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Abstract

Genome Wide Association studies (GWAS) are a type of experiment that aim to detect genetic
variation that may be linked to a type of disease. In variable selection, a major challenge arises
when the number of covariates is huge compared to the number of observations. Even if proper
priors allow this to be done via Bayesian methods, with an extremely high number of covariates
(i.e. many thousands or even millions) compared to the number of observations (i.e. a few hun-
dreds), there are 2 major problems: huge computational time burdens for analysing each dataset,
another is the sparsity in the number of covariates associated to the response. If data splitting is
used for variable selection in the case above, this can lead to significant reduction in computa-
tional time.

GWAS typically contain many thousands of covariates (i.e. DNA variants), which makes
variable selection an exceptionally computationally intensive process. Additionally, with large
datasets, the MCMC sampler often becomes inefficient in terms of CPU time and shows a lack
of MCMC convergence. We investigated if splitting the whole dataset into a number of small
sub-datasets before running Bayesian Variable Selection (BVS) reduces the time for the MCMC
sampler, improving the mixing of the Markov chain. But simultaneously, we need to investigate
the impact of data splitting in terms of the properties and accuracy of the resulting model. When
the data is split across columns (i.e. subsetting variables), a number of the sub-datasets may not
contain the covariates associated to the response.

Hence, the covariates that are selected in each sub-dataset via using Bayesian variable se-
lection should be finally combined to determine the final set of associated covariates. But this
procedure could lead to possible biases, so we assessed how this affects the error in estimation of
regression coefficients and other parameters.

Finally, we applied this technique with the real dataset that is about GWAS of heart disease
from Prof.Sandosh Padmanabhan’s lab at Cardiovascular Sciences at Glasgow.
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Chapter 1

Introduction

1.1 Introduction

Genome Wide Association studies (GWAS) are a type of experiment that aim to detect genetic
variation that may be linked to a type of disease. The main aims of GWAS are to try to determine
genetic risk factors for a disease, and make predictions about who may be at risk of developing a
particular disease (Bush and Moore, 2012).

One of the biggest challenges in GWAS is the extremely large potential set of variants (in
millions) but a limited sample size (typically thousands) (Uffelmann et al., 2021). There are many
areas for application such as estimating heritability, calculating genetic correlations, making clin-
ical risk predictions and informing drug development. The details of GWAS and the relevant
biological background are explained in Chapter 2. The general purpose of GWAS is to identify ge-
nomic sequence differences among the persons that differ phenotypically (Uffelmann et al., 2021).
A genotype is the genetic makeup of an individual, a phenotype is a feature (of interest) that may
be a result of the physical expression of genes.The most common sequence variations in the human
genome are single-nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms (SNPs)
are defined as loci with alleles that differ at a single base, with the rarer allele having a frequency
of at least 1 % in a random set of individuals in a population. (Keats and Sherman, 2013). The aim
of GWAS is to detect SNPs that have a statistically significant association with the trait of interest.
These SNPs are called genomic risk loci.

In GWAS, we evaluate the association between each genotyped marker and a phenotype
of interest across a large number of individuals (Korte and Farlow, 2013). This approach was in-
troduced about twenty years ago in human genetics (Hirschhorn and Daly, 2005) with more than
4500 published human GWAS to date (Ruth, 2020). GWAS have been applied in a range of animals
and plants including mice, crops and cattle (Olsen et al., 2011).

Some traits are determined by a small number of loci with large effect sizes, which denote a
simple genetic architecture. Genetic architecture describes the characteristics of genetic variation.
It depends on the number of genetic variants affecting a trait, their frequencies in the population
(Timpson et al., 2017). GWAS can be used in this situation. However, GWAS may be difficult for
detecting complex genetic architecture (Kortre and Farlow, 2013). There are two important cases
of complex genetic architecture : the first is when a trait is controlled by many rare variants and
another is many common variants affecting a single phenotype.
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The experimental procedure of a GWAS contains many steps, starting with the collection of
DNA and phenotype information from the individuals. The information should contain disease
status and demographic data. Then, genotyping of each individual is provided via using GWAS
arrays, quality control is done, the imputation of untyped variants using haplotype phasing is
conducted, and the statistical test for association is constructed. Moreover, sometimes a meta -
analysis is conducted to combine a number of analyses to increase power. Since there is a chance
to have possible biases and errors in each step, planning is important when the GWAS is set up.
These steps are discussed in more detail in Chapter 2.

The performance of GWAS in identifying a true association between a SNP and trait, de-
pend on the explanation of the phenotype variance due to the population structure. The pheno-
typic variance is determined by the level of two allele variants differing in their phenotype effect
(the effect size) and their frequency in the sample. Both rare variants and small effect sizes may
occur in GWAS (Asimit and Zeggini, 2010) . One solution to deal with a rare-variant architecture
is increasing the sample size. Li et al. (2010) pointed out that increasing the sample size will im-
prove the power to recover meaningful associations. However, increasing the sample size may
not resolve all situations. Hence, one approach is to collapse several SNPs in a region into a single
variable and then use this to analyse as a composite genotype (Lee et al., 2014).

One challenging aspect of the statistical analysis of GWAS is the large of number of SNPs
(millions) with a comparatively small number (e.g. hundreds or thousands) of samples. A SNP
is a representation of a base in the DNA sequence. The Human Genome Project SNP fact sheet
(2009) states that SNPs occur in at least one percent of the population. Fitting regression models
in classical statistics need the sample size to be larger than the number of variables. Hence, these
methods do not directly work for GWAS studies.

Moreover, another challenge for GWAS in humans is a requirement for data on many thou-
sand individuals to be available for detecting a large number of small effect loci (Manolio et al.,
2009). There are special classes of traits for human diseases given by numerous small - effect mu-
tations. On the other hand, loci with a medium effect size have been shown to underlie traits such
as eye-colour and skin colour (Sulem et al., 2007).

Over the last decade, there are many genomic risk loci that have been found to be associ-
ated with diseases such as FTO for obesity (Lan et al., 2020) , PTPN22 for autoimmune diseases
(Siminovitch, 2004) and IL - 12/IL - 23 for Crohn’s diseases (Kashani and Schwartz, 2019). More-
over, GWAS may be used for supporting clinical trials for drugs targeting the relevant traits. The
trait-associated genetic variants can be used as control variables in epidemiology studies to avoid
confounding genetic group differences (Benjamin et al., 2012) . Further, a recent study pointed out
that genomic risk prediction using genome-wide polygenic risk scores (PRSs) for coronary artery
disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease and breast cancer can iden-
tify disease risk based on rare, highly penetrant mutations (Khera et al., 2018).

GWAS has many advantages as a methodology since it is a powerful tool for analysis of
simple traits under additive genetic scenarios. An additive genetic model is usually employed in
case-control-based GWAS (Liu et al., 2021). However, GWAS may miss uncovering the causative
loci since linkage disequilibrium, preventing us from discerning SNPs. One solution is to deter-
mine the phenotype of interest by giving a score on a trait more proximal to the genetics (Benjamin
et al., 2012). This technique reduces the number of loci that contribute to the trait. Thus, it leads
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to increasing the power to detect them. One limitation of using GWAS is when a single causative
locus has high heritability, parts of the genome are inherited together from the maternal and pa-
ternal genome, since an association there is a natural result of the linkage structure of the data,
leading to the most significant SNP not being the true causative locus.

Moreover, the SNPs are often correlated because of linkage disequilibrium (Robinson, 1998).
Linkage disequilibrium is a term specifying the relationship between alleles at two loci on a hap-
lotype. There are many genes on a chromosome, these genes are jointly inherited and the coupled
inheritance of genes is broken by a phenomenon called crossing over (described in Chapter 2).
The correlation structure between SNPs in the genes is not considered when using a univariate
regression model. Therefore, multiple regression needs to be implemented for dealing with this
situation. Techniques for handling large data sets with many thousands of variables exist, such
as variable subset selection in regression models, regularisation methods and Bayesian approach.
These will be discussed in more detail in Chapter 3.

1.2 Motivation

There are still many challenges in the statistical modeling, and detection of associated SNPs from
GWAS data. The first problem is multicollinearity, since many SNPs (covariates) are highly cor-
related. One possible way to deal with this is as follows. Once a variable is selected , another
variable that is correlated with that variable is removed from the model. Furthermore, doing this
in practice requires deciding from a data-driven manner which covariates get removed and which
stay. However, in this scenario, the covariate eliminated may be the important covariate, meaning
that critical information is removed from the data.

The second problem is that of large p (covariates) and relatively small n (observations) i.e.,
p >> n. Here, there is no unique solution for parameter estimation in the classical statistical
framework. It means that there is also a problem for the variable subset selection, since many
subsets of variables are suitable for the data. One way to deal with this situation is to find the best
solution from those equally good solutions. The stochastic search algorithm could be considered
via using the Bayesian framework for variable selection. This approach is also more able than
classical variable selection to move between the local modes in the model space that indicate the
good solutions.

Another problem is the computational time needed for the exploration of the model space
using a stochastic search. Due to the large number of covariates, the estimation of parameters also
consumes a huge amount of time for computation.

1.3 Objective of the study

The aim of this study is to develop, analyse and compare Bayesian variable selection (BVS) meth-
ods to assess which approach is most suitable with large p , small n data to apply to Genome
Wide Association Studies (GWAS). It also investigates if techniques of data splitting and estima-
tion based on subsets is appropriate for GWAS applications
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1.4 Discussion and Comparison with some relevant articles

We now discuss two articles that are related tp split and merge Bayesian variable selection: split
and merge Bayesian variable selection approach for ultrahigh dimensional regression (Song et
al., 2015) and efficient genomic prediction based on whole-genome sequence data using split and
merge Bayesian variable selection (Calus et al., 2016)

Although there are some points of similarity between these approaches, there are also some
important contrasts. In terms of the models considered in each article, Calus et al. used logistic
regression, Song et al. used the linear regression model, while my thesis contains applications
to both linear regression and logistic regression models. The criteria for split in the first stage in
Calus’ paper is sorting based on MAF, however Song used a maximum on the marginal inclusion
probability to select those covariates and for our work we used the same idea as Song’ s article.
The last point relates to criteria to compare the performance of the final model. Calus used cross
validation on the real data set, the Mean Squared Error (MSE) was used in Songt et al., while my
thesis used the length of the credible interval of the posterior mean of the regression coefficients
of the associated covariates.

1.5 The novelty of our work

We propose a method for splitting the large dimensional dataset into sub-datasets for both pe-
nalised variable selection and Bayesian variable selection methods to increase computational effi-
ciency and improve the chance of detecting associated SNPs. This step of our method also appears
to improve MCMC mixing and efficiency compared to the full (unsplit data) model. For justifying
this approach, we also mathematically derive results regarding the error of estimation (i.e. Expec-
tation of SSE) in each case.

Finally, combining the selected covariates in each sub-dataset increases the chance of select-
ing the truly associated covariates to the response.

1.6 Structure of the thesis

The thesis starts with an overview of the molecular biology and clinical background of genome
wide association studies in Chapter 2. We present a literature review of existing variable selec-
tion methods which are explained in terms of the methodology and underlying theory, described
in Chapter 3. We introduce a novel splitting of datasets method, applied in the linear regres-
sion model and logistic regression model contexts, which is described in Chapter 4. In Chapter
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5, we present simulation studies, describing how to simulate correlated Binomial data, the soft-
ware packages used in this study, for both the linear regression models and logistic regression
models. An example application of these techniques follows in Chapter 6, where the methods are
applied on hyprertension GWAS dataset from the Glasgow blood pressure clinic and the results
are presented. In Chapter 7, extensions of these methods for application on other large datasets is
described.
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Chapter 2

Molecular biology background

2.1 Introduction

Finding genetic causes underlying disease is one of the key areas of medical research, made pos-
sible by the recent advances in genotyping technology. Statistics plays a vital role in the search for
genetic variants linked to diseases and statistical genetics is an area of much development. There
are many specific definitions in genetics relevant to the discussion in the following chapters. This
chapter will introduce basic genetic terminology .

2.2 Basic Genetic Terminology

The human genome contains of 46 chromosomes which are pairs of autosomal chromosomes
(chromosomes 1 to 22) and the sex chromosomes (X and Y). Females have 2 X chromosomes and
males have a combination of X and Y chromosomes. All genetic information is contained in these
46 chromosomes.

In 1928 Griffith did experiments to show how genetic information is stored (Bayrhuber et
al., 1989). Moreover, Avery et al. (1944) discovered that genetic information is stored in the form
of Deoxyribonucleic Acid (DNA) . Watson and Crick (1953) developed a model of DNA structure
which presents it as a double helix with a sugar, phosphate backbone and nitrogenous bases on
the inside. There are four bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). It was
concluded that the sequence of the nitrogenous bases determines genetic information.

Particular sections of DNA that determine the code for proteins are called genes. Those
genes are arranged in linear form on a chromosome and they are separated by non coding areas
of DNA. Their position on the chromosome is called a locus. According to the Human Genome
Project (2009), there are between 20,000 and 25,000 genes in the human genome. Moreover, genes
can vary in size depending on the functional proteins they code for.

Proteins are built out of amino acids and the order of amino acids is defined by the order
of bases in the DNA strand. The DNA is located in the cell nucleus , the information needs to
be translated into proteins which are the building blocks of cells. This is done in the cells by
replication of the DNA code in the form of Ribonucleic Acid (RNA) (Bayrhuber et al., 1989). The
translation of the genetic code to building occurs proteins in parts of the cells called ribosomes
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which are located in the cytoplasm.
Different forms of the same gene are called alleles. They initially arise if there is a change

of base within a gene, creating a new base type in the population that did not exist before. Allele
frequency refers to the frequency of alleles in terms of the proportion in the population.

A change in genetic material is called a mutation. Mutation can occur on different levels, on
the gene level (e.g. changes of base pairs), on the chromosome level (e.g. changes of the chromo-
some length) and on the genome level (e.g. changes in the number of chromosomes). Mutation
most commonly occurs on the gene level, when a base is changed to another base. Mutation rates
at a single base are between one in ten thousand and one in one billion meioses (Bayrhuber et al.,
1989). Meiosis is the process of cell division in sexually reproducing organisms, reducing the num-
ber of chromosomes in the reproductive cells called gametes (sperm in males or ovule in females)
from diploid (chromosomes are arranged in pairs) to haploid (one set of chromosomes is present).
There are many different causes for mutation such as exposure to the environment, through as x -
ray radiation, radiation or chemical substances, or can occur spontaneously within the cell during
biological processes.

Humans have two copies of the autosomal chromosomes. Sometimes the two genes on the
two copies of the chromosome are identical (the allele is the same) and it is called homozygous at
that locus. If the two copies are different, it is called heterozygous at that locus. The occurence of a
set of alleles on a single strand of a chromosome is called the haplotype. The physical expression
of genes resulting in a particular feature of the individual is called the phenotype and the genetic
information that leads to the physical expression is called the genotype. An allele that determines
the phenotype is called dominant when the phenotype occurs over two different alleles at a locus.
An allele not leading to a physical expression is called recessive.

A mutation in a base in the DNA sequence may result in a Single Nucleotide Polymorphism
(SNP). The Human Genome Project SNP fact sheet (2009) gives an overview of SNPs. Such alter-
ations have to occur in at least one percent of the population to be classified as a SNP, meaning
that the allele frequency of the rarest allele must be at least one percent. SNPs are estimated to
occur every 100 to 300 bases which leads to an estimate of about 10 to 30 million SNPs in the hu-
man genome. The average mutation rate of SNP is very low about 2× 10−8 per locus (Palmer and
Cardon, 2005). SNPs are approximately equally spread throughout the whole genome.

A locus that influences a disease is called a disease susceptibility locus and a locus of known
location that is used in the analysis of genetic data is referred to as a marker locus.

2.3 Hardy-Weinberg Equilibrium

Hardy (1908) and Weinberg (1908) showed that the allele frequencies at a locus in two consecutive
generations will stay the same if these assumptions hold: (1) The population size is infinite, (2)
there is no movement of individuals between populations, (3) there is no mutation at the locus,
(4) random separation of alleles occur during gamete formation, (5) individuals within the pop-
ulation mate without regard to their genetic makeup and (6) individuals with a certain allele are
not favoured.

These assumptions are quite stringent, but constant allele frequencies from one generation
to the next, known as Hardy - Weinberg Equilibrium (HWE), is frequently observed to hold ap-
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proximately. Hardy and Weinberg developed a model for the expected genotype frequencies as a
function of the allele frequencies for a locus. At a di-allelic marker locus with alleles M and m, if
HWE holds, the genotype frequencies can be denoted by the following:

pMM = p2
M, pMm = 2pM(1− pM), pmm = (1− pM)2,

where pMM is the frequency of genotype MM and pM is the frequency of allele M. It should be
noted that there are in fact two possible heterozygous genotypes Mm and mM, which are both
represented by Mm. It is hard to determine from which haplotype m or M came, and for the anal-
ysis of genotypes this information is assumed to be of no particular importance. Hence, they are
combined together into one heterozygous group, and with two alleles this gives us three geno-
types.

2.4 Linkage Disequilibrium

Thomas Hunt Morgan is one of many scientists who studied the properties of chromosomes (Teare
and Barrett, 2005). He discovered that there are many genes on a chromosome in those genes, re-
combination can occur during the formation of gametes. Genes are arranged in a linear form on
a chromosome, and the further apart two genes are, the higher the chance that a crossing over
occurs. That is shown in Figure 2.1. The probability of such a recombination occuring between
two loci in one generation is expressed through the unit centiMorgan (cM). A genetic distance of
one cM represents a probability of one percent that a crossing over between two loci will occur in
one generation. The rate of recombination is not the same on each part of each chromosome, but
this is a rough guideline. One cM is approximately equivalent to a distance of about one million
base pairs (Mb) between two genes (National Human Genome Research Institute, 2009).

Linkage Disequilibrium (LD) is a term specifying the relationship between alleles at two
loci on a haplotype. The alleles at loci that are physically closer together on the chromosomes
have a higher probability of being inherited together, as the probability of a recombination event
occuring between them is usually smaller than if the two loci are further apart. For testing the
difference between observed and expected haplotype frequencies, LD for two loci is calculated.
At two di-allelic loci A and B, where say A is a disease susceptibility locus (alleles A and a) and B
represents a marker locus (alleles B and b), there are four possible haplotypes with a probability
of occurrence as follows: P(AB) = hAB, P(Ab) = hAb, P(aB) = haB, P(ab) = hab. The expected
haplotype frequencies, for haplotype AB for example, can be calculated using the following model

hAB = pAqB + D,

where D is a measure of linkage disequilibrium, and p and q represent allele frequencies at the two
loci. Under equilibrium D is equal to zero, as the haplotype frequencies are equal to the product
of the corresponding allele frequencies.

Conversely, D can be used as an indirect measure of distance between disease susceptibility
and marker locus if constant recombination rates can be assumed on the chromosomes which
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Figure 2.1: Crossing-over (National Human Genome Research Institute, 2023)

enables us to conclude that the higher the value of D, the closer two loci are together on the
chromosome. The maximum LD value between two loci based on the allele frequencies at those
two loci is given by

D ≤ min(pA(1− qB), (1− pA)qB)

, with the lower boundary restricted by

D ≥ max(−pAqB,−(1− pA)(1− qB))

.

2.5 Experimental procedure for GWAS

As mentioned in Chapter 1, genome - wide association studies (GWAS) are used to identify the
association of genotypes with phenotypes via testing on the difference in the allele frequency of
genetic variants in each individual (Uffelmann et al., 2021). A comprehensive overview of GWAS
is presented below.

