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Abstract

Femto-spacecraft, characterised by a total mass of under 100 g, are the smallest category of
active spacecraft that are currently classified. If this technology is scaled to use many devices
for distributed sensing applications, there can be unique functional benefits over traditional
space systems. Determining the location of femto-spacecraft within a networked swarm would
add utility for scientific investigation and enable in-orbit navigation without relying on Earth-
based tracking or on-board GPS. With extremely limited space and computing power on such
platforms, this thesis proposes methods for relative navigation enabled by range estimates
obtained via networking. This is experimentally demonstrated using received signal strength
indication (RSSI) data as a coarse range metric within a highly interconnected network of
devices.

The first part of this thesis is the development of a series of range-based relative positioning
algorithms intended for centralised, decentralised, and distributed computation. These are
tested in simulation by modelling varying levels of inaccuracy in the range estimates provided.
Relative navigation techniques are then presented, modelling the scenario of a swarm of femto-
spacecraft deployed into low Earth orbit from a larger carrier spacecraft. Several ejection
strategies are proposed using a model of the relative dynamics to propagate trajectories. These
scenarios are simulated for real-time relative navigation using Kalman filtering techniques that
use the relative positioning algorithms as partial linear state observers.

A network communications protocol enabling full interconnection within the swarm is then
developed for experimental testing of these navigation strategies. Small development kits are
used as femto-spacecraft proxies for embedded software development. Following this, a path loss
model is experimentally developed to characterise the relationship between RSSI and range in an
outdoor testing environment over a length-scale of 1-150 m. This model is then used to convert
RSSI data into range estimates, used as inputs to the relative positioning algorithms. Relative
navigation is demonstrated on an outdoor 120 m × 60 m sports pitch. This demonstration
highlights the ability of the algorithms to fuse coarse proximity data and localise without any
additional sensors or equipment.

Finally, the application of distributed in-situ sensing is analysed in simulation to investigate the
trade-offs of using a larger number of devices of lower positioning accuracy and sensor measure-
ment accuracy, as a comparison between the use of femto-spacecraft swarms and traditional
space systems.
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Chapter 1

Introduction

In recent years, there has been a considerable shift towards using small, low-cost satellites and
spacecraft for increasingly more ambitious applications [1]. This is made possible largely due

to continued advances in miniaturisation for consumer technology. As this trend continues, what
is feasible at the smallest of spacecraft length-scales will only increase further, and the question
arises of how this technology can be scaled to maximise its utility. At present, an emerging
class of centimetre-scale femto-spacecraft, characterised by a total mass of under 100 grams,
can in principle be rapidly produced at low cost and in large numbers [2]. Using micro-electro-
mechanical-systems technology, femto-spacecraft can be equipped with many of the elements
of larger spacecraft, such as attitude determination and control, wireless communications, and
sensor suites, contained within a single printed circuit board with a side length of only several
centimetres. A wide range of potential applications are possible if many of these devices were
to be deployed from a larger carrier spacecraft, such as a CubeSat, and dispersed into orbits
neighbouring the carrier [3].

When combined to form a networked swarm, femto-spacecraft may offer many benefits over
single small spacecraft for similar applications. A principal advantage is the ability to record
large-scale, simultaneous and spatially distributed measurements. The potential to deconvolve
spatial and temporal ambiguities in phenomena in a way that is not possible with existing
distributed space systems may offer new insights and facilitate novel sensing approaches [4].
Knowledge of femto-spacecraft positions within a swarm would be highly useful, not just for
associating measurements to positions for characterisation, but for navigating in-orbit. Primar-
ily, this would enhance the capability of these resource-constrained devices as sensor platforms.
This thesis proposes methods for enabling relative navigation for femto-spacecraft swarms when
considering the extremely limited space and computing power available on individual platforms.
A key focus is practical implementation and experimental demonstration of the methods pre-
sented.

1



Introduction 2

1.1 Research Objectives and Contributions

The central aim of this thesis is to develop range-based relative navigation strategies for a
networked swarm of femto-spacecraft, from mathematical modelling and simulation based ap-
proaches, through to experimental demonstration on hardware. Consequently, the main re-
search objectives follow the central steps in this process:

1. Develop range-based relative positioning algorithms for femto-spacecraft swarms

2. Implement relative navigation filtering approaches to improve real-time state estimation

3. Experimentally demonstrate range-based relative navigation

(a) Develop network protocols to support swarm communications

(b) Develop a range metric from received signal strength indication (RSSI) data

4. Investigate distributed sensing strategies for femto-spacecraft swarms

The first main contribution is the development and implementation of range-based relative
positioning algorithms for femto-spacecraft swarms. Provided range estimates between swarm
members are available, algorithmic approaches can be developed in order to calculate relative
positions. Algorithm development in this thesis is not restricted to using RSSI as a range met-
ric and should be applicable to any range-based measurement technique. The objective is also
to make the approaches as general as possible, so centralised, decentralised, and distributed
approaches are considered. Another key contribution is the development of relative naviga-
tion filters that can use the algorithms implemented to provide a real-time relative navigation
system. State estimation can be improved with time using a relative dynamics model of the
expected swarm motion combined with relative positioning algorithms used as partial linear
state observers.

To test and demonstrate relative navigation experimentally, it is first necessary to develop net-
work protocols to facilitate data passing between swarm members using an RF communications
link. This is an integral part of this thesis as the interconnection required to obtain all RSSI
data via reliable networking underpins the experimental testing. This is achieved through the
implementation of the relative navigation methodologies with embedded software on femto-
spacecraft scale hardware, representative of what processing power and storage is available for
a femto-spacecraft in Earth orbit. Then, the conversion of RSSI data into a range metric that
can be used with relative positioning algorithms is necessary before experimental demonstration
is possible. RSSI data needs to be scaled with the development of a suitable path loss model for
testing, along with antenna modelling and characterisation to account for anisotropy in radia-
tion patterns. With testing, the main contribution in this thesis is experimental demonstration
of the capabilities, potential and limitations of this approach.

The final contribution of this thesis is simulation-based analysis of how relative navigation



Introduction 3

may be utilised within distributed sensing applications. The objective is to consider opera-
tional trade-offs when using femto-spacecraft swarms, characterised by far larger numbers of
spacecraft relative to standard distributed space systems. Additionally, collaborative work not
contained in this thesis analysed how femto-spacecraft swarms can be used for the atmospheric
characterisation of Mars [5] and for in-situ measurements at inaccessible locations in space [6].
It is intended that distributed sensing applications can be shown in combination with the simu-
lation and experimental testing of relative navigation, to bring together all aspects of the utility
of femto-spacecraft swarms.

1.2 List of Publications

Published research materials containing work presented within this thesis are listed below [7–9]:

• T. Timmons, J. Beeley, G. Bailet, and C.R. McInnes, “Range-based Relative Navigation
for a Swarm of Centimetre-scale Femto-spacecraft”, Journal of Guidance, Control, and
Dynamics, Vol. 45, No. 9, pp. 1583-1597, 2022. doi: 10.2514/1.G006261

• T. Timmons, J. Beeley, G. Bailet, and C.R. McInnes, “Experimental Testing of Range-
based Relative Positioning Strategies for a Swarm of Centimetre-scale Femto-spacecraft”,
73rd International Astronautical Congress, IAC-21-B4.IP.68691, Paris, France, 2022.

• T. Timmons, J. Beeley, G. Bailet, and C.R. McInnes, “Massively Parallel In-situ Sens-
ing using Femto-spacecraft Clouds,” 72nd International Astronautical Congress, IAC-21-
B4.7.4.64209, Dubai, United Arab Emirates, 2021.

Additionally, relevant collaborative research materials that are not presented within this thesis
are listed below [5,6]:

• T. Timmons, G. Bailet, J. Beeley, and C.R. McInnes, “Mars Atmospheric Characterization
with a ChipSat Swarm”, Journal of Spacecraft and Rockets, Vol. 58, No. 5, 2021, pp.
1453-1460. doi: 10.2514/1.A34970

• T. Timmons, G. Bailet, J. Beeley, and C.R. McInnes, “Solar System Swarm Probes: An
Earth-based Technology Demonstrator”, 18th International Planetary Probe Workshop,
2021.
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1.3 Thesis Outline

This thesis is divided into eight chapters. As outlined below, Chapters 3-7 present the original
research. Chapter 2 provides a literature review highlighting the current state of the art, while
Chapter 8 concludes the thesis and provides recommendations for future work.

• Chapter 3 firstly presents the femto-spacecraft swarm relative positioning problem, dis-
cusses the relevant challenges and explains the approaches taken. Range-based algorithms
are then developed to operate with centralised, decentralised, and distributed computa-
tion with high network interconnectivity. Finally, algorithm performance is analysed via
a series of test cases in simulation.

• Chapter 4 describes relative navigation techniques for a femto-spacecraft swarm. This
is presented in the context of a swarm being deployed in LEO from a larger deployer
spacecraft using a relative dynamics model. Two predominant swarm ejection strategies
are presented and discussed. Then, Kalman filters are implemented by applying the
output of algorithms developed in Chapter 3 as discrete-time measurements to improve
swarm state estimation with time.

• Chapter 5 then outlines the implementation of networking in embedded software on
small development kits used as femto-spacecraft proxies in experimental testing. This
chapter bridges the gap between the modelling and simulation-based work in Chapters
3-4 and the experimental demonstrations in Chapter 6 through the implementation of
a fully interconnected network protocol to facilitate testing. The network protocol is
presented as an operational process to accumulate swarm data. The embedded software
development in C using small development kits is then presented.

• Chapter 6 details the experimental demonstration of range-based relative navigation
using network received signal strength indication (RSSI) data. Firstly, a path loss model
(PLM) is derived with discussion of the outdoor testing environment used and charac-
terisation of the antennas used. A series of test cases are then presented for relative
positioning and relative navigation demonstrations. Finally, in-orbit implications of the
results are discussed.

• Chapter 7 presents a distributed in-situ sensing strategy using femto-spacecraft swarms.
The use of femto-spacecraft swarms for massively parallel distributed sensing is firstly
discussed through potential novel applications. This focuses on comparing the utility of
using higher numbers of less accurate measurements, representative of a femto-spacecraft
swarm contrasted with traditional sensing approaches. A methodology is then developed
for characterisation and reconstruction of phenomena such as scalar and vector fields
using discrete measurements. Finally, a series of test cases where the number, sensor
accuracy and relative navigation accuracy are varied are simulated and discussed.



Chapter 2

Literature Review

This chapter firstly presents a review of existing femto-spacecraft concepts and their potential
benefits and applications when used as distributed swarming systems. Then, a review of relative
navigation techniques for distributed systems is presented, focusing on the advantages of relative
navigation in a femto-spacecraft swarm and potential approaches with current technology.

2.1 Background

There are many known instances in nature of swarms collectively accomplishing objectives that
would otherwise be beyond the ability of their individual members. Schools of fish assemble
to appear as one very large and fast spinning ball to confuse predators and enhance collective
threat detection [10], while many bird species flock to deter predators and improve foraging
performance [11]. Key to this type of behaviour is the ability of individual swarm members to
self-organise, a trait commonly referred to as swarm intelligence, characterising the emergent
behaviours that swarms exhibit [12].

Self-organising systems are not structured by any hierarchy or external commands, but by
their own natural processes, and the emergence of order within them is complex [13]. Any
patterns that emerge at a global level of a swarming system are the result solely of interactions
between the lower-level components. However, not all cooperative distributed systems are by
any means self-organising. Migrating geese flying in a ‘V formation’ emphasise this distinction.
Individual geese take turns in position within a precise and highly structured formation that
is understood to improve flight efficiency and assist in coordination [14]. Hierarchy is central
to the ‘V-formation’ of migrating geese, yet individual geese are still able to migrate on their
own. Flocking is entirely different; there is no apparent structure, and no specific task or role
that any individual does that can be considered vital to another member. Despite this, a bird
outside the flock cannot deter predators on its own. In short, swarms are unique because their
members cannot individually perform the task that a swarming system as a whole is able to
accomplish, and do so in a way that does not necessitate a centralised command structure.

5
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In science and engineering, a central motivation for developing artificial swarming systems is to
take advantage of these behaviours to offer operational benefits, application-specific improve-
ments over other existing approaches, or both. Swarms are highly robust (reliable and fault
tolerant) against system failure. This is not because any of their members need to be robust
against failure individually, but because no member of a swarm is essential to the collective
operation [12]. In large swarms, individual members are effectively redundant. This is because
individual swarm member failure would simply degrade performance but not render the overall
system ineffective. As a result, a robust system can be implemented that permits a signifi-
cant proportion of unit failure. This means that swarm members do not need to be free of
single-point failures and can be developed accordingly, with simpler designs that are quicker
and cheaper to prototype [15]. The removal of complexity from systems can have operational
benefits, mitigate against risks, and streamline process flow. If each swarm member is responsi-
ble for simple tasks, swarms can be fully modular and disaggregated (separated into individual
elements), and failed units can simply be retired with little impact on the collective swarm
objective. Difficult tasks can be accomplished without complex systems. This makes swarms
highly scalable and adaptable to a variety of applications in the way that they operate. For
distributed systems operating in space, all these attributes increase the probability of mission
success [3].

Distributed space systems can be broadly grouped into the classifications of constellations,
clusters, and swarms [13,16]. Satellite constellations are used in global navigation and commu-
nications, placing satellites in carefully designed orbits phased to avoid collisions and to require
little station-keeping. By contrast, satellite clusters operate in close proximity, requiring a
precise orbital determination and control system and formation-flying to maintain their spa-
tial structure. Although entirely different systems, constellations and clusters share the need
for a precise and highly controlled structure to maintain their operation. Both constellations
and clusters can be contrasted with satellite swarms, which can be widely dispersed without
the inherent need of a precise structure or strict hierarchy in fulfilling their objectives [17, 18].
Moreover, if using very small satellites, it can be expected that the number of devices in a
swarm could potentially be extremely large. Such systems can be thought of as space-based
wireless sensor networks (WSNs) dispersed to perform distributed sensing and collect simul-
taneous data over a large volume of space [19]. As in nature, these systems are envisaged as
performing objectives well beyond the limited capability of any individual satellite member,
without a precise and highly controlled structure central to their operation [4].

Over the past two decades, small satellites have become an increasingly popular means of
providing fast and low-cost access to space, both for research and industry [20]. The 10 cm
× 10 cm × 10 cm 1U1 CubeSat standard [21] has proliferated this trend, proving to be an
incredibly popular form factor. Since the launch of the first CubeSat in 1999, there have now
been over two thousand CubeSats launched [22], with over a thousand in the past five years

1this denotes ‘one unit’. For instance, a 3U CubeSat is 30 cm × 10 cm × 10 cm.
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alone [23]. While CubeSats were originally intended as an educational tool for students, they
have now become a standardised form factor for testing new small satellite technologies in low
Earth orbit (LEO) [24, 25]. Additionally, CubeSats offer the potential for low-cost and high-
risk secondary payloads on flagship missions to deep space. This was highlighted by the twin
MarCo CubeSats that launched with NASA’s Mars InSight Lander Entry Capsule, successfully
providing a communications relay between the Mars Insight rover and Earth [26].

There are many potential applications of CubeSat-based distributed space systems. As dis-
tributed space systems, the QB50 project highlighted the potential of a network of CubeSats
to conduct thermosphere and re-entry research [27]. CubeSat-based concepts have been pro-
posed to harness the unique ability of swarms in applications as wide ranging from studying
the ionosphere in LEO [28] to radio astronomy using swarms orbiting the Moon [29]. CubeSats
swarms could also be used to predict space weather by studying the radiation environment
around Earth [30]. Despite using the CubeSat standard, the relatively large mass of these plat-
forms makes them less suitable or in some cases impractical for applications such as multi-point
sensing, atmospheric characterisation [31], distributed field and particle measurements [32], or
surface science [33], where there can be significant spatial and temporal variabilities. For these
applications, large numbers of much smaller spacecraft may facilitate new sensing approaches
and offer further insights beyond what would be practical with CubeSats. Femto-spacecraft
swarms may bridge the gap between what is financially practical and operationally possible
using a relatively small number of CubeSats. A swarm of femto-spacecraft deployed from a
CubeSat could therefore harness the operational benefits of swarming systems to open up a
wide range of potential applications.

2.2 Femto-spacecraft designs and concepts

The availability of miniaturised commercial-off-the-shelf (COTS) components, such as micro-
electro-mechanical-system (MEMS) equivalents of traditional technologies [34], makes the de-
velopment of active femto-spacecraft viable for research groups [2, 35, 36]. At present, several
research groups have femto-spacecraft projects under development, including the Space and
Exploration Technology Group at the University of Glasgow [37]. In recent years, there have
been many design concepts and technology demonstrations from different universities for femto-
spacecraft focusing on using COTS and MEMS technology. Many of these have the intention of
enabling distributed sensor networks for space use. This section provides an overview of these
developments. Application-specific discussions of femto-spacecraft swarms are given in Section
2.3.

Researchers from Cornell University have proposed and developed several different femto-
spacecraft concepts over the past fifteen years. Atchison and Peck [17] first proposed a ‘spacecraft-
on-a-chip’ concept as early as 2007, with the aim of demonstrating translation control using
the Lorentz force as a means of electromagnetic propulsion. Later work proposed using solar
radiation pressure (SRP) with a 25 µm thick spacecraft-on-a-chip concept as a millimetre-scale
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solar sail [38]. By 2008, Cornell’s Sprite ChipSat2 concept was in development with the aim
of demonstrating the capabilities of spacecraft-on-a-chip devices [39]. A ‘Sprite’, as shown in
Fig. 2.1, fits a solar cell, microcontroller, radio, 3-axis magnetometer, and 3-axis MEMS gy-
roscope onto a 3.5 cm × 3.5 cm printed circuit board (PCB) with a total mass of 5 g. By
2011, Manchester [18] had founded the KickSat project, developing a CubeSat-based deployer
for ChipSats and pioneering the concept of using femto-spacecraft swarms in LEO deployed by
a larger carrier spacecraft. After a failed deployment attempt in 2014 (KickSat-1), over one
hundred ChipSats were successfully deployed in LEO from the 3U CubeSat Kicksat-2 (Fig. 2.1)
in 2019 [40]. In this technology demonstration, the ChipSats were able to transmit RF signals
before re-entering the atmosphere. Recent developments from Adams and Peck [41] present
the biologically inspired 5 cm × 5 cm 2.5 g Monarch spacecraft, with additional sensors and
technological capabilities over earlier Sprite designs.

Figure 2.1: Render of the Sprite ChipSat deployment from KickSat-23 [42]

Other early developments in femto-spacecraft COTS technology come from Barnhart et al.
[19, 43], who developed a satellite-on-a-PCB design - the ‘PCBSat’ - with the aim of demon-
strating what capabilities could be achieved with a femto-spacecraft package used in distributed
space applications. The design has a total mass of 70 g and takes a PC/104 card form fac-
tor (dimensions of 9 cm × 9.5 cm × 1 cm). Their research from 2009 found that for several
applications of distributed systems, PCB-based designs offer a more cost-effective approach
than CubeSats. As discussed in Section 2.3, the authors also propose several applications that
may be enabled by femto-spacecraft sensor networks. By 2010, Stuurman and Kumar [44] had
prototyped Ryerson University’s femto-spacecraft, ‘RyeFemSat’. This concept aimed to fur-

2satellite-on-a-chip
3Image credit: NASA
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ther femto-spacecraft technology capabilities by demonstrating active attitude control at this
length-scale using magnetorquers. Additionally, RyeFemSat featured a small optical camera,
for either low-resolution Earth observation or high-resolution host satellite inspection tasks.
The total mass of RyeFemSat is 25 g, with dimensions of 9 cm × 9 cm × 1 cm. This design’s
mass is much lower than the PCBSat but shares relatively large dimensions relative to the
smaller Sprite and Monarch concepts.

In December 2013, researchers at the Pontificia Universidad Catolica del Peru [45] deployed a 8
cm × 5 cm × 2 cm 97 g femto-spacecraft called ‘Pocket-PUCP’ in LEO. This femto-spacecraft
transmitted temperature data to a larger host satellite that deployed it. Yang et al. [46]
developed the ‘Stardust’ femto-spacecraft, which was deployed in LEO in 2015 along with two
larger satellites. In-orbit results showed that Stardust could network with other satellites and
operate effectively.

There have been a considerable number of further concepts proposed over the past few years.
This includes the WikiSat project from the Universitat Politecnica de Catalunya, which involved
a number of student teams developing several versions of femto-spacecraft designs under 20
g between 2011-2015 [47, 48], presenting design budgets and prototypes for this strict mass
limit. Hadaegh et al. [4] proposed the ‘SWIFT’ (swarms of silicon wafer integrated femto-
satellites) concept in 2014, focusing on potential applications and swarm array configurations for
distributed space systems as discussed in Section 2.3. In 2018, a team of students at UC Berkeley
designed a KickSat-compatible femto-spacecraft similar to Sprites called ‘SpinorSat’ [35,49].

The Space and Exploration Technology group at the University of Glasgow have been de-
veloping PCB-based femto-spacecraft concepts since 2018 [37]. The current platform under
development comprises a 3.5 cm × 3.5 cm PCB containing a microprocessor with integrated
wireless communications, an active 3-axis attitude determination and control system (ADCS)
using miniaturised magnetorquers and a battery for power.

The concepts proposed to date for femto-spacecraft that have been developed into hardware
have mainly focused on technology demonstration. This leaves application-specific use cases
that would necessitate femto-spacecraft development in the first place open for further research
and in-orbit demonstrations. This can be compared with the earliest CubeSat launches, as con-
trasted with how CubeSats are used in many applications today. At present, femto-spacecraft
represent an emerging technology with the potential to offer improvements over existing ap-
proaches, but this has yet to be demonstrated. As would be expected, there are different
advantages and limitations to all existing concepts based on the researchers’ aims and envi-
sioned applications. Common to all, however, is the desire to maximise functionality within as
small a platform as possible.
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2.3 Femto-spacecraft swarm applications

A swarm of femto-spacecraft may render many novel applications feasible by facilitating large-
scale distributed sensing. This section provides an overview of applications and concepts that
have been proposed for femto-spacecraft networks from the literature. The main applications
include the potential for improved investigation and characterisation of near-Earth space phe-
nomena, such as the atmosphere and magnetosphere, for space weather monitoring and to
improve satellite operations and reliability with improved modelling and observational data.
Other concepts include using femto-spacecraft swarms for Earth observation via distributed
sparse aperture radar (SAR) interferometry, gravity field mapping, host satellite inspection,
ballistic coefficient analysis for improved space debris modelling, and atmospheric re-entry
analysis. Beyond near-Earth space, concepts proposed include impactor missions to asteroids
and moons, planetary atmospheric characterisation, and even interstellar travel.

Early work by Barnhart et al. [50] reviewed previously proposed distributed space mission for
small satellites and considered specific applications requiring simultaneous multi-point sensing
that could only be enabled by large networks of extremely small satellites. The authors note
applications such as: disaster monitoring for pre-emptive warning of volcanic eruptions and
earthquakes, high spatial resolution imaging, and short-lived fast-response sensing networks
in LEO and the upper atmosphere. Finally, the authors present a mission concept for low-
resolution imaging of Earth using their satellite-on-a-chip ‘PCBSat’ design. In later work, the
same authors proposed several femto-spacecraft sensor network missions to study ionospheric
phenomena termed ‘plasma bubbles’ that are known to adversely affect satellite communications
and navigation via Global Positioning System (GPS) receivers [19]. This is a form of in-situ
space weather monitoring, offering the potential to improve understanding of regions of the
ionosphere with many femto-spacecraft in a way not possible with conventional single-point
measurements. This concept was later furthered by Balthazor et al. [51], where the authors
found that forecasting ionospheric weather at lower latitudes could be improved by further
observational data from several femto-spacecraft architectures.

Janson and Barnhart [3] later outline further proposed femto-spacecraft enabled mission con-
cepts, including upper atmospheric density monitoring, terrestrial gamma ray flash monitor-
ing, and satellite inspection tasks. In the case of atmospheric density modelling, the highly
dynamic and variable density in the upper atmosphere makes aerodynamic drag difficult to
predict. This can shorten the orbit lifetime of a spacecraft in LEO, such as when increased so-
lar activity temporarily increases upper atmospheric density. The authors propose sampling the
upper atmosphere directly with low-drag femto-spacecraft networks deployed over the course
of a few years. It is proposed that individual femto-spacecraft could inflate to form high-drag
spherical shells that would be able to de-orbit from an approximately 500 km orbit altitude
over the course of a month. The in-situ observational data accumulated would be able to im-
prove orbital drag estimates for improved satellite operations in the future. A clear downside
to this concept would be the potential for space debris if (relatively) low-drag femto-spacecraft
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are dispersed in LEO and fail to deploy a high-drag shell. However, the authors predict a
worst-case de-orbit within a year. Most other concepts for LEO femto-spacecraft swarms focus
on short-lived temporary networks that would re-enter the atmosphere and burn up within a
few weeks of deployment. In the case of ChipSats, this is ensured by extremely low ballistic
coefficients (for the Sprite ChipSat, approximately 1 g cm−2) [5,18]. In the same paper, Janson
and Barnhart also outline a femto-satellite network to monitor terrestrial gamma ray flashes,
where the concept proposes that tens or hundreds of sensor points would potentially improve
understanding of this phenomenon.

The concept of a satellite inspector is of course not limited to femto-spacecraft [52]. However,
the prospect of being able to quickly eject a small disposable imager to assess the overall
health of the host satellite by examining, for example, an antenna deployment failure could
provide invaluable insights to extend satellite operations. A femto-spacecraft could be ejected
from a CubeSat into a neighbouring orbit, and with translation control available from SRP or
differential drag, be able to control its position relative to the host satellite. Attitude control
could then enable the pointing necessary for imaging techniques. In 2008, Vladimorova et al. [53]
proposed a concept using multiple CubeSats in part for inspection tasks that may be scalable
to femto-spacecraft technology today. It is also possible that a number of femto-spacecraft in
a swarm deployed from a larger carrier could provide host satellite inspector capability, even if
this is not the main intended application.

Another potential application of femto-spacecraft swarms is for sparse aperture interferometry.
Hadaegh et al. [4] propose the SWIFT space system architecture, presenting a random sparse
aperture array configuration using thousands of femto-spacecraft. Cost analysis suggested this
is a feasible approach over monolithic spacecraft systems to achieve substantially large effective
apertures. Cao et al. [54] present a remote sensing concept using femto-spacecraft swarms
enabled by SRP for orbit control. In addition to remote sensing, the concept proposed using
the swarm as a space-based radar for target detection of, for instance, ships and aircraft. This
approach focuses on offering low-cost but high-resolution radar imaging, achieved by using the
swarm as a sparse way to receive radar echoes in orbit.

Impactor mission concepts to other planets, moons and asteroids have been proposed to obtain
in-situ measurements throughout the solar system. These concepts harness the benefits of ro-
bustness in swarming systems with probabilistic approaches to mission success. Utilising the low
ballistic coefficients of PCB-based femto-spacecraft concepts, Atchison et al. [38] proposed using
their Sprite ChipSat firstly for Earth-based atmospheric re-entry analysis. The results found
that Sprites could be designed to re-enter Earth’s atmosphere from LEO at a low enough tem-
perature to continue radio communications sharing atmospheric sensor measurements. Barker
and Salazar [33] investigated the use of self-organising femto-spacecraft scale sensors for plan-
etary exploration. Manchester and Peck [15] propose an asteroid impactor mission, modelling
the swarm stochastically to estimate the likelihood of a proportion surviving impact. Further
combined work from Draper and Cornell universities [55] later proposed a dual mission architec-
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ture for planetary moon science with femto-spacecraft dispersed to combine remote and in-situ
measurements by conducting gravity field mapping at Europa from a larger deployer prior to
femto-spacecraft deployment and landing. Adams and Peck [41] conducted durability tests on
the ‘Monarch’ ChipSat through emulation of lunar surface impact experiments, indicating the
survivability of components. Collaborative research by this author (outside the scope of this
thesis) proposed using a femto-spacecraft swarm for Mars atmospheric characterisation [5]. The
concept proposed atmospheric characterisation during descent and surface science upon land-
ing. Recent work by Castro et al. [56] presents an orbit-to-ground model for Monarch ChipSats
used for planetary atmospheric re-entry analysis.

