

Valkov, Ivaylo (2024) Formal analysis of communication protocols for

wireless sensor systems. PhD thesis.

http://theses.gla.ac.uk/84308/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/84308/
mailto:research-enlighten@glasgow.ac.uk

Formal Analysis of Communication Protocols for Wireless
Sensor Systems

Ivaylo Valkov

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Computing Science

College of Science and Engineering

University of Glasgow

October 2023

Abstract

Sensor technology is an increasingly popular area of research due to the prevalent use of sensor
devices. With the need for accurate, detailed data sensors are increasingly often used together
in sensor networks. As the size of these sensor networks grows, so does the importance of
efficient methods for their analysis for the prevention of system errors and discovery of design
flaws. The increasing number of sensor devices leads to an exponential increase is the state
space of the associated model. As such models of realistic systems are decreasingly often small
enough for their verification to be feasible. Symmetry reduction techniques developed over the
last 30 years, have been shown to be effective in reducing the state space explosion problem,
particularly in the case of heterogeneous sensor systems, which contain many identical sensor
devices.

In this thesis we present our approach to verifying Ctrl-MAC, a novel wireless network
protocol that supports bidirectional communication of multiple simultaneous physical proper-
ties. We explore the extent to which symmetry reduction can aid the model checking process
for a sensor network communication protocol. We present our results, and suggest statistical
approaches based on our observations of the protocol.

We investigate the use of automated tools for the application of symmetry reduction, in par-
ticular GRIP, which is well suited for symmetry reduction of wireless sensor network systems.
Models of communication protocols often require the use of synchronisation to model the in-
teraction between devices. We present GRIP 3.0, a new version of the tool, which provides
support for the use of synchronised transition statements. We provide results from practical
work, coupled together with a discussion of drawbacks and future improvements.

i

Contents

Abstract i

Acknowledgements x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5

1.2.1 Thesis Statement . 5
1.2.2 Main Results . 6

1.3 Organisation of Thesis . 6

2 Background 8
2.1 Formal Methods . 8

2.1.1 Model Checking . 10
2.1.2 Probabilistic Model Checking . 10
2.1.3 Model Checkers . 12
2.1.4 State space explosion . 15
2.1.5 Symmetry reduction . 18
2.1.6 State space reduction tools . 18

2.2 Wireless Sensor Networks . 20
2.2.1 Characteristics of Wireless Sensor Networks 21
2.2.2 Ctrl-MAC . 24
2.2.3 2C protocol . 25

2.3 Verification of Wireless Sensor Networks . 26

3 Preliminaries 1: Model checking 28
3.1 Discrete Time Markov Chains . 28
3.2 Property specification . 32
3.3 Markov Decision Processes . 33
3.4 Costs and Rewards . 35
3.5 Tools for probabilistic model checking . 36

ii

CONTENTS iii

3.5.1 The PRISM Model Checker . 36
3.6 State space reduction techniques . 40

3.6.1 Symmetry reduction, Automorphisms and Quotient MDPs 40
3.6.2 Counter abstraction/ Generic representatives 42
3.6.3 Symmetry reduction in PRISM . 43

4 Preliminaries 2: Ctrl-MAC 46
4.1 Technical description of Ctrl-MAC . 47

5 Initial Ctrl-MAC verification 52
5.1 Initial Ctrl-MAC PRISM models . 52
5.2 Ctrl-MAC PRISM model with manual counter abstraction 61

5.2.1 Performance comparison for different models 66
5.3 Applying combinatorics . 71

5.3.1 Obtaining the probability distributions 74
5.3.2 Implementation of Statistical approach 77
5.3.3 Optimal number of requests . 77

5.4 Summary . 78

6 GRIP - state of the art and new contribution 81
6.1 Introduction . 81
6.2 Current state of GRIP . 82

6.2.1 Local reachability analysis optimisation 89
6.3 Synchronisation and Generic Representatives 90
6.4 Implementation of Synchronisation in GRIP 100

6.4.1 Implementation . 100
6.5 Experimental Results . 102

6.5.1 Past examples . 102
6.5.2 Rock-Paper-Scissors . 106
6.5.3 PRISM-symm case studies . 109
6.5.4 Randomised Byzantine Agreement protocol 110
6.5.5 Ctrl-MAC models . 110

6.6 Summary . 113
6.6.1 GRIP future work . 114

7 Conclusions 117
7.1 Future work . 118

A Model listings 121

CONTENTS iv

B List of Terms 144

Bibliography 170

List of Tables

2.1 A selection of model checkers and their corresponding modelling languages,
and their characteristics. Based on information from [186]. 14

5.1 States, transitions and build times for PRISM models of Ctrl-MAC with the
specified number of sensor devices based on model 2. 57

5.2 States, transitions and build times for PRISM models of Ctrl-MAC with the
specified number of sensor devices based on model 3. 59

5.3 States, transitions and build times for the model with counter abstraction (model
4). 65

5.4 Comparison of model 3, the best performing model without counter abstraction
(1), versus model 5, the hybrid model with counter abstraction (2). 66

5.5 Types of PRISM models that we have created. 66
5.6 Verification of properties of the type P=? [F (FTR=x)] for the stated values of

x. Performed using model 4, the fully counter abstracted model, with 19 sensor
nodes. 68

5.7 Number of successful requests based on the number of request slots and the
number of transmission requests sent in the same Request-Reply Cycle (RRC). 79

6.1 Grammar of Symmetric PRISM. PCTL-specific syntax is omitted. 85
6.2 GRIP case studies. 89
6.3 Model size and build times for the Rock-Paper-Scissors model for m partici-

pants, obtained by PRISM, PRISM-symm and GRIP 3.0. 108
6.4 Model size and build times for the Byzantine model obtained by PRISM,

PRISM-symm and GRIP 3.0. OOM signifies models which resulted in an
Out-of-Memory error. 110

6.5 Model sizes and computation times of GRIP to preprocessed models of Ctrl-
MAC. Cells labelled with OOM represent models for which PRISM or GRIP
reported an out-of-memory error. 111

v

LIST OF TABLES vi

6.6 Model sizes and computation times for PRISM models of Ctrl-MAC compared
to their symmetry reduced counterparts produced by GRIP. The table shows
verification results of two properties (-1 and -2 respectively). Cells labelled with
OOM represent models for which PRISM reported an out-of-memory error. . . 113

List of Figures

2.1 Hierarchy of verification techniques and model checking in relation to other
verification methods. 9

2.2 Formalisms family tree. All formalisms are extensions of their descendants.
Image taken from [103]. 11

2.3 Basic model checker methodology . 12
2.4 Independent paths that reach the same end state. 16
2.5 A Wireless sensor network (WSN) topology. 21
2.6 Communication network architecture of a Wireless Sensor Network. Image is

based on image from [124]. 23

3.1 An example of a Discrete Time Markov Chain. 29
3.2 An example of a Markov Decision Process. 34
3.4 An overview of the workflow of model checking in PRISM. 37
3.5 Rules for translating an SPSL specification P to a generic form h(P). Taken

from [58]. 44

4.1 One request channel and three data channels, with RRM segmenting time in
periodic intervals. 48

4.2 The structure of an RRM with k = 3 transmission request slots 49

5.1 States of a Ctrl-MAC sensor device. States used in our PRISM models are
coloured in blue. 53

5.2 A graph of the results obtained from model 2. Probability of successful data
delivery of a specific sensor is plotted against number of RRMs elapsed. Results
are for a model with 3 sensor devices, which all start in a state where an event
has been sensed, and no new events are registered. 56

5.3 Counters and possible transition between counters. An arrow signifies sensors
going from one sensor state to another. The dotted line represents the optional
transition for models of non-bursty traffic. 62

vii

LIST OF FIGURES viii

5.4 Verification of properties of the type P=?[F(FTR=x)] for the stated values of
the number of RRCs, x. Performed using model 4, the fully counter abstracted
model, on an instance with 19 sensor nodes. 67

5.5 Verification of properties of the type S=? [(FTR=x)] for the stated values
of x. Performed using model 4, the fully counter abstracted model, with 10 sen-
sor nodes. Sensors instantly detect new events after they successfully transmit
their data. 69

5.6 Ctrl-MAC data transmission times versus request slots comparisons. Image
taken from [22]. 70

5.7 Ctrl-MAC data transmission times versus request slots comparison based on
results from model 5. Based on a model with three sensor devices. 71

5.8 Counters for the model based on statistical analysis. Each cloud is a counter for
a population, and arrows label possible ways in which sensors go from one state
to another. The sending population has two outgoing transitions: to the done

population for sensors that perform a successful transmission request (labelled
by a green tick), and to the backed off population for sensors that experience
congestion when sending their transmission requests. The dotted line represents
the optional transition based on the type of environment that is being modelled. 73

5.9 Viewing devices that have been assigned back-off (those tracked by the back-off

counter) as a queue. Dequeued element on the left, enqueued elements on the
right. 74

5.10 Simulation results showing the number of sensors, and Failed Transmission Re-
quests (FTR) value in each state. 75

6.1 GRIP workflow process including source code compilation and specification
translation. The runtime PRISM call in the right hand box is optional when the
-optimise optimisation flag is set. 83

6.2 Visualisation of the translation steps of the current GRIP algorithm. Entities
with the same name in the two specifications are direct copies. The double
border around “-eliminate formula" denotes that this item is optional. We
include a family of symmetric modules but no asymmetric modules (for sim-
plicity). 87

6.3 State diagram for the coin toss system. 90
6.4 Translation of a non-symmetric statement. 94
6.5 Translation of a block of symmetric statements. 96
6.6 Rules for translating synchronised SPSL statements to a generic form. 99

LIST OF FIGURES ix

6.7 Comparison of experimental results for GRIP 3.0, PRISM and PRISM-symm.
Cells labelled with OOM represent models for which PRISM reported an out-
of-memory error. Models for which PRISM could not construct the underlying
Ordered Decision Diagram (ODD) due to running out of memory are labelled
as ODD-x. 103

6.8 Model storage and verification results for GRIP 3.0, PRISM and PRISM-symm. 105
6.9 Verification results from the consensus case study [145]. 106
6.10 Model size and verification results for the Randomised Consensus Shared Coin

Protocol obtained by GRIP 3.0, PRISM and PRISM-symm. 107

Acknowledgements

First and foremost, Prof. Alice Miller for all of the effort and patience that was needed in
supervising my Ph.D. I deeply appreciate you going above and beyond in your duties and always
making it feel like my supervision is of top importance. Every chapter of this thesis has been
guided by Alice’s indispensable advice and ideas, has been thoroughly proof-read by her, and
substantially improved by her comments. I would not have gotten to the end if I was supervised
by anybody else. Thank you, Alice!

I would like to thank my second supervisor Dr Michele Sevegnani and everybody else from
the Science of Sensor Systems Software (S4) programme grant for the welcome introduction
to the world of research. I am also grateful to S4, and in particular to Prof. Muffy Calder, for
funding my Ph.D.

A big thank you to Prof. Alastair Donaldson for lengthy discussions about the GRIP tool
and invaluable insight into its implementation.

Also thank you to Dr Simon Rogers for useful discussions which led to our proposed statis-
tical approach.

I would like to thank Dr Gethin Norman and Dr Ornela Dardha, my annual progress review
examiners. You helped me steer my thesis into the correct path.

Thank you to all of my friends for all of the help, advice, laughs, talks and so much more.
All of you made my life better in your own way during my the last five years. Special thanks
to Dr Alex Pancheva, who started her Ph.D journey at the same time as me, but has long since
graduated and is my guiding light.

Thank you to my fellow PhD students from room G161. Michael, Frances, Ben, Sofiat,
Doug, Peace, although we spent a large amount of time working from home during the crazy
times of Covid19, I appreciate all of the days we shared working together.

A special thank you to my girlfriend Ari, who made the final push in the writing of this thesis
so much more manageable.

A final huge thank you to my family, who have always been there for me, and I know will
always be there for me. Mum and Dad, I cannot imagine better parents than you. My little sister
Geri, you are without a doubt a better version of me. My grandpa Gancho, who sadly passed
away before I could graduate, and my grandmas Ivanka and Todorka, I hope I can continue
making you proud of me. I love you all!

x

Chapter 1

Introduction

1.1 Motivation

Sensor systems play an important role in everyday life. From the moment we wake up, we inter-
act with sensor-driven technologies. In our homes, sensors monitor temperature and motion, so
that appropriate heating and lighting is provided, and smart appliances employ various sensors
to enhance convenience and energy efficiency. As we step outside, our smartphones act as multi-
functional sensor hubs, collecting data from GPS, accelerometers, and ambient light sensors to
provide location-based services, fitness tracking, and adaptive screen brightness. In transporta-
tion, sensor systems enable advanced driver-assistance features, such as parking sensors, lane
departure warnings, and collision avoidance systems. Sensor networks monitor traffic flow, op-
timise logistics, and enhance public safety in smart cities. In healthcare, wearable sensors track
vital signs and activity levels, empowering individuals to monitor their well-being, while med-
ical devices employ sophisticated sensors to diagnose, treat, and manage various conditions.
Even in entertainment, virtual reality headsets rely on motion sensors to create immersive ex-
periences. Sensor systems have truly permeated our lives, enhancing our comfort, safety, and
efficiency while driving innovation across countless domains.

Several challenges are associated with sensor networks, which can hinder their effectiveness
and reliability. One major challenge is the limited power supply available to individual sensors.
Since many sensors are deployed in remote or inaccessible locations, replacing or recharging
batteries can be impractical or even impossible. This constraint necessitates the development
of energy-efficient sensors and protocols that optimise power consumption and extend the net-
work’s lifetime. Additionally, the deployment of sensor networks in harsh environments, such as
extreme temperatures or high humidity, poses durability challenges. Sensors must be designed
to withstand these conditions to ensure accurate and consistent data collection.

Another challenge lies in the communication and coordination among sensors within the
network. As the number of sensors increases, the complexity of managing and routing data
also grows. Efficient routing algorithms and protocols need to be implemented to ensure timely

1

CHAPTER 1. INTRODUCTION 2

and reliable data transmission while minimising network congestion and energy consumption
[241]. Moreover, sensor networks may face issues related to network coverage and connectivity.
Obstacles like buildings, terrain, or interference from other devices can disrupt or weaken the
wireless signals, resulting in data loss or limited coverage areas.

The volume of data generated by sensor networks can also pose a significant challenge
for data processing and analysis. Managing and extracting meaningful insights from massive
amounts of sensor data in real-time can be complex and resource-intensive. Advanced data
analysis techniques, such as machine learning and artificial intelligence, are employed to pro-
cess, filter, and extract valuable information from the sensor data.

Formal methods are a set of mathematically-based techniques that are used for the veri-
fication of software and hardware systems in order to ensure their correctness and reliability.
They play a significant role in addressing the challenges faced by sensor networks by providing
rigorous and systematic approaches to design, analysis, and verification.

Firstly, formal methods help optimise the energy consumption of sensor networks by en-
abling rigorous modelling and analysis of energy-related aspects. Through mathematical mod-
elling and formal verification techniques, energy-efficient protocols, algorithms, and power
management strategies can be designed and verified to maximise the network’s lifetime and
minimise energy consumption [21, 131].

Secondly, formal methods aid in designing efficient routing algorithms and protocols for
sensor networks. They enable formal modelling and analysis of communication protocols, en-
suring properties such as reliability, scalability, and timeliness. Formal verification techniques
help identify and quantify potential issues, such as data loss or congestion, and verify the cor-
rectness of routing schemes, improving the network’s overall performance and coordination.
Furthermore, they can assist in analysing and optimising network coverage and connectivity. By
employing formal modelling techniques, coverage problems can be detected, and deployment
strategies can be optimised to ensure sufficient coverage and connectivity [85, 151, 210]. For-
mal verification can help identify areas with weak connectivity or potential signal interference,
leading to the development of solutions to mitigate these issues. In particular, in data process-
ing and analysis in sensor networks, formal models and algorithms can be developed to extract
valuable insights from sensor data, allowing for efficient and accurate analysis. Formal verifica-
tion techniques can ensure the correctness of data processing algorithms and the accuracy of the
obtained results.

By leveraging formal methods, sensor networks can benefit from rigorous analysis, verifica-
tion, and optimisation techniques. This leads to the development of more reliable, efficient, and
secure sensor systems, enabling their successful deployment in diverse domains and addressing
the challenges associated with energy consumption, communication, connectivity, security, and
data processing.

Cyber-Physical Systems (CPSs) refer to integrated systems that combine physical compo-

CHAPTER 1. INTRODUCTION 3

nents with computational and networking elements. These systems bridge the gap between the
physical and virtual worlds by connecting and coordinating physical processes with digital in-
formation processing, communication, and control. They typically involve a network of sensors,
actuators, embedded systems, and computing devices that interact with the physical world and
exchange data and information through wired or wireless communication networks. These sys-
tems are designed to monitor, control, and optimise various processes and environments, ranging
from transportation and manufacturing to healthcare and energy.

The core aspect of CPSs is the integration of physical processes and objects with compu-
tational systems and networks. Physical components can include machinery, devices, vehicles,
infrastructure, and even humans, while cyber components involve software, algorithms, data,
and communication networks. CPSs enable real-time interactions between the physical and vir-
tual components. They continuously sense the physical state, collect data, process information,
and actuate physical processes accordingly. This real-time aspect is crucial for achieving re-
sponsive and dynamic control. This type of systems typically employ a wide range of sensors to
collect data about the physical environment, such as temperature, pressure, motion, or location.
Actuators are used to control physical processes by manipulating the physical elements, such as
turning on or off a motor or adjusting a valve. Communication networks enable the exchange
of data and information between physical and cyber components of CPSs. This is necessary for
coordination, synchronisation, and collaboration among different components of the system.

Applications of CPSs can be found in various domains, including:

• Transportation: Intelligent transportation systems, autonomous vehicles, traffic control,
and monitoring [216].

• Manufacturing: Smart factories, industrial automation, robotics, and supply chain man-
agement [238].

• Healthcare: Remote patient monitoring, medical device integration, telemedicine, and
personalised healthcare [160].

• Energy: Smart grids, energy management, renewable energy integration, and demand
response systems [136].

• Infrastructure: Smart buildings, smart cities, infrastructure monitoring, and crowd flow
optimisation [160].

Wide Area Cyber-Physical Systems (WA-CPSs) refer to a specific subclass of Cyber-
Physical Systems that operate over large geographical areas. WA-CPSs extend the capabilities
of traditional CPSs by enabling coordination and control over a wide geographic scope, often
involving diverse physical processes and heterogeneous components. They encompass a wide
area, often including multiple physical locations or regions. These systems are designed

CHAPTER 1. INTRODUCTION 4

to monitor, control, and optimise physical processes and resources that are geographically
dispersed.

WA-CPSs consist of interconnected subsystems distributed across different locations. These
subsystems can be independent CPS or smaller-scale systems that are integrated to form a larger-
scale system. The interconnection allows for information exchange and collaboration among dif-
ferent components. Typically, they involve diverse physical processes, components, and tech-
nologies. These systems may incorporate various types of sensors, actuators, communication
networks, and computational elements. Managing the heterogeneity and ensuring interoperabil-
ity among different subsystems can be a significant challenge.

Communication and networking play a crucial role in WA-CPSs to enable coordination and
information exchange over a wide area. These systems rely on robust and reliable communi-
cation infrastructure to transmit data and commands among different subsystems. It is often
necessary to design WA-CPSs with scalability and resilience in mind. The systems should be
capable of handling large-scale operations and be resilient to failures, disruptions, or cyber at-
tacks. Redundancy, fault tolerance, and backup mechanisms are important considerations in
ensuring system reliability.

Applications of Wide Area Cyber-Physical Systems can be found in various domains, in-
cluding:

• Smart Grids: Wide area monitoring and control of power generation, transmission, and
distribution systems [208].

• Environmental Monitoring: Large-scale monitoring and management of environmental
parameters like air quality, water resources, and weather conditions [203].

• Transportation Networks: Wide area traffic management and optimisation, including traf-
fic flow control and congestion mitigation [74].

• Disaster Management: Coordination of emergency response systems across multiple re-
gions during natural disasters or critical events [72].

• Supply Chain Management: Integrated monitoring and optimisation of supply chains
across different locations [223].

WA-CPSs involve actuators, controllers and low-powered sensors, and are used in areas
which span multiple kilometres. Such systems require a bounded communication delay in order
to work properly; however, current wireless communication technologies are unable to provide
bounded delay on wide areas [22]. Ctrl-MAC is a Low-Power Wide Area (LPWA) MAC pro-
tocol, proposed as a solution for WA-CPSs, and has been developed by partners in the Science
of Sensor Systems Software (S4) project. Ctrl-MAC has been evaluated against LoRaWAN, a

CHAPTER 1. INTRODUCTION 5

state-of-the-art LPWA MAC protocol, by testing both on a varied number of nodes and differ-
ent transmission patterns [22]. Results show that Ctrl-MAC performs better than LoRaWAN in
terms of the communication requirements of reliable communication, two-way communication
and bounded delays. The delay analysis performed, however, relies on numerical simulation
for varying data loads. However, such simulations, by their nature, cannot analyse all possi-
ble network behaviours. To obtain a proof for the boundedness of the delay, we turn to formal
methods.

The problem of proving that a bound for the communication delay of a network protocol
exists and finding the value of that bound is a fundamental question of communication technolo-
gies. Ctrl-MAC is a protocol in which the communication delay is closely tied to the number
of participating devices. This presents an issue for the typical modelling approach of creating
a model for a small number of devices and extrapolating results for a larger number of devices.
In this thesis we create a sequence of formal models for Ctrl-MAC with increasing levels of
abstraction to generate results for small to moderately sized systems. We then use the knowl-
edge gained from developing these models to produce a set of generic mathematical results and
modelling techniques which can be applied to provide a bound on the transmission delay for
sensor systems of any given size. Although our approach focuses on Ctrl-MAC, we anticipate
that it can also be applied to other similar protocols.

1.2 Contributions

1.2.1 Thesis Statement

Thesis title: Formal Analysis of Communication Protocols for Wireless Sensor Systems.

Thesis statement: Formal methods can be used to provide guarantees of correctness for sensor
network communication protocols for systems of moderate size, and to aid in the development
of generic mathematical results for much larger systems. We demonstrate this by presenting a
suite of PRISM models, properties and verification results for the Ctrl-MAC protocol, together
with theoretical results, which will be used to prove correctness for systems of any given size.

I was funded by the EPSRC Science of Sensor Systems Software programme grant
(EP/N007565/1, 2016-2022), and my work has been influenced by conversations and dis-
cussions with researchers from the project. Whilst writing up this thesis I was partially
supported by the UKRI Strategic Priorities Fund to the UKRI Research Node on Trustworthy
Autonomous Systems Governance and Regulation (EP/V026607/1, 2020-2024).

CHAPTER 1. INTRODUCTION 6

1.2.2 Main Results

We have developed a series of models for the Ctrl-MAC protocol. These were developed iter-
atively as a result of a series of conversations with the protocol developers and were used to
establish a number of issues with the protocol specification. A sensor communication protocol
such as Ctrl-MAC where the performance of protocol is dependant on the recent history of the
system is what led us to search for new modelling techniques.

We considered a number of different techniques for dealing with the state space explosion
encountered by our models and focused our efforts on symmetry reduction through the use of
counter abstraction. We successfully used this technique to create two new models of Ctrl-MAC
which employed different levels of counter abstraction and could be used to verify different
scopes of properties. Doing so we obtained a deeper understanding of how Ctrl-MAC functions,
and used that knowledge to propose a statistical approach that could be used to provide an
approximation for the behaviour of the protocol.

Throughout our survey into symmetry reduction techniques as a solution to the state space
explosion challenges faced by Ctrl-MAC, we looked into GRIP, one of the two tools for per-
forming symmetry reduction in PRISM. This tool was the one that was more suited to the type
of systems that Ctrl-MAC is (i.e. a large number of less complex devices). We have performed
two sets of changes to GRIP. The first we have released as GRIP 2.1 and that one restores GRIP’s
functionality to that of its last release of about ten years ago. The second set of changes allows
GRIP to support models using synchronised actions, the main obstacle in applying GRIP to
Ctrl-MAC. We present this new feature as GRIP 3.0, a new version of the symmetry reduction
tool. We applied GRIP 3.0 to a variety of PRISM models involving synchronised commands,
achieving mixed results based on the extent of the model’s use of synchronised statements.

1.3 Organisation of Thesis

Chapter 1 introduces the topics of formal methods and sensor systems, and provides an overview
of how this thesis is structured. In Chapter 2 we provide some background to our area of re-
search, giving a review of model checking and wireless sensor network literature. We present
different model checking tools with a focus on the PRISM model checker. In addition, we
summarise the main issues related to model checking and to wireless sensor networks, and the
existing approaches to solving them. In this Chapter we also give an in-depth review of the
symmetry reduction technique and its use in addressing the state space explosion problem. In
Chapters 3 and 4, we describe the key technical concepts used in this thesis, related to model
checking, and to Ctrl-MAC, respectively.

In Chapter 5 we present the initial PRISM models that we created during our formal analysis
of Ctrl-MAC. We provide comparisons of the models and the results we obtain from them.
Lastly, we present a statistical approach that could be used to obtain verification results for Ctrl-

CHAPTER 1. INTRODUCTION 7

MAC instances with a larger number of participating sensor devices. In chapter 6 we introduce
the GRIP symmetry reduction tool. We then present our contributions to the tool: GRIP 2.1 and
GRIP 3.0; as well as all of the changes that we performed to introduce support for synchronised
statements to GRIP. We outline the extensions of the SPSL translation rules necessary for GRIP
to support counter abstraction of PRISM specifications containing synchronised commands.

Lastly, in Chapter 7 we give a summary of the thesis and our results. We outline the chal-
lenges we encountered, our key contributions, and propose extensions to our contribution that
could be made in the future. In the end, we list two appendices, in which we list some of the
PRISM specifications referred to in the thesis, together with a list of abbreviations used.

Chapter 2

Background

In this chapter we highlight and present research relevant to this thesis. We discuss formal ver-
ification techniques, focusing mainly on model checking. We present different model checking
tools, providing more detail about the PRISM model checker, which is the main model checker
we use in this thesis (and is discussed in further detail in Section 3.5.1). We introduce a common
problem with model checking, namely the state space explosion problem, and survey methods
used to resolve it, including symmetry reduction which we exploit later in the thesis. We intro-
duce wireless sensor networks, the problems frequently faced by them, and associated related
verification approaches.

2.1 Formal Methods

The term “formal methods” is used to describe various mathematical techniques that are used
in the formal specification and analysis of hardware and software systems. They are based on
a formal specification language in combination with a collection of tools, which are used for
checking specifications written in the language, as well as proving properties of that specifica-
tion. Formal methods enable the verification of a system independently of its implementation.

Failures of software and hardware systems can result in significant financial losses and, in
safety-critical contexts, even lead to fatal outcomes [135, 159, 180]. It is of great importance to
be able to ensure the correctness of such systems. Consequently, there has been a growing focus
on utilising formal verification to create high-confidence systems [102, 179].