2.5.1 Study Population

The material for a GWAS experiment consists of the collection of DNA and phenotypic informa-
tion from each individual within a population-based cohort. Phenotypes can be binary or contin-
uous dependent variables. The phenotypes are tested for association with genotype. A common
experimental design for GWAS is a case-control study. Cases are based on the presence of a par-
ticular phenotype while controls are based on the absence of that phenotype. Data from resources
such as biological databases or cohorts with disease are often used for conducting GWAS. The
large size for running a well-powered. GWAS requires significant time, cost and effort for collect-
ing data. The bias from the data is the another point that one should be concerned about since
the population should not be extreme in any characteristics. For example, when we use the in-
formation from Biobank in UK (Fry et al., 2017), these data may be biased since participants are
healthier, wealthier and more educated than general population (Fry et al., 2017).
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The workflow for conducting GWAS

Figure 2.2: Genome - wide association studies (adapted from Uffelmann et al., 2021)

2.5.2 Steps for conducting GWAS

The first step in GWAS is data collection. We can collect data from cohorts being studied or ex-
isting ones with genotype and phenotype information in biological databases such as BioBanks.
The next step is genotyping, data can be collected via using microarrays to keep common vari-
ants or using modern sequencing techniques for whole-genome sequencing (WGS). An important
step is quality control: poor quality data on SNPs should be deleted, population stratification in
the sample should be inspected and adjusted. The next step is imputation for missing genotypic
data. Missing genotypes can be imputed via using information from matched reference popula-
tions from data bases such as TopMed (Li et al., 2009). The next step is testing for association with
possible genetic variants. The key point is selecting an appropriate model. Often meta-analysis
is conducted, where results from multiple cohorts are combined. The last step is post-GWAS
analyses for fine mapping of variants. A classical example is silico analysis of GWAS via using
information from external resources such as silico fine-mapping (Ufflemann et al., 2021). The set
of steps for conducting GWAS are shown in Figure 2.2.

2.5.3 Current methods for analysis

The genotyping for individuals is a core part of the analysis. Microarrays are used for common
variants but next - generation techniques are used for rare variants. Microarrays are popular since
they are cheap when compared to next - generation sequencing methods. The main purpose of
both approach is to detect the expression of thousands of genes simultaneously from a sample
(Guo et al., 2020). However, many low-cost technologies for the new methods are becoming avail-
able. (Korte and Farlow, 2013)

The general goal of GWAS is identifying novel variant - trait associations. There are about
50,000 unique SNP - trait associations at a genome - wide significance threshold as on January
2019 (MacArthur et al., 2017). GWAS have identified risk loci for a large number of diseases and
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traits such as anorexia nervosa, major depressive disorder, cancers and subtypes of cancers, type
2 diabetes, coronary artery disease, schizophrenia, inflammatory bowel disease, insomnia, body
mass index (BMI) and eductional attainment (Andrews et al., 2020).

GWAS can lead to discovery of novel biological mechanisms. GWAS have implicated genes
of unknown function and experimental follow-up of loci have led to the discovery of novel bi-
ological mechanisms underlying disease, for example, the role of autophagy in Crohn’s disease
(Henderson et al., 2012). Moreover, GWAS can be used to identify individuals at high risk of cer-
tain diseases, and thereby improve patient outcomes via early detection, prevention or treatment.
For example a coding non-synonymous variant in the CFH gene explains about 50 percent of the
population - attribute risk of AMD (Klein et al., 2005).

GWAS is used for multiple applications beyond gene identification. These include Mendelian
randomization studies, polygenic risk scores, forensic analyses, determination of cryptic related-
ness, paternity testing, clinical diagnostic genetic testing, embryonic DNA fingerprinting, deter-
mination of perinatal loss, validation of new analytic methods and quality control of next - gener-
ation sequencing data (Chaitankar et al., 2016).

2.5.4 Data analysis

Data processing is another important part of GWAS. There are many types of input data such
as individual ID numbers, coded family relations, sex, phenotype information, genotypes for all
variants and information on the genotyping batch. Since there are many types of input data, the
analysis on the results should be particularly careful with quality control (Purcell et al., 2007). Rare
or monomorphic variants should be removed, the variants not in Hardy - Weinberg equilibrium
should be filtered out and imputation of missing SNPs should be considered. The matching of
the phenotype and genetic data should be done accurately. There are many software tools such
as PLINK that are used to analyse genetic data and conduct quality control (Purcell et al., 2007).
Sample and variant quality control are performed on GWAS array data, variants that are missing
are imputed using a sequenced haplotype reference (Auton et al., 2015). There are many different
software tools to deal with quality control steps and imputation (Lam et al., 2020). Since the ge-
netic data sets are very large, parallel runs are often needed. Computing clusters can distribute
jobs to many computers for running. Moreover, cases and and controls should be matched by an-
cestry to avoid confounding - for example certain SNPs are more common in some specific groups
compared to the common population. For example, in a GWAS for skin colour where cases and
controls are from different regions, the yellow skin in cases would be drawn more often from the
East Asian population. Ancestry in GWAS can be dealt with via using principal component analy-
sis (Price et al., 2006): the genotypes of all individuals are used for defining clusters of individuals
with similar genotypes.

Testing for association is another step in the analysis for GWAS. Linear or logistic regression
models are often used to test for associations, depending on the characteristics of the phenotype.
If the phenotype is continuous such as height, blood pressure, body mass index, linear regression
models should be used. However, if the phenotype is binary such as the presence or absence of
disease, a logistic regression model should be used instead. The dangers of model misspecification
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are a negative impact on the overall goal of genome-wide association studies (GWAS) including
reducing predictive power and failed to estimate the true magnitude and direction of the effects.
Some covariates, for example demographic factors such as age, sex and ancestry should be in-
cluded for stratification, and any confounding effect should be considered since that may reduce
the statistical power for binary traits in certain samples (Pirinen et al., 2012). The individual - spe-
cific random effect term in linear or logistic models can increase statistical power for SNP discov-
ery and control stratification at the cost of requiring greater computational resources since those
terms account for genetic relationship among individuals (Zhou et al., 2018). Most researchers use
a logit link function for binomially distributed case-control phenotypes in logistic regression mod-
els. Genotypes of genetic variants that are close together are not independent due to the effect of
linkage disequilibrium. Hence dependence between tests should be considered when conducting
a GWAS. Controlling false discovery is another important part of analysis in GWAS since testing
millions of associations among individual genetic variants and a phenotype need a multiple test-
ing threshold to avoid false positives. The International HapMap Project pointed out that since
there are about one million independent common genetic variants across the human genome, the
Bonferroni testing threshold should be less than 5× 10−8, that represents a false discovery rate of
0.05/106 (Altshuler and Donnelly, 2005). However, the appropriate threshold varies depending on
the population. For example, a more stringent threshold is important for populations with larger
effective population sizes or if the minor allele frequency thresholds for inclusion in a GWAS are
low , since low minor allele frequency variants are usually not in linkage disequilibrium with
common variants. Hence adding on a multiple testing adjustment is needed. Moreover, many
genetic variants have a small effect, contributing to an overall phenotype of a complex trait such
as height, or type 2 diabetes.

As the last part of GWAS, meta-analysis is conducted when data from multiple cohorts are
analysed together, with tools such as METAL (Willer et al., 2010) for quality control. The important
considerations for Genome-wide association meta-analysis (GWAMMA) (Baselmans et al., 2019)
involve using the individual cohorts following the same definitions for the data analysis plan,
using harmonized phenotypes and reporting their results in a standard way. Scaling effect sizes
to a standard normal distribution should be considered since phenotype measurements and their
estimated absolute effect sizes cannot be compared between cohorts. Inspection at a cohort-level
is done by at least two independent analysts and any issues should be resolved within the indi-
vidual cohorts. In addition, meta-analysis can provide overall summary statistics.The last issue is
choosing between a fixed effect model or a random effect model. A fixed effect model assumes
error variances are equal across cohorts, but a random effect model tests for heterogeneity in the
results. The combination of all cohorts leads to a more precise estimation of effect sizes and gives
the significance of effects in GWAS via weighting each individual cohort by each sample size or
by using the inverse variance technique (Willer et al., 2010).

2.5.5 Limitations of GWAS

Although GWAS is a popular technique for dealing with trait-associated variants, there are still
many challenges .

The first is population stratification. There are biases especially when multiple cohorts are
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used. However, this problem can also occur in relatively homogeneous populations for example,
studies have uncovered population stratification and related bias in the UK Biobank mostly about
450K of the 500K individuals are white British (Abdellaoui et al., 2019). The existing methods
for dealing with the effects of stratification are based on common variants. These methods contain
principal component analysis, and the case of linear mixed models. However, they are insufficient
if many rare variants are included in the study. The effect is even more complicated if these are
demographic changes (Lawson et al.,2020). Future work needs betterapproaches for correction for
population structure in GWAS and associated analyses.

The next issue is polygenicity. An extreme situation can occur when thousands of variants
each have a small effect on trait and uncover underlying biological mechanisms (Watanabe et al.,
2019). Rare variants of large effect may not be reported for all traits and thousands of variants
are not linked to rare variants. Hence, novel techniques should be developed that account for
polygenicity. High polygenicity means that individuals with the same disease may have unique
genetic profiles linked with the same disease. Genetic differences are often linked to treatment
sensitivity. Hence, the development of novel treatments should address this issue.

Another issue is ethical. Ethical issues related to GWAS include the use of samples and data,
storage and reuse of samples and data, privacy and sharing data with individual participants. Re-
searchers and bioethicists have pointed out that finding permissions for sample and data storage
and unspecified future use is necessary. (Novembre et al., 2008). Another ethical challenge of
GWAS is related to the diversity and inclusion of participants. The results from GWAS should
promote health and well-being for all humans that are different by race, gender and geographical
location. It implies that samples and data used for GWAS need to be representative of the global
human population and the genomics workforce also need to be diverse to ensure awareness of
this.

2.5.6 Gaps addressed in this dissertation

GWAS has two main challenges points in term of data analysis. The first is large dimensionality
since there are many thousands of covariates (SNPs). Another point is the high correlation be-
tween SNPs, depending on genomic location. Classical variable selection methods cannot deal
with either situation.

In this thesis, we investigate the use of novel Bayesian variable selection methods that can
be applied to GWAS. Further we develop a novel approach to dealing with high - dimensionality
in the SNP set through two - stage data - splitting. We split dataset into sub-datasets in the first
stage and then combine these overall covariates that are selected in each sub-dataset (using BVS)
to analyse fully via using the Bayesian Variable Selection at the second stage. These methods are
described in the next two chapters.

16



Chapter 3

Variable Selection methods

3.1 Introduction

The standard linear regression model can be written as Y = Xβ + ε where Y is a n× 1 vector of
observations, X is an n× p matrix of covariates, β is a p× 1 vector of unknown regression coef-
ficients and σ2 is an unknown positive scalar. The error terms ε = (ε1, . . . , εn) are assumed to be
distributed independently and normally, i.e. ε ∼ N(0, σ2 I). The goal is to estimate the regression
coefficient β. In a classical statistical framework, the sample size n is larger than the number of
explanatory variables p. The regression coefficient β can be estimated using the ordinary least
squares (OLS) estimator β̂ = (X ′X)

−1X ′y .
However, if there are more explanatory variables than observations, i.e. p >> n, the rank of

X ′X is smaller than p in the data sets with p >> n. In this case, (X ′X)
−1 does not exist and the

OLS estimator is not unique. In this case, alternative approaches are necessary to estimate β .
Penalised regression methods are one set of approaches to do these. Penalised regression

allows to create a linear regression model that is penalised, for having too many variables in the
model, by adding a constraint in the equation (Gareth et al., 2014). This is also known as shrink-
age or regularisation methods. The consequence of imposing this penalty, is to reduce the coeffi-
cient values towards zero. This allows the less contributive variables to have a coefficient close to
zero or equal zero.The first technique is ridge regression proposed by Hoerl and Kennard (1970),
which gives a biased estimator (X ′X + λI)−1X ′y where I is the identity matrix and λ is a penalty
parameter on the log-likelihood. Other penalised likelihood-based methods include LASSO re-
gression introduced by Tibshirani (1996) with a penalty on the norm of the regression coefficient

∑
p
i=1 |βi| and the elastic net proposed by Zou and Hastie (2005) which combines ridge regression

and LASSO regression.
By variable selection, namely, selecting a subset of the p variables of size p′ such that p′ < n

and the matrix inverse exists. It is a challenge to construct the model from small subsets of all
variables or to choose the covariates that are associated with the response, due to the small num-
ber of covariates that are likely to be associated to the response in GWAS applications. Traditional
variable selection methods like forward, backward and stepwise selection cannot be used in this
situation. Due to the multicollinearity of X (when p >> n), it leads to the objective function not
being unimodal. Hence, there are many different models that would equally fit the data set. The
methods mentioned above are discussed in more detail in the following sections.
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3.2 Variable Selection using penalised regression

Penalised regression can deal with high dimensional data. The general principle of this method
is to estimate the regression coefficients β that yield the minimum value of (Y − Xβ)′(Y − Xβ)

under a pre-defined constraint called the penalty function. A downside to this approach that it
gives biased estimates, unlike OLS.

The penalty function can be written as p(||β||) where ||β|| is the norm of β. The estimate of
regression coefficients (β̂) is given by

β̂ = arg min(Y− Xβ)′(Y− Xβ)

under p(||β||) < t where t that is a constant that is to be determined. Moreover, β̂ can be rewritten
as

β̂ = arg min(Y− Xβ)′(Y− Xβ) + λp(||β||)

where λ is a Lagrange multiplier. Different penalty functions yield different parameter estimates
for penalised regression.

For the estimation of regression coefficients, the penalised maximum likelihood estimation
involves adding a penalty term of log-likelihood function before maximisation. The penalised log
likelihood is given by

M(y; β, σ2) = −n
2

log 2π − n
2

log σ2 − 1
2σ2 (Y− Xβ)′(Y− Xβ)− λp(||β||)

= −
[

n
2

log 2π +
n
2

log σ2 +
1

2σ2 (Y− Xβ)′(Y− Xβ) + λp(||β||)
]

.

The value of β that maximises M(y; β, σ2) yields the penalised regression biased estimator of β.
If we set

p(||β||) =
p

∑
j=1

βj
2,

it results in the ridge regression estimator. Another penalty function is

p(||β||) =
p

∑
j=1
|βj|,

used for LASSO, described in Section 3.2.1.
Ridge regression was introduced by Hoerl and Kennard (1970). The sum of squares of the

residual can be written in the quadratic function as

ε′ε = (Y− Xβ)′(Y− Xβ).

The objective of parameter estimation in regression is minimization of the residual. Under the
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constraint
β′β < t,

constrained optimization can be done via using the Lagrange multiplier (λ), giving the resulting
estimator as

β̂ = (X′X− λIp)
−1X′y.

The ridge regresssion estimator can be written as

β̂ = (X′X + kIp)
−1X′y

where k = −λ is a constant (k > 0). This is a biased estimator since the inverse of X′X is replaced
by an approximation that guarantees the existence of a solution.

Other penalised methods include LASSO regression (Tibshirani, 1996) and the elastic net
(Zou and Hastie, 2005). However, these two methods do not yield closed form solutions as in
ridge regression. Quadratic programming is a way to solve those solutions via varying the tuning
parameter (λ). In the next section, we describe the LASSO method.

3.2.1 LASSO, Ridge regression and LARS

Least Absolute Shrinkage and Selection Operator (LASSO) is a statistical technique to deal with
variable selection with high-dimensional data proposed by Tibshirani (1996). We discuss two
issues for the parameter estimation in LASSO regression: first, the accuracy in the prediction and
second, the interpretation of the regression coefficients.

Subset selection is a discrete process. Covariates are considered by adding them into the
model one at a time (forward selection), or in backward selection, removing them from the model
one at a time. LASSO is a continuous process, which reduces the effect size of regression coefficient
(β) by the nature of the constraint, if the constant t is small.

LASSO fits a penalised regression model, minimizing the cross-validation error of the log
likelihood via reduction in the value of some regression coefficients and adjusting other regression
coefficients to be zero. Parameter estimation from LASSO is similar to ridge regression, but the
penalised log-likelihood is given by

ln(β)−
p

∑
j=1

p(|βj|),

where ln(β) is the log likelihood given n observations and p(|βj|) is the penalty function with
parameter λ.
The estimator of the regression coefficients in LASSO can be derived by minimizing

(Y− Xβ)′(Y− Xβ)

under the constraint
p

∑
j=1
|βj| 6 t,
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Figure 3.1: Estimation picture for the lasso (left) and ridge regression (right)

where t is a tuning parameter such that t > 0. A tuning parameter controls the size of shrinkage
on the estimator (β̂). There is no closed mathematical form for the LASSO estimator. Tibshirani
(1996) proposed quadratic programming for finding the LASSO estimator. With the nature of the
constraint t, if t is sufficiently small then some of the coefficients are equal to zero. Thus, the
LASSO is a continuous subset selection. In term of the size in variable subset selection, t should
be chosen small for the minimisation of the estimate of expected prediction error.

Next we compare ridge regression and the LASSO. With an orthonormal design matrix X,
each technique can be applied in a simple way as a transformation on the least square estimate
β̂j. Ridge regression and LASSO use soft-thresholding. The ridge uses a proportional shrinkage,
but LASSO transforms each coefficient via a constant λ that is truncated at zero. However, in
the nonorthogonal case, it is not simple to explain in words. Figure 3.1 attempts to explain this
graphically. The simple case contains only two parameters (β1 and β2). The constraint region for
ridge regression is β2

1 + β2
2 ≤ t , whereas the constraint region for LASSO is |β1|+ |β2| ≤ t . Both

methods find the first point where the elliptical contours touch the constraint region. Since the
constrained region for the LASSO has corners, if the solution is at a corner then it has only one
parameter (βj) that is set to zero. Moreover, if there are more than two parameters, it implies that
the constrained region has many corners. Hence, there is a high chance that many of the estimated
coefficients are set to zero.

Another way to see the contraint term |βj|q is through a log-prior density for βj and this
gives an equivalent of the prior distribution on the parameters in a Bayesian regression setting. If
q = 1, it leads to the LASSO, while for q = 2, then it gives ridge regression. Hence, the conclusion
is that ridge regression and the LASSO can be considered Bayes estimates with different priors,
since the estimators of ridge regression and LASSO can be written in a general form as

β̂ = arg min(Y− Xβ)′(Y− Xβ) + λ
p

∑
j=1
|βj|

q.

However, there are many opportunities to choose other values for q except 1 or 2. One way is
to select q ∈ {1,2}, which is a compromise between the LASSO and ridge regression. This was
proposed by Zou and Hastie (2005) as the elastic-net penalty. The elastic net tends to select more
variables than the LASSO, since the additional term distributes the weight to more variables. The
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penalty function of the elastic net is given by

p(|βj|) = (1− λ)β2
j + λ|βj|, j = 1, . . . , p.

However, the elastic net results in over-shrinkage when compared to the LASSO (Zou and Hastie,
2005). From these penalty terms, the estimated effect of most variables will be shrunk to zero,
effectively excluding them from the set of relevant covariates. Under the LASSO, there is a restric-
tion on the maximum number of variables which can be selected, which depends on the sample
size n and number of variables p, i.e. min(n− 1, p) (Zou and Hastie, 2005). This does not apply to
the elastic net.

Efron (2004) introduced the LARS (Least Angle Regression) that is adapted from the For-
ward selection method. LARS is connected to the LASSO, since LARS provides the algorithm for
finding the entire LASSO path. The first step is finding the covariate that is highly correlated with
the response and finds the prediction via estimation of the regression coefficient using OLS, that
reduces the correlation between the covariate and the residual. The procedure is repeated until all
covariates are included into the model.
The algorithm for LARS consists of the following steps:

1. Standardize the covariates to have zero mean and unit norm and set β1, β2, ..., βp = 0.

2. Find the Xj most correlated with y.

3. Adjust β̂j by increasing it from zero in the direction of its correlation with y, stop when there
is another covariate Xk that is more highly correlated than Xj with the residual r = y− Xβ̂.
Calculate the residual r where r = y− ȳ and set β1, β2, ..., βp = 0.