Other approaches take advantage of the ability to produce many femto-spacecraft at relatively
low cost for highly ambitious applications and novel orbit control strategies. A study by Hein
et al. [57] presented a feasibility analysis accelerating femto-spacecraft using lasers to one tenth
the speed of light in a fifty-year fly-by mission to Alpha Centauri. This approach differs from
previous self-propelled ‘smart dust’ devices approaches using SRP for propulsion [32, 58]. The
clear operational and functional advantages with femto-spacecraft swarms mitigate traditional
component failure concerns associated with conventional distributed space systems.

An underpinning motive behind developing this concept is to discover what functionality and
new applications can be delivered at the smallest of spacecraft length-scales. Scaling the tech-
nology to large, networked swarms dispersed over a large volume of space is a desirable extension
to current capabilities. This could enable compelling new applications for a range of mission
scenarios.

2.4 In-orbit relative navigation

In-orbit relative navigation between a networked swarm of centimetre-scale femto-spacecraft
would add considerable value to a range of space mission concepts and applications discussed
in the previous section. Determining the location of femto-spacecraft relative to one another
is essential in adding value to the data gathered in many mission applications [50], and in
enabling swarm members to operate in close proximity to each other. Furthermore, this could
prove invaluable for reliable spacecraft tracking in-orbit [3]. Relative positioning can maximise
the utility of each swarm member, not only for scientific investigation, but also to navigate in
orbit without relying on Earth-based tracking [59–61]. It is anticipated that absolute navigation
would be enabled by the known position of the carrier spacecraft that is used to deploy the
swarm. Addressing the specific hardware limitations at this length-scale, this thesis seeks to
address how a swarm of femto-spacecraft could establish relative positioning and networking
to enable a diverse range of applications.

Concepts for the in-orbit relative navigation between at least two spacecraft can be broadly
grouped into GPS-based, vision-based, and RF-based approaches [13]. However, previous re-
search and development has largely focused on small numbers of spacecraft, typically for ren-
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dezvous and docking or navigation and control for formation-flying. In expanding a swarm from
tens to hundreds of femto-spacecraft, there is a need to consider operational constraints such as
computational and network scalability, real-time operations, and the small size and hardware
limitations.

GPS-based approaches to relative navigation operate on the principle of differencing two ab-
solute positions to obtain the relative positions of each satellite with respect to the other(s).
Equipping femto-spacecraft with GPS receivers has been proposed for several femto-spacecraft
concepts, including the Sprite and Monarch [15,41]. An obvious drawback to this is the restric-
tion of only being able to operate in LEO. There are further issues of how power intensive this
would be and the scalability of this approach for large swarms. GPS use currently represents a
large fraction of CubeSat power budgets [62,63]. The design of energy management techniques
may make this a more efficient option for femto-spacecraft, which have extreme power limi-
tations. When operating in LEO, having a small fraction of GPS-equipped femto-spacecraft
within a swarm could be a more feasible approach, as discussed in Chapter 3. For applications
beyond LEO, and for scalability and power usage considerations, the question of how relative
localisation is achieved for the situation where few or no swarm members have access to GPS
needs to be addressed [64].

Recent work on vision-based methods for on-orbit relative navigation proposes using cameras
and optical sensors for relative pose4 estimation via image processing and computer vision
techniques for clusters of small satellites such as CubeSats [65, 66]. Femto-spacecraft can be
equipped with small COTS cameras, but the ADCS pointing accuracy required for relative
state estimation with this approach, along with the limited computational and power resources
available, makes such approaches presently impractical [37, 46].

Conventionally, range-based relative-navigation methods between cooperative spacecraft have
been implemented as part of a chain of available resources in a satellite’s sensor suite, used
to accompany or back-up other more precise measurement techniques [67, 68]. With femto-
spacecraft however, a large number of limited devices can be considered, using only range
estimates for on-orbit relative navigation. This idea is discussed by Christian [69], who presents
how range data could be applied for the initial relative orbit determination problem (IROD) of
small satellite formations, with no a-priori information on the formation’s state.

In this thesis, it is proposed that using range estimates from communication within a highly
interconnected network would make it possible to calculate relative positions of swarm members
directly. This would be of utility in the following circumstances:

1. Where there is an estimate of the a priori swarm state from the known ejection impulse
and time from a deployer spacecraft and a model of the relative dynamics of the swarm is
available. Processing ranging estimates to determine swarm relative positioning could be
used to improve the swarm’s state estimate over time and bound growing uncertainties.

4position and attitude
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2. Where there is little or no understanding of the a priori swarm state in a given scenario.
Relative positioning information would characterise the dispersal of the swarm and the
spatial density of the swarm. This information could then be post-processed by the
deployer spacecraft to enhance the utility of sensed data from the swarm.

As discussed, there are unique operational benefits for swarms that can be harnessed without
significant complexity in individual swarm member operations. The approach taken in this
thesis is to build on developments into range-based cooperative localisation methods that have
found application across many disciplines, such as in mobile robotics, uncrewed aerial vehi-
cle (UAV) applications, static WSNs, application of simultaneous localisation and mapping
(SLAM) techniques, and navigation in GPS-denied environments [70–74].

In this thesis, it is proposed that range-based relative positioning methods may utilise the
wireless communication link between swarm members to infer ranges, specifically using the
received signal strength indication (RSSI) as a proxy for a direct range measurement between
two femto-spacecraft using undirected antennas. A signal sent from a device transmitting at
a known power can be converted to a range estimate with an understanding of the path loss
between the two devices. This is an appealing solution for femto-spacecraft as it would not
require additional sensors when resources are already constrained, is usable in essentially any
orbit type, does not require attitude control, and is available by virtue of the swarm carrying
out its primary mission application when communicating data between swarm members. Fur-
thermore, this could find use within the smallest of femto-spacecraft design concepts as it only
requires the ability to communicate data.

There are other existing methods for deriving range estimates from wireless communications,
such as time difference of arrival techniques [75–77]. These approaches make use of synchroni-
sation and timing processes to estimate the difference between the time a signal was sent at the
transmitting device and the time a signal was received at the receiving device. This requires
highly accurate synchronisation throughout the network, and introduces further complexity
and feasibility issues with large networks of many devices. As a result, these approaches are
not considered in this work.

Network structure and computation sharing would vary widely depending on the mission appli-
cation, so this research is not limited to one particular approach. Experimental demonstration
of relative positioning is necessary to show practical viability, to determine performance limita-
tions and gain experimental insights. In this thesis, the practical limitations of using RSSI data
as a range metric are addressed within the steps taken to convert this into a suitable ranging
metric.



Chapter 3

Relative Positioning Algorithms

This chapter presents the development and implementation of relative positioning algo-
rithms designed to use range estimates available from wireless communications within

highly interconnected femto-spacecraft swarm networks. The challenge of localising an entire
swarm of femto-spacecraft is firstly presented as the relative positioning problem, with discus-
sion of the challenges associated with solving this problem in the context of relative navigation
for femto-spacecraft. Then, algorithms are developed to work with centralised, decentralised
and distributed computation of relative positioning. In all cases, however, it is assumed that
the swarm network has either full or high interconnectivity. Finally, a series of test cases are
simulated to demonstrate the algorithms operating with varying levels of inaccuracy in the
range estimates available.

3.1 The Relative Positioning Problem

The position of any object is relative to the coordinate system that it is described in. For
navigating in orbit around Earth, a global, Earth-centred coordinate system is normally used
[78]. This can be referred to as absolute positioning. Relative positioning is the process of
locating an object within a coordinate system that is not absolute. This is predominantly used
in situations where it is difficult or even impossible to estimate absolute position given the
sensor technology available, or where absolute position is not of importance or relevance (e.g.
spacecraft rendezvous and docking).

In this thesis, the position of femto-spacecraft are described in a Cartesian frame relative to
a larger spacecraft that deploys the swarm in space. Chapter 4 addresses the local relative
reference frame used for relative navigation in LEO. For the purposes of describing the rela-
tive positioning problem, implementing algorithms to solve it, and testing these algorithms’
capabilities, it is sufficient to assume that a relative Cartesian reference frame is fully defined
with respect to the femto-spacecraft swarm. The primary challenge in this approach to relative
positioning is to determine where individual members of a larger swarm are located using only
estimates of ranges between one another.

15



Relative Positioning Algorithms 16

3.1.1 Mathematical description

The relative positioning problem can be formulated mathematically for this purpose with the
following assumptions. As the femto-spacecraft are moving through space, positions are es-
timated at discrete time steps. This is a valid approach provided the range estimates can
be obtained via networking and positions can be computed in real-time with a sampling rate
within the network that keeps up with the changing dynamics of the swarm. Secondly, as
certain spacecraft, such as the deployer(s) of the swarm, would be much larger than individual
femto-spacecraft, it is assumed that these spacecraft locations are known to the swarm. Sim-
ilarly, in LEO a proportion of the femto-spacecraft within the swarm could be equipped with
GPS receivers. For the scope of this work, these spacecraft are referred to as ‘anchor spacecraft’
of known position. At a minimum, a single deployer spacecraft would be the only known anchor
spacecraft.

The parameters of this problem are therefore: n unknown femto-spacecraft position vectors
xi ∈ R3, where i = 1, ..., n; m known anchor spacecraft positions vectors ak ∈ R3, where
k = 1, ...,m; known range estimates between femto-spacecraft, where r̂ij is the range estimate
between femto-spacecraft positions xi(xi, yi, zi) and xj(xj, yj, zj), and 1 ≤ i < j ≤ n; and
known range estimates between femto-spacecraft and anchor spacecraft, where r̂ik is the range
estimate between femto-spacecraft xi and anchor spacecraft ak, and i ≤ k ≤ m.

The objective of this problem is to find the n estimated femto-spacecraft positions that were
previously unknown. Arranging the true femto-spacecraft position vectors into a 3× n matrix
X, in the absence of measurement error, the objective is to find:

X =

x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

 (3.1)

subject to:
‖xi − xj‖2 = r2ij ∀ (i, j) ∈ N1 (3.2)

‖xi − ak‖2 = r2ik ∀ (i, k) ∈ N2 (3.3)

where the set N1 contains the pairs of femto-spacecraft (i, j) that have a true range rij between
them, and the set N2 contains the pairs of femto-spacecraft i and anchor k that have a true
range rik between them. This scenario is shown in Fig. 3.1.

3.1.2 Solution approach considerations

As the exact ranges rij and rik are in practice unknown, any algorithm used to solve the relative
positioning problem has the objective of minimising the difference between true and estimated
positions obtained from the range estimates r̂ij and r̂ik. In this context, the approach must
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rik rjk
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xi xj

ak

Figure 3.1: The relative positioning problem

also be able to operate in real-time, that is, be able to update position estimates in discrete
time steps faster than the changing dynamics of the femto-spacecraft swarm. Finally, the
approach must also be scalable to large networks of potentially hundreds of inter-connected
femto-spacecraft [79,80].

Different algorithmic approaches to solving this problem are therefore necessitated by scalability
in terms of computation to run in real-time, but also network communication range [81]. If
the swarm spatial structure extends beyond the communications range limit of single femto-
spacecraft, there would be a need for distributed communication and computation throughout
the network to enable relative positioning and navigation for the entire swarm. With this
considered, configurations within a network can be broadly expressed in the three primary
categories of centralised, distributed, and decentralised computation [82], as shown in Fig. 3.2.

The direction of the arrowheads indicate communication between spacecraft for the purposes
of relative positioning computation (primarily, sending range estimates wirelessly to be pro-
cessed). In a centralised configuration (Fig. 3.2a), femto-spacecraft send ranging data back
to a central spacecraft (e.g. the swarm deployer) that handles all computation and optimises
relative position estimates for the entire swarm. In a distributed configuration (Fig. 3.2b), this
computation is shared; the femto-spacecraft share ranging information and attempt to localise
relative to one another. In a decentralised configuration (Fig. 3.2c), distributed ‘cluster heads’
may act in a centralised way with nearby femto-spacecraft, but relate to other cluster heads in
a distributed fashion. Different strategies would suit various in-space applications and swarm
sizes, both in terms of the number of femto-spacecraft and the length-scales they are deployed
over. Developing different algorithms which may be more suitable depending on the utility,
scale, and application of the swarm, is therefore the approach taken in this work.

It is important to note the distinction that is made here between centralisation in computation
and communication. Centralised computation does not mean that the swarm cannot or does
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(a) Centralised (b) Distributed

(c) Decentralised

Figure 3.2: Swarm relative positioning computation configurations

not have a highly interconnected network topology for communications. As relative naviga-
tion for femto-spacecraft swarms is primarily a key enabling technology for distributed sensing
applications, it is assumed that swarms will in most cases operate with high degrees of inter-
connectivity between each femto-spacecraft. However, the extent of distributed computation
for the purposes of navigation or sensing is presumed to vary considerably depending on the
swarm size and application. Centralised computation would place less constraints on individual
swarm members and be simpler to implement, while distributed computation offers operational
benefits for sensing applications and mitigating the effect of component degradation.

Therefore, the relative positioning algorithms developed in this chapter are designed to be im-
plemented in different ways. Section 3.2 presents an algorithm using convex optimisation that
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relies on a central unit for computation. This could also be implemented in a decentralised man-
ner with clusters as described here. Section 3.3 presents a distributed algorithm designed to rely
on shared computation within the swarm using non-linear least squares (NLLS) trilateration.
Section 3.4 presents an algorithm using trilateration via normal probability density functions,
intended for use in small swarms to make best use of less accurate range estimates and the
significantly fewer constraints available. As has been noted in the author’s previous work [5],
these approaches may be adapted for terrestrial applications within wireless sensor networks
(WSNs) that share the severe resource constraints of femto-spacecraft and in environments
where GPS is unavailable.

3.2 Semidefinite Programming

With a centralised spacecraft able to process the entire swarm’s range data centrally, the rela-
tive positioning problem becomes an optimisation challenge: minimise the error in all position
estimates with the constraints available. By relaxing the relative positioning problem con-
straints in Eqs. 3.2-3.3 to satisfy convex optimisation bounds, geometric constraints between
femto-spacecraft can be represented by linear matrix inequalities (LMIs) combined to form a
single semidefinite program (SDP) [83]. In an SDP, a linear function is minimised subject to
the LMI constraint that a linear combination of symmetric matrices is positive semidefinite.
By definition, if Z is a symmetric matrix, and Q(x) = xTZx is the corresponding quadratic
form, Z and Q are positive semidefinite if Q(x) ≥ 0 for all x [84]. This has been applied for
localisation in static two-dimensional (2D) WSNs in [85–88].

The feasible regions of SDPs are spectrahedra, and this requires the constraints to be convex
functions. The relative positioning problem can be reformulated to find the symmetric positive
semidefinite matrix Z containing the matrixX of all unknown femto-spacecraft positions. Using
the definition of the relative positioning problem from Eqs. 3.1-3.3, the terms can be restated
in matrix form in a way that sets the problem up to be solved using convex optimisation
techniques [87]. Introducing the terms eij ∈ Rn as a zero column vector with the value of 1 at
index i and the value of -1 at index j, ei ∈ Rn as a zero column vector with the value of 1 at
index i, and the symmetric matrix Y = XTX ∈ Rn×n, Eqs. 3.2-3.3 become:

‖xi − xj‖2 = eTijY eij ∀ (i, j) ∈ N1 (3.4)

‖xi − ak‖2 =

[
ei

ak

]T [
I3 X

]T [
I3 X

] [ei
ak

]
∀ (i, k) ∈ N2 (3.5)

where I3 is a 3 × 3 identity matrix. Now the relative positioning problem can be restated to
find the matrix of unknown relative positions X such that:

eTijY eij = r2ij ∀ (i, j) ∈ N1 (3.6)
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[
ei

ak

]T [
I3 X

]T [
I3 X

] [ei
ak

]
= r2ik ∀ (i, k) ∈ N2 (3.7)

Y = XTX (3.8)

By relaxing the constraint Y = XTX to Y < XTX, this problem becomes an SDP [83, 89],
where the inequality constraint ‘<’ indicates that Y is positive semidefinite. The positive
semidefinite symmetric matrix Z can be defined as:1

Z =
[
I3 X

]T [
I3 X

]
=

[
I3 X

XT Y

]
(3.9)

Semidefinite programs, as a generalisation of linear programs, only allow linear objective func-
tions. In this case, there is no obvious candidate for a linear objective that would optimise this
problem [85]. Without an objective function, this could be represented as a feasibility problem,
effectively with the objective of finding any feasible solution to the relative positioning problem
without considering the objective of minimising positioning error. The effect of this would be
to solve for random feasible positions bounded by the feasible regions, with an empty objective
function in the convex optimisation solver when computed. As the algorithm will in practice
be calculating the position matrix subject to noisy range estimates, a straightforward way to
solve the SDP is to minimise the sum of squared positioning errors ε2 [86], i.e. to minimise:

ε2 =
∑

(i,j)∈N1

∣∣‖xi − xj‖2 − r̂2ij
∣∣+

∑
(i,k)∈N2

∣∣‖xi − ak‖2 − r̂2ik
∣∣ (3.10)

where the absolute values of these errors are taken into account for range estimates being either
higher or lower than the true range. This can be addressed by defining the slack variables αij
and αik:

αij = α+
ij + α−ij =

∣∣‖xi − xj‖2 − r̂2ij
∣∣ (3.11)

αik = α+
ik + α−ik =

∣∣‖xi − ak‖2 − r̂2ik
∣∣ (3.12)

In addition to a range estimate r̂, upper and lower constraints r̂ and r̂ can be placed based on
either or a combination of: the confidence in the range estimate around its mean, the minimum
and maximum possible ranges that the estimate could correspond to (based on the magni-
tude and direction of the deployment impulse, for example) and the maximum communication
range of the radio. For RSSI data, as is used experimentally in this thesis, these additional
constraints can reflect the inaccuracy of individual range estimates from modelling. This can
help alleviate the inaccuracy of RSSI, at worst having no impact on positioning accuracy but
offering the potential for improvement over the consideration of r̂ alone [86, 89]. Again, upper
and lower range estimates could be constrained by the maximum and minimum possible ranges
between femto-spacecraft (which would vary for different scenarios considered). For example,

1As X is also a matrix and I3T = I3, [I3 X]T =
[
I3
XT

]
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an upper bound could be placed based on maximum possible radio communications range, or
a lower bound on the minimum possible distance femto-spacecraft could be apart from one
another based on a particular deployment sequence. Adding these four additional constraints
to minimise:

ε2 =
∑

(i,j)∈N1

∣∣∣‖xi − xj‖2 − r̂
2

ij

∣∣∣+
∑

(i,k)∈N2

∣∣∣‖xi − ak‖2 − r̂
2

ik

∣∣∣
+

∑
(i,j)∈N1

∣∣‖xi − xj‖2 − r̂2ij
∣∣+

∑
(i,k)∈N2

∣∣‖xi − ak‖2 − r̂2ik
∣∣ (3.13)

and introducing the corresponding slack variables βij and βik:

β+
ij =

∣∣∣‖xi − xj‖2 − r̂
2

ij

∣∣∣ (3.14)

β−ij =
∣∣‖xi − xj‖2 − r̂2ij

∣∣ (3.15)

β+
ik =

∣∣∣‖xi − ak‖2 − r̂
2

ik

∣∣∣ (3.16)

β−ik =
∣∣‖xi − ak‖2 − r̂2ik

∣∣ (3.17)

This problem can now be expressed as an SDP optimisation problem:

Find:

Z =

[
I3 XT

X XTX

]
(3.18)

to minimise:

ε2 =
∑

(i,j)∈N1

(α+
ij+α

−
ij)+

∑
(i,k)∈N2

(α+
ik+α−ik)+

∑
(i,j)∈N1

β+
ij+

∑
(i,k)∈N2

β+
ik+

∑
(i,j)∈N1

β−ij+
∑

(i,k)∈N2

β−ik (3.19)

subject to: [
eij

0

]T
Z

[
eij

0

]
− α+

ij + α−ij = r̂2ij ∀ (i, j) ∈ N1 (3.20)

[
ei

ak

]T
Z

[
ei

ak

]
− α+

ik + α−ik = r̂2ik ∀ (i, k) ∈ N2 (3.21)

[
eij

0

]T
Z

[
eij

0

]
− β+

ij ≤ r̂
2

ij ∀ (i, j) ∈ N1 (3.22)

[
eij

0

]T
Z

[
eij

0

]
+ β−ij ≥ r̂2ij ∀ (i, j) ∈ N1 (3.23)

[
ei

ak

]T
Z

[
ei

ak

]
− β+

ik ≤ r̂
2

ik ∀ (i, k) ∈ N2 (3.24)
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[
ei

ak

]T
Z

[
ei

ak

]
+ β−ik ≥ r̂2ik ∀ (i, k) ∈ N2 (3.25)

where:
Z, α+

ij, α
−
ij, α

+
ik, α

−
ik, β

+
ij , β

−
ij , β

+
ik, β

−
ik < 0 (3.26)

Once solved, X can be extracted from Z and be further refined with a gradient descent method
[90]. The basis of this is to minimise the difference between the range estimates and the ranges
that can be found from the current position estimates, i.e. to minimise (now without the slack
variables as the position estimates are known):

f(X) ,
∑

(i,j)∈N1

∣∣‖xi − xj‖2 − r̂2ij
∣∣+

∑
(i,k)∈N2

∣∣‖xi − ak‖2 − r̂2ik
∣∣ (3.27)

by refining each position estimate in the negative gradient direction of the objective f(X). Note
that the upper and lower bound constraints on r̂ can also be used in f(X) but for brevity are
not shown. The gradient of f(X) with respect to femto-spacecraft i is given by:2

∇if(X) =
∑

(i,j)∈N1

(
1− r̂ij
‖xi − xj‖

)
(xi − xj) +

∑
(i,k)∈N2

(
1− r̂ik
‖xi − ak‖

)
(xi − ak) (3.28)

Then the position matrix X can be updated as:

X(γ) = [x1 − γ∇1f(X), ...,xn − γ∇nf(X)] (3.29)

This can be iterated starting with γ = 1, whereby if f(X(γ)) < f(X), the next iteration
becomes X(γ), otherwise γ is reduced in steps towards zero and the last X is used for the next
iteration, until convergence within a given tolerance level between two iterations (or the lower
limit of zero on γ is reached) [90]. The SDP optimisation output is taken as the first iteration
for this gradient descent method, which is an optional refinement step in the implementation.
Adding this refinement adds to the computation time but will in general improve accuracy.
Therefore, a trade off would exist for practical implementation.

This formulation is used as the basis for implementing a three-dimensional (3D) SDP algorithm,
developed in MATLAB with the convex optimisation modelling system CVX and using the
solver SDPT3 [91]. This approach is necessarily centralised because it would require one device
to optimise for the entire swarm given all the range estimates and problem constraints. Such
computation could be handled by the swarm deployer, such as a CubeSat carrier. In this role,
the central unit would accumulate swarm range estimates communicated to it via networking
and use this information to form the SDP constraints, optimise for the entire swarm and
then estimate the relative positions. In practice, as the space-based WSN that the femto-
spacecraft form would be dynamic, gradually drifting away from the deployer, the algorithm

2as ∇i ‖xi − xj‖ =
xi−xj

‖xi−xj‖ ∀i 6= j
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would therefore be sampled at regular intervals to update the overall swarm state estimates
dynamically using a relative navigation filter, as described later in Chapter 4.

The frequency with which this optimisation is performed would be a design choice that depends
upon the spatial density, relative motion and number of femto-spacecraft in the swarm. For
the purposes of centralised operations, a key assumption is that the time taken to accumulate
range data and calculate relative positions is sufficiently low enough to neglect time differences
in range data obtained and to keep up with the dynamics of the swarm. This is discussed in
more detail in Chapter 5, where the time taken to accumulate data via networking is addressed.

Algorithm 3.1 presents the implementation as pseudocode, while the flowchart in Fig. 3.3 sum-
marises the straightforward centralised algorithm logic flow. The flowchart displays a decision
case for a situation where anchors are unavailable. As will be discussed in Section 3.3, five
femto-spacecraft can be localised in an arbitrary reference frame relative to one another to
unambiguously describe their relative positions in three-dimensional space up to a global trans-
formation (translation and rotation). This can provide the algorithm with a relative coordinate
system to solve within and a set of proxy anchor positions if anchors are unavailable. Otherwise,
anchor positions would be provided using a small proportion of the swarm equipped with GPS
receivers, or communications to other spacecraft (such as in the case of multiple deployers) of
known position. From the description of the NLLS algorithm techniques, the combination of
techniques to enable relative frame definition to solve SDP is a straightforward extension to
the algorithm presented here. This is not however implemented in simulation or tested, as it is
not the intended use of this approach.

Algorithm 3.1 SDP algorithm
Inputs: rij, rik, a
Output: X

1: Define SDP constraints
2: Solve SDP problem:
3: if convergence then
4: extract X from Z
5: else
6: iterate
7: end if
8: Set γ = 1 and refine X with gradient descent method:
9: while γ > 0 do
10: if f(X(γ) < f(X) then
11: Set X = X(γ)
12: if convergence then
13: extract X as final position estimates
14: else
15: iterate through γk+1 ← γk
16: end if
17: end if
18: end while



Relative Positioning Algorithms 24

Start

Input: range estimates obtained via networking

Anchors available?
Obtain anchor positions

via networking

Define relative frame
and anchor set from
suitable candidates

Define SDP optimisation constraints

Iterate through solver

Convergence?

Gradient descent refinement

Convergence?

Output: position estimates

End

yes no

no

yes

no

yes

Figure 3.3: SDP algorithm flowchart



Relative Positioning Algorithms 25

3.3 Non-linear Least Squares Distributed Trilateration

A centralised approach relies on one unit being supplied all information necessary to optimise
the estimate of the relative positions for the swarm members. A decentralised or distributed
approach instead relies on data and computation sharing between swarm members. Using a
distributed positioning algorithm, there are far fewer constraints available to individual units,
requiring a completely different approach. With this algorithm, non-linear least squares (NLLS)
distributed trilateration is used to determine the relative positions of femto-spacecraft with
respect to their closest neighbours in the network.

The implementation challenge for this strategy is developing an algorithm that is robust to
measurement noise and the consequent ambiguities in relative positioning that can otherwise
arise. The key advantage of this method however is its inherent scalability and ability to
operate in an anchorless way. This is because local clusters of femto-spacecraft would be able to
determine their positions relative to one another in a coordinate system local to them, which can
be mapped onto other groups or anchors at a later stage. Crucially though, when this mapping
takes place, the computation of the relative spatial structure has already been done, saving
later computation for other swarm members. The structure of the algorithm in computational
implementation and in communication within the network could vary considerably depending
on the application or swarm size. In the simplest case, a single femto-spacecraft would be able
to determine its position relative to at least four of its neighbours.

The algorithm developed in this section is designed to be scalable for distributed computation
using varying extents of shared computation between femto-spacecraft. Like the SDP algorithm,
the intention is to be as general as possible and not restrict implementation to specific use cases
or the computational resources of individual spacecraft. Unlike the SDP algorithm, which
with current technology would not be feasible to compute in real-time on femto-spacecraft,
the algorithm developed here could be used in networking the results of simple embedded
computation between swarm members.

3.3.1 Relative ambiguities

To develop this algorithm, it is first important to consider the ambiguities than can arise when
a small number of femto-spacecraft attempt to localise themselves relative to one another in a
shared fashion. This is easier to describe firstly in two-dimensional (2D) space, where in the
absence of any measurement errors, knowledge of the ranges between three femto-spacecraft of
known position would be sufficient to localise a fourth unknown object precisely and uniquely,
as shown in Fig. 3.4a.

