain was derived from the simulations, detailing the gain
experienced by the signal along its propagation path. Path gain information is instrumental in
designing adaptive beamforming techniques to maximize signal strength and coverage.

SNR: Assessment of the SNR was a key outcome of the ray tracing tool. SNR evaluation is
crucial for determining the quality of signals in the presence of background noise, influencing
decisions in adaptive beamforming to ensure optimal communication performance.

The features obtained through ray tracing provide a comprehensive dataset for understanding
the intricacies of signal propagation within transport systems, setting the stage for informed and
effective adaptive beamforming strategies.

A.5 Utilization of Ray Tracing Features in Subsequent Anal-
yses

The features obtained from ray tracing simulations served as foundational elements in subse-
quent analyses, employing a combination of statistical methods, ML algorithms, and data pro-
cessing techniques. The utilization of these features can be outlined as follows:
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Statistical Analysis: Statistical methods were applied to analyze key features such as AoA,
DoA, ToA, Power Levels, Path Loss, Path Gain, and SNR. Descriptive statistics provided in-
sights into the central tendencies, variabilities, and distributions of these parameters, forming
the basis for establishing baseline characteristics of the wireless environment.

Feature Engineering: Feature engineering techniques were employed to derive new param-
eters or enhance existing ones. This involved transformations, aggregations, or combinations of
ray tracing features to create more informative variables for subsequent analyses. Feature engi-
neering aimed to capture nuanced aspects of signal propagation and enhance the discriminative
power of the dataset.

ML Algorithms: ML algorithms, including but not limited to Support Vector Machine
(SVM), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU), were incor-
porated into the analysis pipeline. The features extracted from ray tracing simulations served
as input variables for training and testing these models. The ML algorithms were designed to
learn patterns, correlations, and associations within the dataset, contributing to the development
of predictive models.

Localization Algorithms: The angle-related features, such as AoA and DoA, played a cru-
cial role in developing localization algorithms. By leveraging these features, algorithms were
designed to estimate the spatial coordinates of signal sources within the transport system. This
localization information is integral for adaptive beamforming, as it enables the system to dy-
namically adjust based on the locations of users or communication nodes.

Dynamic Beamforming Strategies: The temporal characteristics provided by ToA were
utilized to design dynamic beamforming strategies. Adaptive beamforming algorithms were de-
veloped to adjust the directionality and focus of antenna arrays based on the temporal dynamics
of signal propagation. This dynamic adaptation ensures optimal communication performance in
time-varying transport scenarios.

Quality-Aware Communication: Signal quality assessments derived from SNR values
were integrated into the analyses to create quality-aware communication strategies. ML models
were trained to predict signal quality based on ray tracing features, enabling adaptive beamform-
ing systems to prioritize high-quality communication links.

A.6 Integration with Other Datasets

The integration of ray tracing data with other datasets was a crucial step in enhancing the com-
prehensiveness of the analyses. This integration aimed to provide a holistic view of the wireless
communication environment within transport systems. The process and outcomes of integrating
ray tracing data with other datasets are detailed below:

Wireless InSite and SUMO Integration: The ray tracing data obtained from Wireless In-
Site simulations was integrated with datasets generated through the Simulation of Urban Mobil-
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ity (SUMO) tool. This integration facilitated a unified analysis of wireless communication and
vehicular mobility scenarios. By correlating the spatial information from ray tracing with the
movement patterns of vehicles simulated in SUMO, a more realistic representation of dynamic
communication environments was achieved. This combined dataset enabled the exploration of
how varying vehicular trajectories impact signal propagation and communication quality.

5G Test Bed Integration: Real-time data from 5G test beds available at the university was
integrated with ray tracing results. This integration allowed for a comparison between simulated
scenarios and actual experimental conditions, validating the accuracy and reliability of the ray-
tracing simulations. The 5G test bed data provided empirical insights into the performance
of wireless communication technologies in practical, on-the-ground settings. Discrepancies or
similarities between ray tracing predictions and real-world measurements were scrutinized to
refine the predictive capabilities of the simulation tool.