4. Select the covariates Xj and Xk into the model and adjust the regression coefficients βj and
βk, starting at zero, until there is another covariate Xl that is as much correlated with the
residual r when there are Xj and Xk in the model.

5. Repeat the previous process until all covariates are in the model. The estimation of regres-
sion coefficients of all are completed after min(n− 1, p) steps.

From both methods above, the key part is to find the optimum value of the tuning parameter λ.
One approach is to use prediction error to guide this choice. One criterion considered is λ.min,
when a value of λ is chosen that gives the minimum mean cross-validated error. Another is λ.1se
that gives the largest value of λ, when the error is within 1 standard error of the minimum.

3.3 Bayesian Variable Selection

In high dimensional data sets from GWAS, typically, many covariates are not significantly asso-
ciated with a given trait. Moreover, those covariates are highly correlated, leading to a multi-
collinearity problem. Hence the model is sparse since the coefficient of most covariates are likely
yo be zero. The classical frequentist or likelihood-based variable selection via any criterion such
as BIC and AIC or stepwise subset selection become infeasible when the number of variables be-
come large (Miller, 2002). An alternative solution is Bayesian variable selection (BVS) (Cui et al.,
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2010). This approach provides intuitive probabilistic interpretations and explores the model space
efficiently in a stochastic way to find the model with high posterior probabilities. This approach
is called stochastic search variable selection (SSVS).

There are many stochastic searching schemes have been developed such as the Gibbs vari-
able selection, Geweke’s BVS with block updates (Geweke, 1994), and the reverse jump MCMC
algorithm (Green, 1995). Moreover, the application of BVS in the setting of n << p has appeared
in analyzing genetic data from the early 2000s. Most methods use hierarchical Bayesian modelling
to combine the empirical variance with a local background variance associated with neighboring
genes (Baldi and Long, 2001). BVS has been applied to GWAS data that contains millions of genetic
variants or SNPs (Wakefield, 2008). We discuss BVS in more detrail in the following sections.

3.3.1 Bayesian Variable Selection in linear regression models

We start by introducing the Bayesian linear model.

Model

The linear regression model is described in the following set of equations first with non-conjugate
prior distributions for β and σ2.

y = Xβ + ε, where

ε ∼ N(0, σ2 In),

σ2 ∼ IG(ν/2, νλ/2), and

β|σ2 ∼ N(b, σ2V).

The prior distribution p(β|σ2) is assumed to be a normal distribution with mean vector b
and variance matrix σ2V . The prior of σ2 is assumed as an Inverse Gamma distribution, with
parameters ν and λ .

For Bayesian variable selection, a latent variable γj ∈ 0, 1 is introduced for each predictor
Xj, where γj = 1 denotes that the variable Xj is included in the model and γj = 0 means that the
variable Xj is excluded. For a prior on βj, George and McCulloch (1993) introduce a mixture of two
normal distributions with mean zero. The first part has a small variance τi (favouring values of
zero for βj), but the second part has a large variance c2

i τi, allowing large non-zero values, leading
to

βj|γj ∼ (1− γj)N(0, τ2
j ) + γjN(0, c2

j τ2
j ), c2

j > 1.

Specifying values of c2
j to be large makes the prior less informative. The same value c2

j = c2

is typically used (for j = 1, . . . , p), from the range (10, 1000) (Smith and Kohn 1996). From the
normal mixture prior and the use of the inverse gamma prior for σ2, the linear regression model
for Bayesian variable selection can now be written as:

y ∼ N(Xβ, σ2 In),

β ∼ N(bγ = 0,Vγ = DγRDγ),
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σ2 ∼ IG(ν/2, νλγ/2), and

γ ∼ p(γ),

where bγ is the mean vector that corresponds to the indicator variable γ, Vγ is the variance matrix
that corresponds to the set of indicator variables γ, R is the prior correlation matrix of β and
Dγ = diag(aγ1τ1, . . . , aγpτp) and aγj = 1 if γj = 0, aγi = ci if γj = 1. Since Dγ determines the
scaling of the covariance matrix, the mixture of two normal distributions is simple where R = Ip.
(A subscript γ indicates that the parameter depends on γ). One example of choosing the prior
p(γ) is denoted by

p(γ) =
p

∏
i=1

πi
γi(1− πi)

1−γi ,

where p(γi = 1) = πi.

MCMC algorithms for Bayesian Variable Selection

The hierarchical mixture model for variable selection by George and McCulloch (1997) was ex-
tended from the non-conjugate form of the Bayesian regression model. The conjugate prior allows
the exact calculation for the posterior probabilities of γ. Here, the variance σ2 is included in the
prior distribution

β|σ2, γ ∼ N(0, σ2D∗γRγD∗γ)

where D∗γ is a diagonal matrix with elements denoted by ν∗0γi, if γi = 0, and ν∗1γi, if γi = 1. The
prior of βi is specified as a mixture of two normal distributions

βi|γi ∼ (1− γi)N(0, σ2ν∗0γi) + γiN(0, σ2ν∗1γi)

The Gibbs sampler for variable selection in linear regression has the following steps:

1. For iteration t = 0, set a starting point γ(0) via using the Gray Code (Press et al., 1992).

2. For iteration t = 1, . . . , T, sample a proposal γ(∗) conditional on the previous iteration γ(t−1).
where the posterior distribution for sampling γ is given as p(γ|β, σ) that is below.

Due to the conjugacy of the model, the posterior full conditional distribution of fl can be
easily derived. At each iteration, sample γ from

p(γ|β, σ) = |X′X|−1/2|D∗γRγD∗γ|−1/2(νλ + S2
γ)
−(n+ν)/2 p(γ)

where S2
γ = Y′Y−Y′X(X′X)−1X′Y.

The advantage of using the conjugate hierarchical mixture prior is integrating out β and σ

from the joint posterior distribution. The fast updating of γ is likely to happen in the parsimonious
models. This advantage could be especially pronounced in large problems with many useless
predictors (Smith and Kohn, 1996).
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3.3.2 Bayesian Variable Selection in logistic regression models

Model

We now discuss the binary regression model. The standard form is discussed here, where yi is a
binary variable (yi ∈ 0, 1; i = 1, ..., n) and has a Bernoulli distribution for a collection of n objects.
We also have measurements on p covariates xi = (xi1, ..., xip). The parameter in the logistic model
can be denoted as g−1(νi) where g is a link function, νi is the linear predictor that equals xiβ, and
β is a p× 1 column vector of regression coefficients.

Albert and Chib (1993) introduced a latent variable (yi) which has a normal prior distribution
and hence, a conjugate normal posterior distribution, where yi = X

′
β + εi, the error term(εi) has

a standard normal distribution. If β is specified through a prior distribution with a probit link, it
leads to probit regression. A conjugate normal prior distribution is selected for β, p(β) = N(b,V),
where b is the prior mean vector and V is the prior covariance matrix. Usually, a zero vector b = 0
is chosen for the prior mean and a prior covariance matrix V = c2 Ip (independent), or the g-prior
V = c2(X′X)−1.

However, the logistic regression is often more widely used over the probit model in applica-
tions to biostatistical data sets, but due to the lack of conjugacy is computationally more expensive.
Holmes and Held (2006) introduced a latent variable z with the conjugate normal prior that leads
to a simpler conjugate formulation for the logistic regression model. This version of the logistic
regression model is discussed below.

yj =

1 i f zj > 0

0 otherwise

zj = xjβ + εj

εj ∼ N(0, λj)

λj = (2φj)
2

φj ∼ KS(i.i.d.)

βj ∼ p(β)

The auxiliary variables φj are independent random variables from the Kolmogorov-Smirnov
(KS) distribution (Devroye 1986). Andrews and Mallows (1974) proved that 2AB has the logistic
distribution where A is Normal distribution and B is the Kolmogorov-Smirnov distribution. In
this case, φj are generated from the independent of KS, then (2φj)

2 is set as λj and λj is the vari-
ance in the Normal distribution. It leads to a normal scale mixture distribution for εj in a marginal
logistic distribution. Hence, this model is equivalent to a Bayesian logistic regression model (An-
drews and Mallows 1974). The prior distribution of β is assumed normal N(b, Υ). Then, the
posterior distribution of β is normal with mean B and covariance matrix V as the standard for
Bayesian modelling (Holmes and Held 2006).

β|z, j ∼ N(B, V)
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B = V(Υ−1b + X′λ−1z)

V = (Υ−1 + X′λ−1X)
−1

λ−1 = diag(λ−1
1 , . . . , λ−1

n )

Holmes and Held (2006) extended the Bayesian logistic regression model to incorporate
variable selection by including a vector of covariate indicator variables γ = (γ1, ..., γp) where γj ∈
{0, 1}(j = 1, . . . , p) corresponds to the indicator variable in the hierarchical model for variable
selection.

The hierarchical model setup for variable selection is described below:

yγj =

1 if zγj > 0

0 otherwise

zγj = xγjβγ + εj

εj ∼ N(0, λj)

λj = (2φj)
2

φj ∼ KS(i.i.d.)

βγ ∼ N(bγ, vγ)

γ ∼ p(γ)

The prior distribution p(γ) is the product of Bernoulli distributions of the variables γi with prior
probabilities πi. This is given by

p(γ) =
p

∏
i=1

πi
γi(1− πi)

1−γi .

For γ, the Bernoulli prior is set with small prior probabilities since the expected number
of selected SNPs on GWAS are small. Under the simulation studies, we choose small constant
prior probabilities πi = p∗/p for i = 1, ..., p. The expected number of covariates, denoted as
p∗, is set to be small, for example, three or five. However, in real data sets we do not know the
exact true number of SNPs. Instead of fixing the prior probabilities, we can choose a more flexible
Beta-Binomial distribution for γ, using the identity

p(γ) =
∫

p(γ|π)p(π)dπ,

where p(γ|π) =
p

∏
i=1

πi
γi(1− πi)

1−γi and with a hyper-prior distribution for π that is denoted by

p(π) = πa−1(1− π)b−1/B(a, b) where B(a, b) is a Beta function.
The prior distribution of the regression coefficient βγ is defined for the variables for which

γi = 1 where (bγ = 0pγ×1) and Υ = c2 Ip where Ip is the identity matrix of size pγ × pγ. The
hierarchical logistic regression model gives a joint posterior distribution for {βγ, γ, z, λ} that can
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be written as
p(βγ, γ, z, λ|Xγ, y) ∝ p(y|z)p(z|λ, βγ, Xγ)p(βγ|γ)p(γ)p(λ)

where p(λi) ∼ 1/4
√

λiKS(0.5
√

λi) and p(z|λ, βγ, Xγ) = N(Xγβγ, λ).

MCMC algorithm for Bayesian Variable Selection

Since there is a high correlation between parameters in single updating which leads to slow mixing
of the Markov chains, Zucknick and Richardson (2014) proposed jointly updating z, λ and γ, βγ

from this model.

Updating z and λ

The first update is drawn from p(z, λ|β, γ, X, y) = p(z|β, γ, X, y)p(λ|z, β, γ, X).

1. The inversion method can be used to draw p(z|β, γ, X, y): the steps are given below.

(a) For i = 1, . . . , n,

p(zi|β, γ, x, y) ∝

Logistic(xγi, 1)I(zi > 0) if yi = 1

Logistic(xγi, 1)I(zi ≤ 0) if yi = 0

(b) Calculate the CDF F(x) of the logistic distribution above. Sample ui ∼ U[0, 1], and
solve for F(F−1(ui)) = ui.

2. Rejection sampling can be applied to sample p(λ|z, β, γ, x). Those steps consist of the fol-
lowing:

(a) Sample ui ∼ U[0, 1].

(b) Sample λi from the candidate density

g(λi) ∼ GIG(0.5, 1, r2
i ) =

ri

IG(1, |ri|)

where IG is an Inverse Gaussian distribution with

p(x) =

√
|ri|

2πx3 exp
(
−|ri|(x− 1)2

2x

)
, x ≥ 0,

where r2
i = (zi − xγiβγ)

2.

(c) If ui ≤ α(λi), accept λi where

α(λi) =
l(r2

i , λi)p(λi)

Mg(λi)

with
l(r2

i , λi) = p(zi|xγi, βγ, λi) = N(xγiβγ, λi),
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p(λi) being the Inverse Gaussian distribution. Otherwise, reject λi and go back to step
(a).

Moreover, the use of an alternative series expansion of KS(0.5
√

λi) in Devroye (1986),
gives

α(λi) = N(xγiβi, λi)
1

4
√

λi
KS(0.5

√
λi).

Updating β and γ

(βγ, γ) are updated jointly, using the identity

p(βγ, γ|z, λ, X) = p(γ|z, λ, X)p(βγ|γ, z, λ, X).

1. With a starting value of γ = γ0, βγ can be directly sampled from

N(B∗γ, V∗γ ),

where B∗γ = V∗γ x′γ∗λ
−1z and V∗γ = (x′γ∗λ

−1xγ∗ + v−1
γ∗ ).

2. Then, γ is updated using the following steps of a Metropolis-Hastings algorithm.

(a) (Add/delete step.) At the t-th iteration, a single covariate is selected at random and the
proposal distribution is given by

q(γ∗j ) =

{
1 if γj = 0
0 if γj = 1

(b) The acceptance probability for updating γ is given by

α(γ) = min
(

1, |Vγ∗ |
1/2|vγ|1/2

|Vγ|1/2|v∗γ|1/2

exp(0.5B′γ∗V−1
γ∗ Bγ∗ )

exp(0.5B′γV−1
γ Bγ)

(1−πi)
πi

)
,

where πj is the prior probability that γj takes the value 1.

(c) Set

γt =

{
γ∗ with probability α(γ)

γt−1 otherwise

There are two packages in R statistical software utilized in our study. We use the bvs f lex
package on R-forge for the variable selection in logistic regression models. (http://bvsflex.r-
forge.r-project.org) (Zucknick, 2013). Moreover, the BayesVarSel is the package for variable se-
lection in Linear regression models (Gonzalo and Anabel, 2018).

The proposed methods and simulation results are presented in the next chapter (Chapter 4).
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Chapter 4

Variable selection with data splitting

4.1 Introduction

In variable selection, a major challenge arises when the number of covariates is huge compared
to the number of observations. Even if proper priors allow this to be done via Bayesian methods,
with an extremely high number of covariates (i.e. many thousands or even millions) compared
to the number of observations (i.e. a few hundreds), there are 2 major problems: huge computa-
tional time burdens for analysing each dataset, another is the sparsity in the number of covariates
associated to the response. If data splitting is used for variable selection in the case above, this can
lead to significant reduction in computational time.

GWAS typically contain many thousands of covariates, which makes variable selection an
exceptionally computationally intensive process. Additionally, with large datasets, the MCMC
sampler often becomes inefficient in terms of CPU time and shows a lack of MCMC convergence.
We wished to investigate if splitting the whole dataset into a number of small sub-datasets before
running BVS reduces the time for the MCMC sampler, improving the mixing of the Markov chain.
But simultaneously, we need to investigate the impact of data splitting in terms of the properties
and accuracy of the resulting model. When the data is split column-wise, a number of the sub-
datasets may not contain the covariates associated to the response.

Hence, the covariates that are selected in each sub-dataset should be finally combined to
determine the final set of associated covariates. But this procedure could lead to possible biases,
the quantity is E(SSE), so we need to assess how this affects the error is estimation of regression
coefficients and other parameters.

4.2 The data splitting procedure

For simplicity, we start with linear regression models. The model is y = Xβ + ε, ε ∼ N(0, σ2 I),
where y is an n dimensional vector of observations, X is n × p dimensional matrix with known
constants and ε is a vector of errors. Since sum of squares of errors (SSE) is the measure of the
difference between responses and predicted value, E(SSE) is the expected value of SSE that is the
average of the SSE. Hence, E(SSE) can explain the error in the overall. However, E(SSE) in the
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unsplit data is given by
E(SSE) = (n− p)σ2.

For the first stage, the full design matrix X is partitioned as X∗1 , X∗2 , ..., X∗k where k is the number of
splits into sub-datasets.

Each of X∗ can be written in matrix form as the following.

X∗1 =


x1,1 x1,2 x1,3 . . . x1,p1

x2,1 x2,2 x2,3 . . . x2,p1
...

...
...

. . .
...

xn,1 xn,2 xn,3 . . . xn,p1



X∗2 =


x1,p1+1 x1,p1+2 x1,p1+3 . . . x1,p1+p2

x2,p1+1 x2,p1+2 x2,p1+3 . . . x2,p1+p2
...

...
...

. . .
...

xn,p1+1 xn,p1+2 xn,p1+3 . . . xn,p1+p2



...

X∗k =


x1,pk−1+1 x1,pk−1+2 x1,pk−1+3 . . . x1,p1+p2+...+pk

x2,pk−1+1 x2,pk−1+2 x2,pk−1+3 . . . x2,p1+p2+...+pk
...

...
...

. . .
...

xn,pk−1+1 xn,pk−1+2 xn,pk−1+3 . . . xn,p1+p2+...+pk


where p1 + p2 + ... + pk = p , p1 = p2 = ... = pk , p being the total number of covariates in the
whole data set and p1, p2, ..., pk are the number of covariates in each of k sub-datasets.

Fitting the full model by ordinary least squares yields an estimated parameter

β̂ = (X′X)−1X′y ∼ N(β, σ2(X′X)−1).

The predicted value of y based on the fitted model is

ŷ = Xβ̂

and the error of prediction is
y− ŷ.

A common summary of the predictive ability of the fitted model is the unconditional mean squared
error (MSE). Hence, we will start with the evaluation and comparison of sum squared error (SSE)
between the full and split data models.

Since we need to split the whole dataset into k equally sized sub-datasets, we rewrite the
data set in the following form. First we write the response in the form of a nk× 1 vector ỹ, where
ỹ is the vector y repeated k times. Similarly, X̃ is a block matrix made of nk× p blocks and β̂∗ is
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the matrix of regression coefficients in each sub-dataset that has p× 1 elements. Mathematically,
we write,

Ỹ =


y
y
...
y

 , β̂∗ =


β̂∗1
β̂∗2
...

β̂∗k

 and X̃ =


X̃1 0̃ . . . 0̃
0̃ X̃2 . . . 0̃
...

...
...

...
0̃ 0̃ . . . X̃k

 , (4.1)

where X̃1, X̃2, ..., X̃k are the matrices of covariates corresponding to each sub-dataset and β̂∗1 , β̂∗2 , ..., β̂∗k
the regression coefficient vectors estimated from each corresponding sub-dataset.

By definition,

SSE = (Ỹ− X̃β̂∗)′(Ỹ− X̃β̂∗)

=
[
y− X̃1β̂∗1 y− X̃2β̂∗2 . . . y− X̃k β̂∗k

]


y− X̃1β̂∗1
y− X̃2β̂∗2

...
y− X̃k β̂∗k


= (y− X̃1β̂∗1)

′(y− X̃1β̂∗1) + (y− X̃2β̂∗2)
′(y− X̃2β̂∗2) + ... + (y− X̃k β̂∗k )

′(y− X̃k β̂∗k ),

(where β̂∗1 = (X̃1
′X̃1)

−1X̃1
′y, β̂∗2 = (X̃2

′X̃2)
−1X̃2

′y, ..., β̂∗k = (X̃k
′X̃k)

−1X̃k
′y.)

=
k

∑
j=1

(y− X̃j β̂
∗
j )
′(y− X̃j β̂

∗
j )

=
k

∑
j=1

(y− X̃j(X̃′jX̃j)
−1X̃′jy)

′(y− X̃j(X̃′jX̃j)
−1X̃′jy).

Now, let Pj = X̃j(X̃′jX̃j)
−1X̃′j, the jth projection matrix. Hence

SSE =
k

∑
j=1

(y− Pjy)′(y− Pjy)

=
k

∑
j=1

y′(I − Pj)(I − Pj)y

=
k

∑
j=1

y′(I − Pj)y

(since Pj is idempotent, I being the identity matrix of dimension n).