Formal verification is the application of rigorous mathematics-based techniques with the
purpose of proving or disproving the correctness of a computer-based system. The system, either
software or hardware [140], is checked by ascertaining whether or not its behaviour satisfies a
desired property. First, these properties need to be specified in order to define what the desired
behaviour of the system is. Then a suitable formal model of the system that reflects the behaviour
of the system needs to be built. This model must capture all aspects of the system that influence
the behaviour of the system to ensure that the obtained correctness results are meaningful. At

8

CHAPTER 2. BACKGROUND 9

the same time the model should be sufficiently abstract to make it understandable and able to be
verified [53, 55, 212]. The mathematical nature of the techniques avoids speculation about the
meaning of phrases which would otherwise be present in a possibly ambiguous natural language
description of a system. The formal representations used in the specifications of the system and
the properties do not need to be the same, but their underlying logic must be compatible [68]. In
essence, formal verification provides a method to either obtain proofs that a system satisfies the
purpose it was designed for or to determine the ways in which it fails to do so.

Formal verification is a collection of techniques in which mathematical methods are used
to verify systems. It is just one of many verification techniques (see figure 2.1) which also
include testing [79, 178] and simulation [18, 153, 234, 242]. Formal verification itself consists
of model based verification and other methods. These other methods include theorem proving
[11, 116, 118], program derivation [67, 190, 233], static analysis [78, 94, 174, 215, 219], and
typed systems [52, 54, 88, 89, 138]. In this thesis we are only using one particular type of model
based verification method - namely model checking. We show how model checking fits into the
array of software and hardware verification techniques in Figure 2.1.

‘

Figure 2.1: Hierarchy of verification techniques and model checking in relation to other verifi-
cation methods.

Verification is the counterpart to validation: the other process most frequently used to anal-
yse the design of a system [98, 106, 158]. Validation examines the behaviour of a system via
simulation or prototyping, whereas verification aims to obtain a mathematical proof for the cor-
rectness of the operation of the system.

CHAPTER 2. BACKGROUND 10

2.1.1 Model Checking

Model checking is a formal method which allows properties of a system to be checked by build-
ing a model of the system and checking whether the model satisfies the properties [37, 41, 77,
204]. It is one of the most successful formal verification techniques and has been widely used in
both research and in industry. Model checking is a technique first proposed in the early 1980s by
Clarke and Emerson [43] and independently by Queille and Sifakis [196] that is used to verify
temporal properties of systems. Unlike theorem proving, the user is not as involved in the verifi-
cation process. The user only needs to provide formal specifications of the system and property
to be checked. The model checking tool then builds the model and, if the model is verifiable,
either provides a counterexample showing how the property fails to be satisfied or declares that
the property is true. The latter case provides confidence that the property holds for the system
by showing that it holds for all executions of the model. In order for this process to be fully
automated, the algorithm used by the model checking tool must explore all possible states of the
system [46]. For this reason model checking can only be applied to finite-state systems. Many
systems of interest are either finite-state or are based on a finite-state control structure [134,
187]. In other cases, where the system is based on an infinite domain, it is often possible to
create a finite abstraction of that domain, such that the information necessary for the behaviour
of the system is preserved.

In its early days model checking was mostly used to provide verification of hardware systems
[68, 140]. However, it has since also been successfully applied to many aspects of software
verification [17, 224].

Models are defined using a specification language, and can be checked using a variety of
model checkers. Different model checkers have different attributes. For example, they can
model the state space explicitly or symbolically [32, 167], can include quantitative aspects such
as time or probability (or neither - in which case only qualitative properties can be considered).

2.1.2 Probabilistic Model Checking

Probabilistic model checking is an extension of traditional model checking that incorporates
probabilities and quantitative aspects into the verification process, and is used to verify systems
with stochastic qualities. Such qualities are naturally present in many systems, e.g., systems that
use randomisation as a part of their operations [157] or systems that involve unpredictable and
unknown behaviour, such as the communications delay of a computer network [122].

Probabilistic model checking revolves around the construction and subsequent analysis of a
probabilistic model. The probabilistic model used is most typically a Markov chain or Markov
process, but can be based on a variety of formalisms. A Markov chain is a mathematical model
that describes memoryless stochastic process as a sequence of events, where the probability of
each event depends only on the preceding event. Figure 2.2 depicts the relationship between the

CHAPTER 2. BACKGROUND 11

most significant formalisms. The formalism used depends on the properties of the system to be

Figure 2.2: Formalisms family tree. All formalisms are extensions of their descendants. Image
taken from [103].

modelled. For example, timed automata can be used to represent real-time systems [6]. This
in turn influences the choice of model checker as timed automata can only be parsed by certain
model checkers. A detailed overview of these formalisms and their expressiveness hierarchy is
given by the comparison of probabilistic automata in [217].

Probabilistic model checking requires two inputs: a description of the system to be analysed,
typically given in some high-level modelling language; and a formal specification of quantita-
tive properties of the system that are to be analysed, usually expressed in variants of temporal
logic. Transitions are labelled with quantitative information regarding the probability and/or
timing of the transition’s occurrence. Markov chains can also be augmented with rewards, used
to specify additional quantitative measures of interest [149]. Once this model has been con-
structed, it can be used to analyse a wide range of quantitative properties of the original system,
relating for example to its performance or reliability. In contrast to, say, discrete-event simula-
tion techniques, which generate approximate results by averaging results from a large number
of random samples, probabilistic model checking applies numerical computation to yield exact
results. Probabilistic model checking often relies on symbolic representation of states, typically
through the use of Binary Decision Diagrams (BDDs) (see Chapter 3 for a definition). Using
a representation of a group of states rather than systematically exploring all states results in a
more efficient storage and computation. Symbolic methods have been effective in the design of
control systems [101, 211]. We have chosen to use a symbolic approach in this thesis because
of its efficiency and because probabilistic reasoning is most appropriate for our main case study
– a protocol for wireless sensing and control.

Statistical model checking [155, 156] is a simulation-based approach to verifying quantita-
tive properties which allows probability thresholds to be obtained for properties. The key idea is

CHAPTER 2. BACKGROUND 12

to observe some of the system executions via a monitoring procedure [19], and to use hypothesis
testing to decide whether the executions provide enough statistical significance for the confir-
mation or disproval of a property [245]. Statistical model checking differs from the numerical
approaches described above in that it does not provide a guarantee for a correct result due to its
simulation-based nature; however, it is possible to provide a bound on the possibility of making
an error. It has been used in CPSs as it is helpful when it is inconvenient or impossible to obtain
a concise representation of a global transition [47]. The main limitation for statistical model
checking are properties concerned with rare events, i.e. whose satisfaction probability is very
small.

2.1.3 Model Checkers

Model checkers are automated tools used to perform formal verification of systems. They sys-
tematically explore all possible states or behaviours of a system model and check if it satisfies a
given set of properties or specifications [186]. The basic methodology behind a model checker
is shown in Figure 2.3: the system that is being analysed is used to construct a state-transition
formal model M, the desired properties of the system are described using a logic formula φ , and
the model checker determines whether the formula φ is modelled by the model M, M |= φ . If
M ⊭ φ , then the model checker produces a counterexample that presents an instance where the
formula is violated. Model checkers are widely used in various domains, including hardware
and software systems, protocols, concurrent systems, and distributed systems.

Figure 2.3: Basic model checker methodology

Model checkers can be broadly classified into two categories: qualitative and quantitative.
Qualitative model checkers support properties that refer to states never being reached or to the
order in which events occur [95]. These properties contain no quantitative aspects such as prob-
abilities or timing constraints. On the other hand, quantitative model checkers are capable of
analysing quantitative aspects of a system, such as probabilistic or time-dependant behaviour

CHAPTER 2. BACKGROUND 13

[151]. They are capable of determining numerical values or probabilities associated with spe-
cific states being reached, for example the total reward accumulated during execution of a model.
There is a wide variety of model checkers available, each with its own strengths, supported for-
malisms, and verification techniques. Some examples of model checkers are listed below, and
some of their characteristics are compared in 2.1:

• SPIN [114] is a well-known non-probabilistic model checker for concurrent systems. It
supports the verification of properties expressed in Linear Temporal Logic (LTL) and
uses a depth-first search algorithm to explore the state space. SPIN is widely used in
the analysis of concurrent and distributed software systems [115, 126].

• The Alloy Analyzer [121] is a model checker that focuses on software analysis and design.
It uses a declarative modelling language based on first-order logic constraints. The Alloy
Analyzer employs a SAT-based solver to explore the state space of the system model
and check properties. It is often used for analysing software architectures and system
behaviour [13, 137, 142, 224].

• NuSMV [39] is a symbolic model checker that is a reimplementation and extension of
the SMV model checker. NuSMV models are closely tied to their expression as boolean
formulas, and allow for hierarchical specifications which make use of reuseable compo-
nents. The model checker supports both asynchronous and synchronous communication.
NuSMV is often used in the formal analysis of hardware systems and protocol specifica-
tions [50, 168].

• UPPAAL [20] is a model checker specifically designed for the verification of real-time
systems. It supports the modelling and verification of systems with both discrete and
continuous behaviour, such as timed automata. Typical application areas are those where
timing aspects are critical, such as real-time controllers and communication protocols in
particular [17, 123, 169].

• PRISM [143] is a powerful symbolic probabilistic model checker that specialises in
the analysis of probabilistic systems. It supports various formalisms, including Markov
Chains, Markov Decision Processes, and Probabilistic Timed Automata. PRISM provides
a variety of analysis techniques, whose implementations are partly explicit (based on
sparse matrices) and partly symbolic (based on Binary Decision Diagrams). It supports
advanced techniques, such as multi-objective model checking [195] and parameter
synthesis [194]. The tool is highly interconnected by language translators and the Hanoi
Omega-Automata format [12]. PRISM is probably the most widely used verification
tool on our list and have been used in a variety of areas, including analysis of satellite
positioning systems [163, 164], the rates of biological processes [152], and the behaviour
of autonomous agents [113]. PRISM will be introduced in detail in Section 3.5.1.

CHAPTER 2. BACKGROUND 14

Language Supported Formalisms Module communication Engines
SPIN Discrete (finite- Asynchronous, message Explicit-state, partial order

state systems) passing, rendezvous reduction, bit-state hashing
Alloy Discrete (relational Both (declarative SAT

models) relational modelling)
NuSMV Discrete (finite- Primarily BDDs, SAT

state systems) synchronous
UPPAAL Timed Asynchronous Difference-bound matrices,

(timed automata) with rendezvous polyhedral reasoning
PRISM DTMC, CTMC, Via synchronisation MTBDD, Sparse,

MDP, and PTA Hybrid, Explicit
STORM Discrete- and Continuous- Via synchronisation Automatic engine

Time Markov models selection
DTMC, CTMC, Sparse, Hybrid, Exploration
MDP, and MA DD, Abstraction-Refinement

ePMC DTMC, CTMC, MDP, Primarily Layered iteration approach
and stochastic games synchronous Büchi and Rabin automata

Table 2.1: A selection of model checkers and their corresponding modelling languages, and their
characteristics. Based on information from [186].

• STORM [112] is a probabilistic model checker that can handle both discrete and
continuous-time Markov Chains as well as Markov Decision Processes and Markov
automata. Similarly to PRISM, it supports advanced techniques, such as multi-objective
model checking [195] and parameter synthesis [194], as well as both symbolic and
explicit state space representations and a mixture of the two. The direct usage of a wide
array of modelling languages is supported as an input, including the PRISM language.
STORM is commonly used for analysing large-scale, complex probabilistic models [132,
209].

• ePMC (An Extendible Probabilistic Model Checker, previously known as IscasMC) [81]
supports Markov Decision Processes, Markov Chains and stochastic games, and allows
specification of properties in PCTL*. ePMC excels in efficient computation of linear time
properties [104] and boasts high modularity and extensibility of the tool with plugins
for new features. In this way, it can be extended for specialised purposes allowing the
verification of niche systems [75, 82]. It also supports direct usage of the PRISM language
as an input.

Choosing an appropriate model checker depends on various factors, including the character-
istics of the system being analysed and the properties to be verified. This can be a challenging
task without in-depth knowledge of all available tools. The QComp 2019 competition [103]
was held as a friendly forum to compare tools analysing quantitative formal models. Its results
showed that each tool had different capabilities and different tools excelled at different bench-

CHAPTER 2. BACKGROUND 15

mark instances, with no one tool taking the lead in terms of performance. The PRISM model
checker was regarded, however, as the foremost in terms of usability. It has extensive online
documentation, provides a graphical user interface, and ease of installation with only Java as
a dependency. These, coupled with our previous experience with PRISM, are the reason that
this thesis mostly focuses on PRISM as the model checker of choice. The second iteration of
the competition, QComp 2020 [30], saw a significant increase in the modelling capabilities of a
number of the participating tools. This time the STORM model checker dominated the competi-
tion; however, the authors noted that its new automatic engine selection causes it to not fit well
with the competition design. Overall, model checkers are an active area of research with new
tool capabilities being steadily introduced. We discuss PRISM in detail in Section 3.5.1.

2.1.4 State space explosion

The state space explosion problem is a challenge encountered in model checking: the state space
of a system can grow exponentially with the number of components, variables, or events. For
example, suppose that a system is composed of m processes, each made up of n states. The
composition of those processes can have up to nm states. Likewise, a system consisting of an
n-bit counter has 2n states. Model checking involves exhaustively exploring all possible states
of a system model to verify if certain properties hold, so this exponential growth can make the
task computationally infeasible. This problem is referred to as the state space explosion (or state

explosion) problem in the context of model checking and affects all model checkers. Complexity
theory has been used to show that, in the worst case, this problem is inevitable [45]; however,
there has been a number of techniques developed that address this issue. Some techniques aim
to reduce the state space of a system before the verification process begins by analysing the
system’s structure or properties. Others focus on pruning portions of the state space that are
known to be irrelevant to the property in question during the verification process. We review a
few of these techniques below.

Symbolic model checking techniques operate on symbolic representations of the system
model instead of explicitly enumerating all possible states. A set of states is represented by a
BDD which results in a representation which is often exponentially smaller. BDDs were first
introduced by Lee [154] and then popularised by Akers [2] as a compact and efficient way of
representing Boolean functions. They are later extended via the addition of an ordering of their
variables [29]. As the size of the BDDs is greatly impacted by the ordering used - ranging from
linear to exponential - the way of selecting an ordering has been a significant research interest.
Determining the best variable ordering prior to constructing the BDD is an NP-hard problem
[141]. A number of ordering heuristics have been created [108] to obtain an initial ordering and
reordering algorithms [227] that obtain a BDD representation with a minimum number of nodes
for a specific subclass of models. Symbolic model checking has been used to model systems
much larger than those possible with explicit model checking [31, 32].

CHAPTER 2. BACKGROUND 16

Partial order reduction techniques [92] eliminate redundant interleavings of events in systems
with an asynchronous composition of processes where the order in which certain events occur
does not affect the satisfiability of the property being checked. This technique is based on the
observation that the exploration of some paths can be avoided without changing the resulting
verification outcome. Such paths exist because events that are independent of each other can
be executed in any order without impacting the result. Figure 2.4 shows two independent paths
(s→ sa → s′) and (s→ sb → s′) where transitions update the value of a local variable var. In this

Figure 2.4: Independent paths that reach the same end state.

case it would be sufficient to only explore one of these paths during the model checking process.
One of the biggest challenges for partial order reduction is that the reduction must be performed
on the fly [186]. Which transitions can be ignored must be decided during the construction of the
transition system as it would be counter-productive to first construct the whole transition system
and then prune it. Therefore, decisions need to be done locally, without global knowledge of
the transition system. Selecting a subset of available paths allows us to construct and perform
verification on a smaller state space which uses the selected paths as representatives of the
equivalence classes of all paths [129]. If a counterexample for a property exists in the full state
space, it must also be present in the reduced state space. Traditionally, partial order methods
have been used by the enumerative algorithms of explicit state model checkers, and typically
for asynchronous systems; however, they have also been applied to symbolic model checking
[5]. There exist several methods that perform the selection of paths: ample sets [185], stubborn
sets [226], and persistent sets [93]. While these methods were developed independently, they are
similar in some respects, and have been used together [99]. Some partial order reduction variants
also take into account the state from which transitions are performed to refine the reduction
process [130]. Partial order reduction has been recently used in schedule-abstraction graphs,
a reachability-based response-time analysis technique [198]. It was shown that partial order
reduction led to an impressive 98% reduction in the number of states explored, causing a runtime
reduction of five orders of magnitude.

Symmetry reduction techniques aim to eliminate redundant states that arise from symmetries
in the system. They exploit structural symmetries to collapse or merge equivalent states. We will
explore these in more detail in Section 2.1.5.

Knowledge of properties of the state space has not only been used in relation to symme-

CHAPTER 2. BACKGROUND 17

try. A class of systems, called degenerative, that have the property that a model of the system
will eventually behave like a model of a smaller system, is investigated in [170]. In this paper
the behaviour of the Firewire leader election protocol on a given number of nodes is analysed.
Abstraction and induction techniques are used to show that properties that hold for a small num-
ber of nodes will also hold for a larger number of nodes. Another induction property is shown
on a class of quantitative LTL properties for degenerative systems [95]. In [36] abstraction is
used to prove general results about a telecommunications protocol involving any number of pro-
cesses. The abstraction technique involves creating an abstract process which represents a sum
of any number of processes. This way any system can be described as having a fixed number
of concurrent processes and one abstract process that holds information about all of the other
processes.

Bounded model checking is a technique that relies on a SAT solver to perform an exhaustive
search for counterexamples of limited length. It was introduced as an alternative to symbolic
model checking without BDDs [23]. It has been shown to perform better than BDD based
verification techniques in some cases and to require less user configuration (as opposed to the
ordering of BDD variables) [42]). Drawbacks of this approach include the fact the types of
properties that can be verified are limited, and as counterexamples are of bounded length, the
verification approach is incomplete. Therefore, bounded model checking is better suited to
finding bugs in a system, rather than proving correctness, and as a result has found successful
application in hardware verification [24]. An overview of recent advancements in bounded
model checking are highlighted in [229].

Other state space reduction techniques include counterexample guided abstraction refine-
ment (CEGAR) [44] and program slicing [222], but we do not use them in this thesis.

The techniques to tackle state space explosion mentioned above have also been applied to
a probabilistic context. Partial order reduction for probabilistic model checking has been in-
troduced simultaneously in [16] and [49]. Those works were focused on model checking LTL
properties on Markov Decision Processs (MDPs). The probabilistic variant of this technique is
later revised in [15] by ensuring that distributed schedulers are preserved. The most prominent
application of symbolic model checking to probabilistic systems is PRISM. Dynamic symmetry
reduction has been applied to PRISM as a way to circumvent the problem caused by generat-
ing all orbits of the symmetry relation in probabilistic systems [232]. Abstraction refinement
techniques have been applied to probabilistic software [128] to target quantitative properties of
software. Experimental results have shown that the approach performs very well in practice, be-
ing successfully used to verify networking software with complexity beyond the scope of other
probabilistic verification tools.

These techniques can be used individually or in combination to mitigate the state space
explosion problem in model checking. The choice of technique depends on the characteristics
of the system model, the properties to be verified, and the available computational resources.

CHAPTER 2. BACKGROUND 18

Each technique has its trade-offs in terms of precision, scalability, and the types of systems they
can effectively handle.

2.1.5 Symmetry reduction

A number of different approaches exist to exploit symmetry when modelling a system consisting
of multiple identical components. A common idea is to abstract the model in such a way as to
allow for computations for the identical components to be reused rather than redone.

Symmetry reduction [40] is a common strategy to reduce the state space of models consisting
of identical components. The inherent symmetry of the original system will be reflected in the
state space of the constructed model. Model checking search techniques involve the exploration
of the state space of the model. Therefore, symmetrically equivalent areas of the state space
can be searched only once by leveraging knowledge of the symmetry of the system. There are a
number of approaches and techniques that have been proposed and used for symmetry reduction
[172]: the construction of a reduced state space where symmetrically equivalent areas of the
state space have been identified as one. The exploitation of symmetry has also been investigated
in the context of process networks [34].

The concept of generic representatives is introduced [71] as a way to achieve symmetry
reduction. This method consists of translating the source code for a model into that for a reduced
model, which can still be explored using model checking algorithms.

A related technique is known as a population approach whereby the effect of actions on
populations of components/agents are considered, rather than on individuals. A model repre-
senting the interactions of a finite population of identical finite-state agents is presented in [8].
This model consists of population protocols and population configurations. An application of
population models for a distributed robot protocol is examined in [85]. The resulting models are
used to complement simulation results in order to facilitate the logistics of swarm deployment.
This concept is extended in [86] for non-centralised protocols by providing modelling support
for agent synchronisation. A holistic approach to the multiple layers of population abstraction
is given in [87].

2.1.6 State space reduction tools

General purpose state space reduction tools have not been well established in the field of model
checking. Typically state space reduction techniques such as those described in Section 2.1.4 are
used to create a state space reduction algorithm which is then implemented for a specific model
checking tool/process. As a result, model checkers typically have state space reduction tech-
niques built in that are distributed packaged together with the model checker and are triggered
either automatically or through the use of optional command arguments. For example, program

slicing [222] is a well-established state space reduction technique, whose basic idea is to elimi-

CHAPTER 2. BACKGROUND 19

nate details of the program being verified that are irrelevant with respect to the property that is
being analysed. This technique has been labelled by the more general name of “state space re-
duction" in the literature [76] but in this thesis we will use the term program slicing to distinguish
between this and other techniques that result in a smaller state space. The AgentSpeak(L) BDI
logic programming language [199] is used for the programming of multi-agent systems; e.g., au-
tonomous rovers for planet exploration. Model checking techniques and tools for AgentSpeak
[26] are based on translating AgentSpeak specifications into either Java or Promela (for use with
the JPF model checker or the SPIN model checker, respectfully). Property-based slicing has
been used in the creation of algorithms specifically targeted at AgentSpeak programs [25].

PRISM-symm [144] is based on an efficient algorithm for the construction of quotient mod-
els. It uses a symbolic implementation based on the multi-terminal binary decision diagrams
data structure [14, 83]. As the name implies, this tool is closely related to the PRISM model
checker and performs a model-level reduction built into the symbolic implementation of PRISM.
Its approach is based on dynamic symmetry reduction approaches for non-probabilistic models
[70, 231].

Generic representatives are used as a way to apply counter abstraction [65] in the prototype
tool GRIP (Generic representatives in PRISM) as a way to convert symmetric PRISM models
into symmetry reduced form. Limitations of GRIP in regards to complex models are addressed
by introducing a richer language, which aids the application of generic representatives [59]. The
benefit of this approach is that it works at language-level, so while GRIP was implemented with
PRISM as its main target, it is possible to be used with any other model checker which accepts
the PRISM modelling language as an input. GRIP will be discussed in detail in Chapter 6.

There are two tools that provide symmetry reduction for the SPIN model checker:
SymmSPIN [27] and TopSPIN [63, 64]. Both of these tools require the user to additionally
specify the symmetry present in the model, and will provide unreliable output should the
declared symmetry be mistaken. There has been work done to automate the symmetry detection
process [60], and SymmExtractor, a tool for the automatic detection of symmetries present in
Promela specifications has been created [61] and evaluated [62]. Both tools have been shown to
be unable to exploit the symmetries of all SPIN models [27, 158].

The UPPAAL model checker has had a prototype symmetry reduction tool constructed [111].
This tool was shown to obtain promising results by allowing the expression of total symmetries
using a scalarset approach (which were originally developed for the Murphi language [100])
with the intent to be extended to apply to other symmetry types (such as the ring symmetry
present in token ring protocols). It was integrated into UPPAAL 4.0 [20]. The recently released
UPPAAL 5.0 does not include any updates to the symmetry reduction tool. UPPAAL’s symmetry
reduction has been successfully applied to the Zeroconf protocol [90] and a leader election
algorithm [188].

CHAPTER 2. BACKGROUND 20

2.2 Wireless Sensor Networks

WSNs are a class of networks composed of numerous small low-cost wirelessly interconnected
sensor nodes [243]. These sensor nodes are typically power-constrained and equipped with
sensing and processing capabilities, which allows them to gather and process data from their
environment. The data is then transmitted to a gateway node or another node within the network
(which in turn transmits the data towards the gateway node). The collected data is used to
observe and to respond to events that occur in the environment that is being sensed.

The sensor nodes of a WSN are able to cooperatively sense, control, and transmit data about
the environment that is being sensed. They typically are small low-cost devices capable of being
deployed in a wide range of environments: e.g., buildings, fields, cities, forests, etc. Depending
on the use case, sensor nodes can gather information about a variety of physical and environ-
mental quantities: e.g., temperature, motion, light, atmospheric pressure, air quality, humidity,
sound, location, etc.

As the name suggests, communication in a WSN is wireless, which allows nodes to establish
ad hoc connections. This results in a self-configuring network that does not rely on a pre-defined
structure. Furthermore, WSNs offer a reduction in deployment costs compared to their wired
counterparts. Data transfer is a collaborative process: sensor nodes often relay each other’s
data to reach the intended destination. Multi-hop communication, the process in which data
is transmitted from one node to another until it reaches the desired destination, is frequently
employed. The topology of a WSN is illustrated in Figure 2.5. Sensor nodes gather data about
the system and transfer that data to a gateway node. The gateway node then propagates the
data through the Internet to the user. The self-configuring nature of the network has presented a
problem in designing the communication between sensor nodes. Different routing protocols for
WSNs are presented in [3, 131].

During the last three decades, WSNs have held increasing interest in both research and in-
dustrial spheres, alongside a continual increase in use domains and application scenarios [241].
Applications of WSNs include agriculture, healthcare, wildlife tracking, military, disaster man-
agement, industrial automation, home automation, traffic monitoring, etc. For example, sensor
networks were found to be the ideal platform for the surveillance of endangered bird species
[28]. WSNs play a fundamental role in the enabling, establishment and spread of Internet of
Things (IoT) technologies [240].

WSNs often face challenges such as limited energy supply, limited memory and processing
power, unreliable and limited communication, environment coverage and data delivery time con-
straints. Hardware limitations prompt the need for data sensed by the devices to be transmitted
to the gateway node with the least resource utilisation. Spatial and temporal constraints depend
on the nature of the sensed physical phenomena: it is likely that the delivery of data would be
restricted by time as data might quickly be rendered invalid in dynamic systems. As a result,
various techniques and protocols have been developed to improve data reliability, reduce energy

CHAPTER 2. BACKGROUND 21

Sensor fields

Base
station

Gateway

Sensor-node

Target

Internet,
satellite…

User

Figure 2.5: A WSN topology.

consumption and optimise intra-network communication. Network deployment is a research
topic that gathers large amounts of interest as the number and locations of sensors established
during deployment determine the topology of the network [210]. Many properties of interest
directly depend on this network topology, so the performance of a WSN is highly influenced
by its deployment. For the rest of this thesis, however, we focus on challenges faced by WSNs
after their deployment. Many surveys of WSN technologies and the challenges faced by them
are available [4, 192, 201].

2.2.1 Characteristics of Wireless Sensor Networks

WSNs vary depending on their sensors’ characteristics and on their application requirements.
Based on the specifics of a WSN, sensors cooperate according to various models and architec-
tures. We go over some of the most frequent ways of classifying a WSN:

Depending on its size, a WSN can be classified as a small, medium, large or very-large-scale
network. The size depends on factors such as the characteristics of the sensors, the goals of the
sensor network and its region of interest. In practice, the number of sensor nodes in a WSN
ranges between tens to thousands of sensors.

