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Abstract 

Biochar production through pyrolysis of various agricultural wastes has the potential to effectively 

reduce waste disposal issues and mitigate the potential impact of global warming. This thesis firstly 

provided a comprehensive review of the state-of-the-art knowledge on the pyrolysis processing of 

agricultural waste, its influencing factors, and the multifunctional application of biochar. 

Meanwhile, machine learning modelling, life cycle assessment, multiple-objective optimization 

are reviewed in the context of advancing biochar production and applications, providing more 

effective means of optimising processes and assessing environmental impacts. However, existing 

studies tend to be targeted at individual machine learning models or environmental assessment 

approaches. From a time- and cost-saving perspective, the process operating parameters and the 

type of biomass must be appropriately selected to obtain the desired product yield and 

characteristics. It is necessary to determine the environmental performance of the process before 

deciding to apply the technology on a large scale. Thus, this thesis has innovatively developed a 

framework containing life cycle assessment method, machine learning modelling, multi-objective 

optimisation and multi-criteria decision making. Key aspects of the study included the comparison 

of machine learning methods for predicting the influences of agricultural waste compositions and 

process conditions on biochar production. Specifically, Multi-layer Perceptron Neural Network 

and Gaussian Process Regression models were compared in terms of their accuracy in predicting 

biochar yields and properties. An environmental impact assessment framework was developed by 

combining Machine Learning and Life Cycle Assessment to assess the carbon footprint of biochar 

production and soil application, highlighting the potential of biochar soil application to achieve 

negative carbon emissions. By combining Multi-Objective Optimization and Multi-Criteria 

Decision-Making techniques with Life Cycle Assessment, this study also developed a novel 
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framework to optimise the biochar production process and analysis its environmental impact. 

Together, this research aimed to support the development of application-oriented biochar process 

pathways for agricultural waste management and low carbon development, promoting sustainable 

agricultural practices.  
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Chapter 1 Introduction 

1.1 Background  

The Intergovernmental Panel on Climate Change (IPCC) has presented evidence indicating a 

significant rise in global temperatures over the past three decades, with an approximate increase 

of 0.78°C. This emphasises the urgent need to limit the temperature rise to mitigate the adverse 

impacts of global warming. Effective reduction in Greenhouse Gas (GHG) emissions is necessary 

to achieve the net-zero target established by the IPCC [1]. However, mitigating climate change 

requires not only reducing GHG but also the withdrawal of atmospheric Carbon Dioxide (CO2). 

The utilisation of biomass waste is one of the feasible methods to facilitate the fulfilment of the 

net-zero target. Globally, about 140 Gt of biomass waste is generated annually, which poses a 

major management problem, as directly discharged biomass can negatively impact the 

environment [2]. Recently, agricultural waste has received significant attention, as the increasing 

demand for food and farmland resources by a growing population leads to the intensification of 

agricultural activities. Significant emissions from direct discharge and subsequent combustion of 

agricultural wastes deplete soil organic matter and micronutrients, leading to soil degradation and 

increasing GHG emissions, contributing to air pollution and climate change [3]. In numerous 

developing countries, most agricultural wastes are not utilised or disposed of but are left to 

decompose naturally in the field or openly combusted. This results in air pollutants such as 

Hydrogen Sulfide (H2S), Sulphur Dioxide (SO2) and Ammonia (NH3) emissions and limited 

resource utilisation efficiency [4]. About 21 per cent of GHG emissions have been recorded as 

coming from agricultural activities, which negatively affects the environment and human health 

[5]. Subsequently, recent research has focused on developing new approaches for environment-

friendly bioresource recovery from agricultural waste towards achieving global net-zero goals. 
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Agricultural waste can be converted to various value-added products via thermochemical or 

thermophysical treatments. Among them, pyrolysis is a thermochemical process that involves the 

heating of carbon-rich materials (e.g., crop residues, animal manure, woody waste etc.) in an inert 

atmosphere to generate biochar, bio-oil, and gas as value-added products [6]. There are six major 

types of pyrolysis technologies: fast pyrolysis, flash pyrolysis, slow pyrolysis, vacuum pyrolysis, 

hydro-pyrolysis, and Microwave Pyrolysis (MWP). These technologies differ by their Heating 

Rate (HR), Pyrolysis Temperature (PT), Residence Time (RT), reaction environments, and heating 

methods. In general, different pyrolysis technologies produce varying proportions of value-added 

products [7]. For example, the fast, flash, and vacuum pyrolysis processes favour the production 

of bio-oil, while hydro-pyrolysis mainly produces gas under high pressure and in a hydrogen 

atmosphere [8,9]. Among these technologies, slow pyrolysis is promising for biochar production 

[10,11].  

 

Biochar, being a carbon-rich material has been utilized in a wide variety of applications due to 

important characteristics such as high carbon (C) content, N content and structural stability [12]. 

It has the potential for carbon sequestration by effectively removing carbon from the atmospheric 

carbon cycle and transferring it to long-term storage in the soil [13]. The performance of biochar 

in these applications and associated environmental impacts is contingent upon the physicochemical 

properties of biochar that are closely related to pyrolysis process conditions and the composition 

of feedstocks [14,15]. The environmental benefits (or drawbacks) of a biochar production 

technology are strongly interlinked with the selection of feedstock, operating conditions, reactor 
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specifications, and targeted applications, which necessitates adopting a whole-system approach for 

rapid process design and optimization. 

 

Over the past decades, the prediction of biochar pyrolysis processes has relied heavily on 

theoretical models. They are based on theoretical frameworks and principles derived from 

empirical observations, mathematical proofs, or logical reasoning. These models typically 

attempted to describe the underlying mechanisms of the biochar production process. Despite the 

value of these models in complex process design, their semi-empirical nature and computational 

complexity have limited their widespread use in biochar production prediction. Comparatively, 

empirical correlation methods are constrained by experimental conditions and biomass range, 

making it difficult to generalise their use [16]. However, with the large amount of pyrolysis 

experimental data and the development of Artificial Intelligence (AI) technology, data-driven 

modelling has become popular. Machine learning (ML) models are data-driven and they learn 

patterns from large datasets and use this learnt information to make predictions or decisions 

without explicit programming for the task. Major model types include Neural Network (NN), 

Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Gradient 

Boosting Algorithm (GBA), Tree regression, Ensembles, Artificial Neuro-Fuzzy Inference System 

(ANFIS), and Gaussian Process Regression (GPR) [17]. These models have data prediction ability 

and short computation time and can effectively handle complex data trends.  

 

Data-driven ML model has become an advanced approach for processing complex data and 

building efficient predictive models. Meanwhile, Multi-Objective Optimization (MOO) method is 

widely used to solve complex problems that require simultaneous consideration of multiple 
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objectives or evaluation criteria. The core idea of MOO is to find trade-offs among different 

objectives to achieve optimal performance in each aspect [18]. To further guide and refine the 

decision-making process, Multi-Criteria Decision Making (MCDM) provides an integrated 

approach for evaluating and selecting the best solution (especially among multiple feasible 

solutions). Combining ML with MOO and MCDM offers a practical approach to extracting 

information from data, optimising multiple objectives, and incorporating multi-criteria evaluation 

to develop informed decisions [19]. However, this combination is not simply a stack of 

technologies. Thus, the effectiveness of the overall approach will be evaluated in conjunction with 

the biochar applications when integrating ML, MOO and MCDM. 

 

Biochar soil applications in climate change mitigation strategies contribute to food security by 

effectively managing agricultural waste and using it as a soil amendment. The soil application of 

biochar combats climate change by directly increasing the soil carbon storage and reducing N2O 

emissions, and indirectly by improving soil fertility and reducing the need for chemical fertilisers 

and promoting efficient N cycling in terms of its use as a N fertiliser substitute. Both reflect the 

important role of biochar in sustainable agriculture and environmental protection. Meanwhile, 

biochar promotes soil microbial diversity by improving soil quality, crop drought tolerance and 

nutrient utilisation, thereby supporting effective agricultural practices, increasing crop yields and 

contributing to food security. It is also key to maintaining healthy soil conditions for No Poverty 

and Zero Hunger as part of the United Nation (UN) Sustainable Development Goals [20]. Hence, 

there has been significant research on biochar production and soil application in the past decade. 

Two of the most promising advantages are its carbon sequestration potential and the ability to serve 

as a substitute for N fertiliser. It can remain in the soil environment for decades or longer and 
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significantly reduce/delay carbon emissions from biomass. From a carbon sequestration 

perspective, the application of biochar is a potential climate change mitigation strategy [21]. On 

the other hand, the application of biochar to soil can also reduce the need for N fertiliser. Biochar 

has been shown to have the ability to enhance soil nutrient retention, which can provide a source 

of slow-releasing N for crops to increase crop growth. In addition, GHG emissions associated with 

N fertiliser production and application can be indirectly reduced through the replacement of N 

fertiliser by biochar [22]. 

 

Life Cycle Assessment (LCA) is an essential tool in environmental management, providing a 

comprehensive approach to assessing the environmental impact of a product, process, or service 

from "cradle to grave". By providing a comprehensive plan for the entire life cycle, from raw 

material extraction to end-of-life disposal, LCA reveals the holistic and breakdown environmental 

impacts of processes and applications. It also can help identify the key "hotspots" to improve the 

environmental impacts of a product, process, or system. Since the late 1990s, ISO has been 

working to coordinate the LCA process and developed ISO 14040 series standards. Using LCA, it 

is possible to determine all energy requirements, material requirements, and environmental 

emissions related to the product's manufacturing, transportation, application, and disposal phases 

throughout its life cycle. LCA consists of four phases: goal and scope definition, Life Cycle 

Inventory (LCI), Life Cycle Impact Assessment (LCIA), and Life Cycle Interpretation [23,24]. 

LCA is increasingly used to assess the environmental footprint of biochar soil systems and to reveal 

their potential as sustainable soil amendments. It allows the overall environmental impact of 

biochar production to be measured, from the source of the biomass to pyrolysis and its subsequent 
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soil application. LCA approach is essential for identifying issues that need to be improved and 

ensuring that biochar applications are in line with sustainable development goals [25]. 

 

During the last decade, there has been an increasing amount of research on ML and LCA for 

biochar production and its application in soils. However, not just considering each method in 

isolation but integrating each method into a comprehensive framework has attracted significant 

interest and shows great potential for fulfilling the research gap. A more comprehensive and refined 

integrated framework is needed to understand biochar production and its applications. In this study, 

ML was integrated with MOO- MCDM, then subsequently with LCA. Developing this integrated 

framework provides an in-depth understanding of the process efficiency and environmental 

benefits of biochar systems. 

1.2 Research Aim and Objectives 

This study aims to provide a comprehensive assessment of the production process and properties 

of biochar, as well as its benefits and potential for soil applications. By analysing in depth how 

biochar improves soil quality and exploring its contribution to environmental sustainability, it aims 

to provide sustainable solutions for agricultural waste treatment, as well as assessment for biochar 

carbon sequestration potential and reduction of GHG emissions. To achieve the research aims and 

objectives, this study proposed a framework that integrates ML modelling, LCA and MOO-

MCDM. The framework aims to assess the production and application processes of biochar and 

optimise their environmental benefits. Firstly, the high accuracy and comprehensive ML models 

were designed to predict the biochar yield and its properties. Then, through MOO-MCDM, the 

optimal process condition solutions were selected. Finally, LCA was utilised to quantify the Global 
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Warming Potential (GWP) of biochar in soil applications. Thus, the core objectives of this study 

can be summarised as follows: 

• To identify and discuss the impact factors affecting biochar production and properties, 

which include PT, RT, HR, Fixed Carbon (FC), Volatile Matter (VM), ash.  

• To build high accuracy ML models to predict biochar yield and properties, and to explore 

the importance level between different factors on biochar yield and properties. 

• The ML model is to be combined with MOO-MCDM to explore the optimised pyrolysis 

conditions and the properties of the feedstock to achieve a relatively optimal solution of 

biochar yield and properties. 

• The optimised solution of biochar yield and properties will be coupled with the LCA 

approach to assess the environmental impacts of biochar soil application to to assess the 

production and application processes of biochar to optimise its environmental benefits. 

1.3 Thesis Outline  

This thesis is constructed as an alternative format thesis. Chapters 2 to 5 are based on manuscripts 

that have been published or are intended for publication. Fig. 1-1. illustrates the components of 

this study, and the structure of the thesis.  

 

In Chapter 2, The impact of biomass composition on biochar production is explored, and different 

pyrolysis reactions and their technical characteristics are reviewed in detail. Subsequently, the 

impact of pyrolysis parameters on biochar yield and properties is analysed. Furthermore, an in-

depth review of advanced biochar applications, including biochar stability, LCA, ML modelling 

and other state-of-the-art applications, is provided. Also, it reveals the key challenges in biochar 

production and application. 
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In Chapter 3, two data-driven ML models based on Multi-layer Perceptron Neural Network (MLP-

NN) and ANFIS are developed. The data-driven models predict biochar yield and compositions 

from a variety of input feedstock compositions and pyrolysis process conditions. Feature 

importance assessment of the input dataset revealed their competitive significance for predicting 

biochar yield and compositions.  

 

In Chapter 4, a framework combining ML modelling and LCA is presented to assess the carbon 

footprint of biochar soil applications. Five ML models are developed to predict the yield and 

properties of biochar, and the performance of five different models is assessed. The optimised 

model prediction results are further applied to the LCA of biochar soil applications. An 

environmental impact analysis is conducted considering biochar produced at different PTs for two 

fertiliser substitution scenarios, as well as carbon sequestration potential. 

 

In Chapter 5, an integrated ML-MOO-MCDM-LCA framework is developed. The optimization 

strategy is provided for pyrolysis-based biochar production and soil application with the 

consideration of environmental impacts and process efficiency. The ML models in Chapters 3 and 

4 provide the necessary predictive data to support the LCA in the framework. The optimised 

biochar production parameters were applied in the LCA to analyse the GWP of the optimal scenario 

which was then compared with the baseline scenario shown in Chapter 4. 

 

Chapter 6 summaries the outcomes of the research, makes recommendations based on the issues 

arising from the research and gives ideas for future work desired.  
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Fig. 1-1. Project flow chart, including the different stages of the study and the analytical methods 

used. The arrows indicate how the processes are interrelated. 

Project objectives

Literature review

Model Development

Moo-MCDM

5 ML models

MLP-NN 
SVM 

Treeregression 
Ensembles 

GPR

Optimal 
model

R2

RMSE

Evaluation 
metrics

NSGA-II

GRA
MABAC
PROBID

SAW
TOPSIS

LCA

Biochar soil 
application

Carbon sequestration 
potential

&
N-fertiliser substitution 

Total GWP 

5 MCDM methods

The framework combine ML model, LCA, and MOO-MCDM



 32 

Chapter 2 Literature Review 

The Chapter is based on the publication “Yize Li et al. “Review of biochar production via crop 

residue pyrolysis: Development and perspectives.” Bioresource Technology (2022): 128423”.   

2.1 Agricultural Waste  

The composition of feedstocks plays a vital role in biochar production and determines the final 

product characteristics and quality [26]. Compared to woody biomass and organic waste (e.g., 

manure, sewage sludge, and compost), agricultural wastes have low ash contents, high calorific 

values, and fewer voids [27]. A wide variety of agricultural wastes can be utilized as feedstock for 

pyrolysis-based biochar production (See Table 2-1). Proximate, ultimate, and lignocellulosic are 

the three main compositional metrics for agricultural wastes. The proximate composition of 

biomass includes FC, VM, ash, and MC. For most agricultural waste feedstocks, FC, VM, ash, and 

MC content are in the ranges of 3–26%, 65–90%, 1–15%, and 0–10%, respectively (see Table 2-

1). FC, VM, ash content and MC are critical in affecting the pyrolysis process and the production 

biochar, and this section focuses on how agricultural waste composition affects biochar 

composition. How the composition of biochar affects its application will also be discussed. The 

feedstock type predominantly influences the FC and ash contents of biochar. Among these 

compositions, ash and VM contents are critical factors for biochar when utilized for soil 

amendment applications [28], whilst biochar with a high ash content shows great potential as a 

catalyst for thermal conversion technologies. Nevertheless, a high ash content of biochar may be 

undesirable for adsorption-related applications, since it can limit the accessibility of adsorption 

sites on biochar surface and a high ash content often reduces the micropore surface area. Generally, 

agricultural wastes have lower ash contents than organic waste, which leads to higher SSA and 

porosity in agricultural wastes-based biochar [29]. The FC content of biochar is a key parameter 
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in assessing its stability and potential for sequestering atmospheric carbon. Moreover, MC can 

significantly affect harvest, transport, storage, and biochar production [30]. Intuitively, a lower 

value of MC is favourable for transportation and storage purposes due to significant volume 

reduction and is generally good for achieving higher energy efficiency for pyrolysis. 

 

Another important compositional aspect is the ultimate composition, which includes C, H, O, N, 

and S. Among all these elements, C has the highest proportion in most biomass followed by O and 

H, accounting for 40–65%, 25–50%, and 5–10%, respectively (See Table 2-1). Besides, the 

negligible amount of S and N in raw agricultural biomass indicates that limited toxic gases (H2S 

and N2O) are emitted during the pyrolysis process. The C content of biochar depends on the types 

of feedstocks, and agricultural wastes-based biochar generally has a higher C content than organic 

wastes such as manure and sewage sludge [27]. It was reported that higher C and O contents in 

feedstocks could result in higher yields and the net calorific value of biochar [31]. The H/C and 

O/C ratios in produced biochar determine its stability, aromaticity, and polarity. The decrease in 

H/C and O/C ratios corresponds to the high aromaticity and low polarity of biochar, suggesting 

that the biochar has excellent resistance to microbial decomposition, making it a strong contender 

in the MFC industry [32]. The N content of biochar is a critical factor for its fertiliser application. 

A high content of macromolecular amino acids and proteins in the feedstock will result in a high 

N content in biochar. Among agricultural waste, woody biomass and organic wastes, the N content 

of agricultural waste is normally higher than woody biomass and lower than organic wastes [33].  

 

The structural composition of agricultural wastes is quantified by Lignin, Cellulose, and 

Hemicellulose (L-C-H) contents, which strongly regulate biochar yields and properties. The L-C-
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H of agricultural biomass is in the range of 9–27%, 28–47%, and 11–39%, respectively [34,35]. 

They decompose in the temperature range of 200 to 500 °C, 300 to 380 °C, and 200 to 300 °C, 

respectively [34]. The degradation of L-C-H with increasing PT leads to an increase in gas yields 

(e.g., CO, CO2, CH4, and H2), indicating a decrease in biochar yields. Meanwhile, the pyrolysis 

rate increases when cellulose and hemicellulose contents are higher than lignin, which results in 

high bio-oil and low biochar yields [36]. However, The SSA and porosity of biochar are higher if 

there is a higher lignin content in feedstock [29].  

Table 2-1. The proximate and ultimate analysis of various crop-based biomass (db: dry basis). 

Feedstock FC  

(% 

db.) 

VM  

(% 

db.) 

Ash  

(% 

db.) 

MC  

(% 

db.)  

C  

(% 

db.) 

H  

(% 

db.) 

O  

(% 

db.) 

N  

(% 

db.) 

S  

(% 

db.) 

Refs 

Corncob 12.45 82.38 5.04 0 47.4 5.8 50.1 0.6 0.1 [37] 

Corn stalk  14.68 82.42 2.91 0 43.6 5.8 49.4 1.1 0.1 [37] 

Corn stover 8.93 82.21 8.86 0 43.28 5.92 39.32 1.96 0.66 [38] 

Sugarcane 

bagasse 

8.87 81.23 2.51 7.39 49.26 5.26 44.95 0.43 0.1 [39] 

Coconut 

shell 

11.10 75.50 3.20 10.10 64.23 6.89 27.61 0.77 0.50 [40] 

 

Coconut 

fiber 

11.10 80.85 8.05 0 47.75 5.61 45.51 0.90 0.23 [40] 

Wheat 

straw 

9.93 80.7 9.37 0 42.95 5.64 40.51 0.76 0.78 [38] 

Rice husk  11.44 73.41 15.14 0.01 41.92 6.34 - 1.85 0.47   [41] 
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Rice straw 10.06 76.87 13.07 0 40.06 5.47 40.23 0.69 0.48 [42] 

Rape stalk 7.49 86.09 6.42 0 43.92 5.92 42.54 0.49 0.71 [38] 

Cassava 

stem 

16.07 81.51 2.42 0 44.47 5.82 48.88 0.01 0.83 [35] 

Cassava 

rhizome 

9.08 83.64 7.28 0 41.78 5.97 51.07 0.26 0.92 [35] 

Cotton stalk 10.17 82.38 7.45 0 43.95 5.81 41.12 1.12 0.56 [42] 

Banana 

leaves 

16.92 84.82 6.72 0 43.50 6.20 42.30 0.80 0.90 [43] 

Sugarcane 

straw 

3.22 87.61 9.17 3.12 41.88 5.87 41.72 0.47 - [44] 

Barley 

straw 

11.83 78.8 6.43 2.94 45.41 6.1 46.21 1.18 - [45] 

Flax straw 11.4 81.3 2.9 4.4 44.4 6.7 46.5 1.4 1.2 [46] 

Maize cobs 25.51 72.95 1.54 0 46.92 6.08 44.86 0.61 - [47] 

Maize husk 22.79 74.24 2.97 0 44.96 6.02 45.57 0.48 - [47] 

Maize 

leaves 

22.73 67.78 9.49 0 43.68 5.82 39.88 1.06 0.06 [47] 
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2.2 Pyrolysis Technologies 

Based on the choice of agricultural wastes feedstock for pyrolysis, appropriate pyrolysis 

technology must be selected for optimal biochar production in terms of (e.g., process efficiency, 

economics, environmental impacts, etc). This review focuses on six major types of pyrolysis 

technologies: fast, slow, flash, vacuum, MWP, and hydro pyrolysis depending on operation 

conditions (see Table 2-2).  

