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Abstract 

Crop mapping is the prerequisite process for supporting decision-making and providing 

accurate and timely crop inventories for estimating crop production and monitoring dynamic 

crop growth at various scales. However, in-situ crop mapping often proves to be expensive and 

labour-intensive. Satellite remote sensing offers a more cost-effective alternative that delivers 

time-series data that can repeatedly capture the dynamics of crop growth at large scales and at 

regularly revisited intervals. While most existing crop-type products are generated using 

remote sensing data and machine learning approaches, the accuracy of predictions can be low 

given that misclassifications persist due to phenological similarities between different crops 

and the complexities of farming systems in real-life scenarios. Deep neural networks 

demonstrate great potential in capturing seasonal patterns and sequential relationships in time 

series data in the context of their end-to-end feature learning manner. This thesis presented a 

comprehensive exploration of advanced deep learning methodologies for large-scale 

agricultural crop mapping using multi-temporal and multi-source remote sensing data. 

Focusing on Bei'an County in Northeast China, the research developed and evaluated 

innovative frameworks to produce accurate crop-specific map products, addressing challenges 

such as optimal satellite-based input feature selection, imbalanced crop type distribution, model 

transferability, and model learning visualisation. This research has effectively addressed these 

challenges in complex agricultural environments by introducing advanced deep learning 

architectures that utilise multi-stream models and multi-source data fusion. The classification 

frameworks developed through this thesis have shown improved performance in accurately 

mapping crops, particularly in terms of evaluating model generalisability for inference of 

unseen area, model spatial and interannual transferability across different test sites, and model 

interpretability for unveiling the model decision process that contributes to a deeper 

understanding of model learning behaviours for temporal growth patterns of crops. The 

findings highlight the importance of temporal dynamics, the integration of various data sources, 

and the effectiveness of ensemble learning in enhancing the accuracy and reliability of crop 

classification. A deep learning framework using radar-based features was developed, achieving 

F1 scores for maize (87%), soybean (86%), and other crops (85%) on an imbalanced crop 

dataset. This approach was extended by integrating Sentinel-1 and Sentinel-2 data, resulting in 

an overall accuracy of 91.7%, with F1 scores of 93.7%, 92.2%, and 90.9% for maize, soybean, 

and wheat, respectively. Furthermore, the spatiotemporal transferability of pre-trained models 

was systematically evaluated across two test sites, resulting in overall accuracies of 96.2% and 
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90.7%, mean F1 scores of 92.7% and 88.6%, and mean IoUs of 86.9% and 79.7% for site A 

and site B, respectively.  
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Chapter 1 Introduction 

1.1 Background 

In alignment with the 2030 Agenda for Sustainable Development, the United Nations (UN) 

established 17 Sustainable Development Goals (SDGs), among which "zero hunger" stands 

prominent. This specific goal aims to tackle the challenges posed by the rapid growth of the 

global population, as projected to reach 8.54 billion by 2030, and the consequent surge in global 

food demand. Concurrently, the Food and Agriculture Organization (FAO) has emphasized the 

impacts of these challenges on the long-term sustainability of agricultural systems (UN General 

Assembly, 2015; Desa, 2019; FAO, 2018). Crop production and food security remain 

challenges in our society, necessitating an efficient and sustainable agricultural framework to 

balance the rising demand for feedstock crops while also contending with the impacts of 

climate change (Ray et al., 2013). Maize and soybean, as dominant commodity crops in both 

national and international markets, are the requisite sources in the global food supply chain 

(Wu et al., 2021). Specifically, the United States and China stand out as the primary maize 

producers, together accounting for over half of worldwide maize production (You et al., 2023). 

Therefore, obtaining accurate and timely information on sowing and harvesting areas, as well 

as the production and yield of crops such as maize and soybean, are essential for decision-

making, crop growth monitoring, yield prediction, acreage estimation, food security, and 

facilitating international trade (Carfagna and Gallego, 2005; Tilman et al., 2011; Iizumi and 

Ramankutty, 2015; Wang et al., 2019b). 

1.2 Advances in Satellite-Based Crop Monitoring 

Agricultural information has traditionally been collected through census and field surveys 

(Song et al., 2017). Field surveys provide data that can be characterised as indicators for diverse 

agricultural facets, such as cropland size, cultivated regions, land ownership, fertilizer 

application, labour, and irrigation practices, while censuses are typically conducted once a 

decade, making them more suited for tracking slow-evolving trends of agriculture (FAO, 2015). 

In addition, a challenge with using census data on a global scale can lead to inconsistencies, 

which can arise from varied definitions of census metrics, changing political boundaries, and 

diverse reporting protocols across countries and census periods (Portmann et al., 2010). While 

fieldwork can yield high-quality data, its labour-intensive nature poses difficulties in practice 

(Zhang et al., 2021). Satellite-based remote sensing has increasingly been applied in 
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operational agricultural surveys, primarily due to its enhanced spatial coverage and consistent 

revisit capabilities. This approach delivers up-to-date and spatially contiguous data, facilitating 

the monitoring of crop dynamics, sown areas, and overall crop yield at both regional and global 

scales since the early 1970s (Lobell 2013; Fritz et al. 2019). This data is ever more openly 

accessible e.g. from coarse spatial resolution 500-m Moderate Resolution Imaging 

Spectroradiometer (MODIS) data (Massey et al. 2017; Chen et al., 2018), to the medium 30-m 

resolution Landsat data (Cai et al., 2018; Wang et al., 2019c; Zhong et al., 2014; Dong et al., 

2016; Johnson, 2019; Oliphant et al., 2019; Wen et al., 2022) and the finer 10-m resolution of 

Sentinel-2 and Sentinel-1 data (Belgiu and Csillik, 2018; You et al., 2021; Maponya et al., 

2020; Gallo et al., 2023; Wei et al., 2021; Ni et al., 2021). Additionally, the synergistic use of 

multi-source datasets has showcased the potential of data fusion, offering opportunities for 

advanced research in crop classification across multiple scales (Adrian et al., 2021; 

Blickensdörfer et al., 2022; Wang et al., 2022). Nonetheless, utilising satellite data to map 

specific crop types throughout the entire growth cycle or across different growth stages remains 

challenging, given the complexities of cropping systems, which include diverse crop types with 

similar spectral features, cropping patterns, cropland sizes and management practices. 

Machine Learning techniques and their advanced derivative, Deep Learning (LeCun et al., 

2015), have emerged to enhance more sophisticated and nuanced data interpretations further. 

Recently, the Geospatial Artificial Intelligence (GeoAI) field in the Earth observation (EO) 

community has gained notable progress, particularly in large-scale prediction tasks such as 

satellite imagery classification and global climate modelling (VoPham et al., 2018; Shi et al., 

2023). Machine learning algorithms have been globally employed on national scales to 

automate the extraction of meaningful information from diverse geospatial data sources (Jin et 

al., 2019; Wang et al., 2020; Pott et al., 2021). In contrast, deep learning approaches use their 

inherent capabilities to alleviate the necessity for manually engineered data to collect spatial, 

temporal, or spectral features, which is the procedure commonly required in machine learning 

approaches such as support vector machines and multilayer perception. Deep learning models, 

which utilise complex neural network architectures, can efficiently extract complicated and 

non-linear relationships within the high-dimensional data in remotely sensed images, provided 

the prerequisites are met in terms of the availability of a large amount of labelled training data 

and sufficient computational resources. 



 

3 
 

1.3 Deep Learning in Remote Sensing 

Convolutional Neural Networks (CNNs) have been a predominant deep learning architecture 

for remote sensing applications. Their computational efficiency and robustness to learning 

features position them as superior models for recognizing structures and patterns in multi-

dimensional data. CNNs inherently adopt a hierarchical approach to feature representation 

within image datasets, progressing from individual pixels forming edges, which combine to 

create motifs, further assembling into parts, leading to objects, and culminating in the 

representation of entire scenes. As such, this multi-layered structure of CNNs facilitates the 

extraction of intricate feature representations from multi-source image datasets (Zhang et al., 

2016). The increasing adoption of CNNs across diverse remote sensing challenges and various 

satellite data types (e.g. Ma et al., 2019; Kattenborn et al., 2021) has demonstrated their abilities 

in applications including land cover classification (e.g. Zhang et al., 2019; Shendryk et al. 2019; 

Li et al., 2022; Mazzia et al., 2019), object detection (e.g. Chen and Wang, 2014; Zhao et al., 

2019), and semantic segmentation (e.g. Wei et al., 2019; Adrian et al., 2021). 

CNNs have evolved into several variants for enhanced learning efficiency. For instance, one-

dimensional CNNs (1D-CNNs) focus on the extraction of temporal or spectral features based 

on single-pixel, without considering spatial inter-pixel relationships and context information 

(Kiranyaz et al., 2021). In contrast, typical 2D-CNNs segment large input images into smaller 

patches with each label corresponding to the centre pixel of each patch (Sharma et al., 2017). 

However, this patch-based approach could lead to uncertainties in the classification results in 

terms of boundary artefacts between patches, potentially leading to over-smoothness of the 

object boundaries, which in turn compromises the clarity and precision of the predicted objects 

(Zhang et al., 2018). While overlapping patches can mitigate some of these issues, they 

introduce redundant information and cause computational burdens. On the other hand, three-

dimensional CNNs (3D-CNNs) offer a more comprehensive feature learning, considering both 

spatial and temporal dimensions (Ji et al., 2018; Mäyrä et al., 2021; Gallo et al., 2023). Fully 

Convolutional Networks (FCNs) represent another deep learning paradigm that is particularly 

adept at handling remote sensing imagery, as evidenced by their successful image semantic 

segmentation in land cover classification and crop mapping (Mohammadimanesh et al., 2019; 

Li et al., 2021). Unlike CNNs with small patches, FCNs consider wider contexts of input 

images and retain the full dimensionality of input and output images. However, their 
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effectiveness hinges on the availability of high-quality labelled training data for each pixel of 

the imagery. 

Recurrent Neural Networks (RNNs) are a subset of neural networks suitable for recognising 

recurring patterns, making them particularly advantageous for multi-temporal remote sensing 

analysis. Compared to conventional neural networks, RNNs are characterised by their unique 

structure that consumes recursive information, enabling them to efficiently capture sequential 

correlations by linking successive input variables (Werbos, 1990). Tailored for the analysis of 

sequential data, RNNs have proven their capabilities across a range of remote sensing 

applications, especially for crop classification (Zhong et al., 2019; Xu et al., 2020; Rußwurm 

and Körner, 2020; Turkoglu et al., 2021). Their intrinsic mechanism to process data with 

sequential dependencies makes RNN-based deep learning models optimal for capturing 

temporal relationships in observations and modelling change dynamics of objects within time 

series remote sensing images (Mou et al., 2018). This is also particularly useful in agricultural 

domains in terms of their ability to understand and model the temporal behaviour of crops, 

including their growth stages, phenological changes, and responses to environmental factors.  

This dynamism of crop objects, characterized by their seasonal growth patterns, phenological 

developments, and varying spectral signatures over time, presents a complex challenge that 

temporal models are designed to handle. By analysing the temporal sequences of remote 

sensing data, some deep learning models including RNNs are adept at identifying and 

predicting complex crop dynamics, thereby improving agricultural cropland mapping. By 

leveraging their capability for sequential data processing, these models can effectively learn 

and extract meaningful patterns within the temporal progression of satellite imagery, which 

makes them better understand the implications of previous growth stages on current crop 

conditions. Among the various RNN configurations, the Long Short-Term Memory (LSTM) 

model is one of the variants that incorporate gating mechanisms to reveal long-term 

dependencies in time series data sequences (Hochreiter and Schmidhuber, 1997). Therefore, 

the multi-layered design of the LSTM model is also well-suited for handling multi-temporal 

satellite observations (Boulila et al., 2021; Chen et al., 2022).  

While the aforementioned deep learning architectures have shown remarkable success in 

various remote sensing applications, several challenges persist. These include handling the vast 

and growing volume of satellite data with advanced model architectures and improving the 
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accuracy and reliability of predictions across diverse cropping patterns. The next section, the 

problem statement, introduces these aspects in greater detail, by exploring the current 

limitations of crop classification tasks and identifying key areas where further research and 

development are essential to advance this domain. 

1.4 Problem Statement 

Accurate and detailed agricultural land cover maps are essential for developing sustainable 

agriculture plans on a global scale by serving as critical inputs to simulation models that can 

evaluate environmental and socioeconomic changes (Blickensdörfer et al., 2022; Jin et al., 

2018). These maps provide comprehensive spatial cropland distributions over multiple years, 

facilitating the analysis of cropland management and reflecting land use intensity. In Northeast 

China, a key agricultural region for the country, the local cropping systems are subject to annual 

changes due to practices like crop rotation and the soybean rejuvenation plan, which aim to 

foster sustainable farming, alleviate trade pressures on specific crops, and optimise land 

allocation strategies (Yang et al., 2019; Guo et al., 2021). Despite these initiatives, annual crop 

maps on a large scale are rarely available for this region, which limits the ability to 

quantitatively assess changes in local farming systems and the understanding of cropland 

dynamics. 

 

In many agricultural sectors within local Chinese governments, labour-intensive manual 

labelling tasks are undertaken to ensure accurate annual reporting (Ji et al., 2018). Given that 

annual crop inventory data is used for both agricultural applications and governmental statistics, 

the development of crop classification methodologies is crucial (Liao et al., 2020), especially 

for the diversely irrigated agricultural system dominated by those economic crops (Zhong et 

al., 2019). Therefore, cropland management and crop growth monitoring necessitate the timely 

acquisition of annual crop maps. These map products assist insurance companies in evaluating 

disaster-related losses and determining compensation for farmers, offering a more efficient 

alternative to traditional field visits that are time-consuming and labour-intensive (Chauhan et 

al., 2020). Bei’an, a county-level city located in Northeast China, primarily focuses on the 

cultivation of major crops like spring soybean and maize. Additionally, it produces minority 

crops such as spring wheat. Notably, it serves as a primary production hub for these major 

crops during the summer season in Northeast China. Distinguishing between soybean and 

maize from neighbouring crops is challenging due to their similar crop phenology and spectral 
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profiles (Wang et al., 2019a). This similarity often leads to time-consuming visual 

interpretation for crop mapping tasks. Addressing the misclassification issue arising from 

similar phenological stages, spectral features and cropping patterns remains a challenge. 

Existing solutions seek to enhance feature learning that extracts spectral or polarimetric 

information effectively between crop classes, using multi-source remote sensing data 

combined with state-of-the-art classification algorithms to improve crop classification 

performance. 

Traditional (shallow) machine learning models have demonstrated their inherent capabilities 

in mapping crop types and their spatial distribution, even with limited training datasets (Debats 

et al, 2016). Typical algorithms such as Random Forest (RF), Support Vector Machine (SVM), 

Artificial Neural Networks (ANNs), and Decision Trees have been widely employed for crop 

mapping (Erinjery et al., 2018; Inglada et al., 2015; Löw et al., 2013; Immitzer et al., 2012). 

While these models efficiently learn from extracted data features, surpassing traditional 

algorithms in handling dimensional and complex data spaces, they often require feature 

engineering in remote sensing of vegetation. This involves feature selection of input variables 

to eliminate redundancies and extract variables that best represent the desired response variable. 

Such engineering often requires prior knowledge with domain expertise to derive meaningful 

features from the data, which may struggle when faced with unknown systems exhibiting 

intricate interactions between objects within the imagery context. In contrast, deep learning 

models, characterized by their layered convolutional neural structures, excel in end-to-end 

feature learning. Their architectures, comprising numerous functional layers and 

transformations, efficiently extract features from high-dimensional remote sensing imagery, 

unveiling complex and hierarchical relationships within data (Kattenborn et al., 2021). 

Synthetic Aperture Radar (SAR) and Polarimetric SAR (PolSAR) data are extensively used for 

classification tasks due to their resilience against atmospheric and illumination conditions and 

their ability to penetrate cloud cover. SAR backscatter is especially sensitive to vegetation's 

three-dimensional structure structure and therefore has a great potential for differentiating crop 

types and monitoring crop growth (Kattenborn et al., 2021; Qu et al., 2020, Liao et al., 2020). 

Polarimetric parameters, derived from target decomposition algorithms, have been highlighted 

for their capacity in image classification (Liao et al., 2020; He et al., 2020; Xie et al., 2019; 

Gao et al., 2018; Fang et al., 2018). Additionally, interferometric coherence, which measures 

the correlation between the phases of two complex SAR images acquired at different times, 



 

7 
 

provides complementary information to SAR intensity. This attribute makes it particularly 

sensitive and valuable for monitoring land cover changes (Mohammadimanesh et al., 2018), 

and crop monitoring (Nasirzadehdizaji et al., 2021). Zhang et al. (2017) and Shang et al. (2019) 

also demonstrated the use of both phase and amplitude information in SAR image classification 

through CNNs. However, the potential of SAR-derived features in differentiating crops with 

overlapping growth stages and similar spectral signatures has yet to be fully explored. While 

Wang et al. (2019a) investigated the enhancement of multispectral features to improve the 

separability between soybean and maize in Bei’an, the complexity of cropping patterns in these 

areas still presents significant challenges for accurate crop identification. To address these gaps, 

there is a need to design tailored classification frameworks that can optimally leverage the 

utility of SAR signal characteristics.  

In addition, integrating SAR data with other remote sensing sources - often referred to as data 

fusion - can offer richer information and multi-dimensional perspectives that allow for a more 

holistic understanding of the observed region, thereby enhancing classification performance. 

While studies combining multitemporal SAR data with multispectral data have shown 

promising results in enhancing the performance of crop classification through deep learning 

methods (e.g. Van Tricht et al., 2018; Liao et al., 2020; Adrian et al., 2021), there's potential to 

further refine these methods by integrating the phenological stages of specific crops. Given that 

each phenological stage of a crop may present distinct representations, whether through 

scattered signals or reflectance, capturing these nuances accurately can greatly enhance the 

ability to differentiate between crop types (Bargiel, 2017). This highlights the importance of 

using remote sensing techniques and advanced classification algorithms that can discern these 

subtle yet crucial variations across different growth stages of crops in time series data. 

From a deep learning perspective, there has been a growing interest in multi-model networks. 

These networks, where they are either jointly connected for ensemble learning or combined in 

a hybrid architecture, have been employed for tasks like land cover classification, human 

activity recognition, and yield prediction (Barbosa et al., 2020; Branson et al., 2018; Lottes et 

al., 2018; Zhang et al., 2018; Hamad et al., 2020; Shendryk et al., 2019). This provides 

opportunities to explore the viability of such combined use of different networks in crop 

classification for specific regions, especially considering the utilisation of multi-source remote 

sensing data. Furthermore, it's also worth evaluating the transferability of these pre-trained 

networks in the context of crop mapping. Specifically, it is important to assess whether these 
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pre-trained networks can be effectively applied across geospatially various regions and across 

different years. Additionally, providing visual interpretations of the learning process for hidden 

features within deep learning models can provide insights into their operational mechanisms 

and enhance users’ understanding of their decision-making processes (Xu et al. 2021). 

1.5 Aim, Objectives and Research Questions 

The aim of this research is to develop approaches for accurate crop mapping at multiple scales 

for Bei’an County, China, by employing deep learning models that utilize multi-temporal and 

multi-source remote sensing datasets. This contributes to identifying and understanding the 

distribution of non-irrigated croplands and local cropping patterns. The following objectives 

were addressed in this research with the associated research questions presented following 

these: 

Objective 1 - to develop a framework for multi-temporal crop mapping in Bei’an County by 

using polarimetric SAR-derived data combined with deep learning methods (Chapter 3) 

• Which SAR-derived features play a key role in identifying specific crops? 

• How does the developed model perform in comparison to existing models with respect 

to crop mapping performance and handling imbalanced class distribution? 

• To what extent do crops’ phenology impact the performance of in-season crop mapping? 

• Is the deep learning approach proposed in this study interpretable? 

Objective 2 - to construct a sophisticated deep learning architecture that combines multiple 

models for county-level crop mapping based on the fusion of multi-temporal optical and SAR 

datasets for Bei'an County (Chapter 4) 

• Does the integration of multispectral imagery with SAR data improve the accuracy of 

crop classification? 

• When compared with other models, how does this hybrid model architecture perform? 

• In what ways do data augmentation techniques enhance crop classification accuracy? 

• Is it feasible to interpret the model based on the features it has learned? 



 

9 
 

Objective 3 - to design a deep learning based approach tailored for mapping areas of 

intercropping in Bei’an using interferometric SAR coherence and high resolution (5m) 

multispectral data (Chapter 5). 

• In the context of mapping specific intercropping patterns, how do the temporal and 

FCN-based models perform? 

• How transferable is the developed method, both interannually and spatially? 

• Can the model's learning process be unveiled to interpret the features learning process? 

1.6 Thesis Structure 

This thesis is structured around seven chapters: 

Chapter 1: This chapter offers an introductory overview of the research context, detailing the 

motivations and general background of the project. It provides a foundational introduction to 

the application of deep learning in remote sensing, followed by highlighting the existing 

challenges and research gaps as described in the problem statement. 

Chapter 2: A comprehensive review of both traditional and deep learning-based methods in 

agriculture and crop mapping using SAR and optical imagery is presented. This chapter also 

discusses the pros and cons of various deep learning models and explores visualization 

techniques for model interpretation. 

Chapter 3: This chapter introduces a joint ensemble learning approach that employs two 

temporal models to extract multi-temporal features from dual-pol SAR data. The goal is to 

predict crop types in Bei’an for the year 2017. The proposed Conv1D-LSTM model surpasses 

existing methods by optimally selecting SAR features (m-chi decomposition parameters) and 

effectively capturing temporal dependencies throughout the entire crop growth cycle. 

Additionally, it is also capable of handling data with inherently imbalanced class distribution. 

Chapter 4: A novel deep learning framework for multi-temporal crop mapping is proposed, 

which is based on the fusion of polarimetric features and multispectral reflectance. The 

introduced 3D-ConvSTAR model, which connects 3D-CNN layers with the convolutional 

recurrent layers (ConvSTAR), demonstrated enhanced classification performance for crop 

mapping compared to previously designed architectures. 
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Chapter 5: This chapter presents an ensemble learning for temporal models based on a 

threshold-based decision fusion strategy to enhance crop mapping performance, specifically 

for local intercropping patterns. This method combines two temporal models (transformer and 

attention-based LSTM) with the Random Forest algorithm using a rule-based combination of 

probability outputs and investigates the synergistic potential of interferometric SAR coherence 

and multispectral bands for intercropping classification. 

Chapter 6: A comprehensive synthesis of the research findings is presented. This chapter 

revisits and answers the research questions and discusses the limitations of the study, 

implications on the results, and recommendations for future research. 

Chapter 7: This concluding chapter summarises the main research findings of the thesis, 

reflecting on the challenges encountered, insights acquired, and the knowledge gained 

throughout the research. 
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Chapter 2 Literature Review 

The primary focus of this chapter is to provide a review of the methods, evolutions, and 

challenges specifically encountered in crop classification tasks. Through this examination, this 

chapter seeks to identify research gaps and potential areas for future investigation, thereby 

contributing to the enhancement of deep learning applications in crop mapping. Broader 

reviews of deep learning in agriculture and vegetation remote sensing, which offer an extensive 

understanding of application domains, model architectures, implementation details, and model 

assessments, are presented by Kamilaris et al. (2018) and Kattenborn et al. (2021). 

2.1 Traditional Remote-Sensing-Based Crop Mapping 

Since the early 1970s, satellite-based remote sensing has been used to monitor cropping area, 

grain yield, and grain production (Lobell, 2013; Fritz et al., 2019). This field has seen 

considerable advancements, especially in the domain of crop mapping at large spatial scales. 

Such progress has been facilitated by the advent of newly available satellite imagery with 

moderate resolution, coupled with the development of advanced classification algorithms 

(Zhong et al., 2014; Massey et al., 2017; Cai et al., 2018; Defourny et al., 2019). In operational 

crop mapping systems, notable examples include the Cropland Data Layer (CDL) products 

developed by the U.S. Department of Agriculture (USDA) National Agricultural Statistics 

Service (NASS). These products, generated annually using data from multiple satellite sensors 

such as Landsat and Sentinel-2, have become a cornerstone in national-scale agricultural 

monitoring (USDA-NASS, 2022). Similarly, the Annual Crop Inventory (ACI) by Agriculture 

and Agri-Food Canada (AAFC) leverages satellite images from Landsat-8, Sentinel-2, and 

RADARSAT-2 sensors. The ACI produces maps at a 30 m spatial resolution on a yearly basis, 

covering a wide range of crop types (Fisette et al., 2013). 

Traditional crop classification in remote sensing focused on the distinctive spectral features of 

crops. For example, Yang et al. (2011) emphasized the importance of spectral bands, such as 

the shortwave infrared, to enhance classification accuracy. Similarly, Boryan et al. (2011) 

described the use of optical bands from various satellites in the supervised classification 

training for the NASS CDL program. However, the challenge to differentiate different crops, 

which often have similar spectral characteristics during peak-growing seasons, necessitated the 

development of more sophisticated approaches. Recent studies developed multi-temporal crop 
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classification schemes to differentiate crops based on time series information that covers 

varying growth patterns and planting times of crops since the crops’ phenology exhibits strong 

temporal dependencies between the single images of the multitemporal stack (Skriver, 2011; 

Foerster et al., 2012; Zhang et al., 2015; Sun et al., 2019). This concept has been combined 

with the use of statistical models to incorporate temporal dependencies, such as Hidden Markov 

models (Siachalou et al., 2015; Leite et al., 2011). Additionally, some studies have 

implemented threshold-based methods, defining phenological metrics from vegetation index 

(VI) time series, like the interval between VI peaks (Fan et al., 2014) or the timing of maximum 

VI (Walker et al., 2015). These advanced methods generally employ curve-fitting functions, 

including linear regression (Funk and Budde, 2009), wavelet transform (Galford et al., 2008), 

and logistic functions (Gonsamo et al., 2016), to fit pre-defined spectral features.  

To reduce the demands for human-designed classification rules, machine learning models have 

been increasingly utilized for processing time series remote sensing observations to effectively 

identify crops. For example, Song et al. (2017) implemented a Decision Tree (DT) model for 

national-scale soybean mapping, while Zhang et al. (2014) used the Support Vector Machine 

(SVM) to measure maize cultivated areas at a provincial scale. Li et al. (2019) further 

demonstrated the superiority of object-based SVM over pixel-based methods in achieving 

higher crop classification accuracy. Notably, most large-scale crop classification studies, 

especially those focusing on maize and soybean, have employed the Random Forest (RF) 

algorithm (e.g., Zhong et al., 2014; Pelletier et al., 2016; Zhong et al., 2016; Bargiel, 2017; 

Wang et al., 2019; Mestre-Quereda et al., 2020; You and Dong, 2020; Hao et al., 2020; You et 

al., 2021; Zhang et al., 2022; Xia et al., 2022; Wen et al., 2022; Blickensdörfer et al., 2022).  

While these machine learning techniques have proven robust in processing high-dimensional 

datasets and learning complex patterns, they often still rely on manual feature engineering. This 

process can be time-consuming, labour-intensive, and requires substantial domain knowledge 

to extract distinctive features from raw data that accurately represent crop growth 

characteristics (Cai et al., 2018; You and Dong, 2020; Kattenborn et al., 2021). Additionally, 

these methods may not fully explore the sequential relationship of multi-temporal satellite 

observations, potentially leading to information loss in time series inputs (Zhong et al., 2019; 

Xu et al., 2021). Therefore, there is a growing need for more advanced approaches in crop 

mapping applications that can comprehensively capture multidimensional changes, including 
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geographical and spectral variations, as well as the temporal dynamics of the agricultural 

landscape. 

2.2 Deep Learning in Agricultural Remote Sensing 

Remote sensing has become increasingly essential in modern farming, facilitating the 

collection of diverse spatiotemporal geoinformation that enhances resource efficiency and 

minimizes environmental impacts of agriculture (Mulla, 2013). In this context, deep learning 

has emerged as a promising approach, gaining popularity with its diverse applications (e.g. 

Kamilaris et al., 2018; Kattenborn et al., 2021). Deep learning is characterized by its 'end-to-

end' deep neural networks, which perform hierarchical transformations through multi-scale 

convolution operators (LeCun et al., 2015; Schmidhuber, 2015), or by exploring temporal 

dynamics using recurrent units in processing remote sensing image data (Mandic and 

Chambers, 2001). Moreover, deep learning has been effectively employed in various domains 

of agricultural remote sensing, such as land cover classification (Kussul et al., 2017; Zhang et 

al., 2019), weed detection (Milioto et al., 2017; Dyrmann et al., 2017), crop mapping (Zhong 

et al., 2019; Rußwurm and Körner, 2017), and yield prediction (Yang et al., 2019; Chen et al., 

2019). The studies are presented as examples in Table 2-1 to reveal the diverse applications of 

deep learning in agricultural remote sensing. These studies are not the result of a 

comprehensive or systematic search but a selection of representative applications and, therefore, 

might not holistically represent the entire scope of current research in this field. 

Table 2-1. Summary of studies using deep learning in agricultural remote sensing. 
Application Sensor Scale Approach Reference 

Land use 
and land 
cover (LULC) 
classification 

USGS National Map Urban Area 
Imagery collection (spatial resolution 
of 0.5 m) 
 

Local Deep convolutional neural 
network (DCNN) 

(Luus et al., 2015) 

 
 
 
 

Landsat-8 (spatial resolution of 30 m), 
Sentinel-1 (spatial resolution of 10 m) 

Regional,  
28,000 km2 

1D-CNN, 
2D-CNN 

(Kussul et al., 2017) 

 Pléiades (spatial resolution of 2 m) 
 

Regional,  
42,000 hectares 

 

Recurrent Neural 
Networks (RNNs) 

(Ienco et al., 2017) 

 Landsat-8 (spatial resolution of 30 m) 
 

Regional,  
771 km2 

 

2D-CNN (Sharma et al., 2017) 

 Vexcel UltraCam Xp (spatial 
resolution of 0.5 m) 
 

Local Object-based 
convolutional neural 
networks (OCNN) 

 

(Zhang et al., 2019) 

 RADARSAT-2 (a resolution of 5.2 m 
in the range direction, 7.6 m in the 
azimuth direction) 
 

Regional Fully convolutional 
network (FCN) 

(Mohammadimanesh 
et al., 2019) 

 Sentinel-2 (spatial resolution of 10 m) Regional,  
2,640 km2 

Recurrent-Convolutional 
Neural Network (R-CNN) 

(Mazzia et al., 2020) 
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Weed Detection Industrial-level imaging sensors (JAI 

camera) 
Fine 

 
2D-CNN (Milioto et al., 2017) 

 Terrestrial sensor Fine Fully convolutional 
network (FCN) 

 

(Dyrmann et al., 
2017) 

 DJI Phantom 3 Professional (spatial 
resolution of 0.01 m) 
 

Local,  
one hectare 

AlexNet (dos Santos Ferreira 
et al., 2017) 

 Terrestrial, AI AD-130 GE (spatial 
resolution of 
0.0001 m) 
 

Fine Fully convolutional 
network (FCN) 

(Lottes et al., 2018) 

 Terrestrial, digital single-lens reflex 
(DSLR) camera (Nikon D7200) 
(spatial resolution of 0.001 m) 
 

Fine Deep convolutional neural 
network (DCNN) 

(Gao et al., 2020) 

     
Crop mapping Landsat-8 (spatial resolution of 30 m), 

Sentinel-1 (spatial resolution of 10 m) 
 

Regional,  
28,000 km2 

1D-CNN, 
2D-CNN 

(Kussul et al., 2017) 

 Sentinel-2 (spatial resolution of 10 m) 
 

Regional,  
102 km × 42 km 

 

Long short-term memory 
(LSTM) 

(Rußwurm and 
Körner, 2017) 

 Gaofen-2 (spatial resolution of 4 m), 
Gaofen-1 (spatial resolution of 15 m) 
 

Regional 3D-CNN (Ji et al., 2018) 

 Landsat-8 (spatial resolution of 30 m) 
 

Regional, 
25,840 hm2 

 

2D-CNN (Zhang et al., 2018) 

 Landsat (spatial resolution of 30 m) Regional, 
638,767 acres 

 

Deep Neural Network 
(DNN) 

(Cai et al., 2018) 

 Formosat-2 Regional 
24 km × 24 km 

area 
 

Temporal 1D-CNNs 
(TempCNNs) 

 

(Pelletier et al., 2019) 

 Landsat (spatial resolution of 30 m) 
 

Regional 1D-CNN (Zhong et al., 2019) 

 Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR) (range 
and azimuth pixel spacing of 1.66 m 
and 1 m), Satellite, RapidEye (spatial 
resolution of 5 m) 
 

Local Object-based 
convolutional neural 
networks and support 

vector machine (OSVM-
OCNN) 

(Li et al., 2019) 

 Sentinel-1 (spatial resolution of 10 m) 
 

Regional U-Net (Wei et al., 2019) 

 Sentinel-1 (spatial resolution of 10 m) Regional 1D-CNN, long short-term 
memory (LSTM), gated 

recurrent unit RNNs (GRU 
RNNs) 

 

(Zhao et al., 2019) 

 Sentinel-1 (spatial resolution of 10 m) Regional, 
1,210 km2 

Deep convolutional neural 
network (DCNN) and long 

short-term memory 
(LSTM) 

 

(Zhou et al., 2019) 

 Sentinel-1 (spatial resolution of 10 m) Local, 
254 hectares 

A combination of a fully 
convolutional network 

(FCN) and a convolutional 
long short-term memory 
(ConvLSTM) network 

 

(Teimouri et al., 
2019) 

 Sentinel-1 (spatial resolution of 10 m) Local, 
10 km × 10 km 

Depthwise separable 
convolution recurrent 

neural network 
(DSCRNN) 

 

(Qu et al., 2020) 

 Sentinel-2 (spatial resolution of 10 m) Regional Hybrid convolutional 
neural network-random 

forest (CNN-RF) 
 

(Yang et al., 2020) 

 Landsat Analysis Ready Data (ARD) 
(spatial resolution of 30 m) 

Regional Attention-based 
bidirectional long short-
term memory (AtLSTM) 

(Xu et al., 2020) 
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 Sentinel-2 (spatial resolution of 10 m) 

 
Regional Transformer (Rußwurm amd 

Körner, 2020) 
 RADARSAT-2, VENµS (spatial 

resolution of 10 m) 
 

Local 1D-CNN (Liao et al., 2020) 

 Sentinel-2 (spatial resolution of 10 m) Regional Attention-based 
convolutional neural 

network (CNN) 
 

(Wang et al., 2021) 

 Sentinel-1 (spatial resolution of 10 m) 
 

Regional U-Net (Wei et al., 2021) 

 Sentinel-1 and Sentinel-2 (spatial 
resolution of 10 m) 
 

Local, 
254.3 hectares 

3D U-Net (Adrian et al., 2021) 

 Sentinel-2 (spatial resolution of 10 m) Regional Convolutional recurrent 
neural network 
(ConvSTAR) 

 

(Turkoglu et al., 
2021) 

 Sentinel-1 and Sentinel-2 (spatial 
resolution of 10 m) 
 

Regional 3D-CNN (Teimouri et al., 
2022) 

 Sentinel-2 (spatial resolution of 10 m) 
 

Regional 3D-CNN (Gallo et al., 2023) 

 Sentinel-1, Sentinel-2 (spatial 
resolution of 10 m), PlansetScope 
(spatial resolution of 3 m) 
 

Local Recurrent Neural 
Networks (RNNs) 

(Rußwurm et al., 
2023) 

Yield prediction Airborne, spatial resolution of 0.04 – 
0.2 m 
 

Local, 
160 hectares 

 

2D-CNN (Yang et al., 2019) 

 DJI Phantom 4 Pro (spatial resolution 
of 0.00016 m) 

Local, 
67 m × 6 m 

Faster region-based 
convolutional neural 
network (R-CNN) 

 

(Chen et al., 2019) 

 Moderate Resolution Imaging 
Spectroradiometer (MODIS) (spatial 
resolution of 500 m) 

National 3D-CNN and attention-
based LSTM 

(Nejad et al., 2022) 

Data pre-processing and preparation for satellite or aerial imagery in agricultural applications, 

such as calibration, polarimetric decompositions (Liao et al., 2020), atmospheric correction 

(Rußwurm and Körner, 2017), image segmentation (Li et al., 2019), denoising (Adrian et al., 

2021), and feature selection (Yang et al., 2020), often pose significant time-consuming 

challenges. However, advancements in deep learning models offer promising solutions. For 

instance, Rußwurm and Körner (2020) demonstrated that models incorporating recurrence and 

self-attention mechanisms yield higher classification accuracy on raw and cloudy Sentinel 2 

data than conventional convolutional-based approaches. 

Advanced deep learning architectures, including variants of RNNs (Turkoglu et al., 2021), 

attention-based networks (Xu et al., 2021), and ensemble learning (Dou et al., 2021), have been 

developed to enhance crop classification accuracy. Additionally, combining these models with 

data fusion techniques (Teimouri et al., 2022; Van Tricht et al., 2018; Tao et al., 2022) and data 

augmentation methods (Mäyrä et al., 2021; Dimitrovski et al., 2023) can significantly improve 

model generalizability in real-world prediction scenarios. Additionally, the use of specific 

satellite constellations, such as the PlanetScope constellation from Planet Labs, could 
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potentially offer rich spatial detail to facilitate global-scale vegetation assessments using deep 

learning approaches (Kattenborn et al., 2021). This technological advancement contributes to 

the Sustainable Development Goals (SDGs) by addressing challenges outlined in the United 

Nations (UN) agenda, particularly in meeting the growing global demand for food production 

(Persello et al., 2022). 

2.2 Advances in Crop Mapping with Deep Learning 

2.2.1 Convolutional neural networks 

In recent years, the versatility and specialized architecture of data-driven deep learning 

networks, due to their end-to-end learning paradigm that enables hierarchical feature 

representations, have led to increased popularity in remote sensing for image classification 

tasks. In vegetation remote sensing, Convolutional Neural Networks (CNNs) have emerged as 

reliable feature extractors. These networks can be categorized into 1D-, 2D-, and 3D-CNNs 

based on the kernels performing convolutional computations across spatial, temporal, and 

spectral dimensions (Kattenborn et al., 2021). In crop mapping applications, various studies 

have applied different CNN architectures. For example, Zhong et al. (2019) developed a 1D-

CNN-based architecture incorporating an inception module for multi-scale feature extraction 

focused on the temporal dimension. Similarly, Liao et al. (2020) utilized 1D-CNN to analyse 

sequential dependencies within satellite data for crop classification. Dou et al. (2021) proposed 

an innovative ensemble learning framework combining the 1D-CNN-based networks of Zhong 

et al. (2019) and Pelletier et al. (2019), respectively, achieving higher crop classification 

accuracy compared to their standalone versions. However, the primary application of 1D 

convolution, which processes pixel-level features on either temporal or spectral dimensions, 

does not explicitly consider their spatial relationships. This limitation has led to the application 

of 2D-CNNs, which are adept at extracting spatial features from the width and height 

dimensions of images. In remote sensing, 2D-CNNs are often employed for patch-based 

multidimensional image classification (Sharma et al., 2017). Kussul et al. (2017) showed that 

2D convolution with spatial context achieved slightly higher accuracy in crop classification 

than 1D convolution only considering the spectral context. Conversely, Zhong et al. (2019) 

found that a 2D-CNN-based architecture yielded slightly inferior results in crop classification 

compared to 1D temporal convolution, particularly when dealing with dense satellite image 

datasets. 
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While 3D CNNs are rarely used compared to 2D CNNs in remote sensing, they offer a unique 

advantage in exploiting the relationships between multidimensions; the 3D kernels in the 

network 'slide' across spatial, temporal and spectral dimensions simultaneously, offering a 

more comprehensive feature extraction (Gallo et al., 2021). Ji et al. (2018) demonstrated the 

advantage of 3D convolution over 2D convolution as a feature extractor for spatiotemporal 

remote sensing data in crop classification. Additionally, Teimouri et al. (2022) proposed a 

novel 3D-CNN architecture for processing multi-temporal, multi-source satellite data, 

specifically for crop classification. Most of these studies structure CNNs with fully connected 

(FC) layers at the end of the architecture, where a single pixel or image patch of input tensors 

finally corresponds to a target class label. However, another notable CNN-based architecture 

is the fully convolutional network (FCN), adapted for semantic segmentation tasks (Long et al., 

2015). A primary example of this is the U-Net architecture, an encoder-decoder network that 

progressively compresses input data into a compact representation through the encoder, 

capturing high-level features. The decoder then reconstructs the data back to its original space, 

making it suitable for detailed, pixel-wise tasks like image segmentation. This approach has 

been applied in various studies using either 2D U-Net (e.g., Wei et al., 2019; Zhou et al., 2019; 

He et al., 2020; Wei et al., 2021) or 3D U-Net (e.g., Adrian et al., 2021; Gallo et al., 2023) for 

crop mapping at both local and large scales. It is important to note that computational resources 

are subject to the increasing dimensions of the predictor’s structure (spatial, temporal, spectral) 

and the levels of model complexity (Kattenborn et al., 2021). Therefore, optimizing the model 

architecture and selecting appropriate input features are essential to enhance the computational 

efficiency of deep learning methods in remote sensing. 