The type of a WSN is also determined by the sensors it consists of. A homogeneous WSN
contains sensors that are considered identical with respect to the purposes of the network (i.e.
they are equally capable in terms of sensing, communication, processing power, memory stor-
age, and energy supply). Heterogeneous WSNs allow the presence of nodes with elevated or di-

CHAPTER 2. BACKGROUND 22

minished capabilities, typically ones that perform a specialised or an additional function. These
sensors may not only differ in their sensing and data processing roles, but also in their communi-
cation aspects. Such heterogeneous WSNs are called hierarchical (as opposed to flat) and often
distinguish their nodes into classes according to their communication capabilities. For example,
a sensor might be designated as a cluster-head and be responsible for managing communication
between sensors in its cluster and other clusters. In this thesis, we will focus on homogeneous
sensor networks.

Depending on the location of sensors, a WSN may be static, mobile, or hybrid. Static WSNs
consist of stationary sensor devices that do not move after they are deployed. As mobile devices
have become more popular as a result of technological advances, so have mobile sensor devices.
A mobile WSN consists of sensors which are able to move on their own after deployment,
while a hybrid WSN consists of both stationary and mobile sensors. Mobile WSNs offer greater
versatility as they can respond to changes in the environment [1]. The addition of some mobile
sensor nodes can improve the flexibility of a WSN by allowing those nodes to respond to changes
in network topology.

Sensor nodes in a WSN transmit their data to a gateway device (often called a sink), but
networks differ in the way that is achieved. Single-hop WSNs are more topologically restrictive
and require nodes to transmit their data directly to the sink, while multi-hop WSNs allow mes-
sages to be relayed through multiple nodes to the sink. A multi-hop WSN can be either flat or
hierarchical.

These WSN characteristics, combined with restrictions of the sensor devices (e.g. limited
memory, processing power, communication capabilities), result in different design and perfor-
mance criteria for the communications protocols used. These communication protocols need to
manage and control all aspects of communication: from the topmost application and transport
layers responsible for packet construction and end-to-end transmission of packets, to lower lay-
ers for routing of data, and to the lowest layer of accessing the physical medium [124]. Figure
2.6 depicts an overview of the network architecture in WSNs.

Communication protocols for WSNs can be classified in one of three types depending on
what aspect of the communication they are concerned with: transport layer protocols, network
layer routing protocols and data link layer Medium Access Control protocols [124].

The end-to-end transmission of data packets is handled by transport layer protocols. These
protocols are classified by whether they provide guarantees for reliable data delivery through
retransmission of packets or if they support unreliable data delivery [200]. Furthermore, they
carry out congestion control, in either a centralised or distributed manner, by determining the
appropriate transmission rates of sensor devices. [124] provides a comparison of these aspects
for a variety of transport layer protocols for WSNs.

Routing protocols in the network layer are an area that has seen large research interest. They
determine how messages propagate through the network in a way that ensures efficient perfor-

CHAPTER 2. BACKGROUND 23

Cross-Layer
Design

Power
Management

&
Security
Protocols

Physical Layer

Application Layer

Transport Layer
(End-to-End Transmission)

Network Layer
(Routine Protocols)

Data Link Layer
(Medium Access Control)

Figure 2.6: Communication network architecture of a Wireless Sensor Network. Image is based
on image from [124].

mance as well as meets the necessary bandwidth, fault-tolerance, delay and energy constraints.
Each routing protocol is designed according to the characteristics of the WSN that it will be used
by: the routing strategy (reactive, proactive, hybrid, etc.) [125]; the topology of the network (flat
or hierarchical) [230]; the communication entities (data-centric or node-centric); the data sam-
pling and retrieving approach used (e.g. query based routing; QoS-based routing) [117]; and
a large variety of other operation-based attributes [125, 235]. Security for routing protocols
is an active area of research [214, 246] because typical use of symmetric and asymmetric key
cryptography are often too resource-intensive for resource-limited WSNs [248]. An in-depth
comparison and analysis of routing protocols for each different type of WSNs is presented in
[131].

The lowest level medium access control (MAC) protocols establish how devices interact with
the shared physical (wireless) medium and the strategies that are employed to avoid collisions.
Typical strategies involve decomposing the shared medium (radio channel) into multiple disjoint
channels or slots where devices can transmit with a guarantee that collisions will not occur. Ex-
amples include Time Division Multiple Access (TDMA) where slots are separated temporally
[205], Frequency Division Multiple Access (FDMA) which divides the shared medium in fre-
quency bands [131] or Code Division Multiple Access (CDMA) which employs a more complex
approach utilising unique code assignment to devices [120]. Traditionally, only a single simple
channel is used to employ these strategies in order to conserve energy [105]; however, recent

CHAPTER 2. BACKGROUND 24

research has shown that the use of multiple radio channels can also be useful.
MAC protocols are broadly organised into two classes: schedule based or contention based

protocols. Schedule based ones assign a portion (of time, of frequencies, etc.) of the shared
medium to each node, so that at each portion there is only one transmitting device making it
impossible for collisions to occur. On the other hand, collision based MAC protocols do not
produce such a schedule but instead assume that some collisions will occur and define a back-
off procedure that devices must follow to resolve those collisions. Another important aspect
of MAC protocols is the concept of duty cycling, which is an energy conservation process em-
ployed by sensor devices [221]. This is achieved by devices periodically going to a sleep mode
and turning off their radios. In this thesis we focus on formal verification of MAC communica-
tion protocols, so we present some MAC protocols in greater detail below (Sections 2.2.2, and
2.2.3).

2.2.2 Ctrl-MAC

Ctrl-MAC [22] is a TDMA protocol that was developed in the design of a slow-loop controller
and communication system for large area infrastructure. Examples of this sort of infrastructure
includes smart urban water distribution systems, precision agriculture and the electrical power
grid. We refer to these systems as CPSs.

Cyber-Physical Systems are the combination of a communication system (such as a sensor
network) that gathers data about the environment and a control system that performs actions to
interact with the environment in an appropriate way based on the gathered data. WA-CPSs are a
subtype of CPSs which are designed towards the sensing of a geographically large environment.
The communication system used in WA-CPSs is typically a WSN as the wireless connection is
a low-cost option for communication over the required distances.

Ctrl-MAC was created with the goal to allow sensor systems to outscale the previous state-
of-the-art LPWA MAC protocol LoRaWAN [48]. It employs a novel co-design approach called
Control Communication Co-design (C3) which considers communication-and-control systems at
two stages: design-time and run-time. At design-time the effect control parameters and commu-
nication parameters have on each other is considered. The parameters are then chosen such that
the resulting system is globally exponentially stable during run-time, without any subsequent
updates to the parameters. A co-design approach has been shown to be vital in the construction
of a WA-CPS because of the influences the communication system and control system have on
each other [181]. The resulting communication protocol achieves this result by placing control
of communication access at the gateway node: i.e. the gateway schedules data transmissions to
only those nodes that request it. The C3 approach has provided the necessary reduction of delays
and the improvement of reliability [22]. Ctrl-MAC is the main example used in this thesis, and
we discuss it in detail in Chapter 5.

CHAPTER 2. BACKGROUND 25

2.2.3 2C protocol

In this thesis we are concerned with applying model checking to analyse the Ctrl-MAC protocol.
A comparable WSN protocol which has been formally verified is the 2C-WSN protocol, which is
used in the contention phase of IEEE 802.15.4 [165]. 2C-WSN has only one request slot, sensors
choose at random whether they are backed off or not after a collision, and all back-off periods
last until a cycle without a collision occurs. The model given in [165] scales to 40 sensor devices.
We view 2C-WSN as a simplified version of Ctrl-MAC as it uses a similar transmission request
based approach but without a complicated back-off assignment. As we will draw connections
between Ctrl-MAC and 2C-WSN (see Chapter 5), we introduce it in some detail here.

The 2C protocol is a simple full feedback sensing window random access algorithm designed
to solve the Channel Multiple-Access problem for strict delay messages [183]. Binary collision-
noncollision feedback per slot together with full knowledge of the feedback history is used to
provide an upper bound on the transmission delays on messages. It has been shown to allow
for the same throughput as Capetanakis’ dynamic algorithm [38], while being more resistant
to feedback channel errors and inducing lower transmission delays for arrival rates above 0.30.
Contrary to Capetanakis’ protocol placing unsuccessful users on an infinite cell stack (similar
to Ctrl-MAC’s infinite cell queue), the 2C protocol only uses a 2-cell stack by grouping all of
the unsuccessful users together [184]. A limited sensing version of 2C is presented in [182],
where devices observe the feedback of the channel (i.e. listen for success/failure messages)
from the time they generate a packet to the time that packet is successfully transmitted. Limited
sensing is possible if a user can detect in finite time whether a collision resolution is in progress
[91]; however, that implicitly adds an overhead to each packet transmission as channel feedback
needs to be sensed until the completion of a collision resolution interval. Despite this overhead,
limited sensing algorithms have been shown to obtain the same throughput as their full sensing
counterparts [119], as it was found that only the transmission delays were impacted. All of the
protocols mentioned above rely on a key transmission property: no new packages are allowed
to contend for a transmission slot before the current collision resolution is completed. As this
is a property that largely impacts the average delay of transmissions, Ctrl-MAC aims to enable
limited sensing without defining global collision resolution intervals. Limited sensing is still
required as users need to transmit at the appropriate time slot; however, the sensing period is up
to the first Request-Reply message as that would allow sensors to synchronise with the slotted
time. As a result the length of time users with newly generated packets are required to sense
the channel feedback is less than or equal to the duration of one Request-Reply cycle whereas a
global collision resolution would require multiple such cycles.

The 2C protocol has been adapted to a wireless communication medium by the 2C-WSN
(two cell wireless sensor network) protocol (also sometimes referred to as two cell sorted wire-
less sensor network, 2CS-WSN) [205]. Contrary to wired networks where it is easier to detect
collisions, in wireless networks it is necessary to infer that a collision has happened and is usu-

CHAPTER 2. BACKGROUND 26

ally done by assuming that a collision has happened when a reply to a request does not arrive.
2C-WSN makes use of the Parent Available message to establish a tree structure between all
colliding sensors. It has been designed to be used by the contention phase of IEEE 802.15.4.

While the developers of 2C-WSN evaluated their proposed protocol using simulation in the
wireless sensor networks simulator Castalia [177, 205], formal analysis of 2C-WSN has since
been done. A Markov Decision Process has been used to provide proofs for properties for indi-
vidual sensors [206]. Some different variants of 2C-WSN have been proposed as improvements
as a result of other protocol formalisations [207].

2.3 Verification of Wireless Sensor Networks

As sensor technology continues to develop, WSNs find increasingly widespread application;
however, each new use contains a new set of challenges. Analysis of sensor networks is crucial
for the discovery of system errors, especially for design flaws that must be addressed before
sensor network deployment. Additionally, if errors occur, it is desired that we ensure that the
sensor systems fail in a manner that is non-destructive towards the system that is being mon-
itored and controlled. Specification and verification of sensor networks are highly non-trivial
tasks due to the inherent properties of sensor networks [66]. In particular, WSNs are highly
affected by their environment, especially those deployed on critical infrastructure [236]. The
performance of sensor nodes is influenced by external factors such as changes in temperature
and precipitation, and potential sensor node failure can worsen the behaviour of the entire WSN.
To diminish the effects of these potential problems, it is necessary that the software controlling
the WSN is reliable. Dynamic environmental factors are one of the most significant reasons for
the failure of WSNs and probabilistic models are critical for the quantitative analysis needed to
prevent such failures [151]. For WSNs it is necessary to model not only the sensor devices and
the relationships between them, but also how those relationships evolve over time due to envi-
ronmental factors. Consequently, formal methods have been frequently used for the analysis of
WSNs and, more generally, IoT.

Most of the model checkers listed in Section 2.1.3 have been used to perform some form
of formal verification of WSNs. The Alloy Analyzer has been used for the security analysis
of an authorisation toolkit for the Internet of Things [133]. SPIN has been used to aid in the
development of Insense, a tool used to verify the correctness of WSN applications [213]. The
UPPAAL model checker has been used to carry out formal verification of real-time WSN pro-
tocols [176]. PRISM has been used to analyse security risks of IoT systems [175], as well as
slot allocation and contention resolution protocols for WSNs [80]. PRISM has been used to
analyse survivability properties of WSNs [189]. It has also been used to verify a wireless sensor
network architecture [173] as well as to verify an array of protocols for WSNs [237]. Addition-
ally, PRISM has been used in the construction of a run-time verification framework for sensor

CHAPTER 2. BACKGROUND 27

networks [239].
There are also numerous approaches and formalisms that have been introduced with the

purpose of aiding sensor network verification. The use of Graph Transformation Systems and
Bigraphical Reactive Systems is explored in [9]. Process algebras have been created with the
goal of describing the forms of interference between processes of wireless systems [73, 150].
In wireless communication such interference occurs when two transmissions simultaneously
reach the same location. Coloured Petri Nets have been successfully used to create models that
express the power consumption caused by communication protocols used by WSNs [51] in order
to enable the evaluation of a WSN lifetime. Probabilistic reactive modules have been used to
verify the synchronisation of nodes in a WSN with respect to the environmental effects on a
sensor’s hardware clock [236]. The concepts of frames of reference and frames of function are
introduced in [35] as a way to organise models and ensure that all key features of the system are
being captured.

Chapter 3

Preliminaries 1: Model checking

In this chapter we introduce the concepts, formalisms, tools and techniques used throughout
the rest of this thesis. First, we define Discrete Time Markov Chains, which are used to model
discrete systems.

3.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are memory-less stochastic processes, i.e. infinite se-
quences of random variables X0,X1,X2, . . . ,Xt , . . . , in which the probability of the state of the
next random variable only depends on the current state. This memory-less property is called the
Markov Property, and it can formally be written as

P(Xt+1 | Xt ,Xt−1, . . . ,X0) = P(Xt+1 | Xt)

The domain of the random variables is some state space X , i.e. Xt ∈ X for all t. We note that
the probabilities in the statement of the Markov property are normalised because the transition
from a state Xt to any possible state Xt+1 is 1, i.e. ∑Xt+1∈X P(Xt+1 | Xt) = 1.

Definition 1. A Discrete Time Markov Chain D is a tuple (S,sinit ,P,L) where: S is a set of

states called the state space, sinit ∈ S is the initial state (often labelled s0), P : S× S → [0,1]
is a transition probability matrix, and L : S → 2AP is a function labelling states with Atomic

Propositions (from a set of atomic propositions AP). The transition probability matrix defines

P(s,s′) the probability of the next state s′ based on the value of the current state s. It is subject

to ∑s′∈S P(s,s′) = 1 for all s ∈ S, i.e. a next state is chosen with probability 1. We say that a

transition between two states s,s′ ∈ S exists if P(s,s′)> 0.

Intuitively, a DTMC D is a set of states corresponding to possible configurations of the
system that is modelled and with transitions between states occurring in discrete time-steps.
Each transition is augmented with the probability of that transition being taken. The labelling

28

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 29

Figure 3.1: An example of a Discrete Time Markov Chain.

function is often omitted from the tuple if there are no properties of interest with which to label
any of the states.

Example 1. Figure 3.1 is a diagram of a Discrete Time Markov Chain with S = {0,1,2,3,4,5}
and initial state sinit = 0. The corresponding probability matrix is

P =

0 1 0 0 0 0
0 0.1 0.9 0 0 0
0 0 0.25 0.75 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

with P(i, j) denoting the probability to transition from state i to state j.

It is often necessary to consider the underlying graph of a DTMC as graph theory can provide
insight into the system being analysed.
Definition 1.1 The underlying graph of a DTMC D is a graph G = (V,E), where V = S is a set of
vertices corresponding to the states of the model, and E = {(s,s′) such that P(s,s′)> 0}⊆V ×V

are directed edges connecting vertices of states between which there is a positive transition
probability.

We will introduce some additional frequently used terminology and point out some of the
assumptions that are being made:

• The Markov property, often referred to as memorylessness, that for a given current state,

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 30

future states are independent of past states, is formally defined as:

Pr(Xt+1|Xt ,Xt−1, ...,X0) = Pr(Xt+1|Xt)

• P is called a stochastic matrix as it satisfies:
P(s,s′) ∈ [0,1] for all s,s′ ∈ S and ∑s′∈S P(s,s′) = 1 for all s ∈ S.

• A state s for which P(s,s) = 1 and consequently P(s,s′) = 0 for all s′ ̸= s is called an
absorbing state.

• While S can be any countable set, for the rest of this thesis we will assume that the set of
states is finite.

• The initial state sinit can be generalised to an initial probability distribution of states sinit :
S → [0,1].

• Transition probabilities are defined to be real values, but are often restricted to rational
values for software purposes.

• A state s′ is reachable from s if there is a finite path from s to s′.

• A subset of states is strongly connected if any two states in it are connected by a finite
path passing only though states in the subset.

• A maximally strongly connected set of states is a strongly connected set of states for which
no superset is strongly connected, and is called a strongly connected component (SCC).

• A bottom strongly connected component (BSCC) is a strongly connected component for
which no state outside of it is reachable from it.

A path ω in a Discrete Time Markov Chain is a infinite sequence of states s0s1s2s3... such
that P(si,si+1) > 0 for all i ≥ 0. Such paths represent different executions or different possi-
ble behaviours of the underlying system. For example, the DTMC in Figure 3.1 has 012(3),
012450112(3), and (01245) as possible paths. It is sometimes helpful to consider paths of finite
length, which can be obtained by restricting an infinite path to a given length.

Definition 2. The set of all infinite paths that start from a state s is denoted by Path(s). Similarly,

Path f in(s) denotes the set of all finite paths starting from s.

The above definition can be simplified to Path and Path f in if the state s is the initial state of
the model. For finite paths ω we can define the cylinder set Cyl(ω) as the set of all infinite paths
that share ω as their starting prefix. For example. the DTMC on Figure 3.1 has the cylinder set
Cyl(0124) as all executions that directly perform a try and that first try results in a failure. The
probability of a finite path s0s1s2s3...sn is given by ∏

n−1
i=0 P(si,si+1).

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 31

It is often useful to determine the probability that a system is in a given state after specified
number of steps have been taken from a particular initial state.

Definition 3. The probability that a system is in state s′ after k steps have occurred starting from

an initial state s is called the transient probability and is given by

πs,k(s′) = ∑
s′′∈S

P(s′′,s′) ·πs,k−1(s′′)

πs,0(s′) =

1 s′ = s

0 s′ ̸= s
.

This is a recursive definition based on the transient probability at the previous step and
the probabilities of the incoming transitions. The transient probabilities at step 0 are based on
the initial state (or initial probability distribution). It is often useful to combine the transient
probabilities into a vector.
Definition 3.1 The transient state distribution is the discrete probability distribution πs,k : S →
[0,1] where

πs,k = πs,k(s′) for all s′ ∈ S.

The recursive relation above can then be rewritten as

πs,k = πs,k−1 ·P = πs,0 ·Pk,

so the transient state distribution can be calculated through successive matrix multiplications.
We can view Pk as transition probabilities for performing k steps at once, while P for performing
a single step.

In certain cases transient probabilities are not very useful, it is often more helpful to study
the long-run behaviour of the system.

Definition 4. The limiting distribution, if it exists, is the limit

πs = lim
k→∞

πs,k.

This is used to give a measure of the percentage of time spent by the system in each state in
the long run. The underlying graph must be considered in order to determine the existence of
this limit.

If all states of a Markov chain belong to a single BSCC, then the Markov chain is irreducible,
and reducible otherwise. The limiting distribution for a finite irreducible DTMC always exists
and is not dependent on the initial state (initial distribution). In this case the limiting distribution

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 32

is known as steady-state probabilities and can be computed by solving the balance equations

π ·P = π and ∑
s∈S

π(s) = 1.

3.2 Property specification

In order for model checkers to perform formal verification of properties of the system that has
been modelled, these properties need to be specified using a formal language. Such a formal
language that can be used to specify the changes in the behaviour of a system over time is called
a temporal logic. Temporal logic extends propositional logic with temporal operators.

Definition 5. A labelled state-transition system (LTS) is a tuple (S,sinit ,→,L), where: S is a set

of states called the state space, sinit ∈ S is the initial state (often labelled s0), → ⊆ S× S is a

transition relation, and L : S → 2AP is a function labelling states with Atomic Propositions (from

a set of atomic propositions AP). A DTMC (S,sinit ,P,L) has a corresponding LTS (S,sinit ,→,L),

where → = {(s,s′) such that P(s,s′)> 0}.

A well-known temporal logic used for non-probabilistic models is Computation Tree Logic
(CTL) [43]. This logic uses a branching notion of time: at any time step system behaviour can
move to a different path as a result of an event (rather than a single path being executed from
an initial state). CTL formulae are interpreted based on an LTSs and provide a way to combine
atomic propositions to make statements about the states of the system. Formulas are constructed
from atomic propositions using temporal and logical operators.

Definition 6. Computation Tree Logic has the following syntax:

Φ = true | f alse | a | Φ∧Φ | Φ∨Φ | ¬Φ | Φ ⇒ Φ | Φ ⇔ Φ

| AX Φ | EX Φ | AF Φ | EF Φ | AG Φ | EG Φ | A [Φ∪Φ] | E [Φ∪Φ]

where a is an atomic proposition, and A, E, X, G, F, ∪ are the temporal operators “All”, “Ex-

ists”, “Next”, “Globally”, “Finally”, and “Until” respectively.

Probabilistic Computation Tree Logic (PCTL) [107] is a probabilistic extension of the non-
probabilistic CTL that adds a probabilistic operator P to the syntax of CTL. This enables the
verification of properties that are probabilistically quantified, such as soft deadline properties,
e.g. “after a button is pressed, there is at least a 99% probability that the device will shut down
within 2 seconds”. Probabilistic model checkers widely use PCTL as a property specification
language.

Definition 7. Probabilistic Computation Tree Logic has the following syntax:

Φ = true | a | Φ∧Φ | ¬Φ | P∼p[Ψ]

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 33

Ψ = XΦ | Φ∪≤k
Φ | Φ∪Φ

where a is an atomic proposition, p ∈ [0,1] is a probability bound, and ∼ ∈ {<,>,≤,≥},k ∈N.

3.3 Markov Decision Processes

The DTMCs described in Section 3.1 offer a purely probabilistic way of modelling systems.
Successor states are chosen based on predefined probabilities for each state. However, it is
often desirable to also represent nondeterminism, i.e. decisions undertaken by the system. This
nondeterminism can be in either a controllable setting (e.g., decisions made by a player in game
theory) or an uncontrollable setting (e.g., the interweaving of processes in a concurrent system).

Definition 8. A (labelled) MDP M is a tuple

M = (S,s0,Steps,L)

where: S is a countable set of states called the state space, s0 ∈ S is the initial state, Steps : S →
2Act×Dist(S) is the state transition probability function where Act is a set of actions and Dist(S)

is the set of discrete probability distributions over the set S, and L : S → 2AP is the labelling

function assigning atomic propositions to the set of states.

We denote the set of actions enabled in a state s ∈ S by Act(s), and the set of states reachable

from that state by Steps(s). We assume that Act(s) ̸= /0 and consequently Steps(s) ̸= /0, i.e. there

are no deadlocks in the process.

MDPs often model systems which exhibit both nondeterministic and probabilistic behaviour
(for example, the asynchronous operation of multiple probabilistic processes in a randomised
distributed algorithm). Intuitively, in each state s ∈ S there is a nondeterministic choice between
the elements of Act(s). Then, there is a probabilistic choice according to the distribution µ ∈
Dist(s) related to that action to select the next state of the model. Thus, a path through a DTMC
is resolved through a series of nondeterministic and probabilistic choices.

Analogously to the probability matrix of a DTMC, it is often useful to view the transition
probability function as a matrix. This is a rectangular matrix with a number of columns equal
to the number of states |S|, and number of rows equal to the total number of distributions of the
transition probability function ∑s∈S |Steps(s)|.

Example 2. Figure 3.2 is a diagram of a Markov Decision Process with S = {0,1,2,3,4} and

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 34

Figure 3.2: An example of a Markov Decision Process.

initial state sinit = 0. The corresponding transition probability function is

Steps =

0 1 0 0 0 0

0 1 0 0 0 0
0 0 0.25 0.75 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1 0 0 0 0 0

where the rows of Steps denote different probability distributions. For clarity, distributions

associated with different states are separated with horizontal lines. Each column of the matrix

represents the probability that the system moves to the state associated with it. For example,

Steps(3,2) signifies that if the “attempt" action is taken in state 1, there is a 0.25 probability to

transition to state 2.

A path ω in an MDP is a infinite sequence of states and distribution pairs s0µ0s1µ1s2µ2s3µ3...

such that µi ∈ Steps(si) and µi(si+1) > 0 for all i ≥ 0. As with DTMCs, these paths also
represent different executions or different possible behaviours of the underlying system. For
example, the MDP in Figure 3.2 has 01(2), 01234011(2), and (01234) as possible paths
(distributions omitted for clarity). Paths of finite length can be obtained by restricting an infinite
path to a given length. Path(s) and Path f in(s) are defined in exactly the same way as their
equivalents for DTMCs from Definition 2.

To reason about the behaviour of an MDP it is necessary to first resolve all nondeterministic
choices. Doing so reduces an MDP to a DTMC, for which we know how to compute prob-
abilities. An adversary (also known as “strategy", “policy" or “scheduler") is used to resolve
nondeterministic choices in an MDP.

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 35

Definition 9. An adversary σ of an MDP M is a function mapping every finite path ω =

s0(a0,µ0)s1 . . .sn to an element σ(ω) of Steps(sn).

The set of all adversaries is denoted by AdvM or by Adv if it is clear which MDP it is
associated with.

We give an example of adversaries in the context of the MDP of Example 2. Note that in that
MDP, the only state involving a nondeterministic choice is state 1, i.e. s = 1 is the only s ∈ S for
which |Steps(s)| > 1. Therefore, this is the only state for which the adversary needs to resolve
the nondeterminism. Let µ0 be the probability distribution associated with the “wait" choice and
µ1 the one associated with the “attempt" choice. An adversary σ1 can always choose the “wait"
action:

σ1(01) = (wait,µ0)

σ1(011) = (wait,µ0)

σ1(0111) = (wait,µ0),etc

while an adversary σ2 can choose the “wait" action once and choose “attempt" afterwards:

σ2(01) = (wait,µ0)

σ2(011) = (attempt,µ1)

σ2(0113401) = (attempt,µ1),etc

An adversary can be used to define a subset of the set of all paths Pathσ1(s) ⊆ Path(s) to
be the set of all infinite paths starting from state s where nondeterminism is resolved by σ1.
Similarly an adversary σ can be used to induce an infinite-state DTMC Dσ from the MDP it is
associated with.