The unknown femto-spacecraft’s position is found to be the only common intersection of the
three circles that bind the known ranges of other femto-spacecraft to it. If there were only
two femto-spacecraft of known position, the subsequent two intersections of the range circles
would result in two possible positions for the unknown femto-spacecraft, causing an obvious
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(a) One unique intersection (b) Two intersections (c) Infinite positions

Figure 3.4: Range-based trilateration in 2D

ambiguity as to which position is correct (Fig. 3.4b). If there was only one femto-spacecraft
of known position, the unknown femto-spacecraft could lie anywhere on the circumference of
the range circle (Fig. 3.4c). Extending this principle to three-dimensional (3D) space, the
ranges between four non-coplanar femto-spacecraft of known position, again in the absence of
any measurement errors, is sufficient to uniquely localise a fifth femto-spacecraft of unknown
position, as shown in Fig. 3.5.

Figure 3.5: Range-based trilateration in 3D

In practice, any error in the range estimates requires an approximation technique to estimate
position. This is a simplified description of range-based trilateration, the fundamental principle
on which the global positioning system (GPS) operates. Any smartphone user can determine
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their location anywhere on the globe to within several metres with a GPS receiver. The GPS
receiver is able to determine the time difference between a GPS satellite’s broadcast and re-
ception to determine the range between the receiver and the satellite. This is possible because
the satellite has an atomic clock that can estimate the current time extremely accurately. As
described above for 3D trilateration, with a connection to at least four GPS satellites, a user
can estimate their current location anywhere on Earth.

For relative navigation, without a global coordinate system, there is a need to define a relative
coordinate system that is common to all femto-spacecraft to be localised within that system.
In this thesis, a Cartesian frame is always used. Again, it is more straightforward to describe
and visualise how this can be done and the challenges that arise firstly in 2D space. A 2D
Cartesian coordinate system can be fully defined in relative space with as few as three femto-
spacecraft with known range estimates between one another. Assigning the position of one
femto-spacecraft at the origin, another a distance along the x-axis, as defined by the range
between itself and the origin, and a third somewhere on the xy-plane from basic trigonometry,
this relative coordinate system can be defined.

x

y

(0,0) (r12,0)

(x3,y3)

r12

r13 r23

Figure 3.6: Defining a 2D Coordinate System

Now attempting to localise many unknown femto-spacecraft positions within this coordinate
system using range measurements alone requires knowledge of what relationships between
femto-spacecraft are sufficient to remove ambiguities in their relative positions. Figure 3.7
shows three femto-spacecraft that can communicate with one another, storing and sharing
range data (nested circles). Each is therefore able to determine where it is relative to the other
two, forming a relative triangle from the ranges.

Assuming that this is possible, and it will be seen that this is not always the case due to
measurement noise, this is still insufficient in itself for constructing a network of further relative
positions, owing to the positioning ambiguities that would arise, as illustrated in Fig. 3.8.
Even with a shared coordinate system, this triangle can be located anywhere and rotated in
any direction in 2D space, known as translational and rotational ambiguity. This is true of
any relative coordinate system, so all that matters is that the femto-spacecraft localised within
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Figure 3.7: Relative positioning triangle formed via communication

it can be unambiguously described up to a single translation, rotation and reflection (TRR)
common to all positions. Reflective ambiguity exists if the solution can be ‘flipped’ about
any side and still remain valid - where there is an equally valid ‘ghost’ solution. As described
above, the initialisation of the relative frame by defining those three femto-spacecraft positions
prevents this initially, but as more femto-spacecraft are localised into the frame, knowledge of
the ranges between just three nodes in 2D space is insufficient to prevent reflective ambiguity
in the relative frame.

(a) Translation (b) Rotation (c) Reflection

Figure 3.8: Translational, rotational and reflective ambiguities in 2D

Clearly, triangles cannot be used as a linking mechanism for constructing a larger network of
connections in two-dimensional space or reflective ambiguities will arise. A rigid relative solution
must be unique for the entire swarm up to a single translation, rotation, and reflection (TRR).
In two-dimensional space, quadrilaterals formed with the maximum six ranges between four
femto-spacecraft are globally rigid and can be used as a linking mechanism [92,93]. The three-
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dimensional equivalents of the triangle ambiguities are found with tetrahedra, and the rigid
linking mechanism is found to require the maximum ten ranges between five femto-spacecraft.
This would often take the form of a 6-sided triangular bipyramid, with the tenth range link
through the middle of the structure, as shown in Fig. 3.9. Alternatively, this structure would
be some form of 5-sided polygon if the two tetrahedra forming it were aligned in the same way
above the xy-plane.

(a) Quadrilateral (2D) (b) Triangular bipyramid (3D)

Figure 3.9: Rigid relative linking mechanisms using ranges

This fully connected linking condition removes the possibility for reflection ambiguity when
localising. When contained within the boundaries of a larger network and shared coordinate
system (solved in translation and rotation), this is a robust way to localise further femto-
spacecraft onto algorithmically. Relative coordinate system initialisation in 3D space therefore
requires a minimum of five non-coplanar femto-spacecraft with all ten range estimates between
them to be known to fully define the three axes unambiguously. A relative coordinate system
can be mapped to other coordinate systems (including a global one) as long as some nodes are
known in both coordinate systems. With these ambiguities addressed, the distributed algorithm
is now developed.

3.3.2 NLLS algorithm

Provided that knowledge of the range estimates between four other femto-spacecraft that are
not co-planar is in principle sufficient to uniquely identify a fifth femto-spacecraft as the only
possible intersection, as shown in Fig. 3.10, trilateration is possible in a frame relative to these
five femto-spacecraft.

The fifth femto-spacecraft position x5 is shown as the only possible intersection of the other
four ranging spheres. A least-squares approach (or similar) is required to estimate position with
this method in practice due to measurement noise. In its usual implementation, trilateration
also requires the absolute coordinates of the four points to be known. With a relative approach,
however, this concept is reversed to determine relative positions where there are many unknown
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Figure 3.10: 4 ranging spheres to 5th femto-spacecraft

points but there are estimates of the ranges between them. Provided that these five femto-
spacecraft can localise in the presence of measurement error, reflective ambiguity may still
exist. It is, as discussed, essential to avoid this ambiguity in constructing a network of further
relative positions. Consider the scenario shown in Fig. 3.11.
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Figure 3.11: Reflective ambiguity between five femto-spacecraft



Relative Positioning Algorithms 31

From Fig. 3.11a, consider the scenario where positions x1 to x4 are known in relative space, and
that each range measurement to position x5 is used to trilaterate and locate femto-spacecraft
5 relative to the first four positions. It is possible that in the presence of measurement noise
both the solutions shown in Figs. 3.11a and 3.11b are valid without considering the range r45
between x4 and x5. Even when r45 is considered, it is possible that the difference between r45
and the potential r45′ is not sufficient in the presence of noise to rule out one solution or the
other. While Fig. 3.11 illustrates an extreme case where the range estimate r45 would need to be
completely anomalous to mistake the correct configuration (as the difference is so large), this is
not always the case for random geometries, particularly in the presence of noise. In developing
a distributed algorithm that uses relative trilateration it is essential to be robust against this
kind of uncertainty and rule out candidate solutions that exhibit it. This is especially important
for the first set of positions used to start the algorithm and trilaterate new solutions to that
first solution.

Consider Fig. 3.11a for an illustration of how relative trilateration would work as the basis of
starting the algorithm. A femto-spacecraft can be arbitrarily assigned at position x1 as the
origin of a new relative Cartesian coordinate system, position x2 with the x-coordinate r12 and
positions x3 and x4 using basic trigonometry (forming a relative tetrahedron of four femto-
spacecraft). This is described later (see Eq. (3.39)). It is then essential to perform the same
operation with positions x1, x2, x3, and x5, and then the relationship between both tetrahedra
can be confirmed using the range measurement r45. With this structure formed subject to
strict ranging conditions that avoid reflective ambiguity, new femto-spacecraft can be freely
trilaterated onto this cluster in a simple way as a sufficient number of robust relative locations
estimates are now known.

The first five femto-spacecraft start the algorithm by defining a relative orientation and position
that newly trilaterated positions are found relative to. This process continues until confidence
limits of new femto-spacecraft positions are reached based on an estimate of the size of the
measurement noise. Intuitively, lower confidence in the range measurements results in the
ability to form smaller clusters.

Clusters could form in an ad-hoc fashion based on proximity or identification tags of individual
femto-spacecraft. In large networks, this would result in clusters in different relative coordi-
nate systems that can be combined by transformation (translation and rotation) into a single
relative reference frame. There are several ways of achieving this [94], provided the clusters
share a degree of overlap with localised femto-spacecraft in common (at least four in three-
dimensional space). Singular value decomposition (SVD) [95] has been found to be the most
stable in computation, so this is the method for frame transformations used in this distributed
algorithm. As this can be used in many algorithmic implementations (such as for decentralised
SDP computation), the details of this method are described in general terms in Section 3.5.

To describe how the algorithm determines the swarm members’ relative positions, the process
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is best summarised in its constituent stages, and then each stage can be explained in detail.
This can be thought of as the three stages of cluster formation, expansion, and combination.
The following steps outline the process:

1. Trilaterate the first set of femto-spacecraft that pass volumetric and ranging tests against
positioning ambiguity as positions x1 - x5 in the relative frame F1.

2. Trilaterate further positions onto this cluster using a non-linear least squares iteration
process:

(a) Subject new configurations to the same volumetric and ranging tests for positioning
ambiguity

(b) If a configuration passes volumetric tests, start with a first guess linear least-squares
estimate that solves the range equations

(c) Refine through iteration of a non-linear case with the Newton-Raphson method

(d) If the position found agrees with ranging test results against flip ambiguity, the
femto-spacecraft is localised onto the cluster.

3. Continue to add new femto-spacecraft as in Step 2 until a (pre-determined) threshold on
the error propagation in newly trilaterated positions is reached for the cluster.

4. Repeat Steps 1-3 with a new cluster of positions for the entire swarm, ensuring a degree
of overlap in clusters for subsequent frame transformations.

5. Transform c clusters in c relative frames F1 − Fc into a single swarm localisation in one
relative frame using singular value decomposition.

3.3.2.1 Cluster formation

To start a localisation cluster, five femto-spacecraft must pass both a volumetric test (a check
that the solution is valid) and a reflective ambiguity test to work in the presence of range errors
from measurements. For these tests, a method similar in three-dimensional space is used to
those presented in [96]. As implemented, the two tests work as follows:

1. Volumetric test: prevents poor geometry and measurement noise allowing trilateration
of non-robust structures (e.g. in two-dimensional space, the equivalent would be three
range measurements failing the triangle inequality). If the probability that a tetrahedron
formed by four femto-spacecraft encloses a negative volume is above a pre-determined
value (set at 1% in simulation), then the femto-spacecraft are not localised.

2. Reflective ambiguity test: prevents flip/reflective ambiguity by using the otherwise re-
dundant tenth range estimate r45 between five femto-spacecraft (Fig. 3.11). A statistical
two-tailed z-test [97] is used to determine within a 95% confidence interval that their
positions are robust against this reflective ambiguity.
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The volume of the tetrahedron V(1,2,3,4) formed by the four femto-spacecraft positions x1 to x4

can be found using the ranges between its vertices using the Cayley-Menger determinant [98]
as:3

V(1,2,3,4) =
1

288

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r212 r213 r214

1 r212 0 r223 r224

1 r213 r223 0 r232

1 r214 r224 r234 0

∣∣∣∣∣∣∣∣∣∣∣∣
(3.30)

Note here that the notation xi to xi+3 would describe the general case for this scenario with
four arbitrary relative positions used, but x1 to x4 is used in these descriptions and subsequent
equations in this description for clarity in the expressions. To determine the probability that
V(1,2,3,4) encloses a negative volume, the variance of the volume σ2

V is calculated to test this
case. Let r denote the 1×6 vector of the 6 uncorrelated range estimates that make up V(1,2,3,4):

r =
[
r12 r13 r14 r23 r24 r34

]
(3.31)

with an associated covariance matrix Cr given by:4

Cr =


σ2
r12 0 0

0
. . . 0

0 0 σ2
r34

 (3.32)

and let F be the matrix of partial derivatives of V(1,2,3,4) with respect to each range (expansion
of each term is given in Appendix A.1):

F =
[
∂V
∂r12

∂V
∂r13

∂V
∂r14

∂V
∂r23

∂V
∂r24

∂V
∂r34

]
(3.33)

then the variance σ2
V of V(1,2,3,4) is given by:

σ2
V = FCrF

T (3.34)

Now representing the volume estimate as a normally distributed random variable y, with mean
V and variance σ2

V , the probability function is:

P (y) =
1

σ2
V

√
2π
e
− (y−V )2

2σ2
V (3.35)

which means the probability that the estimated volume is negative is given by:

PV <0 =

∫ 0

−∞
P (y)dy (3.36)

3where the determinant of a matrix is given by |�|
4As the range estimates are uncorrelated, only the matrix diagonal (containing the variance terms) is non-

zero.
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Choosing a limit for acceptance would in practice depend on the confidence in the accuracy of
the range estimates. This can be set strictly with the expectation of fewer but more accurate
and robust localisation, or loosely with the expectation of more but less accurate localisation.
In simulation, the condition PV <0 ≤ 0.01 is used for acceptance in cluster formation.

If two tetrahedra V(1,2,3,4) and V(1,2,3,5) pass this volumetric test, the ranging test is performed
against reflective ambiguity. For robustness against reflective ambiguity, a statistical two-tailed
z-test is used to determine within a 95% confidence interval that the positions in two tetrahedra
can be uniquely and correctly aligned. From the calculated geometry obtained from the other
range measurements, estimates of the true range r45 denoted by r̃45 and r̃45′ can be calculated
based on whether the fifth femto-spacecraft is above or below the plane formed with x1, x2 and
x3 using the geometry shown in Fig. 3.12, where r̃45 =

√
∆h2 + ∆q2 and r̃45′ =

√
∆h′2 + ∆q2.

x1

x3
x4

x2

r45

q4 q5

h4
Δq

Δh

h5

x5

Δh′
r45′

x5′

Figure 3.12: Calculation of r̃45 and r̃45′

Derivations for these expressions are provided in Appendix A.2. Now, r̃45 and r̃45′ can be
compared with the range measurement r̂45 for the ranging test, by setting:

θ45 = |r̃45 − r̂45| (3.37)

θ45′ = | ˜r45′ − r̂45| (3.38)

and by setting θmin = min(θ45, θ45′) and θmax = max(θ45, θ45′). Five femto-spacecraft can pass
the procedure if and only if θmin is small enough and θmax is large enough; that is, if one can be
categorically accepted or rejected. This requires calculation of their respective variances σθ45
and σθ45′ , in order to assess if either can be accepted. There are three possible outcomes: both
are accepted, in which case it cannot be said which configuration is correct; both are rejected;
or the minimum case is accepted while the maximum case is rejected. If this final condition is
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met, the five positions are considered robust to form a cluster.

3.3.2.2 Cluster Expansion

If the volumetric and ranging tests are passed, the relative localisation in the arbitrary local
frame F1 of the first five femto-spacecraft positions of the cluster (x1(x1, y1, z1) to x5(x5, y5, z5))
can be assigned simply from trigonometry:

x1 =

0

0

0

 (3.39)

x2 =

r120

0

 (3.40)

x3 =


r13(r223−r212−r213)
−2r12r13√
r213 − x23

0

 (3.41)

x4 =


r214−r224+r212

2r12
r214−r234+x23+y23−2x3x4)

2y3√
r214 − x24 − y24

 (3.42)

x5 =


r215−r225+r212

2r12
r215−r235+x23+y23−2x3x5

2y3

±
√
r215 − x25 − y25

 (3.43)

where x4 defines the positive third dimension and the relative orientation of ±z5 is determined
by the reflective ambiguity test. Further femto-spacecraft are then trilaterated onto this cluster
using a non-linear least squares refinement process. Using the Newton Raphson method, this
starts with a first iteration guess from a linear least-squares solution of the spherical ranging
equations which is refined with non-linear least squares. First, the trilateration problem is
solved with a system of linear equations involving the new femto-spacecraft to be localised
xi(xi, yi, zi) and at least four other femto-spacecraft already trilaterated within the cluster.

Importantly, this method uses the range estimates between the femto-spacecraft used that are
already localised to the one that is not. This requires at least the four ranges between each of
the localised femto-spacecraft and the new femto-spacecraft to be localised to add this position
estimate to the cluster. Its formation is still subject to the same volumetric and ranging tests
as used for cluster formation. Expressed for the unknown position xi(xi, yi, zi) and any position
known to the cluster xl(xl, yl, zl), where nc is the number of femto-spacecraft of known position
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in the cluster and l = 1, 2, ..., nc, the range equations (Eq. (3.2)) can be written as:

‖xi − xl‖2 =
√

(xi − xl)2 + (yi − yl)2 + (zi − zl)2 = r2il (l = 1, 2, ..., nc) (3.44)

This can be rearranged into a standard system of linear equations of the form:

Hy = b (3.45)

where:

H =


x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

...
...

...
xnc − x1 ync − y1 znc − z1

 (3.46)

y =

xi − x1yi − y1
zi − z1

 (3.47)

b =
1

2


(r21i − r22i + r212)

(r21i − r23i + r213)
...

(r21i − r2nci + r21nc)

 (3.48)

and solved in a linear least-squares sense as:

y = (HTH)−1HTb (3.49)

Solving for y, the newly trilaterated femto-spacecraft position is extracted as xi(xi, yi, zi). This
is refined using a non-linear least squares method that as a first iteration starts with the initial
linear least squares solution. This method minimises the sum of the squares of the range errors,
which is achieved by minimising:

F (x, y, z) =
nc∑
l=1

(r̂il − ril)2 =
nc∑
l=1

fl(xi, yi, zi)
2 (3.50)

where r̂il is the estimated range between femto-spacecraft l and the femto-spacecraft i and ril
is the true range. Calculating the partial derivatives of Eq. (3.50) with respect to xi, yi and zi
yields:

g = 2JT f (3.51)

where g is the vector of partial derivatives, J is the Jacobian matrix and f is a 1× nc vector:

g =


∂F
∂xi
∂F
∂yi
∂F
∂zi

 (3.52)
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J =


∂f1
∂xi

∂f1
∂yi

∂f1
∂zi

∂f2
∂xi

∂f2
∂yi

∂f2
∂zi...

...
...

∂fnc
∂xi

∂fnc
∂yi

∂fnc
∂zi

 (3.53)

f =


r̂1i − r1i
r̂2i − r2i

...
ˆrnci − rnci

 (3.54)

Then, iterating through (k + 1)← k using the Newton Raphson method for xi:

xik+1
= xik − (JTk Jk)

−1Jkfk (3.55)

This procedure can be repeated for a set number of iterations or until convergence within a given
tolerance level. The number of attempts that a femto-spacecraft of unknown position would
have to localise onto the cluster would vary according to networking and real-time constraints.
While the above strategy works with a minimum of four known positions, if extra positions
are available to a femto-spacecraft within the cluster already, these would be available, and in
simulation these are used. Other femto-spacecraft can continue to be localised onto a cluster
until the solutions exceed noise bounds or confidence levels. At this stage new femto-spacecraft
yet to be localised would find another cluster to localise to or would start another cluster
altogether.

A distributed computation strategy would utilise the fact that when networking with a cluster
of femto-spacecraft of known position, a femto-spacecraft of unknown position would be able
to attempt to localise itself relative to that cluster using its own processing power, and then
calculate its position estimate algorithmically and communicate this to other femto-spacecraft.
Depending on the awareness of other femto-spacecraft of the others’ positions, very few addi-
tional transmissions would be required to share positioning data and expand the cluster further.

3.3.2.3 Cluster combination

To combine clusters of known positions, a suitable amount of overlap in relative positions
is required for the transformation procedure, as described in Section 3.5. Therefore, it is
necessary to know some femto-spacecraft positions in at least two reference frames for robust
transformations. This would be possible in a step where two clusters communicate and either
utilise or establish a necessary degree of overlap in positions using the methods for cluster
expansion described.

So far, this algorithm has been described in general terms to highlight the ad-hoc and distributed
fashion it could work in, without explicitly considering the role of anchor femto-spacecraft. In
the case where anchors are available to particular femto-spacecraft, the intended implementation
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of this algorithm is that cluster formation would use anchors to the unknown positions, in order
to achieve the best possible accuracy. In particularly large networks, potentially consisting of
hundreds of widely dispersed femto-spacecraft where direct communication between all femto-
spacecraft may not be practical or possible, it is necessary to consider the case where these
clusters localise themselves in relative frames where anchors are, at least directly, unavailable.
In such a case, a series of frame transformations could be used to associate cluster positions to
a frame shared by anchors. This is discussed in Section 3.5.

The NLLS algorithm is implemented as series of functions in MATLAB. The implementation
is explained as pseudocode in Algorithm 3.2, while the logic flow is shown in Fig. 3.13.

Algorithm 3.2 NLLS algorithm
Inputs: rij, k = 1, (optional: rik, a)
Output: X

1: for cluster formation do
2: trilaterate xi - xi+4:
3: volumetric (solution validity) test
4: if pass then
5: ranging (reflective ambiguity) test
6: if pass then
7: form cluster with xi - xi+4 in relative frame Fk
8: k ← k + 1
9: end if
10: else
11: i← i+ 1
12: end if
13: end for
14: for cluster expansion do
15: while threshold on error propagation not met do
16: introduce femto-spacecraft j to cluster
17: volumetric (solution validity) test
18: if pass then
19: trilaterate initial estimate of xj using linear least squares
20: refine xj using non-linear least squares & the Newton-Raphson method
21: ranging (reflective ambiguity) test
22: if pass then
23: add xj onto cluster
24: j ← j + 1 (success)
25: end if
26: end if
27: j ← j + 1 (failure)
28: end while
29: end for
30: for cluster combination do
31: Transform k clusters into 1 relative frame using SVD (Sec. 3.5)
32: extract X as the final position estimates
33: end for
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Figure 3.13: NLLS algorithm flowchart
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3.4 Normal Probability Density Function Trilateration

As discussed in Section 3.2, the conversion of an RSSI value into a single approximate range
estimate is not necessarily as suitable an approach as placing lower and upper bounds on the
range approximation. This is particularly true in the case of small networks where the number
of constraints may not be sufficient to neglect outlier measurements. This of course applies
to all normal measurement types with uncertainty around the mean value, but particularly in
the case of experimental testing with a small number of femto-spacecraft proxies. As will be
shown in Chapter 6, outliers in experimental data of a small number of devices can massively
degrade performance. The SDP algorithm makes use of all available constraints to achieve
relative positioning as an optimisation-based feasibility problem. The NLLS algorithm, in its
intended distributed implementation, makes use of a large number of available constraints in
a distributed network to be selective and rigorous about conditions for estimating relative
positions to avoid errors.

For experimental testing and demonstration, as discussed in Chapter 6, the following algorithm
using normal probability density functions (NPDFs) was also implemented. In 2D space, the
confidence bounds of the range estimates are directly treated to create range annuli, where the
intersections of annuli represent the highest likelihood of location [99]. This compensates for the
inaccuracy of RSSI as a ranging metric by focusing instead on creating binding regions where a
femto-spacecraft may lie within. This process estimates positions of unknown femto-spacecraft
using knowledge of their range estimates to already known positions. As the known positions
could have been found from the algorithmic methods in the previous sections, this could work as
a cluster expansion method or make use of anchors. For generality, the known positions in the
following descriptions are given the notation of anchors. For the unknown position xi(xi, yi, zi)
and anchor position ak(xk, yk, zk), with range estimate r̂ik and standard deviation in the range
estimate σrik , the NPDF takes the form:

Pk(xi, yi, zi) =
1√

2πσ2
rik

e
−

(√
(xi−xk)2+(yi−yk)2+(zi−zk)2−r̂ik

)2

2σ2rik (3.56)

where P is the representation of a spherical shell volume (the 3D generalisation of an annulus) of
probability that binds the estimate of the unknown position in 3D space. This treats the range
estimate as the mean value around which the confidence in the range estimate is measured.
The NPDF localisation method can be visualised as a normalised heat map whereby finding:

P (xi, yi, zi) =
m∑
k=1

Pk(xi, yi, zi) (3.57)

results in a region of highest probability emerging to localise the unknown position relative to
the other known position. This can be normalised between 0 and 1 by dividing through by the
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maximum Pk value. As in Section 3.1, m denotes the total number of localised anchor positions.
This can be visualised in general terms with an unknown node’s relationship between known
positions as iso-surfaces in 3D space, with a heat map representative of probability, as shown
in Fig. 3.14.

(a) 3D torus of probability (b) Unique region

Figure 3.14: Visual representation of P (xi, yi, zi) as a 3D heat-map

The hottest regions show where the unknown position can be estimated as lying within. With a
sufficient number of intersecting femto-spacecraft range estimates, the centroid of this probable
region can be taken as the estimate of the unknown position. As shown in Fig. 3.14a, two
known positions’ ranges to the unknown position results in a 3D torus of probability, while in
Fig. 3.14b, four known positions result in a unique region inside which the unknown position
lies. This approach works best when the confidence in range estimate being used is well defined.
In the simplest case, this can be used as a step for trilateration of further femto-spacecraft onto
clusters. Its usage with inter-spacecraft relative positions using rij is however limited, owing to
the high uncertainty in positions that would be found without using the conditions of approaches
like the SDP or NLLS algorithms. This is implemented in MATLAB for experimental testing
comparisons and visualisation of RSSI data in a path loss model, which for small-scale testing
offers insight into the reliability of RSSI as a range metric.

Algorithm 3.3 NPDF Algorithm
Inputs: rik, σrik , a
Output: xik

1: Generate a 3D Cartesian mesh-grid that spans the feasible search space for the unknown
position

2: Calculate all Pk for k = 1,2,...,m as 4D arrays (3D positions and 1D normalised probability)
3: Sum all P =

∑
Pk, and normalise with P = P

max(Pk)

4: Find and extract coordinates of max(P) as xik
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3.5 Singular Value Decomposition Frame Transformation

For the relative positioning algorithms described, any distributed computation would facili-
tate real-time relative positioning in networks of greater sizes by sharing the computational
requirement of each spacecraft within the swarm. For the SDP algorithm, which is an inher-
ently centralised approach, decentralisation can be introduced with several spacecraft acting
in a centralised way. Frame transformations between clusters of spacecraft would enable faster
computation of a larger swarm’s relative positions. For the NLLS algorithm, which is intended
to work in a distributed fashion, frame transformations are an essential step in cluster expansion
and combination.

To combine two clusters of positions known in two different reference frames into a single cluster
known in one with a transformation, it is necessary to have some proportion of positions known
in both sets, i.e. a degree of overlap. Singular value decomposition (SVD) frame transformation
can be used given the coordinates of a minimum of the same four non-coplanar positions known
in two separate frames of reference, such that a transformation (rotation matrix and translation
vector) between the two frames can be found [95,100].