2.2.2 Recurrent neural networks 

Recurrent Neural Networks (RNNs) are particularly adept at analysing sequential correlations 

in remote sensing data, making them suitable for end-to-end analysis of long-term sequence 

signals from crops across their phenological phases (Zhong et al., 2019; Kattenborn et al., 

2021). In satellite-based land cover classification, Rußwurm and Körner (2017) employed an 

RNN with Long Short-Term Memory (LSTM) to encode sequential dependencies from 

Sentinel-2 temporal observations for crop type classification. Subsequently, Rußwurm and 

Körner (2018) enhanced this approach by introducing convolutional LSTM (ConvLSTM) and 

Gated Recurrent Units (GRUs) to encode both temporal and spatial dependencies in the same 

dataset. The advantage of LSTM-based models in comparison with other methods is notable 
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as temporal feature extractors. For instance, Rußwurm and Körner (2017) achieved a 

classification accuracy of 90.6% using an LSTM model, which outperformed CNN (89.2%) 

and SVM (40.9%). Further advancing this field, Turkoglu et al. (2021) developed a variant of 

LSTM, the STAR unit and its convolutional version (ConvSTAR), for crop classification. This 

approach showed a significant increase in F1 score (23.2%) and overall accuracy (3.9%) 

compared to the LSTM configuration by Rußwurm and Körner (2017) under the dataset with 

an imbalanced crop class distribution. Moreover, the integration of attention principles in 

RNNs has further enhanced their performance. Xu et al. (2020) employed an attention-based 

LSTM (AtLSTM) in a bidirectional manner to discern temporal patterns in multitemporal 

satellite data for discriminating maize and soybean. Additionally, Rußwurm and Körner (2020) 

adapted the Transformer architecture (Vaswani et al., 2017) for processing time-series satellite 

data, employing this self-attention mechanism on crop classification. Xu et al. (2021) then 

compared AtLSTM with the Transformer, demonstrating that attention-based methods 

improved performance over traditional RNN-based approaches. These developments highlight 

the potential of advanced RNNs and attention-based methods in learning essential sequential 

dependencies from multi-temporal remote sensing observations, providing opportunities for 

more sophisticated and accurate approaches used for crop mapping. 

2.2.3 Ensemble learning 

The optimization and innovative design of deep learning structures, particularly through the 

integration of CNNs and RNNs, have shown promising advancements in multi-temporal crop 

mapping. For instance, Mazzia et al. (2019) demonstrated an innovative approach that 

leverages the spatial pattern recognition capabilities of CNNs combined with the temporal data 

processing strengths of RNNs. In their method, they concatenated pixel-wise branches of 

RNNs to capture temporal dynamics, followed by the application of a CNN for satellite-based 

land cover classification. Rustowicz et al. (2019) employed a similar strategy, where satellite 

images are first processed by a CNN to extract per-image features, which are then analysed for 

temporal dependencies using RNNs, effectively integrating spatial and temporal data analysis. 

Furthermore, Interdonato et al. (2019) developed a dual-branch architecture combining CNNs 

and RNNs to utilize their complementary strengths, thereby deriving a more comprehensive 

representation of land cover classification. In general, different architectures can be connected 

in various ways, such as in a hybrid manner (Roy et al., 2019) or through joint connections 

(Turkoglu et al., 2021). These approaches imply strategic applications of model ensemble 
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learning, utilizing the strengths of multiple models to improve overall performance and 

enhance generalization capabilities. Moreover, integrating CNNs with traditional machine 

learning models, such as SVM and RF, has also proven beneficial. Studies by Li et al. (2019) 

and Yang et al. (2020) have shown that such synergistic use of different modelling approaches 

can significantly enhance classification and prediction accuracy in crop mapping. 

2.3 SAR-Based Crop Mapping 

As discussed previously, the use of multi-temporal remote sensing data and understanding of 

crop phenology are crucial in crop mapping. However, optical-based remote sensing methods 

often face challenges, such as missing data and occlusions, particularly in areas with frequent 

cloud cover or limited visibility. Additionally, the dependency of optical sensors on weather 

conditions can hinder the continuous collection of satellite acquisitions, thus impacting the 

accuracy of crop recognition (Qi et al., 2012; Singha et al., 2019). To address these challenges, 

Synthetic Aperture Radar (SAR) technology, an active sensing approach, is increasingly being 

adopted in agricultural applications. SAR is particularly advantageous for large-scale crop 

mapping due to its ability to penetrate cloud cover, operate independently of daylight 

conditions, and maintain a regular revisiting frequency (Sonobe et al., 2019; Bargiel, 2017; Xie 

et al., 2019; Qu et al., 2020; Wei et al., 2021). SAR imaging systems provide detailed 

information, including the amplitude and phase of received backscatter and polarimetric data, 

which are essential in capturing the seasonal pattern differences between various crops. The 

examples of SAR-driven approaches in crop mapping are further detailed in Table 2-2, which 

presents relevant studies employing SAR inputs and models. 

In Table 2-2, Xie et al. (2019) and Sonobe et al. (2019) evaluated crop classification 

performance using different polarimetric decomposition algorithms applied to quad-pol or 

dual-pol data. Additionally, Qu et al. (2020) showed that covariance matrix vectors 

significantly contribute to enhanced crop classification accuracy. Mestre-Quereda et al. (2020) 

reported that interferometric SAR (InSAR) coherence, particularly from image pairs with a 6-

day interval, achieved higher crop classification accuracy compared to a 12-day intervals. In 

the context of crop growth monitoring, Mandle et al. (2020) investigated the correlation 

between the dual-pol radar vegetation index (DpRVI) and crop biophysical variables, while 

Nasirzadehdizaji et al. (2021) used InSAR coherence to represent crops' growth patterns. These 

SAR features have been proven effective in characterizing a variety of crops, including maize, 



 

26 
 

soybean, and wheat. However, the application of deep learning methods with SAR features 

other than backscatter remains relatively rare (Wei et al., 2019; Zhao et al., 2019; Zhou et al., 

2019; Teimouri et al., 2019; Wei et al., 2021). Furthermore, the unique imaging geometry of 

SAR, which significantly differs from optical cameras, results in effects such as layover and 

displacement of moving objects. This dependence of object appearance on viewing geometry 

presents substantial challenges for feature learning in deep learning approaches when dealing 

with complex SAR-related data (Persello et al., 2022). For a comprehensive synthesis of SAR-

based applications using deep learning, see Zhu et al. (2021). 

Table 2-2. SAR-based crop mapping and crop growth monitoring studies. 
Sensor SAR feature Method Reference 

Sentinel-1 
 

Backscatter (VV, VH) RF (Bargiel, 2017) 

RADARSAT-2 
 

Neumann decomposition 
parameters 

 

RF (Xie et al., 2019) 

TerraSAR-X 
 

m-chi decomposition parameters 
 

Multiple kernel learning (MKL) (Sonobe et al., 2019) 

Sentinel-1 Backscatter (VV, VH) 
 

U-Net (Wei et al., 2019) 

Sentinel-1 Backscatter (VH) 
 

RF (Singha et al., 2019) 

Sentinel-1 Backscatter (VV, VH) 
 

1D-CNN, LSTM, GRU, RF (Zhao et al., 2019) 

Sentinel-1 Backscatter (VV, VH, VH/VV) 
 

DCNN-LSTM (Zhou et al., 2019) 

Sentinel-1 Backscatter (VV, VH) FCN-LSTM (Teimouri et al., 2019) 
 

Sentinel-1 Dual-pol radar vegetation index 
(DpRVI) 

 

Linear regression (Mandle e al., 2020) 
 

Sentinel-1 Interferometric coherence RF (Mestre-Quereda et al., 
2020) 

 
Sentinel-1 Covariance parameters Depthwise separable convolution 

recurrent neural network (DSCRNN) 
 

(Qu et al., 2020) 

Sentinel-1 Interferometric coherence Mean backscatter analysis (Nasirzadehdizaji et al., 
2021) 

 
Sentinel-1 Backscatter (VV, VH) U-Net (Wei et al., 2021) 

2.4 SAR-Optical Data Fusion in Crop Mapping 

SAR and optical data, each with their distinct imaging geometries and information, exhibit 

different sensitivities towards crop properties. This distinction presents a unique opportunity 

for data and information fusion, using these complementary data sources in a synergistic 

manner to enhance crop mapping (Schmitt and Zhu, 2016; Veloso et al., 2017; Gao et al., 2018). 

The fusion of SAR and optical data can address the inherent limitations of each technology, 

combining their strengths for a more comprehensive understanding of crop characteristics. The 

significant challenge in utilizing optical data for crop mapping is the inconsistency of multi-
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temporal acquisitions due to cloud cover. This uncertainty can be effectively mitigated by 

integrating dense multi-source data, including SAR, which is less affected by atmospheric 

conditions. The addition of SAR data provides a valuable alternative when optical data is 

compromised, ensuring continuous and reliable monitoring of crop growth and changes (Pott 

et al., 2021; Onojeghuo et al., 2023).  

In the context of crop mapping, one prevalent approach to data fusion involves aggregating 

data from multiple sources into a compatible tensor during the preprocessing phase. For 

instance, Gao et al. (2018) demonstrated this by stacking a single acquisition of polarimetric 

Gaofen-3 data with a single acquisition of Sentinel-2 derivatives using the principal component 

analysis (PCA) algorithm, creating a fused vector input for the SVM model. Similarly, Liao et 

al. (2020) integrated multi-temporal polarimetric RADARSAT-2 data with VENμS 

multispectral data for temporal models like 1D-CNN and LSTM. 

Furthermore, studies such as those by Kussul et al. (2018), Van Tricht et al. (2018), You and 

Dong (2020), Adrian et al. (2021), Blickensdörfer et al. (2022), and Onojeghuo et al. (2023) 

have explored data fusion scenarios combining multi-temporal Sentinel-1 and Sentinel-2 data 

to improve classification accuracies for crop types. While multispectral data generally 

outperforms SAR data in differentiating between crops, the addition of multi-temporal SAR 

data tends to increase model performance. However, in scenarios where more Sentinel-2 data 

were combined with fewer Sentinel-1 data, the Sentinel-1 backscatter (VV and VH) showed 

limited contribution to early season crop mapping (You and Dong, 2020). Stacking multi-

source datasets is subject to significant loss of original information due to the process of 

normalizing these datasets to a common tensor. This is particularly problematic when 

considering the viewing geometries and acquisition modes, which may not be directly 

compatible in terms of combined SAR and optical data (Kattenborn et al., 2021). This 

highlights the need for careful consideration of data fusion techniques to preserve the integrity 

of the original data while maximizing the benefits of combined analysis. 

Another innovative data fusion technique in crop mapping involves adapting the model 

architecture to perform fusion through intermediate learned features. In this approach, different 

data sources are processed in parallel branches of a multi-stream network to extract feature 

maps. Subsequently, these learned features are concatenated at later stages in the network to 

form a fused feature representation. For instance, Teimouri et al. (2022) designed a 3D-CNN 
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architecture with two individual paths to extract spatial-temporal-spectral and spatial-temporal-

polarization features from multi-temporal Sentinel-2 and Sentinel-1 images, respectively. 

Similarly, Tao et al. (2022) proposed a dual-branch parallel U-Net architecture. In their 

approach, multispectral data are split into visible and invisible bands, with the resulting feature 

maps from each level of the encoder (desampling) concatenated level by level through the 

decoder (upsampling), thereby obtaining fused semantic segmentation results. Moreover, 

Barbosa et al. (2020) conducted a comparative analysis of feature-level concatenation from 

multi-stream approaches with stacked datasets in the context of crop yield response to site-

specific management, using diverse inputs like remote sensing data, elevation, and in-situ maps. 

Their findings indicated that the highest performance was achieved with concatenation after 

fully connected layers. In contrast, stacking all predictors before modelling proved to be the 

least effective method, likely due to the complexity of interrelations among varied input 

datasets.  

A more straightforward approach to data fusion in crop mapping uses merging predictions from 

multiple models, each tailored to specific datasets. This technique can be implemented using 

methods such as majority voting, where the most common prediction across models is selected 

as the final output (Baeta et al., 2017). Alternatively, probabilistic techniques like Conditional 

Random Fields can be employed to merge predictions by considering the conditional 

dependencies between them (Branson et al., 2018). Additionally, rule-based decision fusion is 

another viable method, wherein the output probabilities, also known as ‘soft outputs’ from each 

model, are combined based on predefined thresholds (Li et al., 2019). However, it is important 

to note that this data fusion approach primarily focuses on combining outputs in the final 

decision space, rather than integrating the hidden feature representations from different data 

sources. As a result, it does not fully exploit the synergistic potential of different sources.  

2.5 Interpretation of Deep Learning Models 

The interpretation of deep learning models, particularly in relation to crop growth 

characteristics, is a key aspect of evaluating the reliability of crop mapping methodologies (Hu 

et al., 2019; Zhong et al., 2019; Xu et al., 2021). Deep learning models, and CNNs in particular, 

are often labelled as 'black boxes' due to the perceived difficulty in understanding their 

decision-making processes (Reichstein et al., 2019). However, the architecture of CNNs, 

mostly characterized by a linear and mostly consecutive sequence of repetitive convolutional 
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operations followed by basic functions like pooling or activation, can facilitate the 

interpretation of these models. Despite the complexity introduced by the abundance of 

parameters, these structural properties can convert abstract vectors into interpretable 

information and help us understand the internal processes of CNNs. Kattenborn et al. (2021) 

suggest that the interpretation of CNNs can be approached from two perspectives: feature 

visualization and feature attribution. Feature visualization involves revealing synthetic outputs 

derived from intermediate layers of the network, commonly referred to as feature maps. This 

approach helps in visualizing how different layers of the network respond to specific inputs. 

On the other hand, feature attribution focuses on identifying which specific feature classes in 

the data activate the network in a salient manner, thereby providing insights into which aspects 

of the input data are most influential in the network’s decision-making process.  

For feature maps, the functionality of individual convolutions in deep learning models can be 

explained using gradient-ascent approaches, as detailed by Schiefer et al. (2020). In this method, 

gradient ascent is used to modify an input image in a way that maximizes the activation of a 

network or a specific layer within it. This process seeks to identify local maxima, whereby the 

output pixel values are adjusted to maximize activation. The resulting layers, therefore, serve 

as a reflection of the patterns that the network has discerned as crucial during the training 

process, essentially revealing what the network has learned to recognize. However, a limitation 

of this approach lies in the nature of the feature maps it produces. These synthetic outputs are 

often abstract and unnatural, making it challenging to correlate them with real-world class 

features in remote sensing data (Kattenborn et al., 2021). Furthermore, while feature 

visualization can generally inform about the general behaviour of the deep learning model and 

relevant patterns its layers present, it falls short in distinguishing how these patterns differ 

among various classes in the data. In contrast, feature attribution offers a more intuitive and 

traceable method of analysing the learning behaviours of deep learning models, as it is directly 

based on the input data.  

Feature attribution in deep learning models often results in the production of activation maps, 

which typically represent how the input data activates individual feature layers within the 

networks. These maps are generated by forward propagating individual input images or pixels 

through a trained network. For example, Mohammadimanesh et al. (2019) utilized activation 

maps of a CNN to visualize the characteristic backscatter features of different SAR 

polarisations for wetland classification. Guidici and Clark (2017) analysed activation maps 
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from the convolutional layer to interpret what the classifier learned about the spectral 

dimension, focusing on local spectral regions activated by the layer to discern the distinctive 

spectral characteristics of various classes. Similarly, Rußwurm and Körner (2018) visualized 

LSTM cell gate activations to demonstrate how information is aggregated over a sequence. 

However, a limitation of activation maps is that they are inherently input-specific and not 

output-specific. This means that while they can show how certain parts or features of the input 

data trigger activations in the network, they do not directly indicate how these activations 

contribute to the final class prediction decision. In other words, they do not clarify the 

relationship between specific input features and the network’s outputs and how the input 

features cause the neurons in the network to activate or respond. While visualization of learned 

features and weights can provide insights into what the network has learned to recognize, 

activation visualization offers a more practical view of how the network applies these learned 

capabilities to specific inputs, thus complementing the overall understanding of the model's 

functioning. 

Gradient Weighted Class Activation Mapping (Grad-CAM) offers an output-specific approach 

to deep learning interpretation by leveraging class-specific gradients from a classification 

decision to highlight relevant regions in the input data (Selvaraju et al., 2019). This technique 

enables a more targeted understanding of which areas in the input are significant for the model's 

decision-making process. Additionally, gradient backpropagation in deep learning 

interpretation can indicate the importance of input features for neural network models and 

particularly provide key temporal features in crop mapping. For instance, Zhong et al. (2019) 

applied multi-level, one-dimensional convolutional layers to visualize temporal patterns 

throughout crop growth seasons, linking critical temporal features to crop phenology using 

deconvolution and guided back-propagation (Zeiler and Fergus, 2014). This method allowed 

for the recognition of patterns indicative of crop seasonality. Similarly, Rußwurm and Körner 

(2020) and Xu et al. (2021) employed gradients with respect to input time series from models 

like AtLSTM and Transformer to identify key growth periods and observation bands, which 

are critical for interpreting deep learning-based multi-temporal crop mapping approaches. 

Furthermore, Xu et al. (2021) provided a comprehensive, multi-perspective interpretation of 

the feature learning pipeline inside deep neural networks. Their approach included analysis of 

gradients and hidden features to monitor the decisive process of dynamic crop mapping. They 

also applied soft output analysis to assess the model's confidence in its final classification 

results. These methodologies not only enhance the interpretability of deep learning models in 
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crop mapping but also contribute to verifying the accuracy and reliability of the predictions 

made by deep learning models. 

Although the interpretation methods for deep learning models are well-established in most 

fields of vegetation remote sensing, their application in SAR-related crop mapping is still 

relatively unexplored. This gap is particularly noteworthy considering the growing number of 

crop mapping studies that utilize features extracted from time-series satellite observations, 

including multi-temporal SAR-derived data. There is a need to assess and understand the 

effects of sequential learning models in this context. The development and application of 

insights derived from artificial intelligence have the potential to significantly enhance our 

expertise in various technical areas. This includes a deeper understanding of biophysical and 

ecological aspects of crop mapping, as well as improving our understanding of the correlations 

between remote sensing data and the characteristics of different crops. The advancement in this 

area is not just a technological imperative but also a step towards a more comprehensive 

understanding of agricultural landscapes. Therefore, a focused effort on leveraging and 

interpreting AI-driven insights in crop mapping based on multi-source data is essential to 

propel the field forward and explore new dimensions in our understanding of crop dynamics 

and environmental interactions. 

  



 

32 
 

References 

Adrian, J., Sagan, V. and Maimaitijiang, M., 2021. Sentinel SAR-optical fusion for crop type mapping using deep 

learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 175, pp.215-

235. 

Baeta, R., Nogueira, K., Menotti, D. and dos Santos, J.A., 2017, October. Learning deep features on multiple 

scales for coffee crop recognition. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and 

Images (SIBGRAPI), pp. 262-268. 

Barbosa, A., Trevisan, R., Hovakimyan, N. and Martin, N.F., 2020. Modeling yield response to crop management 

using convolutional neural networks. Computers and Electronics in Agriculture, 170, p.105197. 

Bargiel, D., 2017. A new method for crop classification combining time series of radar images and crop phenology 

information. Remote Sensing of Environment, 198, pp.369-383. 

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S. and Hostert, P., 2022. Mapping of 

crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data 

for Germany. Remote Sensing of Environment, 269, p.112831. 

Boryan, C., Yang, Z., Mueller, R. and Craig, M., 2011. Monitoring US agriculture: the US department of 

agriculture, national agricultural statistics service, cropland data layer program. Geocarto 

International, 26(5), pp.341-358. 

Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K. and Perona, P., 2018. From Google Maps to a fine-

grained catalog of street trees. ISPRS Journal of Photogrammetry and Remote Sensing, 135, pp.13-30. 

Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B. and Li, Z., 2018. A high-performance and in-

season classification system of field-level crop types using time-series Landsat data and a machine 

learning approach. Remote Sensing of Environment, 210, pp.35-47. 

Chen, Y., Lee, W.S., Gan, H., Peres, N., Fraisse, C., Zhang, Y. and He, Y., 2019. Strawberry yield prediction 

based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), 

p.1584. 

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, 

L., Rabaute, T. and Savinaud, M., 2019. Near real-time agriculture monitoring at national scale at parcel 

resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems 

around the world. Remote Sensing of Environment, 221, pp.551-568. 

Dimitrovski, I., Kitanovski, I., Kocev, D. and Simidjievski, N., 2023. Current trends in deep learning for Earth 

Observation: An open-source benchmark arena for image classification. ISPRS Journal of 

Photogrammetry and Remote Sensing, 197, pp.18-35. 

dos Santos Ferreira, A., Freitas, D.M., da Silva, G.G., Pistori, H. and Folhes, M.T., 2017. Weed detection in 

soybean crops using ConvNets. Computers and Electronics in Agriculture, 143, pp.314-324. 

Dou, P., Shen, H., Li, Z. and Guan, X., 2021. Time series remote sensing image classification framework using 

combination of deep learning and multiple classifiers system. International Journal of Applied Earth 

Observation and Geoinformation, 103, p.102477. 



 

33 
 

Dyrmann, M., Jørgensen, R.N. and Midtiby, H.S., 2017. RoboWeedSupport-Detection of weed locations in leaf 

occluded cereal crops using a fully convolutional neural network. Advances in Animal Biosciences, 8(2), 

pp.842-847. 

Fan, C., Zheng, B., Myint, S.W. and Aggarwal, R., 2014. Characterizing changes in cropping patterns using 

sequential Landsat imagery: An adaptive threshold approach and application to Phoenix, 

Arizona. International Journal of Remote Sensing, 35(20), pp.7263-7278. 

Fisette, T., Rollin, P., Aly, Z., Campbell, L., Daneshfar, B., Filyer, P., Smith, A., Davidson, A., Shang, J. and 

Jarvis, I., 2013, August. AAFC annual crop inventory. In 2013 Second International Conference on 

Agro-Geoinformatics, pp. 270-274 

Foerster, S., Kaden, K., Foerster, M. and Itzerott, S., 2012. Crop type mapping using spectral–temporal profiles 

and phenological information. Computers and Electronics in Agriculture, 89, pp.30-40. 

Fritz, S., See, L., Bayas, J.C.L., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, 

R., Crutchfield, J. and Rembold, F., 2019. A comparison of global agricultural monitoring systems and 

current gaps. Agricultural Systems, 168, pp.258-272. 

Funk, C. and Budde, M.E., 2009. Phenologically-tuned MODIS NDVI-based production anomaly estimates for 

Zimbabwe. Remote Sensing of Environment, 113(1), pp.115-125. 

Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C. and Cerri, C.E., 2008. Wavelet analysis of 

MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote 

Sensing of Environment, 112(2), pp.576-587. 

Gallo, I., La Grassa, R., Landro, N. and Boschetti, M., 2021. Sentinel 2 Time Series Analysis with 3D Feature 

Pyramid Network and Time Domain Class Activation Intervals for Crop Mapping. ISPRS International 

Journal of Geo-Information, 10(7), p.483. 

Gallo, I., Ranghetti, L., Landro, N., La Grassa, R. and Boschetti, M., 2023. In-season and dynamic crop mapping 

using 3D convolution neural networks and sentinel-2 time series. ISPRS Journal of Photogrammetry and 

Remote Sensing, 195, pp.335-352. 

Gao, H., Wang, C., Wang, G., Zhu, J., Tang, Y., Shen, P. and Zhu, Z., 2018. A crop classification method 

integrating GF-3 PolSAR and Sentinel-2A optical data in the Dongting Lake Basin. Sensors, 18(9), 

p.3139. 

Gao, J., French, A.P., Pound, M.P., He, Y., Pridmore, T.P. and Pieters, J.G., 2020. Deep convolutional neural 

networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods, 16(1), 

pp.1-12. 

Gonsamo, A. and Chen, J.M., 2016. Circumpolar vegetation dynamics product for global change study. Remote 

Sensing of Environment, 182, pp.13-26. 

Gu, Y., Wang, Y. and Li, Y., 2019. A survey on deep learning-driven remote sensing image scene understanding: 

Scene classification, scene retrieval and scene-guided object detection. Applied Sciences, 9(10), p.2110. 

Guidici, D. and Clark, M.L., 2017. One-Dimensional convolutional neural network land-cover classification of 

multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California. Remote Sensing, 9(6), 

p.629. 

Hao, P., Di, L., Zhang, C. and Guo, L., 2020. Transfer Learning for Crop classification with Cropland Data Layer 

data (CDL) as training samples. Science of The Total Environment, 733, p.138869. 



 

34 
 

Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M. and Carron, J., 2019. Urban tree species classification using 

a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors, 19(6), p.1284. 

He, C., He, B., Tu, M., Wang, Y., Qu, T., Wang, D. and Liao, M., 2020. Fully convolutional networks and a 

manifold graph embedding-based algorithm for polsar image classification. Remote Sensing, 12(9), 

p.1467. 

Hu, Q., Sulla-Menashe, D., Xu, B., Yin, H., Tang, H., Yang, P. and Wu, W., 2019. A phenology-based spectral 

and temporal feature selection method for crop mapping from satellite time series. International Journal 

of Applied Earth Observation and Geoinformation, 80, pp.218-229. 

Ienco, D., Gaetano, R., Dupaquier, C. and Maurel, P., 2017. Land cover classification via multitemporal spatial 

data by deep recurrent neural networks. IEEE Geoscience and Remote Sensing Letters, 14(10), pp.1685-

1689. 

Interdonato, R., Ienco, D., Gaetano, R. and Ose, K., 2019. DuPLO: A DUal view Point deep Learning architecture 

for time series classificatiOn. ISPRS Journal of Photogrammetry and Remote Sensing, 149, pp.91-104. 

Ji, S., Zhang, C., Xu, A., Shi, Y. and Duan, Y., 2018. 3D convolutional neural networks for crop classification 

with multi-temporal remote sensing images. Remote Sensing, 10(1), p.75. 

Kamilaris, A. and Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: A survey. Computers and 

Electronics in Agriculture, 147, pp.70-90. 

Kattenborn, T., Leitloff, J., Schiefer, F. and Hinz, S., 2021. Review on Convolutional Neural Networks (CNN) in 

vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, pp.24-49. 

Kussul, N., Lavreniuk, M., Skakun, S. and Shelestov, A., 2017. Deep learning classification of land cover and 

crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), pp.778-782. 

Kussul, N., Mykola, L., Shelestov, A. and Skakun, S., 2018. Crop inventory at regional scale in Ukraine: 

developing in season and end of season crop maps with multi-temporal optical and SAR satellite 

imagery. European Journal of Remote Sensing, 51(1), pp.627-636. 

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436-444. 

Leite, P.B.C., Feitosa, R.Q., Formaggio, A.R., da Costa, G.A.O.P., Pakzad, K. and Sanches, I.D.A., 2011. Hidden 

Markov Models for crop recognition in remote sensing image sequences. Pattern Recognition 

Letters, 32(1), pp.19-26. 

Li, H., Zhang, C., Zhang, S. and Atkinson, P.M., 2019. A hybrid OSVM-OCNN method for crop classification 

from fine spatial resolution remotely sensed imagery. Remote Sensing, 11(20), p.2370. 

Li, Y., Huang, X. and Liu, H., 2017. Unsupervised deep feature learning for urban village detection from high-

resolution remote sensing images. Photogrammetric Engineering & Remote Sensing, 83(8), pp.567-579. 

Liao, C., Wang, J., Xie, Q., Baz, A.A., Huang, X., Shang, J. and He, Y., 2020. Synergistic use of multi-temporal 

RADARSAT-2 and VENµS data for crop classification based on 1D convolutional neural 

network. Remote Sensing, 12(5), p.832. 

Lobell, D.B., 2013. The use of satellite data for crop yield gap analysis. Field Crops Research, 143, pp.56-64. 

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully convolutional networks for semantic segmentation. 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440. 



 

35 
 

Lottes, P., Behley, J., Milioto, A. and Stachniss, C., 2018. Fully convolutional networks with sequential 

information for robust crop and weed detection in precision farming. IEEE Robotics and Automation 

Letters, 3(4), pp.2870-2877. 

Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H. and Rao, Y.S., 

2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR 

data. Remote Sensing of Environment, 247, p.111954. 

Mandic, D.P. and Chambers, J., 2001. Recurrent neural networks for prediction: learning algorithms, 

architectures and stability. John Wiley & Sons, Inc.. 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M. and Meador, A.J.S., 2017. 

MODIS phenology-derived, multi-year distribution of conterminous US crop types. Remote Sensing of 

Environment, 198, pp.490-503. 

Mäyrä, J., Keski-Saari, S., Kivinen, S., Tanhuanpää, T., Hurskainen, P., Kullberg, P., Poikolainen, L., Viinikka, 

A., Tuominen, S., Kumpula, T. and Vihervaara, P., 2021. Tree species classification from airborne 

hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sensing of 

Environment, 256, p.112322. 

Mazzia, V., Khaliq, A. and Chiaberge, M., 2020. Improvement in land cover and crop classification based on 

temporal features learning from Sentinel-2 data using recurrent-convolutional neural network (R-

CNN). Applied Sciences, 10(1), p.238. 

Mestre-Quereda, A., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Jacob, A.W. and Engdahl, M.E., 2020. Time-

series of Sentinel-1 interferometric coherence and backscatter for crop-type mapping. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp.4070-4084. 

Milioto, A., Lottes, P. and Stachniss, C., 2017. Real-time blob-wise sugar beets vs weeds classification for 

monitoring fields using convolutional neural networks. ISPRS Annals of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 4, pp.41-48. 

Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Gill, E. and Molinier, M., 2019. A new fully convolutional 

neural network for semantic segmentation of polarimetric SAR imagery in complex land cover 

ecosystem. ISPRS Journal of Photogrammetry and Remote Sensing, 151, pp.223-236. 

Mulla, D.J., 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining 

knowledge gaps. Biosystems Engineering, 114(4), pp.358-371. 

Nasirzadehdizaji, R., Cakir, Z., Sanli, F.B., Abdikan, S., Pepe, A. and Calo, F., 2021. Sentinel-1 interferometric 

coherence and backscattering analysis for crop monitoring. Computers and Electronics in 

Agriculture, 185, p.106118. 

Nejad, S.M.M., Abbasi-Moghadam, D., Sharifi, A., Farmonov, N., Amankulova, K. and Lászlź, M., 2022. 

Multispectral crop yield prediction using 3D-convolutional neural networks and attention convolutional 

LSTM approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 16, pp.254-266. 

Onojeghuo, A.O., Miao, Y. and Blackburn, G.A., 2023. Deep ResU-Net Convolutional Neural Networks 

Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical 

Imagery. Remote Sensing, 15(6), p.1517. 



 

36 
 

Pelletier, C., Webb, G.I. and Petitjean, F., 2019. Temporal convolutional neural network for the classification of 

satellite image time series. Remote Sensing, 11(5), p.523. 

Persello, C., Wegner, J.D., Hänsch, R., Tuia, D., Ghamisi, P., Koeva, M. and Camps-Valls, G., 2022. Deep 

learning and earth observation to support the sustainable development goals: Current approaches, open 

challenges, and future opportunities. IEEE Geoscience and Remote Sensing Magazine, 10(2), pp.172-

200. 

Pott, L.P., Amado, T.J.C., Schwalbert, R.A., Corassa, G.M. and Ciampitti, I.A., 2021. Satellite-based data fusion 

crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS Journal of Photogrammetry 

and Remote Sensing, 176, pp.196-210. 

Qi, Z., Yeh, A.G.O., Li, X. and Lin, Z., 2012. A novel algorithm for land use and land cover classification using 

RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 118, pp.21-39. 

Qu, Y., Zhao, W., Yuan, Z. and Chen, J., 2020. Crop mapping from sentinel-1 polarimetric time-series with a 

deep neural network. Remote Sensing, 12(15), p.2493. 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. and Prabhat, F., 2019. Deep 

learning and process understanding for data-driven Earth system science. Nature, 566(7743), pp.195-

204. 

Roy, S.K., Krishna, G., Dubey, S.R. and Chaudhuri, B.B., 2019. HybridSN: Exploring 3-D–2-D CNN feature 

hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17(2), 

pp.277-281. 

Rustowicz, R., Cheong, R., Wang, L., Ermon, S., Burke, M., Lobell, D., 2019. Semantic segmentation of crop 

type in africa: A novel dataset and analysis of deep learning methods. In: Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition Workshops, pp. 75-82. 

Rußwurm, M. and Körner, M., 2017. Multi-temporal land cover classification with long short-term memory neural 

networks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 42, pp.551-558. 

Rußwurm, M. and Körner, M., 2020. Self-attention for raw optical satellite time series classification. ISPRS 

Journal of Photogrammetry and Remote Sensing, 169, pp.421-435. 

Rußwurm, M. and Körner, M., 2018. Multi-temporal land cover classification with sequential recurrent 

encoders. ISPRS International Journal of Geo-Information, 7(4), p.129. 

Rußwurm, M., Courty, N., Emonet, R., Lefèvre, S., Tuia, D. and Tavenard, R., 2023. End-to-end learned early 

classification of time series for in-season crop type mapping. ISPRS Journal of Photogrammetry and 

Remote Sensing, 196, pp.445-456. 

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B. and Schmidtlein, S., 2020. Mapping forest 

tree species in high resolution UAV-based RGB-imagery by means of convolutional neural 

networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, pp.205-215. 

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Networks, 61, pp.85-117. 

Schmitt, M. and Zhu, X.X., 2016. Data fusion and remote sensing: An ever-growing relationship. IEEE 

Geoscience and Remote Sensing Magazine, 4(4), pp.6-23. 



 

37 
 

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual 

explanations from deep networks via gradient-based localization. In Proceedings of the IEEE 

International Conference on Computer Vision, pp. 618-626. 

Sharma, A., Liu, X., Yang, X. and Shi, D., 2017. A patch-based convolutional neural network for remote sensing 

image classification. Neural Networks, 95, pp.19-28. 

Siachalou, S., Mallinis, G. and Tsakiri-Strati, M., 2015. A hidden Markov models approach for crop classification: 

Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sensing, 7(4), 

pp.3633-3650. 

Singha, M., Dong, J., Zhang, G. and Xiao, X., 2019. High resolution paddy rice maps in cloud-prone Bangladesh 

and Northeast India using Sentinel-1 data. Scientific Data, 6(1), p.26. 

Skriver, H., 2011. Crop classification by multitemporal C-and L-band single-and dual-polarization and fully 

polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 50(6), pp.2138-2149. 

Sonobe, R., 2019. Parcel-based crop classification using multi-temporal TerraSAR-X dual polarimetric 

data. Remote Sensing, 11(10), p.1148. 

Sun, C., Bian, Y., Zhou, T. and Pan, J., 2019. Using of multi-source and multi-temporal remote sensing data 

improves crop-type mapping in the subtropical agriculture region. Sensors, 19(10), p.2401. 

Tao, C., Meng, Y., Li, J., Yang, B., Hu, F., Li, Y., Cui, C. and Zhang, W., 2022. MSNet: multispectral semantic 

segmentation network for remote sensing images. GIScience & Remote Sensing, 59(1), pp.1177-1198. 

Teimouri, M., Mokhtarzade, M., Baghdadi, N. and Heipke, C., 2022. Fusion of time-series optical and SAR 

images using 3D convolutional neural networks for crop classification. Geocarto International, 37(27), 

pp.15143-15160. 

Teimouri, N., Dyrmann, M. and Jørgensen, R.N., 2019. A novel spatio-temporal FCN-LSTM network for 

recognizing various crop types using multi-temporal radar images. Remote Sensing, 11(8), p.990. 

Turkoglu, M.O., D'Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K. and Wegner, J.D., 2021. Crop 

mapping from image time series: Deep learning with multi-scale label hierarchies. Remote Sensing of 

Environment, 264, p.112603. 

USDA-NASS, C. D. L., 2022. USDA National Agricultural Statistics Service Cropland Data Layer. Published 

crop-specific data layer. Available at: (https://nassgeodata.gmu.edu/CropScape/). 

Van Tricht, K., Gobin, A., Gilliams, S. and Piccard, I., 2018. Synergistic use of radar Sentinel-1 and optical 

Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sensing, 10(10), p.1642. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. 

Attention is all you need. Advances in Neural Information Processing Systems, 30. 

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.F. and Ceschia, E., 2017. Understanding 

the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural 

applications. Remote Sensing of Environment, 199, pp.415-426. 

Walker, J.J., De Beurs, K.M. and Wynne, R.H., 2014. Dryland vegetation phenology across an elevation gradient 

in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sensing of 

Environment, 144, pp.85-97. 

Wang, S., Azzari, G. and Lobell, D.B., 2019. Crop type mapping without field-level labels: Random forest transfer 

and unsupervised clustering techniques. Remote Sensing of Environment, 222, pp.303-317. 

https://nassgeodata.gmu.edu/CropScape/


 

38 
 

Wang, Y., Zhang, Z., Feng, L., Ma, Y. and Du, Q., 2021. A new attention-based CNN approach for crop mapping 

using time series Sentinel-2 images. Computers and Electronics in Agriculture, 184, p.106090. 

Wei, P., Chai, D., Lin, T., Tang, C., Du, M. and Huang, J., 2021. Large-scale rice mapping under different years 

based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS Journal of 

Photogrammetry and Remote Sensing, 174, pp.198-214. 

Wei, S., Zhang, H., Wang, C., Wang, Y. and Xu, L., 2019. Multi-temporal SAR data large-scale crop mapping 

based on U-Net model. Remote Sensing, 11(1), p.68. 

Wen, Y., Li, X., Mu, H., Zhong, L., Chen, H., Zeng, Y., Miao, S., Su, W., Gong, P., Li, B. and Huang, J., 2022. 

