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Abstract

Conversational Question Answering (ConvQA) is a rapidly growing area of research that aims
to improve the search experience for users by allowing for more natural interactions between
users and search systems. ConvQA systems are designed to gauge and answer questions in
the context of a conversation, taking into account the previous questions and answers in the
dialogue. One of the challenges of ConvQA is resolving ambiguities in the user’s questions
based on the conversation history. This requires the system to not only consider the question
being asked but to also take into account the conversation context to provide relevant and
accurate answers. Open-Retrieval Conversational Question Answering (ORConvQA) is a more
challenging variant of ConvQA, as it requires the system to retrieve relevant passages from a large
collection of documents before extracting the required answers. This task requires the system to
effectively search and retrieve the most relevant information, adding further complexity. In order
to build an ORConvQA system, to address the ambiguities in conversational questions, a number
of approaches have been proposed, such as follow-up question identification, conversational
question rewriting, and asking clarifying questions. These approaches can help the system
better gauge the user’s intent and context, thereby allowing it to generate more precise and
relevant responses. Another challenge in ORConvQA is retrieving relevant passages from a large
collection of documents and identifying the most relevant ones based on the conversation context.
This is important because the extracted answers need to be based on the relevant passages, in order
to ensure accuracy. On the other hand, Multi-Task Learning (MTL) has emerged as a promising
approach to facilitate the learning of multiple related tasks by sharing the learner structure in a
single model. MTL has gained considerable attention in recent years due to its effectiveness in
addressing a diverse range of complex problems within a unified model. Therefore, we argue that
learning ORConvQA approaches simultaneously can help to improve the system’s performance.

In this thesis, we propose a novel ORConvQA framework leveraging Multi-Task Learning
(MTL) to improve the performance of multiple related tasks by sharing their learned structure. By
applying MTL to ORConvQA, we aim to leverage the benefits of addressing several related tasks
to build a more effective and efficient model that addresses two main challenges: (i) ambiguities
in conversational questions; and (ii) retrieving relevant passages from a large collection of
documents before extracting the answers.

i



To address ORConvQA effectively, we first propose an ORConvQA framework, which
leverages a novel hybrid dynamic MTL method combining Abridged Linear for the main answer
extraction task with a Loss-Balanced Task Weighting (LBTW) for the auxiliary related tasks,
such as follow-up question identification, yes/no prediction, and unanswerable prediction, so as
to automatically fine-tune task weighting during learning, ensuring that each of the tasks’ weights
is adjusted by the relative importance of the different tasks. We conduct experiments using QuAC,
a large-scale ConvQA dataset. Our results demonstrate the effectiveness of our proposed method,
which significantly outperforms both the single-task learning and existing static task weighting
methods with improvements ranging from +2.72% to +3.20% in F1 scores. Our findings also
show that the performance of using MTL in developing the ORConvQA model is sensitive to the
correct selection of the auxiliary tasks as well as to an adequate balancing of the loss rates of
these tasks during training by using LBTW.

To address the ambiguities in conversational questions, we propose the use of a text generation
model with Multi-Task Learning for follow-up question identification and conversational question
rewriting. Our derived models are based on text generation models –BART and T5–, and are
trained to rewrite the conversational question and identify follow-up questions simultaneously.
We evaluate our method using three test sets from the recent LIF (Learning to Identify Follow-up
questions) dataset and a test set from the OR-QuAC dataset. Our results show that our proposed
method significantly outperforms the single-task learning baselines on the LIF dataset, with
statistically significant improvements ranging from +3.5% to +10.5% across all test sets, and
also significantly outperforms the single-task learning of question rewriting models for passage
retrieval on the OR-QuAC test set.

Next, we employ an approach for asking clarifying questions to further address the ambiguities
in conversational questions by proposing a novel hybrid method combining the generation
and selection processes. Our method leverages Multi-Task Learning, combining the tasks of
clarification need classification and the generation of the clarifying question to simultaneously
determine when the initial user’s query necessitates a clarifying question and to generate a set of
clarifying questions based on the user’s initial query and conversation history. A selection model
is used to select the relevant questions from a question pool. To rank the candidate clarifying
questions obtained from both the selection and generation approaches, the questions are scored
using a text generation model for question classification. By using both the generation and
selection approaches, our proposed method is able to generate a comprehensive set of questions
while still ensuring that the selected question is relevant to the user’s queries. Our results on
the TREC CAsT 2022 datasets demonstrate the effectiveness of our proposed method, which
significantly outperforms existing strong baselines with improvements at P@1 by up to 20% on
the relevance criteria and 30% on the novelty criteria.

Finally, to effectively address our second challenge of retrieving relevant passages from a
large collection of documents and extracting the answers, we propose monoQA, which uses a
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text generation model with Multi-Task Learning for both the reranker and reader. Our model,
which is based on the T5 text generation model, is fine-tuned simultaneously for both reranking
(in order to improve the precision of the top retrieved passages) and extracting the answer. Our
results on the OR-QuAC and OR-CoQA datasets demonstrate the effectiveness of our proposed
model, which significantly outperforms existing strong baselines with improvements ranging
from +12.31% to +19.51% in MAP and from +5.70% to +23.34% in F1 on all used test sets.

Overall, this thesis contributes an effective ORConvQA framework leveraging Multi-Task
Learning to address the challenges of resolving ambiguities in conversational questions and
retrieving relevant passages from a large collection of documents. Our proposed framework sig-
nificantly outperforms existing strong baselines on a variety of benchmark datasets, demonstrating
the effectiveness of MTL in improving the performance of ORConvQA models.

iii



Contents

Abstract i

Acknowledgements xv

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Origins of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Sparse Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Pre-trained Language Models (PLMs) . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Encoder-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Encoder-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Decoder-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Dense Retrieval & Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Cross-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Single Representation Bi-Encoder . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Multiple Representation Bi-Encoder . . . . . . . . . . . . . . . . . . . 29

2.5 PyTerrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Hybrid Sparse and Dense Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Classical IR Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 Learning Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.2 MTL Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.2.1 Optimisation Strategy Methods in MTL . . . . . . . . . . . 38
2.8.2.2 Parameter Sharing in MTL . . . . . . . . . . . . . . . . . . 41

iv



2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Related Work 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Conversational Question Answering (ConvQA) . . . . . . . . . . . . . . . . . 46

3.2.1 ConvQA Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 ConvQA Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Evaluation of ConvQA Systems . . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Approaches for ConvQA . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Follow-up Question Identification (FID) . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 FID Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 FID Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Evaluation of FID Systems . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Approaches for FID . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conversational Question Rewriting (QR) . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 QR Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 QR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Evaluation of QR Approaches . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4 Approaches for QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Clarification Need Classification (CNC) . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 CNC Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Dataset for CNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.3 Evaluation CNC Approaches . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.4 Approaches for CNC . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Asking Clarifying Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.1 Asking Clarifying Questions Task Definition . . . . . . . . . . . . . . 62
3.6.2 Asking Clarifying Questions Datasets . . . . . . . . . . . . . . . . . . 63
3.6.3 Evaluation of Asking Clarifying Questions Approaches . . . . . . . . . 64
3.6.4 Approaches for Asking Clarifying Questions . . . . . . . . . . . . . . 64

3.7 Passage Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.1 Passage Retrieval Task Definition . . . . . . . . . . . . . . . . . . . . 66
3.7.2 Passage Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 Evaluation of Passage Retrieval Approaches . . . . . . . . . . . . . . . 73
3.7.4 Approaches for Passage Retrieval . . . . . . . . . . . . . . . . . . . . 73

3.8 Passage Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.1 Passage Reranking Task Definition . . . . . . . . . . . . . . . . . . . . 76
3.8.2 Approaches for Passage Reranking . . . . . . . . . . . . . . . . . . . . 76

3.9 Multi-Task Learning in ORConvQA . . . . . . . . . . . . . . . . . . . . . . . 77
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



4 ORConvQA Framework 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Our Proposed ORConvQA Methods . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Task Combination for MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Answer Extraction and Follow-up Question Identification . . . . . . . 93
4.4.2 Question Rewriting and Follow-up Question Identification . . . . . . . 94
4.4.3 Clarification Need Identification and Clarifying Question Generation . 96
4.4.4 Passage Reranking and Answer Extraction . . . . . . . . . . . . . . . 98
4.4.5 Question Rewriting, Passage Retriever, and Answer Extraction . . . . . 100

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 MTL of Answer Extraction and its Auxiliary Tasks 102
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 The BERT ConvQA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.3 BERT Encoder Features . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.4 Answer Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.5 Auxiliary Task Prediction . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Multi-Task Learning for ConvQA . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Static MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Dynamic MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.3 Hybrid Task Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.5 Hyper-parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.1 RQ 5.1: Effectiveness and Efficiency of the MTL Methods . . . . . . . 114
5.5.2 RQ 5.2: Combination of Auxiliary Tasks vs. Single-Task Learning . . . 116
5.5.3 RQ 5.3: Our ORConvQA1:dynamicMT L hybrid MTL Method Performances

on The Auxiliary Tasks? . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



6 Multi-Task Learning of Question Rewriting and Follow-up Question Identification120
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 A MTL Model for Classification and Question Rewriting . . . . . . . . . . . . 122

6.2.1 Task Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Models Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.3 Baselines and Implementation Details . . . . . . . . . . . . . . . . . . 126

6.4 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.1 RQ 6.1: Effectiveness on Follow-up Question Identification Task . . . . 128
6.4.2 RQ 6.2: Effectiveness on Conversational Question Rewriting Task . . . 129
6.4.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Multi-Task Learning of Clarification Need Identification and Clarifying Question
Generation 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Generating and Selecting Clarifying Questions . . . . . . . . . . . . . . . . . 137

7.2.1 Task Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.2 Models Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.3.1 T5MI: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.3.2 T5Ranking: . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.3 Experimental Implementations . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4.1 RQ 7.1: Identifying Clarification Needs . . . . . . . . . . . . . . . . . 150
7.4.2 RQ 7.2: Quality of Clarifying Questions . . . . . . . . . . . . . . . . . 151
7.4.3 RQ 7.3: Rewriting the Current Utterance . . . . . . . . . . . . . . . . 153
7.4.4 RQ 7.4: Effectiveness on Conversational Search . . . . . . . . . . . . 154
7.4.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4.6 User Feedback Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vii



8 monoQA: Multi-Task Learning of Reranking and Answer Extraction 160
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.2 Three-Stage Pipeline for an ORConvQA System . . . . . . . . . . . . . . . . . 163

8.2.1 Task Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2.2 Models Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2.2.1 ConvDR: Conversation Question Rewriting & Retriever . . . 165
8.2.2.2 monoQA: Reranker & Generative Reader . . . . . . . . . . . 166

8.2.3 monoQA Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.2 Baselines and Implementation Details . . . . . . . . . . . . . . . . . . 170

8.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.1 RQ 8.1: Selecting the Best Model . . . . . . . . . . . . . . . . . . . . 171
8.4.2 RQ 8.2: Prompt-based Learning . . . . . . . . . . . . . . . . . . . . . 172
8.4.3 RQ 8.3: Model Initialisation . . . . . . . . . . . . . . . . . . . . . . . 174
8.4.4 RQ 8.4: Effectiveness of monoQA . . . . . . . . . . . . . . . . . . . . 174
8.4.5 RQ 8.5: Effectiveness of using a Reranker . . . . . . . . . . . . . . . . 176
8.4.6 Efficiency of monoQA . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.4.7 Effect of Providing Ground Truth Passages . . . . . . . . . . . . . . . 177

8.5 Multi-Task Learning of Conversational Question Rewriting, Passage Retrieval,
and Answer Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5.1 Multi-Task Learning for Three Tasks . . . . . . . . . . . . . . . . . . 178
8.5.2 RQ 8.6: Effectiveness of MTL for Three Tasks . . . . . . . . . . . . . 178

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9 Conclusions and Future Works 181
9.1 Contributions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.2 Integration of ORConvQA Methods into a Unified System . . . . . . . . . . . 187
9.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.4 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

viii



List of Tables

2.1 Comparison of pre-trained transformer model parameter sizes (Casola et al. 2022). 23
2.2 PyTerrier operators for combining transformers. Table taken from (Macdonald &

Tonellotto 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 An example dialog from the ConvQA dataset. . . . . . . . . . . . . . . . . . . 47
3.2 Distribution of Instances in the ClariQ Dataset for Clarification Need Classification. 61
3.3 Clarification Need Prediction on the ConvAI3 leaderboard. . . . . . . . . . . . 61
3.4 Summary of Datasets for Open-Retrieval Conversational Question Answering . 72
3.5 A summary of models and their approaches used in Open-Retrieval Conversa-

tional Question Answering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Notations used in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Summary of the different components used in our ORConvQA framework. . . 88
4.3 Task combination overview for Open-Retrieval Conversational Question Answering. 92

5.1 Notations used in Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 An example dialog from the ConvQA dataset. . . . . . . . . . . . . . . . . . . 107
5.3 Statistics of the QuAC datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Effectiveness of various task-weighting methods for Conversational Question

Answering (ConvQA). † denotes a result statistically different from that of our
proposed Hybrid Task Weighting model (McNemar’s test, p < 0.05); ‡ denotes
a significant improvement over the STL baseline. The highest value for each
measure (row) is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Efficiency of different MTL methods. The highest value for each training and
evaluating phase is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Comparison of different combinations of auxiliary tasks. † denotes a statistically
significant improvement over STL with p < 0.05 using the McNemar’s test. The
highest value for each measure is highlighted. . . . . . . . . . . . . . . . . . . 116

5.7 Evaluation results of the auxiliary tasks on different MTL methods. † denotes
statistically significant differences between the STL model and the indicated
model (McNemar’s test, p < 0.05). The highest value for each auxiliary task is
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ix



6.1 Notations used in Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Statistics of the used datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Results for Follow-up Question Identification. † denotes a performance signif-

icantly worse than the MTL BART (McNemar’s test, p < 0.05); ‡ denotes a
performance significantly worse than the MTL T5 (McNemar’s test, p < 0.05).
3-way AP denotes the Three-Way Attentive Pooling. (dis), (gen), and (dis+gen)
denote the discriminative, generative, and discriminative+generative models,
respectively (see Section 6.2). The highest value for each measure is highlighted. 127

6.4 Comparison between the MTL models and the query rewriting baselines. †
denotes a performance that is significantly worse than the MTL BART model
(paired t-test, p < 0.05); ‡ denotes a performance that is significantly worse than
the MTL T5 model (paired t-test, p < 0.05). 3-way AP denotes the Three-Way
Attentive Pooling. (gen) and (dis+gen) denote the generative, and discrimina-
tive+generative models, respectively (see Section 6.2). The highest value for
each measure is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Notations used in Chapter 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 The input-output of each component of our overall hybrid method. . . . . . . . 140
7.3 Statistics of the used datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4 List of baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5 Accuracy of our Multi-Task Learning T5MI model for Clarification Need Clas-

sification (ClariQ test set) compared to Single-Task Learning systems on the
ConvAI3 leaderboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6 Evaluation results on TREC CAsT 2022 compared to the baselines. ⋆, †, and ‡ de-
note a performance that is significantly different compared to our hybrid method
for generating and selecting clarifying questions (T5MI+GTR+T5Ranking), (m)
Selection only baseline, and (n) Generation only baseline (paired t-test, p < 0.05),
respectively; The highest value for each measure is highlighted. . . . . . . . . 151

7.7 Effectiveness of different input sequences for rewriting the current user utterance
uk using the T5QR model. † denotes a performance that is significantly worse
than the input sequence Hk;ck;uk_2;uk (paired t-test, p < 0.05); The highest value
for each measure is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.8 Evaluation results on TREC CAsT 2022 compared to the baselines. ⋆ de-
notes a performance that is significantly different compared to our proposed
ORConvQA3:CNC+Askng method (paired t-test, p < 0.05); The highest value for
each measure is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.1 Notations used in Chapter 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2 Statistics of the used datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

x



8.3 List of baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.4 Effectiveness of various prompts for training monoQA. . . . . . . . . . . . . . 173
8.5 Effectiveness of various initialisations for training monoQA. † and ‡ denote a

performance significantly worse than the model initialised using monoT5 and
t5-base, respectively (McNemar’s test, p < 0.05). . . . . . . . . . . . . . . 174

8.6 Evaluation results on OR-QuAC and OR-CoQA compared to the baselines. † de-
notes a performance significantly worse than our proposed ORConvQA4:Reranker+Reader

(ConvDR+monoQA) method in terms of word-level F1 (McNemar’s test, p <

0.05); ‡ denotes a performance significantly worse than our proposed monoQA
model in terms of MAP@10, Recall@5, and MRR@5 (paired t-test, p < 0.05);
The highest value for each measure is highlighted. . . . . . . . . . . . . . . . . 175

8.7 Comparison of average prediction times for monoQA and separate applications
of monoT5 and UnifiedQA on the OR-QuAC test set. . . . . . . . . . . . . . . 176

8.8 Evaluation results on OR-QuAC in comparison to the baselines by extracting the
answer on the ground truth passage. † denotes a performance significantly worse
than our proposed monoQA model in terms of word-level F1 (McNemar’s test,
p < 0.05). The highest value for each measure is highlighted. . . . . . . . . . . 177

8.9 Evaluation results on OR-QuAC compared to the baselines. † denotes a perfor-
mance significantly different compared to our proposed ORConvQA5:MT L3Tasks

method in terms of MAP@10, Recall@5, and MRR@5 (paired t-test, p <

0.05); ‡ denotes a performance significantly different compared to our pro-
posed ORConvQA5:MT L3Tasks method in terms of word-level F1 (McNemar’s test,
p < 0.05); The highest value for each measure is highlighted. . . . . . . . . . . 178

xi



List of Figures

1.1 An example dialogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The original transformer architecture introduced in Vaswani et al. (2017) is based
on the Encoder-Decoder architecture. . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Comparison of dense retrieval model architectures (Zhang et al. 2022). . . . . . 24
2.3 Structure of the monoT5 re-ranking model (Zhuang et al. 2022). . . . . . . . . 25
2.4 ANCE Asynchronous Training. Figure taken from (Xiong et al. 2020). . . . . . 27
2.5 The process of distilling dense representations for ranking involves a close

integration between the teacher and student models. Figure taken from (Lin et al.
2021b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Architecture of Generalisable T5-based dense Retrievers. Figure taken from (Ni
et al. 2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Schematic diagram of ColBERT, a late interaction paradigm. Figure taken
from (Khattab & Zaharia 2020). . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Hybrid of sparse and dense retrieval. Figure taken from (Wang, MacAvaney,
Macdonald & Ounis 2021a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 Comparison of Multi-Task Learning (MTL) and Other Learning Paradigms.
Figure adapted from (Zhang & Yang 2021). . . . . . . . . . . . . . . . . . . . 36

2.10 Dynamic Evolving Weighting approaches, Figure adapted from (Belharbi et al.
2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 Comparison of Hard and Soft Parameter Sharing in Multi-Task Learning (Ruder
2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 An architecture of the HAM model. Figure taken from (Qu, Yang, Qiu, Zhang,
Chen, Croft & Iyyer 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 An example of dialogue and candidate follow-up questions in the follow-up
question identification task (Kundu et al. 2020). . . . . . . . . . . . . . . . . . 51

3.3 An illustrative example of dialogue (Elgohary et al. 2019, Kundu et al. 2020). . 52
3.4 A binary confusion matrix illustrating systematic and traditional notations. The

green and red colours represent correct rates/counts and incorrect rates/counts in
the confusion matrix, respectively. Figure adapted from (Powers 2020). . . . . 52

xii



3.5 Architecture of the three-way attentive pooling network. Figure taken from (Kundu
et al. 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 An example of dialogue from the conversational question rewriting task (Elgohary
et al. 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Architecture of the sequence-to-sequence model for the conversational question
rewriting task. Figure inspired by (Lin, Yang, Nogueira, Tsai, Wang & Lin 2020a). 58

3.8 Examples of the need for clarification questions: (a) depicts a clear user question
that requires no further clarification; (b) and (c) present scenarios where the user’s
questions are ambiguous, necessitating a clarifying question from the system.
Figure taken from (Aliannejadi et al. 2021). . . . . . . . . . . . . . . . . . . . 60

3.9 A system overview of Roberta+++ by TAL ML. Figure taken from (Li et al. 2020). 62
3.10 An example of dialogue from the conversational question rewriting task (Elgohary

et al. 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 An example of the passage retrieval task for ORConvQA . . . . . . . . . . . . 66
3.12 Example of a CAsT 2022 dialogue tree with 1 main topic, 3 sub-topics, and 5

user utterances. Figure inspired by (Owoicho et al. 2022). . . . . . . . . . . . . 68
3.13 An example dialog and relevant passages from the ORConvQA dataset (Qu et al.

2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.14 Framework of the ConvDR model. Figure taken from (Yu et al. 2021). . . . . . 74
3.15 Architecture of the end-to-end ORConvQA model. Figure taken from (Qu et al.

2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.16 An example of the passage reranking task for ORConvQA . . . . . . . . . . . 76
3.17 Overview of reranker and extractive reader. . . . . . . . . . . . . . . . . . . . 78

4.1 An overview of our proposed framework. . . . . . . . . . . . . . . . . . . . . 83
4.2 Task combination overview for Open-Retrieval Conversational Question Answer-

ing. The numbers indicate the corresponding chapters for each combination task.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 The model architecture of the MTL model for answer extraction and follow-up
question identification tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 A generative model prediction by generating the first token for a classification
task and the follow-up tokens for a questing rewriting task. . . . . . . . . . . . 95

4.5 Example of output from MT L(FID,QR). . . . . . . . . . . . . . . . . . . . . 95
4.6 MTL of clarification need classification and clarifying question generation. . . 97
4.7 Overview of (a) reranker and extractive reader and (b) reranker and generative

reader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 The model architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Dynamic Evolving Weighting approaches. . . . . . . . . . . . . . . . . . . . . 109

xiii



6.1 A schematic comparison for MTL models for (a) a discriminative+generative
model prediction by applying a CLS head to create a score for a classification
task and an LM head to generate the tokens for a Question Rewriting task (see
Section 3.4.4) and (b) a generative model prediction by generating the first token
for a classification task and the follow-up tokens for a questing rewriting task. . 123

6.2 Comparison of question rewriting models. . . . . . . . . . . . . . . . . . . . . 131
6.3 Examples of dialogue differences in NDCG for queries in the OR-QuAC query

set. (a) a higher NDCG for MTL T5 wrt STL T5 (b) a higher NDCG for STL T5
wrt MTL T5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 The overall framework of our Mixed-Initiative Conversational Search system. . 138
7.2 T5MI: MTL of clarification need classification and clarifying question generation.142
7.3 Example of a CAsT 2022 dialogue tree with 1 main topic, 3 sub-topics, and 5

user utterances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4 Example of evaluating clarifying questions based on levels of relevance, novelty,

and diversity (0-3) (Owoicho et al. 2022). . . . . . . . . . . . . . . . . . . . . 148
7.5 Comparison of Sentiment Analysis Results on different asking clarifying ques-

tions approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1 The overall framework of our ORConvQA system (consisting of ConvDR &
monoQA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2 An example dialog and relevant passages from the ORConvQA dataset (Qu et al.
2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3 The validation scores of (a) the loss, (b) the relevance accuracy, and (c) the
word-level F1, for each validation step (epochs). • denotes the best number of
epoch of each score. The best number of epochs of the model on loss, relevance
accuracy, and word-level F1 scores, are 4, 6, and 9, respectively. . . . . . . . . 172

8.4 Results on the test set of the OR-QuAC dataset in terms of (a) MAP@10, Re-
call@5, and MRR@5, (b) word-level F1 and HEQ-Q, and (c) HEQ-D, of the
models at epochs 4, 6, and 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.1 A hypothetical end-to-end system for ORConvQA, integrating three proposed
MTL methods: ORConvQA2:FID+QR, ORConvQA3:CNC+Asking, ORConvQA4:Reranker+Reader.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xiv



Acknowledgements

I arrived in Glasgow over four years ago and still remember joining the Terrier team for
their Christmas away day just the day after. The excitement of meeting IR professionals, my
supervisors, and what would soon become a new group of friends is still fresh in my memory.
Reflecting on these past four years, I want to express my deepest gratitude to several individuals
who have provided immense support throughout my PhD.

First, I would like to express my sincere thanks to my supervisors, Iadh Ounis and Craig Mac-
donald, for their patience, enthusiasm, guidance, support, and encouragement. Their mentorship
has been essential not only in my PhD research but also in my personal life, especially during the
challenging times of the COVID-19 pandemic. Their assistance and understanding have been
important in helping me navigate both my academic journey and the difficulties posed by the
pandemic. Without their help, this work would not have been possible. I am deeply appreciative
of their commitment and the important role they have played in my growth as a researcher and
individual.

I am also grateful to my friends and colleagues at the Terrier team and the School of Com-
puting Science, including Xiao Wang, Thomas Benedikt Janich, Sean Macavaney, Zixuan Yi,
Zeyuan Meng, Graham McDonald, Richard McCreadie, Jeff Dalton, Siwei Liu, Yashon Wu,
Javier Sanz-Cruzado Puig, Aleksandr Petrov, and many others. They have been very helpful and
shared a lot of knowledge. Working with them has been a pleasure.

I owe a profound debt of gratitude to my mother, Thanom Kongyoung, whose unwavering
love and support have been the cornerstone of my ability to complete this work. Despite being
alone in Thailand throughout my PhD, and with my visits home being an impossibility for
nearly four years, her strength and resilience have been a constant source of inspiration. Her
enduring support has been my anchor during challenging times, and I am deeply appreciative of
the sacrifices she has made, which have been instrumental in helping me persevere through this
journey.

Last but not least, I hold a special place in my heart for my beloved cats - Mocca, Latte,
Cappuccino, and Kope. To Latte, Cappuccino, and Kope, who are no longer with me, I deeply
regret not being there in your final moments. Your memory remains a cherished part of my life.
And to Mocca, I miss you immensely and look forward to the day when we can be together again.

xv



Chapter 1

Introduction

1.1 Introduction

Information seeking is an important part of our daily lives, as we continually seek knowledge
and answers to our information needs. Traditional search engines have been the go-to tool
for information retrieval, where users input specific query text and retrieve a list of relevant
documents or web pages. However, this interaction paradigm does not fully capture the natural
and interactive nature of human information seeking (Zamani et al. 2022).

Conversational Question Answering (QA) has emerged as an exciting subfield within the
realm of conversational search, which aims to bridge the gap between humans and machines by
simulating natural dialogue interactions. Unlike conventional search engines, Conversational QA
systems enable users to engage in conversation-like exchanges to obtain the desired information.
By emulating human conversational patterns, these systems offer a more intuitive and user-
friendly approach to information retrieval. For example, instead of submitting a search query
like "Famous scientists" to a search engine, users can engage with a conversational system by
asking questions such as "Who are some famous scientists?" and continue the conversation with
follow-up enquiries like "What are their notable discoveries?" or "How did they contribute to
their fields?" based on the system’s previous responses. This conversational paradigm allows
users to interact naturally, as if they were engaging in a dialogue with a knowledgeable person.
The shift towards conversational information seeking is driven by the desire to enhance user
experiences and to facilitate more effective and efficient access to knowledge (Zamani et al.
2022). By harnessing natural language understanding and dialogue techniques, Conversational
QA systems aim to provide informative and contextually relevant responses that cater to the users’
information needs.

The task of a Conversational QA system (Rajpurkar et al. 2018, 2016) is to effectively answer
a user’s questions by resolving any ambiguities that may arise from the posed questions based
on the conversation history with the user (Choi et al. 2018, Reddy et al. 2019). This means that
the system must not only consider the question being asked but it should also take into account
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the conversation context to provide relevant and accurate responses (Kundu et al. 2020, Qu et al.
2020, Qu, Yang, Qiu, Croft, Zhang & Iyyer 2019, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer
2019). Unlike traditional QA systems that work on a single-turn basis and require a clear and
unambiguous question to return an answer, Conversational QA systems must be able to interpret
and respond to questions in the context of the ongoing conversation. This makes the task more
challenging, as the system must not only identify the information being sought but needs to also
identify the user’s intent and the background knowledge that the user has (Krasakis et al. 2020).

Open-Retrieval Conversational Question Answering (ORConvQA) is a challenging variant
of the Conversational QA task due to the additional step of retrieving relevant passages from a
large collection of documents before extracting the required answers (Qu et al. 2021, 2020). The
complexity arises from the necessity of effectively searching and retrieving the most relevant
information, making ORConvQA a demanding and intricate task. ORConvQA has various
applications in domains such as education, healthcare, and customer support. For example, in
healthcare, an ORConvQA system could be used to retrieve relevant medical research articles
to assist doctors in making informed decisions. In education, an ORConvQA system could
be used as a virtual assistant to answer the students’ questions related to a particular topic. In
customer support, an ORConvQA system could be used to retrieve relevant documents related to
a customer’s query, such as product manuals or user guides, so as to provide a more personalised
and effective support experience. The ORConvQA system must identify the most relevant
documents based on the conversation history and retrieve the passages that contain the most
relevant information for answering the question.

To accomplish the ORConvQA task, the system must first understand the question based on
the given conversational history (Qu et al. 2020). This requires the ORConvQA system to analyse
the entire conversation and to interpret the user’s intent to determine what information they are
seeking. Once the ORConvQA system has a clear understanding of the question, it must retrieve
the most relevant documents from a large collection of texts. This is typically done by applying a
retrieval model that can rank the documents based on their relevance to the question.

After the relevant documents have been identified, the system must then extract the relevant
passages that contain the information required to answer the question. This requires the system
to analyse each document and to identify the most informative and relevant passages. The system
may use various techniques to extract relevant passages, such as natural language processing,
machine learning models, or information retrieval (Izacard & Grave 2021, Jiang et al. 2022a, Lee
et al. 2022a, Qu et al. 2021, 2020, Wen et al. 2022).

In recent years, Multi-Task Learning (MTL) has emerged as a promising approach to improve
the performance of machine learning systems by allowing them to learn multiple related tasks
simultaneously. In the context of ORConvQA, MTL can be used to jointly optimise multiple
objectives, such as conversational question answering, conversational question rewriting, passage
retrieval, and passage reranking, leading to more effective and efficient ORConvQA systems.
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This thesis explores the application of MTL techniques to improve the performance of
ORConvQA systems. In particular, it investigates the benefits of jointly optimising multiple
related tasks in ORConvQA, such as conversational question answering, conversational question
rewriting, passage retrieval, and passage reranking, and explores various architectures and
training strategies for MTL. Furthermore, the thesis also explores the effectiveness of transfer
learning in ORConvQA, where a pre-trained model is used as a starting point for training
ORConvQA systems. The use of pre-trained models can markedly reduce the amount of data
required for training and improve the performance of ORConvQA systems. Overall, this thesis
aims to investigate the potential of MTL and transfer learning in improving the performance
of ORConvQA systems and proposes novel architectures and training strategies for effective
ORConvQA. The thesis provides valuable insights into the development of more efficient and
accurate open-retrieval conversational search systems.

1.2 Motivations

Open-Retrieval Conversational Question Answering (ORConvQA) is a Conversational Search
task, where the passages need to be retrieved from a large collection of documents instead of
being given as in a traditional Conversational Question Answering (ConvQA) (Choi et al. 2018,
Reddy et al. 2019) task, before extracting the required answers. In order to effectively answer
the user’s questions, an ORConvQA system needs to understand the user’s question based on a
given conversational history, retrieve the relevant documents from a text collection, calculate the
relevance score, and extract an answer from the retrieved passages.

Figure 1.1: An example dialogue.

One of the challenges of the ORConvQA task is that the system needs to correctly interpret a
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question in the context of the previous conversation. Figure 1.1 illustrates how typical dialogues
in conversational systems can lead to various ambiguities. For example, the user’s utterance U2
highlights the importance of the conversation context in resolving potential ambiguities. Indeed,
without knowing the specific city the user is referring to from the previous user utterance U1,
the system cannot provide the correct answer. However, by analysing the entire conversation
history, including the user’s initial question and the subsequent responses (which also serve as the
returned answers/passages), the system can better understand the user’s needs and preferences
and provide more accurate and helpful answers. These ambiguities can arise from different
factors such as the user’s unclear intent, use of ambiguous language, or incomplete information
such as in the case of the user’s utterance U1. Identifying and resolving these ambiguities is a
critical challenge in developing effective conversational systems for tasks such as Open-Retrieval
Conversational Question Answering (ORConvQA). To address the ambiguity of conversational
questions, previous works in ORConvQA have explored various techniques as follows:

1. Conversational Question Rewriting (Lin, Yang, Nogueira, Tsai, Wang & Lin 2020a,
Mele et al. 2021, Ren et al. 2018, Vakulenko, Longpre, Tu & Anantha 2021, Vakulenko,
Voskarides, Tu & Longpre 2021, Voskarides et al. 2020, Yu et al. 2020) approaches are
employed in ORConvQA to enhance the accuracy of the retrieved information by refining
the user’s original question. These techniques usually involve modifying the original
question or generating new queries that better represent the user’s intent by transforming a
concise conversational question into a fully-grown, de-contextualised ad-hoc query. (Lin,
Yang, Nogueira, Tsai, Wang & Lin 2020a, Mele et al. 2021, Ren et al. 2018, Vakulenko,
Longpre, Tu & Anantha 2021, Vakulenko, Voskarides, Tu & Longpre 2021, Voskarides
et al. 2020, Yu et al. 2020). For instance, existing work (Lin, Yang, Nogueira, Tsai, Wang
& Lin 2020a) has fine-tuned a Text-to-Text Transfer Transformer (T5) to automatically
reformulate the question by injecting information that exists in the conversation’s context
into a fully defined query. Figure 1.1 illustrates how the user’s original utterance U2,
"Hmm, I’m not sure. I’m interested in exploring the city and getting a feel for the local
culture," can be reformulated into U ′2 by resolving the term "city" to refer specifically to
"Glasgow" (from U1).

2. Follow-up Question Identification (Bertomeu et al. 2006, Kirschner & Bernardi 2007,
2009, Kundu et al. 2020) is another approach used in ORConvQA to better understand the
user’s intent and context. The idea is to identify whether a follow-up question is related to
the previous conversation history with the user or not. If the follow-up question is related to
the previous conversation, the system can use the conversation’s context to generate more
accurate responses. As shown in Figure 1.1, the user’s utterance U2 response to the system
response S1 is a follow-up question related to the previous conversation using the user’s
utterance U1, as they are seeking recommendations for things to do in Glasgow. Therefore,
the system can use the context of the previous conversation to generate relevant responses
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for U2. However, when the user’s utterance U3 asks about historical landmarks, it is not
directly related to U2’s previous response S2 about exploring the local culture. In this
case, follow-up question identification can help the system to identify that U3’s question is
not related to the previous conversation and that a new context has been established. The
system can then use only U1 as a context to better understand U3’s intent and provide
more accurate recommendations based on their specific request for historical landmarks.
By doing this, previous works (Bertomeu et al. 2006, Kirschner & Bernardi 2007, 2009,
Kundu et al. 2020) proposed to identify whether the follow-up question is related to the
conversation history with the user.

3. Asking Clarifying Questions (Aliannejadi et al. 2021, 2019) is an approach used in
ORConvQA to gather more information about the user’s intent and context, particularly
when the user’s question is ambiguous or unclear. When the system is unsure about the
user’s question or needs more information to provide a relevant response, it can ask clari-
fying questions to better understand the user’s intent and preferences. As exemplified in
Figure 1.1, the user’s utterance U1 is ambiguous and does not provide clear information
on their interests. The system uses a clarifying question by asking S1 to gather more
information. The user then clarifies their interests (U2) in exploring the city and getting
a feel for the local culture. By doing so, the system can provide a more accurate answer
that aligns with U1’s interests and preferences. Existing approaches for asking clarifica-
tion questions consist of selecting clarification questions from a pool of pre-determined
questions (Aliannejadi et al. 2021, 2019, Mass et al. 2021, Ou & Lin 2020) or generating
clarification questions using rules or using text-generation models (Zamani et al. 2020). In
particular, as introduced by Aliannejadi et al. (2021), the task of asking clarifying questions
in conversational search can be broken down into two subtasks: determining when to ask
clarifying questions (Clarification Need Classification) and how to generate them (Asking

Clarifying Questions).

These techniques can be used together to improve the accuracy and relevance of the system’s
responses to conversational questions. For example, in Figure 1.1, the system could use follow-up
question identification techniques to identify that U3’s question is related to historical landmarks
and not to explore the local culture as in U2. Therefore, using only U1 as context, the system
could then employ query reformulation techniques to better understand U3’s interests in historical
landmarks and to provide more relevant responses. By reformulating U3’s question, the system
can refine its understanding of the user’s intent and tailor its responses to offer more accurate
answers. We argue that by integrating the Follow-up Question Identification and Conversational
Question Rewriting tasks, we aim to develop a more effective ORConvQA system. This integrated
approach ensures the system not only understands but also adapts to the user’s conversation
history, effectively resolving ambiguities and enhancing response quality. In addition, consider
a user who asks in U1, "I’m thinking of visiting Glasgow, what should I do while I’m there?"
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without specifying types of interests. The Clarification Need Classification could detect the
vagueness of the request. The system would then activate the Asking Clarifying Questions
mechanism to ask in S1, "Can you give me an idea of your interests, such as art, history, or
outdoor activities?" This interactive method refines the user’s query and enhances the relevancy
and precision of the system’s responses. By integrating the Clarification Need Classification
and Asking Clarifying Questions tasks, we aim to develop a conversational system that not only
addresses user ambiguities but also enhances the interaction quality, making it more dynamic and
user-focused. This approach is important for developing ORConvQA systems that can handle
real-world conversational complexities effectively.

Another challenge in ORConvQA is to retrieve relevant passages from a large collection of
documents, identify the most relevant ones based on the conversation context, and extract answers
from the relevant passages. However, this process is further complicated by the need to retrieve
these relevant passages from a large collection of documents – for instance, the OR-QuAC (Qu
et al. 2020) dataset used in recent studies contains over 11 million passages. Given the complexity
and variability of natural language, it is difficult to identify relevant information using traditional
keyword-based search algorithms, making it a difficult computational challenge to accurately
identify the most relevant passages for a given question. As exemplified in Figure 1.1, to respond
to the user’s utterance U3 "Hmm, I’m not sure. I’m interested in exploring the city and getting a
feel for the local culture.", the system needs to identify and extract relevant information from a
different set of passages that are focused on historical landmarks in Glasgow, and provide the user
with accurate and informative answers. By accurately extracting information from the retrieved
passages, the system can provide a personalised and satisfying experience for the user. This
highlights the importance of developing effective methods for extracting relevant information
in ORConvQA, which is an open challenge in the field. In particular, a more effective retriever
improves the initial set of passages that the reranker processes and a precise reranker enhances
the quality of passages from which the reader extracts the answer. We argue that the combination
of these tasks in a unified workflow allows for a systematic approach to addressing ORConvQA
challenges. By improving each component —retrieval, reranking, and reading— we aim to
develop more effective systems that not only understand but also precisely respond to user’s
questions in conversational settings.

To address this challenge, previous works (Liang et al. 2022, Qu et al. 2021, 2020) have
adopted a three-stage architecture, including a retriever, a reranker, and a reader to extract the
answers. First, the retriever retrieves the top K relevant passages from the collection based on a
question and the conversation history. The reranker and the reader then respectively rerank and
identify an answer in the top K passages. For the retriever, existing works (Liang et al. 2022,
Qu et al. 2021, 2020, Xiong et al. 2020, Yu et al. 2021) have focused on using a bi-encoder
dense retrieval (a question encoder and a passage encoder e.g., convDR (Yu et al. 2021)), which
applies neural contextual language models, such as ALBERT (Lan et al. 2020) or BERT (Devlin
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et al. 2019), for encoding the question and passage into low-dimensional vectors and computing
their relevance scores. For example, Yu et al. (2021) proposed ConvDR, which encodes the
question and its history in a dense vector learned with a teacher-student model to mimic a dense
representation of the manually rewritten question. ConvDR has also been shown to outperform
other retriever models for conversational search such as sparse BM25, and bi-encoders using
ALBERT (Qu et al. 2020) or BERT (Karpukhin et al. 2020, Xiong et al. 2020). However, despite
the good effectiveness of bi-encoder dense retrievers for passage retrieval, there is still room
for improvement in the ORConvQA task. Moreover, to extract the answers, Choi et al. (2018)
introduce a main task, namely Answer Span prediction, which consists in answering a question
by extracting text spans from a given passage. In addition to this main task, they also introduce
several auxiliary tasks:

• Yes/No prediction: Determines whether the answer to a question is simply "yes" or "no."

• Follow-up prediction: Classifies whether the current question is a follow-up question.

• Unanswerable prediction: Recognises when a question cannot be answered based on the
information available in the given passage.

Indeed, we argue that by integrating these tasks, we aim to enhance each task’s effectiveness
and contribute to overall system performance. By leveraging the interconnections of these tasks,
our ConvQA system is designed to provide more accurate, relevant, and contextually appropriate
responses.

Therefore, in this thesis, we aim to adapt and extend the bi-encoder dense retriever for
ORConvQA by incorporating multi-task learning techniques. In particular, we propose a novel
multi-task learning framework that not only trains the answer extraction but also incorporates
auxiliary tasks such as passage retrieval and conversational question rewriting. By jointly
optimising these tasks, our framework aims to improve the retriever’s ability to identify relevant
passages for a given question in a conversational context, while simultaneously predicting the
answer for the question using the same model.

Indeed, Multi-Task Learning (MTL) has emerged as a promising solution to facilitate the
learning of multiple related tasks by sharing the learner structure in a single model. MTL has
gained considerable attention in recent years due to its effectiveness in addressing a diverse range
of complex problems within a unified model (Ide & Kawahara 2021, Qu et al. 2021, 2020, Qu,
Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Ruder 2017). This MTL approach enables the
model to leverage the shared knowledge and relationships among the tasks, leading to improved
performance and enhanced generalisation capabilities. By adopting MTL, we can effectively
address the challenges associated with learning multiple interconnected tasks, paving the way for
more robust and comprehensive models (Ruder 2017). The MTL methods can be categorised
into static or dynamic approaches. In the static MTL methods, the weights assigned to each
task remain unchanged throughout the training phase, which may divert training resources to
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unnecessary tasks. In contrast, in the dynamic MTL methods, the weights of each task are
adjusted automatically to balance the loss rate or to balance the weights across tasks. This
weight adjustment ensures that each of the tasks’ weights is adjusted according to their relative
importance, which can lead to better performance on all tasks.

1.3 Thesis Statement

The statement of this thesis is that the effectiveness of an ORConvQA system can be improved
by leveraging a Multi-Task Learning method that jointly learns numerous different but related
tasks at the same time in a uniform model. In particular, in the dynamic MTL approaches, the
tasks’ weights are automatically adjusted during learning, ensuring that each of the tasks’ weights
is adjusted by the relative importance of the different tasks. To accomplish our research objectives,
we identify five areas of investigation in our thesis:

1. We propose a dynamic Multi-Task Learning approach that simultaneously trains the main
task of answer extraction, along with auxiliary tasks such as follow-up question identifi-
cation, yes/no question prediction, and unanswerable prediction. By incorporating these
tasks into a unified model, we aim to enhance the system’s effectiveness for Conversational
Question Answering.

2. We explore the use of Multi-Task Learning to improve the performance of follow-up
question identification and conversational question rewriting. By leveraging the shared
learned structure of these tasks in a text generation model, we aim to enhance the system’s
effectiveness in follow-up question identification, conversational question rewriting and
passage retrieval.

3. We investigate how Multi-Task Learning can be used to generate more effective clarifying
questions by jointly learning clarification need classification and clarifying question gener-
ation. The proposed method aims to enhance the quality and relevance of the clarifying
questions, thereby improving their effectiveness in assisting users and providing more
precise and relevant responses.

4. We also propose to leverage Multi-Task Learning to enhance the performance of the
Open-Retrieval Conversational Question Answering task by sharing the learned structure
of the reranker and reader in a single text generation model. This approach aims to
improve the system’s effectiveness of retrieving relevant passages and extracting answers
in ORConvQA.

5. We introduce a dynamic Multi-Task Learning approach that can jointly learn conversational
question rewriting, passage retrieval, and answer extraction in a unified model. Our
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hypothesis is that it’s possible to enhance the overall effectiveness of Open-Retrieval
Conversational Question Answering.

Through our research in these five areas, we aim to advance the field of Conversational
Question Answering and Open-Retrieval Conversational Question Answering by developing
novel Multi-Task Learning methodologies that improve the system’s effectiveness and provide
more relevant responses to the user’s questions.

1.4 Contributions

The contribution of this thesis is six-fold:

1. In Chapter 4, we introduced our proposed Open-Retrieval Conversational Question Answer-
ing (ORConvQA) framework, consisting of four different methods (ORConvQA1−5), which
aim to bridge the gaps in existing ORConvQA research and improve the performance of
ORConvQA system. All four ORConvQA methods leverage MTL to jointly learn multiple
related tasks. MTL helps to improve the overall performance of the systems, as each task
can help to inform the other tasks.

2. In Chapter 5, we study the effectiveness and efficiency of dynamic MTL methods including
Evolving Weighting, Uncertainty Weighting, and Loss-Balanced Task Weighting, compared
to static MTL methods such as the uniform weighting of tasks. We also propose a
novel hybrid dynamic method that combines Abridged Linear with Loss-Balanced Task
Weighting (LBTW) for auxiliary tasks, allowing the automatic fine-tuning of task weighting
during learning. This approach ensures that the task weights are adjusted based on their
relative importance, improving overall performance. Specifically:

• We leverage dynamic Multi-Task Learning with BERT to effectively address the
task of learning Answer Span extraction with its auxiliary tasks including Yes/No
prediction, Follow-up Question Identification, and Unanswerable prediction.

• To further enhance the performance of Multi-Task Learning, we introduce a hybrid
strategy, which automatically fine-tunes the multiple tasks’ weights along the learning
steps. Our method uses Abridged Linear for the primary task and Loss-Balanced Task
Weighting for the auxiliary tasks.

• The proposed hybrid method yields the best performance improvements over the
baselines on the QuAC dataset.

3. In Chapter 6, we explore the potential of Multi-Task Learning (MTL) to enhance the
performance of the conversational question rewriting and classification tasks by leveraging
their shared learned structure. In particular, we propose a novel approach to employing text
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generation models (BART and T5). Our models are trained using MTL to simultaneously
rewrite conversational questions and identify follow-up questions. This approach has the
potential to improve the overall performance of both tasks and achieves better results than
traditional approaches that treat them as separate tasks. Specifically:

• We leverage Multi-Task Learning with a text generation model to effectively address
the tasks of follow-up question identification and conversational question rewriting.

• Using the recent LIF dataset (Kundu et al. 2020), we compare our models to two
recent baselines from the literature, and show that our Multi-Task Learning BART
model yields the best F1 and Macro-F1 performance improvements over the strongest
baseline, namely the three-way attentive pooling (Kundu et al. 2020).

• The proposed Multi-Task Learning T5 model significantly outperforms the single-task
learning of question rewriting models for passage retrieval on the OR-QuAC test set.

4. In Chapter 7, we leverage Multi-Task Learning by combining the tasks of clarification need
classification and generation for asking clarifying questions. In particular, we propose a
novel hybrid method that combines both generation and selection processes to generate
clarifying questions in a conversational setting. By integrating both the generation and
selection approaches, we can produce a better set of questions and ensure that the selected
question is relevant to the user’s query. Specifically:

• We leverage Multi-Task Learning (MTL) with a single text generation T5 model that
jointly learns both a classifier for clarification need and the generation of clarifying
questions to effectively generate the clarifying questions.

• We introduce a hybrid method for generating and selecting clarifying questions. Our
method generates clarifying questions using generative models and selects clarifying
questions from a pool of pre-determined questions to effectively address the task of
asking clarifying questions.

• We evaluate the performance of our method on a recent dataset of mixed-initiative
conversational search and show the effectiveness of our proposed method, which
significantly outperforms existing strong baselines.

5. In Chapter 8, we explore the use of Multi-Task Learning (MTL) to enhance performance
on the ORConvQA task by leveraging the learned structure of the reranker and reader in
a single text generation model. In particular, we introduce monoQA, a novel approach
that employs a single text generation model with MTL for both passage reranking and
answer extraction. Our model is based on the T5 text generation model and is fine-tuned
simultaneously for both reranking (to improve the precision of the top retrieved passages)
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and answer extraction. By integrating the reranker and reader tasks in a single model, we
aim to improve the overall performance of the ORConvQA task. Specifically:

• We leverage Multi-Task Learning with a text generation model by sharing the reranker
and reader’s learned structure to effectively address the ORConvQA task.

• Using two different ORConvQA datasets, we compare our model to two strong
baselines from the literature, and show that our MTL reranker and generative reader
approach yields the best F1, Recall, MRR, and MAP performance improvements over
a strong existing baseline from the literature, e.g. the ORConvQA system proposed
by Qu et al. (2020).

• The proposed MTL model combining the reranker and generative reader is signifi-
cantly more effective and is twice as fast for inference than the individual application
of the monoT5 and UnifiedQA models for reranking and extracting the answers.

In addition, we further investigate how to leverage the Multi-Task Learning (MTL) of the
three tasks: Conversational Question Rewriting, Passage Retrieval, and Answer Extraction.
In particular, we introduce a novel method that leverages MTL to combine these tasks
into a uniform model. Our MTL method is based on a bi-encoder BERT model, which is
fine-tuned simultaneously for Conversational Question Rewriting (to better understand the
users’ questions within ongoing conversations), retrieval (to effectively retrieve the relevant
passages from a large passages/documents collection), and answer extraction (to extract
answers from the retrieved passages/documents accurately). Specifically:

• We leverage dynamic Multi-Task Learning with bi-encoder BERT to effectively
address the task of learning.

• We evaluate the performance of our method on an ORConvQA OR-QuAC dataset.

• The proposed MTL model, which combines conversational question rewriting, re-
triever and reader, achieves better results than the baseline on existing two-stage
pipeline baselines, such as a baseline that uses ConvDR as a retriever and UnifiedQA
as a reader.

Our work uses Multi-Task Learning (MTL) to improve Open-Retrieval Conversational Ques-
tion Answering (ORConvQA). We developed the ORConvQA framework (Chapter 4), which
generates several models that address various stages of ORConvQA. We explored and enhanced
these aspects of ORConvQA, including:

• Chapter 5: The effectiveness and efficiency of dynamic MTL methods on Conversational
Question Answering (ConvQA).

• Chapter 6: Leveraging MTL for conversational question rewriting and follow-up question
identification by sharing a single text generation model like BART and T5.
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• Chapter 7: Leveraging MTL for combining clarification need classification and generation
of asking clarifying questions by sharing a single text generation T5 model.

• Chapter 8: Leveraging MTL for integrating the reranking and answer extraction tasks using
a single text generation T5 model and Leveraging MTL for integrating the conversation
question rewriting, retrieval, and answer extraction tasks using a bi-encoder BERT model.

1.5 Origins of Material

Most of the material presented in this thesis is based on papers that were published in various
international conferences during the author’s PhD program.

• Chapter 5: In this chapter, we propose a novel hybrid dynamic method that combines
Abridged Linear with Loss-Balanced Task Weighting (LBTW) for auxiliary tasks. By
integrating these two methods, our approach enables the automatic fine-tuning of task
weighting during learning. This allows for the adjustment of task weights based on their
relative importance, which improves overall performance. Indeed, our method ensures that
the importance of each task is reflected in its weight, resulting in a more accurate allocation
of resources during learning. This work appeared first at the SCAI 2020 workshop (co-
located with EMNLP 2020) (Kongyoung et al. 2020).

• Chapter 6: In this chapter, we propose a novel approach for employing text generation
models (BART and T5) to improve conversational question rewriting and identification of
follow-up questions. Specifically, we use Multi-Task Learning (MTL) to simultaneously
train our models to rewrite conversational questions and identify follow-up questions. This
work has been first published as a full paper at EMNLP 2023 (Kongyoung et al. 2023).

• Chapter 7: In this chapter, we propose a novel hybrid method that combines both generation
and selection processes for generating clarifying questions in a conversational setting. Our
approach leverages Multi-Task Learning (MTL) by combining the tasks of clarification
need classification and question generation to simultaneously identify situations where the
user’s initial query requires a clarifying question, and generate a set of clarifying questions
based on the query and conversation history. This approach allows our method to generate
a diverse set of questions that are relevant to the user’s queries, improving the effectiveness
of the conversational system. This work is in preparation for submission to ACM TOIS.

• Chapter 8: In this chapter, we propose monoQA, a novel approach that employs a text
generation model with MTL for both passage reranking and answer extraction. This work
has first appeared in the EMNLP 2022 conference (Kongyoung et al. 2022).
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1.6 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 describes the background of developing Open-Retrieval Conversational Question
Answering (ORConvQA). We first explore the types of passage retrieval and discuss the
classical Information Retrieval (IR) evaluation metrics. Next, we explore Pre-trained
Language Models (PLMs), including Encoder-Decoder, Encoder Only, and Decoder Only
models. Finally, we present a typical taxonomy for Multi-Task Learning (MTL) approaches,
which consists of the Learning Taxonomy and MTL Taxonomy.

• Chapter 3 discusses the related work in the literature addressing the ORConvQA task.
We begin by describing the typical approaches used in ORConvQA, and then delve into
the Multi-Task Learning techniques previously employed in Conversational Question
Answering. In addition, we discuss the typical datasets used in ORConvQA and the
evaluation metrics used to assess performance in the ORConvQA task.

• Chapter 4 presents our proposed framework, highlighting the motivation behind each
component and the specific tasks we aim to address. We also provide formal definitions for
the tasks within the framework, complete with the used terminology and equations.

• Chapter 5 explores the use of dynamic Multi-Task Learning (MTL) methods to improve
the effectiveness and efficiency of conversational question answering. We also investigate
the use of dynamic MTL methods, including Evolving Weighting, Uncertainty Weighting,
and Loss-Balanced Task Weighting, compared to static MTL methods such as the uniform
weighting of tasks. Next, we introduce our proposed novel hybrid dynamic method that
combines Abridged Linear with Loss-Balanced Task Weighting (LBTW), allowing the
automatic fine-tuning of task weighting during learning. We evaluate our proposed method
on the QuAC dataset and discuss its performance in comparison to the static MTL baselines.

• Chapter 6 explores using Multi-Task Learning (MTL) to improve the conversational
question rewriting and follow-up question identification tasks by employing text generation
models (BART and T5) and leveraging their shared learned structure. Our approach
shows the potential to outperform traditional methods that treat these tasks separately. We
demonstrate the effectiveness of our Multi-Task Learning BART model on the recent LIF
dataset, achieving significant improvements over recent baselines.

• Chapter 7 introduces a novel approach for generating and selecting clarifying questions
in a conversational setting. Leveraging Multi-Task Learning, we combine the tasks of
clarification need classification and question generation to simultaneously identify situa-
tions in which the user’s initial query requires a clarifying question and generate a set of
relevant questions. Our hybrid method uses both generative and selection models and is
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evaluated on a recent dataset of mixed-initiative conversational search, showing significant
improvements over existing baselines.

• Chapter 8 introduces monoQA, a text generation model that leverages Multi-Task Learning
(MTL) to simultaneously perform reranking and answer extraction tasks for the ORConvQA
task. By sharing the learned structure of the reranker and reader, our method significantly
outperforms strong baselines and achieves better performance on F1, Recall, MRR, and
MAP metrics. The proposed MTL model is also twice as fast for inference compared to
the individual application of the monoT5 and UnifiedQA models for reranking and answer
extraction. Moreover, this chapter also explores the use of dynamic Multi-Task Learning
(MTL) methods to improve the effectiveness of the ORConvQA task by combining the
three tasks: conversation rewriting, passage retrieval, and answer extraction. We evaluate
our proposed method on the OR-QuAC dataset and discuss its performance in comparison
to the two-stage pipeline baselines.