Table 2-2. Different types of pyrolysis processes and associated reaction parameters. 

Technology Fast  Slow MWP Flash Vacuum  Hydro  

Pressure (Mpa) 0.1 0.1 0.1-0.3 0.1 0.01-0.10 10-17 
RT (s) 0.5-10 300-7200 <30 <1 <1 60-120 
HR (°C/s) 10-200 0.1-1 0.5-2 >1000 0.1-1 10-300 
PT (°C) 500-1200 300-600 300-700 900-1300 300-700 350-600 
Gaseous 
environment 

Inert Inert Inert Inert Inert 
atmosphere 
under 
vacuum 

Hydrogen 

Refs [8,48,49] [13,36,49–
51] 

[11,52,53] [49,54,55] [9,56–58] [59–62] 

 

2.2.1 Slow Pyrolysis 

Slow pyrolysis is operated at a relatively low HR (0.1 to 1 °C/s) and long RT (300 to 7200 s), while 

having PT in the range of 300 to 700 °C [13]. The low HR reduces secondary pyrolysis and thermal 

cracking of biomass, favouring biochar formation as the main product [50]. Biswas et al. [41] 

carried out slow pyrolysis experiments for four types of agricultural wastes that were converted to 

bio-products. In the experiments, the PT was within the range of 300–450 °C, while the RT and 

HR were kept constant (RT = 3600 s and HR = 0.33 °C/s). Among the four feedstocks (corn cob, 

rice straw, rice husk, and wheat straw), rice husk achieved the highest biochar yield (43.3%) at 

300 °C. Furthermore, the biochar yield decreased from 43.3% to 35.0% when the PT increased 
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from 300 to 450 °C. Zhang et al. [51] utilized slow pyrolysis of agricultural wastes such as wheat, 

corn, rape, and rice straws to produce biochar. The associated PT was varied within the range of 

300–600 °C, while the HR and RT were fixed at 0.17 °C/s and 3600 s. For the different types of 

feedstocks, the effects of PT on biochar yield were similar, and the biochar yield decreased for 

higher values of PT. For instance, the highest biochar yield was 51.4% from rice straw at 300 °C, 

while the lowest biochar was 27.32% at 600 °C from rape straw. 

2.2.2 Microwave Pyrolysis 

MWP is an emerging technology for efficient biomass conversion into value-added bio-products. 

Unlike Conventional Pyrolysis (CP), the heating energy is supplied via microwaves that penetrate 

the feedstocks, and cause their internal molecules to vibrate i.e., phononic oscillations non-

intrusively [63]. The MWP parameters that significantly influence product yields and 

characteristics include microwave power, amount and concentration of microwave absorber, initial 

MC, purge gas flow rate, and RT [64]. 

 

There have been several studies to assess the influences of parametric changes toward the efficacy 

of MWP-based processes. For instance, canola and wheat straws were pyrolysed under variable 

PTs (300, 400, and 500 °C) with a microwave frequency of 2.45 GHz [11]. As the PT increased, 

the biochar yield decreased while the thermal stability of the derived biochar increased. Besides, 

the biochar produced at 500 °C was more favourable for use as a soil conditioner with the highest 

carbon stability, while the biochar prepared at 300 °C showed the greatest affinity for inorganic 

and polar organic pollutants due to its highest polarity, which could be used as an adsorbent. This 

suggests that by tuning the MWP parameters, the resultant biochar can be tuned for a bespoke 

application. Li et al. [53] proposed a new approach by combining conventional pre-pyrolysis with 



 38 

MWP to produce biochar from the cotton stalk. Experiments were conducted within a PT range of 

250–450 °C while lowering the ramp-up time from 124 to 20 s (compared to MWP). This is 

synergetic to increase the HR in the case of CP processes. By adopting this strategy, the biochar 

yield was increased from 21% to 33% (compared to MWP) with a high C content (>70%). The 

biochar produced by MWP is also featured by a higher SSA and adsorption ability than those 

derived via CP. According to a latest study, where the corn stalk was irradiated for 600 s within a 

power range of 100–600 W, the maximum SSA of the produced biochar was 325.2 m2g−1, which 

could adsorb aromatic hydrocarbons (e.g., 54.75 mg/g benzene and 48.73 mg/g o-xylene) [65]. 

2.2.3 Fast and Flash Pyrolysis 

Fast pyrolysis is featured a high HR (10–200 °C/s), during which biomass is prone to be converted 

to liquid products over biochar formation [8]. The PT is within the range of 500–1200 °C, at which 

thermal cracking occurs, and the RT is controlled within the range of 0.5–10 s to reduce char 

formation [48,49]. Flash pyrolysis being a variation of fast pyrolysis has a higher HR (>1000 °C/s) 

and PT (>900 °C) [54]. The high HR combined with the high PT and short RT (<1 s) result in high 

bio-oil and low biochar yields. Both fast and flash pyrolysis are unfavourable for biochar 

production. Although fast and flash pyrolysis do not favour biochar formation, the biochar formed 

by these methods has higher SSA than that derived through slow pyrolysis. As the solid matrix of 

the biochar contracts at elevated temperatures, its initially larger pores diminish in size. This 

compaction effect consequently increases the SSA of biochar, as more SSA is encapsulated within 

smaller pores. Additionally, this enhances the accessibility of diffusion and reaction sites, as more 

reactive sites become readily exposed to the surrounding environment [66].  
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2.2.4 Vacuum Pyrolysis 

Vacuum pyrolysis utilises a reactor operating in a sub-atmospheric pressure regime to thermally 

degrade the feedstock in the absence of O. The pressure, PT, and HR were reported to be in the 

ranges of 0.01–0.20 MPa, 300–700 °C, and 0.1–1 °C/s, respectively [56,67]. Due to the inhibition 

of secondary degradation, which is essential for biochar production, the vacuum pyrolysis reaction 

produces high yields of bio-oil [9]. This is attributed to the disproportionate removal of VM at a 

higher PT, generating higher levels of heating and thus higher levels of biomass decomposition. 

For vacuum pyrolysis, raising the PT lowers the biochar yield which is synergistic with other types 

of pyrolysis [58].  

2.2.5 Hydro-Pyrolysis 

Hydro-pyrolysis is with a high-pressure hydrogen atmospheric condition within the reactor for the 

process. The process parameters for hydro-pyrolysis are generally in the following ranges: pressure 

= 10–17 MPa, PT = 350–600 °C, HR = 10–300 °C/s, and RT > 60 s [60]. It was reported that the 

technology under a high-pressure hydrogen-based gaseous condition could increase the yields of 

gas and aromatic hydrocarbons by 19% and 57%, respectively, when compared with CP operating 

at an inert atmosphere condition [62]. High hydrogen pressure synergistically increases the biochar 

yield and reduces the yield of tar and light aromatics through secondary reactions. According to 

Wang and Song [61], the co-loading of Zinc (Zn) and Gallium (Ga) in hydro-pyrolysis significantly 

increased the aromatic hydrocarbon yield by 37.4%. However, due to the presence of oxygenated 

compounds (e.g., acids and aldehydes), the produced bio-oil cannot be directly used as a 

transportation fuel. Therefore, it needs to be further upgraded by e.g., hydrotreating, incurring 

additional process complexity and costs and making hydro-pyrolysis a less-popular standalone 

technology [59].  
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2.3 Effects of Pyrolysis Process Attributes 

The prior discussion on various pyrolysis technologies indicated that the selection of optimal 

process parameters is required for application-specific biochar production. Essential parameters 

that dictate the yield and quality of biochar are PT, particle size of feedstock, RT, HR, gas flow 

rate, reactor pressure, reactor design, and catalyst usage. The quality of biochar is usually assessed 

in terms of the chemical (elemental composition) and physical properties (SSA and Pore Volume 

(PV)) of the biochar (see Table 2-3, Table 2-4). 

2.3.1 Effects of Pyrolysis Temperature 

2.3.1.1 Biochar Properties 

The H/C and O/C ratios in produced biochar affect its stability and aromaticity. It was found that 

the C content in biochar increased when the PT increased. A further increase in PT resulted in 

fewer H- and O-containing functional groups due to dehydration and deoxygenation [68]. The 

increase in the C content and decrease in the H content resulted to a decrease of H/C, implying a 

more stable structure of biochar. In addition, the content of molten aromatic ring structures in 

biochar increased with PT, while that of unstable non-aromatic ring structures decreased [69]. 

 

The PV and SSA increased with increasing PT, especially when the PT was raised to above 550 °C. 

This is due to the release of VM from the feedstock. The biochar produced from Symphytum 

officinale L achieved the highest SSA and PV, being 273.8 m2g−1 and 0.243 cm3g−1, respectively, 

when the PT was 750 °C. Higher PTs created more cracks on the surface of biochar, resulting in 

greater porosity [70]. 
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2.3.1.2 Biochar Yield 

PT largely dictates biochar yields which generally decrease at elevated temperatures due to an 

increase in the primary decomposition of organic matter present in agricultural wastes. Secondary 

decomposition of biochar residues (charring and shedding) can also contribute to lower biochar 

yields by producing bio-oil. It was observed that the biochar yield from straw and corn stalk pellets 

decreased significantly as temperature increased [71]. According to Zhang et al. [51], the yield of 

straw-based (i.e., wheat, corn, rape, and rice straw) biochar decreased significantly with increasing 

the PT. A more stable downward trend in the biochar yield was observed when temperatures 

exceeded 400 °C. Another study showed the effect of PT on the yield of biochar produced from 

Symphytum officinale L For the PT range of 350–750 °C, the biochar yield gradually decreased 

with increasing PT [70]. 

2.3.2 Effects of Heating Rate 

2.3.2.1 Biochar Properties 

The HR also critically affects the PV and SSA of biochar. It was shown that the SSA of biochar 

prepared from rapeseed stem increased from 295.9 m2g−1 to 384.1 m2g−1 when the HR of the 

process increased from 1 °C/min to 20 °C/min [72]. It was due to that a higher HR condition caused 

a larger extent of thermal decomposition. Furthermore, low HR conditions can facilitate the 

retention of structural complexity and avoid thermal cracking of biomass [73]. 

 

The ultimate composition of biochar can be affected by the HR. Li et al. [6] analysed the ultimate 

composition of biochar prepared from a lignin-dominated feedstock. Under different pyrolytic 

HRs (5, 10, 15, 20 °C/min), the elemental contents of biochar varied, even though the PT was kept 

same. The HR was varied from 5 °C/min to 20 °C/min and the PT was fixed to 700 °C. The C 
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content of biochar decreased from 94% to 85.4%, while the H content varied from 1.2% to 1.5%. 

It indicated that the H/C ratio increased as the HR increased, which indicated a lower biochar 

stability. 

2.3.2.2 Biochar Yield 

Under low HR conditions, the secondary decomposition of biomass is minimised, ultimately 

increasing the biochar yield. In contrast, large amounts of liquid and VM are produced at high HR 

conditions, resulting in lower biochar yields [74]. Tripathi et al. [49] investigated the effects of HR 

on biochar production from safflower seeds, Ferula orientalis L and Charthamus tinctorius L. The 

biochar yield decreased when the HR was increased from 30 °C/min to 50 °C/min at different 

temperatures between 400 and 600 °C. Zhao et al. [72] analysed the effects of HR on biochar 

production from rapeseed. As the HR was increased from 1 °C/min to 5 °C/min, the yield first 

showed a positive correlation with the rate, and the highest yield (27%) was achieved at 5 °C/min. 

Increasing the HR to above 5 °C/min reduced the biochar production and resulted in high yields 

of by-products due to the enhanced decomposition of organic matter and the production and release 

of carbon-rich vapour. 

2.3.3 Effect of Feedstock Particle Size 

2.3.3.1 Biochar Properties 

The particle size of feedstock usually affects biochar’s physical properties rather than elemental 

properties and controls the heat and mass transfer rate during the process. For instance, the SSA 

area of biochar increased from 5.2 to 51.1 m2g−1, while the porosity of biochar marginally 

decreased when the feedstock particle size decreased from 1 to 0.053 mm [75]. Besides, it was 

also reported that the Cation Exchange Capacity (CEC) and Anion Exchange Capacity (AEC) of 

biochar increased when particle size decreased from 0.25 mm to 0.053 mm [75,76]. According to 
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Chen et al. [77], finer feedstock-derived biochar is suitable to be applied for soil amendment, due 

to the higher degree of particle destruction and subsequent release of nutrients into the soil. 

2.3.3.2 Biochar Yield 

The particle size of feedstock also influences biochar yield. Larger biomass particles can result in 

longer contact time between vapour phase species and char layer, leading to a higher probability 

of secondary reactions and subsequent formation of additional biochar through re-polymerization 

[49]. This hypothesis is supported by findings in the literature where the biochar yield increased 

from 31.2% to 38.6% when the particle size of rice husk increased from 0.07 mm to 2.00 mm with 

500 °C PT [78]. Another study by Hong et al. [42] also showed a similar biochar yield trend 

regarding particle size: the biochar yield increased from 69.8% to 73.9% when the particle size of 

cotton stalk increased from 0.07 mm to 1.7 mm. 

2.3.4 Effect of Residence Time 

2.3.4.1 Biochar Properties 

The RT could affect biochar’s ultimate composition. Abbas et al. [78] analysed the effects of RT 

on the biochar produced from rice husk. The C content was increased from 63.28% to 70.89% and 

H content slightly decreased from 4.87% to 2.09% when the RT increased from 30 min to 90 min 

at 500 °C. Accordingly, the H/C ratio decreased from 0.924 to 0.354, indicating a more stable 

structure of biochar. The effects of RT on biochar properties have been determined alongside other 

influential parameters such as PT, feedstock type, and HR [26]. More research is needed to unveil 

the contribution of RT towards biochar characteristics independently. 

2.3.4.2. Biochar Yield 

The RT is recommended to be within the range of 5–90 min for biochar production via slow 

pyrolysis [51]. It was shown that increasing the RT from 10 to 100 min decreased the biochar yield 
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from 29.6% to 28.6% [72]. For a what-if scenario analysis on RT, Sun et al. [15] increased the RT 

from 0.5 h to 24 h with a constant PT of 300 °C and wheat straw as the feedstock. The study 

showed that the biochar yield drastically decreased from 58.2% (RT = 0.5 h) to 18.8% (RT = 24 

h), while the FC and ash contents of biochar increased from 28.3% to 44.4%, and from 8.6% to 

9.8%, respectively. This was because longer RT enabled further decomposition of feedstock that 

converted biochar into the two co-products (i.e., bio-oil and gas). 

2.3.5 Effect of Other Parameters 

2.3.5.1. Gas Type and Flow Rate 

The gas flow rate through the pyrolysis reactor affects the contact time between the primary vapour 

and biochar, therefore affecting the degree of secondary char formation. Moderate to high levels 

of vapours are formed during the pyrolysis of biomass. If not removed, the vapours will participate 

in secondary reactions, changing the composition and yield of biochar. Low gas flow rates favour 

higher biochar yields and are favourable on slow pyrolysis, while higher gas flow rates are used 

for fast pyrolysis to effectively strip out the vapour once it has been formed. For example, it was 

shown that biochar yield decreased from 24.4% to 22.6% when the nitrogen flow rate was 

increased from 1.2 L/min to 4.5 L/min [49]. 

 

Pathomrotsakun et al. [79] applied a low CO2 flow (flow rate = 50 mL/min) in their process, where 

the corresponding optimal values of RT and PT were 30 min and 300 °C. The H/C and O/C ratios, 

Higher Heating Value (HHV), and energy yields of the resulting biochar were 0.94 and 0.14, 31.12 

MJ/kg, and 48.04%, respectively. This work suggested that CO2 can be used as a substitute for 

nitrogen, which has the potential to improve the environmental footprint of biochar production by 

integrating it with a CO2 source. Sessa et al. [80] investigated the impacts of four different types 
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of inert gases (helium, nitrogen, argon, and CO2) on biochar production. The scenario with CO2 as 

the inert gas achieved the highest yield and best quality of biochar. When the flow rate was 0.1 

L/min, the biochar yield reached 41.2% in a CO2 environment, higher than the other types of inert 

gas (i.e., helium, nitrogen, and argon). 

2.3.5.2. Pressure 

Except for hydro-pyrolysis, all other types of pyrolysis are carried out under an inert environment. 

High pressure can extend the RT of pyrolysis vapours, increasing the decomposition rate [73]. Also, 

it was reported that biochar yields decreased with increasing pressure. Melligan et al. [81] showed 

a slight decrease in the biochar yield obtained from Miscanthus giganteus, when the pressure 

increased from 0 to 12 bar with a temperature condition of below 800 °C. It should be noted that 

pyrolysis at high-pressure conditions requires more stringent reactor design and thus higher 

construction or capital costs. Also, high pressures conditions require high maintenance costs for 

the operation of pyrolysis reactors. 

2.3.5.3 Reactor Selection 

Large-scale biochar production has stringent requirements on continuous production and quality 

control, which is contingent upon pyrolysis reactor design and operation [82]. Fig. 2-1 shows six 

types of popularly used pyrolysis reactors: (a) fixed bed, (b) earthen kiln, (c) rotary kiln, (d) 

fluidised bed, (e) auger reactor, (f) spouted bed [83]. The fixed bed pyrolysis reactor typically 

consists of a fixed bed with heating, a gas collector, a liquid condenser, and a temperature controller. 

It has several typical features such as operation under batch regime, easy design, and high 

adaptability for various feedstock particle sizes. However, it also has some drawbacks, such as 

heat transfer limitations and challenges for continuous operation [84]. A fluidised bed reactor is 

typically suitable for the condition of high HR, short RT, and continuous operation. Nevertheless, 
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the drawbacks of this type of reactor include complex design and operation (high costs) and fine-

sized feedstocks requirement (<0.08 mm) [85]. The earthen kiln is a traditional type of biochar 

production design, with difficult-to-control operating parameters, long RT, and a low production 

conversion efficiency [86]. The indirect-heating pyrolysis technology has been applied to a rotary 

kiln, which could perform in a continuous mode without a heat carrier. However, its poor heat 

transfer efficiency and gas–solid contact limit the catalyst application for higher process 

performance [87]. An auger reactor has similar advantages to a rotary kiln, but its mechanical drive 

often leads to high energy consumption [83,88]. The spouted bed reactor is characterised by high 

heat transfer rates and gas–solid contact. It does not have a strict requirement on particle size, thus 

reducing the requirement for feedstock grinding. The main product of spouted bed pyrolysis is bio-

oil, and only produces a small amount of biochar [83].  
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Fig. 2-1. Reactors for biochar production: (a) fixed bed, (b) earthen kiln, (c) rotary kiln, (d) 

fluidized bed, (e) auger reactor, and (f) spouted bed. Reproduced from the literature [83]. 

2.3.5.4. Catalyst 

The use of catalyst can affect the relative distribution of the pyrolysis products. The catalysts used 

for pyrolysis can be divided into two types: primary and secondary. Primary catalysts are those 

that are mixed with biomass prior to pyrolysis, while secondary catalysts are not mixed with 

biomass but are kept in a secondary reactor downstream of the main pyrolysis reactor [49]. Typical 

catalysts that have been used in biomass pyrolysis processes include alkaline catalysts (e.g., 

Potassium Hydroxide (KOH), Sodium Hydroxide (NaOH), Potassium Carbonate (K2CO3), and 

Sodium Carbonate (Na2CO3)), metal oxides (e.g., Iron(III) Oxide (Fe2O3), Aluminium Oxide 

(Al2O3), Zinc Oxide (ZnO), Calcium Oxide (CaO) and Titanium Dioxide (TiO2)) and Activated 

Carbon (AC) [89]. It was found that increasing the proportion of catalyst raised the temperature 

and reduced the time required to reach the desired PT. Moreover, the addition of catalyst increased 

the biochar yield. This may occur when the catalyst facilitates the polymerisation and carbonation 

reactions of a portion of the feedstock components, thereby increasing the production of solid 

residue (i.e. biochar). During the process, the catalyst promoted a stable C structure of biochar and 

prevented further char pyrolysis which would have otherwise been converted to bio-oil and gas 

[49]. 

Table 2-3. The properties and yields of biochar are influenced by PT.  

Feedstocks PT (°C) 

Yield 

(wt.%) 

C  

(wt.%) 

H 

(wt.%) 

O 

(wt.%) 

N 

(wt.%) 

SSA 

(m2g-

1) 

PV 

(cm3g-

1) 

Refs 
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Rice straw 

350-

650 

8.8-

41.9 

39.75-

50.44 

1.73-

3.55 

14.07-

14.70 

0.71-

0.91 

2.90-

14.33 

0.024-

0.100 

[71] 

Rice straw 

300-

600 

32.8-

51.4 

56.42-

61.30 

0.12-

2.95 

5.71-

17.73 

1.90-

2.15 - - 

[51] 

Canola stalk 

350-

650 8.7-34 

41.66-

61.87 

1.86-

3.42 

35.41-

37.36 

0.93-

1.96 

1.15-

7.94 

0.005-

0.017 

[71] 

Wheat straw 

300-

600 31.6-47 

61.48-

67.39 

0.52-

2.73 

7.35-

19.61 

1.10-

1.40 - - 

[51] 

Corn stalk 

300-

600 30-43.3 

58.04-

63.93 

1.65-

4.28 

9.33-

18.79 

2.11-

2.75 - - 

[51] 

Corn straw 

300-

600 

30.9-

45.9 

61.20-

67.48 

0.18-

3.68 

8.98-

17.39 

2.12-

2.93 - - 

[51] 

Rape straw 

300-

600 

29.3-

44.3 

61.80-

67.85 

0.18-

3.54 

7.89-

17.95 

0.90-

10.02 - - 

[51] 

Symphytum 

officinale L 

350-

750 37-48.4 

33.56-

41.08 

0.93-

2.73 

7.48-

10.72 

1.52-

1.87 

11.54-

273.8 

0.021-

0.243 

[70] 

 

Table 2-4. Effects of pyrolysis process parameters on biochar yield for different crop-residues. 