Consider the two sub-clusters of femto-spacecraft positions XF1 and XF2 , representing two 3×n
matrices of the same n ≥ 4 position vectors expressed in the two different reference frames F1

and F2. Note here that n represents a number of femto-spacecraft known in both frames, and
not the total number in the swarm. In the absence of any errors, the sets are related by a 3× 3

rotation matrix R and a 3× 1 translation vector T such that:

XF1 = RXF2 + T (3.58)

As in practice, both sets of positions will have inaccuracies in the position estimates unique to
each set, an objective of this transformation is instead to find an optimal R̂ and T̂ to minimise
the least squares error criterion:

n∑
i=1

∥∥∥XiF1
− R̂XiF2

− T̂
∥∥∥2 (3.59)

Consequently, if a solution R̂ and T̂ exists then the sets XF1 and XF2 have the same centroids
[95]:

X̄F1 =

∑n
i=1XiF1

n
(3.60)

X̄F2 =

∑n
i=1XiF2

n
(3.61)

giving the centred vectors of:
XciF1

= XiF1
− X̄F1 (3.62)

XciF2
= XiF2

− X̄F2 (3.63)
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simplifying the criterion in Eq. (3.59) to:

n∑
i=1

∥∥∥XiF1
− R̂XiF2

− T̂
∥∥∥2 =

n∑
i=1

(
XT
ciF1

XciF1
+XT

ciF2
XciF2

− 2XT
ciF1

R̂XciF2

)
(3.64)

which is minimised by maximising the trace of R̂H [100], where H is a correlation matrix given
by:

H =
n∑
i=1

XciF2
XT
ciF1

(3.65)

Finding the singular value decomposition of H:

H = UΣV T (3.66)

the optimal rotation matrix R̂ and translation vector T̂ are found to be:

R̂ = V UT (3.67)

T̂ = X̄F2 − R̂X̄F1 (3.68)

providing an optimal transformation between the two sets of positions. Then, the general
approximation for the matrix of femto-spacecraft positions X can be made:

XF1 u R̂XF2 + T̂ (3.69)

This can be tested for robustness by finding the determinant |R̂|. If |R̂| = 1, R̂ represents
a rotation and can be used, otherwise |R̂| = -1, indicating a reflection and preventing the
transformation from being useful. There have been approaches outlined to address this in
the literature [100], but in simulation and testing the author has not found these to work. A
reflection case indicates outliers in the relative positioning, which if not already addressed by
algorithmic techniques, can likely not be dealt with otherwise. In such (rare) failure cases,
different point set combinations can be tried to establish an optimal transformation. Issues
such as randomly selected position sets either being (or close to being) coplanar accounts for
any known instances of this error in testing. For demonstration of this method, consider the
test case for n = 5 randomly placed femto-spacecraft known in the two reference frames F1

and F2 shown in Fig. 3.15. Given R̂ and T̂ , the positions in F2 can be transformed into F1 as
shown in Fig. 3.15c.

In the singular value decomposition, U and V are 3×3 unitary matrices and Σ is a 3×3 diagonal
matrix. The main advantage of this rotation and translation is that further positions known in
either reference frame can be transformed as required, so it only requires the small amount of
overlap in clusters to know all positions in both clusters in either frame. This is implemented
as a function in MATLAB as an integral step in the NLLS algorithm, for decentralisation in
the SDP algorithm, and for general usage. This is outlined as pseudocode below.
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(a) F1 (b) F2

(c) XF1 = R̂XF2 + T̂

Figure 3.15: SVD transformation

Algorithm 3.4 SVD Frame Transformation Algorithm
Inputs: XF1 ,XF2

Outputs: R̂, T̂
1: find the centroids of XF1 and XF2 as X̄F1 and X̄F2

2: find the centred vectors XciF1
and XciF1

, as arrays of vector combinations
3: find the 3× 3 correlation matrix H =

∑n
i=1XciF2

XT
ciF1

4: compute the singular value decomposition H = UΣV T

5: determine the optimal rotation matrix R̂ = V UT

6: if ˆ|R| = 1 then
7: return R̂
8: return the optimal translation vector T̂ = X̄F2 − R̂X̄F1

9: else
10: if |R̂| = −1 then
11: return 0 - transformation failed
12: end if
13: end if
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3.6 Simulation-based Algorithmic Performance Analysis

For algorithmic performance analysis, a series of tests are simulated for femto-spacecraft gen-
erated in randomised positions within a controlled volume of space. These are a centralised,
decentralised, and distributed test case of n = 100 femto-spacecraft and a = 10 anchor space-
craft randomly generated within a cubic volume V = 200 m3. In all tests, the true ranges
between femto-spacecraft are distorted with additive white Gaussian noise (AWGN), varying
its standard deviation (σr) to examine how the algorithm performs. The mean squared error
in range estimates, σr2, is given by:

σr
2 =

N∑
i=1

(r̂i − ri)2

N
(3.70)

where N is the number of range estimates, r̂i is the range estimate supplied to the algorithm
and ri is the true range. This treatment of the range measurement in simulation is done so
as to not restrict the analysis to RSSI or any particular range metric and its inaccuracies
or biases. The algorithms are supplied only with the noisy range estimates and any anchor
positions. For simplicity, anchors are assumed to be located without any error in position. The
mean squared error of the localised femto-spacecraft σX2 is used to analyse the algorithm’s
localisation accuracy with the true positions, such that:

σX
2 =

n∑
i=1

(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

n
(3.71)

where n is the number of femto-spacecraft, X is the matrix of all known position estimates,
position xi has true coordinates (xi, yi, zi) and the algorithm estimates these coordinates to be
(x̂i, ŷi, ẑi). Inaccuracies in the range measurements are varied by introducing a noise level and
random error proportionate to the true range such that:

r̂ij = rij(1 + ζχ) (3.72)

where χ is a zero mean normally distributed random variable of variance one, and ζ is a noise
level greater than or equal to zero. For example, a noise level of 10% corresponds to ζ = 0.1.

3.6.1 SDP algorithm centralised test case

For a test case of the SDP algorithm centralised performance analysis, the noise level is varied
from 0-40%, and full interconnectivity within the swarm is assumed, i.e. that there is a range
estimate between every femto-spacecraft and to the anchors. The results shown in Fig. 3.16
show single-run results of the SDP algorithm estimating the same positions with noise levels of
ζ = 0, 0.1, 0.2, 0.3 and 0.4.

In Fig. 3.16, the anchor coordinates are marked by red circles, the true coordinates (unknown
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(a) ζ = 0 (b) ζ = 0.1

(c) ζ = 0.2 (d) ζ = 0.3

(e) ζ = 0.4 (f) σX with noise level

Figure 3.16: SDP algorithm performance in centralised test case
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to the algorithm) are marked by green squares and the algorithm output position estimates are
marked by black crosses. The dashed lines indicate the difference between an estimate and the
true position for that point. Figures 3.16a-3.16e show the sample results of this test case, while
Fig. 3.16f shows the linear interpolation of the trend in the mean squared error in position
σX with increasing noise levels as a percentage of rij. As can be expected, this shows that the
errors in position increase directly in proportion to increases in range errors. With randomised
anchor placement, this test case demonstrates that due to the convex constraints, estimated
positions tend to be least accurate towards and at the outer edges of the swarm, with Fig.
3.16e highlighting the inaccuracy in estimating positions far nearer to the centre of the swarm
than the true positions.

The effect of this can be mitigated to an extent with consideration of anchor placement within
the swarm. Placing anchors towards the edges of the swarm is found to improve the accuracy
in general, due to minimising any effects of poor geometry for the convex constraints. For
example, repeating this test case, instead now with nine anchors located at the boundaries of
the test volume and one at the centre, as shown in Fig. 3.17, this effect is demonstrated.

(a) ζ = 0.3 (b) σX with noise level

Figure 3.17: SDP algorithm performance in centralised test case with de-
liberate anchor placement

It is found that the positioning accuracy is consistently better across all noise levels. Only the
full ζ = 0.3 result is displayed in full in Fig. 3.17a for brevity, with the trend in Fig. 3.17b
highlighting the general performance improvement across all noise levels. It is clear that this
anchor placement improves the general algorithm positioning performance at all noise levels,
implying that where possible, anchors should be selected to be positioned at the edges of the
swarm for an expected improvement in positioning accuracy. In practice, if anchors were for
example to be GPS-equipped femto-spacecraft, this placement may be achieved by ejecting
anchor spacecraft either before the rest of the swarm or at higher ejection velocities. Ejection
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strategies are discussed in Chapter 4. While the test case here shows anchors placed deliberately,
in reality, anchors could still take quite random positions, but if congregating around the edges
of the swarm this could in principle achieve better accuracy than with random placement.

3.6.2 SDP algorithm decentralised test case

The centralised test case can be straightforwardly decentralised by partitioning the swarm into
separate clusters, assuming the case of the swarm either having multiple deployers or being
composed of a small fraction of larger spacecraft able to perform the centralised computation.
Again for n = 100 and a = 10, the random positions are partitioned into between two to five
clusters c of fifty to twenty femto-spacecraft respectively. All anchor positions are known to
each cluster head. As an operational comparison to the single cluster case, all anchor positions
are known, so unlike the NLLS algorithm, there is no need for overlap in the femto-spacecraft
known by each cluster requiring SVD frame transformation.

For relative positioning performance, this comparison is essentially a trade-off between accu-
racy and computation time. Considering full interconnection of n femto-spacecraft, the number
of communication links (and therefore range constraints for the algorithm) scales with n(n−1)

2
,

implying quadratic time complexity scaling with the number of constraints (i.e. O(n2)). As
implemented in MATLAB with cvx, the SDP algorithm works using the solver SDPT3 [101].
For each iteration of the solver, the worst-case time complexity is theoretically O(n6) [89,102].
However, in practice this scaling can be substantially reduced with constraints on connectivity
and communications range limits for substantially larger networks, typically bounding the typi-
cal worst-case complexity to O(n3) [89,103]. The polynomial-time complexity ultimately means
that decentralised clustering will enable substantially faster computation in larger networks, at
the cost of positioning accuracy due to the decreased number of constraints.

Considering the four test case partitions of c = 2-5 clusters, the accuracy and computation time
can be assessed from the simulation results using the same test positions as in the centralised
test case, as shown in Fig. 3.18. For this test case, this shows that in general, larger clusters
with greater numbers of range constraints can be expected to offer improved relative positioning
performance, at the cost of computation time. The noise level in the range estimates was found
in testing to have a small effect on the total computation time, with the results in Fig. 3.18b
showing the case for the noise level of ζ = 0.3. This is negligible in the order of magnitude
compared to the effect of n, but naturally becomes a greater consideration with higher n. The
full computational run-times simulated were 0.68-0.75 s for n = 20, 0.90-0.98 s for n = 25,
1.36-1.54 s for n = 33, 4.02-4.61 s for n = 50 and 53.54-65.26 s for n = 100.

The CPU times given here are simply indicative of the time complexity scaling and are shown
for comparison. Note that all simulations were performed on a MacBook Pro with a 1.4 GHz
Quad-Core Intel Core i5 processor and 8 GB RAM, running MATLAB 2021B. These values
correspond only to the simulation parameters tested. However, it is clear that due to the time
complexity of the algorithm, clustering is a desirable extension for larger networks to operate
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X

(a) σX with noise level for c = 1-5 (b) CPU Time with n (shown for ζ = 0.3)

Figure 3.18: SDP algorithm performance in decentralised test case

in providing relative navigation in real time.

3.6.3 NLLS algorithm distributed test case

To assess the NLLS algorithm performance in a particular test case, the same random positions
from the centralised and decentralised test cases are used, without use of the anchor positions.
This is done to demonstrate and assess the NLLS algorithm’s ability to work distributively in
an anchorless way. All positions are localised into a single relative frame in one cluster. Finally,
after the algorithm has output the positions estimates, all are transformed into the same frame
of reference used to generate the random points for a performance analysis of the algorithm’s
accuracy. The utilisation of the NLLS algorithm in the presence of anchors has been discussed.
However, as a key benefit of this approach is to work without anchors for larger network sizes
or where the swarm has been deployed in orbit with varying communications ranges between
all femto-spacecraft, this test case highlights its performance in a general way, without the use
of anchors. Consider the distributed test case shown in Fig. 3.19.

This test case demonstrates the ability of the distributed algorithm to localise the femto-
spacecraft up to a noise level of ζ = 0.2, which, with the tolerances of 99% certainty of robust-
ness against volumetric and ranging ambiguity in simulation, is found to be the upper limit
at which this algorithm can operate for a swarm of this size in this test scenario. This repre-
sents the best performance that can be expected in simulation using the thresholds described
for the volumetric and ranging tests to prevent incorrect localisation of femto-spacecraft. Ul-
timately, there is a demonstrable trade-off between positioning accuracy and the fraction of
femto-spacecraft localised in a particular sample at a point in time when implemented using
real data. As the noise level increases, there is an expected general trend towards fewer first
attempt localisations within the algorithm (i.e. femto-spacecraft localised using range estimates
between the first four femto-spacecraft attempted). In practice, frequent sampling of the al-
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(a) σr = 0 (b) σr = 5%r̄

(c) σr = 10%r̄ (d) σr = 15%r̄

(e) σr = 20%r̄ (f) σX with noise level

Figure 3.19: NLLS algorithm performance in distributed test case
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gorithm would update the relative position estimates of the swarm to account for the swarm
state changing in space with time. Femto-spacecraft that fail to localise well on a particular
algorithm cycle would have the opportunity to do so on the next cycle.

It can be expected that fewer localisations would occur in the presence of higher noise levels.
This is left as a point of practical implementation with the use of experimental data and a well
understood accuracy of the range metric when this algorithm is utilised with larger networks
than those experimented with in this work. In simulation, these results demonstrate its ability
to localise all femto-spacecraft up to a large degree of measurement noise relative to the average
range between femto-spacecraft. This emphasises the contrasting approaches between the SDP
algorithm and the NLLS algorithm, in that centralised approaches can make use of far more
constraints for optimisation.

3.7 Chapter Summary

This chapter has presented several approaches for enabling relative positioning for a swarm
of femto-spacecraft using only range estimates from network communications. The algorithms
implemented have been developed to facilitate centralised, decentralised, and distributed com-
putation within the swarm. Simulation-based results of the SDP algorithm and NLLS algorithm
in randomly generated test cases demonstrate their utility in localising the swarm with range
estimates of varying accuracy. Discussion of the accuracy of the range metric available has not
been limited to RSSI in this chapter so as to highlight the general applicability of range-based
positioning methods the algorithms offer for large networks of computationally limited devices,
where other (or a combination of) range metrics may be of use.

The algorithms presented here are used as measurement updates at discrete time points within
relative navigation filters presented in Chapter 4. These are then experimentally tested in
Chapter 6.



Chapter 4

Relative Navigation Techniques

In this chapter, the relative positioning approach from Chapter 3 is applied to femto-spacecraft
swarm dispersal and evolution scenarios using a relative dynamics model of the swarm’s

motion with respect to its deployer. The case of a swarm being dispersed in orbit from a single
deployer spacecraft (such as a larger CubeSat carrier) is considered. This enables the devel-
opment of relative navigation filters, to demonstrate the utilisation of the relative positioning
algorithms in practice. Algorithm outputs at discrete time steps act as the measurement update
stage in Kalman filtering techniques.

Firstly, the relative dynamics model used to propagate the dynamics of the swarm with respect
to its deployer is presented. The scenario considered is of a swarm of femto-spacecraft being
deployed in LEO from a larger carrier spacecraft. Then, several swarm dispersal and evolution
strategies are considered, which can be categorised broadly into randomised and controlled
ejection procedures. Finally, Kalman filter approaches are applied to demonstrate the utility of
the algorithm outputs simulated as being sampled in low Earth orbit (LEO) for both dispersal
procedures.

4.1 Relative Dynamics Model

The Clohessy-Wiltshire (CW) equations [104] provide a linearised approximation of the relative
motion of a ‘chaser’ spacecraft with respect to a ‘target’ spacecraft in a target-centred reference
frame. These equations are primarily used in the context of spacecraft rendezvous and docking
manoeuvres, or the general relative dynamics between two satellites operating in close proximity.
In this work, the terms ‘femto-spacecraft’ and ‘deployer’ will be used to describe the chaser and
target spacecraft respectively. As such, this enables analysis of how a swarm of many femto-
spacecraft could be dispersed from a larger carrier spacecraft and how the dynamics would
evolve.

The CW equations assume the deployer to be in a circular orbit while the femto-spacecraft drift
passively relative to it. Perturbations to the two-body problem are neglected in this analysis.

52
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The CW equations are defined as:

ẍ− 2ωnẏ − 3ω2
nx = 0 (4.1)

ÿ + 2ωnẋ = 0 (4.2)

z̈ + ω2
nz = 0 (4.3)

where:
ωn =

√
µ

R3
o

=
2π

To
(4.4)

The mean motion of the deployer ωn is expressed in terms of the standard gravitational pa-
rameter of the central body µ and the orbital radius Ro of the deployer’s orbit, which has an
orbital period To. In this deployer-centred reference frame, the x-axis points outwards along the
radius vector of the deployer spacecraft (radial motion), the y-axis points forwards along the
velocity vector (along-track motion), and the z-axis completes the right-handed set by pointing
along the deployer’s orbital angular momentum vector (cross-track motion). This means that
the central orbital body (in this scenario, Earth) is towards the negative x-direction of the
deployer. This is illustrated in Fig. 4.1.

Figure 4.1: Clohessy-Wiltshire reference frame
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Expressing the CW equations in state space form allows a closed form solution to be expressed
such that:

ẋ(t) = Ax(t) (4.5)

where the system matrix A and the state vector x(t) are given by:1

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2
n 0 0 0 2ωn 0

0 0 0 −2ωn 0 0

0 0 −ω2
n 0 0 0


x(t) =



x

y

z

ẋ

ẏ

ż


(4.6)

The CW equations can then be solved in terms of a state transition matrix Φ and the initial
conditions x(t0) such that:

x(t) = eA(t−t0)x(t0) = Φx(t0) (4.7)

Abbreviating sin(ωnt) = s and cos(ωnt) = c:



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



4− 3c 0 0 s
ωn

2
ωn
− 2c

ωn
0

6s− 6ωnt 1 0 2c
ωn
− 2

ωn
4s
ωn
− 3t 0

0 0 c 0 0 s
ωn

3ωns 0 0 c 2s 0

6ωnc− 6ωn 0 0 −2s 4(c− 3) 0

0 0 −ωns 0 0 c





x0

y0

z0

ẋ0

ẏ0

ż0


(4.8)

With this closed form solution, the state of a femto-spacecraft can be propagated in time
using the state transition matrix. The CW equations are implemented as a relative dynamics
model in MATLAB. This model is applied to consider how a femto-spacecraft swarm ejected
from a deployer may disperse and drift with time, and how the relative positioning algorithms
proposed can estimate the location of each swarm member. The initial state vector of each
femto-spacecraft deployed is always coincident with the deployer, with some initial ejection
velocity for each femto-spacecraft relative to the deployer.

In this analysis, it is assumed that the femto-spacecraft have no means of controlling their
relative positions. It is also assumed that the initial conditions for the dynamics are defined
entirely by the deployer. This is done to simplify the discussion of relative navigation for
the purposes of demonstrating the utility of the relative positioning algorithms used in this
approach. However, one application of relative navigation in orbit could be to help maintain
the swarm’s spatial structure using differential air drag [105], or solar radiation pressure [54],
for example. This would require a degree of attitude control of individual femto-spacecraft,
such as by using miniaturised magnetorquers to interact with the ambient magnetic field in

1In Chapter 3, x denotes a position vector, but here the state vector describes both position and velocity.
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orbit [37]. Additionally, the deployment of larger femto-spacecraft networks could be enabled
by multiple deployers. This analysis is limited to a single deployer spacecraft to study dispersal
and evolution, as well as demonstrate navigation filters.

4.2 Swarm Dispersal and Evolution Strategies in LEO

In this section, swarm dispersal and evolution strategies in LEO from a single deployer space-
craft are presented. Only the ejection impulse is modelled as contributing to the swarm disper-
sal, in the absence of any perturbing forces affecting the swarm dynamics beyond the relative
dynamics model. The swarm is composed of femto-spacecraft without any form of attitude or
translational control (be this passive or active).

Two primary deployment methods are considered. The first approach is a controlled, sequen-
tial ejection of the swarm with fixed ejection velocities comprised of along-track and cross-track
elements. This results in trajectories that both lead and trail the deployer, with cyclical dis-
placement that includes radial motion. The second approach is to instantaneously scatter
femto-spacecraft at a constant speed but in many (random) ejections around the deployer.
This highlights the possible spatial structure a swarm could occupy at a given time. Both
of these approaches could be used in applications such as sparse aperture interferometry or
massively parallel sensing of near-Earth phenomena, as discussed in Chapter 1. In each sce-
nario presented, the deployer is in a circular LEO of altitude 400 km. Both scenarios consider
small ejection velocities of a realistic order of magnitude for ejecting a femto-spacecraft from a
CubeSat deployer. The exact velocities are selected for a comparison with experimental work,
described later in Chapter 6, and represent a demonstratory sample case for each scenario.

4.2.1 Sequential swarm ejection strategy

The sequential ejection of a swarm of femto-spacecraft is simulated over one Earth orbit relative
to the deployer. The swarm is ejected along two relative trajectories, one leading and one trailing
the deployer. Firstly, consider two femto-spacecraft, both initially coincident in position with
the deployer:

r01 = r02 =

x0y0
z0

 =

0

0

0

m (4.9)

and with ejection velocities given by:

v01 =

ẋ0ẏ0
ż0

 =

0

2

4

× 10−3 m s−1 (4.10)
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v02 =

ẋ0ẏ0
ż0

 =

 0

−2

−4

× 10−3 m s−1 (4.11)

If these two femto-spacecraft are ejected at the same time, over one full Earth orbit for the
deployer, their trajectories relative to the deployer would take the form as shown in Fig. 4.2.

Figure 4.2: Relative trajectories over 1 orbit (sequential ejection)

This shows the trajectory of each femto-spacecraft over the course of the orbit, taking a helical
form with radial, cross-track and along-track displacement from the deployer. This also shows
the final position of each femto-spacecraft, which are at that time directly in front of and behind
the deployer in the along-track sense. Note that radial (x-axis) motion is plotted vertically, inline
with the CW reference frame shown in Fig. 4.1. By deploying the swarm sequentially and in
even time steps over this orbit, the swarm members would be located at different phases along
this same relative trajectory, as shown in Fig. 4.3. In this case, a swarm of 20 femto-spacecraft
(10 on each relative trajectory) are deployed, which would then gradually drift farther from
the deployer in following orbits, as shown in Fig. 4.4. With this type of deployment sequence,
the swarm drifts away from its deployer, bounded only in the radial and cross-track directions,
dispersing approximately ±50 m from the deployer after 1 orbit, to ±500 m from the deployer
after 10 orbits.
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Figure 4.3: Swarm state at t = T (sequential ejection)

Figure 4.4: Swarm state at t = 10T (sequential ejection)
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4.2.2 Instantaneous swarm ejection strategy

Rather than a controlled sequential ejection of the swarm to drift away from the carrier, the
swarm could be ejected instantaneously in random directions around the deployer at the same
speed, with the initial state for the entire swarm given by:

r0 =

x0y0
z0

 =

0

0

0

m |v0| = 1× 10−3 m s−1 (4.12)

This ejection is modelled with the velocity vectors pointing in uniformly distributed random
directions around the deployer, each with the same magnitude. In practice, the available
deployment directions would be limited by what the deployer spacecraft structure can permit
due to both its geometry and attitude, but all directions are modelled here for generality. This
approach is taken to demonstrate how the swarm would evolve in such a scenario. Figures 4.5-
4.7 display a swarm of 20 femto-spacecraft deployed randomly around their deployer, shown at
different stages throughout the first orbit.

After each relative orbit, as shown for the first orbit after ejection in Fig. 4.7, the swarm returns
to a state where each femto-spacecraft is located predominantly either in front of or behind the
deployer, drifting further in the along-track sense over the course of several orbits. Note that
the discussion is limited to 20 femto-spacecraft here and in the relative navigation simulations
for clarity in the figures presented. This helps highlight how the navigation system could work,
but the approach is valid with larger numbers of femto-spacecraft as considered in Chapter 3.

Figure 4.5: Swarm state at t = 1
2
T (random ejection)



Relative Navigation Techniques 59

Figure 4.6: Swarm state at t = 3
4
T (random ejection)

Figure 4.7: Swarm state at t = T (random ejection)

For the random dispersal, it is seen that after each relative orbit the swarm returns to a state
where each femto-spacecraft is generally located either in front of or behind the deployer. This
expected behaviour could be incorporated into the relative navigation strategy as a calibrating
step based on expected geometry and order of magnitude range estimates between nearby
swarm members as a ‘sense-check’ for relative positioning performance. Primarily, this random
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ejection technique highlights the available volume of space that the swarm could occupy relative
to the deployer with time, as dynamically shifting ‘clouds’ for distributed sensing and other
applications.

4.3 Relative Navigation Filtering

In this section, Kalman filter (KF) [106] techniques are used to implement a relative navigation
system for the swarm. This is achieved by combining the algorithm outputs and the relative
dynamics in the above scenarios to filter the relative state estimation over time. Two methods
are presented for the above ejection strategy scenarios. Firstly, a traditional linear Kalman filter
is used that treats the outputs of the relative positioning algorithm as a partial state observer.
Secondly, a non-linear extended Kalman filter (EKF) is presented as an alternative approach
which uses the range estimates directly as measurements after solving the initial relative orbit
determination (IROD) problem using the relative positioning algorithms to initialise the filter.
In all of the following scenarios, the case of a centralised filter operating on the deployer
spacecraft using the SDP algorithm is considered.

4.3.1 Kalman filter

The discrete time model used for the relative navigation system is:

xk = Φxk−1 + wk−1 (4.13)

zk = xk + νk (4.14)

where xk is the femto-spacecraft state at discrete time step k, Φ is the state transition matrix
from the CW equations, w is the process noise vector, z is the state measurement and ν is the
observation noise vector. Process and observation noise is modelled as zero-mean additive white
Gaussian noise (AWGN). Process noise accounts for model approximations and integration
errors, while observation noise accounts for measurement errors.

As the femto-spacecraft are modelled as passive units, there is no control input in this model,
but this could be added to Eq. (4.13) to model translational control inputs. In this model,
the state measurement z, representing the relative position estimate of a femto-spacecraft,
is provided directly from sampling the relative positioning algorithm, the output of which
provides the swarm position estimates at each time step. Without velocity measurements, this
is therefore a partial linear observer of the femto-spacecraft state in the measurement model.
In this implementation, the algorithm is sampled at every discrete time step, with the swarm
relative position output by the SDP algorithm providing the input for the filter’s measurement
update at each step.

The filter iteratively works through two stages. This begins with an initial state estimate x̂−k−1
and state covariance estimate P−k−1 from the initial conditions. Firstly, the prediction (or time



Relative Navigation Techniques 61

update) stage, using the relative dynamics model:

x̂−k = Φx̂+
k−1 (4.15)

P−k = ΦP+
k−1Φ

T +Qk−1 (4.16)

where the superscripts denote the predicted (-) and measurement updated (+) estimates,2 and
Q is the process noise covariance matrix. Secondly, the measurement update stage:

Kk = P−k H
T (HP−k H

T +R)−1 (4.17)

x̂+
k = x̂−k +Kk(zk −Hx̂−k ) (4.18)

P+
k = (I −KkH)P−k (4.19)

where K is the Kalman gain, H is the observation matrix, and R is the measurement noise
covariance matrix. Note that in this case H is an identity matrix. The filter then iterates
through k−1← k, using the output of the measurement update stage as part of the calculation
in the next time update stage. As described in Chapter 3, it can be expected that there are time
steps where individual femto-spacecraft fail to localise and the algorithm produces no estimate.
In these cases, the filter uses the predicted estimate instead of the measurement updated one.
In this implementation, for simplicity, Q is modelled as a diagonal matrix with the following
elements for the CW equations [107]:

Q =

[
Qr 0

0 Qv

]
(4.20)

where:

Qr =

22 0 0

0 22 0

0 0 22

× (10−2 m)2 Qv =

22 0 0

0 22 0

0 0 22

× (10−3 m s−1)2 (4.21)

where the values used here are intended to compensate for the additional process noise due
to the linearisation. Additionally, the measurement noise R is modelled with the following
elements:

R =

[
Rr 0

0 Rv

]
(4.22)

where:

Rr =

152 0 0

0 202 0

0 0 202

 (m)2 Rv =

1.52 0 0

0 0.52 0

0 0 0.52

× (10−2 m s−1)2 (4.23)

2in literature, these are often referred to as a priori and a posteriori estimates
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The relative navigation of the swarm would begin after release from the deployer. Ejection from
the deployer would provide the initial state estimate of each femto-spacecraft within the swarm.
The relative velocity at the point of ejection would then introduce uncertainty in practice. This
system is now applied to both swarm ejection scenarios to demonstrate relative positioning
performance with the SDP algorithm. In this simulation, an AWGN level of σr = 0.02r̄ is set,
with a sampling interval of 1 minute. Figure 4.8 displays filtering results from the sequential
ejection of 20 femto-spacecraft over the course of an orbit (where those deployed last are re-
tracing the relative trajectories of those deployed first), with initial conditions from Eqs. (4.9)
- (4.11). In the deployment sequence, 10 femto-spacecraft are ejected in front of and 10 are
ejected behind of the deployer.