• Chapter 9 marks the conclusion of this work, summarising our findings and outlining
potential avenues for future research.
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Chapter 2

Background

2.1 Introduction

Open-Retrieval Conversational Question Answering (ORConvQA) is a challenging task. The
fundamental objective of ORConvQA systems is two-fold: firstly, to retrieve relevant passages
from a large collection of texts or documents, and secondly, to generate/extract contextually
relevant responses to user queries. By achieving these goals, the ORConvQA systems aim to
achieve accurate and natural language responses, effectively bridging the gap between human-like
conversational interactions and machine-generated outputs. To accomplish this, machine learning
techniques are extensively employed to enhance the performance of ORConvQA systems.

This chapter provides some necessary background for this thesis. First, it focuses on the
taxonomy of retrieval approaches, including both sparse and dense methods. The advantages and
limitations of each technique are discussed, along with their relevance to the ORConvQA systems.
The chapter also discusses Multi-Task Learning (MTL). The capacity of MTL to simultaneously
learn numerous tasks aligns directly with the two-fold objective of the ORConvQA systems:
retrieving relevant passages and generating/extracting contextually relevant responses to the
user’s queries. As a result, it is important to understand MTL’s benefits and challenges, as it
forms an essential component of the strategies deployed in this thesis.

In this chapter, we start with Section 2.2, which presents Sparse Retrieval. Section 2.3 then
describes Pre-trained Language Models (PLMs). Section 2.4 focuses on Dense Retrieval &
Reranking, followed by an overview of PyTerrier in Section 2.5. Section 2.6 explores Hybrid
Sparse and Dense Retrieval techniques. The chapter then reviews Classical IR Evaluation Metrics
in Section 2.7 and introduces Multi-Task Learning in Section 2.8. Finally, Section 2.9 gives the
concluding remarks for this chapter.
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2.2 Sparse Retrieval

Sparse passage or document retrieval approaches involve representing queries and documents
as sparse vectors in a high-dimensional space, typically based on the unique words they contain.
In this context, each unique word maps to a dimension, making the representation incredibly
sparse due to the large number of possible words. These approaches have been widely used in
information retrieval tasks, including for passage/document retrieval in ORConvQA systems.
Some commonly employed methods in sparse retrieval, such as BM25 (Robertson & Walker
1994), PL2 (Amati 2003), and DPH (Amati et al. 2008). In particular, in this thesis, we will
focus on BM25, which has been widely employed in information retrieval tasks, including
passage/document retrieval in ORConvQA systems.

BM25 (Best Match 25), was introduced by Robertson & Walker (1994) and is a widely used
weighting scheme in Information Retrieval (IR). It is an extension of the TF-IDF (Salton 1971)
weighting scheme and is designed to overcome some of the limitations of TF-IDF (Liu et al.
2009). Like TF-IDF, BM25 is a statistical method used to evaluate the relevance of a term to a
document in a collection. The BM25 weighting scheme takes into account the frequency of the
term in the document, the frequency of the term in the entire collection, and the document length.
BM25 uses a probabilistic IR framework to estimate the relevance of a document to a query. It
does not directly calculate the probability of a document being relevant to a query but instead
generates a relevance score based on the query terms and the document content. This score is
derived from three components: a term frequency component, an inverse document frequency
component, and a document length normalisation component. The term frequency component
is similar to the TF component in TF-IDF, but it is modified to account for the saturation of the
score at high term frequencies. The inverse document frequency component is similar to the IDF
component in TF-IDF, but it is modified to account for the distribution of term frequencies across
the corpus. The document length normalisation component normalises the scores by the length
of the document and the average length of all documents in the corpus. The BM25 score for a
document d given a query Q, as presented in (Zangerle et al. 2013), is calculated as follows:

BM25(Q,d) = ∑
t∈Q

IDF(t) · f (t,d) · (k1 +1)

f (t,d)+ k1 · (1−b+b · |d|
avgdl )

(2.1)

where f (t,d) is the frequency of term t in document d, IDF(t) is the inverse document frequency
of term t, k1 and b are free parameters that control the scaling of the term frequency and document
length normalisation components, respectively, and avgdl is the average length of documents in
the collection.
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In Chapter 6, we employ BM25 as a primary approach for passage retrieval, serving as a
first-pass method to retrieve relevant passages. In addition, in Chapter 7, BM25 is used as a
baseline for clarifying question selection, providing a simple benchmark against which other
selection approaches are evaluated.

Limitations of Sparse Retrieval
One limitation of sparse retrieval techniques is their reliance on the occurrence of individual

terms in queries and documents. They treat documents and queries as bags of words, disregarding
the relationships and co-occurrences between terms. As a result, these techniques may struggle
to capture the semantic meaning and context of queries accurately. Sparse models can fail to
distinguish between different senses of a word or to consider the broader context in which a query
term is used. Moreover, sparse retrieval methods are less adept at handling complex conversational
queries that involve multiple intents or sub-questions. They do not easily incorporate historical
context and previous interactions, which are essential for effective ORConvQA systems. This
limitation is highlighted by the effectiveness of ConvDR (Yu et al. 2021), a Conversational Dense
Retrieval system, which learns contextualised embeddings for multi-turn conversational queries.
ConvDR outperforms the sparse retrieval approaches for handling complex conversational queries.
The advantage of ConvDR is its ability to capture informative context while ignoring the unrelated
context in the previous conversation turns. Sparse retrieval models often treat each query
independently, disregarding the conversational flow and the need to consider previous interactions
to provide accurate and relevant responses. While sparse passage retrieval techniques have been
extensively used and have been shown to be effective in various information retrieval tasks (Dai
& Callan 2020, Fraser et al. 2018, Mallia et al. 2021, Yang et al. 2021, Zamani et al. 2018), the
limitations outlined above motivate the integration of alternative approaches that can capture
semantic meaning, contextual understanding, and handle complex conversational queries more
effectively. This has led to the development and adoption of dense retrieval techniques, which
leverage dense vector representations and neural networks to overcome the shortcomings of
sparse models, often based on Pre-trained Language Models.

2.3 Pre-trained Language Models (PLMs)

Pre-trained Language Models (PLMs), such as BERT (Devlin et al. 2019), have transformed
the field of natural language processing by learning rich contextual representations of text.
PLMs are deep learning models that are trained on large amounts of textual data, typically by
employing unsupervised learning techniques. They have significantly advanced the state-of-the-
art performance in various language-related tasks, including text classification (Lan et al. 2020,
Zhuang et al. 2021), named entity recognition (Darji et al. 2023, Taher et al. 2019), sentiment
analysis (Devlin et al. 2019, Raffel et al. 2020, Zhuang et al. 2021), machine translation (Lewis
et al. 2019, Raffel et al. 2020), and conversational question answering (Khashabi et al. 2020, Qu
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et al. 2020, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Yu et al. 2021). A transformer
model is an architectural evolution that has contributed to the success of PLMs. The transformer
model is a neural network that can capture long-range dependencies between words in a sentence,
which makes it effective at understanding the context of words for natural language processing
tasks (Vaswani et al. 2017).

Transformers (Vaswani et al. 2017), indeed, have transformed the field of Natural Language
Processing (NLP). Transformer-based models have shown impressive results in diverse tasks,
including language translation (Lewis et al. 2019, Raffel et al. 2020), text classification (Devlin
et al. 2019, Lewis et al. 2019, Raffel et al. 2020), and text generation (Brown et al. 2020, Radford
et al. 2019). The strength of Transformers lies in their flexibility, as they can be adapted and fine-
tuned for specific tasks, making them highly versatile and effective in different NLP applications.
The Transformer model consists of an encoder and a decoder, each composed of multiple layers
of self-attention and feed-forward layers, as shown in Figure 2.1. The encoder processes the input
sequence and generates a representation that captures its meaning and structure. The decoder
generates the output sequence by attending to the encoder representation and its own previous
outputs. The attention mechanism allows the model to focus on the relevant parts of the input
and output sequences, and to learn long-range dependencies (Vaswani et al. 2017). Multi-head
attention is a variant of the attention mechanism used in the Transformer model. It allows the
model to learn multiple representations of the input and output sequences by computing attention
multiple times with different weight matrices. This enables the model to capture different aspects
of the relationships between the input and output sequences. Multi-head attention (MultiHead)
is defined as follows:

MultiHead(Q,K,V ) = Concat(head1, ...,headh)W O (2.2)

where
headi = Attention(QW Q

i ,KW K
i ,VWV

i ) (2.3)

and

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (2.4)

Here, the Q, K, and V matrices are named the queries, keys, and values, respectively. W Q
i , W K

i ,
WV

i , and W O are learnable weight matrices, h is the number of heads, and dk is the dimension
of each head. In addition, queries, keys, and values are the inputs to the attention mechanism.
Queries are used to represent the output positions that need to be generated. Keys are used
to represent the input positions that are relevant for generating the output. Values are used
to compute the weighted sum of the input positions based on their relevance. The attention
mechanism computes the similarity between the queries and keys, and uses it to assign weights
to values.
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In this section, we will delve into the transformer architectures, exploring their varied types
and the wide range of applications they can be employed in. In addition, we will provide examples
of popular models that leverage these different architectures to showcase their effectiveness in
real-world scenarios. Moreover, we will discuss where within our research these transformer
architectures are specifically applied.

Figure 2.1: The original transformer architecture introduced in Vaswani et al. (2017) is based on
the Encoder-Decoder architecture.

2.3.1 Encoder-Decoder

The original transformer architecture introduced in Vaswani et al. (2017) is based on the
Encoder-Decoder structure, as illustrated in Figure 2.1, where the encoder is represented on
the left of the figure and the decoder is on the right. The encoder takes the input sequence
and produces a condensed hidden representation that captures the essential information from
the input sequence of tokens. On the other hand, the decoder uses this hidden representation
to generate the desired output sequence. During training, the encoder and decoder are jointly
optimised to maximise the likelihood of producing the correct output sequence given the input
sequence of tokens. This end-to-end training approach ensures the seamless integration of both
components for effective sequence processing. Encoder-Decoder Pre-trained Language Models
(PLMs), exemplified by models like T5 (Raffel et al. 2020) (Text-to-Text Transfer Transformer)
and BART (Lewis et al. 2019) (Bidirectional and Auto-Regressive Transformers), have made
significant advances in natural language processing tasks including machine translation, text
summarisation, and question answering (Jiang et al. 2022b, Khashabi et al. 2020, Lewis et al.
2019, Raffel et al. 2020).
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T5 (Text-to-Text Transfer Transformer) (Raffel et al. 2020) is a state-of-the-art language
model that uses a unified text-to-text transformer architecture for various natural language
processing tasks. It is a pre-trained model that can be fine-tuned on a wide range of tasks,
including text classification, question answering, summarisation, and translation. It has also
been shown to be usable for other tasks, such as classification (Raffel et al. 2020), document
re-ranking (Nogueira, Jiang & Lin 2020) (where it has been shown to outperform BERT-based
models) and even arithmetic tasks (Nogueira et al. 2021). These tasks are all handled by taking
a sequence of text, and then seeing what token it predicts and with what probability. The T5
model (Raffel et al. 2020) was trained on a large collection of text data, including web pages,
books, and articles, and was capable of generating high-quality text outputs. The T5 model
achieved state-of-the-art results on various language understanding tasks and had been shown to
outperform other language models such as BERT (Devlin et al. 2019) and GPT-2 (Radford et al.
2019). The T5 model is available in different sizes, ranging from T5-Small to T5-11B 1, with
larger models having more parameters and higher computational requirements.

In summary, T5 is a text-to-text framework, which is built upon a transformer-based archi-
tecture, and it has been shown to be effective on various tasks. In Chapters 6, 7, and 8, we
deploy T5 as a question rewriting model. In addition, in Chapter 7, we employ T5 for clarifying
need classification and generating clarifying questions. Furthermore, in Chapter 8, we use T5 for
passage reranking and for extracting answers.

BART (Bidirectional Auto-Regressive Transformers) (Lewis et al. 2019) is a denoising
autoencoder that uses a sequence-to-sequence model for pretraining. It was built on a standard
Transformer-based neural machine translation architecture, which allows it to generalise other
pretraining schemes like BERT (Devlin et al. 2019), and GPT-2 (Radford et al. 2019). BART has
two stages of pretraining: first, text is corrupted with an arbitrary noising function, and then a
sequence-to-sequence model is learned to reconstruct the original text. One of the advantages
of BART is its flexibility in applying arbitrary transformations to the original text, including
changing its length. BART has achieved state-of-the-art results on a range of tasks, including
natural language generation, translation, and comprehension (Lewis et al. 2019). BART has been
shown to match the performance of other models like RoBERTa (Zhuang et al. 2021) on tasks
like GLUE (Wang et al. 2018) and SQuAD (Rajpurkar et al. 2018, 2016), and has achieved new
state-of-the-art results on abstractive dialogue, question answering, and summarisation tasks.

In summary, BART is a combination of bidirectional and auto-regressive transformers, along
with its denoising pre-training objective. Its ability to capture bidirectional context, generate
coherent output, and perform well on tasks such as text generation, text summarisation, and docu-
ment classification makes BART an effective and adaptable tool for natural language processing.
In Chapter 6, we employ BART as a conversational question rewriting and follow-up question
identification model.
1 The T5 model can be found at https://github.com/google-research/text-to-text-transfer-transformer.
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The use of Encoder-Decoder PLMs, including T5 and BART, highlights the importance
of integrating both encoding and decoding components in addressing complex language tasks.
By jointly training the encoder and decoder, these models can effectively capture contextual
information and produce meaningful and relevant outputs.

2.3.2 Encoder-Only

In contrast to Encoder-Decoder PLMs such as T5 (Raffel et al. 2020) and BART (Lewis et al.
2019), the Encoder-only architecture is employed when encoding the input sequence is sufficient,
without the need for a decoder. In this configuration, the input sequence undergoes encoding
to generate a fixed-length representation, which is subsequently used as input for a classifier or
regressor to make predictions. These models incorporate a pre-trained encoder that possesses
general-purpose capabilities, necessitating the fine-tuning of the ultimate classifier or regressor.
This adaptable output nature renders them valuable for a myriad of applications, including: Text
classification, Sentiment analysis, and Named entity recognition. Prominent models that adopt
this architecture include BERT (Devlin et al. 2019) and ALBERT (Lan et al. 2020).

BERT (Bidirectional Encoder Representations from Transformer) (Devlin et al. 2019)
is an effective language representation model that is designed to pre-train deep bidirectional
representations from an unlabeled text by jointly conditioning on both the left and right context
in all layers. Unlike other language representation models, BERT has a unified architecture
across different tasks, with a minimal difference between the pre-trained architecture and the final
downstream architecture. BERT’s model architecture is a multi-layer bidirectional Transformer
encoder based on the original implementation described in Devlin et al. (2019). BERT can
be fine-tuned with just one additional output layer to create state-of-the-art models for various
tasks, such as question answering and language inference, without substantial task-specific
architecture modifications. BERT achieved state-of-the-art results on eleven natural language
processing tasks, including pushing the GLUE (Wang et al. 2018) score to 80.5% (7.7% point
absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD
v1.1 (Rajpurkar et al. 2016) question answering Test F1 to 93.2 (1.5 points absolute improvement)
and SQuAD v2.0 (Rajpurkar et al. 2018) Test F1 to 83.1 (5.1 points absolute improvement).
Moreover, BERT can also be used as the base model for dense passage/document retrieval systems
such as ColBERT (Khattab & Zaharia 2020), DPR (Karpukhin et al. 2020), ANCE (DPR-based
model) (Xiong et al. 2020), TCT-ColBERT (Lin et al. 2021b), and ConvDR (Yu et al. 2021) (see
details in Section 3.7.4). It can also be used for conversational question answering models like
HAM (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019) (details in Section 3.2.4).

In summary, BERT is an effective Encoder-only pre-trained language model (PLM) that uses
deep bidirectional training from unlabeled text. Its unified architecture across tasks and its ability
to fine-tune have made it adaptable, achieving state-of-the-art results in various tasks. In addition,
BERT is used as a base model for systems in dense passage/document retrieval (Karpukhin
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et al. 2020, Khattab & Zaharia 2020, Lin et al. 2021b, Xiong et al. 2020, Yu et al. 2021)
and conversational question answering (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019),
demonstrating its wide-ranging applicability in natural language processing and information
retrieval. In Chapter 5, we employ BERT as an answer extraction model. Moreover, BERT serves
as a baseline for predicting follow-up questions in Chapter 6.

ALBERT (A Lite BERT) (Lan et al. 2020) is a lite version of BERT, a popular pre-trained
language model for natural language processing tasks. ALBERT uses two parameter-reduction
techniques to lower memory consumption and increase training speed. The backbone of the
ALBERT architecture is similar to BERT in that it uses a transformer encoder. However, ALBERT
has significantly fewer parameters than a traditional BERT architecture. The self-supervised loss
function focuses on modelling inter-sentence coherence, leading to new state-of-the-art results on
various benchmarks. Both single-model and ensemble results indicate that ALBERT improves the
state-of-the-art significantly on several benchmarks, achieving a GLUE (Wang et al. 2018) score
of 89.4, a SQuAD 2.0 (Rajpurkar et al. 2018) test F1 score of 92.2, and a RACE test (Lai et al.
2017) accuracy of 89.4. Moreover, ALBERT was used as a base model for the Open-Retrieval
Conversational Question Answering (ORConvQA) system, introduced by Qu et al. (2020). The
experimental results on the OR-QuAC dataset demonstrated that the ALBERT-based ORConvQA
system outperformed several state-of-the-art baselines, including DrQA (Chen et al. 2017), a
baseline model that uses a document retriever and a reader based on a recurrent neural network
(RNN) and BERTserini (Yang et al. 2019), a baseline model that uses a document retriever and a
reader based on the BERT architecture.

In summary, ALBERT is an encoder-only Pre-trained Language Model that addresses the
challenges of model size and training efficiency. It achieves parameter reduction by factorising the
embedding layer and sharing parameters across layers within the encoder. With its transformer-
based encoder architecture and competitive results on various benchmarks such as GLUE,
SQuAD 2.0, and RACE, ALBERT provides an efficient and effective solution for various tasks.
In Chapter 8, we employ the ALBERT-based ORConvQA system (Qu et al. 2020) as a baseline
for ORConvQA.

2.3.3 Decoder-Only

Decoder-only Pre-trained Language Models are a type of pre-trained language model that
are designed to decode input representations into coherent and contextually appropriate output
sequences. They are typically used for natural language generation tasks, such as text summarisa-
tion and machine translation. They are also used for other tasks that require the ability to generate
text, such as question answering and creative writing (Brown et al. 2020). Some examples of
decoder-only language models include GPT-1 (Generative Pre-trained Transformer 1) (Radford
et al. 2018), GPT-2 (Radford et al. 2019), and GPT-3 (Brown et al. 2020).
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GPT-3 (Generative Pre-trained Transformer 3) (Brown et al. 2020) is a state-of-the-art
Pre-trained Language Model developed by OpenAI. It is a neural network-based model that has
been trained on large textual data using an unsupervised learning approach. GPT-3 is capable of
generating human-like text, completing sentences, paragraphs, and even entire articles. It can
also perform a wide range of natural language processing tasks, including machine translation,
open-domain question answering, and closed-domain question answering tasks (Brown et al.
2020). GPT-3 has been shown to outperform the baselines on various tasks without the need
for fine-tuning on a large dataset, using few-shot learning. In Chapter 7, we use GPT-3 as our
baseline for generating clarifying questions, building upon the recent work of Owoicho et al.
(2022) who proposed training the model with few-shot learning on TREC CAsT 2021 (Dalton
et al. 2021). This approach involves using GPT-3 for generation-based questions, which has
shown promising results in the context of asking clarifying questions.

Table 2.1: Comparison of pre-trained transformer model parameter sizes (Casola et al. 2022).

Model Year Architecture Parameters

BERT (Devlin et al. 2019) 2018 Encoder only BERT-base: 110 M
BERT-large: 345 M

RoBERTa (Zhuang et al. 2021) 2019 Encoder only RoBERTa-base: 125 M
RoBERTa-large: 355 M

ALBERT (Lan et al. 2020) 2019 Encoder only ALBERT-base: 11 M
ALBERT-large: 17 M
ALBERT-xlarge: 58 M
ALBERT-xxlarge: 223 M

GPT-1 (Radford et al. 2018) 2018 Decoder only 110 M

GPT-2 (Radford et al. 2019) 2019 Decoder only GPT-2: 117 M
GPT-2-medium: 345 M
GPT-2-large: 774 M
GPT-2-xl: 1558 M

GPT-3 (Brown et al. 2020) 2020 Decoder only 175 B

T5 (Raffel et al. 2020) 2019 Encoder-Decoder T5-small: 60M
T5-base: 220 M
T5-large: 770 M
T5-3B: 2.8 B
T5-11B: 11 B

BART (Lewis et al. 2019) 2019 Encoder-Decoder BART-base: 140 M
BART-large: 406 M

In conclusion, based on recent advances in natural language processing (NLP) and Information
Retrieval (IR), pre-trained language model like BERT, ALBERT, GPT-3, T5, and BART have
demonstrated effectiveness in language understanding and generation. The parameter sizes of
pre-trained language models such as BERT, RoBERTa, ALBERT, GPT-1, GPT-2, GPT-3, T5, and
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BART are compared in Table 2.1, providing insights into the scale and complexity of these models
and their unique architectures. This information is important in understanding the computational
and resource requirements when employing these models in real-world applications such as
in real-world applications, such as in natural language processing tasks, including machine
translation (Lewis et al. 2019, Raffel et al. 2020), sentiment analysis (Lan et al. 2020, Zhuang
et al. 2021), and automated content generation (Brown et al. 2020). In the next section, we
leverage the capabilities of these pre-trained transformer models discussed in this section to
explore Dense Retrieval and Reranking.

2.4 Dense Retrieval & Reranking

Figure 2.2: Comparison of dense retrieval model architectures (Zhang et al. 2022).

Recent progress in the field of information retrieval has led to the emergence of dense
retrieval and reranker approaches that offer better performance than traditional sparse retrieval
methods (Khattab & Zaharia 2020, Lin et al. 2021b, Ni et al. 2021, Nogueira, Jiang, Pradeep &
Lin 2020a, Yu et al. 2021). These techniques use deep learning models, which include Pre-trained
Language Models (PLMs) (see Section 2.3), to capture semantic and contextual relationships
between queries and passages/documents, ultimately resulting in more accurate and context-aware
retrieval and reranking outcomes.

In the following, we delve into the different model architectures that are designed for the
retrieval and reranking tasks. Figure 2.2 provides a visual comparison of these architectures.
As shown in Figure 2.2(a), the cross-encoder model architecture is used as a reranker. On the
other hand, dense retrieval models employ bi-encoder model architectures, which are depicted in
Figure 2.2(b) and Figure 2.2(c). We explore these architectures in detail in the following section.
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Figure 2.3: Structure of the monoT5 re-ranking model (Zhuang et al. 2022).

2.4.1 Cross-Encoder

The cross-encoder model is often used to rerank in retrieval tasks, by combining the query
and document text as input for PLMs like BERT (Lan et al. 2020). It provides a score based on
the embeddings of the [CLS] token. This model is effective for handling mismatched vocabulary
and semantics between the query and document. However, since it requires high computational
resources, it is less practical for large-scale retrieval and is typically used in the second stage of
reranking (Nair et al. 2022).

The monoT5 reranking model, as introduced by Nogueira, Jiang, Pradeep & Lin (2020a), is a
cross-encoder passage re-ranker has been shown to be effective in various information retrieval
tasks. It is able to capture and represent the semantic and contextual relationships between queries
and passages in a unified manner by employing the encoder-decoder T5 model, as explained
in Section 2.3.1. In order to improve its ranking capabilities, Nogueira, Jiang, Pradeep & Lin
(2020a) employs a methodology that involves concatenating query-document pairs into a single
input sequence. The T5 model was fine-tuned using a text generation task to generate the tokens,
namely "true" and "false," to indicate the relevance of each pair. Then, the model derives ranking
scores from the logits. These logits represent the output values before applying a softmax function
and correspond to the "true" and "false" tokens, as shown in Figure 2.3. The monoT5 reranking
model (Nogueira, Jiang, Pradeep & Lin 2020a) has been shown to outperform a classification-
based encoder-only approach such as BERT, especially in a data-poor setting with limited training
data. In Chapters 6, 7 and 8, we employ the monoT5 model as the passage reranking approach.

2.4.2 Single Representation Bi-Encoder

Single Representations in Dense Passage Retrieval is a technique where entire passages are
represented by a single embedding, usually BERT’s [CLS] token (Macdonald et al. 2021), as
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shown in Figure 2.2(b). During retrieval, the [CLS] embedding of the query is compared to the
[CLS] embeddings of passages using vector similarity measures like cosine similarity or dot
product. The passages with the highest similarity scores are ranked as the most relevant. This
technique is used to compute the similarity between a query and a passage by identifying the
nearest neighbours using a FAISS index (Johnson et al. 2021). The similarity function used in
dense retrieval is often cosine or dot product (Xiong et al. 2020). The function calculates the
retrieval score f (·) using similarities in a learned embedding space (Karpukhin et al. 2020, Lee
et al. 2019, Luan et al. 2021a) defined as follows:

f (q,d) = sim(E(q,θ),E(d,θ)) (2.5)

where E(·) is the representation model that encodes the query or document to dense embeddings.
The encoder parameter θ provides the main capacity, often fine-tuned from pre-trained transform-
ers, e.g., BERT. The similarity function (sim(·)) leverages efficient ANN retrieval and is used to
compare the dense embeddings of the query and document, as detailed as follows:

Cosine Similarity: Cosine similarity measures the cosine of the angle between two vectors.
The higher the cosine similarity score, the more relevant the document is to the given query:

sim(·) = E(q,θ) ·E(d,θ)
∥E(q,θ)∥×∥E(d,θ)∥

(2.6)

Dot Product: In the case of normalised vectors (division by magnitude), the dot product is
conceptually similar to cosine similarity and effectively measures how aligned the vectors are
in the vector space. Then a dot product is performed to measure the similarity between q and d

based on their embeddings:
sim(·) = E(q,θ)T ·E(d,θ) (2.7)

Thakur et al. (2021) found that the choice of similarity function, either cosine similarity or
dot product, can have a significant impact on the performance of dense models in information
retrieval. The cosine similarity model was found to prefer shorter documents over longer ones,
while the dot product model primarily retrieves longer documents. The study also found that
the performance of the two models varied across different datasets, with the dot product model
achieving the biggest improvement on TREC-COVID (Voorhees et al. 2021). Therefore, the
choice of similarity function should be carefully considered depending on the nature and needs
of the specific task. In this thesis, this insight guided our decision to select cosine similarity for
our models, considering its suitability for the used datasets which have the passage size at most
384 tokens (Qu et al. 2020).

The advantage of using Single Representations is that it reduces the computational cost of
indexing and retrieval, as only one embedding is required for each passage (Macdonald et al.
2021). However, the disadvantage is that the meaning of an entire passage is assumed to be
represented by a single embedding (Macdonald et al. 2021), which may not always be accurate.
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Several approaches have been proposed to enhance dense retrieval performance using the bi-
encoder architecture, which consists of separate question and passage encoders. This architecture
applies neural contextualised language models, such as T5 or BERT, to encode both questions
and passages into low-dimensional vectors before computing their relevance scores Lin, Yang &
Lin (2020), Ni et al. (2021), Xiong et al. (2020).

Figure 2.4: ANCE Asynchronous Training. Figure taken from (Xiong et al. 2020).

One approach is ANCE (Approximate nearest neighbour Negative Contrastive Estima-
tion) (Xiong et al. 2020), which is a learning mechanism for dense retrieval that selects hard
training negatives globally from the entire collection, using an asynchronously updated ANN
(Approximate Nearest Neighbor) index. As shown in Figure 2.4, in the ANCE model, two
main components are involved: the Trainer and the Inferencer. The Trainer is responsible for
learning the representation by using negatives from the ANN index. It capitalises on the efficient
storage and retrieval capabilities of the ANN index to sample relevant negative examples, thereby
enhancing the model’s ability to discriminate between similar documents. On the other hand,
Inferencer plays an important role in updating the document representations in the collection. It
uses a recent checkpoint of the trained model to refresh and refine the encodings of the docu-
ments. By incorporating the latest information and insights gained from the trained model, the
Inference component ensures that the document representations remain accurate and up-to-date.
Together, the Trainer and Inferencer work in tandem to continuously improve the performance
and effectiveness of the ANCE model. The Trainer learns from negative examples provided by
the ANN index, while the Inferencer keeps the document representations aligned with the latest
knowledge obtained from the trained model. This dynamic and iterative process enables the
ANCE model to adapt and evolve, delivering robust and accurate results in dense text retrieval
tasks. Moreover, ANCE has been shown to outperform all sparse retrieval methods and even
outperforms DPR (Karpukhin et al. 2020) in passage retrieval for OpenQA (Xiong et al. 2020).
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Figure 2.5: The process of distilling dense representations for ranking involves a close integration
between the teacher and student models. Figure taken from (Lin et al. 2021b).

TCT-ColBERT (Tightly-Coupled Teacher ColBERT) (Lin, Yang & Lin 2020, Lin et al. 2021b)
is a bi-encoder model that applies knowledge distillation to improve the ColBERT model (Khattab
& Zaharia 2020) (see Section 2.4.3). TCT-ColBERT distils the knowledge from ColBERT’s
expressive MaxSim operator for computing relevance scores into a simple dot product, thus
enabling a single-step ANN search. The insight is that during distillation, tight coupling between
the teacher model and the student model enables more flexible distillation strategies and yields
better learned representations, as presented in Figure 2.5. TCT-ColBERT has been shown to
outperform its baselines including sparse retrieval methods, ANCE, ColBERT, and bi-encoder
(PoolAvg), in both MRR@10 and NDCG@10 for MS MARCO and TREC2019 DL (Lin, Yang
& Lin 2020).

Figure 2.6: Architecture of Generalisable T5-based dense Retrievers. Figure taken from (Ni et al.
2021).

On the other hand, the GTR (Generalisable T5-based dense Retrievers) (Ni et al. 2021) model
is a scaled-up dual encoder model with a fixed-size dot-product bottleneck layer. GTR is a neural
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retrieval model that leverages pre-trained T5 (Raffel et al. 2020) models of different sizes as the
backbone encoder and performs multi-stage training on web-mined question-answer pairs and
search datasets, as shown in Figure 2.6. GTR has been shown to be effective on a variety of
retrieval tasks, including the BEIR benchmark (Thakur et al. 2021). In the BEIR benchmark, GTR
outperformed other dense retrieval models, such as DPR (Karpukhin et al. 2020), ANCE (Xiong
et al. 2020), and ColBERT (Khattab & Zaharia 2020). In Chapter 6 of this thesis, we employ
ANCE and TCT-ColBERT as the baseline models for clarifying question selection. These models
serve as reference points to compare and evaluate the effectiveness of our proposed approach in
the selection of clarifying questions using GTR.

2.4.3 Multiple Representation Bi-Encoder

Multiple Representations in Dense Passage Retrieval is a technique where each token in a
passage is represented by its own embedding (Macdonald et al. 2021). This technique is used
to compute the similarity between a query and a passage by identifying the nearest neighbours
using a FAISS (Johnson et al. 2021) index. Multiple Representations are a type of dense retrieval
approach that has emerged recently in the field of information retrieval. In multiple represen-
tation dense retrieval models, such as ColBERT (Khattab & Zaharia 2020) (Contextualized
Late Interaction over BERT), each token within a passage is assigned a specific embedding as
shown in Figure 2.2(c). This approach enables the model to capture the nuanced meanings and
relationships of individual words within the context of the passage. The advantage of using
Multiple Representations is that it provides a more fine-grained representation of the meaning of
a passage, as each token is represented by its own embedding. This can lead to more accurate
retrieval results, especially for longer passages. However, the disadvantage is that it increases
the computational cost of indexing and retrieval, as multiple embeddings are required for each
passage (Macdonald et al. 2021).

The introduction of multiple representation models has expanded the repertoire of dense
retrieval approaches, providing additional flexibility and potential for improved retrieval perfor-
mance. By capturing the semantic relationships at the token level, these models offer a more
comprehensive representation of the text, enhancing the accuracy and relevance of retrieval
results.
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Figure 2.7: Schematic diagram of ColBERT, a late interaction paradigm. Figure taken from (Khat-
tab & Zaharia 2020).

ColBERT (Khattab & Zaharia 2020) is an approach that adopts a late interaction model, where
queries and documents are encoded independently and then interacted to compute relevance
scores (see Figure 2.7)). This approach has several advantages over early interaction models,
which compute the relevance score between the query and the document at the same time.
ColBERT has been trained on a large MS-Marco corpus, and it uses the BERT model as its
encoder. BERT (see Section 2.3.2) is a deep bidirectional transformer model. ColBERT has
been shown to outperform other neural search models on a variety of passage retrieval tasks and
outperforms BM25, DPR (Karpukhin et al. 2020), and other baselines (Khattab & Zaharia 2020).

These approaches, including ANCE, ColBERT, TCT-ColBERT, and GTR, contribute to
the advancement of dense retrieval techniques and have demonstrated their effectiveness in
improving retrieval performance. In Chapter 6 of this thesis, we employ ANCE, ColBERT, and
TCT-ColBERT as the baseline models for clarifying question selection. These models serve
as reference points to compare and evaluate the effectiveness of our proposed approach in the
selection of clarifying questions using GTR.

2.5 PyTerrier

PyTerrier (Macdonald & Tonellotto 2020) is a framework for expressing IR experiments
with composable pipelines. It allows complex retrieval pipelines to be specified in a declarative
rather than procedural fashion, using standard operators to combine objects representing retrieval
building blocks called transformers. PyTerrier differs from other IR frameworks in that it
uses Python as a high-level language for operationalising experiments, similar to deep machine
learning platforms such as Tensorflow 2 and PyTorch 3. In addition, PyTerrier targets IR platforms
as backends in order to execute and evaluate retrieval pipelines, and can automatically optimise
the retrieval pipelines to increase their efficiency for a particular IR platform backend.

2 https://www.tensorflow.org/ 3 https://pytorch.org/
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Table 2.2: PyTerrier operators for combining transformers. Table taken from (Macdonald &
Tonellotto 2020).

Operators Name Description

>> then Pass the output from one transformer to the next transformer
+ linear combine Sum the query-document scores of the two retrieved results lists
* scalar product Multiply the query-document scores of a retrieved results list by a scalar
** feature union Combine two retrieved results lists as features
| set union Make the set union of documents from the two retrieved results lists
& set intersection Make the set intersection of the two retrieved results lists
% rank cutoff Shorten a retrieved results list to the first K elements
^ concatenate Add the retrieved results list from one transformer to the bottom of the other

Table 2.2 lists the PyTerrier operators for combining transformers. The table includes the
operator name, a brief description of the operator, and its functionality. In this thesis, namely
Chapters 6-8, we use the PyTerrier (Macdonald & Tonellotto 2020) platform for indexing and
retrieving passages.

2.6 Hybrid Sparse and Dense Retrieval

Figure 2.8: Hybrid of sparse and dense retrieval. Figure taken from (Wang, MacAvaney, Macdon-
ald & Ounis 2021a).

Hybrid retrieval approaches combine both sparse and dense retrieval methods to leverage
the strengths of each approach. Dense retrieval models are good at finding documents that are
semantically similar to a given query. Sparse retrieval models are good at finding exact matches,
even for long documents. Hybrid models combine the strengths of both dense and sparse retrieval
models, to achieve better performance than either model alone. Several approaches (Lin & Ma
2021, Lin, Yang & Lin 2020, Luan et al. 2021b, Macdonald & Tonellotto 2020, Wang, Zhuang
& Zuccon 2021, Wang, Wu, Wang, Macdonald & Ounis 2020) have been proposed to build
hybrid models that combine the strengths of both dense and sparse retrieval models. In most
cases, a dense retrieval model is trained separately and its scores are interpolated with those of a
sparse model. This interpolation can be achieved by using techniques such as score interpolation
or score combination. For example, Figure 2.8 presents a hybrid sparse and dense retrieval
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architecture introduced by Wang, MacAvaney, Macdonald & Ounis (2021a). This approach
combines sparse retrieval using DPH (Amati et al. 2008) with Bo1 (Amati & Van Rijsbergen
2002) query expansion and ColBERT-PRF (Wang, Macdonald, Tonellotto & Ounis 2021) dense
retrieval on the ColBERT FAISS (Johnson et al. 2021) index. The retrieved passages/documents
are further re-ranked using the monoT5 model (Nogueira, Jiang, Pradeep & Lin 2020a) (see
Section 2.4.1). Following the Pyterrier notation as presented in Table 2.2, let Idense and Isparse

denote the dense index and PyTerrier’s sparse index of a given corpus, respectively. The hybrid
of sparse and dense retrieval system as presented in Figure 2.8 can be defined as follows:

RetColBERT-PRF(Idense,k) | DPHw/QE(Isparse,k)

»monoT 5(Isparse,k)
(2.8)

where RetColBERT-PRF(Idense,k) is ColBERT dense retrieval.
This hybrid system aims to enhance retrieval performance by capturing both lexical similarity

and semantic relationships, so as to improve the accuracy and relevance in passage/document
retrieval tasks.

These efforts in developing hybrid retrieval models enable ORConvQA systems to benefit
from the semantic modelling capabilities of dense retrieval models while also addressing their
limitations, such as high computational cost and limited ability to generalise to new domains (Lin
& Ma 2021, Luan et al. 2021b, Wang, Zhuang & Zuccon 2021). Following Wang, MacAvaney,
Macdonald & Ounis (2021a), by effectively combining the strengths of dense and sparse retrieval
models, hybrid models can offer more comprehensive and accurate retrieval results, enhancing
the performance of ORConvQA systems in capturing both lexical and semantic aspects of queries
and passages. In Chapter 7, we employ a hybrid approach that combines sparse and dense passage
retrieval methods in order to achieve a more comprehensive and accurate information retrieval
process for our ORConvQA system.

2.7 Classical IR Evaluation Metrics

Evaluation is an important part of information retrieval (IR) systems, as it provides a way to
measure the effectiveness and performance of the system. Several classical evaluation metrics
are commonly used in IR research including precision, recall, F1 score, MAP (Mean Average
Precision), MRR (Mean Reciprocal Rank), and NDCG (Normalized Discounted Cumulative
Gain). We discuss these metrics in the following section:

• Precision and Recall are two fundamental metrics used to evaluate the performance of
a retrieval system. Precision measures the proportion of relevant documents among the
retrieved documents, while Recall measures the proportion of relevant documents that are
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retrieved. Precision and recall are calculated as follows:

Precision =
Number of Relevant Documents Retrieved

Total Number of Retrieved Documents
(2.9)

Recall =
Number of Relevant Documents Retrieved

Total Number of Relevant Documents
(2.10)

• MAP (Mean Average Precision) is a measure of the average precision over a set of
queries (Voorhees 2003). It is calculated as the average of the precision values at each
relevant document in the ranking:

MAP =
1
|Q|

|Q|

∑
i=1

1
numi

numi

∑
j=1

Precision@ j (2.11)

where Q is the set of queries, numi is the number of relevant documents for query Qi, and
j iterates over the ranking of documents for query Qi, from the most relevant to the least
relevant. Precision@j represents the precision at rank j in the ranking for query Qi.

• MRR (Mean Reciprocal Rank) measures the effectiveness of a retrieval system in returning
the most relevant results for a query higher in the ranking (Radev et al. 2002, Voorhees
2003). MRR is defined as the average of the reciprocal ranks of the first relevant document
retrieved over a set of queries. It is particularly useful for evaluating the effectiveness
of a system in cases where only one relevant document is expected for a given query.
MRR is considered to be a more robust metric than precision and recall, as it takes into
account the order of the retrieved documents. While MRR is useful when only one relevant
document is expected per query, whereas MAP is suitable for scenarios with multiple
relevant documents (Voorhees et al. 1999). Both metrics assess the effectiveness of retrieval
systems but focus on different aspects: the rank of the first relevant document (MRR) and
precision across the ranking (MAP). The formula for calculating the MRR is as follows:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(2.12)

where Q is the set of queries, and ranki is the rank of the first relevant document retrieved
for the i-th query.

• NDCG (Normalised Discounted Cumulative Gain), proposed by Järvelin & Kekäläinen
(2002), is a measure of the quality of a ranking of documents (Voorhees 2003). It takes into
account both the relevance of the documents and their position in the ranking. NDCG can
be used in various scenarios where the order of relevant retrieved documents matters, such
as web search, recommendation systems, and conversational search. NDCG is calculated
as follows:
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NDCG@k =
1
Zk

k

∑
i=1

2reli −1
log2(i+1)

(2.13)

where k is the number of documents that are included in the calculation, reli is the relevance
of the document at position i, and Zk is a normalisation factor that ensures that the NDCG
score is between 0 and 1.

NDCG is particularly useful in evaluating retrieval systems that return a ranked list of
documents, where the relevance of the documents varies. For example, in web search,
some documents may be highly relevant to the user’s query, while others may be only
marginally relevant or not relevant at all. In this case, NDCG provides a way to evaluate
the effectiveness of the retrieval system in ranking the relevant documents higher in the list,
while downgrading the importance of less relevant documents.

In Open-Retrieval Conversational Question Answering (ORConvQA) systems, the goal is
to retrieve relevant passages or documents that provide answers to a given query or question.
These systems often use retrieval techniques, such as sparse retrieval (e.g., TF-IDF, BM25) or
dense retrieval (e.g., TCT-ColBERT), to identify passages or documents that are likely to contain
the answer to the query. Once the passages or documents have been retrieved, they need to
be ranked based on their relevance to the query. This is where NDCG can be useful. NDCG
takes into account both the relevance of the passages and their position in the ranking. The
relevance of a passage or document is typically measured by a relevance score, which reflects the
degree to which the passage or document answers the query. By using NDCG, Open-Retrieval
Conversational Question Answering (ORConvQA) systems can evaluate the effectiveness of their
retrieval techniques in ranking the passages or documents based on their relevance to the query,
while taking into account the order of the retrieved passages (Dalton et al. 2020, 2021).

2.8 Multi-Task Learning

Multi-Task Learning (MTL) (Ruder 2017) is an approach in machine learning that aims to
improve the performance of multiple related tasks by jointly learning them in a single model.
In traditional single-task learning, each task is typically treated as an independent problem and
trained separately. However, in many real-world scenarios, there exist inherent relationships and
dependencies among different tasks that can be leveraged to enhance learning efficiency and
generalisation.

In this section, we explore Multi-Task Learning (MTL) and compare it with other learning
approaches such as Transfer Learning (Yang et al. 2020), Prompt-based Learning (Liu et al. 2023),
Multi-Label Learning (Zhang & Zhou 2014), and Multi-view Learning (Sun et al. 2017, Wang
et al. 2011, Zhao et al. 2017). By examining the distinctions between MTL and these approaches,
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we gain insights into how MTL offers unique advantages and benefits in jointly learning multiple
related tasks, as is needed in the ORConvQA systems.

2.8.1 Learning Taxonomy

In the field of machine learning, various approaches and techniques have been developed to
tackle different learning tasks. This section provides an overview of several learning paradigms
that are relevant to the research conducted in this thesis, including their connections and relevance
to the concept of Multi-Task Learning (MTL). By exploring these learning paradigms, we can
gain insights into their applicability and potential synergies with MTL in addressing complex
real-world challenges.

• Transfer Learning (Yang et al. 2020) aims to leverage knowledge acquired from one task
or domain to improve learning on another related task or domain. It recognises that models
trained on large-scale datasets can capture generic features and knowledge that can be
reused in different contexts. By transferring learned knowledge, models can potentially
benefit from reduced training time, improved performance, and enhanced generalisation
capabilities. Transfer learning techniques include fine-tuning pre-trained models, using
feature extraction layers, and domain adaptation methods (Yang et al. 2020).

• Multi-label Learning (Zhang & Zhou 2014) deals with scenarios where each instance can
be associated with multiple labels simultaneously. This learning paradigm is particularly
useful in domains where instances can have multiple attributes or labels. It requires models
to learn to predict multiple output variables, where each label may have varying degrees
of relevance or importance. Applications of multi-label learning can be found in text
classification, image annotation, and recommendation systems (Zhang & Zhou 2014).

• Multi-View Learning (Sun et al. 2017, Wang et al. 2011, Zhao et al. 2017) refers to
learning tasks that involve multiple distinct sets of features or views for each instance.
These views provide complementary information about the data, and the goal is to learn
a unified representation or model that effectively exploits the information from all views.
Multi-view learning is commonly used in multimedia analysis, where an instance can have
different representations, such as text, images, or audio, each capturing different aspects of
the data (Sun et al. 2021).

• Prompt-based Learning (Liu et al. 2023) is a new paradigm in natural language processing
(NLP) that involves pre-training a language model to predict text based on a given prompt.
Unlike traditional supervised learning, which trains a model to take in an input x and
predict an output y as P(y|x), prompt-based learning is based on language models that
model the probability of text directly. The process involves modifying an input x into
a textual string prompt x’ that is used to generate text. Prompt-based learning has been
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Figure 2.9: Comparison of Multi-Task Learning (MTL) and Other Learning Paradigms. Figure
adapted from (Zhang & Yang 2021).

applied to a variety of NLP tasks and has shown promising results in few-shot and zero-shot
learning scenarios (Brown et al. 2020).

• Multi-Task Learning (Crawshaw 2020, Zhang & Yang 2021) involves training a model to
perform multiple related tasks simultaneously, with the idea that learning multiple tasks
jointly can lead to improved performance on each individual task. By sharing information
and representations across tasks, models can leverage the commonalities and dependencies
between tasks to enhance learning. Multi-task learning can provide benefits such as better
generalisation, improved efficiency, and increased robustness (Ruder 2017).
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Figure 2.9 presents a comprehensive comparison of Multi-Task Learning (MTL) with other
learning paradigms, such as Transfer Learning, Multi-Label Learning, Multi-View Learning, and
Prompt-based Learning. Each paradigm exhibits distinct approaches and objectives (Zhang &
Yang 2021).

In Figure 2.9 (a), Transfer Learning and MTL both leverage knowledge from one task to
benefit another. Transfer Learning takes knowledge from an initial task (source) and applies it to
a different but related task (target), often by fine-tuning a pre-trained model (Yang et al. 2020). In
contrast, MTL simultaneously trains a model on multiple tasks, sharing information across them
to boost performance on all tasks. In addition, whilst Transfer Learning focuses on using past
knowledge for a new task, Multi-Task Learning optimises several tasks together (Zhang & Yang
2021).

In addition, Figure 2.9 (b) shows that both Multi-Label Learning and MTL handle multiple
outputs, but in different ways. Multi-Label Learning predicts several labels for one instance,
like tagging a movie as both "Action" and "Adventure". On the other hand, MTL trains a
model on multiple tasks at once, such as identifying objects in a photo while also classifying
the scene (Zhang & Zhou 2014). Hence, while Multi-Label Learning focuses on multiple labels
for one task, Multi-Task Learning aims to improve performance across several related tasks by
training them simultaneously (Zhang & Yang 2021).

Figure 2.9 (c) also compares Multi-View Learning and MTL, which are both advanced
machine learning paradigms that use multiple sources of data or objectives, but they differ in their
goals and application. Multi-View Learning focuses on exploiting data from different views or
sources (like audio and video) for the same task, aiming to build a comprehensive representation
of data (Wang et al. 2011). In contrast, Multi-Task Learning involves training a model on multiple
related tasks simultaneously to improve performance on each, by leveraging shared patterns or
features. Hence, while Multi-View capitalises on diverse data sources for a single task, Multi-Task
Learning optimises several tasks together, often through shared model parameters (Zhang & Yang
2021).

Moreover, Figure 2.9 (d) presents the difference between Prompt-based Learning and MTL.
Prompt-based learning and MTL are two techniques that can be used to improve the performance
of machine learning models. Prompt-based learning uses carefully designed inputs to guide a
model’s output, while multi-task learning trains a model on multiple related tasks simultane-
ously (Liu et al. 2023, Zhang & Yang 2021).

In conclusion, Figure 2.9 presents a comparison, focusing on the unique characteristics of
Multi-Task Learning (MTL) in contrast to other learning paradigms including Transfer Learning,
Multi-Label Learning, Multi-View Learning, and Prompt-based Learning. In this thesis, we
propose to develop an effective ORConvQA by leveraging MTL. Compared to other learning
paradigms, MTL can help ORConvQA systems to simultaneously optimise multiple related
tasks, leverage shared knowledge structures, and improve generalisation capability, resulting in
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enhanced performance in ORConvQA. In Chapters 5, 6, 7, and 8, we show how MTL allows to
improve the performance of ORCOnvQA on various tasks, including answer extraction, follow-up
question identification, conversational question rewriting, passage retrieval, passage reranking,
clarification need classification, and asking clarifying question.

2.8.2 MTL Taxonomy

As mentioned in Section 2.8, Multi-Task Learning (MTL) is a machine learning approach
that aims to jointly train a model on multiple related tasks, leveraging the shared knowledge and
dependencies between them. By learning from multiple tasks simultaneously, MTL can improve
generalisation, enhance performance on individual tasks, and reduce the need for separate models
for each task (Crawshaw 2020). To effectively implement MTL, several important aspects need
to be considered, including the optimisation strategy methods and parameter sharing approaches.
These aspects are essential in determining how the MTL model learns and shares information
across tasks.

In this section, we provide an overview of the optimisation strategy methods in MTL, specif-
ically focusing on static vs dynamic task weighting. We also discuss the parameter sharing
techniques employed in MTL, distinguishing between hard and soft parameter sharing. Under-
standing these foundational aspects of MTL taxonomy will pave the way for a comprehensive
understanding of multi-task learning and its application in various domains.

2.8.2.1 Optimisation Strategy Methods in MTL

Multi-Task Learning (MTL) involves training models on several tasks simultaneously. The
optimisation strategy, which determines the importance assigned to each task during training, is
important for training MTL models on multiple tasks. Task weighting can be done in two ways:
static task weighting and dynamic task weighting. Static task weighting assigns fixed weights to
each task during training, while dynamic task weighting assigns weights to tasks that are updated
during training. We discuss static and dynamic task weighting in detail in the remainder of this
section:
Static task weighting involves assigning fixed weights to each task throughout the training
process. These weights can be based on prior knowledge about the relative importance of tasks
or set equally to treat all tasks equally, such as setting all of them to 1.0 (Yeh & Chen 2019), or
setting their sum to 1 (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019). The total loss function
of this method is defined as follows:
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Figure 2.10: Dynamic Evolving Weighting approaches, Figure adapted from (Belharbi et al.
2016).

Ltotal = µLans +λ ∑
a∈A

La (2.14)

where A is the set of auxiliary tasks, µ is the weight for the main task and λ is the weight for
A. Static task weighting provides a straightforward and intuitive approach to MTL. However, it
may not fully capture the varying complexities and contributions of different tasks, potentially
limiting the model’s ability to optimally allocate resources during training (Crawshaw 2020).
Dynamic task weighting adaptively adjusts the importance assigned to each task based on
its performance or difficulty. This approach allows the model to allocate more resources and
focus on challenging or more informative tasks during training. Dynamic task weighting can be
implemented using various techniques, such as reinforcement learning (Liu, Liang & Gitter 2019)
or adaptive loss scaling (Chen et al. 2018). By dynamically updating task weights, the model can
adapt and prioritise the learning process to maximise overall performance across multiple tasks.
Examples of dynamic approaches are Evolving Weighting (Belharbi et al. 2016), Loss-Balanced
Task Weighting (Liu, Liang & Gitter 2019), and Uncertainty Weighting (Kendall et al. 2018),
discussed further below.

• Evolving Weighting: Belharbi et al. (2016) proposed to evolve the loss weighting during
the training steps according to a schedule. A training step is defined as the number of
batches of the training data, such that the total number of steps is the number of batches
multiplied by the number of training epochs. Four different schedules were proposed.
Figure 2.10 gives an overview of how the four schedules vary the weights of the main and
auxiliary tasks – µ and λ , respectively – across the training steps. These four schedules are
described below:
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Stairs schedule: The initial emphasis is on the auxiliary task, with µ = 0 and λ = 1. At a
given training step t, µ = 1 and λ = 0.

Linear schedule: The weight of the auxiliary task decreases linearly at each training step,
such that the auxiliary weight λ = 1 tends to 0; in contrast, the weight of the main task
increases linearly, i.e. µ = (1−λ ). In particular, given that the total number of steps T is
known in advance, µt =

t
T , where µt is the weight of the main tasks at training step t. This

approach is typically employed when the aim is to incrementally enhance the importance
of the main task in a linear manner throughout the training process.

Abridged Linear schedule: In a linear schedule, µ rises over the full training schedule to
step T. This may not place sufficient emphasis on the main task during training. Instead,
in the Abridged Linear schedule the weight on the auxiliary task λ falls linearly to 0 by a
threshold step tτ . After tτ , all emphasis is on the main task (i.e. µ = 1).

Exponential schedule: The weights evolve exponentially to the step number, i.e. µ =

exp(−t
σ
), where t is the current number of training steps, and σ is the slope, as shown in

Figure 2.10.

• Loss-Balanced Task Weighting (LBTW) (Liu, Liang & Gitter 2019): This MTL method
aims to reduce negative transfer by using the task-specific loss to balance the different
auxiliary tasks. Negative transfer is when the performance of the task is decreased by
Multi-Task Learning compared to the Single-Task Learning. This method employs the loss

ratio between the current loss and the initial loss of each task to adjust the task’s weight.
The task with the loss ratio closest to 1 needs to contribute more to the total loss. By
increasing the weight of the task with the loss ratio that is closest to 1, this method attempts
to balance the task importance.

• Uncertainty Weighting (Kendall et al. 2018): This method is the most often used Multi-
Task Learning approach, which is a weighting strategy that consists in analysing the
uncertainty of each task. In this method, each of the task’s weights is adjusted by deriving
a multi-task loss function when maximising the Gaussian likelihood (Ruder 2017).

Both static and dynamic task weighting have their advantages and trade-offs in MTL (Craw-
shaw 2020). Static task weighting offers simplicity and interpretability, making it easier to define
and control the relative importance of tasks. It is particularly useful when prior knowledge
about task importance is available or when all tasks are expected to contribute equally. However,
it may not effectively capture variations in task difficulty or adapt to changing task dynamics
during training. On the other hand, dynamic task weighting enables the model to flexibly allocate
resources to tasks based on their performance or inherent complexity. This adaptability enhances
the model’s ability to learn and allocate resources efficiently, leading to potentially improved
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Figure 2.11: Comparison of Hard and Soft Parameter Sharing in Multi-Task Learning (Ruder
2017).

performance. However, dynamic task weighting approaches introduce additional complexity in
terms of implementation and may require additional computational resources.