Mapping corn dynamics using limited but representative samples with adaptive strategies. ISPRS Journal 

of Photogrammetry and Remote Sensing, 190, pp.252-266. 

Xia, T., He, Z., Cai, Z., Wang, C., Wang, W., Wang, J., Hu, Q. and Song, Q., 2022. Exploring the potential of 

Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. International 

Journal of Applied Earth Observation and Geoinformation, 107, p.102702. 

Xie, Q., Wang, J., Liao, C., Shang, J., Lopez-Sanchez, J.M., Fu, H. and Liu, X., 2019. On the use of Neumann 

decomposition for crop classification using multi-temporal RADARSAT-2 polarimetric SAR 

data. Remote Sensing, 11(7), p.776. 

Xu, J., Yang, J., Xiong, X., Li, H., Huang, J., Ting, K.C., Ying, Y. and Lin, T., 2021. Towards interpreting multi-

temporal deep learning models in crop mapping. Remote Sensing of Environment, 264, p.112599. 

Xu, J., Zhu, Y., Zhong, R., Lin, Z., Xu, J., Jiang, H., Huang, J., Li, H. and Lin, T., 2020. DeepCropMapping: A 

multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and 

soybean mapping. Remote Sensing of Environment, 247, p.111946. 

Yalcin, H., 2017, August. Plant phenology recognition using deep learning: Deep-Pheno. In 2017 6th 

International Conference on Agro-Geoinformatics, pp. 1-5.  

Yang, C., Everitt, J.H. and Murden, D., 2011. Evaluating high resolution SPOT 5 satellite imagery for crop 

identification. Computers and Electronics in Agriculture, 75(2), pp.347-354. 

Yang, Q., Shi, L., Han, J., Zha, Y. and Zhu, P., 2019. Deep convolutional neural networks for rice grain yield 

estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research, 235, 

pp.142-153. 

Yang, S., Gu, L., Li, X., Jiang, T. and Ren, R., 2020. Crop classification method based on optimal feature selection 

and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sensing, 12(19), 

p.3119. 

You, N. and Dong, J., 2020. Examining earliest identifiable timing of crops using all available Sentinel 1/2 

imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 161, pp.109-

123. 

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y. and Xiao, X., 2021. The 10-m crop type 

maps in Northeast China during 2017–2019. Scientific Data, 8(1), p.41. 

Zeiler, M.D. and Fergus, R., 2014. Visualizing and understanding convolutional networks. In Computer Vision–

ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part 

I 13, pp.818-833.  



 

39 
 

Zhang, C., Di, L., Lin, L., Li, H., Guo, L., Yang, Z., Eugene, G.Y., Di, Y. and Yang, A., 2022. Towards automation 

of in-season crop type mapping using spatiotemporal crop information and remote sensing 

data. Agricultural Systems, 201, p.103462. 

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J. and Atkinson, P.M., 2019. Joint Deep Learning for 

land cover and land use classification. Remote Sensing of Environment, 221, pp.173-187. 

Zhang, G., Xiao, X., Dong, J., Kou, W., Jin, C., Qin, Y., Zhou, Y., Wang, J., Menarguez, M.A. and Biradar, C., 

2015. Mapping paddy rice planting areas through time series analysis of MODIS land surface 

temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 

pp.157-171. 

Zhang, J., Feng, L. and Yao, F., 2014. Improved maize cultivated area estimation over a large scale combining 

MODIS–EVI time series data and crop phenological information. ISPRS Journal of Photogrammetry 

and Remote Sensing, 94, pp.102-113. 

Zhang, M., Lin, H., Wang, G., Sun, H. and Fu, J., 2018. Mapping paddy rice using a convolutional neural network 

(CNN) with Landsat 8 datasets in the Dongting Lake Area, China. Remote Sensing, 10(11), p.1840. 

Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L. and Feng, M., 2019. Evaluation of three deep learning models for 

early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, 

China. Remote Sensing, 11(22), p.2673. 

Zhong, L., Gong, P. and Biging, G.S., 2014. Efficient corn and soybean mapping with temporal extendability: A 

multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, pp.1-13. 

Zhong, L., Hu, L. and Zhou, H., 2019. Deep learning based multi-temporal crop classification. Remote Sensing of 

Environment, 221, pp.430-443. 

Zhong, L., Yu, L., Li, X., Hu, L. and Gong, P., 2016. Rapid corn and soybean mapping in US Corn Belt and 

neighboring areas. Scientific Reports, 6(1), p.36240. 

Zhou, Y.N., Luo, J., Feng, L. and Zhou, X., 2019. DCN-based spatial features for improving parcel-based crop 

classification using high-resolution optical images and multi-temporal SAR data. Remote 

Sensing, 11(13), p.1619. 

Zhu, X.X., Montazeri, S., Ali, M., Hua, Y., Wang, Y., Mou, L., Shi, Y., Xu, F. and Bamler, R., 2021. Deep 

learning meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geoscience and Remote Sensing 

Magazine, 9(4), pp.143-172. 

  



 

40 
 

Chapter 3 Enhanced Crop Mapping Using Polarimetric SAR 
Features and Time Series Deep Learning: A Case Study in Bei’an, 
China 

 
 
 
 
 
 
 
 
 
  



 

41 
 

Abstract 

Large-scale crop mapping is essential for decision-makers to evaluate agricultural resource 

usage and estimate crop yields. Annual crop inventory statistics can provide valuable insights 

into crop growth monitoring, however, due to the variability in crop growth patterns across 

different locations and times, the ability to generalise near real-time crop classification over 

large areas is needed. This study develops deep learning based approaches to map agricultural 

regions at the county level using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) 

data, specifically evaluating the contribution of SAR-derived input predictors for 

discriminating both majority and minority crops in Bei’an County, Northeast China. The 

proposed model architecture amalgamates a one-dimensional convolution (Conv1D) neural 

network with attention-based Long Short-Term Memory (LSTM) to characterise the crop types 

exhibiting phenological similarities using a range of SAR-derived input predictors. The results 

are compared with alternative multi-temporal deep learning frameworks, including standalone 

Conv1D and Transformer models, as well as the machine learning algorithm Random Forest 

(RF), which serves as the baseline for comparison. The designed architecture (Conv1D-LSTM) 

achieved the highest F1 scores (maize: 87%, soybean: 86% and other crops: 85%) when applied 

to an inherently imbalanced dataset, using m-chi decomposition features as input predictors. 

The results provide superior performance in terms of effectiveness and efficiency compared to 

other selected models. The monthly in-season crop classification underscores the importance 

of temporal dependencies and the availability of multi-temporal observations for learning 

dynamic growth patterns over large areas. Moreover, the interpretation of model learning 

processes and outcomes is explained through visualising weight distributions and hidden 

features. This study offers a comprehensive evaluation of essential SAR features in multi-

temporal satellite data for accurate crop mapping, utilising advanced deep learning techniques. 

Keywords: Crop mapping; Deep learning; Multi-temporal satellite data; Polarimetric Synthetic 

Aperture Radar (PolSAR); Conv1D; Attention-based LSTM 
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3.1 Introduction 

Accurate crop mapping is essential for dynamically monitoring agricultural productivity, 

assessing food availability, and supporting decision-making at regional and national levels 

(Gómez et al., 2016; Mercier et al., 2020; Wu et al., 2021; Blickensdörfer et al., 2022). For 

instance, early-season crop classification contributes to numerous agricultural applications, 

such as cropland management, supply chain frameworks, crop insurance, and area-based 

subsidies supported by governments (Cai et al., 2018). Accurate and near real-time crop 

classification is greatly needed for understanding changes in growth patterns of specific crops 

and assessing their socio-economic impacts.  

Modern satellite remote sensing technology enables the detection, mapping, and monitoring of 

agronomic information over various spatial and temporal scales, and can help optimize 

agricultural practices, reducing the environmental impact of food production and minimizing 

waste, and ultimately contributing to more sustainable food systems (Thenkabail et al., 2012, 

Benos et al., 2021). Satellite remote sensing offers opportunities to obtain multi-dimensional 

data at high spatial and temporal resolutions over large regions. Satellite-based workflows have 

been widely employed to enhance crop mapping accuracies and produce crop maps at various 

scales (Azzari and Lobell, 2017). For example, Cropland Data Layer (CDL) and Crop 

Inventory (CI) are two national-scale, medium-resolution crop map products that are updated 

annually. The 2022 CDL, a geo-referenced raster layer of the United States Department of 

Agriculture (USDA), offers geospatial information pertaining to crop types, land cover, and 

land use at a 30-meter resolution across the United States (USDA-NASS, 2022). In contrast, 

CI is developed by Agriculture and Agri-Food Canada (AAFC) and provides crop type 

information for Canada at a 30-meter resolution (Fisette et al., 2013). Generating both products 

involves the integration of multi-source satellite imagery and comprehensive ground truth data 

collected via field surveys. 

Although the multi-spectral and photosynthetic properties of vegetation can be measured by 

optical satellite platforms (Veloso et al., 2017), frequent cloud cover can limit the quality of 

optical acquisitions, significantly impacting the performance of effective differentiation of 

crops (Sonobe et al., 2014; Griffiths et al., 2019). Methods to reconstruct occluded information, 

such as linear interpolation (Kandasamy et al., 2013), and probabilistic models like K-nearest 

neighbour (KNN) imputation and decision trees (Bertsimas et al., 2017), are not only 
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computationally demanding but also encounter challenges in achieving accurate imputation, 

particularly for large datasets with significant missing or contaminated data (Khan et al., 2022). 

To address these limitations, Synthetic Aperture Radar (SAR) sensors, active instruments that 

can operate independent of illumination and weather conditions, are widely used to retrieve 

information on the Earth`s surface. While previous studies have demonstrated that time-series 

SAR features have positive impacts on land cover classification performance (e.g. Ullmann et 

al., 2014; Zhang et al., 2014), their applications in agricultural domains remain challenging, 

particularly in comparison to the utilization of optical data (Veloso et al., 2017; Steele-Dunne 

et al., 2017). 

The  Sentinel-1 satellite constellation, with the short revisit frequency of six days when both 

satellites are operational, offers open-access SAR data at C-band with global coverage, 

ensuring consistent monitoring and mapping applications in agriculture (e.g., McNairn et al., 

2009; Inglada et al., 2016; Navarro et al., 2016; Ndikumana et al., 2018; Mullissa al., 2018; 

Teimouri et al., 2019, Beriaux et al., 2021). However, most studies have focused primarily on 

radar amplitude information as input predictors. Sentinel-1 can also provide phase information 

characterised by off-diagonal elements in the scattering matrix, which can improve crop 

mapping accuracy by investigating the scattering properties of different land cover types (Sun 

et al., 2019; Qu et al., 2020). Additionally, polarimetric SAR (PolSAR) is an advanced radar 

remote sensing technique that measures and interprets the polarisation state of backscattered 

signals, thereby enabling a detailed understanding of the scattering mechanism and enhancing 

the identification and characterisation of surface features, such as crops. Polarimetric 

decomposition algorithms have been developed to extract physical information from the target 

surface, which can break down the random scattering mechanisms into several parameters that 

can be associated with the target's physical characteristics. The polarimetric parameters are also 

sensitive to phenological changes in crops (Valcarce-Diñeiro et al., 2018). However, many 

existing decomposition methods are only applicable to quad-polarisation (quad-pol) sensors 

(He et al., 2020; Liao et al., 2020; Xie et al., 2019; Gao et al., 2018), which limits their use with 

dual-polarised platforms like Sentinel-1. Furthermore, quad-polarimetric observations often 

have reduced swath coverage and limited availability, hindering their application across large 

areas with high temporal frequency (Sonobe et al., 2019). While dual-polarisation (dual-pol) 

data has been investigated as an alternative solution for large-scale crop monitoring by several 

studies (e.g., Heine et al., 2016; Sonobe et al., 2019; Qu et al., 2020; Bhogapurapu et al., 2021; 
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Hosseini et al., 2022), there remains a pressing need for more refined algorithms that can 

accurately capture variability both within fields and across landscapes. 

Machine learning methods have been widely employed for large-scale agricultural monitoring 

(e.g., Benos et al., 2021; Li et al., 2020) and crop mapping (e.g., Dong et al., 2018; Xu et al., 

2018; Sun et al., 2019; Moumni and Lahrouni, 2021), using satellite remote sensing 

observations. Other applications include retrieving biophysical features (e.g., Verrelst et al., 

2012; Jia et al., 2019) and yield prediction (e.g., Chlingaryan et al., 2018; Baloloy et al., 2018). 

Commonly used machine learning approaches, such as Random Forest (RF), Decision Tree 

(DL), and Support Vector Machine (SVM) have demonstrated good performances for multi-

temporal crop mapping (Sonobe et al., 2019; King et al., 2017; Xie et al., 2019; Gao et al., 

2018; Dong et al., 2018). However, these models typically handle non-temporal data without 

fully exploring the underlying temporal dependencies, resulting in an incomplete 

understanding of time-series patterns of input data. Various studies have considered integrating 

phenological metrics to define crop characteristics (Siachalou et al., 2015; Zhong et al., 2014; 

Bargiel, 2017), but these empirical features are heavily dependent on expert knowledge and 

may be specific to local cropping practices.  

Recently, deep learning techniques have shown their efficiency and reliability in handling 

remote sensing data for a range of applications such as land cover classification, crop type 

classification, plant disease detection, and crop yield prediction (e.g., Kamilaris and Prenafeta-

Boldú, 2018; Zhang et al., 2019; Liao et al., 2020, Zhu et al., 2020). These cutting-edge 

methods employ end-to-end neural network architectures capable of inherently exploring and 

learning high-dimensional information. Convolutional Neural Networks (CNNs) are 

extensively employed to extract multi-scale features from remote sensing data (Zhang et al., 

2020). Specifically, one-dimensional CNNs (1D-CNNs) have been successfully employed for 

crop mapping by using one-dimensional convolutional (Conv1D) layers as pixel-based feature 

extractors processing multi-temporal remote sensing datasets (Zhong et al., 2019; Pelletier et 

al., 2019; Liao et al., 2020). Additionally, Recurrent Neural Networks (RNN), Long Short-

Term Memory (LSTM), and Transformers have also demonstrated success in enhancing crop 

mapping by extracting dynamic temporal features from longer image sequences (Zhou et al., 

2017; Zhao et al., 2019; Zhong et al., 2019; Rußwurm and Körner, 2020). In the case of stacked 

Conv1D layers, the shallow layers extract local features, while deeper layers comprehensively 

summarize patterns to a larger extent. LSTM units, on the other hand, are designed to memorize 
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features over long or short-time sequences. It has been shown that deep learning methods are 

capable of learning hierarchical features across spatiotemporal dimensions and frequently 

outperform traditional classifiers that rely on manually defined rules for crop classification 

tasks (Sun et al., 2019; Wei et al., 2019; Zhou et al., 2019).  

In this context, there is a clear need for studies that investigate the potential of deep learning 

approaches and understand the interpretability of these networks, specifically those designed 

to uncover sequential relationships in multi-temporal remote sensing data for crop mapping. 

This is particularly important for regions like Northeast China, where obtaining quantitative 

information from local croplands has been challenging due to annual crop rotation practices. 

(You et al., 2021). The Northeast region of China has become a significant agricultural region, 

playing a key role in both domestic agricultural production and international trade, particularly 

in the cultivation of economically important crops such as soybeans and maize (Dong et al., 

2016; Yang et al., 2019). As a result, there is a strong demand for accurate annual crop maps 

to assist local authorities in establishing near real-time crop monitoring systems for early yield 

assessments at the county level. However, reliable crop mapping is difficult due to the complex 

relationship between the location-specific factors (spatial) and the timing-related factors 

(temporal) that affect crop growth (Qu et al., 2020; Liao et al., 2020; Xu et al., 2020; Xu et al., 

2021). Although 1D-CNNs benefit from lower computational complexities (Kiranyaz et al., 

2021), their predictive performance depends on the sensitivity of input predictors derived from 

satellite data and the design of model architectures (Yang et al., 2020; Dou et al., 2021). Crop 

mapping challenges are further magnified by the limited availability of accurate crop type 

labels, resulting in imbalanced dataset distributions and reduced crop map accuracies on a large 

scale, despite the improvements in spatial and temporal resolutions provided by contemporary 

earth-observing satellites (Wang et al., 2019). Moreover, labour costs, expertise requirements, 

and the accessibility of multi-temporal remote sensing data continue to pose constraints for 

large-scale crop monitoring initiatives (Dong et al., 2015; Zhang et al., 2015; You and Dong, 

2020; Zhang et al., 2022). 

The aim of this study is to develop an approach for multi-temporal crop mapping in Bei’an 

County in Northeast China using polarimetric SAR-derived data and deep learning. The 

research addresses the following specific questions: i) which SAR features derived from 

Sentinel-1 datasets have the greatest impact on crop mapping in Bei'an County? ii) how does 

the developed Conv1D-LSTM architecture perform in comparison to existing models, such as 
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Conv1D (Zhong et al, 2019), Conv1D-RF (Yang et al, 2020), Transformer (Rußwurm and 

Körner, 2020), and the universal baseline model RF, with respect to crop mapping performance 

and handling imbalanced class distribution? iii) how do phenological factors influence the 

effectiveness of in-season crop mapping using SAR data? and iv) how is the interpretability of 

the proposed deep learning approach demonstrated in this study? Specifically, the study 

develops a joint ensemble learning architecture (Conv1D-LSTM) by combining the attention-

based LSTM and Conv1D layers to reduce the recognition error rate stemming from the 

imbalanced dataset. The developed architecture is compared to existing state-of-the-art deep 

learning models and the baseline model (RF) for differentiating local major crops such as 

soybean and maize, which exhibit similar phenological stages. Additionally, we explore 

various SAR features, including the backscatter coefficient, Grey Level Co-occurrence Matrix 

(GLCM), covariance matrix parameters, radar vegetation index (RVI), dual-pol RVI (DpRVI), 

and polarimetric features derived by m-chi decomposition and dual-polarisation entropy/alpha. 

Due to the potential for high-dimensional SAR features to introduce redundant information, 

we explored feature selection techniques, such as the Spearman correlation coefficient and the 

feature importance algorithm (Boruta), to eliminate less relevant features. We then created 

multiple scenarios to evaluate the importance of specific SAR features in differentiating crops.  

3.2 Material and Methods 

3.2.1 Study area 

Bei’an, located in the transitional zone between the Songnen Plain and the Greater Khingan 

mountains (47°35'N ~48°33'N, 126°16'E~127°53'E), is a county-level city in the northeast part 

of Heilongjiang province in China (Figure 3-1). Bei’an spans a total area of 7,149 km2 and lies 

within a cold temperate continental monsoon climate zone, with an average annual temperature 

of 1.2°C, an Effective Accumulated Temperature (EAT) of 18.30 °C - 23.50 °C, a frost-free 

period of 88 - 120 days, and an average annual precipitation of 529 millimetres. The long 

summer daylight hours, large diurnal temperature differences in autumn, and rainfall 

concurrent with the warm season are beneficial for crop growth. This region, also known as 

one of the world’s famous black soil regions, provides enhanced soil fertility, creating 

improved conditions for agricultural activities, particularly grain cultivation.  

Approximately 35.4% of the total area of Bei’an is forested, and cropland occupies around 

32.95% of the total area, with spring soybean and maize being the major crops grown (61.8% 
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and 29.5% of the total sowing area, respectively) (Heihe Social and Economic Statistics 

Yearbook, 2018). Other minority crop types mainly include spring rice and wheat, along with 

other land cover types. A network of rivers and canals traverses the area, and the land-use 

pattern is characterized by a mosaic of agricultural fields interspersed with parcels of forests, 

grasslands, and wetlands, which contribute to essential irrigation for crop cultivation. 

According to the local crop sowing scheme, maize is typically sown from late April to late 

September, whereas soybeans are normally sown from early May to mid-September. These 

periods might vary annually due to crop rotation cycles over the years in the study area. As 

illustrated in Figure 3-2, the observed agricultural landscape exhibits a diverse range of field 

configurations, with large croplands dedicated to the dominant crops (maize and soybean) 

alongside compact farmlands where multiple crop types are cultivated adjacently. This 

complex cropping pattern poses potential challenges for satellite-based crop mapping, 

particularly when relying on medium or low-spatial-resolution imagery. 

 

Figure 3-1. The study area of Bei’an County, Northeast China (the right panel shows the county's boundary). 
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Figure 3-2. Images of maize (left), soybean (centre) and mixed crops (right) were captured in Southeast Bei’an 
during the crop-growing stage in August 2019. 

3.2.2 Ground-truth dataset 

During July, August, and September 2017, on-site field surveys were conducted in the study 

area, covering a total of 21,257 fields to determine crop parcel areas, record crop types, and 

obtain annual statistics from agricultural household surveys. The surveyed field polygons from 

these sites were then provided to the Chinese Academy of Agricultural Sciences (CAAS), 

which subsequently classified the crops using remote sensing imagery combined with the 

surveyed field polygons. For cropland parcels where mixed crops were intercropped in close 

proximity, manual digitization and labelling were performed using 5 m spatial resolution 

RapidEye imagery (Near Infra-red, Red Edge, and Red composite), while Sentinel-2A images 

(SWIR, Narrow NIR, and Red composite) were applied for delineating larger monocropping 

cropland parcels. In addition to crops, residential, forest and waterbody areas were also labelled. 

The reference dataset provided by CAAS contains some crop parcels for rice, wheat, and 

unidentified crops, which were merged into a single class, namely 'other crop', due to their 

relatively small sample sizes. The proportion of sample pixels for each class and the field size 

distribution are illustrated in Figure 3-3. The entire samples, consisting of 3,979,417 labelled 

pixels, were allocated for training, validation, and testing dataset division using 10-km grids, 

in line with the data partitioning approach suggested by Zhong et al. (2019), with the respective 

ratio of 60%, 20%, and 20%. A random selection of 10% (equivalent to 397,942 pixels) from 

each dataset was made for the purposes of training models in a weakly supervised framework 

and for conducting feature selection. This means one of the 10% subsets functioned bilaterally 

as a training set for model development and as input for feature selection processes. The 

objective of employing feature selection techniques was to identify critical SAR features 

suitable for classification tasks by eliminating irrelevant features. Following this, the models 

were trained using the selected features to ensure their relevance and effectiveness. 

Subsequently, these trained models were evaluated on a separate 10% subset (designated as the 
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testing dataset) through comparative analysis to determine the most impactful SAR-related 

input predictors for the task of crop mapping. After determining the most important predictors, 

the remaining ground-truth labels were incorporated into the 10% dataset, thereby replenishing 

it for subsequent evaluation of the accuracy improvement achieved by integrating these 

predictors into the crop mapping process. 

 

Figure 3-3. The proportion of imbalanced samples for each class (left). The training, validation, and testing 
datasets are mutually exclusive. Pixels from each class were extracted from these sets in a ratio of 60:20:20. The 
distribution of crop field size in the Bei’an ground-truth dataset (right). Parcels larger than 4 hectares are 
aggregated in the last bin of the histogram. The average parcel size is 1.39 hectares. 

3.2.3 SAR data collection and pre-processing 

Sentinel-1 is a constellation of satellites equipped with C-band SAR sensors. These satellites 

are positioned 180° apart, with Sentinel-1A launched in April 2014 and Sentinel-1 B launched 

in April 2016 (anomaly in December 2021 resulted in the end of the mission) by the European 

Space Agency (ESA). Sentinel-1 Interferometric Wide (IW) Single Look Complex (SLC) 

products (5 ´ 20 m spatial resolution) were obtained from the Sentinel-1 Scientific Data Hub 

(https://scihub.copernicus.eu/). Since the main agricultural practices in the study area typically 

occur during summer and autumn, data collection focused on the period from early May to late 

September (May 6th and September 20th). In total, 22 Sentinel-1B acquisitions were collected 

in 2017, corresponding to the timeframe when the ground-truth dataset was collected. Figure 

3-4 shows the monthly distribution of acquisitions, along with the corresponding growth stages 

of soybean and maize in 2017. The phenological stages for maize and soybean are synthesized 

in monthly intervals according to Wang et al (2019), with the corresponding crops’ appearance 

https://scihub.copernicus.eu/
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at each phenological stage defined by BBCH-scale codes (Meier et al., 2009). Figure 3-4 

provides a detailed illustration of these stages along with their corresponding BBCH codes for 

each crop type. Soybean reaches full maturity in August and is typically harvested in September. 

Throughout these two stages, the soybean exhibits a consistent appearance as per the BBCH 

scale. 

 

Figure 3-4. The Sentinel-1 acquisitions, obtained from May 6th to September 20th, were analysed alongside the 
phenological stages for maize and soybean. Note that the numbers at the top of crops' phenological stages are 
BBCH codes. 

The pre-processing of Sentinel-S1B images was conducted using the open-source Sentinel 

application platform (SNAP 8.0) developed by the European Space Agency (ESA). The pre-

processing steps, as suggested by Qu et al (2020) and Li et al (2019), generally include 

Radiometric Calibration, Polarimetric Matrix Generation, Multilooking, Polarimetric Speckle 

Filtering, and Geocoding. A 3 x 3 window size adaptive Lee filter was employed to mitigate 

the impact of speckle noise while preserving information, as suggested by Mahdianpari et al 

(2017). Intensity data was converted into backscatter coefficient sigma nought (𝜎!)  in 

logarithmic dB scale. The cross-ratio of the backscatter is calculated by VH minus VV in terms 

of the logarithm rules. As the calculation of radar-based vegetation index generally relies on 

quad-pol data (Kumar et al., 2013), this study employed RVI, a vegetation index specifically 

tailored for Sentinel-1 backscatter data to monitor crop growth (Nasirzadehdizaji et al., 2019; 

Tomaszewski et al., 2021).  
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SAR scattering features and DpRVI were derived from the dual-pol covariance matrix (C2) 

using Sentinel-1 Toolbox in SNAP. This 2 × 2 matrix represents the relationship between the 

incident field and the scattered field vector, including two real parts (C11 and C22) and two 

complex parts (the real part C12 and the imagery part C12). These components of the Sentinel-

1 covariance matrix can be directly used as model inputs for crop mapping (Qu et al., 2020). 

Based on C2, additional scattering characteristics can be investigated through target 

decomposition methods to generate further polarimetric parameters correlated with ground 

objects. 

This study evaluated decomposition features derived by dual-polarisation entropy/alpha 

decomposition (𝐻/𝛼 dual-pol decomposition) and m-chi decomposition. All processed images 

were geo-referenced using the digital elevation model (DEM) from the Shuttle Radar 

Topography Mission (SRTM 3 arc second) and then resampled to 10-meter spatial resolution. 

PolSAR pre-processing details can be found in Mandal et al. (2019). A few missing values 

were imputed by using the KNN algorithm provided by Python’s scikit-learn package version 

1.2.0, with ‘4’ selected as the optimal number of neighbours (Zhang, 2012). Due to the 

inconsistent range of values across all considered predictors, a typical Min-Max normalization 

approach was applied to all input features. 

Four main stages, as illustrated in Figure 3-5, were performed in this study’s workflow. The 

Sentinel-1 pre-processing procedures and SAR feature candidates are primarily presented in 

the subsequent sub-sections of section 3.2.4. Feature selection techniques were applied to 

eliminate redundant information and assess collinearity between features (see section 3.2.5). 

Section 3.2.6 provides an overview of the classification approaches. Model implementation 

was introduced in section 3.2.7. The performance assessment identifies the optimal SAR 

features and evaluates the generalisability of the proposed method for thematic map prediction 

and in-season crop classification (section 3.3). Model interpretation was discussed in section 

3.4. 
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Figure 3-5. The methodology flowchart. 

3.2.4 SAR-derived features 

3.2.4.1 𝐻/𝛼 dual-pol decomposition 

Cloude and Pottier (1997) developed an Entropy (𝐻) - Alpha (𝛼) - Anisotropy decomposition 

technique that was originally calculated through eigenvalues of the 3	×	3 coherency matrix 

derived from quad-polarisation data to generate target scattering matrix parameters. Sentinel-

1 SLC products provide dual-pol information in covariance matrix with two orthogonal 

components of the scattered signal. Various studies (e.g. Guo et al., 2018; Ioannidou et al., 

2022) have explored the scattering mechanisms of target features for crop classification using 

modified 𝐻/𝛼 dual-pol decomposition tailored for dual-polarised Sentinel-1 data, defined as: 

𝐻 = ∑ −𝑃"𝑙𝑜𝑔#𝑃" , 𝑤ℎ𝑒𝑟𝑒𝑖𝑛	𝑃" =	
$!

∑ $!"
!#$

#
"&' 	𝑎𝑛𝑑	𝜆' ≥ 𝜆#                       (3-1) 

𝛼 = ∑ 𝑃"#
"&' 𝛼" , 𝑤ℎ𝑒𝑟𝑒𝑖𝑛	0 ≤ 𝛼 ≤ 90°	                                           (3-2) 

where 𝜆'and 𝜆# are eigenvalues of the covariance matrix. The polarimetric scattering entropy 

𝐻 ranging from 0 to 1 is an indicator that measures the degree of scattering randomness. The 

mean alpha angle 𝛼 indicates physical scattering characteristics listed in nine zones (Cloude 

and Pottier, 1997). Based on both parameters, a 𝐻/α plane is proposed to represent all random 

scattering mechanisms and utilised for crop growth analysis (Guo et al, 2018; Salma et al, 

2022).  
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3.2.4.2 m-chi decomposition 

The m-chi decomposition is a compact polarimetric decomposition method developed by 

Raney et al (2012) to analyse scattering characteristics from compact PolSAR data. The π/4 

mode of the compact polarimetric SAR system transmits circularly polarised signals and 

receives orthogonal backscattered signals in linear horizontal and vertical polarisation (Souyris 

et al., 2005). This approach facilitates extracting scattering information from the target while 

reducing the number of transmitted and received channels compared to quad-pol systems. 

Using the covariance matrix constructed from Sentinel-1 data, the m-chi decomposition 

generates 'pseudo' polarimetric features resembling compact polarimetric parameters. 

Characterized by four-element Stokes parameters, the degree of polarisation (𝑚') is described 

in Eq. (3-3): 

     	𝑚' =	
()""*)%"*)&"

)$
                                                            (3-3) 

where 𝑆',#,,,- represents four Stokes parameters for each pixel in the total power over an image 

field, and they are calculated from the averaged covariance matrix. Additionally, several 

candidates for a second decomposition parameter can be obtained from the Stokes parameters, 

such as 𝐶ℎ𝑖	(𝜒), a Poincaré variable indicating the degree of ellipticity. The sin2𝜒, also known 

as the degree of circularity, is expressed in Eq. (3-4): 

sin 2𝜒 = ± )&
.)$

                                                             (3-4) 

where transmitted right or left-hand circular polarisation is represented by the positive or 

negative sign, respectively. Based on these two variables calculated from the Stokes parameters, 

three parameters for m-chi decomposition can be derived as follows (Eq. (3-5) – Eq. (3-7)): 

𝐵 = J.)$('0123 #4)
#

                                                         (3-5) 

𝑅 = J.)$('*123 #4)
#

                                                          (3-6) 

𝐺 = M𝑆'(1 − 𝑚)                                                             (3-7) 
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where B, G and R correspond to single-bounce, double-bounce and volume backscattering, 

respectively.  

Previous studies (e.g., Nord et al., 2008; Ainsworth et al., 2009) showed that compact 

polarimetric data are close to and occasionally equivalent to quad-pol data by which fully 

polarimetric decompositions are conducted. Although all four-element Stokes parameters can 

be derived from dual-polarized data like Sentinel-1 SLC products, the challenge lies in the 

separability between single and double bounce targets due to the ellipticity angle from dual-

pol data being close to zero (Raney, 2007). This could reduce the separability between 

polarimetric scattering types. Despite this challenge, a single scattering type may prevail over 

agricultural targets during specific growth stages, and the combination of scattering 

mechanisms alters as the canopy varies (McNairn et al., 2009). Consequently, this study 

considers complete m-chi decomposition features as input predictors. 

3.2.4.3 Dual-pol Radar vegetation index (DpRVI) 

The dual-pol radar vegetation index (DpRVI) has previously been demonstrated to exhibit a 

strong correlation with crop biophysical variables and effectively represents crop growth 

dynamics (Mandle et al., 2020). The proportion of polarisation of an electromagnetic wave is 

characterised in terms of the degree of polarisation 𝑚#, as proposed by Barakat (1977) in Eq. 

(3-8) and Eq. (3-9): 

𝑚# = J1 − -|7"|
()89:)"

,				 ∈(0, 1)                                                (3-8) 

𝑆𝑝𝑎𝑛 = 𝜆' + 𝜆#,						𝜆' ≥ 𝜆# ≥ 0                                              (3-9) 

where 𝜆'  and 𝜆#  are eigenvectors obtained through the eigen-decomposition of the 2 × 2 

covariance matrix 𝐶# denoted as Q𝜆' 0
0 𝜆#

R, which are normalised with the total power Span. 

To quantitively assess the scattering strength, Mandle et al (2020) introduced a parameter 𝛽, 

which is subsequently used to derive DpRVI. See Eq. (3-10) and Eq. (3-11): 

𝛽 = 	 $$
)89:

                                                                 (3-10) 

	𝐷𝑝𝑅𝑉𝐼 = 1 − 𝐷𝑂𝑃 ∗ 𝛽,				 ∈[0, 1]                                          (3-11) 
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3.2.4.4 GLCM features 

The GLCM evaluates the arrangement of grayscale values in an image and is utilized to 

quantify the variations in texture within images. It calculates spatial features inherent in raster 

images by determining the probability of occurrence of pixel pairs separated by a predefined 

distance in a given direction (Szantoi et al., 2013; Zhou et al., 2019). These features are derived 

from the properties of pixel co-occurrence statistics, calculated within a specified moving 

window and following certain directions at inter-pixel distances. Moumni and Lahrouni (2021) 

found that combining SAR backscatter with statistical group features such as GLCM mean, 

variance and correlation led to better crop classification performance. 

3.2.5 Feature selection 

The practical model building often encounters limitations when working with modern datasets 

containing multivariate variables. Many of these variables may be irrelevant to the target 

classification, making it challenging to determine their correlations. For instance, a large 

PolSAR image tends to contain data redundancy, especially when generating rich indices from 

multi-source remote sensing data (Yang et al., 2020; Liao et al., 2020). As a result, extracting 

relevant features that correlate with ground objects becomes a significant challenge. Feature 

selection typically considers two aspects, including the multicollinearity between input 

variables and the correlation between the inputs and the targets. Generally, data redundancy 

can lead to increased computational costs during model training and may negatively impact 

performance when the optimal feature combination is uncertain. Hence, feature selection 

techniques that derive minimal and optimal feature sets are essential for achieving the best 

possible classification results. 

3.2.5.1 Boruta 

This study applied one of the wrapper methods designed on the Random Forest algorithm, 

which is an ensemble method for classification with its unique voting mechanism comprising 

manifold unbiased decision trees developed independently on multiple bagging samples. It 

performs a recursive process on multiple feature sets and iteratively eliminates the features less 

relevant to the label target prediction. The Boruta package (Kursa et al., 2010) was initially 

implemented in the R environment. This study used an alternative Python-compatible version 

that leverages Gini impurity to determine feature importance scores, accessed at 
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https://github.com/scikit-learn-contrib/boruta_py.  This method evaluates the correlation 

between inputs and corresponding label targets. 

3.2.5.2 Spearman coefficients 

The second step investigates the relevance between multivariant variables by calculating the 

Spearman rank correlation coefficient. The Spearman rank correlation coefficient evaluates the 

correlation and strength of the relationship between two variables (Khare et al., 2012). Higher 

correlation coefficients indicate stronger monotonicity between two variables. In this study, the 

coefficients from multi-temporal SAR features previously determined by Boruta are assessed. 

Based on the feature importance analysis provided in the first step, the number of features can 

be optimally combined for model training. The Spearman correlation coefficient 𝑟; is given by 

Chambers (1989) in Eq. (3-12): 

𝑟; =
∑ (9!09<)(=!0=<)'
!#$

(∑ (9!09<)"'
!#$ (∑ (=!0=<)"'

!#$

, ∈ [−1, 1]	                                  (3-12) 

where 𝑁 is the total number of a feature across the whole temporal dimension and 𝑎", 𝑏" is 

distinctive features to be measured. The value range of 𝑟;  quantifies the correlations and 

strength between variables, which can be either negatively or positively correlated.  

3.2.6 Classification approaches 

3.2.6.1 Random Forest 

Random Forest (RF), introduced by Breiman (1996), has proven to be a widely used machine 

learning approach for handling high-dimensional remote sensing data in crop mapping. It is 

often used as a baseline model to assess model performance based on the comparison within 

the remote sensing domain (Belgiu and Drăguţ., 2016). RF is an ensemble classifier that 

operates multiple unbiased decision trees with a bagging strategy to control the prediction 

variance of the model performance. Given this tree-based random feature sample selection, the 

problem of overfitting can be minimised (Pal, 2005). However, since RF is not designed to 

measure time-series dependencies, the input features for RF in this study are only divided into 

a two-dimensional input shape, consisting of the number of pixel-level features and their 

corresponding bands. To optimize modelling performance, hyperparameters are tuned to 

https://github.com/scikit-learn-contrib/boruta_py
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enhance and maintain the model generalisation. In this study, the optimal number of trees is set 

to 200 and the minimal number of samples required to split an internal node is set to 4. 

3.2.6.2 Conv1D-based architectures 

Conv1D is one of the variants of CNN, which employs 1D filters convolving along the 

temporal dimension to extract patterns over a time-series sequence. Shallow levels of the 

stacked Conv1D layers concentrate on feature learning at a local scale, while deeper layers 

summarise learned features holistically, extending to larger extents. However, the final 

configuration of the CNN layers is initially tested on simple structures and then empirically 

developed with increased complexity to achieve stable model performance. In this study, two 

architectures of Conv1D-based networks for crop classification performance comparison are 

applied, as depicted in Figure 3-6. One of the architectures is taken from Zhong et al (2019), 

which adopts the inception module introduced by Szegedy et al (2015) to extract multi-

temporal patterns at multiple scales using a combination of Conv1D layers and a pooling layer.  

The second Conv1D-RF architecture, derived from Yang et al (2020), follows the inception 

framework but employs a different classifier at the end. This hybrid Conv1D structure replaces 

the originally applied Softmax classifier with Random Forest in the last fully connected layer, 

producing final outputs via the unique voting mechanism designed for RF. This CNN-RF 

hybridization strategy considers the advantages provided by RF against outliers and overfitting 

(Kwak et al., 2021). The pre-trained Conv1D module outputs a feature vector (512 × 1) from 

the first fully connected layer, which is then fed into RF classifier for the final classification. 
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Figure 3-6. The architecture of Conv1D and Conv1D-RF. Conv1D processes original time-series inputs and 
determines output classes with the SoftMax classifier. Conv1D-RF extracts inputs from the dense layer and 
predicts using the random forest classifier.  

3.2.6.3 Attention-based LSTM 

The LSTM model, an extension of the conventional RNN, incorporates the concept of gates to 

synergistically process time-series data with long-term dependencies, retaining temporal 

features from the input sequence. Temporal features are stored in the LSTM cell at the current 

time step and passed to the next cell according to weights assigned by each gate, enabling the 

realization of sequential dependencies. This gate-to-gate delivery mechanism maintains the 

temporal features with previous and current states to a certain extent in each LSTM cell, 

allowing for long-and short-term memory formation (Zhou et al., 2016). Equations for LSTM 

gates are shown in Eq. (3-13) – (3-15). 