Definition 10. An induced DTMC Dσ is a DTMC Dσ = (Pathσ (s),s,Pσ
s) where the states of the

DTMC are the finite paths obtained by resolving nondeterminism using σ starting from state s;

the initial state is state s; and

Pσ
s (ω,ω ′) = µ(s′) if ω

′ = ω(µ)s′ and σ(ω) = µ

Pσ
s (ω,ω ′) = 0 otherwise

3.4 Costs and Rewards

DTMCs can be augmented by a cost or reward structure. This is done by annotating certain states
and/or transitions with real valued variables, which accumulate whenever the state/transition is
passed during execution. These values can be used to represent a variety of useful properties

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 36

of the system, such as elapsed execution time, number of tasks performed, length of a queue,
energy consumption, etc. Mathematically, rewards and costs are the same thing but the typical
convention is that costs need to be minimised while rewards should be maximised. This reward
structure enables a variety of quantitative analysis to be performed on the system through the use
of reward-based properties. Such properties can be specified through the use of an appropriate
specification language; for example, PRISM uses an extension of PCTL.

Definition 11. A reward structure is a pair (ρ, ι) that is associated with a DTMC (S,sinit ,P,L),
where

• ρ : S → R≥0 is the state reward function, and

• ι : S×S → R≥0 is the transition reward function.

This reward structure can be used to reason about the expected value of the rewards at a given
point of the operation of the system being modelled. This can be achieved in two ways: instanta-
neous, where the property is concerned with the expected value of the state reward function at a
given time k, or cumulative, where the property investigates the expected sum of the rewards of
both the state and transition reward functions before a desired point of operation of the system.
The latter case can either be time-bounded, so we look at the expected reward accumulated up
until a time k, or reachability-bounded, so we look at the expected reward accumulated until one
of some desired states is reached.

3.5 Tools for probabilistic model checking

Probabilistic model checkers are tools for the formal modelling and analysis of systems which
exhibit probabilistic or random behaviour. These tools accept models encoded in an appropriate
formal language as input and a number of desirable properties expressed in a suitable logic.

3.5.1 The PRISM Model Checker

PRISM is a symbolic probabilistic model checker that enables formal modelling and analysis of
systems with probabilistic or random behaviour.

Types of Prism models

PRISM provides support for a number of Markov chain variants including:

1. Discrete Time Markov Chains (DTMCs). Properties can be expressed in PCTL and LTL
(Linear Temporal Logic).

2. Continuous-Time Markov Chains (CTMCs). Properties are expressed in CSL (Continuous
Stochastic Logic), an extension of PCTL for CTMCs.

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 37

(a) Toy game of matching
shapes to holes. (b) State diagram of a robot trying to solve the game.

Figure 3.4: An overview of the workflow of model checking in PRISM.

3. Markov Decision Processes (MDPs). Properties are expressed in PCTL* and LTL.

4. Probabilistic Timed Automaton (PTA). Uses PCTL.

The PRISM model checker provides a high-level modelling language which can be used for
a wide range of model analysis techniques. This language is a simple state-based language based
on the Reactive Modules formalism [7]. The model checking process is split into two distinct
phases: model construction and model checking. This is illustrated in Figure 3.4: First the user-
provided specification of the system in the PRISM modelling language is used to construct a
model for the system (e.g. DTMC, CTMC, MDP, etc). This model is then used in conjunction
with the property specifications provided by the user in the corresponding probabilistic temporal
logic in order to perform the model checking process.

PRISM modelling language

The core concept of the PRISM modelling language is to express the components of the sys-
tem being modelled as separate modules. The state of each component is then recorded using
variables, either local or global, and the overall system behaviour is expressed through the mod-

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 38

ules and their interactions. Variables in PRISM are finite valued and can be either booleans or
have integer ranges. Updates to the states of each module are defined using PRISM’s guarded
commands which have the following form:

[label] guard -> prob_1 : update_1 + ... + prob_n : update_n;

where:

• label is a synchronisation flag for transitions that need to be performed simultaneously.
This label is an optional argument;

• guard is a predicate that specifies the state(s) to which the transition can be applied;

• prob_1, ..., prob_n are the probabilities of updates being performed. For each
command these probabilities must sum up to 1.0;

• update_1, ..., update_n are the possible updates performed by this transition.
Each update must be a conjunction of statements of the form (var’ = new_value),
where var’ indicates the new value of the variable var.

Listing 3.1 shows an example PRISM specification corresponding to the Discrete Time
Markov chain from the example on Figure 3.1. There is a single module called “main" with
one local variable that keeps track of the state that the module is in. The module has six states
and six transition statements (which define eight transitions as lines 10 and 12 result in two
transitions each).

1 // example sorting model

2 dtmc

3 const int STATES = 5;

4
5 module main

6 state: [0..STATES] init 0; // the possible states that the decision process

goes through,

7
8 [] state = 0 -> 1.0: (state’= 1);

9 // pick-up

10 [] state = 1 -> 0.9: (state’=2) + 0.1: (state’=1);

11 // try

12 [] state = 2 -> 0.25: (state’=3) + 0.75: (state’=4);

13 // success

14 [] state = 3 -> (state’= 3);

15 // fail

16 [] state = 4 -> (state’= 5);

17 // discard

18 [] state = 5 -> (state’= 0);

19

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 39

20 endmodule

Listing 3.1: Example PRISM model: sorting

Verification of properties using PRISM

Verification in PRISM is achieved using properties described in the PRISM property specifica-
tion language, which includes various logics such as PCTL, (probabilistic) LTL, CSL, CTL and
PCTL*. The choice of which is used depends on the model type. We focused only on a small set
of properties in this thesis, so we do not describe all of these logics in full. However we present
enough detail to show how PRISM properties that we use are constructed.

PRISM properties have the general form:

operator bound [pathprop]

where operator is one of the probabilistic operators P, S, and R or the non-probabilistic op-
erators A and E, as well as any temporal operators (e.g. eventually F and globally G). Here,
pathprop can be any PRISM expression with the optional inclusion of any of the aforemen-
tioned operators.

An example property of interest for the DTMC in Figure 3.1 might be

P=? [F<10 s=3]

Which is equivalent to “What is the probability that within 10 units of time state three is
reached?”. The P operator is applicable to all types of models supported by PRISM and it
used to analyse the probability of an event’s occurrence. For verification of models that in-
clude non-determinism (e.g. MDPs), we are unable to reason about probabilities of events in the
same way as the probabilities would change depending on how the non-determinism is resolved.
Therefore, for models involving non-determinism, we instead use the Pmax and Pmin operators
to inquire about the maximal and minimal probabilities over the set of all adversaries.

Another probabilistic operator of interest is the S operator, which is used to reason about
the steady-state behaviour of a model, the behaviour that the model reaches in its equilibrium.
PRISM currently supports this operator for DTMCs and CTMCs. For example, the property

S<0.05 [slot = 1]

means that “the long-run probability of the slot variable being equal to one is less than 5%”.
Steady-state properties have been shown to be well-defined for finite DTMCs and CTMCs [220].

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 40

3.6 State space reduction techniques

When model checking a complex system hardware and protocol verification, concurrent and
real-time systems, and hybrid systems, the state space explosion problem is often encountered.
This is due to the fact that the number of states grows exponentially in the number of compo-
nents in a system, leading to a corresponding increase in the time and resources required for
verification. State space reduction techniques have been developed with the aim to help address
this challenge.

State space reduction techniques aim to minimise the number of states that need to be con-
sidered while preserving the important aspects of the system’s behaviour. The goal is to obtain
an abstract representation of the system that captures its essential characteristics while reducing
the complexity of the analysis.

There are several techniques used to achieve state space reduction, including abstraction,
symmetry reduction, partial order reduction, and compositional verification. Abstraction in-
volves replacing a detailed model of a system with a simplified model that only captures the
system’s behaviour that is of interest. Symmetry reduction takes advantage of the symmetries
in a system to reduce the number of states that need to be considered. Partial order reduction
exploits the independence of events to reduce the number of states that need to be explored.
Compositional verification involves breaking the system into smaller parts and analysing them
independently before combining them to analyse the system as a whole.

3.6.1 Symmetry reduction, Automorphisms and Quotient MDPs

Symmetry reduction techniques are methods used in model checking to reduce the size of a
model by exploiting its symmetries. Symmetry refers to the property of a system where some
parts of it are indistinguishable from each other with respect to some property. For example, in
a model of a distributed system, the processes may be identical in behaviour, so any permutation
of the processes produces an equivalent system.

Symmetry reduction techniques take advantage of such symmetries to reduce the number of
states that need to be analysed during model checking. The basic idea is to identify symmetries
in the system and then partition the state space of the model into equivalence classes, each of
which contains states that are symmetrically equivalent. The model checker then only needs
to explore one representative state from each equivalence class, rather than exploring all of
them, thereby significantly reducing the state space and the computational resources required
for model checking.

To leverage the symmetry present in an MDP we need to be able to reason about the under-
lying properties and behaviour of different MDPs.

Definition 12. Let M = (S,s0,Steps) and M ′ = (S′,s′0,Steps′) be two MDPs, and α : S → S′

be a bijection between their state spaces such that α(s0) = s′0. Suppose that for s ∈ S we have

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 41

µ ∈ Steps(s) if and only if there exists µ ′ ∈ Steps′(α(s)) such that for all t ∈ S, µ(t) = µ ′(α(t)).

We call α an isomorphism from M to M′, and the two MDPs are said to be isomorphic.

As is typical in Group Theory, we now apply this concept to a single MDP in order to analyse
the effects its symmetries have on it.

Definition 13. An isomorphism from an MDP M to itself is called an automorphism. The set

of all isomorphisms from M to M constitutes a group under function composition. This group

is called the automorphism group of M and is denoted Aut(M).

We then use the automorphism group to establish which states and transitions of the MDP
are identical under symmetry.

Definition 14. Let G be a subgroup of the automorphism group of an MDP M = (S,s0,Steps),
G ≤ Aut(M). The orbit relation ∼ is defined for all s, t ∈ S so that s ∼ t if and only if there

exists g ∈ G such that t = g∗ s where ∗ denotes group action.

The operation used is group action, so it follows that ∼ is an equivalence relation. The orbit

of s is denoted Orb(s)G and is the equivalence class of s under ∼, i.e. the set [s]G = t : t ∼ s. We
write Orb(x) and [s] if the group G is clear from the context.

We use the orbit relation to construct a version of an MDP which abstracts away the symme-
try of the original.

Definition 15. Let there exist an ordering for the state space S of an MDP M , and let the

smallest element of Orb(s) be denoted min[s] for every state s ∈ S. Then, for any G ≤ Aut(M),

the quotient MDP with respect to G for an MDP M = (S,s0,Steps) is defined as the MDP

M = (S,s0,Steps) where:

• S = {min[s] : s ∈ S}

• s0 = min[s0]

• Steps is constructed such that for each min[s] ∈ S and µ ∈ Steps(min[s]),Steps(min[s])
contains a distribution µ where for each min[t] ∈ S,µ(min[t]) = ∑u∈[t] µ(u).

The element min[s] is called a unique representative of [s]. In many cases analysis and
verification of the full system can instead be performed on the (smaller) quotient MDP. The cor-
respondence between PCTL properties of isomorphic MDPs under an appropriate substitution
of atomic properties is established by the following theorem (proved in [171]). Note that if s is
a state of MDP M and a ∈ A is an atomic proposition, then M ,s |= a if a evaluates to true at s.

Theorem 1. Let M = (S,s0,Steps) and M ′ = (S′,s′0,Steps′) be two isomorphic MDPs, A and

A’ the corresponding sets of atomic propositions, γ : A → A′ a bijection, and δ and isomorphism

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 42

from M to M ′, such that for every s ∈ S and a ∈ A, M ,s |= a ⇔ M ′,δ (s) |= γ(a). Then for

any PCTL formula Φ over A and s ∈ S,

M ,s |= Φ ⇔ M ′,δ (s) |= γ(Φ)

where γ(Φ) is the PCTL formula obtained by replacing every atomic proposition a in Φ with

γ(Φ).

For a PCTL formula Φ and G ≤ Aut(M), we say that Φ is symmetric with respect to G if for
every maximal propositional sub-formula f that appears in Φ and for any state s ∈ S, we have
M ,s |= f ⇒∧s′∈[s]M ,s |= f [69].

If we can check a PCTL formula that is symmetric with respect to a group of MDP auto-
morphisms then we can check whether it holds by considering the quotient MDP instead (which
may be considerably smaller). The following theorem is proved in [171].

Theorem 2. Let f be a PCTL formula which is symmetric with respect to G ≤ Aut(M). Let M

be the quotient MDP for M with respect to G. Then M |= Φ ⇔ M |= Φ.

The size of [s] is bounded by | G |, hence the minimum size of S is | S | / | G |. For highly
symmetric systems with n components, it is possible that |G |= n!, so verifying a PCTL property
against the quotient MDP can potentially offer a significant reduction in resource requirements.

3.6.2 Counter abstraction/ Generic representatives

The construction of the orbit relation for symbolic model checking can be a resource intensive
process. Using generic representatives allows symmetry reduction to be applied without the
construction of the orbit relation. This is achieved via a source-to-source translation at the
language level [58] and without any changes to the existing model checking algorithm.

We will explain the idea using an example. Consider a communication protocol establish-
ment algorithm for four identical devices. Each device has three possible local states discon-

nected (D), attempting (A), and connected (C). The global states (D, D, D, A), (D, D, A, D),
(D, A, D, D) and (A, D, D, D) are symmetrically equivalent as each of them has two out of
the three processes in the disconnected state and the last one in the attempting state. A generic
representative only keeps track of the number of processes in each local state, discarding any
information about the state of individual processes. The global states listed above thus all have
the single generic representative (3D, 1A, 0C), which has multiple instances of the identical
processes substituted with counters. A counter variable is created for each local state of the
identical process with that variable keeping a record of the number of processes currently in its
corresponding local state. When stating a generic representative, we can omit the counters with
zero values, so the generic representative above can be written as (3D, 1A).

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 43

3.6.3 Symmetry reduction in PRISM

There are two PRISM-related tools capable of performing state space reduction. Both of them
use symmetry to accomplish this goal.

PRISM-symm

PRISM-symm [144] is based on an efficient algorithm for the construction of quotient models.
It uses a symbolic implementation based on the multi-terminal binary decision diagrams data
structure [14] [83]. The idea is to create an MTBDD representing the quotient model directly
from a high-level model description. However, this was impossible due to an implicit intro-
duction of inter-component dependencies during symmetry reduction. Thus, PRISM-symm’s
approach first constructs a symbolic representation for the full model and then reduces it to one
representing the quotient model. In explicit model checking this would invalidate the symmetry
reduction being performed, as the construction and storage of the full model is the main bottle-
neck of the process; however, this is not the case in a symbolic setting. There it is often the case
that an MTBDD representing a full model can be accomplished (even for very large models),
but the model checking of that MTBDD cannot be performed afterwards. In such cases the
symmetry reduction of PRISM-symm has the potential to be very useful.

The paper that introduces PRISM-symm [144] uses four case studies for its evaluation: a
BitTorrent peer-to-peer protocol, the randomised Byzantine agreement protocol, the shared coin
randomised consensus protocol, and the IEEE 802.3 CSMA/CD communication protocol. The
results show a significant increase in the size of the models that can be modelled and verified.

GRIP

GRIP (Generic representatives in PRISM) is based on the generic representatives approach and
similarly to PRISM-symm aims to overcome the problem of combining symbolic state space
representation with symmetry reduction. GRIP does so by applying counter abstraction directly
to the model specification, prior to the construction of any MTBDD. This circumvents the need
to first construct the full, unreduced model. Furthermore, as GRIP only acts upon PRISM spec-
ifications (i.e. as a pre-processor), it has the benefit of also being applicable to any tool that uses
the PRISM modelling language (e.g. the statistical model checker Ymer [244]), as well as any
input language that a PRISM specification can be translated to (e.g. the Markov Reward Model
Checker MRMC [127]).

We present the translation rules used by GRIP, introduced in [58], in Figure 3.5 and briefly
explain them.

An SPSL specification contains a number of module declarations module, each defining a
family of symmetric modules, in addition to a set of optional global variable declarations. A
module declaration consists of a name, a set of local variable declarations, and a set of transition

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 44

P h(P)
global-variables module . . .module global-variables h(module) . . .h(module)

module h(module), with m = init(M) and t = |S(M)|

module M[k] {
var-decl∗

statement(M) . . . statement(M)
}

module generic_M[1] {
count_M_1 : [0..k] init 0
. . . count_M_ fM(m) : [0..k] init k . . .
count_M_t : [0..k] init 0
h(statement(M)) . . .h(statement(M))

}
statement(M), where e is local-expr(M) h(statement(M)), with SATM(e) = {l1, . . . , lz}
ei ∧ expr(Mi) count_M_ fM(l1)> 0∧h(expr(Mi), l1)

→ stoch-update(M) → h(stoch-update(M), l1) . . .
count_M_ fM(lz)> 0∧h(expr(Mi), lz)

→ h(stoch-update(M), lz)

stoch-update(M) h(stoch-update(M), l)
expr(Mi):update(M)+ . . . h(expr(Mi), l):h(update(M), l)+ . . .

+expr(Mi):update(M) +h(expr(Mi), l):h(update(M), l)
update(M), where v j ∈ var(M), g j ∈ global h(update(M), l), where
and e j/d j has form local-expr(M)/expr(Mi) l′ = l[v1:=eval(l,e1), . . . ,vt:=eval(l,et)]
skip skip
(v1

i :=e1
i)∥ . . .∥(vt

i:=et
i) (count_M_ fM(l):=count_M_ fM(l)−1)

∥(g1:=d1)∥ . . .∥(gr:=dr) ∥(count_M_ fM(l′):=count_M_ fM(l′)+1)
∥(g1:=h(d1, l))∥ . . .∥(gr:=h(dr,1))

expr(Mi), where e has form local-expr(M) h(expr(Mi), l)
ei eval(l,e)
symm-expr h(symm-expr)
∑1≤ j ̸=i≤#M e j ∑m∈S(M)(eval(m,e)∗count_M_ fM(m))− eval(l,e)
∏1≤ j ̸=i≤#M e j ∏m∈S(M)(eval(m,e)**count_M_ fM(m))/eval(l,e)∧

1≤ j ̸=i≤#M e j ∑m∈SATM(e)count_M_ fM(m) = #M (if l |= e)
∑m∈SATM(e)count_M_ fM(m) = #M−1 (if l ̸|= e)∨

1≤ j ̸=i≤#M e j ∑m∈SATM(e)count_M_ fM(m)> 0 (if l ̸|= e)
∑m∈SATM(e)count_M_ fM(m)> 1 (if l |= e)

expr(Mi) ▷◁ expr(Mi) h(expr(Mi), l) ▷◁ h(expr(Mi), l)
¬expr(Mi) ¬h(expr(Mi), l)
(expr(Mi)) (h(expr(Mi), l))
symm-expr, where e has form local-expr(N) h(symm-expr)
constant constant
name (where name is a global variable) name

∑1≤ j≤#N e j ∑l∈S(N)(eval(l,e)∗count_N_ fN(l))
∏1≤ j≤#N e j ∏l∈S(N)(eval(l,e)**count_N_ fN(l))∧

1≤ j≤#N e j ∑l∈SATN(e)count_N_ fN(l) = #N∨
1≤ j≤#N e j ∑l∈SATN(e)count_N_ fN(l)> 0

symm-expr ▷◁ symm-expr h(symm-expr) ▷◁ h(symm-expr)
¬symm-expr ¬h(symm-expr)
(symm-expr) (h(symm-expr))

Figure 3.5: Rules for translating an SPSL specification P to a generic form h(P). Taken from
[58].

CHAPTER 3. PRELIMINARIES 1: MODEL CHECKING 45

commands (statements). The number of copies of each symmetric module is specified via the
use of PRISM’s module renamings. Without loss of generality we assume that all variable
and module names are distinct. We label the set of symmetric module families as Γ, and we
index individual modules of such a family M ∈ Γ as M1,M2, . . . ,M|Γ|. We refer to a family Ma

containing only one module |Ma|= 1 as an asymmetric module.
A family of modules M ∈ Γ consists of multiple symmetric copies of the same module. We

denote the number of modules in a family as #M = |M|, and we can refer to the specific copies
as M1,M2, . . . ,M#M. We can omit the index if it is clear to which module we are referring or if
we are interested in any module of this type.

The local variables of a family of modules M are denoted by var(M) while we use global to
denote the set of global variables. We use indexing to refer to corresponding local variables, i.e.
vi is the copy of v ∈ var(Mi). The n-th variable of a module is denoted varn(M), and similarly
its copy in Mi is denoted by varn(Mi).

Commands are used to describe the behaviour of each member of a family of modules M.
These are stated in terms of the local variables of module M1, and the behaviour of any of the
copies Mi (for 2 ≤ i ≤ #M) is derived by substituting each variable v1 with the corresponding
variable vi. Each command has an optional synchronisation label a, which can be used to show
that it belongs to a family of synchronised commands. This label is not present in commands
that are not synchronised and translation rules for those commands will omit this label. State-
ments are guarded commands: they consist of a guard which determines whether the statement
is executable in a given state, and a stochastic update that details the effect of executing the
statement. Guards are boolean expressions over the global variables or the variables local to that
module, while updates take the form e1 : u1 + e2 : u2 + · · ·+ el : ul where the ei are expressions
that evaluate to a numerical value giving a probability and ui is the update associated with that
probability. Each update ui can either do nothing (true) or be a set of simultaneous changes to
distinct variables, either local to M or global. If a synchronisation label is set, then the updates
can only affect local variables. The expressions listed above, expr(Mi), are subdivided into two
types: local-expr(Mi), which allows only the use of local variables, and symm-expr, which is a
fully symmetric expression. The latter allow the use of constant values, global variables, or a
conjunction of a local expression over all copies of a module.

Additionally, we use S(M) to signify the local state space of a module M. This state space
is the same for any copy of M and we let t be such that t = |S(M)|. As the set of states for a
module M is countable, there exists a bijection fM : S(M) → {1,2, . . . , t}. The subset of local
states of M which satisfy an expression e are denoted by SATM(e) = {l ∈ S(M) : l |= e}.

Chapter 4

Preliminaries 2: Ctrl-MAC

Our main initial goal was to use formal methods to analyse the Ctrl-MAC communications
protocol. This protocol was designed as a novel network protocol for WA-CPSs that is the
first to support the control of multiple simultaneous physical processes requiring bidirectional
communication [22]. It was developed by our colleagues at Imperial College London as a part
of the S4 project (see Section 2.2.2). In this chapter we describe the protocol in detail.

Ctrl-MAC was developed as part of the design of a slow-loop controller and communication
system for large area infrastructure. As previously mentioned, this type of system is called a
Wide Area Cyber-Physical System, and examples include smart urban water distribution sys-
tems, precision agriculture and the electrical power grid.

A controller can keep a system stable if it can receive sensor information and send control
updates in a timely and reliable fashion. Previously, these control systems would depend upon
wired sensors and actuators. The wired approach cannot scale well to large area infrastructure
due to the costs imposed by the length of wires needed [22]. The solution was to switch to
wireless communication between the sensors and actuators, which would additionally reduce
the deployment and maintenance costs. However, existing wireless technologies did not support
the communication requirements in terms of communication range and transmission delays.
Existing wireless control protocols, e.g., WirelessHart, support maximal ranges of up to 100
meters, which is insufficient for large area infrastructure [218]. While multi-hop protocols, e.g.,
6TiSCH, could be used to extend the communication ranges sufficiently, this would be achieved
at the cost of communication reliability [228]. However, communication reliability is tightly
coupled with communication delays, and multi-hop systems increased these delays to a level
that was unacceptable in terms of controller stability. For this reason single-hop networks are
preferred for control systems [162, 228]. LPWA technologies [202] were chosen as the basis
upon which to build the solution for this WA-CPS challenge. Previous LPWA technologies (e.g.,
LoRa, NB-IoT) have been designed with respect to monitoring systems; supporting one direc-
tional communication from sensors to gateway. WA-CPS control applications require support
for two directional communication: i.e. additional communication from the gateway to the ac-

46

CHAPTER 4. PRELIMINARIES 2: CTRL-MAC 47

tuators. This would result in problematic large non-deterministic communication delays [162],
so Ctrl-MAC was designed with the necessary adjustments to resolve this issue.

The main goal of Ctrl-MAC is reliable communication in a timely fashion. To achieve this,
it was crucial that Ctrl-MAC is designed with system constraints and control and communica-
tion parameters that are specific to WA-CPSs. Both the communication system and the control
system need to be considered during the design due to their influence on each other.

Single-hop LPWA networks which are not designed for control purposes lack in terms of
delay bounds, message loss, two-way traffic and duty cycling [22]. To guarantee the stability of
the control system, its event response time must meet an upper bound imposed by the system
use case. This service time is directly related to the message delays and message losses of the
system. Duty cycling is a restriction on the maximum percentage of time that a node can transmit
on a channel. Wireless communication typically uses a shared part of the wireless spectrum that
is governed by fair usage rules [22]. For example, a 1% duty cycle would require devices that
broadcast for 1 second, to be unable to broadcast again for another 99 seconds. Ctrl-MAC and
the related control model address these issues and demonstrate a workable resource constrained
solution for control in WA-CPSs.

4.1 Technical description of Ctrl-MAC

The operation of Ctrl-MAC is divided into two phases: the sensing and data transmission phase

and the control update and actuation phase. The sensing and data transmission phase handles
the process of gathering environment data by the sensors and transferring the data to a central
gateway node. The gateway node then calculates the appropriate control actions based on the
information received from the sensor nodes, and instructs the actuator nodes accordingly in the
control update and actuation phase. The main reliability requirement is that the sensors are able
to send data in a timely manner, so the formal analysis will focus on the first phase.

Wireless communication of sensor devices makes use of channels of different frequencies
when transmitting data. These channels have a duty cycle imposed on them, i.e. a restriction on
the maximum percentage of time that a node can transmit on a channel, and there is also an EU
recommendation on their total number [48]. Different channels can have different duty cycles.
Ctrl-MAC assumes that there are three 1% duty cycle channels and one 10% duty cycle channel
(see Fig. 4.1). The 10% channel is used for data transmission requests and actuator updates for
the actuator nodes, while the other channels are used for data transmission.

The sensing and data transmission phase is governed by periodic Request-Reply Messages
(RRMs) (see Figure 4.1) sent out by the gateway device. These RRMs partition time into inter-
vals which we call RRCs. Each RRC begins with an RRM and lasts for a predefined amount of
time. In this phase, sensor nodes progress through three stages.

First, each sensor node senses the physical environment to identify whether an event has

CHAPTER 4. PRELIMINARIES 2: CTRL-MAC 48

1 period Time

Channels
DATA
CHANNEL

#3

DATA
CHANNEL

#2

DATA
CHANNEL

#1

REQUEST
CHANNEL

single data
slot

single request
slot

M = 3 data channels l = 6 data slots on
each channel k = 3 request slotsD

Figure 4.1: One request channel and three data channels, with RRM segmenting time in periodic
intervals.

occurred. Events are defined as a pattern in the sensed data; e.g., the data going above or below
a predefined threshold, or experiencing a change above a predefined magnitude. If an event
is detected, the sensed data needs to be transmitted, otherwise the sensor sleeps until the next
sensing cycle. If data needs to be transmitted, the sensor node first waits for the next RRM
and uses it to synchronise with the gateway by updating its local device clock to the start of the
RRM. This is necessary, as clock drift may occur when sensor nodes remain in a deep sleep
power-saving mode over multiple sensing periods. At this point the sensor learns the number of
request slots k, and the duration of each request slot tslot .