2.8.2.2 Parameter Sharing in MTL

Multi-Task Learning (MTL) involves sharing and reusing parameters in a model across
various tasks. The way the model shares these parameters markedly impacts its capability to
leverage shared knowledge and relationships between tasks. Figure 2.11 presents two common
methods for parameter sharing in MTL, which are hard parameter sharing and soft parameter
sharing (Ruder 2017).
Hard parameter sharing is a commonly used approach for Multi-Task Learning (MTL) within
neural networks, which can be traced back to the research conducted in 1993 by Caruana (1993).
This approach involves using shared layers or components across all tasks in the MTL model. The
shared layers are responsible for capturing common features and representations that are relevant
to multiple tasks. By sharing parameters, the model is forced to learn a unified representation that
is shared among all tasks, as shown in Figure 2.11 (a). Hard parameter sharing enables efficient
knowledge transfer among tasks, particularly when they share similar inputs or patterns. It
simplifies model complexity and boosts training and inference efficiency. Hard parameter sharing
effectively minimises overfitting. As Baxter (1997) found, the overfitting risk for the shared
parameters, where N is the task count, is significantly lower than for task-specific parameters.
This is intuitive: As the model learns more tasks concurrently, it develops a representation fitting
all tasks, thus reducing the likelihood of overfitting.
Soft parameter sharing (Ruder 2017) enables each task to have its own set of parameters
while still allowing for some degree of sharing, as presented in Figure 2.11 (b). In this approach,
the model incorporates regularisation techniques (Duong et al. 2015) or track norm (Yang &
Hospedales 2017) to encourage the parameters of different tasks to be similar or to converge
towards a shared space. Soft parameter sharing offers flexibility in capturing both shared and
task-specific information (Worsham & Kalita 2020). It allows the model to adapt to variations in
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task characteristics and provides the capacity to learn task-specific representations. However, it
can increase the model’s complexity and training time, as each task has its own set of parameters
to optimise.

The decision to use either hard or soft parameter sharing depends on the nature of the tasks
and the amount of shared knowledge between them. Hard parameter sharing is simpler and more
common, but soft parameter sharing allows more flexibility and specialisation for each task. Both
approaches aim to improve the generalisation and representation of the network by learning from
multiple tasks (Worsham & Kalita 2020). In this thesis, following Liu et al. (2015), Liu, He, Chen
& Gao (2019), Xu et al. (2019a), we employ a hard parameter sharing MTL approach because
this network type reduces the risk of overfitting (Ruder 2017).

2.9 Conclusions

In this chapter, we explored various aspects that lay the background for effective Open-
Retrieval Conversational Question Answering (ORCOnvQA) leveraging Multi-Task Learning
(MTL). We began by delving into sparse retrieval (Section 2.2), which involved the retrieval of
relevant passages based on term frequencies and document relevance scores. Sparse retrieval
approaches, such as BM25, have been widely used and provide a solid baseline for information
retrieval systems. Next, we discussed the significance of Pre-trained Language Models (PLMs)
(Section 2.3) in the field of natural language processing (NLP) and information retrieval (IR).
PLMs, such as BERT (see Section 2.3.2), T5 (see Section 2.3.1), and BART (see Section 2.3.1),
have revolutionised language understanding by capturing contextual information and seman-
tic meaning. These models serve as tools for improving the performance of Open-Retrieval
Conversational Question Answering systems. Dense retrieval (Section 2.4) has emerged as
another important approach to information retrieval. Dense retrieval models, such as ANCE (see
Section 2.4.2), ColBERT (see Section 2.4.3), TCT-ColBERT (see Section 2.4.2), and GTR (see
Section 2.4.2), leverage dense vector representations to capture semantic similarities between
queries and passages. The integration of dense retrieval techniques complements the limitations
of sparse retrieval and enhances the accuracy and relevance of retrieved passages. We then
explored the concept of hybrid sparse and dense retrieval (Section 2.4), which combines the
strengths of both approaches. By leveraging the complementary aspects of sparse and dense
retrieval, hybrid models aim to achieve more comprehensive and precise retrieval results in
ORConvQA. Section 2.7 provided a detailed overview of the different evaluation metrics that are
commonly used in IR and which are typically used in ORConvQA. Evaluation metrics, including
Precision, Recall, MAP, MRR, and NDCG, are commonly used to compare the performance of
the different IR systems. Lastly, we explored the potential of MTL (Section 2.8) in ORConvQA.
MTL allows for joint training of multiple related tasks, enabling knowledge sharing and improved
generalisation. By leveraging MTL, we can enhance the performance of the ORConvQA systems.
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Overall, in order to develop an effective ORConvQA leveraging MTL, it is important to
have a solid understanding of the background and approaches associated with Sparse Retrieval,
PLMs, Dense Retrieval, Hybrid Dense and Sparse Retrieval, Classical Evaluation Metrics in
IR, and MTL. This comprehensive background knowledge sets the stage for the subsequent
chapters, where we delve into specific methodologies and experiments to explore the benefits
and challenges of multi-task learning in the context or ORConvQA. With this comprehensive
background knowledge, we are now ready to delve into the related work in the next chapter.
Indeed, Chapter 3 examines existing research and methodologies in the field of Open-Retrieval
Conversational Question Answering.
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Chapter 3

Related Work

3.1 Introduction

As previously discussed in Section 1.3, the aim of this thesis is to develop an Open-Retrieval
Conversational Question Answering (ORConvQA) system using Multi-Task Learning (MTL).
Recall that, as stated in Section 1.1, ORConvQA systems differ from traditional search engines
by allowing users to interact in a more natural and conversational manner. For example, instead
of submitting a search query like "Famous scientists" to a search engine, users can ask, "Who are
some famous scientists?" and follow up with questions like, "What are their notable discoveries?"
based on the system’s previous responses. This conversational approach offers a more intuitive
and user-friendly method for information retrieval.

However, as outlined in Section 1.2, effectively answering the users’ questions in ORConvQA
comes with several challenges, including:

• Ambiguities in conversational questions: Questions in conversations can be ambiguous
or unclear, requiring the system to use prior conversation context or ask for more details to
provide accurate answers.

• Retrieve relevant passages: In a large-scale collection of passages, efficient and accurate
retrieval of relevant passages is important.

• Identify the most relevant passages: Among the passages retrieved, determining which
passages are the most relevant in the context of the ongoing conversation is a challenging
task.

• Extract answers: Once a list of relevant candidate passages is formed, extracting the most
accurate and relevant answers represents the final challenge.

To address the challenges of ORConvQA, this thesis investigates several sub-tasks, including:
i) Conversational Question Answering: to gauge the current question in the context of the
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conversation history and to provide a relevant answer; ii) Follow-up Question Identification: to
identify questions that are follow-ups to previous questions, helping in context understanding; iii)
Conversational Question Rewriting: to reformulate a concise conversational question into a fully
specified query that existing information retrieval systems can adequately handle; iv) Clarification
Need Classification: to determine when a user’s query is ambiguous and may require additional
clarification; v) Asking Clarifying Questions: to interact with the user to gain additional context
or clarification; vi) Passage Retrieval: to efficiently search through a large collection of documents
to retrieve relevant passages; vii) Passage Reranking: to reorder the list of retrieved passages
based on their relevance to the ongoing conversation.

In addition, given the multifaceted challenges and tasks required to effectively address
ORConvQA, this thesis argues that Multi-Task Learning (MTL) has a good potential as an
integrated solution. Recall from Chapter 2, Section 2.8, that MTL has become a popular method
for simultaneously tackling multiple related tasks within a single model (Qu, Yang, Qiu, Zhang,
Chen, Croft & Iyyer 2019). Indeed, multi-task learning can enhance generalisation performance,
reduce overfitting, and improve efficiency by encouraging the model to learn more general
features that are relevant across multiple tasks while sharing parameters between them (Collobert
& Weston 2008, Ruder 2017). Through Multi-Task Learning (MTL), our proposed system aims
to integrate these sub-tasks to develop a more effective ORConvQA system.

Therefore, to distinguish our main contributions from the existing work, in this chapter, we
explore all seven aforementioned tasks in the literature by providing their definitions, datasets,
evaluation metrics, as well as describing the existing approaches. In addition, we identify the
gaps in the literature and discuss how MTL can be leveraged to address them.

The remainder of this chapter is organised as follows:

• Section 3.2 presents an overview of Conversational Question Answering (ConvQA) explor-
ing how to gauge the current question within the conversation history and provide relevant
answers;

• Section 3.3 describes Follow-up Question Identification (FID) identifying questions that
are follow-ups to previous questions, thereby helping in context understanding;

• Section 3.4 presents Conversational Question Rewriting (QR), which emphasises the
reformulation of conversational questions into queries that existing information retrieval
systems can process effectively;

• Section 3.5 discusses Clarification Need Classification (CNC), which is concerned with
how to determine when a user’s query is ambiguous and may need further clarification;

• Section 3.6 describes Asking Clarifying Questions, an important task for interacting with
users to gain additional context.
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• Section 3.7 presents Passage Retrieval, exploring techniques for retrieving relevant passages
from large document collections;

• Section 3.8 discusses Passage Reranking, which involves reordering retrieved passages
based on their relevance to the ongoing conversation;

• Section 3.9 presents Multi-Task Learning in ORConvQA, exploring how to combine the
tasks for a more effective ORConvQA system and identifying the research gaps that this
thesis aims to address;

• Finally, Section 3.10 gives the concluding remarks for this chapter, summarising the
identified research gaps from Section 3.9.

3.2 Conversational Question Answering (ConvQA)

Conversational Question Answering (ConvQA) (Choi et al. 2018) is a subset of Machine
Reading Comprehension (MRC) (Rajpurkar et al. 2018, 2016) where questions are asked in
the context of ongoing conversations. ConvQA simplifies the Open-Retrieval Conversational
Question Answering (ORConvQA) task by providing a relevant passage from which the answer
is extracted. To effectively tackle the ConvQA task, a system must effectively handle the
conversation history to understand and answer the current question accurately. In the following
sections, we provide the ConvQA task definition in Section 3.2.1. In Section 3.2.2, we discuss the
ConvQA dataset. Then, we explore how to evaluate the ConvQA task in Section 3.2.3. Finally,
the existing approaches are reviewed in Section 3.2.4.

3.2.1 ConvQA Task Definition

Following Choi et al. (2018), we describe the ConvQA task as follows: given a passage p,
a conversation history Hk consisting of a list of k questions and ground truth answer pairs, i.e.
Hk = [⟨q,a⟩], and a new query qk+1, the task is to predict answer ak+1 by predicting answer
span indices i, j within passage p. Table 3.1 exemplifies the ConvQA task, showing an example
passage p, and conversation history of length k = 2 with corresponding questions and answers;
In particular, in response to question q3, the aim of a ConvQA system is to correctly predict the
right answer a3 from all possible sentences in p.

3.2.2 ConvQA Datasets

In this section, we provide a detailed comparison of well-known datasets for Machine Reading
Comprehension (MRC) tasks including SQuAD 1 (Rajpurkar et al. 2018), CoQA 2 (Reddy et al.
1 https://rajpurkar.github.io/SQuAD-explorer/ 2 https://stanfordnlp.github.io/coqa/
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Table 3.1: An example dialog from the ConvQA dataset.

p

In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
After a disappointing final season with the White Sox which saw Simmons bat just .267 with 16
home runs and 79 RBI in 128 game (first time in his 11-year career he did not reach .300+ & 100
RBI) he rebounded by hitting .327 with 13 home runs, 112 RBI and 96 runs scored in 1936 for
the Detroit Tigers. In 1937 he struggled again, this time with the Washington Senators, batting
just .279 with 8 home runs and 84 RBIs in 103 games. He rebounded with a stellar season in
1938, batting .302 with 21 home runs and 95 RBI in just 125 games for Washington. His 21
home runs that year gave Simmons the distinction of being the first player to hit 20 home runs
in a year for the Senators. CANNOTANSWER

q1 Where was he playing in 1933?
a1 CANNOTANSWER
q2 What did he do between 1933 and 1938?
a2 In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
q3 Did he lead the league in hitting?
a3 After a disappointing final season with the White Sox

2019), and QuAC 3 (Choi et al. 2018). According to Yatskar (2019), these datasets are similar
in using Wikipedia articles as their sources, asking questions about a provided passage, and
extracting the answer from the text or providing no answer (e.g., a1 : CANNOTANSWER in the
example of Table 3.1). The three datasets differ in their handling of unanswerable questions,
dialogue, and abstractive answers:

• Unanswerable questions: SQuAD 2.0 contains the most diverse set of unanswerable
questions, while QuAC focuses on questions that could plausibly be answered by the
passage. CoQA, on the other hand, contains only a few unanswerable questions.

• Dialogue: SQuAD is a single-turn dataset, while QuAC and CoQA both contain dialogues.
In CoQA, the questions often drill into the details of a topic, covering up to 60% of the
context sentences. In QuAC, on the other hand, the questions often shift to new topics,
covering less than 30% of the context sentences.

• Abstractive answers: Abstractive answers refer to responses that are not directly extracted
from the provided passage. Both QuAC and CoQA contain the same rate of yes/no
questions (ie., questions where the answer is either yes or no). QuAC has no abstractive
answers, while CoQA includes a small number of predominant insertions, which are
additional words or phrases in the answers that are not directly extracted from the text but
are inserted to make the response more coherent or complete.

In the following, we describe each dataset in detail:
SQuAD (Stanford Question Answering Dataset) (Rajpurkar et al. 2018, 2016) is a dataset

for training and evaluating machine reading comprehension models. Each item in this dataset
consists of a passage from a Wikipedia article and a set of questions about the passage. The
3 https://quac.ai/
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answer to each question is a span of the passage. One unique feature of SQuAD is that it includes
unanswerable questions. This introduces the challenge of not only answering questions but
also determining when a question cannot be answered based on the given passage. SQuAD
is a single-turn dataset, meaning that each question is answered with a single sentence from
the context. The dataset contains over 100,000 question-answer pairs, and it is divided into a
training set and a development set. SQuAD is a widely used benchmark dataset for evaluating
the performance of question answering systems.

QuAC (Question Answering in Context) (Choi et al. 2018) is a widely-used Conversational
Question Answering (ConvQA) dataset that encompasses various types of questions, including
both non-factoid and factoid questions. This diverse question set challenges models to reason and
extract relevant information from the context in order to provide accurate answers. includes three
auxiliary tasks: Yes/No Prediction, Follow-up Question Identification, and Unanswerable Predic-
tion. These auxiliary tasks add complexity and depth to the dataset, facilitating an exploration of
ConvQA. However, the dialogues in QuAC often shift topics, thereby increasing the complexity
of context understanding for models. This dataset also contains unanswerable questions, though
these questions are specifically designed to focus on information that could be plausibly present
in the passage. Unlike CoQA, QuAC does not contain abstractive answers beyond "yes" or "no"
responses.

As discussed in Section 1.2, our focus in this thesis is on multi-turn conversation question
answering. Therefore, we have chosen not to use the SQuAD dataset. The two large-scale
ConvQA datasets, QuAC (Choi et al. 2018), and CoQA (Reddy et al. 2019), have facilitated
further research on this task. As mentioned above, the differences between these datasets are
that the questions in CoQA are predominantly factoid in nature, while most questions in QuAC
are non-factoid. Moreover, QuAC also contains three auxiliary tasks; in contrast, CoQA only
provides an Unanswerable prediction task as an auxiliary task. Hence, due to the presence of
multiple auxiliary tasks, our MTL study focuses on the QuAC dataset in Chapter 5. Meanwhile,
in Chapters 6, 7, and 8, we use datasets adapted from the QuAC dataset, such as OR-QuAC (Qu
et al. 2020), LIF (Kundu et al. 2020), and CANARD (Elgohary et al. 2019), which are specifically
tailored to the tasks and objectives of those chapters.

3.2.3 Evaluation of ConvQA Systems

The evaluation of Conversational Question Answering (ConvQA) systems involves assessing
their ability to accurately answer questions within the context of ongoing conversations. The
word-level F1 and the human equivalence (HEQ) scores are the metrics typically used in the
literature. The Word-level F1 score measures the overlap between the predicted and the actual
responses at the word level, while an EM score is used to evaluate whether the system’s response
is exactly the same as the actual response. The details of these three metrics are as follows:
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1. Word-level F1, commonly used in Machine Comprehension and in the ConvQA tasks (Choi
et al. 2018, Rajpurkar et al. 2018, 2016), evaluates the overlap between the system’s
prediction and the ground truth answer span. The word-level F1 score is calculated as
follows:

Precision = 2 · Precision ·Recall
Precision+Recall

(3.1)

where Precision is the fraction of words in the predicted answer that are also in the ground-
truth answer and Recall is the fraction of words in the ground-truth answer that are also in
the predicted answer.

2. The Human Equivalence Score (HEQ) is used to evaluate the percentage of examples
for which the deployed model’s F1 is equivalent to or higher than the human word-level
F1. This metric comprises two components: HEQ-Q and HEQ-D. HEQ-Q is calculated
at the question level, assessing whether the model’s F1 score for each individual question
is at least as high as the human F1 score. HEQ-D, on the other hand, is computed at the
dialogue level, evaluating whether the model’s F1 score across an entire dialogue equals
or outperforms the human performance. The QuAC (Choi et al. 2018) challenge defines
human performance to have an HEQ-Q and HEQ-D of 100.

3. Exact Match (EM) calculates the percentage of questions for which the model’s answer
matches the ground truth answer exactly. It is a stringent measure of correctness (Rajpurkar
et al. 2018, 2016).

In this thesis, Chapters 5 and 8 employ word-level F1, HEQ-Q, and HEQ-D as evaluation
metrics for assessing performance in conversational question answering tasks. However, in
Chapters 6 and 7, these metrics are not used as these chapters focus on information retrieval (IR)
tasks, which require different evaluation metrics (see Section 2.7).

3.2.4 Approaches for ConvQA

Different studies have employed various approaches for handling conversation history. For
example, Reddy et al. (2019), Zhu et al. (2018), have appended the preceding question-answer
pairs to the current question. On the other hand, Qu, Yang, Qiu, Croft, Zhang & Iyyer (2019), Qu,
Yang, Qiu, Zhang, Chen, Croft & Iyyer (2019), Yeh & Chen (2019) all adopted a history selection
mechanism. This mechanism selectively incorporates relevant parts of the conversation history,
rather than using all conversation history. In addition, several studies have directly integrated the
conversation history into neural language models like BERT (as introduced in Section 2.3.2). For
example, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer (2019) introduced the Positional History
Answer Embedding (PosHAE) approach, which uses a feature vector to encode the answer’s
position within the conversation history relative to the current enquiry. Similarly, Choi et al.
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Figure 3.1: An architecture of the HAM model. Figure taken from (Qu, Yang, Qiu, Zhang, Chen,
Croft & Iyyer 2019).

(2018), Yeh & Chen (2019) employed a Context Feature to signify historical answers within the
passage. We describe the existing ConvQA models in detail as follows:
HAM (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019) proposed a solution for the ConvQA
task by using the prior answers to understand and answer the current question. In this system,
there were three features including Positional History Answer Embedding (PosHAE introduced
by (Qu, Yang, Qiu, Croft, Zhang & Iyyer 2019)), History Attention mechanism (HAM), and
Multi-Task learning (MTL) as illustrated in Figure 3.1. First, PosHAE was conducted by using
BERT to encode the history of the answer and its position in the conversation. Second, HAM
was the method that applies a single-layer feed-forward neural network to estimate the weight
for answering the current question. Last, to predict the answer with another classification task
(dialogue act prediction in QuAC) they applied MTL with weighting each prediction model
to increase the performance of ConvQA. In addition, HAM has been shown to outperform
the baselines including BiDAF++ (Seo et al. 2017), FlowQA (Huang et al. 2019), and BERT
PosHAE (Qu, Yang, Qiu, Croft, Zhang & Iyyer 2019), on the ConvQA QuAC (Choi et al. 2018)
dataset. As a result, we use HAM as our strongest baseline in Chapter 5, particularly when
evaluating the performance of our proposed Multi-Task Learning models in the ConvQA task.
UnifiedQA (Khashabi et al. 2020) is a single pre-trained question answering (QA) model. It was
developed to handle different of QA formats, such as extractive span selection (Rajpurkar et al.
2018, 2016), abstractive QA (Kočiskỳ et al. 2018, Reddy et al. 2019), multiple choice (Mihaylov
et al. 2018), and Yes/No QA (Clark, Etzioni, Khashabi, Khot, Mishra, Richardson, Sabharwal,
Schoenick, Tafjord, Tandon, Bhakthavatsalam, Groeneveld, Guerquin & Schmitz 2020), without
relying on format-specific prefixes. UnifiedQA was evaluated across 20 diverse QA datasets
spanning 4 different formats. The results demonstrated that UnifiedQA performs on par with
or even outperforms dataset-specific expert models trained for individual formats. In particular,
the evaluation showed that UnifiedQA performs almost as well as the best single dataset experts
and, in some cases. Furthermore, UnifiedQA demonstrated strong generalisation on 12 unseen
datasets, highlighting its adaptability and effectiveness in handling diverse QA tasks. As a
result, we use UnifiedQA as our strongest baseline in Chapter 8, particularly when evaluating the
performance of our proposed Multi-Task Learning models in the ConvQA task.
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Figure 3.2: An example of dialogue and candidate follow-up questions in the follow-up question
identification task (Kundu et al. 2020).

3.3 Follow-up Question Identification (FID)

Follow-up question identification is the task of determining if a candidate question is related
to previous questions in a conversation (Kundu et al. 2020). It involves detecting references and
connections between the candidate follow-up question and the ongoing conversation. In this
chapter, we first define the Follow-up Question Identification (FID) task in Section 3.3.1. We
then discuss the FID datasets in Section 3.3.2. In Section 3.3.3, we explore how to evaluate the
FID task. Finally, we review the existing approaches for the FID task in Section 3.3.4.

3.3.1 FID Task Definition

Following Kundu et al. (2020), we consider the following inputs: a conversation history Hk

consisting of a list of k previous questions and ground truth answer pairs, i.e. Hk = [⟨q,a⟩] and a
candidate follow-up question qc. Given these inputs, the task we address is to predict whether or
not the candidate follow-up question qc is a valid follow-up question.

Figure 3.2 exemplifies the follow-up question identification task, showing a history of length
k = 2 with the corresponding questions and answers. In particular, as this task is a binary
classification task, the aim of a follow-up question identification approach is to classify a question
qc as a valid follow-up question or as invalid.

3.3.2 FID Dataset

The LIF dataset (Kundu et al. 2020) is a dataset for learning to identify follow-up questions
in ongoing conversations. It has been developed using the QuAC (Choi et al. 2018) dataset,
which assigns each question one of three categories: should ask, could ask, or should not ask a
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Figure 3.3: An illustrative example of dialogue (Elgohary et al. 2019, Kundu et al. 2020).

Figure 3.4: A binary confusion matrix illustrating systematic and traditional notations. The green
and red colours represent correct rates/counts and incorrect rates/counts in the confusion matrix,
respectively. Figure adapted from (Powers 2020).

follow-up question. In Figure 3.3, a follow-up question (q3) is classified as valid if it can be linked
to the previous conversation (q1,a1,q2,a2), else it is classified as invalid (e.g., q4). The invalid

instances of the LIF dataset were constructed using the should ask follow-up question instances.
The LIF dataset contains 126,632 instances for training, 5,861 instances for development, and
5,992 instances for Test-I, which includes candidates from both other conversations and the same
conversation. Additionally, there are 5,247 instances for Test-II, which includes candidates from
other conversations only, and 2,685 instances for Test-III, which includes candidates from the
same conversation only.

3.3.3 Evaluation of FID Systems

The evaluation of Follow-up Question Identification (FID) systems assesses their capability
to accurately identify whether a given question is a follow-up to a previous query within a
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conversation. This evaluation aims to measure the system’s performance in maintaining the
conversational context and identifying semantic connections between questions. As introduced in
Section 2.7, Precision and Recall are two fundamental metrics used to evaluate the performance
of a retrieval system. In this section, we recall these two metrics, as well as the F1-measure and
Macro F1, for assessing a system in the classification task rather than retrieval task. As presented
in Figure 3.4, True Positive (TP) refers to the number of cases that are correctly predicted as
positive, while False Positive (FP) refers to the number of cases that are incorrectly predicted as
positive. True Negative (TN) refers to the number of cases that are correctly predicted as negative,
while False Negative (FN) refers to the number of cases that are incorrectly predicted as negative.
The details of these metrics are as follows:

1. Precision is a measure of the accuracy of a system’s positive predictions. It is defined as
the proportion of true positive (T P) cases (i.e., cases that are correctly predicted as positive)
out of all positive predictions (T P+FP) made by the system (Powers 2020). Precision is
defined as follows:

Precision =
T P

T P+FP
(3.2)

2. Recall is a measure of the completeness of a system’s positive predictions. It is defined as
the proportion of true positive cases (i.e., cases that are correctly predicted as positive) out
of all actual positive cases (Powers 2020). Recall is defined as follows:

Recall =
T P

T P+FN
(3.3)

For example, if a model is predicting whether or not a candidate follow-up question is a
valid follow-up question within a conversation dialogue, precision measures the percentage
of the candidate follow-up questions that the model correctly identifies valid if the question
is actually valid. On the other hand, Recall measures the percentage of the candidate
follow-up questions that the model correctly identifies as valid out of all the actually
valid follow-up questions in the evaluation set (Kundu et al. 2020). Moreover, a model
with a high precision score is likely to make accurate positive predictions. However, by
being cautious and making fewer positive predictions, it might miss some actual positives,
resulting in a lower Recall. On the other hand, a model with high recall correctly identifies
most positives. However, predicting too many instances as positive can create many
false positives, which lowers Precision. To achieve a balanced assessment of a model’s
performance, Precision and Recall are often combined into a single measure, such as F1, to
get a more comprehensive understanding of a model’s performance.

3. F1 (van Rijsbergen 1979) is a measure of a system’s overall performance that combines
both Precision and Recall. It is defined as the harmonic mean of precision and recall, and
ranges from 0 to 1, with higher values indicating better performance. F1 is often used
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in natural language processing to evaluate the effectiveness of a system in identifying
relevant information and is particularly useful when the classes are imbalanced or when
both Precision and Recall are important (Powers 2020). The F1-measure is defined as
follows:

Precision =
2 ·T P

2 · (T P+FP+FN)
= 2 · Precision ·Recall

Precision+Recall
(3.4)

4. Macro F1 (Pillai et al. 2017) is a type of F measure that is computed on a set of instances in
multi-label problems. It is defined as the average of the single-label F1 measures computed
for each label and gives the same weight to each label. The macro F1-measure is defined
as follows:

macro F1 =
1
n
·

m

∑
i=1

F1i (3.5)

where m is the number of classes and F1i is the F1 score for class i.

In this thesis, we use Precision, Recall, F1 score, and macro F1 as evaluation metrics for
the follow-up question identification task in Chapter 6. These metrics are used to assess
the performance of the model in terms of its accuracy, completeness, and balance. In other
words, the marco F1 score is a variation of the F1 score that is calculated by averaging the
F1 scores for each class, regardless of the class imbalance (Kundu et al. 2020).

3.3.4 Approaches for FID

There have been several approaches to address the task of FID in the literature. A number of
rule-based approaches (Bertomeu et al. 2006, Kirschner & Bernardi 2007) have been proposed in
the literature to address the follow-up question identification task. Such approaches deploy rules
to identify if the candidate question contains a reference to previous questions in the conversation,
e.g. through a definite description (Kirschner & Bernardi 2007), an ellipsis (Bertomeu et al.
2006), or an anaphoric pronoun (Bertomeu et al. 2006) that links the candidate follow-up question
to the previous conversation. Instead of using a rule-based approach as in (Bertomeu et al. 2006,
Kirschner & Bernardi 2007), Kirschner & Bernardi (2009) proposed statistical machine learning
models, namely Logistics Regression models, where the TF-IDF values of the terms in the
questions of the dialogue are used as the models’ features for detecting the follow-up question.
More recently, Kundu et al. (2020) presented a three-way attention pooling network to identify
whether the follow-up question is related to the conversation history with the user. As illustrated
in Figure 3.5, this network takes as input three sequences of text: the conversation history, the
associated passage, and a candidate follow-up question. The network then uses an attention
mechanism to learn the interactions between these three inputs of text. The attention mechanism
allows the network to capture both topic continuity and topic shift, which are important factors in
determining the suitability of a follow-up question. Unlike the rule-based methods in (Bertomeu
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Figure 3.5: Architecture of the three-way attentive pooling network. Figure taken from (Kundu
et al. 2020).

et al. 2006, Kirschner & Bernardi 2007), Kundu et al. (2020)’s approach can also make use of
the associated answer passage. The three-way attentive pooling network has been by Kundu
et al. (2020) was shown in Kundu et al. (2020) to outperform the rule-based methods, a logistic
regression model using the TF-IDF values of the terms not only in the questions of the dialogue
like (Kirschner & Bernardi 2009), but also the terms in the passage. The three-way attentive
pooling approach has also been shown to outperform neural network-based models such as
BiLSTM, CNN, and BERT (as introduced in Chapter 2, Section 2.3.2). In Chapter 6, we use
both the three-way attentive pooling network and BERT as our baselines since the rule-based
and statistical machine learning models have been shown by Kundu et al. (2020) to be much less
effective for this task.

3.4 Conversational Question Rewriting (QR)

The task of conversational question rewriting aims to transform a concise question in a
conversational context into a fully specified and context-independent query that can be effectively
processed by an existing information retrieval (IR) system (Mele et al. 2021).
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Figure 3.6: An example of dialogue from the conversational question rewriting task (Elgohary
et al. 2019).

3.4.1 QR Task Definition

Following Elgohary et al. (2019), given a conversation history Hk consisting of a list of k

questions and a list of ground truth answer pairs, i.e Hk = [⟨q,a⟩], the task is to generate a rewrite
q′m for the next question qm based on Hk. Because qm is part of the conversation, its meaning
frequently includes references to parts of Hk. A valid q′m should be self-contained: i.e. a correct
answer to q′m without the history Hk is a correct answer to qm with the history Hk.

Figure 3.6 exemplifies the conversational question rewriting task, showing a history of length
k=2 with the corresponding questions and answers. The question qm omits the title of the article
and the first question (replacing the pronoun "he" with Sheldon Adelson and replacing "the paper"
with Israeli press). Hence, to address this task, the system needs to resolve any omission by using
history Hk.

3.4.2 QR Dataset

The CANARD dataset (Elgohary et al. 2019) is derived from the QUAC (Question An-
swering in Context) dataset (see details in Section 3.2.2). The data collection process involved
eliciting paraphrases from human crowd-workers to make previously conversational questions
unambiguously answerable. The main characteristic of CANARD is that it provides a pair-wise
mapping between ambiguous and context-enriched questions, which can be used to train models
for conversational question rewriting. The CANARD dataset contains 40,527 questions and their
corresponding context-independent rewrites, covering 65 topics from the QUAC dataset. For
example, in Figure 3.3, the question q′3 “Was Sheldon the owner of the Israeli press?” is a rewrite
of q3 “Was he the owner of the paper?”, based on the conversation history (q1,a1,q2,a2).
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As mentioned in Section 1.4, our intuition is to improve the system’s response accuracy and
relevance by combining follow-up question identification and conversational question rewriting
tasks. In Chapter 6, we conduct experiments using the LIF (see Section 3.3.2) and CANARD (see
Section 3.4.2) datasets, which are recent adaptations of the well-known QuAC Conversational
QA dataset (Choi et al. 2018).

3.4.3 Evaluation of QR Approaches

The system’s effectiveness is typically evaluated using the BLEU (Papineni et al. 2002) and
ROUGE (Lin 2004) scores. BLEU measures the closeness between the system-generated rewrite
and the actual rewrite in terms of n-gram precision. On the other hand, ROUGE provides a
recall-based measure, providing insight into how much of the actual rewrite is captured in the
system-generated rewrite. The details of these metrics are described below:

1. BLEU (Bilingual Evaluation Understudy) score (Papineni et al. 2002), primarily used
to assess machine translation quality, is also valuable for evaluating responses in conver-
sational question answering (Elgohary et al. 2019). This metric compares the system’s
output to one or more reference responses, gauging the quality based on similarity. Scores
range from 0 to 1, where 1 represents a perfect match with the reference. This score
is computed by considering n-gram overlaps, an n-gram being a sequence of ‘n’ words,
between the system’s output and the reference response(s) for various ‘n’ values (usually
ranging from 1 to 4). The BLEU score incorporates both precision, the proportion of words
in the system’s output that match the reference, and brevity, penalising outputs that are
excessively short compared to the reference. While the BLEU score is widely used for
evaluating machine translation system, it does have limitations; for example, it does not
account for the semantic meaning of the generated text (Papineni et al. 2002).

2. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score (Lin 2004) is
a set of measures used to evaluate the quality of automatic summarisation and machine
translation outputs. The measures are based on comparing the n-gram overlap between
the generated summary and the reference summary. ROUGE has four different measures:
ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. ROUGE-N measures the n-gram
overlap between the generated summary and the reference summary, while ROUGE-L
measures the longest common subsequence (LCS) between the two summaries. ROUGE-W
is a weighted version of LCS that takes into account the length of the LCS, and ROUGE-S
is a skip-bigram measure that counts the number of skip-bigrams that appear in both
summaries. The ROUGE scores range from 0 to 1, with a higher score indicating a better
match between the generated summary and the reference summary. ROUGE has been
widely used in the evaluation of summarisation and machine translation systems, and its
effectiveness has been demonstrated in large-scale evaluations (Lin 2004). ROUGE can
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Figure 3.7: Architecture of the sequence-to-sequence model for the conversational question
rewriting task. Figure inspired by (Lin, Yang, Nogueira, Tsai, Wang & Lin 2020a).

also be used to evaluate the quality of conversational question rewriting systems (Lin, Yang,
Nogueira, Tsai, Wang & Lin 2020a, Mele et al. 2021, Ren et al. 2018, Vakulenko, Longpre,
Tu & Anantha 2021, Vakulenko, Voskarides, Tu & Longpre 2021, Voskarides et al. 2020,
Yu et al. 2020). In this task, the goal is to rewrite a question in a way that makes it easier for
a retrieval system to retrieve relevant passages. ROUGE can be used to measure the lexical
overlap between the rewritten question and the original question. A higher ROUGE score
indicates that the rewritten question is more similar to the original question, which suggests
that existing information retrieval systems can adequately handle it. This is because the
rewritten question that is more similar to the original question is more likely to contain the
same keywords or phrases as the original question. This means that it is more likely to
match the keywords or phrases in the documents that are relevant to the original question.

In this thesis, we use the BLEU and ROUGE scores as evaluation metrics for assessing
performance in conversational question rewriting in Chapter 7.

3.4.4 Approaches for QR

Several approaches have been proposed to address the linguistic characteristics of human
conversation, such as anaphora and ellipsis (see Section 3.3.4). Ren et al. (2018) introduced
sequence-to-sequence models like LSTM (Hochreiter & Schmidhuber 1997) and GRU (Cho et al.
2014) for context-aware conversational query rewriting. Yu et al. (2020) proposed methods to
generate weak supervision data from large sets of ad-hoc search sessions using rules and self-
supervised learning. They fine-tuned the GPT-2 (Radford et al. 2019) model with this data and
demonstrated its superior performance over the state-of-the-art in the TREC CAsT 2019 (Dalton
et al. 2019) track. Another GPT-2 based model, Transformer++ (Vakulenko, Longpre, Tu &
Anantha 2021), has been trained on the CANARD dataset (see Section 3.4.2) to rewrite the
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current question considering the previous five conversation turns. Vakulenko, Voskarides, Tu &
Longpre (2021) conducted a comparison study of question-rewriting approaches using the TREC
CAsT 2019 and 2020 datasets (Dalton et al. 2019, 2020). They evaluated GPT-2-based models
(Transformer++ and self-supervised learning) as well as a related-term classification method
called QuReTeC against original user questions and human-rewritten questions. The results
showed that using Transformer++ to rewrite the current question with related terms predicted by
QuReTeC outperformed the existing state-of-the-art methods. Recently, Lin, Yang, Nogueira,
Tsai, Wang & Lin (2020a) proposed using neural sequence-to-sequence (S2S) models for the
conversational question reformulation task, such as T5 (see Section 2.3.1), GPT-2, LSTM, BERT
(see Section 2.3.2), and UniLM (Dong et al. 2019). The S2S model took the original question
qk and its context Hk as input and generated the rewritten question q′k as output, as shown in
Figure 3.7. In order to optimise the parameters within the S2S models, Lin, Yang, Nogueira,
Tsai, Wang & Lin (2020a) employed supervised learning for training the model to generate
predicted tokens (q′k) by utilising the ground truth output (q̂k) tokens. Among these S2S models,
the T5 model demonstrated a superior performance compared to neural network-based models
such as LSTM, GPT-2, BERT, and UniLM on the CANARD (Elgohary et al. 2019) and CAsT
2019 (Dalton et al. 2019) datasets. However, while previous work, such as (Lin, Yang, Nogueira,
Tsai, Wang & Lin 2020a, Mele et al. 2021, Ren et al. 2018, Vakulenko, Longpre, Tu & Anantha
2021, Vakulenko, Voskarides, Tu & Longpre 2021, Voskarides et al. 2020, Yu et al. 2020),
focused on conversational question rewriting; however, they did not address the task of follow-up
question identification. Recall from Section 1.3 that our intuition is that by combining follow-up
question identification and conversational question rewriting, the system’s response accuracy and
relevance can be enhanced. Indeed, we argue that by identifying connections between the user’s
questions, addressing ambiguities, and leveraging the conversation’s context, the system can
refine its understanding of the user intent and can provide more precise and relevant responses.
In Chapter 6, our text generation models leverage the Multi-Task Learning of the conversational
question rewriting and classification tasks to identify whether a question is a follow-up to the
previous question and, accordingly, reformulate a question using the dialogue context. To the
best of our knowledge, no prior work has inherently combined both tasks to more effectively
address ambiguity in conversational questions.

3.5 Clarification Need Classification (CNC)

The Clarification Need Classification (CNC) task (Aliannejadi et al. 2021) aims to address the
challenge of identifying when a user’s query is ambiguous or lacks clarity, necessitating further
clarification to generate accurate and contextually relevant answers.
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Figure 3.8: Examples of the need for clarification questions: (a) depicts a clear user question
that requires no further clarification; (b) and (c) present scenarios where the user’s questions are
ambiguous, necessitating a clarifying question from the system. Figure taken from (Aliannejadi
et al. 2021).

3.5.1 CNC Task Definition

Following Aliannejadi et al. (2021) and Owoicho et al. (2022), the task of clarification need
classification is defined as follows: given a current utterance uk, and a conversation history
Hk – consisting of a list of k − 1 utterances and the corresponding response text pairs, i.e.
Hk = [⟨ui,ri⟩]k−1

i=1 – the task is to determine whether the system should ask a clarifying question
in response to user utterance uk. An example of the need for clarification questions is shown in
Figure 3.8. The user question "How to write a thank you letter after an interview?" (Figure 3.8)
is a clear question, which requires no further clarification. The system can directly answer this
question without asking the user any clarifying questions. In contrast, the user questions "Tell me
about the source of the Nile" and "I’m looking for information on JAC chemical company" are
ambiguous, as there are many sources of the Nile river and many JAC chemical companies. The
system would hence need to ask the user to clarify their question before providing an answer.

3.5.2 Dataset for CNC

The ClariQ dataset (Aliannejadi et al. 2020a, 2021) provides a benchmark for the task
of Clarification Need Classification. The task is to predict the necessity of asking clarifying
questions given a user request, and the ClariQ dataset includes a set of conversational user
requests and a set of questions (i.e., question bank) that contains all collected questions on all the
topics. ClariQ introduced a module called "Understanding User Request", which takes a user
request as input and returns a score from 1 (no need for clarifying questions) to 4 (cannot provide
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Table 3.2: Distribution of Instances in the ClariQ Dataset for Clarification Need Classification.

Sets
Labels

1 2 3 4
Train 676 3546 3474 1480
Development 49 854 914 496
Test 317 2478 1465 239

Rank Creator Model Name Precision Recall F1
1 TAL ML Roberta+++ 59.81 65.57 60.70
2 Cactusjam Roberta+Stats 59.63 59.02 54.16
3 TAL ML Roberta++ 52.90 55.74 52.53

Table 3.3: Clarification Need Prediction on the ConvAI3 leaderboard.

any answers without user clarification) indicating the necessity of asking clarifying questions. In
Chapter 7, we use the ClariQ dataset for training and evaluating the performance of our proposed
system in Clarification Need Classification.

In the ClariQ dataset, as summarised in Table 3.2, the instances are distributed across different
sets, each labelled with values 1, 2, 3, or 4. The ClariQ dataset is a comprehensive and well-
curated resource for clarification need classification, providing a wide range of examples that can
be used to train and evaluate models.

3.5.3 Evaluation CNC Approaches

The evaluation of Clarification Need Classification (CNC) systems involves assessing their
ability to accurately determine whether a given question requires additional clarification or
context. We use typical classification metrics such as precision, recall, and F1, in line with
ClariQ (Aliannejadi et al. 2020a). These metrics have been previously described in Section 3.3.3.

3.5.4 Approaches for CNC

In this section, we describe approaches, which will be used as the baselines for Chapter 6.
ConvAI3 (Aliannejadi et al. 2020b) is a Conversational AI challenge series that includes the
ClariQ challenge, which aims to generate clarifying questions for open-domain dialogue systems.
The ClariQ challenge involves the task of clarification need classification, which is the process of
identifying the level of clarification needed for a given user request. The collected dataset for
the challenge includes an initial user request in conversational form, a set of possible clarifying
questions, and a user answer for each question. The label for each user request reflects the level
of clarification needed, ranging from 1 to 4. The participants are required to return a score from 1
to 4 indicating the necessity of asking clarifying questions for a given user request.
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Figure 3.9: A system overview of Roberta+++ by TAL ML. Figure taken from (Li et al. 2020).

Table 3.3 presents the results of the participation approaches on the ClariQ (Aliannejadi et al.
2021) test set. Roberta+++ by TAL ML (Li et al. 2020) has the highest precision, recall, and F1
scores (59.81, 65.57, and 60.70, respectively).

Roberta+++ incorporates both the user utterance and the user feedback into its clarification
need prediction, as depicted in Figure 3.9. Moreover, it uses Named Entity Recognition (NER)
and Part of Speech Tagging (PoS Tagging) by employing a count and aggregation process,
followed by connecting with the Roberta model’s representation as inputs to the classification
layer (Li et al. 2020). Due to the best performance of Roberta+++, we have chosen to use it as
the baseline for clarification need classification in Chapter 7.

3.6 Asking Clarifying Questions

The task of Asking Clarifying Questions is a typical component of Open-Retrieval Con-
versational Question Answering (ORConvQA) systems. This task addresses the challenge of
generating or selecting contextually appropriate questions that seek clarification from the user
when their query is ambiguous or lacks clarity, enabling the system to provide accurate and
relevant answers.

3.6.1 Asking Clarifying Questions Task Definition

Following Aliannejadi et al. (2021) and Owoicho et al. (2022), the task of asking clarifying
questions is defined as follows: given a current utterance uk, and a conversation history Hk

– consisting of a list of k− 1 utterances and the corresponding response text pairs, i.e. Hk =

[⟨ui,ri⟩]k−1
i=1 – the task is to predict (generate or select) a clarifying question ck that clarifies

the current utterance uk, and receive feedback, uk_2, from the user for the clarifying question
ck. An example of the asking clarifying question task is shown in Figure 3.10. It consists of
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Figure 3.10: An example of dialogue from the conversational question rewriting task (Elgohary
et al. 2019).

a conversation history of length k = 3 (two previous pairs of utterances and response texts).
In order to predict a clarifying question c3, the asking clarifying questions system needs to
either select a list of candidate questions in a pool of questions C or to generate new questions
by leveraging the conversation history Hk to specify the user’s intent and correctly predict a
relevant clarifying question c3 that is specific to the user’s utterance u3. The user’s response
to the clarifying question, u3_2, can then be used to further inform and improve the system’s
performance.

3.6.2 Asking Clarifying Questions Datasets

In the following, we described two commonly used datasets for the task of asking clarifying
questions.

The Qulac dataset (Aliannejadi et al. 2019) is a collection of clarifying questions in an
information retrieval (IR) setting. Its main purpose is to help conversational systems better
understand the users’ information needs by proactively asking clarifying questions. The dataset
was collected through crowdsourcing in four steps: defining topics and their corresponding facets,
collecting candidate clarifying questions for each query, assessing the relevance of the questions
to each facet, and collecting new questions for those facets that require more specific questions.
The dataset consists of 198 topics, each coupled with a facet, resulting in 141 faceted topics and
57 ambiguous topics. There are 762 facets and 2,639 questions in total, with an average of 3.85
facets per topic and 9.49 terms per question. The dataset also includes relevance judgments at the
facet level, borrowed from the TREC Web track (Clarke et al. 2011).

The ClariQ dataset (Aliannejadi et al. 2020a, 2021) is a dataset, which is dedicated to the
problem of asking clarifying questions in open-domain dialogue systems. Unlike the Qulac
dataset, which focused on single-turn conversations and contained only a limited number of
topics, the ClariQ dataset includes both single- and multi-turn conversations and covers a much
wider range of approximately 300 various topics. The main purpose of the ClariQ dataset is to
provide a benchmark for evaluating the quality of clarifying questions in open-domain dialogues
and to study when and which clarifying questions should be asked given the current context of the
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conversation. The dataset is also intended to be used as a resource for training and testing various
conversational agents and neural models. To collect the ClariQ dataset, Aliannejadi et al. (2020a)
used a combination of crowdsourcing and existing datasets. They first converted topics into
conversational requests using the Qulac dataset, and then markedly extended it by crowdsourcing
more data through Human Intelligence Task (HIT) on Amazon Mechanical Turk. They asked
the workers to imagine themselves acting as a conversational agent where an imaginary user
had asked them about a topic. The ClariQ dataset contains approximately 15,000 single-turn
conversations and 1.5 million multi-turn conversations, making it one of the largest datasets of
its kind. The main characteristic of the dataset is that each inquiry to the system should be in
conversational form, and the need for clarification should be predetermined as a label for each
inquiry in the collection. In addition, each clarifying question should be reasonable, coherent
with the inquiry, and address multiple facets of every ambiguous request.

In this thesis, we chose not to use the Qulac dataset because its questions are ac-hoc keyword
queries, and we focus on conversational-like queries. Hence, in Chapter 7, where we propose a
Multi-Task Learning of Clarification Need Classification and the generation for asking clarifying
question model, we train our proposed model using the training and development sets of ClariQ.
This is necessary as CAsT 2022 (see details in 3.7.2) only provides an evaluation set for clarifying
questions. Note that we do not use the ClariQ dataset to evaluate our proposed model because
it does not support the generation-based asking of clarifying questions, which aligns with our
research objectives.

3.6.3 Evaluation of Asking Clarifying Questions Approaches

To evaluate the effectiveness of asking clarifying questions, we follow CAsT 2022 (Owoicho
et al. 2022) and apply P@1, and assess performance based on three criteria. These criteria include
Relevance, which measures whether the question logically follows from previous utterances in
the conversation; Novelty, which assesses whether the question adds new information to the
conversation; and Diversity, which considers the number of options provided by the question. We
have previously provided an explanation of the Precision metric in Section 2.7.

3.6.4 Approaches for Asking Clarifying Questions

Recall from Section 1.2 that to address the ambiguity of conversational questions in OR-
ConvQA, previous works (Aliannejadi et al. 2020a, 2021, Owoicho et al. 2022) have proposed
the use of asking clarifying questions. Asking clarifying questions is an approach employed in
mixed-initiative conversational search systems to enhance the search experience for users (Keyvan
& Huang 2022, Zamani et al. 2022). These systems combine both machine and human initiative
to better understand the user’s information needs and provide more accurate search results. By
asking clarifying questions, the system aims to elicit further details from the users, allowing
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for a refined interpretation of their intents and improving the system’s understanding of their
information needs. In addition, users have the opportunity to provide additional information
and feedback to the system, contributing to the improvement of the search results (Keyvan &
Huang 2022, Zamani et al. 2022). In general, asking clarifying questions in a mixed-initiative
approach creates a more natural and interactive search experience, resembling a human-like
conversation (Krasakis et al. 2020). Research on asking clarifying questions in conversational
search has explored both generation and selection approaches.

Generation-based approaches involve creating clarifying questions tailored to the user’s query
and context. Template-based slot filling methods have been proposed, such as the approach
by Coden et al. (2015), which defines question templates like "Did you mean or ?" However,
these templates may not be applicable to all queries. To address this, Generating Clarifying
Questions (Zamani et al. 2020) identified more general clarification question templates, including
"What would you like to know about ?" from search logs. They also proposed weakly-supervised
and reinforcement learning models for generating clarifying questions based on their template-
based slot filling approach. TG-ClariQ (Wang & Li 2021) introduced a model that selects a
template question from a set of candidates and fills it in with words from a slot vocabulary.
Furthermore, Owoicho et al. (2022) fine-tuned text generation models, specifically T5 (see
Section 2.3.1) and GPT-3 (see Section 2.3.3), to generate clarifying questions. However, generat-
ing clarifying questions using a generation-based approach requires a diverse and high-quality
dataset, which can be challenging to obtain. Evaluating the quality of generated questions can
also be difficult due to the reliance on human annotations or online experimentation.

Instead, selection-based approaches involve choosing pre-determined questions from a pool
of options based on the user’s query. These questions are typically created by experts and
pre-approved to ensure quality (Aliannejadi et al. 2021, 2019). Prior approaches (Aliannejadi
et al. 2021, 2019, Ou & Lin 2020, Owoicho et al. 2022, Rao & Daumé III 2018) have applied
classical information retrieval techniques such as BM25 (see Section 2.2) to retrieve and rank
pre-determined questions. For example, Rao & Daumé III (2018) proposed a neural network
model that leverages the expected value of perfect information to rank clarification questions in
three StackExchange domains. NTES-ALONG (Ou & Lin 2020) retrieves candidate clarifying
questions using BM25 and re-ranks them using a fine-tuned ELECTRA (Clark, Luong, Le
& Manning 2020) model to estimate the relation between a query and a clarifying question.
Owoicho et al. (2022) described a system that generates a candidate set of questions from a
question bank using sentence similarity and then applies a fine-tuned BERT model for pairwise
ranking. However, pre-determined questions may not cover a wide range of queries and intents,
limiting the system’s robustness and versatility.

Instead, in this thesis (Chapter 7), we take advantage of both the generation and selection.
In doing so, our hybrid approach is able to generate a better set of questions and ensure that
the selected question is relevant to the user’s query. The goal of our proposed system is to

65



Figure 3.11: An example of the passage retrieval task for ORConvQA

improve the effectiveness of the task of asking clarifying questions. To the best of our knowledge,
no previous research has combined both approaches to more effectively address unclear or
ambiguous questions by asking clarifying questions.

3.7 Passage Retrieval

Conversational Passage Retrieval is a fundamental component of ORConvQA systems. This
task tackles the challenge of effectively searching through a large collection of documents to
identify relevant passages that contain information related to the ongoing conversation.

3.7.1 Passage Retrieval Task Definition

Following Croft et al. (2010), given a query q and a text collection C, the task is to identify
a list of n relevant passages P+

ret = [p1, p2, ..., pn] corresponding to the query q. These passages
then serve as input to later more complex models. The query q can be either the ongoing user’s
question qk along with its conversation history Hk, or the reformulated question q′k.

An example of the passage retrieval task for Open-Retrieval Conversational Question Answer-
ing is shown in Figure 3.11, showing a history of length k = 2 with the corresponding questions
and answers. In this task, the system takes the query q as an input to retrieve a list of n = 3
relevant passages denoted as P+

ret = [p1, p2, p3] from the passage corpus C. The query q can be
either the ongoing user’s question q3 along with its conversation history H2 = [⟨q1,a1⟩,⟨q2,a2⟩],
or the reformulated question q′3.

3.7.2 Passage Retrieval Datasets

Research in the field of Conversational Search has advanced over the years, with the creation
of a series of reusable datasets by the TREC Conversational Assistance Track (CAsT). Each year,
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the TREC CAsT datasets (2019, 2020, 2021, and 2022) have introduced fresh complexities and
challenges to better mimic real-world scenarios and improve the performance of conversational
search systems. Moreover, to address the challenges of ORConvQA, datasets, such as OR-
QuAC (Qu et al. 2020) and OR-CoQA (Qu et al. 2021), have been introduced. In the following,
we provide a detailed description of each dataset:

TREC CAsT 2019 (Dalton et al. 2019) was an initiative to facilitate Conversational Informa-
tion Seeking (CIS) research and to create a large-scale reusable test collection for conversational
search systems. The task required effective response selection that requires understanding a ques-
tion’s context (the dialogue history). The primary focus was placed on a system understanding
the users’ information needs in a conversational format and finding relevant passages leveraging
conversational context. The data collection included pre-determined conversation trajectories
(paths) and passage responses. There were 20 topics with 173 turns and 29,571 assessments. The
judgments were based on how well the system’s response met the information need of the user,
with scores ranging from 0 (fails to meet) to 4 (fully meets). One of the main characteristics
of TREC CAsT 2019 was the use of conversational context to improve search accuracy. The
task required systems to understand the context of the conversation and use it to select the most
relevant response. This was a departure from traditional information retrieval systems that rely
on keyword matching and do not take into account the conversational context. The goal was to
encourage research on conversational search systems that can better serve users in real-world
scenarios.

TREC CAsT 2020 (Dalton et al. 2020) focused on conversational search challenges. The
goal of the 2020 task was to satisfy a user’s complex information need expressed through multi-
turn conversational queries/utterances by retrieving and ranking passages from MS MARCO
and Wikipedia. The 2020 edition of CAsT had 25 information needs (topics) with an average
length of 8.6 utterances, for a total of 216 turns. This is slightly shorter than the 2019 edition,
which averaged 9.5 turns. The topics are based on multi-turn information-seeking sessions
from a commercial search engine and reflect the organisers’ vision of user behaviour for the
conversational search systems of the future, while also being grounded in real information needs
and current search behaviour. The reference sessions are constructed by filtering raw web search
sessions to conversational-alike search sessions, using the procedure to obtain about 20,000 "QA-
Gen" sessions as described in Rosset et al. (2020). The 2020 topics have more complexity than
the previous year’s, with turns requiring previous result context being particularly challenging. In
this edition, CAsT aimed to support natural conversations between a person and a search engine
to satisfy information needs and support complex information tasks.

TREC CAsT 2021 (Dalton et al. 2021) focused on conversational search techniques. The
goal of the task is to satisfy a user’s complex information need expressed through multi-turn
conversational queries/utterances. In this edition, the passages come from a document corpus
by retrieving and ranking documents and passages from MS MARCO (Nguyen et al. 2016),
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Figure 3.12: Example of a CAsT 2022 dialogue tree with 1 main topic, 3 sub-topics, and 5 user
utterances. Figure inspired by (Owoicho et al. 2022).

Wikipedia - the KILT dump, and news from the Washington Post V4 collection. Compared to
previous years, CAsT 2021 had some important changes. One of the changes is that every turn
has a single manually selected canonical response passage result representing a previous system
response. This evolved from CAsT 2020 when only some turns were manually selected and
others automatically added from the baselines. CAsT 2021 manual results provide consistency
between automatic and manual runs. The canonical results are used more, with higher query
dependence on previous system responses. CAsT 2021 has 26 information needs (topics) with an
average length of 9.2 utterances, for a total of 239 turns. In comparison, the CAsT 2020 topics
are slightly shorter with an average of 8.6 utterances per topic. The topics in 2021 are based on
real user needs from information-seeking sessions in Bing. The organisers manually reviewed
and filtered sessions to ensure they have meaningful trajectories that are then manually rewritten
to make them conversational. The final topics reflect diverse types of exploratory information
needs while also being grounded in real information needs that have content available in the
target collection. The main characteristic of CAsT 2021 is that it introduced more diverse types
of interactions and increased dependence on previous system responses. The turns introduce
simple forms of user revealment, reformulation, and explicit feedback if the previous canonical
response is not relevant. This makes the task a bit more realistic by having varying types of user
interactions.