Feedstocks Particle 
size 
(mm) 

PT 
(°C) 

RT 
(s) 

HR 
(°C/s) 

Reaction environment Biochar 
yield 
(wt.%) 

Refs 

Rice husk 2.5-10 300-
500 

1800
,360
0, 
5400
,720
0 

0.1,0.1
6, 0.33 

Media: Nitrogen with 
synthetic air 
Flow rate: 0.1 L/min 
Reactor: Stainless steel bed 

33.7-
51.3 

[75] 
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Rice straw 0.42-
0.62 

550 600 0.1 Media: Nitrogen 
Flow rate: 0.3 L/min 
Reactor: Stainless steel bed 
reactor 

37.9 [90] 

Palm kernel 
shell 

0.5-2 500 3600 0.1 Media: Nitrogen 
Flow rate: 0.05 L/min 
Reactor: Stainless steel bed 

37.7 [91] 

Empty fruit 
bunch 

0.5-2 500 3600 0.1 Media: Nitrogen, 
Flow rate: 0.05 L/min 
Reactor: Stainless steel bed 

35.1 [92] 

Symphytum 
officinale L 

<0.15  350-
750 

3600 0.1 Media: Nitrogen 
Reactor: Stainless steel bed 
reactor 

37-48.4 [70] 

Rice straw <0.84 300-
600 

3600 0.17 Media: Nitrogen 
Flow rate: 0.1 L/min 
Reactor: Stainless steel bed 
reactor 

32.6-52 [51] 

Wheat straw <0.84 300-
600 

3600 0.1 Media: Nitrogen 
Flow rate: 0.1 L/min  
Reactor: Steel bed reactor 
with tube furnace 

31.6-47 [51] 

Corn straw <0.84 300-
600 

3600 0.1 Media: Nitrogen 
Flow rate: 0.1 L/min 
Reactor: Steel bed reactor 
with tube furnace 

30.9-
45.8 

[51] 

Rape straw <0.84 300-
600 

3600 0.1 Media: Nitrogen 
Flow rate: 0.1 L/min 
Reactor: Steel bed reactor 
with tube furnace 

29.3-
44.3 

[51] 

Corn stalk 5 300-
800 

3600 0.1 Media: Nitrogen 
Flow rate: 0.1 L/min 
Reactor: Steel bed reactor 
with tube furnace 

30-43.3 [93] 

Rapeseed 
stem 

10-20 200-
700 

600,
1200
, 
2400
,360
0, 
4800 

0.1,0.1
6,0.25, 
0.33 

Media: Nitrogen 
Flow rate: 0.3 L/min 
Reactor: Steel bed reactor 
with muffle furnace 

18.3-80 [72] 
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Maize cobs 2 300-
600 

1800
,360
0,54
00 

0.1,0.1
6,0.25 

Media: Nitrogen 
Reactor: Steel batch reactor 

22-33.8 [47] 

Maize husk 2 300-
600 

1800
,360
0,54
00 

0.1,0.1
6,0.25 

Media: Nitrogen 
Reactor: Steel batch reactor 

21.7-
30.7 

[47] 

Maize leaves 2 300-
600 

1800
,360
0, 
5400 

0.1,0.1
6,0.25 

Media: Nitrogen 
Reactor: Steel batch reactor 

25.7-
38.3 

[47] 

Cotton stalk 0.62-
0.82 

250-
450 

7200 0.33 Media: Nitrogen, 
Flow rate: 0.1 L/min 
Reactor: Horizontal tubular 
furnace 

20-26.5 [53] 

2.4. Emerging Topics on Biochar Production 

Various emerging aspects of biochar production are critically reviewed, including (a) biochar, bio-

oil, and gas nexus, (b) balance between yield and stability, (c) climate change mitigation and LCA, 

(d) economics of pyrolysis and biochar data-driven modelling of biochar production via pyrolysis, 

and (f) emerging applications of biochar. A summary of these aspects and associated research 

works are provided in Table 2-5. 

Table 2-5. Overview of state-of-art in biochar production studies with respect to Chapter 2.4.   

Topic Highlights Refs 

Biochar, bio-oil, 

and gas nexus 

MWP coupled with conventional pre-pyrolysis for stalks treatment. 

Conventional pre-heating enhanced the MWP performance of stalks. 

[53] 

Biochar, bio-oil, 

and gas nexus 

The most desirable process for biochar production was slow pyrolysis. 

MWP could offer a balance product distribution in biochar, oil and gas.  

[94] 

Biochar, bio-oil, 

and gas nexus 

Two-step microwave-assisted processes were used to prepare magnetic 

porous biochar. 

[95] 
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MWP biochar had a higher surface area and PV than CP biochar. 

Biochar, bio-oil, 

and gas nexus 

Effects of microwave power and Na2CO3 catalyst were investigated. 

The catalyst increased the bio-oil and gas yield.  

[96] 

Biochar, bio-oil, 

and gas nexus 

APBO washing pre-treatment increased bio-oil yield. 

APBO washing has a better improvement effect on pyrolysis products 

than acid washing. 

[90] 

Balance between 

yield vs. stability 

PT was the dominant processing parameter to biochar stability. 

Both biochar yield and stability were decisive to carbon sequestration 

potential. 

Elemental and proximate analysis, and biochar structure analysis were 

methods for measuring biochar stability. 

[31,97] 

Balance between 

yield vs. stability 

Aromaticity determined thermal stability while surface area was critical 

for chemical stability. 

[98] 

Balance between 

yield vs. stability 

Pyrolysis process parameters had an impact on the stability and yield of 

biochar. 

The unsaturation or aromaticity of biochar can be assessed by the H/C or 

O/C ratios. 

[99] 

Climate change 

mitigation and 

LCA 

Average energy demands were 6.1 MJ/kg biochar and 97 MJ/kg AC. 

Biochar had lower environmental impacts than AC even after 

transportation stage. 

[30] 

Climate change 

mitigation and 

LCA 

LCA of biochar application as carbonaceous water treatment adsorbents. 

Combining biochar and hydrochar with regeneration was desirable to 

replace AC. 

[100] 
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Climate change 

mitigation and 

LCA 

Most GHG was contributed by covering the energy deficit caused by 

pyrolysis. 

[101] 

Economics of 

pyrolysis and 

biochar 

Biochar price was between US$454 and US$871 per tonne for CP. 

Biochar price was between US$588 and US$1020 per tonne for MWP. 

[102] 

Economics of 

pyrolysis and 

biochar 

Compared to inorganic fertilisers, biochar had a long-term capacity for 

agricultural improvement. 

The grain yield and net benefit increased from 4.54-4.70 ton/ha and 293-

438 US$/ha.  

[103] 

Data-driven 

modelling of 

pyrolysis-

derived biochar 

RF showed good prediction ability for biochar yield and carbon contents. 

The highest R2 were 0.855 and 0.848 for biochar yield and C content 

prediction. 

[104] 

Data-driven 

modelling of 

pyrolysis-

derived biochar 

XGB model showed good prediction ability for biochar yield. 

The prediction accuracy achieved 0.844 as R2. 

[105] 

Data-driven 

modelling of 

pyrolysis-

derived biochar 

MLP-NN and ANFIS were employed to predict biochar yield and 

composition. 

Statistical analysis of various feedstock and biochar properties is 

performed. 

The prediction accuracy achieved 0.964 for biochar yield.  

[106] 

Applications of 

biochar 

Comprehensive description and analysis of different biochar applications 

in MFC. 

[107] 
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Biochar has the potential as an electrode material for MFC and as a 

cathode catalyst and contributes to PEM applications. 

Applications of 

biochar 

Biochar is also used as a catalyst for biodiesel and hydrogen production. 

Biochar can be utilized for electrode preparation used in MFC. 

[108] 

Applications of 

biochar 

The addition of biochar combined with gypsum shortened composting 

time. 

Applying biochar reduces the composting duration and nitrogen and 

carbon losses, and potential ecological hazards. 

[109] 

Applications of 

biochar 

Waste sugarcane bagasse-based acidic catalyst was synthesized. 

Biochar produced from sugarcane bagasse archived optimal conditions 

when the PT is 400°C. 

[110] 

Applications of 

biochar 

The suitability of biochar mixed with solid waste for agricultural soil 

applications was investigated. 

The application of biochar to the soil decreased the concentration of heavy 

metals in leachate by 40-95%. 

[111] 

2.4.1. Biochar, Bio-oil, and Gas nexus 

There exists a trade-off between the three pyrolysis products: biochar, bio-oil and gas. Optimal 

pyrolysis production should match the relative yields of the products with the purpose of 

production with the consideration of economics and environmental footprints. For a system mainly 

configured for biochar production, appropriate production of bio-oil and/or gas has the potential 

to improve the economics of the system [112]. It is important to adopt a nexus perspective upon 

the design of pyrolysis production. As shown above, the relative yields of the products depend on 

the types of feedstocks and pyrolysis process conditions and design. Accordingly, a technology 

that favours the accurate control of the yields will be desirable for optimization. MWP serves as a 

candidate technology that has the potential to support technology innovation towards accurately 
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controlling the relative production of biochar, bio-oil, and gas. A large pool of literature has 

focused on analysing bio-oil and gas production from MWP. For example, Li et al. [53] studied 

the production of combined MWP and CP processing (as known as MWP) Combined with 

Conventional Pyrolysis (MCCP)) of cotton stalk under 11 different PTs. Fig. 2-2a shows the yield 

distribution of the three products under the different temperature scenarios. M−1 referred to MWP 

with 1 g microwave absorbent (biochar) under 600 W without pre-heating. For A-(250–450) and 

A-(250–450)-1, 250–450 referred to preheat temperatures and A-(250–450)-1 referred to MWP 

under the preheat condition. M−1 had the lowest biochar yield and achieved the most gas 

production. A-250–1 had the highest biochar yield among all scenarios. The MCCP technology 

was most favourable for biochar production, while the MWP technology had the highest gas yield. 

Preheating has played a significant role in biochar production. The highest biochar yield of 34.1% 

was achieved at 250 °C and the highest bio-oil yield was 50.2% when it was at the first stage of 

450 °C. 

 

Mahmoud Fodah et al. [96] studied biochar and bio-oil production from corn stover via MWP 

cooperated with catalysis. Fig. 2-2c compared product distribution from catalytic MWP and non-

catalytic MWP in the power range of 500–700 W. In the non-catalytic case, a significant decrease 

in biochar yield and an increase in gas yield were observed when the power increased from 500 W 

to 900 W. The addition of Na2CO3 catalyst improved the bio-oil and gas yield, reducing the biochar 

yield. It was shown that in the case where Na2CO3 was used as a catalyst, the catalyst promoted 

pyrolysis reactions towards bio-oil and gaseous production, which usually means that more organic 

components were converted to volatiles, thus reducing the yield of solid residues. Specifically, 

alkaline catalysts such as Na2CO3 promote reactions such as dehydration and decarboxylation, 
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increasing the yield of gas and bio-oil products.  Cen et al. [90] investigated the influences of wash 

pre-treatment on biomass pyrolysis polygeneration. The pyrolysis experiment was carried out at 

PT = 550 °C and HR = 10 °C/min. The rice straw showed the highest biochar yield (38%). The 

Aqueous Phase Bio-Oil (APBO) washing rice straw showed the highest yield (35%) as shown in 

Fig. 2-2d. The bio-oil shows decrease trend under different wash pre-treatment conditions (from 

Raw-RS to Bio-RS).  

 

Fig. 2-2. (a) The product distributions of different scenarios [53]. (b) The trend of biochar and bio-

oil yields with respect to PT [53]. (c) The product distribution from catalytic and non-

catalytic MWP: the yield of biochar, bio-oil, and gas [96]. (d) The product distribution from the 

processes with different pre-treatment methods [90].  

ca

b d
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2.4.2 Balance Between Biochar Yield and Stability 

Biochar C content recalcitrance and biochar stability have played a critical role in carbon 

sequestration. Biochar stability can be considered by the proportion of initial C remaining after 

oxidation treatment and can be determined by the mass of stable C remaining in the biochar residue 

after oxidation. Numerous challenges exist to reconciling the trade-offs between biochar stability 

and yield [97].  

The degree of aromaticity and aromatic condensation are two essential evaluation metrics that 

dictate the stability of biochar [98]. The unsaturation or aromaticity of biochar can be assessed 

according to biochar elemental ratios (H/C and O/C) [99]. Han et al. [113] conducted pyrolysis of 

rice straw at 250-600°C. H/C and O/C ratios were employed to analyse the biochar stability. The 

H/C and O/C ratios of biochar decreased from 0.87 to 0.34 and 0.36 to 0.13 with the increasing 

PT. The increase in PT led to a trend towards greater carbonisation with more poly-aromatic 

content, which promoted biochar stability. Vendra Singh et al. [114] studied the trade-offs between 

yield and stability of biochar derived from rice straw pyrolysis with PT between 300-600°C. The 

H/C and O/C ratios increased from 0.52 to 0.23 and from 0.15 to 0.07, indicating an improvement 

in biochar stability. On the other hand, the biochar yield decreased from 38.23% to 27.14%, with 

PT increasing from 300-600°C. Leng and Huang [31] summarised that long residence time, slow 

HR, high pressures, biomass feedstocks with high lignin contents, and large particle size would be 

preferred for biochar yield and stability, and it would also contribute to improved carbon 

sequestration ability by biochar.  

2.4.3 Climate Change Mitigation and Life Cycle Assessment 

LCA is a tool routinely used to assess the environmental impacts of biochar production via 

pyrolysis processes. It adopts a whole lifecycle perspective and typically includes processes 
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ranging from raw material extraction and pyrolysis production to waste disposal and recycling. 

Fig. 2-3 illustrates the typical elements considered during the LCA of pyrolysis and biochar 

production processes.  

 

Fig. 2-3. A whole system example of biochar production [115].  

Alhashimi and Aktas [30] applied LCA to compare the environmental impacts of biochar and AC. 

Especially, long-distance transportation (i.e., nation to nation) was included as part of the 

biochar/AC developments analysed. The GWP for biochar and AC were −0.9 kg CO2-eq/kg and 

6.6 kg CO2-eq/kg, respectively. This work revealed cumulative energy demands for biochar and 
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AC production processes were 6.1 MJ/kg and 97 MJ/kg, respectively. Kozyatnyk et al. [100] 

evaluated the environmental footprints of biochar application as a carbonaceous water treatment 

adsorbent using the approach of LCA. The end-of-life stages were considered in this study 

including incineration, landfill, and regeneration, and biochar, hydrochar, and AC were the three 

primary materials assessed. It was shown that combining biochar and hydrochar with regeneration 

could be an environmentally feasible option to replace AC. The production of sorbents was the 

most significant GWP contributor within the framework of the LCA study. Therefore, increasing 

the sorption capacity of sorbents would offer economic and environmental benefits since higher 

sorption capacities reduced the use of sorbents. 

 

Lefebvre et al. [101] evaluated GHG emissions of two agricultural wastes utilisation scenarios 

which are sugarcane residue combustion for heat and power generation and pyrolysis for biochar 

production. It was shown that sugarcane residue biochar could sequester 36 mega tonnes CO2-

eq/year. Most of the GHG emission was contributed by compensating for the energy deficit caused 

by pyrolysis. This biochar scenario led to a 23% reduction in the total amount of GHG. Azzi et al. 

[116] carried out an LCA study for large-scale biochar production for negative emission. This work 

compared the climate impact of biomass pyrolysis with biomass combustion. The main 

applications were energy and power applications, and the potential as a fertiliser additive was also 

explored. In total, five scenarios were explored, including agricultural application, carbon 

sequestration, electricity substitution, heat substitution, and transport fuel substitution which had 

a GWP were -1300 kg CO2-eq/ton, -1100 kg CO2-eq/ton, -335 kg CO2-eq/ton, -60 kg CO2-eq/ton 

and 240 kg CO2-eq/ton in 2040, respectively. This study suggested that LCA helps to design 
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biochar systems with the comparison of the GHG emission trade-offs among various possible 

applications. 

2.4.4 Economics of Pyrolysis and Biochar 

Despite significant environmental benefits, the current market scenario suggests that biochar 

applications are prohibitively expensive and economically inviable. This is associated with the 

high capital costs of pyrolysis plants and low incentives offered by government bodies for 

achieving carbon-negativity [117]. Techno-economic analysis (or Cost Benefit Analysis (CBA)) 

has commonly been used to explore various what-if scenarios from improved economics. For 

example, Haeldermans et al. [102] compared biochar production from CP and MWP through 

techno-economic assessment. Minimum prices ranged from US$454/ton to US$871/ton for CP-

biochar and US$588/ton to US$1020/ton for MWP-biochar (Exchanged the EUR to US$ via 

currency rate 1.04). CP is a simplified and developed technology that makes it more affordable. 

However, it was mentioned that MWP-biochar had greater quality and better technical feasibility 

than CP-based biochar. Moreover, biochar price per ton was a critical evaluation criterion for 

biochar production plants and strongly depended on the government carbon tax. 

 

The economics of biochar production systems has been assessed with respect to raw material or 

feedstock used, the conversion technology employed, carbon sequestration subsidies and carbon 

credits reflecting the social value of GHG emission reductions. Implementing smart farming 

practices could increase crop yields and improve the economic situation of farmers while reducing 

the adverse effects of climate change [102]. Compared to inorganic fertilisers, biochar has a long-

term capacity for agricultural improvement in the economic aspect. When biochar was used in 

combination with plant growth-promoting rhizobacteria and Nitrogen-Phosphorous-Potassium (N-



 60 

P-K) fertiliser, the wheat crop's grain yield and economic results were significantly increased. An 

increase in grain yield from 4.54 ton/ha to 4.70 ton/ha resulted to a rise of net benefit from 293 

US$/ha to 438 US$/ha (i.e., 50% relative increment), respectively [103]. This indicated the 

potential opportunistic benefit from the use of biochar could be an important contributor to the 

profitability of biochar production.  

2.3.5 Data-Driven Modelling of Pyrolysis-Derived Biochar 

Over the past decades, theoretical models have been widely used for predicting the yields of 

pyrolysis processes [118]. However, these models are often complex, time-consuming, and of 

semi-empirical nature (depending on the use of experimental data), which limits their use for 

biochar yield prediction towards more sophisticated process design and optimization. Researchers 

have also developed empirical correlations based on the predictions from the theoretical models 

or experiments [119]. However, these empirical correlations are constricted to a limited range of 

experimental conditions and biomass feedstocks, and they are normally not suitable for 

extrapolative scenarios.  

 

With the advent of AI and an abundance of pyrolysis experimental data, data-driven modelling has 

become a popular method for predicting biochar production. These methods have superior 

prediction accuracy, shorter computation time, and complex data trend-reproducing capabilities 

[119]. In particular, the method could effectively predict biochar production through limited 

experimental and system data. It finds the relationship between input and output variables through 

training and produces results without any a priori assumptions. To ensure an accurate whole-

system analysis of biochar production from agricultural wastes, generalizable modelling of 

pyrolysis processes is essential. ML-assisted prediction of biochar yield and composition has 
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gradually become an important tool in recent years. Popular ML approaches evidenced in the 

biochar modelling literature include RF, SVM, eXtreme Gradient Boosting (XGB), ANFIS, and 

MLP-NN etc.   

 

Zhu et al. [104] developed an RF-based model to predict biochar yield and C content. 245 datasets 

of biochar yield and 128 datasets of C content were collected in this study. The highest Coefficients 

of Determination (R2) were 0.855 and 0.848 for biochar yield and C content prediction. In an effort 

by Pathy et al. [105], an XGB model was developed based on 91 datasets considering ultimate 

composition and elemental composition ratios as input data. However, only one output (biochar 

yield) was included in this study. The model performance was only evaluated by R2, which was 

0.844. the MLP-NN prediction model was employed by Khan et al. [120] for biochar yield 

production, where NNs were coupled with metaheuristic models. R2 and Root-Mean-Square Error 

(RMSE) of biochar yield prediction were 0.93 and 1.74. Recently, Li et al. [106] developed a 

comprehensive ML-assisted predictive model for biochar yield and composition (FC, VM, ash, C, 

H, O, N). This study applied MLP-NN and ANFIS, which predicted biochar production from 

pyrolysis based on 226 datasets. The R2 values for each of the output variable was biochar yield = 

0.96, FC = 0.9, VM = 0.9, ash = 0.94, C = 0.92, H = 0.86, O = 0.88 and N = 0.88. Additionally, 

feature importance analysis revealed a high dependence of biochar yield and composition on PT, 

ash content, and N content. Overall, the data-driven models for biochar production can be used in 

parallel with LCA model to develop a better understanding from a whole-system perspective. 
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2.3.6 Machine Learning aided Multi-Objective Optimization and Multi-

Criteria Decision Making 

MOO algorithms incorporating MCDM are becoming increasingly popular for optimization 

problems with three or more objectives, often referred to as MOO Problems. MOO focuses on 

finding the optimal solution between multiple competing objectives, while MCDM focuses on 

making the best choice among a range of alternatives based on multiple evaluation criteria. These 

algorithms elicit, a priori or interactively, the preferences of a single or multiple decision makers 

to guide the search to the decision maker's most preferred solution, rather than the entire Pareto 

optimal frontier [121]. ML technologies can play a crucial role in this process by providing new 

solutions for a variety of engineering fields. They can analyse complex datasets and identify hidden 

patterns and trends, thus assisting decision makers in understanding and resolving potential 

conflicts between goals or criteria. For example, with ML algorithms, it is possible to predict the 

potential outcomes of different decision-making scenarios or identify which factors have the 

greatest impact on the decision-making process. This combination allows decision makers to 

consider a wider range of variables and scenarios in a broader data-driven environment, increasing 

the accuracy and efficiency of decision making [122].  