Therefore,

E(SSE) =
k

∑
j=1

E[y′(I − Pj)y].

This can now be written as follows.
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E(SSE) =
k

∑
j=1
{trace[(I − Pj)Var(y)] + E(y′)(I − Pj)E(y)}(following Prop. 3.22 page 79 Bingham and Fry, 2010) =

k

∑
j=1
{trace[(I − Pj)σ

2 I] + (β′X′)(I − Pj)(Xβ)}

=
k

∑
j=1
{trace[(I − X̃j(X̃′jX̃j)

−1X̃′j)]σ
2 I + (β′X′)(I − Pj)(Xβ)}

=
k

∑
j=1
{[trace(I)− trace(X̃j(X̃′jX̃j)

−1X̃′j)]σ
2 I + (β′X′)(I − Pj)(Xβ)}

=
k

∑
j=1
{[n− trace((X̃′jX̃j)

−1X̃′jX̃j]σ
2 I + (β′X′)(I − Pj)(Xβ)}

(using the property that trace(AB) =trace(BA) where A is m× n and B is n×m.) =
k

∑
j=1
{[n− trace(I∗j )]σ

2 I + (β′X′)(I − Pj)(Xβ)}

=
k

∑
j=1
{[(n− pj)σ

2] + (β′X′)(I − Pj)(Xβ)},

where pj is the number of covariates in each split sub - data set, I is the n× n identity matrix and
I∗j is the pj × pj identity matrix.

In order to check the effect of variation in n, k, p on the expected value of SSE, we conducted
a simulation study. We also compared the bias of the parameter estimation via using covariates
from combining results from each sub-dataset compared to the whole dataset. These simulations
and results are described in the next section.
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4.3 Simulation studies

4.3.1 General Settings

We simulated 3 datasets 20, 50, and 100 covariates respectively, and with 200 observations each.
Each explanatory variable vector is generated from the Binomial distribution with a probability
percentage of 0.1. The effect size for the regressors for all associated covariates is 1. All covari-
ates are assumed to be associated with the response. These are rather restrictive assumptions and
these simulations do not allow one to conclude in generality. Since in any application, explana-
tory variables will not have the same distribution and will not have the same effect size. Under
each situation, the explanatory covariates are spilt into 2 and 5 sub data sets, in turn. under each
setting, 10 data sets for checking replication of the results.

For each dataset, and under each setting, we calculated the E(SSE) as discussed in Section
4.2.

4.3.2 Results

Our results showed that when the number of data set splits (k) is increased the values of E(SSE)
increase in general (Table 4.1). Moreover, when the number of covariates (p) is increased the values
of E(SSE) also increased. This means that the error when fitting the split data sets are higher than

Table 4.1: The upper bound and lower bound of E(SSE) and the mean when β = 1 (20, 50 and 100 covariates)
under 10 replications

No. of Splits 20 covariates 50 covariates 100 covariates 500 covariates
2 151.44(140.46,172.98) 186.23(181.61,198.39 ) 199.15(188.95,215.28) 222.11(198.21,238.87)
5 212.72(192.67,229.83) 214.49(187.96,225.44) 217.96(189.71,230.97) 236.85(208.76,250.33)
10 230.85(211.37,259.61) 235.35(208.33,250.37) 236.38(208.46,255.31) 253.18(227.64,269.31)

whole 77.98(74.98,84.43) 79.80(73.54,85.16) 82.51(73.48,86.25) 96.13(90.56,102.49)

when using whole dataset. Moreover, when the number of sub-datasets (k) is increased, it yields
higher E(SSE) (Figure 4.1). The ratio of E(SSE) between the split sub-dataset and the whole data
set are greater than 1 in all situations (Figure 4.2)

4.4 Computational times

Since the benefit of data splitting is claimed to be computational efficiency. The CPU times for
running in each splitting and the whole dataset are presented in Table 4.2.

Table 4.2: The CPU times for running in each splitting and the whole dataset (seconds)
No. of Splits 20 covariates 50 covariates 100 covariates 500 covariates

2 1250.23 1450.48 1640.08 1950.67
5 1346.11 1538.62 1751.63 2097.43

10 1436.21 1629.27 1846.94 2136.41
whole 10316.34 11246.65 12893.54 14379.14
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Figure 4.1: The plot of the Expected SSE under 20, 50 and 100 covariates
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Figure 4.2: The plot of the ratio of Expected of SSE between split dataset and the whole dataset with 20, 50
and 100 covariates
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4.5 Splitting datasets in the Bayesian framework

Expected SSE under the Bayesian framework is calculated via using

E(SSE) = [n− (g2 + 2g)
(g + 1)2 p]σ2

that relied on the whole data set, where g is a parameter in Zellner’ s g-prior on the regression
coefficients (adapted from Liang et al., 2007). Clearly, as g → ∞, E(SSE) converges to the same
value as in the classical framework (Section 4.1).

The expected value of SSE for the splitting data set can be shown using a similar procedure
as before, to be

E(SSE) = (nk− (g2 + 2g)
(g + 1)2

k

∑
j=1

pj)σ
2 +

k

∑
j=1

[(β′X′)(I − (g2 + 2g)
(g + 1)2 Pj)(Xβ)].

The derivation is given below:

E(SSE) =
k

∑
j=1

E[y′(I − (g2 + 2g)
(g + 1)2 y]

=
k

∑
j=1
{trace[(I − (g2 + 2g)

(g + 1)2 Pj)Var(y)] + E(y′)(I − (g2 + 2g)
(g + 1)2 Pj)E(y)}

=
k

∑
j=1
{trace[(I − (g2 + 2g)

(g + 1)2 Pj)σ
2 I] + (β′X′)(I − (g2 + 2g)

(g + 1)2 Pj)(Xβ)}

=
k

∑
j=1
{trace[(I − (g2 + 2g)

(g + 1)2 X̃j(X̃′jX̃j)
−1X̃′j)]σ

2 I + (β′X′)(I − (g2 + 2g)
(g + 1)2 Pj)(Xβ)}

=
k

∑
j=1
{[trace(I)− (g2 + 2g)

(g + 1)2 trace(X̃j(X̃′jX̃j)
−1X̃′j)]σ

2 I + (β′X′)(I − (g2 + 2g)
(g + 1)2 Pj)(Xβ)}

=
k

∑
j=1
{[n− (g2 + 2g)

(g + 1)2 trace((X̃′jX̃j)
−1X̃′jX̃j]σ

2 I + (β′X′)(I − (g2 + 2g)
(g + 1)2 Pj)(Xβ)}

=
k

∑
j=1
{[n− (g2 + 2g)

(g + 1)2 trace(I∗j )]σ
2 I + (β′X′)(I − (g2 + 2g)

(g + 1)2 Pj)(Xβ)}

=
k

∑
j=1
{[n− (g2 + 2g)

(g + 1)2 Pj]σ
2 I + (β′X′)(I − (g2 + 2g)

(g + 1)2 Pj)(Xβ)}

= (nk− (g2 + 2g)
(g + 1)2

k

∑
j=1

Pj)σ
2 +

k

∑
j=1
{(β′X′)(I − (g2 + 2g)

(g + 1)2 Pj)(Xβ)},

where I∗j is the Pj× Pj identity matrix. Again the E(SSE) under the Bayesian framework converges
to the classical when g→ ∞, equivalent to better emulate the scenario of real GWAS datasets.

We expand our simulation to the correlated case, beginning with a small number of covari-
ates first, there are 20 covariates: X1 is correlated with X2 and X3 , while X11 is correlated with X12

and X13 .
Results from Tables 4.3 and 4.4 show that when there are higher levels of correlation, the
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expected SSE is increased due to the effect on the regression coefficients estimation through mul-
ticollinearity.

Table 4.3: The upper bound and lower bound of E(SSE) and the mean when β = 1 (20 covariates) under 10
replications when ρ = 0.1

No. of Splits g=1 g=10 g=100
2 204.356(189.112,215.634) 188.335(177.854,197.364 ) 170.234(165.148,182.287)
5 262.369(237.452,283.117) 249.865(226.186,261.337) 233.862(211.339,260.382)
10 290.114(276.249,298.964) 275.198(259.632,290.112) 265.841(255.126,279.854)

whole 100.352(92.126,109.345) 96.147(84.238,104.632) 91.287(79.968,98.963)

Table 4.4: The upper bound and lower bound of E(SSE) and the mean when β = 1 (20 covariates) under 10
replications when ρ = 0.5

No. of Splits g=1 g=10 g=100
2 256.432(225.116,272.553) 221.334(189.398,246.337 ) 203.257(174.554,211.897)
5 286.331(262.417,302.745) 255.389(236.247,279.845) 240.552(228.968,269.997)
10 311.551(290.235,328.874) 289.211(270.114,304.489) 272.115(260.511,284.116)

whole 125.167(109.887,132.552) 102.338(90.115,111.287) 95.889(86.115,105.432)

Results from Table 4.5 and Figure 4.3 indicate that when the number of splits are increased
the expected SSE increases. However, also the values of g are increased , the expected SSE de-
creases as the prior become less informative. Results under g = 1000 are close to the classical
framework (Table 4.1).

Table 4.5: The upper bound and lower bound of E(SSE) and the mean when β = 1 (20 covariates) under 10
replications

No. of Splits g=1 g=10 g=100 g=1000
2 198.34(185.61,206.96) 179.90(172.40,188.19) 164.65(159.82,175.24) 152.36(138.53,162.44)
5 255.11(229.35,272.12) 242.11(219.53,254.00) 227.51(207.44,252.44) 213.41(189.51,226.93)
10 286.72(271.11,293.19) 269.61(253.71,282.70) 259.79(249.90,272.64) 235.44(207.36,252.33)

whole 98.43(88.62,105.44) 92.34(81.35,100.63) 87.63(76.96,95.33) 79.86(71.35,85.11)

The results in Figures 4.3 to 4.5 indicate that with a less informative g-prior the expected
SSE is close to the classical framework of OLS. Moreover, the ratio of expected SSE between the
Bayesian and the classical framework are close to 1 under the less informative prior. The results
are reported in Figures 4.6 to 4.8. Moreover, we use the splitting only the Bayesian framework for
comparion to the whole data set based on the OLS framework.

In term of the number of splittings, the E(SSE) increased when the number of splits in-
creased. They show that more bias is likely to occur when using a high number of splittings.
Based on our findings, we can recommend the following guidelines for splitting. First, using a
Bayesian model, as may be necessary in high-dimensional settings, should not be a problem, and
will perform almost as well as an OLS approach as long as the priors taken are not highly informa-
tive. Second, since increasing the number of splits leads to more bias, it is best to take as small a
number of splits as possible while still having a computationally efficient method to fit the model
to the data.
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Figure 4.3: The plot of the Expected SSE with 20 covariates
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Figure 4.4: The plot of the Expected SSE with 50 covariates
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Figure 4.5: The plot of the Expected SSE with 100 covariates
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Figure 4.6: The plot of the ratio of Expected SSE under the Bayesian and classical frameworks with 20
covariates
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Figure 4.7: The plot of the ratio of Expected SSE under the Bayesian and classical framework with 50
covariates
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Figure 4.8: The plot of the ratio of Expected SSE under the Bayesian and classical framework with 100
covariates
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Chapter 5

Simulation studies

In the following section two simulation studies are presented. They include linear regression mod-
els and logistic regression models. The goal of the simulation studies presented here is to study
Bayesian variable selection in data sets with realistic features emulating GWAS data.

The criteria for assessment of model performance used in this study are posterior inclusion
probabilities.Inclusion probabilities measure the importance of a covariate based on all models in
which the covariate is included.

Since SNPs in GWAS are often highly correlated where close to each other on the genome,
generating dependent covariates is also considered. The predictors are generated from correlated
Binomial distributions using a procedure described in the section below. The genotype at a given
SNP contains three possible values, represented in this chapter as 0, 1 or 2.

5.1 Simulation of correlated binomial data

The procedure to generate dependent Binomial random variables we use is based on Bernoulli
distribution (Wuber, 2012) :

1. Define the bivariate joint probability function as P(0, 0) = a, P(1, 0) = 1− q− a, P(0, 1) =

1− p− a and P(1, 1) = a + p + q− 1 where p and q are the probabilities to specify for each
Bernoulli random variable, a = ρ

√
pq(1− p)(1− q) + pq and ρ is the desired correlation

between the variables.

2. Given the bivariate joint probabilities, simulate realizations of the random variables and con-
sider the first component as a single Bernoulli random variable and also the second. Then,
the resultant two Bernoulli random variables are correlated with each other with a value of ρ.

3. Sum n realizations of each random variable generated in step 2), and finally we obtain 2
Bivariate Binomial random variables correlated with ρ.
The next step is to generate more than two random variables when the new random variable
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is conditional on two random variables that are generated before.

4. Define a new bivariate joint probability function as

P(0, 0) =
a

1− p
,

P(1, 0) =
1− p− a

1− p
,

P(0, 1)
1− q− a

p

and
P(1, 1) =

p + q− 1 + a
p

.

5. Perform step 2) and 3) with the new probabilities. Finally, the generated variables are corre-
lated Binomial random variables that correlate with the previous random variables.

The idea behind the simulation of random variables is to consider the joint probability of the two
random variables under the Bernoulli distribution. Let X ∼ Ber(p) and Y ∼ Ber(q). Hence,
p(X = 0) = 1− p, p(X = 1) = p, p(Y = 0) = 1− q and p(Y = 1) = q.

Then the joint probability for four possibilities is given by

p(X = 0, Y = 0) = a,

p(X = 0, Y = 1) = 1− p− a,

p(X = 1, Y = 0) = 1− q− a,

p(X = 1, Y = 1) = p + q− 1 + a.

using the axiom that the probability of all possible outcomes is 1. Moreover, the sum of the joint
probabilities is equal to the marginal probability. For example, let

p(X = 0) = 0.3, p(X = 1) = 0.7, p(Y = 0) = 0.4, p(Y = 1) = 0.6.

Then

p(X = 0, Y = 0) = 0.25,

p(X = 0, Y = 1) = 0.05,

p(X = 1, Y = 0) = 0.15,

p(X = 1, Y = 1) = 0.55.
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The crucial part is to specify the level of correlation, the correlation (ρx,y) is defined as

ρx,y =
E(XY)− E(X)E(Y)√

Var(X)Var(Y)

Since X and Y are Bernoulli, the expectation and variance of X and Y are deduced after the
formula from above are put together:

E(XY) = ρx,y

√
pq(1− p)(1− q) + pq

.
Moreover, X and Y are the only terms contributing to E(XY) if X = 1 and Y = 1. The

formula is rearranged in terms of the joint probability concluding correlation (ρ). Thus,

a = ρx,y

√
pq(1− p)(1− q) + pq− p− q + 1.

For simplicity, the above formula is rewritten as

a = ρx,y

√
pq(1− p)(1− q) + (1− p)(1− q).

To simulate more than 2 variables, an additional procedure is required to generate the third
variable Z conditional on the value of Y. (and possibly X)

Considering Y as a Bernoulli distribution, there will be 2 possible values: 0 and 1. If Y is 0,
there are 2 ways to generate Z. First is to generate 0 with probability

a
1− p

.

The other is to generate 1 with probability

1− p− a
1− p

.

These probabilities are based on the idea of conditional probability. For example,

p(Z = 0|Y = 0) =
p(Y = 0, Z = 0)

p(Y = 0)
=

a
1− p

,

the joint probability p(Y = 0, Z = 0) is the same in previous simulation, the marginal distribution
p(Y = 0) is based on summing up p(Y = 0, Z = 0) and p(Y = 0, Z = 1).

If Y is 1, there are 2 ways to generate Z. First is to generate 0 with probability

1− q− a
p

,

and the other is to generate 1 with probability

p + q− 1 + a
p

.
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These probabilities are based on the same pattern when Y is 0.
The last step will be the same for both procedures, adding the two Bernoulli random vari-

ables which will produce a new Binomial random variable that correlates with the previous vari-
able when used in the simulation.

Comparing the relative frequencies of each variable in all simulations, the values were seen
to converge to the true proportions of the Binomial distribution. The Chi-square Goodness of fit
test was used to test the hypothesis on the equality of proportions in each covariate. The p-value
of the test is 0.8136. We can conclude that the observed proportions are not significantly different
from the expected proportions.

The empirical correlation can be verified with two cases. The first is through simulation of
X and Y. The second is through simulation of Z conditional on Y. The results indicated that the
empirical correlation was similar to the true correlation.

5.2 Simulation part 1: linear regression model

The simulation studies will first focus on variable selection in linear regression , based in the
Bayesian framework. In the simulation study, the covariates are separated in two groups - the
associated covariates that affect the response variable, and the non-associated covariates that do
not affect the dependent variable. One characteristic of GWAS data is that SNPs are correlated.
Hence, correlated covariates will also be considered in our simulations. For the independent case,
covariates are drawn independently. For the correlated cases, where variables are correlated to
each other, there will be 3 different patterns of correlation considered. The first is the associated
covariate being correlated with other covariates. The second is more than one associated covariate
being correlated with other non-associated covariates. The last is where there is correlation among
the associated covariates.

5.2.1 Simulation setup

The simulation consists of 500, 1000 and 2000 covariates and there are 500 observations. The Bi-
nomial probability parameter p is varied over 0.01, 0.05, 0.1, 0.2 and 0.4. We set the effect size
of regressors as 1, 1.5 and 2. x2, x8 and x12 are assumed to the associated with the response, the
others are not.
The simulations involve 3 scenarios as follows:

1. The first case where all covariates are independent.

2. The second case where there are correlations among some covariates. The 3 associated co-
variates are: x2 (correlated with x4 and x5) x8 (correlated with x6 and x7) and x12 (correlated
with x3 and x9). We set for two levels of different correlation: low ( when ρ = 0.1 ) and high
( when ρ = 0.8 ).
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3. Third, where there are correlations among all the associated covariates x2, x8 and x12. The
levels of correlation are set the same as the second case (two levels).

For each case, we simulate 10 data sets under each setting, to account for variability across repli-
cations.

We use the package BayesVarSel in R statistical software in our study. The function GibbsBvs
in the BayesVarSel package is used for Bayesian variable selection in linear regression models.

5.2.2 Model and MCMC diagnostics

The standard normal linear model describes the relationship between the set of all predictors
X1, . . . , X p namely f (Y |β, σ2, X) = MN(Xβ, σ2 I) where Y is a n× 1 vector, X is a n× p matrix, β

is a p× 1 vector of unknown regression coefficients and σ2 is an unknown positive scalar. More-
over, there are indicator variables assumed to be given by γ = (γ1, . . . , γp)

′ and there are two
possible values of each γi i.e. 0 and 1 (i = 1, ..., p). γi = 0 corresponds to Xi being excluded from
the model, and γi = 1 represents that Xi is included in the model .

Before any inference can be made from the MCMC output, convergence diagnostics must
be carried out to assess convergence to the stationary distribution. The first diagnostic used is a
trace plot. If the MCMC has converged to the posterior distribution, the traceplot will show ran-
domness . The next diagnostic is the autocorrelation plot. Ideally the autocorrelation plot should
dramatically decrease after a few lags. The final diagnostic used is the Gelman-Rubin statistic to
examine the convergence with multiple chains. If the value is close to 1, one may assume that
there is little evidence of non-convergence. A number of convergence diagnostic tools are used
as a single tool may not give reliable evidence that no serious violations of MCMC convergence
are present. The Figures 5.18 to 5.13 are the example on the autocorrelation plots that decrease
after a few lag. Moreover, the Figures 5.14 to 5.16 are the example on the traceplots that show mix
random.

The results of the simulation studies are presented in the following sections.