Figure 4.8: Swarm relative navigation (sequential ejection)

The filtering in Fig. 4.8 occurs between the first and second orbit after all femto-spacecraft have
been deployed over the course of one orbit. The algorithm output samples are marked by the
red crosses, while the blue lines indicate the Kalman filter output and the grey lines indicate
the dynamics model of the trajectories for each femto-spacecraft from the deployer, which is
located at the origin. This shows the ability of the filter to smooth out discrete algorithm
samples of position for all the femto-spacecraft and track the swarm’s position over this orbit.
This also shows similar performance for all 20 femto-spacecraft. However, the figure is busy due
to the overlap of the trajectories. To analyse the filter performance in detail, and for clarity,
the filtering of just one femto-spacecraft within the swarm is isolated over the course of 2 orbits
(approximately 190 minutes), as shown in Figs. 4.9a and 4.9b.
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(a) 3D view

(b) Individual axes view

Figure 4.9: Relative navigation of a femto-spacecraft (sequential ejection)



Relative Navigation Techniques 64

The algorithm output samples are again marked by the red crosses, indicating the sampled
algorithm outputs at each discrete time step for this particular femto-spacecraft’s position,
while the blue line indicates the Kalman filtering of these samples. As can be seen in the plots
of both the three-dimensional relative motion and the individual axes, the femto-spacecraft’s
relative position state estimate with time is tracked well by the algorithm and smoothed by
the filter, with the filter improving the position estimate based on previous measurements of
position and knowledge of the dynamics of the system.

Figure 4.10 displays the filtering of 20 femto-spacecraft deployed randomly and instantaneously
from a deployer (for clarity, this is only shown up to t = T

5
).

Figure 4.10: Swarm relative navigation (random ejection)

This case demonstrates similar filter performance as the sequential ejection. Again, isolating
one femto-spacecraft within the swarm over the course of 2 orbits, the performance can be
analysed as shown in Figs. 4.11a and 4.11b.
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(a) 3D view

(b) Individual axes view

Figure 4.11: Relative navigation of a femto-spacecraft (random ejection)
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Both the three-dimensional relative motion and the individual axes plots again demonstrate
that the femto-spacecraft’s relative position state estimate with time is improved using the
filter over relative positioning outputs alone at discrete sample times. Note that the x-axis
displacement is much smaller than the other axes in this case.

4.3.2 Extended Kalman filter

As an alternative approach, the outputs of the positioning algorithms can be used for initial
relative orbit determination (IROD). With this method, the relative positioning algorithm is
used only to initialise the filter state, providing a starting swarm position state estimate for an
extended Kalman filter (EKF) that uses range estimates directly to further update the swarm
state estimates with time. This method requires an EKF only because such a range-based
measurement model is now non-linear.

This approach is presented here as an alternative to the standard linear KF, but the suitability of
either method would be an open design option for practical implementation. For example, this
approach could be used in larger networks to be less computationally intensive for the deployer
spacecraft for most of the time in operation. An algorithm’s relative position estimates could
be used periodically for calibration or re-initialisation.

To implement this approach, the state measurement model from Eq. (4.14) can be adapted for
the EKF to form:

zk = h(xk) + νk (4.24)

where h is an observation function of the state, and the observation matrix H is now defined
by the following Jacobian:

Hk =
∂h

∂x

∣∣∣∣
x̂−k

(4.25)

The SDP algorithm is used to initialise the swarm state for the filter, with the range estimates
then being used directly via the observation matrixH, which unlike in the linear KF is no longer
an identity matrix in this case. Now, in a centralised implementation with full communication
links between the femto-spacecraft, H contains all the partial derivatives for the Jacobian. The
state measurement z is no longer position outputs from the algorithm, but now contains all the
range estimates provided from networking. The femto-spacecraft state is updated using these
new parameters, just as with Eq. (4.18), to determine the measurement residual. Apart from
these modifications, the EKF is implemented in simulation in the same way as the KF with
the stages in Eqs. (4.15) - (4.19).

The outputs of this filtering approach for both ejection strategies are displayed in Figs. 4.12a
and 4.13b, using the same simulation parameters. This highlights the filtering of one of the
femto-spacecraft within the swarm over 2 orbits for clarity.
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(a) 3D view

(b) Individual axes view

Figure 4.12: EKF Relative navigation of a femto-spacecraft (sequential ejec-
tion)
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(a) 3D view

(b) Individual axes view

Figure 4.13: EKF Relative navigation of a femto-spacecraft (random ejec-
tion)
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The results of both the KF and EKF systems implemented in this section demonstrate the
improved relative navigation that Kalman filtering provides over relative positioning algorithm
outputs alone. Combining confidence in the algorithm sampling and the relative dynamics
provides improved relative positioning when compared to discrete algorithm samples at each
discrete time step. In the EKF case, where the algorithm is used for initialisation, the results
show that using a range-based measurement model is also viable. This could provide an alter-
native approach that requires less computation at each discrete time step. Different sampling
rates, particular approaches, and different ejection velocity strategies are left as a point of
consideration for future implementation for specific mission scenarios and applications. As a
femto-spacecraft swarm drifts further from its deployer, the uncertainties in the state estimation
would grow with time, so this filtering is important in bounding errors and providing improved
relative positioning for a swarm. The results demonstrate that either of these approaches could
be implemented for a centralised navigation filter for swarm relative positioning. Depending
on operational constraints, such as available processing power, one method or a combination
of both KF and EKF methods could be implemented in practice.

4.4 Chapter Summary

This chapter has presented a relative dynamics model for femto-spacecraft swarm motion in
LEO, considered ejection strategies and has presented relative navigation systems using Kalman
filtering techniques. These methods have been demonstrated with the ejection strategies pre-
sented. The relative dynamics model used shows how a swarm, initially contained within its
deployer, could be ejected in a controlled and sequential or instantaneous manner into orbits
neighbouring the deployer. This motion could help inform sensing applications and use cases
for swarms of femto-spacecraft in orbit. Both strategies presented highlight the principal ways
this could be achieved in LEO.

The navigation filters presented offer improvements over relative positioning algorithm samples
at discrete time steps. This is only possible when combining the relative motion of femto-
spacecraft from the dynamics model using known ejection velocities. In real-time relative
navigation, this helps to smooth out errors and reduces the discrete effect of measurement
noise and inaccuracies in position estimates.



Chapter 5

Network Implementation

This chapter bridges the gap between simulation and experimental demonstration of rela-
tive navigation. It presents the development of a fully interconnected network protocol

designed and tested to operate on many femto-spacecraft. The network protocol is imple-
mented through embedded software development in C, using small development kits as proxies
for femto-spacecraft. Firstly, the experimental technology used is detailed in terms of the hard-
ware and software. Then, the implementation of the network protocol is detailed, presenting
an address filtering and sequential transmission technique, tested extensively for reliable op-
erations. This is described in the context of accumulating network RSSI data for use in the
relative positioning algorithms presented in Chapter 3. The conversion of this data into range
estimates necessary for inputs to the algorithms is discussed in Chapter 6. The approach out-
lined here can be applied in general for sharing other data (such as other range measurements)
throughout the network. Finally, modifications to this protocol to support alternative network
communications topologies and the integration of the sensor and inertial measurement unit
(IMU) data that would be available on femto-spacecraft are also detailed.

5.1 Experimental Technology

In this section, the experimental technology used to develop and implement the network proto-
col is outlined, in terms of both the hardware and software utilised. The following descriptions
explain the development kits used as femto-spacecraft proxies and the software development
tools implemented.

Texas Instruments (TI) SimpleLink™ sub-1 GHz CC1310 wireless microcontroller (MCU)
LaunchPad™ development kits were used as proxies for femto-spacecraft hardware for ex-
perimental testing (Fig. 5.1a) [108]. This development kit was chosen because its MCU is
representative of femto-spacecraft technology in terms of computing power available at the
femto-spacecraft mass and centimetre length-scale, and it has an integrated radio module for
wireless communications. The CC1310 MCU is also currently implemented in a printed cir-
cuit board (PCB) femto-spacecraft design in development within the Space and Exploration

70
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(a) TI CC1310 development kit (b) Sensors Boosterpack

Figure 5.1: Experimental hardware used as a femto-spacecraft proxy (image
credits: TI)

Technology (SET) group at the University of Glasgow. This means that the developments in
this Chapter will be compatible with femto-spacecraft platforms to support ongoing research.
The development kit has 128 KB of in-system programmable flash memory and 8 KB of static
random-access memory (SRAM). Additionally, this MCU specifically targets low-power and
long-range radio communications for wireless applications. The development kit has an in-
tegrated PCB trace antenna, but also a sub-miniature version A (SMA) port for connecting
external antennas. For experimental demonstration, V-dipole antennas were attached to this
port to provide a more omni-directional radiation pattern than the integrated PCB trace an-
tenna. This will be discussed later in Chapter 6.

The CC1310 radio module supports operation at a radio frequency of 868 MHz, which is a
license-free industrial, scientific and medical (ISM) band, at a maximum transmitting power of
14 decibel-milliWatts (dBm). This radio module supports half-duplex communications, mean-
ing that development kits can both receive and transmit radio packets, but not simultaneously.
This necessitates the development of a specific network protocol that enables full interconnec-
tion in a network of multiple femto-spacecraft in any direction as required, without simultaneous
transmissions. In this work, full interconnection is considered to be the case where any femto-
spacecraft can both receive from and transmit to any other femto-spacecraft in the network.
Decentralisation is a straightforward extension to this approach and is discussed in Section 5.2.
Distributed network protocol development is left as a topic of future work, owing to the scale of
the testing and implementation in this work, which was limited to under 25 development kits.

Additionally, the TI BOOSTXL-SENSORS BoosterPack™ plug-in module [109], shown in Fig.
5.1b, was attached to each development kit to provide 9-axis IMU (3-axis accelerometer, gy-
roscope and magnetometer) support (the Bosch BMI 160) and a variety of sensors to measure
pressure, ambient temperature, humidity, and ambient light. These booster packs attach di-
rectly to the plug-in connector pins by stacking on top of the development kit. This MEMS
sensor suite compliments the development kits in using them as a femto-spacecraft test bed,
and could be used for further testing outside the scope of this work, such as inertial attitude
determination and experimental demonstration of distributed sensing applications [9], as dis-
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cussed in Chapter 7. Modifications to the overall network protocol to support the sharing of
IMU and sensor data are detailed in Section 5.2.3. The datasheets for the development kit [110]
and the booster pack [111] detail the complete technical specifications.

Embedded software development was programmed using TI Code Composer Studio (CCS). CCS
is an integrated development environment (IDE) used to develop and test embedded software
applications onto TI MCUs. All software was developed in C using the real-time operating
system (RTOS) TI-RTOS [112], making use of its supported functionality for this application,
which focuses on real-time network communications. The TI SimpleLink CC13x0 software
development kit (SDK) [113] is used for specific MCU functionality interfacing. Within this
SDK, the TI EasyLink™ radio frequency (RF) application programming interface (API) was
used to help develop the custom network protocol. This provides a layer of abstraction in the
programming above commanding the RF driver itself. In particular, this means that radio
commands (e.g. transmit, receive, etc.) can be programmed using inbuilt functions within the
main network embedded program, along with common parameter definitions such as setting
the frequency and transmit power, and a radio packet structure that can be shared by every
development kit on the network. Several modifications are made to the default Easylink™ API
parameter definitions to enable this custom protocol implementation, as detailed in Section 5.2.

For developing IMU and sensing extensions onto the network protocol, the Simplelink™ sensor
and actuator interface layer (SAIL) [114] was used as a plug-in added to programs with this
feature. SAIL provides software module support for interfacing all equipment on the sensor
booster packs used. Details of the implementation of this data into the network protocol is
given in Section 5.2.3. Compatibility issues were encountered using the latest stable releases
of software development tools, specifically with the SDK and SAIL plug-in. As such, version
control was found to be important in testing reliable operations of in-built functionality. Once
a function was verified to operate reliably, versions were not modified. All software developed
in this work was implemented using the following versions and specifications: CCS version 11.0
running on macOS, TI-RTOS 6, Simplelink™ cc13x0 SDK version 4.20.01.03, and Simplelink™
sensor and actuator plugin (SAIL) version 1.40. The modifications described in this chapter
may be achieved using similar approaches with the latest versions of these packages. However,
the SDK and SAIL versions listed here were only found to be compatible through trial and error
of using recent (but not the latest) releases to support the functionality required, especially for
in-built sensor functions with the sensor booster packs. All versions of the cc13x0 SDK are
currently available online [115], and within CCS (using the online resource explorer) for the
SAIL plug-in.

5.2 A Fully Interconnected Network Protocol

Firstly, a protocol for a fully interconnected network topology is developed specifically for
accumulating RSSI data from and between all development kits on the network. In this section,
the development and implementation of this protocol through embedded programming and
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testing on hardware is detailed. The discussion is initially presented from the perspective
of sharing RSSI data between femto-spacecraft as an operational process, and then for the
development kits for implementation in software. The protocol supports extensions for other
data types and so could be used with other intended range metrics and sensor data as described
in Section 5.2.3.

In this work, the fully interconnected network protocol is designed to be used with centralised
processing, that is, where a main spacecraft in the network handles the entire network data,
and other nodes simply send and receive data with little computational loads. In a centralised
configuration, network data is primarily accumulated at one central node, which is also intended
as the node that does all central processing of the data. As discussed in Chapter 3, wireless net-
works can be broadly categorised into either centralised, decentralised, and distributed systems
in terms of both their communication topology and the general flow of data for computational
purposes. For instance, in the centralised relative positioning algorithm developed in Section
3.2, range data flows to one central node for computation, however a high degree of inter-
spacecraft connectivity is assumed (and required) in order to make this work. For distributed
networks, which are not tested experimentally in this work due to the small numbers of devices
used, there would still be a need for a high degree of interconnectivity, and so modifications to
the approach here could be made to enable this.

5.2.1 Operational process
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Figure 5.2: Fully interconnected network

For a fully interconnected network of n femto-spacecraft, as shown in Fig. 5.3, n successful
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transmissions are sufficient to provide all femto-spacecraft with communicated data between
all possible n(n−1)

2
undirected communication links. Alternatively, (n − 1) transmissions are

sufficient to provide this data to one femto-spacecraft within the network as is typically used
for testing purposes in this thesis.

This is possible if each femto-spacecraft sequentially transmits while the other (n − 1) femto-
spacecraft receive and store incoming data. This is enabled by programming each femto-
spacecraft to remain in a receive state until it is their turn to transmit. This is achieved
using an address filtering technique, whereby each femto-spacecraft transmits using a different
address, making it possible for each femto-spacecraft to be uniquely identifiable to others in
the network. When a femto-spacecraft receives a radio packet, it therefore knows which femto-
spacecraft sent it.

1
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Tdelay
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Figure 5.3: Wireless data flow in the RSSI gathering protocol

As shown in Fig. 5.3, femto-spacecraft 1 starts the communication sequence by transmitting a
radio packet with an empty payload ({...}) to all other (n−1) femto-spacecraft in the network.
As this packet is received, it generates RSSI12,RSSI13,..., RSSI1N for those femto-spacecraft
to store, respectively, where RSSIij denotes the received signal strength indication received at
femto-spacecraft j from femto-spacecraft i. Then, femto-spacecraft 2 is able to transmit a radio
packet containing RSSI12 over the network. Femto-spacecraft 3 then transmits RSSI12,13,23,
and so on, until femto-spacecraft n has received all n(n−1)

2
RSSI values between all n femto-

spacecraft in the network. In this implementation, femto-spacecraft n then transmits all network
RSSI data back to femto-spacecraft 1, which starts the process over again.

When femto-spacecraft 1 transmits, it sets a timer of nTdelay before transmitting again, where
Tdelay is a controllable delay period. When femto-spacecraft 2 receives a packet from femto-
spacecraft 1, it waits Tdelay before transmitting. Femto-spacecraft 3 repeats this process upon
receiving from femto-spacecraft 2, and so on. This timing sequence can be modified by chang-
ing the delay period. If this sequence is interrupted by, for example, an unresponsive femto-
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spacecraft, then no data will be received that cycle, and the process would restart after a time
of nTdelay.

There are several points to note about this overall process. For simplicity, it is assumed that
communication links are undirected (i.e. that RSSIij ≡ RSSIji). Otherwise, the number of
communication links required would be doubled. In further testing (or operationally), directed
communications could be used to check and reject new RSSI data for the positioning calcula-
tions, but this was not considered here, due to the high refresh rate set. This would be useful
in cases where a recent RSSIij measurement is significantly different to a recent RSSIji. Sec-
ondly, using RSSI data in this way, each femto-spacecraft must transmit at the same power (or
at a minimum, transmit at a power known to every other femto-spacecraft), so that the fraction
of that power received by each femto-spacecraft is properly correlated to range. In testing, all
development kits transmit at a power of 14 dBm.

5.2.2 Implementation in software

The operational process flow was realised in software by building upon the TI ‘rfEasyLinkEcho’
project [116], which was modified to accommodate the network protocol with address filtering
and pre-programmed delay periods. The original project demonstrates bi-directional commu-
nication between 2 development kits by having one transmit a packet, and another re-transmit
(or ‘echo’) that same packet back. Substantial modifications were made to enable full intercon-
nectivity between a network of n development kits within a given time interval. Specifically,
each development kit was given a unique transmission address, and given an address checking
procedure, enabling each development kit to know what data to store and when to transmit.
This relies on each node being identifiable by its transmitting address, which is not a limitation,
but for dynamically adding nodes to larger networks would likely require a process of identifi-
cation and synchronisation throughout the network to add nodes that follow this protocol in
an ad-hoc fashion. This could be programmed as an identification process.

Table 5.1: Address filtering structure for the network

Femto-spacecraft Tx address Rx address list

1 0x01 0xFF
2 0x02 0x01
3 0x03 0x{01, 02}
4 0x04 0x{01, 02, 03}
...

...
...

255 0xFF 0x{01, 02, 03, ...,FE}

Table 5.1 shows the transmit and receive address structure. Note that these addresses are
given in hexadecimal. Each development kit has its own unique transmit address, and a list of
addresses that it can receive from (by being pre-set to perform an action once hearing from that
specific development kit). Also note that every development kit could be set to use received
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data from any other development kit on the network. For the purposes of this testing and
with the assumption of undirected communications, each development kit only utilises received
radio packets from preceding development kit in the network to retrieve relevant RSSI data.
Additionally, as testing is limited to 23 development kits, there is no need to go above an 8-bit
address identifier, but this can be supported up to 64-bits to implement a network with more
than 255 femto-spacecraft.

In each development kit’s embedded program, it can therefore operate to either store incoming
data in its local memory or transmit this data. The following pseudocode presents the straight-
forward implementation of address filtering, shown for a minimal example as programmed for
development kit 3 to highlight the receive or transmit decision:

Algorithm 5.1 Address Filtering
Inputs: Rx Packet

1: Enter receive packet callback function:
2: if packet received then
3: check Rx packet address and save as Rx_address
4: if Rx_address = 0x01 then
5: store RSSI13 in transmit packet payload element 1
6: remain in receive state
7: end if
8: if Rx_address = 0x02 then
9: store RSSI23 in transmit packet payload element 3
10: switch to transmit state
11: save Rx packet reception time
12: transmit packet
13: end if
14: end if
15: post semaphore signalling to other tasks that the callback task is complete

This is placed within a callback function which is entered after receiving a radio packet. A
callback function is one that is called from another function and can use the calling function
as a parameter when triggered by an event, in this case, when a packet is received. The
address of the received packet is checked and used to identify what element the development
kit’s transmitting packet payload is written to. This determines whether the development kit
remains in a receive state when it receives a packet from development kit 1, or to transmit
when it receives a packet from development kit 2. Whenever a development kit receives a new
packet from a development kit it has already received from, the according payload elements
are overwritten. A semaphore function is then used to signal that the development kit’s task
is complete with the received packet, be it storing or transmitting its data. By default, all
development kits except for development kit 1 initialise and default to a receive state. This
is only changed upon reception of a packet from a specific development kit. This ensures
sequential noiseless transmission. For example, if development kit 3 receives from development
kit 1, it will store RSSI13 and remain in a receive state. If development kits 3 receives from
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development kit 2, it will store RSSI23 and transmit RSSI13 and RSSI23.

All development kits transmit with a common radio packet payload structure, with each devel-
opment kit only ever writing to appropriate payload elements. This is used for two main pur-
poses. Firstly, for allocating incoming RSSI data sequentially, such that each development kit
can write to the appropriate payload elements. Secondly, for transmitting and re-transmitting
data to other development kits. As implemented, only the nth development kit in an n node
network stores all incoming payload elements to re-transmit values back to a central unit (in
this case, the first development kit). However, in practical uses, the task of central data passing
could be shared by any number of devices in many configurations. Another limitation is that
reliability against failures of one development kit in the loop has not been added. These changes
would add robustness in larger networks and for error checking and would be straightforward
to add to the implementation described here.

Table 5.2 shows the radio packet payload structure. This shows the payload element array
index, the payload contained in that element, and the development kit that writes to and
transmits this data. For brevity, the structure for a 4-node network is shown. The number
of payload elements is the same as the number of communication links, n(n−1)

2
, which in this

case is 6. The radio packet is initially empty, but the appropriate element is filled as each
femto-spacecraft transmits in sequence. Note that this structure logically fills the payload with
all elements pertaining to each development kit sequentially, which is a design choice.1

Table 5.2: Radio packet payload structure

Payload element Payload Written by

1 RSSI12 2
2 RSSI13 3
3 RSSI14 4
4 RSSI23 3
5 RSSI24 4
6 RSSI34 4

The full radio packet format is shown in Fig. 5.4. The preamble is a short set of data at

1 Byte 1 Byte 1 Byte 255 Bytes

Preamble Address Tx Time Payload

1 Byte

RSSI

Figure 5.4: Network radio packet format

the start of a packet used by the radio modules to signal the beginning of a packet. This
is followed by the transmit address, specific to each development kit as shown in Table 5.1.
Next the transmit time is appended, followed by the payload, which in this case contains

1pseudocode is written to show elements for a 4 node network (using zero-based numbering in C)
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indexed RSSI values from packets previously sent to other development kits. The new RSSI
data from this transmitted packet becomes available at the receiving end, appended onto the
received packet structure. All RSSI data is available at a resolution of 1 dBm due to its 8-
bit representation [117]. The fourth development kit in a 4-node network would use address
filtering and this payload packet structure to store incoming data from all development kits
and transmit according to the following pseudocode:

Algorithm 5.2 Full network RSSI transmit packet process
Inputs: Rx Packet

1: Enter receive packet callback function:
2: if packet received then
3: check Rx packet address and save as Rx_address
4: if Rx_address = 0x01 then
5: store RSSI14 in transmit packet payload element 2
6: remain in receive state
7: end if
8: if Rx_address = 0x02 then
9: store received packet payload element 0, RSSI12, as transmit payload element 0
10: store RSSI24 in transmit packet payload element 4
11: remain in receive state
12: end if
13: if Rx_address = 0x03 then
14: store received packet payload element 1, RSSI13, as transmit payload element 1
15: store received packet payload element 3, RSSI23, as transmit payload element 3
16: store RSSI34 in transmit payload element 5
17: switch to transmit state
18: save Rx packet reception time
19: transmit packet
20: end if
21: end if
22: post semaphore signalling callback task complete

In this case, the development kit utilises the additional received packet payload elements and
writes them to its transmitting packet in addition to the new RSSI values. As implemented,
this is sent to development kit 1, connected to a laptop which can store this data.

All further modifications to the TI ‘rfEasyLinkEcho’ project are now outlined in order to
realise the network protocol as described above. In the original project showing bi-directional
communication between 2 development kits, one development kit runs the ‘rfEasyLinkEchoTx’
program while the other runs the ‘rfEasyLinkEchoRx’ program. The former initialises in a
transmit state, transmitting a radio packet every second, switches to a receive state, awaits
reception of the echoed radio packet, and if successful, repeats this process continuously. The
latter initialises in a receive state, switches to a transmit state upon reception of a radio packet,
and after a 500 ms delay, echoes back the received radio packet. For the fully interconnected
network, development kit 1 runs a modified ‘rfEasyLinkEchoTx’ program while all other (n−1)

development kits run different modified ‘rfEasyLinkEchoRx’ programs.
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The radio packet payload is represented by an array of signed integers structured to store RSSI
data. This was modified from the default unsigned integer format in the Easylink documen-
tation. Both the transmit and receive packet payload formats were changed to signed integers
from the default unsigned integers, to preserve the RSSI values (and also any sensor and IMU
data) shared over the network. RSSI values are stored in the development kit’s internal memory
as hexadecimal values, that when converted to decimal, form a signed 2’s complement format
corresponding to RSSI in decibel milli-Watts (dBm). The packet checking task on the ‘rfEa-
syLinkEchoTx’ program is also removed. In the original project, any received packet must be
the same (echoed back). This is no longer the case as the payload is filled by all the develop-
ment kits in the network. The default packet payload length was increased from the default 30
Bytes to the maximum natively supported by the Easylink API, which is 255 Bytes. This was
done to accommodate all RSSI data for testing, which is made full use of for a network of up
to 23 development kits as discussed in Chapter 6.

The delay period (Tdelay) and transmit wait times are modified to accommodate more than 2
development kits. This is configurable for the desired refresh rate for a given network size. The
basis for this modification is that development kit 1 must repeat transmission at a rate that
provides all other development kits with an opportunity to transmit before development kit 1
transmits again. While a lower limit on refresh rate has not been tested, testing has successfully
shown that a 100 ms delay period between each development kit transmitting works with at
least 23 development kits. As described above, development kit 1 would wait nTdelay (2.3 s
for a 23-node network) before restarting the data gathering sequence. As such, the wait time
increases as the number of development kits on the networks increases. This delay period of
100 ms was lowered from the default 500 ms to maximise data return with time for outdoor
testing. As all other development kits only transmit after receiving from a specific address, no
timer modifications need to be made to these programs. Only on the first development kit is it
crucial that this delay is programmed to allow enough time to elapse before the transmit cycle
begins again. Within the main program loop,2 a semaphore pending function is added to wait
for the suitable amount of time to elapse before development kit 1 is able to transmit again.

Incoming network data sent to development kit 1 is processed and stored in real-time over a
serial port link. This is added to the program using inbuilt TI-RTOS display functions that
can show incoming data live on a terminal. A MATLAB program was developed to read in
this serial data live from the embedded program running on development kit 1 and process it
in real time for relative positioning testing. In the experimental testing described in Chapter
6, development kit 1 is connected via USB to a laptop, storing and processing incoming data
transmitted from development kit n. Development kits (2 − n) operate wirelessly and are
powered by USB battery packs. In this setup, the laptop can be thought of as the central carrier
spacecraft for the other femto-spacecraft, which in space could be a CubeSat that deploys the
femto-spacecraft swarm. In testing, development kits were programmed to display a green LED

2all embedded systems run on infinite loops until reset or turned off, a ‘while(1)’ in C
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when in receive mode and a red LED when in transmit mode for debugging purposes. For initial
testing and development purposes, displaying the incoming data live on a terminal provided a
useful way to check that communications throughout the network were working reliably before
moving onto experimental testing outdoors. Additional display function calls were used on
other development kits while testing to check that packets were being received reliably and in
the correct order. Supplementary figures from testing are provided in Appendix A.3.