In the second stage sensors transmit their data transmission requests. A sensor node chooses
one of the k request slots at random and transmits a data transmission request in that slot. The
choice is made using a uniform random distribution of all available request slots rather than a
fixed choice or via round-robin scheduling in order to support cases involving more sensor nodes
than request slots. A data transmission request constitutes of a sensor node transmitting its ID
during the time interval of the chosen request slot. A request is successful if exactly one node
transmits during a request slot, otherwise there is a collision (i.e. congestion has occurred in the
associated request slot) and the requests of all sensor nodes which have chosen that request slot
will fail.

Sensor nodes learn about the result of their data transmission request in the next RRM. Fig.

CHAPTER 4. PRELIMINARIES 2: CTRL-MAC 49

frame

feedback for
request slot 1

feedback for
request slot 2

feedback for
request slot 3

2b 4b 4b 4b 4b2b 2b 2b 2b 2b

C0 C0 C0C1 C1 C1 C2C2C2 FTR

Figure 4.2: The structure of an RRM with k = 3 transmission request slots

4.2 shows an example of an RRM for an instance of Ctrl-MAC with k = 3 request slots. The
frame of an RRM consists of three fields for each transmission request slot and one field for the
FTR counter. The three fields for each request slot are used to provide feedback for that request
slot and are interpreted as follows:

1. The first field, C0 ∈ {0,1,2} labels the state of the request slot. Request slots that were not
used by any sensor nodes are indicated by C0 = 0; C0 = 1 indicates that a single sensor
node has made a request in the request slot, and thus that request was successful; while
C0 = 2 signifies that a collision has occurred in the request slot.

2. The second field is the data slot counter, C1 ∈ {1, ..., l}. Here l is the total number of data
slots. This field tells sensor nodes with successful requests which data slot they should
use to send their data.

3. The third field is the data channel slot counter, C2 ∈ {1, ...,MD}. It is used to inform
successful sensors of the channel of their allocated data slot. Here MD is the number of
data channels. Apart from the data transmission request channel and the actuator down-
link channel, all channels are data channels, i.e. MD = M−2, where M is the total number
of channels used by Ctrl-MAC.

The FTR counter is the cumulative sum of contentions that have not been resolved at the time
of the request reply message. This value is incremented for each congested request slot and
decremented after each RRM. Sensor nodes interpret an RRM using the process described below.

The value of C0 is checked for the request slot used by the sensor node. If C0 = 1, the sensor
node proceeds to stage three and sends its data. If C0 = 2, the sensor node has to perform another
data transmission request. Before it does so, sufficient back-off time needs to be applied in order
to prevent network congestion. The time for the next data transmission request is determined
based on the value of the FTR. The sensor node counts the number of all other request slots
with C0 = 2. This value is denoted by r, indicating that there are r + 1 total slots that have
experienced contention. Each sensor node determines the number of congested request slots
before its own in the RRM. This value is denoted as p with p ∈ {0, ...,r}. The sensor then waits
for (FT R+ r− p) RRMs to pass from the last data transmission request before another request

CHAPTER 4. PRELIMINARIES 2: CTRL-MAC 50

is made. For example, assume that FT R = 0, and the current RRC has had two request slots that
have experienced a collision. The gateway generates and transmits the corresponding RRM.
All sensor nodes that had chosen one of those two request slots count r = 1 other slots with
contention. The sensors having chosen the first request slot find that p = 0 of those are placed in
front of their own request slot, while those that have chosen the other calculate that p = 1. The
sensor nodes of each group must then wait for

(FT R+ r− p) = 0+1−0 = 1

RRM and
(FT R+ r− p) = 0+1−1 = 0

RRMs respectively. This means that the sensors in the second group would transmit a new
data transmission request in the current RRC, while those from the first group would do so in
the following one. All sensors must transmit a request during their corresponding RRC. Each
sensor individually chooses which request slot to send the request in, at random and with equal
probability. Note that after the transmission of this RRM, the new value of FTR is 1. The
gateway first increases the FTR value by 2 (as two collisions have occurred) and then decreases
it by 1 (as an RRM has occurred). A good way to think about the FTR is that it is the number
of sets of backed off sensors with respect to the number of RRMs they are backed off for. The
formulas for the newly assigned back-offs assign all sensors that have made a transmission
request in a particular congested request slot to a unique set, i.e. if those sensors are backed off
for, say, 4 RRMs, then they will be the only sensors that will be backed off for 4 RRMs, and
while their back-offs expire, no newly backed off sensors will be assigned their current back-
off duration. As a corollary, the FTR value is equal to the largest currently assigned back-off
duration.

Stage three is when the sensor node transmits its data. The RRM partitions each of the MD

data channels into l data slots. Each sensor node that has had a successful data transmission
request is assigned a unique slot/channel pair by the gateway, which ensures that no contention
will occur during data transmission. A sensor node which has received an RRM with C0 = 1,
changes its radio to the frequency of channel C2 and transmits its data during time slot C1.
Additionally, if new data that triggers the event condition of the sensor has been sensed since
initiating this process, only the latest data is sent to the gateway. The controller only needs the
newest information to ensure the stability of the control system.

The control update and actuation phase of Ctrl-MAC is relatively simple and consists of pe-
riodic downlink messages sent by the gateway that deliver the necessary actuation information.
As we previously noted, this phase will not be the focus of formal verification in this thesis, we
refer instead to a more detailed description in [22].

Our focus is in modelling stage two of the sensing and data transmission phase. Stage one

CHAPTER 4. PRELIMINARIES 2: CTRL-MAC 51

requires all sensor nodes to wait for exactly one RRM before making their first data transmission
request which does not have a meaningful impact on the performance of the protocol. The rate
at which events occur has a significant impact on the protocol’s theoretical performance and is
discussed in Section 5.3.2. For the majority of this thesis we will consider the two extreme cases:
either no events after the initial ones the model starts with, or a new event occurs immediately
after a sensor device successfully transmits its data. In stage three the sensor nodes transmit their
data in their allocated channel and data slot. The gateway assigns each sensor that has performed
a successful data transmission request with a unique channel/slot pair. Therefore, no congestion
should occur on any of the data channels, and we can assume that once a sensor receives data
channel and data slot information in an RRM, it can successfully transmit its data during the
RRC following that RRM.

Chapter 5

Initial Ctrl-MAC verification

As we previously stated, our main initial goal was to use formal methods to analyse the Ctrl-
MAC communications protocol. We introduced the protocol and gave a technical description of
its structure in Chapter 4. In this chapter we present our initial models and observations. We
introduce a suite of models that we have incrementally developed in applying formal verification
to Ctrl-MAC, and we present an approach that could allow us to scale our verification to the
required number of sensors.

5.1 Initial Ctrl-MAC PRISM models

Ctrl-MAC was first presented in [22] where its correctness was demonstrated via simulation and
statistical analysis. While this approach was able to show that Ctrl-MAC operated correctly for
a finite set of runs, it could not provide a guarantee of performance in all scenarios. To comple-
ment the simulation results we will use PRISM [143] to analyse the protocol. Formal methods
have been shown to be a useful tool in protocol analysis (e.g. the Chord routing protocol, which
was designed without the use of formal methods, and the issues subsequently discovered [161,
247] and see Section 2.3 for other examples).

In the simulation and statistical analysis of Ctrl-MAC [22] the total delay introduced by Ctrl-
MAC tMAC is defined as the sum of the delays introduced by its stages, {tsync, treq, tsend, tupdate}.
Out of these, the delay of the synchronisation process tsync is a fixed delay based on the size
of the RRC, while the delays of the data transmission stage tsend and the actuator control input
phase tupdate are deterministic due to the use of dedicated data slots and channels. We assume
that there is no network traffic or interference during those three stages and phases as due to the
nature of TDMA protocols it can be expected that only the gateway device broadcasts during
the time allocated for the RRM, and that there is no contention of the network during allocated
channel and time slots. We focus our modelling efforts on the non-deterministic component
treq, the delay associated with Stage Two. This delay has the biggest impact on tMAC as it is
not bounded and it has previously been only analysed through numeric simulation. We attempt

52

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 53

Stage One
Occurrence of an Event

Stage Three

Stage Two

Return to Stage Two

IDLE Message
to Send

Read
feedback

Read
feedback

Change
frequency

Collision
queue

Data
queue

Start new
MS

request

Start
sending

data
Data sent

Choose
random
Mini Slot

(MS)

Start
sending in

MS
MS

requested

Application layer
message Wait for

feedback
Wait for

feedback
Set

timer
Timer
fires

Transmission
completed

Transmission
completed

Go back to
initial state

Figure 5.1: States of a Ctrl-MAC sensor device. States used in our PRISM models are coloured
in blue.

to model the network traffic and interference present at the core of this stage in order to obtain
some formal proofs about its time bound. We assume there is no noise present in the network as
we expect the effect of the noise to be minimal in comparison to that of network traffic.

We have chosen to model Stage Two as a DTMC. The periodic nature of the protocol ensures
that concurrency can be omitted, i.e. the time necessary for a device to perform a particular
action is sufficiently smaller than the time interval assigned for that action. Furthermore, if
congestion occurs, the order in which the messages occurred does not matter, only the slot they
belong to. We use the time division of the protocol as a basis for the discretisation of the model.

For our initial PRISM model we applied a naive and straightforward approach to modelling
the protocol. We attempted to represent each of the devices participating in the Ctrl-MAC pro-
tocol as separate entities. Ctrl-MAC’s operating principle divides devices into two categories:
a gateway device that is responsible for collecting all of the data to be used by the actuators of
the CPS, and sensor devices supplying that data. Each of these sensor devices follows the same
workflow and the operation of such a device is depicted in Figure 5.1. Note that for our models
we do not include the states associated with Stage Three of the Ctrl-MAC protocol. We assume
that once a device has a data slot assigned to it, there will be no congestion on that data channel
in that time slot. In practice, issues in transmission can always occur but we will focus on the
time it takes for a participating device to receive a time slot. The gateway device contains the
logic necessary to allocate data transmission time slots to the sensor devices.

Our initial PRISM model was inspired by an existing PRISM model used in the verification
of IEEE 802.11 Wireless Local Area Network Protocol [146]. The modules used for our PRISM
model corresponded to the function of each device, so they also could be divided into two types:

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 54

a gateway device, and a sensor device. There is only one gateway device, so the model has only
one gateway module. This module models the RRMs, i.e. the status of each request slot and the
value for the FTR. The type used to represent the sensor devices only models the request status
of a specific device and follows the states depicted in Figure 5.1. As all sensor devices follow
the same procedure, PRISM module renaming was used to create multiple copies of the same
module for the desired number of sensor devices.

The module used to represent the gateway needs additional logic to generate RRMs and to
determine which modules have had successful requests and which have experienced contention.
Guarded commands were used to update a device’s state, with the guards synchronising the
updates in the way they would be done by the RRMs. Our initial PRISM model can be found
in Listing 5.1. The number of requests received during each request slot is stored in a global
variable c0, c1, c2, etc. An RRM is generated by updating the local variables C00, C10,
C20, etc to represent the statuses reported by an RRM (see Figure 4.2) and by calculating
the corresponding value of the FTR. The global variables are reset, so that they can be used
to count requests received during the new RRC. In this way, each sensor device both knows the
information necessary to assign its back-off duration, and is able to transmit new requests during
the RRC.

1 module gateway

2
3 active1: [0..1] init 1; //if 1 then ready to send request_reply message

4 active2: [0..1] init 1; //if 1 then not yet decremented FTR

5 x : [0..TIME_MAX]; //clock for gateway

6 //local state

7 g: [1..3] init 1;

8 //1 at start of request-reply slot

9 //2 receiving data and request messages

10 //3 generate schedule

11 C00 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

12 C10 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

13 C20 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

14 C30 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

15 C40 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

16 FTR : [0..MAX_FTR] init 0;

17
18 [request_reply] g=1 & x = 0 & active1=1 & active2=1-> (active1’=0); //

synchronise with the nodes, relay schedule

19 [] g=1 & x=0 & active1=0 & active2=1 -> (FTR’=newFTR) & (active2’=0); //

decrement FTR if appropriate

20 [time] g=1 & active1=0 & active2=0 & x<REQUESTSLOT_TIME-1-> (x’=x+1); //

increment time through RR slot

21 [time] g=1 & x=REQUESTSLOT_TIME-1-> (x’=x+1) & (g’=2); //increment time out

of RR slot

22 [time] g=2 & (x<TIME_MAX-1) -> (x’=x+1); // move through remaining slots,

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 55

receive data

23 [time] g=2 & (x=TIME_MAX-1) -> (g’=3); // approach next RR slot

24 [] g=3 & x>0 -> (x’=0) & (FTR’= min(FTR + new_contentions,MAX_FTR));

25 [] g=3 & x=0 -> (C00’=c0) & (C10’=c1) & (C20’=c2) & (C30’=c3) & (C40’=c4) &

26 (active1’=1) & (active2’=1) & (c0’=0) & (c1’=0) & (c2’=0) & (c3’

=0) & (c4’=0) & (g’=1); //generate schedule

27 endmodule

Listing 5.1: PRISM code for gateway module in model 1.

Our initial PRISM model (which we henceforth refer to as model 1) was not optimised.
Listing 5.2 shows an improved version of the same module (which was used in our next model,
model 2). The variable which was used to keep track of time was completely removed. All
request slots in a request-reply cycle have the same duration, so it would be possible to track
(a discretised form of) time by only monitoring the current request slot. Furthermore, while
the request slots (and the sensor nodes’ requests for each slot) happen sequentially, our PRISM
model can model them occurring simultaneously as the choices of request slots are independent
of each other (each sensor node performs a random choice). The same logic was applied to
the sensor modules, so that sensors can communicate their choice of request slot at any point
during the RRC as opposed to only during the time interval associated with that request slot.
Additionally, whereas in model 1 the gateway node kept track of its local state through the use
of three local variables: active1, active2, and g, this was simplified to a single variable g
in model 2. Full versions of both models can be found in Appendix A.2 and Appendix A.3.

1 module gateway

2 //1 at start of request-reply slot

3 //2 receiving data and request messages

4 //3 generate schedule

5 g: [1..4] init 1;

6
7 C00 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

8 C10 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

9 C20 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

10 C30 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

11 C40 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

12 FTR : [0..MAX_FTR] init 0;

13
14 [request_reply] g=1 -> (g’ =2); // synchronise with the nodes,relay schedule

15 [] g=2 -> (g’=3);

16 [time] g=3 -> (g’=2); // sensors have chosen request slots, can generate RRM

17 [] g=4 -> (C00’=c0) & (C10’=c1) & (C20’=c2) & (C30’=c3) & (C40’=c4) &

18 (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

19 (FTR’=min(newFTR+new_contentions,MAX_FTR)) & (g’=1); // schedule

20 endmodule

Listing 5.2: PRISM code for gateway module in model 2.

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 56

Figure 5.2: A graph of the results obtained from model 2. Probability of successful data delivery
of a specific sensor is plotted against number of RRMs elapsed. Results are for a model with 3
sensor devices, which all start in a state where an event has been sensed, and no new events are
registered.

Both model 1 and model 2 allow us to specify properties for each individual device, such as
verifying that “the probability that a sensor device is able to eventually send its data is 1”, calcu-
lating "the probability that sensor device A is able to send data within ten RRCs occurring", and
computing "the average number of RRCs that occur between data generation and data transmis-
sion". Furthermore, PRISM’s simulator can be used to investigate paths that lead to a state of
interest, i.e. one that violates or satisfies a given property. In Figure 5.2 we present some exam-
ple results produced by this model. The scenario modelled is for an instance of Ctrl-MAC with
three participating sensor devices, where all three devices are attempting to send data. No other
devices detect data surpassing their threshold for the purposes of this model. The graph shows
the probability that one of the sensors delivers its data successfully after the specified number of
RRMs have occurred. Table 5.1 shows model computation times and sizes for a range of sensor
devices involved in a Ctrl-MAC protocol for model 2. All experiments presented in this chapter
were performed on a 2.60 GHz PC with 16 GB RAM, running PRISM version 4.8 under Win-
dows. The maximum memory of the CUDD library was set to 1 GB (PRISM default) and the
Java maximum memory was set to 6 GB. Build times, number of states and transitions increase
by an order of magnitude when a sensor is added. The model runs out of available memory
when run for an instance with 8 participating sensor devices.

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 57

Number of sensors Time (s) States Transitions
1 0.061 52 66
2 0.169 343 687
3 0.331 4,097 11,183
4 0.626 45,362 164,106
5 1.655 518,105 2.35e+6
6 11.36 2.12e+7 8.57e+7
7 68.76 3.59e+8 1.65e+9
8 mem-error mem-error mem-error

Table 5.1: States, transitions and build times for PRISM models of Ctrl-MAC with the specified
number of sensor devices based on model 2.

Developing these two models resulted in a number of beneficial outcomes. At the most basic
level, it aided the communication with the protocol developers, allowing us to find and visualise
many cases of interest. In particular, we were able to discover a number of inconsistencies and
ambiguities in the initial protocol specification the developers provided us with. For example,
we were able to make clear whether counting the number of request slots started from 0 or from
1, which could result in an off-by-one error when assigning back-off periods. Additionally, we
identified a number of mistakes in some of the formulas in the original protocol specification,
and cleared up an ambiguity concerning whether the FTR counter gets decremented before or
after an RRM is sent out. There was also an undocumented case for what actions sensor de-
vices, that have experienced unsuccessful transmission requests, should take if FTR equals 1.
When Ctrl-MAC is described in [22] it is said that FTR “includes the current failed and previous
failed transmission requests”. Our models showed that this would lead to double counting of
the current failed transmission requests in calculating the back-off of a sensor node using the
(FT R+ r− p) formula. The FTR in this formula actually only refers to previous failed trans-
mission requests as the current failed ones are counted by each sensor node via the variable r.
The value of FTR is updated to include the current failed transmission requests only after the
back-offs have been calculated. This particular finding was essential for the improvements we
made in our next model, namely model 3 (see below). While these examples might look trivial
to people well-acquainted with Ctrl-MAC, they can cause a good deal of confusion for software
developers new to the protocol. Developing a PRISM model alongside the Ctrl-MAC specifi-
cation was of great benefit to both us (the modellers), and the developers. Even at this stage
the formal analysis allowed both sides to gain a much deeper insight into the communication
protocol and discover a range of issues with the protocol specification.

The structure of the two models followed the operating principle of Ctrl-MAC, outlined
in Section 4.1. During the RRM portion of each RRC the sensor nodes do nothing while the
gateway node calculates the values used in the RRM. Conversely, for the rest of the RRC, the
gateway only listens, while the sensor nodes choose their slots and transmit their requests. The
gateway and sensor node modules model this behaviour by alternating which one performs ac-

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 58

tions. The two module types are synchronised by two labels, request_reply and time,
which serve to distinguish the transitions of the gateway module from those of the sensor mod-
ules, so that all sensor nodes have finished making their transmission requests at the point that
an RRM is generated. Similarly, sensor nodes do not choose request slots and make requests
while the gateway is generating an RRM. Using this observation it is possible to greatly simplify
the modules by restructuring their order of operation. Previously, the order was (starting at the
beginning of an RRM):

1. Gateway module determines which request slots had experienced contention (i.e. local
variables C00, C10, etc) based on how many sensor modules had transmitted a request
during those request slots (i.e. global variables c0, c1, etc) and updates the FTR accord-
ingly.

2. Gateway module resets the global variables c0, c1, etc to keep count of requests received
during the next RRC.

3. Sensor modules check if their request was successful, and calculate the corresponding
back-off if it was not. This back-off duration is based on the number of congested request
slots from the previous RRC (i.e. variables C00, C10, etc).

4. Sensor modules that are not currently backed off choose a request slot at random and
generate a transmission request by updating the corresponding counter (i.e. on of the
global variables c0, c1, etc).

This ordering meant that information about the request slots for both the previous and current
RRC had to be maintained. This is because one was needed to assign back-offs while the other
to perform transmission requests. This doubled the variables required to model the request slots.
Consider instead the following ordering of events (again starting at the beginning of an RRM):

1. Sensor modules check if their request was successful by looking at the number of requests
transmitted in the request slot chosen by them (i.e. global variables c0, c1, etc). If
unsuccessful the corresponding back-off is calculated based on those variables and the
current FTR using the (FT R+ r− p) formula.

2. Gateway module updates FTR based on the number of slots that have experienced con-
tention (which is determined by the number of requests received during each request slot,
i.e. c0, c1, etc).

3. Gateway module resets the global variables c0, c1, etc to keep count of requests received
during the next RRC.

4. Sensor modules that are not currently backed off choose a request slot at random and
generate a transmission request by updating the corresponding counter (i.e. on of the
global variables c0, c1, etc).

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 59

This alternative ordering removes the requirement to keep track of the state of request slots in
the previous RRC. In turn, this allows us to remove the local variables C00, C10, etc. from
our model, which greatly simplifies the gateway module as shown in Listing 5.3. Table 5.2
shows the improved model construction times and the reduced model sizes resulting from this
improvement (which we henceforth refer to as model 3; full version available in Appendix A.4).
The number of states and transitions increase by an order of magnitude with the addition of
a new sensor device; however, the build time now increases by an order of magnitude every
two additional sensors. We note that model 3 was able to be constructed for up to nine (two
additional) sensor nodes before the memory limit was reached.

1 module gateway

2 //1 at start of request-reply slot

3 //2 generate schedule

4 //3 receiving data and request messages

5 g: [1..3] init 1;

6
7 FTR : [0..MAX_FTR] init 0;

8
9 [request_reply] g=1 -> (g’ =2); // synchronise with the nodes,relay schedule

10 [] g=2 -> (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

11 (FTR’=newFTR) & (g’=3); // schedule

12 [time] g=3 -> (g’=1); // RRM has been generated and broadcast

13 endmodule

Listing 5.3: PRISM code for gateway module in model 3.

Number of sensors Time (s) States Transitions
1 0.037 34 48
2 0.010 264 608
3 0.157 3,498 10,584
4 0.363 43,467 164,275
5 1.12 537,940 2.44e+6
6 4.79 6.71e+6 3.56e+7
7 16.0 8.47e+7 5.12e+8
8 56.9 1.08e+9 7.31e+9
9 205 1.40e+10 1.04e+11
10 mem-error mem-error mem-error

Table 5.2: States, transitions and build times for PRISM models of Ctrl-MAC with the specified
number of sensor devices based on model 3.

Clearly, given the naivety of our initial models, we could only derive results for a small
number of sensors. This is a common problem though - all similar models on the PRISM
website [193] are only applicable to a small number of processes. They are still extremely useful
for analysing the behaviour of the underlying protocol. We do, however, want to investigate the

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 60

behaviour of Ctrl-MAC for larger systems, and the rest of this thesis is devoted to developing
ways to do this. Meanwhile, the following observations explain why our state space explodes so
rapidly.

One main reason for our large state space is that sensors are treated as distinguishable ob-
jects, so each sensor performs its choice for which request slot it uses in a transmission request
individually. This results in the total number of states being a multiple of a factor that depends
on the total number of request slots. During each RRC the PRISM model considers sensor de-
vice A choosing the first request slot and sensor device B choosing the second request slot as a
different case from sensor device A choosing the second request slot and sensor device B choos-
ing the first request slot. Furthermore, the different orders in which devices A and B make their
choices lead to different paths in the model. We previously mentioned partial order reduction
as a solution to models where interleavings of independent events are equivalent, and have seen
it applied to symbolic model checking [5]; however, to our knowledge, this is not supported by
PRISM. However, in Ctrl-MAC there is no operational difference between sensor devices: no
data is given priority and no data delay is less desirable than another. The protocol considers
only the number of sensors choosing each request slot, so all of the cases above result in the
same overall behaviour. The behaviour of the model only depends on how many sensors have
chosen each request slot. This in turn depends on the number of sensors that have transmitted
transmission requests in that RRC. Our goal is to remove the unnecessary complexity introduced
between these two steps.

The properties we want to verify for Ctrl-MAC do not reference all of the sensor nodes
individually. We would be interested in more general network qualities: the probability that the
number of collisions exceeds a given value, the expected number of recently failed transmission
requests, the probability that any sensor is unable to send its data for longer than a specified
threshold, etc. To do so we either want to consider all nodes generically (e.g. to verify that
all sensors are able to send within a given time frame), or want to distinguish a single sensor
but consider the remaining sensors generically (e.g. to find the probability that a sensor node is
able to send its data by generating at most two transmission requests). Currently, our PRISM
models refer to all of the sensor nodes individually. A WA-CPS is often not concerned with
which exact device is being delayed or prevented from sending its data. It is generally much
more beneficial to look at the overall system performance: i.e. the probability that any device is
delayed by more than some number of cycles or the average delay between data generation and
data transmission. We investigate symmetry reduction as a possible solution as it is an effective
way of combating the state space explosion problem in similar cases and it can allow us to prove
this type of generic properties about the overall system behaviour.

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 61

5.2 Ctrl-MAC PRISM model with manual counter abstrac-
tion

Although our initial models were useful, we clearly require a more scalable approach to allow us
to generalise our results to a larger number of sensor devices. Exploiting the symmetry present
in our models by merging all - or all but one - of the sensors has been identified as a potential
way to reduce the size of the state space. We choose to apply symmetry reduction through the
use of counter abstraction to achieve this. Using a counter to generically represent states of the
original model has been shown to be effective in reducing the state space for symbolic model
checking [71]. In this section we attempt to manually apply counter abstraction to the Ctrl-MAC
model following the macroscopic approach used to verify swarms of foraging robots in [139].
In that scenario, individual behaviours defined at the microscopic level resulted in complex
group behaviours at the macroscopic level. A counting abstraction was beneficial in modelling
the overall group behaviour as the multiple individual processes were all identical. Similarly,
in Ctrl-MAC sensor nodes are identical and obtaining information about group behaviour can
be useful. For example, as the back-off assigned by sensors with unsuccessful transmission
requests are closely related to the current FTR value, obtaining a value for the probability that
FTR reaches some specified upper or lower bound could be beneficial in establishing a range for
the back-off duration following an unsuccessful request. In Section 6.5.5 we will compare this
manual approach to a more automatic approach using GRIP.

To do this for our models, we must describe counter variables for every state a sensor can
be in, so that we keep track of how many sensors are in that given state. These counters include
single states such as idle, sending, sent, as well as families of states describing sensors that have
been backed off for a number of RRMs or sensors that have chosen to send on a particular request
slot. The number of counters needed for the latter category is equal to the number of request
slots, while the size of the former is bounded by the following observation: the maximum back-
off is at most half the total number of sensors. When contention occurs, all sensor nodes that
have chosen that request slot receive the same back-off duration, while sensors that are backed-
off due to collisions in different request slots receive different back-off durations. As sensors
that are backed-off cannot send new transmission requests, each sensor can only be backed-off
in one group (in terms of their back-off duration). Therefore, as we need at least two sensors to
choose the same request slot in order for a collision to occur, the maximum possible value for
the FTR (and equivalently, the back-off) when there are n sensor nodes is⌊n

2

⌋
−1.

We note that the −1 term is because at each RRM the FTR is increased by the number of new
contentions and simultaneously decremented as a result of the start of a new RRC. We also note

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 62

idle

backed 1

sending send 0

send 1 send 2

send 3

send 4

done

backed 2 backed n…

Figure 5.3: Counters and possible transition between counters. An arrow signifies sensors going
from one sensor state to another. The dotted line represents the optional transition for models of
non-bursty traffic.