 

Lu et al. (2021) [123] presented an approach to incorporate ML modelling into MOO. A Radial 

Basis Function (RBF) NN was used to construct models for functional evaluation. A central 

combinatorial design was used as a sampling strategy to construct models individually for different 

optimization objectives to improve prediction accuracy and address the high computational 

demand in MOO of complex nonlinear distillation processes. This study ultimately succeeded in 

obtaining a design that achieves a trade-off between capital and operating costs. However, 
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optimization objectives should be extended to include environmental impact, safety, etc. 

Furthermore, Wang et al. (2023) [121] introduced a novel framework that employs ML to enhance 

MOO and MCDM in chemical engineering. The approach started with the selection of ML models, 

followed by model training and tuning of algorithms using Particle Swarm Optimization (PSO) as 

well as the formulation of the MOO problem to be solved. Finally, a systematic MCDM analysis 

was carried out to recommend an optimal solution to implementation. The proposed framework 

was effective for chemical and related process design. It proved to be beneficial for the 

optimization of complex chemical processes for supercritical water gasification processes aiming 

to produce hydrogen-rich syngas with low GHG emissions. The goal is to increase energy output 

and reduce environmental pollution.  

 

The integration of ML with MOO and MCDM has been successfully applied in various chemical 

processes and engineering designs. However, to the authors' knowledge, this framework has not 

been used for biochar production and application analysis. There is a opportunity to develop and 

apply the ML-MOO-MCDM framework specifically for biochar production and soil application. 

By doing so it will be possible to explore and optimise the environmental benefits of biochar 

production and soil application, potentially leading to more sustainable and efficient agricultural 

practices. It can also create new avenues for enhancing the production and utilisation of biochar, 

thereby contributing to environmental sustainability. 

2.4.7 Applications of Biochar  

Process operating conditions and reactor designs are required to be manipulated to meet the 

specific requirements of biochar applications with the consideration of economics and 

environmental implications. An overview of different application areas (e.g., energy, agriculture, 
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and chemical) of agricultural waste-derived biochar is given and Fig. 2-4 presents the conversion 

pathway from agricultural waste into various biochar applications.  

 

Fig. 2-4. Conversion pathway from agricultural waste to various applications of biochar [124].  
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Chakraborty et al. [107] suggested that biochar could be an alternative material to substitute 

electrodes, cathode catalysts, and Proton Exchange Membranes (PEM) in MFC applications. MFC 

can convert the energy captured in the chemical bonds of organic compounds into electrical energy 

while using wastewater as a substrate. Biochar has the potential to be used as an electrode material 

for MFC and a cathode catalyst. According to Cao et al. [125], the biochar-based electrode was 

low-priced compared to commercial electrodes. The material cost of N/Fe-C was about $0.03-

0.08/g, which is a thousand times lower than a commercial platinum electrode. However, several 

issues remain to be tackled prior to practical deployments, such as process efficiency improvement, 

biochar quality control, and effective biochar applications.  

 

Kant Bhatia et al. [108] reported that biochar can be used as a catalyst for the transesterification 

of oils for biodiesel production. Biodiesel is considered as a favourable fuel because of its high 

energy density and presence of C14-C20 long C chain fatty acids. The porous structure of biochar 

allows easy access of reactants to the active site to facilitate the transesterification process, and 

biochar’s hydrophobic surface helps remove unwanted products generated during catalytic 

reactions. Behera et al. [126] analysed the efficiency of acidified biochar catalysts for 

transesterification. The peanut shell was pyrolyzed under three PTs (300, 400, and 600°C), among 

which biochar produced at PT = 400 °C had the highest catalytic efficiency. The optimal values of 

biochar’s SSA and pore size were 6.61 m2g-1 and 2.98 nm, at which the highest biodiesel yield was 

achieved (94.94%). Akinfalabi et al. [110] applied biochar as a catalyst for biodiesel production. 

The biochar produced from sugarcane bagasse achieved optimal properties when the PT was 

300 °C: the SSA was 310 m2g-1, and the pore size was 3.92 nm. The conditions for the highest 

biodiesel production (98.6%) were 1.5 h reaction time, 60 °C, and 2 wt.% catalyst loading. 
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Acidified biochar catalysts can reduce processing costs and the environmental impact of corrosive 

chemicals.  

 

Biochar also has great potential for environmental management in various applications. For 

example, Qu et al. [109] analysed the effect of agricultural composting using biochar combined 

with gypsum. The results showed that the application reduced composting duration, N and C losses, 

and potential ecological hazards. Biochar mixed with gypsum improved compost quality and 

nutrient retention. In another study, Vamvuka et al. [111] investigated the suitability of mixing 

biochar with solid waste for agricultural soil applications. The following physicochemical 

properties were obtained from the biochar produced from grape husks at 500 °C: pH = 9.7, 

Electrical Conductivity (EC) = 15.3 mS/cm, CEC = 205.2 mmol/kg, PV = 0.12 cm3g-1, average 

pore size = 4.53 nm and SSA = 0.9 m2g-1. For all combinations of composts biochar and soil, alkali 

and alkaline earth metals showed the greatest solubility. Consequently, it increased the pH of the 

extracts and thus reduced the leachability of heavy metals Chromium (Cr), Copper (Cu), 

Zirconium (Zr) and Strontium (Sr). In this study, heavy metals concentrations were reduced by 

40%-95%.  

2.5 Summary 

The critical review of biochar production from agricultural waste pyrolysis revealed extensive 

developmental efforts during the past decade focusing on biochar yield and property optimization, 

modelling, and applications. Nevertheless, significant future efforts are necessary for application-

specific system efficiency improvement. Specifically, existing research for agricultural waste-

biochar systems is mainly conducted at the laboratory or pilot scale. This apparent lack of ML 

modelling in agro-waste biochar systems research may limit the understanding, optimisation and 
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scale-up of the production process. Although the influences of process parameters on biochar yield 

and stability have been extensively researched, the environmental impacts of whole production 

and applications have not been quantified, indicating an opportunity for holistic LCA framework 

development. Furthermore, the LCA and process optimization frameworks require rapid prediction 

models, where ML-assisted predictive modelling for a wide range of biochar constituents can offer 

significant reduction in computational complexity. In the future, ML models should include 

chemical and proximate composition as input features. Although biochar has the potential to 

displace several chemicals in agricultural and industrial sectors, the current business models do 

not offer significant government incentives to support the high capital expenditure needs for setting 

up production plants. Therefore, application-specific techno-economic analysis must be 

extensively conducted in the future, while assessing various business models to support 

policymaking decisions. 

 

This literature review investigated the influences of different agricultural waste and pyrolysis 

reaction conditions on the properties and yield of biochar. Moreover, state-of-art biochar 

production and application were summarised including advanced approaches associated with the 

trade-off of the different products of pyrolysis processes. Meantime, the use of LCA and economic 

analysis for evaluating the environmental benefit and economic feasibility of biochar applications 

was also analysed. ML-assisted modelling and MOO-MCDM are becoming the effective 

approaches supporting biochar production prediction which is important for the optimal design 

and deployment of biochar systems. 
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key knowledge gaps: 

• ML Model Development: There is a need to develop more accurate ML-assisted predictive 

modelling techniques to predict biochar compositions. Specifically, there is a need to 

incorporate parameters such as proximate and ultimate composition into ML models and 

to develop efficient models to improve prediction accuracy and comprehensiveness.  

• Lack of a comprehensive LCA framework: There is a need to develop a comprehensive 

LCA framework that accurately incorporates the influences of process and feedstock 

conditions towards biochar production to assess the environmental footprint of biochar 

production and application. 

• Need for MOO-MCDM integrated with ML modelling: MOO and MCDM techniques are 

considered to be effective methods to support biochar production forecasting. However, 

there is a lack of integration of these methods in the biochar production process. 

Incorporating MOO-MCDM into the research framework could enhance the potential for 

optimal design and deployment. 
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Chapter 3 Machine Learning Assisted Prediction of Biochar Yield 

and Composition via Pyrolysis of Biomass 

The Chapter is based on the publication “Yize Li, Rohit Gupta, Siming You. "Machine learning 

assisted prediction of biochar yield and composition via pyrolysis of biomass." Bioresource 

Technology 359 (2022): 127511”.  

3.1 Introduction 

With the advent of AI and an abundance of pyrolysis experimental data, data-driven modelling has 

become a popular method for predicting biochar production. These methods have superior 

prediction accuracy, shorter computation time, and complex data trend-reproducing capabilities 

[119]. In particular, the method could effectively predict biochar production through limited 

experimental and system data. It finds the relationship between input and output variables through 

training and produces results without any a priori assumptions. However, the accuracy of existing 

ML-based biochar prediction models is limited especially when a small pool of datasets was used 

for the model development. For example, prior work has developed a RF regression-based biochar 

yield and C content prediction model based on 245 datasets covering various biomass feedstocks 

and process operating conditions. The work achieved a R2 value of 0.855 and 0.848 for predicting 

biochar yield and C content [104]. Another work explored the accuracy of the XGB ML model for 

predicting, which had an R2 value of 0.84 based on 91 training datasets [105]. A recent work 

achieved an improved R2 = 0.92 for predicting biochar yield using an Artificial Neural Network 

(ANN) coupled with metaheuristic algorithms [120]. However, there have been no prior efforts for 

developing a comprehensive data-driven model that can simultaneously predict biochar yield and 

compositions (proximate and ultimate). As evidenced in the literature, the yield and compositions 

of biochar can have significant trade-offs based on the choice of pyrolysis conditions and biomass 
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feedstock compositions. Therefore, it is of significant scientific interest to develop a 

comprehensive ML model that can predict both biochar yield and composition, which serves as 

the purpose of the present research work. 

 

MLP-NN and ANFIS are two popular prediction methods. MLP-NN is a widely used data-driven 

modelling method in pattern recognition, signal processing, function approximation, and process 

simulation. They are often used to model complex relationships between inputs and outputs 

parameter spaces, explore patterns in data, or capture statistical structure in unknown joint 

probability distributions between observed variables [127]. In contrast, ANFIS is a combination of 

adaptive control techniques, ANN, and fuzzy inference systems. As a deep learning algorithm, 

fuzzy logic allows the ambiguity of human perception or decision-making to be represented as a 

mathematical model [128]. The application of the models toward biochar production prediction is 

still limited.   

 

This study envisions the significance of developing data-driven models to predict biochar yield, 

proximate composition, and ultimate composition prediction. To the best of the author’s 

knowledge, this is the first work that develops a comprehensive model to predict biochar yield and 

composition, simultaneously, given the pyrolysis conditions and biomass feedstock compositions. 

The work also highlights a comparison of the predictive performances of two different data-driven 

models: MLP-NN and ANFIS. During the data assimilation stage, feedstock compositions of 

various types of organic waste, related pyrolysis process parameters, biochar yields, and biochar 

composition have been considered. The influences of various model parameters and training-
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testing dataset split are investigated through the metrics the RMSE and R2. Finally, the findings are 

discussed and concluded, while indicating areas for future improvements.  

3.2 Methods 

3.2.1 Data Collection and Pre-processing 

In total, 226 dataset points were collected from the literature (19 studies) to develop the data-driven 

models, summarised in Table 3-1. The dataset includes a wide range of feedstocks such as Corncob, 

Corn stover, Bagasse, Cocopeat, Coconut shell, Coconut fibre, Wheat straw, Rice husk, Rice straw, 

Pine, Pine sawdust, Pine wood, Bamboo, Orange bagasse, Orange pomace, Rape stalk, Cassava 

stem, Cassava rhizome, Cotton stalk, Palm kernel shell, Wood stem, Wood bark, Agro-food waste, 

Canola hull, Oat hull, Vine pruning, Poultry litter, and Hinoki cypress [34–36,38,40–42,129–140]. 

To ensure generalizability, various attributes were considered during the data collection stage, 

which included (1) proximate composition of biomass feedstock (2) ultimate composition of 

biomass feedstock, (3) L-C-H composition of biomass feedstock, (4) major pyrolysis conditions, 

(5) biochar yield, (6) proximate composition of biochar, (7) ultimate composition of biochar, (8) 

HHV of biochar, and (9) energy yield of biochar (amount of energy that are obtained in the biochar 

produced during the pyrolysis process. This energy yield can be measured by various metrics, such 

as the calorific value of the biochar, which indicates the amount of heat energy released per unit 

mass of biochar when it is burned). Although particle size of feedstock has been considered in 

prior works [104,120], it was not included the present work due to significant methodological 

inconsistencies and uncertainties associated to the data collection. 
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Table 3-1. Statistical summary of input and output variables for the raw dataset. 

I/O Type of variable Variable Min Max Mean SD No. of samples 

(% of total 

dataset) 

Input Feedstock 

proximate 

composition 

FC (% db.) 4.33 27.80 13.84 5.36 226 (100%) 

 VM (% db.) 68.20 91.16 79.83 4.91 226 (100%) 

 ash (% db.) 0.16 15.14 6.33 3.94 226 (100%) 

 Feedstock 

ultimate 

composition 

C (% db.) 35.70 64.23 44.19 5.44 226 (100%) 

 H (% db.) 4.10 10.18 5.94 0.99 226 (100%) 

 O (% db.) 27.61 53.10 42.44 5.20 210 (92.9%) 

 N (% db.) 0.00 9.61 1.29 1.66 226 (100%) 

 S (% db.) 0.09 0.92 0.48 0.24 152 (67.3%) 

 Feedstock 

lignocellulosic 

composition 

Cel (% db.) 17.89 47.67 37.52 8.24 122 (53.9%) 

 Hem (% db.) 11.48 56.29 24.97 13.3

0 

117 (51.7%) 

 Lig (% db.) 4.99 32.26 22.56 6.54 122 (53.9%) 

 Pyrolysis 

condition 

RT (min) 1.00 90.00 38.08 18.7

6 

226 (100%) 

 PT (°C) 200 800 460.7 124.

8 

226 (100%) 

 HR (°C/min) 5.00 25.00 11.37 5.69 226 (100%) 

Output Process 

Efficiency 

Biochar yield 

(%) 

17.68 95.89 39.53 15.1

0 

226 (100%) 

Energy yield 

(%) 

38.40 99.80 60.07 14.6

6 

87 (38.5%) 
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HHV (MJ/kg) 3.6 37.66 23.28 5.50 105 (46.5%) 

Biochar 

proximate 

composition 

FC (% db.) 15.04 94.11 53.57 19.7

7 

159 (70.4%) 

VM (% db.) 0.49 82.72 32.37 20.0

0 

159 (70.4%) 

ash (% db.) 0.32 37.91 14.05 9.02 159 (70.4%) 

Biochar ultimate 

composition 

C (% db.) 44.12 94.61 64.57 12.0

7 

162 (71.7%) 

H (% db.) 1.26 8.72 3.69 1.50 150 (66.3%) 

O (% db.) 0.00 45.17 17.39 10.2

7 

150 (66.3%) 

N (% db.) 0.00 9.05 1.48 1.38 162 (71.7%) 

S (% db.) 0.00 1.29 0.53 0.31 115 (50.9%) 

 

The proximate compositions for both the biomass feedstocks and biochar were expressed in dry 

basis having the following components: FC, VM, and ash. It is important to note that the scope of 

the present dataset is limited to the feedstock ash content range 0-15%. To develop data-driven 

models for higher ash content input data, further expansion of the dataset is required in the future. 

The ultimate (or elemental) composition for the feedstocks and biochar is expressed in terms of C, 

H, O, N, and Sulphur (S). It is important to note that the literature contained a mix of wet-basis 

and dry-basis data for both feedstocks and biochar, which was converted on a dry-basis in the work 

using Eq. (3.1). The lignocellulosic composition of the feedstock contained three components such 

as lignin, cellulose, and hemicellulose (L-C-H). Essential pyrolysis process parameters found in 

the literature were PT, HR, and RT.  
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                                                                     (3.1) 

 

Since the data collection was performed based on a wide range of literature, there were inevitably 

inconsistencies in the datasets, leading to missing values (see Table 3-1). For the input parametric 

space, several attributes were dropped if less than 70% of the data was available. Based on this, 

the S content and L-C-H composition of feedstock were excluded from model development. For 

the output dataset, the cut-off criteria were set to 65%, leading to exclusion of S content in biochar, 

HHV, and energy yield of biochar. Consequently, the modified dataset used for developing the 

model contained 10 input variables related to feedstock and pyrolysis conditions 

(FC$-, VM$-, ash$-, C$-, H$-, O$-, N$-, PT, HR, and	RT) , and 8 output variables 

(Yield.%, FC.%, VM.%, ash.%, C.%, H.%, O.%, and	N.%) quantifying biochar production.  

 

The modified dataset still contained several missing values, which may lead to erroneous model 

training. To circumvent this problem, the missing values corresponding to an attribute were 

substituted by the mean of the attribute [141], which further ensured a continuous dataset. This 

process was only done during model training and therefore would not affect the performance of 

model testing. Model training is the process of using a dataset to teach a machine learning model 

to make predictions or classifications based on input data. During training, the model learns 

patterns and associations between samples by observing the samples and labels in the dataset. The 

goal of model training is to enable the model to accurately predict or classify new, unseen data. 

Data pre-processing steps such as dealing with missing values are critical in this process to ensure 

that the patterns the model learns from the data are accurate and meaningful. On other hand, model 

testing is the process of evaluating the performance of an already trained model on new, unseen 
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data. The test dataset is usually separated from the original dataset in order to evaluate the model's 

ability to generalise in real situations. During model testing, the test dataset is used to evaluate the 

model's ability to predict or classify unknown data. Through model testing, the performance of the 

model can be evaluated and any possible problems or room for improvement can be identified. 

Thus, model training and model testing are two very important phases in ML that work together 

to ensure that the model can learn valid patterns from the data and performs well on new data. 

 

Since the dataset contained variables of different ranges, mean, and SD as shown in Table 3-1, data 

normalization was performed as an essential pre-processing step. Following conventional practices 

in ML, the standard normal variate Zi was used, expressed as follows.  

𝑍/ =
0$'1
2

                                                                                                                                           (3.2) 

where 𝑋/ is the raw data, 𝜌 is the mean, and σ is the SD of a variable. 

 

To assess the relationship among any two variables (either between two different inputs or between 

inputs and outputs) Pearson Correlation Coefficient (PCC) was used, which quantify the degree of 

linear dependence (see Eq. 3.3) [104]. A PCC = 1 or PCC = -1 suggests that the variables are 

highly correlated, while a PCC = 0 means that the two variables are not correlated. This absolute 

value of PCC also revealed the relative importance of feature that impacts the output variables 

such as biochar yield, proximate composition (FC-VM-ash), and ultimate composition (C-H-O-

N). Results obtained from the PCC and relative importance of various features are discussed in 

Chapter 3.3.1. 

𝑃𝐶𝐶 = ∑ (5$'5̅)
%
$&' ∑ (8$'89)

%
$&'

:∑ (5$'5̅)(%
$&' :∑ (8$'89)(%

$&'

                                                                                                         (3.3) 
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Here, �̅� and 𝑦C are the two variables of interest among which PCC is to be determined and n is the 

number of datapoints. 

3.2.2 Artificial Neuro-Fuzzy Inference System 

ANFIS is based on the Takagi-Sugeno inference method, which creates a nonlinear mapping from 

the input space to the output space using IF-THEN rules. The IF-THEN rules represent the form 

of “if A and B, then C” as presented in Table 3-2. The ANFIS model combines the characteristics 

of ANN and the fuzzy inference system [142].  

Table 3-2. Simplified formulation of the ANFIS framework implemented in MATLAB. 

Attribute Mathematical structure 

General rule Rule 1: IF X is 𝐴1 AND Y is 𝐵1, THEN 𝑓! =	𝑝!𝑋 +	𝑞!𝑌 + 𝑟! 

Rule 2: IF X is 𝐴2 AND Y is 𝐵2, THEN 𝑓" =	𝑝"𝑋 +	𝑞"𝑌 + 𝑟" 

First layer 𝑂!,$ =	𝜇%$(𝑋) , 𝑖 = 1,2 

Gaussian Membership Function (MF): 𝜇%$(𝑋) = 𝑒
!(#!$)&

&'& , 𝑖 = 1,2 

Second layer 𝑂",$ = 𝑊$ =	𝜇%$(𝑋) × 𝜇&$(𝑌), 𝑖 = 1,2 

Third layer  𝑂',$ = 𝑊(777 =
)(

∑ )(
&
()*

   

Fourth layer  𝑂+,$ = 𝑊(777	𝑓$ = 𝑊(777	(𝑝$𝑋 + 𝑞$𝑌 + 𝑟$), 𝑖 = 1,2   

Fifth layer  𝑂, = ∑ 𝑊(777	𝑓$$ = final	output	$          

 

The ANFIS model has five layers. The interactions between the different layers of the ANFIS 

model are shown in Fig. 3-1. The first layer nodes represent the input variables (i.e., proximate 

composition of feedstock, ultimate composition of feedstock, HR, PT, and RT) and fuzzification. 