𝑓>? = 	𝜎(𝑊@ ∙ [ℎ>0'? , 𝑥>?] + 𝑏@)                                           （3-13） 

𝑖>? = 	𝜎(𝑊" ∙ [ℎ>0'? , 𝑥>?] + 𝑏")                                             （3-14） 

𝑜>? = 	𝜎(𝑊A ∙ [ℎ>0'? , 𝑥>?] + 𝑏A)                                           （3-15） 

𝑆>? =		 𝑓>? 	ʘ	𝑆>0'? + 𝑖>? 	ʘ	𝑆>B?                                            （3-16） 

𝑆>B? = tanh	(𝑊) ∙ [ℎ>0'? , 𝑥>?] + 𝑏))                                     （3-17） 

ℎ>? = 𝑜>? 	ʘ	tanh	(𝑆>?)                                                  （3-18） 

Each LSTM cell unit has three gates, including forget gate 𝑓>? , input gate 𝑖>?, and output gate 

𝑜>?. These gates use learnable weight matrices 𝑊@, 𝑊", 𝑊A and 𝑊) with their biases 𝑏@, 𝑏", 𝑏A 

and 𝑏), to quantify information at the previous time step 𝑡 − 1 and the current time step 𝑡. The 
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information from the previous step is retained in 𝑓>?, updated in 𝑖>?, and then modulated by 𝑜>? 

before being passed to the next LSTM unit. The cell states 𝑆>? and the hidden state vectors ℎ>? 

are updated through the current memory states 𝑆>B? (Eq. (3-16) – Eq. (3-18)). 𝐶 means the total 

number of feature bands. The symbol ‘∙’ is the product between matrices, while ʘ denotes 

element-wise multiplication. The activation function 𝜎 is sigmoid used for gates, and tanh 

function updates the cell state.  

The attention block refines aggregated hidden features learned by LSTM layers across a long 

time-series sequence for crop mapping by normalizing weights (Xu et al., 2020; Xu et al., 2021). 

Attention weights 𝛼>?  are calculated using the Softmax activation function for normalising 

weight matrices 𝑊C and bias 𝑏C in Eq. (3-19) and Eq. (3-20). Hidden state vectors are updated 

as context vectors 𝐻>? , obtaining the final attention vectors using weight matrices 𝑊D 

(Bahdanau et al, 2014) in Eq. (3-21): 

𝛼>? = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊C ∙ ℎ>? + 𝑏C)                                           （3-19） 

𝐻>? = 𝛼>? ∙ ℎ>?                                                          （3-20） 

𝑨>? = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊D ∙ [𝐻>? , ℎ>?])                                          （3-21） 

3.2.6.4 Transformer 

The transformer is a recent deep learning model for processing sequential data in natural 

language processing (NLP) (Vaswani et al., 2017). It also has been used for multi-temporal 

crop classification with optical data in agricultural remote sensing (Rußwurm and Körner., 

2020; Xu et al., 2020; Xu et al., 2021). Figure 3-7 illustrates the custom Transformer network 

used in this study, consisting of positional embedding, encoding blocks, and a multi-layer 

perceptron (MLP) unit. Unlike NLP tasks, processing time-series remote sensing data does not 

require text embedding due to differences in data format and numerical significance. Instead, 

a one-dimensional position embedding is implemented for encoding and correlating time steps 

in time-series satellite data. Positional embeddings are linearly transformed into vectors for 

each attention head for self-attention computation. The self-attention mechanism focuses on 

interacting with positionally embedded vectors in a single sequence to compute the attended 

representation over the same sequence without requiring LSTM cell units to update hidden 

states. 
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Figure 3-7. The transformer-based network in this study. It begins with positional embedding for encoding time-
series inputs, progresses through the transformer encoder layers, and concludes with a multi-layer perception 
(MLP) for multi-class prediction.  

The multi-head self-attention mechanism, consisting of Queries, Keys, and Values, captures 

different relationships or patterns within the input data. Employing multiple attention heads 

simultaneously allows the model to capture various aspects of the input data. However, self-

attention may increase the volume of attention scores along the sequence length, resulting in a 

memory burden on computing over longer sequences (Xu et al., 2020). To optimize the 

network's performance and convergence, residual skip connections and normalization layers 

are applied before and after the multi-head attention layer. The output of multi-head attention 

is then transferred to a Feedforward module, which consists of linear layers with non-linear 

activation functions. This structure helps maintain the position-wise parallelism in the model 

and allows it to process long sequences more efficiently. Finally, the outputs of the encoder 

block are globally averaged over the temporal dimension and fed into the dense layers for the 

final prediction. Each encoder block has a head size of 256 and 8 attention heads. The total 

number of transformer encoder blocks is set to 2, followed by an MLP unit. 
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3.2.6.5 Conv1D-LSTM 

In this study, we proposed and developed a joint ensemble learning strategy for improved crop 

classification performance, inspired by Zhou (2012) and its successful application in human 

activity recognition (Hamad et al., 2020). This method combines Conv1D and LSTM as 

parallel base learners for temporal feature extraction using customised internal components 

(Figure 3-8). This joint combination facilitates a mutually complementary effect by fusing 

multi-source features given by each module, thereby constructing a robust ensemble feature 

extractor for sequential data and mitigating model bias towards the majority class. 

Firstly, we adapt the inception module design for processing multi-scale features (Zhong et al., 

2019; Yang et al., 2020) within the 1D CNN module. We implement three Conv1D layers, 

each with kernel sizes of 3, 3 and 5 respectively with respect to incremental channel depths 64, 

128 and 256 for feature learning at different scales, and use the skip connection technique at 

each level to alleviate the vanishing gradient problem (He et al., 2016). Batch normalisation 

(BN) is applied at the end of each Conv1D layer to accelerate model convergence. The output 

features from each level are fed into a fully connected layer and concatenated together. 

Secondly, the LSTM module employs an attention-based mechanism with bidirectional LSTM 

cells for comprehensive temporal information capture (Yuan et al., 2020). The attention block 

aggregates sequential outputs from bidirectional LSTM, producing normalised attention 

weights to improve classification performance. A fully connected layer adjusts the outputs to 

512 units, equal to the last output from the 1D CNN module. Finally, the learned features from 

each module are concatenated and passed through a shared fully connected layer, creating a 

strong ensemble feature extractor. A dropout layer prevents overfitting. and the final output 

layer generates class probabilities. The joint learning optimization, Conv1D-LSTM, maximizes 

parallel processing utilization for enhanced time-series crop type prediction. 
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Figure 3-8. The proposed joint learning network: Conv1D-LSTM. 

3.2.7 Model implementation 

Three performance indicators were chosen to evaluate crop mapping performance: overall 

accuracy (OA), Cohen's kappa coefficient (Kappa), and F1 score. OA assesses the model's 

performance for all classes overall, as it represents the ratio of correctly classified samples to 

the total number of samples. Kappa adjusts classification scores by accounting for the 

probability of random chance prediction based on observed class frequencies in the dataset. 

The F1 score, which is the harmonic mean of recall and precision, measures classification 

performance for individual crop types. The deep learning model configurations are modulated 

with reference to the Adam optimizer (Kingma and Ba, 2014) and the cross-entropy loss 

function (Botev et al., 2013). The optimizer's learning rate is set at 0.001. The Rectified Linear 

Unit (ReLU) activation function (Nair and Hinton, 2010) is employed in all fully connected 

layers to enhance output nonlinearity and manage systematic errors (bias). Additionally, early 

stopping serves as a regularization strategy, halting model training when performance stabilizes 

during the iterative training process. All deep learning models aforementioned shared these 

configurations during the training stage. The modelling environment is implemented using 

Python 3.7.15 and Tensorflow 2.9.2, along with the Keras library (version 2.12) on a Windows 
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10 system equipped with two NVIDIA Quadro P4000 graphic devices (8 GB RAM per GPU) 

and two Intel (R) Xeon (R) Silver 4114 CPU processors (2.20GHz/2.19 GHz). 

3.3 Results 

3.3.1 Temporal profiles of Sentinel-1 SAR features 

The temporal profiles of Sentinel-1-derived SAR features for each class, as displayed in Figure 

S1 in the Supplementary material, show the degree of separation between the crops, which 

appears challenging, as evidenced by the overlapping areas in the buffer zones across the full 

growing season for all SAR features. The similarity in the time-series profiles of the crops 

highlights the difficulty in differentiating between crop types with similar phenological cycles 

based on SAR-derived feature values. Although the values generally follow the growth trends 

towards their peaks around August, the separability between crops is not distinctly evident in 

specific SAR-based features. Some features, such as 'VH GLCM Mean', 'VH GLCM Variance', 

'Entropy', and 'Alpha', exhibit fewer overlaps between August and September, during which 

maize, soybean, and other crops partially diverge as they approach the end of their growth 

stages. However, it remains uncertain whether these features alone can provide critical 

information for crop mapping during this period. The temporal profile of each SAR feature 

suggests a similar linear relationship between the features and corresponding crop types. 

Consequently, assessing the nonlinear relationship between variables and targets, as well as the 

correlation between SAR features, becomes necessary. Additionally, combining all of them 

increases feature dimensionality and computational cost. To address this, feature selection 

techniques were employed to filter out irrelevant features. 

3.3.2 Feature selection outcomes 

Boruta identifies optimal SAR features highly relevant to the prediction of target labels. As 

represented by grey circles (See Figure S2), those SAR features with the highest importance 

scores (normalised to 1) were identified by the Boruta wrapper model at corresponding points 

in time. Based on grey circles, we, as the user, manually selected SAR features falling within 

the entire crop growth cycle, which are crucial for in-season crop classification. These selected 

features are denoted by stars. Finally, the remaining features with complete temporal 

dimensions, such as DpRVI, GLCM, m-chi decomposition, and H/α dual-pol decomposition 

variables, were used to assess the multicollinearity among them. 
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The Spearman correlation coefficient (𝑟;) were calculated for each pair of selected features. 

This resulted in six pairwise combinations used to evaluate feature collinearity, characterized 

by each subplot (see Figure 3-9).  Each axis limit represents the total number of acquisitions 

for a pair of combined features, with emphasis placed on evaluating correlation strength along 

the second interval on the x-axis and the first interval on the y-axis in each subplot, and vice 

versa. Each interval contains subclasses of a full-time series SAR feature. For instance, in the 

'DpRVI with m-chi' subplot, the total number of features across the growth stage is 88, 

displayed on both the x-axis and y-axis. The first interval on each axis represents 22 columns 

of sequential data for DpRVI, while the second interval indicates 44 m-chi decomposition 

features in total. This arrangement forms a rectangle on each axis. All subclasses of each feature 

value are cross-calculated to determine the correlation strength, with the resulting 𝑟; values 

derived from both features at the same time point represented by the off-diagonal lines of the 

rectangles. These lines display the intensity values relevant to the evaluation of correlation for 

the pairs of SAR features. In this case, the intensity values between DpRVI and m-chi in the 

same date range fall between 0.4 and 0.6, indicating a moderate level of correlation. 

The ‘DpRVI with Entropy & Alpha’ pair exhibits stronger collinearity among all groups, as 

indicated by 𝑟; intensity values exceeding 0.8 along the off-diagonal line of the rectangle and 

p-value less than 0.05. This suggests a high degree of correlation or linear dependency between 

the input variables used for classification, i.e., some of the features are redundant, as they 

provide similar or overlapping information about target labels. Although deep learning models 

and RF are less sensitive to collinearity, this study employed three scenarios for model accuracy 

assessment to mitigate its potential impact, which includes scenarios: (a) ‘GLCM’, ‘m-chi’, 

and ‘Dual-pol’; (b) ‘GLCM’, ‘m-chi’, and ‘DpRVI’; and (c) the combination of all features. 

Additionally, the individual feature was also evaluated for comparison. 
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Figure 3-9. The adjacency matrix representation of Spearman rank correlation coefficient for the evaluation of 
the intervariable relationship. In each subplot, both axes represent the total number of pairwise combined features 
determined by the Boruta.   

3.3.3 Accuracy assessment 

The model performances are presented in Table 3-1, revealing that deep learning models 

generally outperform RF in terms of OA and Kappa, as demonstrated by Conv1D, Conv1D-

RF, Transformer, and the proposed Conv1D-LSTM. Specifically, Conv1D-LSTM achieves the 

highest OA (0.88) using only m-chi features, while Conv1D, Conv1D-RF, and Transformer 

yield similar results but with the combined four features in scenario (c). It also results in the 

second-best Kappa (0.83), close to the best (0.84) led by scenario (c). This indicates that the 

diversity of input features may enhance accuracy for certain deep learning networks. However, 

models trained with optimal features can reduce computational costs for large-scale crop 

mapping. By selecting the most relevant and informative features, the complexity of the model 

is reduced, thus decreasing the time and resources required for training and prediction. This 

approach is particularly important when applying models to extensive datasets or in situations 



 

66 
 

where computational resources are limited. Consequently, scenario (c) exhibits redundancy in 

input predictors compared to using the m-chi variables alone. 

Table 3-1. Accuracy assessment for selected features on testing sets. The model's training, validation, and testing 
were conducted using 10% of the entire sample data. The highest OA and Kappa values are highlighted in bold, 
and the second-best values are underlined. 

OA 
Features Conv1D Conv1D-RF Conv1D-LSTM RF Transformer 
𝐻/𝛼 0.74 0.74 0.74 0.72 0.74 

DpRVI 0.68 0.72 0.72 0.71 0.73 
GLCM 0.80 0.82 0.82 0.79 0.83 
m-chi 0.85 0.85 0.88 0.84 0.86 

Scenario (a) 0.86 0.86 0.85 0.83 0.87 
Scenario (b) 0.86 0.86 0.84 0.83 0.86 
Scenario (c) 0.88 0.88 0.85 0.84 0.88 

Kappa 
Features Conv1D Conv1D-RF Conv1D-LSTM RF Transformer 
𝐻/𝛼 0.64 0.64 0.64 0.62 0.65 

DpRVI 0.58 0.61 0.75 0.60 0.62 
GLCM 0.73 0.75 0.75 0.71 0.77 
m-chi 0.79 0.80 0.83 0.78 0.80 

Scenario (a) 0.81 0.81 0.79 0.77 0.82 
Scenario (b) 0.81 0.81 0.78 0.77 0.81 
Scenario (c) 0.83 0.83 0.80 0.78 0.84 

Table 3-2 presents a comparison of model performance based on the F1 score for each class. 

Among the individual features, the m-chi feature demonstrates superior effectiveness for crop 

classification, as evidenced by higher F1 scores for models utilizing this feature compared to 

those using H/α, DpRVI, or GLCM. The proposed Conv1D-LSTM, when employing the m-

chi features, exhibits the best performance, with the highest F1 scores for maize (0.85), soybean 

(0.84), other crops (0.82) and the highest average crop F1 score of 0.84. In scenarios (a), (b), 

and (c), the models generally achieve improved performance when combining multiple features, 

suggesting that incorporating a diverse set of input features can enhance overall F1 scores for 

certain deep learning networks. Wherein, scenario (c) is predominantly favoured by Conv1D, 

Conv1D-RF, Transformer, and RF, exhibiting the highest F1 scores compared to other 

scenarios for identifying crops and land cover types.  
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The Conv1D-LSTM using m-chi features highlights the importance of selecting optimal 

features to optimize computational efficiency in crop mapping and minimise redundancy in 

input predictors. Additionally, the computational cost for model training with m-chi features is 

substantially lower than that with scenario (c), as illustrated in Figure S3. Therefore, all ground-

truth samples of m-chi features were trained, validated, and tested, following a 60%, 20%, and 

20% ratio. The Conv1D-LSTM still yields the highest F1 scores for maize (87%), soybean 

(86%), and other crops (85%), outperforming other models (Figure 3-10). Overall, multi-

stream deep learning architectures, such as the proposed Conv1D-LSTM and Conv1D-RF, 

exhibit superior performance compared to other standalone architectures, including Conv1D 

and Transformer. All deep learning networks consistently outperform the traditional RF in 

terms of the same metric for crop mapping. 

 

Figure 3-10. Comparison of model performance based on m-chi features. Models were trained with 60% of all 
ground-truth samples and tested on the same testing set. Values are displayed for crops.  
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Table 3-2. Model performance based on F1 scores. Highlighted in bold are the highest F1 scores for crop types, 
and the second-best scores are underlined. 𝐶𝑟𝑜𝑝𝑠(((((((( denotes the average F1 scores for all crop classes.  

Model Features Residential Forest Maize Soybean Water Other 
crops 𝑪𝒓𝒐𝒑𝒔((((((((( 

Conv1D 
(Zhong et al., 

2019) 

𝐻/𝛼 0.74 0.84 0.71 0.71 0.98 0.45 0.62 
DpRVI 0.29 0.80 0.59 0.69 0.92 0.35 0.54 
GLCM 0.58 0.97 0.73 0.77 1.00 0.67 0.72 
m-chi 0.70 0.98 0.82 0.80 0.99 0.70 0.77 

Scenario (a) 0.77 0.98 0.84 0.82 1.00 0.75 0.80 
Scenario (b) 0.75 0.98 0.82 0.82 1.00 0.75 0.80 
Scenario (c) 0.81 0.99 0.85 0.84 1.00 0.79 0.83 

Conv1D-RF 
(Yang et al, 

2020) 

𝐻/𝛼 0.61 0.84 0.71 0.72 0.98 0.48 0.64 
DpRVI 0.37 0.82 0.70 0.70 0.97 0.43 0.61 
GLCM 0.64 0.97 0.78 0.77 1.00 0.71 0.75 
m-chi 0.75 0.98 0.82 0.81 1.00 0.74 0.79 

Scenario (a) 0.76 0.98 0.83 0.82 1.00 0.75 0.80 

Scenario (b) 0.75 0.98 0.83 0.82 1.00 0.75 0.80 
Scenario (c) 0.80 0.99 0.85 0.84 1.00 0.79 0.83 

RF 

𝐻/𝛼 0.26 0.83 0.70 0.70 0.96 0.37 0.59 
DpRVI 0.15 0.81 0.69 0.69 0.96 0.37 0.58 
GLCM 0.34 0.96 0.75 0.74 1.00 0.58 0.69 
m-chi 0.62 0.97 0.81 0.80 1.00 0.64 0.75 

Scenario (a) 0.56 0.97 0.81 0.80 1.00 0.59 0.73 

Scenario (b) 0.54 0.97 0.81 0.79 1.00 0.60 0.73 
Scenario (c) 0.66 0.97 0.82 0.81 1.00 0.66 0.76 

Conv1D-
LSTM 

𝐻/𝛼 0.65 0.84 0.71 0.72 0.98 0.44 0.62 
DpRVI 0.36 0.82 0.70 0.70 0.97 0.43 0.61 
GLCM 0.58 0.97 0.78 0.76 1.00 0.69 0.74 
m-chi 0.79 0.98 0.85 0.84 1.00 0.82 0.84 

Scenario (a) 0.73 0.98 0.83 0.81 0.99 0.63 0.76 

Scenario (b) 0.63 0.97 0.81 0.81 1.00 0.67 0.76 
Scenario (c) 0.74 0.98 0.83 0.81 1.00 0.70 0.78 

Transformer 
(Rußwurm 
and Körner, 

2020) 

𝐻/𝛼 0.65 0.84 0.72 0.72 0.98 0.48 0.64 
DpRVI 0.45 0.82 0.70 0.70 0.97 0.45 0.62 
GLCM 0.66 0.98 0.80 0.78 1.00 0.73 0.77 
m-chi 0.67 0.97 0.83 0.82 1.00 0.72 0.79 

Scenario (a) 0.77 0.98 0.84 0.83 1.00 0.76 0.81 

Scenario (b) 0.75 0.98 0.83 0.82 1.00 0.76 0.80 
Scenario (c) 0.75 0.99 0.85 0.84 1.00 0.80 0.83 
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Figure 3-11. Comparison of Conv1D-LSTM performance in three sample sites before and after post-classification. 
Percentages indicate the ratio of correctly classified pixels to ground-truth labels. 

Given that the optimal SAR feature is decided, the model generalisability was assessed across 

multiple small-scale regions within Bei’an. With 60% of all samples randomly selected from 

m-chi decomposition features for model training, Conv1D, RF, transformer, and Conv1D-

LSTM were employed for spatial map predictions and classification comparisons. The 

qualitative results for different geospatial locations are shown in Figure S4, Figure S5 and 

Figure S6.  

Further post-classification procedures based on majority selection were conducted to reduce 

misclassified pixels in the prediction maps derived by Conv1D-LSTM (See Figure 3-11), 

which demonstrates improved classification performance across all three sites compared to the 

proposed method alone. As a result, a county-scale classification map was produced by 

synergistically utilising the Conv1D-LSTM pre-trained based on 60% of all samples and the 

post-classification technique, as shown in Figure 3-12. The improvements in classification 

performance can be observed in the confusion matrices (See Figure 3-13). Specifically, the 

recall values of maize, soybean and other crops increased by 4%, 8% and 7%, respectively in 
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the post-classification process, which suggests the effectiveness of combining Conv1D-LSTM 

with post-classification techniques in improving the overall classification accuracy. 

 

Figure 3-12. Post-classification prediction map for Bei’an 2017. Data inadequacy refers to missing data resulting 
from incomplete coverage of the whole study area in Sentinel-1 SLC acquisitions across the growth season. 

 

Figure 3-13. Normalised confusion matrix for Conv1D-LSTM. (a) pre-processed, (b) post-processed. Values are 
normalized as percentages for each class. 
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3.3.4 In-season crop mapping 

In-season crop mapping was assessed based on monthly-based temporal blocks corresponding 

to the phenology of major crops. This approach simulates the practical scenario, considering 

the increased availability of satellite acquisitions throughout the growing season. As Conv1D-

LSTM outperformed other Conv1D-based architectures according to section 2.3, the machine 

learning model RF and the Transformer, which relies on the self-attention mechanism, were 

used for comparison with Conv1D-LSTM in the assessment of in-season crop mapping (Table 

3-3). The Conv1D-LSTM model surpassed the RF and Transformer models in terms of overall 

accuracy (OA) across all temporal windows. The OA for Conv1D-LSTM increased from 0.69 

in May to 0.88 in September, emphasizing the significance of the temporal dimension for 

sequential networks. For all models, the F1 scores for maize and soybean generally increased 

over the temporal windows, with the Conv1D-LSTM model exhibiting the highest F1 scores 

for both crop types in each month. 

Improvements for maize were observed during the earlier growth stages, with Conv1D-LSTM, 

RF, and Transformer improving by 8%, 9%, and 8% in June (tasselling), respectively, and by 

9%, 6%, and 8% in July (ripening). As September (harvest) approached, moderate 

improvements of around 3% were recorded for all models in August (end of flowering or 

silking) and September. Similarly, early growth stage improvements for soybean were 9%, 7%, 

7% and 5%, 4%, and 6% in June (flowering) and July (podding and seed filling), respectively, 

for each model. Values continued to improve by 5%, 4%, and 5% in August (matured), 

followed by slight improvements (3%, 3%, 2%) in September (harvest). The most notable 

increase in F1 scores for other crops was observed between May and June, with substantial 

improvements in June accounting for 42%, 33%, and 44% for Conv1D-LSTM, RF, and 

Transformer, respectively. August yielded the lowest improvement for other crops (Conv1D-

LSTM: 5%, RF: -1%, Transformer: 5%), but the transition from August to September improved 

models by 11%, 19%, and 7%. 
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Table 3-3. In-season crop mapping performance. Model training, validation and testing were based on 10% of all 
sample data of m-chi decomposition features. Highlighted in bold are the best results. 

Temporal windows  May June July August September 

Conv1D-LSTM 

OA 0.69 0.76 0.82 0.85 0.88 

F1 
scores 

Maize 0.61 0.69 0.78 0.82 0.85 
Soybean 0.62 0.71 0.76 0.81 0.84 

Other crops 0.12 0.54 0.66 0.71 0.82 

RF 

OA 0.68 0.75 0.79 0.82 0.84 

F1 
scores 

Maize 0.60 0.69 0.75 0.79 0.82 
Soybean 0.62 0.69 0.73 0.77 0.80 

Other crops 0.09 0.42 0.46 0.45 0.64 

Transformer 

OA 0.68 0.74 0.80 0.84 0.86 

F1 
scores 

Maize 0.59 0.67 0.75 0.81 0.83 
Soybean 0.62 0.69 0.75 0.80 0.82 

Other crops 0.03 0.47 0.60 0.65 0.72 

3.4 Discussion 

3.4.1 Impact of SAR and temporal features on model performance 

In addressing the first research question, this study found m-chi decomposition features to be 

efficient and effective in distinguishing crops, in agreement with previous findings (e.g. De et 

al., 2014; Sonobe et al., 2019; Mahdianpari et al., 2019; Dingle et al., 2022). Sonobe et al (2019) 

reported an F1 score of 0.84 for maize using RF, which was marginally lower than the scores 

of 0.85 (Table 3-2) and 0.87 (Figure 3-10) obtained in this study for maize before post-

classification. However, they combined multiple predictors, ranging from 8 to 11, including 

the RVI, backscatter coefficients, and m-chi features, while this study relied solely on m-chi 

features. Although incorporating additional features could improve performance in scenario (c) 

in Table 3-2, it could lead to extended model training time (Figure S3). Using only m-chi 

features, this study’s performance is comparable to that of Mahdianpari et al (2019), who 

produced recall values for maize (0.92) and soybean (0.79) using object-based RF, compared 

to maize (0.91) and soybean (0.96) derived in this study (see Figure 3-13). In the current study, 

covariance matrix parameters and backscatter coefficients were not included in the assessment 

of model accuracy according to Boruta (Figure S2); however, their importance still supports 

earlier findings in crop classification (e.g., Qu et al., 2020; Sun et al., 2019; Moumni and 

Lahrouni, 2021). 

Previous studies have utilised fully polarimetric data from coherency matrices (𝑇,) for multi-

temporal crop classification based on deep learning approaches. For instance, Liao et al. (2020) 

achieved the best F1 scores of 0.93 and 0.92 for maize and soybean, respectively, using 
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decomposed SAR features derived from quad-pol data. The values surpass the best F1 scores 

for maize (0.87) and soybean (0.86) before post-classification in the current study. The 

potential explanation for this discrepancy may be that 𝑇,  provides richer polarimetric 

information than 𝐶#, increasing the likelihood of identifying complex land covers. Similarly, 

He et al. (2020) and Xie et al. (2019) also extracted polarimetric features from 𝑇, using various 

quad-pol decomposition algorithms for crop mapping and achieved accuracies above 0.90 for 

both maize and soybean. However, He et al. (2020) applied the transfer learning techniques to 

learn scarce PolSAR features for crop classification. Xie et al. (2019) extracted data from 

RADARSAT-2 (fine-quad wide beam mode) with a higher spatial resolution (5 m) than 

Sentinel-1 (10 m) data applied in this study. Although exploiting quad-pol data could result in 

better performances than using dual-pol features for crop mapping, space-based quad-pol 

sensors are substantially limited by swath coverage (Raney, 2019), constraining their 

applicability for map prediction at the county level. Additionally, obtaining time-series quad-

pol data might not be financially viable. 

The models employed in this study for comparisons, such as Conv1D (Zhong et al., 2019), 

Conv1D-RF (Yang et al., 2020), and Transformer (Rußwurm and Körner, 2020), were initially 

designed for multispectral data and vegetation indices for crop mapping. Although these 

models have been successfully demonstrated in classifying crops using optical data, the 

primary focus of the present study is on SAR-related features. Nevertheless, the Conv1D-

LSTM combined with optimal SAR features outperformed other model architectures, 

reflecting the findings of Hamad et al. (2020) regarding joint ensemble learning networks. 

These networks efficiently capitalize on the strengths of two sequential models, such as 

Conv1D and attention-based LSTM, to tackle the imbalanced class distribution frequently 

observed in real-world crop datasets, which contain both majority and minority crop classes. 

This corresponds to the second research question outlined in Section 1. 

The in-season classification scheme (Section 3.3.4) operates model training based on 

incremental time-series data along growth stages. Model performances in earlier growth stages 

were not statistically significant, suggesting that the SAR features available from maize with 

leaves and collars, as well as emerging soybeans, were insufficient for effective model 

extraction. The poor performance of other crops in the early season can be attributed to the 

impact of bare soil. However, performance gradually improves as acquisitions corresponding 

to phenological stages are continuously accumulated. This supports the hypothesis that 
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consecutive temporal windows in line with complete growth stages are inherently beneficial 

for enhancing crop mapping. This finding is consistent with previous studies (Wei et al., 2019; 

Xu et al., 2020), which demonstrated that each growth stage of observations in a complete time 

series enriches data structures during model training, which corresponds to the third research 

question. Although all models benefited from sequentially accumulated SAR acquisitions, 

Conv1D-LSTM consistently outperformed RF and Transformer on a monthly basis in terms of 

recognizing all crop types. 

3.4.2 Interpretation of learning behaviour of Conv1D-LSTM 

The interpretability of deep learning models remains a challenge in remote sensing studies. In 

the end-to-end neural networks, weights are iteratively updated and optimized through 

backpropagation to minimize errors between inputs and targets. The full set of mathematical 

operations is concealed during model training, resulting in complexities and difficulties in 

outcome analysis, commonly known as the “black box.” Although many studies have 

thoroughly explained Conv1D-based architectures and attention-based LSTM in terms of their 

learning behaviours with time-series multi-spectral data for crop classification (Zhong et al., 

2019; Yang et al., 2020; Rußwurm and Körner, 2020; Xu et al., 2021), the proposed joint 

ensemble learning architecture in this study (Conv1D-LSTM), due to its intricate design, 

necessitates interpretation of the learned hidden features in the 1D-CNN and LSTM module to 

respond the fourth research question. 

The visualization of the learning behaviour of the 1D-CNN end of Conv1D-LSTM is intuitively 

assessed in Figure 3-14. Weight distribution along time steps for each class is visualized over 

multi-level Conv1D layers. Selected convolutional layers include the 1st layer with 64 channels, 

the 2nd layer with 128 channels, and the 3rd layer with 256 channels, allowing for interpretation 

of the model on multi-scale feature learning. For crops, weights are mostly distributed around 

'08-15' in the 1st layer, suggesting that important acquisitions could be roughly identified by 

the model's shallow layer. As feed-forward propagations advance through the following layers, 

weight distributions become more localized, and important acquisitions are identified at 

specific time steps. For instance, more acquisitions are intensively weighted around June 

(tasselling for maize and flowering for soybean) and July (maturing) for crops. Comparing this 

finding with those of studies (Zhong et al., 2019; Yang et al., 2020) confirms that simpler 

patterns of features typically respond to shallow Conv1D layers and complex patterns are 
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presented by deep layers due to multi-scale feature learning. Another visualization of weight 

distribution is based on the average weight on each time step (see Figure 3-15). Weight 

intensities appear to fluctuate diffusely throughout the entire growth stage as the layer goes 

deep, with important acquisitions identifiable at the 3rd Conv1D layer for each class. However, 

regarding the trends for crops, their similar weight profiles may still contribute to high rates of 

model misclassification. This can be modulated with the LSTM module of Conv1D-LSTM. 

The attention-based LSTM in Conv1D-LSTM generates attention weights that can be observed 

in Figure 3-16. A distinct difference in weight profiles for maize and soybean is evident, 

potentially enhancing the separability between these two crops. This outcome is comparable to 

a previous study by Xu et al (2021), which presented similar attention weight distributions for 

maize and soybean when using multi-spectral raw bands as inputs for the attention-based 

LSTM. This further emphasizes the significance of m-chi features in distinguishing crops based 

on the model's decisions. The attention weights for maize and other crops start to increase 

rapidly from '07-10' as they enter the maturation stage, implying that cumulative information 

becomes progressively more useful for crop classification from this point onwards. For soybean, 

the same turning point is observed around '08-15' during its maturity stage. These results align 

with the findings of Xu et al (2021), who also identified rapidly increasing attention weights 

for maize at the silking stage on '07-15' (following the tasselling stage) and for soybean on '08-

19'. Moreover, it is plausible that the observed increase in the F1 score for other crops in 

September (Table 3-3) may be connected to the rising attention weights within the same 

temporal window since the weight intensities are not significant in the Conv1D layers around 

'09-15'. This observation could help elucidate the attention mechanism's contribution to 

classifying the minority class. 
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Figure 3-14. Visualisation of feature maps from three-level Conv1D layers in Conv1D-LSTM. The output feature 
maps were extracted from the model pre-trained with m-chi features. The y-axis represents the sample count for 
each class in the testing set, while the x-axis displays Sentinel-1 acquisitions at monthly intervals. The weight 
values' range is normalized from 0 to 255 to facilitate visualizing intensity for weight distributions within each 
channel. 
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Figure 3-15. Visualisation of feature maps based on average weight distribution across multi-scale Conv1D layers. 
The range of weight values is normalized from 0 to 255 on the y-axis. 

 

Figure 3-16. Crop attention weight profiles derived from the LSTM module in Conv1D-LSTM. The output 
attention weights were obtained using m-chi features. Values on the y-axis are scaled to a range from 0 to 1 for 
improved visualisation. 
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The model performance is not only reflected in the model accuracy assessment but can also be 

visualized through learned hidden features. The t-distributed stochastic neighbour embedding 

(t-SNE) visualization technique, introduced by Van der Maaten and Hinton (2008), allows for 

dimensionality reduction on high-dimensional features. In this study, the high-level hidden 

features are 512-dimensional and exhibit complex patterns for multi-temporal information. 

Analysing such a data structure intuitively is challenging, but t-SNE enables the nonlinear 

projection of hidden features onto a two-dimensional plane for visual comparison of crops’ 

separability along monthly blocks (See Figure 3-17). In the early stage in May (emerging), the 

learned neural samples of all crops are closely situated. As the growth stages progress, these 

samples become increasingly segregated and grouped according to crop types. From June 

(tasselling and flowering) onward, crop separability expands toward the harvest stage in 

September, demonstrating that the accumulation of temporal information contributes to 

improving crop classification performance. These findings align with the in-season 

classification results in Table 3-3. Although t-SNE is not always a conclusive indicator for 

supporting quantitative analysis of learned features, it provides an alternative way to intuitively 

examine the outcomes of the hidden learning patterns from deep learning models. 

 

Figure 3-17. Visual comparison based on t-SNE along monthly blocks for learned hidden features. Wherein 5000 
randomly selected neural samples from each crop type were extracted from the MLP unit of the Conv1D-LSTM 
model to enhance visualization. Each point represents a single neural sample corresponding to a specific crop 
category. 
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3.4.3 Potential extension of this study 

In this study, the dual-polarisation system of Sentinel-1 SLC has demonstrated its potential to 

generate pseudo compact PolSAR parameters, which, to a certain extent, can improve the 

discrimination for crops with phenological similarities. This is achieved with the aid of the 

proposed joint ensemble learning Conv1D-LSTM for enhanced classification performance. 

This suggests that compact polarimetry holds promise for improving land cover classification. 

Moreover, there is a need for an expanded time series to correlate with more detailed 

phenological phases of crops. This could be accomplished by incorporating a few optical 

acquisitions that align with key SAR acquisitions identified in this study, which relates to the 

synergistic use of SAR and multi-spectral features for improved crop mapping (Liao et al., 

2020). 

Further optimization of the model architecture and classification workflows can enhance multi-

temporal crop mapping. For instance, Conv1D-LSTM focuses merely on pixel-based feature 

extraction from time-series data, disregarding spatial relationships between features. However, 

3D-CNN architectures, which have shown promise in crop classification using optical data (Ji 

et al., 2018), take both temporal and spatial dimensions into account. Exploring this approach 

for crop mapping that combines SAR and optical data, such as in the study by Teimouri et al 

(2022), could lead to improvements. Another promising avenue for model development is the 

integration of data-driven models and physical models for agricultural applications using 

remote sensing data. Physical models offer strong interpretability and performance but often 

contain redundant parameters and lack efficiency. In contrast, deep learning models suffer from 

limited interpretability. Combining both model mechanisms could create a mutually 

complementary effect, addressing each other's limitations. Existing studies have applied this 

combination by replacing a submodule of a physical model with RF (Keller and Evans, 2019) 

or by modulating the loss function in the deep learning model using physical mechanisms 

(Yang et al., 2023). It would be promising to examine how these approaches could potentially 

improve the performance of crop mapping. In addition to model design, it is also essential to 

evaluate the spatiotemporal transferability of the models in crop mapping, considering 

interregional and interannual variability. 
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3.5 Conclusion 

This study has successfully demonstrated the potential of utilizing joint ensemble learning of 

two temporal models for extracting multi-temporal features from dual-pol SAR data to predict 

county-level crop categories for Bei’an in 2017. The proposed Conv1D-LSTM model has 

shown its efficiency and effectiveness, outperforming previously validated Conv1D, Conv1D-

RF, Transformer, and baseline RF models. With optimally selected SAR features (m-chi 

decomposition), the Conv1D-LSTM achieved the highest F1 scores (87%, 86%, and 85%) for 

maize, soybean, and other crops, respectively. The results also highlight the model's ability to 

handle inherently imbalanced data and differentiate between summer crops with similar 

phenology. The importance of multi-temporal information for crop classification was 

emphasized by the in-season classification results. While all selected models benefited from 

increased acquisitions, the Conv1D-LSTM effectively captured temporal dependencies across 

complete growth stages, leading to superior monthly performance compared to other models. 

Post-classification further enhanced classification performance based on the proposed model. 

Furthermore, this study provided multiple perspectives on the model learning process by 

identifying critical phenological stages through visualisations of weight distributions at each 

end of the Conv1D-LSTM architecture. Hidden feature analysis unveiled the learning impact 

of the Conv1D-LSTM throughout monthly temporal intervals, indicating that temporal model 

performance in crop mapping depends on diverse phenological characteristics within time-

series data. Ultimately, the joint learning of Conv1D and attention-based LSTM exemplifies 

the considerable potential to produce accurate cropland data layers at a large scale. In the 

subsequent stage, we aim to design a spatiotemporal learning approach, building on our current 

framework, to optimally transfer reliable pixels and pre-trained models from Bei'an to other 

research regions. 
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Abstract 

Agricultural crop mapping has advanced over the last decades due to improved approaches and 

the increased availability of image datasets at various spatial and temporal resolutions. 

Considering the spatial and temporal dynamics of different crops during a growing season, 

multi-temporal classification frameworks are well-suited for mapping crops at large scales. 

Addressing the challenges posed by imbalanced class distribution, our approach combines the 

strengths of different deep learning models in an ensemble learning framework, enabling more 

accurate and robust classification by capitalizing on their complementary capabilities. This 

research aims to enhance the crop classification of maize, soybean, and wheat in Bei'an County, 

Northeast China, by developing a novel deep learning architecture that combines a three-

dimensional convolutional neural network (3D-CNN) with a variant of convolutional recurrent 

neural networks (ConvRNN). The proposed method integrates multi-temporal Sentinel-1 

polarimetric features with Sentinel-2 surface reflectance data for multi-source fusion and 

achieves an overall accuracy of 91.7%, a Kappa coefficient of 85.7%, and F1 scores of 93.7%, 

92.2%, and 90.9% for maize, soybean, and wheat, respectively. Our proposed model is also 

compared with alternative data augmentation techniques, maintaining the highest mean F1 

score (87.7%). The best performer was weakly supervised with ten per cent of ground truth 

data collected in Bei'an in 2017 and used to produce an annual crop map for measuring the 

model's generalisability. The model learning reliability of the proposed method is interpreted 

through the visualisation of model soft outputs and saliency maps.  