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 63

that this extreme has a very low probability of being reached: in fact, for large numbers of sensor
nodes this is also the case for a wide range of the largest FTR values. We discuss how this can
be used to help the state space explosion problem in Section 7.1.

While the number of counters is less than the number of sensors, these values are still linearly
related. The transitions between the states are simple to model: e.g. at each RRM the counter
for sensors backed off for 1 RRM assumes the value of the counter for sensors backed off for 2
RRMs, etc. Figure 5.3 illustrates the counters used by the model and the ways in which those
counters can change.

Listing 5.4 shows the gateway module with counter abstraction applied to it in this way.
We have created new variables idle, sending, send0, send1, send2, send3, send4,
backed_off, and backed_off2which keep track of the number of idle sensors, the number
of sensors that have detected an event and will be transmitting a request in this RRM, the number
of sensors that have chosen each of the possible request slots, and the number of sensors which
are currently backed off for each possible back-off duration.

1 module gateway

2 g: [1..4] init 1;

3 FTR : [0..MAX_FTR] init 0;

4 // population counters

5 idle: [0..POPULATION] init POPULATION;// idle sensors

6 sending: [0..POPULATION] init 0; // sensors sending requests this round

7 send0: [0..POPULATION] init 0; // sensors having chosen request slot 0

8 send1: [0..POPULATION] init 0; // sensors having chosen request slot 1

9 send2: [0..POPULATION] init 0; // sensors having chosen request slot 2

10 send3: [0..POPULATION] init 0; // sensors having chosen request slot 3

11 send4: [0..POPULATION] init 0; // sensors having chosen request slot 4

12 backed_off1: [0..POPULATION] init 0;// sensors backed off for 1 RR cycle

13 backed_off2: [0..POPULATION] init 0;// sensors backed off for 2 RR cycles

14
15 [] g=1 & idle>0 & sending>=0-> (idle’=0) & (sending’=min(sending+idle,

POPULATION)); // transition to attempt to send

16 // each sending sensor chooses the slot they like

17 [] g=1 & idle=0 & sending>0 ->

18 1/5:(sending’=sending-1)&(send0’=min(send0+1,POPULATION))&(c0’=min(c0+1,2))+

19 1/5:(sending’=sending-1)&(send1’=min(send1+1,POPULATION))&(c1’=min(c1+1,2))+

20 1/5:(sending’=sending-1)&(send2’=min(send2+1,POPULATION))&(c2’=min(c2+1,2))+

21 1/5:(sending’=sending-1)&(send3’=min(send3+1,POPULATION))&(c3’=min(c3+1,2))+

22 1/5:(sending’=sending-1)&(send4’=min(send4+1,POPULATION))&(c4’=min(c4+1,2));

23 // every sensor has chosen a slot

24 [time] g=1 & idle=0 & sending=0 -> (g’=2);

25 // change populations to specific backoff population based on congestion and

current FTR

26 [] g=2 & c0>1 & send0>0 & (FTR+new_contentions-position0=1)->(send0’=0)&(

backed_off1’=min(backed_off1+send0,POPULATION));

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 64

27 [] g=2 & c0>1 & send0>0 & (FTR+new_contentions-position0=2)->(send0’=0)&(

backed_off2’=min(backed_off2+send0,POPULATION));

28
29 [] g=2 & c1>1 & send1>0 & (FTR+new_contentions-position1=1)->(send1’=0)&(

backed_off1’=min(backed_off1+send1,POPULATION));

30 [] g=2 & c1>1 & send1>0 & (FTR+new_contentions-position1=2)->(send1’=0)&(

backed_off2’=min(backed_off2+send1,POPULATION));

31
32 [] g=2 & c2>1 & send2>0 & (FTR+new_contentions-position2=1)->(send2’=0)&(

backed_off1’=min(backed_off1+send2,POPULATION));

33 [] g=2 & c2>1 & send2>0 & (FTR+new_contentions-position2=2)->(send2’=0)&(

backed_off2’=min(backed_off2+send2,POPULATION));

34
35 [] g=2 & c3>1 & send3>0 & (FTR+new_contentions-position3=1)->(send3’=0)&(

backed_off1’=min(backed_off1+send3,POPULATION));

36 [] g=2 & c3>1 & send3>0 & (FTR+new_contentions-position3=2)->(send3’=0)&(

backed_off2’=min(backed_off2+send3,POPULATION));

37
38 [] g=2 & c4>1 & send4>0 & (FTR+new_contentions-position4=1)->(send4’=0)&(

backed_off1’=min(backed_off1+send4,POPULATION));

39 [] g=2 & c4>1 & send4>0 & (FTR+new_contentions-position4=2)->(send4’=0)&(

backed_off2’=min(backed_off2+send4,POPULATION));

40 // change population to idle if transmission was successful

41 [] g=2 & c0=1 -> (idle’=min(idle + send0,POPULATION)) & (send0’=0);

42 [] g=2 & c1=1 -> (idle’=min(idle + send1,POPULATION)) & (send1’=0);

43 [] g=2 & c2=1 -> (idle’=min(idle + send2,POPULATION)) & (send2’=0);

44 [] g=2 & c3=1 -> (idle’=min(idle + send3,POPULATION)) & (send3’=0);

45 [] g=2 & c4=1 -> (idle’=min(idle + send4,POPULATION)) & (send4’=0);

46 // all requests have been sorted; make RR

47 [request_reply] g=2 & send0+send1+send2+send3+send4=0 -> (g’=3)

48 & (sending’=min(sending+backed_off1,POPULATION))

49 & (backed_off1’=backed_off2) & (backed_off2’=0);

50 // reset request slot counters

51 [] g=3 -> (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

52 (FTR’=newFTR) & (g’=4); // schedule

53 [rr_end] g=4 -> (g’=1);

54 endmodule

Listing 5.4: PRISM code for gateway module in model 4.

As mentioned previously, we are interested in verifying properties about the group behaviour
established by the interactions between individual sensors. We separate these properties into two
types. We refer to the first type as generic properties: e.g., sensors are able to eventually transmit
data, or the probability that FTR obtains a value larger than 10 is less than 1%. These properties
either reference an action performed by all of the identical processes or are related to a quantity
that is not intrinsic to any of them. The second type of property are referred to as quasi-generic

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 65

Sensors Time States Transitions
5 0.39 1660 3852

10 3.08 36,145 98,455
15 10.2 405,403 1.19e+6
19 22.0 2.20e+6 6.86e+6
20 25.6 3.24e+6 1.03e+7
25 52.0 1.86e+7 6.34e+7
30 108 8.19e+7 2.96e+8
35 237 2.95e+8 1.12e+9
40 error error error

Table 5.3: States, transitions and build times for the model with counter abstraction (model 4).

properties: e.g., the probability that a specific sensor waits for more than 50 RRCs from sensing
its data to transmitting it is less than 2%, or the probability that any sensor is backed off more
than four times in a row is less than 5%. This type of property distinguishes one of the identical
processes but not the others. In fact this type of property is used to reflect a more general type
of property, e.g. that any sensor has the required behaviour. However, as all of the sensors are
identical, we use a specific sensor (e.g. sensor 1) to reflect the property of interest. This is
required to express the property in PRISM.

A PRISM model with the gateway module from Listing 5.4 as its only module would be
able to verify generic properties for Ctrl-MAC but would be unable to verify quasi-generic
ones. Table 5.3 shows the state space and compilation times achieved by such a model (which
we will refer to as model 4 henceforth; full PRISM file can be found in Appendix A.5). We
note the drastic increase in the maximum number of sensors modelled before the memory limit
is reached. Counter abstraction has enabled us to model the overall group behaviour of the
protocol, but we have lost the ability to investigate how individual sensors progress through the
protocol. While we do not want to identify all of the sensors individually in order to reduce the
state space, it would be ideal to be able to identify one or some of them in order to use those for
the verification of quasi-generic properties.

We use a hybrid approach to solve this issue. To model a Ctrl-MAC protocol with n sensor
nodes, we create a PRISM model with two modules: a gateway module based on the one pre-
sented in Listing 5.4 which uses counter abstraction to represent the behaviour of n− 1 sensor
nodes, and one node module which individually represents the distinguished sensor node. Do-
ing so enables us to achieve a portion of the possible state space reduction, while still allowing
us to verify quasi-generic properties. Table 5.4 compares the performance (in terms of model
build time) of this hybrid approach (which we will refer to as model 5) to the best performing
PRISM model without symmetry reduction (model 3). We have tested both models on a suite of
properties such as P=? [F<50 s1=8], i.e. what is the probability that the individual sensor
is able to transfer its data within 50 units of time, and in each case both models obtain the same
result (but we have not included the result in the table). We observe that the addition of counter

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 66

Sensors Time (1) (s) States (1) Transitions (1) Time (2) (s) States (2) Transitions (2)
2 0.010 264 608 0.125 205 356
3 0.157 3,498 10,584 0.205 799 1635
4 0.363 43,467 164,275 0.457 2484 5653
5 1.12 537,940 2.44e+6 1.23 6753 16,523
6 4.79 6.71e+6 3.56e+7 2.44 15,977 41,388
7 16.0 8.47e+7 5.12e+8 3.95 33,332 90,214
8 56.9 1.08e+9 7.31e+9 7.4 76,256 218,712
9 205 1.40e+10 1.04e+11 15.5 141,281 416,365

10 mem-error mem-error mem-error 23.8 278,402 846,398
11 mem-error mem-error mem-error 33.1 498,837 1.55e+6
12 mem-error mem-error mem-error 42.9 849,112 2.69e+6
13 mem-error mem-error mem-error 56.8 1.40e+6 4.53e+6
14 mem-error mem-error mem-error 76.3 2.28e+6 7.46e+6
15 mem-error mem-error mem-error 116 3.61e+6 1.2e+7
16 mem-error mem-error mem-error 151 5.64e+6 1.90e+7
17 mem-error mem-error mem-error 273 8.67e+6 2.96e+7
18 mem-error mem-error mem-error 289 1.31e+7 4.54e+7
19 mem-error mem-error mem-error 356 1.96e+7 6.88e+7
20 mem-error mem-error mem-error mem-error mem-error mem-error

Table 5.4: Comparison of model 3, the best performing model without counter abstraction (1),
versus model 5, the hybrid model with counter abstraction (2).

Model Number Short Description Properties Checked
Model 1 Initial model For each individual device
Model 2 Removed unnecessary details For each individual device
Model 3 Optimised transition order For each individual device
Model 4 Full counter abstraction Generic properties
Model 5 Hybrid model Quasi-generic properties

Table 5.5: Types of PRISM models that we have created.

abstraction doubles the number of sensor devices modelled before the memory limit is reached.
Counter variables greatly reduce the rate at which the numbers of states and transitions increase
as the number of sensor devices increases.

5.2.1 Performance comparison for different models

We will now present some of the verification results achieved using the five models described
above (see Table 5.5 for a summary). These five models were run in two varieties based on the
way the environment is modelled. The first considers bursty traffic and is based on models for
the 2C protocol [166] where all sensor nodes simultaneously detect an event that meets their
data transmission threshold and no further events are registered before all transmission requests
are resolved. The one allows for new events to be detected by sensors that are not currently

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 67

Figure 5.4: Verification of properties of the type P=?[F(FTR=x)] for the stated values of
the number of RRCs, x. Performed using model 4, the fully counter abstracted model, on an
instance with 19 sensor nodes.

attempting to transmit data. For these models we have assumed that the sensors are placed in
an event rich environment and detect new events immediately after transmitting data from a
previous event.

First, we present some of the generic properties we have verified. Properties such as the
probability that the FTR reaches a specified value

P =? [F (FT R = x)],

where x is a value in the range of values of FTR, can be verified using model 4, our fully counter
abstracted model, and thus can be checked for a larger number of participating sensors. Table
5.6 and Figure 5.4 show the verification results of this property for all values of x. We again note
that in this model increments and decrements to the FTR occur simultaneously, so the theoretical
maximum FTR value is ⌊

19
2

⌋
−1 = 8,

which is supported by the verification results. These properties show us that the top range of
values assumed by the FTR are reached only with a low probability. The FTR is closely related
to the assigned back-offs and these results can be used to infer the time between transmission
requests, which in turn can be used to reason about the maximal number of failed requests
possible before the transmission time limit is reached. We discuss this in more detail in Section

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 68

x P=? [F (FTR=x)] Time (s)
0 1.0 302
1 ≈ 1 134
2 ≈ 1 597
3 0.998 1840
4 0.884 21710
5 0.344 6086
6 0.070 7741
7 0.005 9081
8 1.004e-4 13512
9 0 0.047

Table 5.6: Verification of properties of the type P=? [F (FTR=x)] for the stated values of x.
Performed using model 4, the fully counter abstracted model, with 19 sensor nodes.

5.3.1.
We can also model conflict resolution in the situation where messages are sent in an ad

hoc fashion (rather than in bursts) by allowing sensors to transmit requests whenever they are
not already involved in a transmission request cycle. To do this sensors that have completed
a successful transmission request are returned to the idle state where they will begin a new
transmission attempt (see Listing 5.5).

1 [] g=2 & c0=1 -> (idle’=min(idle + send0,POPULATION)) & (send0’=0);

2 [] g=2 & c1=1 -> (idle’=min(idle + send1,POPULATION)) & (send1’=0);

3 [] g=2 & c2=1 -> (idle’=min(idle + send2,POPULATION)) & (send2’=0);

4 [] g=2 & c3=1 -> (idle’=min(idle + send3,POPULATION)) & (send3’=0);

5 [] g=2 & c4=1 -> (idle’=min(idle + send4,POPULATION)) & (send4’=0);

Listing 5.5: Transition commands for sensors in the successful state to idle state.

Currently, idle sensor devices are set to instantly begin a new transmission request, which al-
lows us to reason about the maximum throughput of the protocol, but the transitions from the
idle to the sending state can be augmented with probabilities based on those observed for the
specific Ctrl-MAC use scenario we are interested in. We achieve this by looking at steady-state
properties, such as

S =? [FT R = x],

the long-run probability that the FTR has a value of x for some x. The verification results for
this property for a range of values of x are depicted in Figure 5.5. In the equilibrium position,
the FTR value is between 6 and 8 more than 90% of the time. As a consequence, 90% of
the back-offs that are assigned to sensors experiencing congestion will be for between 6 and 8
RRMs. Equivalently, we find that the number of sensors that are not backed off is between 3
and 6, 90% of the time. This allows us to gain insight into the behaviour of the protocol: when
supplied with a constant flow of data, the protocol issues back-offs to sensor nodes, such that
the number of sensors that transmit during a single RRM is an optimal value that allows the

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 69

Figure 5.5: Verification of properties of the type S=? [(FTR=x)] for the stated values of
x. Performed using model 4, the fully counter abstracted model, with 10 sensor nodes. Sensors
instantly detect new events after they successfully transmit their data.

most successful transmission requests per RRM. This constitutes a negative feedback system,
that uses a self-imposed limit to achieve the desired value in the long-run.

Verifying these properties for a range of models with a varying number of sensor nodes we
find an emerging pattern. The negative feedback effect reduces the number of sensors sending
transmission requests to a value between 3 and 5, which is a value that maximises the number
of successful requests that occur in each RRC. We will calculate and discuss what this theoret-
ical maximum value is in Section 5.3.3. At this equilibrium state, the number of transmission
requests in an RRC is based on two events: the sensors which have been unsuccessful in their
last attempt whose back-off counters reach zero, will necessarily transmit a new transmission
request; and some of the idle sensors will sense data surpassing their threshold and transmit a
new request for that data. The latter is dependant on the number of currently idle sensors and
the probability that each of them detects an event.

This steady-state approach is well suited for application scenarios where the phenomenon
sensed by each of the sensors is not heavily dependant on that sensed by the other, and where
data is continuously transmitted to the gateway. In these scenarios the number of new application
requests generated in an RRC can be modelled based only on the number of idle devices in that
RRC. For applications where it is likely that data transmissions are sparse, and where a single
environmental phenomenon is likely to meet the thresholds of multiple sensors, the model based
on that for the 2C protocol where sensors do not receive new data until all conflicts are resolved
is preferred.

We use the hybrid model described above to verify quasi-generic properties. We verify

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 70

Figure 5.6: Ctrl-MAC data transmission times versus request slots comparisons. Image taken
from [22].

properties such as
R<=9.5 [F s1=8],

i.e. the expected time taken from the initial state to reach a state where s1 = 8 (i.e. the identified
sensor has transmitted its data successfully) is less than 9.5.

The effect that the number of request slots has on the time that is needed from event de-
tection to data transmission is investigated in [22]. This is achieved via the use of experiments
performed on a reference Ctrl-MAC implementation on top of LoRa. The minimum number of
request slots is declared to be five in order to meet the 10% duty cycle requirement, and experi-
ments are run for a range of request slots. Figure 5.6 shows the average delay experienced by a
sensor node in a Ctrl-MAC implementation with the specified number of request slots.

Model 5 allows us to verify properties about the time that a participating sensor device needs
to transmit its data and the number of times it is going to be backed off before succeeding. We
have created a suite of PRISM models with a varying number of request slots based on model
5. We then investigate the delays experienced by the individual sensor device. Figure 5.7 shows
the results obtained by the model. Although the results produced by the model are much more
constrained, the linear relationship between the number of request slots and the delay in message
transmission is observed.

Our results support the simulation results obtained in [22]. The number of successful request
slots in the equilibrium position of the protocol is linearly dependant on the total number of
request slots in an RRC: the steady-state of the protocol maximises the number of successful
requests, and this maximum increases as the number of possible successful request slots in an
RRC increases. However, the number of successes is strictly less than the number of request
slots, hence the ratio between the average number of successful transmission requests and the
number of request slots is a proper fraction. As the durations of the request slots are the same,
increasing the number of request slots from m1 to m2 would result in an m2

m1
times increase of the

duration of the RRC (here we assume that the time needed by the gateway to broadcast the RRM

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 71

Figure 5.7: Ctrl-MAC data transmission times versus request slots comparison based on results
from model 5. Based on a model with three sensor devices.

is negligible in comparison to the duration of time allocated for the request slots). Therefore,
the increase in the average successful attempts will be strictly lower than the increase in the
time needed for those attempts, and consequently, the throughput of the Ctrl-MAC protocol will
decrease. We will discuss this further in Section 5.3.3.

5.3 Applying combinatorics

Currently, each sensor’s choice of a request slot is modelled as a separate transition. As each
sensor performs its choice uniformly at random, independently from other sensors, it could be
desirable to perform those choices simultaneously. We are not interested in the order in which
sensors pick their request slots, only at the final number of sensors choosing each slot. When
applying counter abstraction to this model, we update the counters one sensor at a time when a
sensor chooses a request slot (see Listing 5.6). That leads to a state space increase due to order
symmetries. We attempt to apply a statistical model in order to resolve this issue. A statistical
approach would not allow us to obtain exact verification results, but could allow us to obtain
approximations and upper/lower bounds for properties we are interested in.

1 // each sending sensor chooses the slot they like

2 [] g=1 & idle=0 & sending>0 ->

3 1/5:(sending’=sending-1)&(send0’=min(send0+1,POPULATION))&(c0’=min(c0+1,2))+

4 1/5:(sending’=sending-1)&(send1’=min(send1+1,POPULATION))&(c1’=min(c1+1,2))+

5 1/5:(sending’=sending-1)&(send2’=min(send2+1,POPULATION))&(c2’=min(c2+1,2))+

6 1/5:(sending’=sending-1)&(send3’=min(send3+1,POPULATION))&(c3’=min(c3+1,2))+

7 1/5:(sending’=sending-1)&(send4’=min(send4+1,POPULATION))&(c4’=min(c4+1,2));

Listing 5.6: PRISM code for gateway module in model 3.

Consider the following example of 5 sensors and 5 request slots. We list a single scenario
and the consequences for the values of the counters:

1. All five sensors start at idle.
Counters: idle = 5

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 72

2. Three sensors detect an event and make requests during the same RRM.
Counters: idle = 2, sending = 3.

3. One of the three sensors chooses at random to send on the second slot.
Counters: idle = 2, sending = 2, send2 = 1.

4. Another of the three sensors chooses to send on the fourth slot.
Counters: idle = 2, sending = 1, send2 = 1, send4 = 1.

5. The last sensor chooses to send on the second slot as well.
Counters: idle = 2, sending = 0, send2 = 2, send4 = 1.

Notice that the order of steps 3, 4 and 5 has no effect on the final values of the counters; however,
the model would consider the intermediate states for these different orderings as different states.
This can cause a factorial increase in the size of the state space. The protocol is expected to
be deployed on networks with a number of sensors much larger than the number of request
slots: hundreds of sensors and a single-digit number of request slots. Therefore, the approach
should be centred around the number of requests in each request slot rather than around the
sensors. Statistical methods can be used to calculate the probabilities of different distributions
of requests amongst the request slots at each iteration. This would allow steps 2 to 5 in the above
example to be merged in our model. The goal is that this approach leads to further abstractions
of the model, potentially removing the need to use PRISM at all. We base this approach on the
population models inspired by mathematical biology presented in [86]. Figure 5.8 illustrates
the idea behind this more abstract model. The number of counters used is significantly reduced
as the previous families of states are now coalesced. Counters now model four possible sensor
states:

• idle: Sensors that are in power-saving mode, having not yet sensed data above a given
threshold.

• sending: Sensors that have sensed data above a threshold, and have synchronised with the
gateway. These sensors will be making requests at this RRM.

• back-off : Sensors that have experienced a congested request slot, and are waiting to make
another request.

• done: Sensors that have just made a successful request. These sensors will send their
data during their allocated data slot on their allocated data channel before returning to
power-saving mode.

This abstraction leads to transitions between counters that are more complex. Previously tran-
sitions were limited to either a single sensor at a time when sensors were performing a random
choice, or to transferring all sensors in one counter to another when a time-dependant action

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 73

idle

sending

done

backed
off

Figure 5.8: Counters for the model based on statistical analysis. Each cloud is a counter for a
population, and arrows label possible ways in which sensors go from one state to another. The
sending population has two outgoing transitions: to the done population for sensors that perform
a successful transmission request (labelled by a green tick), and to the backed off population for
sensors that experience congestion when sending their transmission requests. The dotted line
represents the optional transition based on the type of environment that is being modelled.

occurred, such as lowering remaining back-offs during an RRM. The new more complex transi-
tions need to transfer any number of sensors from one counter to another based on a probability
defined using statistical analysis.

The probabilities of transitions from the idle state are dependant on the rate at which new
data is sensed by the sensors. This will differ based on the data being sensed, the threshold, the
environment, etc. This information can be gathered for each use case: a probability distribution
can be created based on log files from the sensors. Similarly, transitions from the done to the idle

state could be decided based on the use case. Sensors can stay in the done state for a constant
time of one RRM if they are unable to sense while transmitting data, they might stay longer if
the sensing period changes during the beginning of power-saving. It is also possible to absorb
the done state into the idle state if the sensing pattern of sensors does not change during data
transmission, i.e. devices that have successful transmission requests move from the sending state
directly to the idle state. We proceed using the first of these options.

The transitions involving the sending counter only depend on its value: the request slots are
chosen uniformly and at random, so the probability for the number of successful requests is
dependant only on the total number of requests. I.e. for any pair (r,s) where r is the number
of transmission requests and s is the number of request slots, there is a probability distribution
P(r,s) for the number of successful and unsuccessful transmission requests. Calculating this
probability distribution will be further discussed in Section 5.3.1.

Similarly, the transitions from the back-off counter to the sending counter are also only
dependant on the number of requests made in one RRC; however, these transitions are dependant

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 74

sensors that
finish their
back-o� Back-o� queue

new collisions
…

Figure 5.9: Viewing devices that have been assigned back-off (those tracked by the back-off
counter) as a queue. Dequeued element on the left, enqueued elements on the right.

on the number of requests made in an RRC that has occurred in the past. As we have previously
done, this can be accurately modelled by keeping track of the number of sensors with each
available back-off duration (see Figure 5.9); however, this leads to an increase in the state space
required for the models. We suggest that, by keeping track of only the total number of backed-off
devices we can obtain an approximation of the number of devices that end their back-off periods.
This would result in a loss of precision as the model would treat the back-off queue as a black
box, and not keep explicit track of each backed-off sensor. This approach will be impractical
for scenarios where environmental events are likely to trigger transmission requests from many
sensor devices leading to bursty traffic; however, it is perfect for protocol implementations that
reach a steady-state. In an equilibrium state RRMs in the past will not have a drastic difference
from the current RRM, so we can approximate the previous ones based on the current one.
This is supported by simulation results shown in Figure 5.10 where we see that a Ctrl-MAC
implementation, whose sensors independently generate transmission requests. The simulation
shows that the number of backed-off sensors, the number of idle sensors and the FTR value
reach a stationary point. We continue this discussion in Section 5.3.1.

5.3.1 Obtaining the probability distributions

We briefly discuss the mathematics behind calculating the probability distribution for the number
of successful transmission requests based on the number of request slots and the number of
transmission requests received in an RRC. Consider a set of sensors S controlled by the Ctrl-
MAC protocol. At each RRC, sensors that are ready to send information can choose a request
slot from a set of request slots R. These sensors form a subset S′ ⊂ S. An allocation νn′,r is an
r-tuple νn′,r = {i1, i2, i3, ..., ir} where n′ = |S′| is the number of sensors attempting to send at this
RRC, r = |R| is the number of request slots, and i j is the number of sensors that have chosen
the j-th request slot. For clarity, we can refer to an allocation as νn′ when the number of request
slots is clear from the context.

Allocations have a few basic properties.

• For every j, i j ≥ 0, i.e. each request slot can be chosen by a non-negative number of

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 75

Figure 5.10: Simulation results showing the number of sensors, and FTR value in each state.

sensors.

• For every allocation νn′,r, ∑
r−1
j=0 i j = n′, i.e. each sensor that is ready to send must choose

exactly one slot for the Request-Reply cycle.

• We will call the set of all possible allocations for given n′ and r the allocation-set and label
it as Nn′,r. Similarly to allocations, the second index can be omitted for clarity.

First we consider the request slot choice phase to reason about the probabilities of collisions
at each RRC (i.e. transitions from sending to backed-off and done).

Consider a Ctrl-MAC protocol configured with r request slots. Let n′ sensors compete for a
slot in a given Request-Reply cycle (note that this is different from n the total number of sensors
as not all sensors will desire to send on each cycle).

Every allocation νn′,r can be viewed as a (n′+ r− 1)-letter word made of an alphabet con-
sisting of two symbols, say ‘N’ and ‘/’ by placing ‘N’ i j times for each element of νn′,r, and
separating them using instances of ‘/’. Conversely, a word can be interpreted from left to right:
starting at the first request slot, symbol ‘N’ signifies that there is 1 sensor that has chosen this
request slot, and symbol ‘/’ labels the change to the next request slot. For example, the word
‘N/NN/NNN//N’ corresponds to the allocation ν7,5 = {1,2,3,0,1}. This is an RRC in which
7 sensors have made requests on 5 requests slots. There is 1 sensor requesting the first and
the last request slot, 2 sensors requesting the second request slot, 3 sensors requesting the third
request slot, and no sensors requesting the fourth request slot. Using this system, every word
corresponds to an allocation and every allocation can be represented by a word. Therefore, there
is a bijection between the set of words consisting of n′ ‘N’ symbols and r ‘/’ symbols and the

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 76

allocation-set Nn′,r. It follows that both sets have the same cardinality. Therefore, we obtain a
formula for the cardinality of an allocation-set:

|Nn′,r|=
(

n′+ r−1
n′

)
=

(
n′+ r−1

r−1

)
=

(n′+ r−1)!
(n′)!(r−1)!