The embedded program operations are summarised in the following flowcharts. Figure 5.5
shows the operations for development kit 1, while Fig. 5.6 shows the operations for all other
development kits on the network. Note that Fig. 5.6 has highlighted optional modifications
as described in Section 5.2.3. Inputs are shown with dashed lines to indicate that these are
conditional.

Start

Initiate in transmit mode

Output: transmit empty originator packet

Switch to receive mode

Wait nTdelay

Input: receive packet

Packet received?

Output: display network data over serial link

Switch to transmit mode

yes

no

Figure 5.5: Development kit 1 network flowchart
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Start

Initiate in receive mode

Await packet reception

Input: receive packet

Packet received?

Check received packet address

Store RSSI of packet in transmit payload

Turn to transmit?

Initiate sensors

Store sensor data in transmit payload

Switch to transmit mode

Output: transmit packet

Switch to receive mode

yes

yes

no

no

sensor support

Figure 5.6: Development kits (2− n) network flowchart
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The approach detailed here would be compatible with a substantially larger number of devel-
opment kits. However, as computational and storage limits would be reached as the number
of devices within the network increases, it would be necessary to develop decentralised and
distributed network structures and protocols for larger networks. This approach could be
straightforwardly decentralised by having the central femto-spacecraft of one cluster share data
with the central femto-spacecraft of another cluster, as shown in Fig. 5.7.

Figure 5.7: Decentralised network communications

Decentralisation could be enabled by the nomination of cluster heads to accumulate individual
cluster data, share between other cluster heads, and (but not by necessity) send this to the
central deployer spacecraft. This modification would require synchronisation between the clus-
ter heads, and could be added to the the fully interconnected network process by implementing
further semaphore based functionality and delay period timing on programs running similar to
development kit 1.

5.2.3 Modifications to support sensor data

In addition to the network facilitating the sharing of RSSI data, in orbit, a femto-spacecraft
would need to be able to communicate data from its sensor suite to other members of the
swarm. In this section, the integration of IMU and sensor data collected on TI BoosterPacks
on each development kit across the network is detailed as an extension to the above approaches.
For IMU data, this would enable attitude estimation or the consideration of attitude-dependent
effects for range estimation in extended 3D testing, or for sensor data, experimental demon-
stration of distributed sensing methods. This is implemented by porting sensor functionality
into the existing embedded programs developed for the network protocol. This was achieved by
adding the SAIL plug-in, which provides the sensor functions and driver support required [118].
Shared dependencies, directories, required linker files, headers and support files are added to
the network protocol programs to enable compatibility with the booster packs.

The main modification is that communications and sensing are now treated as two separate
tasks. Both tasks are based on semaphores, with the communications task given a higher
priority than the sensing task. In this way, operational networking is prioritised over being
able to sense data but not communicate it. This program structure avoids the use of threading
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(i.e. having the networking operate as a main thread and the sensor tasks as a separate
thread simultaneously), and means that the sensor tasks run only when required, saving power
operationally.

Within the communications task, once the device has gone into receive mode, a callback can
unblock the sensor task. The sensor task initialises the IMU and sensors, reads the data and
stores the values in memory. This data is then added onto the transmit packet payload structure
to send over the network when it is the development kit’s turn to transmit, according to the
network protocol. As implemented in testing, the callback on each development kit is made
upon receiving from the address that would trigger a packet to be transmitted. Therefore, the
sensors are sampled immediately before transmitting a packet, providing the most up to date
measurements. In the pseudocode presented in Algorithm 4.2, the callback would be made
between lines 18 and 19. This is shown in Fig. 5.6 as an additional sensor support task.

5.3 Chapter Summary

In this chapter, the implementation of a fully interconnected protocol developed for femto-
spacecraft networking has been presented. This enables the experimental testing of relative
positioning algorithms in Chapter 6. Embedded software was developed in C for development
kits using an MCU and MEMS sensor technology representative of what is currently possible
at the femto-spacecraft scale. This implementation could be straightforwardly ported onto
femto-spacecraft PCB test-beds.

The main network protocol was outlined first as an operational process, and then as a series
of software modifications to TI bi-directional communications demonstrations. Additionally,
modifications to integrate sensor and IMU data passing over this protocol were outlined, made
possible using separate task and callback mechanisms with semaphores in C.

The protocol is utilised extensively in Chapter 6 for path loss modelling and range-based relative
navigation demonstrations. Throughout testing, this address filtering technique has been found
to operate reliably with up to 23 development kits. However, it is anticipated that this process
would work with a far higher number of femto-spacecraft in practice. This approach could also
be straightforwardly decentralised using the methods outlined in this chapter.



Chapter 6

Experimental Demonstration

Following the development and testing of algorithms and filters in simulation and the
network protocol tested on hardware throughout Chapters 3-5, this chapter presents the

results of an experimental test campaign using development kits as femto-spacecraft proxies
in an outdoor testing environment. The first step in this process is the development of a
path loss model (PLM) to use RSSI data as a range metric. This involves both antenna
characterisation and an empirical derivation of a PLM for a given testing environment by taking
RSSI measurements between two development kits placed at known distances apart from one
another. Finally, the results of a small-scale relative positioning and navigation demonstration
are presented, using up to 23 development kits placed in known locations around the testing
environment. To do this, networked RSSI data is filtered through the PLM function, which
is then provided to the algorithms developed in Chapter 3 as range estimates between the
development kits. The algorithm outputs are then compared against the known locations to
assess experimental performance in the demonstration.

6.1 Path Loss Modelling

In this section, the development of a PLM used to convert raw RSSI data into a range estimate
is presented. This comprises the theoretical basis of the model, antenna characterisation, and
finally the experimental derivation of the PLM for the testing environment used.

6.1.1 The testing environment

Terrestrially, environmental factors such as the atmosphere, weather, terrain, topography, elec-
tromagnetic interference and obstacles such as trees and buildings have a significant impact on
the nature of radio propagation. Consequently, the effect of these factors in addition to the
theoretically expected attenuation of radio waves can be accounted for in path loss modelling.
However, it is desirable to test within a clear and wide open space with flat terrain to minimise
random effects. This also means that the effect of RSSI on range estimates can be modelled
between all development kits predictably and reliably within a given environment. As the de-

84
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velopment kit PCBs are not insulated, and to reduce the effect of the impact of weather, testing
was only conducted on dry days.

As a result of these requirements, a 120 m × 60 m sports pitch at the University of Glasgow’s
Garscube Sports Complex was used for outdoor testing. This environment is ideal because
the area is wide, open, and flat, and the length-scale is representative of a swarm of femto-
spacecraft in orbit when initially deployed in LEO with a small, representative deployment
impulse. Development kits were placed approximately one metre off the ground on top of
tripods made of bamboo to minimise radio interference. Each development kit is powered
using a small battery pack attached to one of the legs of the tripod. The testing environment
is shown in Fig. 6.1.

(a) Sports pitch (b) Development kit

Figure 6.1: The outdoor testing environment

All results in this chapter for the path loss model development and relative positioning and nav-
igation demonstrations were obtained in this testing environment via a series of tests conducted
between July 2022 and February 2023.

6.1.2 Model development from principles of radio propagation

In theory, an isotropic transmitter will propagate radio waves equally in all directions of 3D
space. As this spherical wavefront extends outwards from its source, a perfect radiator antenna,
the wavefront surface area is ever-increasing, causing attenuation of the signal’s strength in free
space according to the inverse-square law, as shown in Fig. 6.2. As the energy spreads out over
a larger area, the signal strength weakens proportional to the square of the distance travelled
from the source [119]. Theoretically, the fraction of the power Ptx transmitted at the source
that can be received a distance r from it by a perfect receiver comes simply from the surface
area of the sphere:

Prx =
Ptx

4πr2
(6.1)
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Therefore, if the received signal strength has a value of Prx at a distance r from the source,
then the strength will weaken as Prx

4
at 2r, Prx

9
at 3r, and so on.

r
2r

3r

A 4A 9A
Ptx

Figure 6.2: Isotropic radiation according to the inverse-square law

In reality, no physical antenna is fully isotropic, and even undirected (or ‘omni-directional’)
antennas exhibit some degree of directed losses due to nulls in the antenna’s radiation pattern.
Antenna directivity, D(θ, φ), defined as a function of angular displacement in a spherical coor-
dinate system,1 is a measure of how directed an antenna’s signal is with respect to a theoretical
isotropic antenna. A directivity of 1 would imply isotropic radiation.

An antenna’s radiation efficiency, ηr, is the ratio of radiated power to the input power supplied
to its terminals (or, when receiving a radio signal, the ratio of power received to that delivered
as electrical output). Then, the antenna gain G(θ, φ) is the product of directivity and radiation
efficiency:

G(θ, φ) = ηrD(θ, φ) (6.2)

The Friis transmission formula [120], expressed in terms of the gains of the receiving and
transmitting antennas, outlines the free space path loss (FSPL) relationship of a radio signal
with distance:

Prx
Ptx

= GrxGtx

(
λ

4πr

)2

(6.3)

where Grx and Gtx are the receiver and transmitter antenna gains, λ is the signal wavelength
and r is the distance between the receiver and transmitter. As signal strength is inversely
proportional to the square of the distance, it is convenient to use the logarithmic decibel (dB)
scale. Antenna gain can therefore be expressed in decibels relative to an isotropic radiator
(dBi). Signal power for small antennas and radios using industrial, scientific, and medical
(ISM) bands can therefore be conveniently expressed in decibel-milliwatts (dBm). This unit

1where θ is the polar angle and φ is the azimuth angle
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expresses a power ratio in dB with respect to 1 mW:

P [dBm] = 10 log10 P
[mW ] (6.4)

The Friis transmission formula can therefore be expressed logarithmically as:

P [dBm]
rx (r) = P

[dBm]
tx +G[dBi]

rx +G
[dBi]
tx + 20 log10

(
λ

4πr

)
(6.5)

As the transmitting power and the antenna gains are constants for a given antenna orientation,
the received power as a function of distance from the transmitter in free space typically depends
only upon the final term in Eq. (6.5). However, free space is the absence of any obstructions or
environmental factors causing reflection, refraction and diffraction of radio waves and resulting
in multi-path effects. Even in clear testing environments, where FSPL will be the dominant
effect, it is necessary to account for additional factors that alter radio propagation behaviour.

In addition to FSPL, signal attenuation in outdoor testing will be impacted by two predominant
factors that are necessary to model. Firstly, by environmental factors causing multi-path errors
through reflection and diffraction of radio waves. These effects are mitigated by using a clear,
flat, and open space to test within, as discussed in Section 6.1.1. Secondly, anisotropy in
radio wave propagation (due to the antenna’s directivity and orientation) will also affect the
received signal strength. As the experimental testing in this work is static and limited to 2D,
it is found from the modelling and antenna characterisation in Section 6.1.3 that this effect
can be minimised with careful arrangement of the antennas used. This is because the effect
of orientation on the theoretical radiation pattern in 2D is in principle negligible. The path
loss model developed ultimately takes the form of a modified version of the Friis transmission
formula that incorporates these additional effects.

Defining the path loss PL as:

PL[dBm] = P
[dBm]
tx − P [dBm]

rx (6.6)

A logarithmic model can be developed that takes the form:

PL(r) = PL(r0) + 10γlog10
r

r0
+ χ (6.7)

where PL(r0) is the path loss at a reference distance r0, found from Eq. (6.3), γ is the path loss
exponent, r is the path length between the receiver and the transmitter, and χ is a zero mean
normal random variable that represents the effect of attenuation due to environmental factors.
The path loss exponent is of course 2 for free space but must be experimentally determined for
a given environment.

The received signal strength indication (RSSI) is a measurement of the received power Prx,
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that is, the RF power input to the radio transceiver [121]. RSSI is typically used as an indi-
cator of signal quality, how robust a network is to losses, and as an indicator for maximum
operating distances. As discussed in Chapter 5, provided all femto-spacecraft transmit with the
same power, network RSSI data will indicate a correlated relative received power that can be
associated with range without calibration. Therefore, an RSSI-based version of a PLM func-
tion can now be developed experimentally to characterise signal strength decay with range in
a given testing environment, as described in Section 6.1.4. However, it is firstly necessary to
characterise the real antennas used in testing.

6.1.3 Antenna modelling and characterisation

The antennas used in testing were characterised using a combination of simulation-based mod-
elling and experimental techniques using an RF anechoic chamber facility at the University of
Glasgow. A 3D model of the antenna was made in Solidworks and imported to Ansys HFSS to
model its radiation pattern. This was then compared with experimental results to verify the
antennas that were used operate as intended.

Half-wavelength 868 MHz V-dipole antennas were fabricated with 0.5 mm diameter enamelled
copper wire soldered onto an SMA connector and attached to the development kits as shown
in Fig. 6.3.

(a) Placement on development kit (b) 3D Model

Figure 6.3: Half-wavelength 868 MHz v-dipole antenna

V-dipole antennas were chosen due to their undirected radiation patterns, which for testing
minimises the impact of antenna orientation on the relationship between range and RSSI. This
is a significant benefit over using the integrated PCB trace antenna on the development kits.
A small modification to the development kit PCB was required to enable this antenna change,
namely the 0 Ω resistor that links the trace on the PCB to the integrated antenna was moved
to close this link and open the link to the external antenna port [108]. The angle between the
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antenna wires was kept approximately at 90◦ during testing. There is literature to suggest this
angle should optimally be kept closer to 120◦ [122], but 90◦ was chosen to ensure consistency
when testing with many development kits. As the antenna arms are flexible, it is much easier
to quickly determine an approximate right angle when attaching to the development kits and
in use outdoors for consistency.

V-dipole antennas have toroidal radiation patterns. This corresponds in theory to radiation
equally in all directions in the plane perpendicular to the antenna wire, reducing to null along
the antenna wire. For the V-dipole antenna with the properties used here, this results in
the radiation pattern shown in Fig. 6.4. Note that the orientation of this pattern reflects
the antenna being oriented as shown in Fig. 6.3. In testing, the antennas were oriented
perpendicular to this, as shown in Fig. 6.1.

Figure 6.4: Radiation pattern of a perfect 868 MHz v-dipole antenna

If this antenna was aligned vertically with respect to a plane shared by the receiver (in this
context the ground), this maximises the signal received. In contrast, if the two antennas were
aligned horizontally along the same plane facing the receiver with the direction of the antenna
wire, this would minimise the signal received. This is because the principle of reciprocity applies
to antennas, meaning the radiation pattern for transmitting a signal reflects its ability to receive
a signal in those same directions. The antenna is a half-wave dipole, requiring that the length of
each antenna arm is approximately a quarter-wavelength long (λ

4
= 8.64 cm). In practice, the

exact length required is marginally smaller than a quarter-wavelength due to not operating in a
vacuum and the real effects of the waveform being carried through a wire (i.e. the velocity factor
of the copper wire used). Real antennas therefore need to be correctly characterised to test
their properties at the desired frequency of operation. This involves verifying that the antenna
resonates at the intended frequency and characterising its gain and radiation pattern [123].
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Firstly, a vector network analyser (VNA) was used to perform tuning measurements on fabri-
cated antennas. An antenna’s S11 parameter describes its reflection coefficient, also known as
return loss. This is a measure of the reflected power that the radio is delivering to the antenna.
A maximal S11 = 0 dB implies all power delivered to the antenna at that frequency is reflected
and no power is radiated. As it is desirable to maximise the power radiated by the antenna,
it is desirable to minimise this value at the frequency of operation. The S11 parameter data
obtained from the VNA over a range of frequencies is shown in Fig. 6.5.

Figure 6.5: S11 parameter plot for the 868 MHz v-dipole antenna

This shows the highest reflection coefficient at 868 MHz for the half-wavelength V-dipole an-
tenna tested, where it was found that an arm length of approximately 8.1 cm provides the
desired antenna behaviour when accounting for the effect of the SMA connector and the spac-
ing between the antenna arms. This means that the antenna will operate best at that frequency.
This also illustrates that the antenna has a narrow bandwidth. The reflection coefficient dips
observed at approximately 2.6 and 4.3 GHz are due to these frequencies being multiples of the
operating frequency (causing some resonant behaviour).

Next, to characterise the antenna’s gain and radiation pattern, the antenna was placed in an
RF anechoic chamber as shown in Fig. 6.6. This facility provides a clean environment to test
antennas by covering the ceiling, walls, and floor of the room in foam pyramids that absorb
radio waves. The antenna under test is placed in the centre of the room, on a stage that can
rotate from side to side about a vertical axis. The large moveable arm carries a calibrated
directional antenna driven by an RF carrier at the frequency of interest, pointed towards the
antenna under test. The arm pivots around the stage, enabling a full sweep of the antenna to
characterise its far-field radiation pattern in 3D. The far-field radiation pattern of an antenna
expresses its radiated power transmitted as a function of angle. This pattern is normalized
by dividing the absolute values obtained in testing by the maximum transmitted power used.
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(a) Test equipment (b) Antenna under test

Figure 6.6: RF anechoic chamber

This makes the pattern valid in general at the operating power used (which in this case is 14
dBm). The radiation pattern of an antenna provides the normalized magnitude (from polar
coordinates) in dB of the signal strength at any angle. The experimentally obtained radiation
pattern can be compared with the model, as shown in Fig. 6.7.

Figure 6.7: 868 MHz v-dipole radiation pattern
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This shows that across the full sweep of azimuth angles, the antenna’s gain is largely as expected
from the model. Discrepancies at certain discrete measurement angles can be due to small
unwanted reflections of radiation due to the metal in the testing equipment, and imperfections in
the antenna geometry and materials. Overall however, this shows excellent undirected antenna
gain characteristics required for testing in 2D, with close to 0 dB gain in the plane required.
With the antenna tested and characterised, a number of antennas were made according to these
specifications and used with the development kits.

6.1.4 Experimental derivation

The path loss model function from Eq. (6.7) can now be derived experimentally by logging
RSSI values obtained from one-to-one communications between two development kits located
at a series of known ranges apart from one another within the outdoor testing environment.
This is shown in Fig. 6.8.

Figure 6.8: Path loss modelling procedure

Two development kits were placed between 1-150 m apart with the antennas placed facing
towards each other. This is the most favourable alignment to maximise signal strength reception
if any effect of PCB material interference is to be minimised. Test data was gathered periodically
across many test days so as to not bias the model for the particular ambient weather conditions
of the test day, and to verify the applicability of the model for given test days.

Further to this, the PLM function was enhanced by taking all RSSI samples gathered at all
known (and measured) ranges between development kits in the outdoor testing environment
during the relative positioning tests described in Section 6.2. The RSSI data used to develop
the function is therefore a combination of PLM-specific data and experimental positioning
data. The distinction is that the specific PLM data was obtained entirely for the purposes
of developing an ideal PLM in the testing environment. The experimental positioning data
however comes from the many configurations of multiple tests used for demonstrating relative



Experimental Demonstration 93

positioning throughout the testing programme. This provides test data at different orientations
in 2D. This is important because it can be expected that the PCB (which houses thin layers
of conductive copper) interferes with the antenna’s radiation pattern to an extent, meaning
that the propagation behind the antenna as implemented on the development kits is reduced,
making this an additional effect to consider in 2D space. Developing a path loss model that
incorporates these effects makes the model more generally applicable. All testing was performed
with a transmit power of 14 dBm.

From the raw RSSI data, the PLM was developed in MATLAB using the curve fitting toolbox.
Logarithmic space was used for range to develop a simple linear model using linear regression
techniques, following the log-range model from Eq. (6.7). This results in a linear model
with two coefficients that can be tuned as new modelling data is gathered or for different test
environments. This takes the form:

RSSI(r) = c1 log10(r)− c2 (6.8)

where the coefficients c1 and c2 were derived as (with 95% confidence bounds given in brackets):

c1 = −22.91 (−23.21,−22.61) (6.9)

c2 = −20.64 (−21.17,−20.12) (6.10)

For these values, RSSI is measured in dBm and the range r is in metres. Inverting this function,
a range estimate as a function of RSSI is obtained:

r(RSSI) = 10

(
RSSI−c2

c1

)
(6.11)

This can then be used as an input for the relative positioning algorithms to generate range
estimates between development kits in testing. The path loss model is shown in Fig. 6.9,
showing all RSSI data used to generate the function, along with the 95% confidence bounds.
Note that the experimental data is obtained at even distances apart, but the spacing of the
samples appears closer together at larger distances due to the logarithmic axis used.

This demonstrates the clear trend between RSSI and range in this logarithmic model, but also
the considerable inaccuracy of raw RSSI values as range estimates. This is seen particularly at
larger ranges, where the increment of individual RSSI values can represent several metres. It is
also observed that the distribution of RSSI values increases with range, showing considerably
larger variation outwith the model confidence bounds for some sampled values at the largest
ranges. Mitigating against these large inaccuracies in the range estimates available from this
approach is a central part of the algorithmic development presented in Chapter 3 and is also
addressed for sensor accuracy in Chapter 7. Ultimately, as the confidence bounds in the model
are accounted for with the algorithmic implementation, and as the number of femto-spacecraft
in the swarm increases, the expected probabilistic effect of fused data is to compensate consid-
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Figure 6.9: Experimentally derived path loss model

erably for this inaccuracy. However, it is important to acknowledge that this indicates that raw
RSSI data is a very coarse proximity metric for estimating the range between two development
kits in this environment.

As discussed, the PCB may cause interference with the antenna’s radiation pattern. This
means that the propagation behind the antenna as implemented on the development kits is
reduced, making this an additional effect to consider in 2D space. This effect has however
been neglected for experimental testing of relative positioning. The effect that orientation has
on signal strength at different ranges was tested, but the reduction in signal strength for all
orientations in 2D (including the least favourable scenario of both antennas facing directly away
from one another) was found to well within the approximately 20 dBm confidence bounds of the
PLM derived for all 2D orientations (at most 5 dBm). To develop a ranging metric in 3D space,
further antenna characterisation and modelling, along with relative attitude data provided by
an IMU, may improve the range estimates by scaling the PLM function according to the relative
attitude between two femto-spacecraft. This would be possible by explicitly considering the
directivity of the antenna and relating this to the attitude of the femto-spacecraft, potentially
as an update step after an initial relative positioning calculation without considering attitude.

6.2 Relative Positioning Demonstration

In this section, the algorithmic implementation of the ranging metric derived from the PLM
for experimental demonstration of range-based relative positioning and the testing environment
used is detailed. Experimentally, the RSSI data is filtered through the PLM, then input to the
relative positioning algorithms. As this is a small demonstration using up to 23 development
kits as femto-spacecraft proxies, only the centralised SDP and NPDF algorithms from Sections
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3.2 and 3.4 are tested experimentally. A series of relative positioning tests were performed
by using some development kits as anchors, with their positions already known to the relative
positioning algorithms. The algorithms are only provided with the RSSI data between anchors
and unknown nodes to be localised, along with RSSI data shared between unknown nodes.

Development kits were placed deliberately in measured known locations. Then, the outputs of
the relative positioning algorithms were compared with the true location to assess performance
and accuracy. All development kits were placed on the bamboo tripods approximately 1 m above
the ground, with the orientation of the antenna with respect to the ground kept constant.

All RSSI data was collected using the fully interconnected network protocol developed in Chap-
ter 5. In all experiments, the central development kit was connected to a laptop for real-time
data logging and relative positioning calculations. This was enabled by developing a MATLAB
program which reads live serial data from the development kit connected. All development kits
transmit with a power of 14 dBm at a frequency of 868 MHz. All operators, the laptop and
any other testing materials were kept outside of the perimeter enclosed by the development kits
during testing to minimise interference.

The results of the relative positioning tests are now presented. Development kits were placed
on the sports pitch in the configuration as shown in Fig. 6.10.
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Figure 6.10: Development kit placement2

With 12 anchor development kits (marked by the red triangles) located around the perimeter
of the test environment, the objective was to estimate the positions of the 10 development kits
(marked by the black rings) within the pitch. The particular placement is chosen by making use
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of the rugby league pitch markings painted onto the grass, which makes the precise placement
of development kits within the pitch easier to measure and verify, while distributing the kits
fairly evenly throughout the test area. To analyse each algorithm’s performance in detail, each
development kit was localised using the RSSI constraints of the development kit of unknown
position to the 12 anchors (r̂ik, as described in Chapter 3). This is equivalent to locating all
10 development kits of unknown position simultaneously while neglecting the presence of RSSI
values shared between kits of unknown position.

The results are now presented throughout Figs. 6.11-6.20, where the NPDF (Section 3.4) and
SDP (Section 3.2) algorithm estimates of position are marked by the burgundy and cyan crosses
respectively. The heat map overlaid onto the imagery of the pitch is a visual representation of
probability in 2D from the NPDF algorithm, which takes the highest value of this as its 2D
position estimate. The NPDF outputs are generated using a mesh-grid that provides positions
estimates to the nearest half metre. The result of each development kit’s localisation is presented
individually in order to discuss each algorithm’s general performance in this test scenario.
Figure 6.11 shows the results from both algorithms for the unknown position of development
kit 1.

Figure 6.11: Relative positioning of development kit 1

The SDP position error is 3.5 m and the NPDF position error is 3.9 m. As with the simulation-
based results in Chapter 3, the position error is taken as the range discrepancy from the true
and estimated position. In this case, both algorithms perform comparably to localise the
development kit of unknown position.

Figure 6.12 shows the results for the unknown position of development kit 2. In this case,
2Image and map data credits: Google Maps 2023
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the SDP position error is 6.6 m and the NPDF position error is 7.4 m. The region of highest
confidence for the NPDF estimate is again well defined and takes a similar form to the result
for development kit 1, but the overall region shown by the sections shaded green where the
probability of location is above 50% is much larger in this case. This highlights both algorithms’
ability to deal with considerable inaccuracy in range approximations, and the importance of
using as many range constraints as possible to prevent inaccuracy in estimates.

Figure 6.12: Relative positioning of development kit 2

Figure 6.13: Relative positioning of development kit 3
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Figure 6.13 shows the results for the unknown position of development kit 3. Here, the SDP
position error is 12.1 m and the NPDF position error is 16.8 m. These are higher errors
than observed for the first two development kits, showing a clear bias towards to the upper
right of the testing area. This can be caused by underestimations (i.e. range estimates less
than the true range) from anchors closest to the unknown node, or likewise overestimations
(i.e. range estimates greater than the true range) from those anchors farthest away. It is also
observed that the anchors towards the bottom left of the pitch have operated well, successfully
pushing the estimate away from them. Yet, the shape of the shaded green region implies general
underestimation in this sample. Furthermore, the SDP estimate is noticeably better in this test
case, implying that the SDP algorithm can handle such biases better than the probability-based
method from its feasible region approximation.

Figure 6.14 shows the results for the unknown position of development kit 4. Here the SDP
position error is 2.5 m and the NPDF position error is 8.5 m. Again, this result shows a slight
bias from the NPDFs towards the top of the testing region, while the SDP algorithm performs
excellently.

Figure 6.14: Relative positioning of development kit 4

The results for the unknown position of development kit 5 are shown in Figure 6.15. Here the
SDP position error is 5.9 m and the NPDF position error is 5.5 m. While both algorithms
perform well in this scenario, the region of highest confidence for NPDF is noticeably more
distributed in general but with a steeper peak around the estimate. This implies most anchors
estimates are accurate but with some outliers. In particular, the range from anchor located at
the coordinates (0, 88) appears to be completely anomalous, creating a small confidence region
around itself.
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Figure 6.15: Relative positioning of development kit 5

Figure 6.16 shows the results for the unknown position of development kit 6. In this case,
the SDP position error is 8.5 m and the NPDF position error is 5.3 m. Both algorithms have
worked well to estimate the unknown position in this case, and the region of highest confidence
for NPDF is well defined and bounded without any obvious outliers.