Keywords: Agricultural crop mapping, multi-temporal classification, deep learning, 3D-CNN, 

ConvRNN, Multi-source image fusion 
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4.1 Introduction 

Crop mapping is essential for the assessment of the underlying factors for farming system 

changes and the management of crops. Northeast China has become one of the main 

breadbaskets of the country, serving an increasingly important role in agricultural production 

and international trade of certain crops such as soybeans (Dong et al., 2016; Yang et al., 2019). 

Targeting the economic sustainability of agricultural development, however, the retrieval of 

quantitative information from the changes in the local croplands has been limited due to the 

annual crop rotation practice featured in this region (You et al., 2021). As such, accurate annual 

crop maps are still in high demand by local authorities in China to build near real-time crop 

monitoring mechanisms for early yield assessment of major crops at the county-level scale. 

Many studies have made considerable progress in the development of crop mapping systems 

by using satellite imagery with moderate spatial resolutions due to their coverage and regular 

repeat acquisitions (Boryan et al., 2011; Inglada et al., 2015; Defourny et al., 2019). 

Considering the spectral characteristics observed in commonly used optical satellite sensors 

such as Landsat, MODIS and Sentinel-2, many studies have investigated and quantified the 

dynamics (i.e., seasonal changes) of vegetation indices (VIs) and optical bands, using them as 

distinctive input features to accurately identify crop types throughout the growing seasons. 

(Fan et al., 2014; Zheng et al., 2015; Zhong et al., 2016a; Zhong et al., 2016b; Song et al., 2017; 

You and Dong, 2020). In light of existing research in automated crop identification, our study 

seeks to develop a novel approach for enhancing crop mapping performance leveraging the 

potential of satellite remote sensing data, which can contribute toward addressing the pressing 

need for sustainable agricultural development in Northeast China. 

Cloud cover and/or adverse weather conditions can limit the quality of optical acquisitions and 

impact upon crop monitoring capabilities, resulting in data loss within time series of satellite 

acquisitions during the growing season (Sonobe et al., 2014; Kussul et al., 2018; Griffiths et 

al., 2019). Synthetic aperture radar (SAR) sensors are active remote sensors that can operate 

independently of weather conditions or solar illumination. SAR images provide unique radar-

related information primarily responding to the biophysical properties of vegetation (e.g., Gao 

et al., 2018; Sun et al., 2019; Qu et al., 2020). Many studies have demonstrated the feasibility 

of using radar polarimetric features to detect crop types, generated by specific polarimetric 

decomposition algorithms that include Pauli, Cloude-Pottier, Freeman-Durden, H/A/α, Huynen, 

Yamaguchi Neumann and Krogager (He et al., 2020; Liao et al., 2020; Xie et al., 2019; Gao et 
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al., 2018). Both optical and radar data have respectively demonstrated their capability for crop 

mapping, and the fusion of image data from both data sources is increasingly explored to 

improve the crop mapping performance (e.g. Gao et al., 2018; Liao et al., 2020; Moumni and 

Lahrouni, 2021; Sun et al., 2019; Van Tricht et al., 2018; Li et al., 2022). The combination of 

optical and radar data provides complementary information that can reduce temporal gaps in 

data capture, which can contribute significantly to identifying crops in cloud-prone regions 

(Sun et al., 2019; Liao et al., 2020). Similarly, combining multi-sensor data yields richer 

information on certain crops to overcome the heterogeneity of some areas caused by mixed 

crops (Moumni and Lahrouni, 2021). Most previous studies have either stacked optical and 

radar data at the pixel level for crop classification (e.g. Gao et al., 2018; Liao et al., 2020; 

Moumni and Lahrouni, 2021; Van Tricht et al., 2018), or independently trained the image data 

from dual sources, e.g., Sentinel-1 and Sentinel-2, using separate models in parallel. 

Subsequently, the resultant outputs from each model are integrated into one learned feature 

sequence (Teimouri et al., 2022). 

Previous studies employed machine learning models, such as Decision Tree (DT), Support 

Vector Machine (SVM) and Random Forest (RF) to identify crops based on multi-temporal 

observations (Zhong et al., 2014; Pelletier et al., 2016; Bargiel 2017; Teluguntla et al., 2018 

Gao et al., 2018), however conventional machine learning models were not originally designed 

to process temporal data. Additionally, the enhanced representation of crop growth patterns 

requires phenological metrics defined with expertise in multi-temporal remote sensing data 

(You and Dong, 2020), and those designed metrics are not always available until the end of the 

crop growth cycle (Xu et al., 2021). Although machine learning approaches improve 

classification performance with increasing dimensions of input variables and reduce the 

requirements for designating threshold-based classification rules, the temporal relationship in 

multi-temporal satellite data cannot be fully and automatically utilised. More recently, studies 

demonstrated that a series of deep learning networks could successfully explore the sequential 

relationships within time-series remote sensing data for crop classification (Crisóstomo de 

Castro Filho et al., 2020; Dou et al., 2021; Liao et al., 2020; Rußwurm and Körner 2020; Sun 

et al., 2020; Xu et al., 2020; Zhao et al., 2021; Zhong et al., 2019). These deep neuron-based 

architectures include one-dimensional Convolutional Neural Networks (1D-CNNs), Long 

Short-Term Memory (LSTM) and variants or combinations of both architectures. Given that 

these architectures by the 1D-CNN or LSTM models are naturally fitted with extracting 

sequential dependencies within multi-temporal remote sensing data, these models generally 
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outperform the nontemporal models such as RF in terms of classification performance for 

maize and soybean (Xu et al., 2020) and other crops (Liao et al., 2020; Rußwurm and Körner 

2020; Zhong et al., 2019). However, temporal models are not used for the extraction of spatial 

features from satellite imageries. 

The spatial relationship, known as the spatial arrangement of the adjacent pixels represented 

by the data matrix in remote sensing images, is also a main consideration for crop classification 

with remote sensing data. Two-dimensional Convolutional Neural Networks (2D-CNNs) are 

used to extract multi-level spatial features from satellite data for crop classification (Kussul et 

al., 2017; Wei et al., 2019; He et al., 2020). A patch-based CNN architecture is designed for 

regional-level classification on medium-resolution satellite imagery by collecting a series of 

image patches as inputs instead of pixel-based samples used for machine learning models, 1D-

CNNs or LSTM models (Sharma et al., 2017). 2D-CNNs only focus on the spatial dimension 

due to the multidimensional input (the image size and the channel-wise image bands), whereas 

the temporal dependencies are not considered. Therefore, three-dimensional Convolutional 

Neural Networks (3D-CNNs) are proposed for the extraction of spatiotemporal features from 

image data. Fewer studies have applied 3D-CNN-based architectures for crop classification 

(e.g. Adrian et al., 2021; Ji et al., 2018; Teimouri et al., 2022). Roy et al. (2019) showed that a 

hybrid 3D-2D CNN had an improved performance over using standalone 3D-CNN and 2D-

CNN, respectively. Another approach to obtaining spatiotemporal features is Convolutional 

Recurrent Neural Networks (ConvRNNs), and the variants represented by different recurrent 

units have been used to identify a large number of crop classes in a hierarchical framework 

(Turkoglu et al., 2021a). To the best of our knowledge, there is less research regarding the 

synergistic use of 3D-CNN, 2D-CNN and ConvRNN architectures for crop classification. 

Despite the findings in previous studies, annual crop mapping in Northeast China remains 

challenging due to the high intra-class variance and inter-class similarity of spectral qualities 

and phenology of crops in the region, which are influenced by varying climate conditions, 

geomorphic characteristics, and cropping systems (Wang et al., 2019). Additionally, regular 

and cloud-free time series acquisitions are often limited to agriculture monitoring at a large 

scale (Defourny et al., 2019). As a result, this study utilizes a small number of available optical 

acquisitions for large-scale crop mapping as supplementary sources for time series SAR data 

to develop models that enhance crop mapping accuracy. The study aims to develop a novel 

framework that combines 3D-CNN, 2D-CNN, and ConvRNN architectures for county-level 
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crop mapping based on the fusion of multi-temporal optical and SAR images for Bei'an county 

in Northeast China in 2017 at a 10 m spatial resolution. This spatiotemporal model contributes 

to improved performance in identifying crops during the growing season and addressing 

imbalanced class distribution, which could lead to model bias towards majority classes. The 

resulting crop maps can be used for dynamic monitoring of interannual crop growth in the same 

area and provide annual crop inventory information for local authorities to evaluate land-use 

policies. In this study, the proposed model is assessed for crop mapping and juxtaposed with 

models presented in previous studies (Pelletier et al., 2019; Ji et al., 2018; Turkoglu et al., 

2021b; Roy et al., 2019). Additionally, the models are examined in relation to data 

augmentation techniques and evaluated across three randomly selected geographical locations. 

Subsequently, the optimally chosen model is employed to generate an annual crop map for 

Bei'an in 2017 through model inference. 

4.2 Study Area 

Bei’an is a county located in the northeast part of Heilongjiang province in China (47°35'N ~ 

48°33'N, 126°16'E ~ 127°53'E) (Figure 4-1). According to Bei’an Municipal People’s 

Government (http://www.hljba.gov.cn/), the total area of Bei’an county is approximately 7149 

km2. Bei’an is subject to a cold and temperate continental monsoon climate. The average 

annual temperature is around 1.2 °C with annual effective accumulated temperature ranging 

from 18.30 °C to 23.50 °C. Bei'an receives an average annual precipitation of 529 millimetres, 

with the majority of rainfall occurring during the summer months from June to August. The 

average total amount of annual surface water resources is approximately 1.156 billion cubic 

meters. Bei’an is geographically located in the transitional zone between Songnen Plain and 

the Khingan Mountains, which is regarded as one of the world’s three Chernozem (black soil) 

belts. Given the favourable soil fertility, meteorological conditions and regional temperature, 

this region serves as an ideal ecological habitat conducive to crop growth and agricultural yield. 

According to Heihe Social and Economic Statistics Yearbook (2018), the total crop sown area 

of Bei’an approximates 2190 km2. Summer maize and soybean are the primary crop types, 

accounting for 29.5% and 61.8% of the total sowing area, respectively. In contrast, wheat, as 

one of the minority crop types in Bei’an, covers 2.9% of the total sown area. According to the 

local crop sowing scheme, the growing season of maize often spans from late April to late 

September, and soybeans are normally sown from early May to mid-September. These periods 

might vary annually due to crop rotation cycles in the study area over the years. 
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Figure 4-1. The study area in Bei’an. The multi-temporal Sentinel-1 and Sentinel-2 data are overlapped to capture 
the area that is covered by complete time-series acquisitions. 

4.3 Datasets 

4.3.1 Sentinel-1/2 datasets and pre-processing 

In this study, both time-series Sentinel-1B Single Look Complex products (Interferometric 

Wide swath SLC) and Sentinel-2A/B (Level-1C) image datasets were acquired from the 

Sentinel Scientific Data Hub (https://scihub.copernicus.eu/dhus/#/home). Considering the 

local cropping practice in which the majority of crops were planted and harvested from early 

May to late September 2017, the image acquisitions were collected from 6th May 2017 to 27th 

September 2017, corresponding to the vegetative growing cycle of the recorded staple crops in 

Bei'an. As such, twenty-three Sentinel-1 acquisitions and three Sentinel-2 acquisitions were 

collected. The selection of Sentinel-2 data was based on the criteria that the average percentage 

of cloud coverage for the acquisition candidates is less than 8%. 

The pre-processing of time series Sentinel-1 images was completed using the Sentinel 

Application Platform (SNAP) developed by the European Space Agency (ESA). The standard 

pre-processing steps follow Qu et al. (2020) which typically include radiometric calibration, 

multi-temporal speckle filtering (Refined Lee) and geocoding.  Backscatter values were 

converted to decibel (dB) scale, and the cross-ratio of the backscatter was calculated by 

subtracting VV from VH, in accordance with logarithm rules. Sentinel-1 operates as an 

https://scihub.copernicus.eu/dhus/#/home
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inherently dual-polarised SAR platform, which can constrain the extent of polarimetric 

information that can be explored, compared to quad-polarimetric SAR systems providing fully 

polarimetric observations. However, quad-polarisation satellite acquisitions often suffer from 

reduced swath coverage, revisit time and accessibility. Hence, a compact polarimetric 

technique, m-chi decomposition (Raney, 2012), has demonstrated its utility for crop mapping 

using dual-pol data (Sonobe et al., 2019). The m-chi decomposition parameters were also 

obtained using SNAP. Each type of Sentinel-1 data was resampled to 10 m spatial resolution. 

The pre-processing of Sentinel-2 images consists of the transformation from top-of-atmosphere 

(TOA) Sentinel-2 Level-1C reflectance images to bottom-of-atmosphere (BOA) Level-2A 

using Sen2Cor. Additionally, Band 4 (Red, 10 m), Band 8A (Vegetation Red Edge, 20 m), and 

Band 11 (SWIR, 20 m) were selected for their sensitivity to differentiate soybean and maize in 

Northeast China (You and Dou, 2021). All selected bands were resampled to 10 m and 

collocated with SAR data in a time-series sequence. Finally, a global min/max normalization 

approach was applied to all input features using the scikit-learn package to hasten the 

convergence of deep learning algorithms. 

4.3.2 Ground truth and partitioning 

Ground surveys of the study area were conducted during July, August and September 2017 by 

the Chinese Academy of Agricultural Sciences (CAAS). During the 2017 period, 21,257 fields 

were surveyed to calculate the area of crop parcels, record crop categories and retrieve annual 

statistics during the agricultural household survey. For cropland parcels with various crop types, 

they were manually digitised and labelled based on 5-meter resolution RapidEye satellite 

imagery (NIR Infra-red, Red Edge and Red composite), while Sentinel-2A images (SWIR, 

Narrow NIR and Red composite) were used for drawing relatively large cropland parcel areas 

with uniform crop types. In total, the classes of interest for major crops were assigned unique 

labels, including maize and soybean. In the in-situ dataset provided by CAAS, a small number 

of polygons were also identified for wheat and unknown crops. The proportions of ground 

sample pixels for each class in 2017 and the distribution of crop parcel size are displayed in 

Figure 4-2. A cropland mask layer, produced for Bei’an in 2017, is used to exclude non-

cropland areas in this study during the model inference stage for the generation of an annual 

crop map. The cropland distribution and extent barely changed during 2017-2019 due to 

cropland protection by policies in Northeast China (Liu et al., 2014; Ning et al., 2018).  



 

97 
 

 

Figure 4-2. The sample class distribution with the number of pixels (y-axis) at the logarithmic scale for the Bei’an 
dataset collected in 2017 (left), and 10 percent of the dataset is split into subsets for training, validation, and testing 
(left). The distribution of crop parcel size overall (right). The parcels large than 9 hectares are accumulated in the 
last bin in the histogram. The parcel size on average is 1.39 hectares. 

Since the cropping and managing system for each crop parcel would be different, the pixels 

within the same crop polygon are strongly correlated and need to be isolated when assigned to 

training, validation and testing data sets. i.e., pixels in each set should be mutually exclusive 

and not from the same crop parcels. Additionally, the class distributions in all sets should be 

identical (Rußwurm and Körner, 2017). In most croplands, pixels in the same parcel are very 

homogenous and highly correlated. Allocating pixels in a parcel to different sets will violate 

the principle of independence. The model generalisation on truly unseen data would be affected 

because it is likely that models have seen at least parts of the image patches used for validation 

(Audebert et al., 2019). Although the study area can be split into relatively large sub-regions, 

the crop types are not usually distributed evenly in the study area, which cannot ensure sub-

regions with similar class distributions (Zhong et al., 2019). In this study, each crop polygon 

was regarded as an entity. The parcels are grouped using grids at 10-kilometre intervals so that 

crop parcels in the same grid are considered as a whole. The dataset is divided into training, 

validation, and testing partitions using image grids, which are selected at random in a ratio of 

60%, 20%, and 20%, respectively. Additionally, 10% of the ground samples are randomly 

chosen from each selected set using stratified sampling, maintaining the same ratio as the initial 

dataset division. 
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4.4 Methods 

4.4.1 Methodology framework 

The entire workflow in this study is depicted in Figure 4-3, outlining the four stages designed 

to evaluate deep learning approaches for crop mapping using the fusion of multi-source, time-

series satellite data. The initial stage focuses on the pre-processing of multi-temporal satellite 

acquisitions, specifically targeting the overlapping area in Bei’an (Figure 4-1). Section 4.3.1 

describes the data pre-processing in detail. In the data preparation stage, three Sentinel-2 

acquisitions with designated reflectance bands are stacked with Sentinel-1 intensity and 

polarimetric bands, respectively. This creates an accumulated time series dataset containing 26 

satellite acquisitions arranged chronologically by the acquisition dates. This sequence covers 

the entire growth stages of the crops. The resultant dataset, characterized by band-wise stacking, 

includes 78 channels, covering both the collocated optical/backscatter and optical/polarimetric 

bands. During the initial data preparation stage, this stacked dataset is segmented into tiles 

using 10-kilometre grids, as explained in section 4.3.2. These image tiles are subsequently 

subdivided into smaller patches in batch processing, with each patch aligned with its 

corresponding ground truth label. Specifically, the centre pixel of each patch is directly 

associated with a specific crop label, and square patches representing ground samples (i.e., crop 

labels) are selected for input into the CNN models considered in this study. Section 4.4.4 will 

discuss the optimal size for these patches. 

The experimental stage compares the performance of the proposed model with other state-of-

the-art methods, given multiple model input scenarios. Particularly, an ablation experiment is 

conducted during model training and testing to determine the key input scenario for crop 

identification in Bei’an 2017. Following this, this study assesses the efficacy of implementing 

data augmentation techniques. The final stage involves generating a county-level crop map 

using the best performer and analysing the model learning outcomes. In the subsequent sections, 

the specifics of the experiment are introduced, presenting aspects such as classification 

algorithms employed, the environment in which the models are deployed, compact polarimetric 

parameters, and augmentation techniques, to provide a comprehensive understanding of the 

methodology in this study. 
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Figure 4-3. The overall workflow of the experiments. 

4.4.2 Classification methods 

4.4.2.1 3D-CNN 

Convolutional Neural Networks (CNNs), motivated by the animal’s visual cortex, is a deep 

learning technique to extract features in a way that considers spatial contexts between pixels 

instead of focusing on a single vector transformed by the typical multilayer neural networks 

(Sharma et al., 2017). CNNs, therefore, are also known as a dimensionality reduction method 

to handle multidimensional inputs in terms of its unique feature extraction pattern performed 

by convolutional kernels. Conventional two-dimensional CNNs (2D-CNN), however, are 

limited to the spatial features and may produce overwhelming parameters if the 

multidimensional inputs have large channels (spectral information) or time steps (temporal 

information) (Mäyrä et al., 2021). Conversely, the one-dimensional CNNs (1D-CNN) extract 

features from single-pixel temporal or spectral profiles of the input data without considering 

the spatial relationship between features. Although 2D-CNN can be combined with 1D-CNN 

to extract spatial-spectral or spatial-temporal information for improved results compared to 

dealing with information in only one dimension (Audebert et al., 2019), the large number of 

model parameters will be needed by 2D-CNN. An alternative method to extract features 

simultaneously on both dimensions is three-dimensional CNNs (3D-CNN). The convolutional 

kernels in 3D-CNN are cubes and produce a feature map with volume rather than a two-

dimensional image derived by 2D-CNN or a single vector by 1D-CNN. The three-dimensional 

convolving process can be written as follows: 
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Where 𝑌",E
F,G,H is the output values at 3D coordinate (𝑥, 𝑦, 𝑑) on the jth feature cube in the ith layer, 

(𝑥, 𝑦) is the spatial position and 𝑑 indicates temporal index. 𝑤("0'),:
>,8,I  is the 3D kernel value at 

location (𝑡, 𝑝, 𝑞) from the 𝑛th feature cube in the previous layer. Similarly, (𝑝, 𝑞) is the spatial 

position, and 𝑡 denotes the temporal indicator of the kernel. 𝑋"0',:
F,G,H  is the input at position 

(𝑥, 𝑦, 𝑑) from the 𝑛th feature cube in the previous layer. 𝑏",E 	is the bias vector on the jth feature 

cube in the ith layer. The size of the kernel is 𝑇´	𝑆´	𝑆 which is equivalent to length, height and 

width. Empirically, the size of height equals width in CNNs.  

4.4.2.2 ConvSTAR 

Convolutional recurrent neural network (ConvRNN) is a variant of sequence modelling that is 

built with convolutional operations in state transitions instead of matrix multiplications for 

handling spatio-temporal data. A typical convolutional Long Short-Term Memory 

(ConvLSTM) is designed to capture the spatio-temporal correlations for precipitation forecast 

(Shi et al., 2015), which outperforms the general LSTM structure in which spatial information 

is not considered. Given that stacking multiple ConvRNN layers contributes to feature 

extraction, a novel recurrent cell, namely STAckable Recurrent cell (STAR), is developed to 

reduce the exploding gradient effects and the number of trainable parameters (Turkoglu et al., 

2021b). The convolutional version of STAR (ConvSTAR) is the modification of ConvLSTM 

in which the input and output gate are removed, which can be written as: 

𝑓> = s	(𝑊F@ ∗ 𝑋> +𝑊K@ ∗ 𝐻>0' + 𝐵@)                                 (4-2) 

 

𝑍> = 𝑡𝑎𝑛ℎ(𝑊FL ∗ 𝑋> + 𝐵L)                                           (4-3) 

 

𝐻> = tanh	(	𝑓> ∙ 	𝑍> + 𝐻>0' ∙ (1 − 𝑓>))                                  (4-4) 

Where s is the sigmoid activation function, ∗ denotes the convolution operator and ∙ indicates 

the Hadamard product (elementwise). The input 𝑋> is firstly non-linearly projected through the 

activation function in 𝑍> . In addition, the previous state 𝐻>0'  and new inputs are linearly 

combined in the gating module	𝑤ℎ𝑖𝑐ℎ is the determinant of the state-to-state flow to create a 



 

101 
 

new hidden state. 𝑊 and 𝐵 are matrices for weight and bias, respectively. The hidden state 𝐻> 

is the output of a single ConvSTAR layer, which can be used for classification, or be used as 

the new inputs for the next layer or other decoders. Figure 4-4 illustrates a ConvSTAR cell that 

integrates Eq. (4-2), Eq. (4-3) and Eq.  (4-4). The code of the ConvSTAR layer was adapted in 

Tensorflow format from the Pytorch repository (https://github.com/0zgur0/STAckable-

Recurrent-network.git). 

 

Figure 4-4. The structure of a ConvSTAR cell. 

4.4.2.3 Synergic use of 3D-CNN and ConvSTAR 

Recent studies have applied the combination of 3D-CNN and convolutional recurrent networks 

for univariant and multivariate time series forecasting. The 3D-CNN layers and attention 

ConvLSTM layers are utilised sequentially for multispectral soybean prediction (Nejad et al., 

2022). The 3D-CNN layer can also be fed with features produced by ConvLSTM, serving as 

the model output layer for predicting urban expansion in image segmentation (Boulila et al., 

2021). The enhanced performance on human action recognition was also proved by the 

combined use of these two deep learning approaches (Wang et al., 2021). In this study, a similar 

hybrid feature learning framework, 3D-ConvSTAR, is proposed to improve crop classification 

performance (Figure 4-5). The proposed network consists of three stages. The first step is made 

of a three-layer 3D-CNN with the optimal kernel size 3 × 3 × 3 , considering that three 

convolutional layers demonstrated effectiveness over two-layer and four-layer networks (Ji et 

al., 2018). Each layer has 32, 32, and 64 filters, respectively. The feature maps after each 3D 

convolutional operation are not shrunk by applying zero padding. The convolutional cubes are 

moved during one step. As previously introduced in Section 4.4.2.1, 3D-CNN is used to extract 

https://github.com/0zgur0/STAckable-Recurrent-network.git
https://github.com/0zgur0/STAckable-Recurrent-network.git


 

102 
 

spatio-temporal features simultaneously. Next, the output tensors from the 3D-CNN module 

are reshaped and fed into a three-layer bidirectional ConvSTAR unit. Bidirectional recurrent 

cells preserve temporal information from both the future and past, alleviating temporal bias 

toward data in later time steps (Rußwurm and Körner., 2018). The kernel size for ConvSTAR 

is 3 × 3 and the number of kernels for each layer is set to 64. Followed by ConvSTAR layers 

is a shallow 1-layer 2D-CNN with 64 3 × 3 kernels to take in the final hidden state from the 

previous layer for further extracting discriminative feature maps on the spatial dimension. It 

also can perform dimensionality reduction to some extent so that the number of model 

parameters can be optimised since it reduces the size of the feature maps and preserves the 

main information captured by the previous layers (Mäyrä et al., 2021; Roy et al., 2019). The 

last part of 3D-ConvSTAR is constructed with three fully connected (FC) layers. The last two 

dense layers have 256 and 128 units respectively and both are followed by a dropout layer with 

a factor of 0.4 to prevent networks from overfitting. The activation function Rectified Linear 

Unit (ReLU) (Nair and Hinton, 2010) is applied after CNN, convolutional recurrent and FC 

layers to augment the nonlinearity of outputs and control model systematic errors (bias). 

Pooling layers are not applied after all layers in the proposed model since it could cause loss 

of information at multiple dimensions (Li et al., 2019). 
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Figure 4-5. The architecture of 3D-ConvSTAR. 

4.4.3 M-chi decomposition 

A similar methodology was developed for single-transmitted dual-receive polarisation data that 

transmits at circular polarisation and receives at horizontal and vertical polarisation (Raney et 

al., 2012). This decomposition methodology, originally for compact polarimetric radar data, is 

based on the 2 × 2 covariance matrix, which is not applicable to general quad-pol data. This 

method is often characterised by the form composed of four-element Stokes parameters, which 

provides potential for hybrid polarimetric and dual-pol data. One application is the m-chi 

decomposition, in which the observed field is characterised by the degree of polarisation (𝑚) 

as: 

𝑚 =	
()""*)%"*)&"

)$
，0 ≤ 𝑚 ≤ 1                                             (4-5) 
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Where 𝑆',#,,,- represents four Stokes parameters in the total power over an image field, and 𝑚 

refers to the degree of polarisation. 𝐶ℎ𝑖	(𝜒), a Poincaré variable, denotes the field’s ellipticity 

and circularity, which can be expressed through: 

sin 2𝜒 = − )&
.)$

，− 45° ≤ 𝜒 ≤ +45°                                 (4-6) 

Based on these two variables calculated from the Stokes parameters, three target scattering 

parameters 𝑃;  (Single-bounce scattering), 𝑃H  (Double-bounce scattering) and 𝑃M  (Volume 

scattering) for m-chi decomposition can be expressed as follows: 

𝑃; = J.)$('0123 #4)
#

                                                (4-7) 

𝑃H = J.)$('*123 #4)
#

                                                (4-8) 

𝑃M = M𝑆'(1 − 𝑚)                                                   (4-9) 

Previous studies have shown that hybrid polarimetric data are close to and occasionally 

equivalent to the analysis of quad-pol data e.g., using the conventional Freeman-Durden 

decomposition (Nord et al., 2008; Ainsworth et al., 2009). Even though all required four-

element Stokes parameters can be derived from dual-polarised data such as Sentinel-1 SLC 

products, the challenge imposed on this usage is the separability between single and double 

bounce targets due to the ellipticity angle from dual-pol data on the verge of zero (Raney, 2007), 

which could decrease the difference between polarimetric scattering types. Despite this 

challenge, one scattering type between the mix of all scattering mechanisms often dominates 

agricultural targets at a certain growth stage, and the scattering type of dominance could change 

with the development of the canopy (McNairn et al., 2009). Therefore, all scattering types of 

m-chi decomposition are considered in this study as input predictors to classify crops across 

full growth stages. 

4.4.4 Model implementation 

Considering the model inputs, we adopted the typical remote sensing scene classification 

approach and extracted square image patches centred around a labelled crop category. Square 

patches for each crop class are generated with the size of 9 × 9 , 11 × 11 , 15 × 15  and 
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21 × 21. Larger image patches will cover multiple polygons from different crop species but 

could lead to greater model parameters. Therefore, the optimal size of image patches is selected 

to 11 × 11 after examinations for classification purposes. Therefore, the complete shape of 

input image patches for the proposed model is 11 × 11 × 26	 × 3  (width × height × sequence 

× channel). Patches without any ground truth information and missing values of pixels were 

eliminated. 

The implementations of models are customised to train the network with reference to the Adam 

optimiser (Kingma and Ba, 2014), and cross-entropy loss function (Botev et al., 2013). The 

learning rate for the optimiser is set to 0.001, and weight decay is regularised at 0.0001. A 

batch size of 128 is used during the training stage, and the model is saved with the best 

validation accuracy for later model inference. Another regularisation strategy, namely Early 

stopping, is used to prevent the models from overfitting since it will terminate the model 

training progress once the model validation performance is relatively stabilised during the 

iterative training process.  

The proposed 3D-ConvSTAR is compared with deep learning architectures applied in other 

studies: a 1D-CNN-based architecture, namely temporal CNN (TCNN) (Pelletier et al., 2019), 

a typical 3D-CNN (Ji et al., 2018), a hybrid 3D-2D CNN (Roy et al., 2019) and a 3-layer 

ConvSTAR (Turkoglu et al., 2021b). This study reproduced the implementations of the models 

in the aforementioned studies. The modelling environment is implemented in Python 3.7.15 

with Tensorflow backend (2.5.0) and Keras library (2.1.1) for model construction and 

generalisation under two graphic devices of NVIDIA Quadro P4000 (8 GB RAM per GPU), 

and two processors of Intel (R) Xeon (R) Silver 4114 CPU (2.20GHz/2.19 GHz).  

4.4.5 Data augmentation 

Imbalanced class distribution in real-world label datasets often leads to bias in supervised 

classification approaches, where machine learning models, under typical model training 

schemes, are prone to weigh importance in favour of majority classes (Ren et al., 2018; Dong 

et al., 2018). Underrepresented crop classes in certain places may have the same or even higher 

value (either financial or ecological) as the crops that occur more frequently (Turkoglu et al., 

2021a). The annual statistics record that the total sown area for wheat is 6,309 hectares 

compared to 64,564 and 135,401 hectares for maize and soybean in Bei'an 2017 (Heihe Social 
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and Economic Statistics Yearbook, 2018). Consequently, class-balanced model evaluation is 

crucial for agricultural mapping applications, as fine-structured agricultural systems in local 

areas could lead to crop classes with the imbalanced distribution. 

 

One approach to address this issue is typically called inverse frequency weighting (Cui et al., 

2019). The training samples of minority classes are assigned higher weighting factors than 

majority classes for calculating training loss, which neutralizes the model bias towards majority 

classes. The underlying side effect of weighting samples could weaken model performance on 

majority classes to which lower weights are given. Another approach to balance the dataset is 

either via oversampling minority classes (Ling and Sheng, 2008) or undersampling majority 

classes (He and Garcia, 2009). Both techniques depend on a trade-off for the number of samples 

across all classes. Missing data for dominant classes due to undersampling could severely affect 

model performance, considering that deep learning and machine learning methods are data-

driven and data-hungry. Therefore, undersampling is not used in this study. 

 

This study applied an oversampling technique followed by a rotation of image patches. Each 

resampled sample patch is randomly rotated within 180 degrees and flipped horizontally. 

Oversampling minor classes, however, is not always a panacea, as it might not significantly 

improve mapping minority classes when the sample size is too small. A recent data 

augmentation method called mix-up, designed to linearly combine labelled images for model 

training, has proven successful in mapping tree species (Mäyrä et al., 2021). In this study, the 

input image patches of different crop classes and corresponding labels (categorical encoding) 

are mixed up, respectively, to generate blended or synthetic datasets, i.e., an image patch may 

contain 20% soybean and 80% wheat. The class distribution of the output via mix-up is also 

balanced. This study proposes a joint learning structure to combine deep learning models to 

counter imbalanced class distribution and compares it with the aforementioned data 

augmentation techniques, including oversampling, inverse weighting, and mix-up, for mapping 

minority classes. 

4.4.6 Model interpretation 

The interpretability of deep learning models on crop mapping tasks is still limited, considering 

that the extracted higher-level features are outputted by a hidden learning process in the 

operating mechanism held by deep learning approaches, which is often called a ‘black box’ 
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(Heo et al., 2019). The explanation of deep learning methods benefits users in understanding 

the intricate patterns of crop growth and evaluating model reliability on crop mapping (Zhong 

et a., 2019; Xu et al., 2021). Previous studies investigated deep learning methods by visualizing 

intermediate layers of the networks for monitoring the model learning process and temporal 

learning patterns of certain crops (Xu et al., 2020; Zhong et al., 2019). Another approach to 

interpreting deep learning models is based on gradient-based explanations (Xu et al., 2021; 

Bastings and Filippova, 2020; Rußwurm and Körner., 2020; Mäyrä et al., 2021). Typically, the 

deep learning model input and corresponding labels are fitted with neural-network-based 

functions that are differentiable and perform nonlinear transformations. According to the 

gradient descent algorithm, the model weights during feature extraction can be iteratively 

updated and optimized to minimize the difference between predicted outputs and 

corresponding true input values. This study computed the gradients of the predicted scores for 

each crop type with respect to input image patches for the proposed model via vanilla 

backpropagation. A gradient for each crop is composed of an array of partial derivatives and it 

signifies the correlation between the changes in the input features and the corresponding 

prediction score. The highest magnitude of the gradient indicates the most influential pixels for 

the process of identifying certain crops. The prediction score is the model soft output derived 

by the softmax function at the last layer of the proposed model (Figure 4-5) and it suggests the 

confidence degree of the proposed model to the classification results of each crop category in 

this study. The gradients for each class can be visualised via saliency maps. Considering that 

the spatial dimension of the sample patches used in this study is only 11 × 11, the assessment 

of the important input features at spatial dimension may not decisively and accurately 

demonstrate the locations that contribute to spatial importance for crop mapping. Therefore, 

the results are more of a performance check for the proposed model. 

4.4.7 Evaluation metrics 

For the accuracy assessment of each network, overall accuracy (OA), Cohen's kappa coefficient 

(Kappa), and F1 score were selected as the performance indicators in this study. The OA is 

calculated to evaluate the overall model performance. Overall accuracy is calculated by 

aggregating the number of correctly classified values 𝑛"?ANNO?> based on the number of classes 

𝐶 and dividing by the total number of samples 𝑁 in Eq. (4-10): 

𝑂𝐴 = 	∑ :!
()**+(,-

!#$
P

                                                          (4-10) 
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The Kappa coefficient, also known as Cohen's Kappa, is a widely used metric in deep learning 

and remote sensing studies to assess the performance of classification models, particularly in 

the context of crop classification (Congalton, 1991; Foody, 2004). It is computed from the 

empirical probability of observed agreement, also known as 𝑂𝐴 and expected agreement 𝑝O in 

Eq. (11) and (12). 𝑝O is calculated by 𝑛"
8, the total number of predicted labels, and 𝑛">, the total 

number of ground truth labels. Kappa values range from -1 to 1, with values closer to 1 

interpreted as a high level of agreement between the predicted and ground truth labels and 

values closer to 0 indicating that the agreement is no better than chance. In remote sensing and 

crop classification studies, a Kappa coefficient is often used alongside other performance 

metrics, such as the overall accuracy, producer's accuracy, and user's accuracy, to provide a 

comprehensive evaluation of the classification model (Congalton, 1991): 

𝐾𝑎𝑝𝑝𝑎 = 	QR08+
'08+

                                                        (4-11) 

𝑝O =	
∑ :!

.:!
,-

!#$
P"

                                                          (4-12) 

The F1 score is used to measure classification performance grouped into categories since the 

sample data were imbalanced in this study. It relates to the harmonic mean of the producer’s 

accuracy (𝑅𝑒𝑐𝑎𝑙𝑙)  and user’s accuracy (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  respectively (Stehman., 2001) and is 

determined as follows: 

𝐹1" = 2 ∙ 	 SNO?";"A:!∙UO?9VV!
SNO?";"A:!*UO?9VV!

, 𝑖 ∈ 𝐶                                     (4-13) 

4.5 Results 

4.5.1 Classification results 

It is found that the deep learning models using m-chi decomposition features yielded better 

classification results than using backscatter and its cross-ratio. See Table 4-1. Especially for 

TCNN, this 1D-CNN-based architecture benefited from polarimetric features significantly, 

increasing the OA and Kappa by > 20% and > 30%, respectively. With regard to the models 

considering both spatial and temporal dimensions, using m-chi decomposition features slightly 

improved the classification accuracy over backscatter, but these models outperform TCNN. 

Compared with other models, the proposed method, 3D-ConvSTAR, achieved the highest OA 
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on both backscatter (82.0%) and m-chi decomposition (89.4%). On the other perspective, 

incorporating few optical acquisitions into the sequential radar dataset contributes to improved 

performance for all models compared to using standalone multi-temporal SAR data, and the 

deep learning models with the combination of multispectral bands and polarimetric features 

performed the best among all scenarios. Under this circumstance, the proposed method, 3D-

ConvSTAR, outperformed other approaches in terms of the highest OA (91.7%) and Kappa 

(85.7%). The second-best performer is the standalone 3D-CNN under the same scenario.  

Table 4-1. The comparison of model performance based on multiple composite features. The best scores for each 
metric are highlighted in bold, and the second best are underlined. 

                                     Models 
            Features TCNN 3D-CNN 3D-2D CNN ConvSTAR 3D-

ConvSTAR 

Backscatter 
OA (%) 56.7 82.3 79.2 81.9 82.0 

Kappa (%) 20.9 68.6 62.9 68.0 68.2 

m-chi 
OA (%) 77.2 85.0 84.1 85.8 89.4 

Kappa (%) 59.4 73.6 71.8 75.2 81.6 

Optical+backscatter 
OA (%) 72.6 87.0 87.4 88.9 87.9 

Kappa (%) 51.0 77.5 78.1 80.5 79.0 

Optical+m-chi 
OA (%) 86.4 90.5 89.0 90.0 91.7 

Kappa (%) 75.8 83.5 81.1 82.6 85.7 

Table 4-2 presents the F1-score yielded by deep learning models for each crop type, based on 

different combinations of input features. The polarimetric parameters overall are better than 

backscatter according to the F1 scores derived by each model for crop types. Especially m-chi 

decomposition features lead to significant improvement for TCNN on differentiating crops 

compared to using backscatter. For the models that consider the spatio-temporal dimension, m-

chi decomposition features are still reliable predictors over backscatter for identifying maize 

and soybean, and 3D-ConvSTAR its advantage on the minority class by producing 81.8% of 

F1 for wheat that is the highest accuracy among the model results with connection to applying 

m-chi decomposition. For the use of a combination of multispectral bands and SAR features, 

ConvSTAR produced the highest F1 scores for maize (93.8%) and soybean (92.3%), which are 

only 0.1% higher than the same measurements derived by 3D-ConvSTAR. However, 3D-

ConvSTAR also yielded the leading performance on less frequent classes, including wheat 

(90.9%) and other crops (74.0%), resulting in the highest mean F1 (87.7%) among all types of 

input features used. Therefore, the best-performing model for crop classification with an 

imbalanced dataset is the proposed 3D-ConvSTAR with the combined features of m-chi 

decomposition and multispectral bands.  
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Table 4-2. The comparison of model performance in each class. The best score for each column is highlighted 
with bold and the second best is underlined. 