Each node in this layer is a fuzzy set and any output from it is the membership degree given from 
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the MF of the fuzzy set. The node of layer 2 is the rule node. This layer calculates the degree of 

MF by activating the AND operator of IF-THEN rules. Each output node in this layer represents 

the trigger strength of each rule. The third layer is responsible for determining the relative value 

of each rule in relation to the firing strength. The result of this layer is called the normalised firing 

strength. Nodes of layer 4 uses the consequent part of the Takagi-Sugeno approach, where 

subsequent parameter values and normalised firing strengths from the third layer of the rule base 

are calculated. The layer 5 is the output node, which corresponds to biochar yield, proximate 

composition, and ultimate composition. A simplified mathematical formulation of ANFIS is shown 

in Table 3-2. Here A1, A2 and B1, B2 are MFs of inputs X and Y, which are used to manipulate 

variables (or known as fuzzification). 𝑝&, 𝑞&, 𝑟& and 𝑝;, 𝑞;, 𝑟; are the relevant parameters of the 

output function determined during the model training. 𝑂&,/ represents the output of the 𝑖th node, 

and 𝜇=/ is the MF of 𝐴𝑖. Based on the literature the ANFIS developed here utilizes Gaussian MF 

due to its superior performance [128]. For the generalized Gaussian MF, 𝜌 and 𝜎 are the mean and 

SD of the dataset, respectively. The ANFIS used seven MFs and 500 training epochs to give the 

optimal results, which is implemented in MATLAB R2021b. 

 

Fig. 3-1. Schematic representation of the ANFIS model. 
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3.2.3 Multi-layer Perceptron Neural Network 

MLPs are fully connected feedforward NN used in supervised regression problems and utilize 

Levenberg-Marquardt back-propagation algorithm for training. The input data was applied to the 

MLP-NN in this training process, and the network’s output was calculated employing randomly 

chosen initial weights. The output was then compared with the target and a weight correction 

process was performed in the opposite direction of the mean square error gradient. As a result, the 

difference between the network output and the desired output could be reduced. 

 

MLP-NN usually has three layers: input layer, hidden layer, and output layer. Typically, it consists 

of small processing units called neurons. Each neuron composes of five components: input layer, 

basis and bias, summation function, activation function, and target. In this work the MLP-NN 

architecture has an input, an output layer, and the number of hidden layers varies between one, 

two, and three [141]. Previously, researchers have shown that this architecture can capture complex 

non-linear characteristic [127,143]. A representative schematic of the MLP-NN is shown in Fig. 

3-2. 
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Fig. 3-2. Schematic representation of the MLP-NN architecture showing input variables, hidden 

layers, and output variables. 

The activation function, also known as the transfer function, is either a linear or non-linear function 

that converts the weighted sum of the inputs (internally generated sum) into an output value. Here, 

three different activation functions such as (a) Rectified Linear Unit (ReLU), (b) Hyperbolic 

Tangent (Tanh), and (c) Sigmoid (see Eqs. 3.4-3.6) were considered. Different hyperparameters 

for the MLP-NN were also explored where the number of neurons varied from 8 to 16 and number 

of hidden layers were varied from 1 to 3. Three different combinations of data splitting for model 

training and testing were also evaluated i.e., 80%/20%, 70%/30% and 60%/40%. Other fixed 
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parameters for the MLP-NN are maximum epoch = 300 and learning rate = 0.01. The entire model 

was implemented in Anaconda (a Python environment) with aid of the Sklearn library. 

ReLU = max(0, 𝑥)                                                                                                                          (3.4) 

Tanh = >)'>*)

>)?>*)
                                                                                                                              (3.5) 

Sigmoid = &
&?>*)

                                                                                                                               (3.6)   

where 𝑥 in Equations 3.4, 3.5, and 3.6 serves as the input to the respective activation functions, 

where it can vary over the entire real number domain.  

3.2.4 Model Accuracy Evaluation Metrics 

The performance of two data-driven models is examined and evaluated using different training-

testing split on the dataset containing 226 datapoints. Two different metrics are considered, which 

are popular for ML regression problems such as RMSE and R2, calculated as,  

RMSE=T&
@
∑ V𝑌/

>5A − 𝑌/
AB>CY

;@
/D&                                                                                                      (3.7) 

𝑅;= 1 − \
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+),'F$
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(/
$&'

∑ HF$
+),'F01+
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(/

$&'
]                                                                                                             (3.8)    

Here 𝑌/
>5A and 𝑌/

AB>C are the experimental and model predicted biochar yields, 𝑌JK>
>5A is the average 

of all the experimental biochar yields, and N is the total number of datapoints which is 226 in this 

work. 

3.3 Results and Discussion 

3.3.1 Exploration of Dataset 

The statistical characteristics for input (FC$-, VM$-, ash$-, C$-, H$-, O$-, N$-, PT, HR, and RT) and 

output (Yield.%, FC.%, FC.%, ash.%, C.%, H.%, O.%,  and N.% ) variables were quantified via the 
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means and SDs of the input variables as shown in Table 3-1. Furthermore, the linear correlation 

among any two variables was assessed by PCC (see Eq. 3.3) and presented in form of a heatmap 

(Fig. 3-3a). Here, PCC ≈ 0 signifies that the variables are weakly correlated, whereas PCC ≈ ±1 

suggests the highest correlation strength. Among the input parameters, strong correlations (with 

PCC ≥ 0.4) were observed between several components of proximate and ultimate composition of 

biomass feedstock (PCC = 0.71 FC$- vs. VM$-, PCC = -0.54 for C$- vs. ash$-, PCC = 0.48 for 

FC$- vs. ash$-, PCC = 0.41 for H$- vs. O$-). Similar works in the literature reported the existence 

of a correlation between the proximate and ultimate compositions of biomass feedstock [104,120].  

 

Subsequently, the |𝑃𝐶𝐶| values among inputs and outputs were visualized in Fig. 3-3b to 3-3d, 

which signify the relative importance of an input feature in predicting outputs. Fig. 3-3b revealed 

that the Yield.% is strongly affected by the input variable PT (|𝑃𝐶𝐶| = 0.76). The negative symbol 

of PCC for PT in Fig. 3-3a signified that increasing PT will reduce biochar yield. However, 

increasing PT could improve the C content in the biochar by reducing volatile components such 

as H, O, and N in biochar, which indicated the existence of a trade-off [144]. Fig. 3-3c showed the 

dependence of biochar proximate compositions (FC.%, FC.%, and	ash.% ) on input variables. 

Strong correlations were observed between the following output vs. input pairs (in decreasing 

order): |𝑃𝐶𝐶| = 0.78 for FC.% vs. PT, |𝑃𝐶𝐶| = 0.65 for ash.% vs. ash$-, |𝑃𝐶𝐶| = 0.65 for FC.% 

vs. PT , and |𝑃𝐶𝐶|  = 0.41 for FC.%  vs. ash$- . Similarly, Fig. 3-3d revealed the significant 

dependence of biochar ultimate composition (C.%, H.%, O.%, N.%) on input variables as follows (in 

decreasing order): |𝑃𝐶𝐶| = 0.79 for O.% vs. PT, |𝑃𝐶𝐶| = 0.74 for N.% vs. N$-, |𝑃𝐶𝐶| = 0.65 for 

H.% vs. PT, |𝑃𝐶𝐶| = 0.53 for C.% vs. PT, and |𝑃𝐶𝐶| = 0.5 for C.% vs. ash$-. Exploration of the 

feature importance demonstrated the strong influence of PT, affecting 6 out of 8 output variables 
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including Yield.%. The remaining two variables ash.% and N.% were affected by ash$- and N$-, 

respectively. Therefore, any uncertainties associated with these variables would strongly affect the 

predictive performance of the data-driven models. 
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Fig. 3-3. (a) PCC between any two variables of interest. Relative importance of input features for 

predicting outputs: (b) biochar yield, (c) proximate composition of biochar (FC-VM-ash) and (d) 

ultimate composition of biochar (C-H-O-N). 

 3.3.2 Predictive Performance of Multi-layer Perceptron Neural Network 

The predictive accuracy of an MLP-NN model depends on the hyperparameters selection, which 

includes choices for (1) the number of neurons within a hidden layer, (2) the number of hidden 

layers, and (3) the type of activation function. Table 3-3 lists various scenarios selected for 

determining the optimal hyperparameters. Cases 1A to 1E shows the influence of varying the 

number of neurons from 8 to 16 in an interval of 2. The fixed parameters for Cases 1A to 1E are 1 

hidden layer, ReLU as the activation function, 80% training data, and 20% testing data. The choice 

of training-testing split is consistent with a prior work related to data-driven biochar yield 

prediction [104]. It is observed that as the number of neurons increases, the model accuracy 

improves at first. Beyond a certain value of neurons, i.e., 14 in this case, the model accuracy 

degrades. When the MLP-NN consists of a lower number of neurons under a critical value (14 

neurons), the model underfits the data and therefore results in higher RMSE and poor R2. However, 

when the number of neurons is increased beyond a critical value, the MLP-NN model overfits and 

fails to achieve a higher accuracy in predicting the testing dataset [127,145]. This applied to all 

parameters. Overall, the optimal outcome of Cases 1A to 1E has the following accuracies for 

predicting biochar yield (R2 = 0.964, RMSE = 3.4), proximate composition (average R2 = 0.914, 

average RMSE = 4.4), and ultimate composition (average R2 = 0.887, average RMSE = 1.8). 

Table 3-3. Predictive performance of MLP-NN for variations in number of neurons, number 

hidden layers, and types of activation function for 80% training data and 20% testing data. R2 and 

RMSE values for biochar yield, proximate composition (FC-VM-ash), and ultimate composition 

(C-H-O-N) are shown. Descriptions of various cases are described the text. 



 84 

Case Attribute YieldBC FCBC VMBC ashBC CBC HBC OBC NBC 

1A R2 0.861 0.859 0.835 0.853 0.885 0.795 0.813 0.858 

RMSE 6.5 6.7 7.7 3.4 3.7 0.9 4.1 0.5 

1B R2 0.892 0.880 0.861 0.874 0.893 0.823 0.846 0.876 

RMSE 5.1 6.2 6.9 2.9 3.6 0.7 3.8 0.4 

1C R2 0.927 0.891 0.881 0.934 0.909 0.849 0.880 0.872 

RMSE 4.0 5.8 6.4 2.1 3.3 0.5 3.4 0.4 

1D R2 0.964 0.903 0.899 0.940 0.918 0.855 0.887 0.888 

RMSE 3.4 5.1 6.1 2.0 3.1 0.5 3.3 0.4 

1E R2 0.940 0.883 0.879 0.921 0.911 0.839 0.884 0.865 

RMSE 3.8 6.1 6.5 2.4 3.2 0.6 3.3 0.5 

2A R2 0.964 0.903 0.899 0.940 0.918 0.855 0.887 0.888 

RMSE 3.4 5.1 6.1 2.0 3.1 0.5 3.3 0.4 

2B R2 0.943 0.896 0.882 0.927 0.910 0.848 0.872 0.874 

RMSE 3.7 5.3 6.4 2.4 3.3 0.5 3.5 0.4 

2C R2 0.917 0.879 0.865 0.918 0.901 0.839 0.853 0.871 

RMSE 4.2 6.2 6.8 2.5 3.5 0.6 3.7 0.4 

3A R2 0.964 0.903 0.899 0.940 0.918 0.855 0.887 0.888 

RMSE 3.4 5.1 6.1 2.0 3.1 0.5 3.3 0.4 

3B R2 0.918 0.888 0.891 0.929 0.901 0.846 0.869 0.876 

RMSE 4.2 5.8 6.1 2.3 3.3 0.5 3.6 0.4 

3C R2 0.871 0.846 0.862 0.889 0.874 0.821 0.836 0.851 

RMSE 5.9 6.9 6.9 2.6 3.9 0.7 3.9 0.6 
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Once the number of neurons is fixed to 14 for the MLP-NN model, it is essential to further explore 

if increasing the number of hidden layers can improve the model predictions. Cases 2A to 2C in 

Table 3-3 correspond to increasing the hidden layer from 1 to 3. The fixed parameters for these 

cases are 14 neurons within a layer, ReLU as the activation function, 80% training data, and 20% 

testing data. Comparing the cases with the different number of hidden layers reveals that increasing 

the number of hidden layers to 2 and 3 diminishes the model prediction accuracy by up to 2.2% 

and 4.9% (with respect to Case 2A), respectively. Hence, using a single hidden layer in this case 

will not cause model overfitting and lead to better accuracy than a denser MLP-NN [127].  

 

Subsequently, different activation functions such as ReLU (Case 3A), Tanh (Case 3B), and 

Sigmoid (Case 3C) were tested by fixing the number of neurons to 14 and number of hidden layers 

to 1. Utilizing the Tanh and Sigmoid activation functions degrade the model performance by up to 

4.8% and 9.6%, respectively, when compared to the ReLU activation function. The nature of the 

ReLU activation function (see Eq. 3.4) avoids the vanishing gradient while training the MLP-NN 

model, since the function does not have any hard-bound upper limit. The Tanh activation function 

has a range of -1 to 1 (Eq. 3.5), while the range for the Sigmoid activation function is from 0 to 1 

(Eq. 3.6). Therefore, the Sigmoid activation function is the most vulnerable to the vanishing 

gradient problem due to its shortest range, decreasing the accuracy of the model. It is essential to 

note that the MLP-NN model with both ReLU and Tanh activation functions significantly 

outperforms the existing works on biochar yield prediction which reports R2 values 0.84 [105] and 

0.85 [104] using the XGB and RF models, respectively. Moreover, the model developed had 3.7% 

better predictive accuracy, when compared to the best model reported (R2 = 0.93) in the biochar 

yield prediction literature [120]. The parity plots shown in Fig. 3-4 to Fig. 3-11 compared the 
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predicted and actual values for 8 different outputs for the optimal scenario of MLP-NN. Actual 

values were from literature and prediction values were ML model outputs. 

 

Fig. 3-4. Parity plots for MLP-NN comparing the actual and predicted values of biochar yield. The 

parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 
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Fig. 3-5. Parity plots for MLP-NN comparing the actual and predicted values of FC in biochar. 

The parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 

 

Fig. 3-6. Parity plots for MLP-NN comparing the actual and predicted values of VM in biochar. 

The parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 
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Fig. 3-7. Parity plots for MLP-NN comparing the actual and predicted values of ash in biochar. 

The parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 

 

Fig. 3-8. Parity plots for MLP-NN comparing the actual and predicted values of C in biochar. The 

parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 
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Fig. 3-9. Parity plots for MLP-NN comparing the actual and predicted values of H in biochar. The 

parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 

 

Fig. 3-10. Parity plots for MLP-NN comparing the actual and predicted values of O in biochar. 

The parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 
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Fig. 3-11. Parity plots for MLP-NN comparing the actual and predicted values of N in biochar. 

The parity plots correspond to the optimal model training scenario with 14 neurons, 1 hidden layer, 

ReLU activation function, 80%/20% training–testing data split. 

3.3.3 Predictive Performance of Artificial Neuro-Fuzzy Inference System 

The predictive accuracy of ANFIS developed in this work was shown via the parity plots in Fig. 

3-12 to Fig. 3-19. Overall, the ANFIS model had the following prediction accuracies for biochar 

yield (R2 = 0.877, RMSE = 4.9), proximate composition (average R2 = 0.838, average RMSE = 5.9), 

and ultimate composition (average R2 = 0.855, average RMSE = 2.2). The ANFIS model with 

Gaussian MF, 7 MFs per input, 80% training data, and 20% testing data provided the optimal 

results. It was also found that the predictive accuracy of ANFIS for biochar yield, proximate 

composition, and ultimate composition were 9%, 8.3%, and 3.6% lower than those for MLP-NN. 

Nevertheless, the model provided a competitive R2 value for predicting biochar yield compared to 

those reported in the literature [104,105].  
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Fig. 3-12. Parity plots for ANFIS comparing the actual and predicted values of biochar yield. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 

 

Fig. 3-13. Parity plots for ANFIS comparing the actual and predicted values of FC in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 
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Fig. 3-14. Parity plots for ANFIS comparing the actual and predicted values of VM in biochar. 

The parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing 

data split. 

 

Fig. 3-15. Parity plots for ANFIS comparing the actual and predicted values of ash in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 
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Fig. 3-16. Parity plots for ANFIS comparing the actual and predicted values of C in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 

 

Fig. 3-17. Parity plots for ANFIS comparing the actual and predicted values of H in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 
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Fig. 3-18. Parity plots for ANFIS comparing the actual and predicted values of O in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 

 

Fig. 3-19. Parity plots for ANFIS comparing the actual and predicted values of N in biochar. The 

parity plots correspond to the Gaussian MF, 7 MFs per unit, and 80%/20% training-testing data 

split. 

3.3.4 Comparison of MLP-NN, ANFIS, and Existing Works 

The generalizability of the MLP-NN and ANFIS model for predicting biochar yield, proximate 

composition, and ultimate composition was further investigated by varying the percentage of 

training testing dataset split. Three different training/testing percentage splits were considered for 

the overall database (226 datasets): 80%/20%, 70%/30%, and 60%/40%. Table 3-4 compares (1) 

MLP-NN with ReLu (Cases A-C), (2) MLP-NN with Tanh (Cases D-F), and (3) ANFIS (cases G-

I) for different training/testing dataset split percentages. These results were further compared to 

relevant works from the data-driven biochar yield prediction literature [104,105,120,146].        
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Table 3-4. R2 and RMSE values for biochar yield, proximate composition (FC-VM-ash), and 

ultimate composition (C-H-O-N) prediction using different proportions of training and testing data. 

The results are also compared to those reported in the biochar yield prediction literature. 

Descriptions of cases A to I are described the text. 

Case Attribute YieldBC FCBC VMBC ashBC CBC HBC OBC NBC 

A R2 0.964 0.903 0.899 0.940 0.918 0.855 0.887 0.888 

RMSE 3.4 5.1 6.1 2.0 3.1 0.5 3.3 0.4 

B R2 0.930 0.876 0.871 0.926 0.896 0.841 0.863 0.871 

RMSE 3.9 6.1 6.6 2.4 3.6 0.6 3.6 0.4 

C R2 0.891 0.827 0.820 0.886 0.851 0.826 0.829 0.856 

RMSE 5.1 7.5 8.1 2.9 4.4 0.7 5.4 0.5 

D R2 0.918 0.888 0.891 0.929 0.901 0.846 0.869 0.876 

RMSE 4.2 5.8 6.1 2.3 3.3 0.5 3.6 0.4 

E R2 0.883 0.861 0.862 0.911 0.878 0.832 0.841 0.860 

RMSE 5.2 6.6 6.8 2.5 3.9 0.6 4.2 0.5 

F R2 0.851 0.821 0.811 0.879 0.829 0.815 0.819 0.848 

RMSE 6.6 7.6 8.3 3.1 5.0 0.8 5.9 0.6 

G R2 0.877 0.785 0.811 0.917 0.847 0.837 0.860 0.874 

RMSE 4.9 7.4 7.7 2.6 4.1 0.6 3.6 0.5 

H R2 0.871 0.777 0.798 0.909 0.821 0.826 0.839 0.859 

RMSE 4.9 7.5 7.9 2.7 4.8 0.6 4.3 0.6 

I R2 0.862 0.756 0.773 0.887 0.802 0.809 0.796 0.839 

RMSE 5.6 7.7 8.1 3.1 5.2 0.8 6.1 0.7 

R2 0.855 --- --- --- 0.848 --- --- --- 
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RF 

model  

[104] 

RMSE 3.4 --- --- --- 5.8 --- --- --- 

SVM 

model  

[105] 

R2 0.804 --- --- --- --- --- --- --- 

RMSE 6.4 --- --- --- --- --- --- --- 

XGB 

model  

[105] 

R2 0.844 --- --- --- --- --- --- --- 

RMSE --- --- --- --- --- --- --- --- 

ANN 

model  

[120] 

R2 0.93 --- --- --- --- --- --- --- 

RMSE 1.74 --- --- --- --- --- --- --- 

 

Examining cases 1-3 revealed that changing the training-testing split from 80%/20% to 70%/30% 

decreases the predictive accuracy for biochar yield by 3.5%, proximate composition by 2.5%, and 

ultimate composition 2.2%. This suggested that with a 10% smaller training dataset, the 

performance of MLP-NN with ReLU was not significantly affected. Similar assessment was done 

for MLP-NN with Tanh activation function by comparing Cases 4-6. In this scenario, changing the 

training-testing split proportions from 80%/20% to 70%/30% degraded the predictive accuracy for 

biochar yield by 3.8%, proximate composition by 2.7%, and ultimate composition by 2.3%. For 

ANFIS (Cases 7-9), similar analysis reveals a performance degradation of 0.7% for biochar yield, 

1.1% for proximate composition, and 2.1% for ultimate composition. Overall, the predictive 

accuracy of the MLP-NN with ReLU is up to 9.9% time better than that for ANFIS. An additional 

incentive offered by the MLP-NN model is that its computation time is 8 minutes for the present 
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work, which is approximately 3 times faster than the ANFIS model. All the model trainings were 

run on a desktop with 11th Gen Intel Core i5-11400F @ 2.50GHz processor with 8 GB RAM. 

