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Abstract 
 

In a time characterized by rapid technological advancements and a noticeable trend 

towards an older average population, the need for automated systems to monitor 

movements and actions has become increasingly important. This thesis delves into the 

application of radar, specifically Frequency Modulated Continuous Wave (FMCW) 

radar, as an emerging and effective sensor in the field of "Activity Recognition." This 

area involves capturing motion data through sensors and integrating it with machine 

learning algorithms to autonomously classify human activities. Radar is distinguished 

by its ability to accurately track complex bodily movements while ensuring privacy 

compliance. 

The research provides an in-depth examination of FMCW radar, detailing its 

operational principles and exploring radar information domains such as range-time 

and micro-Doppler signatures. Following this, the thesis presents a state-of-the-art 

review in activity recognition, discussing key papers and significant works that have 

shaped the field. The thesis then focuses on research topics where contributions were 

made. The first topic is human activity recognition (HAR) with different physiology, 

presenting a comprehensive experimental setup with radar sensors to capture various 

human activities. The analysis of classification results reveals the effectiveness of 

different radar representations. Advancing into the domain of resource-constrained 

system platforms. It introduces adaptive thresholding for efficient data processing and 

discusses the optimization of these methods using artificial intelligence, particularly 

focusing on the evolution algorithm such as Self-Adaptive Differential Evolution 

Algorithm (SADEA). The final chapter discusses the use of Long Short-Term 

Memory (LSTM) networks for short-range personnel recognition using radar signals. 

It details the training and testing methodologies and provides an analysis of LSTM 

networks performance in temporal classification tasks. 

Overall, this thesis demonstrates the effectiveness of merging radar technology with 

machine learning in HAR, particularly in assisted living. It contributes to the field by 

introducing methods optimized for resource-limited settings and innovative 

approaches in temporal classification using LSTM networks. 
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1. Introduction 

1.1 Context 

The World Health Organization (WHO) projects that the proportion of individuals 

aged 60 and above will increase from 12% to 22% between 2015 and 2050, which 

highlights the ongoing demographic shift toward an increasingly ageing population [1]. 

It is estimated that there will be one person aged over 60 in every six people by 2030 

[1].  As this shift in the distribution of the population continues to older ages, the 

demand for people who have longer life spans do not always enjoy a matching quality 

of life [2]. Meanwhile, the expanding age group is confronted with several challenges 

that were previously unforeseen in earlier generations but are now experienced on a 

much larger scale [3], [4], [5], [6]. The older adults tend to experience chronic 

diseases more frequently than younger individuals, which often require long-term care 

and management. Additionally, older adults are at a higher risk of falls and other 

critical activities, which could lead to severe injuries and disabilities [6], [7]. The 

noncommunicable disease (NCD) and critical events pose significant public health 

challenges, which has negative impacts on individual life expectancy. According to 

the latest report from WHO [8], the global share of deaths attributable to NCDs 

increased from almost 61% in 2000 to almost 74% in 2019, leading it as the top global 

cause of death. The critical events, such as fall, often occurs simultaneously with the 

disease like stroke, which exacerbates the condition of patients. 

The UK, like many other developed countries, is experiencing an ageing population 

trend as shown in Figure 1. According to the Office for National Statistics [9], the 

proportion of the population aged 65 and over in the UK is increased from 16.4% in 

2011 to 18.6% in 2021. This trend is largely due to a combination of factors, including 

increased life expectancy and a decrease in birth rates. Compared to the rest of the 

world, the UK's ageing population is relatively high. According to a report by the 

United Nations, the proportion of the UK population aged 65 and over is projected to 

be around 25% by 2050, which is much higher than the global average of 16%. 

However, this trend is not unique to the UK, as many other developed countries such 

as Japan, Italy, and Germany also have ageing populations. It is a global challenge 

that requires innovative solutions to address the needs of this growing population. 
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Figure 1 Proportion of the population aged 65 years and over, 2016 and 2039, UK. 2016 mid-year 
population estimates for UK, Office for National Statistics, 2014-based subnational population 
projections for UK, Office for National Statistics, Welsh Government, National Records Scotland and 
Northern Ireland Statistics and Research Authority, contains OS data ©  Crown copyright 2018 [2]. 

To support ageing individuals, ambient assisted living (AAL) is increasingly used to 

provide low-latency intelligence sensing-based products, services, and systems that 

enable elderly people to live independently in their homes [10], [11]. By utilizing 

various technological innovations [12], [13], [14], such as wearable devices, and radar, 

the elderly can receive support without the need for direct human assistance. The AAL 

system is designed to provide a higher quality of life and increased independence for 

seniors while reducing the burden on caregivers and healthcare systems. In addition, 

these technologies can also provide real-time monitoring and emergency response 

services. The monitoring of the daily activities of the elderly can help identify possible 

changes and anomalies that may indicate deteriorating health conditions [15]. For 

example, the decrease in daily physical activities could be a sign of a potential health 

issue, such as mobility impairment. Tracking these changes can also contribute to 

informing diagnosis and prognosis for medical practitioners. Besides, several studies 

[7], [16] illustrate that the time taken to receive medical aid after a fall event is highly 

correlated with life expectancy. By providing timely assistance, we can increase the 

chances of a full recovery and reduce the potential negative impact of falls on older 

adults. 

In recent years, the field of AAL has seen the emergence of several different sensing 

technologies. These include wearable sensors [17], [18], [19], video-based systems 

[20], ambient sensors, and radio frequency (RF) sensors [21], [22], [23]. Of these, 

wearable sensors are designed to measure data related to the movements of an 
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individual, such as acceleration and angular speed.  Wearable sensors are capable of 

measuring vital signals such as pulse rate and skin temperature, as well as properties 

and small movements of the attached body parts. Due to their small size and relatively 

low cost, wearable sensors have become increasingly popular. However, there are 

some limitations to using these sensors, particularly during motion or sports activities. 

Wearing the sensors for extended periods can cause discomfort, and they require to be 

worn constantly to be effective [24]. In order to wearable sensors to be effective, 

consistent wear is required, which demands a certain level of compliance and 

cognitive ability from the user to remember to wear the sensors. This is a challenge for 

ageing people especially those who are suffering from memory loss [24].  

The vision-based approach, on the other hand, using cameras to monitor an area and 

capture images or video for recognition purposes, is one of the most commonly 

employed methods in recent research works, as it is highly connected with computer 

vision, providing a range of sophisticated tools derived from the field and a practical 

framework [25]. This approach provides a contextual representation of activities 

through pre-processed images or videos, which are then learned to shape a model 

using various learning methods [25]. However, this approach can lead to privacy 

invasion and disputes over image rights. People may feel it is quite intrusive as their 

living conditions are constantly monitored by a camera. Moreover, camera images and 

recordings provide visual information about the user, which can give hints about their 

physical size or height, and the environment they live in. Additionally, it is easily 

affected by lighting conditions [26], and a camera cannot guarantee image quality in 

both weak and strong light. In adverse lighting conditions or darkness, the vision-

based method cannot function correctly without an artificial light source. These 

variations strongly affect the accuracy of deployed algorithms. 

RF sensing has gained popularity due to its flexibility and potential advantages over 

cameras and wearable sensors. Its contactless capabilities eliminate the need for end-

users to wear, carry, or interact with any additional device, which can increase user 

acceptance and compliance [15], [27]. Furthermore, the absence of plain images or 

videos to be recorded can help address potential privacy concerns. Radar, in particular, 

has emerged as one of the most representative RF sensing approaches. It provides rich 

information in multi-domain, including range, velocity, and angle, and the information 

can also be presented in various dimensions, which makes it ideal for motion and 

target detection [28]. Within the various domains of radar information, micro-Doppler 

has emerged as a commonly utilised approach for capturing the small modulations in 

the received radar signal that result from the 'micro-motion' of individual body parts, 
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such as the limbs and legs [29]. Consequently, there has been a significant number of 

research investigating the utility of radar sensing for tasks such as human activity 

recognition and personnel recognition. 

Research in radar-based human activity recognition for assisted living has risen 

considerably due to a rapidly increasing of ageing population. Machine learning-based 

methods [27], [30] are widely employed to classify collected data and features, as a 

classifier can learn to identify the patterns of different activities through a training 

process. In recent years, neural network-based [15], [31] methods have demonstrated 

superior classification accuracy compared to conventional classifiers since they can 

automatically extract salient features from radar data, albeit at the cost of increased 

training complexity. Deep learning aims to find the mapping relationship between the 

training data and the labels through the learning and testing of many samples. 

However, classifying human activities based on data from a single domain may not be 

sufficient to fully characterize them. Additionally, the signal strength of a single radar 

can be attenuated due to external conditions, such as the aspect angle [32], obstruction, 

and long distances to the monitored target. To overcome these limitations and improve 

classification performance, it is possible to use multi-domain radar data or additional 

radar nodes. This approach allows for the selection of salient features across different 

domains and the implementation of fusion techniques between multiple domains, 

other radar nodes, or different sensing modalities that complement radar data. 

1.2 Motivation and Object 

1.2.1 Motivation 

Each radar domain has its advantages and disadvantages. For instance, one of the most 

commonly used domains is the spectrogram, which shows micro-Doppler signatures 

based on Short-Time Fourier Transform (STFT). The distinctive motions of different 

body parts constitute a specific micro-Doppler signature, enabling human activity 

recognition [33], [34]. However, spectrograms have limitations in time/frequency 

resolution when activities with low interclass variations are introduced, or high-

frequency accuracy is required for data representation. In addition, spectrograms are 

ill-suited for the separation of multiple close objects, even if the distance between 

targets is greater than the range resolution as the range information is lost. Moreover, 

many works still tend to apply the same algorithm, using the same features, to 

recognise all activities in a multi-class problem. There are few attempts to capitalise 
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on the diversity of information that can be recorded by various feature combinations 

and different radar domains. 

The results obtained from multiple radar domains can be further improved by 

implementing selection and information fusion algorithms. By combining the 

strengths of different radar domains and selecting targeted features for different 

activities, the classification system can be made more robust in distinguishing similar 

activities and identifying certain events [28], [35]. However, using multi-domain radar 

data and additional algorithms, such as feature fusion, can increase the volume of 

input data or features for machine learning and deep learning. This can lead to 

complex data processing methods and training models, which in turn can increase 

computational cost and power consumption. This can be problematic for deployment 

on embedded platforms, and thus reducing the footprint of the algorithm in terms of 

energy consumption and silicon is necessary to lower the product price for end-users.  

Another challenge faced with radar is that entanglement can occur in the Micro-

Doppler signature when considering the multi-target scenarios [28], [35]. These 

entanglements can hinder the separation of the signature of different targets. If the 

individuals were moving in the same direction, it would not be possible to disentangle 

their signatures without prior processing to separate in range and angle the different 

targets. The multi-domain solution can also provide insight with using radar 

technology for multi-target activity recognition, which offers a different explanation 

of data in different domains. 

 

1.2.2 Objectives 

The primary objective of this thesis is to develop an adaptive, intelligent, and efficient 

solution for human activity recognition using radar. Section 1.2.2 provides an 

overview of the key research topics and motivations that underpin this study. To 

achieve our goals, this research focused primarily on the following areas: 

I. Exploring the potential of different data representation domains of radar and 

enhance the accuracy of activity recognition through the integration of domain 

knowledge.  

o It was achieved through three steps.  

1- Exploration of each data representation domain and its corresponding 

features and comparison of their performances on different activities.  
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2- Development of a feature fusion and selection algorithm, which 

provided a comprehensive analysis of the features, domains, and 

performances to improve the accuracy of activity recognition. 

3- Introduction of a hierarchical structure to enhance the performance of 

human activity recognition. It will leverage a combination of techniques 

to identify the optimal approach for maximizing the accuracy of activity 

recognition. 

II. Designing a human activity recognition system that achieves satisfactory 

performance while minimizing computational cost.  

o It was achieved through three steps.  

1- Develop an adaptive data processing system, which can provide a 

general processing solution for researched domains. This system is also 

aimed to leverage previous domain knowledge, alongside feature 

selection and feature fusion, to create a robust, efficient, and general 

solution for our researched data domains.  

2- Design an ML-based human activity recognition system that is 

combined with prior data processing techniques, with the goal of 

achieving high accuracy while reducing the computational cost.   

3- Evaluate the performance of the developed system through 

experiments to gain valuable insights into its practical applications and 

potential for implementation in real-world settings. 

 

In addition to the main objectives outlined above, there are several other objectives, or 

branches of our work that must also be addressed throughout this research. These 

ancillary objectives will be identified and completed as necessary to ensure that the 

study is comprehensive, accurate, and robust.  

A. Conducting experiments and collect human activity data from real subjects to 

evaluate the performance of our developed algorithms. The aim is to gain 

valuable insights into the practical applications of our methods and their 

potential to be implemented in real-world settings. The data collected will be 

used to test and validate the accuracy and efficiency of the proposed activity 

recognition system. 

B. Evaluating the performance of various machine learning and deep learning 

algorithms for activity recognition using radar data. The algorithms will be 

trained and tested on the same dataset to compare their performance. The goal 

is to identify the most effective algorithm that achieves high accuracy in 
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activity recognition using radar data. The results of this study will provide 

valuable insights into the potential of different machine learning and deep 

learning algorithms for improving the accuracy of activity recognition using 

radar data. 

C. Expanding the feature research to include personnel recognition, alongside the 

primary focus on human activity recognition. Through this expansion, we aim 

to determine the effectiveness of the developed algorithms in recognizing and 

classifying various individuals within radar data. To achieve this objective, we 

will collect and analyse data from real subjects and employ various machine 

learning and deep learning algorithms for training and testing purposes. The 

results of this research will provide valuable insights into the potential of our 

developed algorithms in personnel recognition applications and multi-target 

research in future. 

1.3 Contributions 

1.3.1 Statement of Novelty 

The research conducted in this thesis makes several novel contributions to the field of 

radar-based human activity recognition and personnel recognition. 

Contribution linked to Objective I: To investigate the potential of different radar data 

representation domains for improving the performance of activity recognition, we 

introduce a novel pre-processing method for radar-based human activity recognition 

(HAR) utilizing adaptive thresholding. This method automatically generates regions 

of interest (ROI) from human micro-Doppler signatures, accompanied by a set of 

specifically designed features tailored for classification across different domains. This 

contribution links to our objective I. 

Contribution linked to Objective II: The thesis investigates various optimization 

strategies to enhance the performance of the HAR system. These strategies include the 

fusion of data domains and selection techniques, as well as exploring different 

parameters of the statistical learning model. Additionally, a hierarchical structure is 

employed to further optimize the system's performance. These optimization 

approaches demonstrate significant improvements in the overall performance of the 

HAR system. This contribution links to our objective II. 

Other Contributions: In addition, this study is to conduct experiments and collect 

human activity data from real subjects, evaluate the performance of various machine 
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learning and deep learning algorithms for activity recognition using radar data, and 

expand the feature research to include personnel recognition. We aim to gain valuable 

insights into the practical applications of our developed algorithms, compare the 

performance of different algorithms in activity recognition, and explore the 

effectiveness of our algorithms in recognizing and classifying individuals within radar 

data. 

These contributions provide new insights and techniques for the development of 

robust and accurate radar-based assisted living systems. Overall, this thesis presents a 

comprehensive approach to human activity recognition and personnel recognition 

using radar data, with novel contributions that advance the state of the art in the field. 

1.3.2 Elaboration of Contributions 

This thesis aims to explore the potential of using different radar domain information 

for human activity recognition and monitoring. The scope of this research is discussed 

in the state-of-the-art section, which includes hardware, software, and experimental 

techniques to leverage radar technology and its applications in healthcare. In this 

rapidly evolving domain, there are central questions that this thesis attempts to answer. 

These questions are derived from the literature review and the contributions made by 

this thesis for improving activity recognition and personnel recognition through the 

use of radar sensors. The main contributions of this thesis are as follows: 

1. The demonstration of the effects of different domains of radar data on 

classification accuracy.  

In this research, we aimed to investigate the potential of different data 

representation domains of radar for improving the accuracy of activity 

recognition, as outlined in objective I. Initially, we aligned our work with the 

state-of-the-art by utilizing existing algorithms and literature focusing on 

micro-Doppler signatures and machine learning techniques for activity 

recognition. However, as our research progressed, we discovered the valuable 

information that other radar domains, such as the range-time map, could offer 

for human activity classification. Our investigation revealed that the 

classification rates varied among radar domains, indicating that certain domains 

exhibited higher accuracy in classifying specific activities. 

Consequently, our early contribution was the investigation of the effect of 

different radar domains on activity recognition, aligning with the potential of 

these domains for enhancing activity recognition through the fusion of domain 
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knowledge. This investigation provided valuable insights into the potential of 

radar data from various domains, which can be leveraged to improve the 

accuracy of our activity recognition system. 

 

2. Proving that utilising features from different domains with feature 

selection, fusion and different classification structures can increase the 

performance for human activity recognition.  

After reviewing the literature and our previous works, we advanced our 

research by implementing feature selection and fusion frameworks to enable 

activity recognition. We compared various combinations of radar domains and 

features using different classification algorithms, validating their performances. 

To further enhance the accuracy of activity classification, we proposed a 

hierarchical classification structure. By integrating these approaches, we 

extracted diverse information from radar data, resulting in improved accuracy 

for activity recognition. Overall, our investigation focused on the impact of 

different radar domains on activity classification results and aimed to develop 

activity recognition methods through feature selection and fusion. These efforts 

were driven by the objective I of our study, which explores the potential of 

various radar data representation domains in enhancing activity recognition. 

 

3. Demonstrating improved recognition of human activity without feature 

extraction and extending our previous results to personnel recognition.  

With the development of artificial intelligence methods, deep learning 

approaches have been increasingly used to exploit radar data for classification 

problems. Radar data is well-suited for deep learning as it can be represented as 

either temporal or visual information. We focused on evaluating the 

performance of various machine learning and deep learning algorithms for 

activity recognition using radar data. Our aim was to identify the most effective 

algorithm that achieves high accuracy in activity recognition using radar data. 

To achieve this, we explored different types of neural networks using 

spectrograms and compared their performance. Moreover, the objective of this 

study was to expand our feature research to include personnel recognition, 

alongside the primary focus on human activity recognition, we proposed a 

novel approach by combining information from both range-time maps and 

spectrograms using neural networks, with a specific focus on gait information. 

This contribution extended the use of artificial intelligence techniques with 

radar from human activity recognition to personnel recognition, building on our 
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previous work. Our results provide valuable insights into the potential of our 

developed algorithms in personnel recognition applications and multi-target 

research in the future. 

 

4. Developing a new algorithm for human activity recognition to guarantee 

accuracy and efficiency.  

In our previous contributions, we proposed solutions for radar-based human 

activity classification in indoor scenarios. However, these approaches often 

prioritize accuracy over efficiency, using complex data processing methods or 

deep neural networks that result in long latencies at the inference/testing stage. 

Additionally, they typically use the same algorithm to recognize all activities, 

disregarding the potential of various feature combinations and different radar 

domains. To address these issues, we present an adaptive thresholding method 

that leverages the 'phase' domain of radar, which has been seldom investigated 

in previous studies. This approach achieves high classification accuracy while 

reducing computational burden compared to most deep learning methods, 

making it ideal for realistic deployment on embedded platforms. This 

contribution is linked to the second major objective of this study, which aims to 

design a human activity recognition system that achieves satisfactory 

performance while minimizing computational cost. Our approach successfully 

yields a high gain in classification accuracy while reducing computational 

burden compared to most deep learning methods, making it suitable for 

realistic deployment on embedded platforms. 

1.3.3 Publications 

Patent 

1 - Centre National de la Recherche Scientifique (2022), Method and device for 

human activity classification using radar micro-Doppler and phase, EP21306742. 

Journal papers 

1 - X. Li, Z. Li, F. Fioranelli, S. Yang, O. Romain, and J. L. Kernec, “Hierarchical 

Radar Data Analysis for Activity and Personnel Recognition,” Remote Sensing, vol. 

12, no. 14, p. 2237, Jul. 2020 [29]. 

2 - Li, Z., Le Kernec, J. , Abbasi, Q. , Fioranelli, F. , Yang, S. and Romain, O. (2023) 

Radar-based human activity recognition with adaptive thresholding towards resource 

constrained platforms. Scientific Reports, 13, 3473 [36].  
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3 - Z. Li, Y. Liu, B. Liu, J. Le Kernec, and S. Yang, “A holistic human activity 

recognition optimisation using AI techniques,” IET Radar, Sonar Navig., Sep. 2023. 
[37]  

 

Conference papers 

1- Z. Li et al., "Multi-domains based human activity classification in radar," IET 

International Radar Conference (IET IRC 2020), Online Conference, 2020, pp. 1744-

1749 [38]. 

2- Z. Li, J. Le Kernec, F. Fioranelli, O. Romain, L. Zhang and S. Yang, "An LSTM 

Approach to Short-range personnel recognition using Radar Signals," 2021 IEEE 

Radar Conference (RadarConf21), Atlanta, GA, USA, 2021, pp. 1-6 [39]. 

3- Z. Li, F. Fioranelli, S. Yang, J. Le Kernec, Q. Abbasi and O. Romain, "Human 

Activity Classification with Adaptive Thresholding using Radar Micro-Doppler," 

2021 CIE International Conference on Radar (Radar), Haikou, Hainan, China, 2021, 

pp. 1511-1515 [40]. 

1.4 Thesis Structure 

This thesis is organised as follows: 

Chapter 2 serves a necessary background of this thesis. It begins with an overview of 

the working principle of FMCW radar, including its fundamental parameters and how 

they affect the radar performances. The signal processing steps of FMCW radar are 

also described in detail, along with the illustration and discussion of different data 

domains that contain valuable information for human activity recognition. Then it 

delves into the machine learning aspect of this research by discussing the algorithm 

and architecture used in this thesis.  

Chapter 3 provides a comprehensive literature review relevant to human healthcare 

until recently. It examines radar based AAL technology in the aspect of artificial 

intelligence. We also cover AAL with alternative sensors, such as wearable sensors or 

camera. Furthermore, the review is also involved the selection and fusion approaches 

between different types of features. This chapter highlights the gaps in the literature 

which provided opportunities for the research presented in this thesis to be conducted. 

Chapter 4 presents the preliminary results of using handcrafted features for activity 

recognition with different radar domains. The chapter demonstrates the effectiveness 

of leveraging different types of information from various domains and compares the 
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performance of using each domain alone with their fusion results. Moreover, the 

impact of feature selection as well as different classifiers and fusion methods are 

thoroughly discussed.  

Chapter 5 presents a computational cost-saving model, elaborating the results from 

Chapter 4, where an adaptive thresholding solution is proposed, along with an 

introduction to radar representations, specifically phase form, which has been seldom 

considered in the literature. The performance of the proposed solution is evaluated 

against the various existing state-of-the-art learning models. Then, a comprehensive 

optimization strategy is introduced, focusing on the pre-processing aspects of the 

proposed methods, and the Chapter concludes with a brief summary of results and 

analysis. 

Chapter 6 extends on the work by introducing deep learning models and personnel 

recognition based on gait analysis. This chapter specifies how automatic feature 

generation approach using neural networks to classify activities without handcrafted 

feature extraction algorithm. Besides, the chapter explores the combination of gait 

analysis with temporal characteristics of radar, using time-dependent neural networks 

to achieve personnel recognition. 

Chapter 7 lastly, we summarize the thesis and draw a vision that suggests possible 

ways to improve related research. 
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2. Radar and Machine Learning Background 

The detection of human motion with radar involves two fundamental technical 

components: radar systems and machine learning systems. As the radar plays a crucial 

role in the overall detection scheme, this chapter first focuses on providing an in-depth 

overview of radar operation and signal processing required to generate information 

from human activities. Following the detailed explanation of radar and signal 

processing, this chapter delves into the machine-learning aspect of the research. The 

fundamental versions of machine learning algorithms and architectures used for 

activity recognition are thoroughly explored. This includes discussing various 

classification algorithms and deep learning models forming the core of the cognitive 

machine learning systems used in human activity recognition. 

By combining the knowledge of radar signal processing with machine learning 

techniques, this chapter sets the foundation for the subsequent sections of the thesis, 

where we integrate these components to achieve accurate and efficient human motion 

detection and activity recognition. An understanding of both radar technology and 

machine learning principles is vital for developing an effective human activity 

recognition system with radar-based sensors. 

The organisation of the chapter is as follows: In sections 2.1 and 2.2, we will 

introduce radar system structures, basic radar signal processing, and the micro-

Doppler effect, particularly in the case of human motion. In section 2.3, we focus on 

different radar representations. In sections 2.4 and 2.5, both machine learning and 

deep learning algorithms are introduced respectively. We will provide an overview 

and basic concepts of machine learning. Some of the classification algorithms will 

also be pointed out since they are employed in the next chapters. 

2.1 Radar 

The word ‘radar’ is an acronym, RADAR, standing for radio detection and ranging. 

The transmitter is responsible for emitting the electromagnetic waves. These waves 

are then directed towards a target through the air using an antenna. In a monostatic 

radar, the same antenna also receives the waves reflected back from the target. A 

separate antenna may be used for receiving waves in multistatic or quasi-monostatic 

configurations to avoid blind distances [41]. Subsequently, a receiver captures the 

received information, and a processor is utilized to process and display this 

information [42].  
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The radar can be categorized in terms of whether it transmits radio frequency (RF) 

signals actively (active radar) and listens to the backscattered signals or it relies on 

illuminations of opportunity (passive radar). Active radar systems are the most 

commonly used form of radar. These systems actively transmit RF signals toward a 

target and then receive the reflected signals to determine the target's properties, such 

as its range, velocity, and size. The term "active" refers to the radar's capability to 

generate its own electromagnetic waves for transmission [42]. Unlike active radar 

systems, passive radar does not have a transmitter of its own. Instead, it relies on 

existing electromagnetic signals in the environment, such as broadcast TV and radio 

signals, to illuminate the target [42]. 

For active radar, there are many categorization rules. For example, according to the 

radar configuration, the radar can be categorized as monostatic radar, bistatic radar 

(Figure 2), multistatic radar and Multiple-Input Multiple-Output radar. 

 

Figure 2 The basic operation of a bistatic radar detector. The transmitted wave is denoted as Tx and 
the received wave is Rx.   

• Monostatic radar uses the same antenna for both transmit and receive or co-

located two antennas as transmitter and receiver. For single antenna used, 

duplexer is needed to separate the transmit chain from receive chain and vice 

versa.  

• Bistatic radar uses two spatially separate antennas for the transmitter and the 

receiver. They are not co-located and are separated by a distance. 

• Multistatic radar consists of multiple monostatic radar or bistatic radar that are 

spatially separated, with a shared area of coverage. Multistatic system can 

afford spatial diversity to improve target detection and tracking capabilities.  
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• MIMO radar utilizes multiple antennas for both transmitting and receiving, 

enhancing radar capabilities beyond traditional monostatic or bistatic systems. 

This setup, with each transmit antenna emitting a distinct signal and multiple 

receive antennas capturing reflections, allows for improved spatial resolution 

and target detection. The multiple antenna paths enable better target 

localization and robustness against interference, making it effective in complex 

scenarios. 

Table 1 The comparison of different radars Configuration. 

Feature Monostatic 

Radar 

Bistatic Radar Multistatic 

Radar 

MIMO 

Radar 

Antenna 

Configuration 

Single or Co-

located antenna for 

Tx and Rx 

Separate 

antennas for Tx 

and Rx 

Multiple 

antennas for 

TX and/or RX 

Multiple 

antennas for 

TX and RX 

Hardware 

Complexity 

Lower Higher Due to the 

number of 

units. 

Highest 

Cost Generally lower Generally higher Higher Highest 

Signal 

Processing 

Simplified More complex More complex Most 

complex 

Synchronization Easier (co-located 

Tx and Rx) 

More complex More complex Most 

complex 

Latency Generally lower May vary May vary May vary 

 

Radar configuration is a critical part of radar-based systems, particularly in 

applications like HAR, where the quality and type of data collected can significantly 

impact the performance of system [43]. The configuration determines various 

parameters such as the frequency band, pulse repetition frequency and antenna 

arrangement. It is also related to the aspect angles, which also influences collected 

signals [43]. 

Table 1 illustrate a brief comparison between different radar configurations. However, 

there are more than one categorization methods. In terms of transmitted signal type, 

the radar can be categorized as CW radar and Pulse radar. 

• The CW radar emits a constant RF signal and measures the frequency shift 

(Doppler shift) in the returned signal to determine the velocity of a target. It has 

many advantages such as high resolution in velocity measurements and lower 

power consumption [44], however there is no range information. The constant 
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RF signal could be modulated over time, usually in a linear or sinusoidal 

manner, and it will become a frequency modulated CW radar, also known as 

FMCW radar [45] with which you can measure range and velocity.  

• On the other hand [46], pulse radar emits short bursts of radio waves and 

listens for the echo to measure both distance and velocity according to time 

delay and Doppler shift analysis. It is commonly used in air traffic control and 

marine radar since it is effective for long-range detection. 

A main comparison between the radars is summarized in Table 2. 

Table 2 The comparison of different radars in terms of transmitted signals. 

Feature CW Radar Pulse Radar FMCW 

radar 

MIMO radar 

Signal Type Unmodulated 

Continuous 

Pulsed with 

Modulations 

Frequency-

modulated 

continuous  

FMCW 

TDM/DDM* or 

orthogonal 

waveforms 

Range 

Measurement 

No Yes Yes Yes 

Shorter Range 

Target Detection 

Better Worse  Better Better 

Velocity 

Measurement 

Yes Yes Yes Yes 

Complexity Lower Higher Higher Higher 

Power 

Consumption 

Lower Higher Higher Higher 

*TDM: Time Division Multiplexing, DDM: Doppler Division Multiplexing 

In this thesis, a FMCW radar is implemented to collect human activity data, since it is 

particularly suitable for HAR research under indoors scenario: FMCW Radar uses 

frequency modulation to encode the time information into the frequency domain. This 

allows for rapid signal processing, as the range and velocity information can be 

extracted simultaneously from the received signal using Fourier Transform techniques 

[41] resulting in a light computational load. Meanwhile, it can provide high temporal 

resolution due to its continuous wave nature, and fine range resolution [41]. The high-

resolution data from FMCW Radar can be effectively used as input features for 

machine learning algorithms, enhancing the performance of HAR systems. FMCW 

radar systems are also low-consumption. The combination of low consumption and 

low signal processing complexity makes it particularly suitable for in-home 
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environments. Note however, that multiple FMCW radar operating at the same 

frequency may interfere with each other. This will not be the case in this research. 

Statistical and deep learning models can be trained to recognize complex human 

activities by learning the intricate patterns in the radar signals and its features [28]. 

Furthermore, pulse radar, often has a minimum range limitation due to the need for a 

“listen” period between pulses. It also needs time to switch between the transmit and 

receive modes. This switching time creates a “blind zone” around the radar where 

targets may be too close to be detected. This can make it less suitable for short-range 

applications [41] hence the need for quasi-monostatic radar with one transmit and one 

receive so there are no blind zones. 

2.2 FMCW Radar Basic Principles 

In this section, the basic principles behind the operation of radar, particularly in 

FMCW radar, will be introduced. The signal pre-processing of raw data, involving 

modulation, range and Doppler extraction. This will provide the required 

technological background for the exploration of different radar representations.   

2.2.1 Doppler effect 

The Doppler Effect refers to the change in frequency or wavelength of a wave in 

relation to an observer moving relative to the source of the wave. In radar systems, the 

Doppler Effect manifests as a frequency shift in the reflected radar signal when the 

target is moving toward or away from the radar [47]. The Doppler Effect provides 

crucial information about the velocity of a target, which is essential for distinguishing 

between different types of human activities based on their velocity profiles, such as 

walking, running, or falling [47]. 

When the target and observer are both moving, there is a frequency shift between the 

transmitted and received signal due to the Doppler Effect. The frequency of the 

received echo signal is given in Eq. (2.1) [47]. 

𝑓𝑟 = (
𝑐 ± 𝑣𝑟

𝑐 ∓ 𝑣𝑠

) 𝑓𝑐 (2.1) 

where 𝑓𝑐 is the frequency of the transmitted wave, and 𝑐 denotes the speed of light. 𝑣𝑟 

and 𝑣𝑠  are the target and source velocities.  In radar research, the majority of the 
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works considered the radar to be stationary for human activity recognition, and 

therefore the equation can be simplified as shown in Eq. (2.2). 

𝑓𝑟 = (
𝑐 ± 𝑣𝑟

𝑐
) 𝑓𝑐 (2.2) 

For different configurations of radar, the Doppler effect calculation has different 

factors to consider, and thus we illustrate both monostatic radar and bistatic radar. 