Figure 6.16: Relative positioning of development kit 6

Figure 6.17 shows the results for the unknown position of development kit 7. In this case, the
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SDP position error is 25.0 m and the NPDF position error is 19.8 m. This is noticeably the
least accurate result out of all ten test cases in both algorithms (with the exception of the
SDP anomaly for development kit 10, Fig. 6.20). While the NPDF algorithm has successfully
tended the estimate towards the top left of the test area, there is a noticeable bias to the right
of the true position. As both algorithms have produced similar estimates, and as the NPDF
highest confidence region is well defined, this is most likely the result of inaccuracies across
many anchors’ range estimates for this test case.

Figure 6.17: Relative positioning of development kit 7

Figure 6.18: Relative positioning of development kit 8
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Figure 6.18 shows the results for the unknown position of development kit 8. For this develop-
ment kit, the SDP position error is 12.7 m and the NPDF position error is 8.5 m. Next, Fig.
6.19 shows the results for the unknown position of development kit 9. Here the SDP position
error is 12.9 m and the NPDF position error is 6.0 m. In this case, while the estimates are
typical there is noticeably two distinct regions of high NPDF confidence that have emerged.
While the NPDF algorithm requires enough regions of intersection emerging to form a unique
estimate, it is still noticeable that without additional anchors (or with worse range estimates)
this estimate may have been significantly erroneous.

Figure 6.19: Relative positioning of development kit 9

Finally, Fig. 6.20 (overleaf) shows the results for the unknown position of development kit 10.
Here the SDP position error is 32.8 m and the NPDF position error is 7.6 m. This is the only
instance of the SDP and NPDF results being substantially different. As can be seen from the
NPDF distribution, the SDP estimate appears to lie within this region of high probability but
has localised far from the true location when optimising for all constraints. The SDP result
here can be considered an outlier.

This set of results demonstrates the ability of both algorithmic approaches to localise an un-
known development kit relative to many others. The estimates found here are broadly com-
parable for both algorithms, with the same order of magnitude in positioning error. The SDP
algorithm had both the lowest and highest positioning error out of all the test cases. The
magnitude of the positioning errors for this test are indicative of what is achievable with this
many development kits over this length-scale. While the results for development kit 7 are worse
than the average performance across all ten cases, only the SDP estimate from development
kit 10 can be considered to be completely anomalous out of all the results obtained. This test
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Figure 6.20: Relative positioning of development kit 10

case results show generally high reliability within a few metres of the true locations for most
development kits, demonstrating the viability of using RSSI with an experimentally derived
PLM in this way.

It is important to note from experimentation that the accuracy of the placement of development
kits within the test environment is likely to be slightly less precise than those measured at
marker points along the perimeter, due to the placement technique used. Development kits
were placed within the testing area using tape measures from known markers measured along
the edge and within the pitch. It is estimated that the true locations provided for estimates of
positioning error are accurate to within ±1 m based on this placement technique.

RSSI data is being shared rapidly throughout the network. In this case, full network RSSI data
for the 23 development kits is obtained within 3 seconds. As this is a static demonstration,
it would be possible to take an average of RSSI values obtained over a period of time, or to
identify outlier RSSI values caused by environmental noise or random operational errors by
comparing these values with those obtained in the time steps around it. However, as discussed
in Chapter 4, the approach in orbit for the purposes of navigation or locating measurement
points would be to filter the results with time, which would substantially alleviate the effect of
random anomalous results in practice. As a proposed method, dynamic femto-spacecraft with a
sufficient sampling rate (which could involve RSSI averaging or error detection methods such as
identification of outlier RSSI data) would be robust against outlier estimates from algorithms,
and in general improve the relative positioning performance.

A key strength of the SDP algorithm is its ability, in principle, to make use of additional range
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constraints between femto-spacecraft of unknown position, helping to improve the position
estimates as has been demonstrated in simulation. However, experimentally, the addition of
these constraints was not found to improve positioning accuracy in this test case. This is most
likely due to testing with a relatively small number of devices with a high range measurement
error, whereby anomalous range estimates have a more significant impact statistically on the
positioning performance. As the effect of errors is mitigated against by having more devices, it
can be expected that testing with a larger number of devices would enable this improvement
to be experimentally demonstrated.

For completeness, the full single run test case of the SDP algorithm localising all 10 development
kits simultaneously, along with the individual NPDF algorithm test case computational runs,
are shown in Fig. 6.21. Full numerical results are listed in Table 6.1. The dashed lines are

Figure 6.21: Relative positioning of 10 development kits

added to clarify the estimate corresponding to each development kit. From the experimental
results obtained for relative positioning outlined in this section, and from the simulated test case
results in Chapter 3, it can be anticipated that the accuracy of relative positioning will improve
with larger scale tests with a greater number of devices than is possible in this demonstration,
offering further insight into the expected performance levels in-orbit for a swarm of femto-
spacecraft.

It is noticeable that the four development kits nearest to the edges or perimeter of the test area
appear to have worse accuracy than those six development kits nearest the middle. This is an
effect that was observed in simulation-based results with the 100 femto-spacecraft test case,
where the more central femto-spacecraft had better positioning accuracy. This is understood
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Table 6.1: Relative positioning of 10 development kits

Coordinates [m] SDP estimate [m] SDP error [m] NPDF estimate [m] NPDF error [m]

(32, 30) (28.7, 28.8) 3.5 (29.0, 27.5) 3.9
(50, 30) (43.5, 28.8) 6.6 (45.0, 24.5) 7.4
(70, 30) (81.8, 32.4) 12.0 (84.5, 38.5) 16.8
(88, 30) (90.2, 28.9) 2.5 (87.5, 38.5) 8.5
(60, 45) (55.2, 41.6) 5.9 (65.5, 44.5) 5.5
(60, 15) (57.1, 23.0) 8.5 (63.5, 19.0) 5.3
(10, 45) (34.1, 38.2) 25.0 (28.0, 40.0) 19.8
(10, 15) (18.8, 24.1) 12.7 (16.5, 20.5) 8.5
(110, 45) (98.0, 40.4) 12.9 (106.0, 40.5) 6.0
(110, 15) (96.4, 44.9) 32.8 (113.0, 8.0) 7.6

to be due to the convex constraints resulting in generally improved performance towards the
middle of the swarm. Again, it can be expected that in larger networks, the femto-spacecraft
closer to the perimeter will have higher inaccuracies in position estimates than those nearer the
centre.

These results are a clear indication in the viability of using a highly inaccurate range metric,
utilised effectively by the nature of the large number of noisy constraints within a highly
(in this case fully) interconnected network. However, there are obvious limitations to this
approach as seen with the metre-scale positioning errors over this testing area, and the effect
that large outlier range estimates have on the localisation results. This would in principle
be significantly mitigated against using more femto-spacecraft, corresponding to a quadratic
increase in the number of available communication links and therefore range estimates and
optimisation constraints. The extent to which increased numbers of femto-spacecraft would
improve positioning performance, and at what scale this is no longer a significant factor, is an
open question for future testing and implementation. However, it is clear from these results
that this would at a minimum reduce the effect of outlier data.

It can therefore be theorised that with increased numbers of femto-spacecraft in practice, and
with an improved range metric (either in resolution or measurement technique), that this
positioning performance could be improved further beyond what is possible with this test
approach and what has been experimentally demonstrated here using RSSI statically over this
available area in 2D.

6.3 Relative Navigation Demonstration

In this section, the development kits are now placed in known locations on the sports pitch
that are calculated to represent a static snapshot of a swarm’s formation in LEO at a partic-
ular point in time, according to the relative dynamics of the trajectories of femto-spacecraft
dispersing from a carrier spacecraft. These positions are determined using the same Clohessy-
Wiltshire (CW) model of the swarm relative dynamics outlined in Chapter 4 and applying a
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2D projection of the motion at realistic length-scales for the swarm as it initially disperses
in orbit. The implications of the experimental results obtained are then discussed for future
in-orbit applications.

6.3.1 Sequential swarm deployment demonstration

While these tests are still static in nature and limited to 2D, equivalent to those in Section 6.2,
this procedure furthers the demonstration with consideration of femto-spacecraft separation
distances. Further testing in the future could make use of this approach with dynamic femto-
spacecraft proxies. Using the closed form CW model, in this test the scenario of a swarm being
ejected sequentially in a controlled manner from a single carrier spacecraft is considered. The
other method considered in Chapter 4 of randomly and instantaneously dispersing the swarm
from the carrier in all directions is not tested here. This random approach is more equivalent
to the relative positioning demonstration in the previous section.

The swarm could be deployed in many directions to trail and lead the carrier along track with
varying cross-track and radial components in the ejection velocity. In this test case, the swarm
is deployed along two separate relative trajectories, one trailing and one leading the deployer,
enabled by the following conditions. With a deployer in a circular LEO of altitude 400 km, and
making maximum use of the testing area available for this demonstration, consider the case
of two femto-spacecraft initially coincident in position with the deployer and with a constant
ejection velocity of a realistic order of magnitude. The initial conditions of:

r01 = r02 =

0

0

0

m (6.12)

v01 =

 0

2

30

× 10−3 m s−1 (6.13)

v02 =

 0

−2

−30

× 10−3 m s−1 (6.14)

for the CW motion permit taking a 2D projection of the motion of these two femto-spacecraft in
the yz-plane, as shown in Fig 6.22, where it can be seen that the testing area accommodates the
trajectories of these femto-spacecraft over 1.5 orbital periods with respect to the deployer. With
22 development kits (including one placed at the origin representing the deployer), by deploying
a femto-spacecraft approximately every 12.5 minutes, the swarm at that point in time would
take the form as shown by the development kit markers in Fig. 6.22. Development kits were
placed in this configuration in the testing environment by measuring their locations from the
vertices of sports pitch markings that had been marked out on the day of testing. This enables
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Figure 6.22: 2D projection of the yz-plane, showing each relative trajectory
over 1.5 orbits

a static test of the entire swarm relative navigation at a particular time step, experimentally
representative of how this strategy could work in orbit as a particular filter update measurement
sample. Again, the unknown development kits are marked by black rings while known anchor
positions are marked by red triangles. In this case, anchors are deployed alternately with femto-
spacecraft of unknown position. Results of this test are shown in Fig. 6.23, again using both
the SDP and NPDF algorithms to localise 10 of the unknown development kit positions with
12 anchors. Full numerical results are listed in Table 6.2.

Table 6.2: Relative navigation of 10 development kits

Coordinates [m] SDP estimate [m] SDP error [m] NPDF estimate [m] NPDF error [m]

(-35, 26.5) (-28.8, 23.6) 6.8 (-20.0, 23.5) 15.3
(-33.5, -2) (-32.6, -1.5) 1.0 (-20.0, -8.0) 14.8
(-31, -26) (-27.3, -17.5) 9.2 (-20.0, -20.0) 12.5
(-13, 8.5) (-10.7, 4.1) 5.0 (-13.5, 4.5) 4.0
(0.5, 24) (-5.4, 9.6) 15.5 (-4.0, 16.5) 8.7
(-0.5, -23) (-10.2, -9.9) 16.3 (-9.5, -13.5) 13.1
(12, -10.5) (14.0, -5.2) 5.7 (12.5, -3.5) 7.0
(30, 25.5) (25.9, 15.0) 11.3 (33.0, 14.0) 11.9
(33.5, 4) (25.8, 1.5) 8.1 (25.0, 2.5) 8.6

(34.5, -26.5) (21.5, -14.5) 17.6 (23.5, -14.0) 16.7
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Figure 6.23: Relative navigation along two CW trajectories

This result demonstrates the algorithms working for realistic spatial length-scales for a swarm
being deployed in LEO. In the results here and in Section 6.2, the number of unknown positions
and anchors has been kept the same for a comparative demonstration. In practice, with larger
networks of more femto-spacecraft, the proportion of anchors in the swarm as a percentage of
all spacecraft could be much lower than can be experimentally demonstrated with a smaller
network. The positioning accuracy is of the same order of magnitude as with the relative
positioning test case, with the SDP algorithm performing slightly better in most cases, with
the best performance again witnessed in the centre of the swarm geometry.

6.3.2 In-orbit implications

The position errors from the results of the test cases in Sections 6.2 and 6.3 vary considerably,
from as low as 1 m to as much as 33 m. The mean error (σX) for the relative positioning
test in Section 6.2 is 15.3 m for the SDP algorithm and 10.2 m for the NPDF algorithm. For
the relative navigation test in Section 6.3, the mean error is 11 m for the SDP algorithm and
11.9 m for the NPDF algorithm. From the simulation-based results of the SDP algorithm in
Chapter 3, experimental performance indicated here is comparable to a noise level ζ of between
approximately 8-17.5%. It is therefore possible to extrapolate the expected in-orbit relative
navigation performance by simulating noisy range estimates at this level for this size of swarm.
As demonstrated in Chapter 4, the filtering of discrete estimates over time will in general
improve relative navigation performance.

A limitation of this approach is that the PLM and range estimates used in the test cases clearly
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indicate non-Gaussian behaviour in outlier RSSI data, partially due to greater variability at
larger ranges. It would appear that large outliers can affect particular random estimates in a
way that cannot be simulated with a particular additive white Gaussian noise level. It would of
course be possible to artificially introduce non-Gaussian behaviour to the measurement model
in simulation. However, the impact of outlier range estimates would be significantly weakened
algorithmically as the swarm size increases, and it is also difficult to estimate the prevalence
and magnitude of such variations in RSSI values. Instead, if the noise level in simulation is set
to 20% to compensate for these effects, results can provide an indicative performance of relative
navigation in-orbit for this particular scenario. Figure 6.24 (overleaf) shows the results of the
Kalman filtering of a femto-spacecraft over 1.5 orbits, using the same simulation parameters
and sample rate from Chapter 3 of position estimates every 60 s. Only the 2D projection of
the yz-plane is shown for comparison with the experimental results.

The results of this simulation indicate the feasibility of in-orbit relative navigation for a swarm
of this size deployed over this length-scale, using representative range-based measurement in-
accuracies of what was obtained experimentally. Larger networks of spacecraft in practice may
be able to improve relative positioning performance beyond what was experimentally demon-
strated. While these results are indicative of in-orbit performance, the relationship between
RSSI and range terrestrially would be expected to differ from the relationship in-orbit. As
discussed in Future Work (Section 8.2), there are several ways the PLM could be adaptively
tuned for in-orbit use. Additionally, analysis and simulation of the space-based communications
environment may provide further insights.
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(a) 2D view

(b) Individual axes view

Figure 6.24: Simulation-based relative navigation of a femto-spacecraft
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6.4 Chapter Summary

This chapter has presented the experimental methods and results used to demonstrate relative
navigation for a swarm of femto-spacecraft in this thesis. By combining the algorithms, insights
from simulation-based results and network protocol development throughout Chapters 3-5,
relative positioning has successfully been demonstrated.

The path loss model development in 2D using development kits with V-dipole antennas high-
lighted the large variability in raw RSSI data. This indicates the limitations of RSSI’s utility
as a range metric while providing a highly effective proximity metric as tested with the convex
optimisation and normal probability density function fusion approaches.

The experimental results of relative positioning and navigation demonstrate the utility of RSSI
data as a range metric in highly connected networks. Through utilisation of the path loss model
within the testing environment and implementation of suitable algorithms for this testing,
relative positioning has been experimentally demonstrated terrestrially for a small network of
just over 20 development kits acting as femto-spacecraft proxies using RSSI data alone. The
results demonstrate the viability of this method, through fusing coarse constraints to provide
a relative positioning system for a swarm of femto-spacecraft entirely via networking. This is
a principal advantage of this specific approach, in that any positioning information that can
be estimated is found through normal swarm operations and without any additional sensor
technology.



Chapter 7

Distributed In-situ Sensing using Femto-spacecraft

This chapter presents the results of an investigation into the use of femto-spacecraft swarms
for distributed in-situ sensing in space. This implementation would in practice make

use of the relative navigation strategies from previous chapters to demonstrate the utility of
femto-spacecraft positioning when taking sensor measurements. Firstly, the background of
how femto-spacecraft could be used for massively parallel distributed sensing is presented in
terms of the applications and operations. Then, a methodology is presented for characterising
phenomena using multiple femto-spacecraft with coarse positioning and sensor measurements.
Operational trade-offs are then explored in the number of femto-spacecraft and the accuracy of
their positional knowledge and sensor measurements. Finally, this is applied to a demonstration
in simulation of scalar and vector field reconstruction, and of the Earth’s magnetic field in LEO.

7.1 Background

Many physical phenomena in the near-Earth space environment are characterised by significant
spatial and temporal dynamics and ambiguities. While satellite clusters can be utilised to sense
such phenomena in a distributed manner, clouds of femto-spacecraft equipped with MEMS
sensors could be used as a new sensing strategy approach. This architecture would deliver
massively parallel simultaneous multi-point sensing, facilitate sampling at a range of spatial
length-scales and could help deconvolve spatial and temporal effects. In this chapter, the
qualitative and quantitative trade-offs in utilising thousands of femto-spacecraft dispersed from
a carrier platform to improve the measurement of phenomena across the volume of space that
the cloud forms is analysed.

This sensing strategy contrasts with traditional satellite cluster architectures, which use a
relatively small number of large and expensive satellites equipped with customised precision
instrumentation for sensing and relative navigation, although offer far fewer simultaneous mea-
surements [124,125]. Therefore, it is necessary to examine how the performance trade-offs scale
as the number of sensor nodes increases with lower quality measurements in several use cases.
As discussed in Chapter 1, the implementation of swarms could offer many operational benefits

111
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over traditional distributed space systems. This includes robustness and redundancy against
failure, as individual femto-spacecraft are not essential to the swarm’s operation; the potential
for sensor fusion; the capacity for modular and dis-aggregated operations; a substantial in-
crease in spatial resolution. If these benefits can be utilised for sensing applications, swarms of
femto-spacecraft could offer specific functional benefits as a low-cost and high-risk alternative
to these standard approaches.

Phenomena in the near-Earth space environment such as the geomagnetic and gravitational
fields, and the evolution of atmospheric parameters, can exhibit dynamic and ambiguous spa-
tial and temporal behaviours [126, 127]. This makes such phenomena difficult to characterise
with a single satellite. Massively parallel, multi-point sensing can in principle deliver new in-
sights by deconvolving these ambiguities, while facilitating simultaneous sampling at a range
of spatial length-scales. In this investigation, a sensing strategy is proposed that would use
hundreds or even thousands of femto-spacecraft dispersed from a larger carrier platform. The
resulting ‘cloud’ of femto-spacecraft could form a highly interconnected space-based wireless
sensor network (WSN) as has been discussed in previous chapters. Making use of the relative
navigation strategies that would be available by employing the developments in Chapters 3-6,
individual sensors would be tied to the femto-spacecraft position, adding considerable value to
the measurements obtained. In the same way that MEMS sensors on femto-spacecraft would
be of lower quality, the relative position of femto-spacecraft would be far coarser than large
spacecraft equipped with custom instrumentation. The key benefit is however the vast number
of measurements that could be obtained simultaneously, and the new applications that could
be enabled [15].

The proposed approach can be summarised as follows. During operations a cloud of femto-
spacecraft would disperse into neighbouring orbits to their carrier spacecraft. Over time, this
cloud architecture would facilitate sampling at a range of spatial length-scales as the femto-
spacecraft drift from the carrier. Sequentially dispersed femto-spacecraft could take measure-
ments at the same point in space but at different times, helping to deconvolve spatial and
temporal variations in sensed phenomena such as atmospheric and magnetic field measure-
ments, as discussed in Chapter 2. Such a cloud could also provide measurement at a range of
length-scales appropriate for rapidly changing fields where the dynamics of the field could be
under-sampled between sensor spacings.
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7.2 Multi-point Sensing Trade-off Methodology

To investigate this sensing strategy, the top-level trade-offs between this new strategy and the
traditional approach are examined by increasing the number of femto-spacecraft while decreas-
ing sensor and navigation accuracy for the measurement of typical phenomena in the near-Earth
space environment, represented by both scalar and vector fields. A trade-off methodology is
developed, demonstrated with a simple test function, and then applied to general scalar and
vector field use cases for insight and analysis.

7.2.1 GPR model development via a 1D test function

Consider some arbitrary phenomena with uncharacterised behaviour over a region of space. In
the absence of any errors, there exists in principle a minimum number of discrete sensing points
distributed throughout the region that can sufficiently sample the phenomena to accurately
characterise its behaviour. Then, by introducing measurement errors in sensing and position
localisation errors, the performance of this characterisation is subsequently impacted for a given
number of sensing points. The effect of such errors would be expected to at best degrade or at
worst make characterisation impossible with the same number of sensing points. By increasing
the number of sensing points distributed throughout the region of interest, the characterisation
performance can improve, as more measurements can be used to help bound uncertainties.

Let the following one-dimensional test function, as shown in Fig. 7.1, represent some arbitrary
phenomena of interest over the arbitrary length-scale x such that 0 ≤ x ≤ 10.
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Figure 7.1: Test function f(x) = sin(x) + sin(10x
3

)

Discrete measurements can be simulated with a randomly distributed measurement error (δf),
1D location error (δx) and total number of discrete data points (n) across this length-scale,
where n corresponds to the number of femto-spacecraft in the cloud. Using Gaussian process
regression (GPR), the function behaviour can be modelled from this discrete and noisy data,
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generalising the behaviour of the function over the length-scale considered [128]. A Gaussian
process is a set of finite random variables with a joint Gaussian distribution. With a GPRmodel,
the behaviour of the function can then be predicted in the locations that have not been sampled
for reconstruction (characterisation) of the function over the entire length-scale of interest. This
technique, also known as ‘kriging’ in statistics, is common in machine learning applications,
where GPR models can be trained using sets of observations of phenomena. As n increases,
characterisation of the phenomena of interest can then improve, as more measurements improve
the model’s predictive capabilities.

GPR can therefore be used to characterise phenomena across an entire region of interest given
measurements taken at discrete points within that region. This technique is effectively using
GPR as a prediction model to interpolate values at locations that have not been sampled. This
is possible by generating latent variables, that is, those that can be estimated from measured
data but which are not directly observed as measurement data. By simulating many different
combinations of measurement environments for different test cases (across a range of δf , δx
and n), the quality of the reconstructions from each GPR model generated for each test case
can be compared with the true function for all combinations across the solution space. The
characterisation performance of each model can then be analysed to assess the effect of using
greater numbers of less accurate measurements, as in line with the femto-spacecraft swarm
philosophy.

For the test function f(x), it is considered that n = 50 discrete measurements (observations)
are required in the length-scale 0 ≤ x ≤ 10 for reconstruction (characterisation) in the absence
of any errors (noise-less observations). Then, 100 different test case measurement environment
combinations are simulated from low to high δf , δx and n. Across these environments n is
varied from 50 to 1000 (by a scaling factor of 20). Measurement and position errors are varied
across the noise levels 0.1 ≤ ζ ≤ 0.5 (by a scaling factor of 5) by simulating the observations:

f̂(xi) = f(xi)(1 + ζχ) (7.1)

and:
x̂i = xi(1 + ζχ) (7.2)

where χ is a zero mean normally distributed random variable of variance one. These noise
levels are chosen for general comparison across a range of low to high errors, incorporating
representative errors as considered in relative positioning simulations from Chapter 3 and from
experimental results in Chapter 6. The training sets used to train each of the GPR models
is in this case given by the n discrete sensor measurements and position estimates which in
simulation are randomly generated. As each set is a Gaussian process, it can be defined by its
mean function m(x) and covariance function k(x, x′) [128], where:

m(x) = E(f(x)) (7.3)
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k(x, x′) = E((f(x)−m(x))(f(x′)−m(x′))) (7.4)

where E is the mathematical expectation (or expected value), defined as the sum of all possible
values from a random variable. The Gaussian process can then be denoted by:

f(x) ∼ GP(m(x), k(x, x′)) (7.5)

where the operator (∼) here and in the rest of this chapter represents a parameter being ‘dis-
tributed according to’. The GPR model is used to predict and generate the function f(x) given
new inputs, which in this case is many coordinates x across the entire length-scale considered.
Fundamentally, the model enables prediction of f(x) for values of x not sampled. The linear
regression model used takes the form [128]:

y = f(x, β) + ε (7.6)

where x is the independent input variable, f is the function value and y is the response (or
target) value from the model. In this model, it is assumed that y varies from the true (unknown)
function f(x) due to additive noise ε of the form:

ε ∼ N (0, σ2) (7.7)

where N denotes a normal (Gaussian) distribution and the error variance (σ2) and coefficient
β are estimated using the training set data. Now, implementing latent variables and an explicit
basis function h(x), the GPR model is given by:

h(x)Tβ + f(x) (7.8)

where an instance of a response yi can be modelled probabilistically as:

P (yi|f(xi), xi) ∼ N (yi|h(xi)
Tβ + f(xi), σ

2) (7.9)

The covariance k(x, x′) can be found by a set of kernel parameters that are used to determine the
influence that observations have on the model. In effect, this determines the predictive function
smoothness. This overall approach is implemented in MATLAB by simulating discrete noisy
measurements of phenomena at random positions and using the fitrgp function to train GPR
models from this data. In simulation, the performance of a GPR model can be analysed against
the true function, but in practice the GPR model (or similar method from the distributed
sensing approach) would be all that is available, as the true function would be unobservable.
It is therefore of great interest to understand how best to characterise phenomena in general
with this approach, which is now examined in simulation.

Figure 7.2 illustrates nine examples across the complete range of these 100 measurement envi-
ronment test cases simulated using different combinations of δf , δx and n. In the top left, a
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small number of accurate sensors are employed (low δf , δx, n), through to the bottom right
where a large number of less accurate sensors are used (high δf , δx, n). The true function f(x)

is shown in blue, the sample data points are shown in purple and the reconstruction from each
GPR model generated for each test case is shown in red. The reconstruction parameters for
the nine test cases displayed are listed in Table 7.1. Noise levels in observations of the function
f(x) and 1D position x are represented by ζf and ζx respectively.

Figure 7.2: Reconstruction of test function f(x)

Table 7.1: Reconstruction parameters of test function f(x)

Test case n ζf ζx

1 50
2 500 0.1 0.1
3 1000

4 50
5 500 0.25 0.25
6 1000

7 50
8 500 0.5 0.5
9 1000

It is clear from this example that in general terms, increasing the number of sensors distributed
throughout a region (and thereby reducing spacing between discrete sample points) improves
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reconstruction performance for a given measurement and localisation error level. This is wit-
nessed across the top row within test cases 1-3, where as n increases, the predicted function
generated from each GPR model aligns better with the true function f(x). In the absence
of errors, it is obvious that more measurements would improve characterisation. It is to be
expected that the same applies in general for a given level of measurement and position error,
as more measurements help probabilistically to improve GPR model performance.

Intuitively, reconstruction performance worsens as error levels increase for a given number of
sensor points. This can be observed in the three columns of test cases in Fig. 7.2, with the
combinations of test cases 1, 4 and 9; 2, 5 and 8; and 3, 6 and 9. In each case, the increasing
error level worsens general reconstruction performance. As seen in the bottom left plot for test
case 7, with a low n and high error combination, this can lead to extremely poor reconstruc-
tion performance. Clearly, increasing the number of sensors not only compensates for this by
bounding uncertainties for the GPR models, but can also deliver comparable performance to
lower n and lower error scenarios. From less accurate measurements, these are compensated
for with a sufficiently increased number of measurements.

To quantify and visualise this trade-off, from 100 total measurement environment combinations
simulated, a three-dimensional surface plot is generated with the quality of the reconstruction
represented in the dependent vertical axis as a discrepancy factor, and the two independent
variables of the total number of sensor points and the noise levels in both measurement and
position. The discrepancy factor is a performance metric that is calculated based on the level
of discrepancy between the true function and the GPR model reconstruction. The lower the
discrepancy factor, the better the reconstruction is overall. In this scenario, a discrepancy factor
is calculated for each of the 100 measurement environments and normalised between a value of 0
(perfect) and 1 (worst of all the measurement environment samples simulated). The surface plot
shown in Fig. 7.3 is generated by displaying the discrepancy factor across the two-dimensional
parameter space, then interpolating a multivariate function in reconstruction performance with
increasing n and ζ. Individual test cases, or measurement environment samples, are represented
by black dots.