TREC CAsT 2022 (Owoicho et al. 2022) is the fourth year of the TREC Conversational
Assistance Track, which focuses on evaluating Conversational Passage Ranking (ConvPR) for
information seeking. CAsT 2022 aims to take conversational search to the next level with new
additions and improvements. The topics are more realistic and dynamic, and the evaluation
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metrics have been updated to better reflect the conversational nature of the task. In addition to
ConvPR, a new sub-task on response generation has been introduced, which involves generating
natural language responses to user queries. TREC CAsT 2022 also includes a mixed-initiative
(MI) sub-task. This sub-task builds on the main task using the same collection and topics but
with the added feature of mixed-initiative responses. Mixed-initiative responses are included
in trajectories, which provide the system with a chance to ask the user a question to clarify the
information need, ask for feedback, or elicit the task. This new addition aims to make the track
more interactive and realistic. Participants have the option to submit MI utterances at every
point of the conversation and receive a user response. This represents a first step for the track
beyond "user ask, system reply", albeit on predefined fixed trajectories. The mixed initiative is
incorporated into the canonical system responses, and the outcome of this sub-task could be used
in the main phase. TREC CAsT 2022 has a total of 18 information needs (topics) with an average
length of 11.39 user utterances and an average of 2.7 sub-topics. The topics follow a "tree"
structure with distinct conversational paths, with a maximum of nine distinct conversational paths
and a minimum of one. Each topic starts off with a common query but branches off at various
points in the conversation as the topic unfolds. As depicted in Figure 3.12, user utterance u1

can appear in all sub-topics, including (1) u1 : r1 : u2 : r2; (2) u1 : r1 : u3 : r3 : u4 : r4; and (3)
u1 : r1 : u3 : r3 : u4 : r5. However, for the purpose of evaluating performance in the conversational
search task, u1 can only be evaluated in sub-topic (1) (Owoicho et al. 2022). The topics are
divided into two sets: a training set of 10 topics and a test set of 8 topics. There are a total of 205
user utterances, including vague, ambiguous, or user responses to system questions.

In this thesis, we evaluate our proposed conversational question rewriting model in Chapter 6
using the TREC CAsT 2019 and TREC CAsT 2020 datasets. Chapter 7 uses the TREC CAsT
2021 dataset to train the negative feedback analysis model, which helps analyse the sentiment
of user feedback in the task of asking clarifying questions. Furthermore, in our evaluation
of the hybrid approach for generating and selecting clarifying questions in a mixed-initiative
conversation search, we use the TREC CAsT 2022 dataset.

OR-QuAC: This dataset has been introduced by Qu et al. (2020), adapting the well-known
QuAC (Choi et al. 2018) dataset to an open-retrieval setting. This dataset is an aggregation of three
existing datasets consisting of (1) the QuAC dataset (see Section 3.2.2), which is an information
seeking dataset, (2) the CANARD dataset (see Section 3.4.2), which contains questions that
humans have re-written from questions in the QuAC dataset, and (3) the Wikipedia corpus, a
large collection of over 11 million passages, which are used as the knowledge source for actually
answering a given question. The OR-QuAC dataset has 5,644 dialogues with 40,527 questions,
and it is intended to facilitate research on ORConvQA. The main characteristic of the OR-QuAC
dataset is that it is self-contained, meaning that the initial questions in a conversation have
been replaced with their rewrites from CANARD. This makes the dialogues easier to interpret
in an open-retrieval setting. Overall, the OR-QuAC dataset offers a unique set of challenges
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Figure 3.13: An example dialog and relevant passages from the ORConvQA dataset (Qu et al.
2020).

and opportunities for developing functional conversational search systems. An example of the
ORConvQA task selected from the OR-QuAC dataset is shown in Figure 3.13, consisting of a
relevant passage (shown in bold), and a conversation history of length k = 2 (two previous pairs
of questions and answers). In order to answer question q3, the ORConvQA system needs to
retrieve a list of relevant passages in C and leverage the conversation history to understand and
correctly predict an answer a3 from all relevant passages in C.

OR-CoQA: Qu et al. (2021) introduced this dataset by aggregating the CoQA (Reddy et al.
2019) dataset with the Wikipedia corpus from the OR-QuAC dataset. In contrast to OR-QuAC,
the gold passages for each question are not included in the OR-CoQA dataset. Moreover, unlike
OR-QuAC, there are no manually rewritten questions in the OR-CoQA dataset. The dataset
includes 1,521 training dialogues, 100 development dialogues, and a test set that is not publicly
available. The main characteristic of OR-CoQA is that it offers freeform answers generated by
crowdsourcing, which makes the conversations more natural and challenging for conversational
question answering systems. In contrast to OR-QuAC, the gold passages for each question are
not included in the OR-CoQA dataset. Moreover, unlike in the OR-QuAC dataset, there are no
manually rewritten questions in the OR-CoQA dataset. As a result, we do not use OR-CoQA for
training our proposed model for addressing the tasks of passage reranking and answer extraction
in Chapter 8.

In Chapters 8, to evaluate our proposed model to address the tasks of passage reranking and
answer extraction, we selected two datasets: OR-QuAC and OR-CoQA described above. Both of

70



these datasets are extractive Question Answering (QA) datasets. However, the OR-CoQA dataset
can be also considered as a generative question answering dataset because it contains both span
and freeform answers. Indeed, in this thesis, we focus on extractive QA only.

Finally, Table 3.4 summarises the used datasets in this thesis providing information on the
chapters in which each dataset is used and the specific tasks they are employed to tackle.
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Table 3.4: Summary of Datasets for Open-Retrieval Conversational Question Answering

Dataset Fullname Conversational Multi-Turn Retrieval Tasks Chapter Comment
SQuAD (Rajpurkar et al. 2018, 2016) Stanford Question Answering Dataset / x x - Question Answering - - Extractive Question Answering
MS-Marco (Nguyen et al. 2016) Microsoft Machine Reading Comprehension x x / - Passage/Document retrieval -

QuAC (Choi et al. 2018) Question Answering in Context / / x

- Conversational Question Answering
- Follow-up question identification
- Yes/No prediction
- Unanswerable

5 - Extractive Question Answering

CoQA (Reddy et al. 2019) A Conversational Question Answering Challenge / / x
- Conversational Question Answering
- Yes/No prediction -

- Extractive Question Answering
- Abstractive QA

LIF (Kundu et al. 2020) Learning to Identify Follow-up Questions / / x - Follow-up question identification 6
CANARD (Elgohary et al. 2019) / / x - Conversational Question Rewriting 6,7,8
Qulac (Aliannejadi et al. 2019) x - Asking Clarifying Question -
ClariQ (Aliannejadi et al. 2020a, 2021) / / / - Asking Clarifying Question 7

CAsT 2019 (Dalton et al. 2019) / / /
- Conversational Question Rewriting
- Conversational Search 6

CAsT 2020 (Dalton et al. 2020) / / /
- Conversational Question Rewriting
- Conversational Search 6

CAsT 2021 (Dalton et al. 2021) / / /
- Conversational Question Rewriting
- Conversational Search 7

CAsT 2022 (Owoicho et al. 2022) / / /

- Conversational Question Rewriting
- Conversational Search
- Conversational Question Answering
- Asking Clarifying Question

7

OR-QuAC (Qu et al. 2020) / / /
- Conversational Question Rewriting
- Question Answering
- Passage Retrieval

8

OR-CoQA (Qu et al. 2021) / / /
- Conversational Question Rewriting
- Question Answering
- Passage Retrieval

8 - No Qrels

NQ (Kwiatkowski et al. 2019) Natural Questions / x /
- Document Retrieval
- QA -

QReCC (Anantha et al. 2021) / / x - Conversational Question Rewriting - CANARD+CAsT+NQ

INSCIT (Wu et al. 2022) Information-Seeking Conversations with Mixed-Initiative Interactions / / /

- Conversational Question Answering
- Conversational Question Rewriting
- Conversational Search
- Asking Clarifying Question

-
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3.7.3 Evaluation of Passage Retrieval Approaches

The evaluation of Conversational Passage Retrieval aims to assess the effectiveness of systems
in accurately retrieving relevant passages from a large document collection in response to user
queries. We use MAP, MRR, Recall, and NDCG, as previously discussed in Section 2.7, for
evaluating this task.

• Mean Average Precision (MAP): This metric is calculated by averaging the precisions at
different ranks. Precision is the fraction of relevant passages that are retrieved in the top k

results.

• Mean Reciprocal Rank (MRR): This metric is calculated by averaging the reciprocal
ranks of the relevant passages. The reciprocal rank of a passage is 1 divided by its rank.

• Recall: This metric measures the fraction of relevant passages that are retrieved.

• Normalised Discounted Cumulative Gain (NDCG): This metric is similar to MAP, but it
gives more weight to the top results. NDCG is calculated by normalising the discounted
cumulative gain (DCG) by the ideal DCG.

In this thesis, Chapter 6, which proposes a model to address the tasks of follow-up question
identification and conversational question rewriting, uses MAP, MRR, NDCG and Recall@1000
as metrics. In Chapter 7, which proposes a model to address the tasks of clarification need classi-
fication and asking clarifying questions, we adopt the NDCCG@3, MAP@1000, MRR@1000,
and Recall@1000 metrics, as used in CAsT 2022 (Owoicho et al. 2022). In Chapters 8, which
proposes a model to address the tasks of passage reranking and answer extraction, following (Qu
et al. 2020, Yu et al. 2021), we use MAP@10, MRR@5 and Recall@5. The notation "@k"
signifies that the evaluation metric is computed considering the top k ranked results. For in-
stance, "MAP@10" signifies that the Mean Average Precision is calculated based on the top 10
retrieved items, while "MRR@5" indicates that the Mean Reciprocal Rank is determined using
the reciprocal rank of the top 5 relevant passages.

3.7.4 Approaches for Passage Retrieval

Unlike dense retrieval models, discussed in Section 2.4, such as ANCE, ColBERT, TCT-
ColBERT, and GPR, which only focus on ad-hoc queries, ConvDR (Yu et al. 2021) stands out
as a dense retrieval system designed for conversational search. ConvDR, shown in Figure 3.14,
introduced by Yu et al. (2021), learns contextualised embeddings for multi-turn conversational
queries and retrieves documents solely using embedding dot products. It is designed to address
the challenge of adapting dense retrieval models to conversational search, where queries are
often ambiguous and context-dependent. ConvDR uses a teacher-student framework, where
a teacher model is trained on a large dataset and a student model is trained to mimic the
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Figure 3.14: Framework of the ConvDR model. Figure taken from (Yu et al. 2021).

teacher’s behaviour with limited labelled data. This approach allows ConvDR to effectively
capture informative context from the conversation history while ignoring the unrelated context in
previous conversation rounds, making it more effective as conversations evolve while previous
systems (Lin, Yang, Nogueira, Tsai, Wang & Lin 2020b, Vakulenko, Longpre, Tu & Anantha
2021) may get confused by the increased noise from previous turns. In the experiments on TREC
CAsT 19-20 (see Sections 3.7.2 and 3.7.2) and the OR-QuAC dataset (see Section 3.7.2), ConvDR
outperformed the baselines in both few-shot and fully-supervised settings. On CAsT-19 (see
Section 3.7.2), ConvDR outperformed the best participating system, CFDA_CLIP_RUN7 (Dalton
et al. 2019), which is a well-designed system with state-of-the-art sparse retrieval and neural IR
approaches. On CAsT-20 (see Section 3.7.2), ConvDR outperformed every baseline by a large
margin except h2oloo_RUN2 (Dalton et al. 2019), which uses a dense-sparse hybrid retrieval
model followed by a T5 ranking model with T5-based query reformulation. On OR-QuAC (see
Section 3.7.2), ConvDR outperformed all previous methods by huge margins, including the
current state-of-the-art baseline, the ALBERT-based ORConvQA system (Qu et al. 2020). These
results demonstrate the effectiveness of ConvDR in capturing informative context while ignoring
the unrelated context in previous conversation rounds.

To address the ORConvQA task, prior works (Liang et al. 2022, Qu et al. 2021, 2020) have
adopted a three-stage architecture, including a retriever, a reranker, and a reader to extract the
answers as illustrated in Figure 3.15. First, the retriever retrieves the top K relevant passages from
the collection based on a question and its conversation history. The reranker and the reader then
respectively rerank and identify an answer in the top K passages. We also adopt this three-stage
architecture in our proposed model in Chapter 8.
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Figure 3.15: Architecture of the end-to-end ORConvQA model. Figure taken from (Qu et al.
2020).

However, in order to investigate the effectiveness of the cross-encoder reranker, we consider
a two-stage pipeline including a retriever and a reader, as a baseline for comparison with our
system. For the retriever, existing works (Liang et al. 2022, Qu et al. 2021, 2020, Xiong et al.
2020, Yu et al. 2021) have focused on using bi-encoder dense retrieval models (consisting of
a question encoder and a passage encoder), which apply neural contextual language models,
such as ALBERT or BERT, for encoding the question and passage into low-dimensional vectors
and computing their relevance scores as detailed in Section 2.4. For example, Yu et al. (2021)
proposed ConvDR, which encodes the question and its history in a dense vector learned with
a teacher-student model to mimic a dense representation of the manually rewritten question.
ConvDR has also been shown to outperform other retriever models for conversational search such
as sparse BM25, and bi-encoders using ALBERT (Qu et al. 2020) or BERT (Karpukhin et al. 2020,
Xiong et al. 2020). In Chapter 8, due to the good effectiveness of bi-encoder dense retrievers
for passage retrieval, we adapt this type of retrieval models as our retriever. We also consider
other recent existing bi-encoder passage retrievers such as TCT-ColBERT (see Section 2.4.2) and
CQE (Lin et al. 2021a) as baseline passage retrievers.

3.8 Passage Reranking

Passage reranking is an important phase in the ORConvQA pipeline, aimed at refining the
order of retrieved passages to enhance the relevance and accuracy of the answers provided to the
user queries. The datasets used for evaluating passage reranking align closely with those used
for passage retrieval, as previously discussed in Section 3.7.2. Similarly, the evaluation metrics
employed for passage reranking can be referenced from the context of passage retrieval (see
Section 3.7.3). In addition, we also discuss the passage reranking approaches in Section 3.8.2 as
it is the step after passage retrieval.
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Figure 3.16: An example of the passage reranking task for ORConvQA

3.8.1 Passage Reranking Task Definition

Following Nogueira & Cho (2019), given a query q, a passage corpus C, and an initial list
of n retrieved passages P+

ret = [p1, p2, ..., pn], the task aims to refine and reorder these passages
based on their relevance to the query q and to produce a more accurate and relevant ranked list
P+

reranked = [p′1, p′2, ..., p′n]. The query q can be either the ongoing user’s question qk along with
its conversation history Hk, or the reformulated question q′k.

An example of the passage reranking task for Open-Retrieval Conversational Question
Answering is depicted in Figure 3.16, illustrating a conversation history of length k = 2 with
the corresponding questions and answers. In this task, the system takes both the query q and
the retrieved passages denoted as P+

ret = [p1, p2, p3] from the previous stage (passage retrieval).
The query q can be either the ongoing user’s question q3 along with its conversation history
H2 = [⟨q1,a1⟩,⟨q2,a2⟩], or the reformulated question q’3. The objective of this task is to reorder
the retrieved passages P+

ret based on their relevance to the query q into P+
reranked = [p3, p1, p2].

3.8.2 Approaches for Passage Reranking

As previously discussed in Section 2.4.1, monoT5 is a passage reranking model. This section
highlights its practical application, in particular, by the top-ranked in TREC Conversational
Assistance Track (CAsT) 2020-2022 (see Section 3.7.2) participants, who have effectively used
monoT5 to improve the relevance of retrieval systems in conversational search contexts. For ex-
ample, h2oloo (Dalton et al. 2020, 2021), ASCFDA (Dalton et al. 2020), WaterlooClarke (Dalton
et al. 2021), udel_fang (Owoicho et al. 2022) and HEATWAVE (Owoicho et al. 2022) employ
monoT5 as a ranker. These real-world implementations demonstrate monoT5’s robustness and its
ability to enhance the precision of information retrieval in response to conversational queries. As
a result, in Chapters 6, 7 and 8, we employ the monoT5 model as the passage reranking approach.
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3.9 Multi-Task Learning in ORConvQA

Recall from Section 1.2 that this thesis aims to develop an effective ORConvQA system by
leveraging Multi-Task Learning (MTL). Multi-Task Learning (MTL) in Conversational Question
Answering involves training a single model to handle multiple related tasks simultaneously. In the
context of ORConvQA, these tasks may include conversational question answering (Section 3.2),
follow-up question identification (Section 3.3), conversational question rewriting (Section 3.4),
asking clarifying questions (Section 3.6), and passage retrieval/reranking (Sections 3.7 and 3.8).

Most existing (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Yeh & Chen 2019) ConvQA
models that leverage Multi-Task Learning (MTL) use a static form (see details in Section 2.8.2.1)
with unchanged tasks’ weights during the training epochs. For instance, the recently-proposed
History Attention Mechanism (HAM) model (see Section 3.2.4) applied Multi-Task Learning in
order to improve the effectiveness of conversational QA. However, the tasks’ weights in the model
were unchanged during the training state and emphasise the main task. Similarly, FlowDelta (Yeh
& Chen 2019) is a ConvQA model that also employed a static MTL method, which sets all tasks’
weights equal to one. In the static MTL methods used in HAM and FlowDelta, all of the tasks’
weights have not been adjusted throughout the learning phase. As a result, training resources
could be diverted to unnecessary tasks with a negative impact on the performance of the learned
models (Gap 1). In this thesis, in Chapter 5, we include these static MTL methods as baselines,
but we also introduce a dynamic MTL approach specifically designed for ConvQA. Our proposed
model aims to enhance the effectiveness of the ConvQA task through dynamic MTL. To the best
of our knowledge, no prior work has addressed the use of dynamic MTL methods for ConvQA.

On the other hand, MTL methods have been effectively implemented in existing Conversa-
tional QA works (Qu et al. 2021, 2020, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Xu
et al. 2019b, Yeh & Chen 2019). However, in these works, all tasks correspond to the answer
span prediction and its auxiliary tasks, which are typically classification tasks. In contrast, recent
works (Ide & Kawahara 2021, Jiang et al. 2022b, Lee et al. 2022b) have adopted a more diverse
MTL approach, sharing the learner for both classification and text generation tasks. This ap-
proach has resulted in improvements in passage ranking/re-ranking and answer generation. Their
models, based on T5 (see Section 2.3.1), focus on generating answers while ranking passages.
Similarly, in Chapter 6, we adopt the MTL paradigm in our model. However, while existing
approaches have primarily focused on generating answers (text generation task) and passage
ranking (classification task), our present work aims to leverage classification tasks for more
effective retrieval (Gap 2). In Chapter 6, we take advantage of an MTL for Conversational QA.
The goal of our proposed models is to improve the effectiveness of both the follow-up question
classification and the conversational question rewriting tasks. To the best of our knowledge, no
prior work has inherently combined both tasks to effectively identify ambiguous questions. In our
proposed models, we employ text generation models including BART (see Section 2.3.1) (shown
to be usable for multi-task learning both classification and text generation tasks) and T5 (Raffel
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Figure 3.17: Overview of reranker and extractive reader.

et al. 2020) (the state-of-art model for question rewriting, as mentioned in Section 3.4.4).
Moreover, MTL methods have been effectively implemented in various conversational search

approaches (Qu et al. 2021, 2020, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Xu et al.
2019b, Yeh & Chen 2019). However, all of the tasks in this prior work leverage MTL by sharing
the network structure between an extractive reader and its auxiliary tasks, which are typically
classification tasks, such as a yes/no question prediction or a follow-up question prediction
(Gap 3). For example, a number of previous studies (Qu et al. 2021, 2020) have adopted an MTL
approach in order to effectively answer the questions posed by the users. Instead, in Chapter 7, we
leverage MTL by combining the clarification need classification and the generation of clarifying
question to share a single text generation model. This allows to simultaneously determine when,
for the current utterance, the system needs to ask a clarifying question and generate a set of
clarifying questions based on the user’s query and conversation history.

In addition, MTL has been employed in order to efficiently answer the questions posed by
the users (Qu et al. 2021, 2020). In this manner, the network structure is shared between the
reranker and the reader as shown in Figure 3.15. Doing this, existing works (Qu et al. 2021,
2020) also typically approach reranking and extractive reading as classification tasks, with two
fully-connected layers (one for the reranker and reader, respectively) added to find an answer
span for the retrieved passages (start/end positions) as well as to predict the relevance score of
the question to the passage as shown in Figure 3.17. In this thesis, in Chapter 8, we use the
Multi-Task Learning of the reranker and the extractive reader as our strongest baseline. On
the other hand, Nogueira, Jiang, Pradeep & Lin (2020b) proposed monoT5, a text generation
model, which was fine-tuned to generate the tokens “true” or “false” depending on whether the
document is relevant or not to the query. Indeed, the monoT5 model (see Section 2.4.1) has
been shown to outperform BERT-based models in passage reranking (Nogueira, Jiang, Pradeep
& Lin 2020b). In addition, many studies (Karpukhin et al. 2020, Khashabi et al. 2020, Lewis
et al. 2020, Raffel et al. 2020) have focused on developing a generative reader which is fine-tuned
as a text generation model to extract the answer from the passage. In particular, Khashabi et al.
(2020) introduced the UnifiedQA model, which has been shown to yield impressive performances
on many extractive QA datasets. However, no existing work has combined monoT5 (passage
reranker) and UnifiedQA (reader) to share a single text generation model that directly extracts
the answers for the users instead of predicting the start/end positions in a retrieved passage
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(Gap 4). Moreover, we show that compared to using monoT5 and UnifiedQA separately, a
joint learning can enhance the learning efficiency and prediction accuracy of a model for the
ORConvQA task, since by sharing the learning model the reranker and reader can simultaneously
predict the answer and reranking score. Indeed, a joint learning by sharing a single model trained
using MTL reduces the memory needs and speeds up inference (Standley et al. 2020, Sun et al.
2020). In Chapter 8, we combine the effective monoT5 (to rerank the retrieved passages) and the
UnifiedQA (to extract the answer from the highest scored passage) models into a strong baseline.
To the best of our knowledge, no prior work has combined monoT5 and UnifiedQA by sharing a
single text generation model, in order to directly extract the answers instead of predicting the
start/end positions in a retrieved passage.

On the other hand, existing works (Qu et al. 2021, 2020), that employ Multi-Task Learning
(MTL) for the reranker and the extractive reader have not considered integrating the retriever
component into their model. These systems typically handle ambiguities in conversational
questions by concatenating the user’s current question with its conversational history. This
concatenation approach can miss important context and changes in the conversation, which might
lead to less accurate answers (Yu et al. 2021). To address this limitation, as previously described
in Section 3.4, the conversational question rewriting approach can be employed. Furthermore,
these existing systems often adopt a static approach to MTL, with fixed task weights during
training. This static allocation of task weights may divert training resources to unnecessary
tasks with a negative impact on the performance of the learned models. This represents a gap
in the field (Gap 5), where there is a lack of dynamic, integrated MTL approaches that can
effectively integrate the learning process across all components of ORConvQA systems – namely,
the conversational question rewriting, retriever, and reader. Note that, to simplify the model’s
complexity, we initially focus on these three components, omitting the reranker. To the best of
our knowledge, no prior work has combined these three tasks by sharing a uniform model, in
order to retrieve relevant passages and extract the answers in retrieved passages simultaneously.

3.10 Summary

In this chapter, we discussed the related work in Open-Retrieval Conversational Question
Answering (ORConvQA) providing an in-depth review of numerous tasks, each of which con-
tributes to the improvement of ORConvQA systems. The surveyed areas covered several tasks:
Conversational Question Answering (ConvQA), Follow-up Question Identification (FID), Con-
versational Question Rewriting (QR), Clarification Need Classification (CNC), Asking Clarifying
Questions, Passage Retrieval, and Passage Reranking.

ConvQA extends the concept of traditional question answering to a multi-turn conversational
setting, promoting more natural interactions. Follow-up Question Identification focuses on
determining questions that continue the dialogue coherently. In contrast, Conversational Question
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Table 3.5: A summary of models and their approaches used in Open-Retrieval Conversational
Question Answering.

Model QA Dialogue Retrieval MTL Based model Chapter Comment
BiDAF++ (Seo et al.
2017)

/ x x x LSTM - -

SDNet (Zhu et al. 2018) / x x x RNN - -
FlowQA (Huang et al.
2019)

/ x x x Bi-LSTM - -

BERT HAE (Qu, Yang,
Qiu, Croft, Zhang &
Iyyer 2019)

/ / x x BERT - -

HAM (Qu, Yang, Qiu,
Zhang, Chen, Croft &
Iyyer 2019)

/ / x / BERT 5 Static MTL baseline

Three-way atten-
tive pooling net-
work (Kundu et al.
2020)

x / x x Bi-LSTM 6 Follow-up question identification base-
line

Discriminative+Generative
BART (Ide & Kawahara
2021)

x / x / BART 6 MTL baseline

ANCE (Xiong et al.
2020)

x x / x RoBERTa/BERT 7 Clarifying question selection baseline

ColBERT (Khattab &
Zaharia 2020)

x x / x BERT 7 Clarifying question selection baseline

TCT-ColBERT (Lin,
Yang & Lin 2020, Lin
et al. 2021b)

x x / x BERT 7 Clarifying question selection baseline

monoT5 (Nogueira,
Jiang, Pradeep & Lin
2020a)

x x / x T5 6,7,8 - Reranker (Chapters 6,7)
- Clarifying question selection baseline

GTR (Ni et al. 2021) x x / x T5-encoder 7 Proposed clarifying question selection
GPT-3 (Brown et al.
2020)

/ / x x 7 Clarifying question generation base-
line

miniLM (Wang, Wei,
Dong, Bao, Yang &
Zhou 2020)

x x / x 7 Clarifying question selection baseline

ConvDR (Yu et al.
2021)

x / / / DRP (Karpukhin et al. 2020) 8 - First-pass retriever(Chapter 8)
- MTL Baseline (Chapter 9)

UnifiedQA (Khashabi
et al. 2020)

/ x x x T5 8 Question answering baseline

Rewriting reformulates a conversational question in the context of the previous conversation
history, improving the understanding of the question. Asking Clarifying Questions aims to resolve
any ambiguities in the initial query, refining the system’s responses. Passage Retrieval involves
efficiently and effectively searching through large document collections to identify relevant
passages, ensuring an alignment with the ongoing conversation context. Passage Reranking
further refines the quality of retrieved passages by adjusting their order based on relevance.

In order to effectively address the challenges of ORConvQA, Multi-Task Learning (MTL)
has emerged as an integrated solution. By leveraging MTL, the diverse tasks of ORConvQA,
including ConvQA, FID, QR, Asking Clarifying Questions, Passage Retrieval, and Passage
Reranking, can be integrated to develop a cohesive and effective ORConvQA system.

Each of these tasks contributes to the development of ORConvQA systems. Different ap-
proaches can be combined to create more efficient and effective systems. Table 3.5 provides
a summary of models and their approaches used in Open-Retrieval Conversational Question
Answering.
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Our approach to building an effective ORConvQA system is based on the combination of
different novel approaches. Indeed, we identified the following general gaps in this chapter:

Gap 1 Current Conversational Question Answering (ConvQA) models using Multi-Task Learn-
ing (MTL) lack a dynamic adjustment of task importance during learning. As a result, training
resources could be diverted to unnecessary tasks with a negative impact on the performance of the
learned models. To improve the effectiveness of MTL for ConvQA, we propose a novel method,
called Hybrid Task Weighting, which focuses on adjusting the tasks’ weights by modelling the
difference between these weights, while still prioritising the main task.

Gap 2 Effective integration between identifying follow-up questions and rewriting conversa-
tional questions is currently lacking. This integration allows the system to better understand user
intent, address ambiguities, and leverage the context of the conversation.

Gap 3 There is a lack of a comprehensive approach for asking clarifying questions in prior
works, as they have either focused solely on generating clarifying questions using generative
models or selecting from pre-determined pools. In addition, no prior work has effectively
leveraged Multi-Task Learning to simultaneously determine when clarifying questions are needed
and generate relevant questions based on the user’s initial query and conversation history. By
combining both the generation and selection approaches in a uniform framework, we can produce
a better set of questions and ensure that the selected question is relevant to the user’s query.

Gap 4 There is a lack of an integrated approach that leverages multi-task learning to combine
reranking and answer extraction (conversational question answering), sharing a single text
generation model for directly extracting answers for the users instead of predicting the start/end
positions in a retrieved passage. By sharing the learning model, the reranker and reader can
simultaneously predict the answer and reranking score. As a result, this joint learning method can
enhance both the learning efficiency and prediction accuracy of a model for the ORConvQA task.

Gap 5 There is no integrated approach using multi-task learning to combine the three tasks:
conversational question rewriting, passage retrieval, and answer extraction. In addition, the
existing systems use Multi-Task Learning (MTL) in a static approach with fixed task weights
during training, which can divert training resources to unnecessary tasks and negatively impact
the performance of the learned models.

In the next chapter, we formally introduce our proposed framework, which serves as a solution
to bridge these gaps, so as to effectively address the challenges of ORConvQA.
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Chapter 4

ORConvQA Framework

4.1 Introduction

In Section 1.3, we stated the hypothesis that an effective Open-Retrieval Conversational
Question Answering (ORConvQA) system can be built through the use of Multi-Task Learning
(MTL), which combines multiple related tasks. In Chapters 2 and 3, we provided background
and reviewed the existing work in the field of ORConvQA. In particular, Chapter 3 discussed the
details of the ORConvQA subtasks, including Conversational Question Answering (ConvQA)
or Answer Extraction (introduced in Section 3.2), Follow-up Question Identification (FID) (in-
troduced in Section 3.3), Conversational Question Rewriting (QR) (introduced in Section 3.4),
Clarification Need Classification (CNC) (introduced in Section 3.5), Asking Clarifying Ques-
tions(introduced in Section 3.6), and Passage Retrieval/Reranking (introduced in Sections 3.7
and 3.8). In addition, in Section 3.10, we identified five gaps in the current approaches for
ORConvQA and the advancements needed to address the ORConvQA task effectively, namely:

Gap 1 states that existing ConvQA works employing Multi-Task Learning (MTL) lack the
capability to dynamically adjust task importance during training.

Gap 2 states the need for improved integration between follow-up question identification
and conversational question rewriting to enhance response’s accuracy and relevance by better
understanding the user’s intent, addressing ambiguities, and leveraging the conversation context.

Gap 3 states that prior works on asking clarifying questions have either focused on generating
clarifying questions or selecting from pre-determined pools, and that no prior work has effectively
leveraged MTL to simultaneously determine when clarifying questions are needed and generate
relevant questions.

Gap 4 states that prior works on passage reranking and answer extraction have not effectively
leveraged MTL to combine the two tasks, and that no prior work has used a single text generation
model to directly extract answers for users instead of predicting the start/end positions in a
retrieved passage.
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Figure 4.1: An overview of our proposed framework.

Gap 5 states current ORConvQA systems do not effectively integrate conversational question
rewriting, passage retrieval, and answer extraction, and they use MTL in a static approach with
fixed task weights during training.

This chapter introduces our proposed ORConvQA framework in Section 4.2. The framework
aims to bridge these five gaps laid out in Section 3.10 and improve the performance of ORConvQA.
Next, in Section 4.3, we present five new methods within our proposed ORConvQA framework,
each addressing a different aspect of ORConvQA. Section 4.4 explains how we combine the
multiple related tasks using MTL for each of these methods to effectively address the ORConvQA
task. Section 4.5 summarises the chapter and provides conclusions.

4.2 Framework Overview

This thesis aims to effectively address the task of Open-Retrieval Conversational Question
Answering (ORConvQA) by leveraging Multi-Task Learning (MTL). To address the tasks intro-
duced in Chapter 3, we propose an ORConvQA framework. Figure 4.1 illustrates our proposed
ORConvQA framework, which consists of seven main components: (1) Follow-up Question
Identification; (2) Conversational Question Rewriting; (3) Asking Clarifying Questions; (4)
Clarification Need Classification; (5) Retriever; (6) Reranker; and (7) Reader i.e. the answer
extraction component. Specifically, to address the ambiguities of the users’ questions for the
ORConvQA task, we employ components (1)-(4) as introduced in Section 1.2. These components
help us refine the user’s query. Subsequently, we pass the refined query to components (5)-(7)
for the retrieval, reranking, and answer extraction processes, thereby providing the user with the
requested answer.

In Figure 4.1, each box corresponds to a single component. We start by receiving the user’s
query and conversation history. The ORConvQA system then identifies the need for follow-up
questions or conversational question rewriting to address the possible ambiguities in the user’s
input. The system also performs clarification need classification to determine whether asking
clarifying questions is required. If necessary, contextually relevant clarifying questions are
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Table 4.1: Notations used in this thesis.

Notation Definition
qt A question at turn t
at An answer at turn t
qk A current question
q′k A rewritten question of the current question qk
ak An answer to current question qk
Hk A conversation history i.e Hk = [⟨q,a⟩]
qc A candidate follow-up question
q qk and Hk, or q′k
uk A current utterance
ck A clarifying question
nk An important level for asking a clarifying question
C A passage collection

generated. Based on the clarified query, relevant passages are retrieved, and then the retrieved
passages are reranked to prioritise the most relevant ones. Finally, the system extracts the final
answer from the top-ranked passage and provides it as a response to the user. This comprehensive
approach leverages Multi-Task Learning to jointly learn and optimise the performance of each
component in the ORConvQA system, so as to enhance the overall performance of the deployed
system.

Table 4.1 lists the notations used in this thesis. In particular, we explicitly define the terms
"question", "query", and "utterance" as they will be used in the following sections and chapters.
Following Zamani et al. (2022), an utterance is a general term that refers to any spoken or written
expression produced by a speaker in a conversation. A question is a specific type of utterance
that seeks information or clarification from another participant in the conversation. A query, on
the other hand, (a term used in information retrieval) refers to a request for information from
a database or search engine. In the context of conversational information seeking, a query is
typically a text-based input that is used to initiate a conversation with a conversational system or
search component.

Next, we summarise the functionality of each component and define its specific input and
output.

1. Follow-up Question Identification: This component is responsible for identifying whether
or not the utterance/question is a follow-up question. It helps the system determine if
additional information is needed to provide a more accurate and relevant response to the
utterance/question. The component takes the current user’s question qk and its conversation
history Hk as input then outputs a boolean value indicating whether the question qk+1 is
linked to the previous conversation history or not. In particular, we define a follow-up
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question identification function FID(·), which takes an input, as follows:

FID(qk,Hk,θ)→ (True (valid) /False (invalid)) (4.1)

where θ represents the learnable parameters of the model. The model is then fine-tuned
to predict the target class depending on whether the candidate question is a valid/invalid
follow-up to the previous question or not. To evaluate the models in the Follow-up Question
Identification task, we use the three test sets of the LIF dataset (Kundu et al. 2020), as
described in Section 3.3.2. Since the Follow-up Question Identification task is a binary
classification task, we evaluate performances using classical classification metrics, namely
precision, recall, F1 and Macro-F1 (see Section 3.6.3). Indeed, following Kundu et al.
(2020), reporting Macro-F1 enables the accuracy of topic shift detection to be measured,
while F1 focuses solely on follow-up identification as the positive class, as described in
Section 3.3.3.

2. Conversational Question Rewriting: The Conversational Question Rewriting component
aims to reformulate the user’s question in a more clear and complete manner, leveraging the
context of the ongoing conversation. By doing so, it improves the system’s understanding
of the user’s intent and facilitates a better retrieval of relevant answers. The component
takes the current user’s question qk and its conversation history Hk as input then generates
the rewritten question q′k. This reformulation addresses the ambiguity in the user questions
by transforming a concise conversational question into a fully-grown, contextualised ad-hoc
query. In particular, we define a QR transformation function as QR(·), which takes a text
input sequence, as follows:

QR(qk,Hk,θ)→ q′k (4.2)

where θ represents the learnable parameters of the model. The model is then fine-tuned
to generate the target question q′k. To evaluate the models in the Conversational Question
Rewriting task, we use the test set of the CANARD dataset (Elgohary et al. 2019), as
described in Section 3.4.2. For the evaluation of the system performance in Conversational
Question Rewriting, which is a generation task, we adopt the ROUGE recall calculated for
unigrams (ROUGE-1 recall) and the BLEU metrics, following (Elgohary et al. 2019, Lin,
Yang, Nogueira, Tsai, Wang & Lin 2020a, Vakulenko, Longpre, Tu & Anantha 2021), as
explained in Section 3.4.3.

3. Clarification Need Classification: The Clarification Need Classification component
determines the necessity of asking clarifying questions. It classifies whether the user’s
query requires further clarification or if it can be directly addressed without additional
information. The component takes the current user’s question qk and its conversation
history Hk as input and then determines whether the system should ask a clarifying question
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in response to user utterance qk. The target outputs "1", "2", "3", and "4", collectively
denoted by nk, correspond to the level of importance of asking a clarifying question ck.
The lower the number, the less important it is to ask a clarifying question. In particular, we
define a CNC function as CNC(·), as follows:

CNC(qk,Hk,θ)→ nk (4.3)

where θ represents the learnable parameters of the model and nk is the importance of
(or the need for) asking a clarifying question. The model is then fine-tuned to determine
whether the system should ask a clarifying question in response to a user question qk. To
evaluate the performance of the models on Clarification Need Classification, we use the
ClariQ (Aliannejadi et al. 2021) dataset, as described in Section 3.5.2. We use typical
classification metrics such as precision, recall, and F1, in line with ClariQ, as discussed in
Section 3.5.3.

4. Asking Clarifying Questions: This component either generates clarifying questions using
a generative model or selects them from a pre-determined pool of questions. By asking
clarifying questions to the users it is possible to better understand their intents and to refine
the system’s interpretation of the users’ information needs. By doing so, the user can also
provide additional information and feedback to the system in order to improve the search
results. The component takes the current user’s question qk and its conversation history Hk

as input then predicts (generates or selects) a clarifying question ck that clarifies the current
question qk. The system then receives feedback, qk_2, from the user for the clarifying
question ck. In particular, we define a transformation function as Asking(·), which takes an
input, as follows:

Asking(qk,Hk,θ)→ ck (4.4)

where θ represents the learnable parameters of the model. The model is then fine-tuned
to generate the target clarifying question ck. For evaluating our proposed method for
generating and selecting clarifying questions, we use the TREC Conversational Assistance
Track (CAsT) 2022 (Owoicho et al. 2022), as described in Section 3.6.2. The evaluation
focuses on P@1 (using a relevance cutoff at two as positive for binary measures) and
assesses performance based on three criteria: relevance, novelty, and diversity, as introduced
in Section 3.6.3.

5. Retriever: The Retriever is responsible for retrieving a set of relevant passages or docu-
ments from a large corpus based on the user’s query. This component aims to capture the
most relevant information that could potentially contain the answer to the user’s question.
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The component takes the query q which is the current user’s question qk and its conversation
history Hk, or the rewritten question q′k, as input. It then returns a ranked list of n passages
P+

ret = [p1, p2, ..., pn] from a text collection C, where the passages are ranked in order of
their likelihood of containing the answer to the question qk. In particular, we define a
retrieval function as Retriever(·), as follows:

Retriever(q,C)→ P+
ret (4.5)

To evaluate passage retrieval performance, we use the test sets of the CAsT 2022 (Owoicho
et al. 2022) and OR-QuAC (Qu et al. 2020) datasets, as described in Section 3.7.2. We use
the NDCG, MAP, MRR, and recall evaluation metrics, as introduced in Section 2.7.

6. Reranker: The Reranker component takes the output of the Retriever component and
further ranks the retrieved passages based on their relevance to the user’s question. The
Reranker aims to enhances the precision of the retrieval process by identifying the most
relevant passages. This component takes the output of the Retriever, a ranked list of n

passage P+
ret = [p1, p2, ..., pn], and the query q as input. It then refines and reorders these

passages to produce a more accurate and relevant ranked list P+
reranked = [p′1, p′2, ..., p′n]. In

particular, we define a reranking function Reranker(·), which takes an input, as follows:

Reranker(q,P+
ret)→ P+

reranked (4.6)

where q can be the current user’s question qk and its conversation history Hk, or the
rewritten question q′k. To evaluate the passage reranking performance, we use the test
sets of the CAsT 2022 (Owoicho et al. 2022) and OR-QuAC (Qu et al. 2020) datasets, as
described in Section 3.7.2. We adopt the NDCG, MAP, MRR, and recall evaluation metrics,
as discussed in Section 2.7.

7. Reader: The Reader component extracts the final answer from the top-ranked passage
identified by the Reranker. It uses various natural language processing techniques to
locate the precise answer within the retrieved passage and present it to the user as the
system’s response. This component takes the output of the Reranker, a ranked list of
passages P+

reranked = [p′1, p′2, ..., p′n], and the query q as input. It then extracts the precise
and relevant answer a from the top-ranked passage and presents them to the user as the
system’s response. In particular, we define an answer extraction function Reader(·), as
follows:

Reader(q,P+
reranked,θ)→ ak (4.7)

where θ represents the learnable parameters of the model, ak denotes the response answer
to the user, and q can be the current user’s question qk and its conversation history Hk,
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Table 4.2: Summary of the different components used in our ORConvQA framework.

Components Functions Inputs Outputs
Follow-up Question Identification FID(·) qk,Hk valid/invalid
Conversational Question Rewriting QR(·) qk,Hk q′k
Clarification Need Classification CNC(·) qk,Hk nk
Asking Clarifying Questions Asking(·) qk,Hk ck
Retriever Retriever(·) q P+

ret
Reranker Reranker(·) q, P+

ret P+
reranked

Reader Reader(·) q,P+
reranked ak

or the rewritten question q′k. To conduct the evaluation of the Reader component, we
use the OR-QuAC (Qu et al. 2020) and OR-CoQA (Qu et al. 2021) datasets, which are
extractive Question Answering (QA) datasets, as described in Section 3.2.2. We use the
two evaluation metrics, namely the word-level F1, and the human equivalence score (HEQ),
as explained in Section 3.2.3.

Table 4.2 summarises the inputs and the corresponding outputs for each component in our
ORConvQA framework.

4.3 Our Proposed ORConvQA Methods

Overall, there are five different proposed methods in our ORConvQA framework that can
be built from the components explained above. Inspired by PyTerrier (Macdonald & Tonellotto
2020), we use the notation x» to denote passing the output of one process, with type x, as input to
another, where x = R indicates that the type is a ranking of documents and x = Q indicates that
the type is a query/question/utterance. In the following, we describe our proposed methods.

1. Following (Choi et al. 2018, Reddy et al. 2019), our first proposed ORConvQA method,
ORConvQA1:dynamicMT L, simplifies the ORConvQA setting by hard-coding the relevant
passages to the user questions. First, follow-up question identification, FID(·), predicts
whether a question qk by the user is valid, in the sense that it is likely to be related to
the ongoing conversation with the same user using the text from the question qk and the
conversation history Hk. In contrast, an invalid question is one that does not logically
follow the previous question. Based on this classification, previous questions or answers
are selected and incorporated into a refined conversation history, H ′

k. For example, if the
question is predicted as valid, there remains H ′

k = Hk. If invalid, it is reduced to just the
first question and answer 1, i.e., H ′

k = [q1,a1]. Then, the reader, Reader(·), extracts the

1 Following (Elgohary et al. 2019), the first question in the conversation in the CANARD dataset is self-contained,
meaning it doesn’t rely on any previous context or information from the conversation.
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answer from the given passage. Therefore, the full ORConvQA1:dynamicMT L method can be
written as follows:

ORConvQA1:dynamicMT L = FID(qk,Hk,θ)
H ′

k» Reader(qk,θ)
(4.8)

In Chapter 5 of this thesis, we investigate the use of multi-task learning to simultaneously
train the FID and the reader components in the ORConvQA1:dynamicMT L method, so as to
share their learner structure. We further detail our method in Section 4.4.1.

2. Recall from Sections 3.3 and 3.4 that prior works addressed the problem of ambiguity in
the ORConvQA task by introducing the Follow-up Question Identification (Bertomeu et al.
2006, Kirschner & Bernardi 2007, 2009, Kundu et al. 2020) and Conversational Question
Rewriting (Lin, Yang, Nogueira, Tsai, Wang & Lin 2020a, Mele et al. 2021, Ren et al. 2018,
Vakulenko, Longpre, Tu & Anantha 2021, Vakulenko, Voskarides, Tu & Longpre 2021,
Voskarides et al. 2020, Yu et al. 2020) approaches. In our ORConvQA2:FID+QR method,
we adapt the ORConvQA1:dynamicMT L method by incorporating the FID and QR functions
in order to address ambiguity in conversational questions as mentioned in Section 1.2.
In addition, we replace the Reader component with the Retriever component, aiming to
improve the overall performance of the system in handling conversational questions.

First, FID(·) predicts whether a question qk by the user is valid, in the sense that it is
likely to be related to the ongoing conversation with the same user using the text from
the question qk and the conversation history Hk. In contrast, an invalid question is one
that does not logically follow the previous question. Based on this classification, previous
questions or answers are selected and incorporated into a refined conversation history, H ′

k.
For example, if the questions are predicted to be valid, there remains H ′

k = Hk. If invalid,
it is reduced to just the first question and answer, i.e., H ′

k = [q1,a1]. Following this, the
QR(·) function takes qk and H ′

k as inputs to reformulate the question qk into a rewritten
question q′k. Then, the Retriever uses q′k as the input to retrieve the top N relevant passages
from the text collection C. Finally, the Reranker re-scores and re-orders these N passages.
Therefore, the full ORConvQA2:FID+QR method can be written as follows:

ORConvQA2:FID+QR = FID(qk,Hk,θ)
H ′

k» QR(qk,θ)

q′k» Retriever(I,n)

P+
Ret» Reranker(q′k,θ)

(4.9)
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In Chapter 6 of this thesis, we investigate the use of multi-task learning to simultaneously
train the FID and QR components in the ORConvQA2:FID+QR method, using a single text
generation model. Section 4.4.2 discusses our method in more detail.

3. Recall from Sections 3.5 and 3.6 that to address the ambiguity of conversational questions,
previous works (Aliannejadi et al. 2020a, 2021, Owoicho et al. 2022) in Open-Retrieval
Conversational Question Answering (ORConvQA) have proposed the use of asking clari-
fying questions. The ORConvQA3:CNC+Asking method consists of six components: conver-
sational question rewriting (QR), clarification need prediction (CNC), asking clarifying
questions (Asking), Retriever, Reranker, and Reader. First, the conversational query rewrit-
ing component, QR(·), reformulates the current question qk and its context (conversation
history) Hk into a standalone, omission-free rewritten question q′k, which can be used in
the later stages in a decontextualised manner. The clarification need prediction component,
CNC(·), estimates the importance of (or the need for) asking a clarifying question, for
the rewritten question q′k, which we denote by nk. Based on nk, the system will decide
whether a clarifying question should be obtained. If a clarification is not required, the
system retrieves passages using the rewritten utterance q′k through the Retriever component
Retriever(·). If a clarification is needed, the system employs the asking clarifying questions
component, Asking(·), to produce the most appropriate clarifying question ck. For each
clarifying question ck, the user feedback fk will be provided. Subsequently, QR reformu-
lates the question qk using its context (Hk, ck, and fk) into a new rewritten question q′′k.
Then, the Retriever uses q′′k as the input to retrieve the top N relevant passages from the
text collection C. Finally, the Reranker re-scores and re-orders these N passages. Therefore,
the full ORConvQA3:CNC+Asking method can be written as follows:

ORConvQA3:CNC+Asking = QR(qk,Hk,θ)
q′k» CNC(θ)
nk» Asking(qk,Hk,θ)
ck, fk» QR(qk,Hk,θ)
q′′k» Retriever(I,N)

P+
Ret» Reranker(q,N,θ)

(4.10)

In this thesis, Chapter 7 investigates the use of multi-task learning to simultaneously
train the clarification need prediction and asking clarifying questions components in the
ORConvQA3:CNC+Asking method, using a single text generation model. We further detail
this method in Section 4.4.3.
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4. Following (Qu et al. 2021, 2020), we adopt a four-stage architecture, including a conver-
sation question rewriting, a retriever, a reranker, and a reader to extract the answers in a
method, called ORConvQA4:Reranker+Reader. First, the conversational query rewriting com-
ponent, QR(·), reformulates the current question qk and its context (conversation history)
Hk into a standalone, omission-free rewritten question q′k, which can be used in the later
stages in a decontextualised manner. Then, the Retriever, Retriever(·), using the rewritten
query, retrieves the top N relevant passages from the text collection C. To produce the final
answer, the Reranker, Reranker(·) and Reader, Reader(·), subsequently re-score and iden-
tify the answer within these top-N passages. Therefore, the full ORConvQA4:Reranker+Reader

process can be written as follows:

ORConvQA4:Reranker+Reader = QR(qk,Hk,θ)
q′k» Retriever(C,N)

P+
Ret» Reranker(q,N,θ)

P+
Reranked» Reader(q,θ)

(4.11)

In Chapter 8 of this thesis, we investigate the use of multi-task learning to train simulta-
neously the reranker and the reader in the ORConvQA4:Reranker+Reader method by sharing
a single text generation model. We discuss our proposed method in more detail in Sec-
tion 4.4.4.

5. In the ORConvQA5:MT L3Tasks method, we address the problem of ambiguity in conversa-
tional questions by incorporating a conversational question rewriting component. The
conversational query rewriting component, QR(·), first reformulates the current question qk

and its context (conversation history) Hk into a standalone, omission-free rewritten question
q′k. This rewritten question q′k can then be used by the Retriever, Retriever(·), to retrieve
the top N relevant passages from the text collection C. The reader, Reader(·), then extracts
the answer within these top-N passages. Therefore, the full ORConvQA5:MT L3Tasks process
can be written as:

ORConvQA5:MT L3Tasks = QR(qk,Hk,θ)
q′k» Retriever(q,C,N)

P+
Ret» Reader(q,θ)

(4.12)

In Chapter 8 of this thesis, we investigate the use of multi-task learning to train the QR,
retriever, and reader components in the ORConvQA5:MT L3Tasks method by sharing their
learner structure. We further detail this method in Section 4.4.5.

In the following section, we present how multi-task learning (MTL) is employed to combine
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Table 4.3: Task combination overview for Open-Retrieval Conversational Question Answering.

Methods
Tasks

Chapter
Reader FID QR CNC Asking Retriever Reranker

ORConvQA1:dynamicMT L x x 5
ORConvQA2:FID+QR x x 6
ORConvQA3:CNC+Asking x x 7
ORConvQA4:Reranker+Reader x x 8
ORConvQA5:MT L3Tasks x x x 8

Figure 4.2: Task combination overview for Open-Retrieval Conversational Question Answering.
The numbers indicate the corresponding chapters for each combination task.

multiple related tasks within each of the five proposed ORConvQA method to address the gaps
identified in Section 3.10.

4.4 Task Combination for MTL

Recall from Section 1.3 that our objective is to address the task of Open-Retrieval Conversa-
tional Question Answering (ORConvQA) by leveraging Multi-Task Learning (MTL). MTL is a
learning paradigm where multiple tasks are learned jointly to improve the overall performance,
as discussed in Sections 2.8 and 3.9. As previously introduced in Section 4.2, we propose
five different ORConvQA methods to address the ORConvQA task. This section explains how
multiple related tasks in each method are jointly learned using MTL to address the five gaps
identified in Section 3.10. An overview of the task combination strategy is depicted in Table 4.3
and Figure 4.2, with numbers indicating the corresponding chapters where each combination
task is discussed in detail. In the following, we elaborate on our five proposed methods, initially
outlined in Section 4.2, which aim to bridge the five identified gaps in ORConvQA by leveraging
MTL.
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Figure 4.3: The model architecture of the MTL model for answer extraction and follow-up
question identification tasks.

4.4.1 Answer Extraction and Follow-up Question Identification

In this section, we aim to address Gap 1 as identified in Section 3.10. Gap 1 states that existing
works (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019, Yeh & Chen 2019) on MTL for ConvQA
have successfully adopted static MTL methods. However, there is still room for improvement
since during the learning phase’ the weights for the all tasks are unchanged and therefore they
are not adjusted relative to the importance of the different tasks. Instead, in Chapter 5, we take
advantage of a dynamic method in MTL for ConvQA. The goal of our proposed model is to
improve the effectiveness of the ConvQA task. As far we know, no prior work has addressed
the use of dynamic MTL methods for the ConvQA task. In our proposed MTL approach, we
employ the Abridged Linear (Belharbi et al. 2016) for the main Answer Extraction task and
the Loss-Balanced Task Weighting (Liu, Liang & Gitter 2019) for the auxiliary tasks, such
as Follow-up Question Identification, Yes/No prediction, and Unanswerable prediction. Our
approach prioritises the main task after step t during training by setting the task’s weight to one
while also automatically fine-tuning the tasks’ weights by balancing the loss ratio of the auxiliary
tasks. In our model, we employ BERT (see Section 2.3.2), which is still a widely used and
popular pre-trained model. In the following, we describe in detail our model.

To tackle the Conversational Question Answer (see Section 3.2) and the Follow-up Question
Identification (see Section 3.3) tasks, we present our resulting ConvQA model by adopting a
Multi-Task Learning approach. Figure 4.3 illustrates the architecture of our model, which consists
of three components: an encoder, an answer span predictor and the auxiliary tasks predictor.
For the encoder, we deploy a BERT model that encodes the question qk+1, the passage p, and
the conversation history Hk as a sequence of m words C = {c1,c2, ...,cm} into contextualised
token-level (T̂k) and sequence-level (Ŝk) representations i.e., MT L(Reader,FID,θ) = [T̂k, Ŝk],
where MT L(·) is BERT’s encoder transformation function. These encodings are customised to
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the task by integrating conversation history features. In particular, the ORConvQA1:dynamicMT L

method can then be defined using Equation 4.8 as follows:

ORConvQA1:dynamicMT L = MT L(FID,Reader,θ)

T̂k»Predictanswer_span(θ)

Ŝk»Predict f ollow−up(θ)

(4.13)

where Predictanswer_span(·) serves as the classification head (linear layer neural network) for
the answer span prediction, while Predict f ollow−up(·) fulfils the same role for identifying the
follow-up questions.

In Chapter 5, to address Gap 1, we perform three consecutive studies to examine the effective-
ness of the use of the dynamic Multi-Task Learning for the ORConvQA1:dynamicMT L method. In
particular, our investigation aims to answer the following research questions:

RQ 5.1 What is the most effective and efficient Multi-Task Learning method?
RQ 5.2 Does applying the proposed MTL ConvQA model using each of the auxiliary tasks

result in effectiveness improvements over learning using only the main task?
RQ 5.3 Does our proposed MTL model lead to not only improving the performance of the

main task but also to an improvement in the performances on the auxiliary tasks?

4.4.2 Question Rewriting and Follow-up Question Identification

In this section, we aim to address Gap 2 as identified in Section 3.10. Gap 2 states that while
there are existing works for follow-up question identification (Bertomeu et al. 2006, Kirschner
& Bernardi 2007, 2009, Kundu et al. 2020) and conversational question rewriting (Lin, Yang,
Nogueira, Tsai, Wang & Lin 2020a, Mele et al. 2021, Ren et al. 2018, Vakulenko, Longpre,
Tu & Anantha 2021, Vakulenko, Voskarides, Tu & Longpre 2021, Voskarides et al. 2020, Yu
et al. 2020), none of these works has inherently combined both tasks to more effectively identify
ambiguous questions. In Chapter 6, we investigate the combination of both the follow-up question
identification task and the conversational question rewriting task for improving the effectiveness of
both tasks. Our intuition is that by combining follow-up question identification and conversational
question rewriting, the system’s response accuracy and relevance can be enhanced. Indeed. we
argue that by identifying connections between the user’s questions, addressing ambiguities, and
leveraging the conversation’s context, the system can refine its understanding of the user intent
and can provide more precise and relevant responses.