Multistatic being a superposition of bistatic radar configuration, the principles are the 

same as bistatic. 

For monostatic configuration radar [47], since the transmitter and receiver are at the 

same location, and the electromagnetic wave travels the distance twice between the 

radar and the target for the transmit and receive process, therefore the relationship 

becomes: 

𝑓𝐷 = 2(𝑓𝑟 − 𝑓𝑐) = −
2𝑣𝑟

𝑐
𝑓𝑐 (2.3) 

In bistatic radar system [47], the Doppler shift would become much more complex 

because the angles and distances between radars are considered. As shown in Figure 3, 

the transmitter and receiver are separated by a baseline of distance 𝐿 . The phase 

between the transmitted signal and the received signal changes along with the target 

moving, and the Doppler frequency shift is measured by the phase change rate. To 

simplify the process, the bisector is introduced because it provides a reference line that 

is equidistant from both the transmitter and the receiver. This simplification is 

particularly useful when the transmitter and receiver are separated by a significant 

distance [47], and the target is also at a considerable distance from both. The equation, 

in a nutshell, can be represented as Eq. (2.4): 

𝑓𝐷 =
2𝑓𝑐

𝑐
|𝑽|𝑐𝑜𝑠 (

𝜑

2
) 𝑐𝑜𝑠𝛿 (2.4)  

Where 𝑓𝑐 is the frequency of transmitted signal, 𝑐 denotes the speed of light, 𝑽 is the 

velocity vector of moving target, 𝜑 is the bistatic angle between transmitted wave and 

received wave, and 𝛿 is the aspect angle between the direction target and the bisector 

of target.  
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Figure 3 The two-dimensional bistatic radar system configuration.  

2.2.2 FMCW radar 

With advancements in computing and processors, new modulation methods, which 

can encode both range and velocity simultaneously, are now employed. Frequency 

Modulated Continuous Wave (FMCW) radar is a type of radar system that 

continuously transmits a frequency-modulated signal. The transmitted signal is 

reflected off a target, and the radar receiver detects the returned signal. The frequency 

difference between the transmitted and received signals is used to determine the range 

(distance) to the target, while the frequency shift due to the target movement provides 

information about its velocity [42], [47].  

Transmitted signals could be modulated in different patterns [48]. Figure 4 and Figure 

5 illustrate the linear sawtooth pattern of modulation. As is shown in Figure 4, the 

frequency of linearly modulated signal, also known as chirp signal, is varied along 

with time in a linear fashion. Besides the sawtooth pattern, other types are also used 

such as triangular and square wave [48].   

In the signal processing stage [46], [47], [48], the difference in frequency between 

transmit and receive waveform is known as beat frequency. This frequency difference 

allows to the measurement of the distance to the reflecting object. Since the frequency 

difference is proportional to the time delay 𝜏 between the radar and the target, the 

range information can easily be extracted by the beat frequency and extracting the 

frequency change, as shown in Eq. (2.5) and Eq. (2.6) 
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𝜏

𝑇
=

𝑓𝑏𝑒𝑎𝑡

𝐵
(2.5) 

𝑟𝑎𝑛𝑔𝑒 =
𝜏𝑐

2
(2.6) 

where 𝑓𝑏𝑒𝑎𝑡 is the beat frequency, 𝑇 is chirp length and 𝐵 is the bandwidth of chirp 

signal.  

 

Figure 4 FMCW radar chirp signal in the time domain.  

 

Figure 5 FMCW radar chirp signal time-frequency representation. 
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However, the range resolution ∆𝑅, referring to the size of a range bin, is linked with 

the radar bandwidth 𝐵, as depicted in Eq. (2.7): 

∆𝑅 =
𝑐

2𝐵
(2.7) 

Hence, the bandwidth is significant to FMCW radar. Without enough bandwidth, 

FMCW radars cannot distinguish close targets as a separation greater than 2∆𝑅  is 

needed to separate targets and not result in an extended target. 

2.2.3 FMCW radar system structure 

Figure 6 illustrates a synoptic of an FMCW radar [49]. The transmitter part consists of 

a digital-analogue converter (DAC) for converting a digital controlled order into 

analogue voltage. A voltage-controlled oscillator (VCO) is also used for generating a 

corresponding RF signal according to the input voltage. The signal is then 

upconverted to the required operating band with a superheterodyne architecture. The 

signal is then split between the receiver path for ‘dechirping’ and the other path feeds 

into a power amplifier (PA). The signal after amplification is transmitted into free 

space with an antenna. The backscattered signals are captured by the receiving 

antenna and amplified through a low noise amplifier (LNA). The received signal is fed 

to the RF input of two mixers and the replica of the chirp from the transmitter path 

goes through a second splitter. One path goes in the local oscillator input of the in-

phase (I) channel mixer and the other is 90º phase shifted before the local oscillator 

input of the mixer in the quadrature (Q) channel. The I/Q components at the 

intermediate frequency output of the mixers are the result of dechirping i.e., removing 

the frequency modulation by mixing the replica from the transmitter with the received 

signals yielding low-frequency components (beat frequencies) and high frequency 

components. The latter are low-pass filtered to only keep the beat frequencies. The I/Q 

IF components are then digitized with Analogue to Digital Converters (ADC). 

I/Q components are commonly used in radar system for several important advantages: 

I/Q components allow the received signal to be represented as a complex signal, 

which is essential for capturing both amplitude and phase information [50] as well as 

further relaxing the requirements on the ADCs and simplifying signal processing by 

removing the step to reconstruct the imaginary part of the received signal. This 

presents however some drawbacks in cost with added hardware with a second IF 

channel for the Q channel meaning also that imbalances in phase and amplitude 

between I and Q channels will appear affecting the signal quality. 
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Complex signals are beneficial to accurately determine the velocity direction of 

targets [51]. Besides, I/Q components can provide valuable information, which can be 

used for feature extraction [52]. Moreover, they can improve the signal to noise ratio 

(SNR), especially in low SNR environments, thereby enhancing detection capabilities 

[53]. 

 

Figure 6 Block Diagram of a typical FMCW radar system. VCO: Voltage-Controlled Oscillator, DAC: 

Digital to Analogue Converter, ADC, Analogue to Digital Converter, LNA: Low Noise Amplifier, PA: 

Power Amplifier, LPF: low-pass filter, I: In-phase, Q: Quadrature, Tx: Transmitter, Rx: Receiver. 

2.2.4 Frequency Modulated Continuous Wave 

The FMCW radar can provide both range and radial velocity of target. In this thesis, 

the linear frequency modulation is discussed only since it has been applied to the 

experiments conducted for this work. The chirp signal, as is shown in Figure 5, is 

composed of a linear frequency sweep with a fixed duration [42], [48], [54]. If the 

chirp ramp sequence is swept from a carrier frequency 𝑓𝑐, then frequency at any given 

time instant 𝑓(𝑡) can be expressed as Eq. (2.8) [41], [48], [54]: 

𝑓(𝑡) = 𝑓𝑐 +
𝐵

𝑇
𝑡 = 𝑓𝑐 + 𝛼𝑡, (2.8) 

Where 𝑇 is the sweep duration, 𝐵 is the bandwidth of chirp, and 𝛼 denotes the chirp 

rate, which is also illustrated in Figure 5. The corresponding instantaneous phase can 

be obtained from the Eq. (2.9): 
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𝜔(𝑡) =
𝑑𝜑(𝑡)

𝑑𝑡
= 2𝜋𝑓(𝑡) (2.9) 

Thus, we can acquire the equation of 𝜑(𝑡) shown in Eq. (2.10). 

𝜑(𝑡) = ∫ 2𝜋𝑓(𝑡)𝑑𝑡
𝑡

0

= 2𝜋 (𝑓𝑐𝑡 +
𝛼

2
𝑡2) + 𝜑0 (2.10) 

Where 𝜑0 denotes the initial phase. 

The transmitted signal now can be expressed as Eq. (2.11): 

𝑠(𝑡) = 𝐴 cos (2𝜋 (𝑓𝑐𝑡 +
𝛼

2
𝑡2) + 𝜑0) (2.11) 

Where 𝐴 denotes the amplitude of transmitted signal. It is a constant and is related to 

signal power. 

For a target at a range 𝑅, the time delay τ of received signal can be characterised as Eq. 

(2.12) [41], [48], [54]:  

𝜏 =
2𝑅

𝑐
(2.12) 

Considering Eq. (2.11), the received signal 𝑟(𝑡) can be expressed by: 

𝑟(𝑡) = 𝐵 cos (2𝜋 (𝑓𝑐(𝑡 − 𝜏) +
𝛼

2
(𝑡 − 𝜏)2) + 𝜑0) (2.13) 

Where 𝐵 denotes the amplitude of received signal. It is also a constant and is related 

to signal power. 

Assuming normalized amplitude for both transmitted and received chirp signals, and 

without taking the initial phase into consideration, we get two general expressions for 

the transmitted signal 𝑠(𝑡) and the received signal 𝑟(𝑡) [41], [48], [54]:  

𝑠(𝑡) = cos (2𝜋 (𝑓𝑐𝑡 +
𝛼

2
𝑡2)) (2.14) 

𝑟(𝑡) = cos (2𝜋 (𝑓𝑐(𝑡 − 𝜏) +
𝛼

2
(𝑡 − 𝜏)2)) (2.15)

The transmitted and received signals are mixed at the demodulator generating the I/Q 

components, and hence the in-phase mixer output, also known as I component, is the 

product of two functions, as shown in Eq. (2.8): 
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𝐼(𝑡) = 𝑠(𝑡)𝑟(𝑡) = 𝑐𝑜𝑠 (2𝜋 (𝑓𝑐𝑡 +
𝛼

2
𝑡2)) 𝑐𝑜𝑠 (2𝜋 (𝑓𝑐(𝑡 − 𝜏) +

𝛼

2
(𝑡 − 𝜏)2)) (2.16) 

Using trigonometric identity equation cos(𝑥) cos(𝑦) =
1

2
(cos(𝑥 + 𝑦) + cos(𝑥 − 𝑦)), 

the equation can be rewritten as Eq. (2.17): 

𝐼(𝑡) =
1

2
(cos(2𝜋𝑡(2𝑓𝑐 − 𝛼𝜏) + 2𝜋𝛼𝑡2 − 2𝜋𝑓𝑐𝜏) + cos(𝜋𝛼𝜏2 − 2𝜋𝛼𝑡𝜏 − 2𝜋𝑓𝑐𝜏))(2.17) 

Note that an LPF is used after the mixing stage, which eliminates the components with 

high-frequency, and the final equation of the output I signal is written as Eq. (2.18). 

𝐼(𝑡) =
1

2
cos(𝜋𝛼𝜏2 − 2𝜋𝛼𝑡𝜏 − 2𝜋𝑓𝑐𝜏) (2.18) 

The quadratic component Q, is given by mixing the received signal with a 90°-shifted 

replica of the transmitted signal and is shown in Eq. (2.19): 

𝑄(𝑡) =
1

2
(sin(2𝜋𝑡(2𝑓𝑐 − 𝛼𝜏) + 2𝜋𝛼𝑡2 − 2𝜋𝑓𝑐𝜏) + sin(𝜋𝛼𝜏2 − 2𝜋𝛼𝑡𝜏 − 2𝜋𝑓𝑐𝜏))(2.19) 

Also, after filtering with the LPF, the quadratic component can be rewritten as Eq. 

(2.20): 

𝑄(𝑡) = −
1

2
sin(𝜋𝛼𝜏2 − 2𝜋𝛼𝑡𝜏 − 2𝜋𝑓𝑐𝜏) (2.20) 

One of the most important advantages of I/Q components is that it can represent radar 

signals in complex form. Thus, the general signal 𝑠(𝑡) of FMCW radar can be denoted 

as Eq. (2.21), and phase 𝜑(𝑡) can be denoted as Eq. (2.22): 

𝑠(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡) = 𝑒−𝜋𝛼𝜏2+2𝜋𝛼𝑡𝜏+2𝜋𝑓𝑐 𝜏 (2.21) 

𝜑(𝑡) = −𝜋𝛼𝜏2 + 2𝜋𝛼𝑡𝜏 + 2𝜋𝑓𝑐 𝜏 (2.22) 

The FMCW radar utilizes the beat frequency to obtain the time delay 𝜏, and the beat 

frequency could be calculated through the derivative of the phase of the digitised 

signal. The distance between the radar and the target can be expressed as a function of 

𝜏, and hence, we can acquire the function of angular frequency 𝜔𝑏𝑒𝑎𝑡, beat frequency 

𝑓𝑏𝑒𝑎𝑡 and estimated range 𝑅𝑒, as is shown in Eq. (2.23) to Eq. (2.25). 

𝜔𝑏𝑒𝑎𝑡 =
𝑑(−𝜋𝛼𝜏2 + 2𝜋𝛼𝑡𝜏 + 2𝜋𝑓𝑐 𝜏)

𝑑𝑡
= 2𝜋𝛼𝜏 (2.23) 
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𝑓𝑏𝑒𝑎𝑡 =
𝜔𝑏𝑒𝑎𝑡

2𝜋
= 𝛼𝜏 (2.24) 

𝑅𝑒 =
𝑐𝑓𝑏𝑒𝑎𝑡

2𝛼
(2.25) 

In the previous equations, we focus on an ideal and simple circumstance: single chirp 

with a still target. In real life, the FMCW radar has successive chirps, and the target, at 

most of times, is moving towards or away from the radar with radial velocity 𝑣. Thus, 

the time delay 𝜏𝑟  could be rewritten as 

𝜏𝑟 =
2(𝑅 + 𝑣(𝑡𝑠 + 𝑛𝑇))

𝑐
=

2𝑅 + 2𝑣(𝑡𝑠 + 𝑛𝑇)

𝑐
(2.26) 

Where 𝑛 is the number of chirps that we analysed. 𝑡𝑠 is the time from the start to the 

nth chirp. By substituting the 𝜏 in Eq. (2.23) with 𝜏𝑟 . Similarly, the beat frequency 

𝑓𝑏𝑒𝑎𝑡
′  can be obtained as Eq. (2.27): 

𝑓𝑏𝑒𝑎𝑡
′ =

(2𝑅𝛼+2𝑣𝑓𝑐+2𝑛𝐵𝑣)

𝑐
=

2𝑅𝛼

𝑐
+

2𝑣𝑓𝑐

𝑐
+

2𝑛𝐵𝑣

𝑐
(2.27)

From Eq. (2.26), it is observed that a Doppler shift and a frequency component 

generated during sweeps could now add on the frequency of entire beat frequency. 

Generally, the frequency component generated during sweeps could be negligible 

since 𝑐 ≫ 2𝑛𝐵𝑣 . However, in case of large numbers of chirps, which means an 

extreme long observation time, this term is possibly not negligible.  

2.3 Radar Information Domains 

 

Figure 7 Information domain of radar data used for human activity classification [28]. 
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With the advancement of radar technology, radar has been used more and more into 

civilian applications. One of the most promising avenues is Human Activity 

Recognition (HAR) [35], [55]. In the previous sections, we introduced beat frequency, 

which is one of the basic principles of FMCW radar. By employing advanced signal 

processing techniques, subtle human movements and micro-motions can be extracted, 

thereby opening up possibilities for applications like fall detection and gait analysis 

[56]. Figure 7 demonstrates the current mainstreams of radar domains, which are 

implemented in HAR. Namely, they are raw data, range-time, range Doppler, 

Cepstrogram, Doppler-time a.k.a. Spectrogram, and Cadence Velocity Diagrams. 

2.3.1 Range-time domain 

The generation of a range profile is a critical component in FMCW radar systems, 

especially for applications in HAR. The range profile provides a snapshot of the 

environment by indicating the presence of targets at various distances from the radar. 

Similar to the previous formulations, range information of beat-note signal could be 

extracted through transferring from time to frequency domain, which means employ 

Fourier Transform. 

By combining Eq. (2.22) and Eq. (2.27). The mathematical formulations of radar 

signal are shown in the Eq. (2.28) and Eq. (2.29). Note that the component 
2𝑛𝐵𝑣

𝑐
 in Eq. 

(2.27) is negligible as we have discussed before, so it is not considered.  

𝜑𝑅(𝑡) =  
4𝜋𝑓𝑐𝑣

𝑐
𝑛𝑇 + 2𝜋 (

2𝑣𝑓𝑐

𝑐
+ 𝛼𝜏) (2.28) 

𝑠(𝑡) = 𝑒−𝜑𝑅(𝑡) (2.29) 

Note that the Fourier Transform is traditionally defined through continuous integrals 

over an infinite time span. However, the computation of continuous integrals is 

impractical, and the requirement for infinite duration is unattainable in real-world 

applications. To address these limitations, the use of the Discrete Fourier Transform is 

essential [53]. 
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Figure 8 FMCW radar information storage. 

Figure 8 demonstrates a 𝑁 × 𝑀 matrix. 𝑁 is the number of successive chirps, also 

known as slow time, and 𝑀 represents the number of bins for each chirp, also known 

as fast time. Because the beat frequency signal is discretized by sampling, the 𝑀 =

𝑓𝑠𝑇, where 𝑓𝑠 is the sampling rate. 

Applying fast Fourier Transform (FFT) to the signal Eq. (2.29) as is illustrated in 

Figure 8 meaning in the fast time direction for every received chirp. It gives: 

𝑆(𝑝, 𝑞) = ∑ 𝑠(𝑝, 𝑞)𝑒−𝑗
2𝜋
𝑀

𝑞𝑡

𝑀

𝑞=1

(2.30) 

Where 𝑆(𝑞) is frequency domain signal of the target and 𝑞 is the new index of range 

bins.  

Figure 9 illustrates range-time maps obtained by the FFT process for six different 

human activities, where the colour level of these heatmaps indicates the received 

signal strength. (a) represents walking with the swinging of arms as its periodic range 

pattern, (b) and (c) are symmetric so they denote sitting down and standing up, 

respectively. (d) and (e) are drinking water and picking up an object, whereas (f) is the 

simulation of a fall. Additionally, the smearing across the range is caused by the radar 

device itself, by standing waves and an imbalance between the I and Q channels in 

amplitude and phase, which could be ignored due to the low signal amplitude.  
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Figure 9 The time range information of a young adult performing different activities. (a) walking, (b) 
sitting down, (c) standing up, (d) picking up an object, (e) drinking, (f) fall. 

2.3.2 Range-Doppler domain. 

Range-Doppler mapping is a pivotal concept in the application of FMCW radar 

systems, particularly in the field of HAR [57]. This technique combines the range 

information obtained from the frequency modulation of the signal with the Doppler 

shift information to create a two-dimensional representation of the target's range and 

velocity. The Range-Doppler map is particularly useful in HAR as it provides a 

comprehensive view of the spatial and velocity characteristics of human activities. For 

instance, it can differentiate between a person who is stationary and one who is 

moving, or between different types of movements like walking and running [58]. 

In Range-time map, the range information is obtained along with sweep time. The 

FFT is performed on fast time to extract range information in different chirps. To 

further get velocity information, now it is necessary to perform the second FFT on 

slow time to generate range-Doppler matrix, that is, the 2D-FFT, are used to generate 

the Range-Doppler map from the received radar signals [59]. It can be expressed as 

Eq. (2.31): 
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𝑆(𝑝, 𝑞) = ∑ [∑ 𝑠(𝑝, 𝑞)𝑒−𝑗
2𝜋
𝑀

𝑞𝑡

𝑀

𝑞=1

]

𝑁

𝑝=1

𝑒−𝑗
2𝜋
𝑁

𝑝𝑡 (2.31) 

Eq. (2.31) adds another FFT based on Eq. (2.30). 𝑆(𝑝, 𝑞) is the frequency domain 

signal of target, and 𝑝, 𝑞 are the new index of Doppler bins and range bins. 

Like Figure 9, the range Doppler information of different activities from a young 

participant is also illustrated in Figure 10.  

 

Figure 10 The range Doppler information of a young adult performing different activities. (a) walking, 
(b) sitting down, (c) standing up, (d) picking up an object, (e) drinking, (f) fall. 

2.3.3 Doppler-time domain – Micro-Doppler Signature - Spectrogram 

Human motion can be broadly categorized into two types: macro-motion and micro-

motion. Macro-motion refers to activities that result in a change in the overall position 

of the human body, such as running or walking. In contrast, micro-motion involves 

activities where the overall position of body remains relatively constant but includes 

smaller, localized movements [47]. These could be limb or head movements, as well 

as physiological activities like breathing and heartbeat when the body is stationary. 

Due to the low Signal-to-Clutter and Noise Ratio (SCNR) associated with micro-

motion, especially in the case of hand movements, feature extraction from micro-

motion has become a critical aspect of target classification [47]. 
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Micro-Doppler (mD) plays a crucial role in radar systems, especially in detecting 

small oscillatory movements. The ability of a radar system to detect mD signatures 

depends on its carrier frequency. Higher frequency systems can detect smaller mD 

signatures, making the centre frequency a critical property for mD applications. These 

mD shifts are time-varying frequency shifts that can be extracted from the complex 

output of a radar system.  

The micro-movements of the human body produce radar echoes with distinct 

characteristics. Traditional Fourier Transform methods are effective for analysing 

stationary signals but fall short when applied to non-stationary signals commonly 

encountered in HAR [60], since they are not well-suited for capturing these time-

varying frequency characteristics [61]. These signals often exhibit variations in 

Doppler frequency content over time, making it challenging to capture their intricacies 

using only time-domain or frequency-domain analysis. Instead, Joint Time-Frequency 

Analysis (JTFA) is commonly employed to analyse micro-Doppler features and 

extract micro-motion characteristics, since JTFA encompasses both linear and 

quadratic time-frequency distributions [62], which offers a two-dimensional 

representation that encapsulates both temporal and spectral characteristics of a signal 

[63]. By analysing a signal in both the time and frequency domains simultaneously, 

TFA offers invaluable insights into the complex dynamics of human activities [63]. 

The utilization of JTFA In radar signal processing serves as a powerful mechanism for 

generating micro-Doppler signatures. These signatures capture the small-scale 

Doppler shifts caused by micro-motions [47]. These could be small oscillatory 

movements in a mechanical system, including biological systems like humans. These 

tiny movements can generate detectable Doppler shifts in high-frequency systems, and 

the shifts appear as sidebands in radar signatures. These sidebands valuable insights 

that can be leveraged to identify and characterize specific movements, such as the 

rotation of mechanical rotors and the swing of human limbs [47]. 

Various JTFA techniques exist, each with its own set of advantages and limitations. 

Some of the most commonly used methods in radar-based HAR with radar are 

included as follows: 

Short Time Fourier Transform (STFT) [64] is an extension of the Fourier Transform 

designed to analyse non-stationary signals. It works by dividing the signal into 

overlapping or non-overlapping segments and applying the Fourier Transform to each 

segment. This provides a time-frequency representation that captures the local 

frequency content of the signal at different time intervals. It is easy to implement and 
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provides a straightforward interpretation of time and Doppler frequency localization. 

For signal 𝑠(𝑛), the STFT is given as Eq. (2.32). 

𝑆𝑇𝐹𝑇(𝑛, 𝜔) = ∑ 𝑠(𝑛)ℎ(𝑛 − 𝑚𝑅)𝑒−𝑗𝜔𝑛

∞

𝑚=−∞

(2.32) 

for 𝑛 =  0, … , 𝑁 − 1, where 𝑁 is the total number of time samples. 𝑠(𝑛) is the input 

signal, ℎ(𝑛) is called window function. 𝑅 is the hop or sliding size in samples, which 

is also the overlap between two nearest windows, and 𝑚 is the length of window. 

STFT has the highest calculation efficiency. It is the most commonly used time-

domain spectral calculation method. However, this method also has some limitations, 

that is, because the time resolution and Doppler frequency resolution will be limited 

by the width of window function, it cannot achieve the best effect at the same time. 

STFT performs the Fourier transform on a short-time window basis rather than taking 

the Fourier transform of the entire signal using one long-time window. With the time-

limited window function, the resolution of the STFT is determined by the window size. 

There is a trade-off between the time resolution and the Doppler frequency resolution 

[65]. A larger window has a higher-frequency resolution but a poorer time resolution. 

Overlapping windows can help with edge discontinuities, to generate a smooth 

signature at the cost of increased computational load [65]. 

In addition to STFT, Wavelet Transform (WT) [66] employs wavelets, which are 

localized wave functions, to analyse signals at multiple scales. Unlike STFT, WT 

allows for variable time-frequency resolution, making it more flexible for analysing 

signals with non-uniform frequency content. WT has multi-resolution capability. A 

‘mother’ wavelet is used and its scaled and translated versions, detect frequencies at 

multiple resolutions. There is a variety of choices including, but not limited to: Haar, 

Mexican Hat, and Morlet etc.  

Moreover, Wigner-Ville Distribution (WVD) [67] is a quadratic TFA method that 

offers high-resolution time-frequency transform to characterize the spectral and 

temporal behaviour of the signal. However, it suffers from the problem of cross-term 

interference (i.e., the WVD of the sum of two signals is not the sum of their individual 

WVDs). If a signal contains more than one component in the joint time-frequency 

domain, its WVD will contain cross terms that may complicate the interpretation of 

the signal.  
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Spectrogram is a widely used method to display time-varying spectral density of a 

time-varying signal. It is a spectro-temporal representation and provides the actual 

change of Doppler frequency contents of a signal over time. The spectrogram is 

calculated by using the short-time Fourier transform (STFT) and represented by the 

squared magnitude of the STFT without keeping phase information of the signal: 

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑛, 𝜔) = |𝑆𝑇𝐹𝑇(𝑛, 𝜔)|2 (2.33) 

 

Figure 11 The mD of different activities of a young adult. (a) walking, (b) sitting down, (c) standing up, 
(d) picking up an object, (e) drinking, (f) fall. 

Figure 11 illustrates the spectrograms for the same activities depicted in Figure 9 and 

Figure 10. The micro-Doppler effect reveals distinct patterns associated with the 

movements of different body parts. For example, in (a), a typical micro-Doppler 

signature, the central mass represents the torso's movement, while spikes or 

protrusions on this central mass can be attributed to limb swings and head rotations. 

Features extracted from these micro-Doppler signatures are particularly effective in 

distinguishing between similar activities. This is because these features are closely 

correlated with the micro-motion dynamics exhibited by the subject under observation. 
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In summary, the combination of TF analysis and the understanding of mD provides a 

powerful tool in radar signal processing. Specifically, the use of STFT enables the 

efficient computation of TF analysis while ensuring the effective detection and 

characterization of micro motions. This could have wide applications, from detecting 

small parts moving in mechanical systems to identifying and tracking human 

movements in security systems. 

2.3.4 Cadence Velocity Diagram 

Cadence-Velocity Diagrams (CVDs) have emerged as a critical tool in radar-based 

HAR, offering a two-dimensional representation that encapsulates both the cadence 

and velocity of a moving target [65]. Cadence refers to the frequency of repetitive 

motion, such as steps per minute. Different activities have distinct cadence patterns. In 

time-domain analyses, activities like walking and running may produce similar 

waveforms, making it challenging to distinguish between them based solely on 

amplitude and time. However, when these activities are represented in a CVD, their 

unique cadence-velocity patterns become evident [68]. These diagrams are 

particularly effective due to their ability to capture the periodic properties of cyclic 

human activities, such as walking, in a sparser and power-efficient representation 

within the TF domain [69].  

As STFT employs FFT within a sliding window framework, the periodicity of the 

backscattered signal is preserved in its micro-Doppler signature. This results in each 

Doppler bin exhibiting the same periodicity. Consequently, when compared to the 

signal representation in the time domain, the cyclic characteristics of human activities 

like walking persist within the time-frequency domain. This representation is sparser 

yet possesses a higher power content. By performing an FFT along the time axis of the 

mD signature, as shown in Eq. (2.33), the cadence frequencies can be extracted for 

each Doppler bin. 

𝐶𝑉𝐷(𝜖, 𝜔) = |∑ 𝑠𝑝𝑒𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑛, 𝜔)𝑒−𝑗
2𝜋𝑛𝜖

𝑁

𝑁−1

𝑛=0

| (2.34) 

Where 𝜖  is the cadence frequency. In HAR, CVDs are powerful for classifying 

activities that may appear similar in time-domain analyses but exhibit distinct 

cadence-velocity characteristics. The Figure 12 demonstrates the CVDs for different 

daily activities.  
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Figure 12 The CVDs of different activities of a young adult. (a) walking, (b) sitting down, (c) standing 

up, (d) picking up an object, (e) drinking, (f) fall. 

2.3.5 Other domains 

Apart from the previous domains that we introduced, there are still various radar 

representations, which provide rich information. It is crucial to broaden our scope to 

explore other domains in radar signal processing that offer complementary advantages. 

Each domain provides a unique lens through which we can examine and interpret 

radar data, thereby enriching the feature set available for machine learning algorithms 

or neural networks.  

Similar to CVD, the cepstrum or cepstrogram serves as a transformative tool for radar 

signals, particularly for achieving linear separation of convolved signals. The radar 

cepstrum [15], [69] is derived by applying the Inverse Discrete Fourier Transform 

(IDFT) to the logarithm of the absolute energy within the spectrogram. This process 

effectively maps the data into a Quefrequency-time domain, where Quefrequency is 

the inverse of frequency. The information content of the radar cepstrum is closely tied 

to the energy distribution within the spectrogram, offering another dimension for 

signal analysis. 
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Furthermore, cyclostationarity [70] is also introduced to radar signal processing. 

Cyclostationarity is a statistical property of signals that exhibit periodic variations in 

their statistical characteristics over time. Unlike stationary signals, where statistical 

properties like mean and variance are constant, cyclostationary signals have statistical 

features that change in a periodic manner [71]. In the context of radar applications, 

when a periodic pulse train is transmitted and then reflected off a moving individual, 

and such a reflection induces a random modulation in the received signal, thereby 

exhibiting cyclostationary properties. Likewise, the cross-correlation between the 

transmitted and received signals also shows periodic behaviour in time.  

In addition to the previous two-dimensional domains, three-dimensional (3D) 

representations in terms of time, range, and Doppler frequency, are also considered in 

HAR with radar system. One of the most common approaches is the 3D radar data 

cube, which forms a sequence of frames as a function of time that resemble video files. 

The range-Doppler cube has gained popularity in classification of human activity and 

gesture [72], [73]. As is shown in Figure 13, the range-Doppler-time cube is a series 

of range-Doppler map connected along with slow time. Furthermore, the radar point 

cloud [73], which may be derived from range-Doppler cube [74],  has been gaining 

traction in the field of machine learning, where they serve as a robust input for 

algorithms designed to recognize or classify objects and activities.  

 

Figure 13 A illustration of 3D range-Doppler Cube 

The exploration of 3D representations for radar data extends beyond the conventional 

range-Doppler cube, incorporating advanced techniques for more nuanced motion 

detection and analysis. Ronny [75] applied the Radon transform on range-maps 

generated by radar data. The Radon transform is effective in identifying linear features 

within an image, making it particularly suitable for detecting translational motions. By 

applying it to range-maps, which represent the distance of targets from the radar 
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sensor over time, the method can effectively discern movements that involve a change 

in position, such as walking or moving objects. 

In MIMO radar systems, the use of orthogonal waveforms from a single channel is 

just one aspect of their capability. MIMO radar offers a variety of other data 

representations that leverage the spatial diversity of multiple channels, such as Range-

Angle Point Clouds [76] and Range-Angle-Time Maps [77]. The multiple channels in 

MIMO radar systems contribute to improved signal processing capabilities. This 

includes enhanced SNR, where multiple channels can be used to aggregate signal data, 

effectively boosting the SNR and improving target detectability. It also refines 

Constant False Alarm Rate (CFAR) Detection: The spatial diversity of MIMO radar 

allows for more robust CFAR algorithms, reducing the likelihood of false alarms 

while maintaining sensitivity to actual targets. These advanced representations and 

processing capabilities significantly improve upon the limitations of single-channel 

radar systems, offering more detailed and reliable target detection and tracking. 

In the realm of HAR using radar, the exploration of various radar domains such as 

time-frequency, range-Doppler, and micro-Doppler signatures provides a rich set of 

features that capture the intricate dynamics of human movements. These domains 

offer unique perspectives on the data, each revealing different aspects of the 

underlying activities. However, the true potential of these radar domains is fully 

realized when integrated with machine learning algorithms. Machine learning serves 

as a powerful tool to automatically learn and generalize from these high-dimensional 

feature spaces, thereby enhancing the ability to accurately classify and recognize 

complex human activities. This synergy between radar domains and machine learning 

not only elevates the performance of HAR systems but also opens new avenues for 

research, pushing the boundaries of what is achievable in activity recognition and 

radar signal processing. An overview of radar HAR with machine learning algorithms 

is illustrated in Figure 14. 
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Figure 14 An overview of the human activity classification with machine learning algorithms with 
different radar information domains adapted from [43]. 