Models Features Maize 
F1 (%) 

Soybean 
F1 (%) 

Wheat 
F1 (%) 

Other 
crops 

F1 (%) 

Mean 
F1 (%) 

TCNN 
(Pelletier et al., 

2019) 

Backscatter 62.2 56.2 2.5 0.6 30.4 
m-chi 80.9 79.0 37.6 38.2 58.9 

Optical+backscatter 78.1 71.2 63.2 1.1 53.4 
Optical+m-chi 91.6 88.1 43.1 36.2 64.8 

3D-CNN 
(Ji et al., 2018) 

Backscatter 86.1 84.5 50.4 41.2 65.6 
m-chi 89.0 86.5 60.8 47.7 71 

Optical+backscatter 90.6 88.4 75.8 50.4 76.3 
Optical+m-chi 93.5 91.3 69.0 70.0 81.0 

3D-2D CNN 
(Roy et al., 2019) 

Backscatter 82.5 81.9 6.5 45.5 54.1 
m-chi 87.8 86.3 12.1 54.1 60.1 

Optical+backscatter 91.1 89.5 68.1 48.7 74.4 
Optical+m-chi 93.4 91.1 77.6 62.2 81.1 

ConvSTAR 
(Turkoglu et al., 

2021b) 

Backscatter 85.5 84.4 30.8 45.9 61.7 
m-chi 90.0 88.3 22.2 55.5 64.0 

Optical+backscatter 93.5 90.0 76.2 38.1 74.5 
Optical+m-chi 93.8 92.3 79.7 52.5 79.6 

3D-ConvSTAR 

Backscatter 85.6 83.6 69.4 38.0 69.2 
m-chi 92.1 90.4 81.8 61.0 81.3 

Optical+backscatter 91.7 89.6 83.9 45.6 77.7 
Optical+m-chi 93.7 92.2 90.9 74.0 87.7 

The classification performance using 'Optical+m-chi' as input features varies across data 

augmentation techniques, with some models performing better or worse than the baseline 

where no data augmentation is applied in the training data. (Table 4-3). The oversampling 

method generally performed better than other augmentation methods. TCNN has been 

improved with oversampling significantly from 64.8% to 83.5% on mean F1. In contrast, 

balanced loss and mix-up reduced the overall performance for 3D-2D CNN and 3D-

ConvSTAR. Some data augmentation methods for the certain model, such as 3D-ConvSTAR, 

marginally increased identification performance for majority crops including maize and 

soybean by 0.5% and 0.1% respectively while lowered the performance for minority classes. 

Furthermore, each method is compared based on model predictions for different geographical 

locations within Bei'an, taking into account the highest mean F1 score achieved by certain 

models that incorporate data augmentation techniques (Figure 4-6). 
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Figure 4-6. Comparison of classification performances between the models with applying data augmentation 
techniques and the proposed method across various sites within Bei’an. Percentages indicate the proportion of 
correctly classified samples with respect to ground truth labels. 
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Table 4-3. The comparison of model performance with applying data augmentation techniques. The best 
measurements for each column are highlighted in bold, followed by underlines indicating the second-best 
performance.  

Models Inputs Methods Maize 
F1 (%) 

Soybean 
F1 (%) 

Wheat 
F1 (%) 

Other 
crops 

F1 (%) 

Mean 
F1 (%) 

TCNN 
(Pelletier et al., 

2019) 
Optical+m-chi 

Oversampling 92.7 90.7 83.9 66.8 83.5 
Balanced loss 91.5 88.7 64.1 49.1 73.4 

Mix-up 91.6 89.9 63.3 50.0 73.7 
 91.6 88.1 43.1 36.2 64.8 

3D-CNN 
(Ji et al., 2018) Optical+m-chi 

Oversampling 92.6 90.2 88.4 59.7 82.7 
Balanced loss 94.0 92.2 86.1 71.1 85.9 

Mix-up 93.9 91.9 66.3 65.5 79.4 
 93.5 91.3 69.0 70.0 81.0 

3D-2D CNN 
(Roy et al., 

2019) 
Optical+m-chi 

Oversampling 92.2 90.3 87.1 60.6 82.6 
Balanced loss 92.7 88.2 74.6 53.4 77.2 

Mix-up 91.9 90.4 62.2 62.0 76.6 
 93.4 91.1 77.6 62.2 81.1 

ConvSTAR 
(Turkoglu et al., 

2021b) 
Optical+m-chi 

Oversampling 92.8 90.7 91.8 71.2 86.6 
Balanced loss 93.0 90.4 85.3 55.4 81.0 

Mix-up 94.2 91.4 85.8 71.5 85.7 
 93.8 92.3 79.7 52.5 79.6 

3D-ConvSTAR Optical+m-chi 

Oversampling 93.8 91.2 85.6 67.6 84.6 
Balanced loss 93.6 90.7 89.5 63.6 84.4 

Mix-up 94.2 92.3 88.5 71.0 86.5 
 93.7 92.2 90.9 74.0 87.7 

A close examination of the classification accuracies reveals that the proposed 3D-ConvSTAR 

method outperforms the other models in most cases. At Site A, the 3D-ConvSTAR model 

yields an accuracy of 89.4%, which is higher than the accuracies derived by the TCNN with 

oversampling (84.3%), 3D-CNN with balanced loss (85.4%), the 3D-2D CNN with 

oversampling (89.0%) and ConvSTAR with oversampling (87.1%) models. At Site B, the 3D-

ConvSTAR method and ConvSTAR with oversampling both achieve a classification accuracy 

of 95.9%. While the 3D-2D CNN with oversampling model exhibits a slightly higher accuracy 

(96.5%), the 3D-ConvSTAR model outperforms the other two methods, namely TCNN with 

oversampling (90.3%) and 3D-CNN with balanced loss (96.0%). Finally, at Site C, the 

proposed 3D-ConvSTAR model demonstrates the second-highest classification accuracy 

(97.3%), only surpassed by the 3D-2D CNN with oversampling (97.5%). Nevertheless, the 

difference is marginal and 3D-ConvSTAR method outperforms the rest of the scenarios. In 

summary, the proposed 3D-ConvSTAR demonstrates competitive performance in comparison 

to the other deep learning models fed with augmented data for crop mapping across all three 

sites. It also performs the highest mean F1 score of 87.7% on the testing dataset compared with 
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the models using augmented data (Table 4-3). Therefore, the proposed method was used to 

predict unseen data for the creation of a thematic map.  

As mentioned in Figure 4-2, ten per cent of total ground truth samples were used for dataset 

split and sixty percent of which was used for model training. Then, the pre-trained 3D-

ConvSTAR produced the annual crop map during model inference for Bei’an in 2017, shown 

in Figure 4-7. The predicted results were also compared with the total ground truth dataset in 

the confusion matrix illustrated in Figure 4-8. The cell in the top left corner shows that 96.58% 

of maize instances were correctly classified as maize, while 2.92% of them were misclassified 

as soybean and 0.00% as wheat. Similarly, the cell in the bottom right corner shows that 86.87% 

of instances for other crops were correctly classified as themselves, while 11.18% of them were 

misclassified as soybean. In general, the model performs relatively well in distinguishing maize, 

soybean, and wheat while it struggles more with identifying other crops. 

 

Figure 4-7. The annual crop map for Bei’an 2017. It was produced by 3D-ConvSTAR, weakly supervised with 
ten per cent of all ground truth samples. The areas not designated as cropland were excluded using a cropland 
mask introduced in Section 3.2. Data inadequacy indicates the absence of data collected from Sentinel-1 and 
Sentinel-2 images not fully covering the study area throughout the crop growth season, with areas identified 
outside the overlapping area in Figure 4-1, suggesting incomplete imaging and insufficient temporal coverage. 



 

114 
 

 

 

Figure 4-8. The confusion matrix for the comparison between predicted labels derived by 3D-ConvSTAR and all 
ground truth labels. 

4.5.2 Model interpretation 

The prediction scores, as outlined in Section 4.4.6, are soft outputs produced by the final layer 

of the 3D-ConvSTAR model (illustrated in Figure 4-5). Figure 4-9 visually demonstrates the 

confidence level of the proposed model in its crop classification performance on the testing 

dataset. The results indicate that 3D-ConvSTAR exhibits a higher level of confidence in its 

mapping of maize, soybean, and wheat crops, as compared to other crops. This is evident from 

the concentration of prediction scores for most samples of the three classes, which averagely 

hover around 90%. The proposed model is less confident in accurately identifying other crops 

with reference to the relatively lower mean prediction score (71%), which is consistent with 

the misclassification presented by the F1 score in Table 4-2, despite the fact that the ‘other 

crops’ category has a larger number of training samples than wheat (See Figure 4-2). 
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Figure 4-9. The prediction score distribution for each crop, derived by the last dense layer of 3D-ConvSTAR. The 
red dashed lines indicate average prediction scores. 

The average gradient magnitudes are represented by saliency maps, as shown in Figure 4-10. 

These maps represent the most important spatial locations for each crop type in the image 

samples of the testing dataset. The shape of the pixel chunks with the highest importance for 

maize may complement the part of the lowest importance for soybean and vice versa, indicating 

that maize and soybean in the samples are mostly intercropped. The pixel importance for wheat 

shows that the field shapes in the samples are mostly separated. However, the pixel importance 

for other crops is scattered without forming a clear shape, which corresponds to the relatively 

lower mapping accuracy for those crops. 

 

Figure 4-10. The saliency maps represented by the average magnitude of gradients for each crop. 1500 image 
patches were randomly extracted from the testing dataset and fed into 3D-ConvSTAR to generate saliency maps 
for illustration. 

In summary, the 3D-ConvSTAR model shows high confidence in classifying maize, soybean, 

and wheat, with prediction scores for these crops averaging around 90%, as evidenced in testing. 

In contrast, the model is less confident in classifying other crop types, demonstrated by a lower 

average prediction score of 71%. Saliency maps reveal that the model identifies distinct spatial 

features for each crop type. Maize and soybean often appear intercropped, as indicated by 

complementary areas of importance in their respective saliency maps. Wheat, however, is 

typically mapped in separate fields, reflected by dispersed spatial patterns in the imagery. For 

other crops, the saliency maps show scattered and undefined patterns aligned with their lower 

classification accuracy. 
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4.6 Discussion 

In this study, various deep learning architectures for patch-based crop mapping are evaluated 

using SAR and fused SAR-optical data. The proposed method functions as an ensemble deep 

learning by synergistically connecting 3D-CNN and ConvSTAR, reaching the highest 

performance overall among all models in terms of the OA (91.7%) and Kappa (85.7%) for the 

identification and classification of different crops (see Table 4-1). This study also validated the 

effectiveness of using SAR polarimetric decomposition parameters of m-chi for identifying 

certain crops over using SAR backscatter, which confirmed the findings by previous studies 

(e.g., De et al., 2014; Sonobe et al., 2019). The integration of a few optical acquisitions and 

time-series SAR image data does improve the classification performance overall compared to 

standalone SAR data, but maize and soybean are not increased significantly (< 10% on average) 

regarding the F1-score derived by all models (Table 4-2). These results are likely to be 

explained by the fact that maize and soybean are dominant crops in the county that provides an 

enormous number of labelled ground truth (Figure 4-2), so both crops can be well-trained by 

those data-driven models. In contrast, the fusion of optical and m-chi decomposition features 

enhanced minority classes surprisingly by all models, especially for wheat. The proposed 

method with multisource fusion yields the highest F1-score (90.9%) for wheat compared to 

using backscatter (69.4%) and polarimetric features (81.8%). This indicates that multispectral 

information contributes mostly to the enhancement of mapping for minority crops.  

We discovered that crop mapping performance can be enhanced not only by fusing SAR-

optical datasets, which provide spatio-temporal, polarimetric, and spectral characteristics 

related to different crop structures (Gao et al., 2018; Van Tricht et al., 2018), but also by 

utilizing multispectral information as a reliable complementary source owing to the synergistic 

nature of SAR and optical data. This study demonstrates that Sentinel-1 and Sentinel-2 imagery 

exhibit a mutually complementary effect, increasing the sensitivity of both sensors to specific 

crop class characteristics throughout the growing season. Sentinel-2 data can be associated with 

the quantitative analysis of chlorophyll and moisture content in crop leaves, with spectral bands 

such as the Vegetation Red Edge being particularly useful for differentiating certain crops, 

confirming previous findings by Guerschman et al. (2003) and You et al. (2020). Sentinel-1 

data is sensitive to morphological variations, as it provides biophysical, structural, and 

agronomic characteristics, and is strongly correlated with the structural development of crops 

during the growing season (Adrian et al., 2021; Sonobe, 2019). 
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In addition to the SAR backscatter, polarimetric parameters can reflect in-depth scattering 

properties of crops due to scattering mechanisms with robust physical interpretability, making 

them useful for crop mapping (He et al., 2020; Liao et al., 2020; Xie et al., 2019; Gao et al., 

2018). Polarimetric features directly relate to the underlying physical properties of the crops. 

These parameters can be used to quantify the contribution of different scattering mechanisms 

and provide insights into the crops' biophysical, structural, and agronomic properties, such as 

crop type, plant density, leaf area index, and growth stage. In this study, we capitalised SAR 

scattering diversity, such as surface scattering, volume scattering, and double-bounce 

scattering (See Section 4.4.3) that are responsible for the interactions between the 

electromagnetic waves emitted by SAR sensors and the various components of a crop's 

structure. Sentinel-1 data, however, is limited to insufficient decomposition methods, since it 

is a dual-polarised SAR sensor, which restricts the available decomposition methods. While 

quad-polarimetric data can be analysed using fully polarimetric decomposition algorithms, this 

study found that m-chi decomposition, originating from compact-pol planforms, effectively 

maps crops using dual-polarisation data and synergizes well with optical bands. It is important 

to note that fully polarimetric SAR systems often have reduced swath coverage and relatively 

inconsistent temporal frequency, posing challenges for crop mapping across extensive areas 

(Sonobe et al., 2019). 

With respect to the ablation study regarding applying different input features, the proposed 

deep learning network showcases the advantage of the proposed model that outperformed the 

deep learning methods with standalone architectures (TCNN, 3D-CNN and ConvSTAR), and 

combined architectures such as 3D-2D CNN proposed in other studies for crop mapping under 

the same input predictors, as detailed in Table 4-2. The model performance varies significantly 

across different crop classes, with wheat and other crops generally exhibiting lower F1 scores 

compared to maize and soybean. The 3D-ConvSTAR improved all performance overall, in 

particular per-class performance in separating the maize, soybean and wheat, providing a 

beneficial method for local industries due to the commercial interests in these crops. We also 

investigated the comparative analysis of various deep learning models with data augmentation 

techniques for crop mapping to deal with imbalanced class distribution (Table 4-3). Examining 

the F1 scores for individual crop classes, it is evident that the 3D-ConvSTAR model using the 

mix-up consistently outperforms other combinations, achieving 94.2% for maize, and 92.3% 

for soybean, but reducing performance for wheat and other crops. All models produced similar 

results for maize and soybean after data augmentation techniques are applied, and 
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oversampling generally outperforms other augmentation methods. Wheat and other crops 

generally exhibit lower F1 scores compared to maize and soybean. This finding, while 

preliminary, may imply that this data augmentation technique could be more useful for 

enriching training samples when data collection is a major challenge in certain research fields. 

For example, it is particularly well-suited to augment imagery data collected from the human 

nervous system (Smucny et al., 2022), and increase the airborne training sample size for 

mapping species (Mäyrä et al., 2021). However, it may not be useful to overcome imbalanced 

class distribution.  

The proposed network, in terms of average F1 score, outperforms other approaches that rely 

on data augmentation techniques, primarily because it effectively integrates the temporal nature 

of remote sensing data into a more sophisticated input space while accounting for the spatial 

relationships between features along the time series. This leads to a better separation of crop 

types with homogeneous representations (Figure 4-7 and Figure 4-8). However, the proposed 

method is prone to generating a higher number of training parameters compared to alternative 

methods, resulting in increased model training time. This issue is particularly due to the 

connections between the learned features produced by the 3D-CNN, ConvSTAR, and the 

subsequent shallow CNNs implemented by the 2D-CNN, as these settings can lead to an 

increased number of training parameters. All classifiers exhibit suboptimal performance for the 

'other crops' category, which can be attributed to the mixture of various crop types. Each of 

these unknown crop types is only represented by a relatively small sample size in the training 

data, thereby limiting the model's ability for identification. Although the "other crops" category 

has more training samples than wheat (Figure 4-2), it may still be underrepresented compared 

to samples for maize, soybean and wheat in the dataset. This could lead the model to focus on 

the distinctive class labels and consequently perform poorly in the "other crops" category with 

mixed labels for unknown crop types. The "other crops" category may encompass a wide range 

of crop types, each with distinct spectral, polarimetric and temporal signatures. For example, 

there is only one field parcel for rice in the ground truth data collection, so it was labelled as 

other crops in this study. This increased diversity may make it more challenging for the deep 

learning model to accurately identify and classify these crops. In contrast, maize, soybean, and 

wheat may have more consistent and easily distinguishable characteristics, allowing for a 

higher F1 score. Additionally, the features extracted from the combination of SAR and optical 

data might be more informative and discriminative for maize, soybean, and wheat than for the 

"other crops" category. The complexity of the features for the "other crops" category might be 
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higher, making it more difficult for the model to learn and correctly classify these samples, 

which leads to the lower F1 score observed.  

The results overall demonstrate the advantages of using the combination of polarimetric and 

multispectral data from Sentinel-1 and Sentinel-2. Data fusion provides additional information 

for classification algorithms to exploit crops' structural details, while also offering 

supplementary polarimetric and spectral properties. The discrepancy in F1 scores between the 

wheat and "other crops" categories in crop mapping highlight the need for further research into 

optimizing model architectures and methodologies to enhance crop mapping across all classes. 

Moreover, future work should focus on integrating fully polarimetric data with optical data to 

further improve crop mapping accuracy by applying popular deep learning architectures, such 

as Fully Convolutional Neural Networks (FCN), which perform pixel-wise segmentation on 

images. For instance, the 3D U-Net architecture can be employed to extract the spatio-temporal 

features of crops (Ji et al., 2018; Adrian et al., 2021). Investigating the contribution of SAR 

texture information combined with optical data to semantic segmentation for crop mapping 

also enables further exploration. Recent studies have employed a self-attention-based 

convolutional recurrent network to learn temporal dependencies of multivariable time series 

(Fu et al., 2022) and combined 3D-CNN with an attention-based recurrent network for crop 

yield prediction (Nejad et al., 2022). Both studies assessed the feasibility of attention 

mechanisms in extracting attentive spatio-temporal features. Consequently, future research 

could involve the integration of 3D-CNN with attention-based convolutional recurrent 

networks, such as ConvSTAR, for crop mapping and comparison with architectures for 

semantic segmentation. More importantly, the model's robustness should be further evaluated 

for predicting crop types in different years. Model behaviours may be influenced by interannual 

variability within the same region, and recurrent structures have shown promise in capturing 

crop phenological characteristics and enhancing model generalisation (Xu et al., 2021). 

Assessing the model's spatial transferability is also a critical aspect of future research, given 

the potential application of the model in diverse geographical contexts. This could facilitate the 

design of efficient strategies for improved applicability, potentially contributing to the 

optimisation of agricultural practices and crop mapping on a global scale. One such strategy 

refers to training the model with representative crop datasets that can accurately reflect the 

complexity and heterogeneity of the agricultural landscape. Alternatively, the model's 

parameters could be adjusted to accommodate the unique conditions of specific locations. 
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4.7 Conclusion 

In this research, we proposed a workflow for multi-temporal crop mapping based on the fusion 

of Sentinel-1 polarimetric parameters and Sentinel-2 multispectral reflectance, combined with 

various deep learning architectures. The proposed 3D-ConvSTAR, which connects 3D-CNN 

layers and convolutional recurrent layers, delivers enhanced classification performance for 

crop mapping in comparison to the architectures designed in previous studies. Additionally, 

the designed architecture is robust when training the dataset with imbalanced class distribution 

and outperforms other data augmentation techniques. This study demonstrates that crop 

mapping can be conducted with high accuracy using the proposed 3D-ConvSTAR in terms of 

overall accuracy and F1 score for each crop class. Although the implemented architecture is 

likely not the optimal solution, given the training parameters overload, it still manages to 

produce accurate and valuable results for separating the crops with significant commercial 

value in Bei'an. While the proposed network exhibits superior performance in terms of crop 

type separation and accounting for the temporal and spatial relationships in remote sensing data, 

it is essential to address the challenges posed by the increased number of training parameters 

and the inherent limitations in classifying underrepresented crop types. Future research should 

focus on optimizing the network architecture and exploring alternative approaches to improve 

classification accuracy across all crop types while minimizing the computational cost 

associated with training the model. The model's generalisation for crop mapping needs further 

assessment based on interannual and spatial transferability. 
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Abstract 

Recent advancements in remote sensing have enabled the combined use of multi-temporal and 

multi-modal data with sophisticated model architectures for various agricultural applications, 

including crop mapping. These approaches effectively and automatically correlate time series 

remote sensing data with crop types through multi-dimensional feature learning. This study 

proposes an innovative framework that explores the synergistic use of multi-temporal Sentinel-

1 Interferometric Synthetic Aperture Radar (InSAR) coherence, and Sentinel-2 and RapidEye 

multispectral data to enhance crop mapping in smallholder croplands within Bei’an county in 

China. The study evaluates various deep learning models, including the 3-Dimensional U-Net 

(3D U-Net), Transformer, Attention-based Long Short-Term Memory (AtLSTM), and a 

baseline machine learning Random Forest (RF) model, focusing on their transfer learning 

capabilities across spatially and temporally diverse regions exhibiting complex intercropping 

patterns. Utilising the strengths of ensemble learning concepts, we developed a novel 

architecture, Transformer-AtLSTM-RF, executed under a rule-based strategy. This 

architecture effectively integrates different classifiers, facilitating multi-source feature fusion 

for enhanced crop classification performance. When fine-tuned with data specific to the the 

region and time period, our methodology demonstrates improved generalisability and accuracy 

in these complex agricultural settings. This approach yielded the highest overall accuracy (OA), 

mean F1 score, and mean intersection over union (mIoU) for two test sites: site A (OA: 96.2%, 

mean F1: 92.7%, mIoU: 86.9%) and site B (OA: 90.7%, mean F1: 88.6%, mIoU: 79.7%). 

Furthermore, this study evaluated input feature importance through the visualisation of 

dynamics of critical temporal features determined during our model inference process. This 

analysis interprets how different features contribute to crop identification over time, providing 

an in-depth understanding of underlying patterns in the feature learning process for the 

proposed model. Our results demonstrate the capabilities of integrated time series SAR-derived 

and optical data, in combination with state-of-the-art models, for mapping intercropping 

systems. 

Keywords: crop mapping, InSAR, coherence, deep learning, transfer learning, feature 

importance 

  



 

129 
 

5.1 Introduction 

Sustainable agriculture sets out goals for ‘greening’ growth, specifically in the context of safe 

and nutritious food productivity and economic viability of agricultural practices to address food 

security challenges in the presence of a growing global population (Cioloş and Piebalgs, 2012). 

The timely and precise monitoring of crop conditions, coupled with detailed spatial distribution 

data of croplands, is essential for agricultural sustainability, ensuring food security, developing 

agricultural management practices, and assessing policy decisions in the agricultural sector 

(Wang et al., 2013). An understanding of regional crop planting patterns predicted on accurate 

crop type identification is the prerequisite of strategic crop planning, especially for crops that 

offer rotation benefits across growing seasons, such as alternating maize and soybean rotations 

(Boyabatlı et al., 2019; Sahajpal et al., 2014; Wu et al., 2021; You et al., 2021). The spatial 

distribution of cropping patterns can reflect the land-use configurations and transitions within 

farmland parcels, but crop mapping performance could be impacted by the spatial 

heterogeneity inherent in agricultural landscapes (Zhang et al., 2021). Several studies have 

found that crop mapping accuracy is dependent on factors such as patch size and shape, crop 

planting structures, and crop density (e.g. Lechner et al., 2009; Jia et al., 2013). For instance, 

monocropping, characterized by single-crop farming tends to yield higher mapping accuracy 

compared to the mapping challenge observed in smallholder farming systems with dispersed 

cropland distribution (Zhang et al., 2021). In China, the complexity and difficulty of crop 

identification are magnified due to the agricultural heterogeneity stemming from the 

predominance of smallholder farming in specific local areas, especially for rotated crops with 

similar spectral features, growth cycles and phenological characteristics. Smallholder farmers 

in China typically employ crop rotation using strip cropping strategies for conservation 

agriculture over several decades, aiming to neutralize soil erosion and lessen dependence on 

mineral fertilizers (Livingston et al., 2015; Li et al., 2020). Strip cropping, a subset of the 

intercropping approach in which no less than two crop types are cultivated in close proximity 

within long and narrow multi-row strips, has been demonstrated to provide broader ecosystem 

services and even greater yields over single cropping in terms of enhanced spatial diversity of 

in-field habitats (Juventia et al., 2022). Nonetheless, there remain challenges in spatially 

explicit mapping of small-scale cropping patterns, which is also important for inventory 

considerations of crop type, location, and time. 
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With the availability of observations that can be repeatedly and consistently collected from 

multi-source satellite sensors, smallholder farmers can obtain an accurate estimation of crop 

dynamics across diverse spatial and temporal scales for decision-making and planning (Wen et 

al., 2022; Onojeghuo et al., 2023; King et al., 2017). In recent decades, optical-derived features 

from moderate spatial resolution platforms, such as Landsat, Sentinel-, GF-6 and MODIS, have 

been applied to mapping cropping intensities (Cai et al., 2018; Konduri et al., 2020; Hao et al., 

2020; You et al., 2021; Zhang et al., 2022; Xia et al., 2022) and delivering annual crop maps 

in terms of complete crop phenological cycles within each year (Li et al., 2021; Blickensdörfer 

et al., 2022; Gallo et al., 2023). While optical wavelengths are intrinsically associated with crop 

biophysical indicators, the adaptability of microwaves to crop structural variations highlights 

the potential of Synthetic Aperture Radar (SAR) sensors for crop monitoring, given their all 

weather imaging power and penetrative capabilities into vegetation canopy targets (Veloso et 

al., 2017; Zhou et al., 2017; Bargiel, 2017; Steele-dunne et al., 2017; Mandal et al., 2020; Wei 

et al., 2021). Recent studies have explored the possibility of Sentinel-1 backscattering and its 

associated interferometric SAR (InSAR) coherence for comprehensive crop growth monitoring 

and mapping endeavours. These investigations reveal a strong correlation between different 

crop phenological stages within a single year and the InSAR coherence or decorrelation derived 

from the combination of two SAR acquisitions (Nasirzadehdizaji et al., 2021).  

The integration of Sentinel-1 coherence and intensities of backscattered signals has been 

empirically demonstrated to enhance crop classification performance (e.g. Mestre-Quereda et 

al., 2020), as coherence provides information complementary to other satellite data. While 

optical and SAR backscatter data primarily deliver information on surface characteristics, 

coherence introduces additional information regarding the structural and temporal stability of 

vegetation fields. Coherence measurements can capture fine-scale temporal decorrelation, 

namely loss of coherence, across land cover, where the coherence levels decrease due to 

temporal decorrelation when the surface underneath changes (Sica et al., 2019), such as through 

various growth stages. Specifically, variations in the structure, height, and canopy coverage of 

different crops along their growth stages can alter the coherence signal (Blaes and Defourny, 

2003). This makes coherence a dynamic indicator of changes in agricultural fields for 

monitoring crop growth over time and retrieving information about the imaged scene. Based 

on the repeat-pass interferometry and given temporal baselines, more accurate and timely 

agricultural mapping and crop condition monitoring can be achieved. Consequently, the 

combination of coherence with other satellite-derived features sets the potential to enhance the 
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classifier's ability to differentiate between crop types and more detailed agricultural 

observations. For example, the synergistic potential of SAR coherence in tandem with 

multispectral bands for mapping crops is less explored, although advanced crop mapping 

paradigms combine optical and SAR-derived features as input predictors for models (e.g. 

Blickensdörfer et al., 2022; Adrian et al., 2021; Bigdeli et al., 2021; Shendryk, 2019). 

In parallel with advances in sensors and data availability, crop mapping has greatly benefited 

from the application of supervised machine learning classifiers, notably the Support Vector 

Machine (SVM) and Random Forest (RF). These classifiers utilize high-dimensional satellite 

remote sensing data and have consistently demonstrated their robustness in crop identification, 

(e.g. Mazarire et al., 2020; Saini and Ghosh, 2018; Bargiel, 2017; Phalke and Özdoğan, 2018; 

Teluguntla et al., 2018; You et al., 2021). Recent studies have also explored the generalisability 

of machine learning models, such as RF, by training with the historical dataset from one area 

and subsequently applying the trained model to different regions across varying temporal scales 

and thereby assessing the model's robustness in accommodating variations in crop growth 

environments (Hao et al., 2020; Xu et al., 2020). However, traditional machine learning 

methods are not inherently designed to analyse the intrinsic spatial and temporal relationships 

present in multi-temporal satellite observations across crops’ growing seasons. The extraction 

of meaningful temporal features from remote sensing time series, which represents the 

sequential relationships inherent in crop growth patterns, relies heavily on domain expertise 

and expertise for the development of handcrafted, predefined temporal features that accurately 

represent the characteristics of crop growth (Zhong et al., 2014; You and Dong, 2020).  

Deep neural networks offer a significant improvement over these conventional classifiers in 

the task of crop mapping. Their architectural designs and feature extraction capabilities, 

especially in models like Recurrent Neural Networks (RNNs), Convolutional Neural Networks 

(CNNs), and their associated variants, make them particularly suited for processing sequential 

satellite data (Rußwurm and Körner, 2018; Xu et al., 2021b; Turkoglu et al., 2021; Zhong et 

al., 2019; Gallo et al., 2023; Liu et al., 2023). For example, the Long Short-Term Memory 

(LSTM) model (Hochreiter and Schmidhuber, 1997), a type of the typical RNN model, is 

developed for discovering time series data due to its ability to capture temporal dependencies 

and retain information over long sequences. Previous studies have utilised LSTM to process 

temporal observations obtained from multi-temporal satellite images across crop growth stages 

for crop mapping (e.g. Zhong et al., 2019; Xu et al., 2020; Dou et al., 2021). While LSTM-
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based networks have demonstrated effectiveness in learning from time series remote sensing 

data, their performance is limited to the availability of substantial training datasets and 

computational costs (Xia et al., 2022). In contrast, RF could achieve higher classification 

accuracy than LSTM when using a limited number of training samples (Yuan and Lin, 2020). 

Another prominent network to handle long sequences is Transformer, which originated from 

natural language processing (Vaswani et al., 2017). It can process sequences in parallel and 

allows the model to focus on the most informative parts of the time series. Its application in 

crop mapping has been demonstrated by various studies (e.g. Rußwurm and Körner, 2020; Xu 

et al., 2021b). 

Fully Convolutional Neural Networks (FCN) have also emerged as a powerful deep learning 

architecture, showcasing their ability to execute pixel-wise segmentation on multi-scale 

imagery in an end-to-end manner (Volpi and Tuia, 2017). Semantic segmentation, which 

entails assigning predefined labels to every pixel in an image, can leverage the FCN-based 

structures for crop mapping (Wei et al., 2019; Wei et al., 2021). Given the inherent 2D nature 

of remote sensing images, U-Net can adeptly extract high-level 2D spatial features by utilizing 

a cascade of convolutional filters through multiple nonlinear transformations (Ma et al., 2018). 

For instance, studies by Mohammadimanesh et al. (2019) and Wei et al. (2019) have employed 

the 2D U-Net for tasks like land cover classification and crop mapping, leveraging features 

such as backscattering, coherence, and polarimetric SAR (PolSAR). However, there's a 

growing consensus that the 3D U-Net, with its 3D convolution kernels, is capable of 

understanding the temporal dynamics of crop samples throughout their growth cycle and can 

extract spatiotemporal features from crop growth patterns over time in multi-temporal satellite 

imagery (Adrian et al., 2021; Gallo et al., 2023).  

Although existing models, combining either optical or SAR-derived features, demonstrate their 

potential for extensive agricultural applications, most studies predominantly target regional-

scale crop mapping within a single-year timeframe without considering the intricacies of 

smallholder-scale farmlands characterized by specific intercropping strategies, and interannual 

variations of cropland distribution within the same region. Additionally, model transferability, 

when applied to unseen data, remains challenging due to variations in climate, spectral 

signatures, topographical features, crop structures and agricultural practices (Lobell and Azzari, 

2017; Hao et al., 2020; You et al., 2023). There is a need for a spatiotemporally generalizable 

classification scheme and a novel model architecture, tailor-made for interannual crop mapping 
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in regions exhibiting certain patterns like strip cropping. This study aims to design a transfer 

learning scheme of crop mapping in intercropping areas with smallholder croplands, using 

multiple models fed with multi-temporal Sentinel-1 coherence and multispectral bands from 

Sentinel-2 and RapidEye. Specifically, the study i) evaluates interannual and spatial 

generalisability of pre-trained models in the context of mapping strip cropping system, 

proposing a rule-based ensemble learning method that combines multi-source output 

probabilities using optimal thresholds; ii) investigates the synergistic use of multi-temporal 

InSAR coherence data and multispectral bands for enhanced predictive performance; and iii) 

interprets input feature importance based on learned features derived from the proposed model 

for multi-temporal crop mapping. 

5.2 Materials 

5.2.1 Study area 

This study focused on Bei’an county, located in Heilongjiang province in northeast China 

(47°35'N ~ 48°33'N, 126°16'E ~ 127°53'E) (Figure 5-1), covering an area of 7,149 km2. It is 

characterised by a humid continental monsoon climate, with an average annual temperature of 

1.2°C and an average annual precipitation of 529 mm. These meteorological conditions, 

coupled with fertile soil, make this region suitable for the cultivation of spring maize, soybeans, 

wheat, rice, and other crops (Zhang et al., 2021). In Bei’an, the typical cropping routine 

involves sowing maize in late April, followed by soybean planted in early May, generally less 

than 10 days apart. The growing season for both crops is approximately four months in length, 

and crops are typically harvested in September. However, this schedule may vary annually due 

to local cropping practices, such as crop rotation strategies. In terms of land use, maize and 

soybean are the major crops in Bei’an, comprising 29.5% and 61.8% of the total sown area 

(2,190 km²), respectively. Wheat is a less represented crop type and accounts for 2.9% of the 

area (Heihe Social and Economic Statistics Yearbook, 2018). To evaluate the performance of 

model transfer learning, two 10 x 10 km sites (labelled as A and B) were selected in 2018, both 

exhibiting complex intercropping patterns. 
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Figure 5-1. The location of Bei’an and spatial distribution of the designated training/inference tiles within the 
study area. Each tile is a 10 km by 10 km grid at 5 m resolution (2000 × 2000 pixels). The coordination system 
for inset maps of Bei’an is EPSG:32652 - WGS 84 / UTM zone 52N. Inset maps: Sentinel-1 coherence (VV) 
generated between the 17th and 29th July 2018 acquisitions. RapidEye with R: Near-Infrared (NIR), G: Red Edge, 
B: Red. Sentinel-2 with R: B8a (Vegetation Red Edge), G: B11 (SWIR), B: B4 (Red). 

5.2.2 Satellite datasets and pre-processing 

In this study, the image collection contained 23 Sentinel-1 scenes from 2017 and 22 from 2018. 

This was further supplemented by three Sentinel-2 acquisitions and a single RapidEye 

acquisition for each year (Figure 5-2). The timing of the multi-sensor data collection was in 

accord with the local sowing routines and the crops’ growth cycles, which ranged from early 

May to late September.  
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Figure 5-2. Multi-source satellite acquisition collection covering the study area in 2017 and 2018. 

5.2.2.1 Sentinel-2 and RapidEye datasets 

The multispectral bands used in this study were obtained from Sentinel-2A/B Level-1C (L1C) 

products and the RapidEye Ortho (Level-3A) product (See Table 5-1). The Sentinel-2 L1C data 

were transformed to Level-2A for atmospheric correction and retrieving bottom-of-atmosphere 

(BOA) reflectance values. This was completed using the ‘Sen2Cor’ tool (Main-Knorn et al., 

2017) within the Sentinel Application Platform (SNAP 8.0) developed by the European Space 

Agency (ESA). Sentinel-2 datasets from 2017 to 2018 were selected based on the average cloud 

cover not exceeding 8%. RapidEye imagery, orthorectified as individual tiles of 25 × 25 

kilometres with a spatial resolution of 5 meters, were atmospherically and topographically 

corrected using ERDAS IMAGINE 16.5 to obtain surface reflectance values. The selection of 

optical bands was informed by previous studies (Cai et al., 2018; You and Dong, 2020) that 

demonstrated their sensitivities in differentiating maize and soybean, particularly in Northeast 

China. All optical bands utilized in this study were resampled to 5 m spatial resolution. 

Table 5-1. Summary of the optical bands used in this study. 

Sensor Bands Central Wavelength (nm) Resolution (m) 
Sentinel-2  B4 – Red 665 10 

B8a – Vegetation Red Edge 865 20 
B11 – SWIR 1610 20 

RapidEye Red 630 – 685 5 
Red Edge 690 – 730 5 

NIR 760 – 850 5 

5.2.2.2 Sentinel-1 coherence 

Multitemporal Sentinel-1B Single Look Complex (SLC) C-band data, obtained in 

Interferometric Wide (IW) swath mode, were used to calculate coherence. These datasets have 
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a spatial resolution of 10 meters and a 12-day repeat cycle. Pre-processing steps used to derive 

coherence followed those in Nasirzadehdizaji et al. (2021) and Donezar et al. (2019). The 

InSAR processing was performed using the Sentinel-1 Toolbox in SNAP 8.0. Coherence maps 

were calculated based on image pairs from the same tracks (for both track 105 and 32), 

maintaining a minimum 12-day temporal baseline in both VV (vertical transmit and vertical 

receive) and VH (vertical transmit and horizontal receive) polarizations to construct the 

coherence matrices for 2017 and 2018. Each track generated 10 coherence maps to ensure 

consistency in baselines between consecutive images. It is important to adhere to the same orbit 

path for coherence calculation. The coherence values in the resulting maps range from 0 to 1, 

with 1 indicating complete coherence between images, and 0 representing no coherence. These 

coherence values are influenced by temporal changes in the scattering characteristics of the 

observed targets, as noted by Ferretti et al. (2007). For analysis with the multispectral datasets, 

coherence maps were resampled to 5 m spatial resolution. 

5.2.3 Reference data 

In this study, reference data were used to train and evaluate the performance of the models. 

The distribution of cropland across two consecutive years, 2017 and 2018, is illustrated in 

Figure 5-3. The field polygons were surveyed in 2017 by the Chinese Academy of Agricultural 

Sciences (CAAS). Narrow strip-like field parcels were classified using higher-resolution 

imagery, such as RapidEye, whereas larger crop parcels were manually labelled based on 

Sentinel-2 imagery. Similar procedures were conducted for 2018. The variations observed in 

the cropland distributions between these two years can be attributed to interannual crop rotation 

practices. For training, the study incorporated a Cropland Data Layer (CDL) predicted by Liu 

et al. (2023) for Bei’an in 2017. Since the CDL lacked a confidence threshold for trusted pixels, 

the predicted pixels within the CDL were replaced by the reference data from 2017, following 

the alignment in the geolocations of the corresponding pixels. The remaining predicted pixels 

were retained in the CDL. Notably, no CDL mask was used for 2018. 
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Figure 5-3. Distribution frequency of cropland sample sizes for 2017 (left) and 2018 (centre), followed by the 
comparison of the cropland sample areas segregated by crop categories for both years (right). 

5.3 Methods 

The general workflow for this study is presented in Figure 5-4. The data from the three sensors 

were pre-processed for generating the input dataset. Ground-truth samples were collected from 

2017 and 2018, along with the Cropland Data Layer (CDL) for 2017, to create the training set. 