Literature Result Reproduction: The ray tracing results were cross-referenced and inte-
grated with findings from relevant literature, particularly in the context of beamforming tech-
niques and wireless communication in transport systems. Reproducing literature results within
the ray tracing framework provided a benchmark for validating the simulation accuracy. Dis-
crepancies or agreements with established results contributed to refining the ray-tracing model
parameters and ensuring their alignment with real-world phenomena.

Wireless InSite Datasets: Datasets generated within Wireless InSite, beyond ray tracing-
specific outputs, were integrated for a comprehensive analysis. This included information on
antenna configurations, signal characteristics, and environmental conditions. Integrating these
additional datasets allowed for a more nuanced exploration of the factors influencing wireless
communication beyond the direct impact of ray-tracing features.

ML Training Data: The ray-tracing features served as a foundational element for training
ML models. Integrating this training data with diverse datasets enriched the ML algorithms’
exposure to various scenarios and conditions. This integration contributed to the development
of robust and adaptive models capable of generalizing insights beyond the specific conditions
simulated through ray tracing.

The integration of ray tracing data with other datasets brought a synergistic perspective to
the analyses, combining simulated scenarios with real-world measurements, vehicular mobility
patterns, established literature results, and additional information from Wireless InSite. This
comprehensive approach ensured a more thorough understanding of the dynamics of wireless
communication in transport systems.

A.7 Case Studies or Examples

In this section, we present illustrative case studies and simulations that showcase the pivotal role
of ray tracing in obtaining relevant data and drawing meaningful conclusions for your research
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on Exploiting Location Information for Adaptive Beamforming in Transport Systems.

A.7.1 Cont-BF in Cellular Communications

In the realm of cellular communications, the occurrence of handoffs or handovers during user
transitions between BS presents challenges. Addressing this, highly directional antennas, es-
pecially in millimeter-wave systems, offer solutions by reducing interference and enhancing
network efficiency. Cont-BF, a technique integrating ML and deep learning (DL) to predict a
mobile user’s location and reconfigure antenna arrays, stands out. This thesis explores the ap-
plication of Cont-BF, emphasizing its role in reducing computational overhead and improving
communication.

A.7.2 Challenges in Predicting Object Positions

Predicting an object’s future position, especially in networking, has proven challenging. To over-
come this, Cont-BF, a spatial filtering technique, minimizes interference by steering transmitted
signals based on predicted location information. This technique aims to focus beam emissions
toward the receiver direction, with the work emphasizing its role in reducing computational
overhead.

A.7.3 Simulation Setup Using Wireless InSite in Rosslyn City

To illustrate the Cont-BF process, we established a simulation using Remcom Wireless InSite
3.3.0 (WI). Utilizing an existing profile of Rosslyn City, Virginia, USA, the simulation incor-
porated various transmitters and receiver routes, symbolizing moving vehicles. The scenario
involved a mobile vehicle communicating with three cellular BS. The specific configurations of
the BS antennas, the route of the moving vehicle, and the variations in power levels are detailed
in Figures A.1, A.2, and A.3.

A.7.4 Integration with ML Models

Results from the ray-tracing simulation, including received power, path loss, propagation path,
angle of arrival, time of arrival, direction of arrival, and more, were exported. These results
serve as inputs for training the antenna network for location information. The integration of var-
ious ML models, such as support vector machine (SVM), convolutional neural network (CNN),
gated recurrent unit (GRU), among others, with the outcomes from Wireless InSite facilitates
the generation of a self-learned network.
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Figure A.1: Propagation paths of 3 Transmitters to 1st receiver in vehicular ray tracing scenario
in Rosslyn, Virginia.

A.7.5 Creation of Open Space Scenario

As an integral part of the research methodology, an open space scenario was crafted to simu-
late radio wave propagation in unobstructed environments. This scenario was designed with a
transmitter strategically positioned at one corner, emitting signals across the open space. A grid
configuration consisting of more than 1000 receivers was employed to capture a broad spectrum
of data points, enriching the dataset with diverse signal characteristics.

In both iterations of the open space scenario, we utilized a variety of antennas to compre-
hensively explore the wireless channel characteristics. Half-wave dipole antennas, directional
antennas, and MIMO antennas were strategically employed to observe the impact of different
antenna types on signal propagation. This approach aimed to understand how varying antenna
configurations influenced key parameters such as AoA, DoA, RSSI, and Path Gain (PG).