5.2.3 Results of linear regression model

The first set of results are presented as a plot of the marginal inclusion probability in each covari-
ate under 500 covariates (Figures 5.1 to 5.3). The mean Bayes Factor of the true model to the best
model and the percentage of best models that correspond to the true model under both the inde-
pendent and correlated cases is given in Table 5.1 and 5.2. In term of the 80% credible interval,
since there are 10 data sets in each setting, we select the 10th percentile as the lower bound and
the 90th percentile as the upper bound.

The inclusion probabilities of associated covariates are presented in Figures 5.1 to 5.3. Each
row of the plot gives the effect sizes corresponding to the regressors, and the vertical axis in each
plot represents the inclusion probability. The horizontal axis in each plot represents the covariates.
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The different colour in each bar represents the difference values in the probability parameter of
generating in each covariate from a Binomial distribution.

Computing the marginal inclusion probability of each variable helps determine whether the
variable should be included in the model.

From the first column of Figure 5.1, we see that when p increases, so does the inclusion prob-
ability. The study also suggests higher inclusion probabilities with higher effect size as shown
through the increasing trend in the first column of Figure 5.1. When the effect size is low (β = 0.1),
the inclusion probabilities are also low for x2, x8 and x12 (illustrated in the first case in the first plot
of Figures 5.2 and 5.3).

Under the scenario with correlation, the inclusion probabilities under the low correlation
(ρ = 0.1) are higher than that of the high correlation (ρ = 0.8). Most cases are in line with this
hypothesis except in the case of low effect size (β = 0.1) shown in the first row of Figures 5.1 to
5.3. A similar result is witnessed when the probability p in the Binomial distribution is increased.
Inclusion probabilities increase as p is increased.

In the third case (correlation among all associated covariates) and the last case (two associ-
ated covariates correlating with another covariate), the study shows an increasing inclusion prob-
ability when p increases (shown in the 1st, 2nd, 3rd and 4th column of Figures 5.2 and 5.3). Again,
the inclusion probabilities are higher with high effect size, and lower with low effect size (β = 0.1),
illustrated in the first row in the 1st, 2nd, 3rd and 4th column of Figures 5.2 and 5.3. These results
show a similar trend under other correlated cases.

To confirm these findings, the Bayes Factor is calculated for all cases, where the true model
is compared to the best model found (Table 5.1). The true model contains (x2, x8, x12) . The mean
of the Bayes Factor is then considered with 80% credible interval of BF. There are 10 values of
Bayes Factor where the lower bound is the 10th percentile and the upper bound is the 90th per-
centile. If BF =1, it implies that the best model found is the true model. Under lower effect sizes
(β = 0.1, 0.2) and the probability setting (p = 0.01, 0.05), the mean BF is lower than 1. This implies
that the best model is not the true model (shown in Table 1.1) . However, with higher effect sizes
(β = 0.5, 1, 1.5) and the probability setting (p = 0.2, 0.4), the BF means are close to 1 (shown in
Table 1.1). Again, the mean has a similar tendency , it implies that the best model found that is not
the true model under the low effect sizes (β = 0.1, 0.2) and the probability setting(p = 0.01, 0.05).

Under the independent case, when the effect size is increased, the inclusion probability re-
mains the same. This is expected as the higher effect size reflects a better performance of covariate
selection. Moreover, the percentage of cases where the true model is found keeps increasing as the
Binomial p increases. This is shown in Table 5.1.

Under the correlated situation (one associated covariate with two other non-associated co-
variates), the percentage of times the best model was the true model is slightly higher than in the
independent case (shown in Table 5.2). The correlated data reduces the performance of the model
selection due to the multicollinearity issue. The percentage of times the true model is found in
the case with high correlation (ρ = 0.8) is lower than that of low correlation (ρ = 0.1). With high
correlation, the chance of selecting the true model is reduced due to correlations between covari-
ates (shown in Table 5.2). In terms of the Bayes Factor, these values are 0, implying that the best
model is the null model. Thus, BF under the true model compared to the best model has lower
values (shown in the first row of Table 5.2). However, when effect size and probability setting
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value increases, the Bayes Factor for the best model and the true model is slightly different. This is
particularly true when the effect size and probability setting value are similarly high. In that case,
the percentage of correct variable selection is 100 (shown in the last row of Table 5.2).

The case where all associated covariates are correlated is the most complex as there are corre-
lations among associated covariates. Hence, the Bayes Factor between models is 0 in cases where
the effect size and values of p are low (shown in the first row of Table 5.2). Hence the best model is
the null model. Generally, we see more null models as the best found for high correlation cases. In
the case of low effect size ( β = 0.1, 0.2) , we witnessed null models frequently (shown in Table 5.2).
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Figure 5.1: The marginal inclusion probability in each associated covariate (x2, x8, x12) when
there were 500 covariates in linear regression (under the independent case and first of two
correlated cases)

The title in each plot is the specification on the independent case and the correlated cases with
ρ = 0.1 or ρ = 0.8. Each row of the plots is the effect sizes on the regressor(β = 0.10, 0.20, 0.50, 1
and 1.5). The vertical axis in each plot represents the inclusion probability. The horizontal axis
in each plot represents the covariates. The difference colour in each bar represents the values in
probability (p = 0.01, 0.05, 0.10, 0.20 and 0.40) of generating in each covariate from a Binomial
distribution. In terms of the title in each plot, 1st is under the independent case, other (2nd, 3rd,
4th, 5th and 6th) are under the correlated cases.
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Figure 5.2: The marginal inclusion probability in each associated covariate (x2, x8, x12) when
there were 500 covariates in linear regression (under the three correlated cases)
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Figure 5.3: The marginal inclusion probability in each associated covariate (x2, x8, x12) when
there were 500 covariates in linear regression (under the last two correlated cases)

5.2.4 Summary

The simulation studies showed that the inclusion probabilities of associated covariates (i.e. x2, x8, x12)
are increased when the effect size (β) increses, which is to be expected. These results are shown in
the first column on Figure 1 under the independent case and they are reported in other columns
on Figure 5.1 for the correlated cases.

The percentage of times the true model is found in the case with high correlation among
covariates (ρ = 0.8) is lower than that of low correlation (ρ = 0.1) (Table 5.1 and 5.2). The high
correlation therefore has an impact on reducting the performance of model selection due to mul-
ticollinearity .

For the model convergence diagnostic, we present the effective sample size (ESS) which is
high for associated covariates (x2 , x8 and x12) (Table 5.3 and 5.4).

The effective sample size is the part for estimating the mean, for a time series X of length N
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Table 5.1: The mean Bayes Factor and 80% credible interval of BF of the true model compared to the best
model The % denotes the percentage of the best model that was the true model (independent covariates)

Beta p=0.01 p=0.05 p=0.10
0.10 0.0010(0.0009,0.0029) 0.0025(0.0014,0.0037) 0.0158(0.0019,0.0384)
% 0 0 0

0.20 0.09(0.02,0.13) 0.16(0.06,0.33) 0.46(0.35,0.98)
% 0 0 0

0.50 0.52(0.11,0.93) 0.60(0.35,0.94) 0.95(0.82,0.96)
% 0 70 90

1.00 0.98(0.91,1) 0.99(0.97,1) 1(1,1)
% 80 90 100

1.50 0.99(0.95,1) 1(1,1) 1(1,1)
% 80 100 100

Beta p=0.20 p=0.40
0.10 0.0214(0.0037,0.0663) 0.0310(0.0053,0.0917)
% 0 0

0.20 0.88(0.84,1) 0.95(0.92,1)
% 0 30

0.50 1(1,1) 1(1,1)
% 100 100

1.00 1(1,1) 1(1,1)
% 100 100

1.50 1(1,1) 1(1,1)
% 100 100

the standard error for the mean is
√

Var(X)/n where n is the effective sample size (Plummer et
al., 2022).
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Table 5.2: The mean Bayes Factor and 80% credible interval of the BF of the true model compared to the
best model. The % denotes the percentage of the best model that was the true model (correlated case and
ρ = 0.8)

Beta p=0.01 p=0.05 p=0.10
0.10 0.0001(0.0001,0.0004) 0.0006(0.0003,0.0009) 0.0065(0.0016,0.0072)
% 0 0 0

0.20 0.03(0.01,0.07) 0.04(-0.55,0.09) 0.20(0.06,0.33)
% 0 0 0

0.50 0.14(-0.16,0.44) 0.43(0.17,0.64) 0.52(0.19,0.77)
% 0 0 0

1.00 0.79(0.21,0.80) 0.96(0.91,1) 1(1,1)
% 0 80 100

1.50 0.81(0.44,0.85) 1(1,1) 1(1,1)
% 10 100 100

Beta p=0.20 p=0.40
0.10 0.0246(0.0031,0.0362) 0.0257(0.0036,0.0277)
% 0 0

0.20 0.35(0.21,0.53) 0.47(0.39,0.73)
% 0 0

0.50 0.79(0.56,0.89) 1(1,1)
% 60 100

1.00 1(1,1) 1(1,1)
% 100 100

1.50 1(1,1) 1(1,1)
% 100 100

Table 5.3: The median, the 10th percentile and the 90th percentile of Effective Sample Size (ESS) (indepen-
dent covariates)

Beta p=0.01 p=0.05 p=0.10
0.1 9296.70(9013.15,9494.81) 9547.39(8978.77,10065.78) 9221.95(8611.50,10215.54)
0.2 9217.53(9029.57,10076.78) 9431.68(8599.21,10684.17) 9271.63(9211.58,10506.26)
0.5 9155.20(8960.54,10055.48) 10000(9345.01,10576.58) 9422.67(9200.04,10000)
1 9493.82(8525.86,10052.19) 9294.44(8904.14,10000) 9252.60(8884.34,9413.74)

1.5 9773.90(9474.33,10379) 9334.40(8939.03,10034.88) 9464.85(8987.66,9602.01)
Beta p=0.20 p=0.40
0.1 9867.17(8988.35,10317.22) 10000(9587.25,10497.06)
0.2 9286.86(9256.42,10008.96) 10000(9232.64,10047.65)
0.5 9315.74(8886.96,9984.22) 9190.39(8812.41,9685.50)
1 9388.81(9112.81,9737.32) 9193.34(9098.84,9674.83)

1.5 9316.54(8876.12,10167.15) 9114.42(8643.73,9583.83)
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Table 5.4: The median, the 10th percentile and the 90th percentile of Effective Sample Size (ESS) (correlated
case)

Rho Beta p=0.01 p=0.05 p=0.10
0.1 0.1 9471.82(9049.45,10403.66) 9530.59(9092.17,10081.86) 9320.86(9060.55,10065.52)
0.8 0.1 9283.80(8876.42,10034.65) 9183.89(8491.47,10632.70) 9664.99(9016.79,10715.68)
0.1 0.2 9162.98(8873.15,9844.85) 9392.31(9186.75,10601) 9936.34(9385.77,10332.92)
0.8 0.2 9470.55(9118.23,10614.19) 9939.39(9648.56,10097.22) 9018.90(9032.25,9840.24)
0.1 0.5 10000(8806.14,10790.87) 10000(9362.43,10030.15) 9294.44(8783.09,9566.99)
0.8 0.5 9094.39(9029.01,9913.41) 8921.62(8515.11,9059.89) 8800.25(8200.51,9408.75)
0.1 1 9966.29(8448.93,10939.99) 8975.98(8827.72,9426.42) 9116.67(8899.83,9574.33)
0.8 1 9300.23(8405.82,9124.24) 9837.32(9506.39,10032.86) 9430.48(9089.53,10054.53)
0.1 1.5 9445.91(8788.68,10003.66) 9422.95(8819.98,10000) 9162.63(8987.32,9349.62)
0.8 1.5 9061.84(8518.82,10546.27) 9241.18(8900.21,10000) 9335.11(8901.33,10000)

Rho Beta p=0.20 p=0.40
0.1 0.1 9693.34(9246.26,10489.90) 9961.79(9701.27,10400.56)
0.8 0.1 9735.37(9130.24,9900.19) 9086.58(9029.34,9410.19)
0.1 0.2 9989(9700.06,10461.98) 9980.99(9883.96,10252.73)
0.8 0.2 9434.07(8691.38,9740.07) 9517.57(9074.70,10031.98)
0.1 0.5 9375.87(9078.89,10000) 9178.71(8709.79,9528)
0.8 0.5 10000(9639.44,10534.42) 9849.45(9204.73,10489.61)
0.1 1 9138.62(8670.79,10160.10) 9083.16(8871.53,9524.95)
0.8 1 9279.65(9007.49,10305,98) 8992.91(8421.63,9173.96)
0.1 1.5 9154.72(8659.00,10000) 9300.57(8973.06,10039.20)
0.8 1.5 9185.15(8789.14,9373.72) 9098.22(8703.02,10015.27)
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5.3 Simulation part 2: logistic regression model

The section will describe investigations into the performance of Bayesian variable selection in
logistic regression models where the response is binary (categorical) and the covariate settings are
similar to those discussed in Section 5.2.

5.3.1 Simulation setup

The simulation consists of p =500, 1000 and 2000 covariates and there are n =500 observations.
The Binomial probability (for covariates) is set at 0.1. We set the effect size of regressors as 1,
1.5 and 2. At each setting, we generated 10 data sets. In each case, we found that the inclusion
probability was very low. Hence, we set higher values in each case. The simulation involves 3
scenarios, similar to the linear regression model. x1, x2 and x3 are assumed to the associated with
the response, the others are not.

For the variable selection we use the logisticVS function in the bvs f lex package, setting the
number of iterations as 200000 based on pilot runs indicating a longer time is needed for MCMC
convergence. There are several parameters in the package. The prior mean for β is set to 0. We
conduct sensitivity studies by changing values of many hyper-parameters, where g for the prior
covariance matrix for β is set at 0.1, 1, 10 and 100, the prior precision for β is set at 100, and the
prior mean of Beta prior distribution is 0.06. Under the package, the additional hyper-prior distri-
bution for π is given by π ∼ Beta(a, b). In addition, there are 3 classes of prior distribution for the
hyper-parameter g which are inverse-gamma, hyper-g and none. We choose none which implies
that g is assumed to be fixed at the value specified. The bvs f lex package on R-forge is used for the
variable selection in logistic regression models. -(http://bvsflex.r-forge.r-project.org) (Zucknick,
2013).

We consider a simulation scenario where we have p = 500, 1000 and 2000 covariates and
there are n = 500 observations. Each explanatory variable is generated from a Binomial distribu-
tion with parameters (2, p) where p takes the value 0.01. The effect size for the regressor is 2. The
dependent variable is generated from the Binomial distribution with n=1 (for the binary values)
. Prior to generating response variables, the input variables (xi) are centered to mean-0 as this
model used does not contain an intercept.

With many possible combinations of settings, a few cases are chosen for presentation below.

5.3.2 Results of logistic regression model

These results are shown in terms of inclusion probability of each covariate for the logistic regres-
sion model with g = 1, both under the independent and correlated cases (Table 5.5). The plot
of confidence interval and credible intervals of the regression coefficients under the independent
case are shown in Figure 5.4.

The inclusion probability is high when the effect size is high for associated covariate (i.e.
x1, x2, x3) with 500 covariates under the independent case. Moreover, the inclusion probability for
other covariates are less than those for associated covariates in all situations, since the true model
contains all 3 covariates as depicted in Figure 5.5, 5.6 and 5.7. Moreover, when the effect size (β)
increases the inclusion probability increases. However, in some cases with the lower effect size,
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i.e., β=1, the inclusion probability of associated covariates is quite low. These values are reported
in Figure 3 when β = 1 . Moreover, the inclusion probability is consistently high when the effect
size is higher (β = 1.5, 2) as shown in those figures when β = 1.5, 2 (Figure 5.6 and 5.7).

In terms of the prior, the posterior inclusion probability appeared higher under the less in-
formative prior, i.e. g = 50, 70, 80. However, the inclusion probability was lower under the more
informative prior, i.e. g = 1, 10. This is due to the fact that the more informative prior has an
impact on the posterior distribution.

Moreover, Figure 5.14, 5.15 and 5.16 show the traceplot of all iterations under some settings.
Each traceplot confirms that inclusion probabilities are low at low effect size (β = 1). However,
the inclusion probabilities are high with higher effect sizes (β = 2), as seen in the the third panel
for each traceplot.

We further estimate the posterior distribution through the credible intervals of the regres-
sion coefficients which are presented in plots of the credible interval separately in each simulation
setting when considering just associated covariates (x1, x2, x3) (Figure 5.17, 5.18 and 5.19). These
figures indicate that most credible interval covered the estimated values by the glm fitting.

Moreover, autocorrelation plots were considered to diagnose possible lack of MCMC con-
vergence. (Figures 5.8 to 5.13)

In term of the autocorrelation plot, most autocorrelations decrease dramatically after lag 1
. Hence, there does not seem to be evidence of non-convergence to the stationary distribution.
However, some plots with β = 2 do not decrease after lag 1 as shown in Figures 5.8 and 5.12.

The plots of the credible intervals of regression coefficients are shown separately in each
simulation setting for only the associated covariates (x1, x2, x3). The results show that all credible
intervals cover the true value when the glm is fit. The red lines represent the lower bound and the
upper bound for confidence intervals from a logistic regression fitted with only x1, x2, x3. The blue
box plots represent the credible intervals from the MCMC output, and the green line illustrates
the true values of the simulation setting. These results are reported in Figure 5.4.
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Figure 5.4: The plot of the confidence interval under the associated covariates (x1, x2, x3)
situation and under the independent case in logistic regression (The red lines represent the
lower bound and the upper bound for glm fitting. The blue box plots represent the confidence
interval of MCMC output where the green line illustrates the true values of the simulation
setting.)

Figure 5.5: The boxplots of inclusion probability for β1, β2, β3 and g = 10, µ = 0.06 under the
independent case (ten data sets) when β = 1 from 500, 1000 and 2000 covariates

Figure 5.6 : The boxplots of inclusion probability for β1, β2, β3 and g = 10, µ = 0.06
under the independent case (ten data sets) when β = 1.5 from 500, 1000 and 2000 covariates

Figure 5.7 : The boxplots of inclusion probability for β1, β2, β3 and g = 10, µ = 0.06
under the independent case (ten data sets) when β = 2 from 500, 1000 and 2000 covariates
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Figure 5.8: The acfplot of β and g = 10, µ = 0.06 when β = 1 (single data set) from 500 covari-

ates

Figure 5.9: The acfplot of β and g = 10, µ = 0.06 when β = 1 (single data set) from 1000 covari-

ates

Figure 5.10: The acfplot of β and g = 10, µ = 0.06 when β = 1 (single data set) from 2000 co-

variates

Figure 5.11: The acfplot of β and g = 10, µ = 0.06 when β = 2 (single data set) from 500 covari-

ates
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Figure 5.12: The acfplot of β and g = 10, µ = 0.06 when β = 2 (single data set) from 1000 co-

variates

Figure 5.13: The acfplot of β and g = 10, µ = 0.06 when β = 2 (single data set) from 2000 co-

variates
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Figure 5.14: The traceplot of β = 2 and g = 10, µ = 0.06 (single data set) from 500 covariates

Figure 5.15: The traceplot of β = 2 and g = 10, µ = 0.06 (single data set) from 1000 covariates

Figure 5.16 : The traceplot of β = 2 and g = 10, µ = 0.06 (single data set) from 2000 covariates
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Figure 5.17 : The plot of the credible interval of the associated covariates when β = 2 under
the independent case from 500 covariates

Figure 5.18: The plot of the credible interval of the associated covariates when β = 2 under the
independent case from 1000 covariates

Figure 5.19 : The plot of the credible interval of the associated covariates when β = 2 under
the independent case from 2000 covariates
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Table 5.5: The inclusion probability for each covariate for the logistic regression model when g = 10 under
the correlated case

Prior mean µ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
0.2 0.28 0.29 0.30 0.23 0.21 0.19 0.16 0.08 0.06 0.08 0.08 0.07
0.4 0.27 0.29 0.28 0.21 0.29 0.11 0.19 0.13 0.14 0.06 0.08 0.15
0.6 0.25 0.21 0.29 0.21 0.17 0.26 0.18 0.16 0.13 0.12 0.17 0.16
0.8 0.25 0.23 0.27 0.20 0.26 0.19 0.22 0.18 0.13 0.17 0.18 0.17

5.3.3 Summary

Our simulation studies showed that, as expected, the posterior inclusion probabilities of associ-
ated covariates (x1, x2, x3) are increased when the effect size (β) is increased. However, the other
covariates (non-associated covariates) are very low on the posterior inclusion probabilities. These
results are shown in Figures 5.5 to 5.7 (under the independent case) and reported in Figures 5.20
to 5.22 (under the correlated cases.) These simulation studies can be applied on GWAS datasets
when the number of associated covariates is small, with moderately large effect sizes, even though
the total number of covariates may be large, say in the thousands, with a lower sample size. How-
ever, the simulation studies should be extended to higher numbers of covariates and sample size.
Also, as we have shown in Chapter 4, with larger datasets, one can use the split-merge approach
for greater efficiency without too much added bias.