To tackle the Follow-up Question Identification (see Section 3.3) and Conversational Question
Rewriting (see Section 3.4) tasks, we propose classification and question rewriting models that
leverage historical questions to identify whether a candidate question qc is a follow-up to the
previous question, and to reformulate the current question qm. Our proposed method uses models
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Figure 4.4: A generative model prediction by generating the first token for a classification task
and the follow-up tokens for a questing rewriting task.

Figure 4.5: Example of output from MT L(FID,QR).

including BART (see Section 2.3.1) and T5 (see Section 2.3.1), which are large pre-trained
language models designed for text generation. In particular, text generation approaches can be
trained to generate a meaningful textual response based on some input text. Moreover, like BERT,
the pre-trained BART and T5 models can be fine-tuned to perform a variety of downstream tasks.

To adopt an MTL approach to a text generation model for jointly learning from both the
classification and question rewriting tasks, we deploy generative MTL models to capture the
relation between the questions qc/qm and the contextual information in the conversation history,
including the historical question(s) {q1,q2, . . .qk}, and the historical answer(s) {a1,a2, . . .ak}, as
shown in Figure 4.4. In particular, let MT L(·) denotes a joint learning function as follows:

MT L(FID,QR,θ)→ w1,w2, ...,wn (4.14)

where θ are the learnable parameters of the model. The model is then fine-tuned to generate the
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target tokens of length n as shown in Equation (4.14). The token w1 is either “follow" or “shift"2

depending on whether the candidate question is a valid follow-up to the previous question or not,
while the follow-up tokens w2, ...,wn are the output sequence for the target query q′k. Figure 4.5
shows the example of the input and output of MT L(FID,QR).

In particular, the ORConvQA2:FID+QR method can then be defined using Equation (4.9) as
follows:

ORConvQA2:FID+QR = MT L(FID,QR,θ)
q′k» Retriever(I,n)

P+
ret» Reranker(q′k)

(4.15)

In Chapter 6, to address Gap 2, we conduct two consecutive studies. These investigations
aim to examine the effectiveness of combining the tasks of follow-up question identification and
conversational question rewriting, with the goal of enhancing the effectiveness of both tasks. Our
proposed models employ Multi-Task Learning to simultaneously learn conversational question
rewriting and classification sharing a single text generation model. This enables the models to
identify whether a question is a follow-up to the previous question and, accordingly, reformulate
a question using the dialogue context. In particular, our studies aim to answer the following two
research questions:

RQ 6.1 Does the MTL approach of question rewriting and classification using text generation
models outperform the single-task learning (STL) of text generation models and existing baselines
for the follow-up question identification task?

RQ 6.2 Does the MTL approach of question rewriting and classification using text generation
models outperform the single-task learning (STL) of text generation models in the context of the
conversational question rewriting and passage retrieval tasks?

4.4.3 Clarification Need Identification and Clarifying Question Generation

In this section, we address the issue highlighted in Gap 3 as identified in Section 3.10.
Specifically, Gap 3 states that no previous work has effectively integrated both clarification need
classification and the task of asking clarifying questions to more effectively address the step
of asking clarifying questions in a mixed-initiative conversational search system. To tackle the
tasks Clarification Need Classification (see Section 3.5) and Asking Clarifying Questions (see
Section 3.6), we introduce a ORConvQA3:CNC+Asking method consists of four main components,
which address the following functionalities:

1. conversational query rewriting, namely T5QR;

2 We choose “follow" and “shift" as target tokens because T5 tokenises sequences using the SentencePiece ap-
proach (Kudo & Richardson 2018), which splits the word “invalid" into two subwords.
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Figure 4.6: MTL of clarification need classification and clarifying question generation.

2. the MTL of the clarification need classification and the generation of clarifying questions,
namely T5MI;

3. selecting the clarifying question, namely GTR; and

4. ranking the candidate clarifying questions, namely T5Ranking.

In particular, we describe our proposed T5MI model, which uses a text generation model with
Multi-Task Learning for both the clarification need prediction and the generation of the clarifying
questions. If a clarification is not required, the system retrieves passages using the rewritten
utterance ur using the retrieval model. If a clarification is needed, the system employs both the
generation and selection approaches for clarifying questions – specifically, it generates clarifying
questions using the clarifying question generation model and selects from a pre-determined
question pool using a clarifying question selection model.

To adopt a Multi-Task Learning (MTL) approach to a text generation model for jointly
learning from both the clarification need prediction task and the generation of clarifying question
task, the MTL model makes predictions as follows: the first output token is used to estimate
the clarification need, while the other output tokens define the output of the clarifying question
generation task. To fine-tune the T5 model for a downstream task, we employ the technique of
Prompt-based Learning (see Section 2.8.1), which modifies the model by providing a task-specific
prompt in addition to the input (Liu et al. 2021). As depicted in Figure 4.6, we deploy a T5 model
to analyse the rewritten utterance ur of the current user’s utterance uk. In particular, we define a
jointly learning function as MT LT 5MI(·) as follows:

MT LT 5MI(CNC,Asking,θ)→ w1,w2, ...,wn (4.16)

where θ are the learnable parameters of the model. The model is then fine-tuned to generate n

target tokens, as shown in Equation (4.16). Token w1 can be "1", "2", "3" or "4" 3 depending on

3 We follow the assessment procedure of the ClariQ dataset used in this work.

97



whether the rewritten utterance ur needs to ask the clarifying question or not, while the follow-up
tokens w2, ...,wn are the output sequence for the clarifying question ck.

In particular, the ORConvQA3:CNC+Asking method can then be defined using Equation (4.10)
as follows:

ORConvQA3:CNC+Asking = T 5QR(qk,Hk,θ)
q′k»MT LT 5MI(CNC,Asking,θ)
q′k»GT R(θ)
ck»T 5Ranking(q′k,θ)
ck, fk» T 5QR(qk,Hk,θ)
q′′k» Retriever(I,N)

P+
Ret» Reranker(q′′k,N ,θ)

(4.17)

In Chapter 7, to address Gap 3, we perform four consecutive studies to investigate the use of
multi-task learning to simultaneously determine when a user’s query necessitates a clarifying
question and generate a set of clarifying questions based on the user’s query and conversation
history. In particular, our investigation aims to answer the following research questions:

RQ 7.1 Does leveraging the MTL of classification and clarifying question generation on the
text generation model improve the effectiveness of the clarification need classification over the
existing single-task learning (STL) baselines?

RQ 7.2 How does our proposed hybrid method for generating and selecting clarifying
questions compare to other existing baselines?

RQ 7.3 How to effectively rewrite the current utterance uk by using the clarifying question ck

and its feedback for passage retrieval?
RQ 7.4 How effective is our hybrid passage retrieval method compared to existing baselines?

4.4.4 Passage Reranking and Answer Extraction

In this section, we address the issue highlighted in Gap 4 as identified in Section 3.10.
Specifically, Gap 4 states that no prior work has combined passage reranking and answer
extraction to share a single text generation model that directly extracts the answers for the
users instead of predicting the start/end positions in a retrieved passage.

To address the ORConvQA task, prior works (see Section 3.7.4) have adopted a three-stage
architecture, including a retriever, a reranker, and a reader to extract the answers. We also adopt
this three-stage architecture in our proposed method. By doing so, to tackle the Conversational
Question Answering/Answer Extraction (see Section 3.2) and Passage Reranking (see Section 3.8)
tasks, we propose an ORConvQA4:Reranker+Reader MTL method, which includes ConvDR (see
Section 3.7.4) as a retriever and a newly proposed MTL model called monoQA as reranker
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Figure 4.7: Overview of (a) reranker and extractive reader and (b) reranker and generative reader.

and reader. Our monoQA model uses a text generation model with multi-task learning for
both the reranker and reader. Our model, which is based on the T5 text generation model (see
Section 2.3.1), is fine-tuned simultaneously for both reranking (in order to improve the precision
of the top retrieved passages) and extracting the answer. Unlike previous work (Figure 4.7(a)),
monoQA makes predictions by generating the first token for the passage reranking task, followed
by the other tokens for the answer extraction task, as illustrated in Figure 4.7(b).

To adopt an MTL approach to a text generation model for jointly learning from both passage
reranking and answer extraction, the MTL model makes predictions by generating the first
token for the passage reranking task and the follow-up tokens for the answer extraction task. In
particular, when fine-tuning the T5 model for a downstream task, we use Prompt-based Learning
(see Section 2.8.1), which is a method to modify the model by using a task-specific prompt
together with the input (Liu et al. 2021). We deploy a T5 model to capture the relation between
the rewritten question qr of the current question qc and the passage p. In particular, we define a
MT LmonoQA(·) joint learning function as follows:

MT LmonoQA(Reranker,Reader,θ)→ w1,w2, ...,wn (4.18)

where θ are the learnable parameters of the model. The model is then fine-tuned to generate
n target tokens, as shown in Equation (4.18), The token w1 is "true" or "false"4 depending on
whether the passage is relevant or not to question qr, while the follow-up tokens w2, ...,wn are the
output sequence for the answer of the question qr.

In particular, the ORConvQA4:Reranker+Reader method can then be defined using Equation (4.11)
as follows:

ORConvQA4:Reranker+Reader = QR(qk,Hk)

P+
ret» Retriever(q,C,N)

P+
ret» MT LmonoQA(Reranker,Reader,θ)

(4.19)

4 We choose "true" and "false" as target tokens following monoT5 (Nogueira, Jiang, Pradeep & Lin 2020b).
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In Chapter 8, to address Gap 4, we perform three consecutive studies to investigate the use
of Multi-Task Learning (MTL) to improve performance on the ORConvQA task by sharing the
reranker and reader’s learned structure. We propose monoQA, which uses a text generation model
with multi-task learning for both the reranker and reader. Our model, which is based on the T5
(see Section 2.3.1) text generation model, is fine-tuned simultaneously for both reranking (in
order to improve the precision of the top retrieved passages) and extracting the answer. Moreover,
we consider the use of different models to initialisation monoQA during training, since we
propose to combine monoT5 (see Section 2.4.1) and UnifiedQA (see Section 3.2.4) to share a
single text generation model. Moreover, both monoT5 and UnifiedQA are fine-tuned based on
the t5-base model. Therefore, we investigate which of monoT5, UnifiedQA, and t5-base,
are suitable for initialising monoQA.

In particular, our investigation aims to answer the following five research questions:
RQ 8.1 How to select the best training model checkpoint in validation steps, i.e. the best

validation loss, the best word-level F1, or the best relevance accuracy?
RQ 8.2 Which of the prompts lead to the best performance of our monoQA model?
RQ 8.3 Which model to use for initialising monoQA, namely which of: monoT5, UnifiedQA,

and t5-base, lead to the best performance of monoQA on the ORConvQA task?
RQ 8.4 How does monoQA compare to other existing baselines?
RQ 8.5 How does our proposed ORConvQA4:Reranker+Reader MTL method, which is a three-

stage pipeline (retriever, reranker, and reader), compare to the two-stage pipeline (retriever and
reader) baselines?

4.4.5 Question Rewriting, Passage Retriever, and Answer Extraction

In this section, we address the issue highlighted in Gap 5 as identified in Section 3.10.
Specifically, Gap 5 states that no prior work has combined the three tasks: Conversational
Question Rewriting (see Section 3.4), Passage Retrieval (see Section 3.7), and Answer Extraction
(see Section 3.2), in a uniform model.

To address these three tasks, we propose an ORConvQA5:MT L3Tasks MTL method using a
uniform model that integrates three components: conversational question rewriting, the retriever,
and the reader. To achieve this, we introduce the ORConvQA5:MT L3Tasks method. In particular, let
MT L(·) denotes a joint learning function of the conversational question rewriting (QR(·)), passage
retrieval (Retriever(·)), and answer extraction (Reader(·)). Therefore, the ORConvQA5:MT L3Tasks

method can then be defined using Equation (4.12) as follows:

ORConvQA5:MT L3Tasks = MT L(QR,Retriever,Reader,θ) (4.20)

where θ are the learnable parameters of the model. The model is then fine-tuned to learn from
teacher-generated embeddings on oracle reformulated questions (as mentioned in Section 3.7.4),
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retrieve the relevant passages, and extract the answers from retrieved passages.
In Chapter 8, to address Gap 5, we perform a consecutive study to investigate the use of

Multi-Task Learning (MTL) to improve the performance on the ORConvQA task by sharing
the conversational question rewriting, retriever, and reader’s learned structure. Our proposed
ORConvQA5:MT L3Tasks method incorporates the reader into the bi-encoder ConvDR (see Sec-
tion 3.7.4) model, which combines the conversational question rewriting with retriever compo-
nents. The model is fine-tuned simultaneously for conversational question rewriting, passage
retrieval, and extracting the answer. In particular, our investigation aims to answer the following
research questions:

RQ 8.6 How does our proposed ORConvQA5:MT L3Tasks MTL method, which is an MTL of
conversational question rewriting, retriever, and reader, compare to other existing baselines?

4.5 Conclusions

This chapter introduced our proposed ORConvQA framework, consisting of five different
methods (ORConvQA1−5), which aim to bridge the gaps in existing ORConvQA research and
improve the performance of ORConvQA system. The five ORConvQA methods are:

• ORConvQA1:dynamicMT L: This method aims to address Gap 1 by leveraging the dynamic
Multi-Task Learning to jointly learn Answer Extraction and Follow-up Question Identifica-
tion in Chapter 5.

• ORConvQA2:FID+QR: This method aims to address Gap 2 by combining the follow-up ques-
tion identification and conversational question rewriting tasks to improve the effectiveness
of both tasks in Chapter 6.

• ORConvQA3:CNC+Asking: This method aims to address Gap 3 by proposing a T5MI model,
which uses a text generation model with Multi-Task Learning for both the clarification
need prediction and the generation of the clarifying questions in Chapter 7.

• ORConvQA4:Reranker+Reader: This method aims to address Gap 4 by proposing a monoQA
model, which uses a text generation model with multi-task learning for both the reranker
and reader in Chapter 8.

• ORConvQA5:MT L3Tasks : This method aims to address Gap 5 by leveraging the dynamic
Multi-Task Learning to jointly learn Conversational Question Rewriting, Passage Retrieval,
and Answer Extraction in Chapter 8.

All five ORConvQA methods leverage MTL to jointly learn multiple related tasks and enhance
an ORConvQA system. MTL helps to improve the overall performance of the systems, as each
task can help to inform the other tasks. The next chapter, Chapter 5, discusses the studies we will
conduct to address the gaps we have identified and presented.
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Chapter 5

MTL of Answer Extraction and its
Auxiliary Tasks

5.1 Introduction

In Section 3.2, we provided an overview of the Conversational Question Answering (ConvQA)
task, which consists in answering a question from a given passage in the form of a dialogue.
Recall that in the ConvQA task, in order to predict an answer, the system needs to extract text
spans from a given passage and understand the question based on the given conversational
history. Recently, the advancement in neural language modelling such as BERT (Devlin et al.
2019) (as introduced in Section 2.3.2), and the introduction of two large-scale datasets, namely
CoQA (Reddy et al. 2019) and QuAC (Choi et al. 2018) have further boosted research in the
ConvQA task, as already discussed in Section 3.2.2. In particular, QuAC introduces a main task,
namely Answer Extraction, which consists in answering a question by extracting text spans from
a given passage as well as some auxiliary tasks, namely Follow-up Question Identification (FID),
Yes/No prediction, and Unanswerable prediction (see Section 3.2).

In Section 2.8, we introduced Multi-Task Learning (MTL), which is a way to learn multiple
different but related tasks simultaneously. MTL has emerged as a popular solution to combine
various sub-tasks involved in ConvQA, such as Answer Extraction, Follow-up Question Identifi-
cation (FID), Yes/No prediction, and Unanswerable prediction, all within a uniform model (Qu,
Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019). MTL can also be used to leverage the auxiliary
tasks to improve the performance of a system on the main task. For example, for the QuAC
dataset, Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer (2019), and Yeh & Chen (2019) adopted an
MTL approach that jointly learns the auxiliary tasks and the main task by sharing the encoder
thereby leading to an improvement in the used ConvQA model.

In this chapter, we start to investigate the use of Multi-Task Learning (MTL) for enhancing
the performance of Conversational Question Answering (ConvQA) systems. Building upon
the discussion of Multi-Task Learning (MTL) in Sections 2.8 and 3.9, and the definition of the
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ConvQA task in Section 3.2, we explore how the integration of various sub-tasks within ConvQA,
such as Answer Extraction, Follow-up Question Identification (FID), Yes/No prediction, and
Unanswerable prediction, can be enhanced using MTL. In particular, we focus on leveraging the
advancements in neural language models, like BERT, and the insights gained from large-scale
datasets like QuAC to address the task of ConvQA leveraging MTL. This chapter presents our
approach to employing MTL in ConvQA, highlighting how it can improve the system performance
by effectively learning both the main answer extraction task and its auxiliary tasks simultaneously.

Recall from Section 2.8.2.1 that the MTL methods can be categorised into static or dynamic
methods. In the static MTL methods, each of the task’s weights used to combine the loss functions
of the various used tasks during training are unchanged throughout the learning phase. As a
result, they might overemphasise less important tasks at different stages of training. In contrast,
in the dynamic MTL methods, each of the task’s weights is adjusted automatically to balance the
loss rate (Liu, Liang & Gitter 2019) or to balance the weights across tasks (Kendall et al. 2018).
However, the implementation of a dynamic MTL method while more complicated has a lower
training efficiency than static methods. Therefore, in this chapter, we investigate the efficiency
and effectiveness of static and dynamic MTL methods in the ConvQA scenario.

As discussed in Section 3.2.4, existing (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019,
Yeh & Chen 2019) Conversational Question Answering (ConvQA) models that leverage Multi-
Task Learning (MTL) use the static method with unchanged tasks’ weights during the training
epochs. For instance, the recently proposed History Attention Mechanism (HAM) model (see
Section 3.2.4) attempted to apply Multi-Task Learning in order to improve the effectiveness of
conversational QA. However, the tasks’ weights in the model were unchanged during the training
state and emphasised the main task. FlowDelta (Yeh & Chen 2019) is a ConvQA model that
also employs a static MTL method, which sets all tasks’ weights equal to one. In the static
MTL methods used in HAM and FlowDelta, all of the tasks’ weights have not been adjusted
throughout the learning phase. As a result of this limitation (identified in Section 3.10 as Gap 1),
training resources could be diverted to unnecessary tasks with a possible negative impact on the
performance of the learned models.

Section 1.3 presented our thesis statement, hypothesising that a dynamic Multi-Task Learning
approach can improve the effectiveness of ConvQA by simultaneously training the main Answer
Extraction task and its auxiliary tasks, such as Follow-up Question Identification, Yes/No predic-
tion, and Unanswerable prediction. This chapter aims to test this hypothesis by incorporating
these tasks into a unified model, thereby enhancing the ConvQA system. We introduced our
proposed ORConvQA1:dynamicMT L method in Section 4.4.1.

Therefore, in this chapter, we address the issue discussed earlier regarding static task weight-
ing, as referred to in Gap 1. We propose a novel dynamic method, called Hybrid Task Weighting
to improve the effectiveness of MTL for ConvQA. This method is designed to address the issues
raised in Gap 1 by enabling the dynamic adjustment of task weights based on modelling the
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differences between these weights, while still prioritising on the main Answer Extraction task.
The contributions of this chapter are summarised as follows:

(1) We leverage dynamic Multi-Task Learning with BERT1 to effectively address the task
of learning the main Answer Extraction task with its auxiliary tasks including Yes/No
prediction, Follow-up Question Identification, and Unanswerable prediction;

(2) To further enhance the performance of Multi-Task Learning, we introduce a hybrid strategy,
which automatically fine-tunes the multiple tasks’ weights along the learning steps. Our
method uses Abridged Linear for the main Answer Extraction task and Loss-Balanced Task
Weighting for its auxiliary tasks;

(3) The proposed hybrid method yields the best performance improvements over the baselines
on the QuAC dataset.

The rest of the chapter is structured as follows: Section 5.2 states the task problem, along
with our proposed model to address the task. In Section 5.3, we revisit the concepts of Multi-Task
Learning (MTL) discussed in Sections 2.8 and 3.9. This section provides a recap of static MTL,
dynamic MTL, and introduces our proposed hybrid MTL methods as they are applied to our
proposed model. We present our experimental setup in Section 5.4 and show the results of the
experiments in Section 5.5. Finally, we provide concluding remarks in Section 5.6.

5.2 The BERT ConvQA Model

In this section, we describe our proposed Conversational Question Answering (ConvQA)
model, which is based on the BERT architecture. This model is employed based on the
ORConvQA1:dynamicMT L method outlined in Section 4.4.1. We explain how this model is used to
perform the main Answer Extraction task as well as auxiliary tasks, namely Follow-up Question
identification, Yes/No prediction, and Unanswerable prediction. In Section 5.2.1, we first expand
on the definition of the Conversational Question Answering (ConvQA) and Follow-up Question
Identification tasks, as presented in Sections 3.2.1 and 3.3.1. Thereafter, an overview of the
proposed ConvQA model is provided in Section 5.2.2. Section 5.2.3 describes how additional
features are integrated with the BERT encoder. Then we explain how predictions are made
for the main Answer Extraction task as well as the auxiliary tasks in Sections 5.2.4 and 5.2.5,
respectively.

5.2.1 Task Definition

We address the tasks of Conversational Question Answering (ConvQA) and Follow-up
Question Identification (FID), as described in Sections 3.2.1 and 3.3.1, respectively. Table 5.1
1 Preliminary experiments found BERT to be more effective than ALBERT or RoBERTa.
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Table 5.1: Notations used in Chapter 5.

Notation Definition
qk A current question
q′k A rewritten question of the current question qk
ak An answer to current question qk
Hk A conversation history i.e. Hk = [⟨q,a⟩]
P+ A given passage
W A sequence of m words i.e. W = {w1,w2, ...,wm}
T̂k A contextualised token-level representations
Ŝk A contextualised sequence-level representations
FID(·) A Follow-up Question Identification function
Reader(·) A Conversational Question Answering function

presents the notations used in this chapter. These notations include a subset of the notations
previously defined in Table 4.1 of Chapter 4, as well as specific notations for this chapter. The
ConvQA (Reader(·) function) and FID (FID(·) function) tasks were formalised in Equations (4.7)
and (4.1) as follows:

Reader(qk,Hk,P+)→ ak

FID(qk,Hk)→ (valid/invalid)
(5.1)

where Reader(·) is a function that extracts the answer ak from a given passage P+ using the
user’s current question qk and its conversation history Hk = [⟨q,a⟩] (a list of k−1 questions and
ground truth answer pairs), while FID(·) is a function that predicts whether or not the candidate
follow-up question qk is a valid follow-up question. Note that the tasks of ConvQA and FID can
be formulated as classification tasks. For ConvQA, the task aims to predict the answer ak by
predicting the answer span indices i, j within passage P+. By doing this, the ConvQA model
classifies which span (or which pair of start i and end j indices) is the correct answer. On the
other hand, the FID task aims to predict whether the current question qk is classified as valid

or invalid based on its coherence and relevance within the ongoing conversation context. In the
following section, we describe our proposed model to address these tasks.

5.2.2 Model Overview

To tackle the tasks described in the above Section 5.2.1, we present our ORConvQA1:dynamicMT L

model (as introduced in Section 4.4.1) by adopting a Multi-Task Learning approach. Figure 5.1
illustrates the architecture of our model, which consists of three components: an encoder, an
answer span predictor and the auxiliary tasks predictor. For the encoder, we deploy a BERT model
that encodes the question qk+1, the passage p, and the conversation history Hk as a sequence of m

words W = {w1,w2, ...,wm} into contextualised token-level (T̂k) and sequence-level (Ŝk) represen-
tations i.e., MT L(Reader,FID,θ) = [T̂k, Ŝk], where MT L(·) is BERT’s encoder transformation
function. These encodings are customised to the task by integrating conversation history features
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Figure 5.1: The model architecture.

(Section 5.2.3). In particular, as defined in Equation (4.8), the ORConvQA1:dynamicMT L model can
then be defined as follows:

ORConvQA1:dynamicMT L = MT L(FID,Reader,θ)

T̂k»Predictanswer_span(θ)

Ŝk»Predict f ollow−up(θ)

(5.2)

Finally, the representations T̂k serve as the input for the predictors’ modules (Predictanswer_span) ,
which will be detailed later in Section 5.2.4. Whereas the representations Ŝk serve as the input for
the predictors’ modules (Predict f ollow−up), which will be detailed later in Section 5.2.5.

5.2.3 BERT Encoder Features

In our ORConvQA1:dynamicMT L model (see Equation (5.2)), we modify the BERT input to
encapsulate two features – the Positional History Answer Embedding (PosHAE) and the Context
Features:

PosHAE: We use this modification feature introduced by Qu, Yang, Qiu, Zhang, Chen, Croft
& Iyyer (2019) to capture the conversation history into BERT. As exemplified by the example
in Table 5.2, the questions in the QuAC dataset often refer to entities in the previous answer(s).
Consequently, PosHAE (see Section 3.2.4) has been introduced to embed the relative position of
the terms that occur in previous answers within the conversational history Hk. PosHAE helps
BERT to track and understand references within the conversation history, improving its accuracy
in answering current questions (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019).
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Table 5.2: An example dialog from the ConvQA dataset.

p

In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
After a disappointing final season with the White Sox which saw Simmons bat just .267 with 16
home runs and 79 RBI in 128 games (first time in his 11-year career he did not reach .300+ & 100
RBI) he rebounded by hitting .327 with 13 home runs, 112 RBI and 96 runs scored in 1936 for
the Detroit Tigers. In 1937 he struggled again, this time with the Washington Senators, batting
just .279 with 8 home runs and 84 RBIs in 103 games. He rebounded with a stellar season in
1938, batting .302 with 21 home runs and 95 RBI in just 125 games for Washington. His 21
home runs that year gave Simmons the distinction of being the first player to hit 20 home runs
in a year for the Senators. CANNOTANSWER

q1 Where was he playing in 1933?
a1 CANNOTANSWER
q2 What did he do between 1933 and 1938?
a2 In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
q3 Did he lead the league in hitting?
a3 After a disappointing final season with the White Sox

Context Feature: Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer (2019) introduced a feature
vector that encodes the turn number of history answer named Positional History Answer Embed-
ding (PosHAE) which adapted from Qu, Yang, Qiu, Croft, Zhang & Iyyer (2019) and Choi et al.
(2018), Yeh & Chen (2019) mark history answers in the passage as context feature. We integrate
contextual knowledge of the previous answer within the passage into BERT by following Yeh &
Chen (2019) who applied BiDAF++ (Choi et al. 2018). Indeed, BiDAF++ is designed to learn
token embeddings that denote whether a token in the passage p is part of a recent answer (see
Section 3.2.4).

In addition, we add these two features to tailor BERT specifically for the task of ConvQA.

5.2.4 Answer Extraction

Given the token-level representations T̂k produced by BERT, we compute the probability of
each token being the start token or the end token in order to predict the answer span. In particular,
to map a token representation T̂k to a logit, two sets of parameters are learned for the start vector
and the end vector, respectively. After that, the softmax function is applied to obtain probabilities
across all token representations T̂k. From this, we obtain pS

m, and pE
m, which are the probabilities

of token m being the start token or end token, as follows:

pS
m = softmax(T̂k(m)) (5.3)

pE
m = softmax(T̂k(m)) (5.4)

5.2.5 Auxiliary Task Prediction

All auxiliary tasks in our dataset, including Follow-up Question Identification, Yes/No
prediction, and Unanswerable prediction, are formulated as binary or multi-label classification
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tasks. To address each auxiliary task, we take the sequence-level representations Ŝk that are
obtained from the [CLS] token (which is the first token of the sequence, produced by BERT). These
representations are then used in Equation (5.2), where they serve as the basis for calculating
the probability distributions or classifications necessary for each auxiliary task. We apply a
softmax function on Ŝk to compute the posterior probabilities across the true and false labels for
the multi-label tasks; for the binary tasks, we use a sigmoid function. After that, we compute
cross-entropy loss for the multi-label tasks and the binary cross-entropy loss functions for the
binary tasks. Next, we describe the MTL approaches to combine the loss functions from the
auxiliary tasks with the loss calculated on the main task.

5.3 Multi-Task Learning for ConvQA

In this section, we explain how Multi-Task Learning (MTL) approaches are used to integrate
the loss functions of auxiliary tasks with that of the main task. As previously described in
Section 2.8.2.1, existing loss weighting approaches in Multi-Task Learning (MTL) can be
categorised as either static or dynamic, depending on whether the importance assigned to the loss
of each task remains fixed or varies during the learning process. For completeness, we reiterate
the details of static and dynamic, in Sections 5.3.1 and 5.3.2, respectively. In addition, we provide
the details of our proposed hybrid task weighting method in Section 5.3.3.

5.3.1 Static MTL

Static MTL methods are the most frequently used MTL approaches for ConvQA. They apply
a fixed weighting of the different loss functions of the auxiliary tasks throughout the training
process. This strategy is simple but yet expensive to fine-tune. Instead, many previous studies
just report the use of uniform weights for tasks, such as setting all of them to 1.0 (Yeh & Chen
2019), or setting their sum to 1 (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019). The total loss
function of this method is defined as follows:

Ltotal = µLans +λ ∑
a∈A

La (5.5)

where A is the set of auxiliary tasks, µ is the weight for the main task and λ is the weight for A.

5.3.2 Dynamic MTL

Applying a static weighting to the auxiliary tasks can unnecessarily apply learning resources
to the auxiliary tasks, instead of the main task. Indeed, this can lead to an overfitting to the
wrong task and hence to underfitting on the main task (Chen et al. 2018). On the other hand, in
the dynamic MTL approaches, the loss weighting of the tasks is instead continually adjusted
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Figure 5.2: Dynamic Evolving Weighting approaches.

during learning. Examples of dynamic approaches are Evolving Weighting (Belharbi et al. 2016),
Loss-Balanced Task Weighting (Liu, Liang & Gitter 2019), and Uncertainty Weighting (Kendall
et al. 2018), which were previously introduced in Sections 2.8 and 3.9, discussed further below.

Evolving Weighting: Belharbi et al. (2016) proposed to evolve the loss weighting during
the training steps according to a schedule. A training step is defined as the number of batches
of the training data, such that the total number of steps is the number of batches multiplied by
the number of training epochs. Four different schedules were proposed. Figure 5.2 gives an
overview of how the four schedules vary the weights of the main and auxiliary tasks – µ and λ ,
respectively – across the training steps. These four schedules are described below:

Stairs schedule: The initial emphasis is on the auxiliary task, with µ = 0 and λ = 1. At a
determined training step t, µ = 1 and λ = 0.

Linear schedule: The weight of the auxiliary task decreases linearly at each training step,
such that the auxiliary weight λ = 1 tends to 0; in contrast, the weight of the main task increases
linearly, i.e. µ = (1−λ ). In particular, given that the total number of steps T is known in advance,
λt =

t
T .

Abridged Linear schedule: In a linear schedule, µ rises over the full training schedule to
step T. This may not place sufficient emphasis on the main task during training. Instead, in the
Abridged Linear schedule the weight on the auxiliary task λ falls linearly to 0 by a threshold step
tτ . After tτ , all emphasis is on the main task (i.e. µ = 1).

Exponential schedule: The weights evolve exponentially to the step number, i.e. µ = exp(−t
σ
),

where t is the current number of training steps, and σ is the slope parameter, determined as a
fraction of the total training steps T , as shown in Figure 5.2. We tune σ using a grid search
within the range of 0.1 to 0.5 of T , identifying σ = 0.3T as the optimal setting, which effectively
balances the learning dynamics throughout the training, optimising model performance.
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Loss-Balanced Task Weighting (LBTW) (Liu, Liang & Gitter 2019): This MTL method
aims to reduce negative transfer by using the task-specific loss to balance the different auxiliary
tasks. Negative transfer is when the performance of the task is decreased by Multi-Task Learning
compared to the Single-Task Learning (STL). This method employs the loss ratio between the
current loss and the initial loss of each task to adjust the task’s weight. The task with the loss
ratio closest to 1 needs to contribute more to the total loss. By increasing the weight of the task
with loss ratio that is closest to 1, this method attempts to balance the tasks’ importances.

Uncertainty Weighting (Kendall et al. 2018): This method is the most often used Multi-Task
Learning approach, which is a weighting strategy that consists in analysing the uncertainty of
each task. In this method, each of the task’s weights is adjusted by deriving a multi-task loss
function when maximising the Gaussian likelihood (Ruder 2017).

In the following, we describe our proposed hybrid approach.

Algorithm 1: Hybrid Task Weighting

Given S tasks and parameter α .
Initialise neural network weights W .
for each epoch i do

Store the first batch loss as ℓ(0,i) ∈ RS

for each batch of data B do
Get the loss on each task ℓB ∈ RS

if step t ≤ tτ
Set the main task weight µ = ( t

T )

else
Set the main task weight µ = 1

for each auxiliary task s do
Set the auxiliary task weight λ = (

ℓ(B,s)
ℓ(0,i,s)

)α

Update weighted loss ℓ(B,s) = ℓ(B,s)×λ

Update weighted loss ℓ(B,m) = ℓ(B,m)×µ

Set the total loss ℓtotal = ℓ(B,m)+∑
s
i=1 ℓi

5.3.3 Hybrid Task Weighting

Among the existing dynamic MTL methods, Uncertainty Weighting (Kendall et al. 2018),
and Loss-Balanced Task Weighting (Liu, Liang & Gitter 2019) both weight all tasks without
prioritising on the main task, such that resources are unnecessarily allocated to other tasks, thereby
leading to a possible underfitting on the main task (Guo et al. 2018). For this reason, we propose
a Hybrid Task Weighting approach, which applies an Abridged Linear schedule for weighting the
main Answer Extraction task and LBTW Liu, Liang & Gitter (2019) for weighting the auxiliary
tasks, such as Follow-up Question Identification, Yes/No prediction, and Unanswerable prediction.
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In particular, for the Abridged Linear schedule, we take a step threshold tτ = T/10, i.e. 10% of
all steps, which is the same as the warm-up ratio we use (see Section 5.4.5 for further details).
To apply LBTW for the auxiliary tasks, a hyperparameter α is used to balance the influence of
the task-specific weights, i.e. α=0.5 2 (Liu, Liang & Gitter 2019). For each batch, the weight
of each task is calculated by using the loss ratio between the loss at step t and the loss at t=0,
thereby balancing the loss rates of the auxiliary tasks. Algorithm 1 provides further details about
the implementation of our hybrid approach. This algorithm details our ’Hybrid Task Weighting’
method. It initialises network weights and processes each batch by calculating task-specific
losses. The main task weight is adjusted linearly up to a certain step threshold and remains
constant thereafter. Auxiliary task weights are dynamically calculated using Loss-Balanced Task
Weighting, factoring in the initial and current losses, modulated by a hyperparameter α . The
algorithm then combines these weighted losses for the total loss calculation, effectively balancing
the contributions of the main and auxiliary tasks throughout the training process.

5.4 Experimental Setup

In this section, we start by outlining our research questions in Section 5.4.1. We then describe
the used dataset, QuAC, and its auxiliary tasks in Section 5.4.2. We present the list of our
baselines in Section 5.4.3. We discuss the used evaluation metrics in Section 5.4.4, and the
applied hyper-parameter settings in Section 5.4.5.

5.4.1 Research Questions

In this chapter, we address three key research questions. Firstly, one of our central contri-
butions is the comparison of existing Multi-Task Learning (MTL) strategies, when used in the
same Conversational Question Answering (ConvQA) model both in terms of effectiveness and
efficiency. By doing this, we investigate whether there is an actual difference between the static
and dynamic loss weighting methods, in guiding the learning process in a ConvQA scenario.
Moreover, to the best of our knowledge, there has been no previous study that investigated
dynamic loss weighting for the ConvQA task on the QuAC dataset. Hence, our first research
question is:

RQ 5.1 What is the most effective and efficient Multi-Task Learning method, including our
proposed Hybrid Task Weighting method, for ConvQA?
Secondly, we investigate the effectiveness of the combination of the auxiliary tasks, such as
Follow-up Question Identification, Yes/No prediction, and Unanswerable prediction, to improve

2 Following Liu, Liang & Gitter (2019), in our preliminary experiments comparing α = 0.1 and α = 0.5 for the
Loss-Balanced Task Weighting (LBTW), α = 0.5 demonstrated better performance, suggesting a more optimal
balance of the task-specific weights at this higher value.
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Table 5.3: Statistics of the QuAC datasets

Train Dev. Test Overall
questions 83,568 7,354 7,353 98,407
dialogs 11,567 1,000 1,002 13,594
unique sections 6,843 1,000 1,002 8,854
questions / dialog 7.2 7.4 7.3 7.2
% yes/no 26.4 22.1 23.4 25.8
% unanswerable 20.2 20.2 20.1 20.2

the performance of the main Answer Extraction task, namely we posit the following research
question:

RQ 5.2 Does applying the proposed MTL ConvQA model with our Hybrid Task Weighting
method using each of the auxiliary tasks results in effectiveness improvements over learning
using only the main Answer Extraction task?
Finally, we examine how the effectiveness of using MTL in the learning process impacts the
performance of the auxiliary tasks, as follows:

RQ 5.3 Does our proposed MTL model lead to not only improving the performance of the main
Answer Extraction task but also to an improvement in the performance on the auxiliary tasks,
such as Follow-up Question Identification, Yes/No prediction, and Unanswerable prediction,?

5.4.2 Dataset

To conduct our evaluation of the MTL methods when integrated into the BERT ConvQA
model, we choose QuAC (Choi et al. 2018), a large-scale dataset for ConvQA over passages
extracted from Wikipedia articles, as previously described in Section 3.2.2. Unlike other Machine
Reading datasets such as SQuAD (Rajpurkar et al. 2018, 2016), this dataset is considered to
be a multi-turn dataset where the questions and answers simulate conversations. The main
reason for choosing this dataset for our experiments is that it provides not only an Answer
Extraction as the main task but it also provides other auxiliary tasks namely, the affirmation
(Yes/No prediction) and continuation (Follow up prediction) classification tasks. Moreover, we
also observe that if an answer in QuAC is tagged as CANNOTANSWER, then this means that
the corresponding question cannot be answered. Hence, using these kinds of answers, we define
another Unanswerable prediction task as an additional auxiliary task to use in our MTL method.
For further information about the QuAC dataset, we also provide a summary of its statistics in
Table 5.3. We describe below each of the used auxiliary tasks:

Yes/No prediction: This task consists of three possible labels: yes, no, neither where yes or
no are represented as the sought answer to this question type; otherwise it will be ‘neither’. Choi
et al. (2018) observed that there were 25.8% of yes/no questions in the QuAC dataset.
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Follow up prediction: This classification task consists in predicting the continuation of a
given question, and has three possible labels: follow up, maybe follow up, not follow up.

Unanswerable prediction: This task has two possible labels: yes/no allocated by inspecting
the answer text associated to each question in the dataset. If the answer text is CANNOTAN-
SWER, the label is yes otherwise it is no. 20.2% of all questions in the QuAC dataset are
unanswerable.

5.4.3 Baselines

We use as baselines all MTL methods described in Section 5.3. Specifically, our baselines
consist of the Static MTL methods from Section 5.3.1, namely sum to 1 and equal to 1, and the
dynamic MTL methods from Section 5.3.2, namely Evolving Weighting (Stair, Linear, Abridged
Linear, and Exponential), Loss-Balanced Task Weighting, and Uncertainty Weighting as baselines.
In addition, we also include Single-Task Learning as baselines to gauge the effectiveness of
Multi-Task Learning as well as our proposed Hybrid Task Weighting method.

5.4.4 Evaluation Metrics

Since we are using the QuAC dataset, we naturally adopt the two evaluation metrics in the
corresponding challenge, which consist of the word-level F1, and the human equivalence score
(HEQ), both of which were previously introduced and detailed in Chapter 3, Section 3.2.3. The
word-level F1, commonly used in Machine Comprehension and in the ConvQA tasks Choi et al.
(2018), Rajpurkar et al. (2018, 2016), evaluates the overlap between the system’s prediction and
the ground truth answer span. Meanwhile, the HEQ metric is used to evaluate the percentage
of examples for which the deployed model’s F1 is equivalent to or higher than the human F1.
This metric is composed of HEQ-Q, computed on the question level, and HEQ-D, computed at
the dialogue level. The QuAC challenge defines the human performance to have an HEQ-Q and
HEQ-D of 100%. Finally, we use McNemar’s test to measure the statistical significance between
the prediction performances.

5.4.5 Hyper-parameter Settings

We implement all models using the Pytorch version of BERT from HuggingFace (Wolf et al.
2020), namely using the bert-base-uncased3 model as our encoder. Following Qu, Yang,
Qiu, Zhang, Chen, Croft & Iyyer (2019), the model configuration is as follows: the max sequence
length is set to 12, the stride in the sliding window is set to 128, the max question length is set to
64, the max answer length set to 35, the number of training epochs is set to 5 and the batch size is
set to 12. To train our BERT ConvQA model, we use the BertAdam weight decay optimiser, with

3 https://huggingface.co/transformers/pretrained_models.html
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Table 5.4: Effectiveness of various task-weighting methods for Conversational Question Answer-
ing (ConvQA). † denotes a result statistically different from that of our proposed Hybrid Task
Weighting model (McNemar’s test, p < 0.05); ‡ denotes a significant improvement over the STL
baseline. The highest value for each measure (row) is highlighted.

Single-task
learning

Static
task weighting

Evolving Weighting Loss-Balanced
Task Weighting

Uncertainty
Weighting

Hybrid
Task Weighting

Sum to 1 Eq.1 Linear Exponential Abridged Linear Stair
F1 69.08 † 69.56 † 69.40 † 70.97 †‡ 71.16 †‡ 71.37 †‡ 69.73 † 69.41 †‡ 69.20 † 72.28 ‡

HEQ-Q 65.51 66.06 65.65 67.49 67.88 67.78 66.24 65.71 65.43 68.71
HEQ-D 11.6 11.10 10.7 12.8 13.1 12.10 11.80 11.6 11.3 13.00

Table 5.5: Efficiency of different MTL methods. The highest value for each training and
evaluating phase is highlighted.

Model
#iters/sec

Training Evaluating
Single-task learning 2.23 3.95

Static task weighting
Sum to 1. 2.13 4.05
All eq. 1 2.25 4.12

Evolving Weighting

Linear 2.31 3.99
Exponential 2.26 3.90

Abridged Linear 2.20 3.84
Stair 2.15 4.07

Loss-Balanced Task Weighting 2.05 3.91
Uncertainty Weighting 1.5 3.94
Our propose ORConvQA1:dynamicMT L Hybrid MTL method 2.04 4.04

an initial learning rate of 5e-5 while the learning rate warming up portion is 10%. For all our
experiments, we use a single Nvidia TITAN RTX GPU.

5.5 Results Analysis

We first report our evaluation results for various MTL methods using our ConvQA model
in Section 5.5.1. Our findings for the usefulness of the auxiliary tasks in MTL are detailed in
Section 5.5.2. In Section 5.5.3, we examine if our proposed ORConvQA1:dynamicMT L Hybrid MTL
method (see Section 5.3.3) enhances the performance of the system on the auxiliary tasks.

5.5.1 RQ 5.1: Effectiveness and Efficiency of the MTL Methods

We first investigate the performance of the baselines in comparison to our proposed ORConvQA1

hybrid MTL method for Multi-Task Learning on the validation set4 of the QuAC dataset. All MTL
methods are trained on the provided QuAC training set by using all the auxiliary tasks, namely
the Yes/No prediction, the Follow up prediction and the Unanswerable prediction classification

4 The QuAC’s test set is only accessible by submitting to its leaderboard. Hence, we provide results using the
provided validation set.
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tasks. In this section, we focus on the performance of the system on the main task (i.e. the
Answer Extraction task).

First, we examine the effectiveness of the MTL methods, including our proposed ORConvQA1

hybrid MTL method and those baselines listed in Section 5.3. Table 5.4 shows the single-task
learning baseline (denoted STL) in the first column and the MTL methods in the following
columns. Within Table 5.4, the best result in each row is highlighted in bold. From this table, we
observe that the F1 performance of all the MTL methods is better than the STL baseline. In fact,
our proposed ORConvQA1:dynamicMT L hybrid MTL method method achieves the best F1 and HEQ-
Q performances, at 72.28 and 68.71, respectively. The best reported HEQ-D score is achieved
by the Exponential Evolving Weighting method at 13.1 followed by our ORConvQA1:dynamicMT L

hybrid MTL method at 13.0. Indeed, our proposed method is more effective than the Abridged
Linear and the Loss-Balanced Task Weighting dynamic methods, showing that while it emphasises
the main task (c.f. Abridged Linear), it also balances the auxiliary tasks through the use of the
LBTW method. Moreover, all of the dynamic task weighting methods significantly outperform the
STL model, except for the Stair and Uncertainty Weighting methods (McNemar’s test, p < 0.05).

Next, we investigate the efficiency of the tested MTL methods by comparing the average
number of iterations per second needed during training and evaluation. Table 5.5 depicts the
efficiency of the MTL methods for the BERT model. In this table, the higher the number, the
higher the efficiency, while the best result is highlighted in bold. We observe that the Linear
Evolving Weighting method yields the best efficiency in comparison to all other methods – at
2.31 iterations per second during learning – while the static task weighting method (equal to 1)
exhibits the best evaluation efficiency. In addition, our proposed ORConvQA1:dynamicMT L hybrid
MTL method shows efficiency as expected in both the training and evaluating phases. Although
it doesn’t lead in the training phase, it shows competitive efficiency during evaluation, suggesting
a well-balanced approach to managing the complexities of multi-task learning.

Overall the efficiency of most models during evaluation is fairly similar, at around 3.8 to
4.1 iterations per second. We argue that this is because during the evaluation phase, all models
have the same structure, and only differ in terms of weights. On the other hand, during learning,
the Evolving Weighting method is slightly faster than the other baseline methods including
our own proposed ORConvQA1:dynamicMT L hybrid MTL method due to the simple manner in
which it calculates the task weight. Moreover, training the ConvQA model using the Uncertainty
Weighting method exhibits more training time than other methods. Indeed, this approach has the
most complex implementation.

In response to RQ 5.1, we find that our BERT ConvQA model learned through Multi-Task
Learning by using a hybrid approach has the best effectiveness, yielding statistically significant
improvement over the baselines. Moreover, we observe that there is little difference between the
efficiency of our proposed ORConvQA1:dynamicMT L hybrid MTL method, and that of the static
task weighting methods, or the Single-Task Learning in both the training and evaluation phases
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Table 5.6: Comparison of different combinations of auxiliary tasks. † denotes a statistically
significant improvement over STL with p < 0.05 using the McNemar’s test. The highest value
for each measure is highlighted.

F1 HEQ-Q HEQ-D
STL 69.08 65.51 11.6
Yes/No 68.60 64.98 11.6
Follow-up 69.76 † 66.74 12.0
Unanswerable 72.27 † 68.87 13.5
Yes/No + Follow up 72.66 † 68.87 11.7
Yes/No + Unanswerable 72.48 † 69.02 13.2
Follow-up + Unanswerable 71.91 † 68.52 14.2
All 72.28 † 68.71 13.0

even though our approach has a more complex implementation.

5.5.2 RQ 5.2: Combination of Auxiliary Tasks vs. Single-Task Learning

Next, we conduct experiments to determine the best combination of auxiliary tasks, which
helps to improve the performance of the main Answer Extraction task. In these experiments,
all models are learned by using our proposed ORConvQA1:dynamicMT L hybrid MTL method
as the Multi-Task Learning strategy for the BERT ConvQA model. We vary the choice of
auxiliary tasks from those detailed in Section 5.4.2, namely Yes/No prediction, Follow-up
question identification and Unanswerable prediction. Single-Task Learning (STL) acts as a
baseline for these experiments.

Table 5.6 presents the effectiveness of the different combinations of auxiliary tasks (each
row is a different combination). We observe that the highest scores for the F1, HEQ-Q and
HEQ-D measures are not obtained from the same combination. In particular, applying Multi-Task
Learning using the Yes/No and Follow up tasks achieves the best F1 performance compared to the
other combinations. However, when using the HEQ-Q metric, it is apparent that the combination
of the Yes/No prediction and Unanswerable prediction is the best. Furthermore, the combination
of the Follow up prediction and Unanswerable prediction yields the best model in terms of the
HEQ-D metric. From these results, we further analyse why the models that include Unanswerable
prediction as one of the auxiliary tasks, have higher HEQ scores in comparison to models that
use either the Yes/No prediction or the Follow up prediction as the auxiliary tasks.

We found that a key issue is the number of correct predictions for the unanswerable questions.
The more correct answers achieved by the MTL models on this type of questions, the more likely
the performance will be higher in terms of HEQ. From Table 5.6, we also observe that the model
that fused all the auxiliary tasks is not the best choice for MTL, and its performance on all metrics
is similar to the model that used only the Unanswerable prediction auxiliary task.

In answer to RQ 5.2, we conclude that most of the combination models are better than just
learning the main task, except the model that solely used the Yes/No prediction as an auxiliary
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Table 5.7: Evaluation results of the auxiliary tasks on different MTL methods. † denotes
statistically significant differences between the STL model and the indicated model (McNemar’s
test, p < 0.05). The highest value for each auxiliary task is highlighted.

Model
Accuracy of auxiliary tasks
Yes/No Follow up Unanswerable

STL 71.20 58.07 72.34

Static MTL
Sum to 1 68.08 † 57.43 76.38
All eq. 1 69.10 † 57.61 73.08

Evolving

Linear 68.10 † 57.49 76.92
Exponential 65.51 † 56.84 79.81
Abridged Linear 50.80 † 52.48 80.15
Stair 49.32 † 46.89 † 79.41

Loss-Balance Task Weighting 67.05 † 57.31 76.31
Uncertainty 68.95 † 57.75 72.68
Our propose ORConvQA1:dynamicMT L hybrid method 68.63 † 57.61 76.45

task. This raises the question as to why the model that combines all the auxiliary tasks does
not outperform the models that include Unanswerable as an auxiliary task. We conjecture
that negative transfer (see Section 5.3.2) might be a possible reason explaining the drop in the
performance of MTL. We leave the investigation of this issue to future work.

5.5.3 RQ 5.3: Our ORConvQA1:dynamicMT L hybrid MTL Method Perfor-
mances on The Auxiliary Tasks?

In this section, we examine the performance of the auxiliary tasks after training in a multi-task
setting. To conduct this experiment, we also compare all baselines mentioned in Section 5.4.3
to determine whether the MTL strategies help to improve the accuracy of the classifiers on
the auxiliary tasks. Table 5.7 shows, for each auxiliary task, the Accuracy values5 obtained
using single-task learning (STL) – learned for each task separately – and the MTL methods.
In this table, the best results for each task are highlighted in bold. We observe that, for the
Yes/No prediction tasks, all of the models trained by the MTL methods exhibit significantly
degraded performance than when training using STL; for the Follow up and Unanswerable
tasks, all of the MTL models excluding the Stair Evolving Weighting method are statistically
indistinguishable. This is intuitive as the STL model is trained specifically for that task. However,
for the Unanswerable task, Abridged Linear achieves the best result.

Moreover, the lowest accuracy in the Yes/No prediction and Follow up prediction is associated
to the Stair Evolving Weighting method. We postulate that this is because learning with the Stair
Evolving Weighting method after step t, the Ltotal in Equation (5.5) is derived only from Lans,
and hence it does not learn to address the auxiliary tasks after that step t. We also observe that
5 We follow the authors of the QuAC (Choi et al. 2018) dataset in applying Accuracy for measuring the performance
on the auxiliary classification tasks.
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the accuracy of all tasks achieved by the model learned from Loss-Balanced Task Weighting
(LBTW) and our proposed method are similar, likely because we leverage the LBTW method to
learn the auxiliary tasks in our proposed model.

Overall, in answer to RQ 5.3, we conclude that our method cannot enhance the performance
of the auxiliary tasks. We conjecture that a possible reason for this result is that there might be
an occurrence of a negative transfer (see Section 5.3.2) during learning, resulting in a drop in
the performance of the Multi-Task Learning on the auxiliary tasks. We leave investigating the
contrasts between the impact of MTL on the three auxiliary tasks to future work.

5.6 Conclusions

In this chapter, we proposed a ORConvQA1:dynamicMT L method (as described in Section 4.4.1)
for Conversational Question Answering (ConvQA), which learns to extract the correct answer,
by applying Multi-Task Learning (MTL). Our proposed ORConvQA1:dynamicMT L hybrid MTL
method makes use of Evolving Weighting by Abridged Linear for learning the main task,
while the auxiliary tasks are addressed using Loss-Balanced Task Weighting. Our proposed
ORConvQA1:dynamicMT L method directly addresses Gap 1 (as identified in Section 3.10), where
we stated that the current ConvQA approaches using MTL lacks dynamic adjustment of task im-
portance during learning. In particular, our investigation aims to answer three research questions
as follows:

First, to answer RQ 5.1, “What is the most effective and efficient Multi-Task Learning method
for ConvQA?”, we investigated the performance of the baselines in comparison to our proposed
ORConvQA1:dynamicMT L hybrid MTL method focusing on both effectiveness and efficiency. The
results in Table 5.4 showed that our ORConvQA1:dynamicMT L model learned through Multi-Task
Learning by using our proposed hybrid method has the best effectiveness, yielding statistically
significant improvements over the baselines. Whereas, the results in Table 5.5, the efficiency
of our proposed method is comparable to that of the static task weighting methods. In both
the training and evaluating phases, our proposed ORConvQA1:dynamicMT L hybrid MTL method
shows similar efficiency to other methods, even though it is more complex. This shows that our
approach improves ConvQA tasks effectively without losing efficiency.

In order to answer RQ 5.2, “Does applying the MTL ConvQA model with our Hybrid Task
Weighting method using each of the auxiliary tasks result in effectiveness improvements over
learning using only the main Answer Extraction task?”, our experiments aimed to identify the
most effective combination of auxiliary tasks. As shown in Table 5.6, we found that models
combining multiple auxiliary tasks outperformed the model learning only the main Answer
Extraction task, except the model that solely used the Yes/No prediction as an auxiliary task. This
raises the question as to why the model that combines all the auxiliary tasks does not outperform
the models that includes Unanswerable as an auxiliary task. We conjecture that negative transfer,
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as mentioned in Section 5.3.2, might be a possible reason explaining the drop in the performance
of MTL. We leave the investigation of this issue to future work.

Finally, to response RQ 5.3, in Section 5.5.3, we examined the performance of the auxiliary
tasks after training in a multi-task setting. To conduct this experiment, we also compare all
baselines mentioned in Section 5.4.3 to determine whether the MTL strategies help to improve
the accuracy of the classifiers on the auxiliary tasks. In particular, we concluded that our method
cannot enhance the performance of the auxiliary tasks. We conjecture that a possible reason
for this result is that there might an occurrence of a negative transfer (see Section 5.3.2) during
learning resulting in a drop in the performance of the Multi-Task Learning on the auxiliary tasks.
We leave investigating the contrasts between the impact of MTL on the three auxiliary tasks to
future work.

Hence, in conclusion to the hypothesis presented in Section 1.3, namely that a dynamic
Multi-Task Learning approach that simultaneously trains the main task of answer extraction,
along with auxiliary tasks such as Follow-up Question Identification, Yes/No prediction, and
Unanswerable prediction, can enhance the system’s effectiveness for Conversational Question
Answering. Gap 1 highlighted the lack of dynamic adjustment of task importance during learning
in existing ConvQA approaches using MTL. Our findings in this chapter concluded that our
ORConvQA1:dynamicMT L method learned through Multi-Task Learning by using our proposed
Hybrid method effectively addresses Gap 1. Our ORConvQA1:dynamicMT L hybrid MTL method
not only incorporates dynamic task weighting adjustment but also yields statistically significant
improvements in the effectiveness of the main Answer Extraction task over baseline methods,
including Single-Task Learning, static MTL, and dynamic MTL.