To ensure a nuanced understanding of the wireless channel, each simulation involved the
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Figure A.2: Received power vs Distance.

consideration of 250 paths. This meticulous approach was taken to capture a detailed represen-
tation of the wireless channel and enhance the realism of the simulated scenarios. The outcomes
from these simulations contribute significantly to the overarching goal of exploiting location
information for adaptive beamforming in transport systems.

A.7.6 UofG Campus Scenario

This section provides a detailed overview of the simulation setup designed for location esti-
mation within the UofG campus, emphasizing the application of ML techniques to predict UE
locations based on channel features and location information.

To illustrate the concept of localization, a small cell scenario was constructed within the
urban environment of the UofG’s Gilmorehill campus, situated in Glasgow, Scotland, UK. Fig-
ure A.4 offers a visual representation of this scenario.

The defined cell operated at a carrier frequency of 3.75 GHz with a 100 MHz bandwidth. A
strategically positioned set of receivers, located 2 meters above the ground and spaced 5 meters
apart, simulated the movement of vehicles along a designated route at speeds of 5, 10, and 15
meters per second. The route covered key locations, including Byres Road, JMS, the library,
and UofG Union (GUU). This arrangement ensured the capture of both line-of-sight (LOS) and
non-line-of-sight (NLOS) paths.
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Figure A.3: Received power vs Receivers.

The ground truth for Deep Neural Network (DNN) output was established using UE lo-
cations corresponding to the receiver points. The simulation parameters encompassed MIMO
directional array antennas at both transmitters, 49 dBm transmitter power, a 15-degree downtilt,
and -100 dBm receiver sensitivity. The simulations were executed on an Intel(R) Core(TM)
i7-9700 CPU @ 3.00GHz, 32GB RAM PC, utilizing Wireless InSite® MIMO version 3.3.

This designed scenario serves as a critical component in the exploration of location-based
adaptive beamforming within an urban context, contributing valuable insights to the broader
research endeavor.

A.7.7 Data Extraction and Analysis

Following the simulations, a crucial step involved the extraction of data pertaining to the param-
eters discussed earlier, including but not limited to AoA, DoA, ToA, RSSI, Path Gain (PG), and
others. The Wireless InSite tool facilitated the retrieval of detailed results, enabling a compre-
hensive analysis of signal behavior in both open-space and campus scenarios.

This extracted data played a pivotal role in establishing a profound understanding of wireless
propagation intricacies. Moreover, it laid a robust foundation for subsequent phases of the re-
search, specifically focusing on the development and training of ML and DL algorithms. These
algorithms were instrumental in predictive modeling and system optimization, particularly in
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Figure A.4: UofG Campus Scenario

the context of location-based adaptive beamforming.
Details regarding the acquisition of each parameter and their specific roles in the localization

process will be thoroughly elucidated in the subsequent chapter, providing an in-depth explo-
ration of the methodology employed and the insights gained.



Appendix B

P4 Programming Language

P4, which stands for "Programming Protocol-independent Packet Processors," is a domain-
specific language that has revolutionized the way network packets are processed in modern
networking environments. Unlike traditional networking devices that come with fixed function-
ality, P4 enables network engineers and researchers to define and modify the behavior of network
devices programmatically. This is achieved through a high-level abstraction that allows for the
specification of how network packets are processed, independent of the underlying hardware.

The coding approach in P4 is unique and powerful. P4 code typically defines a packet-
processing pipeline, which includes specifying how packets are parsed, the match-action tables
that decide how packets are processed, and how packets are to be modified or forwarded. P4
programs define these processes in a clear, declarative manner, allowing for custom packet-
forwarding logic that can be tailored to specific network needs. The language’s syntax is similar
to C, making it accessible to those familiar with conventional programming languages.

P4’s programmability opens up opportunities for implementing a wide range of networking
functions, from basic forwarding to more complex operations like network telemetry, load bal-
ancing, and security monitoring. In the context of 5G and mmWave technologies, P4’s ability
to rapidly process and adapt to packet-level information in real-time is crucial for tasks like
dynamic beamforming, where efficient handling of data such as UE location is essential for op-
timizing network performance. As such, P4 has become an indispensable tool in the modern
networking landscape, driving innovations in network functionality, performance, and flexibil-
ity.
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