The credible intervals (CI’s) for the estimation for β from the MCMC method were compared
with confidence intervals from the glm fitting. We found that CI’s from higher effect sizes (β = 2)
credible intervals under the MCMC method and under the glm fitting are similar. They were more
accurate when the effect size was higher. The results are on the lower effect sizes (β = 1, 1.5) which
are reported in Appendix. However, they can be applied on the lower effect size

When the overall number of covariates increase, the inclusion probabilities decrease for each
covariate. These are reported in Figures 5.5 to 5.7. This is understandable as the variable selection
search space increases massively with an increase in p.

Model diagnostics indicate that the posterior samples are likely to be taken from the station-
ary distribution.

In the effective sample size (ESS) is high for some covariates especially x1 but it is low for
other associated covariates (x2 and x3). (Figures 5.25 to 5.28).

The results of simulation studies in this Chapter indicated that Bayesian Variable Selection
(BVS) can deal with the multicollinearity problem when the number of covariates is higher than
number of observations (p >> n), as in the situation with GWAS.

These simulation studies, contain about a few thousand covariates and 500 observations
which is somewhat smaller than typical sizes of real datasets. However, with the split-and-merge
approach, one can reduce the dimension of each split datasets to make the problem comparable.
We next apply our methods to the real dataset in Chapter 6.
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Figure 5.20: The boxplots of inclusion probability forβ1, β2, β3 and g = 10, mu = 0.06 under
the second correlated case (x1 with x4, x5, x2 with x6, x7, x3 with x8, x9 ) when β = 1, ρ = 0.1

from 500, 1000 and 2000 covariates

Figure 5.21 : The boxplots of inclusion probability forβ1, β2, β3 and g = 10, mu = 0.06 under
the second correlated case (x1

with x4, x5, x2 with x6, x7, x3 with x8, x9 ) when β = 1.5, ρ = 0.1 from 500, 1000 and 2000 covariates

Table 5.6: The inclusion probability for each covariate for the logistic regression model when g = 1 and
under the independent case

Prior mean µ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
0.2 0.56 0.31 0.53 0.11 0.12 0.13 0.15 0.10 0.14 0.13 0.12 0.12
0.4 0.49 0.47 0.50 0.23 0.13 0.14 0.17 0.13 0.19 0.16 0.15 0.13
0.6 0.40 0.42 0.46 0.27 0.19 0.17 0.16 0.24 0.24 0.16 0.19 0.21
0.8 0.39 0.40 0.45 0.29 0.19 0.24 0.18 0.24 0.25 0.24 0.17 0.19
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Figure 5.22 : The boxplots of inclusion probability for β1, β2, β3 and g = 10, mu = 0.06 under
the second correlated case (x1 with x4, x5, x2 with x6, x7, x3 with x8, x9 ) when β = 2, ρ = 0.1

from 500, 1000 and 2000 covariates

Figure 5.23 : The plot of the credible interval under the
associated covariates when β = 2 under the independent case from 500,1000 and 2000 covariates

Figure 5.24 : The plot of the credible interval under the associated covariates when β = 2
under the second correlated

case (x1 with x4, x5, x2 with x6, x7, x3 with x8, x9 ) when ρ = 0.1 from 500, 1000 and 2000 covariates
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Figure 5.25 : The boxplots of ESS/the total of iterations after burn-in for β1, β2, β3 and g = 10,
mu = 0.06 under the independent case (ten data sets) from 500, 1000 and 2000 covariates

Figure 5.26 : The boxplots of ESS/the number of itreations that contain each β for β1, β2, β3 and
g = 10, mu = 0.06 under the independent case (ten data sets) from 500, 1000 and 2000 covariates

Figure 5.27 : The boxplots of ESS/the total of iterations after burn-in for β1, β2, β3 and g = 10,
mu = 0.06 under the independent case (ten data sets) from 500, 1000 and 2000 covariates

Figure 5.28 : The boxplots of ESS/the number of itreations that contain each β for β1, β2, β3 and
g = 10, mu = 0.06 under the independent case (ten data sets) from 500, 1000 and 2000 covariates
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Chapter 6

Analysis of hypertension GWAS data

6.1 Introduction

Implementing simulation studies allowed the investigation and comparison of various methods’
performance under specified scenarios, which in turn provide guidelines for their use in the as-
sessment and interpretation of results obtained in the analysis of real data. The previous chapters
of this thesis were dedicated to the development of methods and their assessment. In this chapter,
we compare methods in a more realistic setting, with application to actual GWAS datasets. We
first introduce and describe the dataset that will be analysed later in this chapter.

6.2 Data Deccription and Exploratory Analysis

This dataset is about GWAS of heart disease from Prof.Sandosh Padmanabhan’s lab at Cardio-
vascular Sciences at Glasgow. A partial analysis of the data is covered in Padmanabhan and Joe
(2017). There are 5312 observations, however after excluding rows with missing values, 5158 ob-
servations remain. Moreover, there are only 3731 that match the genotype data by patient ID.
The covariates measured include ID, age, sex, Body Mass Index (BMI), smoking behavior and the
existence of previous cardiovascular disease. There are two response variables. The first is se-
vere stage 2 hypertension - where a person has a Systolic Blood Pressure (SBP) of greater than or
equal to 140 mmHg or a Diastolic Blood Pressure (DBP) of greater than or equal to 90 mmHg .
The second outcome variable is "hypertensive crisis", when a person has a blood pressure higher
than 180/120 mmHg, requiring urgent medical care. There are 15221 associated covariates of SNP
genotype information for each individual.

A summary of the categorical variables is reported in Table 6.1.

Table 6.1: Summary of categorical variables in heart GWAS data

Variable Frequency of 0 Frequency of 1 Interpretation
sex 1865 1866 1= women

newsmoke 2905 826 1 = smokers
prevcd 3573 158 1 = having previous cardiovascular disease

hypstage2 45 3686 1 = stage 2 hypertension
hypcrisis 2389 1342 1 = have hypertensive crisis
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The continuous variables are summarized in Table 6.2.

Table 6.2: Summary of some continuous variables

Variable Minimum Maximum Mean
age 49 75 60.09
BMI 15.81 55.40 28.12

Next, as preliminary data analysis, we individually tested the association of each covariate
with each of the response variables.

We also constructed Chi-square tests of association between each outcome and the categor-
ical covariates. At a 5% level of significance, age and sex appeared significantly associated with
hypertensive crisis.

For computational efficiency, considering the high dimension of the SNP genotype variables,
we wanted to test the applicability of variable selection under a data splitting scenario (Chapter
5). We separate 3 scenarios. First, we split the total covariates in 5 data sets, with each data set
containing about 3000 covariates. Second, the data set was split into 3 data sets, each data set
containing about 5000 covariates. Last, the whole data set was considered together, with about
15000 covariates.

Moreover, age variable was centered by subtracting the mean and dividing by the standard
deviation. Centering was also done for the SNP covariates before any method was applied.

In testing for the quantitative covariates, we used 2 sample Student t test. The results
showed that higher the age of an individual, the more likely to have higher chance of hyper-
tensive crisis. However, the remaining covariates do not show any association. Boxplots of the
continuous covariates, grouped by outcome category, also showed similar results (Figures 6.1 and
6.2)

Table 6.3: Summary of test for association between covariates

Variables test statistic p-value Interpretation
prevcd and hyperstage2 χ2 = 5.238e− 28 1 hyperstage2 not associated for previous cardiovascular disease

newsmoke and hyperstage2 χ2 = 6.416e− 28 1 hyperstage2 in smoker and non-smoker not different

prevcd and hypercrisis χ2 = 0.20443 0.6512 hypercrisis not associated for previous cardiovascular disease

newsmoke and hypercrisis χ2 = 1.2117 0.271 hypercrisis in smoker and non-smoker not different

sex and hyperstage2 χ2 = 2.2548 0.1332 hyperstage2 and sex no significant association

sex and hypercrisis χ2 = 39.674 3e-10 hypercrisis in each sex associated difference

Table 6.4: Summary of test for the quantitative covariates

Variables test statistic p-value
age and hyperstage2 t = −0.3022 0.7654
age and hypercrisis t = −11.364 2.2e-16

BMI and hyperstage2 t = 0.54687 0.5871
BMI and hypercrisis t = −1.5368 0.1245
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Figure 6.1: The boxplots of age and two response variables (stage 2 of hypertension and hypotensive crisis)
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Figure 6.2: The boxplots of BMI and two response variables (stage 2 of hypertension and hypotensive crisis)
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6.3 Results

Since outcome variable is categorical, we used logistic regression models and performed Bayesian
Variable Selection (BVS) as dicussed in Chapter 3. Moreover, we compared BVS with LASSO
penalised regression via using the glmnet package. There are two criteria, λ.min and λ.1se that
were selecting the final LASSO model:λ.min is the value of λ that gives minimum mean cross-
validated error, while λ.1se is the value of λ that gives the most regularised model such that the
cross-validated error is within one standard error of the minimum (Friedman et al., 2010). We
used the bvs f lex package used for on R-forge for variable selection in logistic regression models
(Zucknick, 2013).
There are about 15000 SNPs covariates in total, that were split into 3, 5 and 15 datasets in turn
in this analysis . The results are reported in Tables 6.5 to 6.7 from the first stage analysis of the
datasets.

The cut off point of the inclusion probability of each covariate to select the first stage of for
Bayesian is 0.10.

Under each data set where there are 15 splits, there are about 1000 SNP covariates. These
results implied that only a few covariates are selected at the first stage. Moreover, these poste-
rior mean estimate of the regression coefficients for SNPs from Bayesian are higher slightly than
glmnet under each of the criteria.

Table 6.5: The 95% posterior credible interval of regression coefficient for each SNP selected under BVS
and the upper bound and lower bound of the point estimates for each SNP selected when using LASSO by
spiltting dataset into 15 subdata sets

Data set SNP λ.min λ.1se Bayesian
1 rs17137365 0.1234(0.0138,0.1516) 0.0239(0.0071,0.0917) 0.1465(0.0311,0.2034)
1 rs8035965 0.0526(0.0147,0.1053) - -
1 rs2030484 0.0307(0.0197,0.1011) 0.0475(0.0187,0.1125) -
1 rs1453556 - 0.0178(0.0095,0.0579) -
1 rs12909900 - 0.0161(0.0074,0.0697) -
1 rs1548566 - - 0.0475(0.0104,0.0963)
1 rs11632360 - - 0.0397(0.0162,0.1014)
1 rs981347 - - 0.0306(0.0187,0.0699)
1 rs4613037 0.0714(0.0211,0.1137) 0.0804(0.0187,0.1305) -
1 rs10519577 - 0.0169(0.0084,0.0579) -
1 rs1871017 - 0.0792(0.0272,0.1207) -
1 rs10519442 0.0519(0.0174,0.1042) - -
1 rs8035695 0.1056(0.0294,0.1502) 0.0894(0.0163,0.1289) -

2 rs4238497 0.0179(0.0088,0.0382) 0.0107(0.0055,0.0351) 0.0678(0.0125,0.1486)
2 rs968476 0.0481(0.0173,0.1087) - 0.0415(0.0144,0.1129)
2 rs2337124 0.0205(0.0109,0.0895) 0.0184(0.0056,0.0412) -
2 rs1719343 - 0.0457(0.0165,0.1041) -
2 rs11638086 - 0.0760(0.0219,0.1248) -

Continued on next page
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Table 6.5 – Continued from previous page
Data set SNP λ.min λ.1se Bayesian

2 rs8034856 - 0.1067(0.0452,0.1562) -
2 rs2241493 - - 0.0263(0.0114,0.0679)
2 rs4779527 - - 0.0645(0.0174,0.0996)
2 rs71166243 - 0.0219(0.0045,0.0874) -
2 rs2037844 - - 0.0145(0.0028,0.0614)
2 rs2337124 0.0261(0.0247,0.1184) 0.0356(0.0148,0.1219) -
2 rs2292547 - 0.0998(0.0257,0.1387) -
2 rs10519816 - 0.0232(0.0119,0.0745) -

3 rs674155 0.0983(0.0245,0.1327) - 0.1127(0.0396,0.2218)
3 rs4779630 0.0357(0.0163,0.1014) 0.0148(0.0071,0.0987) -
3 rs17817518 0.0416(0.0136,0.1225) - 0.0886(0.0279,0.1432)
3 rs12908501 - 0.0286(0.0097,0.0874) -
3 rs8026003 - 0.0377(0.0112,0.0895) -
3 rs442873 0.0469(0.0219,0.0923) - -
3 rs7163190 - - 0.0478(0.0178,0.1092)
3 rs11854649 - - 0.0689(0.0211,0.1356)

4 rs12438737 0.1158(0.0236,0.1784) - 0.1971(0.0458,0.2355)
4 rs16967222 0.0282(0.0059,0.0974) 0.0136(0.0032,0.0691) -
4 rs2033544 0.0179(0.0063,0.0845) 0.0287(0.0107,0.0988) -
4 rs1847663 - 0.0373(0.0149,0.1026) -
4 rs4924402 0.0322(0.0164,0.1035) - -
4 rs8026641 - - 0.0619(0.0591,0.1247)
4 rs23050312 - - 0.0156(0.0029,0.0612)
4 rs11070349 0.0479(0.0162,0.1085) 0.0389(0.0109,0.0996) -
4 rs1530837 - 0.0483(0.0149,0.1108) -
4 rs7163310 0.0573(0.0164,0.1264) - -
4 rs16972615 - - 0.0122(0.0049,0.0647)
4 rs1668575 0.0590(0.0164,0.1149) - -
4 rs12914570 - - 0.0663(0.0259,0.1168)

5 rs12439639 0.0319(0.0135,0.0798) - 0.1245(0.0287,0.1935)
5 rs8026843 0.0134(0.0086,0.0446) - -
5 rs2033735 0.0755(0.0197,0.1254) - 0.1479(0.0175,0.2081)
5 rs10519062 0.0234(0.0115,0.0579) - -
5 rs12437829 0.0419(0.0114,0.0768) - -
5 rs1160623 - 0.0311(0.0118,0.0694) -
5 rs8040530 - 0.0232(0.0096,0.0617) -
5 rs281299 0.0591(0.0187,0.1102) - -
5 rs11070583 - 0.0822(0.0115,0.1397) -
5 rs44435197 - - 0.0834(0.0194,0.1748)
5 rs24104010 0.0217(0.0097,0.0638) - 0.0474(0.0175,0.0894)

Continued on next page
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5 rs9944192 0.0816(0.0238,0.1537) - -
5 rs17522269 - 0.0947(0.0115,0.1602) -
5 rs3784308 - - 0.0304(0.0178,0.0745)

6 rs4774594 0.0297(0.0183,0.0729) - 0.0496(0.0147,0.0859)
6 rs2278295 0.0314(0.0145,0.0678) 0.0185(0.0071,0.0368) -
6 rs562804 0.0466(0.0193,0.0968) - 0.0876(0.0279,0.1365)
6 rs1813171 - 0.0419(0.0174,0.0962) -
6 rs2926881 - 0.0398(0.0182,0.0785) -
6 rs2115825 0.0361(0.0174,0.0712) - -
6 rs11857095 - - 0.0427(0.0163,0.0941)
6 rs2414371 - - 0.0639(0.0234,0.1304)
6 rs600753 - - 0.0734(0.0211,0.1431)

7 rs7114742 0.0552(0.0102,0.0975) - 0.1205(0.0238,0.2147)
7 rs4494480 0.0169(0.0086,0.0461) - -
7 rs1632868 0.0316(0.0108,0.0637) - 0.0974(0.0175,0.1879)
7 rs890271 0.0652(0.0254,0.1175) - -
7 rs1469280 0.0244(0.0074,0.0632) - -
7 rs4775017 - 0.0574(0.0218,0.1174) -
7 rs4775031 - 0.0417(0.0189,0.1005) -
7 rs10152146 0.0369(0.0187,0.0672) - -
7 rs4775149 - 0.0298(0.0105,0.0497) -
7 rs4775162 - - 0.0334(0.0134,0.0744)
7 rs12912193 0.0301(0.0107,0.0637) - 0.0974(0.0175,0.1868)
7 rs2059553 0.0625(0.0254,0.1169) - -
7 rs8033609 - 0.0275(0.0109,0.0479) -
7 rs10519074 - - 0.0394(0.0115,0.0775)

8 rs17237486 0.0175(0.0092,0.0397) - 0.0279(0.0105,0.0531)
8 rs782947 0.0196(0.0059,0.0418) 0.0296(0.0103,0.0617) -
8 rs782913 0.0344(0.0165,0.0745) 0.0126(0.0042,0.0384) -
8 rs2899667 - 0.0517(0.0154,0.1064) -
8 rs697333 0.0912(0.0234,0.1512) - -
8 rs1727179 - - 0.0969(0.0354,0.1647)
8 rs1320190 - - 0.0267(0.0129,0.0678)
8 rs12593770 0.0293(0.0062,0.0628) 0.0387(0.0106,0.0815) -
8 rs16953154 - 0.0969(0.0179,0.1614) -
8 rs1107183 0.0217(0.0144,0.0782) - -
8 rs11071841 - - 0.0424(0.0154,0.0746)
8 rs12592821 0.0294(0.0084,0.0612) - -

9 rs412705 0.0496(0.0192,0.1017) - 0.0791(0.0235,0.1312)
9 rs718878 0.0206(0.0134,0.0654) 0.0639(0.0151,0.1246) -

Continued on next page

73



Table 6.5 – Continued from previous page
Data set SNP λ.min λ.1se Bayesian

9 rs893473 0.0129(0.0065,0.0459) 0.0328(0.0107,0.0657) -
9 rs1115528 - 0.0145(0.0047,0.0388) -
9 rs9806190 0.0176(0.0064,0.0347) - -
9 rs11633040 - - 0.0258(0.0049,0.0647)
9 rs4617810 - - 0.0652(0.0148,0.1216)
9 rs477722 0.0265(0.0067,0.0596) 0.0388(0.0107,0.0875) -
9 rs694846 - 0.0541(0.0185,0.1079) -
9 rs904972 0.0762(0.0207,0.1311) - -
9 rs108331 - - 0.0819(0.0259,0.1632)
9 rs598472 0.0328(0.0164,0.0785) - -

10 rs5950667 0.0789(0.0186,0.1472) - 0.0915(0.0396,0.1589)
10 rs2912271 0.0365(0.0142,0.0856) 0.0185(0.0071,0.0567) -
10 rs16958237 0.0416(0.0193,0.1047) - 0.0866(0.0257,0.1497)
10 rs4887066 - 0.0311(0.0197,0.0659) -
10 rs8042694 - 0.0512(0.0218,0.1174) -
10 rs744336 0.0367(0.0219,0.0712) - -
10 rs12904553 - - 0.0477(0.0157,0.0963)
10 rs12439144 - - 0.0631(0.0223,0.1357)