2.4 Machine Learning 

Radar systems can provide rich information about the target under observation, and 

through JTFA, they can be transformed not only into digital information, but also 

visual representations, motivating the investigation of contemporary solutions using 

Machine Learning (ML). Machine Learning is a subfield of artificial intelligence (AI) 

that focuses on the development of algorithms and statistical models that enable 

computers to perform tasks without being explicitly programmed [78]. The primary 

aim is to allow machines to learn from data so that they can give accurate predictions 

or decisions. There are three main types of machine learning: supervised learning, 

unsupervised learning, and reinforcement learning [78]. 
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In the context of radar for humans, ML techniques have increasingly been integrated, 

offering a robust and automated approach to interpreting complex radar signals. 

Traditional radar signal processing methods often fall short in capturing the intricate 

patterns associated with human activities, such as walking, running, or even more 

subtle movements like breathing [79]. Machine learning algorithms, particularly deep 

learning models like Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory networks (LSTMs) [28], have shown promise in capturing these nuances. 

These models are trained to recognize complex human activities by learning intricate 

patterns in radar signals, thereby enhancing the performance of HAR systems. 

In this section, we firstly overview the ML techniques, then we focus on aspects of 

ML algorithms and that are specific to HAR problems based on radar. By doing so, it 

demonstrates a basic workflow for employing ML techniques in the analysis of radar 

data related to human activity. 

2.4.1 Supervised Learning 

Supervised learning algorithms are a specialized subset of machine learning 

techniques that operate on a set of labelled data, comprising input-output pairs usually 

provided through human annotation [78]. These algorithms aim to establish a 

mathematical model that captures the underlying relationships between the input and 

output variables. The model is trained using an objective function to guide the 

optimization process. In the context of radar-based HAR, supervised learning methods 

such as Linear Regression [80], Decision Trees [81], Support Vector Machines (SVM) 

[82], and K-nearest Neighbours (KNN) [28] are commonly employed. These 

algorithms are trained on datasets where radar signals are annotated with 

corresponding human activities like walking, running, or sitting. The quality of the 

training data has a significant impact on the model's performance, highlighting the 

importance of meticulous pre-processing. Supervised learning tasks are generally 

categorized into regression, which predicts numerical outputs, and classification, 

which outputs category variable [78]. For example, in HAR systems, classification 

algorithms are often used to categorize human activities based on different radar 

domains, producing highly accurate results. 

2.4.2 Unsupervised Learning 

Unsupervised learning [78] is a category of machine learning algorithms that operate 

on unlabelled data, aiming to discover hidden patterns or structures within the data. 

Unlike supervised learning, which relies on labelled examples to learn the mapping 



39 
 

between inputs and outputs, unsupervised learning focuses on finding intrinsic 

relationships in the data. This makes it particularly useful for tasks like clustering, 

dimensionality reduction, and anomaly detection. Common algorithms in this category 

include K-Means clustering [83], hierarchical clustering [84], and Principal 

Component Analysis (PCA) [28]. The absence of labels means that the quality of the 

results is often evaluated using different criteria, such as the compactness of clusters 

or the explained variance in the data. Unsupervised learning is widely used in various 

domains, including natural language processing, computer vision, and bioinformatics, 

where labelled data may be scarce or expensive to obtain. In radar-based scenarios, 

such as human activity recognition and radar systems, it is frequently employed for 

denoising signals [85], classifying human activities [86], and identifying abnormal 

events [87]. 

2.4.3 Other Learning Paradigm 

Semi-supervised learning [88] is a machine learning paradigm that combines a small 

amount of labelled data with a large amount of unlabelled data during training. This 

approach is particularly useful when acquiring a fully labelled dataset is expensive or 

time-consuming. Semi-supervised learning algorithms aim to make effective use of 

both labelled and unlabelled data to improve the performance of model, often 

leveraging the structure in the unlabelled data to enhance the learning process. 

Techniques such as label propagation, self-training, and co-training are commonly 

employed in semi-supervised learning [88]. This method is advantageous in HAR 

scenarios [89] where labelled radar data may be scarce or costly to obtain, allowing 

the model to generalize better to new, unseen activities. 

Reinforcement Learning (RL) [90] is a type of machine learning paradigm where an 

agent learns to make decisions by interacting with an environment. The agent receives 

rewards or penalties based on the actions it takes, aiming to maximize the cumulative 

reward over time. Although relatively little attention has been paid to RL in radar 

based HAR, it is still particularly effective in problems where the decision-making 

process is sequential and the goal is long-term, such as in vehicular networking [91], 

robotics [92], and certain types of optimisation problems.  

2.4.4 Legacy Classification Algorithms 

In radar based HAR, the typical machine learning methodology is classification. This 

process generally commences with the extraction of a predefined set of features from 

a training dataset. These features are then applied to test data to categorize each 
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sample into specific classes. In the following section, we will delve into machine 

learning algorithms that have gained prominence in this specialized research domain. 

2.4.4.1 K Nearest Neighbour  

KNN [79], [93] is a simple yet effective classification techniques with relatively low 

computational cost. Figure 15 illustrates the basic principles of KNN where the value 

of 𝐾 equals to three, five and seven. The algorithm operates by classifying new data 

based on the 𝐾 closest points. To make a prediction for an unknown sample, a training 

set is formed, consisting of the 𝐾 closest points. The distance between data points is 

often calculated using Euclidean distance or Manhattan distance [94]. The majority 

class among these neighbours is then used to determine the class label of the unknown 

samples. The choice of 𝐾 is crucial and varies depending on the specific problem at 

hand. To mitigate decision clashes, it is generally advisable to select an odd value for 

𝐾, especially when dealing with binary classification tasks. This ensures that there is a 

clear majority class, thereby avoiding ties. 

 

Figure 15 Scheme of K nearest Neighbour classifiers [78]. 

2.4.4.2 Support Vector Machine  

The Support Vector Machine (SVM) [28], [79] is a widely recognized and robust 

classifier, particularly effective in the domain of indoor HAR. The algorithm aims to 

construct a hyperplane that best separates feature points of different classes, based on 

their distribution in the feature space. The so-called 'support vectors' are the feature 

points that lie closest to this decision boundary. These vectors play a crucial role in 

determining the position and orientation of the separating hyperplane. The objective of 
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the SVM algorithm is to maximize the margin between the positive and negative 

hyperplanes, which is achieved by optimizing the position of these support vectors, as 

illustrated in Figure 16 [95]. The mathematical representation of a linear SVM is 

given as shown in Eq. (2.34) and (2.35). 

𝐻 =  𝑤𝑇𝑥𝑖 + 𝑏 = 0 (2.35) 

𝑚𝑖𝑛𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶 ∑ 𝛿𝑖

𝑁

𝑖=1

(2.36) 

Eq. (2.34) and Eq. (2.35) demonstrate the hyperplane and max margin of SVM, 

respectively, where 𝑤 is the vector of hyperplane. 𝑥𝑖 is the input vector and 𝑏 is bias. 

𝛿𝑖  is the slack variable, allowing the input to be closer to the hyperplane. 𝐶 is the 

penalty parameter and if 𝐶 is large, the SVM becomes strict and tries to get all points 

to be on the right side of the hyperplane, which makes the constraints harder. 

SVM is a maximum margin classifier, that aims to find hyperplane that yields the 

largest possible margin of separation between clusters of data from each respective 

class. SVM is particularly effective in cases where the data is linearly separable or 

nearly so, but it can also handle non-linear data by employing kernel methods. A 

‘kernel trick’ can be utilised to map features to a higher dimension. Choices for the 

kernel are based on the desired hyperplane: gaussian, polynomial (quadratic and cubic) 

and Radial Basis Functions (RBF) are commonly employed [69].  

 

Figure 16 Scheme of Support Vector Machine classifiers. 



42 
 

2.4.4.3 K Means Clustering  

The K-Means [96] algorithm is a widely used clustering technique in machine 

learning for unlabelled data. It aims to partition a set of data points into K non-

overlapping subsets (or clusters) based on their feature vectors. Similar to KNN, it is 

also used Euclidean distance to obtain the clusters in terms of nearest centroid. 

Algorithm 1 illustrated how K means clustering works. 

Algorithm 1 K-means clustering algorithm 

Initialization: 𝐾-the number of clusters; 𝑁-the number of samples in datasets. 

set the initial centre 𝑐1 … 𝑐𝐾 of clusters     

      for 𝑖 ←  𝑁1, 𝑁2 … , 𝑁 do 

            find the nearest centre 𝑐 and assign 𝑁𝑖 to the corresponding cluster. 

            Update centre of clusters 𝑐 using mean of the members 

      end for 

Output clustering result. 

 

The algorithm converges when the assignments no longer change or change minimally 

between iterations [96]. K-Means is computationally efficient but sensitive to the 

initial placement of centroids. Various methods, such as K-Means++ [96], have been 

proposed to provide better initialization to improve the quality of the final clusters. 

2.4.4.4 Other algorithms  

Apart from the aforementioned algorithms, there exists a series of algorithms that 

have been successfully applied in HAR research. The Naive Bayes algorithm [78] is a 

probabilistic classification technique based on Bayes’ Theorem [97], which is widely 

used for classification tasks in machine learning. It assumes conditional independence 

among the features given the class label, an assumption that is considered ‘naïve’, 

hence the name, as is shown in Eq. (2.36): 

𝑝(𝐶𝑘|𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
(2.37) 
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where 𝑝(𝐶𝑘|𝑥) is the probability of class 𝐶𝑘 given predictor 𝑥. 𝑝(𝐶𝑘) is the probability 

of class 𝐶𝑘 and 𝑝(𝑥) is the probability of predictor x. 𝑝(𝑥|𝐶𝑘) denotes the likelihood 

of samples given the class. 

Decision Tree [78] is a type of supervised learning algorithm commonly used for 

classification tasks. The algorithm constructs a tree-like model to map feature vectors 

to class labels. It consists of several nodes: internal node and leaf node. Each internal 

node of the tree corresponds to a feature in the input space, each branch represents a 

decision rule, and each leaf node signifies a class label. The decision-making process 

is transparent and can be visualized, making it easier to understand the predictions of 

the model [78].  

In advancement to the Decision tree, Random Forest [78] builds multiple decision 

trees during the training phase and outputs the mode of the classes of the individual 

trees for a given input in classification tasks. A common random forest model is 

shown as Figure 17. Random Forest improves upon the performance of a single 

decision tree by reducing overfitting and increasing the generalization ability [78]. It 

achieves this by introducing randomness in two ways: first, by bootstrapping the 

training data for each tree, and second, by randomly selecting a subset of features for 

each split in the decision tree. Specifically, a bootstrap sample is a random sample of 

the data drawn with replacement, usually of the same size as the original dataset. This 

means that some data points may appear more than once in the sample, while others 

may not appear at all. This algorithm will construct a decision tree for every training 

data, and most voted prediction result as the final prediction result [78]. 

 

Figure 17 Scheme of Random Forest classifiers. 
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While this discussion has covered several key machine learning algorithms commonly 

used for classification tasks in radar based HAR, it is worth noting that the field of 

machine learning is vast and continuously evolving. There are numerous other 

techniques and variations that have been developed to address specific challenges in 

classification and other types of machine learning tasks. These include but are not 

limited to ensemble methods, neural networks, and hybrid learning architectures. For a 

comprehensive understanding and exploration of these and other advanced methods, 

readers are encouraged to consult specialized literature and research articles [28], [74], 

[78], [79], [88].  

2.5 Neural Networks 

While traditional ML algorithms like SVMs and KNN have been foundational in 

radar-based HAR, the advent of deep learning has significantly expanded the scope 

and capabilities of activity recognition systems [79]. Deep learning (DL) models, 

particularly neural networks, offer the advantage of automatic feature extraction, 

eliminating the need for manual feature engineering that is often required in traditional 

machine learning approaches [98]. This has led to more robust and accurate models 

that can handle the complexities and variabilities inherent in human activities. The 

transition from ML to DL in radar based HAR represents a paradigm shift, moving 

from handcrafted features to end-to-end learning, thereby offering a more holistic 

approach to understanding human behaviours [28], [35]. 

Neural networks, particularly Convolutional Neural Networks (CNNs) [28], [79] and 

Recurrent Neural Networks (RNNs) [99], [100], have emerged as powerful tools for 

Human Activity Recognition (HAR) in radar-based systems. CNNs excel in capturing 

spatial hierarchies and are highly effective in processing radar data for HAR [74]. 

RNNs, on the other hand, are adept at handling sequential data, making them well-

suited for time-series analysis in radar based HAR [101]. More recently, the 

application of hybrid CNN-RNNs in conjunction with multi radar representations has 

opened new avenues for HAR [102], [103]. These neural network architectures offer 

robust and accurate models for classifying and predicting human activities based on 

radar data.  Consequently, DL has not only become the prevailing approach in the 

ongoing work in ML research, but also gained substantial traction in radar-based 

classification studies. This shift has expanded the horizons of what is achievable in the 

field, making deep learning a focal point for cutting-edge research in radar-based 

Human Activity Recognition [28], [74]. 
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2.5.1 Fundamentals 

2.5.1.1 The neurons 

A neuron is the fundamental block of a neural network. It takes a set of inputs 𝑥1, 

𝑥2, …, 𝑥𝑖, and applies a set of weights 𝑤1, 𝑤2,…, 𝑤𝑖, with a bias 𝑏. The combination 

would be passed through an activation function 𝑓  and obtain the result. It can be 

defined as Eq. (2.37). 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (2.38) 

Weights and biases [104] are pivotal components that shape the transformation and 

processing of input data. Weights are parameters that adjust the connection strength 

between neurons, determining the influence one neuron exerts on another. Initially set 

to small random values, these weights are crucial for breaking symmetry and 

kickstarting the learning process. Biases, another set of parameters, work alongside 

weights to adjust the neuron output. They shift the activation function, aiding in better 

data fitting, and are also typically initialized to small values or zeros. 

2.5.1.2 Weight and Bias 

The process of updating weights and biases is integral to learning procedures. It 

begins with forward propagation, where inputs are processed through the network 

using current weights and biases to generate predictions. The network performance is 

then evaluated by comparing these predictions against actual target values, calculating 

the loss or error. This is where backpropagation [105] comes into play, a critical 

learning stage where the network adjusts its parameters based on the error. The 

gradient of the loss function is calculated with respect to each weight and bias, using 

the chain rule of calculus. 

The gradient [104], [106] represents the direction and rate of the steepest increase of a 

function. In the context of neural networks, this function is typically the loss function, 

which measures the difference between the predictions and the actual data. By 

employing gradient descent, the network iteratively adjusts its parameters, taking 

larger steps when far from the optimal solution and smaller, more precise steps as it 

nears the minimum. This adaptive approach, facilitated by backpropagation, ensures 

efficient and effective learning, crucial for deep neural network architectures. 
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Back-propagation [105] is the algorithm used for minimizing the error in predictions 

of the neuron network. It adjusts the weights and biases in the direction that minimally 

decreases the error. The weight and bias update can be represented as: 

𝑤𝑖−𝑛𝑒𝑤 = 𝑤𝑖−𝑜𝑙𝑑 − 𝛼
𝜕𝐸

𝜕𝑤𝑖

(2.39) 

𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 − 𝛼
𝜕𝐸

𝜕𝑏
(2.40) 

where 𝛼 is the learning rate and 𝐸 is the loss function. The learning rate [107] decides 

how much the weights should change during training. High rates might lead to miss 

the best solution, but low rates extend training time. The loss function [107] measures 

how far off the predictions of model are from the actual results. It helps to know if the 

model is getting better or not. 

2.5.1.3 Activation Function 

Activation functions introduce non-linearity into the network, allowing it to learn from 

the error and make adjustments. Common activation functions include sigmoid, tanh 

and rectified linear unit (ReLU). ReLU outperforms the other two methods, since 

sigmoid is defined between [0,1] saturating at the bounds and tanh is between [-1,1]. 

They both encounter the vanishing gradient problem, where the gradients become too 

small for the network to learn effectively. ReLU helps mitigate this problem because 

its gradient is either zero (for negative inputs) or one (for positive inputs). The 

activation functions are defined as below: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑: 𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.41) 

𝑇𝑎𝑛ℎ: 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2.42) 

𝑅𝑒𝐿𝑈: 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (2.43) 

The non-linear activation functions are pivotal, allowing networks to capture and 

represent complex patterns within the input data, enabling them to model complex 

relationships with high efficacy. 
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2.5.2 Convolutional Neural Networks  

2.5.2.1 Feed-Forward Neural Networks 

Before we introduce CNN, it is essential to understand Feed-Forward Neural 

Networks (FNN). It [104] serves as one of the simplest types of artificial neural 

networks. In a Feed-Forward Neural Network, the connections between the nodes, 

also known as neurons, do not form any cycles. This is crucial for differentiating them 

from recurrent neural networks. The network consists of an input layer, one or more 

hidden layers, and an output layer [104]. Each neuron in a layer is connected to every 

neuron in the subsequent layer, with each connection having an associated weight. 

The layers are fully connected, meaning each neuron in a layer is connected to every 

neuron in the adjacent layers. The neurons use an activation function to transform the 

weighted sum of their inputs [104]. 

While Feed-Forward Neural Networks offer a general-purpose architecture suitable 

for a wide array of tasks, they often fall short in capturing spatial and temporal 

dependencies in data. This limitation is particularly evident in image and video 

recognition tasks, where the spatial arrangement of pixels is crucial for accurate 

classification [104]. To address these challenges, Convolutional Neural Networks 

(CNNs) have been developed as a specialized kind of neural network for processing 

data with a grid-like topology, such as an image [104]. 

CNNs are a specialized type of neural network architecture that has proven highly 

effective in tasks related to image recognition, object detection and various visual 

tasks [104]. Inspired by biological processes, namely the organization of the animal 

visual cortex, CNNs were first introduced by LeCun et al. in their seminal work on 

LeNet-5, a pioneering model for digit recognition [108]. 

2.5.2.2 The structure and applications  

The architecture of a CNN is designed to process data with a grid-like topology, such 

as an image, which is a grid of pixels. The network employs three fundamental types 

of layers: convolutional, pooling (or subsampling), and fully connected [109]. 

• Convolutional Layers: These are the core building blocks of a CNN. The layer 

parameters consist of a set of learnable filters (or kernels), each of which has a 

small receptive field, but extends through the full depth of the input volume. 

During the forward pass, each filter convolves across the width and height of 

the input volume and computes dot products between the entries of the filter 
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and the input, producing a 2-dimensional activation map for each filter. All 

activation maps are stacked along the depth dimension to produce the output 

volume. 

• Pooling Layers: Following each convolutional layer in a CNN, it is common to 

have a pooling layer for down sampling. Pooling layers reduce the dimensions 

of the data, which decreases the computational complexity for upcoming layers. 

Pooling can be of different types, such as Max Pooling, Average Pooling, etc. 

Max pooling takes the largest element from the rectified feature map, while 

average pooling takes the average. 

• Fully Connected Layers: After several convolutional and pooling layers, the 

architecture typically has one or more fully connected layers. These layers 

flatten the high-level features learned by the preceding convolutional layers to 

vector form and perform classification on the image. 

 

Figure 18 The common structure of the CNN application in HAR with radar. 

As is shown in Figure 18, in the context of radar based HAR, CNNs offer significant 

advantages for feature extraction and classification. The spatial hierarchies captured 

by CNNs are particularly useful for recognizing complex human activities that 

generate intricate radar signatures [74]. For instance, CNNs can be employed to 

automatically learn and identify the micro-Doppler signatures associated with 

different human activities, such as walking, running, or falling [28]. This eliminates 

the need for manual feature engineering [31], which is often a cumbersome and error-

prone process. The application of CNNs in radar-based HAR is an emerging area that 

promises to push the boundaries of what is achievable in terms of both accuracy and 

computational efficiency [110]. 
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2.5.3 Recurrent Neural Networks and Long Short-Term Memory  

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks 

are classes of artificial neural networks that are designed to recognise patterns in 

sequences of data, such as text, genomes, handwriting, or the spoken word [104]. 

They are particularly well-suited for tasks that require the consideration of context or 

the memory of prior inputs. 

RNNs, introduced by Hopfield in 1982 [111], possess a unique feature that 

distinguishes them from other neural networks - loops in the network of nodes. This 

means that information can circulate in the network for an arbitrary amount of time, 

enabling RNNs to work with sequential data by maintaining a 'memory' of prior inputs. 

This design addresses the necessity to consider context in tasks like language 

modelling, where the meaning of a word depends on the preceding words. 

The basic RNN structure includes input, hidden, and output layers. However, RNNs 

face the challenge of long-term dependencies due to the so-called vanishing and 

exploding gradient problem [112], which makes it difficult for the network to learn 

and tune the parameters when dealing with long sequences. 

To overcome this problem, Long Short-Term Memory (LSTM) networks, a special 

kind of RNN, were introduced by Hochreiter & Schmidhuber in 1997 [113]. The 

LSTM is designed to have more prolonged memory, and hence, it can handle the 

issues related to learning long-term dependencies. 

The fundamental difference between LSTMs and traditional RNNs lies in the hidden 

layer. Instead of having a single neural network layer, LSTM has a cell state, which 

can be thought of as a 'conveyor belt' running through the entire chain with some 

minor linear interactions. LSTM manipulates the cell state through structures called 

gates (input gate, forget gate, and output gate) which can learn to regulate the flow of 

information into and out of the cell state. Each gate is a feed-forward neural network 

with sigmoid activation, outputting a value between 0 and 1, representing how much 

of each component should be let through. 

LSTM uses a gate structure to achieve its function, which contains three types of gates: 

input gate 𝑖, output gate 𝑜, and forget gate 𝑓 [113]. By controlling the gates, the cell 

can determine the storing, writing, and reading operation of information. For each 

time step 𝑡, 𝑥𝑡 is the input to the memory cell layer, and the updated states of each 

parameter are shown in the following Eq. (2.22) to (2.23). 
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𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2.44) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (2.45) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐ℎ𝑡−1 + 𝑊𝑥𝑐𝑥𝑡 + 𝑏𝑐) (2.46) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (2.47) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (2.48) 

where 𝜎(𝑥) , 𝑊  and 𝑏  represents the sigmoid function, weight, and bias factor, 

respectively. For the input 𝑥𝑡, the input gate 𝑖𝑡 can accumulate new value flows into 

the memory cell. The forget gate 𝑓𝑡 determines what needs to be discarded from the 

memory of a cell, which means it can force the memory cell to forget things that are 

not significant. 𝑐𝑡 demonstrates how the memory of cell updates in terms of the new 

input and the previous value. The output gate 𝑜𝑡 determines what should be output to 

the next cell from the current memory cell and ℎ𝑡 is the hidden output of the current 

cell. 

In radar-based HAR, RNNs and LSTM networks offer unique capabilities for 

modelling temporal dependencies in radar signals [101], [114]. These architectures are 

particularly well-suited for capturing the sequential nature of human movements as 

reflected in radar data. RNNs can be applied to model the time-series data of radar 

signals, making them effective for recognizing activities that involve sequential or 

periodic movements, such as walking or cycling [39]. However, traditional RNNs 

suffer from the vanishing gradient problem, which makes them less effective for 

learning long-term dependencies. 

LSTMs, an advanced form of RNN, overcome this limitation by using memory cells 

that allow them to capture long-term temporal dynamics effectively. This makes 

LSTMs highly suitable for complex activities that involve a series of actions in a 

specific order, such as picking up an object followed by walking [39]. For example, 

LSTMs have been used to classify complex activities by analysing the micro-Doppler 

signatures generated by human movements in radar data. Furthermore, hybrid models 

combining CNNs, and LSTMs have also been explored to leverage both spatial and 

temporal features for more robust and accurate HAR [98], [102]. 

2.5.4 Attention Mechanism and Transformer  

The attention mechanism [115] and the transformer [116] architecture represent 

significant advancements in the field of deep learning, particularly in natural language 
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processing (NLP) and beyond. These concepts have revolutionized how models 

handle sequential data, offering improvements in efficiency, scalability, and 

performance over traditional recurrent neural network (RNN) approaches [115]. 

Introduced as a solution to the limitations of RNNs and their variants (like LSTMs 

and GRUs) in processing long sequences, the attention mechanism allows models to 

focus on different parts of the input sequence when predicting each part of the output 

sequence [115], [117]. This is akin to how humans pay attention to specific portions of 

information while ignoring others when comprehending text or images. The key idea 

is to dynamically weigh the significance of input elements based on their relevance to 

the task at hand, enabling the model to make more contextually informed decisions. 

Attention mechanisms have been particularly effective in tasks such as machine 

translation, where the model needs to consider the entire input sequence to accurately 

translate a sentence. 

Building on the success of attention mechanisms, the transformer architecture, 

introduced in the seminal paper "Attention is All You Need" by Vaswani et al. in 2017 

[116], fully utilizes attention mechanisms to process sequences, eschewing recurrence 

entirely. Transformers consist of two main components: an encoder that processes the 

input sequence and a decoder that generates the output sequence. The core of the 

transformer is the self-attention mechanism, which allows the model to weigh the 

importance of different words in the input sequence when processing each word [115], 

[118]. This enables the transformer to capture complex dependencies and relationships 

within the data. 

Transformers have several advantages over their predecessors. They can process 

entire sequences simultaneously rather than sequentially, which significantly improves 

training speed and efficiency. This parallel processing capability, combined with their 

ability to capture long-range dependencies in data, has made transformers the 

architecture of choice for a wide range of applications, including but not limited to 

text summarization, sentiment analysis, and even areas outside NLP like computer 

vision [116], [117]. 

The introduction of transformers has led to the development of large-scale pre-trained 

models like BERT [119], GPT [120], and others, which have set new benchmarks 

across numerous NLP tasks. These models leverage vast amounts of data to learn rich 

representations of language, which can then be fine-tuned on specific tasks to achieve 

state-of-the-art performance. 
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In summary, the attention mechanism and transformer architecture have marked a 

paradigm shift in how sequential data is processed, offering a more flexible and 

powerful framework for a variety of complex tasks across different domains. 

2.6 Classification and Performance 

2.6.1 Fitting and Validation 

The concept of fitting in machine learning is fundamentally linked to the adjustment 

of weights and biases within a classifier [104], [107], [121]. Fitting can be visualized 

as the process of defining a margin that separates different classes in a dataset. The 

fitting process can lead to three distinct outcomes: underfitting, good fit, or overfitting. 

• Underfitting [122] occurs when the margin of classifier is too broad, failing to 

encompass all relevant observations within the primary cluster of a class. This 

results in a high rate of false positives and a general misclassification of data 

points, often due to an overly relaxed bias parameter. Conversely, a good fit is 

achieved when the classifier's margin is appropriately tight around the primary 

cluster, accurately identifying the class of interest while minimizing false 

positives. This balance ensures that the classifier is sensitive enough to detect 

the class without being overly inclusive. 

• Overfitting [121], on the other hand, is a condition where the classifier overly 

extends its margin in an attempt to include outlier points. This leads to a 

deceptive initial accuracy, as the classifier seems to recognize the class of 

interest effectively. However, this comes at the cost of increased false positives 

due to the overlap of margins with other class clusters. Overfitting models may 

not necessarily account for all outliers, leading to a skewed understanding of 

the data. 

In the training stage of machine learning applications, classifiers often oscillate 

between overfitting and underfitting. Achieving a good fit requires numerous training 

iterations, where the classifier gradually converges to an optimal balance through an 

iterative process of fitting adjustments, guided by gradient updates. This intricate 

process of tuning and training the classifier is critical for developing a model that 

accurately represents and predicts the underlying patterns in the data. 

Validation [92] is a critical process in machine learning, designed to evaluate the 

performance on a dataset separate from the training data. Its primary aim is to gauge 

the ability to generalize to new, unseen data. The process begins with splitting the 
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available dataset into subsets: typically, a training set and a validation set, and 

occasionally a third subset, the test set. The performance is evaluated using metrics 

appropriate to the problem, such as accuracy, precision, recall, or mean squared error. 

Based on this evaluation, the model may be tuned by adjusting hyperparameters, 

altering its architecture, or revising the feature selection process. The goal is to refine 

the model to perform well not just on the training data but also on unseen data. This 

iterative process of training, validating, and tuning continues until the model achieves 

satisfactory performance on the validation set. Validation is vital for several reasons 

[123]:  

• It helps detect overfitting, where a model is too tailored to the training 

data and fails to generalize.  

• It allows for the comparison of different models or configurations to 

select the best performer.  

• It is essential for hyperparameter tuning, providing a feedback loop 

independent of the training data.  

• Lastly, it offers an estimate of the model's expected real-world 

performance. 

There are various types of validation methods [123]. Holdout validation is the 

simplest, involving a straightforward split of the dataset into training and validation 

sets. K-Fold Cross-Validation divides the data into 'K' subsets, with the model trained 

and validated 'K' times, each time using a different subset for validation. Leave-One-

Out Cross-Validation is a specific case of K-fold cross-validation where 'K' equals the 

number of data points, with each data point used once as a single validation set. 

In summary, validation is an indispensable step in the machine learning workflow, 

ensuring the development of robust, generalizable models suitable for real-world 

applications. 

2.6.2 Measures of Success 

This section delves deeper into the performance metrics previously introduced. 

Confusion metrics [124], related to the classification efficacy of a specific class, are 

delineated in Equations (2.49) to (2.51). These metrics are further simplified in the 

context of a binary classification problem, as depicted in Table 3, where rows and 

columns represent output and target classes, respectively. Sensitivity, also known as 

Recall, quantifies the rate at which the class of interest (Class A in this instance) is 

correctly classified. In contrast, Specificity is associated with the accurate 
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identification of classes other than the class of interest. Additionally, Precision, or 

Positive Predictive Value (PPV), is calculated as the proportion of true positives in 

relation to the total count of samples classified as belonging to the class of interest. 

Table 3 A Binary Confusion Matrix  

Output A B 

A True 

Positive 

False 

Positive 

B False 

Negative 

True 

Negative 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.49) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2.50) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.51) 

In addition to the previously discussed metrics, this research also introduces two 

common measures to assess the overall performance of classifiers. The F-measure, as 

referenced in [125], is employed to provide a balanced view of the performance by 

combining sensitivity and precision through their harmonic mean. This metric 

effectively highlights the balance between 'missing positives' and 'false alarms' in the 

classification process. Besides, classification accuracy [124] is utilized to gauge the 

rate of correctly classified instances across all classes. This metric is particularly 

valued for its ability to provide a balanced overview of classifier performance. 

Notably, when applied to a single class, classification accuracy transforms into a 

measure of sensitivity, offering insights into the classifier's ability to correctly identify 

positive instances within that class. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(2.53) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.54) 
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There are also several metrics that specialized employed to some filed. For example, 

the Jaccard Index [126], standing out for its effectiveness in quantifying the similarity 

between two sets, is a widely used metric for quantifying the similarity and diversity 

between two sets. It is particularly effective in the field of image segmentation, where 

it calculates the ratio of the intersection to the union of the predicted and actual 

segmentation areas. This index ranges from 0 to 1, where a value of 1 denotes perfect 

overlap and 0 indicates no overlap at all. A high Jaccard Index signifies that the 

segmentation algorithm has accurately delineated the region of interest, closely 

matching the ground truth. Similarly, the F1 score, or Dice coefficient [123], offers 

another perspective on measuring success in segmentation tasks. While the Jaccard 

Index focuses on the proportion of overlap, the Dice coefficient emphasizes the 

balance between precision (the proportion of true positive results) and sensitivity (the 

ability to correctly identify positives). Both metrics are integral in evaluating the 

efficacy of segmentation algorithms, providing insights into their accuracy and 

reliability in differentiating and identifying regions within an image. 