Ctrl-MAC’s behaviour is dependant on the number of sensor nodes that have chosen the
same request slot. It is desirable to be able to reason about the probabilities of exactly x sensors
choosing the same request slot. These are all of the allocations that have x as one of their entries.
A way of doing this is to separate x sensors and 1 request slot, and find the number of allocations
for the remaining (n′−x) sensors on (r−1) request slots. This can be done in the same manner
as above.

|{Nn′,r | ∃ j, i j = x}|=
(

n′− x+ r−2
n′− x

)
=

(
n′− x+ r−2

r−2

)
=

(n′− x+ r−2)!
(n′− x)!(r−2)!

We make an important observation about this formula. For an instance of the Ctrl-MAC
protocol the number of request slots r remains fixed over time; however, the number of nodes
that are ready to send at a given Request-Reply cycle n′ will vary from cycle to cycle. We
observe that:

|{Nn′,r | ∃ j, i j = x}|=
(

n′− x+ r−2
n′− x

)
= |{Nn′+1,r | ∃ j, i j = x+1}|

Therefore, to find the probability PC(x,n′,r) of x sensors choosing the same request slot (and
experiencing a collision), we can divide the number of allocations having x sensors choosing the
same request slot by the total number of possible allocations. We omit some of the arguments,
when the number of request slots and total number of requests received is clear from the context.

PC(x,n′,r) =
(n′− x+ r−2)!
(n′− x)!(r−2)!

× (n′)!(r−1)!
(n′+ r−1)!

=
(n′− x+ r−2)!(n′)!(r−1)

(n′− x)!(n′+ r−1)!

=
(n′)(n′−1)...(n′− x+1)× (r−1)

(n′+ r−1)(n′+ r−2)...(n′− x+ r−1)

Next, we consider how sensors that are backed off rejoin the population of sensors that is
attempting to send a transmission request (i.e. transitions from backed off to sending). As
discussed previously, keeping track of how many sensors have been backed off for a specific
number of RRMs using a separate counter for each value (as in Figure 5.3) results in a complex
model. Furthermore, the abstraction for the collisions as proposed above would be ill-suited for
models that use an array of counter variables (one for each possible back-off duration). Using

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 77

a single counter variable instead prevents us from exactly modelling the states of all backed
off devices, but can allow us to obtain an approximation for the behaviour of Ctrl-MAC which
would allow us to reason about upper bounds on the delays experienced by the sensor nodes.

5.3.2 Implementation of Statistical approach

We have not yet implemented this approach, as in this thesis we focus on our range of PRISM
models and their relative expressiveness and applicability. However, in Figure 5.8 we illustrate
how the approach could be implemented, and leave the implementation as future work. We view
the sensor devices participating in an instance of the Ctrl-MAC protocol as belonging to one
of four populations depending on the state they are in. The sensor devices transfer from one
population to another based on the probability distributions as described above. Devices in the
idle state are currently sensing the environment, and when the sensed data meets a predefined
threshold they change to the sending population. The rate at which this happens depends on the
environment that is being sensed and will change between protocol instances. This one is im-
possible to be defined exactly as we do not know what phenomena will occur in the environment
in the future, but can be approximated based on previous behaviour of the model. The devices
in the sending population can either change to the done population or the backed off population
based on whether the transmission request sent by the sensor device was successful or not. This
probability depends on the number of requests sent during a given RRC and the number of re-
quest slots of the Ctrl-MAC implementation. We show how we can reason about this probability
in Section 5.3.1. The probability of the transition from the backed off population to the sending

population is the most complex as it is based on transmission requests from a number of RRCs
in the past. We propose an approximation for this transition probability in Section 5.3.1. It can
be based on the number of sensors that are currently in the back off population or based on the
sending population (if we are considering equilibrium behaviour). The transition between the
done and idle populations is straightforward as we expect sensor devices that have transmitted
successful transmission requests to be able to transmit their data within one RRC and to be able
to generate new transmission requests immediately afterwards.

5.3.3 Optimal number of requests

Using the mathematical formulas introduced in Section 5.3.1 we can obtain expressions for
the probability that there is a specified number of successful transmission requests. We define
PS(y,n′,r) as the probability that there are y successful requests when there have been n′ trans-
mission requests during the same RRC of a protocol implementation with r request slots. For
example, a ‘collision’ of exactly one sensor device in one request slot is actually that sensor

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 78

device having transmitted a successful transmission request.

PS(1,n′,r) = PC(1,n′,r)

We can then use this formula to obtain expressions for the expected number of successful re-
quests ES(n′,r) depending on the number of requests received and the number of request slots.

ES(n′,r) =
r

∑
y=1

PS(y,n′,r)× y

Table 5.7a shows the expected number of successful requests for a range of numbers of trans-
mission requests received on a protocol implementation with five request slots. Notice that the
number of successful requests increases as the number of submitted requests increases, reaches
a maximum when the number of submitted requests is equal to the number of available request
slots, and then decreases as the number of received requests increases further. Table 5.7b shows
how that maximum value increases as the number of request slots increases. In fact, we notice a
linear increase of about 0.36 successful requests for each additional request slot. This leads us
to believe that increasing the number of request slots is beneficial, as a linear increase in the du-
ration of RRCs results in a linear increase in the number of successful requests which decreases
the relative overhead of sending RRMs. However, we must also take into account the other
effects of increasing the number of request slots. As each request slot is of a fixed length, by
increasing the number of request slots, we also increase the duration of each RRC. This impacts
environments with bursty traffic negatively as it is less likely that a sequence of transmissions
caused by the same event occurs across multiple RRCs. As previously discussed, the Ctrl-MAC
protocol reaches its most efficient performance when the number of requests received during an
RRC is low. Additionally, we notice that the base value for expected successful requests ES(2,2)
is 1.00 which is larger than the subsequent linear increases. This offsets the overhead needed
for the generation and transmission of RRMs. Lastly, we keep in mind that a sensor must wait
for at least one RRM before it is successful and gets a data slot allocated. Longer RRCs would
increase the time needed for the best case.

5.4 Summary

In this chapter we introduced the Ctrl-MAC protocol and the steps we took towards applying
formal verification to it. We corrected all of the mistakes and ambiguities in the Ctrl-MAC
specification, so that it accurately describes the design of the communication protocol. We
provide our own description of the Ctrl-MAC protocol with a focus on the sensing and data
transmission phase which is the phase we focused our verification efforts on.

We presented a suite of five PRISM models which we incrementally developed for the Ctrl-

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 79

n′ Backed off Collisions ES(n′,5)
1 0 0 1
2 0.40 0.20 1.60
3 1.08 0.52 1.92
4 1.95 0.90 2.05
5 2.95 1.31 2.05
6 4.03 1.72 1.97
7 5.16 2.12 1.84
8 6.32 2.48 1.68
9 7.49 2.82 1.51

10 8.66 3.12 1.34
11 9.82 3.39 1.18
12 10.97 3.63 1.03
13 12.11 3.83 0.89
14 13.23 4.01 0.77
15 14.34 4.16 0.66
16 15.44 4.30 0.56
17 16.52 4.41 0.48
18 17.59 4.50 0.41
19 18.66 4.59 0.34
20 19.71 4.65 0.29

(a) Number of sensors backed off, number of
congested request slots, and number of success-
ful requests depending on the number of trans-
mitted requests in an RRC on a protocol with 5
request slots.

r Optimal n′ ES(n′,r)
2 2 1.00
3 3 1.33
4 4 1.69
5 5 2.05
6 6 2.41
7 7 2.78
8 8 3.14
9 9 3.51
10 10 3.87
11 11 4.24
12 12 4.61
13 13 4.98
14 14 5.34
15 15 5.71
16 16 6.08
17 17 6.44
18 18 6.81
19 19 7.18
20 20 7.55

(b) Optimal average number of successful
transmission requests in one RRC and the num-
ber of transmission requests associated with
that RRC for varying number of request slots.

Table 5.7: Number of successful requests based on the number of request slots and the number
of transmission requests sent in the same RRC.

MAC protocol. The first was based on a naive and straightforward approach and was instrumen-
tal in discovering inconsistencies in the protocol specification. While the model was limited in
its scalability, the PRISM emulator allowed us to compare the behaviour of the protocol against
basic use cases based on the performance desired by the protocol developers. For our second
model we exploited our deeper understanding of the protocol to optimise our model by removing
redundant variables and commands which were unnecessary for the modelling of the sensing and
data transmission phase of the protocol. This was the model that most closely represented the
operating principles followed by Ctrl-MAC. For our next models, we realised that the properties
we wished to verify did not require this high level of detail. The third model we created used
a judicious rearranging of the order of commands in order to remove the need to use a number
of local variables. In practice, such a rearrangement is impossible due to the nature of asyn-
chronous communication between the protocol gateway and the sensor devices; however, this
had a significant impact on model performance. Additionally, Ctrl-MAC does not distinguish
participating sensor devices in terms of priority, so our models also do not need to distinguish

CHAPTER 5. INITIAL CTRL-MAC VERIFICATION 80

between them. As we are interested in properties related to any sensor device, rather than an
individual one, we investigated the application of symmetry reduction to Ctrl-MAC.

The final two models we created used counter abstraction to achieve symmetry reduction.
The first of them had counter abstraction applied to all sensor devices. While this allowed a
drastic increase in model sizes, it could only applied to generic properties - i.e. properties in
which no individual device is identified in the property. The second abstract model resolved this
issue by applying counter abstraction to all but one of the participating sensor devices. Doing
so lessened the impact of symmetry reduction, but allowed for the verification of quasi-generic
properties: i.e. properties in which an individual device is referred to.

We presented a range of properties for which we have verified our models and compared
the effectiveness of each approach. We showed that with no symmetry reduction we can verify
Ctrl-MAC models up to ten sensor devices. For our symmetry-reduced models we can verify the
quasi-generic properties for twice that number of devices. Furthermore we can verify the generic
properties for up to 40 sensors. In all cases our results support the experimental results produced
by the protocol developers, which were derived via simulations of Ctrl-MAC instances.

Lastly, we discussed a statistical approach based on the the counter abstraction techniques
that we applied. We proposed a simple mathematical model of the Ctrl-MAC protocol inspired
by a population based approach in mathematical biology. The abstraction for the approach
distinguishes three types of sensor devices: those that have been backed off after a collision,
those that are actively attempting to send a transmission request and those that are currently
sensing the environment for new data. We formulated the probability distributions associated
with the transitions between each of these populations.

Chapter 6

GRIP - state of the art and new
contribution

In this chapter we introduce the GRIP symmetry reduction tool - an existing PRISM package,
and some improvements we have made to GRIP. We refer to the current version of GRIP, avail-
able from the PRISM website before we implemented any improvements, as GRIP 2.0; a public
version in which we have implemented some fixes to GRIP and included some minor improve-
ments as GRIP 2.1; and our proposed version, which can be used for specifications with syn-
chronised transitions commands as GRIP 3.0. The results achieved in the development of this
version have been published in [225]. In Section 6.1 we introduce GRIP. In Section 6.2 we give
an overview of the process GRIP uses to obtain a symmetry-reduced specification. In Section
6.3 we describe how the symmetry reduction process can be extended to include synchronised
transition commands. We propose a new version of GRIP, GRIP 3.0, which implements these
extensions in Section 6.4.

6.1 Introduction

GRIP (Generic Representatives In PRISM) is a symmetry reduction tool for the PRISM model
checker. Generic representatives were introduced by Emerson, Trefler and Wahl as a way to
combine symbolic representation via BDDs and symmetry reduction in non-probabilistic model
checking. GRIP was first introduced in [57] as a prototype tool that implements the extension of
the generic representatives approach to probabilistic systems (DTMCs, Continious Time Markov
Chains (CTMCs) and MDPs), which are represented via MTBDDs. GRIP version 2.0 was later
released [65], introducing support for multiple local state variables, global variables, expressions
over these variables, and multiple non-symmetric modules additional to the group of symmetric
ones. Multiple local variables meant that it was easier to create modules with a large number
of local states. Consequently, as each counter variable corresponds to a local state, reduced
specifications have a large number of counter variables. This results in an increase of the sizes

81

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 82

of MTBDDs, so two new optimisation techniques were introduced to counteract this effect. The
first allows for the elimination of a single counter variable based on the observation that the
sum of the counter variables stays constant (and is equal to the number of symmetric modules).
The second involves the use of local reachability analysis to remove unreachable states. A
counter variable representing an unreachable state would have a constant value as there are
always zero symmetric modules in an unreachable state. Therefore, the translated specification
can omit that counter variable without any impact on the overall model, which can lead to an
impressive reduction in the state space of the reduced model. Despite these new features it
was still difficult to apply GRIP to complex models due to restrictions based on the modelling
language. Specifications defined in Symmetric Probabilistic Specification Language (SPSL)
[58] are guaranteed to be suitable for the generic representatives technique.

There are a few important differences between GRIP and an alternative symmetry reduction
tool for PRISM, PRISM-symm. PRISM-symm is well suited for model specifications that con-
sist of a small number of complex modules, while GRIP excels at large numbers of relatively
simple modules. Our Ctrl-MAC example seems ideally suited to the use of GRIP. It consists of
a (potentially large) number of fairly simple symmetric sensor devices sending their data via a
(non-symmetric) gateway device. The features introduced in GRIP 2.0 would allow the gate-
way device to be modelled as an asymmetric module alongside a family of symmetric modules
for the sensor devices. However, contrary to PRISM-symm, GRIP does not support synchro-
nisation labels as a means of interaction between modules. Due to the nature of Ctrl-MAC’s
request-reply cycle, modules must synchronise to be capable of detecting network congestion.
We have extended GRIP with support for synchronisation labels. We will describe this process
in Section 6.3.

6.2 Current state of GRIP

The most recent version of GRIP (as of April 2023) and its source code are available from the
PRISM webpage [97] together with a suite of seven example specifications and their reduced
counterparts. There is no GRIP version number available on the webpage but the features of the
tool are consistent with those of version 2.0 described in [65]. The tool works out of the box and
is able to produce a basic translation of all example specifications; however, the source code (on
Github [96]) indicates that there have been no changes made in the last 9 years. As such, all of
the models produced by running GRIP on the example inputs and the example outputs available
on the website result in errors when built using the latest version of PRISM. Additionally, when
the local reachability analysis optimisation is applied to a specification it produces a malformed
output. These errors are assumed to be a result of changes implemented in PRISM since GRIP’s
release, although there is nothing in PRISM’s changelog that points to updates that would cause
these errors.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 83

Figure 6.1: GRIP workflow process including source code compilation and specification transla-
tion. The runtime PRISM call in the right hand box is optional when the -optimise optimisation
flag is set.

To discuss how we have updated and improved GRIP, we first give an overview of how
GRIP worked before our changes. Figure 6.1 shows how the workflow process of GRIP is
structured. When the source code for GRIP is compiled, a parser is created using the SableCC
parser generator [84]. This parser is based on the grammar of Symmetric PRISM (contained in
the sp.grammar file of the GRIP 2.0 release) and is used to create an object-oriented token
tree representation of the input specification. At this stage during runtime, there is an optional
system call to PRISM. If the -optimise flag is set, then GRIP performs local reachability
analysis. GRIP generates an abstract specification based on the input and a set of properties that
will be verified by PRISM (this process is explained in greater detail in Section 6.2.1). The result
of this verification process is used to trim the object-oriented token tree representation produced
by the parser. Once such a token representation is obtained, each token is translated individually
based on the corresponding SPSL translation rule. These translations are then gathered together
and output as the reduced specification produced by GRIP.

1 mdp

2 // shared coin

3 global counter : [0..48] init 24;

4
5 module process1

6 // program counter

7 pc1 : [0..3];

8 // local coin

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 84

9 coin1 : [0..1];

10
11 // flip coin

12 [] (pc1=0) -> 0.5 : (coin1’=0) & (pc1’=1) + 0.5 : (coin1’=1) & (pc1’=1);

13 // write tails -1 (reset coin to add regularity)

14 [] ((pc1=1)&(coin1=0)) -> (counter’=max(counter-1,0)) & (pc1’=2) & (coin1’

=0);

15 // write heads +1 (reset coin to add regularity)

16 [] ((pc1=1)&(coin1=1)) & (counter<48) -> (counter’=counter+1) & (pc1’=2) &

(coin1’=0);

17 // check

18 // decide tails

19 [] (pc1=2) & (counter<=8) -> (pc1’=3) & (coin1’=0);

20 //decide heads

21 [] (pc1=2) & (counter>=40) -> (pc1’=3) & (coin1’=1);

22 // flip again

23 [] (pc1=2) & ((counter>8) & (counter<40)) -> (pc1’=0);

24 // loop

25 [] (pc1=3) -> (pc1’=3);

26 endmodule

27
28 module process2=process1[pc1=pc2,pc2=pc1,coin1=coin2,coin2=coin1] endmodule

29 ...

Listing 6.1: Example input specification for GRIP based on a randomised consensus protocol
using shared memory [10]. Module renaming is shown only for one symmetric module
process2.

Input specifications for GRIP must be written in Symmetric PRISM (henceforth SP) in order
for the translation process to be applicable. SP is a subset of the PRISM modelling language
which allows the specification of programs with a degree of symmetry. Its syntax is analogous
to the Symmetric Probabilistic Specification Language defined in [58]. An example input spec-
ification for GRIP can be seen in Listing 6.1. Table 6.1 lists the core syntax of SP as it appears
in the latest version of GRIP. This includes the updates made when introducing the new features
of version 2.0: SP supports asymmetric modules, global variables, multiple local variables and
synchronisation labels. Note that the term ‘number’ denotes a numeric literal and that the term
‘name’ is an alphanumeric string used as the name of a module, variable or a synchronisation
label. The element arithmetic_expr is an expression which evaluates to an integer value.

An SP specification consists of a model type declaration, optional global variable declara-
tions, a number of modules, at least one of which must be symmetric, and at least one copy of
that symmetric module. Each module has a name identifier, any number of local variable decla-
rations, and at least one command statement. Module naming convention requires the names of
asymmetric modules to contain no digits, while the names of symmetric modules must end with
‘1’ (i.e. the digit one). Renamings for the family of symmetric modules increment this number.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 85

spec type global_variable* module+ renaming+ |
constant_declaration* pctl+

type nondeterministic | probabilistic | stochastic |
mdp | dtmc | ctmc

global_variable global variable

module module name variable* statement+ endmodule

statement [name?] local_guard & global_guard -> stochastic_update ;

stochastic_update λ1 : assignment+λ2 : assignment+ ...+λn : assignment

(n > 0,λi ∈ [0,1],∑λi = 1)

variable name : [number .. number] init? ;

assignment (atomic_assignment) | (atomic_assignment) & assignment

atomic_assignment name ’= arithmetic_expr

renaming module name = name [identifier_renamings] endmodule

identifier_renamings identifier_renaming | identifier_renaming , identifier_renamings

identifier_renaming namei = name j (for i, j ∈ N; i ̸= j)

constant_declaration const basic_type name init? ;

basic_type int | double
init init number

Table 6.1: Grammar of Symmetric PRISM. PCTL-specific syntax is omitted.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 86

So, for example,

module sensor2 = sensor1[s1=s2,s2=s1] endmodule

is the first renaming of a symmetric module sensor1 with one local variable s1. Accepted
model types are DTMCs, CTMCs, and MDPs, and similarly to PRISM, GRIP supports multiple
keywords for each type for backwards compatibility (e.g. an MDP can be declared by both mdp
and nondeterministic).

A module statement consists of an optional synchronisation label, a compound guard and
a stochastic update to any of the local variables of that module and any global variable. As
with PRISM, updates to global variables are not permitted if a synchronisation label is present.
The compound guard is a conjunction of local_guard and a global_guard, the former being an
expression over the local variables of the module, while the latter is an expression over either
global variables or all copies of a local variable. An update has the form

λ1 : a1 +λ2 : a2 + ...+λn : an

where the λi are expressions giving a probability value, the ai are updates to the values of one or
more variables, and ‘+’ is read as ‘or’ and represents a stochastic choice between these options
as per the usual PRISM syntax described in Section 3.5.1. Property specifications consist of
optional constant variable declarations and at least one PCTL property definition.

Note that SP grammar does not allow constants to be declared outside of property speci-
fications, meaning that the common practice of using constants in model specification is not
currently supported by GRIP. Furthermore, the constant and variable types supported do not in-
clude the boolean type, which is a valid option in the PRISM language. This is a minor concern
as a boolean type can be easily substituted by an integer variable bounded between 0 and 1. We
also note that despite the probabilities λi being correctly defined in the grammar, GRIP’s parser
encounters an error when a probability is represented as a fraction instead of a decimal value.

In order to translate an SP program to a reduced one, GRIP parses the input specification
and creates an object-oriented tokenised representation. The parser is generated based on the
SP grammar using the SableCC project. The associated syntax tree is used to initialise a Trans-
lator object. The Translator performs a walk on the syntax tree to extract the necessary model
information, such as global variables, local variables, synchronisation labels, module names,
module states, renamings, etc. A series of method calls are then executed that produce trans-
lations for each element of the reduced model: model type declarations, global variables, non-
symmetric modules, formula definition (if the -eliminate flag is set), and the reduced generic
process module. Most of these are generated in a relatively simple and straightforward manner
as shown in Figure 6.2. The model type of the two specifications is the same, and the global
variables and non-symmetric module declarations are directly copied from the original model.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 87

Figure 6.2: Visualisation of the translation steps of the current GRIP algorithm. Entities with the
same name in the two specifications are direct copies. The double border around “-eliminate
formula" denotes that this item is optional. We include a family of symmetric modules but no
asymmetric modules (for simplicity).

The -eliminate formula is a single PRISM formula that is used to reduce the state space of
the output specification by eliminating a single counter variable. This is done by replacing it
with an expression for the sum of the remaining counter variables. This makes use of the invari-
ant that the sum of all counter variables equals the number of symmetric modules (see Lemma
1).

Translating the symmetric modules into a single generic process is more complicated. This
is done in two steps: translation of the local variables and translation of the commands of the
module. The local variables are substituted by counter variables for each state a symmetric
module can be in. Each counter variable keeps track of how many symmetric modules are
in the state associated with it. Each transition statement of the original symmetric module is
translated into one or more reduced statements which update the counter variables according to
the original statement. Listing 6.2 shows the output produced by GRIP based on the consensus

protocol specification from Listing 6.1. Lines 6 to 11 declare the counter variables replacing
the local variables of the eight symmetric modules. Lines 13 to 20 are the translated transition
statements. Note that each transition checks whether there is at least one symmetric module in a
state associated with a particular counter variable. The update denotes the transfer of one module
from one state to another by incrementing and decrementing the associated counter variables.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 88

1 nondeterministic

2
3 global counter : [0 .. 48] init 24 ;

4
5 module generic_process

6 no_0 : [0..8] init 0; // No modules in state (1,0)

7 no_1 : [0..8] init 8; // No modules in state (0,0)

8 no_2 : [0..8] init 0; // No modules in state (1,1)

9 no_3 : [0..8] init 0; // No modules in state (3,0)

10 no_4 : [0..8] init 0; // No modules in state (2,0)

11 no_5 : [0..8] init 0; // No modules in state (3,1)

12
13 [] (no_1>0) -> 0.5:(no_1’=no_1-1)&(no_0’=min(no_0+1,8)) + 0.5:(no_1’=no_1

-1)&(no_2’=min(no_2+1,8));

14 [] (no_0>0) -> (counter’=max(counter-1,0))&(no_0’=no_0-1)&(no_4’=min(no_4

+1,8));

15 [] (no_2>0) & (counter<48) -> (counter’=min(counter+1,48))&(no_2’=no_2-1)

&(no_4’=min(no_4+1,8));

16 [] (no_4>0) & (counter<=8) -> (no_4’=no_4-1)&(no_3’=min(no_3+1,8));

17 [] (no_4>0) & (counter>=40) -> (no_4’=no_4-1)&(no_5’=min(no_5+1,8));

18 [] (no_4>0) & ((counter>8)&(counter<40)) -> (no_4’=no_4-1)&(no_1’=min(no_1

+1,8));

19 [] (no_3>0) -> true;

20 [] (no_5>0) -> true;

21
22 endmodule

Listing 6.2: Example output specification for a randomised consensus protocol using shared
memory [10]. Output is generated by GRIP 2.0 based on the input from Listing 6.1

There is generally a one-to-one relationship between statements and translated statements.
DTMCs are an exception where each statement is translated into a number of reduced statements
equal to the number of symmetric modules present in the original specification. This is necessary
to correctly model the fact that a counter variable with a higher value (i.e. more modules are in
the state associated with it) is more likely to change in the next transition.

Each symmetric module must be in one and exactly one of the states corresponding to the
counter variables. In addition, GRIP defines the same range for all counter variables in a given
generic process, and that range is from 0 to the total number of symmetric modules. Combining
these two observations we have the following lemma.

Lemma 1. Let M be a set of symmetric modules and v a counter variable associated with M.

(a) In all states, the value of v lies between 0 and |M|.

(b) At any state s, if the value of v is greater than zero, then for any v′ associated with M with

v′ ̸= v, the value of v′ at s is less than |M|.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 89

Name Short description
(consensus) a randomised consensus protocol using shared memory [10]
(byzantine) an asynchronous Byzantine agreement protocol [33]

(rabin) Rabin’s n-process mutual exclusion protocol [197]
(fgf) a simplified model of the Fibroblast Growth Factor signalling pathway [110]

(peer2peer) a peer-to-peer protocol
(mutex) a second mutual exclusion protocol by Pnueli and Zuck [191]
(leader) and a minimum space shared memory leader election protocol [56]

Table 6.2: GRIP case studies.

This guarantees that no updates would actually result in out-of-range values, so we can
apply the two fixes listed above without any effect on the underlying model. It was decided to
extend the updates (i.e. adopt the second proposed fix), so that they explicitly cannot result in
an out-of-range value instead of adding an additional expression to the guard. GRIP calculates
what the new state and corresponding counter variable are only when translating the update
part of a command. Making changes to a guard at this stage of the translation process would
involve either backtracking, executing the same code multiple times, or implementing a major
refactoring of GRIP’s source code.

The seven example models presented on the GRIP website are described in Table 6.2. The
example GRIP output for all seven models as well as the input specification for the consensus

from Table 6.2 cannot be built by the latest version of PRISM. When executing GRIP 2.0 on
byzantine, mutex, leader, and peer2peer we receive output identical to the one listed on GRIP’s
webpage; however, consensus, fgf and rabin produce a more complex reduced specification
than expected. This is because these specifications were originally translated using both the -

eliminate and -optimise optimisations; however, the latter results in a malformed generic module
with no transition statements and only a single counter variable.

We have produced two updates to GRIP: version 2.1 and version 3.0. The former includes
a number of updates that restore GRIP to its previous functionality, while the latter provides
support for models employing synchronisation which we describe in Section 6.4.