 

Further, the MLP-NN with ReLU activation function was compared to relevant works in the 

biochar prediction literature. It is important to note that relevant work in the biochar prediction 

literature is mostly limited to biochar yield prediction [105,120,146], except one where the carbon 

content of biochar was predicted in parallel to yield [104]. The MLP-NN with ReLU model has 

4.8% better prediction accuracy than the best possible (R2 = 0.92) biochar yield prediction model 

[120]. Simultaneously, the MLP-NN model has 8.2% better predictive accuracy for predicting C 

contents in biochar when compared to the RF model [104]. In addition, the present work predicts 

other elemental compositions (H-O-N) and proximate compositions (FC-VM-ash) of biochar 

produced via pyrolysis. These additional advantages proved the superiority of the present work, 

where a comprehensive model was developed for the biochar production process. Future research 

efforts are recommended to study the comparison of various data-driven models such as RF, XGB, 

SVM, and MLP-NN subjected to the same input dataset for simultaneous prediction of biochar 

yield and compositions. 

3.4 Summary 

Comprehensive data-driven models were developed to predict biochar yield and compositions 

based on pyrolysis conditions and biomass feedstock compositions. Feature importance analysis 

revealed high dependence of biochar yield and composition on PT, C content, and amount of N. 

The MLP-NN had predictive accuracies for biochar yield (R2 = 0.964, RMSE = 3.4), proximate 

composition (R2 = 0.914, RMSE = 4.4), and ultimate composition (R2 = 0.887, RMSE = 1.8). The 

MLP-NN showed 9.9% and 12.7% performance improvement than ANFIS and existing works in 
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the literature, respectively. This opens avenues for future research in data-driven biochar process 

modelling and optimization. 
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Chapter 4 Machine Learning-assisted Life Cycle Assessment of 

Biochar Soil Application 

In the previous chapter, the focus was on developing ML models and improving biochar predictive 

capabilities. Towards biochar production and application, it is key to know the the environmental 

impacts and LCA can play an important role. Combining ML with LCA can provide a more holistic 

view that utilises ML models to increase input data relevance and accuracy. Chapter 4 will cover 

a comprehensive assessment of different ML models with the aim of identifying and comparing 

their efficacy and applicability in LCA approach. Through comparative analyses, it will not only 

be able to validate the potential of the ML models developed in this Chapter, but also determine 

which model is best suited to deal with specific challenges in LCA. Such comparisons not only 

help to deepen the understanding of ML approaches in environmental assessment, but also provide 

a basis for selecting the most appropriate model to drive more accurate and reliable LCA results. 

4.1 Introduction 

Low quality soil is typically featured by high pH, high erosion rate and high nutrient leaching, 

adversely affecting the growth of agricultural products. Soil nutrient depletion is directly linked to 

food insecurity and is often caused by due to unsustainable intensified land use. Maintaining an 

appropriate level of soil organic matter and ensuring an effective nutrient biological cycle is 

essential for soil management [27]. Organic, inorganic, and chemical fertilisers have been 

developed as soil amendments to improve soil quality. However, there are various resource and 

environmental concerns about their applications. For example, rapid mineralization of soil organic 

matter is often encountered as a limitation upon the practical application of organic fertilisers in 

tropical areas. The production of fertilisers involves substantial inputs of non-renewable resources, 

including fossil fuels, which could emit large amounts of CO2. The long-term use of chemical 
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fertilisers can cause various side effects such as soil pH value changes and damage to beneficial 

microbial ecosystems [13]. Overall, commercial N-fertilisers are widely used in agriculture but 

commonly have significant GHG impacts. In addition, soil microbial activity releases Nitrogen 

Oxides (N₂O) when applied to the soil. It has 265 times more potential environmental impact than 

CO2 over 100 years [147]. In contrast, biochar as a soil amendment has great potential to mitigate 

the environmental issues and improve agricultural sustainability [148].  

 

The core concept of biochar carbon sequestration is about fixing atmospheric CO2 into biomass 

through photosynthesis and then pyrolyzing it into a stabilized solid product in the form of biochar, 

followed by soil applications for long-term carbon storage. The actual carbon sequestration 

capacity of biochar upon soil application, however, depends on various factors such as biochar 

yield and stable C content [149]. Hence, the capability of understanding and predicting the yield 

and properties of biochar is critical to designing optimal and efficient biochar systems for 

sustainable soil application. In particular, the environmental benefits of biochar production 

systems are contingent upon the efficiency of biochar production systems and need to be 

maximized to support the effective implementation of the systems [83].  

 

Recently, ML-based models have been used to effectively estimate the yield and properties of 

biochar derived from a wide range of biomass. Typical ML models developed to predict biochar 

production include RF, XGBoost, ANN, and SVM [106]. ML modelling requires the preparation 

of a prior database based on which model training and testing are carried out. Generally, the 

database is split into a training dataset and a test dataset at a certain ratio. After the training process, 

the models are fed with testing data to assess their accuracy. In this study, five different ML models 
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were applied to predict the yield and properties of biochar produced from the pyrolysis of waste 

biomass. 

 

It is important to understand the carbon-saving potential of biochar production and soil application 

to support widespread implementation of relevant technologies, for which the approach of LCA 

has been extensively applied. LCA is a standard protocol for quantifying the environmental 

impacts and resource use of processes and systems from a whole life-cycle perspective [150]. For 

example, Thers et al. [151] investigated the carbon sequestration potential of biochar produced 

from the pyrolysis of Danish oilseed rape. The carbon sequestration potentials were −392 

and −429 kg CO2-eq Mg−1 dry seed for 400°C and 800°C PT scenarios. Mohammadi et al. [152] 

evaluated the climate change impacts of biochar production system based on rice straw and husk 

in northern Vietnam. Compared to the direct rice straw open combustion scenario, the production 

of biochar from spring and summer rice straw reduced carbon footprint by 49% and 38%, 

respectively. However, for most of the existing LCA studies, nominal average parameters 

regarding biochar yields and properties were considered. There was limited capability to evaluate 

the carbon-saving potential of biochar soil applications with the accurate consideration of the 

influences of biochar production process conditions. 

 

This work fills the knowledge gap by combining ML-based models with LCA for assessing the 

environmental impacts of biochar production and soil application under various process conditions. 

The optimal ML model informs the LCA model of the yield and properties of biochar, which 

systematically assesses the carbon saving potential of biochar production and soil application 

under different N fertiliser substitution scenarios. Feature importance analysis for ML modelling 
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and parameter sensitivity analysis for the overall LCA were also carried out. To the best knowledge 

of the authors, this is a maiden attempt to fulfil the comparison of a wide range of ML models for 

predicting pyrolysis-based biochar production and to apply ML modelling to assist LCA for 

biochar production and soil application.  

4.2 Methods 

The framework is based on the combination of ML modelling and LCA where data-driven ML 

models provided input parameters (biochar yield and properties) for the LCA to quantify the 

environmental impacts of biochar production and its soil application. 

4.2.1 Machine Learning for Pyrolysis-based Biochar Production   

4.2.1.1 Data Pre-processing  

The work entailed deploying ML models to predict biochar yield and proximate and ultimate 

compositions of the biochar derived from biomass waste pyrolysis. The data-driven ML models 

were developed based on the data obtained from the literature which covered various feedstock 

properties and pyrolysis reaction conditions. The methodology of data pre-processing was 

summarised in section 3.2.1.   

4.2.1.2 Machine Learning Model Development  

Five types of ML methods were implemented in this work, which include MLP-NN, Tree, SVM, 

Tree Ensembles, and GPR. The ML modelling considers ten input features (i.e., FC, VM, ash, C, 

H, O, and N contents of feedstock, PT, RT, and HR) and eight output features (i.e., biochar yield, 

and FC, VM, ash, C, H, O, and N contents of biochar). Evaluating multiple methods on the 

identical dataset not only ensures that the robustness of modelling is not affected by the 

characteristics of a particular method, but also helps to identify a method for optimal prediction 

and application. MLP-NN was implemented in Anaconda (a Python environment) with the 
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assistance of the Scikit-learn library. Other four methods were tested based on the Regression 

Learner toolbox in the MATLAB R2023a software. The MATLAB toolbox delivers rapid training, 

validation, and selection of models using graphical interface, allowing fast exploration and 

comparison of different methods. The dataset was split into 80%/20% for model training and 

testing, respectively. The cross-validation folds number was set as 5. Meanwhile, the Bayesian 

Hyperparameter Optimization method was applied to optimize the hyperparameters for each ML 

model, with the number of iterations set to be 50. 

 

The MLP-NN is a fully connected feedforward NN for supervised regression problems and can be 

trained using the Levenberg-Marquardt backpropagation algorithm. It generally has three layers: 

input, hidden, and output. Each layer has neurons which are small processing units consisting of 

five components: input variable, basis and bias, summation function, activation function, and target 

variable. Activation functions, also referred to as transfer functions, can be linear or nonlinear 

functions that convert a weighted sum (internally generated sum) of inputs to an output value. 

According to our previous work [106], the optimal hyperparameters for MLP-NN of biochar 

production are 3 layers, 14 neurons in one hidden layer, and ReLU for the activation function.  

 

GPR is a kernel-based non-parametric, non-linear, and Bayesian probabilistic model. It has the 

advantage of performing well with small datasets. It can directly measure the model uncertainty 

and provide a distribution for the predicted value. The hyperparameters in the MATLAB toolbox 

allow the following options/ranges, respectively: Basis function (Constant, Zero, Linear); Kernel 

function *Rational quadratic, Matern 5/2, Squared Exponential, and Exponential); Sigma (0.0001–

1.9087); Kernel scale (0.096–96).  
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The tree model, known as the regression tree, is constructed through an iterative process called 

binary recursive partitioning. It can be applied to both regression and classification problems. At 

each leaf, the regression tree produces a predicted value that is the average of all observation values 

in that leaf. The number of leaves were considered ranging from 1 to 83. The regression tree 

ensemble is a predictive model consisting of a weighted combination of multiple regression trees 

to improve the prediction accuracy of learning problems. In terms of performance, the ensemble 

often makes better predictions and achieves better performance than any single contributing model. 

Regarding robustness, the ensemble reduces the spread or dispersion of predictions and model 

performance. The process of ensemble learning can be divided into three phases: the prediction 

phase (train multiple individual tree models), the pruning phase (simplify and optimise the 

ensemble by pruning certain models or parts of models that may be overfitting), and the integration 

phase (combine the predictions from all models in the ensemble to produce a single final output). 

Essential hyperparameters considered included the ensembling method (Bagged and Least Square 

Boost (LSBoost)), the number of learners (10–500), learning rate (0.001–1), minimum leaf size 

(1–83), and the number of predictors to sample (1–10). 

 

SVM constructs a model by training labelled datasets and then determines the hyperplane and 

decision boundary of the SVM model and uses a kernel function to separate unlabelled datasets of 

different classes. It aims to fit the data in a manner that errors do not exceed a certain threshold. 

The role of the kernel function is to improve the efficiency of determining the hyperplane and 

decision boundary. It is particularly effective for non-linear relationships between variables. By 

choosing appropriate parameters and kernels, it can capture complex relationships between input 
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and target variables. The optimisable hyperparameters (ranges or options) for the SVM model were 

kernel scale (0.001–1000), Epsilon (0.00021868–21.8681), Box constraints (0.001–1000), and 

kernel functions (Gaussian, linear, quadratic and cubic). 

4.2.1.3 Model Performance Metrics 

The performance of the data-driven models was examined and evaluated using RMSE and R2. They 

are common metrics used for checking the accuracy and fit of regression-based problems as 

calculated by the following equations:  
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where 𝑌/
>5A and 𝑌/

AB>C are the experimental and model predicted outputs, 𝑌JK>
>5A is the average of 

all experimental outputs, and N is the total number of data points, which is 226 in this work. 

4.2.2 Life Cycle Assessment 

LCA can be applied to identify the "hotspots" of the environmental impacts of a product, process, 

or system. It consists of four phases: goal and scope definition, LCI, LCIA, and data interpretation. 

The LCA was carried out in Gabi software following the standard of ISO 14040:2006 and the 

details of the analysis are presented below. 

4.2.2.1 Goal and Scope Definition 

The objective of this study is to evaluate the environmental impact GWP of biochar production 

from pyrolysis and soil application. In this study, the GWP was measured in terms of carbon 

dioxide equivalent per tonne of feedstock (kgCO2-eq/t feedstock). It allows the greenhouse effect 

of different GHGs to be expressed based on their equivalence to CO2. The system boundary is 

shown in Fig. 4-1. The value shown in Fig.1 all reference in life cycle inventory (Table 4-1) The 
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Functional Unit (FU) is set to be the treatment of 1 tonne of feedstock. The system boundary covers 

biochar production and soil applications, including feedstock transportation, feedstock 

conditioning (grinding and drying), and pyrolysis plant operation, carbon sequestration potential, 

and fertiliser substitutions (urea ammonium nitrate and calcium ammonium nitrate). The system 

boundary excludes the application of bio-oil and syngas as pyrolysis co-products, as the focus of 

the study is on the application and production of biochar. The GWPs were investigated considering 

3 PT conditions: 300°C, 400°C and 500°C, by which the influences of process temperature (a key 

influential factor for pyrolysis production) towards biochar properties and yields were incorporated 

into LCA.  

 

Fig. 4-1. The system boundary for the LCA of a biochar-soil system. 

4.2.2.2 Life Cycle Inventory    

Inventory data were collected from literature, laboratory data, commercial databases, and 

equipment operation manuals. Table 4-2 shows the inventory of input and output based on 1 tonne 

of feedstock. All data available from Gabi software database, the associated GWP calculated based 

on Gabi software. Gabi LCA software is a powerful software used to evaluate the environmental 
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impacts of various products, technologies, services, and systems. The electricity supplied by GB 

electricity grid (available in Gabi software) was used. The feedstock transport to the pre-processing 

and pyrolysis facility and road transport of biochar to the field by a truck (US: Truck - Dump 

Truck/52000 lb payload), the diesel consumption was 1.49 kg [153]. The related GWP was 4.790 

kgCO2-eq/t feedstock.  The diesel mixed at refinery (GB: Diesel mix at refinery Sphera) associated 

GWP was 0.077 kgCO2-eq/t feedstock. The feedstock was assumed to have a 1% mass loss after 

the transportation [153]. 

 

Prior to the pyrolysis processing of the feedstock, the raw material was ground using Cone Mill 

Machine CFZ-1000 with an electricity consumption of 5.5 kWh/t electricity [154]. The feedstock 

was then dried in the rotary disc dryer (TG-machines RDD-30), with pressure ranges up to 10 bar, 

temperatures from 158°C to 180°C, and an electricity consumption of 22.00 kWh/t [155]. The 

main components of the machine are the stator and the rotor.  

 

Pyrolysis was carried out in a batch pyrolysis plant (Beston pyrolysis plant BLJ-16) with an 

electricity consumption of 55.60 kWh/t [156]. The biochar yields for 300°C, 400°C, and 500°C 

were predicted by the optimal ML model, which were outputs of ML model. The biochar mass can 

be calculated by the following equation: 

𝑀L = 𝐵8 ×𝑀M                                                                                                                     (4.8)    

where	𝑀L is mass of biochar (kg); 𝐵8is the biochar yield (%); 𝑀M is mass of feedstock (kg).  

Table 4-1. The inventory of input based on 1t feedstock. 

Processes Value Unit Reference 
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Pre-processing    

Feedstock diesel consumption 1.49 kg [153] 

Feedstock grinding (electricity use) 5.50 kWh/t feedstock [154] 

Feedstock drying (electricity use) 22.00 kWh/t feedstock [155] 

Pyrolysis unit     

Pyrolysis electricity unit  55.60 kWh/t feedstock [156] 

Biochar production    

Biochar mass (300 °C) 54.36 wt.% Model prediction 

Biochar mass (400 °C) 37.29 wt.% Model prediction 

Biochar mass (500 °C) 30.90 wt.% Model prediction 

Biochar application    

Fraction of C contains in soil after 100 years 

(300 °C) 

50%  [157] 

Fraction of C contains in soil after 100 years 

(400 °C) 

65%  [157] 

Fraction of C contains in soil after 100 years 

(500 °C) 

75%  [157] 

Urea ammonium nitrate carbon footprint 2.37 kgCO2-eq/kg product [158] 

Calcium ammonium nitrate carbon footprint 2.86 kgCO2-eq/kg product [158] 

 

4.2.2.3 Biochar Soil Application 

Biochar was applied to the field for carbon sequestration and N fertiliser displacement. Biochar 

has the potential to be used as an alternative to commercial fertilisers due to its nitrogenous nature 

[159]. The optimal ML model was used to predict the C and N contents of the biochar, which were 

then applied to estimate relevant GHG emissions. It is assumed that the N in biochar can be used 
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for a 1:1 substitute to N fertiliser. The urea ammonium nitrate and calcium ammonium nitrate have 

30% and 27% N contents, and their carbon footprints are 2.37 kgCO2-eq/kg product and 2.86 

kgCO2-eq/kg product, respectively [158]. Two fertiliser displacement scenarios were analysed 

corresponding to the two types of fertilisers. Also, the C stability (fraction of biochar C remaining 

in soil for durations after 100 years) of biochar produced at 300°C, 400°C and 500°C was assumed 

to be 0.50, 0.65 and 0.75 over 100 years, respectively [157]. The carbon sequestration potential 

and N fertiliser displacement were estimated as follows: 

𝐶NO = −𝑀L ×	𝐶ON × 𝐶L × 3.67                                                                                                    (4.9) 

𝑀P =
Q2×@3
@4

                                                                                                                                  (4.10) 

where 𝐶NO  is carbon sequestration in soil (kgCO2-eq); 𝑀L  is the biochar mass (kg); 𝐶ON  is the 

stable C content in biochar (%); 𝐶L is the C content in biochar (%) predicted by the ML model; 

3.67 is C-CO2 conversion coefficient; 𝑀P  is the replacement fertiliser mass (kg); 𝑁N  is the N 

content in biochar (%); 𝑁P is the N content in the fertiliser displaced by biochar (%).  

 

Meanwhile, the application of biochar to soil also has the potential to reduce N2O emissions. A 

meta-analysis by Kaur et al. [160] found that biochar significantly reduced soil N2O emissions by 

38.8%. According to Equation 4.10, the masses of the two N fertilisers (urea ammonium nitrate 

and calcium ammonium nitrate) replaced by biochar were 21.05 kg, 12.03 kg, 9.98 kg, 35.87 kg, 

20.50 kg, and 17.00 kg for three different temperatures ranging from 300°C to 500°C, respectively. 

The biochar mass was 538.26 kg, 369.29 kg, and 305.93 kg, respectively. The Food and Agriculture 

Organization (FAO) illustrated that for a crop field per hectare, considering a correction factor, 52 

kg of nitrogen fertiliser is required per hectare. This demonstrates the FAO's approach to 

optimizing nitrogen fertiliser use on farms, considering factors like crop yield and specific fertiliser 
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requirements [161]. According to Equation 4.11, the applied field area for the corresponding 

fertiliser weight can be calculated. In the context of wheat cropping, the maximum N₂O emission 

per hectare was 3.5 kg N₂O/ha at a rate of 100 kg N/ha [162]. Based on Equation 4.12, the N₂O 

emissions corresponding to the fertiliser applied to the field can be calculated. Equation 4.13 refers 

to the reduction in N₂O emissions following biochar application to the field. 

𝐴J =		
Q4
S;

                                                                                                                                         (4.11)     

𝐸@(T = 3.5 × Q4
&UU
	                                                                                                                            (4.12)  

𝐸V =	𝐴J ×	𝐸@(T × 	38.8%                                                                                                           (4.13) 

Where 𝐴J is fertiliser applied area (ha); 𝐸@(T is applied fertiliser N2O emission per hectare (kg 

N₂O/ha); 𝐸V is the reduction in N₂O emissions for the biochar applied to field (%).  

4.2.2.4 Life Cycle Impact Assessment  

LCA was implemented through the software GaBi for backend data support and calculation of 

impact categories.  The GWP of the system over 100 years is considered as the environmental 

impact metric with a unit of kgCO2-eq/t feedstock. GaBi provides several impact assessment 

quantification methods such as CML 2001–2016, EDIP 2003, ReCiPE 1.08, etc. CML 2001–2016 

was applied as it is relatively transparent and has less uncertainty in its calculation [163]. 

4.2.2.5 Sensitivity Analysis  

Sensitivity analysis was conducted to quantify the influences of major parameters (e.g., biochar 

yield, stable C content in biochar, pyrolysis power consumption, N content in biochar) towards the 

results of LCA. Each parameter was varied by 10% while the other parameters remained 

unchanged for the sensitivity analysis. The individual effects of parameters on GWP were 

expressed in terms of a Sensitivity Ratio (SR) defined as:  
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where Φ/ and 𝐺𝑊𝑃/  are the values of the ith parameter and the corresponding GWP. 

4.3 Results and Discussion  

4.3.1 Exploration of Data 

The PCC values between the variables in the dataset were calculated to assess the correlation 

between them, which is presented as the heatmap in Fig. 4-2. The PCC values range from –1 to 1. 

Fig. 4-3 visualises the |𝑃𝐶𝐶| by the bar chart, revealing the relationship between the input variable 

(FCinput, VMinput, Ashinput, Cinput, Hinput, Oinput, Ninput, PTinput, RTinput, and HRinput) and output variable 

(Biochar yield, Cbiochar, and Nbiochar). For biochar yield, PT was the dominant parameter with a 

|𝑃𝐶𝐶| value of 0.76, which is also consistent with that reported by Zhu et al. [104]. This supports 

the consideration of the impacts of different temperature conditions in the LCA. Increasing PT 

reduces biochar yield but increases its C content by reducing volatile components like H, O, and 

N, highlighting a trade-off between yield and C content in biochar. In addition, the C content of 

the feedstock had second important effect on the C content of biochar (|𝑃𝐶𝐶| = 0.39). The most 

influential variable for the N content in biochar is the N content in the feedstock (|𝑃𝐶𝐶| = 0.74), 

which means that higher N content in the feedstock produces a consequential higher N content in 

the biochar. Research in the literature reported a similar correlation between the compositions of 

feedstock and biochar [120]. 
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Fig. 4-2. Heatmap: PCC between any two variables of interest. 