In Chapter 6, we conduct an investigation to combine the tasks of the follow-up question
identification and the conversational question rewriting to more effectively identify ambiguous
questions.
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Chapter 6

Multi-Task Learning of Question Rewriting
and Follow-up Question Identification

6.1 Introduction

In Chapter 5, one of our hypotheses in Section 1.3, showing that a dynamic Multi-Task
Learning (MTL) approach can indeed enhance Conversational Question Answering (ConvQA).
In this chapter, we investigate whether by combining Follow-up Question Identification and Con-
versational Question Rewriting, the system’s response accuracy and relevance can be enhanced.
This chapter aims to test this hypothesis from Section1.3 by incorporating these two tasks into
a single text generation model. Indeed, we argue that by identifying connections between the
user’s questions, addressing ambiguities, and leveraging the conversation’s context, the system
can refine its understanding of the user’s intent and can provide more precise and relevant re-
sponses. As a result, in Section 4.4.2, we introduced our proposed ORConvQA2:FID+QR method,
which leverages the Multi-Task Learning (MTL) to simultaneously address the challenges of
understanding the context of a conversation, while also reformulating the user’s questions for
more effective information retrieval.

In Section 1.2, we discussed the challenges of answering user questions in ORConvQA,
which mimics how humans seek information in the form of a dialogue. In order to effectively
answer the user’s questions, an ORConvQA system needs to resolve any ambiguities arising
from the posed questions based on the conversation history with the user (Kundu et al. 2020).
To address the ambiguity of the conversational questions, we have explored many approaches,
such as Follow-up Question Identification and Conversational Question Rewriting, as previously
described in Sections 3.3.4 and 3.4.4. We also identified Gap 2 in Section 3.10, which stated
the lack of effective integration between these two tasks. In this chapter, we investigate the
combination of both the Follow-up Question Identification task and the Conversational Question
Rewriting task to improve the effectiveness of both tasks.
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As introduced in Section 2.8, Multi-Task Learning (MTL), which is a method of learning
several different but related tasks at the same time, has become a popular approach for tackling
multiple tasks in a uniform model (Qu, Yang, Qiu, Zhang, Chen, Croft & Iyyer 2019). MTL
can also be used to increase a system’s performance on the text generation task by leveraging
classification tasks. For example, Ide & Kawahara (2021) adopted an MTL approach using a text
generation BART model (see Section 2.3.1), which jointly learns a classification task and a text
generation task by sharing the learner, and showed an improvement in an emotion-aware dialogue
response generation model. We also adopted the MTL approach using the BART model (Ide &
Kawahara 2021) in our proposed models. On the other hand, a text generation T5 model (see
Section 2.3.1) has been shown to be usable for multi-task learning both the text generation and
classification tasks such as passage ranking/re-ranking and answer generation/extraction (Jiang
et al. 2022b, Lee et al. 2022b). Due to the good effectiveness of text generation approaches on
various tasks, in this chapter, we argue that text generation models – BART and T5 – can be
adapted for the Follow-up Question Identification and Conversational Question Rewriting tasks.

Therefore, in this chapter, we propose a ORConvQA2:FID+QR Multi-Task Learning (MTL)
method that uses a text generation model for both question rewriting and classification. Our
models, based on BART and T5, are trained to rewrite conversational questions and identify
follow-up questions simultaneously.

Our contributions are as follows:
(1) We leverage Multi-Task Learning with a text generation model to effectively address the

tasks of Follow-up Question Identification and Conversational Question Rewriting;
(2) Using the recent LIF dataset (c.f. Section 3.3.2), we compare our models to two recent

baselines from the literature, and show that our Multi-Task Learning BART model yields the best
F1 and Macro-F1 performance improvements over the strongest baseline, the three-way attentive
pooling model, with statistically significant improvements ranging from 3.5% to 10.5% on all
LIF test sets;

(3) Our proposed Multi-Task Learning T5 model significantly outperforms the single-task
learning of question rewriting models for passage retrieval on the OR-QuAC test set (Sec-
tion 3.7.2).

The rest of the chapter is structured as follows: Section 6.2 states the definitions of the
Follow-up Question Identification and Conversational Question Rewriting tasks, along with our
proposed ORConvQA2:FID+QR method (c.f. Section 4.4.2) to address these tasks simultaneously.
We present our experimental setup in Section 6.3 and show the results of the experiments in
Section 6.4. Finally, we provide concluding remarks in Section 6.5.
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Table 6.1: Notations used in Chapter 6.

Notation Definition
qk A current question
q′k A rewritten question of the current question qk
ak An answer to current question qk
Hk A conversation history i.e. Hk = [⟨q,a⟩]
P+

ret A retrieved passage
C A passage collection
W A sequence of m words i.e. W = {w1,w2, ...,wm}
T̂k A contextualised token-level representations
FID(·) A Follow-up Question Identification function
QR(·) A Conversational Question Rewriting function
Retriever A passage retriever function
Reranker A passage reranker function

6.2 A MTL Model for Classification and Question Rewriting

In this section, we describe our proposed Open-Retrieval Conversational Question Answering
(ORConvQA) models, which are based on the BART and T5 architectures. These models are
instantiations of the ORConvQA2:FID+QR method outlined in Section 4.4.2. We explain how these
models are used to perform the Follow-up Question Identification (Section 3.3) task as well as
the Conversational Question Rewriting (Section 3.4) task. In Section 6.2.1, we first recall the
definitions of the Follow-up Question Identification (Section 3.3.1) and Conversational Question
Rewriting (Section 3.4.1) tasks. An overview of the proposed text generation model follows in
Section 6.2.2.

6.2.1 Task Definitions

In this chapter, we aim to tackle the tasks of Follow-up Question Identification (FID) (see
Sections 3.3.1) and Conversational Question Rewriting (QR) (see Section 3.4.1). Table 6.1
presents the notations used in this chapter, which include a subset of the symbols defined in
Chapter 4, Table 4.1. The FID and QR tasks were formalised in Equations (4.1) and (4.2) of
Chapter 4 as follows:

FID(qk,Hk)→ (valid/invalid)

QR(qk,Hk)→ q′k
(6.1)

where FID(·) is a function that predicts whether or not the candidate follow-up question qk is
a valid follow-up question, while QR(·) is a function that reformulates the user’s question qk

in a more clear and precise manner. The question rewriting function leverages the context Hk

from the ongoing conversation to generate a rewritten question q′k. Note that the FID task can be
formulated as a classification task while QR is a text generation task. In the following section, we
describe our proposed models to address these tasks.
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Figure 6.1: A schematic comparison for MTL models for (a) a discriminative+generative model
prediction by applying a CLS head to create a score for a classification task and an LM head to
generate the tokens for a Question Rewriting task (see Section 3.4.4) and (b) a generative model
prediction by generating the first token for a classification task and the follow-up tokens for a
questing rewriting task.

6.2.2 Models Overview

To tackle the tasks described in Section 6.2.1, we propose classification and question rewrit-
ing models that leverage historical questions to identify whether a candidate question qk is a
follow-up to the previous question and to reformulate the current question qk. Our proposed
ORConvQA2:FID+QR method in Chapter 4 can use models, such as BART (Section 2.3.1) and
T5 (Section 2.3.1), which are large pre-trained language models designed for text generation, as
described in Section 2.3.1. In particular, the text generation approaches can be trained to generate
a meaningful textual response based on some input text. Moreover, like BERT, the pre-trained
BART and T5 models can be fine-tuned to perform a variety of downstream tasks.

In addition, the manner in which a text generation model is used in the classification tasks can
differ, as they can be fine-tuned as discriminative or generative models. In a discriminative setup,
the model is adapted for binary classification by adding a fully-connected layer with two output
neurons (corresponding to each class) upon a special [CLS] token in BERT, or the last token in
BART. In contrast, a generative setup reframes natural language processing (NLP) tasks as text
generation tasks - for instance, classification is performed by examining what text is generated
and the corresponding likelihood.

To adopt an MTL approach to a text generation model for jointly learning from both the
classification and question rewriting tasks, the MTL model can be used in either a discrimina-
tive+generative or in a generative setup as shown in Figure 6.1. A discriminative+generative
MTL model makes predictions by applying a CLS head to create a score for a classification task
and an LM head to generate the tokens for a question rewriting task (Section 3.4.4). On the other
hand, a generative MTL model makes predictions by generating the first token for a classification
task and the follow-up tokens for a query rewriting task. Furthermore, text generation models
such as BART can be used as either discriminative+generative or generative MTL models. On
the other hand, the T5 model can only be used as a generative MTL model (Raffel et al. 2020).

In particular, when fine-tuning the T5 model for a downstream task, a prefix text is required
– for example "translate English to German:" might be used for a translation task. Indeed, as
mentioned in Section 2.3.1, the text generation models have been shown to achieve state-of-the-art
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performances in classification (Lewis et al. 2019, Raffel et al. 2020), as well as in document
re-ranking – by ranking based on the likelihood of generating a particular token (dos Santos et al.
2020, Nogueira, Jiang & Lin 2020) – (outperforming the BERT models) and even in arithmetic
tasks (Nogueira et al. 2021). Hence, for the Multi-Task Learning of both the Follow-up Question
Identification (FID) and Conversational Question Rewriting (QR) tasks, we choose the MTL
generative version of the BART and T5 models. However, for comparison purposes, we also
deploy the discriminative+generative versions of the BART models in our experiments.

More precisely, we deploy generative models to capture the relation between the question qk

and the contextual information in the conversation history, including the historical question(s)
{q1,q2, . . .qk}, and the historical answer(s) {a1,a2, . . .ak}, as shown in Figure 6.1(b). In particu-
lar, as defined in Equation (4.14) of Chapter 4, let MT L(·) denotes a joint learning function of
the tasks defined in Equation (6.1) as follows:

MT L(FID,QR,θ)→ w1,w2, ...,wm (6.2)

where θ are the learnable parameters of the model. The model is then fine-tuned to generate
the target tokens length m as shown in Equation (6.2), where the token w1 is either “follow" or
“shift"1 depending on whether the candidate question is a valid follow-up to the previous question
or not, while the follow-up tokens w2, ...,wm are the output sequence for the target query q′k.

Recall from Section 4.4.2 that we introduced the ORConvQA2:FID+QR method, which can be
defined using Equation 6.2 as follows:

ORConvQA2:FID+QR = MT L(FID,QR,θ)
q′k» Retriever(C)

P+
ret» Reranker(q′k)

(6.3)

At inference time, following Nogueira, Jiang, Pradeep & Lin (2020b), we apply a softmax
only on the logits of the "follow" and "shift" tokens of the first generated token w1, to determine
the probability of follow-up question as follows:

scorerr = softmax(w1) (6.4)

Next, we evaluate our MTL ORConvQA2:FID+QR method and its resulting system in compari-
son to several existing baselines as detailed in the next section.

1 We choose “follow" and “shift" as target tokens because T5 tokenises sequences using the SentencePiece ap-
proach (Kudo & Richardson 2018), which splits the word “invalid" into two subwords.
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Table 6.2: Statistics of the used datasets

LIF + CANARD LIF OR-QuAC
Train Dev Test-I Test-II Test-III Test

#questions 62,839 4914 5,992 5,247 2,685 5571
#valid follow-up 22,056 1,559 1,940 1,940 1,940 -
#invalid follow-up 40,783 3,355 4,052 3,307 745 -

6.3 Experimental Setup

We define our research questions in Section 6.3.1, describe the used datasets in Section 6.3.2
and present our baselines in Section 6.3.3

6.3.1 Research Questions

We address two key research questions. Firstly, we aim to compare our Multi-Task Learning
(MTL) method for the text generation models (BART and T5) with the existing strongest follow-
up question prediction baseline models according to (Kundu et al. 2020), namely the three-way
attentive pooling model and BERT. Indeed, a key contribution of our work is the comparison
of the effectiveness of MTL on text generation approaches in the follow-up question prediction
task. To the best of our knowledge, our work is the first study to investigate applying MTL for
text generation models on the Follow-up Question Identification task. Hence, our first research
question is:

RQ 6.1: Does the MTL approach of question rewriting and classification using text generation
models outperform the single-task learning (STL) of text generation models and existing baselines
for the follow-up question identification task?

Second, another key contribution of our work is the comparison of the effectiveness of MTL
on text generation approaches in the Conversational Question Rewriting task. By doing this,
we investigate the effectiveness of the rewritten query in improving the conversational question
rewriting and passage retrieval systems’ performance.

RQ 6.2: Does the MTL approach of question rewriting and classification using text generation
models outperform the single-task learning (STL) of text generation models in the context of the
conversational question rewriting and passage retrieval tasks?

6.3.2 Datasets

We experiment using the LIF dataset (Kundu et al. 2020) and the CANARD dataset (Elgohary
et al. 2019), which were previously described in Sections 3.3.2 and 3.4.2, respectively. For
training the models to address both tasks, in the training and development sets, we integrate LIF
and CANARD by selecting only the candidate questions from the LIF dataset that exist in the
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CANARD dataset. To evaluate the models in the follow-up question identification task, we use
the three test sets of the LIF dataset, namely Test-I, Test-II, and Test-III. In all three test sets, the
valid follow-up questions (label = 1) are constructed from the “should ask follow-up question”
instances in the QuAC dataset (see Section 3.2.2). For the invalid follow-up questions (label =
0), Test-I combines the invalid instances from Test-II & Test-III. For Test-II, questions with a
high similarity to the current passage are sampled from other conversations. On the other hand,
for Test-III, the invalid follow-up questions are sampled from the non-follow-up questions of the
same conversation in QuAC. For the question rewriting task, we use the test sets of the OR-QuAC
dataset (see Section 3.7.2). We also aggregate a passage collection from the OR-QuAC dataset,
which is an aggregation of three existing datasets consisting of QuAC (Section 3.2.2), CANARD
(Section 3.4.2), and English Wikipedia, to evaluate the passage retrieval performance of the
conversational question rewriting task. This allows us to assess our models’ performance across
both the Conversational Question Answering and Passage Retrieval tasks. For further information
about the used datasets, we provide a summary of their statistics in Table 6.2.

6.3.3 Baselines and Implementation Details

Follow-up question identification task: We only include neural models as our baselines since
the existing rule-based and statistical machine learning models have been shown to be much
less effective in the Follow-up Question Identification task in a previous study (Kundu et al.
2020). Indeed, as baselines, we choose the strongest baseline in the previous study (Kundu et al.
2020) (see Section 3.3.4), namely BERT (Section 2.3.2), as well as the existing state-of-the-art
(SOTA) three-way attentive pooling model (Section 3.3.4) from the same study. For the three-way
attentive pooling model, we reproduce the model and its evaluation results provided by (Kundu
et al. 2020). We additionally compare our MTL of the generative BART and T5 models with
the Single-Task Learning (STL) of T5 and BART. The STL models are only learned to predict
whether a given question is a follow-up question. We additionally compare our generative BART
model with the discriminative+generative version of BART, as described in Section 6.2.2.

Conversational question rewriting task: We compare our query rewriting methods with the
following models: Raw: The user’s original current question; Manual: The questions are written
by humans from the CANARD dataset. We also compare our proposed ORConvQA2:FID+QR

MTL method with the Single-Task Learning (STL) of BART and T5, which are learned to only
generate the rewritten question q′m.

Hyperparameter settings: We implement the BERT, GPT-2, BART, and T5 models using
the following PyTorch models from HuggingFace (Wolf et al. 2020), namely bert-base,
facebook/bart-base, and ramsrigouthamg/t5_paraphraser:2 These models are
2 Initial experiments found this T5 model to be more effective than the original t5-base across a number of tasks.

126



Table 6.3: Results for Follow-up Question Identification. † denotes a performance significantly
worse than the MTL BART (McNemar’s test, p < 0.05); ‡ denotes a performance significantly
worse than the MTL T5 (McNemar’s test, p < 0.05). 3-way AP denotes the Three-Way Attentive
Pooling. (dis), (gen), and (dis+gen) denote the discriminative, generative, and discrimina-
tive+generative models, respectively (see Section 6.2). The highest value for each measure is
highlighted.

Models
Test-I Test-II Test-III

P R F1 Macro-F1 P R F1 Macro-F1 P R F1 Macro-F1
STL BERT 70.7 79.5 74.9†‡ 80.8†‡ 85.6 79.5 82.5† 86.4† 80.2 79.5 79.9† 64.2†‡

3-way AP 71.6 70.0 71.6†‡ 79.2†‡ 74.4 76.8 75.6†‡ 80.5†‡ 79.7 70.0 74.6†‡ 60.4†‡
BART(dis) 69.7 79.4 74.2†‡ 80.3†‡ 85.7 79.4 82.5†‡ 86.4† 78.9 79.4 79.1† 62.1†‡
BART(gen) 71.0 79.7 75.1†‡ 81.0† 87.4 79.7 83.4† 87.1† 79.1 79.7 79.4† 62.5†‡
T5 69.9 83.0 75.9† 81.4† 85.3 83.0 84.2† 87.5† 79.5 83.0 81.2† 64.0†

MTL BART (dis+gen) 71.5 84.6 77.5 82.6 86.3 84.6 85.4 88.5 80.6 84.6 82.5 66.4
ORConvQA2:FID+QR BART (gen) 70.3 87.3 77.9 82.7 84.9 87.3 86.1 88.9 80.4 87.3 83.7 66.9

T5 71.3 83.5 76.9† 82.2 85.4 81.6 83.5† 87.1† 84.6 77.6 80.9† 68.9

configured as follows:3 the maximum sequence length is set to 512, the number of training
epochs is set to 5, the batch size is set to 24, and we use Adam optimiser with a learning rate
of 0.00005. For text generation, we use a beam search with a beam width of 5.

Evaluation metrics: Since the Follow-up Question Identification task is a binary classification
task, we evaluate performances using classical classification metrics, namely Precision, Recall,
F1 and Macro-F1. These evaluation metrics have been previously introduced and detailed in Sec-
tion 3.3.3. Indeed, following Kundu et al. (2020), reporting Macro-F1 enables accuracy on topic
shift detection to be measured, while F1 focuses solely on follow-up identification as the positive
class. We use McNemar’s test to measure statistically significant differences between the models’
classification performances. For the evaluation of the Conversational Question Rewriting perfor-
mance, we adopt the ROUGE recall calculated for unigrams (ROUGE-1 recall) and the BLEU met-
rics, as previously described in Section 3.4.3. As for the passage retrieval evaluation, we use Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative
Gain (NDCG) and Recall@1000 as metrics, which were explained in Section 2.7. For each query,
the top 1000 documents are considered. We use the paired t-test for testing significant differences.

Passage retrieval pipeline: We use the PyTerrier (Macdonald & Tonellotto 2020) platform (see
Section 2.5) for indexing and retrieving passages. For passage ranking, we incorporate BM25
and DPH with the monoT5 re-ranker (see Section 2.4.1).

6.4 Results Analysis

We now address RQ 6.1 and RQ 6.2, and conclude with a qualitative analysis.
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6.4.1 RQ 6.1: Effectiveness on Follow-up Question Identification Task

We investigate the performance of the baselines mentioned in Section 6.3.3 in comparison
to our proposed ORConvQA2:FID+QR MTL method for follow-up question classification on all
three test sets of the LIF dataset. Table 6.3 shows the results for each evaluated model across
each of the three test sets.

Comparison of Our Proposed ORConvQA2:FID+QR MTL Method Using BART and T5 Mod-
els with Baselines for Follow-up Question Identification: From Table 6.3, on the three test sets
of the LIF dataset, we observe that our proposed ORConvQA2:FID+QR MTL method, using BART
model, achieves the highest Recall, F1, and Macro-F1, except our proposed ORConvQA2:FID+QR

MTL method, using T5 model, on Test-III for Macro-F1. The best precision scores on all three
test sets are obtained by the three-way attentive pooling, discriminative+generative MTL BART,
and our proposed ORConvQA2:FID+QR MTL method, using T5 model, respectively. Within the
table, on all three test sets, our proposed ORConvQA2:FID+QR MTL method, using BART model,
significantly outperforms the baselines, BERT, the three-way attentive pooling model, STL BART
(both discriminative and generative), and STL T5 in terms of F1 and Macro F1, except our
proposed ORConvQA2:FID+QR MTL method, using T5 model, in Test-III for Macro-F1. These
results suggest that our proposed ORConvQA2:FID+QR MTL method, using BART model, ex-
hibits a strong overall performance and exceeds other models in terms of Recall, F1 score, and
Macro-F1 score across most test sets. This highlights its ability to accurately predict true positive
instances (valid follow-up question) while maintaining a good balance between precision and
recall.

Comparison of Our Proposed ORConvQA2:FID+QR MTL Method, using BART and T5 Mod-
els, with STL Baselines: We observe that our proposed ORConvQA2:FID+QR MTL method, using
BART model, significantly outperforms the STL BART (both discriminative and generative)
models in terms of F1 and Macro-F1 on all three test sets. This indicates that the MTL ap-
proach, which jointly trains the model on the follow-up question identification and conversational
question rewriting tasks, provides a notable advantage over the STL approach for the BART
classifier model. However, our proposed ORConvQA2:FID+QR MTL method, using T5 model,
does not outperform the STL T5 model in terms of F1 and Macro-F1, but the two models are not
significantly different.

Comparison Between Our Generative MTL Models: We observe that our proposed ORConvQA2

MTL method, using BART model, significantly outperforms our proposed ORConvQA2:FID+QR

MTL method, using T5 model, in terms of F1 on all three test sets, and also significantly outper-
forms our proposed ORConvQA2:FID+QR MTL method, using T5 model, in terms of Macro-F1
on Test-II. Comparing the discriminative+generative and generative MTL BART models, we find

3 Settings follow https://github.com/gmihaila/ml_things/
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Table 6.4: Comparison between the MTL models and the query rewriting baselines. † denotes a
performance that is significantly worse than the MTL BART model (paired t-test, p < 0.05); ‡
denotes a performance that is significantly worse than the MTL T5 model (paired t-test, p < 0.05).
3-way AP denotes the Three-Way Attentive Pooling. (gen) and (dis+gen) denote the generative,
and discriminative+generative models, respectively (see Section 6.2). The highest value for each
measure is highlighted.

Question Rewriting First Stage (BM25) Re-ranker (monoT5)
Models ROUGE-1 BLEU MAP MRR R@1000 NDCG MAP MRR NDCG

Raw 62.82†‡ 36.01†‡ 0.0410†‡ 0.0424†‡ 0.2335†‡ 0.0733†‡ 0.0786†‡ 0.0809†‡ 0.1059†‡
STL BART 72.91†‡ 48.15† 0.1517†‡ 0.1617†‡ 0.5576†‡ 0.2257†‡ 0.2438†‡ 0.2580†‡ 0.3046†‡

T5 73.22‡ 45.86† 0.1720‡ 0.1843‡ 0.6055‡ 0.2524‡ 0.2783‡ 0.2957‡ 0.3430‡
MTL BART(dis+gen) 73.12‡ 48.00† 0.1571‡ 0.1685‡ 0.5790‡ 0.2348‡ 0.2562‡ 0.2708‡ 0.3189‡

ORConvQA2:FID+QR BART(gen) 73.56‡ 48.79 0.1646‡ 0.1760‡ 0.6006‡ 0.2440‡ 0.2661 ‡ 0.2823‡ 0.3309‡
T5 74.12 45.86† 0.2008 0.2150 0.6373 0.2829 0.3106 0.3302 0.3764

Manual 100.00 100.00 0.2486 0.2682 0.8012 0.3540 0.3811 0.4066 3295.0

that there is little difference between the effectiveness of the two versions of the MLT BART
models on both F1 and Macro-F1 scores on all three test sets.

Therefore, in response to RQ 6.1, we find that our proposed ORConvQA2:FID+QR MTL
method, using BART model, jointly learned through both the Follow-up Question Identification
and Conversational Question Rewriting tasks has the best overall effectiveness, yielding statisti-
cally significant improvements in terms of F1 and Macro-F1 over the baselines, on each of the
three test sets of the LIF dataset.

6.4.2 RQ 6.2: Effectiveness on Conversational Question Rewriting Task

Next, we examine the effectiveness of the Conversational Question Rewriting models includ-
ing our proposed ORConvQA2:FID+QR MTL method, using the T5 and BART models, and those
listed in Section 6.3.3 (STL BART, STL T5, and discriminative+generative MTL BART) on
the test set of the OR-QuAC dataset. Table 6.4 presents the effectiveness of various question
reformulation models for conversational question rewriting, evaluated based on the ROUGE-1
recall and BLEU scores (see Section 3.4.3). Furthermore, the models’ effectiveness for passage
retrieval is evaluated when applied with the BM25 4 retrieval model (see Section 2.2). The
effectiveness of the monoT5 re-ranker, applied to the same set of 1000 retrieved passages, is
listed in the corresponding row alongside the first stage (BM25) results. The effectiveness of the
manually rewritten questions can be seen as an upper bound for the question rewriting methods.

Comparison of Our Proposed ORConvQA2:FID+QR MTL Method, using BART and T5
Models, with Baselines for Conversational Question Rewriting: In Table 6.4, we observe that
our proposed ORConvQA2:FID+QR MTL method, using T5 model, achieves the highest ROUGE-1
score by significantly outperforming all STL baselines, demonstrating its superior performance
in capturing the recall of the rewritten questions at the unigram level (individual words). On the
other hand, our proposed ORConvQA2:FID+QR MTL method, using BART model, achieves the

4 We also conducted experiments with the DPH retrieval model, which yielded similar trends.
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highest BLEU score by significantly outperforming all STL baselines, indicating its effectiveness
in measuring the similarity between the generated texts and the reference texts (the manually
rewritten questions). Moreover, we can observe that our proposed ORConvQA2:FID+QR MTL
method, using BART model, outperforms the STL BART model in terms of both the ROUGE and
BLEU scores. This indicates that our proposed ORConvQA2:FID+QR MTL method, using BART
model, achieves a better performance in the conversational question rewriting task compared to
the STL BART model. Comparing our proposed ORConvQA2:FID+QR MTL method, using T5
model, to the STL T5 model, our proposed ORConvQA2:FID+QR MTL method, using T5 model,
achieves a higher ROUGE-1 score, indicating a better performance in conversational question
rewriting. However, both models have the same BLEU score. Therefore, the results show that our
proposed ORConvQA2:FID+QR MTL method, using both BART and T5 models, is more effective
in conversational question rewriting than single-task learning.

Comparison of Our Proposed ORConvQA2:FID+QR MTL Method, Using BART and T5
Models, with Baselines for Passage Retrieval: From Table 6.4, we observe that our proposed
ORConvQA2:FID+QR MTL method, using T5 model, achieves the highest MAP, MRR, and
Recall@1000, and does significantly improve over our proposed ORConvQA2:FID+QR MTL
method, using BART model, and all the STL models in both first stage retrieval and re-ranking.
Comparing the MTL and STL models, we observe that both of our proposed ORConvQA2:FID+QR

MTL method, using T5 and BART models, significantly outperform their corresponding STL
models. Contrasting the performances of the MTL discriminative+generative BART model with
our proposed ORConvQA2:FID+QR MTL method, using BART model, we find that there is little
difference between the effectiveness of the two versions of the MLT BART model.

Comparison of our Proposed ORConvQA2:FID+QR MTL Method, using BART and T5 Mod-
els, with the Baselines for Both Conversational Question Rewriting and Passage Retrieval
Tasks: our proposed ORConvQA2:FID+QR MTL method, using T5 model, demonstrates its effec-
tiveness in both tasks. It not only captures the recall of the rewritten questions at the unigram level
but also enhances passage ranking, resulting in our proposed ORConvQA2:FID+QR MTL method,
using the T5 model, outperforming both our proposed ORConvQA2:FID+QR MTL method, using
BART model, and all of the STL models, yielding statistically significant improvements on both
tasks. To illustrate these findings, we provide a further qualitative analysis in Section 6.4.3.

In answer to RQ 6.2, we conclude that our proposed ORConvQA2:FID+QR method, which
applies the Multi-Task Learning of question rewriting and classification to the T5 model, improves
performance in conversational question rewriting and passage retrieval, yielding statistically
significant improvements over the MTL discriminative+generative BART model and all the STL
models.
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Figure 6.2: Comparison of question rewriting models.

6.4.3 Qualitative Analysis

In this section, we conduct a qualitative analysis to further support for our findings concerning
the performance of our MTL T5 model in comparison to the STL T5 model, as discussed in
Section 6.4.2. The purpose of this qualitative analysis is to further validate our results and to shed
additional lights on the advantages of the MTL approach in the Follow-up Question Identification
and Conversational Question Rewriting tasks. First, we present an example of dialogue that
exemplifies the distinct advantages derived from the use of the MTL approach in our model,
specifically in Conversational Question Rewriting. Next, we proceed to compare the differences
in NDCG scores between our proposed MTL model and the STL model for passage retrieval.

Conversational Question Rewriting: To illustrate the advantages of the MTL approach in
the Follow-up Question Identification and Conversational Question Rewriting tasks, we provide
an example dialogue selected based on the highest ROUGE-1 score achieved by our MTL T5
model. This example dialogue, shown in Figure 6.2, showcases the benefits of employing the
MTL strategy.

This example consists of a conversation history with two turns (Q1, A1, Q2, A2), the current
question (Q3), the manually rewritten question (Q’3), the rewritten question of our MTL T5
model, and the rewritten question of the STL T5 model. The MTL T5 model successfully
predicts the word “shift” indicating an invalid follow-up question, as Q3 deviates from the
previous conversation’s topic of album performance and instead inquires about subsequent events.
The MTL T5 model exhibits a superior performance in predicting invalid follow-up questions,
demonstrated by the model achieving the best Macro-F1 score on the Test-III LIF dataset (as
described in Section 6.4.1). Notably, this test set comprises sampled invalid follow-up questions
from the same conversation, making this achievement particularly noteworthy. This prediction
helps the model to differentiate and choose the accurate entity “Disco Volante” instead of the
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misleading prediction “Cheesy Synthsynergics” made by the STL T5 model. This demonstrates
the ability of the MTL T5 model to better leverage and interpret the context of the conversation,
leading to more accurate predictions and an improved performance.

Figure 6.3: Examples of dialogue differences in NDCG for queries in the OR-QuAC query set.
(a) a higher NDCG for MTL T5 wrt STL T5 (b) a higher NDCG for STL T5 wrt MTL T5.

Passage Retrieval: We also compare the differences in terms of NDCG scores when using
a BM25 ranking model with our proposed MTL model in comparison to using it with the STL
model in passage retrieval (MTL T5 vs. STL T5). Figure 6.3 shows two examples of dialogues
selected based on the difference in NDCG scores between MTL T5 and STL T5 on the OR-
QuAC query set. Overall, MTL T5 outperforms STL T5 for 781 questions, while the opposite
was true for 497 questions. Following Macdonald et al. (2021), we only consider differences
larger than 0.15 absolute NGCG when inspecting the effect of the MTL approach. Hence, these
numbers demonstrate that our proposed MTL T5 model exhibits a superior performance over
the STL T5 model in passage retrieval. To further illustrate this point, we closely examine the

132



predictions made by the MTL T5 model in Figure 6.3 (a). It is clear that the MTL T5 model
successfully identifies a candidate question as a valid follow-up to the previous question, thereby
demonstrating its capability to potentially aid in the correct resolution of the omitted entity
(Odissi). On the other hand, in Figure 6.3 (b), the candidate question “where did he go to school”
would not have logically followed the previous question “did he have siblings”. However, the
MTL T5 model predicted this candidate question as a valid follow-up question; hence this could
lead the model to incorrectly resolve the entity (Roy Acuff). As a result, we can observe that the
effectiveness of the Follow-up Question Identification task does influence the Conversational
Question Rewriting task performance.

6.5 Conclusions

In this chapter, to effectively address the ambiguities in conversational questions, we have
proposed a method for Open-Retrieval Conversational Question Answering (ORConvQA), which
learns to predict the follow-up question and rewrites the conversational question simultaneously.
Our proposed ORConvQA2:FID+QR method makes use of text generation models including BART
and T5 by generating the first token for a classification task and the follow-up tokens for a
questing rewriting task. Our proposed ORConvQA2:FID+QR method directly addressed the issue
highlighted in Gap 2 in Section 3.10, where we stated that there is no effective integration between
Follow-up Question Identification and Conversational Question Rewriting. In particular, our
investigation in this chapter aims to answer two research questions.

First, to answer RQ 6.1, “Does the MTL approach of question rewriting and classification
using text generation models outperform the single-task learning (STL) of text generation models
and existing baselines for the Follow-up Question Identification task?”, we investigated the
performance of the baselines in comparison to our proposed ORConvQA2:FID+QR method for
follow-up question classification. As shown in Table 6.3, our proposed ORConvQA2:FID+QR

method using BART outperformed the baselines in terms of F1 and Macro-F1 across all three
test sets of the LIF dataset, indicating its effectiveness in Follow-up Question Identification.

In order to answer RQ 6.2, “Does the MTL approach of question rewriting and classification
using text generation models outperform the single-task learning (STL) of text generation models
in the context of the conversational question rewriting and passage retrieval tasks?”, we examined
the effectiveness of our proposed ORConvQA2:FID+QR method in comparison to the baselines
on the test set of the OR-QuAC dataset. The results, presented in Table 6.4, demonstrated
that our proposed ORConvQA2:FID+QR method using T5 achieved the highest ROUGE-1 score,
surpassing all STL baselines in capturing the unigram-level recall of rewritten questions. In
addition, for passage retrieval, our proposed ORConvQA2:FID+QR method using T5 achieved the
highest MAP, MRR, and Recall@1000, significantly improving over the MTL BART model and
all STL models in both first stage retrieval and re-ranking (see Table 6.4).
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Lastly, Section 6.4.3 prevoided a qualitative analysis supporting our findings. This qualitative
analysis aimed to further validate our results and elucidate the advantages of the MTL approach
in Follow-up Question Identification and Conversational Question Rewriting. For conversation
question rewriting, Figure 6.2 showed the ability of the MTL T5 model to better leverage
and interpret the context of the conversation, leading to more accurate predictions and an
improved performance. For passage retrieval, Figure 6.3 showed that the effectiveness of the
Follow-up Question Identification task does influence the Conversational Question Rewriting
task performance.

Hence, we can now validate our hypothesis presented in Section 1.3, namely that the use of
Multi-Task Learning of Follow-up Question Identification and Conversational Question Rewriting
sharing a single text generation model can indeed enhance the system’s effectiveness in both
tasks. Indeed, we concluded that our proposed ORConvQA2:FID+QR method using BART had the
best effectiveness, yielding statistically significant improvements over the baselines. Moreover,
our proposed ORConvQA2:FID+QR method using T5 performed the best both in terms of Con-
versational Question Rewriting, first-stage retrieval, and re-ranking. Gap 2 highlighted the lack
of an effective integration between the Follow-up Question Identification and Conversational
Question Rewriting. Our findings in this chapter show that our ORConvQA2:FID+QR method
learned through Multi-Task Learning by sharing a single text generation model, such as BART
and T5, effectively addresses Gap 2.

In the next chapter, to further effectively address the ambiguities in conversational questions,
we conduct an experiment to demonstrate the effectiveness of our hybrid of generation and
selection for asking clarifying questions. Our method leverages the Multi-Task Learning of
clarification need classification and the generation of clarifying questions. This allows us to
simultaneously determine when the user’s query necessitates a clarifying question and to generate
a set of clarifying questions based on the user’s query and conversation history.
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Chapter 7

Multi-Task Learning of Clarification Need
Identification and Clarifying Question
Generation

7.1 Introduction

Recall from Section 1.2 that to effectively answer the user’s questions, an Open-Retrieval
Conversational Question Answering (ORConvQA) system needs to resolve any ambiguities
arising from the posed questions based on the conversation history with the user (Kundu et al.
2020). In Chapter 6, we proposed the ORConvQA2:FID+QR method, which leveraged Multi-
Task Learning (MTL) to simultaneously learn the tasks of Follow-up Question Identification
(FID) and Conversational Question Rewriting (QR) that have been described in Sections 3.3
and 3.4, respectively. Our proposed ORConvQA2:FID+QR method made use of text generation
models including the BART and T5 models (see Section 2.3.1) by generating the first token for
a classification task and the follow-up tokens for a questing rewriting task. The experiments in
Sections 6.4.1 and 6.4.2, along with the analysis presented in Section 6.4.3 showed that leveraging
MTL in the ORConvQA2:FID+QR method improved performance for both the FID and QR tasks.

In this chapter, we further explore how to address the ambiguities in conversational questions.
As described in Clarification Need Classification (Sections 3.5.4) and Asking Clarifying Questions
(see Section 3.6.4), existing works aim to improve the search experience for users by allowing for
more natural interactions between the users and search systems. A mixed-initiative conversational
search system (Keyvan & Huang 2022, Zamani et al. 2022) combines both the machine and
the human initiative in order to improve the search experience for the user. It achieves this by
asking clarifying questions to the users in order to better understand their intents and to refine the
system’s interpretation of the users’ information needs, as previously described in Section 3.6.

To address the task of Asking Clarifying Questions in conversational search, as previously
discussed in Section 3.6.4, existing works can be broadly classified into two categories: generation
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and selection approaches. In the generation-based, for example, Owoicho et al. (2022) fine-tuned
the T5 (see Section 2.3.1) and GPT-3 (see Section 2.3.3) text generation models to generate
the clarifying questions. We consider these models (T5 and GPT-3) as generative baselines for
comparison with our system. On the other hand, selection-based approaches, Owoicho et al.
(2022) adopted retrieval models such as BM25 (see Section 2.2) and miniLM (Wang, Wei, Dong,
Bao, Yang & Zhou 2020) to select a candidate set of questions from the question pool. In this
work, we also consider other recent effective retrieval models such as ANCE (see Section 2.4.2),
monoT5 (see Section 2.4.1), ColBERT (see Section 2.4.3), and TCT-ColBERT (see Section 2.4.2)
as clarifying question selection baselines.

However, as discussed in Section 3.6.4, both generation and selection approaches for asking
clarifying questions have their advantages and disadvantages. We argue that by combining both
the generation and selection approaches in a uniform framework, we can produce a better set
of questions and ensure that the selected question is relevant to the user’s query. However, we
are not aware of any previous work that effectively combines both the generation and selection
approaches for the task of asking clarifying questions, in order to leverage the best of both worlds.
In this chapter, we introduce a novel hybrid asking clarifying question method, which uniformly
combines the generation and selection processes.

Based on the literature reviewed in Sections 2.8 and 3.9, Multi-Task Learning (MTL) is
described as a method where multiple different but related tasks are learned simultaneously. In
particular, as introduced by Aliannejadi et al. (2021), the task of asking clarifying questions
(see Section 3.6.2) in conversational search can be broken down into two subtasks: determin-
ing when to ask clarifying questions (Clarification Need Classification) and how to generate
them (Asking Clarifying Questions). In this chapter, we aim to address these two subtasks
simultaneously thereby providing a comprehensive approach to the task of asking clarifying
questions in conversational search. To the best of our knowledge, as identified in Gap 3, no
prior work has seamlessly and uniformly combined both subtasks to more effectively address
the step of asking clarifying questions in a mixed-initiative conversational search system. In
this chapter, as stated in Section 1.3, we hypothesise that MTL can be used to jointly learn the
Clarification Need Classification and the generation of the clarifying question subtasks in order
to simultaneously determine when the user’s query necessitates a clarifying question and to
generate a set of clarifying questions accordingly. Therefore, to address the limitation in Gap 3,
we propose a newly MTL model called T5MI, which is included in our proposed ORConvQA3
method, as introduced in Section 4.4.3.

To summarise, in this chapter, we introduce the ORConvQA3:CNC+Askng method, which
includes our proposed MTL model called T5MI, a selecting asking clarifying question called
GTR, and our ranking clarifying questions called T5Ranking, to address the issue presented
in Gap 3. Our proposed ORConvQA3:CNC+Askng method is a novel approach for generating and
selecting clarifying questions in a mixed-initiative conversational search. In generating clarifying
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questions, our T5MI model leverages the Multi-Task Learning of clarification need classification
and the generation of clarifying questions to simultaneously determine when the user’s query
necessitates a clarifying question and to generate a set of clarifying questions based on the user’s
query and conversation history. For selecting the clarifying questions, we use the state-of-the-
art Generalisable T5-based dense Retriever (GTR) (see Section 2.4.2) for retrieving clarifying
questions from the question pool. To rank the candidate clarifying questions obtained from both
the generation and selection approaches, we score the questions using a text generation model
for point-wise question classification called T5Ranking. By leveraging both the generation and
selection models, our ORConvQA3:CNC+Askng method is able to generate a better set of questions
and to ensure that the selected question is relevant to the user’s query.

Our contributions in this chapter can be summarised as follows:
(1) We leverage Multi-Task Learning (MTL) with a single text generation T5 model by jointly

learning a classifier for clarification need and the effective generation of clarifying questions
called T5MI;

(2) We introduce a ORConvQA3:CNC+Askng MTL method including hybrid of generating and
selecting clarifying questions. Our ORConvQA3:CNC+Askng method generates clarifying questions
using MTL T5MI model and selects clarifying questions from a pool of pre-determined question
using GTR model to effectively address the task of asking clarifying questions;

(3) We evaluate the performance of our hybrid asking clarifying question method (T5MI
+ GTR + T5Ranking), which is included in our proposed ORConvQA3:CNC+Askng method, on
a recent dataset of mixed-initiative conversational search and show the effectiveness of our
proposed hybrid method (T5MI + GTR + T5Ranking), which significantly outperforms existing
strong baselines with improvements at P@1 by up to 20% on relevance criteria and 30% on
novelty criteria.

The rest of the chapter is structured as follows: Section 7.2 recalls the definitions of the Clari-
fication Need Classification (CNC) and Asking Clarifying Questions tasks, along with our pro-
posed ORConvQA3:CNC+Askng method (see Section 4.4.3). Our proposed ORConvQA3:CNC+Askng

method makes use of our T5MI model: an MTL of the Clarification Need Classification (CNC)
and Asking Clarifying Questions, GTR: a selecting clarifying questions model, and T5Ranking: a
ranking the candidate clarifying question model, to address these tasks simultaneously. We present
our experimental setup in Section 7.3 and show the results of the experiments in Section 7.4.
Finally, we provide concluding remarks in Section 7.5.

7.2 Generating and Selecting Clarifying Questions

In this section, we describe our mixed-initiative system that combines both the machine
and the human initiative in order to improve the search experience for the user. Our system
makes use of the ORConvQA3:CNC+Askng method outlined in Section 4.4.3 and consists of four
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Figure 7.1: The overall framework of our Mixed-Initiative Conversational Search system.

main models. We first explain how these models are used to perform the Clarification Need
Classification and Asking Clarifying Questions task in Section 7.2.1. An overview of our
proposed ORConvQA3:CNC+Askng method follows in Section 7.2.2. Then, we explain how to
fine-tune the involved models in Section 7.2.3.

7.2.1 Task Definitions

In this chapter, we aim to tackle the tasks of clarification need classification (CNC) (see
Section 3.5.1) and asking clarifying questions (Asking) (see Section 3.6.1). Table 7.1 presents
the notations, which include a subset of the symbols defined in Chapter 4, Table 4.1. The CNC
and Asking tasks have been formalised in Equations (4.3) and (4.4) of Chapter 4 as follows:

CNC(qk,Hk)→ nk

Asking(qk,Hk)→ ck
(7.1)

where CNC(·) is a function that determines the necessity of asking clarifying questions, nk is the
importance of (or the need for) asking a clarifying question, while Asking(·) is a function that
generates clarifying questions using a generative model or selects them from a pre-determined
pool. The clarification need classification task aims to classify whether the user’s query requires
further clarification or if it can be directly addressed without additional information. The asking
clarifying questions task aims to either generate clarifying questions using a generative model or
to select them from a pre-determined pool of questions. Note that the task CNC can be formulated
as a classification task while Asking is a text generation task. In the following section, we describe
our proposed ORConvQA3:CNC+Askng method to address these tasks.
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Table 7.1: Notations used in Chapter 7.

Notation Definition
uk A current utterance
rk An answer to current utterance uk
Hk A conversation history i.e. Hk = [⟨u,r⟩]
ck A clarifying question
Ck A list of ck i.e. Ck = [ck1,ck2, ...ckn ]
c′k A top-ranked clarifying question
uk_2 A user feedback
ur A rewritten utterance of uk and Hk
u′r A rewritten question of c′k, uk, uk_2, and Hk
ak An importance level of asking a clarifying question
W A sequence of m words i.e. W = {w1,w2, ...,wm}
“[sep]” A delimiter token
w1, ...,wn An output sequence for the target query
Eu an embedding of ur
Ec an embedding of c
score(ur,c) a similarity score between ur and c
QR(·) A conversational question rewriting function
CNC(·) A clarification need classification function
ASKING(·) A asking clarifying questions function
Retriever A passage retriever function
Reranker A passage reranker function

7.2.2 Models Overview

To tackle the tasks described in Section 7.2.1, typically, a system for asking clarifying
questions (Keyvan & Huang 2022, Zamani et al. 2022) consists of three components:

1. clarification need classification;

2. generating or selecting clarifying questions; and

3. ranking the candidate clarifying questions.

However, to address the tasks in Section 7.2.1, the system needs to correctly interpret a question
in the context of an ongoing conversation. Hence, we introduce a conversational query rewriting
component, which reformulates the current utterance uk and conversation history Hk, into a clearer,
standalone utterance ur. In addition, we adopt a hybrid method that seamlessly combines the
generation and selection of clarifying questions. Furthermore, we leverage Multi-Task Learning
(MTL) for jointly learning the clarification need classification and the generation of clarifying
questions processes by sharing a single text generation model. As a consequence, as presented
in Figure 7.1, our proposed ORConvQA3:CNC+Askng method consists of four main components,
which address the following functionalities:
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Table 7.2: The input-output of each component of our overall hybrid method.

Model Input Output
T5QR Hk;uk ur/u′r
T5MI ur ak, ck
GTR ur ck
T5Ranking ur;ck "true" or "false"

1. conversational query rewriting, namely T5QR;

2. the MTL of the clarification need classification and the generation of clarifying questions,
namely T5MI;

3. selecting the clarifying question, namely GTR; and

4. ranking the candidate clarifying questions, namely T5Ranking.

In the following, we describe our proposed ORConvQA3:CNC+Askng method and its models
& components. These components include the hybrid method, denoted as Hybrid(·), which is
a combination of components (2) T5MI and (3) GTR above. This hybrid method is used for
generating and selecting clarifying questions. Table 7.2 shows the input-output correlation of
each component in our proposed system. Focusing on the leftmost component in Figure 7.1,
T5QR reformulates the current user’s utterance uk and its context (conversation history) into
a standalone, omission-free 1 rewritten utterance ur, which can be used in the later stages in a
decontextualised manner. The next component, our proposed T5MI model, employs Multi-Task
Learning to simultaneously learn the Clarification Need Classification and the generation of
the clarifying questions subtasks by sharing a single text generation model. T5MI estimates
the importance of (or the need for) asking a clarifying question for the rewritten utterance ur,
which we denote as ak. Based on ak, the system will decide whether a clarifying question should
be obtained. If a clarification is not required, the system retrieves passages using the rewritten
utterance ur and the retrieval model. If a clarification is needed, the system employs both the
generation and selection approaches for clarifying questions – specifically, it generates clarifying
questions using T5MI and selects from a pre-determined pool of questions using GTR. In order
to produce the most appropriate clarifying question, the system scores the candidate clarifying
questions obtained from both the generation and selection approaches, using T5Ranking. For
each clarifying question, the user’s feedback will be provided, as illustrated in the top-right of
Figure 7.1. Next, we use each clarifying question ck and its feedback as the context for rewriting
the current user utterance uk using the conversational query rewriting T5QR model.

In particular, as define in Equation (4.17) in Section 4.4.3, the ORConvQA3:CNC+Askng method
can then be defined as follows:
1 Omission: A noun group after a preposition can be omitted if it has already been mentioned in previous queries (Yu
et al. 2020).
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ORConvQA3 = T 5QR(uk,Hk,θ)
ur» Hybrid (T 5MI (CNC,Asking,θ),GTR)
Ck» T 5Ranking(ur,θ)

c′k» T 5QR(uk,uk_2,Hk,θ)

u′r» Retriever(I)

P+
Ret» Reranker(u′k,θ)

(7.2)

We now describe each component of our overall proposed ORConvQA3:CNC+Askng method in
detail.

1. T5QR: Conversational Query Rewriting: The left part of Figure 7.1 presents the con-
versational query rewriting component. Following Dalton et al. (2021) and Owoicho et al.
(2022), we deploy a generative model to capture the relationship between the current user
utterance uk and the contextual information in the conversation history Hk, including a
list of k−1 utterances and the response text pairs, i.e. Hk = [⟨ui,ri⟩]k−1

i=1 . In particular, we
define a T5QR transformation function as T 5QR(·), which takes a text input sequence, as
follows:

T 5QR(u1 “[SEP]” r1 “[SEP]” u2 “[SEP]” ... “[SEP]”uk−1“[SEP]” rk−1 “[SEP]” uk
)

(7.3)
T 5QR(·) = w1,w2, ...,wn (7.4)

where "[SEP]" is a separator token. The model is then fine-tuned to generate the target
tokens of length n as shown in Equation (7.4), where w1, ...,wn are the output sequence for
the target query. Rewriting the user’s query first using the T5QR model helps refine and
contextualise the user’s intentions based on the conversation history before any clarification
attempts are made. This process not only improves the clarity and specificity of the user’s
original question but also prepares it for more effective processing in subsequent system
components, such as clarification, by ensuring that the query fully incorporates and reflects
the preceding dialogue context.
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Figure 7.2: T5MI: MTL of clarification need classification and clarifying question generation.

2. MTL of Clarification Need Classification & Generation of Clarifying Question(T5MI):
As shown in the second part from the left of Figure 7.1, our proposed model uses T5 (see
Section 2.3.1), a large pre-trained language model designed for text generation tasks.
In particular, text generation approaches, such as BERT (see Section 2.3.2), BART (see
Section 2.3.1), and T5 (see Section 2.3.1), can be trained to generate a coherent and relevant
response based on some input text. These models can also be fine-tuned to perform a
variety of downstream tasks. To adopt a Multi-Task Learning (MTL) approach to a text
generation model for jointly learning from both the clarification need identification and
the generation of clarifying question, the MTL model makes predictions as follows: the
first output token is used to estimate the clarification need, while the other output tokens
define the output of the clarifying question generation task. To fine-tune the T5 model for a
downstream task, we employ the technique of Prompt-based Learning (see Section 2.8.1).
As depicted in Figure 7.2, we deploy a T5 model to analyse the rewritten utterance ur of
the current user’s utterance uk. In particular, as defined in Equation (4.16) of Chapter 4,
let MT LT 5MI(·) denotes a joint learning function of the tasks defined in Equation (7.1) as
follows:

MT LT 5MI(CNC,Asking,θ)→ w1,w2, ...,wm (7.5)

where θ are the learnable parameters of the model. The model is then fine-tuned to
generate m target tokens, as shown in Equation (7.5). Token w1 can be "1", "2", "3" or "4" 2

depending on whether the rewritten utterance ur needs to ask the clarifying question or not,
while the follow-up tokens w2, ...,wm are the output sequence for the clarifying question ck.

3. Clarifying Question Selection: The bottom part of Figure 7.1 presents the clarifying
question selection component. We use a Generalizable T5-based dense Retriever (GTR)
(see Section 2.4.2), which consists of a question encoder and a passage encoder. Recall
from Chapter 3 that the generalisability of the GTR model allows it to perform well on a

2 Following the assessment procedure of the ClariQ dataset used in this work.
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wide range of tasks and domains, as it uses a large pre-trained model that can be adapted
into different specific tasks without being fine-tuned. The GTR model first encodes the
rewritten utterance ur and the pre-determined clarifying question c in the question pool
into the embedding space:

Eu = GT R(ur),

Ec = GT R(c) (7.6)

where Eu and Ec are the embeddings of ur and c, respectively. GTR uses the similarity
scoring function sim, which is the cosine similarity of Eu and Ec, to calculate the relevance
score of a pre-determined clarifying question c for the rewritten utterance ur:

score(ur,c) = sim(Eu,Ec) (7.7)

To retrieve the top K clarifying questions in the embedding space, we deploy GTR with
FAISS (Johnson et al. 2021), which is a library for efficient approximate nearest neighbour
search.

4. Clarifying Question Ranking (T5Ranking): The right part of Figure 7.1 presents our
proposed model for this component, which uses T5 (see Section 2.3.1), a large pre-trained
language model designed for text generation. We chose the encoder-decoder T5 model for
ranking because an existing variant, monoT5 (see Section 2.4.1), has been widely used and
shown to be effective in similar tasks. To rank the clarifying questions obtained from both
the generation and selection approaches, following (Nogueira, Jiang & Lin 2020), we fine-
tune the T5 model for point-wise question classification. In particular, let T 5Ranking(·)
denotes a generative transformation function that takes an input sequence as follows:

T 5Ranking( fprompt(ur,ck))→ w1 (7.8)

where fprompt() is a prompt function (template) to format the (rewritten) utterance ur, and
the clarifying question ck into an input sequence for T5Ranking. The model is then fine-
tuned to generate a target token, as shown in Equation (7.8), where the output token w1 is
either "true" or "false"3 depending on whether the clarifying question c is relevant or not to
the rewritten utterance ur. At inference time, we follow monoT5 (Nogueira, Jiang, Pradeep
& Lin 2020a) and calculate a ranking score by applying a softmax function to the logits
of the "true" and "false" tokens of the first generated token (w1) in the sequence as follows:

score = so f tmax(w1) (7.9)

3 Following monoT5 (Nogueira, Jiang, Pradeep & Lin 2020b), we select "true" and "false" as target tokens.
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7.2.3 Training

This section presents an overview of the training procedure for the T5MI and T5Ranking
models. In particular, Multi-Task Learning is employed to simultaneously predict the clarification
needs and the generation of the clarifying questions by sharing a single text generation model.

7.2.3.1 T5MI:

Given a rewritten utterance ur (see Section 7.2.2), our T5MI model is jointly trained for the
clarification need identification and the generation of clarifying question as follows:
Joint training: We fine-tune the T5MI model to generate the tokens for both the clarification
need identification and the generation of clarifying question. In particular, our T5MI model
leverages the prompt function (Equation (7.3)) to format the rewritten utterance ur into an input
sequence. The T5MI model then generates a contextual representation h, which is used by the
decoder to perform attention and to generate the next token. In particular, given a tuple ⟨ur,c⟩,
the training objective is to minimise the following loss function Lgen:

Lgen =
N

∑
i=0

logP(ci
k|h,c

:i
k ) (7.10)

where N is the length of the target clarifying question ck, ci
k is the ith token in ck, and c0

k is the
beginning of sequence token (<s>).

Recently, Prompt-based Learning (see Section 2.8.1), a method that adapts pre-trained
language models to downstream tasks by using task-specific prompts, has recently gained traction
for tackling various tasks using a single model. To fine-tune the T5MI model for the clarification
need classification and the generation of clarifying question, we also adopt prompt-based learning
by modifying the model’s input using a new template with the prefix "Clarification Question:":

“Clarification Question : {ur}” (7.11)

7.2.3.2 T5Ranking:

We approach the ranking of clarifying questions as a relevance prediction problem, where
the task is to evaluate the relevance of a candidate clarifying question to a user’s utterance by
assigning a relevance score. To capture this task, we apply the following input template:

“Question Relevance : {ur} [sep] {ck}” (7.12)

where [sep] is a T5-provided special token that acts as a separator token between the candidate
clarifying question ck and the rewritten utterance ur.
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Table 7.3: Statistics of the used datasets

Dataset Feature Train Dev Test
ClariQ topics 187 50 61

questions 3,766 163 270
documents ∼2 million

TREC CAsT 2022 topics - - 18
questions - - 205
documents ∼17 million

Next, we evaluate our proposed ORConvQA3:CNC+Askng method, as defined in Equation (7.2),
and its resulting mixed-initiative system for asking clarifying questions in comparison to several
existing baselines as detailed in the next section.