2.7 Summary 

This chapter provides an overview covering the fundamental principles of radar and 

signal processing procedures, with a focus on Frequency Modulated Continuous Wave 

(FMCW) radar, a type employed in this project. The study delves into the 

representation of radar, particularly in micro-Doppler signatures that hold essential 

information about human activities. It further explores the utilization of machine 

learning and deep learning techniques for activity recognition using radar data, laying 

the groundwork for understanding their application. This includes an introduction to 

the basics of artificial intelligence, various algorithms, and the significant role of data 

selection and fusion to boost the accuracy and resilience of learning models. The 

significance of model fitting, validation techniques, and performance evaluation 

metrics is also emphasized, serving as a foundation for the subsequent chapters on 

machine learning and deep learning techniques in human activity recognition tasks.  
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3. Machine Learning Applications in Assisted 

Living with Radar 

In this Chapter, a literature survey is presented covering the state-of-the-art solutions 

that apply different ML techniques in assisted living with radar, especially in HAR, 

with a summary of the reviewed papers presented in Table 5. The survey considers 

sensing technologies and classification algorithms, providing a structured lens through 

which we scrutinize the evolution of radar-based human recognition—from its 

previous stages [79], [127], [128] reliant on traditional methods to its current state, 

augmented by advanced machine learning algorithms. By doing so, we aim to shed 

light on the pivotal role these techniques have played in enhancing both the accuracy 

and computational efficiency of such systems. Moreover, this chapter compels us to 

delve into the existing challenges in this rapidly evolving research field. In this 

chapter, the question also prompts the exploration of emerging trends and potential 

future directions for this interdisciplinary field. Thus, this overarching question not 

only frames the scope of this literature review but also serves as the motivation behind 

each section, ensuring a cohesive, thorough, and forward-looking analysis. 

This chapter is structured as follows: In Section 3.1 it begins with a comparative 

analysis of various sensors used in HAR, highlighting their capabilities and limitations. 

Following this, the chapter delves into existing research in the radar domain, offering 

insights into the state-of-the-art methodologies and developments in Section 3.2. 

Section 3.3 places a significant focus on gait analysis, examining its critical role in 

HAR and the nuances of its interpretation through radar technology. Then Section 3.4 

explores methods to enhance accuracy in HAR, specifically through the lens of feature 

selection and fusion techniques. Section 3.5 is a summary that not only synthesizes the 

key discussions but also presents emergent research questions and identifies gaps in 

current studies, paving the way for future research directions in radar based HAR. 

3.1 Why Radar in assisted living? 

Activity recognition sensors generally falls into two categories: wearable and non-

wearable sensors [129], [130]. Wearable sensors, depending on their placement on the 

body, in pockets, or around the neck, gather data at varying resolutions from human 

movements. The quality and type of data collected can differ significantly based on 

the sensor's location relative to the torso and limbs. These sensors, equipped with 

accelerometers, magnetometers, and/ or gyroscopes, measure acceleration, magnetic 
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fields, and angular movements, respectively. They can also directly measure the skin 

temperature and arterial movements for vital signs monitoring. 

 

Figure 19 Perceived user privacy and richness in information far different types of sensors used for 

indoor monitoring and assisted living adapted from [131] 

Non-wearable sensors, on the other hand, maintain a distance from the subjects, 

making them less invasive and requiring less management by end-users, who often are 

older individuals with impaired cognition in the context of assisted living [132], [133]. 

These sensors also rely less on temporary power sources like batteries, an added 

benefit from a management perspective. Figure 19 illustrates the richness of the 

sensors versus the perceived privacy of a person using these sensors. It is clear from 

the figure that sensors that provide rich information about a person are usually not 

perceived as privacy-preserving. For example, a video camera that allows for the 

recognition of almost any human activity in its field of view cannot be used in most 

rooms due to the perceived invasion of privacy by the users. Radar stands out as it 

provides rich information and good perceived privacy because it does not take plain 

images. Also, most users have Wi-Fi routers at home working on similar principles. 

Hence, we assume that radar will be better accepted and seen as less invasive. 

Furthermore, with the fusion of communication and sensing in 6G. People will have 

access points deployed in their home environment which will rely on radar sensing 
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techniques. However, radar systems at present require the installation of a bespoke 

system complicating the deployment process.  

Looking at the most prevalent solutions for assisted living that offer a transformative 

potential to improve the quality of life for the elderly and chronic patients, we will 

look at the challenges going forward for indoor monitoring. Table 4 depicts the 

challenge comparison between camera and radars. 

Table 4 Current main challenges for camera and radar technologies. 

Wearable Sensors [134] - 

Challenges 

Camera [135] - Challenges Radar [28] - Challenges 

• Data Accuracy: Ensuring 

the accuracy of data collected 

from wearable sensors is 

crucial. Factors like sensor 

placement, calibration, and 

interference can affect data 

quality. 

• Battery Life: Wearable 

sensors often have limited 

battery life, requiring 

frequent recharging or 

battery replacement, which 

may not be convenient for 

elderly users or those with 

limited mobility. 

• User Compliance: The 

effectiveness of wearable 

sensors depends on 

consistent usage. Forgetting 

to wear the device or 

discomfort caused by the 

device can lead to data gaps. 

• Environmental Factors: 

Conditions like humidity, 

temperature, and physical 

obstructions can affect sensor 

performance, leading to 

inaccurate data. 

• Coverage area and depth-

sensing range. Differently from 

wearable devices, vision-based 

sensors have a limited coverage 

area, and many sensors may be 

required to monitor the whole 

apartment, leading to higher 

costs of installation.  

• Occlusions: Vision-based 

sensors suffer from occlusions, 

for example, from pieces of 

furniture. The coverage area 

may also be limited by the 

presence of some occluding 

objects, which are temporarily 

interposed between the subject 

to be monitored and the sensor.  

• Skeleton data reliability. 

Many algorithms based on 

Kinect sensors rely on skeleton 

data, which can be used to 

extract the position and posture 

of the human. However, for the 

skeleton information to be 

correctly estimated, the person 

should be facing the sensor. 

Moreover, the estimation 

algorithm can detect some 

spurious skeletons that are 

objects.  

• Privacy: The people surveyed 

fill a sense of privacy invasion 

• Presence of strong scatterers 

and clutter in indoor 

environments which may 

generate multipath and ghost 

targets, or obscure the person to 

be monitored from the sensor, 

which can also be a problem for 

RGB-D sensors; 

• Multi-occupancy: the 

possibility of having pets or 

other people (e.g., visitors, 

multiple elderly) moving inside 

the monitored area, thus 

complicating the signature, and 

generating false alarms. Again, 

this could potentially be a 

problem for RGB-D sensors as 

well; 

• Emission regulations: the 

compliance of the selected radar 

waveforms with directives from 

the telecommunication 

regulatory bodies, with 

potential constraints in terms of 

the achievable bandwidth and 

transmitted power, hence 

limiting the range resolution 

and the Signal to Noise Ratio 

(SNR); 

• Aspect angle dependence: 

The dependence of the micro-

Doppler signature on the cosine 
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with cameras. 

• Law: The data/image rights 

that apply to the cameras and 

ethics linked to its operation are 

not mature yet and could quickly 

become a legal minefield in the 

future. 

Cameras would also be able to 

tackle multi-occupancy 

of the aspect angle between the 

velocity vector of the 

movement and the line-of-sight 

of the radar, which in some 

cases can significantly attenuate 

the signatures and make them 

unsuitable for feature extraction 

aimed at fall detection;  

• Fine-grained activity 

classification in a continuum: 

the possibility to reliably detect 

a fall, irrespective of the type of 

movement or activity 

performed before, and of the 

dynamics of the fall itself 

(falling forward or backward, 

tripping rather than losing 

balance or consciousness, 

falling while sitting or standing 

up from chairs or sofas). This 

would imply developing fall 

detection procedures that can 

take into account the actual 

dynamics of elderly people 

moving, for instance, the effects 

on the radar signatures of using 

walking assistive devices. 

 

Among non-wearable sensors, radar has received increased attention [79] as a 

potential alternative to established sensors like video cameras. Its appeal lies in its 

insensitivity to lighting conditions and its easy integration into homes [114]. Modern 

radar systems can blend inconspicuously into smart home environments, functioning 

much like a common Wi-Fi router [136]. In addition, radar tends to pose fewer 

privacy concerns than cameras, as it does not collect explicit images or videos of users 

and their private environments [137], [138], [139].  

3.2 Review of Radar data domains in HAR 

The ability to exploit different radar data domains in current HAR systems can be 

attributed to several key advancements.  
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1. modern radar systems have undergone significant improvements in resolution, 

range, and sensitivity, enabling the collection of more granular and detailed 

data. This is supported by research in ambient intelligence technologies, which 

focus on constant monitoring through networks of sensors and actuators, 

thereby enhancing the capabilities of radar systems in HAR applications [64], 

[140], [141]. 

2. The advances in computational power have made the processing of complex 

radar data in real-time possible, opening up new possibilities for HAR 

applications [28], [56], [142].  

3. Advanced machine learning algorithms have played a crucial role in handling 

the intricacies of different radar data domains and automatically extracting 

relevant features for activity recognition [79], [143].  

4. The availability of large, labelled datasets has further facilitated the 

development of robust models capable of navigating these diverse data 

domains [114].  

5. Interdisciplinary research, bringing together expertise from fields like signal 

processing, machine learning, and human-computer interaction, has led to more 

comprehensive approaches to HAR [101], [114].  

The democratization of access to these technologies through open-source software 

libraries has also allowed a broader range of researchers to contribute to ongoing 

advancements in the field. 

3.2.1 Spectrogram with Machine Learning 

In 2009, Y. Kim and H. Ling [144] pioneered the use of micro-Doppler signatures 

from continuous wave (CW) radar. Since then, classification efforts have primarily 

focused on spectrograms, which are Doppler-time representations of received signals 

derived using the Short-Time Fourier Transform (STFT). This method provides a 

straightforward effective means of data representation, particularly useful in scenarios 

with significant interclass variations. In their study [144], they combined micro-

Doppler signatures with an SVM classifier to categorize seven different activities. 

They extracted six critical physical features from the radar data, achieving an accuracy 

of around 90% when these features were used in combination. This foundational 

research guided subsequent studies by highlighting the significance of classifying 

activities, addressing challenges related to radar aspect angles, and pioneering 

through-the-wall [145] measurement techniques. 



61 
 

 
Figure 20 An illustration of walking spectrogram. 

Human activity recognition using traditional classifiers typically begins with the 

creation of detailed handcrafted features. These features are derived from the physical 

attributes of human activities or from pattern features based on statistical calculations 

and specific micro-Doppler signature images. Fioranelli and colleagues [146] 

introduced a novel approach that utilizes singular value decomposition (SVD) of the 

spectrogram. This method simplifies the spectrogram's components to highlight key 

features. Additionally, Principal Component Analysis (PCA) can be used as an 

alternative feature extraction technique. PCA conducts a linear transformation of the 

data to identify the direction with the greatest variance. For single-channel data, the 

original PCA or 1-D PCA is applied to determine the principal components. In 

contrast, 2-D PCA and generalized 2-D PCA extend the concept of 1-D PCA to multi-

channel data, such as images. These methods represent significant advancements in 

extracting valuable information from complex radar data, underscoring the impact of 

feature extraction on classification accuracy. 

Conventional classifiers like KNN (K Nearest Neighbour) and SVM (Support Vector 

Machine) are favoured for their straightforward implementation and low 

computational demands. KNN, a non-parametric method, predicts labels based on the 

majority class among the K nearest training samples. Studies [147] and [148] have 

assessed KNN's effectiveness in radar datasets for human activities, particularly in fall 

detection scenarios. KNN also acts as a benchmark for more complex algorithms like 

deep neural networks. In contrast, SVM, which is more intricate, constructs a 
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hyperplane for data separation, utilizing chosen support vectors. Various kernel 

functions, such as RBF, Quadratic, and Cubic, can enhance SVM classifiers by 

mapping data into higher dimensions, aiding in diverse classification challenges. SVM 

stands out in human motion classification among conventional classifiers, often 

outperforming neural networks, especially when training data is limited. References 

[147], [144], [127] and [149] have successfully employed SVM with different kernel 

functions for detecting human targets, classifying human activities, and recognizing 

micro-gestures. Unlike previous experiment, the work in [150] takes CNN as feature 

extraction instead of classification. The spectrogram data as input and passed through 

an auto-correlation function, followed by a CNN to extract action-related features. 

Finally, a Random Forest classifier was used to predict the action class. 

3.2.2 Spectrogram with Deep Learning 

The advancement of deep learning models has significantly enhanced system 

performance in various domains, including visual object classification and speech 

recognition, even from high baseline levels [104]. These deep models mimic the 

human brain data processing mechanisms, typically featuring multiple hidden layers 

that learn complex, high-level characteristics of input data [104]. Training a deep 

learning-based classifier requires a substantial dataset, leading to a demand for 

considerable computational resources, such as extensive parallel computing units and 

storage capacities. Nonetheless, one of the key advantages of deep learning models is 

their ability to bypass the need for manually crafting features, streamlining the model 

development process. 

Spectrograms can be interpreted as temporal sequences of Doppler frequency 

distributions, aligning well with sequence models like Recurrent Neural Networks 

(RNN) and their advanced variant, Long Short-Term Memory (LSTM) Units. These 

models are adept at capturing the temporal dynamics within spectrograms, enabling 

them to effectively model time-variant features in radar signals. This capability is 

particularly beneficial for tasks that require the prediction or detection of temporal 

patterns in radar data, such as tracking moving targets over time. For instance, in [79] 

and [151], LSTM algorithms are employed to classify human activities using radar 

micro-Doppler spectrograms. Additionally, [152] explores the use of Gated Recurrent 

Units (GRU), a streamlined version of LSTM, achieving performance comparable to 

the LSTM results in [151]. Bidirectional LSTM models, as discussed in [100], further 

enhance this approach by analysing temporal sequences in both forward and reverse 

directions. 
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On the other hand, spectrograms, as visual representations of the distribution of 

Doppler frequencies in radar signals over time, are also highly adaptable for computer 

vision applications. In these spectrograms, each 'pixel' represents the amplitude of a 

specific Doppler frequency at a given time, akin to a 2D image. This format is 

particularly conducive to analysis by Convolutional Neural Networks (CNNs), a deep 

learning model adept at image processing. CNNs excel in automatically identifying 

spatial patterns within spectrograms, such as frequency modulations or characteristic 

energy distributions, crucial for tasks like radar signal analysis and target recognition. 

A notable advancement from of [144] occurred six years later in [153], where the 

researchers transitioned to a Deep Convolutional Neural Network (DCNN), 

maintaining high HAR performance, and improving the differentiation between 

humans and other objects to approximately 97.6% accuracy. Further, studies [154], 

[155] and [79] have successfully employed CNN algorithms for processing various 

spectrogram types. 

The evolution of machine learning methods has led to the exploration of hybrid 

approaches that leverage both spatial and temporal features of spectrograms. 

Convolutional LSTM networks, which merge the spatial feature extraction process of 

CNNs with the temporal modelling capabilities of LSTMs, exemplify this trend. In 

[156], a novel combination of 1-D CNN with LSTM is proposed, achieving a 

remarkable 98.28% accuracy, surpassing traditional 2-D CNN models. Further 

advancing HAR methodologies, [157] introduced a multi-domain feature attention 

fusion network (MFAFN). This model overcomes the limitations of single-range or 

velocity features in human activity description. Additionally, [158] proposed an 

efficient network based on a lightweight hybrid Vision Transformer (LH-ViT), aiming 

to simultaneously enhance HAR accuracy and reduce network complexity. 

In these varied scenarios, converting raw radar signals into spectrograms enables deep 

learning models to effectively utilize the frequency-time composition of the signal, a 

critical aspect for proficient radar signal processing. The choice of approach is heavily 

dependent on the specific problem and the characteristics of the radar application. The 

literature is rich with examples where deep neural network-based architectures are 

employed to interpret radar data, treating it either as image data or as temporal 

sequences. 

3.2.3 Other Domains 

The advancement of high-precision radar, driven by the automotive industry anti-

collision systems and the evolution of software-defined radio platforms, along with a 
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surge in computational capabilities, has opened up access to more data-rich domains 

for feature extraction. This encompasses a diverse array of data types, from 1-D 

information such as raw data [101], [102], [159] , to 2-D information such as range-

time [159], [160], range-Doppler [160], [161], [162], Cadence Velocity Diagrams 

[163], and cyclostationarity [70], extending 3-D formats, [143], [164], like the range-

time-Doppler cube and cloud point. 

Short-Time Fourier Transform (STFT), while beneficial, faces the challenge of time-

frequency (TF) resolution trade-off, meaning we cannot optimize time and Doppler 

frequency resolutions simultaneously. More advanced TF distributions, as discussed 

in [165], were proposed to tackle this problem. However, the spectrogram still has 

limitations. One significant limitation is the loss of phase information, which can be 

crucial for understanding intricate details of human movement. Phase information can 

provide insights into the relative timing of different body parts' movements, which is 

often critical in gait analysis for applications like fall detection or diagnosing 

movement disorders. Another limitation is neglecting the spatial or range dimension. 

This is a critical drawback, especially in applications like assisted living or healthcare 

monitoring, where understanding the spatial context of human movement is essential. 

Given limitations, there is a need to explore other radar domains for classification 

tasks. One of such domains is the Cadence Velocity Diagram (CVD), easily derived 

from spectrograms through a simple Fourier Transform (FT). CVDs can reveal crucial 

activity information – cadence frequency, which denotes average walking speed and 

stride rate, providing valuable insights particularly in the realm of radar-based gait 

analysis. In [166] extracts 13 numerical features from Doppler spectrogram and CVD 

profile [140] to compare the performance between sonar system and radar system. In 

[167], A. Seifert investigates more features including physical features from CVD 

profile such as cadence frequencies. Moreover, a sum-of-harmonics (SOH)-based 

model is proposed to estimate the fundamental Doppler frequency of the gait and the 

number of harmonics. The final accuracy of the combined feature set achieves 93.8%, 

which outperforms CVD-based feature set by 7.2%.  

The range-time domain [159], [160], also known as the range profile, has recently 

gained significant attention due to its more efficient processing requirements. This 

domain bypasses the need for time-frequency analysis, essential for generating 

Doppler spectrograms. Range profiles provide snapshots of target reflections at 

specific times, offering crucial data on the distance between the radar and its targets. 

They are particularly useful for observing dynamic changes in moving targets over 
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time. The simplicity of range profiles, compared to other domains, makes them well-

suited for real-time activity recognition applications where swift and efficient 

processing is paramount. 

The range-Doppler domain [160], [161], [162] presents a comprehensive approach for 

activity recognition by combining two crucial radar measurements. The range-Doppler 

domain enriches feature extraction by detailing a target speed and motion alongside its 

distance, offering a deeper insight into the activities in progress. Merging these 

measurements can potentially boost the efficacy of activity recognition models, 

ensuring more precise and dependable identification of intricate activities. This 

domain produces a range-Doppler map that not only shows the target distance but also 

captures its relative velocity (Doppler effect), providing a more detailed perspective of 

the movements and dynamics of the target. 

In [70], the author proposes a cyclostationarity-based approach for feature extraction, 

with activity classification as it detects micro-Doppler is made starting from complex-

valued cyclostationary statistical functions of the reflected radar signal. The human 

activity can be recognized with up to 95.4% by the combination of real and imaginary 

part. The diversity of data types enhances our ability to differentiate activities based 

on distance, power spectrum, Doppler, Cadence etc., providing greater discernment, 

particularly in scenarios with minimal differences between classes. Utilizing these 

varied data types enables the creation of more refined and precise activity recognition 

models, adept at distinguishing between closely related activities. 

3.3 Gait Analysis 

Gait analysis has emerged as a critical tool in the realm of assisted living, offering 

valuable insights into an individual mobility, stability, and overall health [168]. It 

serves as a multifaceted tool in assisted living, offering both healthcare and 

identification solutions. Its ability to provide detailed, actionable data makes it 

indispensable for ensuring the well-being and safety of residents in these settings. This 

analytical method involves the systematic study of human motion, employing various 

techniques ranging from simple observational assessments to more complex radar and 

sensor-based evaluations. The primary measures associated with gait analysis include 

spatiotemporal parameters such as stride length, step width, and walking speed, as 

well as kinematic and kinetic variables like joint angles and ground reaction forces. 

These measures provide a comprehensive understanding of an individual's walking 

pattern, thereby serving as reliable indicators of their physical condition [168]. 
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In the context of healthcare, gait analysis plays a pivotal role, particularly among older 

adults and individuals with mobility impairments [168], [169]. It is instrumental in 

assessing functional mobility limitations and evaluating the risk of falls, which are 

significant concerns in assisted living settings [169]. For instance, spatiotemporal gait 

measures have been found to correlate strongly with established physical performance 

assessments, making them reliable predictors of fall risks. This is especially crucial for 

residents with cognitive impairments such as dementia, where traditional assessment 

methods may not be as effective [168]. For identification purposes [170], gait analysis 

offers a unique, non-intrusive means of recognizing individuals. Advanced radar 

systems and wearable sensors can capture intricate details of human gait, which can 

then be analysed using machine learning algorithms for accurate identification. This is 

particularly useful in assisted living environments where personalized care is essential, 

and accurate identification can aid in customizing rehabilitation plans and monitoring 

routines [170]. 

Gait analysis is the study of human motion, often focused on locomotion, particularly 

walking, and running. In the context of radar, gait analysis can provide a non-invasive 

method for identifying and assessing human activities, health status, and even 

individual identity, based on the unique micro-Doppler signatures [171] produced by 

their movements. The use of radar technology in gait analysis has gained considerable 

attention due to several advantages. Firstly, radar sensors can operate effectively in 

various environmental conditions, such as darkness or poor lighting, and can even 

penetrate certain materials, allowing through-wall monitoring. Secondly, radar 

systems are less intrusive, not requiring wearable sensors or capturing visually 

identifiable data, thereby preserving privacy. 

A few key studies in this area illustrate the potential of radar for gait analysis.  In 2014, 

Wang et. al. in [172], one of the most comprehensive experiments regarding gait 

monitoring using radar for the elderly. In this work, they highlighted the current lab-

based methods and expressed the difference between these locations and the home 

environment. In this experiment, they generated gait parameters from radar 

spectrogram signatures and classified four types of gaits from 13 participants. 

More recent studies have integrated machine learning techniques to enhance the 

analysis of radar-derived gait data. For example, an LSTM [173] model was used to 

classify the walking gait of small groups of people vs individual persons in an outdoor 

scenario. As for experimental improvements, [174] who validated mD gait signatures 

as precursors of cognitive ability using data from 74 people. Similarly, in 2020, Le et 
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al. used an autoencoder model to classify gait patterns from radar signals, with 

spectrograms and scalograms, demonstrating recognition of different walking 

conditions [175]. 

Despite these advancements, similar to HAR, radar-based gait analysis also faces a set 

of challenges. One of these challenges lies in the heavy reliance on the spectrogram 

representation of radar data. The spectrogram, which visualizes the frequencies 

present in a signal as it changes over time, is incredibly useful for identifying periodic 

patterns, such as the cyclical movement of limbs during walking or running. However, 

the spectrogram as a standalone representation may not fully exploit the richness of 

radar data. It is also worth noting that while spectrograms are effective in capturing 

the frequency-time characteristics of a signal, they may not adequately represent other 

potentially useful features. For instance, phase information, which can be crucial for 

understanding the micro-motions involved in gait, is often lost in the spectrogram 

representation. Additionally, the spectrogram is sensitive to noise and may require 

preprocessing steps like windowing and overlapping, which could introduce artifacts 

or distortions in the data. Moreover, the spectrogram-based approach may not be as 

effective in capturing dynamic changes in gait, such as sudden stops or changes in 

direction, which are crucial for applications like fall detection or abnormality 

identification in assisted living scenarios. These limitations suggest the need for more 

advanced feature extraction techniques that can fully exploit the multi-dimensional 

nature of radar data for gait analysis.  

3.4 Summary 

HAR has emerged as a compelling area of research in the domains of human-

computer interaction and smart surveillance, with radar technology gaining increasing 

attention for its unique advantages such as environment-insensitivity and enhanced 

privacy protection [28]. Deep learning techniques have further propelled this field by 

automatically extracting deep features, thereby achieving impressive classification 

performance [79]. Various state-of-the-art deep learning models, each with unique 

characteristics for identifying human activities, are being increasingly combined to 

capture features more effectively. In terms of radar systems employed for HAR, 

Doppler radar specializes in obtaining Doppler information, FMCW radar provides 

both range and Doppler data. The radar echoes are categorized into 1D, 2D, and 3D 

forms, each with their own set of challenges and opportunities when applying deep 

learning techniques. Particularly, 2D radar echoes [143], [148], [154], [176], 
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especially time-Doppler maps, are most commonly used due to their intuitiveness and 

rich information, whereas 3D echoes [177], although information-rich, pose greater 

processing challenges. The simpler 1D echoes [101] present an untapped potential for 

feature extraction. Convolutional Neural Networks (CNNs) have also been adapted for 

radar based HAR, with architectural choices like ReLU [114] and ResNet [114] 

addressing issues like the exploding gradient problem. Despite the current lag in the 

adoption of radar for HAR compared to vision-based technologies, the field holds 

significant promise owing to the synergistic advancements in radar technology and 

deep learning algorithms. 

The field of Human Activity Recognition (HAR) using radar and deep learning has 

undergone several noteworthy advancements. One of the most significant changes is 

the evolution of deep learning algorithms, with newer architectures like Transformer 

models [178] and attention mechanisms being adapted for HAR tasks. This has been 

complemented by the use of advanced data augmentation techniques, such as 

Generative Adversarial Networks (GANs) [179], which are particularly useful for 

handling unbalanced datasets. The push towards real-time HAR has also gained 

momentum, thanks in part to the advent of edge computing and algorithmic 

efficiencies. Additionally, there is a growing trend towards the development of multi-

modal HAR systems that integrate radar data with other types of sensory data, such as 

visual or inertial information, for a more robust recognition system. As these 

technologies become more pervasive in both public and private spaces, there has been 

an increased focus on addressing data privacy and ethical considerations. 

The literature reviewed in this section is summarized in Table 5 and compared in 

terms of sensing approach, Domain used of the experiment (Spectrogram, range 

profile and etc), number of classes to distinguish, classifier and classification 

performance. 

Table 5 Summary of previous work. 

Ref Year Sensing 

Approach 

Classification 

Algorithm 

Classe

s 

Radar 

Data 

Domain 

Performance 

Metrics 

Best 

Performance 

[144] 2009 CW radar SVM 7 Doppler-

Time maps 

Accuracy 92.8% for HAR 

[172] 2014 Pulse 

Doppler 

Radar 

Velocity and 

Step time 

estimation 

13 Doppler-

Time maps 

Gait 

Assessment 

No 

[148] 2015 Simulated 

radar (from 

Kinect) 

KNN 4 Doppler-

Time maps 

Accuracy 90.2% 

[146] 2016 CW radar Multiple 

Classifiers 

3 SVD Accuracy 99.6% 



69 
 

[155] 2016 Doppler 

Radar 

DCNN 7 Doppler-

Time maps 

Accuracy 90.3% 

[22] 2017 CW Radar SVM 5 Doppler-

Time maps 

and CVD 

Accuracy 73% 

[160] 2017 FMCW 

Radar 

SAE 4 Doppler-

Time maps, 

Range 

Maps. 

Accuracy 96.4% 

[173] 2017 CW Radar LSTM 3 Doppler-

Time maps 

Accuracy 89.1% 

[150] 2018 FMCW 

Radar and 

Simulated 

Data 

Multiple 

Classifiers 

5 Doppler-

Time maps 

Accuracy 88.74 

[154] 2018 Multistatic 

Pulsed 

Radar 

DCNN 2 Doppler-

Time maps 

Accuracy 97.42% for PR, 

99.63% for GAR 

[152] 2018 CW Radar GRU 6 Doppler-

Time maps 

Accuracy 92.7% 

[159] 2018 FMCW 

Radar 

LSTM 2 Raw Radar 

Data, 

Range 

Maps 

Accuracy 99.56% 

[175] 2018 CW Radar CAE 3 Doppler-

Time maps, 

CVD 

Accuracy 96.2% 

[15] 2019 CW radar CAE, DNN, 

SVM 

12 Doppler-

Time maps 

Accuracy 95% 

[151] 2019 CW Radar LSTM 6 Doppler-

Time maps 

Accuracy 91.8% 

[167] 2019 CW Radar KNN 5 Doppler-

Time maps 

and CVD 

Accuracy 93.8% 

[161] 2019 FMCW 

Radar 

ANN 8 Doppler-

Time maps, 

Range 

Maps. 

Accuracy 99.21% 

[162] 2019 FMCW 

Radar 

CNN 5 Doppler-

Time maps, 

Range 

Maps. 

Accuracy 97.2% 

[174] 2019 CW Radar SVM 74 Doppler-

Time maps 

Accuracy 94.6% 

[180] 2019 FMCW 

Radar 

KNN 6 Doppler-

Time maps 

Accuracy 95.5% 

[29] 2020 FMCW 

radar 

SVM, KNN 6 Doppler-

Time maps, 

CVD 

Accuracy 95.4% for HAR, 

91.4% for PR 

[149] 2020 UWB radar KNN, SVM, 

DNN 

6 Doppler-

Time maps 

Accuracy 98% 

[156] 2020 FMCW 

Radar 

LSTM+CNN 7 Doppler-

Time maps 

Precision, 

Recall,  

F1-Score, 

Accuracy 

Precision: 98% 

Recall: 98% 

F1-score: 98% 

Acc = 98.28% 

[100] 2020 FMCW 

Radar 

Bi-LSTM 6 Doppler-

Time maps 

Accuracy 96% 

[164] 2020 Simulated 

Radar Data 

CNN, SVM 9 Doppler-

Range-

Accuracy 91.57% 
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(from 

CMU 

Mocap 

dataset) 

Time 3D 

cube 

[143] 2020 FMCW 

Radar 

CNN 

(PointNet), 

LSTM 

5 3-D cloud 

point  

Accuracy 90% 

[181] 2021 FMCW 

Radar 

CFFN (CNN 

+MLP) 

6 Range-

Doppler 

Surface, 

Phase 

Accuracy 94% 

[182] 2021 FMCW 

Radar 

MB-GAN 

(Multi-Branch 

GAN) 

5 Doppler-

Time maps 

Accuracy 89.83% 

[142] 2021 FMCW 

Radar 

CNN+LSTM 6 Range-

Doppler-

Angle map 

Accuracy 

Recall 

Accuracy:96.2% 

Recall: 96% 

[70] 2021 FMCW 

Radar 

SVM, KNN, 

RF 

6 Cyclostatio

narity 

Accuracy 95.4% 

[114] 2023 CW radar DCNN 7 Doppler-

Time maps 

Accuracy 97.6% for PR, 

90.3% for HAR 

[157] 2023 FMCW 

Radar 

Multi-Domain 

feature 

attention fusion 

network 

6 Range 

Time and 

Doppler 

Time maps 

Accuracy 97.58% 

[158] 2023 FMCW 

radar 

CNN-LSTM-

Attention 

Hybrid Multi-

Network 

5 Sequence 

of Doppler 

Time maps 

Accuracy 96.9% 

 

Overall, Chapter 3 provides a comprehensive overview and review of the application 

of machine learning and artificial intelligence techniques in AAL using radar 

technology. It highlights the significance of AI in enhancing AAL systems and 

showcases the potential of radar-based features, gait analysis, activity monitoring, and 

multimodal radar sensing in improving the quality of life for individuals in need of 

assisted living support.  

In addressing the radar technology for healthcare applications, particularly in activity 

recognition, this chapter identifies some critical research questions that highlight the 

gaps in current methodologies.  

The first question delves into the potential of radar technology, especially micro-

Doppler and beyond, in healthcare contexts ‘Why use radar, and how can we leverage 

its capabilities, including different radar representations, for enhanced healthcare 

applications, specifically in activity recognition?’ This question underscores the need 

to explore and justify the use of radar over other sensing technologies. It also opens up 

avenues for investigating how advanced radar techniques like micro-Doppler can be 

optimized for more accurate and efficient activity recognition. 
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The second question broadens the scope of investigation beyond the spectrogram 

capabilities of radar. It inquires ‘How can it be improved to optimize the classification 

accuracy in the context of assisted living?’ This question goes beyond the technical 

aspects of radar sensing to consider the optimal signal processing and types of radar 

representations, the nature of data to be collected, and the balance between data 

collection and privacy concerns.  