 

Fig. 4-3. The relative importance of input features to predicted outputs which are used in the LCA, 

i.e., biochar yield, and C and N contents in biochar.  
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4.3.2 Machine Learning Model  

A comprehensive comparison of the 5 data-driven models (MLP-NN, SVM and GPR, tree and 

ensembles) used to construct predictive models for biochar yield, C content and N content was 

presented in Table 4-3. In addition to the performance metrics, R2 and RMSE, the information about 

the prediction speed (Obs/s) and training time (in seconds) was also presented.   

Table 4-2. Comparison of the 5 data-driven models used to construct predictive models for biochar 

yield, and the C and N contents of biochar.  

Output 

Attribute 

Model type Optimal Hyperparameters R2 RMSE Prediction 

speed 

(Obs/s) 

Training 

time (s) 

Biochar yield 

(%) 

MLP-NN Hidden layer: 1, Activation: 

ReLU, Iteration limit: 395, 

Learning rate: 0.033, 

Momentum=0.364, 

Standardize data: Yes, MLP 

Regrressor: Early stopping 

0.964 3.51 1123.8 3.213 

 Ensembles Ensemble method: Bagged 

tree, minimum leaf size: 8, 

number of learners: 30, 

number of predictors to 

sample: 10 

0.891 5.29 1029.8 3.615 

 SVM Kernel function: Quadratic, 

Kernel scale: Automatic, 

0.874 5.67 1181.7 3.185 
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Box constraint: Automatic, 

Epsilon: Auto, Standardize 

data: Yes 

 Tree Minimum leaf size: 4, 

Surrogate decision splits: 

Off 

0.867 5.84 4655.5 6.429 

 GPR Basis function: Constant, 

Kernel function: Rational 

Quadratic, Use isotropic 

kernel: Yes, Kernel scale: 

Automatic, Signal SD: 

Automatic, Sigma: 

Automatic, Standardize 

data: Yes, Optimize 

numeric parameters: Yes  

0.866 5.86 1045.1 2.119 

Biochar C 

(%) 

MLP-NN Hidden layer: 1, Activation: 

ReLU, Iteration limit: 635, 

Learning rate: 0.085, 

Momentum=0.715, 

Standardize data: Yes, 

MLPRegrressor: Early 

stopping 

0.918 3.20 2986.3 4.129 

 Tree Minimum leaf size: 4, 

Surrogate decision splits: 

Off 

0.847 4.36 417.1 10.933 
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 SVM Kernel function: Cubic, 

Kernel scale: Automatic, 

Box constraint: Automatic 

Epsilon: Auto, Standardize 

data: Yes" 

0.845 4.39 2561.5 8.938 

 GPR Basis function: Constant 

Kernel function: 

Exponential, Use isotropic 

kernel: Yes, Kernel scale: 

Automatic, Signal SD: 

Automatic, Sigma: 

Automatic, Standardize 

data: Yes, 

Optimize numeric 

parameters: Yes 

0.836 4.53 1179.8 18.416 

 Ensembles Minimum leaf size: 8, 

Number of learners: 30, 

Number of predictors to 

sample: 10 

0.801 4.99 887.8 19.326 

Biochar N 

(%) 

GPR Basis function: Constant, 

Kernel function: 

Exponential, Use isotropic 

kernel: Yes, Kernel scale: 

Automatic, Signal SD: 

Automatic, Sigma: 

0.937 0.36 726.7 2.833 
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Automatic, Standardize 

data: Yes, Optimize 

numeric parameters: Yes 

 SVM Kernel function: Quadratic 

Kernel scale: Automatic 

Box constraint: Automatic 

Epsilon: Auto, Standardize 

data: Yes 

0.935 0.37 708.0 3.128 

 MLP-NN Hidden layer: 1, Activation: 

ReLU, Iteration limit: 395, 

Learning rate: 0.029, 

Momentum=0.364, 

Standardize data: Yes, 

MLPRegrressor: Early 

stopping 

0.933 0.37 3101.9 3.239 

 Tree Minimum leaf size: 4, 

Surrogate decision splits: 

Off 

0.850 0.56 5450.3 4.654 

 Ensembles Minimum leaf size: 8, 

Number of learners: 30, 

Learning rate: 0.1, Number 

of predictors to sample: 10 

0.758 0.72 684.3 3.462 

 

For the prediction of biochar yield, the MLP-NN model with one hidden layer, ReLU activation 

function and optimised hyperparameters showed exceptional performance with an R2 of 0.964 and 
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an RMSE of 3.51. It achieved a prediction speed of 1,123.8 obs/s and a short training time of 3.213s. 

In terms of biochar C prediction, the MLP-NN model (R2 = 0.918, RMSE = 3.20) also exhibited 

the best performance, with the hyperparameters one hidden layer: and activation function ReLU. 

The nature of the ReLU activation function avoids the occurrence of gradient vanishing during the 

training of the MLP-NN model as it does not have any hard constrained upper bound. Furthermore, 

the MLP-NN model utilises the early stopping technique, which is an overfitting prevention 

technique by stopping the training process before the model completes its training. Regarding 

biochar N prediction, the GPR model with the Exponential kernel function exhibited remarkable 

accuracy (R2 = 0.937, RMSE = 0.36), which was slightly better than the MLP model (R2 = 0.933, 

RMSE = 0.37). Notably, the superior performance of the GPR model is attributed to the ability of 

the probabilistic Gaussian process to handle datasets with a high degree of variance. Overall, MLP-

NN and GPR, as two different types of ML models, each have different advantages and applicable 

scenarios. For complex nonlinear relationships and data with more features, MLP-NN may be 

more applicable. GPR may be more advantageous for data with high stochasticity and noise, and 

where a good estimate of the uncertainty of the prediction is required. Such discrepant results 

provide more options for scientific research and emphasise the importance of the need to consider 

data characteristics and task requirements when selecting a model. 

 

The parity plots shown in Fig. 4-4 to Fig.4-6 for the optimal model showed the comparison 

between the actual and predicted values of biochar (a) yield, (b) C, and (c) N. The parity plots (a) 

and (b) correspond to the MLP-NN model, and (c) to the GPR model.   
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Fig. 4-4. Parity plots for optimal model comparing the actual and predicted values of biochar yield 

correspond to the MLP-NN model. 

 

Fig. 4-5. Parity plots for optimal model comparing the actual and predicted values of C content in 

biochar correspond to the MLP-NN model.  
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Fig. 4-6. Parity plots for optimal model comparing the actual and predicted values of N content in 

biochar correspond to the GPR model.  

Fig. 4-7 provides showed the yield, and the C and N contents in biochar produced at three distinct 

PTs: 300°C, 400°C, and 500°C, as predicted by the optimal ML models. The centre line of each 

box represents the median of the data, while the upper and lower boundaries of the boxes represent 

the upper and lower quartiles. The whiskers show the maximum and minimum values of the data. 

In order to more clearly represent the differences in data distribution, Fig. 4-7(a) to Fig. 4-7(c) 

show the distribution of data within the domains of different predicted values for biochar yield, C 

content in biochar, and N content in biochar, respectively. This provides a comprehensive view of 

the data variation at different treatment temperatures. It is worth noting that all 5 ML models 

developed are able to predict biochar yields as well as proximate properties (FC-VM-Ash) and 

ultimate properties (C-H-O-N) of biochar, which creates a prospective path for future work to 

extend the application of biochar to the scenarios the properties are relevant.  
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Fig. 4-7. Box and whisker chart for predicted values of (a) biochar yield, (b) biochar C content, 

and (c) biochar N content corresponding to PT at 300°C, 400°C and 500°C. 

4.3.3 Life Cycle Assessment  

Fig. 4-8 and 4-9 showed the GWP (measure in kgCO2-eq/t feedstock) breakdown of biochar 

production and soil application. The scenarios are differentiated according to the two types of 

fertiliser displacement: urea ammonium nitrate and calcium ammonium nitrate and three PT 

conditions: PT=300°C, PT=400°C and PT=500°C. Significantly, the carbon sequestration by 

biochar carbon storage in soil showed a dominant negative impact (The meaning of environmental 

benefits) on GWP, while transportation, pyrolysis unit and preprocessing have consistently shown 

a minor, positive contribution to GWP. Especially due to the very short distances, transportation is 

very minor influencing factors. The influence of biochar carbon storage in soil on carbon 

sequestration increased with increasing PT, from -550.38 to -555.54 kgCO2-eq/t feedstock. As per 

Chapter 4.3.1, the biochar C content increased with increasing PT, but the biochar yield decreased, 
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which caused an offset in the overall carbon sequestration as shown by Eq. (4.9). The biochar 

sequestration by biochar carbon storage in soil is not significantly affected by PT due to the 

compromise between the biochar yield and C content. In addition, the GWP of the transportation, 

pre-processing and pyrolysis unit were mainly affected by the type of truck (diesel consumption), 

the transport distance, and the power consumption of the type of pyrolysis equipment used.  

 

The carbon saving by urea ammonium nitrate fertiliser substitution decreased with increasing 

pyrolysis temperature: For PT=300°C, the GWP by urea ammonium nitrate fertiliser was –76.5 

kgCO2-eq/t feedstock, which was increased by 40.24 kgCO2-eq/t feedstock to –36.26 kgCO2-eq/t 

feedstock for PT=500°C. Comparatively, the GWP of the calcium ammonium nitrate fertiliser 

substitution was –102.58 kgCO2-eq/t feedstock for PT=300°C and was increased to –48.62 kgCO2-

eq/t feedstock for PT=500°C. Fig. 4-10 highlighted the GWP percentage difference between the 

two fertiliser substitution scenarios under the three PT conditions. The net GWPs of calcium 

ammonium nitrate displacement were smaller than that of urea ammonium nitrate displacement, 

for which the difference is consistently around 34%. This suggests that there are potentially great 

variations in the GWP of biochar soil applications depending on the type of fertiliser it displaces. 

With a limited variation in the N content of biochar, the amount of N fertiliser displaced by biochar 

decreases as the biochar yield decreases with increasing. 

 

Substitution of urea ammonium nitrate and calcium ammonium nitrate by biochar reduced N2O 

emissions. The reduction of N2O emissions for the replacement of urea ammonium nitrate and 

calcium ammonium nitrate applied in the field was 11.5%, 3.7%, 2.6%, 33.7%, 10.9%, and 7.5%, 

respectively, for PT variations of 300°C-500°C. It was found that as PT increased, the ability of 
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biochar to reduce N2O decreased because the mass of biochar became lower for N fertiliser 

substitution, which meant that the area of application became lower. At the same time, N2O 

emissions increased. Considering these two factors, it is recommended that the PT be controlled 

below 400°C to obtain the ideal N2O reduction effect. 

 

Fig. 4-8. Phase breakdown of GWP of biochar systems under different PTs for urea ammonium 

nitrate fertiliser substitution scenario. 
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Fig. 4-9. Phase breakdown of GWP of biochar systems under different PTs for calcium ammonium 

nitrate substitution scenario. 

 

Fig. 4-10. Comparison of GWP savings between two N-fertiliser substitution under different PTs. 
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4.3.4 Data Interpretation   

Fig. 4-11 illustrates the results of a one-way sensitivity analysis for the six conditions varied. The 

red dashed line corresponds to SR = 0.2, and it is considered that the conditions with SR values 

below 0.2 have a non-significant effect on GWP and vice versa. Fig. 4-11 showed that the GWP 

of biochar production and soil application is more sensitive to the stable C content and N content 

in biochar in the urea ammonium nitrate fertiliser substitution scenario as compared to the calcium 

ammonium nitrate fertiliser substitution scenario. The sensitivity of GWP to the biochar yield was 

the other way around. Meanwhile, the pyrolysis power consumption parameter had similar effects 

across the scenarios. The SRs for the biochar yield and stable C content in biochar were greater 

than 0.2, indicating that any uncertainty associated with these quantities significantly affects the 

GWP results. The stable C content in biochar has the most significant effect on the GWP. Notably, 

the SR for the N content in biochar was greater than 0.2 for PT=300°C and urea ammonium nitrate 

fertiliser substitution, suggesting that there was interaction effects between the N content and PT.  
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Fig. 4-11. One-way parameter sensitivity analysis quantifying SR, with sensitivity plots showing 

the effect of each parameter on GWP. 

In assessing the impact of biochar production and soil application on GWP, while this study 

focused on biochar yield, N content and C content, it did not fully consider the ash content of 

biochar. Ash is the sum of the inorganic components of biochar and has an impact on the physical 

and chemical properties of biochar. For example, the presence of ash may affect the pore structure, 

water holding capacity and thermal stability of biochar. In addition, high ash content may lead to 

changes in soil pH, which may indirectly affect the effectiveness of biochar as a N fertiliser 

substitute. In order to have a more comprehensive understanding of the effects of biochar 

application in soil on GWP, ash content could be considered in future study. 

4.4 Summary  

This work developed an environmental impact assessment framework by combining data-driven 

ML modeling and LCA, which facilitated our understanding of the influences of the biochar 

production and application conditions towards GWP.  Five different models were compared with 

MLP-NN outperforming in biochar yield and C content predictions while GPR in biochar N 

content predictions. Based on the ML predictions on biochar yields, and C and N contents, the 

GWPs for biochar production and soil application were analysed across different PT conditions 

and fertiliser displacement scenarios. It was shown that that the two N fertiliser substitution 

scenarios had GWPs of –606.858 and –632.938 kgCO2-eq/t feedstock, respectively. The outcome 

of LCA was most sensitive to the stable C content in biochar and biochar yields, suggesting the 

importance of accurate biochar production prediction.  
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Chapter 5 Machine Learning-Assisted Multi-Objective Optimization 

and Multi-Criteria Decision Making Combined with Life Cycle 

Assessment: An Integrated Framework 

In Chapter 4, the predictive capabilities of ML models for biochar pyrolysis production are 

revealed and these prediction results are applied to the LCA to assess the GWP impact. This work 

provides the basis to be able to further explore the integration of the ML model with MOO and 

MCDM in Chapter Five. Through this framework, it not only able to exploit the predictive ability 

of ML models, but also consider optimising multiple objectives and constraints when finding for 

optimal solutions. The core of Chapter 5 is to show how the integration of ML, MOO and MCDM 

can provide a more comprehensive and accurate framework for LCA approach. The advantage of 

this integrated approach is that it not only suggests optimal solutions, but also enhances the 

understanding in terms of the environmental impacts of biochar pyrolysis production and its soil 

applications.  Therefore, Chapter 5 will specifically address how this integrated framework can be 

utilised to achieve better GWP results to drive environmentally friendly forward in the field of 

environmental optimization of biochar pyrolysis production and its soil applications. 

5.1 Introduction  

For biochar production, the yield or multiple properties are expected to be optimised 

simultaneously rather than optimising a single objective. However, some of the properties of 

biochar are mutually exclusive. For example, as the PT increases, the yield and N content decreases 

while the C content increases. This creates a great variety of parameter combinations to be explored. 

Therefore, an advanced strategy was developed in this study to conduct a MOO of biochar yield 

and properties (C and N content). The methodology is based on ML-assisted prediction combined 
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with MOO to obtain the optimal design parameters of the production process and feedstock 

selection. GA-based Non-dominated Sorting Genetic Algorithm II (NSGA-II) is an effective MOO 

method. This strategy was originally proposed by Deb et al. [164]. NSGA-II is designed not to use 

archives but to implement elitism and does not rely on specific shared parameters. To preserve the 

diversity of solutions, this method utilises the congestion distance metric as the core mechanism. 

For each solution, the crowding distance is computed by finding the distance to the nearest solution 

along each objective function, and then the crowding distance is used to modify the fitness of each 

solution. Particularly noteworthy is its efficient computational properties. Due to the above 

features. the NSGA-II is often chosen as the method for dealing with MOO problems. The 

solutions it produces are also known as Pareto optimal solutions [18]. Furthermore, MCDM is the 

decision-making method that aims to determine the best option by considering multiple criteria in 

the selection process. It has a wide range of tools (i.e., Simple Additive Weighting (SAW), Multi-

Attributive Border Approximation Area Comparison (MABAC), Grey Relational Analysis (GRA), 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Preference 

Ranking On the Basis of Ideal-average Distance (PROBID) etc.) that can be applied in different 

fields, varying from finance to engineering design [19]. Biochar production challenges with their 

multidimensional characteristics and multiple conflicting objectives make the use of the MCDM 

effective method. It can provide support when considering multiple conflicting decision criteria 

simultaneously. Ultimately, three targets (yield, C, N content of biochar) were optimised, which 

will directly affect the carbon sequestration potential and soil application of biochar. 

 

This work develops an integrated framework that combines the ML model with the MOO-MCDM; 

the optimised parameters are input to LCA to analyse the holistic environment impact for biochar 
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soil application. LCA is defined as the systematic analysis of the potential environmental impacts 

of a product or service throughout its life cycle. Overall, the MOO aims to maximise the yield, C 

content and N content of biochar to fully enhance its carbon reduction potential for soil 

applications. The ML models in Chapters 3 and 4 provided the necessary predicted data (biochar 

yield, and C and N contents) support for the LCA. The optimised biochar parameters combined 

with the LCA to analysis GWP of optimal scenario were compared against the GWP of baseline 

scenario of Chapter 4. This study fully proposed an integrated ML-MOO-MCDM-LCA framework 

that provides a sustainable assessment and optimization strategy for biochar production pyrolysis 

systems considering environmental objectives. 

5.2 Methods 

The whole framework consists of three main components, i.e., ML models, MOO-MCDM and 

LCA.  The first step is to analyse the dataset used for model training and construct different ML 

models to find the optimal predictive model for biochar production. Then model prediction 

accuracy analysis is performed through evaluation metrics. In the second step, a clear definition of 

the MOO problem is required, which involves identifying the objective, specifying the decision 

variables, and setting its corresponding boundaries and constraints. Subsequently, an appropriate 

solution strategy or algorithm is selected for the defined MOO problem. The choice of this strategy 

is crucial, and it should have a broad search capability to ensure that the true Pareto optimal 

solution space of the problem can be fully explored and represented. Furthermore, a multi-criteria 

decision analysis of the non-dominated solution is performed using several selected MCDM 

methods. The recommended solutions and their corresponding decision variable values are 

analysed to filter a representative Pareto-optimal solution for implementation. For the third step, 

the optimal solutions are combined with the LCA for a systematic environmental analysis. And 
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breakdown the GWP impacts for different phases of biochar production and soil application. A 

holistic flowchart of ML-MOO-MCDM for the biochar production system is shown in Fig. 5-1.  

 

Fig. 5-1. A holistic framework of ML-MOO-MCDM for biochar production design. 
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5.2.1 Machine Learning Development  

Referring to Chapter 4.2.1.1, the dataset was pre-processed by normalisation due to it contains 

different ranges of variables. The missing values of the input features were handled by the mean 

substitution method [141]. Furthermore, PCC was employed to assess the relationship between 

any two variables in this dataset. Five ML models were developed for biochar yield and property 

prediction. These were MLP-NN, SVM, tree regression, ensembles, and GPR. Information on 

model development is detailed in Chapter 4.2.1.2. Two metrics R2 and RMSE were applied for the 

evaluation of the model performance accuracy (detailed in Chapter 4.2.1.3).  

5.2.2 Multi-Objective Optimization  

This research employs the NSGA-II algorithm to address MOO, notably aiming to optimise 

biochar yield, as well as its C and N content. The NSGA-II is a state-of-the-art evolutionary 

algorithm specifically designed to solve complex MOO problems. The approach is fundamentally 

derived from the principles of Genetic Algorithm (GA), which mimic the evolutionary processes 

of natural selection and genetics. NSGA-II extends these principles to efficiently handle the 

nuances of MOO.  

 

A distinguishing feature of NSGA-II is its non-dominance sorting mechanism. The algorithm 

classifies solutions into different "frontiers" based on the concept of Pareto dominance. A solution 

is considered to dominate another if it is at least equal on all objectives and superior on at least one 

objective. The forefront consists of programmes that are not dominated by any other programme, 

and subsequent fronts follow a similar hierarchical structure. In NSGA-II, a "solution" is a 

candidate solution generated by the algorithm during the optimisation process. Each solution 

represents a set of possible values for the decision variables in the optimisation space. 
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Diversity among solutions is maintained by calculating the crowding distance, which is a measure 

of how densely populated a solution is in the target space. A larger crowding distance indicates a 

sparser cluster of solutions, which is desirable for exploring a variety of potential solutions and 

goal tradeoffs. 

 

The NSGA-II selection process uses a binary tournament approach that considers both solution 

rank (based on non-dominated ordering) and crowding distance. This dual consideration ensures 

that high-quality solutions are retained, while also ensuring a diversity of solutions. The selected 

solutions are then subjected to crossover and mutation operations, thus facilitating the exploration 

of the new solution space. 

 

An integral part of NSGA-II is the Elite Strategy, which retains the best solutions from current and 

previous generations. This approach ensures that high quality solutions are not lost as generations 

increase. The combined population is then sorted and pruned to maintain a constant size, focusing 

on retaining the optimal solutions. 

 

The ultimate goal of NSGA-II is to converge towards the Pareto-optimal frontier, which represents 

the set of best solutions considering all objectives. The algorithm aims to balance the goals of 

convergence (finding the optimal solution) and diversity (exploring multiple solutions) and is 

therefore particularly effective for MOO challenges. 