7.3 Experimental Setup

Our experiments address the four following research questions:

RQ 7.1 Does leveraging the MTL of classification and clarifying question generation on the
text generation model improve the effectiveness of the clarification need classification over
the existing single-task learning (STL) baselines (e.g. the best approaches from the ConvAI3
leaderboard (Aliannejadi et al. 2020a))?

RQ 7.2 How does our proposed hybrid method for generating and selecting clarifying ques-
tions compare in the effectiveness of asking clarifying questions with other existing baselines,
namely: (1) the miniLM-BERT, BM25-baseline , T5-*, and GPT-3-* systems, as described
in Section 3.6.4; (2) existing recent and strong retrievers including ANCE (see Section 2.4.2),
ColBERT (see Section 2.4.3), and TCT-ColBERT (see Section 2.4.2) as baselines for selecting
the clarifying questions; (3) cross-encoder rerankers, such as monoT5 (see Section 2.4.1).

RQ 7.3 How to effectively rewrite the current utterance uk by using the clarifying question ck

and user feedback uk_2 for passage retrieval?

RQ 7.4 How effective is our proposed ORConvQA3:CNC+Askng method in terms of passage
retrieval performance compared to existing baselines, namely: the miniLM-BERT, BM25-
baseline, T5-*, and GPT-3-* systems, as described in Section 3.6.4?

The remainder of this section provides details on the datasets used (see Section 7.3.1),
describes our baselines (see Section 7.3.2), and explains the experimental implementation (see
Section 7.3.3).
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Figure 7.3: Example of a CAsT 2022 dialogue tree with 1 main topic, 3 sub-topics, and 5 user
utterances.

7.3.1 Datasets

To conduct the evaluation of our proposed ORConvQA3:CNC+Askng method, including our
hybrid method for generating and selecting clarifying questions, we choose the TREC Con-
versational Assistance Track (CAsT) 2022 and the ClariQ datasets, as previously described in
Section 3.6.2. For completeness, we reiterate the details of the datasets, TREC Conversational
Assistance Track (CAsT) 2022 and ClariQ, in this chapter, as originally presented in Section 3.6.2.
For further information about the used datasets, we also provide a summary of their statistics in
Table 7.3.

The TREC CAsT 2022 dataset includes a collection of evaluation topics in the form of
search conversations, a mixed-initiative question pool for the mixed-initiative subtask, and three
document collections. The three document collections are: (1) The KILT Wikipedia dump from
2019/08/01, consisting of 5 million articles; (2) The MSMARCO V2 document corpus from the
2021 TREC Deep Learning Track, consisting of 11.9 million documents from the Bing search
engine; and (3) The TREC Washington Post collection (V4 2020), consisting of 728,626 news
articles from 2012 to 2020. The evaluation topics include a dialogue tree that represents all
possible conversations between the user and the system. Figure 7.3 illustrates a CAsT 2022
dialogue tree composed of 1 main topic, 3 sub-topics, and 5 user utterances. As depicted in
Figure 7.3, user utterance u1 can appear in all sub-topics, including (1) u1 : r1 : u2 : r2; (2)
u1 : r1 : u3 : r3 : u4 : r4; and (3) u1 : r1 : u3 : r3 : u4 : r5. However, for the purpose of evaluating
performance in the conversational search task, u1 can only be evaluated in sub-topic (1) (Owoicho
et al. 2022). For each user utterance, in the CAsT 2022 mixed-initiative sub-task, the system
can pose questions to the user to gain additional context. For the mixed-initiative sub-task, each
submitted system would retrieve assessments for the top-one clarifying question returned per
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turn. These assessments were obtained by TREC CAsT organisers using crowdsourcing to gather
judgments of relevance, diversity, and novelty. After submitting the clarifying questions to TREC
CAsT 2022, the organisers gathered user feedback for the top-ranked question in each turn. The
feedback for the clarifying question serves as context to rewrite the raw utterance. In this work
to evaluate the clarification questions not returned among the top-one processed questions by
the organisers, additional relevance judgements were conducted following the same procedure
as Owoicho et al. (2022). We engaged five workers to assess each turn and clarification question
pair, given a conversation context as exemplified by Figure 7.4. Furthermore, following CAsT
2022 (see Section 3.7.2), our generated clarification questions are evaluated in terms of: relevance
(follows logically from previous conversation), novelty (adds new information), and diversity
(number of options provided). The final judgment for each question is based on a majority vote
from the workers (mode), or an average of all judgments if there is no clear majority. Following
the same used guidelines in CAsT 2022 (Owoicho et al. 2022), to eliminate low quality judgments,
we identified and inspected instances of low-quality questions within each topic. Using these
inspections, we filtered out judgements made by workers who deviated from our standards, such
as labeling a clearly non-relevant question as moderately relevant (i.e. a score of 3 instead of 0).
For example, we anticipate that the question "Are you looking for a specific web site?" should
be judged as non-relevant or partially relevant for the user utterance "How can I demonstrate
this?" in the example of Figure 7.4. If a worker rated it as relevant or highly relevant, we would
eliminate their assessments for the entire topic.

ClariQ (see Section 3.6.2) is a crowdsourced dataset for clarifying questions in open-domain
for single and multi-turn conversations, which is based on ambiguous queries from the TREC
Web tracks (Clarke et al. 2011). We use the training and development sets of ClariQ for training
our T5MI and T5Ranking models. Indeed, this is necessary as CAsT 2022 only provides an
evaluation set for clarifying questions and does not include any means to evaluate the task of
classifying clarification needs. Furthermore, the ConAI3 (Aliannejadi et al. 2020a) challenge has
a leaderboard on clarification need identification using the ClariQ dataset. We use this leaderboard
in addressing RQ 7.1. Moreover, as ClariQ addresses both (1) "When to ask clarifying questions
during dialogues," and (2) "Which clarifying questions should be asked?", we can employ Multi-
Task Learning using the ClariQ dataset tasks, including clarification need identification and
asking clarifying questions, to train our MTL T5MI model. However, for evaluating approaches
on the asking clarifying questions task, we solely use the CAsT 2022 dataset as the ClariQ dataset
does not provide an evaluation for generating clarifying questions.

7.3.2 Baselines

To demonstrate the effectiveness of our proposed ORConvQA3:CNC+Askng method (refer to
Equation (7.2)), which includes our hybrid method for generating and selecting clarifying
question (T5MI+GTR+T5Ranking), we compare it with the 11 baseline systems listed as (a)-(k)

147



148_2-3 | G037*

USER: That’s not quite right. I’ve heard that having a degree is not as important as it used to be for breaking 
into the tech industry.

SYSTEM: That’s true. The days of jobs always requiring college degrees are over. Tech companies also care 
about what you can do and whether you know your stuff. That’s why step one is building a foundation of 
technical knowledge. The good news is that this has never been easier. Some resources can teach you 
whatever kind of technical skills you want to learn, ranging from web programming to machine learning 
algorithms.

USER: How can I demonstrate this?

SYSTEM: Are you looking for a specific web site?
0 1 2 3

Relevance

Novelty

Diversity

Figure 7.4: Example of evaluating clarifying questions based on levels of relevance, novelty, and
diversity (0-3) (Owoicho et al. 2022).

Table 7.4: List of baselines.

Baseline Architecture Trained dataset Input
generating clarifying questions

(a) T5-raw (Section 3.6.4) encoder-decoder ClariQ uk
(b) T5-rewrite (Section 3.6.4) encoder-decoder ClariQ ur
(c) GPT-3-raw (Section 3.6.4) decoder only CAsT 2021 uk
(d) GPT-3-rewrite (Section 3.6.4) decoder only CAsT 2021 ur
(e) GPT-3-full-context (Section 3.6.4) decoder only CAsT 2021 Hk,uk

selecting clarifying questions
(f) BM25 (Section 2.2) sparse - ur
(g) miniLM-BERT (Section 3.6.4) cross-encoder ClariQ ur
(h) ANCE (Section 2.4.2) bi-encoder MSMARCO ur
(i) monoT5 (Section 2.4.1) cross-encoder MSMARCO ur
(j) ColBERT (Section 2.4.3) bi-encoder MSMARCO ur
(k) TCT-ColBERT (Section 2.4.2) bi-encoder MSMARCO ur

in Table 7.4.

• Generative baselines: In particular, the baselines (c)-(e) use GPT-3 (see Section 2.3.3)
with few-shot prompting from the CAsT 2022 data (see Section 3.7.2). We select these
GPT-3 baselines because GPT-3 is a state-of-the-art generative model that can be the basis
for creating the strongest generation of clarifying question baselines. In addition, we
include Single-Task Learning baselines (a)-(e) (Table 7.4 (top-half)), based on T5 (see
Section 2.3.1) and GPT-3 (see Section 2.3.3), for comparison with our Multi-Task Learning
T5MI model, jointly learning the clarification need classification and the generation of
clarifying question.

• Selective baselines: Baseline (f), BM25 (see Section 2.2), ranks questions using BM25
with an automatic rewritten query. Baseline (g), miniLM-BERT (see Section 3.6.4),
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employs a two-step approach to question selection. First, a candidate pool of questions is
selected using the all-MiniLM-L6-v2 model (Wang, Wei, Dong, Bao, Yang & Zhou 2020).
Then, these candidates are re-ranked using a BERT model (see Section 2.3.2), trained on
the ClariQ dataset. In addition, for baselines (h)-(k), we use recent existing retrievers,
mostly fine-tuned on MSMARCO, without further fine-tuning.

To evaluate the components of our proposed ORConvQA3:CNC+Askng method in generating
and selecting questions, we also include two additional variant baseline methods:

(m) "Generation Only", which relies solely on T5MI to generate clarifying questions, and
(n) "Selection Only", which only employs the clarifying question selection component, i.e.

GTR (see Section 2.4.2).

7.3.3 Experimental Implementations

Hyperparameter settings: For baselines (a)-(g), we directly use the results provided by the CAsT
2022 organisers as they do not provide the models to allow further reproduction. Furthermore,
we implement the dense retriever baselines (h) ANCE 4, (i) monoT5 5, (j) ColBERT 6, and (k)
TCT-ColBERT 7 using their various provided checkpoints including passage_ance_firstp,
castorini/monot5-base-msmarco, colbertv2.0, and castorini/tct_colbe
rt-v2-hnp-msmarco, respectively. For the selecting clarifying question model (GTR) 8, we
use the sentence-transformers/gtr-t5-large checkpoint.

We implement the T5MI and T5Ranking models using PyTorch models from Hugging-
Face (Wolf et al. 2020), namely castorini/monot5-large-msmarco (Nogueira, Jiang,
Pradeep & Lin 2020a). The T5MI and T5Ranking models are configured as follows: the maxi-
mum sequence length is set to 512, the number of training epochs is set to 20, the batch size is
set to 16, and the learning rate is set to 5e−5. The T5MI and T5Ranking models are fine-tuned on
a NVIDIA RTX A6000. To train T5MI, during the evaluation step, we selected the best training
model checkpoint by using the highest F1-measure, which is calculated as the percentage of
correctly predicted first tokens generated by the model with the development set of the ClariQ
dataset. As previously described in Section 3.5.2, the target tokens "1", "2", "3", and "4" corre-
spond to the level of importance of asking a clarifying question ak. The lower the number, the
less important it is to ask a clarifying question. For text generation, we use a beam search with a
beam width of 5.
Evaluation metrics: To evaluate the Clarification Need Classification, we use typical classifi-
cation metrics such as Precision, Recall, and F1, as previously described in Section 3.5.3. To
evaluate the effectiveness of Asking Clarifying Questions, as described in Section 3.6.3), we
apply P@1 (using a relevance cutoff at two as positive for binary measures), and assess based on
4 https://github.com/microsoft/ANCE/ 5 https://huggingface.co/castorini/monot5-base-msmarco
6 https://github.com/stanford-futuredata/ColBERT/ 7 https://huggingface.co/castorini/tct_colbert-v2-hnp-msmarco
8 https://huggingface.co/sentence-transformers/gtr-t5-large
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Table 7.5: Accuracy of our Multi-Task Learning T5MI model for Clarification Need Classification
(ClariQ test set) compared to Single-Task Learning systems on the ConvAI3 leaderboard.

Rank Creator Model Name Precision Recall F1
1 TAL ML Roberta+++ 59.81 65.57 60.70
2 T5MI (ours.) T5MI 56.89 60.66 58.39
3 Cactusjam Roberta+Stats 59.63 59.02 54.16
4 TAL ML Roberta++ 52.90 55.74 52.53

three criteria: relevance, novelty, and diversity. To evaluate passage retrieval performance, as in-
troduced in Section 2.7, we adopt the NDCCG@3, MAP@1000, MRR@1000, and Recall@1000
metrics used in CAsT 2022. We then use paired t-tests to determine the statistical significance
of performance differences between the systems’ performances.
Passage retrieval pipeline: We use the PyTerrier platform (see Section 2.5) for indexing and
retrieving passages. We implement a hybrid sparse-dense retrieval model, as described in
Section 2.6, which combines the sparse retrieval method (DPH with Bo1 (Amati & Van Rijs-
bergen 2002) query expansion) and the dense TCT-ColBERT (see Section 2.4.2) applied on a
FAISS (Johnson et al. 2021) index. The passages returned by both retrieval models are merged
and reranked using monoT5 (see Section 2.4.1). We employ a hybrid of sparse and dense retrieval
due to its demonstrated high effectiveness on the MSMARCO v2 dataset (which is part of the
CAsT 2022 document collection) as shown by Wang, MacAvaney, Macdonald & Ounis (2021b).

7.4 Results Analysis

We now address each of RQs 7.1-7.4 (see Section 7.3) in turn.

7.4.1 RQ 7.1: Identifying Clarification Needs

In this section, we focus on the accuracy of the mixed-initiative system for asking clarifying
questions on the clarification need classification. Table 7.5 shows the performance of our Multi-
Task Learning (MTL) T5MI model compared with Single-Task Learning (STL) systems from the
ConvAI3 leaderboard on the test set of the ClariQ dataset. Our MTL T5MI model is trained as
described in Section 7.2.3.

Table 7.5 shows that Roberta+++ by TAL ML has the highest Precision, Recall, and F1 scores
(59.81, 65.57, 60.70 respectively), followed by our MTL T5MI model. A further investigation
of the results reveals that the high performance of Roberta+++ is due to its use of both the user
utterance uk and the user feedback uk2 in its prediction of clarification need ak (Li et al. 2020).
In contrast, T5MI only considers the user utterance uk. Moreover, in reality, the user feedback
can only be obtained by asking clarifying questions. This suggests that the effectiveness of the
Roberta+++ model may be limited in real-world applications, as it relies on user feedback that
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Table 7.6: Evaluation results on TREC CAsT 2022 compared to the baselines. ⋆, †, and ‡
denote a performance that is significantly different compared to our hybrid method for generating
and selecting clarifying questions (T5MI+GTR+T5Ranking), (m) Selection only baseline, and
(n) Generation only baseline (paired t-test, p < 0.05), respectively; The highest value for each
measure is highlighted.

Approach
Asking Clarifying Questions

Relevance@1 Novelty@1 Diversity@1
generation baselines

(a) T5 raw 0.232⋆‡ 0.166⋆‡ 0.185⋆‡
(b) T5 rewrite 0.320⋆‡ 0.229⋆‡ 0.210⋆‡
(c) GPT-3 raw 0.433⋆‡ 0.263⋆‡ 0.356
(d) GPT-3 rewrite 0.454⋆ 0.346⋆ 0.371
(e) GPT-3 full context 0.119⋆‡ 0.073⋆‡ 0.082⋆‡

selection baselines
(f) BM25 0.345⋆ 0.293⋆ 0.307
(g) miniLM-BERT 0.371⋆ 0.317⋆ 0.395
(h) ANCE 0.253⋆† 0.166⋆† 0.190⋆†
(i) monoT5 0.247⋆† 0.181⋆† 0.151⋆†
(j) ColBERT 0.217⋆† 0.171⋆† 0.137⋆†
(k) TCT-ColBERT 0.186⋆† 0.132⋆† 0.122⋆†

ours.
(m) Selection only 0.356⋆ 0.284⋆ 0.222⋆
(n) Generation only 0.543 0.434 0.336

Hybrid (T5MI+GTR+T5Ranking) 0.567 0.494 0.369

isn’t always immediately available.
In answer to RQ 7.1, we find that our MTL T5MI model through Multi-Task Learning by

sharing the tasks of clarification need identification and the generation of clarifying question is
overall effective.

7.4.2 RQ 7.2: Quality of Clarifying Questions

In this section, we investigate the performance of our hybrid method (T5MI+GTR+T5Ranking)
for generating and selecting clarifying questions (denoted by Hybrid in Table 7.6), in comparison
to the baselines (a)-(n) (described in Section 7.3.2) on the test sets of the CAsT 2022 dataset for
asking clarifying questions. Table 7.6 presents the evaluation results, comparing our proposed
hybrid method in comparison with various baselines (see Section 7.3.2). The focus of this
section is on the left-half of Table 7.6, which presents the evaluation results for asking clarifying
questions. We evaluate the performance of various approaches using the P@1 metric (threshold
2), as per the CAST 2022 evaluation methodology, averaging across the utterances of 205 users.
We calculate the metric based on three criteria: relevance (Relevance@1), novelty (Novelty@1),
and diversity (Diversity@1), as described in Section 7.3.3.
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• Comparison of Our Proposed Hybrid Method with the Baselines (a)-(n): From the
table, we observe that our proposed hybrid method (T5MI+GTR+T5Ranking) achieves the
highest performance, significantly outperforming all generation and selection baselines on
Relevance@1 and Novelty@1. However, for Diversity@1, the baseline (g) miniLM-BERT
is the highest performing; however, there is no significant difference between this baseline
and our proposed ORConvQA3:CNC+Askng method. In addition, our proposed hybrid method
(T5MI+GTR+T5Ranking) significantly outperforms the baselines (a), (b), (e), and (h)-(m)
in terms of Diversity@1 (paired t-test, p < 0.05). Comparing our proposed hybrid method
(T5MI+GTR+T5Ranking) and its variants (see Section 7.3.2) , the results in Table 7.6
show that our proposed hybrid method (T5MI+GTR+T5Ranking) outperforms both the (m)
‘Selection only’ and (n) ‘Generation only’ variant methods on all evaluation metrics criteria,
with the improvement being significant compared to the (m) ‘Selection only’ baseline. We
further analyse the results to determine the reason for the lack of a significant difference
between our proposed ORConvQA3:CNC+Askng method and the baseline (n) ‘Generation
only’. By doing this, in Section 7.4.5, we conduct an analysis that qualitatively highlights
the differences between the generated and selected clarifying questions within our proposed
system.

• Comparison of Our (n) ‘Generation only’ Variant with Other Generative Baselines
(a)-(e): We observe that our (n) ‘Generation only’ baseline (our generation for clarifying
question T5MI model) exhibits a better performance than the other generative baselines (a)-
(e), significantly outperforming them (indicated by ‡) in terms of Relevance@1, Novelty@1,
and Diversity@ (except (d) ‘GPT-3 rewrite’ on all evaluation criteria and (c) ‘GPT-3 raw’ on
Diversity@1). These results show that the Multi-Task Learning T5MI model outperforms
the Single-Task Learning baselines (a)-(e), which are based on the T5 and GPT-3 models.
This is exemplified by the Relevance@1 score of our T5MI model, which is 19.6% higher
than that of the best performing Single-Task Learning baseline ((d) GPT-3 rewrite), and
by the Novelty@1 score, which is 25.4% more than the corresponding score of the same
baseline. These comparisons show that the advantage of using the Multi-Task architecture
is that it can learn to share information between the two combined tasks, allowing the
model to generate more informative and relevant clarifying questions. We also analyse
why there is no significant difference between our (n) ‘Generation only’ (T5MI), GPT-3-
Rewrite (wrt. Novelty@1 and Diversity@1), and GPT-3-Raw (Diversity@1). This is likely
explained in that models based on GPT-3 generate more diverse and novel text, due to
their 175B parameters, compared to our T5MI model, which has 220× fewer parameters
(770M). In addition, Table 7.6 shows that the baseline (e) GPT-3-full-context’ has the
lowest performance on all evaluation criteria. A closer examination of the outputs from
the baseline (e) GPT-3-full-context’ provides insights into this result. In particular, of the
205 responses generated by this baseline, only 28 are classified as clarifying questions by
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Table 7.7: Effectiveness of different input sequences for rewriting the current user utterance uk
using the T5QR model. † denotes a performance that is significantly worse than the input sequence
Hk;ck;uk_2;uk (paired t-test, p < 0.05); The highest value for each measure is highlighted.

Context Sequence NDCG@3 MAP MRR

Full context
Hk;ck;uk_2;uk 0.359 0.209 0.551
Hk;uk;ck;uk_2 0.295† 0.162† 0.463†

Clarifying questions and user
feedback

c1;r1; ...;ck;uk_2;uk 0.323† 0.191† 0.527†
c1;r1; ...;uk;ck;uk_2 0.271† 0.146† 0.445†

the organisers, which typically contain a question mark (?). The remaining 177 responses
are identified as direct answers to the user’s utterances rather than asking the questions for
clarification. This result explains the baseline (e)’s lower performance in comparison to
other models.

• Comparison of Our (m) ‘Selection only’ Variant with Other Existing Dense Retrievers
Baselines (h)-(k): We find that the (m) ‘Selection only’ baseline (our selection for clarifying
question GTR model) significantly outperforms (indicated by ‡) other existing dense
retrievers and the state-of-the-art ranking baselines (h)-(k) on all evaluation criteria. In
particular, our ‘Selection only’ method shows an improvement up to 91.4% in Relevance@1,
115.2% in Novelty@1, and 81.9% in Diversity@1 over the baseline (k) TCT-ColBERT.
These findings demonstrate the GTR model’s benefits and effectiveness compared to
existing dense retrievers and state-of-the-art reranking baselines for selecting clarifying
questions.

Therefore, in response to RQ 7.2, we find that our hybrid method (T5MI+GTR+T5Ranking)
for generating and selecting clarifying questions has the best overall effectiveness, yielding
statistically significant improvements in terms of Relevance@1 and Diversity@1 over the strong
baselines (a)-(k) on the CAsT 2022 dataset. In addition, the use of Multi-Task Learning is shown
to improve the performance of the T5MI model in asking clarifying questions, compared to the
performance of single-task learning generative baselines like GPT-3 and T5.

7.4.3 RQ 7.3: Rewriting the Current Utterance

Next, we perform a comparison of the effectiveness of four different input sequences for rewrit-
ing the current user utterance uk using the T5QR model (see Section 7.2). A successful rewriting
will result in improved performances on passage ranking. The input sequences examined in this
study include the use of all previous user utterances and system responses (Hk = [⟨ui,ri⟩]i = 1k−1),
or the use of all previous clarifying questions and user responses (c1:k−1;u1_2:k−1_2) in combi-
nation with the relative position of the current user utterance uk and the clarifying question ck.
Table 7.7 presents the results of our experiments, where the impact of the various input sequences
upon passage ranking is evaluated using NDCG@3, MAP, and MRR (see Section 2.7).
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The results from the table reveal that the input sequence consisting of all previous user
utterances and system responses, followed by the clarifying question, user response, and the
current user utterance (Hk;ck;uk_2;uk), yields the highest performance for all three measures,
with an NDCG@3 of 0.359, MAP of 0.209, and MRR of 0.551. This input sequence significantly
outperforms the other input sequences (indicated by †) in terms of NDCG@3, MAP and MRR
(paired t-test, p < 0.05). In addition, these results indicate that the input sequence using all
previous user utterances and system responses outperforms an input sequence that employs all
previous clarifying questions and user responses. We postulate that when rewriting the current
user utterance uk, the use of all previous user utterances and system responses in the input
sequence of the T5QR model allows the model to benefit from the context and information
provided by these previous system responses. Furthermore, our results show that the input
sequence that includes the current user utterance uk at the end performs better than the sequence
that appends the user response uk_2 at the end. This is likely due to the fact that when the user
response uk_2 is appended at the end of the input sequence, the T5QR model focuses on it instead
of the current utterance uk, hence it does not provide an accurate rewrite of the current user
utterance. For instance, consider the following dialogue: the current utterance uk is “Interesting.
Why is the A50 better?", to which the system responds with a clarifying question ck of "Would
you like to see reviews on the Galaxy A50?", and the user then replies with "yes, I’m very
interested about it". The rewritten utterance ur for the input sequence that appends the user
response uk_2 at the end is "Yes, I’m very interested about the Galaxy A50." while the current
user utterance uk that would be appended is "Why is the Galaxy A50 better than the Moto G7
and Moto G7 Power?".

In response to RQ 7.3, we conclude that the input sequence Hk;ck; uk2;uk is the most effective
for rewriting the current user utterance using the T5QR model. This sequence yields the highest
values for NDCG@3, MAP, and MRR and produces statistically significant improvements
compared to other input sequences. Hence, to address RQ 7.4, we employ the input sequence
Hk;ck;uk_2;uk with the T5QR model for rewriting the current user utterance uk and compare it
against the baselines for passage retrieval.

7.4.4 RQ 7.4: Effectiveness on Conversational Search

We now investigate the passage retrieval performance of our proposed ORConvQA3:CNC+Askng

method (as defined in Equation (7.2)) and the baselines (a)-(g) (described in Section 7.3.2) on the
CAsT 2022 test set (see Section 3.7.2). Table 7.8 shows the effectiveness of various clarifying
question approaches when applied to the T5QR model, using the input sequence Hk;ck;uk_2;uk

(as described in Section 5.3). The results are obtained from a passage retrieval pipeline, outlined
in Section 4.3. The last row of the table shows the effectiveness of the automatically rewritten
questions without using clarifying questions. Unfortunately, we cannot report results for the
baselines (h) to (n), since TREC CAsT 2022 has only released the user feedback uk_2 (see
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Table 7.8: Evaluation results on TREC CAsT 2022 compared to the baselines. ⋆ denotes a
performance that is significantly different compared to our proposed ORConvQA3:CNC+Askng
method (paired t-test, p < 0.05); The highest value for each measure is highlighted.

Approach
Retrieval

NDCG@3 MAP MRR Recall
generation baselines

(a) T5 raw 0.260⋆ 0.133⋆ 0.379⋆ 0.491⋆
(b) T5 rewrite 0.255⋆ 0.134⋆ 0.386⋆ 0.501⋆
(c) GPT-3 raw 0.348 0.194 0.517 0.526
(d) GPT-3 rewrite 0.343 0.199 0.518 0.539
(e) GPT-3 full context 0.343 0.200 0.530 0.535

selection baselines
(f) BM25 0.325 0.192 0.503 0.525
(g) miniLM-BERT 0.328 0.178⋆ 0.511 0.511⋆

ours.
ORConvQA3:CNC+Askng 0.359 0.209 0.551 0.545

without using clarifying questions.
User’s Utterances 0.355 0.202 0.542 0.541

Section 7.3.1) for the top-ranked question in each turn of the submitted run. Note that the
omission of results for models (h-n) does not prevent the RQ2 from being analysed.

Comparison of Our Proposed ORConvQA3:CNC+Askng Method with the Baselines (a)-(g)
for Passage Retrieval. On analysing Table 7.8, we observe that our ORConvQA3:CNC+Askng

method outperforms all the baselines (a)-(g) on all passage ranking evaluation measures. In addi-
tion, our proposed ORConvQA3:CNC+Askng method demonstrates a significant improvement over
the T5-based baselines (a) and (b) and also significantly outperforms miniLM-BERT (baseline
(g)) in terms of MAP and Recall. Furthermore, our proposed ORConvQA3:CNC+Askng method
stands out as the only one with an improved performance compared to the automatically rewritten
utterances without using clarifying questions (albeit not by a significant margin). These results
raise the question as to why our proposed ORConvQA3:CNC+Askng method does not outperform
the baselines (c)-(f). As explained in Section 7.3.1, Figure 7.3, in the TREC CAsT dataset (see
Section 3.7.2), the user utterance evaluation is based on sub-trees, and in particular when a user
utterance involves multiple sub-trees, the assessment for passage retrieval is based solely on the
first sub-tree.

The evaluation of an approach’s effectiveness in asking clarifying questions on the passage
retrieval task is consequently limited, since it only considers a subset of the clarifying questions
and ignores the corresponding user feedback. Hence, evaluating an approach for asking clarifying
questions on passage retrieval does not take into account a significant portion of the clarifying
questions and their corresponding user feedback. On closer inspection, we observe that negative
user feedback such as “I don’t know” or “not related to my search”, impacts the T5QR query
rewriting model. Indeed, when receiving negative feedback, the T5QR model may fail to
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incorporate the clarifying questions and feedback to improve the user’s utterance, resulting
in similar rewritten queries to those without using clarifying questions. This leads to little
differences between baselines (c)-(f) compared to using the automatically rewritten utterances
without clarifying questions. Hence, as a further investigation, in Section 7.4.6, we present an
analysis of the number of users’ negative feedback received for each baseline.

In answer to RQ 7.4, we conclude that our proposed ORConvQA3:CNC+Askng method does
help to improve the overall passage retrieval performance of a mixed-initiative conversational
search system, yielding statistically significant improvements over the baselines (a) - (b) and (g)
on TREC CAsT 2022.

7.4.5 Comparative Analysis

In this section, we first aim to evaluate the ranking performance of our generated clarifying
questions compared to those selected by our clarifying question selection component. We also
delve into a comparative study on how the generated and selected clarifying questions differ in
terms of Diversity, Novelty, and Relevance, as presented in Table 7.6 in Section 7.4.2. Firstly, on
inspection of the results, we observe that, out of 176 generated clarifying questions, the T5ranking
model is the most effective for 94, thus further highlighting its superior performance.

Secondly, in terms of Diversity, the generated questions outperform the selected ones, with a
count of 49 versus 19, indicating their wider range. Novelty is a closer contest, with 41 instances
for the generated questions compared to 42 selected by our selection for clarifying question GTR
component, implying a near-equal potential for introducing unique aspects. In terms of Relevance,
the generated questions take the lead with 63 instances over 25 selected by our component, which
could reflect a more direct relationship of the generated queries to the user’s information needs.

In conclusion, this section highlights the effectiveness of generated clarifying questions,
demonstrating superiority in ranking and diversity. However, novelty remains similar, affirming
the value of selecting questions. These findings underline the potential of a hybrid approach for
producing clarifying questions.

7.4.6 User Feedback Analysis

Following the results in Section 7.4.4, we perform an analysis of the negative feedback
received from the users in the TREC CaST evaluation for our hybrid method (T5MI+GTR+T5Ranking)
as well as for each baseline (a)-(f). Indeed, the evaluation Section 7.4.4 is based on effectiveness
and does not consider if there is any implied sentiment in the utterance a user makes in response
to a clarifying question. Indeed, we argue utterances containing positive feedback can be in-
dicative of the usefulness of the corresponding clarifying question in the conversation. Hence,
an effective approach for asking clarifying questions should exhibit more positive sentiment in
user’s utterances, and less negative sentiment.
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Figure 7.5: Comparison of Sentiment Analysis Results on different asking clarifying questions
approaches.

To separate the positive and negative user feedback, we fine-tune the T5-base model using 239
manually annotated examples of user feedback from the CAsT 2021 (see Section 3.7.2) dataset.
The model is fine-tuned to classify the user’s response to a clarifying question by generating
the tokens "positive", "negative", or "neutral". For example, a positive sentiment is predicted
for an utterance such as “Yes, I’m very interested in it", while a negative sentiment is predicted
for “I can’t understand you". On the other hand, an utterance like “I’d like to know how to
make lotion at home" is predicted as neutral. Figure 7.5 shows the distribution of feedback
(“positive", “negative", and “neutral") across the different compared approaches, as predicted by
the T5 classifier. From the figure, it can be seen that the feedback received by our hybrid method
(T5MI+GTR+T5Ranking) has the highest number of positive feedback (145), followed by T5
rewrite (78). The lowest number of positive feedback is found for GPT-3 raw (18). Regarding
negative feedback, the highest number of negative feedback are received by users for T5 raw
(184), followed by T5 rewrite (161) and miniLM-BERT (153). On the other hand, the lowest
number of negative feedback was noted for our hybrid method (T5MI+GTR+T5Ranking) (48),
confirming its overall good performance compared to other approaches. For the neutral sentiment,
the highest number of neutral feedback is observed for GPT-3 raw (112), followed by GPT-3
rewrite (94) and BM25 (80). The lowest number of neutral feedback is noted for T5 raw (43).
Overall, these results confirm that our hybrid method (T5MI+GTR+T5Ranking) improves the
user’s predicted satisfaction with the clarifying questions – compared to other baseline methods –
based on the users’ sentiment expressed in response to the asked clarifying questions.

7.5 Conclusions

In this chapter, to further effectively address the ambiguities in conversational questions, we
proposed an ORConvQA3:CNC+Askng method (as defined in Equation (7.2)), including a hybrid
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method (T5MI+GTR+T5Ranking) for generating and selecting clarifying questions, in mixed-
initiative conversational search, combining the strengths of clarifying question generation and
selection. To do so, we leveraged Multi-Task Learning to simultaneously determine clarification
needs and generate clarifying questions called T5MI, and GTR to select questions from the pool.
The candidate questions from both approaches are then scored using a text generation model
for point-wise question classification called T5Ranking. Our proposed ORConvQA3:CNC+Askng

method directly addressed the issue presented in Gap 3, where we stated that prior works have
not focused on a comprehensive approach for asking clarifying questions. Instead, they have
either solely generated clarifying questions using generative models or selected them from pre-
determined pools. In addition, no prior work has effectively leveraged Multi-Task Learning to
simultaneously determine when clarifying questions are needed and generate relevant questions
based on the user’s initial query and conversation history. In particular, our investigation in this
chapter aimed to answer four research questions as follows:

We first examined the effectiveness of our T5MI model on clarification need classification
( RQ 7.1). Table 7.5 showed that our T5MI model through Multi-Task Learning by sharing the
tasks of clarification need classification and the generation of clarifying questions was overall
effective. As a result of its demonstrated effectiveness, we have integrated the MTL T5MI
model into our proposed ORConvQA3:CNC+Askng method, leveraging its strengths in clarification
need classification and generation for clarifying question to enhance the overall performance
of our mixed-initiative system to answer RQ 7.2. Next, we showed the effectiveness of our
hybrid method (T5MI+GTR+T5Ranking) in asking clarifying questions, comparing it with both
existing generation and selection baselines for asking clarifying questions (see Table 7.6). These
experimental results showed that our hybrid method (T5MI+GTR+T5Ranking) had the best
overall effectiveness, yielding statistically significant improvements over the strong baselines.
In addition, the use of joint learning was shown to improve the performance of the T5MI
model in asking clarifying questions, compared to the performance of Single-Task Learning
generative baselines like GPT-3 and T5 (see Section 3.6.4). In Section 7.4.3, we showed that
the input sequence Hk;ck; uk2;uk is the most effective for rewriting the current user utterance
using the T5QR model (see Table 7.7). Therefore, we employ the input sequence Hk;ck;uk_2;uk

with the T5QR model for rewriting the current user utterance uk and compare it against the
baselines for passage retrieval in response to RQ 7.4. Table 7.8 showed that our proposed
ORConvQA3:CNC+Askng method, which includes our hybrid method (T5MI+GTR+T5Ranking) for
generating and selecting clarifying questions, improved the overall passage retrieval performance
of a mixed-initiative conversational search system, yielding statistically significant improvements
over the baselines (a) - (b) and (g). Our findings in Section 7.4.5 showed that our generating
clarifying questions is more effective than selecting clarifying questions, especially in terms of
ranking and diversity. This underscores the benefits of using a hybrid approach for producing
clarifying questions. Moreover, in Section 7.4.6, we also performed an analysis of the negative
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feedback received from the user for our proposed ORConvQA3:CNC+Askng method for asking
clarifying questions as well as for each baseline (a)-(f) following the results in Section 7.4.4.
Figure 7.5 presented that our proposed ORConvQA3:CNC+Askng method improves the user’s
predicted satisfaction with the clarifying questions – compared to other baseline methods – based
on the users’ sentiment expressed in response to the asked clarifying questions.

In summary, in this chapter, we further validated the hypothesis of our proposed thesis
statement in Section 1.3 that leveraging MTL can be used to generate more effective clarifying
questions by jointly learning Clarification Need Classification and clarifying question generation.
In this chapter, we concluded that our MTL T5MI model showed marked improvements in clarifi-
cation need identification compared to the baselines. For asking clarifying questions, our hybrid
method (T5MI+GTR+T5Ranking) for generating and selecting clarifying questions, showed
the best overall effectiveness in experiments on the TREC CAsT 2022 dataset, significantly
outperforming existing strong baselines with improvements at P@1 by up to 20% on the rele-
vance criteria and 30% on the novelty criteria. Furthermore, our proposed ORConvQA3:CNC+Askng

method, which includes our hybrid method (T5MI+GTR+T5Ranking), also showed improve-
ments in the overall passage retrieval performance of a mixed-initiative conversational search
system.

In the next chapter, we conduct experiments to demonstrate the effectiveness of our monoQA
model, which uses a text generation model with Multi-Task Learning for both the reranker and
the reader. Our model, which is based on the T5 text generation model (see Section 2.3.1),
is fine-tuned simultaneously for both reranking (in order to improve the precision of the top
retrieved passages) and extracting the answer.
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Chapter 8

monoQA: Multi-Task Learning of
Reranking and Answer Extraction

8.1 Introduction

In Section 3.1, we discussed the challenges of effectively answering user questions in Open-
Retrieval Conversational Question Answering (ORConvQA), including (1) resolving ambiguities
in conversational questions; (2) retrieving and identifying the most relevant passages; and (3)
extracting the relevant answer. In Chapters 6 and 7, we focused on improving the performance of
the ORConvQA system by addressing the challenge of ambiguities in conversational questions.
The analysis of experimental results in these chapters demonstrated that by leveraging Multi-
Task Learning (MTL) and sharing the learner structure, our proposed MTL methods, namely
ORConvQA2 and ORConvQA3, can improve performance on the ORConvQA task.

Unlike Chapters 6 and 7, which addressed the challenge of ambiguities in conversational
questions, this chapter focuses on addressing the retrieval and identification of the most relevant
passages, as well as the extraction of relevant answers. As previously described in Section 3.2,
the ConvQA task consists in understanding the question based on a given conversational history,
and extracting an answer from a given passage. This task is an extractive type of Question
Answer (QA), meaning that the answer takes the form of a span in the provided passage, and
can be successfully tackled by employing an extractive or generative reader. As previously
described in Section 3.7, there has been more focus on retrieval as part of the ConvQA pipeline,
known as Open-Retrieval Conversational Question Answering (ORConvQA). In this setting, the
ORConvQA system needs to apply the ConvQA model upon passages retrieved from a large
collection, given a question, before actually extracting the answer.

To address the ORConvQA task, prior works (see Section 3.7.4) have adopted a three-stage
architecture, including a retriever, a reranker, and a reader to extract the answers. First, the
retriever retrieves the top K relevant passages from the collection based on a question and its
conversation history, as mentioned in Sections 3.7 and 3.8. The reranker and the reader then
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respectively rerank and identify an answer in the top K passages. We also adopt this three-
stage architecture in our proposed model in this chapter. However, in order to investigate the
effectiveness of the reranker, we consider a two-stage pipeline including a retriever and a reader, as
a baseline for comparison with our resulting system. For the retriever, as previously discussed in
Section 3.7.4, due to the good effectiveness of bi-encoder dense retrievers, in particular, ConvDR
(see Section 3.7.4), we adapt this type of retrieval models as our retriever. We also consider
other recent existing bi-encoder passage retrievers such as TCT-ColBERT (see Section 2.4.2) and
CQE (Lin et al. 2021a) as baseline passage retrievers.

Based on the literature reviewed in Sections 2.8 and 3.9, Multi-Task Learning (MTL) is
described as a method where multiple different but related tasks are learned simultaneously. For
instance, MTL has been employed in order to efficiently answer the questions posed by the users
(see Section 3.2.4). In this manner, the network structure is shared between the reranker and the
reader. By doing this, existing works (see Sections 3.8.2 and 3.2.4) have also typically approached
reranking and extractive reading as classification tasks, with two fully-connected layers (one for
the reranker and reader, respectively) added to find an answer span for the retrieved passages
(start/end positions) as well as to predict the relevance score of the question to the passage as
previously presented in Section 3.2.4. In this chapter, we use the Multi-Task Learning of the
reranker and the extractive reader as our strongest baseline.

On the other hand, monoT5 (see Section 2.4.1), has been shown to outperform BERT-based
models in passage reranking (Nogueira, Jiang, Pradeep & Lin 2020b). In addition, UnifiedQA (see
Section 3.2.4) has been shown to yield impressive performances on many extractive QA datasets.
However, to the best of our knowledge, as identified in Gap 4, no prior work has combined
monoT5 and UnifiedQA by sharing a single text generation model, in order to directly extract the
answers instead of predicting the start/end positions in a retrieved passage. In this chapter, we
argue that a joint learning using Multi-Task Learning can enhance the learning efficiency and
prediction accuracy of a model for the ORConvQA task, since by sharing the learning model
the reranker and reader can simultaneously predict the answer and reranking score. Indeed, a
joint learning by sharing a single model trained using MTL reduces memory needs and speeds up
inference. Therefore, to address the limitation in Gap 4, we propose a ORConvQA4:Reranker+Reader

MTL method. This method incorporates ConvDR as a retriever and a newly proposed MTL
model, monoQA, which functions as both a reranker and a reader, as previously described in
Section 4.4.4. In addition, we combine the effective monoT5 (to rerank the retrieved passages) and
UnifiedQA (to extract the answer from the highest scored passage) models into a strong baseline.
Moreover, for comparison with our MTL ORConvQA4:Reranker+Reader method, we investigate a
different MTL method by combining the answer extraction with the passage retrieval, rather than
with the passage reranker as in monoQA. By doing this, we also combine the conversational
question rewriting task into a new ORConvQA5:MT L3Tasks method to address the ambiguities in
the conversation question. Therefore, we propose an ORConvQA5:MT L3Tasks MTL method for
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learning the conversational question rewriting, passage retrieval and answer extraction tasks
simultaneously, as introduced in Section 4.4.4.

As stated in Section 1.3, we hypothesise that MTL can be used to enhance the performance
of the ORConvQA task by sharing the learned structure of the reranker and reader in a single text
generation model. This chapter aims to test this hypothesis by simultaneously learning the tasks
of passage reranking and answer extraction. Our method aims to enhance performance on the
ORConvQA task called ORConvQA4:Reranker+Reader (Section 4.4.4).

Our ORConvQA4:Reranker+Reader method includes a model called monoQA, which uses a text
generation model with multi-task learning for both the reranker and reader. Our model, which
is based on the T5 (see Section 2.3.1) text generation model, is fine-tuned simultaneously for
both reranking (in order to improve the precision of the top retrieved passages) and extracting the
answer. Unlike previous work, monoQA makes predictions by generating the first token for the
passage reranking task, followed by the other tokens for the answer extraction task. In addition to
ORConvQA4:Reranker+Reader, we also introduce an ORConvQA5:MT L3Tasks MTL method, which
employs a uniform model to jointly learn the conversational question rewriting, passage retrieval
and answer extraction tasks simultaneously.

Our contributions are summarised as follows:

1. we leverage Multi-Task Learning with a text generation model, namely monoQA, by
sharing the reranker and reader’s learned structure to effectively address the ORConvQA
task;

2. using two different ORConvQA datasets, we compare our ORConvQA4:Reranker+Reader

method (ConvDR + monoQA), to two strong baselines from the literature, and show that
our MTL reranker and generative reader approach yields the best F1, Recall, MRR, and
MAP performance improvements over the strongest baseline with statistically significant
improvements ranging from +5.70% to +23.34%;

3. the proposed MTL monoQA model, which is included in ORConvQA4:Reranker+Reader and
combines the reranker and generative reader significantly outperforms and is twice as fast
for inference than the individual application of the monoT5 and UnifiedQA models for
reranking and extracting the answer.

4. in our ORConvQA5:MT L3Tasks method, we leverage Multi-Task Learning with a uniform
model to jointly learn three tasks: conversational question rewriting, passage retrieval, and
answer extraction, to effectively address the ORConvQA task.

5. we compare our ORConvQA5:MT L3Tasks method (MTL of three tasks) to existing strong
baselines and show an improvement in question answering (QA) performance.

The rest of the chapter is structured as follows: Section 8.2 recalls the definition of the Open-
Retrieval Conversational Question Answering (ORConvQA) task, along with our Three-Stage
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Table 8.1: Notations used in Chapter 8.

Notation Definition
qk A current question
q′k A rewritten question of the current question qk
ak An answer to current question qk
Hk A conversation history i.e. Hk = [⟨q,a⟩]
P+

ret A retrieved passage
C A passage collection
W A sequence of m words i.e. W = {w1,w2, ...,wm}
nk An importance of (or the need for) asking a clarifying question (1-4)
T̂k A contextualised token-level representations
QR(·) A Conversational Question Rewriting function
Retriever A passage retriever function
Reranker A passage reranker function
Reader An answer extractor function

Pipeline for an ORConvQA system using our proposed MTL ORConvQA4:Reranker+Reader method
(see Section 4.4.4). Our ORConvQA4:Reranker+Reader method makes use of ConvDR as a retriever
and our monoQA model as an MTL of the ranker and reader. We present our experimental setup
in Section 8.3 and show the results of the experiments in Section 8.4. Moreover, Section 8.5
describes applying the Multi-Task Learning of three tasks, namely conversational question
rewriting, passage retrieval, and answer extraction, by sharing a single model. Finally, we provide
concluding remarks in Section 8.6.

8.2 Three-Stage Pipeline for an ORConvQA System

In this section, we describe our three-stage pipeline for an Open-Retrieval Conversational
Question Answering (ORConvQA) system. Our system makes use of passage retrieval, through
our proposed MTL ORConvQA4:Reranker+Reader method (see Section 4.4.4), which includes Con-
vDR as a retriever and our monoQA model as an MTL of a reranker and reader. We first
explain how these models are used to perform the passage retrieval, passage reranking, and
answer extraction tasks in Section 8.2.1. An overview of the three-stage pipeline and our pro-
posed MTL ORConvQA4:Reranker+Reader method and its models (ConvDR + monoQA) follows in
Section 8.2.2. Then, we explain how to fine-tune the monoQA model in Section 8.2.3.

8.2.1 Task Definitions

In this chapter, we aim to tackle the tasks of passage retrieval (see Section 3.7), passage
reranking (see Section 3.8), and answer extraction (see Section 3.2). Table 8.1 presents the
notations, which include a subset of the symbols defined in Table 4.1 along with notations specific
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Figure 8.1: The overall framework of our ORConvQA system (consisting of ConvDR &
monoQA).

to this chapter. The passage retrieval, passass reranking, and answer extraction tasks have been
formalised in Equation (4.5), Equation (4.6), and Equation (4.7) of Chapter 4 as follows:

Retriever(qk,Hk,C)→ P+
ret

Reranker(q,P+
ret)→ P+

reranked

Reader(q,P+
reranked,θ)→ ak

(8.1)

where Retriever(·) is a function that retrieves a ranked list of n passages P+
ret = [p1, p2, ..., pn]

from a passage collection C using the user’s current question qk and its conversation history
Hk, Reranker(·) is a function that takes the retrieved passage P+

ret and produces a ranked list
P+

reranked = [p′1, p′2, ..., p′n], and Reader(·) is a function that extracts the response answer ak for
the user. The passage retrieval task aims to retrieve a set of relevant passages or documents
from a large corpus based on the user’s questions. The passage reranking task aims to further
rank the retrieved passages based on their relevance to the user’s question to produce a more
accurate and relevant ranked list. The answer extraction task aims to extract the final answer
from the top-ranked passage identified. In the following section, we describe our proposed
ORConvQA4:Reranker+Reader method and its models (ConvDR + monoQA) to address these tasks.

8.2.2 Models Overview

To tackle the tasks described in Section 8.2.1, as previously introduced in Section 4.3, our
proposed ORConvQA4:Reranker+Reader method consists of four main components: (1) a conversa-
tional question rewriting;(2) a retriever for relevant passages retrieval; (3) a passage reranker for
improving the precision of the top retrieved passages; and (4) a passage reader for generating the
answer from the top retrieved passage, as defined in Equation (8.2) as follows:

ORConvQA4:Reranker+Reader = QR(qk,Hk)

q′k» Retriever(C,N)

P+
Ret» Reranker(q,N,θ)

P+
Reranked» Reader(q,θ)

(8.2)

First, the conversational query rewriting component, QR(·), reformulates the current question
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qk and its context (conversation history) Hk into a standalone, omission-free rewritten question q′k,
which can be used in the later stages in a decontextualised manner. Then, the retriever retrieves
the top K relevant passages from the collection based on the rewritten question q′k as described in
Figure 8.1. In order to produce the final answer, the reranker and reader then re-score and identify
the answer in the top-K passages from the retriever. In doing so, a single model application gives
an answer to both stages - i.e., whether this is a relevant passage and the position of the answer
in the passage. In particular, we present ConvDR, a bi-encoder dense retrieval with MTL for
conversational question rewriting and retriever, along with monoQA, which uses a text generation
model with MTL for both the reranker and reader. We now describe each component of our
ORConvQA4:Reranker+Reader method in detail.

8.2.2.1 ConvDR: Conversation Question Rewriting & Retriever

The left part of Figure 8.1 presents the conversation question rewriting and retriever compo-
nents. As previously introduced in Section 3.7.4, we use a dual-encoder model named ConvDR,
which consists of a question encoder and a passage encoder. Moreover, ConvDR uses a teacher-
student mechanism, where a pre-trained dense retriever (the teacher) guides a query encoder (the
student) to learn from teacher-generated embeddings on oracle reformulated questions (manually
rewritten questions). This enables ConvDR to effectively integrate conversational question rewrit-
ing with passage retrieval tasks. Then, our ORConvDR4 method, as presented in Equation (8.2),
can be defined as:

ORConvQA4 =ConvDR(QR,Retriever)

P+
Ret» Reranker(q,N,θ)

P+
Reranked» Reader(q,θ)

(8.3)

The ConvDR model first encodes the current question concatenated with all previous questions
and passage into the embedding space:

Eq =ConvDR(qc;q1:c−1),

Ep =ConvDR(p) (8.4)

where qc, q1:c−1 and p denote the current question, the historical questions, and a passage,
respectively. Eq and Ep are the embeddings of qc concatenated with q1:c−1 and p, respectively.
ConvDR uses the dot product of Eq and Ep to calculate the retrieval score of a passage p for the
current question qc, with historical questions q1:c−1:

scorert(qc;q1:c−1, p) = Eq ·Ep (8.5)
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To retrieve the top K passages in the embedding space, ConvDR uses FAISS (Johnson et al. 2021),
which is a library for efficient approximate nearest neighbour search. Yu et al. (2021) provides
further details on ConvDR. Finally, we note that, in practice, a rewritten formulation qr of the
current question qc can be used to resolve ambiguities such as coreference resolution.

8.2.2.2 monoQA: Reranker & Generative Reader

The right part of Figure 8.1 presents our proposed monoQA model, which uses T5 (see
Section 2.4.1), a large pre-trained language model designed for text generation. To adopt an
MTL approach to a text generation model for jointly learning from both passage reranking and
answer extraction, the MTL monoQA model makes predictions by generating the first token for
the passage reranking task and the follow-up tokens for the answer extraction task. In particular,
when fine-tuning the T5 model for a downstream task, we use Prompt-based Learning (see
Section 2.8.1), which is a method to modify the model by using a task-specific prompt together
with the input (Liu et al. 2021). We deploy a T5 model to capture the relation between the
rewritten question qr of the current question qc and the passage p as shown in the right part of
Figure 8.1. In particular, we define a monoQA transformation function as MT LmonoQA(·) by
taking the input sequence as follows:

MT LmonoQA( fprompt(qr, p))→ w1,w2, ...,wn (8.6)

where fprompt() is a prompt function (template) to format qr, and the passage into an input
sequence for monoQA. The model is then fine-tuned to generate n target tokens, as shown in
Equation (8.6), where the token w1 is either "true" or "false"1 depending on whether the passage
is relevant or not to question qr, while the follow-up tokens w2, ...,wn are the output sequence for
the answer of the question qr. Then, our ORConvDR4 method, as presented in Equation (8.3),
can be defined as:

ORConvQA4 =ConvDR(QR,Retriever)

P+
Ret» MT LmonoQA(qr,θ)

(8.7)

At inference time, following Nogueira, Jiang, Pradeep & Lin (2020b), we apply a softmax
only on the logits of the "true" and "false" tokens of the first generated token w1 to calculate the
reranker score as follows:

scorerr = softmax(w1) (8.8)

1 We choose "true" and "false" as target tokens following monoT5 (Nogueira, Jiang, Pradeep & Lin 2020b).
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8.2.3 monoQA Training

Given K retrieved passages (see Section 8.2.2.1) and a rewritten question qr , our monoQA
model jointly trains the reranker and the reader as follows:
Joint training: We consider how to fine-tune monoQA in order to generate the tokens for both
passage reranking and answer extraction. In particular, the prompt function (Equation (8.6))
formats a question q and a passage p into an input sequence for monoQA and monoQA then
outputs the contextual representation h. After that, the monoQA decoder takes the previously
generated tokens as input and performs attention over h and then generates the next token. In
particular, given a tuple ⟨q, p,a⟩, the training objective is to minimise the following loss function:

Lgen =
M

∑
i=1

logP(ai|h,a:i) (8.9)

where M is the number of tokens in the ground truth answer a, ai is the ith token in a, and a0 is
the beginning of sequence token (<s>).

We also consider relevance accuracy and word-level F1 (see Section 3.2.3) scores for selecting
the best training model checkpoint during the evaluation step with the development set of the
OR-QuAC dataset. Relevance accuracy is defined as the percentage of correct predictions for the
first token generated from the model. The target token is "true" (the passage is indeed relevant)
or "false" (a non-relevant passage). Following Qu et al. (2020), the word-level F1 is calculated
by first removing stopwords and then considering the overlapping portion of the words in the
prediction and ground truth answer.
Prompt: As previously introduced in Section2.8.1, Prompt-based Learning, is a method to tailor
pre-trained language models to downstream tasks by using a task-specific prompt together with
the input. To fine-tune the monoQA model for passage reranking and answer extraction, we
use Prompt-based Learning to modify the model input. By doing this, we investigate several
prompts in previous works (Khashabi et al. 2020, Nogueira, Jiang, Pradeep & Lin 2020b), and for
completeness we evaluate all of them in order to choose the most effective. Details of the Prompt-
based Learning and their corresponding experiments and results are provided in Section 8.4.2. We
do not investigate Prompt-based Learning for question reformulation since our main contribution
focuses on leveraging the output of a generative model for re-ranking and reading.
Positive and negative passages: Selecting positive and negative passages is a crucial step for
training monoQA. For instance, passages relevant to a question are provided in the ORConvQA
task. All other passages in the collection, which are unjudged, can be viewed as non-relevant
by default. To cope with this issue, following Yu et al. (2021), we employ a hard negative
sampling technique by randomly selecting the negative passage p− for the question q from the
top K retrieved passages by ConvDR. For training monoQA, the output sequence for the positive
passage p+ begins with the token "true" followed by the ground truth answer; the output sequence
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for the negative passage p− begins with the token "false" followed by "CANNOTANSWER".
Model initialisation: We consider the use of different models to initialise monoQA during
training, since we propose to combine monoT5 and UnifiedQA to share a single text genera-
tion model. Moreover, both monoT5 and UnifiedQA are fine-tuned based on the t5-base
model. Therefore, we investigate which of monoT5, UnifiedQA, and t5-base, are suitable for
initialising monoQA (see details in Section 8.4.3).