In short there is a new question formed based on the literature ‘How can the 

integration of machine learning-assisted techniques in radar-based HAR systems be 

optimized to significantly enhance classification accuracy across various radar 

representations?’ This question aims to investigate the synergy between advanced 

signal processing methods and machine learning algorithms in the context of radar 

based HAR. It focuses on exploring the potential of novel pre-processing methods, 

such as adaptive thresholding, and their impact on the accuracy and efficiency of HAR 

systems. Additionally, it seeks to understand the effectiveness of integrating these 

methods with ML techniques, particularly in terms of performance optimization and 

computational resource management. This research gap is crucial for advancing the 

field of HAR, especially in applications where accuracy, efficiency, and resource 

constraints are of paramount. 
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4. Individual Human Activity Recognition 

Cognitive processes in intelligent beings are fundamentally anchored in the 

discernment of distinctive characteristics observed in objects or actions. This principle 

is evident in the natural world, where survival often hinges on the ability to perceive 

specific signals, such as using olfactory cues for tracking prey or adapting to 

environmental light conditions for optimal hunting. At its essence, the identification of 

these unique traits underpins a range of complex behaviours. Similarly, in the realm of 

computational cognition, the challenge of object identification is approached through 

the meticulous extraction and analysis of features. However, unlike the tangible 

biological features observed in nature, features in radar signals are abstract, 

necessitating sophisticated methods for their derivation and processing. 

This chapter explores the initial application in employing handcrafted features for 

human activity recognition using radar sensors, with a particular emphasis on 

examining the impact of diverse features. It also addresses the influence of 

demographic variables—such as age, gender, and physiology—on the effectiveness of 

activity recognition. Initially, the chapter evaluates the performance of handcrafted 

features across a diverse dataset. Following this, the focus shifts to the exploration of 

feature selection and fusion algorithms, aiming to refine and enhance the human 

activity recognition process. 

In the current landscape, where end-to-end classification models are increasingly 

dominant, the initial research efforts concentrated on extracting salient features from 

radar data. This extraction is not limited to spectrograms but extended to other data 

domains as well. These features are broadly categorized into three groups: physical 

features, image-based features, and transform-based features. The chapter discusses 

their application in classifying various biological movements, highlighting their 

relevance and utility in the broader context of radar-based human activity recognition. 

This chapter is based on the publication [38] and the chapter is organized as follows: 

beginning with Section 4.1, which establishes the motivation behind the study. This 

section highlights the significance of human activity recognition using radar 

technology. Following this, Section 4.2 details the experimental setup, including the 

radar system configuration, activity selection, and participant demographics, offering 

insight into the data collection process. Section 4.3 delves into the handcrafted 

features utilized in the study, discussing their selection, extraction, and relevance to 

the task at hand. The results of the study are presented in Section 4.4, where the 

classification outcomes are analysed, showcasing the performance of various features 
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and the overall system efficacy. The chapter concludes with Section 4.5, summarizing 

the key findings and implications of the research. 

4.1 Motivation 

The exploration of HAR using radar technology has predominantly cantered around 

mD signatures, as evidenced by the majority of existing research in this domain. 

However, the emergence of methods utilizing other data domains, such as 

spectrograms, signals a shift towards a more diverse and comprehensive approach in 

radar-based cognitive selection. This shift is not merely confined to the extraction of 

features but extends to the consideration of various data domains, thereby enriching 

the repertoire of techniques available for HAR. 

The investigation of these multiple domains opens up new possibilities for cognitive 

selection in radar-based HAR. By exploring different data domains, researchers can 

uncover a broader array of techniques and strategies for feature extraction and 

selection. This expansion is not just theoretical; the practical implications are 

significant, as the insights gained from these investigations can be integrated into 

other algorithms, enhancing their effectiveness and efficiency. One such algorithm 

that stands to benefit from this expanded approach is hierarchical classification [79]. 

Hierarchical classification offers a nuanced method to tackle HAR by segmenting 

activities into several subgroups. Each subgroup can then be analysed using a tailored 

combination of data domains and features, specific to the characteristics of that 

subgroup. This methodological refinement allows for a more targeted and accurate 

classification of activities. 

In addition to the exploration of domains, in supervised classification, the standard 

method involves initially learning predefined or handcrafted features from a training 

dataset, followed by applying the same feature computation on test data for 

classification. Conversely, data-driven feature learning methods [74] adapt the feature 

extraction process using insights from the training data analysis. Figure 21 presents a 

block diagram outlining the key steps in classification using data-driven learning. 

The division of activities into distinct groups also paves the way for the application of 

domain knowledge and information fusion techniques. By aligning specific radar data 

domains with the activities, they are best suited to recognize, the overall accuracy of 

HAR can be significantly improved. This alignment is not a mere matching exercise 
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but involves a deep understanding of the nature of the activities and the characteristics 

of the radar data domains. 

 

Figure 21 Flow chart of data-driven classification approach 

In summary, the motivation for this research lies in expanding the scope of radar-

based HAR beyond the traditional focus on mD signatures. By exploring a variety of 

data domains and integrating these insights into advanced algorithms like hierarchical 

classification, this research aims to enhance the accuracy and effectiveness of HAR 

systems. This approach not only leverages the strengths of different radar data 

domains but also aligns them with specific activity groups, thereby optimizing the 

recognition process and contributing to the advancement of radar-based human 

activity recognition. 

4.2 Experimental Setup 

This section is dedicated to the variables integral to the experiments conducted. It 

encompasses a detailed description of the sensors utilized, encompassing their 

specifications and operational capabilities. Additionally, the section provides a 

comprehensive view of the participant demographics, including the total number of 

participants, their gender distribution, and any other relevant characteristics that may 

influence the outcomes of the experiments. 

4.2.1 Radar Sensor 

In this section, an off-the-shell FMCW radar (Ancortek 580B) operating at 5.8 GHz 

was used to collect the human motion data. The FMCW radar has 400 MHz 

instantaneous bandwidth and the Pulse Repetition Frequency (PRF) equates to 1 kHz. 
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The detailed parameters are also shown in Table 6. The radar transmitted power is 

approximately 18 dBm, whereas the maximal power of the transmitting and receiving 

Yagi antenna is 100 mW, with a gain equal to approximately 17 dB. Additionally, 

both transmitting and receiving antennas are vertically polarized with beam width of 

24 degree in azimuth and elevation.  

Table 6 The Radar parameters 

Radar Specification The details 

Center Frequency 5.8 GHz 

Bandwidth  400 MHz 

Pulse Repetition Frequency  1 KHz 

Coherent Processing Interval 1 ms 

 

4.2.2 Environmental, Participant and Activity Setup 

The influence of varying locations on a dataset can introduce a layer of complexity 

that is critical to consider in the context of radar-based activity recognition. Different 

locations may present unique environmental variables such as background noise, 

signal interference, or multipath effects, which can significantly impact the quality 

and reliability of radar data. For instance, indoor settings may involve reflections off 

walls and furniture. These location-specific factors can introduce variability in the 

extracted features, thereby affecting the performance of ML models trained on such 

data. Consequently, it becomes imperative to either design algorithms robust enough 

to handle this variability or to employ location-specific calibration to ensure accurate 

activity recognition across diverse settings. In this experiment, the data was collected 

in various indoor locations. Generally, there are six distinct indoor rooms, with 

different layouts and decorations. They are the University of Glasgow laboratory room 

at the James Watt South building, the common room at the School of Engineering at 

the University of Glasgow, Glasgow NG Homes Room 1-3, and Age UK West 

Cumbria Room, as shown in Figure 22. 

(a) and (c) presents a minimalist environment, characterized by its bareness. Enclosed 

by four solid walls, the room is devoid of furnishings and equipment, offering a blank 

environment for experiment setup. The strength of the room is its simplicity of data 

collection area, providing a controlled environment for experiment. In contrast, room 

(b) for students is a vibrant and dynamic space, designed to cater to the needs of a 

diverse students. It is furnished with multiple desks and chairs, arranged to facilitate 

both individual study and group collaboration, with cupboards placed around the room. 

Also, it is the largest room in this experiment. (d)-(f) are the normal bedrooms, 
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offering a personal retreat. It features a bed as the centrepiece, accompanied by 

wardrobes, desks and chairs to accommodate work and life. (g)-(h) are activity rooms 

particularly designed for the elders. The activity rooms are dynamic spaces filled with 

resources for creative and physical activities tailored to the interests and abilities of 

older adults. It includes craft tables, chairs, sofa, exercise equipment, and areas for 

games and hobbies, encouraging residents to stay active and pursue their interests in a 

supportive environment. 

 

Figure 22 The environment of experiment. (a), (c) the Laboratory room, (b) the Common room, (d)-(f) 
NG home room 1-3, (g)-(h) Age UK West Cumbria room 

Table 7 List of the activities 

No. Activity Description # of samples Duration (s) 

A1 Walking back and forth 312 10s 

A2 Sitting down on a chair 312 5s 

A3 Standing up from a chair 311 5s 

A4 Picking up an object from the 

ground 

311 5s 

A5 Drinking water from a glass 310 5s 

A6 Fall 198 5s 
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Figure 23 A pictorial list of activities: these six activities were performed. (a) walking, (b) sitting down, 
(c) standing up, (d) picking up an object, (e) drinking, (f) fall.  

The participants are aged 21-98 with diversity in terms of gender (27 females, 45 

males), height (1.52 to 1.88 m), body shape and dominant hand. The recorded 

activities are illustrated in the right part of Figure 23 and summarized in Table 7, 

where some of the activities are designed to be similar in pairs (e.g., ‘A2’ and ‘A3’, 

‘A4’ and ‘A5’). Those similar activities are deliberately added to create more 

classification challenges. For each participant, three repetitions of each activity are 

taken, and this generates a database containing 1754 samples.   

In this experiment, the selection of activities - walking, sitting down, standing up, 

bending to pick up, drinking water, and falling - was made with careful consideration 

to encompass a range of common, everyday movements that are particularly relevant 

in the context of assisted living and healthcare monitoring. 

The consent process was meticulously designed to adhere to the ethical guidelines 

stipulated by the Ethics Board of University of Glasgow. Participants were informed 

in detail about the study's objectives, the nature of the data collection, their rights as 

participants, including the right to withdraw at any point without penalty, and the 

measures taken to ensure their privacy and data confidentiality. Consent was obtained 

through a two-step process: initially, verbal consent was secured during the 

recruitment phase, followed by written consent at the beginning of the data collection 

session. This process ensured that participants were fully informed and voluntarily 

agreed to participate in the study. 
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The recruitment of older adults was conducted through a multi-faceted approach to 

ensure a diverse and representative sample. Recruitment channels included senior 

living communities and health care facilities, as well as social media platforms. To 

encourage participation, the study was presented not only as an opportunity to 

contribute to meaningful research but also as a chance to engage in activities 

promoting physical and cognitive health. Participants were compensated for their time 

to acknowledge their contribution and to incentivize participation. 

The selection of activities for this study was strategically chosen to encompass a broad 

spectrum of movements that are integral to daily living, particularly focusing on those 

that present varying degrees of complexity and relevance to the target demographic of 

older adults. Walking was selected due to its fundamental role in human mobility and 

the significant variability in gait patterns it exhibits. This variability is essential for 

assessing an individual's mobility and balance capabilities, which are critical 

components of functional health. The universal nature of walking makes it a 

cornerstone activity for analysis in this context. Sitting down and standing up were 

included as they represent transitional movements that are pivotal in daily life but 

often pose challenges for the elderly or individuals with physical impairments. These 

activities serve as key indicators of an individual functional health, providing insights 

into their ability to perform basic movements that are essential for independence. 

Bending is incorporated into the study due to its complexity, involving multiple joints 

and muscle groups. This activity offers valuable information regarding an individual's 

flexibility and range of motion, which are indicative of their overall physical condition 

and ability to engage in a variety of daily tasks. Drinking water was chosen as a 

representative fine motor activity to evaluate the capability of system to recognize 

subtle yet essential activities. The ability to perform fine motor tasks is crucial for 

maintaining independence and quality of life, making the inclusion of such activities 

important for a comprehensive assessment. Lastly, the inclusion of falling addresses a 

major concern in the care of the elderly, given its potential for causing serious injury. 

The ability of a system to accurately detect falls is paramount in assisted living 

environments, where timely intervention can significantly mitigate the risk of injury. 

In summary, the chosen activities provide a comprehensive framework for evaluating 

the system's ability to accurately recognize and differentiate between a wide range of 

human movements. This selection is aimed at ensuring the system's applicability in 

real-world scenarios, particularly in supporting the autonomy and safety of older 

adults in assisted living environments. Together, these activities form a 

comprehensive set that not only covers a wide spectrum of human motion but also 
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addresses key aspects of daily life and health monitoring, making them ideal for 

evaluating the effectiveness of radar-based human activity recognition systems in real-

world scenarios. 

4.3 Handcraft Features Extraction 

For the conventional classifier, prior to the classification, handcrafted features are 

extracted from the raw data to characterize each class in specific manner. In general, 

feature extraction reduces the dimension of classifier inputs. These are often 

identifiable with the human eye and have origins in the literature and communities.  

4.3.1 Physical Features of Spectrogram 

The physical features of spectrograms are extracted according to the physical 

properties of mD signatures. Doppler centroid (or Doppler centre of mass) and 

bandwidth are the most salient features, where the centroid is the peak amplitude of 

the spectrogram and it represents the translational speed of the human subject, the 

bandwidth indicates the relative velocities of limbs around the centroid and the spread 

is largely driven with the activity being performed and the aspect angle of the subject. 

The centroid and bandwidth for each Doppler slice in a spectrogram are expressed in 

Eq. 4.1 and Eq. 4.2, respectively [47]. 

𝑓𝑐(𝑖) =
∑ 𝑓(𝑗)𝑆(𝑖, 𝑗)

∑ 𝑆(𝑖, 𝑗)
(4.1) 

𝐵𝑐(𝑖) = √
∑ (𝑓(𝑗) − 𝑓𝑐(𝑖))

2
𝑆(𝑖, 𝑗)𝑗

∑ 𝑆(𝑖, 𝑗)𝑗

(4.2) 

where 𝑓𝑐(𝑖) and 𝐵𝑐(𝑖) denotes the Doppler centroid and bandwidth of the 𝑖-th time bin, 

𝑓(𝑗)  refers to the Doppler frequency of 𝑗 -th Doppler bin, 𝑆(𝑖, 𝑗)  is the matrix 

component of the spectrogram at the 𝑖-th time bin and 𝑗-th Doppler bin. 

The energy curve of the Doppler for each time bin of the spectrogram calculates the 

energy within a given frequency band. The equation of energy curve 𝐶(𝑖) is shown in 

Eq. 4.3. 

𝐶(𝑖) = ∑|𝑆(𝑖, 𝑗)|

𝑓2

𝑗=𝑓1

+ ∑ |𝑆(𝑖, 𝑗)|

−𝑓1

𝑗=−𝑓2

(4.3) 
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where 𝑓1 and 𝑓2 are the frequency band of spectrogram. This band can be selected and 

should be smaller than the range between minimum and maximum Doppler frequency 

to be of any use, however not as small as a Doppler bin pair. 

4.3.2 Transform-based Features [146] 

Transform-based features perform mathematical transformations, where these features 

utilize the transformed domain to easily extract and assess properties such as singular 

value decomposition, and repetition and frequency of motions within the original 

spectrogram signature.  

4.3.2.1 Singular Value Decomposition 

Singular Value Decomposition (SVD) [21] is one of the effective approaches to 

analyse the Doppler spectrogram to search for useful hidden information, and the 

SVD of complex matrix M can be formulated as Eq. (4.4):  

𝑀 = 𝑈Ʃ𝑉𝑇 (4.4) 

where 𝑀 is the input matrix, Ʃ is the singular value matrix, 𝑈 and 𝑉 are orthogonal 

basis matrices. Consider a matrix 𝑀  representing a spectrogram, with dimension 

𝐴 × 𝐵. The dimension of these matrices are as follows: 𝑈 is 𝐴 × 𝐴, 𝑉 is 𝐵 × 𝐵, and Ʃ 

aligns with the dimension of 𝑀, i.e., 𝐴 × 𝐵. Each singular vector matrix is normalized, 

and the corresponding singular value in Ʃ  represents the energy weight of these 

vectors. 

The application of SVD in spectrogram analysis offers several advantages over 

traditional physical feature extraction methods. Primarily, SVD facilitates the 

automatic derivation of dominant components within the spectrogram. This is because 

the singular vectors associated with smaller singular values typically correspond to 

less significant components or noise, thereby enabling a more focused analysis of the 

crucial elements in the spectrogram. Furthermore, SVD offers a means to reduce the 

dimensionality of the input data. By selecting a subset of singular vectors, the entire 

spectrogram 𝑀 can be effectively represented in a more compact form. 

In addition, a spectrogram 𝑀 with dimensions 𝐴 × 𝐵, where 𝐴 is determined by the 

window length of the STFT and 𝐵 by the time bin, the left singular vector matrix U 

can be regarded as the frequency information of the spectrogram. Conversely, the 

right singular vector matrix V contains the time distribution information. This 

dimensional reduction and feature extraction capability of SVD make it a valuable 



81 
 

technique in signal processing, particularly for applications requiring efficient and 

insightful analysis of spectrogram data. 

4.3.2.2 Features of Cadence Velocity Diagram [183] 

The Fourier transform, when applied to the spectrogram across time for each Doppler 

bin, reveals the repetitive nature or cadence of the observed activity. This process 

leads to the formation of the CVD, a tool that uncovers the frequencies at which 

various velocities recur. The CVD is instrumental in providing insights into the shape, 

size, and frequency of the patterns formed in the spectrogram by the moving parts of 

the target. In the CVD, the features extracted are peak-based, focusing on the 

identification and analysis of significant peaks. 

One of the key features derived from the CVD is the step repetition frequency. This is 

obtained by identifying the local maxima within the CVD and arranging them based 

on their prominence. The step repetition frequency is specifically determined by 

locating the cadence frequency index corresponding to the second peak (the first peak 

typically being at 0 Hz) in the average CVD profile, as depicted in Figure 24. 

Concurrently, the amplitude of the Doppler bins corresponding to this cadence 

frequency index can also be used as features. The most significant Doppler frequency 

is identified as the frequency corresponding to the maximum frequency of this peak in 

the CVD. Through these methods, the CVD serves as a critical tool in extracting 

meaningful and actionable insights from radar spectrogram data, particularly in the 

context of analysing repetitive motions such as walking. 
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Figure 24 An average CVD profile from a random walking data in dataset.  

4.3.3 Features from Classic Image Recognition [184] 

Treating the spectrogram as a grayscale image opens up a myriad of possibilities for 

feature extraction using classical image processing techniques. In this approach, the 

spectrogram, fundamentally a bitmap array, is interpreted in terms of varying shades 

of grey, each representing different dynamic ranges. This grayscale representation 

allows for a nuanced interpretation of the radar signals, where the intensities of 

movements, such as those from the torso and limbs, are translated into distinct 

segments on the grey spectrum. 

By adopting this perspective, the amplitude of movements from different body parts 

can be effectively quantified and mapped using a histogram. This histogram 

essentially serves as a tool to capture and represent the distribution of movement 

intensities within the spectrogram. It provides a visual and quantitative means to 

analyse the range and Doppler frequency of the radar signal amplitudes, correlating 

them to specific physical movements. The entropy of a histogram of an image equates 

to the intensity of the signature. It could also be defined as the average information 

within an image. It is expressed as Eq. 4.5: 

𝐻 = − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑝(𝑥) (4.5) 

where 𝑝(𝑥)  is probability mass function of the histogram of the image. Complex 

motions such as picking up an object (which involve many joints and rotations about 

an axis) will be expected to return a higher value of entropy relative to activities such 

as standing. 

Skewness is also a parameter that could be derived from histograms of spectrogram 

image. This statistical measure, along with a series of moments such as mean and 

standard deviation, plays a crucial role in exploring the difference of images of 

activities. For images have a standard form given as Eq. 4.6:  

𝛾𝑛 =
1

𝑁
∑ [

𝑥𝑖 − 𝜇

𝜎
]

𝑛
𝑁

𝑖=1

(4.6) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the histogram distribution. 
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By leveraging these standard forms of statistical analysis, researchers can extract 

meaningful insights from the complex interplay of radar signals and human activities, 

enhancing the accuracy and depth of their interpretations. 

4.4 Results 

In Section 4.2, we introduced a range of features to our study. Building upon this 

foundation, the subsequent analysis delves into the classification results, structured in 

a progressive manner. Initially, we explore classification within a single domain, 

providing a baseline understanding of how each domain independently contributes to 

the recognition task. This is followed by an examination of feature selection within a 

single domain, where we identify and utilize the most significant features to enhance 

classification performance. Then, our analysis is the fusion of information across 

different domains. This advanced approach aims to leverage the complementary 

strengths of each domain, thereby achieving a more robust and accurate classification 

system. Throughout this process, we employ one-vs-one strategies to thoroughly 

evaluate the classification performance. This approach involves creating and 

evaluating binary classifiers for each pair of activities, thereby ensuring a 

comprehensive and detailed analysis of how well each activity is distinguished from 

every other. 

In addition to the techniques applied in this study, we also extend the analysis to 

encompass a comparative evaluation of activity patterns between adults and the 

elderly. This comparison is crucial, as it sheds light on the variations in movement and 

gait that typically occur with age. By analysing and contrasting the activity data from 

these two distinct age groups, we aim to uncover nuanced differences in their motion 

characteristics. The results are presented in terms of average performance metrics, 

providing a comprehensive overview of the classification efficacy across various 

scenarios. This structured approach not only highlights the individual contributions of 

each domain but also showcases the synergistic potential when these domains are 

intelligently combined. 

4.4.1 Classification Results  

At this stage, an SVM classifier with a quadratic kernel and a weighted KNN 

classifier with K = 10 were employed for the activity classification. To validate the 

performance of these classifiers, we employed a 10-fold cross-validation technique. 

This method involves partitioning the dataset into ten equal subsets, where each subset 
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is used once as a validation set while the remaining nine subsets are used for training. 

This process is repeated ten times, with each subset serving as the validation set once. 

This approach ensures that every data point is used for both training and validation, 

providing a comprehensive evaluation of the classifier's performance. 

Additionally, to assess the robustness of the models, we calculated the standard 

deviation using each run accuracy and the final average accuracy. This step is crucial 

as it allows us to evaluate the stability and reliability of the classifiers under varying 

conditions. A lower standard deviation across runs indicates a more robust model, 

capable of delivering consistent performance regardless of minor variations in the 

training and validation sets. 

Table 8 Comparison of classification accuracy of algorithms and domains 

Accuracy (%) mD RT CVD 

SVM 80.3 64.2 82.4 

KNN 75.2 61.3 80.4 

 

Table 9 Comparison of standard deviation of algorithms and domains. 

Standard Deviation mD RT CVD 

SVM 0.6534 3.4112 2.5813 

KNN 2.2886 3.6831 2.4643 

 

Table 8 shows preliminary results of the classification without feature selection.  Note 

that the number of features for mD domain is 21, for RT domain is 21 and for CVD 

domain is 7. Generally, the SVM algorithm outperforms the KNN algorithm, and 

CVD obtains the best result overall. The result for mDs is worse than CVD by 

approximately 2 %. The classification performance of the RT domain is the worst, 

which is 18 % lower than CVD  18 % with SVM and 19 % with KNN.   

Table 9 reveals that the SVM classifier generally shows lower or similar variability in 

its performance across different feature types compared to the KNN classifier. The 

Range-Time (RT) features seem to introduce the most variability in performance for 

both classifiers, which might be more sensitive to the data or that the classifiers 

struggle to consistently leverage them effectively. In contrast, the micro-Doppler 

signature with the SVM classifier stands out for its robustness, with relatively low 
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standard deviation of 0.6534, underscoring its stability and reliability across different 

scenarios within the domain of activity recognition. 

4.4.2 Feature Selection 

Achieving high accuracy in classification tasks necessitates the use of discriminative 

features that enhance the confidence and reliability of the results, as highlighted in 

[32], [185]. The effectiveness of a classifier is largely contingent on the quality and 

size of its input data. With the increase in sensory information, the feature space can 

expand significantly, both spatially and dimensionally, leading to potential 

redundancy due to the 'curse of dimensionality'. To counteract this, feature selection is 

a critical step, not only to manage input size but also to enhance model performance 

by eliminating redundant or irrelevant features. 

Feature selection methodologies aim to streamline computational processes and 

enhance performance by removing features that are either redundant or carry 

negative/repetitive information. These methodologies can be broadly categorized into 

three types: filter-based, wrapper, and embedded methods. 

1. Filter-based Methods: These methods employ statistical measures (such as 

entropy, correlation, and Euclidean distance) to rank features. Their primary 

advantage is that they can operate independently of any classifier, making them 

versatile and less computationally demanding. 

2. Wrapper Methods: These methods involve using a specific classifier to assess 

different combinations of features. The subset that yields the highest 

classification accuracy is selected. While effective, wrapper methods can be 

computationally intensive, particularly when dealing with high-dimensional 

feature sets. 

3. Embedded Methods: These methods integrate feature selection within the 

classification process. During training, the classifier algorithm calculates a 

weight for each feature, ranking them based on their importance.  

Algorithm 2 Fisher Score 

Initialization: 𝐶-the number of classes; 𝑁-the total number of samples in datasets, 

and 𝑁𝑖-the number of samples in feature 𝑖, 𝑆𝐵𝑖- Between class variance for each 

class 𝑖, 𝑆𝑊- Within class variance. 𝑥-the value of each sample 

Input 𝑁, 𝐶, 𝑁𝑖 
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Set both 𝑆𝐵 and 𝑆𝑊 to 0; 

Calculate the mean 𝜇 of the features across all samples 

For each feature 𝑖 do 

            Calculate the mean 𝜇𝑖 of the feature 

            𝑆𝐵𝑖 =  𝑁𝑖 × (𝜇𝑖 − 𝜇)2 

            𝑆𝑤 = ∑(𝑥 − 𝜇)2 

            Calculate Fisher Score for feature 𝑖 =
𝑆𝐵𝑖

𝑆𝑤
  

End for 

Output Fisher Score for each feature 𝑖. 

 

In this work, two filter-based methods, the Chi-Square [185] and Fisher score (F-score) 

[32], are investigated and implemented to select the optimal feature subsets from the 

feature pool. Chi-Square test is used in statistics for testing the independence of events. 

When it is used for feature selection, Chi-Square calculation indicates the dependence 

between the target and features, where higher Chi-Square values indicate more 

informative features. Chi-Square is widely used due to its ease of computation and 

robustness with respect to the independence of data. The Fisher score algorithm 

operates on the principle of optimizing feature separability. It ranks features based on 

their ability to minimize the distance between data points within the same class while 

simultaneously maximizing the distance between data points belonging to different 

classes. This approach ensures that the selected features are effective in distinguishing 

between various classes, enhancing the accuracy of classification tasks. The Fisher 

score is also a computationally simple algorithm, with fast processing speed and 

generally good performance. 

A larger Fisher Score for a feature indicates that the feature has a stronger 

discriminative power. Specifically, it means that the feature effectively separates data 

into different classes. This is achieved by maximizing the difference between the 

means of the feature across different classes while minimizing the variance of the 

feature within each class.  
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Algorithm 3 Chi-Square 

Initialization: 𝑆-the selected feature ranking map; 𝑁-the total number of samples; 

𝑖- the number of features;  𝑌- the labels of classes; 

set the initial 𝑆 is empty;  

      for each feature 𝐹 do 

            Create a contingency table 𝑇 for 𝐹 against 𝑌 

            Calculate the Expected Frequency 𝐸 for 𝐹 in 𝑇. 

            Calculate the Chi-Square Value 𝑋2 = ∑
(𝜎−𝐸)2

𝐸
 for each feature   

      end for 

      Rank the 𝑋2 in 𝑆 from highest to lowest 

Output 𝑆 

 

Table 10 Comparison of feature selection methods  

Methods No. of Features 

before selection 

No. of Features after 

selection 

Computing time (s) 

mD (SVM and FS) 21 13 41.8 

mD (KNN and FS) 21 13 7.3 

CVD (SVM and FS) 7 5 28.4 

CVD (KNN and FS) 7 6 1.7 

RT (SVM and FS) 21 18 126.4 

RT (KNN and FS) 21 13 6.1 

mD (SVM and CS) 21 15 56.5 

mD (KNN and CS) 21 13 7.5 

CVD (SVM and CS) 7 5 20.6 

CVD (KNN and CS) 7 5 2.0 

RT (SVM and CS) 21 17 97.2 

RT (KNN and CS) 21 12 6.4 

* Chi-Square: CS, Fisher Score: FS 

Table 10 illustrates the results of the Fisher score and Chi-Square (CS). Fisher score 

method provides a limited improvement in the SVM algorithm, which is 
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approximately 1 %, whereas it enhances the performance of KNN algorithm by 

approximately 3 %. The accuracy of the classification results is boosted when the CS 

is implemented. For the SVM results, it generally improves the accuracy by 

approximately 4 %, while this enhancement on the classification performance for 

KNN is about 5 % for the mD domain. Feature selection decreases the number of 

features to improve the computing time and generally improves accuracy. FS shows 

that the optimisation occurs at 62-85% feature available. Meanwhile, the optimal 

results obtained by CS happened around 57-80 % available features. Hence, the CS 

algorithm outperforms the FS approaches with higher accuracy of classification. 

Figure 25 illustrates how the classification accuracy changes along with the increase 

of the number of features.  

The purpose is to discuss and investigate the relationship between the domains and 

specific activities. Table 11 summarises the results. Picking up an object is the most 

easily misclassified activity, where the highest accuracy is 77.3 %. In the mD domain, 

most misclassifications are from A4 (picking up an object), which average accuracy is 

63.6 %. In the CVD domain, the most confusing pair is picking up an object and 

drinking water (A5). The walking activity also has errors, while it performs well in the 

other two domains, with 100 % accuracy. However, the CVD domain has the best 

overall performance among the three domains, especially for its sensitivity to the 

sitting and standing, with high accuracies of 92.7 % and 89.0 %, respectively. In the 

RT domain, walking and falling can be well detected, with approximately 100 % and 

87.1 % accuracy, whereas the rest of the activities are problematic. 
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Figure 25 Feature selection results using CS for three domains with SVM. 

4.4.3 Feature Fusion 

To further investigate the overall performance of classification, data fusion 

approaches will be used, and the fusion results will be compared. Data fusion is the 

process of integrating multiple data sources to produce information which can 

overcome limitation caused by any single data source. This can be achieved at many 

levels of abstraction, such as characteristics and symbols, and it is typically done at 

either signal, feature, or decision level [186]. In this experiment, the feature level 

fusion is used on three different data domains. Feature level fusion is aimed to 

generate a single, larger feature vector samples from different features. Feature 

selection methods can be used for removing redundant or incorrect features in the new 

feature space. For feature level fusion, the Chi-Square algorithm is used as feature 

selection method before feeding features to the classifiers due to its higher accuracy, 

and the SVM classifier only, as it was found to be the better performing classifier 

compared with KNN.  

The results are shown in Table 11. The overall classification accuracy is increased. To 

the CVD domain, the accuracy of walking increases to 100 % from 86.5 % when the 

RT and mD features were applied to fusion. Compared with using RT and mD feature 

independently, the fusion with CVD also improves the accuracy of standing up (by 38 % 

and 11 %), sitting down (by 38 % and 5 %), picking up an object (by 20 % and 10 %) 

and drinking (by 14 % and 4 %) for both RT and mD, respectively. The fusion of 

CVD with the other two domains could cover the deficiencies of each other. However, 

when the fusion was applied to features of the mD and RT, it exacerbates the poor 

accuracy. This exacerbation might be caused by features with similar drawbacks. 

Table 11 Comparison of accuracy for individual activities and averaged across the activities using 
each data domain independently, with feature fusion, and with customised hierarchical classification. 