The training tiles in Figure 5-1 were divided into subsets of tiles, with 60% used for training, 

20% for validation and 20% for testing. The classifiers were trained using the training set and 

then applied to Sites A and B in 2018 to map the cropland area. The transfer learning included 

direct prediction using pre-trained models. It also included indirect prediction based on fine-

tuning with samples from 2018 to enhance the model’s generalisability and adaptability to 

spatiotemporal variations within a region. Finally, the feature importance analysis was 

conducted to assess the contribution of time series multi-source inputs to the classification 

accuracy. 

 

Figure 5-4. The general workflow of this study. SR stands for surface reflectance. 
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5.3.1 InSAR coherence estimation 

InSAR coherence measures the similarity of the interferometric phase between two co-

registered SAR acquisitions obtained at different times (Ferretti et al., 2007), which indicates 

the normalized cross-correlation coefficient between complex Sentinel-1 SLC image pairs used 

in this study. The expression of its absolute value (Touzi et al., 1999) can be described using 

Eq. (5-1): 

𝛾 = 	
W$'∑ )$!)"!

∗'
!#$ W

(X$'∑ )$!)$!
∗'

!#$ YX$'∑ )"!)"!
∗'

!#$ Y
                                              (5-1) 

where 𝛾 is coherence between two complex co-registered SLC acquisitions that contain the 

master image 𝑆' for reference and slave image 𝑆# for repeat, and * denotes that one of the 

images is conjugated. The magnitude of the complex sum is normalized by dividing by a 

normalization factor (the denominator), ensuring that the magnitude of 𝛾 falls within the real 

number range between 0 and 1. Images with low coherence values indicate decorrelation due 

to spatial and temporal decorrelations, and system noise (Nasirzadehdizaji et al., 2021). This is 

particularly important during the crop growth seasons, where rapid changes in surface 

scatterers highlight the impact of temporal decorrelation. Conversely, high coherence values 

suggest uniformity in the physical properties or scatterings’ position in image pairs over time. 

We considered a subset of the interferometric combinations from all 20 image pairs annually, 

each pair with the shortest 12-day temporal baseline (See Figure 5-5). The coherence matrix's 

main diagonal entries represent the shortest temporal baseline for two consecutive images. i.e., 

multi-track Sentinel-1 SAR image pairs in VV and VH polarization were derived based on 12-

day intervals. Furthermore, the coherence estimation was segregated by different orbits (tracks) 

due to the variations in viewing angles and capture conditions resulting from the different 

sensor paths. These factors can lead to coherence measurement disparities between tracks that 

cover overlapping ground areas within the study region. 
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Figure 5-5. InSAR coherence matrix maps for the VV and VH bands from multi-track image pairs for 2017 and 
2018. These maps are plotted along the X and Y axis (displayed in the day-month format), representing each image 
pair from each track. Note that only the first 6 image pairs are shown for better visualisation. The sequence of 
plots, from left to right, corresponds to tracks in the order of 32, 32, 105, 32, 105, 32, for each year of polarisations.   

 
 
5.3.2 Classification models 

Different deep learning model architectures were explored (See Figure 5-6). These are 

described in further detail below. 
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Figure 5-6. The model architectures of 3D U-Net (a), Transformer (b) and AtLSTM (c). In (a), ‘3D Conv’ and 
‘2D Conv’ represent the three-dimensional/two-dimensional convolutional process. ‘Skip Con’ refer to the skip 
connection. ‘Temporal Conca’ is the time series concatenation. In (b) and (c), each processes multi-source inputs 
in parallel; the outputs from each source are concatenated channel-wise, followed by the Softmax function for 
predicting the classes. 

5.3.2.1 Attention 3D U-Net 

An attention-based 3D U-Net framework (Figure 5-6 (a)) is designed to effectively process 

volumetric data. This novel architecture integrates an attention mechanism that selectively 

emphasizes salient features and suppresses less relevant regions in the feature map. This 

improves the model's ability to focus on important spatiotemporal input features. The basic 3D 

U-Net architecture follows Çiçek et al. (2016), utilizing 3D convolutions with batch 

normalization and ReLU activations to maintain the representational integrity of the spatial 

information. The model employs a symmetric design with downsampling and upsampling 

pathways, ensuring detailed feature extraction and dimensional recovery. The downsampling 

path consists of consecutive convolutional blocks followed by max pooling to reduce spatial 

dimensions, whereas the upsampling path utilizes transpose convolutions combined with 

attention blocks to effectively recover spatial details. Within this architecture, the attention 

block serves as a gating mechanism to refine the feature fusion process (Oktay et al., 2018). 

This gating mechanism enables the network to selectively focus on the most relevant features 

from the input data, which can be generally formulated as Eq. (5-2):  

𝑥w 	= 	s(𝑅𝑒𝐿𝑈(𝑊F ∗ 𝑥 +𝑊Z ∗ 𝑔 + 𝑏F + 𝑏Z) ∗ 𝑊@ + 𝑏@) ∗ 𝑥                    (5-2)    

where the input matrix 𝑥  and the gating signal 𝑔  are linearly transformed through 3D 

convolution operation with respective weight matrix 𝑊F  and 𝑊Z, followed by the nonlinear 
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activation 𝑅𝑒𝐿𝑈. Then the attention coefficient is derived by the sigmoid activation s of the 

3D convolution with 𝑊@ performed on their combined feature map. The attention output is then 

calculated by the element-wise multiplication, denoted by *, between 𝑥 and the coefficient. 𝑏F, 

𝑏Z  and 𝑏@  represent the bias vectors corresponding to each convolution process. Each 3D 

convolution has kernels with size 1´1´1. The gating signal 𝑔 indicates the intermediate feature 

map produced during the downsampling stage; it is used to refine the feature map coming from 

the lower-resolution layer during the upsampling process. 

 
This multi-source architecture facilitates the integration of data sources by processing them 

through parallel pathways, each pathway being equipped with an attention 3D U-Net 

architecture. At each level of the upsampling blocks, the feature maps generated from each data 

source are initially concatenated separately and then combined level by level via element-wise 

addition (Tao et al., 2022), as shown in Stage 2 of Figure 5-6 (a). This approach allows the 

model to learn more robust feature representations by leveraging information from multiple 

sources. The final output of the model is derived through a sequence of convolutions, pooling, 

and softmax functions implemented in the subsequent layers, which progressively reduces the 

dimensionality of the data to yield the final prediction map. This structure ensures that the 

model effectively synthesizes the input data, using the strengths of each data modality to 

enhance the overall predictive performance. 

5.3.2.2 Transformer 

The Transformer network utilised self-attention mechanisms to calculate the correlations 

between every pair of embedding vectors across all the time steps (Figure 5-6 (b)), which 

enables the effective extraction of temporal dependencies, even within very long sequences. 

The self-attention is operated by using three vectors (Query, Key and Value) that originate from 

three linear transformations applied to the same input vectors. The output of self-attention for 

each position (𝑆𝐴") can be expressed as Eq (5-3): 

𝑆𝐴" = ∑ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 z[\0F!]⋅[\1F2]
⊺

_`1
{ ⋅ 𝑊a𝑥EP

E&'                                (5-3) 

where 𝑊b , 𝑊c  and 𝑊a  are the weight vectors used for mapping input vectors 𝑥" 	and 𝑥E  to 

corresponding Query, Key and Value vectors. The dot product of Query at position 𝑖 and Key 

at position	𝑗 is the attention score ~𝑊b𝑥"� ⋅ ~𝑊c𝑥E�
⊺ between two positions in a sequence 𝑁, 
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which is normalised by the square root of the hidden dimension of the Key vectors M𝐷c. Then, 

the Value vectors (𝑊a𝑥E) are multiplied by the Softmax-scaled attention scores to derive a 

weighted sum of the Value vectors for each position, which represents the self-attention output. 

This output is an enhanced representation of each input that incorporates information from the 

most relevant parts of the input sequence as identified by the self-attention mechanism. 

In this study, the standard Transformer architecture, initially introduced by Vaswani et al. 

(2017), has been adapted, following the approach of Rußwurm and Körner (2020). This 

modification involves the incorporation of a positional encoding function into the time series 

inputs. This addition enables the self-attention mechanism to effectively process the sequential 

correlation inherent in time series data. The positionally encoded time series data are then 

processed through stacked multi-head self-attention layers. The multi-head self-attention 

process is replicated across multiple ‘heads’, each operating in parallel and equipped with its 

own set of vectors 𝑊b , 𝑊c  and 𝑊a . This arrangement allows the model to capture various 

dependencies within a data sequence. The outputs from all heads are then concatenated and 

linearly transformed to produce the final output. This is followed by a global average pooling 

across the temporal dimension to achieve a more condensed data representation. Similar to the 

attention 3D U-Net, this study's Transformer-based architecture is designed to accommodate 

multi-source inputs. The outputs corresponding to each input source are concatenated, followed 

by fully-connected layers with the Softmax function for predicting crop types. 

5.3.2.3 AtLSTM 

Another temporal architecture adding an attention mechanism after bidirectional Long Short-

Term Memory units (AtLSTM), was employed in this study (Figure 5-6 (c)). This design 

enables the recurrent neural networks to specifically focus on certain segments of the input 

sequence during the output prediction process. It utilises bidirectional LSTM layers to process 

the input sequence in both forward and backward directions, which is particularly effective in 

capturing data's temporal dynamics, as it concatenates hidden states derived from both 

directions. The attention weights are calculated using the hidden states from bidirectional 

LSTM layers as follows in Eq. (5-4): 

𝐴> = 	𝑆𝑜𝑓𝑡𝑚𝑎𝑥((𝑊9𝐻> + 𝑏9) ⋅ ℎJ)                                        (5-4) 



 

143 
 

where 𝑊9 is the weight matrix of a dense layer that transforms the sequence of hidden states 

𝐻>  from bidirectional LSTM into a new feature dimension 𝑊9𝐻>  with bias 𝑏9 . Then the 

attention score is given by the dot product between the computed component and the last hidden 

state ℎJ, which then were normalised by the Softmax function to produce attention weights for 

each time step 𝐴>. In the final stage of the AtLSTM process, the attention outputs are derived 

from a weighted sum of the hidden states, calculated using the attention weights. These outputs 

are then concatenated with the last hidden state, which serves to enhance the model's decision-

making capabilities.  

In this study, the AtLSTM was utilized as an auxiliary model in conjunction with the 

Transformer network. The critical assessment of model transfer learning performance was not 

conducted independently for AtLSTM. Instead, its contribution was evaluated in the context of 

its integration with the Transformer model, focusing on the synergistic effect of combining 

these architectures. 

5.3.2.4 Decision fusion of Transformer-AtLSTM-RF 

The Transformer-AtLSTM-RF framework proposed in this study leverages the power of 

ensemble learning by combining the capabilities of the Transformer and AtLSTM networks. 

The probability outputs from these models are integrated with those derived from the Random 

Forest (RF) classifier. The final probabilities are determined using a rule-based decision fusion 

method. The ensemble approach (Transformer-AtLSTM) is designed as a two-branch 

architecture, where each branch processes multi-source inputs in parallel. Specifically, each 

classifier within the ensemble is trained independently, and their outputs are then combined 

and normalized through a Softmax function to derive probabilities. 

Another component of this framework is the RF model, which utilizes decision-tree classifiers 

based on the bagging strategy. This approach enhances model generalizability by efficiently 

managing a large number of input variables and identifying the best split with relatively low 

computational complexity (Breiman, 2001). RF has been widely established as a baseline 

model in crop mapping studies (Zhong et al., 2019; Rußwurm and Körner, 2020; Xu et al., 

2021b; Turkoglu et al., 2021) and is known for its ability to estimate probabilities associated 

with predictions by counting the proportion of trees that vote for each class. 
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In this ensemble framework, the outputs from Transformer-AtLSTM (Ensemble) and RF are 

two vectors of probabilities. Each vector consists of channels corresponding to the number of 

classes, with each channel element representing the likelihood of the input belonging to a 

specific crop class. These probability outputs are then combined based on a predefined 

threshold applied in the rule-based decision fusion method (Li et al., 2019), as follows: 

𝑃",E∗ = �
𝑃",E' 					𝑖𝑓		𝑃",E' 	≥ 	𝛼	
𝑃",E# 								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                   (5-5) 

where 𝑃",E'  is the output probability from Transformer-AtLSTM (Ensemble) on sample 𝑖 and 

class 𝑗, and 𝑃",E#  stands for probabilities from RF. 𝛼 is the optimal threshold determined using a 

grid search (Hsu et al., 2003). 𝑃",E∗  indicate the probabilities from both models, which are 

filtered through the threshold. This effective ensemble synergy merges the outputs of individual 

classifiers based on a specific fusion rule, which capitalises on the complementary behaviours 

of different models to enhance classification performance (Clinton et al., 2015).  

5.3.3 Model Implementation 

The structure of input data in this study varied according to the model architectures employed. 

For the 3D U-Net model, image tiles from different sources used for training were randomly 

cropped into 128 × 128 patches. To ensure sufficient semantic context, thresholds for the 

minimum proportion of non-zero (non-background) labels within a patch were set at 50% for 

2017 and 70% for 2018. The increase in the threshold from 2017 to 2018 implies that patches 

in 2018 contained a larger amount of unlabelled pixels compared to those in 2017. These 

adjusted thresholds reflect the requisite proportion of significant label data necessary in an 

image patch to be used for model training. Additionally, data augmentation techniques such as 

random scaling, vertical and horizontal flipping, and rotation were applied on the fly to image 

patches during the training process. The input shape for 3D U-Net includes batch, height, width, 

time, and channels. The image patches were separated by coherence from two tracks and the 

optical source. Regarding pixel-based inputs for the Transformer and AtLSTM, data with no 

labels and missing data were excluded. The data structure for these models consists of batch, 

time, and channels for each data source. The RF, while sharing the same dataset as the 

Transformer and AtLSTM, stacked data from all sources and reshaped the structure into a one-
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dimensional vector including batch and channels. This adaptation was necessary because RF, 

unlike the other temporal models, is not designed to process the temporal dimension of data. 

The optimal model hyperparameters were determined through search spaces of candidate 

values. For example, the dimension of the self-attention layer was set at 128 in {64, 128, 256}. 

The number of heads was 4 in {4, 6, 8}. The number of layers was 2 in {1, 2, 4}. The last dens 

layer had 512 units in {128, 256, 512, 1024}. For AtLSTM, the number of LSTM units was set 

to 128 in {64, 128, 256}, and one layer was used from {1, 2}. The dimension of the hidden 

features in the attention block followed the dimension size of output from the bidirectional 

LSTM, which doubled the number of unilateral LSTM units. The number of trees for RF was 

set to 500 from {200, 400, 500}, and the best split was set to 4 from {2, 4, 

M𝑇𝑖𝑚𝑒	𝑠𝑡𝑒𝑝𝑠	 × 	𝑏𝑎𝑛𝑑𝑠}. For Transformer-AtLSTM-RF, the optimal threshold 𝛼 in the grid 

search was found to be 0.51 in Site A, and 0.64 in Site B. Within the Transformer-AtLSTM 

(Ensemble), only the Transformer branch was pre-trained with data in 2017. The AtLSTM 

functioned as an auxiliary model during the fine-tuning phase. Additionally, the study explored 

the use of the pre-trained Transformer as a backbone module, linked with AtLSTM in a hybrid 

configuration termed Transformer-AtLSTM (Backbone).  

Regarding the training configuration, weighted cross-entropy loss and the Adam optimizer with 

a learning rate of 0.001 were applied for deep learning models. A lower learning rate of 0.00001 

was utilized during fine-tuning with new data to preserve the knowledge of prior training. We 

experimentally assessed the number of ‘frozen’ layers in pre-trained models, which are 

characterized by learnable weights that are fixed during the fine-tuning process. By fine-tuning 

the ‘unfrozen’ layers with a lower learning rate, the models could better adapt to the new dataset 

while retaining prior knowledge from pre-training. Furthermore, all deep learning models in 

this study were implemented in TensorFlow (2.14.0) on Google Colab under GPU A100. The 

RF was developed using the Scikit-learn package (1.3.0) in Python (3.7.15) on two Intel (R) 

Xeon (R) Silver 4114 CPU processors (2.20GHz/2.19 GHz). For the evaluation of 

classification performance, metrics such as overall accuracy (OA), mean F1 score (F1), and 

mean intersection over union (mIoU) were utilized in the experiments. 
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5.4 Results 

5.4.1 Coherence temporal profile 

The temporal profiles of crops’ InSAR coherence levels, based on polarisations and tracks for 

the years 2017 and 2018, are illustrated in Figure 5-7 and Figure 5-8. Generally, for both crops, 

the coherence value peaks around the end of May and early June, post-seeding. The value starts 

to decrease as the crops grow. In 2017, maize showed a noticeable drop from the ‘jointing to 

tasseling’ to ‘silking’ stage. Similarly, high coherence is observed for soybean during the 

emergence, which drops significantly during ‘first to sixth trifoliolate leaves’. It then stabilises 

and gradually declines through ‘podding’ to ‘harvesting’. Wheat displayed the lowest 

coherence value during ‘flowering’, but a sharp increase was observed during ‘harvesting’. The 

coherence trends for other crops were generally similar to wheat, with consistently low values 

from late June to early September. The year 2018 showed similar coherence patterns across all 

crop types, though overall coherence levels were lower compared to 2017, particularly evident 

during the wheat 'harvesting' stage. 

Between the VV and VH polarisations from each track, VV consistently presented higher 

coherence values than VH. This difference is likely due to the sensitivity of co-polarization to 

enhanced volume scattering of vegetation and the reduced canopy penetration of VV 

polarization (Manavalan, 2018). Furthermore, VV and VH polarisations in track 32 maintained 

higher coherence throughout the crops' stages compared to track 105, which could result from 

sensor viewing geometries and spatial differences in the observed areas. This observed 

disparity in coherence between different polarisations and tracks could highlight the potential 

importance of capturing the structural information of crops throughout the season, which 

contributes to crop identification. 
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Figure 5-7. The 2017 temporal profile of mean coherence in VH and VV bands separated by tracks. 

 

Figure 5-8. The 2018 temporal profile of mean coherence in VH and VV bands separated by tracks. ‘Har.’ refers 
to the harvesting stage. 

5.4.2 Transfer learning accuracies for the sites A and B in 2018 

In Table 5-2 and Table 5-3, the Transformer-AtLSTM-RF model achieved the highest mean 

F1 score at 92.7%, alongside the highest OA of 96.2% and mIoU of 86.9%. Analysing 

performance by individual crop categories, the Transformer-AtLSTM-RF model outperformed 

other models for maize (F1:96.0%, IoU: 92.3%), soybean (F1:96.7%, IoU: 93.6%) and other 
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crops (F1: 85.5%, IoU: 74.7%), despite the marginal drop for maize compared to the 

Transformer-AtLSTM (ensemble). The RF, trained specifically with 2018 data, yielded a 

higher F1 score (81.7%) and IoU (69.1%) for other crop categories than the Transformer-

AtLSTM (ensemble), which achieved an F1 score of 77.4% and an IoU of 63.1%. This 

contributed to the improved identification of other crops in the Transformer-AtLSTM-RF 

ensemble (F1: 85.5%, IoU: 74.7%). It is notable that the pre-trained 3D U-Net and Transformer 

models, without fine-tuning, demonstrated relatively lower classification performance across 

all metrics, particularly for other crops. This indicates the significant improvement in 

classification accuracy that can be achieved through the fine-tuning process. 

Table 5-2. Transfer Site A: overall accuracy (OA) and mean F1 score for 2018 crop mapping validation. ‘-’: no 
fine-tuning applied, ‘*’: fine-tuned with 2018 data. Columns with bold values indicate the best performance. 

Table 5-3. Transfer Site A: IoU and mean IoU (mIoU) of 2018 crops. ‘-’: no fine-tuning applied, ‘*’: fine-tuned 
with 2018 data. Columns with bold values indicate the best performance. 

Model Fine-tuning Maize 
(%) 

Soybean 
(%) 

Other crops 
(%) 

mIoU 
(%) 

3D U-Net 
- 58.4 51.8 0.7 37.0 
* 78.3 83.6 53.0 71.6 

Transformer - 60.5 37.0 1.6 33.0 
* 90.5 91.8 37.8 73.4 

Transformer-
AtLSTM 

Backbone * 90.8 91.7 39.5 74.0 
Ensemble * 92.6 93.6 63.1 83.1 

RF pre-trained - 67.4 68.2 0.7 45.4 
RF trained with 2018 data - 90.0 91.9 69.1 83.7 
Transformer-AtLSTM-RF - 92.3 93.6 74.7 86.9 

The transfer learning performance for Site B is presented in Table 5-4 and Table 5-5. Similar 

to the results from Site A, the Transformer-AtLSTM-RF model achieved the highest mean F1 

(88.6%), OA (90.7%) and mIoU (79.7%). This model's performance was notably enhanced by 

the decision-fusion technique, which combined the RF model trained from scratch with 2018 

Model Fine-tuning Maize 
(%) 

Soybean 
(%) 

Other crops 
(%) 

Mean F1 
(%) 

OA 
(%) 

3D U-Net 
- 73.7 68.3 1.3 47.8 61.7 

* 87.8 91.1 69.2 82.7 84.3 

Transformer - 75.4 54.0 3.2 44.2 50.2 
* 95.0 95.7 54.9 81.9 94.5 

Transformer-
AtLSTM 

Backbone * 95.2 95.7 56.7 82.5 94.3 
Ensemble * 96.1 96.7 77.4 90.1 96.1 

RF pre-trained - 80.5 81.1 1.5 54.3 68.5 
RF trained with 2018 data - 94.8 95.8 81.7 90.8 95.1 
Transformer-AtLSTM-RF - 96.0 96.7 85.5 92.7 96.2 
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data and the Transformer-AtLSTM (ensemble), leading to the highest F1 and IoU for minor 

crops at this site. E.g., wheat (F1: 84.4%, IoU: 73.0%) and other crops (F1: 88.8%, other crops: 

79.8%). However, it's important to note that this method resulted in slightly reduced 

performance for major crops like maize, where the F1 score and IoU were lower by 0.3% and 

0.6%, respectively, compared to the highest accuracy values. Additionally, the fine-tuning of 

models with 2018 data demonstrated improved outcomes for 3D U-Net and Transformer at Site 

B, when compared to the transfer learning results without fine-tuning. 

Table 5-4. Transfer Site B: overall accuracy (OA) and mean F1 score for 2018 crop mapping validation. ‘-’: none 
fine-tuning applied, ‘*’: fine-tuned with 2018 data. Columns with bolded values indicate the best performance. 

Table 5-5. Transfer Site B: IoU and mean IoU (mIoU) of 2018 crops. ‘-’: none fine-tuning applied, ‘*’: fine-tuned 
with 2018 data. Columns with bolded values indicate the best performance. 

Model Fine-tuning Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other crops 
(%) 

mIoU 
(%) 

3D U-Net 
- 44.1 37.5 11.9 1.0 23.6 
* 55.9 68.7 61.3 75.1 65.3 

Transformer - 60.5 40.2 19.9 1.7 30.6 
* 75.1 81.5 41.4 49.3 61.8 

Transformer-
AtLSTM 

Backbone * 74.9 82.4 45.5 52.3 63.8 
Ensemble * 79.4 86.2 64.8 73.7 76.0 

RF pre-trained - 45.2 47.0 6.9 22.3 30.3 
RF trained with 2018 data - 75.5 85.4 58.3 55.5 68.6 
Transformer-AtLSTM-RF - 78.8 86.9 73.0 79.8 79.7 

The visual comparisons of transfer learning performance for Site A and Site B are shown in 

Figure 5-9 and Figure 5-10, respectively. The 3D U-Net model exhibited a notable number of 

misclassifications at both sites, as indicated by the red patches, aligning with the results 

presented in Tables 5-2 – 5-5. The Transformer and RF successfully identified most crop 

parcels, but they experienced occasional misclassifications in local regions and areas with 

mixed crops, especially near the edges. The Transformer-AtLSTM models, in both combined 

configurations, demonstrated improvements in classification performance, refining areas that 

Model Fine-tuning Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other 
crops 
(%) 

Mean 
F1 
(%) 

OA 
(%) 

3D U-Net 
- 61.2 54.5 21.2 2.1 34.8 42.7 
* 71.7 81.5 76.0 85.8 78.7 70.4 

Transformer - 75.4 57.4 33.2 3.2 42.3 49.4 
* 85.8 89.8 58.5 66.0 75.0 84.9 

Transformer-
AtLSTM 

Backbone * 85.7 90.3 62.5 68.7 76.8 85.5 
Ensemble * 88.5 92.6 78.7 84.9 86.2 89.9 

RF pretrained - 62.2 63.9 12.8 36.5 43.9 48.9 
RF trained with 2018 data - 86.0 92.1 73.6 71.4 80.8 87.9 
Transformer-AtLSTM-RF - 88.2 93.0 84.4 88.8 88.6 90.7 
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were previously misclassified by the Transformer alone. Notably, the Transformer-AtLSTM-

RF exhibited the best performance at both sites, aligning most closely with the ground-truth 

labels compared to other evaluated models. For more detailed visualization, Figure S7 and 

Figure S8 in the Supplementary material provide the enlarged scale of the intercropping areas 

in Sites A and B. Additionally, the confusion matrices for both sites, from the Transformer-

AtLSTM-RF, are displayed in Figure 5-11. Both Site A and Site B show high positive 

prediction rates for major and minor crops. Site A’s predictions are more accurate than Site B's, 

particularly for maize and soybean, probably due to the larger sample size for these crop types 

at Site A. Notably, wheat, as a minor crop type, showed the highest prediction accuracy of 96.7% 

(28,541) at Site B, demonstrating the model's robustness in diverse crop scenarios. 

 
Figure 5-9. Crop mapping results for Site A in 2018. The difference maps are compared with ground-truth labels. 
Correctly classified pixels are shown in green, while misclassified pixels are highlighted in red. All deep learning-
based models were fine-tuned with 2018 data. Random Forest (RF) was trained from scratch using 2018 data. The 
satellite image for Site A is a RapidEye false colour composite in 2018 (Red: NIR, Green: Red Edge, Blue: Red). 



 

151 
 

 
Figure 5-10. Crop mapping results for Site B in 2018. Captions follow Figure 5-9. 

 

Figure 5-11. The confusion matrices of Site A and Site B by Transformer-AtLSTM-RF. Values in grids represent 
the number of samples along with their proportion (within brackets) calculated from each row. Main diagonal 
values stand for the number of correctly classified samples and percentages. 
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5.4.3 Evaluation of input feature importance 

Feature importance analysis based on gradient backpropagation highlights the prominent 

features from two distinct components of the Transformer-AtLSTM (Ensemble) model. The 

analysis from each branch is visually presented in Figure 5-12 for AtLSTM and Figure 5-13 

for Transformer (self-attention). Each displays the average gradients of attention weights with 

respect to the input data, effectively visualizing the temporal impact of different features and 

illustrating how certain features are emphasized during the model's prediction process. The 

AtLSTM model effectively combines the memory capabilities of bidirectional LSTM units 

with the selective focus provided by attention mechanisms, which provides a weighted 

contribution of input features at each time step. In the analysis, the VH and VV bands from 

different tracks exhibited similar trends of importance across all crop types. The model 

generally identified specific periods, particularly '2208-0309' and '0309-1509' in the VH and 

VV bands on Track 105, as important for all crop types in terms of the peak gradient 

distributions approaching 1. In track 32, the AtLSTM focused primarily on ‘1708-2908’ from 

the VV band, while all VH bands exhibit negative values for all crop types, suggesting negative 

influences on the classification for the current class. The lower importance values in track 32 

correspond to its higher coherence compared to track 105 in the temporal profile in 2018 

(Figure 5-8). Regarding optical bands, positive correlations between input features and crops 

were noted around '0809' in the NIR and Red bands from RapidEye for maize and soybean. 

Additionally, the model relied on bands B8a and B4 from Sentinel-2 on '0109' for wheat and 

soybean, and band B11 was more influential around '1908' and '1109' for maize, soybean, and 

wheat. 
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Figure 5-12. Average gradients of attention weights with respect to inputs from the AtLSTM end. 3000 samples 
of Site A and B were randomly selected from the attention weight layer for visualisation. The light buffer areas 
indicate one standard deviation from the average value. Positive (negative) values indicate a positive (negative) 
correlation between the predicted score and input features and vice versa. The value range was scaled from -1 to 
1. 

The multi-head attention mechanism in the Transformer model is designed to calculate self-

attention weights for sequential features, effectively highlighting the most influential segments 

of the time series data. In Figure 5-13, all crop categories show uniform temporal importance 

(positive gradients) from both VH and VV bands in track 32, compared to the same track in 

AtLSTM (Figure 5-12). This observed uniformity of high importance across all crop types in 

track 32 aligns with its coherence trend, which is generally higher compared to track 105. 

Conversely, the consistent negative values across all crop types in track 105 correlate with a 

lower coherence pattern, as depicted in the temporal profile (Figure 5-8). In contrast, AtLSTM 

identified distinct peaks for all crops from track 105 (Figure 5-12). For certain optical bands, 

such as 'B8a & NIR', the Transformer model focused on specific dates ('0109' for maize and 

soybean, and '1908' for wheat), which were not prioritized by the AtLSTM. Conversely, the 

date '0809', which AtLSTM found significant for these crops in these bands, was overlooked 

by the Transformer. This difference in attention to specific time points of crops indicates that 

the attention behaviours of the Transformer and AtLSTM models could complement each other 

in the model's overall predictive process. When comparing these two models, similar patterns 

emerge at certain time points, such as '0809' for wheat from 'B11 & Red Edge', '0109' for maize, 

and '0809' for wheat and other crops from 'B4 & Red'. This suggests a level of consistency in 

the importance attributed to these specific periods by both models, reinforcing the value of 



 

154 
 

these time points in crop classification. This complementary effect when comparing these two 

models can also refer to ‘0809’ for wheat from ‘B11 & Red Edge’, ‘0109’ for maize, and ‘0809’ 

for wheat and other crops from ‘B4 & Red’.  

 

Figure 5-13. Average gradients of attention weights with respect to inputs from the Transformer end. 3000 
samples of Site A and B were randomly selected from the second self-attention layer for visualisation. The light 
buffer areas indicate one standard deviation from the average value. Positive (negative) values indicate a positive 
(negative) correlation between the predicted score and input features and vice versa. The value range was scaled 
from -1 to 1. 
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Figure 5-14. Feature importance values derived from the RF model, which sums up to 1. Track 105 and track 32 
display a repeated sequence of VH and VV bands across their respective time steps. Track 105 has feature indices 
ranging from 1 to 20, corresponding to ten time steps (2 bands per time step). Track 32 covers indices 21 to 40. 
The ‘Optical’ data encompasses 12 features, out of which 9 are from Sentinel-2 (spanning indices 41 to 46, and 
50 to 52) and 3 are from RapidEye (indices 47 to 49). Bands in Sentinel-2 for a single acquisition contain B8a, 
B11 and B4 in order, and RapidEye has NIR, Red Edge and Red. 

5.5 Discussion 

5.5.1 Performance analysis 

5.5.1.1 Evaluation of model transferability 

This study explored the potential of the combined use of InSAR coherence and multispectral 

bands in crop mapping with various deep learning models as well as an RF classifier as a 

baseline. The performance of models trained with the 2017 dataset was documented in Tables 

S1 and Table S2 and all models were trained and tested based on the block partitions in tiles in 

Figure 5-1. Subsequently, pre-trained models, including 3D U-Net, Transformer, and RF, were 

evaluated for their spatial and interannual transfer learning generalisability, particularly in 

regions with intercropping patterns. The transferability of these pre-trained models was found 

to be more effective for predominant crop classes, such as maize and soybean, compared to 
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less represented classes, like wheat and other crops, as demonstrated by the results obtained on 

both sites. Specifically, our study's RF outcomes contrasted with You and Dong (2020), who 

found that classifiers could be temporally transferred from the previous year with relative 

robustness due to the consistent crop phenology and spectral characteristics over short periods, 

which enables predictions without relying on current-year data. The discrepancy in findings 

could be attributed to differences in the scale of the study areas and the consistency of cropping 

patterns. Their research classified crops at the province level (Heilongjiang), possibly using a 

pre-trained RF model applied to regions at a broader scale with more homogenous crop patterns. 

Such patterns might smooth over localised variations that are significant in smaller-scale 

farming areas. In contrast, our study sites (A and B) feature distinctive intercropping practices 

(strip cropping) not typical in larger areas. This uniqueness may lead to reduced model transfer 

performance, as the classifiers’ robustness relies on stable and consistent signals obtained in 

various spatiotemporal dynamics. Additionally, intercropping introduces increased signal 

variability from crops, potentially diminishing the accuracy of transfer learning for a model 

trained on data from the previous year. 

The transferability of the models in this study was significantly improved for all crops by 

employing the fine-tuning technique with the 2018 crop samples. This improvement aligns 

with the findings of Hao et al. (2020) and Nowakowski et al. (2021), which suggest that 

disparities between training and testing samples, due to varying crop growth conditions, can 

lead to temporal data mismatches, resulting in misclassifications in transfer learning scenarios. 

The crop training samples could inherently reflect intra-class variability resulting from 

different meteorological conditions, soil types, topographical features, and cropping practices 

between regions (Zipper et al., 2016; Lobell and Azzari, 2017). However, the ability of pre-

trained models to generalise was found to be less effective in testing sites with high spatial 

heterogeneity, particularly those not represented in the training data (Xu et al., 2020). This 

highlights the importance of fine-tuning models with additional data that are representative of 

the local testing environment. Nevertheless, single models in this study, such as 3D U-Net, 

Transformer, and RF, as indicated in Tables 5-2 – 5-5, were not sufficiently robust for mapping 

crops with specific cropping patterns and imbalanced distribution. The 3D U-Net model, which 

showed the highest OA (88%) and mIoU (72.7%) in the Bei’an 2017 test set (See Tables S1 

and S2), encountered significant classification issues during transfer learning. The poor 

performance was derived because, despite being pre-trained with the 2017 CDL, it was fine-

tuned using discretely distributed crop polygons within the ground-truth set instead of a 
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complete CDL mask for 2018. This led to increased learning of background values, and even 

setting a threshold of 70% for 2018 (See Section 5.3.3) could not mitigate this issue. 

Consequently, this research employed an ensemble approach, combining multiple classifiers 

with a rule-based strategy, namely Transformer-AtLSTM-RF, that improved overall and class-

wise accuracy in crop mapping during transfer learning. This methodology resonates with 

similar strategies employed in other studies (e.g. Dou et al., 2021; Zhang et al., 2018), 

highlighting the effectiveness of ensemble models and rule-based decision fusion in enhancing 

the accuracy of crop classification in varied agricultural contexts. 

5.5.1.2 Understanding of feature importance for crop mapping 

Considering the potential variations in the environmental conditions and crop phenological 

characteristics between the training year (2017) and the test year (2018), our study analysed 

the impact of spatial and interannual variability on model behaviours by interpreting the input 

feature importance of the proposed model. This approach helps investigate specific temporal 

features that are most informative for the model, thereby enhancing the understanding of how 

the model adapts to and performs under certain agricultural applications. 

In this study, gradient calculations with respect to input features were conducted separately for 

AtLSTM (Figure 12) and Transformer (Figure 13) within the Transformer-AtLSTM (Ensemble) 

framework. When analyzing InSAR coherence data over time, the AtLSTM component 

appeared to prioritize specific periods, particularly during the late growth and harvesting stages, 

to distinguish between different crops. This is evidenced by the relatively smooth distribution 

curves of feature importance across crop types. The AtLSTM model adopts an RNN structure 

to extract sequential relationships, likely contributing to its smooth feature importance curve. 

Specifically, the AtLSTM model transfers output features from one time point to the next in its 

bidirectional data transformation and aggregation pipelines, creating a sequence of 

dependencies. As a result, the feature importance of each current time point selectively 

aggregated information from the previous time period during the gradient backpropagation 

process (Xu et al., 2021b).  

However, the Transformer model employs a self-attention mechanism to compute 

dependencies between all pairs of time positions in the input sequences, as opposed to using 
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recurrent structures. It does not sequentially accumulate information but rather extracts 

temporal dependencies between any two steps through its multi-head self-attention mechanism. 

Consequently, the Transformer’s feature importance distribution, while not as smooth as 

AtLSTM's, reveals attention patterns that complement those derived by AtLSTM for improved 

crop mapping performance. This complementary relationship is consistent with the results 

presented in Tables 5-2 – 5-5. Overall, the combined use of VV and VH channels of coherence 

from the models yields accurate crop classification results. This effectiveness benefits from the 

complementary information provided by both polarizations, in agreement with findings from 

Mestre-Quereda et al. (2020). 

In the analysis of gradient distributions for optical bands, the Transformer-AtLSTM (Ensemble) 

model pinpointed Sentinel-2’s band ‘B11 (SWIR)’ from the date ‘1908’ as a key feature for 

identifying maize and soybean. This finding agrees with several studies (e.g. Ghulam et al., 

2008; Cai et al., 2018; Xu et al., 2021b; Wen et al., 2022), which have confirmed the importance 

of this band in differentiating between these two crops. Additionally, the model highlighted the 

importance of Sentinel-2’s band ‘B8a (Vegetation Red Edge)’ from ‘0109’ for maize and 

soybean, corroborating the findings of You and Dong (2020) regarding the effectiveness of 

red-edge bands in distinguishing these crops. In contrast, the 'Red Edge' band from RapidEye 

from ‘0809’ did not appear as significant for maize and soybean in this study. This could be 

attributed to the fact that this study's single acquisition of RapidEye data might not have 

coincided with a period of pronounced spectral contrast between maize and soybean in the red-

edge spectrum. Despite this, the model still recognised the importance of the bands ‘B8a & 

NIR’ and ‘B4 & Red’ for all crop types across both dates, ‘0109’ and ‘0809’. 

On the other hand, RF is highly dependent on multispectral features across the time series 

according to obtained importance scores (See Figure 5-14). When trained with 2018 data, RF 

outperformed the fine-tuned Transformer and 3D U-Net models across all crop types in terms 

of OA (95.1% in SiteA, 87.9% in Site B), mean F1 (90.8% in Site A, 80.8% in Site B) and 

mIoU (83.7% in Site A, 68.6% in Site B). These findings differ from previous studies (e.g. Xu 

et al., 2020; Rußwurm and Körner, 2020) that demonstrated Transformer was more effective 

than RF in crop mapping. However, those studies primarily utilised optical data with long time 

series, whereas the current study combined SAR-derived features with limited optical data. The 

restricted temporal coverage in our dataset may have limited the Transformer's ability to 

effectively extract long-sequence dependency features, as suggested by Shao and Bi (2022). In 



 

159 
 

contrast, RF can still perform well with a dataset that has limited sequential dependencies, 

making it particularly effective in scenarios with limited temporal depth of spectral features. 

Thus, the use of RF in a fusion of multitemporal SAR and optical data has proven to be an 

effective solution for accurate crop mapping, as also reported by Adrian et al. (2021).  