Next, we evaluate our MTL ORConvQA4:Reranker+Reader method (ConvDR + monoQA) in
comparison to several existing baselines as detailed in the next section.

8.3 Experimental Setup

Our experiments address the six following research questions:

RQ 8.1 How to select the best training model checkpoint in validation steps, i.e. the best
validation loss, the best word-level F1, or the best relevance accuracy?

RQ 8.2 Which of the prompts namely: (a) monoT5 prompt ; (b) UnifiedQA prompt; and (c) our
prompt; lead to the best performance of our monoQA model?

RQ 8.3 Which model to use for initialising monoQA, namely which of: monoT5, UnifiedQA,
and t5-base, lead to the best performance of our monoQA model on the ORConvQA task?

RQ 8.4 How does our propose ORConvQA4:Reranker+Reader method (ConvDR + monoQA)
compare to other existing baselines, namely:

(1). the ORConvQA system proposed by Qu et al. (2020) (see Section 3.7.4);
(2). the ORConvQA system proposed by Qu et al. (2020) but using ConvDR (see Sec-

tion 3.7.4) as a retriever;
(3). using ConvDR as a retriever, monoT5 (see Section 2.4.1) as a reranker, and UnifiedQA

(see Section 3.2.4) as a reader?

RQ 8.5 How does our proposed ORConvQA4:Reranker+Reader method (ConvDR + monoQA),
which is a three-stage pipeline (retriever, reranker, and reader), compare to the two-stage pipeline
baselines (retriever and reader)?

RQ 8.6 How does our proposed ORConvQA5:MT L3Tasks method, which is the MTL of conversa-
tional question rewriting, retriever, and reader using a uniform model, compare to the two-stage
pipeline (retriever and reader) baselines?

168



Table 8.2: Statistics of the used datasets

Dataset Items Train Dev Test
CANARD Dialogs 4,383 490 771

Questions 31,526 3,430 5,571
OR-QuAC Dialogs 4,383 490 771

Questions 25,824 2,808 4,406
documents ∼5.9 million

OR-CoQA Dialogs 1,521 100 100
Questions 23,027 1,494 1,611
documents ∼5.9 million

Figure 8.2: An example dialog and relevant passages from the ORConvQA dataset (Qu et al.
2020).

8.3.1 Datasets

To conduct our evaluation of our proposed ORConvQA4:Reranker+Reader method (ConvDR+monoQA),
we choose the OR-QuAC and OR-CoQA datasets, which are extractive Question Answering
(QA) datasets, as previously described in Section 3.7.2. However, the OR-CoQA dataset can be
also considered as a generative QA dataset because it contains both span and freeform answers.
Indeed, in this chapter, we focus on extractive QA only since we train our monoQA only on
the OR-QuAC training set. In addition, following (Qu et al. 2021), we remove unanswerable
questions from both datasets.

As exemplified in Figure 8.2, a question in either OR-QuAC and OR-CoQA can be ambiguous
and difficult to understand without its context (e.g., q3: "Did he release any other albums as a
solo artist?"). At training time, we fine-tune monoQA by using a manually rewritten query (qr),
which is provided by the OR-QuAC dataset. Thereafter, at inference time, following Dalton et al.
(2020, 2021), Lin, Yang, Nogueira, Tsai, Wang & Lin (2020a), we employ another T5 model
trained using the CANARD dataset to rewrite the OR-QuAC and OR-CoQA test set questions
into context-independent questions that can be used as input for monoQA.

To validate our proposed ORConvQA4:Reranker+Reader method, during training our monoQA
model, we use the OR-QuAC development set by selecting only positive examples (ground
truth consisting of an answer and the corresponding passage for the question) after removing
the unanswerable questions following (Qu et al. 2021). This development set consists of 490
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Table 8.3: List of baselines.

Retriever Reranker Reader
Three-stage pipeline (retriever, reranker, and reader)

(a) bi-encoder (ALBERT) BERT (MTL of reranker and extractive reader)
(b) ConvDR BERT (MTL of reranker and extractive reader)
(c) ConvDR monoT5 UnifiedQA

Two-stage pipeline (retriever and reader)
(d) ConvDR - monoQA (reader)
(e) ConvDR - UnifiedQA
(f) TCT-ColBERT - UnifiedQA
(g) CQE (Lin et al. 2021a) - ORConvQA (reader)

(ORConvQA4:Reranker+Reader) ConvDR monoQA (MTL of reranker and generative reader)

dialogues with 2808 questions in total. For further information about the used datasets, we also
provide a summary of their statistics in Table 8.2.

8.3.2 Baselines and Implementation Details

Baselines: To demonstrate the effectiveness of our proposed ORConvQA4:Reranker+Reader method
(ConvDR+monoQA), we compare it with the seven baseline systems listed as (a)-(g) in Table 8.3

Three-stage pipelines:

(a) The first ORConvQA system has been proposed by Qu et al. (2020) (see Section 3.7.4).
It adopts a duo-ALBERT encoder as the retriever and an MTL of the reranker and reader
by sharing a BERT encoder. We make use of the code provided by Qu et al. (2020);

(b) This baseline is adapted from (a) by replacing the duo-ALBERT encoder passage retriever
(see Section 3.7.4) with ConvDR (see Section 3.7.4) in a similar manner to our proposed
ORConvQA4:Reranker+Reader method (consisting of ConvDR and monoQA). This is a im-
portant baseline to compare with our monoQA model in order to evaluate the reranker and
reader performances. We reproduce the MTL of the reranker and reader models and its
evaluation results provided by Qu et al. (2020);

(c) This baseline uses ConvDR as the passage retriever similarly to our ORConvQA4:Reranker+Reader

method, monoT5 (see Section 2.4.1) as the passage reranker, and UnifiedQA (see Sec-
tion 3.2.4) as the passage reader. It is deployed by using three models in the pipeline
for comparison with our ORConvQA4:Reranker+Reader method (ConvDR+monoQA). This
comparison is done in order to evaluate the performance of using monoT5 and UnifiedQA
separately in comparison with the joint learning of the reranker and reader (monoQA).

Two-stage pipelines:

(d) This baseline uses ConvDR as the passage retriever, and our monoQA reader as the passage
reader without using the reranking results from the monoQA reranker. The reader directly
identifies an answer in the top passage from the retriever;
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(e) This baseline uses ConvDR as the passage retriever and UnifiedQA as the passage reader.

(f) This baseline uses TCT-ColBERT (see Section 2.4.2) as the passage retriever and Uni-
fiedQA as the passage reader;

(g) This baseline uses CQE (Lin et al. 2021a) as the passage retriever and UnifiedQA as the pas-
sage reader. The results of this baseline come from the previous work of Lin et al. (2021a).

Hyperparameter settings: For ConvDR, we reproduce the model and its evaluation results pro-
vided by Yu et al. (2021) to generate the offline passage embeddings from the passage collection
of the OR-QuAC dataset as shown in Figure 8.1. We implement the monoQA model using the fol-
lowing PyTorch models from HuggingFace (Wolf et al. 2020), namely t5-base, castorini/
monot5-base-msmarco, and allenai/unifiedqa-t5-base. Following Qu et al.
(2020), these models are configured as follows: the maximum sequence length is set to 512, the
number of training epochs is set to 10, the batch size is set to 16, and the learning rate is set to
5e−5. The models are trained on a NVIDIA RTX A6000. The average training time of monoQA
is 6.3 hours. The number of parameters in monoQA is approximately 222 million parameters, i.e.
the same as monoT5 and other fine-tuned versions of t5-base. We save the checkpoints every
epoch and evaluate on the development set of the OR-QuAC dataset. We provide the details of
how to select the best checkpoint in Section 8.4.1. For text generation, we use a beam search
with a beam width of 5.
Evaluation metrics: Since we are using the OR-QuAC dataset, we naturally adopt the two
evaluation metrics, namely the word-level F1, and the human equivalence score (HEQ). These
evaluation metrics have been previously introduced in Section 3.2.3. To evaluate the retrieval
performance, as previously described in Section 2.7, we use Mean Average Precision (MAP@10),
Mean Reciprocal Rank (MRR@5) and Recall@5 as metrics for the reranker. For each query, the
top 100 passages are considered. Finally, we use the McNemar’s test to test statistical significance
between the various readers’ performances and the paired t-test for testing significant differences
between the rerankers’ performances.

8.4 Results and Analysis

We now address RQs 8.1-8.3 (see Section 8.3) and conclude with an efficiency analysis.

8.4.1 RQ 8.1: Selecting the Best Model

We investigate how to identify the optimal training checkpoint for our proposed monoQA
model on the OR-QuAC development set. The monoQA model is trained on the OR-QuAC
training set by using the positive p+ and negative passages p− described in Section 8.2.3. In
particular, we use "Question Answering: {q} [sep] {p}" as the prompt function and monoT5 to

171



Figure 8.3: The validation scores of (a) the loss, (b) the relevance accuracy, and (c) the word-level
F1, for each validation step (epochs). • denotes the best number of epoch of each score. The best
number of epochs of the model on loss, relevance accuracy, and word-level F1 scores, are 4, 6,
and 9, respectively.

initialise monoQA. In this section, we consider the performance of each model checkpoint on
both reranking and answer extraction.

We identify the best checkpoint of the model for each measure, namely validation loss,
validation relevance accuracy, and word-level F1 as discussed in Section 8.2.3. Figure 8.3 shows
the best epochs of the model in terms of validation loss, relevance accuracy, and word-level F1
scores, which are 4, 6, and 9, respectively. We then evaluate the models obtained at these epochs
(4, 6, and 9) on the OR-QuAC test set, as depicted in Figure 8.4. Figure 8.4 shows that the model
checkpoint at epoch 9 has the best performance in terms of MAP@10, Recall@5, MRR@5,
word-level F1, and HEQ-Q, whereas in HEQ-D the epoch 6 is the best. Indeed, the model that
exhibits the highest word-level F1 on the validation set is also the best model when evaluated on
the test set in terms of MAP@10, Recall@5, MRR@5, word-level F1, and HEQ-Q.

In response to RQ 8.1, we find that the model that archives the best validation word-level F1
score leads to the best performance model on the testing set. We further use the way to select the
best model checkpoint for RQ 8.2.

8.4.2 RQ 8.2: Prompt-based Learning

To fine-tune the monoQA model for passage reranking and answer extraction, we adopt
Prompt-based Learning (see Section 2.8.1) to modify the model input. We have observed that
several prompts have previously been used in previous work (Khashabi et al. 2020, Nogueira,
Jiang, Pradeep & Lin 2020b). Below we list the templates fprompt() that we consider in this
chapter:
• monoT5 prompt: We adapt the monoT5’s template by replacing the prefix word from “Query:"
to “Question:", the separator token from “Document:" to “Passage:", without using the word
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Figure 8.4: Results on the test set of the OR-QuAC dataset in terms of (a) MAP@10, Recall@5,
and MRR@5, (b) word-level F1 and HEQ-Q, and (c) HEQ-D, of the models at epochs 4, 6, and 9.

Table 8.4: Effectiveness of various prompts for training monoQA.

Prompt
Retrieval QA

MAP@10 Recall@5 MRR@5 F1 HEQ-Q HEQ-D
monoT5 0.708 0.801 0.739 45.6 36.8 4.2
UnifiedQA 0.705 0.800 0.735 45.2 35.3 3.6
Our prompt. 0.713 0.804 0.743 45.2 37.2 4.5

“Relevant:":
“Question : {q} Passage : {p}” (8.10)

• UnifiedQA prompt: UnifiedQA (Khashabi et al. 2020) made use of a ‘\n’ between the current
question and the passage:

“{q} \n {p}” (8.11)

However, under the standard T5 tokeniser, a whitespace such as ‘\n’ does not result in a separate
token, so the end result of this formulation is a simple concatenation of the question and passage:

“{q} {p}” (8.12)

• Our prompt: For comparison with the above templates from the literature, we design a new
template using "Question Answering:" as a prefix and a T5-provided special tokens ([sep]) as
a separator token between the question and the passage:

“QuestionAnswering : {q} [sep] {p}” (8.13)

Table 8.4 shows the results of each evaluated model for each of the above prompts. From the
table, we see that the monoQA model trained by using our designed prompt (Question Answering:
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Table 8.5: Effectiveness of various initialisations for training monoQA. † and ‡ denote a
performance significantly worse than the model initialised using monoT5 and t5-base,
respectively (McNemar’s test, p < 0.05).

Model Retrieval QA
Initialisation MAP@10 Recall@5 MRR@5 F1 HEQ-Q HEQ-D

monoT5 0.713 0.804 0.743 45.2 37.2 4.5
UnifiedQA 0.705 0.801 0.734 43.6†‡ 34.9 5.3
t5-base 0.705 0.799 0.735 45.4 36.9 3.8

{q} [sep] {p}) has the highest performance on all measures, except when it uses the monoT5
prompt (Question: {q} Passage: {p}) for word-level F1.

Therefore, in response to RQ 8.2, we find that the model learned with our designed prompt
has the best overall effectiveness. As a consequence, we use "Question Answering: {q} [sep]
{p}" as the prompt for training monoQA that can be used in RQ 8.3.

8.4.3 RQ 8.3: Model Initialisation

In this section, we examine the effectiveness of the use of the models for initialising monoQA,
namely monoT5, UnifiedQA, and t5-base, on the test set of OR-QuAC. All models are
trained on the OR-QuAC training set by using positive passages p+ and negative passages p−

as described in Section 8.2.3. In particular, we use "Question Answering: {q} [sep] {p}" as the
prompt function because it performed the best according to the experiments in Section 8.4.2.
Table 8.5 presents the results for each evaluated model on the retrieval and question answering
(QA) metrics.

From the table, we see that training monoQA when initialised by monoT5 achieves the
highest performance on the retrieval metrics (MAP@10, Recall@5, and MRR@5). However,
there are no significant differences between all of the models’ retrieval performances. For the QA
performance, the best word-level F1, HEQ-Q, and HEQ-D scores are obtained by the models
that use t5-base, monoT5, and UnifiedQA, respectively. In particular, in terms of word-level
F1, initialising from monoT5 or t5-base significantly outperforms the model trained from
UnifiedQA, but both monoT5 and t5-base initialisations lead to comparable performances.

Therefore, in response to RQ 8.3, we find that the monoQA model initialised from monoT5
has the best overall effectiveness, yielding statistically significant improvements in word-level F1
over using UnifiedQA on the test set of the OR-QuAC dataset. In the following, we use monoT5
to initialise monoQA for answering RQ 8.2 and comparing with the baselines.

8.4.4 RQ 8.4: Effectiveness of monoQA

We investigate the performances of our proposed Multi-Task Learning (MTL) method,
ORConvQA4:Reranker+Reader, which uses ConvDR as the retriever and monoQA as both the
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Table 8.6: Evaluation results on OR-QuAC and OR-CoQA compared to the baselines. † de-
notes a performance significantly worse than our proposed ORConvQA4:Reranker+Reader (Con-
vDR+monoQA) method in terms of word-level F1 (McNemar’s test, p < 0.05); ‡ denotes a
performance significantly worse than our proposed monoQA model in terms of MAP@10, Re-
call@5, and MRR@5 (paired t-test, p < 0.05); The highest value for each measure is highlighted.

Retriever Reranker Reader
OR-QuAC OR-CoQA

Retrieval QA QA
MAP@10 Recall@5 MRR@5 F1 HEQ-Q HEQ-D F1 HEQ-Q HEQ-D

ConvDR (retriever only) - - 0.617 0.745 0.631 - - - - - -
Three-stage pipeline (retriever, reranker, and reader)

(a) bi-encoder (ALBERT) BERT (MTL of reranker and extractive reader) - 0.314‡ 0.309‡ 29.4† 23.7 1.3 - - -
(b) ConvDR BERT (MTL of reranker and extractive reader) 0.518‡ 0.629‡ 0.541‡ 29.8† 22.8 2.3 28.1† 18.9 0
(c) ConvDR monoT5 UnifiedQA 0.590‡ 0.727‡ 0.618‡ 22.2† 11.0 1.6 31.6† 22.8 0

Two-stage pipeline (retriever and reader)
(d) ConvDR - monoQA (reader) 0.617‡ 0.745‡ 0.631‡ 32.9‡ 26.6 3.5 21.9‡ 10.6 0
(e) ConvDR - UnifiedQA 0.617‡ 0.745‡ 0.631‡ 19.6‡ 9.5 1.0 20.7‡ 13.2 0
(f) TCT-ColBERT - UnifiedQA 0.370‡ 0.501‡ 0.386‡ 14.1‡ 6.2 1.0 16.7‡ 9.8 0
(g) CQE (Lin et al. 2021a) - ORConvQA (reader) - 0.415 0.310 32.0 - - - - -
(ORConvQA4:Reranker+Reader) ConvDR monoQA (MTL of reranker and generative reader) 0.713 0.804 0.743 45.2 37.2 4.5 37.3 19.7 0

reranker and reader, in comparison to the baselines (a)-(c) (described in Section 8.3.2) on the
test sets of the OR-QuAC and the OR-CoQA datasets. In Table 8.6, the first row shows the
results of ConvDR as the retriever only and the last row shows the results of our proposed
ORConvQA4:Reranker+Reader method. Table 8.6 (top-half) also shows the results of the existing
baselines (a)-(c). In the table, on the OR-CoQA test set, we only include the question answering
(QA) results since the gold passages for each question are not provided.

From the table, on the test sets of the OR-QuAC and OR-CoQA datasets, we observe that our
proposed ORConvQA4:Reranker+Reader method achieves the highest performance by significantly
outperforming all baselines on all measures, excepting the baseline using monoT5 as the reranker
and UnifiedQA as the reader in terms of HEQ-Q on OR-CoQA. From the table, we also observe
that the baselines (b) and (c) have lower retrieval performances compared to the results of using
ConvDR as the retriever only. According to these findings, the reranker of the baselines (b)
and (c) might have a negative impact on the retrieval performance of the top retrieved passages.
Hence, this might also lead to reducing the performances of the reader of the (b) and (c) baselines.
Moreover, we further analyse why our proposed ORConvQA4:Reranker+Reader method does not
outperform the baseline (c) in terms of HEQ-Q on OR-CoQA. We find that the average number
of tokens in the OR-CoQA’s answer (2.6 tokens per answer) is remarkably short compared to
that of the OR-QuAC’s answer (14.7 tokens per answer) (Qu et al. 2021), and the predicted
answer from the baseline (c) is shorter than that of our proposed ORConvQA4:Reranker+Reader

method. This prediction may lead to our proposed ORConvQA4:Reranker+Reader method having a
lower HEQ-Q score than the baseline (c). As described in Section 8.3.1, our proposed monoQA
model is fine-tuned on the OR-QuAC dataset and evaluated on the OR-QuAC and OR-CoQA
datasets. We postulate that this explains why evaluating the model with OR-CoQA exhibits a
lower performance. Recall from Section 3.7.2 that OR-CoQA has no relevance assessments for
retrieval, and hence we are unable to train a retrieval model for that dataset (which has shorter
answers than OR-QuAC).

In answer to RQ 8.4, we conclude that our proposed ORConvQA4:Reranker+Reader MTL method,
which includes monoQA for the joint learning of the reranker and the reader by sharing a single
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Table 8.7: Comparison of average prediction times for monoQA and separate applications of
monoT5 and UnifiedQA on the OR-QuAC test set.

Model Average Prediction Time
monoQA (MTL of reranker and reader) 23ms
monoT5 (reranker) + UnifiedQA (reader) 44ms

text generation model, does help to improve the overall performance, yielding statistically
significant improvements over the baselines on both the OR-QuAC and OR-CoQA datasets. It
is also of note that such a joint learning can enhance the performances of the models on the
ORConvQA task compared to using monoT5 and UnifiedQA separately. Later in Section 8.4.6,
we also analyse the efficiency of our proposed ORConvQA4:Reranker+Reader method, using the
monoQA model, compared with the individual application of monoT5 and UnifiedQA.

The performances of baselines (b) and (c) on OR-QuAC raise the question as to how do
the baselines (b) and (c) compare to our monoQA model when using the ground truth passages
provided in the OR-QuAC test set instead of using the retrieved passages. We provide such an
analysis in Section 8.4.7, which shows that our monoQA reader achieves the best performance
and significantly outperforms the reader of the baselines (b) and (c) on all measures.

8.4.5 RQ 8.5: Effectiveness of using a Reranker

Next, we examine the effectiveness of our proposed ORConvQA4:Reranker+Reader method (Con-
vDR+monoQA). This method employs a three-stage pipeline using ConvDR as the retriever and
monoQA as both the reranker and reader. We compared our proposed ORConvQA4:Reranker+Reader

method to the two-stage pipeline baselines (d)-(g), which each uses a bi-encoder for retrieval
as input into a reader (see details in Section 8.3.2). This allows to establish the impact of the
reranker. Table 8.6 (bottom-half) presents the results of the baselines (d)-(g). From the table, we
observe that our proposed ORConvQA4:Reranker+Reader method, which is a three-stage pipeline
using ConvDR as the retriever and monoQA as both the reranker and reader, achieves the highest
performance by significantly outperforming all two-stage baselines on all measures – e.g. see
row (d) vs. the last row in Table 8.6.

In answer to RQ 8.5, we conclude that integrating the reranker in the pipeline does help to
improve both the retrieval and QA performances, yielding statistically significant improvements
over the two-stage pipeline baselines.

8.4.6 Efficiency of monoQA

In this section, we measure the efficiency of inference of monoQA, which jointly learns the
reranker and reader, in comparison with using monoT5 as the reranker and UnifiedQA as the
reader separately on the test set of the OR-QuAC dataset. From Table 8.7, we find that the average
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Table 8.8: Evaluation results on OR-QuAC in comparison to the baselines by extracting the
answer on the ground truth passage. † denotes a performance significantly worse than our
proposed monoQA model in terms of word-level F1 (McNemar’s test, p < 0.05). The highest
value for each measure is highlighted.

Reranker Reader F1 HEQ-Q HEQ-D
(b) BERT (MTL of reranker and extractive reader) 40.0‡ 33.0 3.5
(c) monoT5 UnifiedQA 30.0‡ 16.5 1.9
(ours) monoQA (MTL of reranker and generative reader) 56.5 48.7 7.1

prediction time of monoQA is 23ms, whereas the average prediction time of using monoT5 as
the reranker and UnifiedQA as the reader separately is 44ms. This is because monoQA uses a
single model application for addressing both the reranker and reader stages. Indeed, we conclude
that, on the test set of OR-QuAC, our monoQA model is approximately twice as fast in inference
as the individual application of monoT5 and UnifiedQA for reranking and extracting the answer.

8.4.7 Effect of Providing Ground Truth Passages

In this section, we experiment to answer the question concerning how baselines (b) and (c)
(listed in Section 8.3.2) compare to our monoQA model,when using the ground truth passages
provided in the OR-QuAC test set instead of using the retrieved passages. In particular, recall that
baseline (b) is the MTL of the reranker and reader by sharing a BERT encoder, while (c) is the
individual application of monoT5 and UnifiedQA. By doing this comparison, we can control the
impact of the reranker, and consider only the effectiveness of the reader. Indeed, in this setting,
all models predict the answer by using the question and the ground truth passage. Table 8.8
shows the results of each evaluated model on the test set of OR-QuAC.

On analysing Table 8.8, we observe that our proposed monoQA model achieves the best
performance across all measures and significantly outperforms the baselines (b) and (c) in terms
of word-level F1 scores according to the McNemar’s test (p < 0.05). Indeed our monoQA
model’s joint learning of the reader and the reranker can indeed help improve the performance of
the answer extraction.

8.5 Multi-Task Learning of Conversational Question Rewrit-
ing, Passage Retrieval, and Answer Extraction

In this section, we investigate applying the Multi-Task Learning of the three tasks: Con-
versational Question Rewriting, Passage Retrieval, and Answer Extraction. By doing this, we
introduce our proposed ORConvQA5:MT L3Tasks method, which leverages the Multi-Task Learning
of the conversational question rewriting, passage retrieval, and answer extraction tasks.
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Table 8.9: Evaluation results on OR-QuAC compared to the baselines. † denotes a performance
significantly different compared to our proposed ORConvQA5:MT L3Tasks method in terms of
MAP@10, Recall@5, and MRR@5 (paired t-test, p < 0.05); ‡ denotes a performance signifi-
cantly different compared to our proposed ORConvQA5:MT L3Tasks method in terms of word-level
F1 (McNemar’s test, p < 0.05); The highest value for each measure is highlighted.

Retriever Reader
Retrieval QA

MAP@10 Recall@5 MRR@5 F1 HEQ-Q HEQ-D
ConvDR (retriever only) - 0.617 0.745 0.631 - - -

Two-stage pipeline (retriever and reader)
(d) ConvDR monoQA (reader) 0.617 0.745 0.631 32.9‡ 26.6 3.5
(e) ConvDR UnifiedQA 0.617 0.745 0.631 19.6‡ 9.5 1.0
(f) TCT-ColBERT UnifiedQA 0.370† 0.501† 0.386† 14.1‡ 6.2 1.0
(g) CQE (Lin et al. 2021a) ORConvQA (reader) - 0.415 0.310 32.0 - -

(ORConvQA5:MT L3Tasks) MTL of QR, Retriever, and Reader 0.616 0.744 0.627 26.4 12.2 1.5

8.5.1 Multi-Task Learning for Three Tasks

Recall that our proposed ORConvQA4:Reranker+Reader method employs two models consisting
of ConvDR as the retriever and monoQA as the MTL of the reranker and reader (see Section 8.2.2).
In this section, we investigate an approach for the ORConvQA task using a single model that
integrates three components: conversational question rewriting, the retriever, and the reader. To
simplify the model’s complexity, we initially focus on these three components, omitting the
reranker. The integration of all four components, including the reranker, is left as a direction
for future work. To achieve this, we introduce the ORConvQA5:MT L3Tasks method. In particular,
let MT L(·) denotes a joint learning function of the conversational question rewriting, passage
retrieval, and answer extraction as follows:

ORConvQA5:MT L3Tasks = MT L(QR,Retriever,Reader,θ) (8.14)

where θ are the learnable parameters of the model. The model is then fine-tuned to learn from
teacher-generated embeddings on oracle reformulated questions (as mentioned in Section 3.7.4),
retrieve the relevant passages, and extract the answers from retrieved passages.

8.5.2 RQ 8.6: Effectiveness of MTL for Three Tasks

In this section, we investigate the performances of our proposed ORConvQA5:MT L3Tasks

method, which leverages the Multi-Task Learning of conversational question rewriting, reranker,
and reader. We compared our proposed ORConvQA5:MT L3Tasks method to the two-stage pipeline
baselines (d)-(g) (see details in Section 8.3.2) on the test sets of the OR-QuAC. To ensure a fair
comparison with our method, we did not include the three-stage pipeline baselines (a)-(c) (in-
cluding reranker in the pipeline), making them more compatible with our ORConvQA5:MT L3Tasks

method’s architecture. In Table 8.9, the first row shows the results of ConvDR as the retriever
only and the last row shows the results of our proposed ORConvQA5:MT L3Tasks method.

From the table, when evaluating passage retrieval performance on the OR-QuAC dataset
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test sets, we observe that our proposed ORConvQA5:MT L3Tasks method is comparable to the
baselines (d)-(e) as well as when using ConvDR as the retriever only. Moreover, our proposed
ORConvQA5:MT L3Tasks method outperforms the baselines (f)-(g) with a significantly different
baseline (f) on all measures. For the question answering (QA) performance, we observe that
our proposed ORConvQA5:MT L3Tasks method outperforms the baselines (e)-(f) on all measures.
However, our proposed ORConvQA5:MT L3Tasks method had a lower QA performance compared to
the baselines (d) and (g) with a significantly worse performance than the baseline (d) in terms of
word-lever F1. According to these findings, the baseline (d), which employs our monoQA model
as a reader, outperformed our ORConvQA5:MT L3Tasks method. This suggests that incorporating
similar strategies or learning from the strengths of the monoQA model could further enhance
the performance of our ORConvQA5:MT L3Tasks method. In contrast, our ORConvQA5:MT L3Tasks

method, which employs MTL across three tasks within a bi-encoder network, might have a
negative impact on the QA performance. We leave the investigation of how to improve the QA
performance of our proposed ORConvQA5:MT L3Tasks method to future work.

In answer to RQ 8.6, we conclude that combining three tasks: Conversational Question
Rewriting, Passage Retrieval, and Answer Extraction, does help to improve QA performances,
yielding statistically significant improvements over several two-stage pipeline baselines.

8.6 Conclusions

In the thesis statement (stated in Section 1.3), we hypothesised that using Multi-Task Learn-
ing (MTL) for combining the reranker and reader roles within a single text generation model
can enhance Open-Retrieval Conversational Question Answering performance. This approach
aims to improve the system’s effectiveness in retrieving relevant passages and extracting an-
swers in ORConvQA. Therefore, to effectively address the ORConvQA task, we proposed the
ORConvQA4:Reranker+Reader method (as introduced in Section 4.4.4), employing our monoQA
model as the MTL of reranker and reader together with ConvDR as a retriever. Our proposed
ORConvQA4:Reranker+Reader method directly addressed the limitation highlighted in Gap 4 in
Section 3.10, which stated that there is no effective integration between Passage Reranking and
Answer Extraction sharing a single text generation model. In particular, our investigation in this
chapter aimed to answer six research questions.

Section8.4.1 showed that the monoQA model that exhibits the highest word-level F1 on the
validation set is also the best model when evaluated on the test set (see Figure 8.4). Therefore, to
fine-tune monoQA, we selected the best epochs using the best word-level F1 on the validation set.
In Section 8.4.2, we showed that our designed prompt (QuestionAnswering : {q}[sep]{p}) has the
highest performance. Therefore, we used this prompt to fine-tune our monoQA model. Then, we
examined the effectiveness of the use of the models, such as monoT5, UnifiedQA, and t5-base, for
initialising monoQA. Table 8.5 showed that the monoQA model initialised from monoT5 has the
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best overall effectiveness. Therefore, we use monoT5 to initialise monoQA for answering RQ 8.4.
Next, we showed the effectiveness of our proposed ORConvQA4:Reranker+Reader method, using the
ConvDR model as a retriever and our monoQA model as reranker and reader, compared to several
three-stage baselines (see Table 8.6 (top-half)). Moreover, in Table 8.6 (bottom-half), we also
showed that integrating the reranker in the pipeline does help to improve both the retrieval and QA
performances. These experimental results showed that our ORConvQA4:Reranker+Reader method
(ConvDR+monoQA) achieved the highest performance compared to all two-stage baselines.
In particular, we showed that our monoQA model is approximately twice as fast in inference
as the individual application of monoT5 and UnifiedQA in Section 8.4.6. In particular, in
Section 8.4.7, we further examined how the baselines (b) and (c) compare to our monoQA model
when using the ground truth passages provided in the OR-QuAC test set instead of using the
retrieved passages. Table 8.8 showed that our monoQA model’s joint learning of the reader and
the reranker can indeed help improve the performance of the answer extraction. In addition,
we introduced our proposed ORConvQA5:MT L3Tasks method, which leverages the Multi-Task
Learning of the conversational question rewriting, passage retrieval, and answer extraction tasks.
Table 8.9 showed that our proposed ORConvQA5:MT L3Tasks method is comparable in passage
retrieval performance to the baselines that use ConvDR as a retriever. However, our proposed
ORConvQA5:MT L3Tasks method has lower question answering (QA) performance compared to the
baseline that uses our monoQA model as the reader.

Hence, we can now validate our hypothesis presented in Section 1.3. Our experiments
on two datasets, namely the OR-QuAC and OR-CoQA datasets, showed that our proposed
ORConvQA4:Reranker+Reader method (ConvDR+monoQA) has the best effectiveness on these
datasets, yielding statistically significant improvements over several strong baselines from the
literature. Gap 4 highlighted the lack of effective integration between the passage retriever and
answer extraction tasks. Our findings in this chapter showed that our ORConvQA4:Reranker+Reader

method using our monoQA model learned through Multi-Task Learning by sharing a single text
generation model, effectively addresses Gap 4.

Thus far, we have shown the effectiveness of our proposed MTL ORConvQA1−5 methods,
which instantiated our proposed ORConvQA framework in Chapter 4. In particular, starting from
Chapter 5 to Chapter 8, we have proposed several methods to address the challenges (i.e. the
ambiguities in conversational questions, retrieving and identifying the most relevant passages,
and extracting the relevant answer) within such framework. Therefore, in the next chapter, we
will summarise the main contributions and conclusions of this thesis. In addition, we will discuss
possible future directions.
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Chapter 9

Conclusions and Future Works

9.1 Contributions and Conclusions

This thesis addressed the challenges of leveraging Multi-Task Learning (MTL) to develop an
effective Open-Retrieval Conversational Question Answering (ORConvQA) system. In particular,
we postulated that by leveraging MTL to jointly learn several related tasks simultaneously in a
uniform model, we can more effectively tackle the ORConvQA task. In particular, in the dynamic
MTL approaches, the tasks’ weights are automatically adjusted during learning, ensuring that
each of the tasks’ weight is adjusted by the relative importance of the different tasks. Therefore,
in Chapter 4, we proposed an ORConvQA framework, which consists of seven components,
namely Follow-up Question Identification, Conversational Question Rewriting, Clarification Need
Classification, Asking Clarifying Questions, Pass Retrieval, Passage Reranking, and Answer
Extraction (Conversational Question Answering). In particular, as outlined in Section 1.2, we
argued that such a framework needs to address four main challenges, namely:

(i) Ambiguities in Conversational Questions: Questions in conversations can be ambiguous
or unclear, requiring the system to use prior conversation context or to ask for more details
to provide accurate answers.

(ii) Retrieve Relevant Passages: In a large-scale collection of passages, the efficient and
accurate retrieval of relevant passages is important for a successful task.

(iii) Identify the Most Relevant Passages: Among the passages retrieved, determining which
passages are the most relevant in the context of the ongoing conversation is a challenging
task.

(iv) Extract the Relevant Answers: Once a list of relevant candidate passages is formed,
extracting the most accurate and relevant answers represents the final challenge.

In particular, this thesis addressed these four challenges. Below, we discuss our main
contributions and conclusions in this the thesis:
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• Conclusion 1: Effective Conversational Question Answering using a Dynamic Multi-
Task Learning Method: To address the challenge of extracting the relevant answers,
we proposed an ORConvQA1:dynamicMT L method (see Section 4.4.1 and Chapter 5) for
Conversational Question Answering (ConvQA), which learns to extract the correct answer
by applying Multi-Task Learning (MTL). Our proposed ORConvQA1:dynamicMT L method
directly addressed Gap 1 (as identified in Section 3.10), which stated that the current
ConvQA approaches using MTL lack the dynamic adjustment of the tasks importance
during learning. In particular, our proposed ORConvQA1:dynamicMT L MTL method makes
use of Evolving Weighting by Abridged Linear for learning the main task, namely Answer
Extraction, while the auxiliary tasks are addressed using Loss-Balanced Task Weighting
(see Section 5.3.3). Next, we evaluated the effectiveness of our ORConvQA1:dynamicMT L

MTL method on the QuAC ConvQA dataset. The experimental results in Table 5.4 showed
that our proposed ORConvQA1:dynamicMT L MTL method significantly outperformed all
baselines (see Section 5.4.3) in terms of the word-level F1 (see Section 3.2.3) metric
(McNemar’s test, p < 0.05). These results demonstrated the effectiveness of our proposed
ORConvQA1:dynamicMT L MTL method in extracting the relevant answer within conversa-
tional contexts.

• Conclusion 2: Effective Open-Retrieval Conversational Question Answering using
Multi-Task Learning of Conversational Question Rewriting and Follow-up Question
Identification: To address the challenge of ambiguities in conversational questions, we
introduced a method for Open-Retrieval Conversational Question Answering (ORConvQA),
called ORConvQA2:FID+QR (see Section 4.4.2 and Chapter 6), which learns to predict the
follow-up question and rewrites the conversational question simultaneously. Our proposed
ORConvQA2:FID+QR MTL method directly addressed the issue highlighted in Gap 2 in
Section 3.10, which stated that there is no existing effective integration of the Follow-up
Question Identification and Conversational Question Rewriting tasks. In particular, our
proposed ORConvQA2:FID+QR method makes use of text generation models including
BART and T5 by generating the first token for a classification task and the follow-up
tokens for a questing rewriting task (see Section 6.2.2). Next, to evaluate the effectiveness
of our proposed ORConvQA2:FID+QR method, we compared it with the existing state-of-
the-art three-way attentive pooling network, BERT, as well as the Single Task Learning
(STL) of T5 and BART (see Section 6.3.3). The experimental results in Table 6.3 showed
that our proposed ORConvQA2:FID+QR MTL method, using BART, had the best overall
effectiveness, yielding statistically significant improvements in terms of F1 and Macro-
F1 over the baselines, on each of the three test sets of the LIF dataset. In addition,
Table 6.4 showed that our proposed ORConvQA2:FID+QR MTL method, using T5, improves
performance in conversational question rewriting and passage retrieval, yielding statistically
significant improvements over the MTL discriminative+generative BART model as well

182



as all the STL models. These results demonstrated the effectiveness of our proposed
ORConvQA2:FID+QR MTL method for follow-up question identification and conversational
question rewriting.

• Conclusion 3: Effective Open-Retrieval Conversational Question Answering using
Multi-Task Learning of Clarification Need Classification and Clarifying Question
Generation: To further address the challenge of ambiguities in conversational ques-
tions, we proposed an ORConvQA3:CNC+Askng method, including a hybrid method for
generating and selecting clarifying questions, in mixed-initiative conversational search,
combining the strengths of clarifying question generation and selection. Our proposed
ORConvQA3:CNC+Askng MTL method directly addressed the issue identified in Gap 3 of
Section 3.10, which stated that prior works have not focused on a comprehensive ap-
proach for asking clarifying questions. In particular, our proposed ORConvQA3:CNC+Askng

method leverages Multi-Task Learning to simultaneously determine clarification needs
and to generate clarifying questions in a model called T5MI, then uses GTR to select
questions from the pool. The candidate questions from both generation and selection
approaches are then scored using a text generation model for point-wise question classi-
fication called T5Ranking (see Section 7.2.2). Next, to evaluate the effectiveness of our
proposed ORConvQA3:CNC+Askng method, we compared it with the 11 baselines listed as
(a)-(k) in Table 7.4. These baselines include generative models like GPT-3 and T5, as well
as models such as BM25 and miniLM-BERT. The experimental results in Table 7.6 (left
side) showed that our hybrid method for generating and selecting clarifying questions had
the best overall effectiveness, yielding statistically significant improvements in terms of
Relevance@1 and Diversity@1 over the baselines (a)-(k) on the CAsT 2022 dataset. In
addition, Table 7.6 (right side) showed that our proposed ORConvQA3:CNC+Askng method,
including our hybrid method for generating and selecting clarifying questions, does help
to improve the overall passage retrieval performance of a mixed-initiative conversational
search system, yielding statistically significant improvements over the baselines (a) - (b)
and (g) on TREC CAsT 2022. Furthermore, the results in Figure 7.5 confirmed that our hy-
brid method for generating and selecting clarifying questions improves the user’s predicted
satisfaction with the clarifying questions – compared to other baseline methods – based on
the users’ sentiment expressed in response to the asked clarifying questions.

• Conclusion 4: Effective Open-Retrieval Conversational Question Answering using
Multi-Task Learning of Reranking and Answer Extraction: To address the challenge of
retrieving and identifying the most relevant passages and extracting the relevant answer, we
proposed an ORConvQA4:Reranker+Reader MTL method (see Section 4.4.4 and Chapter 8),
employing a new proposed model called monoQA as the Multi-Task Learning (MTL)
of the reranker and reader together with ConvDR as a retriever (see Section 8.2.2). Our
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proposed ORConvQA4:Reranker+Reader method directly addressed the limitation highlighted
in Gap 4 of Section 3.10, which stated that there is no effective existing integration
between Passage Reranking and Answer Extraction sharing a single text generation model.
Next, to evaluate the effectiveness of our proposed ORConvQA4:Reranker+Reader method,
we compared it with seven baseline systems, including a three-stage pipeline and a two-
stage pipeline, listed as (a)-(g) in Section 8.3.2. Table 8.6 showed the effectiveness of
our proposed ORConvQA4:Reranker+Reader method on both the retrieval and conversational
question answering performances, through its use of the ConvDR model as a retriever
and our monoQA model as the reranker and reader, compared to several three-stage and
two-stage baselines, yielding statistically significant improvements over the baselines on
both the OR-QuAC and OR-CoQA datasets.

• Conclusion 5: Effective Open-Retrieval Conversational Question Answering using
Multi-Task Learning of Conversational Question Rewriting, Passage Retrieval, and
Answer Extraction: Our investigation into Multi-Task Learning (MTL) for Conversational
Question Rewriting, Passage Retrieval, and Answer Extraction led to the development of
the ORConvQA5:MT L3Tasks method. This approach simultaneously learns these three tasks
using MTL. In evaluating our proposed ORConvQA5:MT L3Tasks method against two-stage
pipeline baselines (d)-(g) on OR-QuAC test sets, we found that it performed comparably
to baselines (d)-(e). Moreover, our proposed ORConvQA5:MT L3Tasks method had better
performance over the baselines (f)-(g). In particular, our proposed ORConvQA5:MT L3Tasks

method significantly outperformed the baseline (f) on all measures. For the question
answering (QA) performance, we observe that our proposed ORConvQA5:MT L3Tasks method
outperforms the baselines (e)-(f) on all measures.

Next, based on the experimental results from Chapters 5 to 8, we validate our thesis statement
that we introduced in Section 1.3. We stated that the effectiveness of Open-Retrieval Conver-
sational Question Answering can be improved by leveraging Multi-Task Learning that jointly
learns several related tasks simultaneously in a uniform model. In the following, we discuss the
experimental results and observations that validate our proposed thesis statement.

• Claim 1: By leveraging the dynamic Multi-Task Learning (MTL) approach, we simul-

taneously train the main task of answer extraction, along with auxiliary tasks such as

follow-up question identification, yes/no question prediction, and unanswerable predic-

tion and by incorporating these tasks into a unified model, we sarafcan enhance the

system’s effectiveness for Conversational Question Answering (ConvQA). The experi-
ments of the three studies in Chapter 5 validated this claim by showing that our proposed
ORConvQA1:dynamicMT L dynamic MTL method significantly outperforms 9 existing base-
lines (see Table 5.4). In particular, there is little difference between the efficiency of
our proposed ORConvQA1:dynamicMT L MTL method, and that of the static task weighting
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methods, or Single-Task Learning in both the training and evaluation phases even though
our approach has a more complex implementation. Then, we showed the effectiveness
of different combinations of auxiliary tasks compared with Single Task Learning (see Ta-
ble 5.6). We found that models combining multiple auxiliary tasks outperformed the model
learning only the main Answer Extraction task. Finally, we examined the performance of
the auxiliary tasks after training in a Multi-Task setting (see Table 5.7). We concluded that
our method cannot enhance the performance of the auxiliary tasks.

• Claim 2: By leveraging the shared learned structure of the follow-up question identification

and conversational question rewriting tasks in a text generation model, we aim to enhance

the system’s effectiveness in follow-up question identification, conversational question

rewriting and passage retrieval. Our experiments in Chapter 6 validated this claim by
showing that, our proposed ORConvQA2:FID+QR MTL method, using BART, significantly
outperformed in terms of F1 and Macro-F1 the strongest existing baseline on the follow-up
question identification task (see Table 6.3). Finally, we examined the effectiveness of the
Conversational Question Rewriting models including our proposed ORConvQA2:FID+QR

MTL method, using the T5 and BART models, and the existing baselines (see Table 6.4).
We showed the effectiveness of our proposed ORConvQA2:FID+QR MTL method, using T5,
in both the conversational question rewriting and passage retrieval tasks by significantly
outperforming all existing baselines.

• Claim 3: By leveraging Multi-Task Learning, we can generate more effective clarifying

questions through the simultaneous learning of clarification need classification and clarify-

ing question generation. We have validated this claim in Chapter 7, where we proposed
the ORConvQA3:CNC+Askng MTL method, including the hybrid method for generating and
selecting clarifying questions. As described in Section 7.2.2, in generating clarifying
questions, our method leverages the Multi-Task Learning (MTL) of clarification need
classification and the generation of clarifying questions, namely T5MI. For selecting the
clarifying question, we used a state-of-the-art dense retrieval model, namely GTR. To rank
the candidate clarifying questions obtained from both generating and selecting clarifying
questions, we scored the question using the text generation model for point-wise question
clarification, namely T5Ranking. First, we examine the effectiveness of the mixed-initiative
system for asking clarifying questions on the clarification need classification (see Table 7.5).
The experimental results showed our MTL T5MI model is overall effective on the clarifica-
tion need classification task. Finally, we investigate the performance of our hybrid method
(T5MI+GTR+T5Ranking) for generating and selecting clarifying questions in improving
the asking clarifying questions performance (see Table 7.6). In particular, we showed the
effectiveness of our proposed ORConvQA3:CNC+Askng MTL method through significant
improvements over the baselines on passage retrieval.
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• Claim 4: By leveraging Multi-Task Learning (MTL), we can enhance the performance of

the Open-Retrieval Conversational Question Answering (ORConvQA) task by sharing the

learned structure of the reranker and reader in a single text generation model. This claim
has been validated in Chapter 8, where we proposed the ORConvQA4:Reranker+Reader MTL
method, employing our proposed monoQA model for the Multi-Task Learning (MTL) of
reranker and reader together with ConvDR as a retriever. In particular, we investigate the
performances of our proposed Multi-Task Learning (MTL) method, ORConvQA4:Reranker+Reader,
which uses ConvDR as the retriever and monoQA as both the reranker and reader, in com-
parison to the baselines (see Table 8.6). The results showed the effectiveness of our
proposed ORConvQA4:Reranker+Reader MTL method through significant improvements over
the baselines. Therefore, we concluded that our proposed ORConvQA4:Reranker+Reader MTL
method can indeed yield strong ORConvQA performances, which validates our proposed
claim.

• Claim 5: By leveraging the dynamic Multi-Task Learning (MTL) approach, we jointly learn

conversational question rewriting, passage retrieval, and answer extraction in a unified

model and by integrating these tasks, we can enhance the overall effectiveness of Open-

Retrieval Conversational Question Answering. This claim has been validated in Chapter 8,
where we proposed the ORConvQA5:MT L3Tasks MTL method. We investigated the perfor-
mances of our proposed ORConvQA5:MT L3Tasks method, which leverages the Multi-Task
Learning of conversational question rewriting, reranker, and reader (see Table 8.9). The
experimental results showed the effectiveness of our proposed ORConvQA5:MT L3Tasks MTL
method in improving the question answering performance.

In summary, we argue that we have validated each of the claims of our thesis statement
in Section 1.3 using publicly available datasets. Indeed, we showed that we can improve the
effectiveness of Open-Retrieval Conversation Question Answering (ORConvQA) using Multi-
Task Learning (MTL) to learn several related tasks simultaneously in a uniform model. In
particular, in the dynamic MTL approaches, the tasks’ weights are automatically adjusted during
learning, ensuring that each of the tasks’ weights is adjusted by the relative importance of the
different tasks. Furthermore, we showed that our five ORConvQA MTL methods within our
proposed ORConvQA framework, can enhance the effectiveness of the ORConvQA performance.
Our proposed framework aimed to bridge the five gaps in the current approaches for ORConvQA
and the advancements needed to address the ORConvQA task effectively. Next, in Section 9.4,
we describe some future research directions for ORConvQA.
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Figure 9.1: A hypothetical end-to-end system for ORConvQA, integrating three proposed MTL
methods: ORConvQA2:FID+QR, ORConvQA3:CNC+Asking, ORConvQA4:Reranker+Reader.

9.2 Integration of ORConvQA Methods into a Unified System

In this thesis, we have prooposed ORConvQA1−5 methods, each addressing specific sub-tasks
within the ORConvQA task using Multi-Task Learning. In this section, we suggest integrating
these methods into hypothetical systems, forming a comprehensive end-to-end framework.

Figure 9.1 presents a comprehensive end-to-end ORConvQA system that combines the three
proposed methods: ORConvQA2:FID+QR, ORConvQA3:CNC+Asking, ORConvQA4:Reranker+Reader.
We start by receiving the user’s query and conversation history (U+Context). ORConvQA2:FID+QR

first identifies the need for follow-up questions and conversational question rewriting to ad-
dress possible ambiguities in the user’s input. Then, ORConvQA3:CNC+Asking performs clari-
fication need classification to determine whether asking clarifying questions is necessary. If
needed, contextually relevant clarifying questions are generated. Based on the clarified query,
ORConvQA4:Reranker+Reader retrieves relevant passages, reranks the retrieved passages to prior-
itize the most relevant ones, and then extracts the final answer from the top-ranked passage to
provide it as a response to the user. Therefore, the system can be written as follows:

ORConvQA = ORConvQA2:FID+QR

q′k» ORConvQA3:CNC+Asking

q′′k» ORConvQA4:Reranker+Reader

(9.1)

This section culminates our research by presenting a comprehensive end-to-end ORConvQA
system. The system integrates MTL methods that have been proposed, trained, and evaluated
throughout this thesis. It serves as a practical demonstration, showcasing how these methods
can be combined to deliver precise and context-aware responses to users within a conversational
search setting.
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9.3 Limitations

While our research has shown promising results in leveraging Multi-Task Learning (MTL) for
the Open-Retrieval Conversational Question Answering (ORConvQA) task, several limitations
need to be acknowledged.

• Focus on Multi-Turn Conversational Questions: Our approach focuses on multi-turn
conversational question-answering, which, while effective for detailed dialogues, limits
its utility in simpler, single-turn interactions common in many real-world applications.
In future work, we aim to extend our methodology to encompass single-turn dialogues,
broadening the model’s applicability to various conversational scenarios.

• Focus on Extractive Answers: Although our generative model is trained to produce only
word sequences that appear in the input passage, we observe that 1.5% of the generated
tokens are not extracted from the input. While this may not affect user satisfaction, the
extractive evaluation measures may underestimate the model’s utility. For this reason, it is
also worth investigating the multi-task learning of the reranker and an extractive reader by
sharing a single model.

• Reliance on Rewritten Questions: Our model, monoQA, depends on rewritten questions
provided by another T5 model. Ideally, we would like a single model to be able to
use the original question (without needing it to be first rewritten). We leave both these
investigations to future work.

• Question Pool Dependence: Our method’s performance is also tied to the quality and
diversity of the question pool for the selection-based approaches. Thus, improving the
robustness and variety of the question pool could enhance the system’s performance.

• Limited Clarification Rounds: Our current method only considers a single round of
clarification. In real-world scenarios, multiple rounds of clarifying questions may be
necessary to fully understand a user’s intent. Therefore, exploring models that can handle
multiple rounds of clarifications could be a worthwhile direction for future work.

• Specificity of Our Proposed Hybrid Task Weighting: Our proposed Hybrid Task Weight-
ing method provides advantages for encoder-only models like BERT, effectively combining
and optimising multiple loss functions to enhance performance across related tasks. How-
ever, it’s important to note that this method is not suitable for autoregressive text generation
models like T5. These models rely on sequential token generation rather than simultaneous
loss optimization across tasks. The training dynamics of text generation, where each
token’s generation depends on previously generated tokens, require a different approach
than our Hybrid Task Weighting method provides. Therefore, although our method is

188



effective with encoder-only models, it is not suitable for models that rely on sequence
generation techniques.

9.4 Directions for Future Work

In this section, we discuss possible future directions that could further benefit Multi-Task
Learning in the Open-Retrieval Conversation Question Answering (ORConvQA) task.

• Dependency on Pre-Rewritten Questions in MTL Frameworks: In Chapters 6, 7, and
8, we explored leveraging Multi-Task Learning (MTL) to jointly learn several related
tasks using a single T5 text generation model. However, our proposed models currently
rely on input from a rewritten question generated by another T5 model. Ideally, we aim
for a single model that can directly process the original user question, along with the
conversation history, without the need for prior rewriting. Therefore, an interesting future
direction would be to adapt our MTL T5 model to handle the original user questions
and conversation history directly to further enhance the performance of Open-Retrieval
Conversational Question Answering.

• Scalability and Diversity Challenges in Mixed-initiative Conversational Search: In
Chapter 7, while our proposed hybrid method has shown promising results in generating
and selecting clarifying questions in mixed-initiative conversational search, several current
limitations provide avenues for future research. The current approach relies heavily
on Multi-Task Learning and Generative Text Rewriting, which could potentially face
scalability issues in larger or varied datasets. Our model’s performance is also tied to
the quality and diversity of the question pool for the selection-based approaches. Hence,
improving the robustness and variety of the question pool could enhance the system’s
performance. Moreover, our current model only considers a single round of clarification.
In real-world scenarios, multiple rounds of clarifying questions may be necessary to fully
understand a user’s intent. Therefore, exploring models that can handle multiple rounds
of clarifications could be a worthwhile direction for future work. Furthermore, whilst our
model outperformed strong baselines on the relevance and novelty criteria, there is room
for improvement in relation to the diversity of the generated questions. Future work could
involve exploring methods to increase the diversity of the generated questions without
sacrificing their relevance and novelty.

• Optimising Task Combinations in Dynamic Multi-Task Learning for Conversational
QA: In this thesis, we have shown how to leverage Multi-Task Learning (MTL) to jointly
learn several related tasks when sharing a uniform model. However, we observed that the
model that combines three tasks did not outperform the models that combine only two
tasks (see Sections 5.5.2 and 8.5.1). We conjecture that negative transfer (see Section 5.3.2)
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might be a possible reason explaining the drop in the performance of MTL. However, to
alleviate this problem, many different dynamic MTL approaches could be useful in con-
versational question answering such as Dynamic Weight Averaging (Guo et al. 2018) and
Dynamic Task Prioritisation (Xie et al. 2022). Therefore, it would be interesting to explore
these dynamic MTL approaches further. Investigating how different task combinations
and weight adjustment strategies affect overall performance could provide valuable new
insights.

• Integration of Extractive and Generative Approaches in QA Systems: In the scope of
this thesis, we only studied an extractive type of question answering (QA), where the goal
is to generate/extract tokens that are a subset of a passage. Our studies did not consider
the generative type of QA, where the goal is to generate factual or creative text. However,
generative QA can provide more flexible and comprehensive answers, especially when
direct answers are not available in the passage (Luo et al. 2022). However, note also that
the generative QA model may hallucinate (Gospodinov et al. 2023, Maynez et al. 2020),
produce non-relevant or nonsensical questions. Recently, the combination of the answers
of extractive and generative approaches is becoming popular (Fajcik et al. 2021, Wen
et al. 2022). By integrating these approaches, we can leverage the precision of extractive
QA while harnessing the creativity and comprehensiveness of generative QA. Therefore,
an interesting direction is to consider investigating the combination of extractive and
generative QA using Multi-Task Learning to share a single text generation model.

9.5 Concluding Remarks

This thesis has addressed a challenging task: the Open-Retrieval Conversation Question
Answering (ORConvQA) task. In particular, this thesis contributed to leveraging Multi-Task
Learning by proposing effective methods within our ORConvQA framework. However, in
Section 9.4, we identified a number of interesting challenges and exciting topics that still remain
open in this research field. This work provides a solid motivation and the groundwork for
exploring these further research directions in the future. We believe that using Multi-Task
Learning to jointly learn several related tasks in a uniform model will continue to benefit the
future development of the Open-Retrieval Conversation Question Answering domain.
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