Accuracy (%) A1 A2 A3 A4 A5 A6 
Overall 

Performance 

mD domain 100 82.2 88.4 63.6 79.7 91.9 84.3 

CVD domain 86.5 92.7 89.0 63.7 80.7 92.8 84.2 

RT domain 100 53.1 51.4 53.3 60.9 87.1 67.6 

mD + CVD  100 92.7 92.9 74.2 83.8 97.1 90.1 

mD + RT  100 51.5 28.6 42.7 58.1 86.2 61.2 

RT + CVD  100 90.9 89.3 73.5 75.2 92.8 87.0 

mD + RT + CVD  100 94.2 91.7 77.3 84.9 97.1 90.9 

** The accuracy of three domains is recorded from SVM classifiers with Chi-Square algorithm, due to 

their better performance compared to others.   
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4.4.4 Hierarchical Structure 

Based on the previous results, a hierarchical structure is introduced to optimise the 

overall performance. As the number of features increases, the same feature pool or 

classifier will not be the optimum for classifying all the activities. Unlike the 

conventional ‘flat’ classification, which classifies each example to all its available 

labels at the same time, the hierarchical classification uses data taxonomy to create a 

hierarchy of classifiers. In this experiment, the hierarchical structure firstly separates 

activities into several subgroups, and then each subgroup can implement distinct 

features and classifiers, which are more suitable for the subgroup, to improve the 

overall performance. Figure 26 demonstrates the structure of hierarchical 

classification. The activities were divided into three subgroups (A1, A6; A2, A3 & A4, 

A5) at the first stage due to their similarity and false alarm rate. The classifiers of all 

stages were SVM, with CS algorithm used for feature selection at each classification 

stage. The selections of each stage were independent, which means the discarded 

features at the first stage would come back to the feature pool for selection at the 

second stage. The fusion data of mD + CVD + RT was used for the feature sets at the 

first stage, and at the second stage for A2 and A3, A4 and A5. At the upper second 

stage, which classifies A1 and A6, the feature fusion of CVD + mD was employed 

with less computation burden due to the smaller number of features set. Figure 27 and 

Table 12 present the result of the hierarchical classification. The overall performance 

of classification is increased to approximately 92 %, which improves by ~1 % the 

result of the best fusion combination. The trending of specificity, precision and 

sensitivity are the similar to accuracy. It is observed that the accuracies of all the 

activities were increased except A4 and A5. The majority of misclassification of A4 

and A5 was generated at the second stage. It was observed in previous spectrograms 

that the RT, mD and CVD of A4 and A5 were similar. This situation became more 

serious when the participants were the elders. From the observance, the spectrograms 

of A4 and A5 were almost the same, which means the differences between features 

extracted from them were little, increasing the possibility of misclassification. Besides, 

misclassification also happened at the first stage between subgroups (A2, A3 &A4, 

A5). If an activity was misclassified at the first stage, it would also be an error at the 

second stage, where the errors were accumulated. 
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Figure 26 A custom hierarchical classification structure based on the result and analysis. 

 

Figure 27 Confusion matrix of hierarchical classification. 

 

Table 12 The Results of hierarchical classification. 

 Accuracy Sensitivity Specificity Precision 

A1 1 1 1 1 
A2 0.955 0.955 0.971 0.971 
A3 0.952 0.952 0.949 0.949 
A4 0.769 0.769 0.823 0.813 
A5 0.846 0.846 0.779 0.973 
A6 1 1 1 1  
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4.4.5 Impact of Age on HAR. 

In the realm of HAR using radar, understanding the impact of demographic variables, 

such as age, is crucial for developing robust and universally applicable models. This 

section delves into the influence of age on the performance of our hybrid information 

approach. We bifurcate our dataset into two distinct age groups to analyse how age-

related variations in movement and physiology affect the classification accuracy and 

reliability of our model. 

Our dataset, encompassing a range of human activities captured via radar, is 

segmented into two groups based on age. In alignment with standard definitions, 

individuals aged 60 and above are categorized as older adults. This expanded age 

range, from the traditional 65 years, ensures a sufficient sample size for meaningful 

analysis. Out of 72 participants, 25 fall into this older age group. For this study, we 

have consciously excluded fall detection activities for the older group due to safety 

concerns. Instead, we focus on the first five actions, comparing their performance 

metrics between younger and older participants. Our analysis employs the same model 

used in previous studies, validated through a 10-fold cross-validation process. 

Table 13 Accuracy Assessment: Confusion Matrix for Adult Participants Only 

% A1 A2 A3 A4 A5 

A1 100 0 0 0 0 

A2 0 95.5 0 2.5 2.0 

A3 0 0.5 96.0 0.5 3.0 

A4 0 3.5 3.5 78.5 14.5 

A5 0 1.0 5.0 8.0 86.0 

 

Table 14 Accuracy Assessment: Confusion Matrix for the older Participants Only 

% A1 A2 A3 A4 A5 

A1 100 0 0 0 0 

A2 0 92.0 0 0.9 7.1 

A3 0 0 91.0 3.6 5.4 

A4 0 0 2.7 66.7 30.6 

A5 0 1.8 3.6 11.7 82.9 
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Table 13 and Table 14 indicate our preliminary result with a noticeable difference in 

classification accuracy between the two age groups. The younger group achieved a 

classification accuracy of 91.2%, while the older group accuracy was slightly lower at 

86.6%. The overall trend observed in the classification results for both adults and 

elders align with previous findings, where activities such as walking (A1), sitting 

down (A2), and standing up (A3) are classified with high accuracy. However, 

activities A4 (bending to pick up an object) and A5 (drinking water) consistently yield 

lower accuracy. Notably, there is a general decrease in classification accuracy for each 

activity among the elder group, which can be attributed to subtler movement patterns 

characteristic of this age group. This is particularly evident in the case of A4, where 

the accuracy drops to 66.7% for elders. The activity of bending to pick up an object 

inherently includes bending movements, which are likely to be less pronounced in 

older individuals. It can be attributed to several factors: reduced speed and amplitude 

of movements, variability in movement patterns, or even physiological changes as 

muscle loss and bone deformation. This reduced amplitude and variation in movement 

make it more challenging for the radar-based HAR system to accurately recognize and 

classify these activities in the elder population. The subtlety in their movements leads 

to less distinct radar signatures, thereby impacting the overall classification 

performance. 

4.5 Summary of the Chapter 

In this chapter, the results from using feature extraction with human activity detection 

are presented. Following these results are presented after using the same and extended 

features to detect lameness in a variety of domestic/farmed animals using radar mD 

signatures, where promising classification rates have shown to be achievable for both 

use cases with simple features and classifiers. The work in this chapter was conducted 

in the initial part of the research and therefore it is inspired heavily by the techniques 

at the time where features and classification algorithms were the main focus. However, 

compared to the works in the literature, a deeper view is provided into the differences 

between the state of the art which was conducted either with simulations or with 

actors. This provided insight into the different problems a real system would 

encounter while attempting to automatically detect daily activity or a harmful activity 

such as a fall. Individual activities in this case could be detected at rates between 76.9% 

to 100%. By introducing this new domain of problems to be solved with radar and 

demonstrating the feasibility of using feature-based classification, this broadened the 

scope of what is possible with radar concerning activity classification. 
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After that, we discussed the age-impact of dataset based on our proposed method. In 

conclusion, the analysis of human activity recognition (HAR) using radar technology 

underscores the significant impact of age-related factors on classification accuracy. 

The comparative study between adult and elder age groups reveals that the subtler 

movement patterns of elders pose a challenge for radar-based HAR systems. Activities 

that involve more nuanced movements, such as bending to pick up an object, exhibit 

notably lower classification accuracies in the elder group. This highlights the 

importance of incorporating a diverse age range in the dataset, especially including 

elder participants, to develop more robust and universally applicable HAR models. 
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5. Radar-based Human Activity Recognition with 

Adaptive Thresholding towards Resource 

Constrained Platforms 

This chapter introduces the second novelty of this thesis which is the use of an 

adaptive thresholding method with information selection and fusion techniques used 

together to improve activity recognition accuracy.  

In general machine learning applications, improvements come through the increased 

variation of the input data type where, the more diverse the inputs are, the easier it is 

to identify an object or an action. In this chapter, this concept is used to show the 

strength of leveraging different information from varying data representation through 

fusion for activity recognition, while striving to decrease the computational cost and 

inference time. All of these aforementioned techniques are explored in this chapter 

with an additional analysis of the effect of classification models having prior 

information of the target on the recognition accuracy. 

The research conducted for this chapter intended to address the problem of how to 

improve radar data domain representations and adjust parameters to optimise the 

classification accuracy in the context of assisted living. This was addressed in a 

twofold manner. 

• First, by showing the usefulness of features from different domains with feature 

fusion to improve activity recognition accuracy. In Chapter 4, there were a 

number of features using different properties of the input signal being used for 

radar-based activity monitoring. In this chapter, more features are considered 

and used in our research for activity recognition. By using them together, we 

were able to demonstrate higher accuracy in activity recognition.  

• Secondly, cooperative use of different radar data domains was found to further 

increase accuracy when adjusting the parameters during the generation of data 

domains. Although this was a lateral research direction to the aforementioned 

feature selection work, it was a result of the question of using different 

parameters arising as the benefit of increased variance through multi-domain 

inputs being observed. 

This chapter is based on the following publications [36] and [37]. This chapter is 

organised as follows: It begins with Section 5.1, which lays the foundation by 

presenting the motivation for the study, elucidating the underlying reasons and 
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objectives driving the research. Section 5.2, titled 'Dataset Composition and Feature 

Extraction', delves into the specifics of the dataset used, detailing its composition and 

the methodologies employed for this experiment. This is followed by Section 5.3, 

where the focus shifts to the analysis of classification outcomes using adaptive 

thresholding techniques, alongside a comparative study of resource consumption. 

Section 5.4 introduces an innovative approach, based on proposed approach in Section 

5.3, we deliver a holistic optimization system, employing evolutionary algorithms to 

enhance the research methodology. The chapter concludes at Section 5.5, 

summarizing the key findings and insights gleaned from the research and setting the 

stage for further exploration and application of the study's outcomes.  

5.1 Motivation 

Radar information in HAR can be presented in multiple domains, including but not 

limited to range-time, Doppler-time, and range-Doppler. Doppler-time domain or 

micro-Doppler (mD) signatures are typically used to exploit the small modulations in 

the received radar signal caused by the relative motions of limbs with respect to the 

trunk. Numerous studies in the literature have investigated the use of radar for human 

activity classification [79], [89]. Most works have focused on creating and optimizing 

feature extraction algorithms that generate salient features (e.g., physical, 

mathematical, and/or textural). However, most of radar-based HAR research focuses 

on spectrograms, i.e., the amplitude of micro-Doppler signatures [43], [67]. Radar 

data can be represented in a wide range of formats in addition to spectrograms. 

Finding the optimal radar data domains, as well as the most suitable combination of 

salient features for a given classification problem becomes an intractable problem. 

More recently, deep learning and related classification techniques have gained 

considerable interest in radar-based HAR as they automatically extract salient features 

from the radar signatures. However, deep learning methods require a large amount of 

training data, which is more difficult to gather experimentally for radar systems than 

for other sensing modalities. Furthermore, radar data processing may have high 

computational costs because of the pre-processing steps of raw data, making it 

challenging to process in real time, especially if multiple radar sensors are involved. 

While general-purpose compute engines, especially graphics processing units (GPUs), 

have been the mainstay for much processing, less work is done on investigating non-

tensor-based computation on resource constraint platforms. Real-world platforms, 

such as mobile embedded systems, are inevitably constrained by the hardware. The 

consideration of the balance between efficiency and performance has emerged when 
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exploring the most suitable algorithms. This aspect of real-time implementation of 

radar-based HAR approaches in constrained platforms has attracted increasing 

attention, as the natural yet crucial step after classification algorithms development.  

Although various solutions have been developed for radar-based human activity 

classification in indoor scenarios, some important research questions are still not fully 

answered. First, most current approaches would require a long latency even at the 

inference/testing stage, because of complex data processing methods or deep neural 

networks. These research works did not consider the computational cost, focusing on 

classification accuracy only, so the results were satisfactory but not always suitable 

for embedded platforms. It is paramount for realistic deployment to focus on 

decreasing the footprint of the algorithms in terms of energy consumption as well as 

on silicon to drive the price of the product for the end-users down. Moreover, many 

works tend to apply the same algorithm (e.g., using the same feature) to recognize all 

activities in a multi-class problem. 

We propose an adaptive thresholding pre-processing method to focus on the region of 

interest (ROI) for classification based on patented innovations. This approach is 

designed to reduce the computational load by outlining the ROI, i.e., the most relevant 

part of a spectrogram also named ‘mask’. Afterwards, these ‘masks’ are also applied 

to the phase, unwrapped phase, and magnitude of the mD signature to highlight the 

ROI in those domains. A series of specifically designed features for the adaptive 

thresholding method is also introduced. To increase accuracy and reduce 

computational loading concurrently, we investigate feature selection and information 

fusion techniques to optimize performances. 

This work considers and investigates two new domains of radar information, namely 

phase and unwrapped phase, which are seldom considered in the literature. Moreover, 

we expand the implementation of our feature extraction algorithm to new domains, 

which was not considered in our previous study. In addition, we present a detailed 

analysis of the effect of the thresholding value selection. Since our new experiments 

involve a series of new features from different domains, a hierarchical classification 

model, which divides the standard classification into several stages, is introduced to 

improve the overall performance by combining different features and domains for 

each stage. A comprehensive comparison between our methods and other popular 

neural network-based approaches is also shown.  

To summarize, the specific contributions which distinguish this work from the current 

state of the art are summarized here: 
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• A novel pre-processing method with adaptive thresholding is proposed for 

radar-based HAR which automatically generates ROI from human mD 

signatures, with a set of specifically designed features for classification on 

different domains.  

• A comprehensive evaluation of the effect of this adaptive thresholding method 

on the classification accuracy of individual activities and overall accuracy for 

the data domains under consideration (mask, masked spectrogram, masked 

phase, masked unwrapped phase) is provided.  

• The optimization of the performance is further analysed with the fusion of data 

domains and selection strategies, the use of different parameters of the support 

vector machine, and the usage of a hierarchical method. These optimizations 

prove to be very beneficial to boost performances. 

• The method is benchmarked against deep learning methods using the same 

dataset, considering metrics of training time, inference time, model size, 

number of parameters, accuracy, and memory footprint. This comparison 

shows that the proposed method can outperform deep learning methods while 

being computationally efficient and reduce the memory footprint.  

5.2 Dataset Composition and Feature Extraction 

In this experiment, we use the same dataset as in Chapter 4 [114]. A total number of 

1754 motion captures were recorded from 72 participants aged 21 to 98 years old. 

This dataset comprises six types of daily human activities, including walking, sitting, 

standing, picking up an object, drinking and falling. Note that the dataset is not 

completely balanced, as the older individuals did not participate in the ‘falling’ 

activity recording for obvious safety concerns. 

5.2.1 Adaptive Thresholding Methods 

The aim of the proposed adaptive thresholding approach is to focus only on an ROI 

containing the contribution of the moving targets in spectrograms for subsequent 

classification. Areas of the spectrogram that do not convey salient information, such 

as the portion with low energy (dark blue in the chosen colour scale) in Figure 28, 

should be discarded. 

From Figure 28 and the samples in the database, we can observe that the intensity 

varies depending on the activities being performed and the individual performing the 

activities. This means that it is suboptimal to apply a fixed threshold for all samples as 
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shown in [181]. An adaptive thresholding method is necessary to extract the ROI of 

each spectrogram. 

 

Figure 28 The micro-Doppler signatures of typical samples of the dataset. (a)~(f) represent activities 
A1~A6 micro-Doppler spectrogram. 

The proposed technique uses a specific threshold 𝑇  to binarize the grayscale mD 

signature image. This approach focuses on the ROI adaptively by selecting a threshold 

and then updating it based on the information contained in the window being 

processed. First, the spectrogram image is transformed into a grayscale image. 

Suppose that the grayscale image 𝑆 contains 𝑁 pixels, and the value of each pixel is 

represented as 𝐼(𝑥, 𝑦). Then the initial threshold 𝜇 is defined as in Eq. 5.1. 

𝜇 =  
1

𝑁
∑ 𝐼(𝑥, 𝑦)

𝐼(𝑥,𝑦)∈𝑆

(5.1) 

The grayscale spectrogram image is separated into two portions based on the initial 

threshold value μ: P1 and P2, where P1 is the image area with a pixel value greater 

than μ and P2 is the image area that has a pixel value less than μ. Then, a new 

threshold T can be determined as in Eq. 5.2.  
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𝑇 =
1

2
[

1

𝑁1

∑ 𝐼(𝑥, 𝑦)

𝐼(𝑥,𝑦)∈𝑝1

+
1

𝑁2

∑ 𝐼(𝑥, 𝑦)

𝐼(𝑥,𝑦)∈𝑝2

] (5.2) 

Where 𝑁1 and 𝑁2 are the number of pixels in part 𝑝1 and part 𝑝2, respectively. 

After both 𝜇  and 𝑇  are obtained, their difference will be compared to a specific 

parameter: 𝑉, the default value of 𝑉 is 0.1.  If the difference is greater than 𝑉, then 𝑇 

will replace 𝜇  to segment the grayscale spectrogram image and a new 𝑇  will be 

calculated using equation (2). This process is repeatedly performed until the difference 

is smaller than 𝑉, preserving as much of the ROI as possible. The final T value is 

implemented to binarize the grayscale spectrogram image, as shown in Eq. 5.3.  

𝑏(𝑥, 𝑦) = {
1, 𝐼(𝑥, 𝑦) ≥ 𝑇

0, 𝐼(𝑥, 𝑦) < 𝑇
(5.3) 

where 𝑏(𝑥, 𝑦) is the pixel value of the mask. 

The binarized image, called ‘mask’, can be used for feature extraction. A mask is 

applied for this reason on the magnitude, phase, and unwrapped phase of the 

spectrogram, which are named ‘masked spectrogram’ (amplitude), ‘masked phase’, 

and ‘masked unwrapped phase’ images, respectively. The flow chat of how to access 

those domains are illustrated in Figure 29 .The ‘Mask’ samples for each activity are 

shown in Figure 30. 

 

Figure 29 An example of calculating the binary mask to generate masked phase, masked unwrapped 
phase, and masked spectrogram. 
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The features used in this experiment are divided into two groups: group 1 features, 

also known as ‘patent’ features, due to their correspondence with our patents, whereas 

group 2 features are the ‘radar’ features, which will be referred to as ‘radar’ features in 

the following section.  

• Group 1 (‘patent’) features: 68 features are evaluated, of which two categories 

are considered: the properties of the ROI and the texture of the image [187]. 

The first category captures the geometrical properties of the ROI, such as 

centroid, perimeter, and area. The second category is characterized by the 

spatial distribution of intensity levels within a neighbourhood of pixels, which 

contains information on the spatial arrangements of intensities in an ROI. All 

the features calculated in this experiment are listed in Table 2.  

• Group 2 (‘radar’) features: different types of features are suggested for the 

spectrograms and masked spectrograms inspired from the previous literature [4, 

16, 26] and from our preliminary results [27]. This includes a total of 21 

features, and they are listed in Table 3. 

Note that the data domains of these two groups of features are also listed in Table 15 

and Table 16, with a brief description in Table 17. 

 

Figure 30 The binary mask of typical samples of the dataset. (a)~(f) represent activities A1~A6 micro-
Doppler spectrograms.  
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Table 15 68 patent features and their data domains. 

ROI Features Feature Dimensions Applicable Domains 

Perimeter of ROI 1×1 

Mask 

Masked Phase 

Masked Unwrapped Phase 

Masked Spectrogram 

Area of ROI 1×1 

Centroid of ROI 1×2 

Eccentricity of ROI 1×1 

Orientation of ROI 1×1 

Major and Minor Axis Length of 

ROI 
1×2 

Textural Features Feature Dimensions 

Local Binary Pattern of image 1×59 

Moment of image 1×1 

The Number of Total Features 68 

 

Table 16 21 radar features and their data domains. 

Radar Spectrogram Features Feature Dimensions Applicable Domains 

Entropy of spectrogram 1×1 

Spectrogram 

Masked Spectrogram 

Skewness of spectrogram 1×1 

Centroid of spectrogram (mean & variance) 1×2 

Bandwidth of spectrogram (mean & variance) 1×2 

Energy Curve (mean & variance & Trapezoidal 

numerical integration) 
1×3 

Singular Vector Decomposition (mean and 

variance of the first three vectors of components) 
1×12 

The Number of Total Features 21 
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Table 17 Description of New extracted features 

Category Brief description 

Region of Interest features The features described are specific in characterizing distinct 

areas within an image. They include measurements such as the 

perimeter of the boundary, the overall area encompassed, and 

the centroid or centre of mass. Additionally, they assess the 

elongation and orientation of the region, along with the 

dimensions of the major and minor axes of an ellipse optimally 

fitted to the area. 

Textural Features These features are employed to delineate the texture of an 

image. They analyse local texture patterns using Local Binary 

Patterns (LBP), a method that encodes the texture by 

comparing each pixel with its neighbourhoods. Additionally, 

they involve measuring statistical descriptors, such as 

moments, to capture the spatial distribution of intensity values, 

providing a comprehensive understanding of the image's 

textural characteristics. 

 

5.2.2 Feature Selection, Fusion, and Hierarchical Structure. 

Feature selection approaches are applied to further improve the performance and 

reduce the computational complexity.  

In this case, we evaluate a wrapper method - sequential floating forward selection 

(SFFS), which is based on sequential forward selection (SFS). SFS determines the 

optimal feature combinations by ranking the features in accordance with a classifier 

and its accuracy as a measure. In feature search, it begins with the empty feature 

subset and increase the dimension one-by-one. Unlike the traditional SFS, SFFS not 

only adds features progressively but also eliminates features from the selected subset 

when the classifier deems it to improve performances after eliminating a specific 

feature. The algorithm is given below: 

Algorithm 4 Sequential Floating Forward Selection  

Initialization: the optimal features set 𝑍 

set the initial 𝑍 is empty;  

      while the accuracy of 𝑍 is increasing do 

            Find feature 𝐹 which yields the best predefined criterion with 𝑍; 

            Update 𝐹 to feature set 𝑍; 

            Evaluate the potential removal of each feature in the current 𝑍. 
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            Until the criterion stop becoming better 

      End 

Output 𝑍 

 

Data fusion is the process of integrating multiple data sources to produce information 

which can overcome limitation caused by any single data source. It could be attained 

through different levels of abstraction [148], which are commonly divided into three 

levels - signal, feature, and decision. Feature level fusion cascades the same-labelled 

features from various sources, as in Eq. 5.4, where ∩ represents the concatenation of 

features from different domains. 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 =  𝐹𝑚𝑎𝑠𝑘 ∩ 𝐹𝑝ℎ𝑎𝑠𝑒 ∩ 𝐹𝑢𝑛𝑤𝑟𝑎𝑝 (5.4) 

 

Figure 31 Example of conventional and hierarchical classification. 

Unlike traditional supervised classification approaches, which feed all activities into 

the classifier simultaneously, the proposed hierarchical structure classifies the 

activities into several sub-groups based on their similarity or misclassification rate. As 

is shown in Figure 31, the hierarchical model permits the use of distinct feature sets 

and algorithms at different stages, and therefore improves the overall performance. 
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5.3 Classification Results of the Adaptive Thresholding 

Methods and Resource Consumption Comparison 

5.3.1 Classifiers. 

We begin with an evaluation of the proposed threshold-based approach on 

spectrograms, phase images and unwrapped phase images, followed by the extraction 

of features and comparisons among different feature domains. Then, information 

fusion and feature selection are utilized to improve performances. Finally, we design a 

hierarchical classification structure based on the prior results to boost the overall 

performances. Based on the features listed in  Table 15 and Table 16, the classification 

models are trained using several support vector machine (SVM) classifiers. SVM is 

one of the machine learning methods which can be used for the classification task. 

SVM can provide a unique hyperplane to separate learning samples for different 

classes. This process depends on the choices of kernel functions and hyper-parameters. 

To analyse which kernel function would be suitable for our data, different kernel 

functions, namely linear, polynomial (quadratic and cubic), and radial basis kernel 

(RBF), are implemented and compared with a 10-fold cross-validation method.  

Table 18 Classifications accuracy in % for different SVM kernel functions and different data domains. 
The green colour indicates the best performance amongst the different methods. The quadratic 
polynomial SVM kernel consistently provides the best performance. 

% Linear 
Polynomial 

(quadratic) 

Polynomial 

(cubic) 
RBF 

Mask 81.0 84.9 83.0 79.9 

Masked phase 82.3 83.1 80.6 80.9 

Masked unwrapped 

phase 
72.9 73.1 71.1 72.0 

Spectrogram 78.0 80.3 79.5 78.2 

Masked spectrogram 

(patent) 
83.4 83.6 80.7 80.0 

Masked spectrogram 

(Radar) 
84.1 85.7 82.3 84.1 

Average across data 

domains 
80.3 81.8 79.5 79.2 

 

According to these preliminary results in Table 18, the SVM model with the quadratic 

kernel (second-degree polynomial) achieves the highest accuracy consistently across 

all domains. Furthermore, when comparing the spectrogram to the masked 

spectrogram (Table 4), the usage of our proposed adaptive thresholding method 

improves the overall accuracy by 3.3% (from 80.3% to 83.6%) and 5.4% (from 80.3% 

to 85.7%) when ‘patent’ and ‘radar’ features are used, respectively. Afterwards, an 
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analysis of thresholding values is conducted to further improve the prediction 

performance, as well as to achieve a better understanding of the interactions between 

thresholding values, various domains, and the data. 

5.3.2 Thresholding Evaluation. 

To investigate the impact of the adaptive threshold 𝑇, seven values ranging from 𝑇 −

10 to 𝑇 + 20 to obtain the binary masks are applied on the spectrogram, phase, and 

unwrapped phase data. These different data domains are analyzed separately to 

determine their contribution to classification. They are divided into three types in 

terms of features: for binary mask and masked (unwrapped) phase, the ‘patent’ 

features are implemented. For the spectrogram, the ‘radar’ features are used, and for 

the masked spectrogram data, both ‘patent’ and ‘radar’ features are implemented. At 

this stage, a robust quadratic-kernel support vector machine (Q-SVM) algorithm with 

10-fold cross-validation is adopted for activity classification.  

 

Table 19 Classification results for the mask data domain, with patent features and different 
threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

T-10 96.8 91.3 87.7 63.0 77.1 89.9 84.3 

T-5 97.2 92.1 90.4 63.4 77.6 89.3 85.0 

T 97.8 90.7 89.3 62.5 76.7 92.4 84.9 

T+5 98.7 93.3 86.9 64.7 69.3 89.9 83.8 

T+10 96.1 89.7 90.0 61.2 74.8 90.4 83.7 

T+15 97.4 90.4 90.3 64.4 75.1 91.2 84.8 

T+20 97.8 91.0 88.4 62.0 74.5 90.4 84.0 

Avg 97.4 91.2 89.0 63.0 75.1 90.5  

 

Table 20 Classification results for the masked phase data domain, with patent features and different 
threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

T-10 98.4 88.8 85.8 65.7 70.3 92.6 83.6 

T-5 99.4 86.6 87.4 68.0 71.6 91.9 84.1 

T 99.7 87.8 86.7 63.4 69.6 91.4 83.1 

T+5 98.4 89.1 84.5 61.5 67.8 91.9 82.2 

T+10 99.7 87.1 84.8 61.8 67.1 93.9 82.4 

T+15 99.7 87.5 84.2 59.9 65.1 93.4 81.6 

T+20 100 86.2 85.1 59.5 69.3 94.4 82.4 

Avg 99.3 87.6 85.5 62.9 68.7 92.8  
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Table 21 Classification results for the masked unwrapped phase data domain, with patent features 
and different threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

T-10 98.4 67.6 65.5 50.2 70.3 85.4 72.9 

T-5 99.4 69.2 65.1 54.7 66.1 85.4 73.3 

T 98.0 70.1 59.2 54.0 69.3 87.9 73.1 

T+5 98.4 65.7 61.6 53.0 68.7 86.6 72.3 

T+10 98.4 71.1 61.9 50.2 67.7 86.9 72.7 

T+15 98.7 67.3 59.6 50.5 68.7 87.4 72.0 

T+20 99.4 68.9 60.3 53.0 69.3 84.9 72.6 

Avg 98.7 68.5 61.8 52.2 68.6 86.3  

 

Table 19 to Table 21 illustrate the initial results using the mask, masked phase, and 

masked unwrapped phase data domains, with different threshold values. Table 19 

shows that an average accuracy of 85% is achieved when the binary mask is used with 

threshold 𝑇 − 5. The result of the masked unwrapped image has ~10% performance 

degradation compared with mask and masked phase images. It is mainly because the 

accuracy decreases greatly in both A2 and A3 activities and slightly in A4 and A5 

activities, which are reduced by approximately 20%, 26%, 10% and 5%, respectively. 

Different thresholds yield the best accuracy for individual activities. For instance, 100% 

accuracy is achieved for walking with 𝑇 + 20 in the masked phase domain.  

Table 22 to Table 24 show the initial results using spectrogram and masked 

spectrogram data domains, with thresholding ranging from 𝑇 − 10  to 𝑇 + 20 . 

Spectrograms with both patent and radar features achieve the highest accuracy at 90.0% 

with the threshold value 𝑇 . Compared to using both ‘patent’ and ‘radar' features 

together, implementing only one of them has a negative effect on performances 

causing a ~5% drop in accuracy. For spectrograms with ‘radar’ features and both 

‘radar’ and ‘patent’ features, the maximum average accuracy is obtained with 

threshold 𝑇  unaltered, which are 85.7% and 90.0%, respectively. The spectrogram 

with ‘patent’ features reaches its peak accuracy of 84.8% with a threshold value of 

𝑇 + 5. Comparing the use of ‘radar’ and ‘patent’ features separately on spectrograms, 

‘radar’ features yield better performances with ~1% improvement overall. However, it 

should be noted that the ‘patent’ features can be applied on all data domains and not 

just on mD signatures, so they are in a sense more versatile. 
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Table 22 Classification results for the spectrogram (‘No Mask’ highlighted in orange) and masked 
spectrogram data domains, with radar features and different threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

No Mask 94.0 80.2 82.4 63.6 73.7 87.9 80.3 

T-10 100 87.1 86.3 61.2 70.8 93.1 83.1 

T-5 100 89.3 87.9 62.6 72.1 92.4 84.1 

T 100 91.3 89.2 63.9 75.5 94.4 85.7 

T+5 100 89.6 88.4 62.1 71.8 94.4 84.4 

T+10 100 88.0 87.7 61.5 70.3 93.9 83.6 

T+15 99.7 87.1 86.3 63.0 69.6 92.4 83.0 

T+20 99.7 86.7 85.6 64.4 67.9 91.7 82.6 

Avg 99.9 88.4 87.3 61.7 71.1 93.2  

 

Table 23 Classification results for the masked spectrogram data domain, with patent features and 
different threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

T-10 100 91.9 89.1 62.9 73.8 90.4 84.7 

T-5 99.7 91.6 88.8 61.5 74.8 91.9 84.7 

T 100 89.8 87 59.8 72.7 92.4 83.6 

T+5 100 91.9 88.8 61.5 74.1 92.4 84.8 

T+10 100 87.1 84.8 61.8 67.1 93.9 82.5 

T+15 100 90.9 87.4 65.4 73.8 90.4 84.7 

T+20 100 90.5 88.8 60.5 70.6 90.9 83.6 

Avg 99.9 90.5 87.8 61.2 72.4 91.8  

 

Table 24 Classification results for the masked spectrogram data domain, with both patent and radar 
features and different threshold values. 

% A1 A2 A3 A4 A5 A6 Avg 

T-10 100 94.7 93.0 80.1 78.4 93.4 89.9 

T-5 100 93.7 94.4 79.0 77.3 94.9 89.9 

T 100 94.7 92.3 77.6 80.1 95.4 90.0 

T+5 100 95.1 90.9 76.6 80.1 95.4 89.7 

T+10 100 93 93.7 77.3 79.4 96.4 89.9 

T+15 100 91.6 91.2 78.3 79.4 94.4 89.2 

T+20 100 90.4 93.3 75.9 79.0 95.4 89.0 

Avg 100 93.3 92.7 77.8 79.1 95.0  

 

In summary, from this analysis the overall accuracies of mask, masked phase, and 

masked spectrogram data domains with patent features are increased when the 

threshold value changes, which means the exploration in this range of threshold values 

has positive effects on the results. The masked spectrogram with both patent and radar 

features outperforms other domains, which has achieved the highest accuracy of 

90.0%.  
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5.3.3 Feature Level Fusion and Feature Selection 

After analysing the performances of the binary mask, masked phase, masked 

unwrapped phase, and masked spectrogram individually, these data domains are 

combined with feature level fusion. In each domain, the group with the best overall 

performance is selected as features for the feature fusion. Based on the previous 

results, in the fusion for the binary mask and masked phase/unwrapped phase data 

domains, we only choose the features extracted with threshold 𝑇 − 5. For spectrogram 

and masked spectrogram domains, both features with threshold 𝑇 are chosen. 

At this stage, the Q-SVM and 10-fold cross-validation are still used. In this case, we 

provide seven combinations of features, which are mask + masked phase (Comb 1), 

mask + masked unwrapped phase (Comb 2), masked phase + masked unwrapped 

phase (Comb 3), mask + masked spectrogram (Comb 4), mask + masked phase 

+masked spectrogram (Comb 5), mask + masked unwrapped phase + masked 

spectrogram (Comb 6) and all together (Comb 7). These are shown in Table 25. 

To further improve the accuracy, reduce the computational load, and evaluate the 

feature selection approach, the SFFS is applied to both individual results with the best 

average accuracy and the fusion results of all combos listed above. The individual 

results are shown in Figure 32, and the combination results are shown in Figure 33. 