11 rs7183358 0.0594(0.0125,0.1194) - 0.0469(0.0245,0.0975)
11 rs769765 0.0112(0.0065,0.0384) 0.0185(0.0071,0.0441) -
11 rs1685146 0.0376(0.0184,0.0785) - 0.0887(0.0279,0.1532)
11 rs372447 - 0.0714(0.0197,0.1455) -
11 rs2759307 - 0.0122(0.0082,0.0397) -
11 rs2654212 0.0443(0.0198,0.0975) - -
11 rs4479064 - - 0.0347(0.0185,0.0815)
11 rs7165448 - - 0.0880(0.0225,0.1532)
11 rs11853372 - - 0.0292(0.0122,0.0548)

12 rs4887255 0.0442(0.0208,0.0789) - 0.0981(0.0315,0.1965)
12 rs2028731 0.0264(0.0112,0.0598) 0.0632(0.0214,0.1307) -
12 rs16977968 0.0696(0.0142,0.1158) 0.0389(0.0195,0.0715) -
12 rs7174605 - 0.0564(0.0154,0.1122) -
12 rs1349381 0.0855(0.0167,0.1387) - -
12 rs17655115 - - 0.0575(0.0214,0.1147)
12 rs8041239 - - 0.0144(0.0029,0.0316)
12 rs7164471 0.0647(0.0133,0.1154) 0.0368(0.0125,0.0755) -
12 rs1372600 - 0.0169(0.0041,0.0412) -
12 rs11073795 0.0371(0.0145,0.0735) - -
12 rs1126823 - - 0.0124(0.0039,0.0462)

13 rs2601181 0.0416(0.0168,0.0927) - 0.0961(0.0348,0.1588)
13 rs1476078 0.0318(0.0165,0.0811) 0.0186(0.0071,0.0398) -

Continued on next page
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13 rs1053909 0.0451(0.0193,0.0882) - 0.0876(0.0279,0.1463)
13 rs7162155 - 0.0441(0.0197,0.0865) -
13 rs8024027 - 0.0369(0.0182,0.0749) -
13 rs7167984 0.0279(0.0108,0.0588) - -
13 rs16948067 - - 0.0417(0.0174,0.0941)
13 rs7182315 - - 0.0389(0.0112,0.0854)

14 rs201641 0.0497(0.0192,0.0957) - 0.0642(0.0163,0.1169)
14 rs7180576 0.0347(0.0165,0.0788) 0.0185(0.0071,0.0347) -
14 rs8025603 0.0316(0.0119,0.0754) - 0.0874(0.0279,0.1532)
14 rs2199732 - 0.0847(0.0197,0.1510) -
14 rs10520802 - 0.0517(0.0218,0.1204) -
14 rs13380379 0.0662(0.0219,0.1224) - -
14 rs12915943 - - 0.0815(0.0173,0.1539)
14 rs8039169 - - 0.0763(0.0211,0.1466)

15 rs1442815 0.0561(0.0195,0.1157) - 0.0679(0.0296,0.1267)
15 rs12164914 0.0310(0.0165,0.0755) 0.0186(0.0071,0.0412) -
15 rs12911516 0.0297(0.0093,0.0614) - 0.0678(0.0279,0.1351)
15 rs2289558 - 0.0344(0.0107,0.0741) -
15 rs12903750 - 0.0568(0.0211,0.1167) -
15 rs8039762 0.0413(0.0197,0.0952) - -
15 rs8042302 - - 0.0507(0.0174,0.1165)
15 rs12915781 - - 0.0681(0.0211,0.1388)
15 rs11855154 - - 0.0599(0.0207,0.1205)

Table 6.6: The 95% posterior central credible intervals of regression coefficient each selected SNPunder
BVS and the upper bound and lower bound of the point estimates for each SNP selected when using
glmnet package when data split into 5 subdata sets

Data set SNP λ.min λ.1se Bayesian
1 rs1256841 0.03737(0.0145,0.1278) 0.02115(0.0087,0.1156) 0.092421(0.0488,0.2197)
1 rs17595461 0.01653(0.0017,0.1159) - -
1 rs1390786 0.107402(0.0197,0.1496) 0.08745(0.0159,0.1298) -
1 rs17137192 - 0.0478(0.0215,0.1579) -
1 rs754185 - 0.05469(0.0272,0.1662) -
1 rs12439582 - - 0.123849(0.0113,0.2602)
1 rs2119010 - - 0.01181(0.0034,0.1311)
1 rs11634759 - - 0.03247(0.0156,0.1654)

2 rs3887013 0.02066(0.0133,0.1072) 0.01975(0.0055,0.1007) 0.10142(0.0113,0.1096)
2 rs17541104 0.0273(0.0175,0.1598) - 0.10544(0.0172,0.1310)

Continued on next page
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2 rs4777858 0.08968(0.0247,0.1085) 0.03588(0.0194,0.1024) -
2 rs776726 - 0.03697(0.0174,0.1241) -
2 rs1546424 - 0.0413(0.0219,0.1417) -
2 rs2220176 - 0.02874(0.0045,0.1278) -
2 rs1365593 - - 0.0141(0.0028,0.1619)
2 rs1863464 - - 0.02362(0.0186,0.1992)

3 rs8024303 0.10792(0.0196,0.1927) - 0.041967(0.0396,0.2579)
3 rs8042590 0.02447(0.0165,0.1234) 0.01845(0.0071,0.1096) -
3 rs1020987 0.0221(0.0193,0.1228) - 0.08766(0.0279,0.1435)
3 rs7181675 - 0.03847(0.0197,0.1315) -
3 rs290334 - 0.04578(0.0218,0.1478) -
3 rs11858141 0.02669(0.0219,0.1217) - -
3 rs755599 - - 0.05515(0.0173,0.1491)
3 rs622442 - - 0.083941(0.0211,0.1458)

4 rs8039509 0.06404(0.0219,0.1217) - 0.1971(0.0433,0.2132)
4 rs234508 0.03691(0.0159,0.1212) 0.12936(0.0315,0.1996) -
4 rs9806494 0.04565(0.0162,0.1092) 0.03887(0.0204,0.1008) -
4 rs8030638 - 0.02597(0.0149,0.1211) -
4 rs963960 0.03871(0.0164,0.1227) - -
4 rs2083061 - - 0.012335(0.0059,0.2647)
4 rs713469 - - 0.04615(0.0292,0.1612)

5 rs11247163 0.022559(0.0102,0.1795) - 0.16373(0.0238,0.1997)
5 rs11630747 0.018285(0.0086,0.1416) - -
5 rs4616271 0.03061(0.0197,0.1637) - 0.149974(0.0175,0.1895)
5 rs2047222 0.06522(0.0254,0.1509) - -
5 rs1037117 0.02439(0.0114,0.1266) - -
5 rs11634329 - 0.05978(0.0218,0.1894) -
5 rs1834207 - 0.04369(0.0247,0.1772) -
5 rs2305668 0.03687(0.0187,0.1612) - -
5 rs4076999 - 0.02975(0.0115,0.1479) -
5 rs4886999 - - 0.033939(0.0195,0.1774)

The frequency of selected SNPs (with a credible interval for the coefficient not including
zero) is similar to the 15 dataset case.
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Table 6.7: The 95% posterior central credible intervals of regression coefficient each selected SNPunder
BVS and the upper bound and lower bound of the point estimates for each SNP selected when using
glmnet package when data split into 3 subdata sets

Data set SNP λ.min λ.1se Bayesian
1 rs12905013 0.078555(0.0084,0.1105) 0.05843(0.0071,0.1027) 0.125748(0.0166,0.1635)
1 rs2928719 - 0.04891(0.0054,0.0986) -
1 rs1863464 - - 0.12338(0.0147,0.1598)

2 rs999787 0.08123(0.0109,0.1216) 0.06394(0.0085,0.1153) 0.10944(0.0174,0.1364)
2 rs4775077 - 0.04875(0.0081,0.1043) -
2 rs178189639 - 0.03697(0.0075,0.1006) 0.07889(0.0151,0.1077)
2 rs8039254 - - 0.075093(0.0094,0.1028)

3 rs8027171 0.08412(0.0118,0.1269) 0.05946(0.0072,0.1011) 0.11204(0.0134,0.1282)
3 rs1392161 - 0.04947(0.0061,0.0942) -
3 rs12591031 0.03884(0.0078,0.0915) - 0.09477(0.0114,0.1164)
3 rs2172188 - - 0.10513(0.0144,0.1239)

A crucial point observed is under the various scenarios of splitting datasets (3,5 and 15) the
same SNP covariates are not selected . Hence, they may be varied the number of splits.

Due to the large number of SNP covariates, we tried to filter variables in the split datasets
at the first stage. And then, we use these SNP covariates that were selected in the first stage for
variable selection in the second stage by combining 3,5 and 15 datasets respectively. These results
are reported in Tables 6.8 to 6.10.

Table 6.8: The 95% posterior credible interval of 3 splits first, then 5, then 15 for each SNP under the
Bayesian method and the upper bound and lower bound of the point estimates for each SNP selected when
using glmnet package via λ.min and λ.1se. The second stage was run via using BVS and glmnet with only
the covariates that are selected in the first stage (15 datasets)

SNP λ.min λ.1se Bayesian Index
rs17137365(91) 0.115(0.0247,0.1895) 0.059(0.0176,0.1044) 0.144(0.0358,0.2638) 91
rs8035965(163) 0.055(0.0205,0.1127) - - 163
rs4613037(819) 0.114(0.0314,0.1925) 0.091(0.0265,0.1674) - 819

rs4238497(1113) 0.028(0.0182,0.0524) 0.012(0.0068,0.0387) 0.069(0.0158,0.1499) 96
rs968476(1189) 0.045(0.0173,0.1112) - 0.043(0.0144,0.1084) 172
rs2037844(1717) - - 0.024(0.0028,0.0752) 700
rs2292547(1901) - 0.102(0.0274,0.1865) - 884

rs674155(2039) 0.099(0.0256,0.1745) - 0.119(0.0384,0.2345) 7
rs4779630(2105) 0.039(0.0186,0.0807) 0.016(0.0095,0.0783) - 73

rs17817518(2119) 0.046(0.0136,0.0988) - 0.089(0.0266,0.1512) 87
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rs12438737(3136) 0.105(0.0355,0.1985) - 0.199(0.0583,0.2878) 89
rs16967222(3189) 0.029(0.0105,0.0955) 0.017(0.0074,0.0714) - 142
rs11070349(3704) 0.054(0.0162,0.1095) 0.035(0.0117,0.0984) - 657
rs12914570(3869) - - 0.069(0.0277,0.1237) 822

rs12439639(4070) 0.039(0.0155,0.0847) - 0.105(0.0356,0.2068) 8
rs2033735(4231) 0.079(0.0238,0.1349) - 0.142(0.0325,0.2369) 169

rs24104010(4758) 0.029(0.0097,0.0785) - 0.049(0.0231,0.0925) 689
rs3784308(5022) - - 0.033(0.0186,0.0796) 953

rs4774594(5083) 0.036(0.0194,0.0790) - 0.051(0.0184,0.0966) 6
rs2278295(5164) 0.033(0.0141,0.0714) 0.019(0.0079,0.0396) - 87
rs562804(5341) 0.049(0.0195,0.0996) - 0.089(0.0356,0.1511) 264

rs7114742(6107) 0.059(0.0134,0.1012) - 0.121(0.0269,0.2202) 15
rs4494480(6121) 0.019(0.0088,0.0455) - - 29
rs1632868(6233) 0.039(0.0158,0.0674) - 0.099(0.0197,0.1896) 141

rs12912193(6789) 0.031(0.0116,0.0696) - 0.099(0.0183,0.1890) 697
rs10519074(7062) - - 0.041(0.0115,0.0854) 970

rs17237486(7119) 0.017(0.0095,0.0410) - 0.029(0.0115,0.0582) 12
rs12593770(7895) 0.035(0.0165,0.0692) 0.039(0.0106,0.0824) - 788

rs412705(8283) 0.047(0.0204,0.1087) - 0.076(0.0215,0.1389) 161
rs718878(8311) 0.024(0.0147,0.0685) 0.069(0.0185,0.1269) - 189
rs893473(8329) 0.019(0.0095,0.0512) 0.035(0.0117,0.0725) - 207
rs477722(8829) 0.029(0.0095,0.0612) 0.039(0.0118,0.0882) - 707

rs5950667(9160) 0.081(0.0285,0.1532) - 0.095(0.0412,0.1615) 23
rs16958237(9433) 0.046(0.0245,0.0998) - 0.089(0.0276,0.1574) 296
rs12439144(9983) - - 0.067(0.0235,0.1373) 846

rs7183358(10167) 0.059(0.0165,0.1178) - 0.049(0.0259,0.0990) 15
rs1685146(10244) 0.039(0.0196,0.0811) - 0.095(0.0295,0.1612) 92
rs11853372(11113) - - 0.035(0.0185,0.0652) 961

rs4887255(11372) 0.046(0.0217,0.0853) - 0.099(0.0352,0.1996) 205
rs2028731(11382) 0.028(0.0153,0.0607) 0.069(0.0254,0.1355) - 215
rs7164471(11795) 0.066(0.0155,0.1241) 0.039(0.0186,0.0792) - 628
rs1126823(11998) - - 0.015(0.0047,0.0498) 831

rs2601181(12253) 0.046(0.0183,0.0987) - 0.098(0.0395,0.1635) 71
rs1053909(12676) 0.049(0.0195,0.0996) - 0.089(0.0285,0.1536) 494

rs201641(13222) 0.048(0.0195,0.0987) - 0.066(0.0178,0.1256) 25
rs7180576(13292) 0.037(0.0169,0.0795) 0.018(0.0071,0.0368) - 95
rs8025603(13383) 0.039(0.0119,0.0755) - 0.089(0.0295,0.1624) 186

rs1442815(14253) 0.058(0.0214,0.1188) - 0.069(0.0298,0.1284) 41
rs12164914(14344) 0.036(0.0166,0.0774) 0.019(0.0082,0.0455) - 132
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rs12911516(14502) 0.028(0.0087,0.0651) - 0.072(0.0283,0.1416) 290

79



Table 6.9: The 95% posterior credible interval of 3 splits first, then 5, then 15 for each SNP under the
Bayesian method and the upper bound and lower bound of the point estimates for each SNP selected when
using glmnet package via λ.min and λ.1se. The second stage was run via using BVS and glmnet with only
the covariates that are selected in the first stage (5 datasets)

SNP λ.min λ.1se Bayesian Index
rs12594495(60) 0.0786(0.0321,0.1698) 0.0583(0.0199,0.1359) 0.1012(0.0494,0.2351) 60
rs17555920(388) 0.0356(0.0174,0.1341) - - 497
rs1719332(1256) - 0.0681(0.0294,0.1632) - 1341
rs2118157(2047) - - 0.0598(0.0210,0.1459) 2343

rs8025254(3091) 0.0459(0.0197,0.1248) 0.0296(0.0134,0.1151) 0.1234(0.0337,0.1697) 44
rs1757463(3673) 0.0394(0.0207,0.1637) - 0.1154(0.0341,0.1469) 626
rs4774497(4429) 0.0964(0.0317,0.1298) 0.0689(0.0235,0.1364) - 1382
rs1863427(6052) - - 0.0418(0.0251,0.2074) 3005

rs8039952(6181) 0.1154(0.0271,0.2051) - 0.0671(0.0479,0.2394) 89
rs8041221(6671) 0.0512(0.0279,0.1338) 0.0372(0.0152,0.1142) - 579
rs6494361(7607) - - 0.0952(0.0277,0.1519) 1515

rs8038734(9279) 0.0711(0.0284,0.1296) - 0.2018(0.0519,0.2334) 142
rs2343675(11125) 0.0418(0.0209,0.1331) 0.1314(0.0416,0.2081) - 1988
rs7180683(11201) - - 0.0596(0.0312,0.1704) 2064

rs1125280(12310) 0.0347(0.0207,0.1834) - 0.1714(0.0287,0.2071) 128
rs4614672(13630) 0.0462(0.0273,0.1718) - 0.1571(0.0352,0.1996) 1448
rs4076597(14074) - 0.0375(0.0195,0.1516) - 1892
rs8029926(14104) - - 0.0496(0.0251,0.1833) 1922

Table 6.10: The 95% posterior credible interval of 3 splits first, then 5, then 15 for each SNP under the
Bayesian method and the upper bound and lower bound of the point estimates for each SNP selected when
using glmnet package via λ.min and λ.1se. The second stage was run via using BVS and glmnet with only
the covariates that are selected in the first stage (3 datasets)

SNP λ.min λ.1se Bayesian Index
rs12905013(790) 0.086(0.0217,0.1312) 0.064(0.0194,0.1164) 0.141(0.0317,0.1867) 790
rs1863464(3915) - - 0.139(0.0254,0.1615) 3915

rs999787(5810) 0.096(0.0237,0.1375) 0.081(0.0195,0.1237) 0.117(0.0321,0.1512) 733
rs17818939(6523) - 0.057(0.0184,0.1169) 0.091(0.0234,0.1164) 1446

rs8027171(10866) 0.101(0.0251,0.1365) 0.074(0.0155,0.1154) 0.129(0.0352,0.1421) 744
rs1392161(11635) 0.046(0.0152,0.1074) - 0.111(0.0234,0.1369) 1513

When we used the whole dataset without splitting, there were not any covariates selected
in any of the methods. However, when we spilt the dataset there were some covariates selected-
giving us a chance to potentially find associated covariates that may have been missed due to the
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signal being too weak in the full dataset.

To check consistency of the selected SNPs, we used 2nd and 3rd run independently for the
3 - split dataset. These results are shown in Table 6.11 (under the first stage) and Table 6.12 (under
the second stage). It is promising to see that about ten of the same SNPs are selected in each run,
irrespective of split although some are different.

Table 6.11: The credible interval of posterior mean in each SNP under the Bayesian method by spiltting
into 3 data sets when run on 3 different splits in the data (under the first stage). The value in the bracket
represents the index of sub-dataset in that run.

SNP 1st run CI 2nd run CI 3rd run CI
rs12905013 0.12479(0.0149,0.1675)[1] 0.12461(0.0117,0.1689)[1] 0.12575(0.0166,0.1635)[2]
rs1863464 0.12457(0.0132,0.1584)[1] 0.12427(0.0114,0.1572)[1] 0.12338(0.0147,0.1598)[3]
rs2290352 0.11327(0.0140,0.1612)[3] - -
rs1619030 0.11875(0.0138,0.1631)[2] 0.11779(0.0152,0.1604)[1] -

rs10519226 0.11766(0.0147,0.1598)[1] - 0.11537(0.0149,0.1603)[3]
rs1350090 - 0.11572(0.0134,0.1586) [1] -
rs2442464 - 0.11596(0.0157,0.1518)[2] -
rs1055879 - - 0.11577(0.0184,0.1567)[1]
rs745636 - - 0.11642(0.0149,0.1578)[3]
rs999787 0.10936(0.0135,0.1359)[2] 0.10957(0.0181,0.1396)[3] 0.10944(0.0174,0.1364)[2]

rs17818939 0.07871(0.0131,0.1082)[2] 0.07832(0.0141,0.1069)[1] 0.07889(0.0151,0.1077)[1]
rs8039254 0.075082(0.0052,0.1033)[3] 0.075171(0.0071,0.1050)[3] 0.07509(0.0094,0.1028)[1]
rs2165488 0.08931(0.0087,0.1098)[2] 0.086312(0.0089,0.1074)[3] -
rs1865923 0.08531(0.0077,0.1054)[2] - 0.08476(0.0086,0.1076)[1]
rs7173314 0.08212(0.0071,0.1046)[2] - -
rs1712429 - 0.08451(0.0069,0.1059)[2] -
rs7173622 - 0.08341(0.0067,0.1053)[3] -
rs166357 - - 0.08671(0.0073,0.1087)[1]
rs789776 - - 0.08507(0.0068,0.1082)[1]
rs8027171 0.11213(0.0147,0.1277)[1] 0.11251(0.0141,0.1297)[2] 0.11204(0.0134,0.1282)[2]

rs12591031 0.09477(0.0118,0.1167)[1] 0.09451(0.0112,0.1159)[3] 0.09478(0.0114,0.1164)[2]
rs1392161 0.10535(0.0166,0.1297)[2] 0.10548(0.0154,0.1281)[1] 0.10513(0.0144,0.1239)[1]
rs1719336 0.10611(0.0174,0.1288)[3] - 0.10511(0.0135,0.1216)[1]

rs12902710 0.10498(0.0159,0.1275)[3] 0.10539(0.0144,0.1247)[2] -
rs293376 0.10247(0.0134,0.1195)[2] 0.10432(0.0157,0.1212)[3] -

rs12902470 - 0.10386(0.0129,0.1192)[3] -
rs260543 - - 0.10116(0.0118,0.1137)[3]
rs1874835 - - 0.10227(0.0108,0.1129)[2]

Under each run, some covariates are selected in all run. However, there is a slightly diffr-
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erent on the upper bound and lower bound of credible interval.