5.5.2 Uncertainty and implication of transfer learning 

This study investigated classifiers’ capabilities to generalise new, previously unseen data from 

different geographical areas across a one-year temporal span. When applying transfer learning 

directly in Sites A and B of 2018, the models 3D U-Net, Transformer, and RF significantly 

underperformed in crop classification, leading to uncertainties about the impact of variations 

in phenological stages and crop calendars across different regions and years. The lower 

accuracy rates observed for both major and minor crops can be attributed to differences in crop 

growth conditions between the training areas and the transfer sites. Such mismatches often 

result from changing cropping practices, such as crop rotation and intercropping. These 

uncertainties can lead to poor performance in crop classification due to the significant 

differences between the ground-truth samples used in the training and testing regions (Wang 

et al., 2019; Hao et al., 2020). It is important to note that the same crop type may exhibit 

different spectral signatures when observed in distant regions or the same region over different 

times (Pohjankukka et al., 2017). Consequently, the mismatch in time-series data between 

training and testing regions necessitates the implementation of transfer learning techniques. 

Fine-tuning with new data can effectively adapt pre-trained models to the specific agricultural 

conditions and cropping patterns of the test regions. This approach helps to align the models 

more closely with the unique environmental and phenological characteristics of the new 

datasets, thereby improving the accuracy and reliability of the crop classification results. 

While fine-tuning, ensemble learning, and rule-based strategies, and the combined use in the 

Transformer-AtLSTM-RF model, demonstrated promising potential in identifying crops 

through transfer learning, challenges persisted in accurately classifying the borders of crop 

fields. Identifying specific crops in intercropping areas was more challenging than in larger 

and homogenous croplands. This difficulty may be due to a mixture of surrounding cropland 

signals near field edges (Van Tricht et al., 2018). Another factor could be inaccuracies in the 

field labels at the borders or the limitations posed by the spatial resolution of the remote sensing 

data (Turkoglu et al., 2021). Despite the integration of fused SAR-related and multispectral 
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bands in this study, inaccuracies in classifying border pixels remained. However, both Site A 

and Site B suffered from sub-field contaminations from clouds and shadows in the RapidEye 

scenes (See Figure 5-9 and Figure 5-10). The incorporation of additional Sentinel-1 and 

Sentinel-2 features helped to overcome this occluded information to a considerable extent. The 

use of these complementary data sources synergistically enhances crop classification accuracy 

(e.g. Veloso et al., 2017; Van Tricht et al., 2018; Adrian et al., 2021; Blickensdörfer et al., 

2022).  

Future research could focus on using higher spatial resolution data to deal with those 

uncertainties and ameliorate the current mapping results. This approach would likely reduce 

misclassifications at the edges of small and narrow croplands and mitigate mixed-pixel impacts 

on mapping smallholder farms. Additionally, dense image time series could also help to 

identify consistent patterns of crop growth over time, thereby increasing classification accuracy 

despite pixel mixture at field borders. For instance, Mestre-Quereda et al. (2020) demonstrated 

improved crop classification using Sentinel-1 coherence with a 6-day interval compared to a 

12-day temporal baseline. Additionally, compiling historical data over more years can enhance 

crop classification and model transferability (Cai et al., 2018; Xu et al., 2020). However, 

predicting crop types across different years remains challenging, especially for fields deviating 

from expected rotation patterns due to uncertain factors like changing farming practices, 

climate variability, natural hazards, resource shortages, soil degradation, policy shifts, and 

other socioeconomic dynamics (Zhang et al., 2021). To build a robust predictive model, the 

seasonal training set should include a wide variety of local samples that reflect diverse and 

representative crop sequence characteristics, with a focus on distinct intercropping patterns. 

Furthermore, integrating additional dynamic features that capture the temporal and spatial 

variability of intercropping, such as environmental parameters (Blickensdörfer et al., 2022) and 

meteorological variables (Zhong et al., 2014; Defourny et al., 2019), may further improve 

models' predictive performance. 

5.6 Conclusion 

This study demonstrated the enhanced performance of integrating InSAR coherence and 

multispectral bands for crop mapping using both deep learning and machine learning models. 

The significant potential of the proposed ensemble model learning architecture, combined with 

a rule-based decision fusion technique (Transformer-AtLSTM-RF), contributed to accurate 



 

161 
 

crop mapping for smallholder croplands with complex intercropping systems in Bei’an, China, 

in terms of the best quantitative and qualitative results overall compared to standalone models. 

The presented findings also highlighted the challenges of spatiotemporal transfer learning and 

the importance of fine-tuning pre-trained classifiers with representative data. The evaluation of 

input feature importances displayed the benefits of using multi-source data and the multi-model 

architecture, which contributed to complementary learning outcomes and identified key 

temporal features relevant to crop identification. This framework could lead to a more robust 

model capable of handling various scenarios. However, misclassifications around the borders 

of crop fields within intercropping systems remain a significant challenge. Future studies could 

explore using higher spatial resolution data, dense image time series, environmental variables, 

and collecting samples representative of specific agricultural conditions to ameliorate these 

limitations, combined with strategies similar to the developed classification framework. 
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Chapter 6 Discussion 

Crop mapping across large areas using remote sensing imagery can be challenging. The 

primary issue is the often similar spectral and/or backscatter characteristics at various 

phenological stages throughout the crop growing season, which can result in misclassification. 

Additionally, the complex spatiotemporal relationships among crops can adversely affect the 

performance and transferability of classification algorithms, especially in terms of annual 

variations in cropping patterns observed in major grain-producing regions like Northeast China. 

Existing classification methods have not been fully explored for effectively analysing multi-

temporal and multi-source remote sensing data, which necessitates the need for the 

development of advanced methodologies to overcome the limitations caused by increased inter-

class similarity and intra-class heterogeneity in satellite-based crop mapping (Interdonato et al., 

2019; Hu et al., 2019; You et al., 2021; You et al., 2023).  

Deep learning has recently emerged as a transformative technology across various research 

domains including the field of remote sensing. Image classification, in particular, has 

significantly benefited from deep learning's ability to analyse intricate relationships within 

high-dimensional data and perform feature learning and automatic extraction in an end-to-end 

fashion without extensive domain knowledge and expertise (LeCun et al., 2015). Mirroring 

human visual cognition, deep learning algorithms hierarchically process images through 

multiple layers represented by multi-level features. This capability enables the applications of 

temporal or spatiotemporal modelling tasks, such as crop mapping and highlights the potential 

of deep learning in enhancing feature representations for identifying unique characteristics of 

different crops in time series remote sensing data. 

Although deep learning negates the need for most manual feature engineering, the selection 

and fusion of input features derived from multi-source remote sensing data can decisively 

influence the model's classification performance (Zhong et al., 2019; Liao et al., 2020; Yang et 

al., 2020; Adrian et al., 2021; Teimouri et al., 2022). It is still important to determine the most 

informative features from remote sensing data for input fed into deep learning models in order 

to accurately differentiate between crop types across their growth stages. Furthermore, the 

physical interpretation of deep learning models is needed in terms of visualising and 

understanding the model's learning process in the context of crop mapping.  
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This thesis developed a set of classification frameworks based on deep learning architectures 

to produce accurate crop maps at multiple scales, using multi-temporal and multi-source 

satellite remote sensing data, specifically focusing on Bei’an in Northeast China. These crop 

classification frameworks evaluated SAR-derived features and the synergetic use of optical and 

SAR data using novel deep learning architectures that incorporate Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs). The research evaluated various 

ways of integration designed for different model learning mechanisms and then compared them 

with other popular models to validate their effectiveness in differentiating crops. Nonetheless, 

several inherent challenges and uncertainties persist in applying deep learning models for crop 

mapping. These include optimising model complexity, enhancing spatial and interannual 

model transferability, and addressing high misclassification rates near cropland boundaries. 

Additionally, this thesis explored the interpretability of the learning process inherent in deep 

neural networks, through several aspects. The major contributions of this research are as 

follows: 

(1) Comprehensive evaluations of diverse input features for crop mapping derived from multi-

temporal SAR and multispectral data.  

(2) The design and implementation of novel deep learning architectures, in terms of various 

ensemble learning strategies adapted to accommodate the complexities of cropland 

distributions and cropping patterns. 

(3) Multi-perspective interpretation of the deep learning networks through visualising the 

feature learning process, analysing soft outputs, and assessing the input feature importance by 

identifying the parts of the time series data influencing the model's decisions. 

This chapter synthesises the research findings from each experimental chapter (Chapters 3 to 

5) and discusses the limitations of the research, followed by recommendations for future 

research directions. 
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6.1 A Comparative Synthesis of Deep Learning Models in Crop Mapping 

Chapter 3 focuses on pixel-based crop classification using temporal models, wherein it 

compares Conv1D (Zhong et al., 2019), Conv1D-RF (Yang et al., 2020), and Transformer 

(Rußwurm and Körner, 2020) models against the newly designed Conv1D-LSTM model. 

Zhong et al. (2019) developed the Conv1D model, incorporating inception modules that 

combine 1D-CNN and max-pooling layers of varying sizes to process multi-scale features in 

parallel. This design enhances feature extraction across different temporal dimensions, which 

is better for identifying various crops along their growth stages. Yang et al. (2020) modified 

this architecture by replacing the Softmax classifier with a Random Forest (RF) classifier, 

thereby leveraging the feature extraction capabilities of 1D-CNN and the decision-making of 

the tree-based classifier. Rußwurm and Körner (2020) employed a Transformer model built 

upon a multi-head self-attention mechanism, focusing on specific segments of the time series 

data. Each model achieved the highest overall accuracy (OA) of 88% and the second-best 

average F1 score of 83% for crops in a specific scenario. In contrast, the Conv1D-LSTM was 

constructed as ensemble learning using multi-depth 1D-CNN and attention-based LSTM. This 

architecture synergises the strengths of both networks in feature fusion (Interdonato et al., 2019; 

Hamad et al., 2020), demonstrating improved performance in managing inherently imbalanced 

class distribution in real-life datasets. Notably, it achieved the highest OA of 88%, and an 

average F1 score of 84% using only m-chi decomposition features as the time series inputs. 

Moreover, certain models, like the Transformer, suffered from computational and memory 

costs due to the quadratic increase in attention scores during the self-attention process (Xu et 

al., 2021). The Conv1D-RF also encountered similar issues when handling large training 

dataset dimensions, where the complexity of the forest's trees increased significantly, which in 

turn required more resources for optimal split determination and information storage. As 

presented in Chapter 3 (Figure S3), the Conv1D-LSTM model required comparatively less 

training time than other temporal models and was found to efficiently surpass other pixel-wise 

deep learning models in large-scale crop mapping using a minimal number of SAR-derived 

features. This finding aligns with previous studies (e.g. Hamad et al. 2020) that emphasize the 

effectiveness of applying joint ensemble learning architectures to address imbalanced datasets. 

Chapter 4 transitions from relying on pixel-based classifications to adopting patch-based 

classifiers. Pixel-based classification, which predominantly focuses on extracting features 

along the temporal dimension, often results in the ‘salt-and-pepper’ effect in some land units, 
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often requiring post-classification techniques for smoothing noise (Zhang et al., 2021). Patch-

based classifiers, in contrast, are designed to extract spatiotemporal dependencies within multi-

temporal remote sensing data to control such noise effectively. This chapter performed a 

comparative analysis of various typical architectures for crop mapping, including 3D-CNNs (Ji 

et al., 2018), ConvSTAR (Turkoglu et al., 2021), the 1D-CNN-based TCNN model (Pelletier 

et al., 2019), and a 3D-2D CNN (Roy et al., 2020) and introduces the novel 3D-ConvSTAR 

model, which connects 3D-CNN, ConvSTAR, and a shallow 2D-CNN through a hybrid 

sequential processing approach. This model differs from the Conv1D-LSTM presented in 

Chapter 3, as the latter processes separate inputs for each module, and combines their resulting 

outputs, while 3D-ConvSTAR proceeds with a stacked time series input vector in 

interdependent learning processes across the different models. 3D-ConvSTAR demonstrated 

higher accuracy in crop mapping over standalone and combined architectures such as TCNN, 

3D-CNN, and ConvSTAR. It achieved an OA of 91.7%, a Kappa coefficient of 85.7%, and a 

mean F1 score of 87.7%. While data augmentation techniques, notably the mix-up method, 

enhanced classification performance for specific crops like maize and soybean, they reduced 

performance for wheat and other crops. Oversampling, another augmentation method, proved 

generally effective but was insufficient in addressing imbalanced class distribution compared 

to the 3D-ConvSTAR model without data augmentation. However, it is important to note that 

the 3D-ConvSTAR network is prone to generating more training parameters, which leads to 

longer model training times. This is mostly attributed to the complexity of its architecture, 

which sequentially connects different networks for feature extraction from more than one 

dimension, thereby requiring more computational resources. 

Chapter 5 shifts the focus from crop mapping at a county level, as experimented in Chapters 3 

and 4, to assessing model transferability at localised scales. In this chapter, an innovative 

framework is introduced, extending ensemble learning of temporal models through a rule-

based strategy to enhance the decision-making process in crop classification. This framework 

features a multi-stream architecture, combining Transformer and Attention-based LSTM 

(AtLSTM), to process three distinct time series inputs separately and in parallel. This design 

allows each stream to optimise its input processing before merging the learned features in 

subsequent stages. The outputs from each stream are concatenated and integrated with 

probabilities derived from an RF classifier, using predefined thresholds. This fusion of 

probabilities showcases the complementary strengths of self-attention, attention-based LSTM, 

and the tree-based mechanism of RF. This decision fusion framework, Transformer-AtLSTM-
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RF, demonstrated effective spatial and interannual transfer learning capabilities for crop 

mapping across two local sites, as evidenced by the highest OA and mean Intersection over 

Union (mIoU) metrics (See Tables 5-2 – 5-5). Compared with the hybrid architecture, namely 

Transformer-AtLSTM (Backbone), standalone Transformer, and 3D U-Net models, this 

decision fusion framework outperformed. Considering the 3D U-Net employs fully connected 

networks (FCNs) for spatiotemporal feature extraction, its effectiveness was subject to the 

quality of ground-truth data during model fine-tuning. 

Moreover, this decision-fusion technique aligns with similar approaches in other studies (e.g., 

Dou et al., 2021; Zhang et al., 2018), highlighting the effectiveness of ensemble models and 

rule-based decision fusion in enhancing crop classification accuracy across various agricultural 

settings. Additionally, fine-tuning pre-trained models with 2018 crop samples significantly 

improved transferability for all crop classes, consistent with research emphasising the 

importance of aligning training and testing samples with local agricultural conditions (Hao et 

al., 2020; Nowakowski et al., 2021). Nevertheless, the complex intercropping patterns in the 

transfer sites introduced increased signal variability and resulted in misclassifications around 

cropland boundaries during transfer learning. This limitation is not necessarily attributed to the 

design of the model architectures. It could potentially be mitigated by using higher spatial 

resolution (> 5m) and denser time series remote sensing data, coupled with training samples 

that mostly represent diverse intercropping patterns. 

In summary, a comprehensive evaluation of deep learning networks for large-scale crop 

mapping is presented, covering both pixel-based (Chapter 3) and patch-based networks 

(Chapter 4), as well as assessing the transferability of designated models for local-scale areas 

with complex intercropping systems (Chapter 5). Each chapter explored the way of jointly 

constructing multi-branch model architectures to learn features effectively. Collectively, the 

experimental results contribute significantly to the applications of deep neural networks by 

offering designed architectures that enhance crop mapping and provide greater potential for 

broader applications. 
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6.2 Synergetic Use of SAR and Optical Data in Enhancing Crop Mapping 

This thesis critically evaluates the role of input features derived from satellite remote sensing 

data, using feature selection techniques and deep learning models for crop mapping. In Chapter 

3, a selection of SAR-derived features prevalent in crop mapping and growth monitoring was 

calculated from Sentinel-1 data. These included backscatter, GLCM features, radar-based 

vegetation indices, covariance parameters, and polarimetric decomposition features. Through 

feature selection and ablation experiments, m-chi decomposition features were identified as 

particularly efficient and effective in distinguishing crops on a large scale, which aligns with 

previous findings using machine learning models (Sonobe et al., 2019; Mahdianpari et al., 2019; 

Dingle et al., 2022). While the use of quad-polarimetric (quad-pol) data has advantages in crop 

mapping compared to dual-polarimetric (dual-pol) features (Xie et al., 2019; Liao et al., 2020; 

He et al., 2020), the application of satellite-based quad-pol sensors is limited by their swath 

coverage (Raney, 2019). This limitation constrains their practicality for large-scale crop map 

prediction. Moreover, accessing dense time-series quad-pol data can be financially prohibitive. 

Insufficient multi-temporal data could lead to inaccuracies in classification, given that the in-

season classification scheme discussed in Chapter 3 demonstrated that model performance was 

initially marginal in early growth stages due to the inadequate acquisition of SAR input features. 

Chapter 4 integrates SAR-derived features with optical-derived features and presents a 

significant progression in crop classification accuracy. Specifically, the experiment 

incorporated three Sentinel-2 acquisitions into twenty-three Sentinel-1 acquisitions. Optical 

data for each acquisition involve Red, Vegetation Red Edge, and SWIR bands, which 

effectively differentiate soybean and maize in Northeast China (You and Dou, 2020). The SAR 

data and multi-spectral bands were sequentially stacked according to the acquisition dates 

across the crops’ growth stages, creating a fused vector as the model input. This approach, 

stacking SAR and optical data, contributes to improved classification performance compared 

to using multi-temporal SAR data alone. Particularly, models incorporating multi-spectral 

bands and polarimetric features (m-chi features) exhibited higher accuracy in all tested 

scenarios. For instance, the most effective model using the Optical+m-chi input scenario 

achieved improvements of over 2% in OA, more than 4% in Kappa, and over 6% in mean F1 

score compared to only using m-chi features as inputs (Tables 4-1 – 4-2). Chapter 4 thus 

demonstrated that combining input features from SAR and optical sources into a compatible 

tensor for the proposed model effectively leveraged the synergy of SAR and optical data to 
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improve crop classification. Furthermore, this fusion of optimally selected features mitigated 

the risk of losing original information, which could occur in directly stacking and normalising 

the fused raw dataset into a common tensor.  

Chapter 5 investigated the fusion of InSAR coherence and multi-spectral bands for crop 

classification. Since multi-temporal coherence was calculated based on image pairs of different 

orbital tracks of Sentinel-1, stacking all feature bands (as done in Chapter 4) would not maintain 

a consistent 12-day interval for coherence data over the timeframe. Consequently, the 

experiment processed the time series coherence based on tracks and optical bands in separate 

streams, with the resulting features from each stream being concatenated channel-wise. This 

multi-branch model architecture, similar to the Conv1D-LSTM proposed in Chapter 3, takes 

multi-source inputs and combines feature vectors generated from each branch. This approach 

allows each branch to contribute complementary information to the discriminative learning 

process, providing different perspectives (Interdonato et al., 2019; Hamad et al., 2020). 

Additionally, the 3D U-Net architecture in Chapter 5, inspired by Tao et al. (2022), adopts a 

dual-branch parallel U-Net architecture. This design fuses learned semantic features from SAR 

and optical sources at each level of the model's upsampling stages.  

Comparing the fusion techniques for SAR and optical data is challenging in terms of feature 

fusion through stacking (Chapter 4) versus through model architecture (Chapter 5), due to 

differences in input features, model architectures, and testing areas. A comparative analysis 

using m-chi decomposition features and InSAR coherence was subsequently performed (See 

Figures S9 and S10). Both were calculated from Sentinel-1 and combined with Sentinel-2 and 

RapidEye multi-spectral bands. Modelling was conducted under identical experimental 

conditions and the same model implementation but with different inputs. The Transformer-

AtLSTM (Ensemble), which outperformed its backbone version (Tables 5-2 – 5-5), was used 

for the comparison. The Transformer component of the model was pre-trained with 2017 data 

and fine-tuned with 2018 data. Results indicate that incorporating coherence with optical data 

marginally increased overall mapping performance by > 1% of OA, > 3% of mean F1 and > 

5% of mIoU for both sites during model transfer learning (Tables S3 to S6). This finding 

demonstrates the potential of coherence as an effective input feature for crop classification, but 

a different model architecture might be useful to fully leverage polarimetric decomposition 

features like the one proposed in Chapter 4. Future experiments would be worth comparing 

these input features across various model architectures and conditions, including crop types, 
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testing areas, fusion strategies, and transfer learning. Additionally, evaluating the 

computational efficiency of these models is also important to ensure their robustness and 

generalisability. 

In summary, this research has successfully evaluated a range of satellite-based features and 

how they are used synergistically to enhance crop mapping in Bei'an County. Chapter 3 focused 

on various SAR-derived features from Sentinel-1 and identified m-chi decomposition as the 

most effective input for deep learning models in crop mapping on a large scale. Chapter 4 

advanced crop mapping by integrating SAR polarimetric features with a few multi-spectral 

data from Sentinel-2. Chapter 5 focused on mapping local croplands with complex cropping 

patterns, using multi-temporal InSAR coherence and high-resolution multi-spectral data.  

6.3 Interpretation of Deep Learning Models in Crop Mapping 

This research addressed challenges in interpreting deep learning models due to their 'black box' 

nature, where the intricate model training process can affect a comprehensive understanding of 

how inputs are transformed into outputs. It sets clear linkages between each experimental 

chapter to interpret the designed deep learning models for crop mapping. This interpretation 

involves hidden feature analysis in Chapter 3, gradient and soft output analysis in Chapter 4, 

and input feature importance evaluation in Chapter 5. 

In Chapter 3, the Conv1D-LSTM model combines multi-level Conv1D with attention-based 

LSTM networks to capture temporal dynamics and features for crop classification. From the 

CNN end, the weight distribution across the timeframe for different classes is visualised over 

multi-level Conv1D layers (Figures 3-14 – 3-15). The fluctuations in growing patterns show 

how the model learns to prioritize pixels in the time series. Starting with the shallowest layer, 

the weights are estimated to be small-scale variations, with a sparse distribution around August. 

When the input series passes through the intermediate layers and the deepest layers, the weights 

start to disperse and become scattered, becoming localised at specific acquisition dates. This 

hierarchical aggregation of simple weight distribution patterns into more complex ones aligns 

with Zhong et al. (2019), who used guided back-propagation to identify the most activated 

parts of the input series in crop classification. Furthermore, the attention mechanism in the 

LSTM illustrates how cumulative sequential data becomes increasingly significant for 

identifying crops (Figure 3-16). This is also evident in the in-season classification using t-
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distributed stochastic neighbour embedding (t-SNE) for high-dimensional feature 

representation (Van der Maaten and Hinton, 2008), which shows crop types becoming more 

distinctly segregated in feature space as the model learns through accumulated phenological 

features (Figure 3-17). However, the challenge persists in differentiating crops using dual-

polarized SAR data as model inputs since there are still notable misclassifications in the last 

growth stage in September. 

Chapter 4 advanced the interpretative analysis conducted in Chapter 3 by calculating the 

average gradients from pixel weights in input image patches. This calculation is performed 

through back-propagation in the 3D-ConvSTAR model to create saliency maps for each crop 

class. These maps revealed spatial locations of significance for each crop type within the testing 

samples (Figure 4-10). Particularly for maize and soybean, the configurations of the most 

important pixel clusters suggest intercropping practices, as evidenced by the complementary 

patterns of important pixels of the two crop types. Conversely, the distinct separation of the 

pronounced pixels for wheat indicates wheat croplands are comparatively isolated. For other 

crops, the scattered and less defined pattern of pixel importance corresponds to the model's 

reduced accuracy and confidence in classifying mixed crop types. Additionally, the soft outputs 

from the 3D-ConvSTAR model's final Softmax layer, particularly the prediction scores 

represented in Figure 4-9, indicate a higher confidence level in mapping maize, soybean, and 

wheat. However, this confidence is relatively low for other crops. Despite having a larger 

training sample size than wheat, other crops exhibit a mean prediction score of only 71%. This 

discrepancy highlights a challenge in the model's ability to generalise across a more diverse set 

of crop types. 

In Chapter 5, the interpretation of temporal feature importance over time is achieved by 

calculating class-specific gradients with respect to time series inputs from the Transformer-

AtLSTM (Ensemble) model (Figures 5-12 – 5-13). This analysis examines how the proposed 

model adapts to interannual and spatial variability. The AtLSTM component within the model 

prioritised certain periods, especially during late growth and harvesting stages, to pinpoint key 

phenological stages essential for differentiating crop types. This preference is reflected in the 

smooth distribution curves of feature importance across crop types, demonstrating the 

sequential and accumulative nature of the AtLSTM model in capturing temporal dependencies. 

This finding is consistent with the insights gathered from interpreting the attention LSTM in 

Chapter 3. Conversely, the Transformer model, with its self-attention mechanism, operates 
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sequential data processing and identifies temporal dependencies among all pairs of time 

positions. The resulting feature importance distribution, although less smooth than AtLSTM's, 

leads to a complementary effect on temporal feature learning. The synergy of these two models 

is particularly evident in the gradient distributions for InSAR coherence and spectral 

information of crop classes, which also contributes to the model’s transferability to spatial and 

temporal variations of crops across different geographical contexts. Additional analysis of the 

importance of input features, particularly focusing on the combined use of m-chi 

decomposition features and multispectral bands, is further detailed in Figures S11 and S12. 

In summary, this research explored the interpretability of various deep learning models applied 

to crop mapping. It focused on understanding feature learning behaviours, analysing prediction 

confidence, examining saliency maps, and calculating the importance of input features. It 

ensures that the developed frameworks and architectures are not only effective in terms of 

accuracy but are also interpretable through a multi-view understanding of how different 

features and temporal dynamics are influential to crop identification, which demonstrates the 

most informative periods, input features, and the complementary nature of ensemble modelling 

for enhanced crop classification. 

6.4 Research Limitations and Recommendations 

This research developed deep learning methods for crop mapping using SAR and optical 

imagery.  However, several aspects of the proposed approaches need to be further investigated. 

A primary limitation of this research is its localized focus on Bei’an county across the three 

experimental chapters, which does not adequately address the spatial transferability of the 

models. Within this thesis, Chapter 5 attempted to test the spatiotemporal transferability of the 

models, specifically in local regions characterized by unique intercropping patterns, but both 

training and testing samples were collected from the same overall study area. The pre-trained 

models for crop mapping were tailored to the unique agricultural practices, crop types, and 

seasonal variations observed within this geographical boundary (Bei’an). Therefore, its current 

configuration is optimized to generate reliable outputs within this defined area. This limits the 

scope of the model’s applicability and requires the need for additional validation of the pre-

trained model in geographically diverse and unseen regions beyond where the training samples 

were originally collected. Additionally, the models were trained to identify and map a few crops, 

including maize, soybeans, and wheat. These selections were made based on the predominant 
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agricultural outputs of the training region. The models' accuracy in identifying or distinguishing 

other crop types not included in the training data may be reduced. To extend the model's utility 

beyond its current geographical and crop-type limitations, future research should aim to test 

model transferability across different geographical areas by training the model with denser 

remote sensing data and incorporating a broader range of crop classes, which would enable the 

model to adapt to a wide array of environmental conditions and crop types. This is essential to 

ensure the robustness and generalisability of the developed methods, particularly for accurately 

identifying croplands with complex cropping patterns in real-world scenarios. 

Future research should consider early-season crop mapping, which seeks to determine the 

earliest identifiable time for crop classification before harvest. In this thesis, the crop maps 

were generated based on the full-season image time series in each experimental chapter. This 

post-harvest classification strategy does not account for the earliest recognisable timings within 

the growth season. Given the increasing demand in current agricultural production for timely 

crop mapping, it is important to identify crop types in their early growing season, instead of 

post-harvest. For example, You and Dong (2020) demonstrated the feasibility of early 

prediction by using Sentinel-1/2 data to identify rice during its late transplanting period, 120 

days before harvest, and to detect maize when it begins heading stage, 60 days before harvest. 

Timely crop mapping of this nature would greatly benefit the optimisation of cropland planning, 

as it provides near-real-time information on crop acreage and spatial distribution so that 

policymakers could deliver informed agricultural decision-making. 

The deep learning architectures examined in this thesis, while effective, have inherent 

limitations. The ensemble learning approaches in Chapters 3 and 5, and the hybrid learning 

strategy in Chapter 4 involve training multiple models simultaneously, which are 

computationally intensive. Although these models effectively leverage the strengths of each 

constituent model, they introduce complexity and require careful consideration of how these 

models are interrelated to reduce computational power and memory. The Transformer-

AtLSTM (Ensemble), for example, employs attention mechanisms in parallel computing. 

However, it may encounter challenges with the quadratic increase in attention scores from the 

attention layers processing long input sequences. Generally, deep learning models are data-

driven and often subject to resource demands.  
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Future research should explore integrating theory-driven models, such as physical models, with 

deep learning frameworks, potentially yielding more accurate and reliable crop map products. 

Physics-based models are built on established theories and equations that can interpret the 

physical, chemical, or biological processes involved. However, these models often encounter 

challenges due to uncertain parameterisations and insufficient representations of the land cover 

processes. They also require initial conditions to deploy simulation, considering the starting 

state and boundary conditions that define spatial limits, typically based on observations, 

experiments, or previous research. In contrast, deep learning models excel at handling 

nonlinear mapping problems but lack physical insights and suffer from issues such as low 

interpretability, failure when applied outside of sample conditions, and high demand for a 

substantial number of training data. To leverage the strengths of both physical and deep 

learning models, studies have developed hybrid methods that incorporate physical information 

into deep learning models (Liu et al., 2022; Slater et al., 2023; Li et al., 2024). 

This hybrid modelling framework in crop mapping could utilise the outputs of physical models 

as direct inputs into deep learning models. For example, it could incorporate detailed daily 

growth measurements under changing environmental conditions, which are produced by 

physical models based on vegetation scattering properties. These deep learning models can 

then utilise these inputs along with remote sensing data to make real-time predictions and 

produce highly accurate crop-type maps that are dynamically responsive to spatiotemporal 

variations. This hybrid combination could also potentially involve using physical models to 

simulate conditions absent in the training data or to update predictions based on adding new 

environmental data, thereby refining predictions of crop types across different regions. Thus, 

physical models, with their transparent structures and representations of physical processes, 

complement deep learning models for enhancing crop classification performance, achieving a 

promising way of synergy and knowledge-guided deep learning in geosciences (Camps-Valls 

et al., 2021). In summary, adapting the model framework and selecting optimal input features 

are task-specific, and remain an iterative and challenging process. 
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Chapter 7 Conclusions 

This thesis presents innovative deep learning methods integrated with multi-source satellite 

data, aimed at enhancing crop mapping across various scales in Bei'an, China. As outlined in 

Section 1.5, each research objective addresses progressively intricate scenarios, which range 

from large-scale crop mapping to dealing with misclassifications caused by local cropping 

patterns. The objectives are achieved as follows: 

Objective 1 - to develop a framework for multi-temporal crop mapping in Bei’an County by 

using polarimetric SAR-derived data combined with deep learning methods: 

Chapter 3 introduced a synergistic approach, the joint ensemble learning of two temporal 

models – Conv1D and attention-based LSTM – for extracting multi-temporal features from 

Sentinel-1 dual-pol polarimetric SAR data. This model architecture exhibited superior 

performance in predicting county-level crop classes in Bei'an for the year 2017. This model, 

with its optimal selection of SAR features, especially m-chi decomposition, demonstrated its 

feasibility in managing imbalanced class distribution and efficiently distinguished between 

major and minor crops with similar phonologies. This chapter strengthened the importance of 

using long time series data in crop classification (as illustrated in Table 3-3 and Figure 3-17 for 

in-season crop mapping) and revealed the model’s ability to capture temporal dependencies in 

multi-temporal SAR data (Figures 3-14 to 3-16). 

Objective 2 - to construct a sophisticated deep learning architecture that combines multiple 

models for county-level crop mapping based on the fusion of multi-temporal optical and SAR 

datasets for Bei'an County: 

In Chapter 4, a novel framework was developed that integrates Sentinel-1 polarimetric features 

with Sentinel-2 multispectral reflectance. This novel hybrid model architecture, namely 3D-

ConvSTAR, connects 3D-CNN layers with convolutional recurrent layers (ConvSTAR). It 

demonstrated enhanced performance in crop mapping, particularly in its effectiveness in 

extracting features from the combined SAR and optical datasets, presenting a clear advantage 

over using SAR data alone. This architecture also showcased its robustness against imbalanced 

class distributions and outperformed other data augmentation techniques in performance, as 

detailed in Table 4-3. Although it faced challenges with increased training parameters and 
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limitations in classifying underrepresented crops, the model still exhibited potential in crop 

classification, notably in terms of prediction confidence and saliency maps, as illustrated in 

Figures 4-9 and 4-10. 

Objective 3 - to design a deep learning based approach tailored for mapping areas of 

intercropping in Bei’an using interferometric SAR coherence and high resolution (5m) 

multispectral data: 

Chapter 5 proposed an innovative multi-branch deep learning architecture that integrates 

InSAR coherence with multispectral bands. This approach, designed to leverage the synergy 

of multi-source data, deep learning, and machine learning models, assembles in the 

Transformer-AtLSTM-RF model. Enhanced by a rule-based decision fusion technique, this 

model effectively maps crops in smallholder croplands characterized by complex intercropping 

systems. It achieved higher transfer learning accuracy across various time frames and 

geographical locations within Bei’an, compared to standalone temporal and FCN-based model 

architectures (Tables 5-2 to 5-5). The chapter also highlighted the importance of fine-tuning 

pre-trained classifiers with representative data during transfer learning, evaluating the input 

feature importance through models’ decision-making process (Figures 5-12 to 5-13), and the 

benefits of using multi-source data such as the fusion of InSAR coherence and multispectral 

data. 

Future research directions aim to optimise these deep learning architectures for increased 

efficiency, generalisability, and transferability. This includes exploring higher spatial 

resolution (> 5m) data, denser remote sensing data, and incorporating environmental variables 

such as temperature, precipitation, or soil moisture as predictors. Further, there is a need to 

collect data samples that are more representative of specific agricultural conditions, especially 

for areas with complex cropping patterns. The goal is to develop more robust models capable 

of handling diverse agricultural scenarios, ensuring accuracy and efficiency in producing crop 

map products across different regions at various scales. 
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Supplementary Material 

 

Figure S1. Temporal profiles of Sentinel-1 backscatter (VV and VH), cross-ratio (VH/VV), covariance matrix 
parameters (C11, C12 Real, C12 Imagery and C22), SAR vegetation indices (RVI and DpRVI), GLCM and 
polarimetric decomposition features. The buffer area in each subplot is one standard deviation from the mean for 
each crop type. 
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Figure S2. Feature selection based on Boruta. Circles indicate the features with the highest importance scores, 
while full-time features are marked with stars. GLCM_c, GLCM_v and GLCM_m indicate correlation, variance 
and mean. 

 

Figure S3. The comparison of model training time for m-chi features and scenario (c) based on 10% of ground-
truth training samples. 
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Figure S4. Comparison of map predictions for Site A. (a) Reference labels, (b) RF, (c) Conv1D, (d) Conv1D-RF, 
(e) Transformer, (f) Conv1D-LSTM. Sentinel-1 false colour composite (Blue: single bounce scattering, Green: 
double bounce scattering, Red: volume scattering). 

 

Figure S5. Comparison of map predictions for Site B. (a) Reference labels, (b) RF, (c) Conv1D, (d) Conv1D-RF, 
(e) Transformer, (f) Conv1D-LSTM. Sentinel-1 false colour composite (Blue: single bounce scattering, Green: 
double bounce scattering, Red: volume scattering). 
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Figure S6. Comparison of map predictions for Site C. (a) Reference labels, (b) RF, (c) Conv1D, (d) Conv1D-RF, 
(e) Transformer, (f) Conv1D-LSTM. Sentinel-1 false colour composite (Blue: single bounce scattering, Green: 
double bounce scattering, Red: volume scattering). 

 

Figure S7. Enlarged extent of crop mapping results for Site A 2018. Captions follow Figure 5-9. 
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Figure S8. Enlarged extent of crop mapping results for Site B 2018. Captions follow Figure 5-9. 

 

Figure S9. Temporal profiles of crops based on Sentinel-1 m-chi decomposition features in Bei’an 2017. 
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Figure S10. Temporal profiles of crops based on Sentinel-1 m-chi decomposition features in Bei’an 2018. 

 

Figure S11. Average gradients of attention weights with respect to inputs from the AtLSTM end. 3000 samples 
of Site A and B were randomly selected from the attention weight layer for visualisation. The light buffer areas 
indicate one standard deviation from the average value. Positive (negative) values indicate a positive (negative) 
correlation between the predicted score and input features and vice versa. The value range was scaled from -1 to 
1. Predictors are m-chi decomposition features. 
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Figure S12. Average gradients of attention weights with respect to inputs from the Transformer end. 3000 samples 
of Site A and B were randomly selected from the second self-attention layer for visualisation. The light buffer 
areas indicate one standard deviation from the average value. Positive (negative) values indicate a positive 
(negative) correlation between the predicted score and input features and vice versa. The value range was scaled 
from -1 to 1. Predictors are m-chi decomposition features. 

Table S1. F1 score per class, mean F1 score and overall accuracy (OA) from the 2017 testing set. The best values 
are highlighted in bold in the columns. 

Model Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other crops 
(%) 

Mean F1 
(%) 

OA 
(%) 

3D U-Net 91.0 93.1 81.1 68.5 83.4 88.0 
Transformer 91.0 80.6 67.2 60.4 74.8 82.2 

AtLSTM 91.4 84.6 85.6 64.8 81.6 85.7 
RF 92.2 86.0 86.7 64.8 82.4 87.1 

Table S2. IoU per class and mean IoU (mIoU) from the 2017 testing set. The best values are highlighted in bold 
in the columns. 

Model Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other crops 
(%) 

mIoU 
(%) 

3D U-Net 83.5 87.1 68.1 52.1 72.7 
Transformer 83.5 67.6 50.6 43.3 61.2 

AtLSTM 84.1 73.3 74.8 47.9 70.0 
RF 85.5 75.5 76.5 47.9 71.3 

Table S3. Transfer Site A: overall accuracy (OA) and mean F1 score for 2018 crop mapping validation. The best 
values are highlighted in bold in the columns. 

 

Model Input feature Maize 
(%) 

Soybean 
(%) 

Other crops 
(%) 

Mean F1 
(%) 

OA 
(%) 

Transformer-AtLSTM 
(Ensemble) 

M-chi + Optical 95.4 95.9 63.3 84.9 94.9 
Coherence + Optical 96.1 96.7 77.4 90.1 96.1 
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Table S4. Transfer Site A: IoU and mean IoU (mIoU) of 2018 crops. The best values are highlighted in bold in 
the columns. 

Table S5. Transfer Site B: overall accuracy (OA) and mean F1 score for 2018 crop mapping validation. The best 
values are highlighted in bold in the columns. 

Table S6. Transfer Site B: IoU and mean IoU (mIoU) of 2018 crops. The best values are highlighted in bold in 
the columns. 

 

Model Input feature Maize 
(%) 

Soybean 
(%) 

Other crops 
(%) 

mIoU 
(%) 

Transformer-AtLSTM 
(Ensemble) 

M-chi + Optical 91.2 92.2 46.4 76.6 
Coherence + Optical 92.6 93.6 63.1 83.1 

Model Input feature Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other crops 
(%) 

Mean F1 
(%) 

OA 
(%) 

Transformer-
AtLSTM 
(Ensemble) 

m-chi + Optical 86.1 91.1 73.8 78.4 82.4 87.5 

Coherence + Optical 88.5 92.6 78.7 84.9 86.2 89.9 

Model Input feature Maize 
(%) 

Soybean 
(%) 

Wheat 
(%) 

Other crops 
(%) 

mIoU 
(%) 

Transformer-
AtLSTM 

(Ensemble) 

m-chi + Optical 75.6 83.7 58.4 64.5 70.6 

Coherence + Optical 79.4 86.2 64.8 73.7 76.0 
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