These results are also summarized in Table 26. 

Table 25 Classification results for the different combinations of data domains without feature fusion. 

% A1 A2 A3 A4 A5 A6 Avg 

Comb 1 99.7 92.3 93.5 80.3 82.3 95.5 90.6 

Comb 2 100 88.8 88.2 73.1 82.9 93.4 87.7 

Comb 3 98.7 88.8 87.1 67.3 74.5 92.9 84.9 

Comb 4 100 95.4 96.1 78.2 78.2 94.5 90.4 

Comb 5 99.7 92.6 93.5 80.9 83.5 94.2 90.7 

Comb 6 98.7 92.3 92.6 79.1 81.2 93 89.9 

Comb 7 100 95.2 95.0 80.3 80.8 95.9 91.2 

To further improve the accuracy, reduce the computational load, and evaluate the 

feature selection approach, the SFFS is applied to both individual results with the best 

average accuracy and the fusion results of all combos listed above. The individual 

results are shown in Figure 32, and the combination results are shown in Figure 33.  

The t-SNE images are used to illustrate the distribution of features before and after 

feature selection, which is also shown in Figure 34. These results are also summarized 

in Table 26. 

The accuracy increase provided by the SFFS is limited. However, the dimension of 
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the feature pool is significantly decreased. Generally, the number of features is 

reduced by up to ~80% compared to the starting count. The accuracy increases by 

~1% to ~4% for individually used data and by ~1 to ~2% for fusion results.  

 

Figure 32 Feature selection with SFFS, results for individual data domains. 

 

Figure 33 Feature selection with SFFS for feature-level fusion approaches across different data 

domains. 

Table 26 Performance comparison using feature selection via SFFS (across different data domains 
and their combinations) 

Methods 
No. of Original 

Features 

No. of Selected 

Features  
Accuracy (%) 

Mask 68 16 86.9 

Masked Phase 68 21 86.3 

Masked Unwrapped Phase 68 24 75.7 

Spectrogram 21 12 84.7 
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Masked Spectrogram (Radar features) 21 13 87.4 

Masked Spectrogram (Patent features) 68 20 85.9 

Masked Spectrogram (Both features 

together) 
89 28 91.1 

Data Domain Comb 1 136 38 91.5 

Data Domain Comb 2 136 36 89.1 

Data Domain Comb 3  136 40 86.3 

Data Domain Comb 4 157 43 91.8 

Data Domain Comb 5 225 51 91.3 

Data Domain Comb 6 225 50 91.5 

Data Domain Comb 7 314 64 92.2 

 

 

Figure 34 The t-SNE image before and after feature selection process. 

Note that the binary mask provides the most lightweight implementation with the 

highest accuracy 86.9% for individual data domains with 16 features. The masked 

spectrogram data provides the highest accuracy 91.1% for the use of a single radar 

data domain with 28 features. For combined domains, Comb 7 achieves the highest 

accuracy among all combinations of domains by cascading all types of features, which 

yields the best accuracy of 92.2% with 64 features. Compared to using single domain 

94.7features without feature selection, this improvement is from ~2% (masked 

spectrogram) to ~18.9% (masked unwrapped phase). However, misclassification 

events remain, especially for activities A4 and A5. 

5.3.4 The Hierarchical Structure 

The hierarchical structure is applied for optimizing classification. The activities are 
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grouped as in our previous study based on their similarity and false alarm rate. The six 

activities are first divided into three groups: A1 and A6, A2 and A3, A4 and A5, as 

shown in Figure 31.  

The reason why division of activities into three groups—walking and falling, standing 

and sitting, and picking and drinking—can be rationalized from both physical and t-

SNE image perspectives. This classification leverages the inherent similarities and 

differences in the physical dynamics and the data representation space of these 

activities. 

From physical perspective, walking and falling are grouped together due to their 

dynamic motion and significant changes in body posture and centre of gravity, with 

walking characterized by controlled forward motion and falling by uncontrolled 

descent. This contrasts with the activities of standing and sitting, which involve 

transitions between two primary static postures—upright and seated—highlighted by 

controlled vertical movements without the significant lateral or forward motion 

observed in walking or falling. Similarly, bending to pick up an object and drinking 

are paired due to their reliance on precise, controlled movements and a focus on 

maintaining balance, requiring fine motor skills and coordination for different 

purposes: bending engages the lower back and legs in a vertical motion, while 

drinking involves arm and hand coordination. These activities are distinguished from 

the more gross motor skills involved in walking, falling, standing, and sitting, 

underscoring their shared emphasis on stability and precise movement control. 

From t-SNE image perspective, it can be observed from Figure 34 that, standing and 

sitting are clustered together in t-SNE visualizations because the transition between 

standing and sitting involves a relatively predictable change in posture and sensor 

readings, especially when compared to the more erratic patterns seen in falling or the 

varied pace of walking. 

In addition, bending to pick up an object and drinking could cluster together due to the 

subtle specific movements involved, which may not exhibit as wide a range of sensor 

data variability as walking or falling but are distinct from the simple posture 

transitions of standing and sitting. The fine-grained movements and the specific 

sequence of actions in both activities lead to a pattern of data points that are more 

similar to each other. 

In the t-SNE visualization, walking and falling activities are distinctly separated from 

each other and from the other four classes, leading to their categorization into a single 
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group. In summary, the hierarchical classification of these six activities into three 

groups is supported by both the physical characteristics of the activities and their 

representation in t-SNE visualizations. This approach not only reflects the underlying 

physical dynamics and control mechanisms involved in each activity but also aligns 

with the patterns observed in the data when analysed through dimensionality reduction 

techniques like t-SNE. 

These three pairs will go through the first classification stage, and this is followed for 

each pair by a binary classification. In the first stage, Comb 7 is implemented with Q-

SVM and SFFS (64 features). Comb 7 is also used in the second stage of binary 

classification for A1&A6. For A2&A3, Comb 4 is used with Q-SVM and SFFS 

algorithm (43 features). For A4&A5, Comb 5 is applied, with Q-SVM and SFFS (51 

features). The confusion matrices of the two classification stages are shown in Figure 

35. 

 

Figure 35 Confusion matrix of 1st stage classification (a) and result of the 2nd hierarchical 
classification (b). 

The custom hierarchical structure has an average accuracy of 93.1%, which 0.9% 

compared to feature-level fusion. Although the accuracies of A2 (-2.8%), A3 (-3.2%) 

and A6 (-0.8%) decreased by 2.8, 3.2, and 0.8%, respectively, this approach still has 

the best overall performance. A4 and A5 have the largest improvements with 1.9% 

and 4.4%, respectively. The accuracy for A1 remains at 100%. A1 consistently has the 

best performance over the six activities in our experiments. We hypothesize that this is 

happening because A1, which is walking, is much more diverse than other in-place 

activities (A2-A6). As a periodic and translational activity, it generates richer Doppler 

signatures than in-place activities, leading to more distinct features, which make it 

easier to recognize the activity and thus achieve the best performance. 
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5.3.5 Discussion 

To evaluate the performance of our methods, different alternative classification 

models are used with the same dataset including those based on deep learning 

approaches. The compared models include K-Nearest Neighbour (KNN) model with 

K=10, VGG19 [188], Resnet50 [189], NASNet-Mobile [190], Densenet201 [191], and 

ShuffleNet [192]. The performance of the models can be analysed according to three 

categories –  

• Time, which refers to how long the model takes to train and to produce 

an inference, 

• Memory footprint, which deals with how much memory the model 

occupies,  

• Accuracy, which presents the ability to infer the correct class of 

activities.  

Specifically, for the time performance, both training time and inference time are 

assessed separately, and for the memory footprint, the assessment investigates both 

the number of parameters and the model size. We implement the benchmark analysis 

on a workstation with an Intel Core I5-9400F CPU 2.9 GHz and NVIDIA GeForce 

RTX 2060 GPU. The result of this benchmark is shown in Table 13. 

The inference time shown in Table 27 is an average per data inference of over 30 runs 

for all models. In general, the time required to train a deep learning model varies 

depending on the number of network layers. ShuffleNet is the fastest deep learning 

model in the list, taking 232 seconds. In comparison to alternative network-based 

approaches, our approach has the fastest training time of 20.58 seconds, which is only 

~9% of the training time of ShuffleNet. VGG-19 is the fastest deep learning method in 

terms of inference time with 16.243 ms. Our proposed method achieves an inference 

time of 15.646 ms, which is comparable. 

The relevant parameters in this analysis are weights that are learnt during training. 

They are weight matrices that contribute to the model's predictive capability, changed 

during the back-propagation process. There are millions of parameters produced at the 

learning stage, and hence the parameters are counted in millions (M). From the 

comparison of the model sizes in Table 13, we can deduce that the larger the size of 

the deep learning models, the more parameters they had. The size of VGG19, 

ResNet50, and DenseNet201 are 558.48 MB, 94.82 MB, and 75.08 MB. On the other 
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hand, NASNet-Mobile and ShuffleNet are much smaller in size at 19.42 MB and 3.97 

MB, respectively. The size of our model is only 2.06 MB, which is a 48.11% 

reduction compared to ShuffleNet and a 99.6% reduction compared to VGG19. 

Table 27 also illustrates the accuracy and memory usage of the models using the same 

dataset which is used in this article. From the memory footprint reported, deep 

learning models require a considerable memory footprint. ShuffleNet has the lowest 

footprint in the listed deep learning algorithms. However, our method requires 89.13 

MB, which is only 6.21% of the footprint required for ShuffleNet. In addition, our 

method requires less than one-tenth of the training time compared to the fastest deep 

learning method while yielding the highest accuracy at 93.10%, which is 1.15% 

higher than the most accurate deep learning method.  Meanwhile, the KNN model 

with our adaptive thresholding method achieves an accuracy of 85.2%. The result 

shows that our adaptive thresholding method can also achieve good accuracy with 

other classifiers instead of SVM, which demonstrates that our method for pre-

processing and multi-domain exploration is salient and versatile. This experiment 

proposed a combination of the adaptive thresholding algorithm with the Q-SVM 

(machine learning based) model, which is more suitable for resource constrained 

platforms because of its reduced footprint while maintaining speed and increasing 

accuracy.  

Table 27 Computational metrics and accuracy comparison of proposed adaptive thresholding 
method and alternative approaches. 

Model 
Training 

Time (s) 

Inference 

Time (ms) 

Model 

Size 

(MB) 

Params 

(M) 

Accuracy 

(%) 

Memory 

Footprint 

(MB) 

KNN 9.25 10.20 1.50 0 85.20 40.21 

VGG 1935 2173 16.24 558.48 139.60 73.99 2870.69 

ResNet5036 330 20.11 94.82 23.53 87.93 1468.53 

NASNet-Mobile37 1889 105.11 19.42 4.28 86.07 1558.85 

DenseNet20138 2199 87.85 75.08 17.86 91.95 1590.28 

ShuffleNet39 232 22.26 3.97 1.02 91.02 1435.55 

Adaptive 

Thresholding + 

Hierarchical 

20.58 15.64 2.06 0 93.10 89.13 

 

5.3.6 The Difference Between the Proposed Methods and Traditional 

Methods. 

The proposed method and traditional background/foreground separation techniques, 

such as histogram-based approaches [193], are both utilized in image processing for 

segmenting images into background and foreground components [194]. While they 
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share the common goal of image segmentation, their methodologies and underlying 

principles exhibit notable differences alongside their similarities. 

For similarities, both methods aim to separate the foreground (region of interest) from 

the background, facilitating tasks like object detection and image analysis. Besides, 

the thresholding value is automated extracted, reducing the need for manual 

intervention in choosing the threshold for segmentation, which is essential for 

processing large datasets or real-time applications [195]. 

However, there are also many differences between two approaches: 

1. Thresholding Technique: 

The Proposed Method: It is a global thresholding technique that calculates the 

optimum threshold by minimizing intra-class variance or, equivalently, maximizing 

inter-class variance. This means it finds a single threshold that best separates the pixel 

values into two classes, assuming the image contains two classes (foreground and 

background). 

Traditional Histogram-Based Approaches [194]: These can be more varied and might 

not specifically aim to optimize the variance between classes. For example, a simple 

histogram-based method might set a threshold at a fixed intensity level or use multiple 

thresholds based on the histogram's peaks and valleys without explicitly considering 

the statistical properties of the classes. 

2. Assumptions: 

The Proposed Method: Assumes that the image contains two distinct classes and seeks 

to find a threshold that minimizes the overlap between them. It works best when the 

histogram of the image has a bimodal distribution, clearly indicating two classes. 

Traditional Background/Foreground Separation [194]: Depending on the specific 

technique, these methods may not make as strong assumptions about the number of 

classes or the distribution of pixel intensities. Some methods might be more heuristic 

and less statistical in nature. 

3. Robustness and Complexity: 

The Proposed Method: Offers a more robust approach in scenarios where the 

assumption of two distinct classes holds true, as it systematically calculates the 

optimal threshold. However, its reliance on the bimodal distribution can be a 

limitation in complex images. 
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Traditional Histogram-Based Approaches [194]: These methods can vary in 

complexity and robustness. Some might be simpler but less effective in diverse 

conditions, while others might incorporate additional rules or criteria to handle more 

complex scenarios but at the cost of increased computational complexity. 

In conclusion, while both separation techniques aim to segment images, they differ in 

their approach, assumptions, and best use cases. The proposed approach provides a 

statistically grounded solution for images with clear bimodal distributions, whereas 

traditional methods offer a broader toolkit with varying levels of complexity and 

assumptions about the image's content. 

5.3.7 Summary 

In Section 5.3, the research meticulously evaluates the effectiveness of adaptive 

thresholding in enhancing classification accuracy while also considering the 

computational and resource implications. This detailed analysis reveals both the 

strengths and limitations of the thresholding approach, particularly in terms of 

scalability and adaptability to diverse and complex datasets. While adaptive 

thresholding shows promise in specific contexts, its application highlights the need for 

a more flexible and comprehensive optimization strategy that can dynamically adjust 

to varying data characteristics and requirements. This shift is rooted in the realization 

that emerged from a challenging endeavour of applying similar methodologies to 

lameness detection of cattle. The initial approach, while theoretically sound, faced 

practical limitations in its application to livestock. Thus, Section 5.4 marks a 

significant transition in the research journey, where the lessons learned from the 

practical challenges encountered in the field guide the adoption of a more 

sophisticated, adaptive, and holistic approach to optimization. This section delves into 

the intricacies of the Evolutionary Algorithm, illustrating how this innovative method 

revolutionizes the research approach, enhancing its applicability and effectiveness in 

complex, real-world scenarios. 

5.4 A Holistic Optimization Using AI Techniques 

Building on previous radar-based human activity recognition, we expand the micro-

Doppler signature (MDS) to 6 domains and exploit each domain with a set of 

handcrafted features derived from the literature and our patents. We employ an 

adaptive thresholding method to isolate the region of interest, which is then applied in 

the other domains. To reduce the computational burden and accelerate the 

convergence to an optimal solution for classification accuracy, a holistic approach to 
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human activity recognition optimization is proposed by using a surrogate model-

assisted differential evolutionary algorithm (SADEA-I) to jointly optimize signal 

processing, adaptive thresholding and classification parameters for human activity 

recognition. 

Optimizing the pre-processing parameters for thresholding, MDS generation and the 

selection of the best representations to maximize classification accuracy is a challenge 

for parametric sweeping, since it is intractable for such problems with ever-expanding 

parameters to tune, which is computationally expensive and time-consuming. 

Furthermore, some off-the-shelf modern optimization techniques, such as differential 

evolution (DE) [196] and particle swarm optimization [197], are still too expensive to 

utilize in this case. This experiment investigates a holistic HAR optimization using 

Surrogate Model-Assisted DE Algorithm (SADEA-I) in which the MDS domain is 

used as a proof of concept before expanding this technique to a wider range of 

parameters and other radar data domains to include the pre-processing, domain 

selection, feature selection, and machine learning/deep learning joint optimization. 

The specific contributions which distinguish this work from the current state of the art 

are summarized here: 

• SADEA-I, as a machine learning-assisted Evolutionary Algorithm (EA), is 

employed for the efficient joint optimization of the signal pre-processing 

parameters and a combination of radar representations to minimize the 

classification error rate through an effective global search and performance 

predictions to reduce the computational load. 

• A novel radar-based HAR information processing method using adaptive 

thresholding that automatically produces ROI for human MDS yielding 6 

different domains – Unfiltered MDS amplitude, Binary Mask, Masked phase, 

Masked unwrapped phase, Masked spectrogram (patent), Masked MDS 

complex matrix, with a set of handcrafted features for classification. 

• Given that the domains can be visualized in an image format, we also 

implement a Convolutional Neural Network (CNN). This serves to showcase 

the enhanced integration of our optimization strategies with deep learning 

algorithms, highlighting the advancement made in our approach. 
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5.4.1 Optimization Problem Formulation and Challenges 

The 10-fold classification error rate 𝑃𝑥(𝑡) serves as the minimization objective. 

Mathematically, the minimization problem can be expressed as Eq. (5.5), 

min
𝑥

𝑃𝑥(𝑡) (5.5) 

where x is a set of parameters in the HAR system that define the system and t is the 

validation sample which is randomly chosen for every function evaluation. 

At the optimization stage, there are 12 parameters in total. They are divided into two 

groups according to whether they are continuous or not.  

The first group parameter is discrete, including ‘Window’, ‘Mask’, ‘Masked phase’, 

‘Masked unwrapped phase’, ‘Spectrogram’, ‘Masked spectrogram (patent)’, and 

‘Masked spectrogram (radar)’. They have two options: 0 and 1. For ‘Window’, 0 

means rectangular window and 1 means Hamming window. For the other six 

parameters, 0 means combination excludes it, and 1 means combination includes it. 

The second group parameter is continuous, including overlapping factor F (range from 

0.5 to 0.95), time window length W (range from 100 to 1000), V (range from 0.01 to 1) 

and 𝑇𝑒  (range from -20 to 20) in thresholding method, clipping time 𝐾 (range from 

1.5 s to 5 s). Note that 𝑇𝑒 has to be integer and other parameter can be any value in the 

range. 

Parametric sweeping is a widely used method to find the set of parameters x to 

optimize classification accuracy. However, this method only works for small-scale 

problems due to its large computing overhead. For the targeted 12-dimensional 

problem with wide search ranges, where each function evaluation costs 3 minutes in 

our workstation, the computing overhead is still unaffordable even using modern 

intelligent optimization techniques, e.g., DE algorithm [196], genetic algorithm [198], 

and particle swarm optimization [197]. Hence, obtaining optimal global solutions 

efficiently becomes the central challenge. 

5.4.2 The SADEA algorithm and Parameter Settings. 

To the best of our knowledge, there are few off-the-shelf methods to address the 

above challenge in the signal processing field. The SADEA-I [199], [200], usually 

applied to antenna design optimization, is adapted for HAR. SADEA-I can obtain 

comparable optimization ability with the DE algorithm, which shows excellent 
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optimization ability, while reducing by a factor of 5 to 10 the necessary number of 

function evaluations compared to using the standard DE [13]. The flowchart of 

SADEA-I is illustrated in Figure 36. The adapted SADEA-I algorithm for HAR is 

summarized as follows. 

• Step 1: Latin Hypercube Sampling (LHS) is applied to generate NP numbers of 

samples to form an initial database with NP exact function evaluations. 

• Step 2: The classification error rate is minimized until a suitable x with the 

lowest classification error rate among those in the database satisfies the preset 

error rate threshold or the total optimization time exceeds the preset threshold. 

• Step 3: Obtain λ best sets of solutions as the parent population to form a child 

population by applying the DE mutation and crossover operations [196]. 

• Step 4: For each child solution, obtain its training data by collecting their 

nearest τ known samples from the database and train Gaussian Process (GP) 

models [201]. Predict classification error rate and uncertainty for each child 

solution. 

• Step 5: Prescreen the child population with the predicted values and prediction 

uncertainty using the lower confidence bound (LCB) method [202], [203] and 

obtain the estimated most promising candidate solution. Carry out an exact 

function evaluation for it. The candidate solution and its function value are 

appended to the database and go back to Step 2. 

GP models in this case are trained to predict and suggest the most promising candidate 

parameter set in each iteration. Hence, it significantly reduces the number of exact 

function evaluations needed for the search. To make GP and DE work harmoniously, 

the surrogate model-aware evolutionary framework is used and more details can be 

found in [204].   

The algorithm parameters are set following [199], [205]: 𝑁𝑃 is set to be 50. Both 

mutation rate and crossover rate are set to be 0.8. λ is set to be the same as 𝑁𝑃. The 

number of training samples 𝜏 , is also set to be 50 to train GP models. In LCB 

prescreening, LCB parameter is set to be 2. 
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Figure 36 Hierarchical structure of the solution algorithm. 

5.4.3 Results of Optimization 

The entire AI-driven holistic HAR system optimization was implemented using a 

workstation with an AMD Ryzen 9 3900X 12-core processor (3.8GHz) and an 

NVIDIA GeForce GT 710 GPU. In this study, binary parameters are treated as 

continuous variables with values from 0 to 1 and rounded off to the nearest integers. A 

reference design was based on our previous experiment [206], produced by the 

adaptive thresholding method with parameter sweeping on adaptive thresholding 𝑇𝑒 

and feature fusion of six domains. The reference performance in this experiment is 

based on the human operator achieved classification error rate – manually tuned 

results - which is based on the operator’s domain knowledge. 

 

5.4.3.1   SVM classifier with Adaptive thresholding for SADEA-I 

The optimization convergence trend is shown in Figure 37. The red dotted line 

represents the manual design result, where the error rate is 21.98%. After 2000 

function evaluations using SADEA-I, the system is optimized and achieves an error 

rate from 16.50% to 10.59% in three independent optimization runs. Compared to the 

manually tuned reference system, the holistic approach decreases the error rate by 

5.48% to 11.39%.  
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Table 28 illustrates the details of the optimal parameters and combinations when the 

optimization algorithm converges. The result shows that for our human activity 

dataset, the error rate reaches the minimum with the highest overlapping factor and 

minimum time window length. In addition, the clipping time is 4.58 s and the adaptive 

thresholding parameters 𝑉 and 𝑇𝑒 are 0.9166 and 3, respectively. These values were in 

line with the general trend found in a parametric sweeping on the different domains 

which identified 𝑇𝑒 to be optimal between 0 and 5 of the adaptive threshold value for 

𝑉 =  0.1 . The effectiveness and necessity of research on thresholding are 

demonstrated in an improvement of ~11% using the SADEA-I method in only 2000 

function evaluations (3 minutes per evaluation). All MDS representations were 

selected but Domain 1. Domain 1 (Unfiltered MDS Amplitude) is excluded from the 

most suitable combination, which identifies that the “raw” spectrogram is not optimal 

and the research on adaptive thresholding and its application in different MDS 

representations is essential as they all contain salient information for classification 

although more difficult to interpret visually. 

 
Figure 37 Convergence trend of SADEA-I with SVM and comparison with manual design results. 

Table 28 Tuned parameters and selected domains 

Time window Length Overlapping Factor Clipping Time Difference Value V 

154 ms 0.95 4.58s 0.9166 

Adaptive Thresholding Te FFT Window type Selected Domains of Radar 

3 Hamming Domains 2 to 6 

5.3.4.2 AlexNet with Adaptive thresholding for SADEA-I 

For this experiment, the dataset was partitioned into three subsets: training, validation, 

and testing, with a ratio of 7:2:1, respectively. The performance of our experiment is 
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evaluated on the basis of the testing set results. In alignment with the previous 10-fold 

cross validation results, we also carried out this experiment 10 times, considering the 

mean accuracy of iterations as our final performance of the algorithm. 

Figure 38 demonstrates the optimization convergence trend of SADEA-I with 

AlexNet. It also presents the result of manual design parameters on AlexNet. When 

combined with AlexNet, the SADEA-I is optimized in 700 function evaluations, with 

an average error rate decrease from 17.83% to 6.46%. Compared with manual design 

result with an error rate of 9.14%, the holistic approach can yield a worse result with 

an extra 8.69% error rate or decrease the error rate by 2.68%. Table 29 illustrates the 

details of convergence trend, along with the optimal parameters and combinations 

realized at the point of convergence of the optimization algorithm. The result is 

slightly different from the previous findings. The Hamming window continues to 

present the most effective option, yielding superior accuracy. The time window length 

has escalated to 390 ms. The adaptive thresholding parameters, 𝑉  and 𝑇𝑒 , are 

determined to be 0.8249 and -13, respectively. The 𝑉 changes to a minor but close 

value, while 𝑇𝑒 has exhibited significant alteration. This result indicates the success of 

our adaptive thresholding algorithm.  

 

Figure 38 Convergence trend of SADEA-I with AlexNet and comparison with manual design results. 

Table 29 Tuned parameters and selected domains 

Time window Length Overlapping Factor Clipping Time Difference Value V  

390 ms 0.87 5 s 0.8249 

Adaptive Thresholding Te FFT Window type Selected Domains of Radar 

-13 Hamming Domains 1 to 5 
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5.4.4 Discussion 

By leveraging the capabilities of SADEA, we ensure that the algorithm iteratively 

explores and evaluates a wide range of potential values for v, ultimately converging 

on the value that maximizes the performance of our system. This evolutionary 

approach not only automates the optimization process but also enhances the 

robustness and efficacy of the solution by adapting to the intricacies of the problem 

space, thereby finding the best possible value for v that aligns with the objectives of 

our holistic optimization strategy. 

Compared with SADEA-I and SVM results, SADEA-1 with AlexNet achieves further 

improvement of approximately 5% over merely 700 function evaluations, which 

reduces more than half of the evaluations to convergence compared to the SVM 

implementation. All radar representations were chosen, including domain I, which 

highlights the enhanced interpretative capability provided by the AlexNet model. 

However, there is a significant change observed in the length of the time window. 

This variance could potentially be attributed to the influence of a higher Doppler 

frequency resolution, which results in a more intricate graphical representation of the 

data. The finer resolution provides enriched data for the automatic extraction of 

features within the deep learning model, thereby augmenting its ability to identify 

distinctive patterns. 

Table 30 concludes the comparison of statistics of SADEA algorithms paired with 

different classifiers. For SADEA-I with SVM, the optimized error rate decreases from 

16.50% to 10.59% with 2000 function evaluations, compared to 21.98% from a 

human operator. This means that SADEA-I with SVM can boost the performance of 

our classification by 5.48% to 11.39% in 4 days compared to 3 months of manual 

tuning by the human operator. The second method SADEA-I with AlexNet exhibits an 

error rate reduction from 17.83% to 6.46% with 700 function evaluations, compared 

to 9.14% from a human operator. We observe that the error rate with SADEA-I with 

AlexNet can reach a minimum error rate of 6.46% which is 4.13% better than 

SADEA-I with SVM. However, the maximum error of SADEA-I with SVM is 1.33% 

better than SADEA-I with AlexNet. These statistics indicate the efficacy of the 

SADEA-I algorithm when interfaced with various classifiers. Deep learning models 

tend to be more computationally intensive, but with SADEA, it appears that the 

number of function evaluations are drastically reduced by 2.85 times in this case. This 

suggests that the SADEA algorithm boosts convergence towards optimal solutions 
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more efficiently when combined with deep learning algorithm, thus leading to 

potentially improved performance with fewer evaluations. However, note that the 

error rate for SADEA-I with AlexNet is more volatile (11.37%) than with SVM 

(5.91%).   

The comparative analysis reveals that the CNN achieved an accuracy of 90.86%, 

surpassing the SVM which recorded an accuracy of 78.02%, marking a significant 

difference of 12.84%. This differential initially highlights the superior performance of 

CNN over SVM in this context. However, the implementation of our proposed 

optimization strategy yields noteworthy improvements: the optimized CNN accuracy 

escalates to 93.54%, while the SVM accuracy significantly increases to 89.41%. 

Consequently, the performance gap between SVM and CNN narrows from 12.84% to 

a mere 4.13%. This substantial reduction in the disparity not only underscores the 

effectiveness of CNN but also demonstrates the remarkable potential of our holistic 

optimization approach to enhance the performance of both models, particularly 

emphasizing the enhanced capability of SVM when subjected to strategic optimization. 

This outcome suggests that while CNN inherently offers a robust framework for 

accuracy, the gap in performance relative to SVM can be considerably minimized 

through targeted optimization techniques, thereby illustrating the versatility and 

adaptability of SVM in achieving competitive accuracy levels. 

Moreover, SADEA-I with SVM did not incorporate feature selection to enhance 

performance at this stage. Feature selection can reduce the overall complexity and 

improve the performance when combined with the adaptive thresholding method 

[207]. As we continue to refine our holistic techniques, feature selection will be 

included in our future plan. However, SADEA-I could not handle this many variables 

to tune at once. The next version of SADEA will be able to handle more tuning 

parameters for further optimization. 

 

Table 30 Statistics of the best function values obtained by SADEA with different classifiers. 

Method Best error rate 

(%) 

Worst error 

rate (%) 

Human error rate 

(%) 

Function 

Evaluations 

SADEA-I with SVM 10.59 16.50 21.98 2000 

SADEA-I with AlexNet 6.46 17.83 9.14 700 

5.5 Summary 

The rationale for favouring a non-deep learning method, specifically SVM, over deep 

learning approaches, despite the latter's potential for superior performance with 
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adequate tuning, is multifaceted. This decision is grounded in considerations of the 

nature of the data, the computational cost, and the specific requirements of the study, 

which aims to classify activities based on radar signal features. 

Deep learning models are known for their computational intensity, requiring 

substantial hardware resources and energy consumption, especially during the training 

phase [208], [209], [210]. This is further exacerbated when tuning the models to 

achieve optimal performance, a process that involves extensive experimentation with 

various architectures, hyperparameters, and training datasets. In contrast, SVMs are 

computationally more efficient, requiring less intensive hardware resources and 

shorter training times. This efficiency makes SVMs particularly appealing for 

applications where computational resources are limited or where rapid deployment is 

necessary [211], [212]. 

Moreover, the feature selection process undertaken in this study exemplifies the 

strategic tuning of the SVM classifier [213], [214]. By meticulously selecting and 

engineering features from the radar signals that are most indicative of the activities of 

interest, the study enhances the SVM's ability to discriminate between different 

activities. This process of feature selection not only improves the classifier's 

performance but also reduces the model's complexity, further contributing to the 

computational efficiency of the non-deep learning approach. 

In conclusion, the choice to employ a non-deep learning method over deep learning is 

motivated by the specific challenges and requirements of activity recognition from 

radar signals. The ability of SVMs to handle variable-length data, combined with their 

computational efficiency and the targeted feature selection process, makes them a 

compelling choice for this application. This approach ensures that the study can 

accurately classify a range of activities with varying durations, while also addressing 

practical considerations of computational cost and resource availability.
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6. A Short-range personnel recognition using 

Radar Signals with LSTM 

Coming to the end of the thesis and after having overviewed the many challenges and 

solutions for activity recognition, the research interest has been progressing towards 

using edge artificial intelligence (AI) techniques, with deep neural networks becoming 

more and more prominent. This chapter mirrors this trend as the process of how 

automatic feature generation methods are utilized for personnel recognition by 

generating salient features for the classification of human gait sequences is reviewed. 

Utilising a temporal neural network design, specifically LSTM, a spectrogram 

signature composed of sequences of six participants is classified without handcrafted 

feature extraction. The main contributions of this chapter are as follows: 

• We evaluate the performance of phase information and range profile compared 

with the traditional methods which only uses the magnitude information of 

spectrogram. 

• We propose a novel and robust human recognition approach using the 

combination of spectrogram and range-time domain with both magnitude and 

phase information. 

This work has been previously covered in the publication [39] and the remainder of 

this chapter is organized as follows. Initially the discussion on the motivations for 

using LSTM networks is conducted, followed by the description of the experimental 

setup, data collection, and data pre-processing. Section 6.2 and 6.3 presents a 

description of the algorithms used and the results obtained with LSTM networks used 

for and offers some insight on optimizing performances. Finally, section 6.4 concludes 

the chapter and outlines possible future avenues of research. 

6.1 Training/Testing Set Composition and Learning 

In this experiment, the data collection introduced in Chapter 4.  We only consider the 

walking activity for the personnel recognition problem. Each walking data is a 10-

second-long recording, and each participant repeats it three times. We randomly chose 

six adults (labelled C1 to C5 and aged between 21 to 60) from the participants' pool to 

compose the dataset for this experiment. An additional older person (labelled C6 and 

aged over 60) is also considered to increase the diversity of the dataset. Due to the 

limitation of the number of samples, the original samples are processed with data 



128 
 

augmentation to expand the size. The original data is cut using a sliding window with 

a fixed duration of 1 second. It starts from 0s to 1s, and then shifts in time of 0.1s each 

step. For instance, the second cut is 0.1s to 1.1s, and the third cut is 0.2s to 1.2s. By 

using the approach, the total number of samples expands from 18 to 1638. 