This surface plot provides general insight into the performance and trade-offs involved across
the combinations of measurement environments. The lowest regions of the surface represent
the best expected reconstruction performance. Interpreting Fig. 7.3, for this test function the
best performance is seen as the number of sensors increases with the lowest errors, as expected
intuitively. In general terms, performance worsens as the total error increases. However, there
are many regions where a higher number of less accurate measurements perform comparably
with a lower number of more accurate measurements. Broadly, this shows that a higher num-
ber of less accurate sensors can ‘match’ the performance of a low number of accurate sensors.
Additionally, this indicates that as the errors in measurement increase, to achieve similar per-
formance, increasing the number of sensors can compensate asymptotically before adding more
sensors cannot compensate further, as indicated by tracking the error with n for a given 2D
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Figure 7.3: Surface plot showing generalised reconstruction performance
of test function f(x)

discrepancy factor plane.

7.2.2 Scalar field reconstruction

Using the methodology developed above for the test function f(x), the reconstruction of both
scalar and vector fields is now considered, representative of key phenomena of interest in the
near-Earth space environment, for example, investigating the upper atmosphere or elements
of the gravitational and geomagnetic fields [124, 127]. The approach is extended to scalar and
vector fields using a series of simple test models. In simulation, sensors are randomly dispersed
throughout the region of space to be sampled. This is representative of a femto-spacecraft
cloud diffusing through space and as it evolves, dispersing further from the carrier spacecraft.
Again, the number of femto-spacecraft, and the errors in sensor measurement and positioning
are varied across test cases.

For the field reconstruction procedure using GPR, for these applications, sparse, distributed
and noisy measurements of scalar and vector properties are input, and then GPR models
are generated that predict and characterise the behaviour of the field across the entire region
sampled. From the GPR models developed, the fields are then reconstructed and the results
are compared with the true test models, analysing how well this large n, high error strategy
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scales in different scenarios.

For scalar field reconstruction a two-dimensional test model presented as an arbitrary scalar
field across a region of latitude 0 ≤ φ ≤ 90◦ and longitude 0 ≤ θ ≤ 90◦ shown in Fig. 7.4. With
this arbitrary scalar field, the number of sensors is increased across all simulations again by a
factor of 20 (from 50 to 1000), and the measurement and positioning error are varied across
the noise levels 0.1 ≤ ζ ≤ 0.5 (by a scaling factor of 5). Figure 7.5 illustrates nine different
reconstructions covering this range of measurement combinations, where the sample points are
shown in lilac. The reconstruction parameters for the nine test cases displayed are listed in
Table 7.2, along with the normalised discrepancy factors for each test case. Noise levels in
observations of the function scalar field parameter T , latitude and longitude are represented by
ζT , ζφ and ζθ respectively.
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Figure 7.4: Scalar field test model T (θ, φ) = 10 sin2 θ + 20(1 + sinφ)

Table 7.2: Reconstruction parameters of scalar field test model

Test case n ζT ζθ ζφ Discrepancy factor

1 50 0.006
2 500 0.1 0.1 0.1 0.001
3 1000 0.001

4 50 0.526
5 500 0.25 0.25 0.25 0.049
6 1000 0.122

7 50 0.813
8 500 0.5 0.5 0.5 1
9 1000 0.444

Figure 7.5 indicates a general trend of improved reconstruction as n increases at a given er-
ror level, with each normalised discrepancy factor representing the relative performance with
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Figure 7.5: Reconstruction of scalar field test model

respect to the other test conditions. The lowest discrepancy factors, and therefore best recon-
structions, are observed in test cases 1-3, for the lowest errors in measurement and position.
Increasing n across the top row of Fig. 7.5 improves the reconstruction, as can be expected
for a given error level. The three columns of test cases in Fig. 7.5 demonstrate again that
increasing the error level worsens general reconstruction performance for a given number of dis-
crete measurements. This further highlights the ability of many lower accuracy measurement
samples to compensate for fewer high accuracy samples across a 2D region of space for scalar
quantities.

The worst reconstruction from this random simulation is test case 8, not test case 7 as would
be expected in general with an average of many simulated test cases. These random cases
show that significantly increasing the number of distributed sensors compensates for cases
where measurement inaccuracies can result in high sensitivity to characterisation errors. The
comparable performance between test cases 4 and 9 highlights the trade-off: 1000 high-error
measurements reconstructed the scalar field better than 50 mid-error measurements.

7.2.3 Vector field reconstruction

For vector field reconstruction, a test model is used representative of a two-dimensional sec-
tion of an arbitrary vector field in space. The simple field model used is given by V (θ, φ) =

(sin(φ), cos(θ)), as shown in Fig. 7.6. As with the procedure for the scalar field test model,
a series of discrete measurements are taken and used to reconstruct the field, significantly in-
creasing the number of sensors and the accuracy of their measurements across the region of
interest, which is −180 ≤ φ ≤ 180◦ and −180 ≤ θ ≤ 180◦.
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Figure 7.6: Vector field test model V (θ, φ) = (sin(φ), cos(θ))

In this case the sensor is measuring both magnitude and direction of a quantity. For illustration,
50 measurements of this field are illustrated in Fig. 7.7, showing an example of the type of
discrete data the GPR model uses to generate general characterisations across the entire region
the sensors are scattered within.

Figure 7.7: 50 measurements of V (θ, φ)

Nine measurement environment test case reconstructions are shown in Fig. 7.8, again with
the number of sensors increased by a factor of 20 and the measurement and positioning error
noise level by a factor of 5. Discrete measurement points are shown by the lilac dots, with
the field reconstruction overlaid. Note that for clarity, unlike in Fig. 7.7, the discrete vector
measurements are not displayed.



Distributed In-situ Sensing using Femto-spacecraft 122

Figure 7.8: Reconstruction of vector field test model

Table 7.3: Reconstruction parameters of vector field test model

Test case n ζV ζθ ζφ Discrepancy factor

1 50 0.4
2 500 0.1 0.1 0.1 0.04
3 1000 0.03

4 50 0.8
5 500 0.25 0.25 0.25 0.01
6 1000 0.06

7 50 1
8 500 0.5 0.5 0.5 0.2
9 1000 0.1

The discrepancy factor trends in the vector field test model reconstruction indicate the same
trends for the scalar field test model, of improved performance as n increases at a given level of
measurement and location error, and the ability of many less accurate measurements to trade-
off with fewer accurate ones. In these cases, the reconstruction performance quantified through
the discrepancy factors aligns with what can be predicted, showing the worst reconstruction in
test cases 7, and the best reconstructions of the same order of magnitude in test cases 2, 3, 5
and 6. Test case 9 has four times better reconstruction accuracy than test case 1, highlighting
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the effect of this approach, where in this random case despite considerably higher sensor and
location inaccuracy, the vastly larger number of sensors has performed better.

From the result here and in Section 7.2.2, it is clear that this approach to sensing could be useful
for scalar and vector field phenomena in orbit. Exact performance characteristics and use case
comparisons for specific applications is left as an open area of study for future work. However,
the methodology developed demonstrates the compensation that this approach makes over
smaller numbers of more accurate sensing measurements when trying to characterise phenomena
over large regions of interest. Increased number of sensors compensate for the discrete nature
of distributed sensing and works to reduce sensitivity to errors in measurements.

7.2.4 Sampling the magnetic field in LEO

As an example use case, the femto-spacecraft cloud is considered to sample the magnetic field
in LEO across a length-scale of several hundred kilometres, with on-board magnetometers
coarsely measuring the field magnitude and direction. In this specific scenario it is considered
that the sensor cloud is distributed across a region of South America, from the equator to 30◦

south in latitude (φ), and between 60-90◦ west in longitude (θ), at an orbit altitude of 400
km. Note that this example is not for the purposes of proposing magnetic field reconstruction
with this approach, but rather to indicate that real-time measurements in orbit may be used to
identify live space weather events. This is presented as a top-level demonstration of how this
methodology may work in LEO.

Using the World Magnetic Model (WMM) [129] as a truth reference model, discrete, noisy
sensor data is simulated, spread randomly across this region. The same procedures outlined
earlier in this chapter are then used to reconstruct the Earth’s magnetic field across the area
that the swarm is dispersed over. Figure 7.9 shows the reconstruction of this region simulated
by using 5000 femto-spacecraft with field intensity measurement error noise level of ζ = 0.25
and ζθ = ζφ = 0.25. For clarity, discrete sensor points are not shown. This illustrates the WMM
field intensity in nano-Tesla (nT) and field directions, with GPR model reconstructions. This
example shows in general terms how with a large network of distributed sensors, phenomena
of interest, such as the magnetic field as shown here, could be coarsely sampled to characterise
behaviours over a large region of space.
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Figure 7.9: Reconstruction of magnetic field region in LEO

7.3 Chapter Summary

This chapter presented a novel distributed sensing strategy using femto-spacecraft swarms as
vast sensing clouds in orbit. The proposed concept offers a low-cost alternative to traditional
sensing methods in the near-Earth space environment by using many lower quality sensors.
The trade-off between number of sensors, sensor accuracy and positioning accuracy has been
examined for a series of illustrative test cases for scalar and vector fields.

A methodology has been developed to reconstruct sensed phenomena across a region of interest
using sparse, discrete, and noisy sensor data, along with an associated lower accuracy of position
localisation. It is clear from the results that large numbers of lower quality measurement can
perform well as a direct trade-off for fewer more accurate measurements. This architecture also
offers the potential for higher resolution data than fewer measurement points, collected over a
range of spatial length-scales. When accumulated over time, this could potentially deconvolve
spatial and temporal dynamics and ambiguities if tested operationally for dynamic fields.

Further applications of this work include operational use cases such as data services for in-situ
monitoring of space weather and improving the understanding of the structure of the upper
atmosphere. This sensing strategy could also provide data at new length-scales to improve the
understanding of the near-Earth space environment, both for space science, and for operational
applications.



Chapter 8

Conclusions and Future Work

In this thesis, novel strategies have been developed and experimentally demonstrated for
range-based relative navigation of a swarm of centimetre-scale femto-spacecraft. This has

focused specifically on using only coarse range estimates available from network communica-
tions via RSSI data shared between interconnected swarm members, but many of the approaches
presented are not limited to the use of one particular range metric. The principal advantage
of this approach is that relative navigation is possible through normal swarm network opera-
tions that would be required to function in orbit. Relative positioning algorithms using range
constraints have been detailed for centralised, decentralised and distributed computation. The
range-based relative navigation approaches described in this work could be implemented within
femto-spacecraft swarms to enable novel applications in space with a unique design methodology
that could provide enhanced satellite applications in the near future.

8.1 Conclusions

The relative positioning algorithms detailed in Chapter 3 presented a variety of range-based
techniques within highly interconnected networks using centralised, decentralised or distributed
computation. This was presented as a relative positioning problem where only inter-spacecraft
range estimates, along with any anchor positions known in advance, are available. For this
implementation, it is assumed that range estimates are available from RSSI data via network
communications, but the algorithms developed would work in general with any range metric.

The semi-definite programming (SDP) algorithm using convex optimisation techniques has been
tested to be robust to a high degree of error in the inter-spacecraft ranges. The principal advan-
tage of the SDP algorithm is its centralised implementation, providing optimisation for every
femto-spacecraft given all available range estimates as constraints. This approach makes full
use of the increased number of communication links in a centralised network, probabilistically
increasing the usefulness of individual range estimates. Simulation-based results in centralised
test cases with the SDP algorithm demonstrate an ability to operate with a noise level ζ in the
range estimates of up to 40% with only 10% of the swarm as anchors.

125
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Results for the SDP algorithm also demonstrate improved performance with anchor placement
towards the edge of the swarm across all simulated noise levels. This indicates that swarm de-
ployment techniques to enable anchors (such as GPS-equipped femto-spacecraft) to congregate
towards the edges of the swarm may in principle achieve improved positioning over random
dispersal. Decentralised test cases with the SDP algorithm demonstrated a straightforward
trade-off bewteen computation time and positioning accuracy with swarm size. In larger net-
works, decentralised computation may be a desirable extension to ensure real-time relative
navigation operationally. However, the polynomial time complexity would ultimately limit
the practical implementation of this approach with larger networks, necessitating distributed
approaches.

The non-linear least squares (NLLS) algorithm presented a method for distributed computation
in larger swarms, using strict trilateration-based conditions to ensure robust positioning with
noisy range estimates. In its intended implementation of combining positioning data between
clusters of femto-spacecraft distributively, relative positions would be transformed into specific
reference frames using a singular value decomposition frame transformation technique. Sim-
ulation based results for the NLLS algorithm demonstrated full robust positioning up to a ζ
of 20%, above which expected fewer localisations per algorithm sample can be expected for a
given network size.

Finally, the normal probability density function (NPDF) algorithm utilises the uncertainty in
the range estimates directly, treating estimates as annuli in 2D or spherical shells in 3D based
on the range-model confidence in the estimates. For large networks, a region of confidence
emerges by summing NPDF functions over the possible solution space in a technique that helps
to rule out outlier measurements. This was implemented for experimental testing with small
numbers of development kits along with the SDP algorithm as discussed below.

Relative navigation techniques were presented in Chapter 4 from the scenario of a swarm
of femto-spacecraft being deployed in LEO from a single larger carrier spacecraft, such as a
CubeSat. Two main ejection strategies are presented for a swarm where members have no
translational control and simply passively drift in orbits neighbouring the carrier. Firstly, a
controlled ejection strategy may be more useful in being able to bound uncertainties on femto-
spacecraft positions and for sensing applications offer a reliable method of ensuring evenly
distributed sensors. More stochastically, a simultaneous ejection of the entire swarm in many
directions around the carrier could be used to detect local phenomena quickly, with the swarm
tending to align either in front or behind of the carrier in the along-track direction periodically.

The Kalman filter techniques presented using relative positioning algorithm (simulated using
the SDP algorithm) outputs continuously as partial state observers demonstrated in simulation
the ability with time to improve real-time state estimation over discrete time relative positioning
algorithm outputs alone. Similarly, using the algorithms for initial relative orbit determination
(IROD) or for more occasional synchronisation procedures, may offer a less computationally
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intensive approach when using an extended Kalman filter that implements range estimates
directly. In both cases, and for both ejection strategies considered, relative navigation perfor-
mance is improved over discrete relative positioning algorithm outputs alone. The methods
presented would provide a low-cost relative positioning system for a swarm of femto-spacecraft
that, while of limited computational resource individually, can operate collectively for many
space-based applications. The relative navigation demonstrated using the centralised algorithm
and Kalman filtering in different swarm dispersal scenarios highlights opportunities for their
practical implementation in low Earth orbit.

Without practical implementation and testing, it can only be predicted that the methods in
chapters 3 and 4 are practically viable, especially for using network RSSI data as a range metric.
A key contribution of this thesis is experimental demonstration, which required an implementa-
tion of swarm networking for testing. As presented in Chapter 5, a fully interconnected network
protocol was developed using small development kits as femto-spacecraft proxies. The devel-
opment kits and sensor packs used were representative of the available processing and sensing
capabilities at the femto-spacecraft scale. The MCU used is also currently implemented within
a custom PCB ChipSat design in development within the Space and Exploration Technology
Group at the University of Glasgow. This means that the networking and sensing developments
in this work can be easily utilised for future work.

The embedded software development for network implementation depended upon modifications
to existing two-way communications support for the TI CC1310 MCU. The contribution of this
work was to implement an address filtering technique along with a common radio packet payload
structure for all communications to enable full interconnectivity. The specific parameters for
implementation were designed to focus on accumulating network RSSI data for experimental
demonstration of relative navigation, but the application of this functionality extends to more
general swarm operations such as distributed sensing. Modifications to the existing protocol to
support sensor and IMU data integration were tested and demonstrated to work reliably.

Chapter 6 built upon the outcomes of chapters 3-5 by presenting the results of a testing pro-
gramme for experimental demonstration of relative navigation of a swarm of femto-spacecraft.
As in previous chapters, the specific focus was the use of RSSI data as a range metric, but the
procedures are applicable to other methods, such as distributed sensing testing or other range
measurement techniques, and potentially to other terrestrial applications such as in GPS-denied
environments or indoors. Conclusions can be drawn with consideration that testing was static
and limited to 2D over a 120 m × 60 m sports pitch. The path loss model (PLM) experimen-
tally derived to convert RSSI data into an approximation for a range measurement highlighted
the considerable inaccuracies in raw RSSI values. Since the resolution of RSSI was limited to
1 dBm, this becomes a larger factor as range increases.

In general, testing indicated that RSSI is not a reliable metric for simply determining the range
between two communicating devices, in this test process using development kits on a sports
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pitch. This inaccuracy can be well approximated by range annuli, as shown by the NPDF
algorithm implementation, but even then this does not have a high reliability. The utility of
RSSI data is only apparent when combined with the PLM and all development kits’ many com-
munication links. The quadratic increase in the number of communications links as the number
of development kits increases linearly provides many constraints for the algorithms presented
in Chapter 3. Probabilistically, this makes errors in individual RSSI values significantly less
capable of introducing positioning inaccuracy as the network size increases. It is only then
that the relative positioning algorithms’ ability to use all these constraints to provide position
estimates becomes clear.

Experimentally, the PLM was used to convert RSSI values into range estimate inputs for
both the SDP and NPDF algorithms, both for relative positioning and relative navigation
demonstrations. The results demonstrated the viability of this method, through fusing coarse
constraints to provide a relative positioning system for a swarm of femto-spacecraft entirely via
networking.

Relative navigation would be invaluable to swarm applications in providing an estimate of where
sensors are when measurements are recorded, as was discussed in Chapter 7. The distributed
in-situ sensing analysis in simulation highlights the potential for a network to compensate for
sensing and positioning inaccuracies through the high numbers of femto-spacecraft utilised.

In summary, this thesis demonstrated the viability of range-based relative navigation methods
for femto-spacecraft swarms, from the development of relative positioning algorithms, imple-
mentation of navigation filtering approaches, development of a network communications proto-
col for femto-spacecraft hardware, experimental demonstration of the methods presented, and
investigation of distributed sensing approaches. The experimental results obtained for relative
positioning demonstrate the feasibility of the methods presented and offer key insights into the
main challenges and limitations of this approach in practice, as a starting point in future work
towards in-orbit implementation.

8.2 Future Work

This thesis has focused on the development and experimental validation of relative navigation
strategies for a swarm of femto-spacecraft. To facilitate this, necessary simplifying assumptions
were made in simulation and analysis that carry over into the experimental work. In this
section, the limitations of the thesis are discussed with a series of ideas and recommendations
for future work.

The relative positioning algorithms developed and tested in Chapter 3 consider highly and fully
interconnected networks of femto-spacecraft for real-time centralised computation, or many
clusters for decentralised or distributed computation. In this thesis, centralised computation
was assumed to be the role of a larger carrier spacecraft that deploys the swarm. Decen-
tralised and distributed computation has not been tested experimentally in this work. From
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the simulation-based analysis of algorithm time complexity in Chapter 3, further investigation
into the realistic implementation considerations for centralised approaches is required. This
would be predominantly in terms of the available computing power for a centralised space-
craft, but also the implications of this for the number of femto-spacecraft in a network before
a centralised approach becomes infeasible.

The extent to which individual femto-spacecraft could contribute to the operations in terms of
computational loads is an open question for further research. For the distributed NLLS algo-
rithm, it is assumed that individual femto-spacecraft are able to perform low-level data accumu-
lation and mathematical operations. Future work may consider the role of a femto-spacecraft
in overall swarm operations beyond simple networking and individualised sensing roles to make
full use of the operational benefits of swarming systems, in terms of self-organisation and sen-
sor fusion capabilities. As part of the consideration of the role of individual femto-spacecraft,
relative navigation could utilise distributed Kalman filtering and consensus filter methods as
have previously been proposed in the literature for distributed systems [4, 130].

The analysis of relative navigation techniques considered two primary ejection methods, but
did not study the potential solution space or swarm evolution beyond several orbits. Further
analysis could examine the scope of potential ejection velocities, both in terms of variations in
magnitude and direction. This would give further insight into swarm evolution and the volume
of space that a swarm would be able to operate in with these methods. The instantaneous
swarm ejection strategy did not consider the practical limitations of the deployer’s geometry or
attitude, which would introduce restrictions for the ejection directions. Consideration of these
limitations would provide a more realistic understanding of the swarm structure for a known
deployer, such as a CubeSat.

As with the algorithm computation and filtering implementation, the network protocol devel-
oped has been limited by testing with a relatively small number of development kits with respect
to the potential number of femto-spacecraft intended in swarm use cases. Distributed network
protocol development to support distributed sensing applications would be a useful extension to
the existing implementation. This could facilitate extended swarm operations when the swarm
spatial structure extends outwith the maximum communication range of individual members.
Similarly, other additions to the current protocol would add robustness for use in orbit. It
was assumed in this work that communication links are undirected for the purposes of quickly
accumulating RSSI data, but directed communications could be used as a simple error checking
procedure. With the use of an IMU for implementing a femto-spacecraft attitude determina-
tion and control system, additions to the software to support filtering techniques would be
necessary. For relative navigation, if femto-spacecraft share their relative attitude in addition
to RSSI data when transmitting throughout the network, this information could in principle
be used to compensate for directive antenna losses that can be expected. In most scenarios, a
scaling factor accounting for the expected degree of directive loss could be applied to the path
loss modelling. RSSI data in this work was obtained using TI EasyLink with a radio packet
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protocol. Other wireless technologies and protocols should be considered for internet-of-things
applications, such as LoraWAN, presenting operational trade-offs and for other range-based
approaches such time and angle of arrival methods that may become useful at this length-scale
in the future.

In experimental demonstration, the main limitations are that testing is static, 2D, restricted to
a 120 m × 60 m area and to a relatively small number of femto-spacecraft proxies. As discussed
in Chapter 6, the effect of dynamic and 3D femto-spacecraft swarms may require consideration
of additional factors, such as the effect of antenna orientation and anisotropy in 3D path loss
modelling for future work and testing. Increasing the number of development kits used may
also offer further insight into the in-orbit implications and accuracy of this technology. The
effect of antenna orientation and gain on RSSI within the development of a path loss model
and relative positioning results is neglected in this thesis. This decision was made on the basis
of the testing being limited to 2D, where with careful placement of the antennas the radiation
is in 2D generally undirected. Also, as the testing was static, development kits could be placed
with known orientations within the testing environment. This meant that directionality effects
could be considered, where they were found to be within path loss model confidence bounds.

In further testing or implementation in space, femto-spacecraft would be moving dynamically
in 3D space. As anisotropy in radiation patterns is more significant in 3D, a consideration
for future work would be whether this effect should be accounted for when modelling the
relationship between RSSI and range, or to treat the antenna as undirected and ignore this
effect. If the antenna is not rigid, and therefore cannot be straightforwardly associated with
the spacecraft body with respect to its orientation, the latter option would be expected to be
the most suitable. The spacecraft body itself can be expected to cause some degree of directive
loss and interference, which should be considered with antenna modelling and characterisation
procedures. Future work could investigate the effect of spacecraft attitude in 3D experimentally
to determine whether improvements can be made to the range model and positioning accuracy.

The methods outlined in Chapter 6 for developing a PLM focus on terrestrial interference
factors, but for use in space, modelling that takes account of expected loss behaviour in the
space environment would be necessary. Even with this model, as has been found with extensive
testing in this thesis, it is likely that varying environmental factors would have an impact. This
means that pre-implementation, the model is not optimised for a given testing environment.
One way this could be compensated for in LEO is by using a proportion of the swarm anchors
with GPS. If anchors share RSSI data between other anchors before a localisation sequence
starts, the model could be adaptively tuned based on the more accurate knowledge of ranges
between these spacecraft. Such an adaptive model would provide data for further use in the
future. This could be simulated by modelling the radio environment in the vacuum of space
to provide a test-bed for further testing and analysis of different swarm applications. Adaptive
path loss modelling, and extended simulations of how this could fluctuate in orbit, is a key
point of analysis for further study and practical implementation of this work.
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In summary, for experimental demonstration, extended 3D and dynamic testing with larger
networks would offer greater insight into in-orbit performance than was possible with the test-
ing outlined in this thesis, and is a suggested starting point for future work. The consideration
of greater length-scales and antenna orientation variations that would be possible in 3D test-
ing would provide answers to these open implementation questions. Larger networks may also
provide insight into the upper limits of positioning accuracy with RSSI-based relative position-
ing. It can be supposed from the simulation and experimental results that a larger number of
femto-spacecraft would improve positioning accuracy.

Finally, the in-situ sensing analysis in Chapter 7 does not consider time-varying parameters
necessary for deconvolution of temporal ambiguities when sensing phenomena distributively.
Further applications of this approach include operational use cases such as data services for in-
situ monitoring of space weather and improving the understanding of the structure of the upper
atmosphere. This sensing strategy could also provide data at new length-scales to improve the
understanding of the near-Earth space environment, both for space science and operational
applications. Using the sensor and IMU support for the network protocol developed in Chapter
5, this sensing strategy could be tested experimentally, along with 3D dynamic testing of relative
navigation techniques.
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Appendix

A.1 Tetrahedra Volume Partial Derivatives

Given:
F =

[
∂V
∂r12

∂V
∂r13

∂V
∂r14

∂V
∂r23

∂V
∂r24

∂V
∂r34

]
(8.1)

then, using the Cayler-Menger determinants:

∂V

∂r12
= − 1

36

r12
V
D(1, 3, 4; 2, 4, 3) (8.2)

∂V

∂r13
= − 1

36
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D(1, 2, 4; 2, 3, 4) (8.3)
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∂r14
= − 1

36

r14
V
D(1, 2, 3; 3, 2, 4) (8.4)

∂V

∂r23
= − 1

36
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V
D(1, 2, 4; 1, 4, 3) (8.5)

∂V

∂r24
= − 1

36

r24
V
D(1, 2, 3; 1, 3, 4) (8.6)

∂V

∂r34
= − 1

36

r34
V
D(1, 2, 3; 2, 1, 4) (8.7)

where, in general:

D(1, 2, ..., N ; 1′, 2′, ..., N ′) = −1

4

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 r211′ r212′ . . . r21N ′

1 r221′ r222′ . . . r22N ′
...

...
... . . . ...

1 r2N1′ r2N2′ r2NN ′ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(8.8)
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A.2 Calculation of r̃45 and r̃45′

Given:
r̃45 =

√
∆h2 + ∆q2 =

√
(h5 + h4)2 + ∆q2 (8.9)

˜r45′ =
√

∆h′2 + ∆q2 =
√

(h5 − h4)2 + ∆q2 (8.10)

where:
h4 =

3V(1,2,3,4)
A(1,2,3)

(8.11)

h5 =
3V(1,2,3,5)
A(1,2,3)

(8.12)

and A(1,2,3) is the triangle formed by enclosing the area of x1, x2 and x3:

A(1,2,3) =

√√√√√√√√√− 1

16

∣∣∣∣∣∣∣∣∣∣
0 1 1 1

1 0 r212 r213

1 r212 0 r223

1 r213 r223 0

∣∣∣∣∣∣∣∣∣∣
(8.13)

and ∆q, the distance between the projections orthogonally of x4 and x5 onto A(1,2,3), is:

∆q =

√
8(D2

4r
2
12 +D2

5r
2
13 + 2D4D5D(1, 2; 1, 3))

(D(1, 2; 1, 3))2
(8.14)

and whereD4 = D(1, 2, 3; 1, 3, 4)−D(1, 2, 3; 1, 3, 5) andD5 = D(1, 2, 3; 1, 2, 4)−D(1, 2, 3; 1, 2, 5).
See Eq. (8.8) for the general D(1, 2, ..., N ; 1′, 2′, ..., N ′) case.
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A.3 Supplementary figures

(a) Development kits during laboratory network testing

(b) Outdoor relative navigation testing

Figure A.1: Development kits in testing
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