Table 6.12: The credible interval of posterior mean in each SNP under the Bayesian method by spiltting into
3 data sets when run on 3 different splits in the data (under the second stage).

SNP 1st run CI 2nd run CI 3rd run CI
rs12905013 0.129(0.0175,0.2779) 0.156(0.0119,0.2133) 0.153(0.0199,0.2331)
rs1863464 0.061(0.0079,0.2001) 0.071(0.0072,0.1727) 0.074(0.0076,0.1733)
rs1619030 0.072(0.0088,0.1983) 0.075(0.0092,0.1916) -

rs10519226 0.076(0.0095,0.1873) - 0.079(0.0098,0.1851)
rs2442464 - - -
rs1055879 - - -
rs745636 - - -
rs999787 0.075(0.0099,0.1765) 0.073(0.0071,0.1737) 0.064(0.0066,0.1636)
rs8039254 0.080(0.0135,0.1597) 0.095(0.0167,0.1631) 0.086(0.0157,0.1619)
rs2165488 0.084(0.0125,0.1613) 0.089(0.0146,0.1627) -
rs1865923 0.087(0.0139,0.1607) - 0.091(0.0157,0.1649)
rs8027171 0.134(0.0185,0.2146) 0.157(0.0216,0.2201) 0.142(0.0205,0.2197)
rs1392161 0.114(0.0175,0.1976) 0.134(0.0165,0.2017) 0.126(0.0157,0.2041)
rs1719336 0.109(0.0159,0.1954) - 0.115(0.0162,0.1963)

rs12902710 0.105(0.0147,0.1949) 0.111(0.0169,0.1952) -
rs293376 0.107(0.0162,0.1950) 0.110(0.0159,0.1975) -

The objective of this Chapter is the application of our methods to the real dataset. We used
the splitting for the Bayesian variable selection since the MCMC algorithm for the full Bayesian
variable selection is fail and cnsume more times when there are ultrahigh on the number of co-
variates. Then we used to combine those covariates are selected in the first stage to the second
stage for Bayesian variable selection again. Moreover, we used the same algorithm to LASSO with
two citeria.

The credible intervals of the posterior mean in each SNP under the Bayesian method are
wider than both of criteria in LASSO. They indicated that the outperformance on the estimation of
regression coefficient (β). Moreover, for confirmation in the consistency of the results in Bayesian
frame work, we ran on 3 runs on the second stage. The results pointed that on the consistency in
each run for the Bayesian approach. They are reported in Table 6.12.
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Figure 6.3: The correlation plot of SNPs that ate selected in the second stage via using Bayesian framework

There were 16 SNPs covariates that are selected on the second stage. We wished check the
correlation between the selected covariate. The correlation plot (Figure 6.3) indicated that the cor-
relation was less than 0.2 between the selected SNPs. There is not evidence for the multicollinear-
ity problem since those values of correlation are low.

Table 6.13: The MAF of SNP selected under BVS in the second stage.

SNP MAF(data) MAF(database) chromosome location
rs12905013 0.359479 0.334907 15 26703938
rs1863464 0.180563 0.183554 15 26693341

rs999787 0.131716 0.133645 15 55000253
rs8039254 0.471455 0.461428 15 55016650

rs8027171 0.402279 0.399968 15 83392095
rs1392161 0.294418 0.282969 15 87208615

We also compared the Minor Allele Frequency (MAF) of selected SNPs in the data set and
the database of SNPs which were close to each other (Table 6.13). These results pointed that MAF
of selected SNPs in the data set are close to the values of MAF in database SNPs.83



Moreover, we also did a 2nd run and 3rd run for confirmation of the results of variable se-
lection when using the glmnet package. The first stage results are reported in Tables 6.14 and 6.15,
and the second stage results are shown in Tables 6.16 and 6.17.

Table 6.14: The upper bound and lower bound of the point estimates for each SNP when using LASSO via
λ.min in 3 sub-data sets running 3 times under different splits of data (under the first stage) The value in
the brackets represents the index of sub-dataset in which the SNP is present.

SNP 1st run 2nd run 3rd run
rs12905013 0.0892(0.0264,0.1742)[1] 0.0835(0.0236,0.1714)[1] 0.0809(0.0198,0.1697)[2]
rs1863464 0.0875(0.0287,0.1715)[1] 0.0896(0.0211,0.1796)[1] 0.0841(0.0209,0.1724)[3]
rs17116056 0.0814(0.0259,0.1699)[1] - -
rs1619030 0.0853(0.0274,0.1689)[2] 0.0811(0.0207,0.1702)[1] -
rs2344848 0.0861(0.0217,0.1651)[2] - -
rs2165488 0.0817(0.0235,0.1634)[2] 0.0759(0.0211,0.1611)[3] -
rs999787 0.0892(0.0274,0.1678)[2] 0.0853(0.0217,0.1641)[3] 0.0819(0.0194,0.1679)[2]
rs1718939 0.0868(0.0259,0.1642)[2] 0.0785(0.0196,0.1544)[1] 0.0803(0.0184,0.1604)[1]
rs8039254 0.0815(0.0214,0.1648)[3] 0.0749(0.0188,0.1529)[3] 0.0796(0.0175,0.1601)[1]
rs12101585 0.0842(0.0221,0.1626)[2] - -
rs1719336 0.0873(0.0215,0.1631)[3] - 0.0783(0.0187,0.1549)[1]
rs12902710 0.0816(0.0204,0.1659)[1] 0.0774(0.0192,0.1543)[2] -
rs919961 0.0861(0.0211,0.1643)[2] - -
rs8027171 0.0817(0.0215,0.1531)[1] 0.0762(0.0189,0.1455)[2] 0.0846(0.0196,0.1503)[2]
rs12591031 0.0826(0.0211,0.1577)[1] 0.0744(0.0181,0.1461)[3] 0.0795(0.0156,0.1475)[2]
rs1392161 0.0894(0.0254,0.1623)[2] 0.0716(0.0185,0.1479)[1] 0.0765(0.0147,0.1445)[1]
rs293376 0.0822(0.0241,0.1631)[2] 0.0755(0.0178,0.1511)[3] -
rs2932201 0.0824(0.0222,0.1599)[2] 0.0763(0.0184,0.1494)[3] -
rs1027549 0.0819(0.0208,0.1624)[1] - -
rs8027231 0.0825(0.0225,0.1559)[2] - -

Table 6.15: Corresponding bounds of point estimates (as Table 6.14) from LASSO using λ.1se criterion.

SNP 1st run 2nd run 3rd run
rs12905013 0.0789(0.0184,0.1644)[1] 0.0736(0.0112,0.1619)[1] 0.0719(0.0154,0.1653)[2]
rs1863464 0.0741(0.0186,0.1635)[1] 0.0769(0.0155,0.1667)[1] 0.0788(0.0192,0.1694)[3]
rs1619030 0.0712(0.0153,0.1637)[2] 0.0729(0.0174,0.1609)[1] -
rs2165488 0.0745(0.0157,0.1624)[2] 0.0768(0.0184,0.1633)[3] -
rs2311748 - 0.0675(0.0167,0.1584)[1] -
rs2871864 - 0.0617(0.0159,0.1512)[2] -
rs999787 0.0711(0.0188,0.1658)[2] 0.0743(0.0159,0.1669)[3] 0.0763(0.0204,0.1698)[2]

Continued on next page
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Table 6.15 – Continued from previous page
SNP 1st run 2nd run 3rd run

rs1718939 0.0768(0.0195,0.1634)[2] 0.0785(0.0196,0.1684)[1] 0.0739(0.0188,0.1633)[1]
rs8039254 0.0745(0.0147,0.1617)[3] 0.0749(0.0188,0.1629)[3] 0.0752(0.0195,0.1651)[1]
rs1719336 0.0773(0.0201,0.1622)[3] - 0.0783(0.0187,0.1649)[1]
rs2280194 0.0716(0.0187,0.1598)[1] 0.0743(0.0192,0.1636)[2] -
rs2297381 - 0.0678(0.0121,0.1521)[3] -
rs1439618 - 0.0664(0.0118,0.1528)[3] -
rs8027171 0.0785(0.0115,0.1622)[1] 0.0762(0.0139,0.1655)[2] 0.0745(0.0151,0.1624)[2]
rs12591031 0.0726(0.0129,0.1637)[1] 0.0744(0.0181,0.1661)[3] 0.0792(0.0204,0.1695)[2]
rs1392161 0.0745(0.0155,0.1653)[2] 0.0716(0.0184,0.1598)[1] 0.0721(0.0164,0.1659)[1]
rs12902710 0.0742(0.0186,0.1631)[3] 0.0755(0.0178,0.1611)[2] -
rs293376 0.0724(0.0162,0.1599)[2] 0.0763(0.0184,0.1594)[3] -
rs1050255 - 0.0683(0.0116,0.1516)[3] -
rs170781 - 0.0632(0.0125,0.1524)[2] -

Under each data set split, some of the same covariates are selected with BVS (those covari-
ates are selected in all runs under BVS).

Table 6.16: The upper bound and lower bound of the point estimates for each SNP when using LASSO via
λ.min in 3 sub-data sets running 3 times under different splits of data (under the second stage).

SNP 1strun 2ndrun 3rdrun
rs12905013 0.0956(0.0289,0.1797) 0.0986(0.0295,0.1803) 0.0942(0.0255,0.1764)
rs1863464 0.0975(0.0295,0.1786) 0.0965(0.0283,0.1774) 0.0988(0.0286,0.1781)
rs1719336 0.0935(0.0268,0.1699) - 0.0914(0.0204,0.1683)
rs999787 0.0978(0.0269,0.1725) 0.0989(0.0271,0.1752) 0.0951(0.0201,0.1721)
rs1718939 0.0897(0.0278,0.1689) 0.0862(0.0205,0.1673) 0.0867(0.0207,0.1669)
rs8039254 0.0896(0.0223,0.1695) 0.0821(0.0196,0.1614) 0.0842(0.0194,0.1639)
rs12902710 0.0853(0.0234,0.1657) 0.0862(0.0155,0.1649) -
rs8027171 0.0867(0.0253,0.1698) 0.0823(0.0214,0.1662) 0.0847(0.0206,0.1676)
rs12591031 0.0886(0.0221,0.1696) 0.0796(0.0197,0.1598) 0.0876(0.0165,0.1624)
rs1392161 0.0804(0.0189,0.1629) 0.0803(0.0197,0.1607) 0.0841(0.0199,0.1619)
rs2932201 0.0866(0.0232,0.1626) 0.0827(0.0197,0.1619) -
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Table 6.17: Corresponding bounds of point estimates (as Table 6.16) from LASSO using λ.1se criterion.

SNP 1strun 2ndrun 3rdrun
rs12905013 0.0897(0.0214,0.1689) 0.0835(0.0195,0.1669) 0.0867(0.0175,0.1643)
rs1863464 0.0859(0.0225,0.1654) 0.0843(0.0213,0.1637) 0.0821(0.0207,0.1629)
rs1719336 0.0867(0.0218,0.1639) - 0.0816(0.0199,0.1651)
rs999787 0.0878(0.0269,0.1705) 0.0889(0.0251,0.1696) 0.0833(0.0235,0.1681)
rs1718939 0.0897(0.0278,0.1689) 0.0812(0.0205,0.1653) 0.0851(0.0201,0.1669)
rs8039254 0.0896(0.0223,0.1695) 0.0898(0.0196,0.1657) 0.0831(0.0202,0.1633)
rs12902710 0.0853(0.0234,0.1657) - 0.0857(0.0201,0.1649)
rs8027171 0.0897(0.0253,0.1598) 0.0798(0.0196,0.1612) 0.0851(0.0199,0.1669)
rs12591031 0.0846(0.0211,0.1601) 0.0805(0.0187,0.1596) 0.0817(0.0198,0.1612)
rs1392161 0.0804(0.0178,0.1609) 0.0795(0.0197,0.1567) 0.0821(0.0204,0.1608)
rs2932201 0.0814(0.0159,0.1621) 0.0811(0.0145,0.1654) -

86



Figure 6.4: The correlation plot of SNPs that ate selected in the second stage via using glmnet

Again, we checked the correlation between each pair of covariates that are selected from the
second stage when we used LASSO variable selection. Figure 6.4 indicates that the correlation
coefficients in each pair of covariate is less than 0.2. There is lacking evidence on the multi-
collinearity. They are expected results.

The final comparison of variable selection of SNPs between BVS and LASSO is reported in
Table 6.18. From this, it can be seen that there are 7 SNPs that are selected in all methods. 9 SNPs
are chosen using the Bayesian framework. Moreover, there are 3 that are selected by the glmnet
under both criteria. From the final results show that there are 7 SNPs for the consistency selected.
They should be the associate SNPs with hypertension diseases.

Table 6.18: The summary of SNP when using Bayesian, glmnet package via λ.min and λ.1se (under the
second stage)

SNP Bayesian λ.min λ.1se
rs12905013 X X X

rs1863464 X X X

Continued on next page
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Table 6.18 – Continued from previous page
SNP Bayesian λ.min λ.1se

rs1619030 X - -
rs10519226 X - -
rs2442464 X - -
rs1055879 X - -
rs745636 X - -
rs1719336 - X X

rs999787 X X X

rs1718939 - X X

rs8039254 X X X

rs2165488 X - -
rs1865923 X - -

rs12902710 X X X

rs8027171 X X X

rs12591031 - X X

rs1392161 X X X

rs1719336 X - -
rs293376 X - -

6.4 Computational times

Since the benefit of data splitting is claimed to be computational efficiency. The CPU times
for running in each splitting and the whole dataset are presented in Table 6.19. Those results
pointed that the computational times are under splitting dataset dramatically lower than under
the whole dataset. Moreover, the computation times are used for running Bayesian framework
that are higher than the glmnet in both criteria. Since the variable selection in Bayesian need to
use MCMC algorithm that consumes many time in each running. From the performance and
computational cost, we suggest 3 to 5 splitting for the splitting in the first stage since they are a
moderate number of splittings. Since when we will use the higher number of splittings, they give
more on the compuational times and the error in high E(SSE).

Table 6.19: The CPU times for running in each splitting and the whole dataset (seconds)
No. of Splits λ.min λ.1se Bayesian

3 583.67 594.12 20163.37
5 611.36 615.84 21583.46
15 641.66 656.19 23129.14

whole 1059.43 1168.16 198574.11
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Chapter 7

Discussion and Conclusion

7.1 Introduction

The main aim of this thesis is to contribute to the current developments in the area of statistical
genetics in the specific problem of determining SNPs associated with clinical outcomes in high-
dimensional GWAS. We investigated the performance of several existing methods for this and
introduce a new computationally efficient approach of splitting the dataset for the analysis of
genome-wide association study data. We illustrate these methods and evaluate them through
simulation studies and also using real GWAS data from a study of hypertension. In this chapter we
provide a summary of the results obtained in this thesis, discuss their implications on genetic data
analysis and provide some insight into interesting further research topics based on the findings in
this thesis.

7.2 Summary of results from simulation studies

Computing the marginal inclusion probability of each variable helps determine whether the vari-
able should be included in the model. Under the case of independent covariates, the inclusion
probabilities of associated covariates appear to increase when the effect size increases. For ex-
ample the inclusion probabilities of associated covariates are about 0.5 when the effect size is 1,
whereas the inclusion probabilities of associated covariates are nearly 1 when the effect size is
1.5. When the effect size is low (β = 0.5), the inclusion probabilities are also low for the asso-
ciated covariates. The estimation of regression coefficients for the associated covariates and the
non-associated covariate values are accurate (similar to the true effect size). Moreover, we see
that when the Binomial proportion for the generative model (p) increases to be closer to 0.5, the
inclusion probability increases. The study also suggests higher inclusion probabilities with higher
effect sizes (β = 1.5, 2). For the correlated cases, the inclusion probabilities under the low correla-
tion are higher than that of the high correlation. For example, inclusion probabilities of about 0.6
when ρ = 0.1 drop to inclusion probabilities of about 0.2 when ρ = 0.8. The inclusion probabilities
of associated covariates are increased when the effect size increases. A similar result is witnessed
when the probability p of the generative Binomial distribution is increased. Inclusion probabilities
increase as p is increased.

The credible intervals under Bayesian framework are wider when compared to the LASSO
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estimates in both criteria (λ.min and λ.1se) with the lower effect size (β = 0.1, 0.3). However, when
the effect sizes increase (β = 0.5, 1) the credible intervals from the Bayesian method are slightly
different when compared to the LASSO using both criteria.

7.3 Summary for real data analyses

Some covariates are selected in both methods - BVS and LASSO, a fraction of these overlap and
could potentially indicate the stronger signals in the data. The credible intervals from BVS as well
as the posterior estimates are slightly different to the LASSO-based estimates.

The splitting of data sets appears necessary to detect any signals in this dataset due to the
size of the data. Different splits of the data yield largely consistent results, indicating that this is a
potentially promising approach for similary sized GWAS dataset applications.

However, more extensive simulations and analyses would need to be conducted to assess
the power of the method in a variety of situations.

7.4 Limitations of the Study

In our study, the simulation studies used to evaluate the variable selection in Chapter 5 were re-
stricted to 500 SNP covariates due to limitations in time and the available computation power. The
real dataset used for analysis in Chapter 6 has about a total of 15000 covariates. We may expect
to see big differences between results based on 500 SNP covariates and hundreds of thousands of
SNPs, so we would want to further the investigation of methods with much larger datasets and
extend our simulation studies to a genome-wide scale.

Moreover, the number of splits for the real dataset were considered to be 3,5 and 15 but this
could be varied. Finding the optimum number of splitting datasets could be a useful further di-
rection of this work.

7.5 Further Research and future directions

The simulation studies used to evaluate the splitting technique in Chapter 4 were restricted by
the number of covariates due to limitations in time and the available computational power. How-
ever, for a dataset on a genome-wide scale for large real-life datasets, we based our expectation on
how the methods would perform on results that we obtained in much smaller simulation studies,
resembling fine mapping more than genome-wide studies. We would want to further the inves-
tigation of methods on much larger datasets and extend our results to a genome-wide scale. A
major challenge would be to incorporate realistic models of population structure into the model
framework, as well as realistic interaction effects.
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Appendix A

Figures
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Figure Appedix 1 : The plot of the credible interval under the associated co-
variates when β = 1 the second correlated case (x1 with x4, x5, x2 with
x6, x7, x3 with x8, x9 ) when ρ = 0.1 from 500,1000 and 2000 covariates

Figure Appendix 2 : The plot of the credible interval under the associated covariates when
β = 1.5 under the second correlated case (x1 with x4, x5, x2 with x6, x7, x3 with x8, x9 ) when

ρ = 0.1 from 500, 1000 and 2000 covariates
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