The motivation of the pre-processing of the raw signal data is to generate essentially 

low noise data for further application. For the raw radar signal, the processing steps 

are followed. Firstly, a 128-point Hamming-window is proposed to reduce the 

sidelobes in range-bin. Then, a Fast Fourier Transform (FFT) method is applied to the 

raw data matrix to convert it into Range-Time domain, which is also known as the 

high range resolution profile. Next, a high-pass Butterworth notch filter with cut-off 

frequencies at 0.0075 Hz is utilized to remove static clutter caused by stationary 

objects such as furniture and walls. After that, Short-Time Fourier Transform (STFT) 

is implemented with a 0.2 s Hamming window with 95% overlap on the Range-Time 

data to generate micro-Doppler signatures.  

The utilization of only six subjects in this research is primarily justified by its pilot 

study nature, allowing for the preliminary testing of the methodology and 

identification of areas for improvement in a controlled setting. Limited resources, such 

as time, funding, and access to specialized equipment or expertise necessary for radar 

data collection and analysis, further necessitate a smaller sample size. Additionally, a 

more homogeneous group of subjects helps mitigate variability in the early stages of 

method development, crucial for studies where individual differences could 

significantly influence outcomes. The complexity and time-intensive nature of radar 

signal processing and analysis also favour a smaller sample size, enabling thorough 

in-depth analysis and methodological refinement. 

However, utilizing a small sample size of only six subjects introduces significant 

limitations to the study, primarily affecting the generalizability of the findings to a 

broader population, given the difficulty in ensuring the results are representative 

across varied individual characteristics such as age, gender, and physical fitness. This 

limitation is compounded by a reduction in statistical power, heightening the risk of 

not detecting existing effects, and questioning the methodology's efficacy on a larger 

scale. Moreover, the small sample size does not adequately test the methodology's 

robustness against the wide spectrum of inter-individual variability, essential for real-

world applications. Additionally, there is a heightened risk of model overfitting, where 

the methodology might perform well for the small, specific sample but fail to 

generalize to new, unseen data, thereby limiting its practical applicability and 

reliability in broader contexts. 
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6.2 Motivation for personnel recognition and temporal 

classification networks. 

The non-deep learning methodology was initially developed and applied to the 

domain of personnel recognition, with a specific focus on evaluating its efficacy in 

recognizing individuals based on their gait patterns. This approach, detailed in 

Chapter 5, employs a suite of non-deep learning techniques, culminating in the 

utilization of a SVM classifier to distinguish between different personnel based on gait 

analysis. Upon implementation and testing of these methods, the resultant overall 

accuracy achieved was 62.5%. This level of performance, while indicative of the 

method's potential, falls short of the desired benchmarks for reliable personnel 

recognition. The modest accuracy underscores the challenges inherent in capturing the 

nuanced variations in gait patterns with non-deep learning approaches and an SVM 

classifier. 

Table 31 Personnel recognition with proposed non-deep learning methods. 

 C1 C2 C3 C4 C5 C6 

Accuracy 70.2 58.7 67.5 64.8 61.4 52.1 

 

Given the less than satisfactory outcome achieved with the initial strategy, the 

research direction pivoted towards exploring the capabilities of deep learning 

technologies. In the past few years, a series of techniques have been proposed for 

personnel recognition in order to enhance public security, where most of the 

approaches are based on optical devices [215] and biometric technology [216]. 

However, vision-based method and biological features have their own limitations. For 

optical devices, there are possible invasion of privacy and disputes over image rights. 

People may feel their privacy is violated when their whereabouts are monitored by a 

camera all the time. Also, the performance degrades highly when the field of view is 

narrow, and in adverse lighting conditions. On the other hand, biological features, 

such as fingerprint or retina scans, are also highly private and require the compliance 

of people, which cannot always be taken for granted. Radar has potential advantages 

over the sensors mentioned above, making it a relevant technology in personnel 

recognition. 

Typically, radar-based personnel recognition uses gait analysis from spectrograms 

[147], [217], [218]. Human gait can provide clear and detailed micro-Doppler 

signatures of different people. The recognition and classification based on the micro-

Doppler signatures are generally performed by extracting hand-crafted features, such 
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as bandwidth and Doppler mean speed. However, the performance of classification or 

recognition based on the features are highly dependent on the robustness of those 

features. However, the traditional feature extraction methods based on experience and 

statistical characteristics still have many limitations in capability and flexibility, which 

limits the achievable accuracy with the spectrogram. Deep learning methods are 

therefore introduced to address the issues. 

Deep learning has become a popular research topic in radar fields because it can 

automatically extract salient features from radar data. It aims to find the mapping 

relationship between the training data and labels through supervised and testing of a 

large number of samples. Compared with the traditional hand-picked features, using 

deep learning technologies can achieve a higher accuracy of classification. Rather than 

akin to images, these radar data are akin to sequences of temporal signals, as well. 

Due to this reason, the recurrent neural network architectures used in the work in the 

audio/speech processing community were taken as inspiration and explored in this 

work. Specifically, the focus was on the Long Short-Term Memory (LSTM) networks. 

The LSTM was already adopted in [102], [151]. The main property of the LSTM is its 

memory capability to capture long-term dependency between data separated by a 

significant duration [113]. This is relevant in speech, where two correlated words can 

be separated by other words (e.g., auxiliary verb and past participles in Germanic 

languages, nouns, and adjectives where many adjectives are utilised). Radar data, 

therefore, can resemble speech as different actions performed at different time steps 

are correlated by human kinematics (e.g., an individual can stand up only after sitting 

down, but a variable duration can separate these two actions). However, the difference 

between radar data and speech or audio data arises because they do not encode any 

kinematic information or constraint, which usually are instead the main feature of the 

radar data and what radar-based classification algorithms aim to utilize.  

LSTM networks have been chosen for radar data personnel recognition over other 

potential alternatives such as RNN, Gated Recurrent Units (GRU), Transformers, and 

CNN due to several compelling reasons that align with the specific requirements and 

challenges of radar signal processing for personnel recognition tasks. Each of these 

alternatives has its strengths, but LSTMs offer a unique combination of features that 

make them particularly well-suited for this application: 

Advantages of LSTM Over RNN [219], [220], [221], [222]: While RNNs are 

theoretically capable of handling long-term dependencies, in practice, they struggle 

due to the vanishing gradient problem. LSTMs address this issue with their 



131 
 

specialized architecture, including memory cells that can maintain information over 

longer sequences, making them more effective for radar data sequences where the 

relevance of information can span across long time intervals. Besides, LSTMs are 

designed to better capture temporal dynamics, which is crucial for recognizing 

patterns in radar data that evolve over time, such as the movements of personnel. 

Advantages of LSTM Over GRU [222], [223], [224]: Although GRUs are a simplified 

version of LSTMs that can perform comparably in many tasks with fewer parameters, 

LSTMs provide finer control over the memory. This is due to their additional gate (the 

output gate), allowing for a more nuanced handling of information flow. This 

complexity can be beneficial in radar signal processing, where the distinction between 

relevant and irrelevant temporal features is critical. 

Advantages of LSTM Over Transformer [115], [116], [117]: Transformers, despite 

their success in various domains, primarily excel in parallel processing and require 

significant computational resources. LSTMs, on the other hand, are inherently 

sequential, making them more naturally aligned with the time-series nature of radar 

data. Additionally, LSTMs can be more data-efficient and require less computational 

power, making them suitable for scenarios where real-time processing is essential, and 

resources may be limited. 

Advantages of LSTM Over CNN [209], [225]: CNNs excel in extracting hierarchical 

spatial features and are predominantly used in image processing tasks. In contrast, 

LSTMs are tailored for sequential data, making them more adept at capturing the 

temporal dynamics essential for personnel recognition in radar data. While CNNs can 

process time-series data by treating time as a spatial dimension, they may not capture 

long-term dependencies as effectively as LSTMs. 

In summary, the choice of LSTM for radar data personnel recognition is motivated by 

its superior ability to handle long-term dependencies, its efficient processing of 

sequential time-series data, and its nuanced control over memory. These 

characteristics make LSTMs particularly adept at capturing the complex temporal 

patterns in radar signals associated with human movement, providing a robust 

framework for accurate personnel recognition. 

6.3 Experiment Results and Performance Analysis 

In this section experimental results using different LSTM network architectures are 

provided, together with discussions on changes in performances due to the format of 
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input data used (e.g., spectrograms vs range-time plots), and on significant 

hyperparameters of the networks (e.g., learning rate). 

CNN-based architectures do not include the memory unit. Hence, the network 

processes each window of the spectrogram as independent inputs. This may cause 

much overlap when the time interval is small. The response of RNN-based structure to 

new data is decided by the current and the past input, which acts on the memory of the 

network. When the time interval is small, it can feed small pieces of the spectrogram 

into the network saving on computational load compared to CNN.  

Overfitting is a problem that often happens in deep learning applications due to the 

robust learning ability of neural networks which only focus on training data. This 

negatively impacts the result when the network processes new or unseen testing data. 

This problem usually occurs when the database is small, or the model is complex, 

which is the case here.  

Different methods have been proposed to prevent overfitting problems [226]. For 

example, the early-stop method can stop the learning process when the performance 

begins to degrade on the validation set. In this experiment, the dropout [121] method 

is proposed to address the overfitting problem. Dropout means dropping out units, 

which abandons a part of the output randomly in one layer, yielding an improved 

generalization. 

To improve the performance, a hybrid information fusion method, which is the 

combination of neural network fusion and a soft fusion at the decision level, is then 

considered. The architecture of the network is shown in Fig. 1. It consists of two parts, 

a feature extraction network and a fusion network including a deep fusion part and a 

soft fusion part. The feature extraction network contains the Range-LSTM and the 

Doppler-LSTM, which are both composed of two LSTM layers extracting temporal 

features from magnitude and phase separately. Afterwards, the temporal features from 

both magnitude and phase information in the same domain are aggregated, and then a 

series of dense layers are integrated with a SoftMax classifier to generate the 

prediction of class for each domain. Finally, a soft fusion method is employed to 

combine the outputs of the previous networks to improve performances.   

Soft fusion [100], [227] aims at generating the new prediction of classes by combining 

the scores which are generated in the last layer of network with SoftMax activation. In 

the SoftMax layer, the classifier generates a scoring matrix with regard to the posterior 

probability, which represents the confidence level. The class with the highest 

probability will be chosen as the output class. The following equation illustrates how 
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the combination works mathematically, where 𝑊𝐷 is the weight of the fused Doppler 

network, and 𝑊𝑅  is the weight of the fused range network. 𝑆𝐷  and 𝑆𝑅  are the score 

matrix of the fused Doppler network and fused range network, respectively. 

𝑆𝐹 = 𝑊𝐷 ∙ 𝑆𝐷 + 𝑊𝑅 ∙ 𝑆𝑅 (6.1) 

In the first experiment, we investigate the performance of both networks using 

magnitude and phase separately. The Range-LSTM and the Doppler-LSTM networks 

are investigated with a 1310 samples training set (80%) and a 328 samples validation 

set (20%), where those datasets are randomly picking data from the entire database, as 

mentioned before. The network structure used in this experiment is a two-layers 

LSTM, with 128 neurons in each hidden layer, and the dropout probability between 

two LSTM layers is 0.6 for the Doppler-LSTM and 0.5 for the Range-LSTM. The 

output of LSTM layers is passed to fully connected (FC) layers. The first FC layer 

uses ReLU as the activation function due to its low computational cost. The second 

FC layer uses the same activation function. Then, a SoftMax layer is connected to the 

second FC layer since it can output the final labels. The block diagram of the network 

is shown in Figure 39.  

 

Figure 39 The LSTM architecture for the recognition. 

The networks are trained in 200 epochs using magnitude and phase separately, with 

the Adam optimizer and fixed initial learning rate of 0.001. Figure 40 and Figure 41 

demonstrate the loss curves as a function of epochs. The validation accuracy is 

illustrated in Table 32 and the training time consumption is shown in Table 33. 

The result shows that, in both the spectrogram and range-time domain, using phase 

information can accelerate the convergence of the network compared with traditional 
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methods using amplitudes. In Doppler-LSTM, both training and validation of phase 

information converge within 50 epochs. To the magnitude information, both training 

and validation converge at around 100 epochs, which is approximately twice longer 

than for the phase. In range-LSTM, the convergence finishes in a short time, which is 

~40 epochs for phase and ~75 epochs for magnitude. In addition, the loss of both 

remains at an acceptable range at the end of the process, which means the dropout 

method succeeds, and the network limits overfitting problems. 

 

Figure 40 Loss evaluation of the Doppler-LSTM. 

 

Figure 41 Loss evaluation of the Range-LSTM. 

In the second experiment, a stratified ten-fold cross-validation approach is used to 

assess our approach. Compared with the normal k-fold cross-validation, the stratified 

one extracts the validation set in terms of the ratio of classes, which makes the 

validation more comprehensive. To further improve the accuracy of the recognition, 

the hybrid information fusion method is employed, where the phase and magnitude 

information from the same domain are fused using deep fusion methods at the first 

stage, and then the results are used for the second stage with soft fusion. The 

hyperparameters of the networks remain the same as the first experiment, and the 
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network is still trained with 200 epochs. The weight ratio between the Doppler-LSTM 

and Range-LSTM sets from 1:5 to 5:1, to appraise the performance of this method. 

The result is shown in Figure 42. 

 

Figure 42 Hybrid solution evaluation with different weight ratios. 

The Figure 42 shows that the accuracy reaches 85.5% for the hybrid information 

fusion methods when the weight ratios (𝑊𝐷 : 𝑊𝑅) are 2:1. 

To further analyze the influence caused by the phase information and the differences 

between the two domains, the neural network fusions of Range-LSTM and Doppler 

LSTM are independently used. The results are shown in Table 32 and the time 

consumption is demonstrated in Table 33. The experiment shows the Doppler-LSTM 

performs better than the Range-LSTM, with both higher average accuracy (76.0% for 

the Doppler and 64.7% for the range-time) and better results in the fusion performance 

(81.9% and 71.0%, respectively). Generally, both networks achieve outstanding 

results in distinguishing C6. One possible reason is that the cycle of walking of the 

oldest person is longer than the younger adults, which means they have a smaller and 

slower pace. In addition, the extent of the body motion for the aged person is smaller 

than for younger adults, which results in an easily distinguishable micro-Doppler 

signature, leading to the recognition of that person easier. The performance of the 

Range-LSTM is not satisfying. In our perspective, the information contained in the 

range-time domain, which is the relative location from the target to radar, is not 

adequate for personnel recognition. Besides, the poor performance of the range-LSTM 

is possibly due to the low radar bandwidth. A higher bandwidth could result in a more 

satisfactory range resolution (range resolution < 10cm), which gives rise to the better 

performance. Another possible reason for the unsatisfactory result is that the size of 

the database is too limited to provide satisfactory performance. The recording of each 

subject is only 30 s, which is not enough to provide an adequate number of samples. 
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The performance could be better with a more extensive database in terms of longer 

recording for each subject. 

Table 32 Comparison of accuracy for human recognition using Doppler-LSTM, Range-LSTM and 
Hybrid mode. 

Accuracy (%) C1 C2 C3 C4 C5 C6 

Overall 

Performa

nce 

Magnitude of spectrogram 75.4 73.5 76.9 77.3 71.2 95.7 78.3% 

Phase of spectrogram 67.5 72.4 68.6 73.8 74.3 85.2 73.6% 

Magnitude of range-time 70.5 62.7 55.8 61.4 67.9 87.1 67.6% 

Phase of range-time 64.8 51.5 62.9 70.4 53.8 66.7 61.7% 

Hybrid information of 

spectrogram 
80.7 78.1 77.5 81.5 79.3 94.1 81.9% 

Hybrid information of 

range-time 
64.1 74.7 73.1 70.5 65.5 78.3 71.0% 

Hybrid information of two 

domains fusion 
81.6 79.7 84.2 87.8 83.2 96.5 85.5% 

 

Table 33 Total Training time consumption 

Network 
Time Consumption for 200 epochs 

(second) 

Doppler-LSTM with magnitude 1483 

Doppler-LSTM with phase 964 

Range-LSTM with magnitude 1038 

Range-LSTM with phase 702 

Hybrid information of spectrogram 1221 

Hybrid information of range-time 865 

Hybrid information of two domains fusion 1892 

 

Time consumption is shown in Table 33. It is obvious that phase information 

improves computation time by ~35.0% in Doppler and ~32.4% in Range profile 

compared to the magnitude information. Besides, the time consumption of the Range-

LSTM is generally lower than the computation time of Doppler-LSTM, which is 

lower by ~30.0% using magnitude information and ~27.2% using phase information. 

To both the spectrogram and range-time domain, the training time is improved when 

the phase information is fused with magnitude information, compared with the 
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independent use of magnitude information. The hybrid information fusion improves 

the performance of the recognition, which achieves the best result with the accuracy of 

85.5%. However, in the multi-domain fusion, the computation time increases. One 

possible reason is that two deep fusion networks are implemented at the same time, 

which largely increases the computational load of the processor, leading to the 

degradation in computing speed.   

6.4 Summary 

In this experiment, we proposed the use of the recurrent neural network on both the 

spectrogram and range-time domain of radar signal for the identification of individual 

subjects. The preliminary experiment results show that without a hybrid information 

fusion, the Doppler-LSTM and Range-LSTM can achieve accuracy of approximately 

78.3% and 67.6%, respectively. When the hybrid information fusion is applied in each 

domain, whereby the magnitude information is fused with the phase information, the 

accuracy can reach up to 81.9% and 71.0%. Meanwhile, the computational speeds are 

also improved by ~17.7% and ~16.7% compared with using magnitude information 

alone in Doppler-LSTM and Range-LSTM, respectively. This suggests that the phase 

information of radar signal is as effective as the magnitude information, with better 

convergence rate. On the other hand, the combination of phase information and 

magnitude information can reduce the rate of abnormal prediction and improve 

accuracy. When the Hybrid information fusion continues to be applied in multi-

domain level, the performance improves to 85.5%, but the computational time 

increases largely. This might be caused by the simultaneous running of two neural 

network fusion, which places additional computing burden to the processor. 

For future work, further advanced Range-LSTM and Doppler-LSTM scheme will be 

carried out, with other types of the layer such as Bi-LSTM layer. Besides, the phase 

information used in this experiment is wrapped. The performance of the algorithm 

with wrapped vs unwrapped phase information should be investigated to determine 

whether this can improve accuracy. Also, designing an adaptive algorithm for fusing 

Range-LSTM and Doppler-LSTM could have the potential to improve performance. 

Furthermore, the complex number can be directly used as input in the neural network, 

and thus we can use one network with complex numbers of radar signal instead of two 

separate networks. Additionally, a thresholding method is proposed to upgrade the 

performance of phase information, which would facilitate network training by 

focusing more on regions of interest in the phase data. The dataset in this experiment 

is still limited, and thus more data from different participants repeating the same 
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action should be collected, including different aspect angles with respect to radar and 

various measurement environments. 
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7. Conclusion and Future Work 

Radar technology, traditionally associated with defence applications, has seen a 

significant expansion in civilian domains [228], [229], particularly in activity 

recognition and monitoring of living targets. This shift is evident in the growing body 

of research and the increasing market applications of radar beyond its conventional 

uses. This thesis provides a comprehensive overview of the evolution of radar 

technology in human activity recognition, highlighting its journey from inception to 

the current state of advanced applications. 

This research, validated through experiments at the University of Glasgow CSI Lab, 

focused on classifying human behaviours, identifying individuals using radar data 

integrated into different frameworks, and advancing beyond traditional spectrogram-

based analyses. Machine learning classifiers trained on this data can distinguish 

activities, like falls, by their unique patterns. This thesis evaluates various 

classification methods for their robustness and efficiency in recognizing human 

movements, with radar offering privacy advantages over vision-based methods by 

tracking movement trajectories without creating identifiable images. Micro-Doppler 

signatures, derived from time-frequency analysis of range-time maps, are pivotal in 

characterising micro-motions during activities, aiding in differentiating behaviours 

and detecting presence. The thesis also explores radar signal processing, discussing 

the impact of various parameters on performance and comparing radar technologies in 

AAL applications. This work highlights the potential and challenges of radar in 

human activity recognition, setting a foundation for future advancements in the field. 

In this chapter, the contributions to knowledge are summarised looking back at the 

research questions set at the beginning of this thesis, with limitations and future work 

proposed. The future works are also provided to guide and inspire people. The future 

directions outlined in this thesis aim to inspire and guide further research in the field 

of radar technology and recognition systems. 

7.1 Summary of Contributions 

The research presented in this thesis addresses two primary inquiries, pivotal to the 

advancement of machine learning (ML) applications in activity recognition, 

particularly in the context of radar technology. 
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The Impact of Subject Physiology on Classification Accuracy: Chapter 4 delves into 

the influence of subject physiology on classification rates, a critical aspect often 

overlooked in ML applications. This investigation aligns with the contemporary trend 

in the ML community that emphasizes the significance of input data over other factors 

like algorithm selection or hyperparameter tuning. By assessing the effects of age, 

gender, and physiological diversity on activity detection accuracy, the research 

addresses a crucial question: how do these variations in the target population impact 

the efficacy of hand-crafted feature extraction and, consequently, the performance of 

classification algorithms? This exploration not only contributes to a deeper 

understanding of the subject matter but also guides the development of more inclusive 

and robust activity recognition systems. 

Exploration Beyond Spectrogram-Based Radar Classification: The second inquiry, 

discussed in Chapters 4 and 5, examines the limitations of traditional spectrogram-

based radar classification and explores innovative alternatives. The introduction of 

diverse radar representations marks a significant advancement in activity recognition. 

By employing a multi-domain approach, integrating features from various domains 

through feature selection and fusion, the research demonstrates a notable improvement 

in activity recognition accuracy. This approach not only optimizes classification 

accuracy in assisted living contexts but also highlights the potential of radar 

technology in broader applications. The use of masking pre-processing techniques to 

focus on relevant information in spectrograms further enhances classification rates, 

achieving up to 93.1% accuracy. This segment of the research showcases the 

transformative potential of radar-based Human Activity Recognition (HAR), 

expanding its applicability and generating renewed interest in the field. 

Optimization of the Proposed Model (Chapter 5) and Exploration of Gait Analysis 

(Chapter 6): In Chapter 5, the thesis also discusses the optimization of the proposed 

model through engineering approaches. However, recognizing the time-intensive 

nature and limited scope of improvement through these methods, the research went 

towards more robust tools like Evolutionary Algorithms (EA). The implementation of 

SADEA-I, for instance, allows for a more comprehensive optimization, encompassing 

not just the radar domains but also parameters within the Short-Time Fourier 

Transform (STFT) process, such as overlapping factor and time window length. The 

application of different classifiers, including SVM and AlexNet, validates this holistic 

optimization approach, demonstrating significant improvements in accuracy. 
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Additionally, the thesis explores personnel recognition through gait analysis in 

Chapter 6, an essential aspect of identity verification. By employing temporal 

classification algorithms, typically used in audio AI, the research achieves improved 

recognition rates without the need for explicit feature extraction. This approach 

leverages the similarities between radar and audio signals, both of which represent 

physical movements as spectral information. The use of Long Short-Term Memory 

(LSTM) based classifiers on spectrograms containing activity sequences enables the 

classification of complex signatures, encompassing micro-Doppler (mD) variations of 

gaits and range-time maps. This comprehensive analysis culminates in presenting the 

optimal performance of a single radar sensor for personnel recognition, based on 

realistic gait sequences, without the necessity for predefined feature generation. 

In essence, this thesis not only addresses fundamental questions in the realm of radar-

based activity recognition but also pushes the boundaries of current methodologies, 

offering innovative solutions and demonstrating their practical efficacy through 

empirical validation. The thesis stands out for its holistic approach to addressing the 

challenges in radar-based HAR, offering innovative solutions that are both 

theoretically sound and practically viable. The research work significantly advances 

the understanding and application of radar technology in human activity recognition, 

setting a new benchmark in the field. 

7.2 Limitations 

1. Performance Under Varying Noise Conditions 

One notable limitation of this work is the absence of testing the model's performance 

across different Signal-to-Noise Ratios (SNRs). The robustness of machine learning 

models, particularly in real-world applications, is often gauged by their ability to 

maintain high accuracy under varying levels of noise. By not evaluating the model 

across a spectrum of SNR conditions, the study may not fully represent the potential 

fluctuations in performance that could occur in noisy environments. This oversight 

limits the generalizability of the findings to scenarios where noise levels are controlled 

or minimal. 

2. Evaluation Across Different Aspect Angles 

The study did not explore the impact of different aspect angles on model performance. 

Aspect angle, the angle between the radar line of sight and the target orientation, can 

significantly affect the radar cross-section and, consequently, the signal characteristics. 
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The variation in aspect angles could introduce additional complexities in signal 

patterns, potentially influencing the model's accuracy. The exclusion of this variable 

from the analysis restricts the understanding of how changes in target orientation 

might affect the detection and classification capabilities of the model. 

3. Testing for Multiple Human Conditions 

Another limitation is the study's focus on a limited set of human conditions, without 

testing the model's efficacy in recognizing multiple, potentially overlapping human 

conditions. Human targets in radar data can exhibit a wide range of behaviors, 

activities, and physiological states, each presenting unique signal characteristics. The 

failure to test the model against a diverse array of human conditions may overlook its 

ability to differentiate between complex and nuanced patterns, limiting its 

applicability in scenarios requiring fine-grained classification of human states. 

4. Handling of Unknown Classes 

The research did not address the model's response to unknown classes, a critical 

aspect of machine learning models deployed in dynamic environments. The ability to 

accurately identify or appropriately handle signals that do not belong to any of the 

trained categories is essential for practical applications. Without this consideration, the 

model's reliability, and adaptability in real-world situations, where unforeseen 

categories are likely, remain untested. 

5. Cross Subject Validation 

Cross-subject validation involves training the model on data from a subset of subjects 

and testing it on data from entirely different subjects. This method is crucial for 

assessing the model's generalizability across individuals with diverse physiological 

and behavioural characteristics. The primary reason for not utilizing cross-subject 

validation in our study stems from the initial scope and design of the research, which 

aimed to explore the feasibility and effectiveness of activity recognition techniques 

within a more controlled and homogeneous sample. This approach allowed for a 

focused analysis on the technical capabilities and limitations of the proposed models 

without the added variability introduced by cross-subject differences. 

However, the absence of cross-subject validation presents a notable limitation. It 

restricts our ability to claim robustness and applicability of the model across a broader 

population. Without testing the model on unseen subjects, there's a risk that the 

developed system might perform well on the training subjects but fail to generalize to 
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new individuals, due to variations in movement patterns, body shapes, and other 

individual-specific factors. Acknowledging this limitation, future work should 

consider incorporating cross-subject validation to ensure the model's effectiveness and 

reliability across diverse subjects. This would not only enhance the model's 

generalizability but also provide a more comprehensive understanding of its 

applicability in real-world scenarios, where variability among individuals is a given. 

6. Implications of Odd Number of Classes on Hierarchical Classification 

Finally, the study did not investigate the implications of having an odd number of 

classes in hierarchical classification systems. Hierarchical classification, a method 

used to categorize data into a tree-like structure of classes and subclasses, can be 

particularly sensitive to the number of classes at each level. An odd number of classes 

could pose challenges in balancing the classification tree, potentially impacting the 

efficiency and accuracy of the model. This oversight leaves unanswered questions 

regarding the optimal structuring of classes for hierarchical classification in similar 

studies. 

In conclusion, while this study makes significant contributions, these limitations 

highlight areas for future research to explore. Addressing these gaps could enhance 

the robustness, applicability, and understanding of machine learning models in radar 

signal processing and beyond. 

7.3 Future Trends 

1. Co-Learning of Multi-Modality 

The concept of multi-modal machine learning, as explored in this thesis, draws a 

parallel to the human cognitive process of perceiving the environment through 

multiple sensory modalities. This approach in machine learning seeks to process and 

correlate information from various data modalities, thereby enhancing the robustness 

and accuracy of Human Activity Recognition (HAR). Multi-modal learning primarily 

encompasses two methodologies: fusion and co-learning. 

Fusion, as discussed in this thesis, involves the integration of information from two or 

more domains for both training and validation. This method [230] capitalizes on the 

collective strengths and capabilities of different data modalities, offering a more 

comprehensive understanding and interpretation of the data. By amalgamating diverse 

sensory inputs, fusion-based multi-modal learning can achieve a higher level of 
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accuracy and reliability in HAR, surpassing the limitations of single-modality 

approaches [231]. 

Co-learning [232], on the other hand, is an innovative approach that focuses on the 

transfer of knowledge between different data modalities. This method explores how 

insights gained from auxiliary modalities can aid in the learning process of a model 

focused on a primary modality. The key advantage of co-learning lies in its ability to 

overcome the constraints of a single data modality by leveraging the strengths of 

others. Unlike fusion methods, co-learning requires the data from auxiliary modalities 

only during the training, not during testing. This characteristic is particularly 

advantageous in scenarios where certain modalities may be unavailable during the 

testing phase. Furthermore, co-learning can significantly benefit the learning process 

of a modality with limited data samples by utilizing correlated modalities that possess 

a richer dataset. This cross-modal knowledge transfer enhances the overall 

performance and adaptability of the learning model. An excellent example is [233], a 

knowledge distillation framework was proposed to distil knowledge from a teacher 

network taking depth videos as input to an RGB-based student network. The 

knowledge distillation was achieved by forcing the feature maps and prediction scores 

of the student network to be similar to the teacher network.  

2. Expanding on Algorithm and Domains 

The research conducted in this thesis, while comprehensive, represents only a subset 

of the myriad possibilities in the field of radar-based human activity recognition 

(HAR). Alternative research avenues and solutions, some of which are gaining 

traction in recent literature, offer intriguing prospects for future exploration. 

Another potential research direction involves the exploration of multi-dimensional 

radar data representations. While this thesis primarily utilizes 2D radar representations, 

the extension to higher-dimensional data structures, such as 3-D and even 4-D radar 

information [234], could offer deeper insights and more nuanced understanding of 

human activities. These multi-dimensional representations can capture additional 

aspects of the target's movements and environment, potentially leading to more 

accurate and detailed activity recognition. 

The transition to higher-dimensional radar data necessitates the development of 

advanced processing techniques and algorithms capable of handling the increased 

complexity and volume of data. This shift could also open up new possibilities in 

feature extraction, data fusion, and classification methodologies, further pushing the 

boundaries of what is achievable in radar-based HAR. Our holistic optimization 
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strategy encompasses the entire process of representation production, feature 

extraction, selection, fusion and learning process, extending its control to the. This 

approach not only streamlines the workflow but also ensures consistency and 

precision in the transformation of raw data into complex, multi-dimensional 

representations, crucial for advanced analysis and interpretation. 

 

Figure 43 The target of combination of holistic optimization procedures, controlling every domain 
generation 

3. Interpretability and Trust for ML methods 

A significant hurdle in the broader adoption of ML techniques in HAR is the 'Black 

Box' problem, particularly prevalent in complex methods like deep learning [235]. 

The opaque nature of these algorithms, where the decision-making processes are not 

readily interpretable by humans, poses risks in applications where safety and security 

are paramount. This lack of transparency can lead to trust issues [236], complicating 

verification processes and creating legal ambiguities in the event of system failures or 

accidents. The issue of diversity in datasets is highlighted by our findings in Chapter 4, 

where distinct variations in machine learning model predictions were observed 

between datasets of adults and elders. This underscores the necessity of addressing 

diversity in dataset composition to ensure the robustness and generalizability of 

predictive models. 

As ML methods gain traction in HAR, the need for interpretability becomes 

increasingly critical. It is essential for users, be they system operators or end-users, to 
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understand the behaviour of these systems. This understanding not only fosters trust 

but also opens avenues for user-based control, justification, and performance 

enhancement [235], [236]. Recent advancements in tools for visualizing the activity of 

neurons in hidden layers of neural networks offer a glimpse into potential solutions. 

Such tools can demystify the training processes of neural networks, making them 

more accessible to non-experts. This approach could serve as a model for making 

other ML-based methods more interpretable, thereby addressing potential liability 

issues and enhancing the overall reliability and trustworthiness of HAR systems. 
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