 



 132 

Incorporating NSGA-II into research provides a robust and efficient method for navigating the 

complex optimization landscape to find the best solution that balances multiple (often conflicting) 

objectives. 

 

Overall, the NSGA-II incorporation of a crowding-based ranking system fosters population 

diversity and maintains convergence towards the true Pareto front. It offers both efficient 

exploration of solution spaces and the preservation of solution diversity. Therefore, NSGA-II was 

selected as the appropriate solution for this study due to its excellent capabilities and fit with the 

identified research objectives. 

 

Succinctly, following the start-up phase of acquiring initial trial solutions, the NSGA-II algorithm 

is scheduled through two main procedures. The first phase is characterised using a tournament 

selection mechanism combined with crossover and mutation processes to foster offspring solutions 

from the existing population. After that, the algorithm starts to characterise the upcoming 

population by performing a non-dominated ordering of parent and offspring solutions. The basis 

of such ordering lies in the comparative evaluation of their objective values, as well as in the 

evaluation of the crowding distance, a metric designed to quantify the sparsity of a given solution. 

This study has implemented NSGA-II in the Python environment. The constraints applied to this 

MOO are defined by the equations shown below. The Lower Bound (LB) and Upper Bound (UB) 

for each input decision variable are defined by the minimum and maximum values of the original 

dataset, as detailed in Table 5-1. 

0 < 𝐶 + 𝐻 + 𝑂 + 𝑁 < 100%                                                                                  (5.1) 

0 < 𝑉𝑀 + 𝐹𝐶 + 𝐴𝑠ℎ < 100%                                                                                  (5.2) 
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where, C, H, O, and N represent the respective contents of carbon, hydrogen, oxygen, and nitrogen. 

Meanwhile, VM, FC, and Ash are indicative of the VM, FC, and mineral ash content, respectively.  

Table 5-1. UB and LB on input decision variables for pyrolysis of biochar. 

Decision Variables UB LB Unit 

FC 27.80 5.58 % 

VM 87.82 68.20 % 

Ash 15.00 0.43 % 

C 53.42 35.70 % 

H 7.77 4.10 % 

O 48.88 32.88 % 

N 0.01 9.61 % 

PT 550 300 °C 

HR 20 5 °C/min 

RT 90 10 min 

 

5.2.3 Multi-Criteria Decision Making 

The NSGA-II algorithm results in a range of different obtained Pareto optimal frontiers. Selecting 

a comprehensive, compromise solution from these different optimal solutions is an MCDM 

problem. It aims to rank all optimal solutions and ultimately suggest the one with the highest-

ranking score for implementation. This study employs multiple MCDM methods, including GRA, 

MABAC, PROBID, SAW, and TOPSIS. Non-dominated solutions are evaluated using these 

MCDM methods and analysed regarding their corresponding values to the solution and the 
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decision variables. Finally, the Pareto-optimal solutions are selected for implementation. This 

procedure can be elaborated into several sub-steps, as detailed in Fig. 5-2.  

 

Fig. 5-2. The procedure of MCDM. 

GRA measures the degree of similarity between sequences by developing a grey correlation scale. 

One of its main advantages is its ability to deal effectively with uncertainty and incomplete 

information, meaning minimal data preprocessing is required. However, a potential disadvantage 

is that the choice of grey correlation coefficients and weighted sequences can significantly impact 

the results [165]. 

Start with a set of Pareto-optimal 
solutions (obtained by solving the 

MOO problem).

Construction of the decision 
matrix

Normalize the decision matrix 
using the normalization methods 

(e.g., Max-min, Z-score or
Decimal Scaling etc.)

Determine the weight of each 
objectives using a weighted 

approach or based on the inputs
from decision-makers

Ranking non-dominated optimal 
solutions using the MCDM 

methods (GRA, MABAC, PROBID, 
SAW, and TOPSIS)
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MABAC ranks alternatives by comparing their distance from the virtual ideal alternative. This 

approach allows for considering positive and negative biases, effectively classifying alternatives 

into preferred groups. Nevertheless, it does require the decision maker to define such virtual ideal 

alternatives and may need to be more effective for problems involving large datasets [166]. 

 

PROBID is a ranking method that evaluates and ranks alternatives based on pairwise comparisons. 

A clear advantage is its ability to consider preference and indifference thresholds, proving robust 

to changes in the decision matrix. However, the method can be computationally intensive, 

especially if there are many alternatives, and may require expert judgment to set specific thresholds 

[167]. 

 

SAW calculates a weighted sum of attribute values for each decision scheme. Its main advantages 

are its simplicity, ease of computation, and having a transparent ranking mechanism. However, it 

operates under the attribute independence assumption and requires normalisation of the decision 

matrix [168]. 

 

TOPSIS ranks alternatives based on the distance from ideal and anti-ideal solutions. A key 

advantage is its comprehensive approach, which considers both best and worst-case scenarios and 

applies to different types of decision matrices. Nevertheless, as with other methods, there is a 

requirement to normalise the decision matrix and how the weights are determined affects the final 

ranking [169]. 
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5.2.4 Life Cycle Assessment  

This study presents an approach to assess the GWP of biochar production and biochar soil 

application by combining Pareto-optimal solutions from five MOO-MCDM methods with LCA. 

The environmental impact is measured in kgCO2-eq/t feedstock. The structure of this LCA consists 

of four key stages: objective and scope definition, LCI, LCIA and life cycle interpretation. For a 

full understanding of these steps, refer to Chapter 4.2.2. Ultimately, the GWP results from the 

optimization parameters of this work will be compared with the results of the study presented in 

Chapter 4. 

5.3 Results and Discussion 

5.3.1 MOO-MCDM  

Three key objectives were optimised: biochar yield, C content and N content. These components 

are directly linked to the application of biochar in soil. The overall goal was to maximise these 

three targets, thereby increasing biochar production while reducing GHG emissions. This 

reduction is achieved by improving soil sequestration and increasing the effect of N-fertiliser 

replacements.  

 

In this study, the NSGA-II was used to deal with the MOO problem of biochar production. A series 

of parameters were set: a population size of 100, a total number of iterations of 200, a crossover 

rate of 0.9, and a mutation rate of 0.1. The algorithm terminates the iterations when there is no 

significant change in the Pareto frontier for 50 consecutive generations. By analysing the ML 

model prediction dataset, a set of 15 Pareto-optimal solutions were identified, as listed in Table 5-

2. To deepen the differences between these scenarios, the solutions were plotted in a 3D diagram 

(see Fig. 5-3). This visualisation reveals the trade-offs between the three objectives. The graph 
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clearly demonstrates the distribution of the Pareto frontiers, proving the competitiveness between 

the solutions, with no one solution outperforming the other on all objectives.  

Table 5-2. Optimal values of decision variables and objectives for pyrolysis of biomass using 

NSGA-II MOO method.  

Decision 

Variables 

Parato solutions 

Serial 

number 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 

FC (%) 13.

42 

10.

16 

7.4

9 

10.

06 

18.

00 

11.

19 

17.

67 

18.

00 

16.

72 

17.

14 

11.

73 

18.

00 

10.

16 

10.

06 

7.4

9 

VM (%) 71.

94 

76.

86 

86.

09 

76.

87 

78.

70 

87.

76 

75.

28 

78.

70 

82.

74 

81.

26 

87.

82 

78.

70 

76.

86 

76.

87 

86.

09 

Ash (%) 14.

63 

12.

98 

6.4

2 

13.

07 

3.2

84 

1.0

5 

7.0

46 

3.2

8 

0.5

2 

1.6

0 

0.4

3 

3.2

8 

12.

98 

13.

07 

6.4

2 

C (%) 38.

62 

40.

06 

43.

92 

40.

06 

48.

12 

44.

47 

45.

92 

48.

12 

49.

10 

47.

66 

50.

52 

48.

12 

40.

06 

40.

06 

43.

92 

H (%) 6.1

0 

5.4

7 

5.9

2 

5.4

7 

6.4

8 

5.8

2 

6.2

1 

6.4

8 

5.5

5 

6.1

8 

5.8

1 

6.4

8 

5.4

7 

5.4

7 

5.9

2 

O (%) 32.

88 

40.

23 

42.

54 

40.

23 

43.

51 

48.

88 

40.

09 

43.

51 

44.

90 

46.

01 

43.

44 

43.

51 

40.

23 

40.

23 

42.

54 

N (%) 1.6

0 

0.6

9 

0.4

9 

0.6

9 

1.8

9 

0.0

1 

6.9

0 

1.8

9 

0.4

5 

0.1

5 

0.2

3 

1.8

9 

0.6

9 

0.6

9 

0.4

9 
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RT (min) 30 30 30 30 60 60 30 60 30 60 60 60 30 30 30 

PT (°C) 30

0 

30

0 

35

0 

35

0 

40

0 

40

0 

50

0 

50

0 

50

0 

50

0 

50

0 

50

0 

50

0 

50

0 

55

0 

HR 

(°C/min) 

10 10 10 10 15 5 5 10 20 10 10 15 10 10 10 

Objectives                               

Biochar 

yield 

70.

24 

71.

03 

45.

77 

49.

83 

32.

52 

32.

57 

30.

45 

23.

20 

19.

74 

26.

63 

23.

85 

25.

07 

38.

30 

38.

34 

31.

94 

C-biochar 45.

35 

45.

30 

59.

33 

48.

24 

64.

06 

61.

20 

64.

78 

81.

15 

83.

33 

78.

52 

83.

48 

73.

71 

54.

34 

54.

28 

69.

96 

N-biochar 2.2

0 

0.8

1 

0.7

1 

0.9

0 

0.8

1 

1.3

8 

7.9

8 

0.9

0 

1.7

2 

0.4

0 

0.7

4 

0.8

9 

0.9

0 

0.9

0 

0.7

3 
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Fig. 5-3. Pareto-optimal solutions of biochar pyrolysis production.  

For the Pareto optimal solutions, further optimization of either objective comes at the expense of 

the other. Therefore, an optimal solution needs to be selected from the 15 solutions. For this 

purpose, 1/3 weight was assigned to biochar yield, C content, and N content, respectively. The 

MCDM approach was applied, including GRA, MABAC, PROBID, SAW, and TOPSIS methods 

to identify the best solutions. Selected solutions by 5 different tools plotted in a 3D diagram was 

shown in Fig. 5-4.  
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Fig. 5-4. The Pareto-optimal solutions of biochar pyrolysis production; Selected solution by GRA 

and TOPSIS (■◆); selected solution by MABAC (☗); selected solution by PROBID (▲); 

selected solution by SAW (✖). 

Table 5-3 shows the decision variables and objective values of the solutions selected by the 

different MCDM methods. Among the five MCDM methods applied in the study, both GRA and 

TOPSIS elected the same solution, implying that the solution has excellent performance under 

multiple methods. In addition, the SAW method selected the lowest biochar yield and the largest 

N content. MABAC had similar results to SAW, but the value of MABAC was smaller than SAW 

in several features such as VM, O, and RT. Based on the principle of majority and the 
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reasonableness of the solution, the research team recommended the solution selected by the GRA 

and TOPSIS methods. The underlying principles and assumptions of GRA and TOPSIS are 

inherently similar. Although they employ different mathematical frameworks, both techniques aim 

to evaluate the performance of alternatives against predefined criteria; GRA uses grey relational 

coefficients to measure the proximity or similarity between an alternative and a criterion, whereas 

TOPSIS identifies the best compromise by evaluating the proximity of an alternative to an ideal 

solution. When the dataset characteristics or the optimisation problem closely matched the 

assumptions and conditions of both methods, consistent solutions were produced in this study. 

When two methods (e.g. GRA and TOPSIS) agree in giving the best solution, this consistency 

usually has two main advantages. Firstly, it increases the reliability and stability of the decision 

because the best solution obtained remains consistent even when different methods and techniques 

are used, which means that the decision results are more credible. Second, consistent results 

increase the confidence of the decision maker because two independent methods point to the same 

optimal solution, which indicates that the solution has been validated from multiple perspectives, 

thus giving the decision maker more confidence in accepting and adopting the solution [170]. 

Furthermore, the solution by SAW was also explored because it has the maximum N content which 

is closely associated with the carbon saving related to fertiliser displacement. This analysis 

provides the optimal process condition that led to highest C and N content, which is expected to 

favour biochar soil application and GHG emission reduction. 

Table 5-3. Optimal values of decision variables and objectives of selected solutions by GRA, 

MABAC, PROBID, SAW and TOPSIS. 

Decision Variables GRA MABAC  PROBID  SAW  TOPSIS 

FC 13.42966 11.19 7.49 17.6714 13.42966 
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VM 71.94008 87.76 86.09 75.28241 71.94008 

Ash 14.63026 1.05 6.42 7.046192 14.63026 

C 38.62 44.47 43.92 45.92 38.62 

H 6.1 5.82 5.92 6.21 6.1 

O 32.88 48.88 42.54 40.09 32.88 

N 1.6 0.01 0.49 6.9 1.6 

RT 30 60 30 30 30 

PT(°C) 300 400 350 500 300 

HR(°C/min) 10 5 10 5 10 

Objectives           

Biochar yield 70.24 32.57 45.77 30.45 70.24 

C-biochar 45.35 61.20 59.33 64.78 45.35 

N-biochar 2.20 1.38 0.71 7.98 2.20 
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5.3.2 Life Cycle Assessment  

The three main optimization objectives (biochar yield, C content and N content) directly affected 

the biochar carbon sequestration potential and N fertiliser substitution associated GWP. However, 

these effects were not related to the GWP associated with the pre-processing or pyrolysis unit, so 

they were not considered in this study (detailed in Chapter 4.3.3). Scenarios A1 and A2 depict the 

biochar's carbon sequestration potential coupled with the substitution of Urea ammonium nitrate 

and Calcium ammonium nitrate, respectively, at a PT of 300°C (biochar yield: 70.24%, C content: 

45.35%, and N content: 2.20%). The optimal solutions used are from both GRA and TOPSIS 

methods. In contrast, scenarios B1 and B2 describe similar comparative contexts but at PT of 

500°C (biochar yield: 30.45%, C content: 64.78%, and N content: 7.98%). The optimal solution 

employed are obtained from the SAW method. Notably, considering the long-term retention of 

biochar in soil and carbon sequestration effects, while the production of biochar reduces one-time 

CO2 emissions, but its long-term retention capacity in soil has a positive impact on the carbon 

cycle and the reduction of GHG emissions. Carbon sequestration of biochar in soil has a significant 

negative impact on GWP (implication of environmental benefits) [83].  

 

Fig. 5-5 and 5-6 reveal Scenario A₁, A₂, B₁, and B₂, where the optimised GWP potential (Optimal) 

is significantly lower than the original GWP potential (Original, referring to results in Chapter 4). 

This suggests that the environmental benefits of biochar soil application were significantly 

enhanced after optimization of the pyrolysis system using MOO-MCDM. Specifically, after 

optimization with MOO-MCDM in the four scenarios, all significantly reduced their GWP. This 

finding highlights the benefits of the MOO-MCDM approach in environmental decision 

optimization. Notably, the optimal solutions obtained using both GRA and TOPSIS methods are 
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consistent, which enhances the reliability of this result. Incorporating the optimal solution into the 

LCA model for environmental assessment ensures that the conclusions drawn are not only based 

on the theoretical optimal solution but are also feasible and meaningful in practical applications. 

In summary, adopting the optimal solution of MOO-MCDM optimization into the LCA model for 

the calculation can provide strong support and reference for decision-making in related fields, 

which can help to better design the process parameters and select the appropriate feedstock to 

achieve the environmental benefits in practical applications. 

 

 

Fig. 5-5. GWP of Scenarios A1 and A2 depicting the biochar's carbon sequestration potential 

coupled with the substitution of Urea ammonium nitrate and Calcium ammonium nitrate, 

respectively, at a PT of 300°C (optimal solution obtained by GRA and TOPSIS). 
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Fig. 5-6. GWP of Scenarios B1 and B2 depicting the biochar's carbon sequestration potential 

coupled with the substitution of Urea ammonium nitrate and Calcium ammonium nitrate, 

respectively, at a PT of 500°C (optimal solution obtained by SAW).  

5.4 Summary 

This study proposed a framework that combines ML with MOO-MCDM to apply optimal solutions 

to LCA. Five ML models including MLP-NN, SVM, GPR, tree and ensembles tree were developed 

to predict the biochar yield and properties. MOO-MCDM was essential for determining the 

optimal reaction conditions to optimise the C and N content and biochar yield. LCA further 

assessed the environmental impacts of biochar soil application. The optimal solutions from 

TOPSIS and GRA at 300°C and the SAW solution at 500°C were selected based on MOO-MCDM 

combined with best predictive ML model. The LCA showed that the GWP was more negative 

compared to the non-optimised (original) scenario, indicating an improvement in environmental 

benefits. Overall, an integrated ML-MOO-MCDM-LCA framework is fully presented in this study. 

A path is carved out to provide a sustainable assessment and optimization strategy for biochar 

production pyrolysis systems considering environmental objectives.   
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Chapter 6 Conclusion and Future plan 

6.1 Conclusions  

The pursuit of sustainable waste management and carbon sequestration solutions has driven 

biochar to the forefront of environmental research. As the emergency of mitigating climate change 

increases, the conversion of agricultural wastes into biochar through pyrolysis offers a promising 

pathway for not only recycling wastes, but biochar can also serve as a substitute for N fertiliser 

and carbon sequestration. The main objective of this study is to develop a systematic framework 

to optimise the biochar production and the environmental benefits of biochar soil application, 

including the development of biochar prediction ML models, and their integration with LCA and 

MOO approaches. The framework serves as a useful tool for designing biochar production and soil 

application from greater environmental benefits.   

 

The second chapter of the thesis assessed how various agricultural wastes and pyrolysis conditions 

influence the resulting biochar's properties and yield based on a comprehensive literature review. 

It covered the state-of-the-art research in biochar production and its applications, with a focus on 

ML, LCA and MOO-MCDM approaches. This chapter also highlighted the environmental 

feasibility of applying LCA to biochar various applications. ML-assisted modelling and the 

emerging strategy of MOO-MCDM proved to be useful in predicting the outcome of biochar 

production, which is a key factor in optimising the design of the system and the implementation 

of the biochar application. 

 

Data-driven ML models for predicting biochar yield and composition were developed and 

compared. It was shown that the MLP-NN model achieved a higher prediction accuracy in biochar 
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yield and composition prediction. The importance of process parameters such as pyrolysis 

temperature, C content and N content were discussed in detail, paving the way for future research 

into the optimization of data-driven biochar production processes. 

 

Afterwards, an environmental impact assessment framework was developed by combining the 

data-driven ML modelling with LCA. Five different ML models were developed and compared: 

the MLP-NN model outperformed the others in predicting biochar C content, while the GPR model 

performed well in predicting N content. Finally, the GWP reduction associated with biochar 

production and soil application (N fertiliser substitution and carbon sequestration) was quantified, 

emphasising the application potential of the ML-LCA combined framework. 

 

Finally, an integrated ML-MOO-MCDM-LCA framework for optimising biochar production 

conditions was presented. It was demonstrated based on the development of several ML models 

for predicting biochar production and the application of MOO-MCDM in finding optimal pyrolysis 

conditions. The use of optimal process condition in LCA to assess the environmental impacts of 

biochar application in soils was presented, demonstrating that optimised conditions can achieve 

greater environmental benefits than non-optimised scenarios. 

 

Collectively, the drive for environmentally sustainable solutions to agricultural waste management 

has led to the exploration of biochar as a multifunctional product with the potential to address 

multiple global challenges, including waste reduction, soil enhancement and carbon sequestration. 

This research begins with an understanding of the roots of biochar, examining its historical 

development, mechanisms of production through pyrolysis, and its emerging role in contemporary 
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environmental applications. This thesis demonstrates the synergistic potential of combining ML, 

LCA and optimization frameworks to address the complexities of biochar production from 

agricultural waste towards soil application. The potential of biochar as a scalable, impactful 

solution for a sustainable agriculture is emphasised. As such, this work contributes to the existing 

knowledge base and opens avenues for innovative applications, policy implications and future 

research in environmental sustainability and low carbon development.  

6.2 Recommendations for Future Research 

Future research should introduce the economic consideration into the frameworks developed for a 

more comprehensive evaluation of the feasibility of biochar production and soil application. The 

theoretical framework guiding biochar production and applications should also evolve to include 

socio-economic factors which are key to its adoption by farmers and industry, thus providing a 

more comprehensive understanding of its utility and dissemination. An interdisciplinary approach 

that incorporates environmental science, economics, and social science should be promoted to 

generate a more comprehensive strategy for biochar adoption. Such an approach should consider 

not only production and environmental aspects, but also the socio-economic impacts of biochar, 

ensuring a balanced and sustainable application of this promising technology. Research should 

keep addressing the modelling of the influences of the chemical constituents in biochar towards 

its environmental impacts upon applications. Predictive models should be extended to include 

more diverse input characteristics, with the exploration of a wider range of biochar applications. 

Also, unresolved questions remain, especially regarding the long-term stability of biochar in 

different soils and climates and its interaction with the soil microbiota. Finally, methodologically, 

the development of more sophisticated models that can be adapted to dynamic agricultural 

conditions and integrate real-time data analyses is crucial. The potential integration of blockchain 
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technology could significantly enhance data integrity in ML applications. Moreover, future work 

also includes using the framework developed in this study to apply to a wider range of scenarios. 

Whilst the focus of this thesis has been on biochar, this framework could be applied to other 

bioenergy aspects in the future. This could lead to valuable insights and breakthroughs for a wide 

range of fields, potentially enhance the impact and significance of the research.  
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