6.2.1 Local reachability analysis optimisation

The local reachability analysis optimisation attempts to reduce the complexity of the output
specification by reducing the number of counter variables. If a counter variable does not change
its value through any of the model’s transition commands, then it can be removed without im-
pacting the correctness of the model. As transitions of the reduced specifications represent the
change of a symmetric module from one state to another, a counter variable associated with a
state that is never reached would not appear in any of the transition updates (and have zero as its
value). Thus this optimisation focuses on identifying states of the symmetric modules that are
unreachable.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 90

In GRIP, local reachability analysis optimisation works by first creating an abstract model
specification based on the input specification and then invoking PRISM to verify a set of prop-
erties. The abstract model contains only a single copy of the symmetric module with all global
variables, asymmetric modules, and any expressions involving any of them removed. This is
a simplified version of the input specification whose transition statements have their guards
relaxed by the removal of expressions involving global variables. The idea behind the local
reachability analysis optimisation is that if the symmetric module cannot reach a particular local
state with these relaxed guards, it will also not be able to reach it with the original ones.

6.3 Synchronisation and Generic Representatives

Consider the following simple model that involves synchronisation. Two devices each call heads
or tails for the flip of a coin. The two devices make their decisions at random and with equal
probability, and must simultaneously reveal their choices, at which point they will terminate
(we do not model any consequence of the coin toss). Figure 6.3 shows the state diagram of the
system. All devices start at a state 0 - Initial state, then they have equal probability to move to
state 1 - chosen to call heads, or state 2 - chosen to call tails. Once the devices reach the last
two states, they can move to state 3 - End state. An example SP specification for this system is
provided in Listing 6.3. Note that si=j represents that device i is currently in state j.

Figure 6.3: State diagram for the coin toss system.

1 dtmc

2
3 module device1

4 s1 : [0..3] init 0;

5
6 [] s1=0 -> 0.5 : (s1’=1) + 0.5 : (s1’=2);

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 91

7 [a] s1=1 -> (s1’=3);

8 [a] s1=2 -> (s1’=3);

9 [] s1=3 -> (s1’=3);

10
11 endmodule

12 module device2 = device1[s1=s2,s2=s1] endmodule

Listing 6.3: Example: coin toss with synchronisation

If we were to disregard the synchronisation label and run GRIP on this specification, we
would receive the reduced specification shown in Listing 6.4 (but without the synchronisation
labels). We have added the synchronisation labels to show which statements correspond to the
two commands we want to synchronise.

1 probabilistic

2
3 module generic_process

4 no_0 : [0..2] init 2; // No modules in state (0)

5 no_1 : [0..2] init 0; // No modules in state (1)

6 no_2 : [0..2] init 0; // No modules in state (2)

7 no_3 : [0..2] init 0; // No modules in state (3)

8
9 [] (no_0>0) -> 0.5:(no_0’=no_0-1)&(no_1’=min(no_1+1,2))

10 + 0.5:(no_0’=no_0-1)&(no_2’=min(no_2+1,2));

11 [] (no_0>1) -> 0.5:(no_0’=no_0-1)&(no_1’=min(no_1+1,2))

12 + 0.5:(no_0’=no_0-1)&(no_2’=min(no_2+1,2));

13 [a] (no_1>0) -> (no_1’=no_1-1)&(no_3’=min(no_3+1,2));

14 [a] (no_1>1) -> (no_1’=no_1-1)&(no_3’=min(no_3+1,2));

15 [a] (no_2>0) -> (no_2’=no_2-1)&(no_3’=min(no_3+1,2));

16 [a] (no_2>1) -> (no_2’=no_2-1)&(no_3’=min(no_3+1,2));

17 [] (no_3>0) -> true;

18 [] (no_3>1) -> true;

19 endmodule

Listing 6.4: Example: reduced coin toss specification disregarding synchronisation

Let us examine lines 7 and 8 of the input specification (see Listing 6.3) and consider how
the synchronisation affects the devices’ behaviour. Without synchronisation labels, each device
would be able to progress to state 3 (c.f. Figure 6.3) as soon as it enters state 1 or 2, whereas
with synchronisation labels, each device must wait until the other device also reaches one of the
states that satisfy the guard of a synchronised command. Furthermore, synchronisation requires
all updates to be executed simultaneously. We can think of synchronisation labels as having
two key effects: they tighten the guard of the statement as the behaviour of a module now
depends on the other modules of this symmetric block, and they cause all updates to be executed
simultaneously.

We now discuss the reduced specification produced by GRIP and the effect of synchronisa-

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 92

tion. In particular we examine lines 13− 16 of Listing 6.4. As we have seen, these statements
have been created by GRIP (without the synchronisation labels). The updates are simple: in
each of them the value of the no_3 counter is increased by one, i.e. a module moves to state
3. In two of them that module has arrived at that state from state 1, in the other two it has
arrived from state 2. The guard of line 13 is equivalent to “there are 1 or 2 modules in state
1" and line 14 to “there are 2 modules in state 1" whereas line 15 and 16 are “there are 1 or 2
modules in state 2", and “there are 2 modules in state 2" respectively. Out of these, lines 14 and
16 would be acceptable even with synchronisation but the guards of the other two would need
to be tightened. Only having one module in state 1 or 2 would not be sufficient but would also
require the other module to be in the corresponding state. When exactly one module is in state
1, the other module would need to be in state 2 and vice versa. Listing 6.5 shows what a reduced
version of the specification could look like if the guards were strengthened to accommodate this
observation.

1 probabilistic

2
3 global total : [0 .. 2] init 0 ;

4
5 module generic_process

6 no_0 : [0..2] init 2; // No modules in state (0)

7 no_1 : [0..2] init 0; // No modules in state (1)

8 no_2 : [0..2] init 0; // No modules in state (2)

9 no_3 : [0..2] init 0; // No modules in state (3)

10
11 [] (no_0>0) -> 0.5:(no_0’=no_0-1)&(no_1’=min(no_1+1,2)) + 0.5:(no_0’=no_0

-1)&(no_2’=min(no_2+1,2));

12 [] (no_0>1) -> 0.5:(no_0’=no_0-1)&(no_1’=min(no_1+1,2)) + 0.5:(no_0’=no_0

-1)&(no_2’=min(no_2+1,2));

13 [a] (no_1=0) & (no_2=2) -> (no_2’=0)&(no_3’=min(no_3+2,2));

14 [a] (no_1=1) & (no_2=1) -> (no_1’=0)&(no_2’=0)&(no_3’=min(no_3+2,2));

15 [a] (no_1=2) & (no_2=0) -> (no_1’=0)&(no_3’=min(no_3+2,2));

16 [] (no_3>0) -> true;

17 [] (no_3>1) -> true;

18
19 endmodule

Listing 6.5: Example: reduced coin toss specification with synchronisation

Note that in this example, the updates for all synchronised commands in the output speci-
fication are the same. This might suggest that the three commands could be combined. This
is true in this example but is not true in general. Synchronised statements are likely to carry
out different updates. The reduced updates will therefore consist of a number of distinct assign-
ments each necessitating a distinct command. For each synchronisation label, guard and update
combination, we must consider the possible ways of allocating the symmetric modules between

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 93

the states accepted by the guards. These combinations are determined using the result of Lemma
2.

Lemma 2. Let M be a family of symmetric modules with synchronised commands with |M|= m.

Consider one block of synchronised commands that are all synchronised on the same action. For

each synchronised command c, let s(c) be the number of local states that satisfy its guard, and let

k be the sum of the s(c) over the synchronised commands for M. The number of unique reduced

commands that must be generated for that block of synchronised commands is the number of

weak compositions of m into k unique parts, wc(m,k), where

wc(m,k) =
(

m+ k−1
k−1

)
=

(
m+ k−1

m

)
(6.1)

It follows that the number of reduced commands generated by the translation process de-
pends on m and k and increases exponentially with those two values.

To add support for synchronisation to GRIP we must develop new SPSL translation rules for
synchronised commands. The original rules, introduced in [58], are explained in Section 3.6.3.

Counter abstraction requires the creation of counter variables in the reduced specification.
Each family of symmetric modules is replaced by a single generic module with |S(M)| counter
variables, each of which have range from 0 to #M. These variables have the form count_M_k

where each counter keeps track of the number of copies of M currently in state f−1
M (k) for

k ∈ [1, t]. All counter variables are initialised to 0, except for count_M_ fM(init(M)) which is
set to #M.

We consider the translation of a synchronised command

[label] local-expr(M)∧ symm-expr(M)→ stoch-update(M) (6.2)

[a1] e1 ∧ s1 → su1.

We can view each synchronised command as a command of the form above without loss of
generality because every guard of an SP statement can be separated into expressions over local
variables (local-expr(M)) and expressions including non-local variables (symm-expr(M)). The
latter would need to be fully symmetric in order for translation to be applied, and either of them
can be taken as true should no expressions of that type be present.

Without synchronisation, GRIP would split the translation process into cases based on the
local states satisfying the guard, one per l ∈ SATM(e1) (see Fig. 6.4). Then, for each case, a
separate reduced generic statement is generated using the following process. The local-expr(M)

part of each guard is replaced with a condition count_M_ fM(l)> 0 (or in the case of DTMCs,
each statement gets translated into a series of statements where count_M_ fM(l) > i for 0 ≤
i < #M is used). This condition asserts that some copy of M has a local state required to satisfy
the local part of the guard of this statement. Both the remainder of the guard symm-expr(M) and

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 94

the stochastic update stoch-update(M) are translated in the context of the state l, so that their
reduced counterparts do not make use of any variables local to M. Updates affecting variables
local to M are replaced with updates to two counter variables: if l is the local state considered
in the current case, and l′ is the local state reached by performing all local variable updates on
l, then the resulting reduced update must decrement count_M_ fM(l) (representing a module
copy leaving state l), and increment count_M_ fM(l′) (representing a module copy arriving at
state l′).

Figure 6.4: Translation of a non-symmetric statement.

We approach synchronised statements using a similar methodology (see Figure 6.5). First,
we note that PRISM does not allow synchronised commands to perform updates to global vari-
ables, so all updates of synchronised statements will only change the local state of a module. For
the purposes of illustration, we assume that all synchronised statements perform only a single
update (i.e. of the form p1 : u1 where p1 = 1) rather than a stochastic choice of updates. We will
discuss translation of multiple updates later.

Translating statements with synchronisation differs from translating their non-synchronised
counterparts in that we must consider all commands with a given label instead of being able
to carry out the translation process one command at a time. Synchronisation creates coupling
between commands in a synchronised block as the result on the overall state of the model of a
module performing one command also depends on all other symmetric modules and the state-
ments they execute.

Suppose a block of synchronised commands of the form denoted in expression (6.2), and
repeated here for convenience:

[label] local-expr(M)∧ symm-expr(M)→ stoch-update(M) (6.2)

with the same label is present in #M symmetric modules. For the symmetric block to be enabled,

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 95

each symmetric module must satisfy the guard of at least one synchronised statement. When the
symmetric block is executed, each symmetric module executes one of the enabled commands,
so it must be in a local state that satisfies the guard of that command. An example of such a
synchronised block is shown in Listing 6.6. This block contains four synchronised commands,
each of which performs a single update to one local variable. Each symmetric module must
satisfy the guard of at least one of these commands in order for the synchronised block to be
enabled, i.e. the value of the s1 variable must be 1, 2, 3, or 4. We note that in general the guards
do not need to be disjoint and there can exist local states that satisfy the guards of more than one
command.

1 [a] s1=1 -> (s1’=5);

2 [a] s1=2 -> (s1’=6);

3 [a] s1=3 -> (s1’=7);

4 [a] s1=4 -> (s1’=8);

Listing 6.6: Example: a block of synchronised statements

For each command we can evaluate the local part of the guard, local-expr(M), to find
which local states satisfy that guard. Let the collection of those states across all commands
be l1, l2, . . . , lz under some ordering. We note that the elements of this list may not be distinct as
a given state li can satisfy the local guard of one synchronised statement while l j could be the
same state that satisfies the local guard of another synchronised statement. Let w1,w2, . . . ,wz

be the number of symmetric modules that are in the corresponding local state. We can then use
counter variables to describe the scenario by translating each expression ei in the guards into
the condition

∧z
i=1count_M_ fM(li) = wi. We note that Lemma 1 enables us to omit every

expression where wi = 0 without impacting the end result, i.e.

z∧
i=1

count_M_ fM(li) = wi ≡
∧
count_M_ fM(li) = wi

for 1 ≤ i ≤ z if wi ̸= 0.
The global part of the guards, symm-expr(M), is then translated by performing a conjunction

of only those parts which belong to a statement that is being executed, and evaluated in the
context of the corresponding local state li. For each local state li with wi > 0, we translate
the global guard of the statement whose local guard is satisfied by li. We then combine the
translated global guards. The individual translation process here is the same as for the global
part of a non-synchronised command. The translation of updates follows a similar idea: for a
given assignment of w1,w2, . . . ,wz, we find the states li with wi > 0, and translate the updates of
the corresponding commands.

The updates are again translated individually, as they would be if synchronisation was not
present, but are afterwards combined based on the value of wi. As mentioned above, in PRISM
synchronised statements cannot make updates to global variables, so each update can only make

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 96

Figure 6.5: Translation of a block of symmetric statements.

changes to the local state of the module, which when reduced has the effect of only decrement-
ing one counter variable and incrementing another. We need to take into account the number of
symmetric modules that perform this update but if the command has a single update with prob-
ability 1, then all modules make the same changes to their local states. Therefore, the resulting
translation would need to decrease one counter variable by the number of modules performing
this update and increase another counter variable by the same value.

Although we have assumed that synchronised statements execute a single update, we will
briefly discuss synchronised statements which involve a stochastic choice between multiple up-
dates. Such updates are not needed for modelling the Ctrl-MAC protocol discussed in chap-
ter 5, and so we are not considering them for the current GRIP update. Furthermore, if the
PRISM examples involving synchronised statements listed on the PRISM webpage [193] are
typical, then synchronised statements rarely involve stochastic updates. For updates of the form
p1 : u1 + p2 : u2 + · · ·+ pn : un, the translation would need to enumerate all possible ways that
the modules executing the statement can choose the updates they perform, and calculate the re-
sulting probabilities. For example, the basic case of the stochastic update p1 : u1 + p2 : u2 with
a guard satisfied by a single state lx with wx modules would result in the following binomial
expansion:

wx

∑
k

((
wx

k

)
(p1)

wx−k(p2)
k : h(u1,wx − k)∧h(u2,k)

)
where h(u,v) denotes the changes in counter variables resulting from the execution of update u

by v symmetric modules. This results in a O(wx) increase in the number of possible updates.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 97

This generalises to

∑
k1+···+kn=wx

((
wx

k1, . . . ,kn

)
(p1)

k1(p2)
k2 . . .(pn)

kn : h(u1,k1)∧h(u2,k2)∧·· ·∧h(un,kn)

)

which results in a O(
(n+wx−1

n−1

)
) increase in the number of updates. These translations would lead

to a significantly more complex output specification, and would have an adverse impact on the
performance gained by performing counter abstraction.

This concludes the process to generate a generic statement based on a synchronised state-
ment block given an assignment of w1,w2, . . . ,wz of the symmetric modules into local states. As
the behaviour of the synchronised block depends on the states of the symmetric modules prior
to their execution, a different reduced statement must be generated for each possible assignment
of w1,w2, . . . ,wz.

We introduce and expand some notation to help formalise this process. The set of states
l1, l2, . . . , lz that a symmetric module can be in while satisfying the local guard of at least one
synchronised statement is denoted

SATM(e) =
⊔

1≤i≤r

SATM(ei)

where e = {e1,e2, . . . ,er} is the set of local parts of the guards of all r synchronised statements.
We note again that the states in SATM(e) may not be distinct.

An assignment of the #M symmetric modules to this set of states is given by
w = {w1,w2, . . . ,wz} where wi ≥ 0 and ∑

z
i=0 wi = #M. This is a weak composition of

#M into z parts (corresponding to each of the l1, l2, . . . , lz states) and we define

wc : R×S(M)→ S(M)n

to be the function that generates all possible weak compositions with n being the total number
of weak compositions. We introduce some shorthand notation: let

gM : S(M)z →{1,2, . . . , t}z

be the function obtained by applying fM to all elements in the input of g. For example,

count_M_gM(SATM(e))≡ {count_M_ fM(li) | i ∈ [1,z]}

where both expressions denote the set of counters that correspond to the local states of M that
enable the block of synchronised statements whose guards have e as their local parts.

Figure 6.6 lists new translation rules to be used in the translation of an SPSL specification
P containing synchronised statements into a generic SPSL specification h(P) where h is the

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 98

translation function. These rules consider a whole family of synchronised commands rather than
individual commands, as the reduced statements are generated based on multiple synchronised
commands rather than a single one. Rules that are unchanged can be found in the original table
in Figure 3.5.

When translating synchronised statements for a module M, we consider the fact that not
all expressions in their guards and updates will be symmetric ones, but some will involve the
local state of M. We will assume that the guards of the synchronised statements are of the form
ei ∧ expr(M), where ei has the form loc-expr(M) and expr(M) is a symmetric expression. This
can be done without loss of generality as a guard without a local part or a guard without a
symmetric part can be expressed in this form by substituting the corresponding argument with
true.

The translation process translates a synchronised block as a whole, on a case by case basis.
We construct a collection of all local parts of the guards e = {e1,e2, . . . ,er} and use it to find all
local states l ∈ SATM(e). Then we generate the weak compositions of #M into |SATM(e)|,

W = {w1, . . . ,wn}= wc(#M,SATM(e))

and use those to split the translation process into cases, one for each w ∈ W. The worst case for
the translation algorithm of a single synchronised block containing r statements is given by

O(

(
r×|S(M)|+#M

#M

)
).

Similarly to the worst case complexity for translating an SPSL specification without synchro-
nisation [58], in practice, the local part of the guards of transition statements is often strongly
constrained, so the worst case complexity is rarely achieved. The worst case complexity for
translating an entire specification that contains blocks of synchronised statements is easily de-
rived by factoring in the number of synchronised blocks. However, it is generally the case that
specifications involving multiple synchronised blocks will have one of those blocks larger and
more complex than the rest. A small increase in the number of synchronised statements r results
in a much larger increase in overall complexity due to the binomial coefficient in the formula.
As such the worst case complexity for translation of the entire specification is mainly dependant
on the worst case complexity of the largest block of synchronised statements.

For each weak composition w we examine the local states l j for which w j > 0 and the
statements they correspond to. The ei part of the guard of those statements is translated into
the condition

∧
(count_M_l j = w j), and the expr(M) part is translated in the context of l j

and combined with the other translated parts. The translation of the variable updates follows a
similar process. Consider updates of statements corresponding to w j > 0 of the form:

(v1:=e1)∥(v2:=e2)∥ . . .∥(vt:=et)

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 99

P h(P)

statement(M), where [a] is a label h(statement(M)), with SATM(e) = {l1, . . . , lz}
and e has form local-expr(M) and {w1, . . . ,wn}= wc(#M,SATM(e)), e = {e1, . . . ,er}
[a]e1 ∧ expr(Mi) [a]count_M_gM(SATM(e)) = w1 ∧h(expr(Mi),w1)
→ stoch-update(M) . . . → h(stoch-update(M),w1) . . .

[a]er ∧ expr(Mi) [a]count_M_gM(SATM(e)) = wn ∧h(expr(Mi),wn)
→ stoch-update(M) → h(stoch-update(M),wn)

stoch-update(M) h(stoch-update(M),w)
update(M) h(update(M),w)

update(M), where v j ∈ var(M) h(update(M),w), where w = {w1, . . . ,wz}
and e j has form local-expr(M) l′ = l[v1:=eval(l,e1), . . . ,vt:=eval(l,et)]
skip skip
(v1

i :=e1
i)∥ . . .∥(vt

i:=et
i) (count_M_gM(l):=count_M_ fM(l)−w)

∥(count_M_gM(l′):=count_M_gM(l′)+w)

expr(Mi), where e has form local-expr(M) h(expr(Mi),w)
ei eval(l,e)
symm-expr h(symm-expr)
∑1≤ j ̸=i≤#M e j ∑m∈S(M)(eval(m,e)∗count_M_ fM(m))− eval(l,e)
∏1≤ j ̸=i≤#M e j ∏m∈S(M)(eval(m,e)**count_M_ fM(m))/eval(l,e)∧

1≤ j ̸=i≤#M e j ∑m∈SATM(e)count_M_ fM(m) = #M (if l |= e)
∑m∈SATM(e)count_M_ fM(m) = #M−1 (if l ̸|= e)∨

1≤ j ̸=i≤#M e j ∑m∈SATM(e)count_M_ fM(m)> 0 (if l ̸|= e)
∑m∈SATM(e)count_M_ fM(m)> 1 (if l |= e)

expr(Mi) ▷◁ expr(Mi) h(expr(Mi), l) ▷◁ h(expr(Mi), l)
¬expr(Mi) ¬h(expr(Mi), l)
(expr(Mi)) (h(expr(Mi), l))
symm-expr, where e has form local-expr(N) h(symm-expr)
constant constant
name (where name is a global variable) name

∑1≤ j≤#N e j ∑l∈S(N)(eval(l,e)∗count_N_ fN(l))
∏1≤ j≤#N e j ∏l∈S(N)(eval(l,e)**count_N_ fN(l))∧

1≤ j≤#N e j ∑l∈SATN(e)count_N_ fN(l) = #N∨
1≤ j≤#N e j ∑l∈SATN(e)count_N_ fN(l)> 0

symm-expr ▷◁ symm-expr h(symm-expr) ▷◁ h(symm-expr)
¬symm-expr ¬h(symm-expr)
(symm-expr) (h(symm-expr))

Figure 6.6: Rules for translating synchronised SPSL statements to a generic form.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 100

where vk ∈ var(M). For each state l j we can compute the local state l′ j reached by executing all
variable updates. Then for each state l ∈ S(M) we compute

dl = ∑
l=li

wi − ∑
l=l′ j

w j

which is the difference between the number of modules that were in state l before the transi-
tions and the number of modules that are in l after the transitions. The updates would then be
translated as concurrent updates to counter variables of the form

count_M_ fM(l):=count_M_ fM(l)−dl.

We note that if dl = 0 the change to the counter variable can be omitted.

6.4 Implementation of Synchronisation in GRIP

We have implemented our new translation techniques in a new version of GRIP: GRIP 3.0.
It takes a PRISM specification written in a syntax analogous to SPSL as input, which is now
allowed to contain any number of synchronised statements, and produces a reduced generic
specification which can be used for model checking with PRISM. The synchronised statements
do not need to belong to a single synchronised block but can synchronise on different labels.

6.4.1 Implementation

We briefly discuss some techniques and optimisations applied in implementing the translation
rules for synchronised statements discussed above. These have no impact on the number of states
and transitions of the reduced specification but drastically reduce the amount of time needed for
the translation process and the size of the output PRISM specifications.

1 dtmc

2
3 module sensor1

4
5 // local state

6 s1 : [0..5] init 0;

7
8 [] s1=0 -> 0.3 : (s1’=1) + 0.3 : (s1’=2) + 0.4 : (s1’=3) ;

9 [a] s1=1 -> (s1’=4);

10 [a] s1=2 -> (s1’=4);

11 [a] s1=3 -> (s1’=5);

12 [] s1=4 -> (s1’=4);

13 [] s1=5 -> (s1’=5);

14

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 101

15 endmodule

16
17
18 module sensor2 = sensor1[s1=s2,s2=s1] endmodule

19 module sensor3 = sensor1[s1=s3,s3=s1] endmodule

Listing 6.7: Example specification with overlapping synchronisation statements

First, we consider the possibility that different local states can satisfy the local part of guards
of statements with matching updates and symmetric parts of their guard. This can be done
explicitly from two different statements with identical updates as shown in Listing 6.7 or could
also arise from a single statement involving an assignment based on a global variable, as GRIP
considers global variables on a case by case basis in the translation process.

1 [a] (no_0=3) -> (no_0’=0) & (no_3’=min(no_3+3,3));

2 [a] (no_0=2) & (no_1=1) -> (no_0’=0) & (no_1’=0) & (no_3’=min(no_3+3,3));

3 [a] (no_0=2) & (no_2=1) -> (no_0’=0) & (no_2’=0) & (no_3’=min(no_3+2,3)) &

(no_4’=min(no_4+1,3));

4 [a] (no_0=1) & (no_1=2) -> (no_0’=0) & (no_1’=0) & (no_3’=min(no_3+3,3));

5 [a] (no_0=1) & (no_1=1) & (no_2=1) -> (no_0’=0) & (no_1’=0) & (no_2’=0) & (

no_3’=min(no_3+2,3)) & (no_4’=min(no_4+1,3));

6 [a] (no_0=1) & (no_2=2) -> (no_0’=0) & (no_2’=0) & (no_3’=min(no_3+1,3)) &

(no_4’=min(no_4+2,3));

7 [a] (no_1=3) -> (no_1’=0) & (no_3’=min(no_3+3,3));

8 [a] (no_1=2) & (no_2=1) -> (no_1’=0) & (no_2’=0) & (no_3’=min(no_3+2,3)) &

(no_4’=min(no_4+1,3));

9 [a] (no_1=1) & (no_2=2) -> (no_1’=0) & (no_2’=0) & (no_3’=min(no_3+1,3)) &

(no_4’=min(no_4+2,3));

10 [a] (no_2=3) -> (no_2’=0) & (no_4’=min(no_4+3,3));

Listing 6.8: Example reduced specification with overlapping synchronisation statements

Listing 6.8 shows the translation for the block of synchronised statements performed accord-
ing to the translation rules specified above. Notice that lines {1,2,4,7}, {3,5,8} and {6,9} of
that listing are groups of statements that perform identical updates. The reason for this is that in
this block of synchronised statements the states tracked by counter variables no_0 and no_1
have identical behaviour. To reduce this duplication of statements in the reduced specification,
we can combine any identically behaving states in guard expressions such as no_0+no_1=x
where x is the sum of the original assignment values. Listing 6.9 shows the translated synchro-
nised block after this optimisation has been applied.

1 [a] (no_0+no_1=3) -> (no_0’=0) & (no_1’=0) & (no_3’=min(no_3+3,3));

2 [a] (no_0+no_1=2) & (no_2=1) -> (no_0’=0) & (no_1’=0) & (no_2’=0) & (no_3’=

min(no_3+2,3)) & (no_4’=min(no_4+1,3));

3 [a] (no_0+no_1=1) & (no_2=2) -> (no_0’=0) & (no_1’=0) & (no_2’=0) & (no_3’=

min(no_3+1,3)) & (no_4’=min(no_4+2,3));

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 102

4 [a] (no_2=3) -> (no_2’=0) & (no_4’=min(no_4+3,3));

Listing 6.9: Example reduced specification with overlapping synchronisation statements

While the number of statements has reduced from 10 to 4, we note that the underlying size of
the model has not changed: this is only a more concise method to specify the same transitions.
This optimisation was instrumental in the translation of a specification of an IEEE CSMA/CD
communication protocol [147]. The output specification had a 60% reduction in the number of
commands and was produced in half the time. More information is given in Section 6.5.3.

The second optimisation performed focused on removing statements whose guards could
never be satisfied. Such statements exist because during the translation process, for a given
weak composition w, we find the corresponding non-local guards, translate them and combine
them. However, no checks are performed on those expressions to check whether they can be
satisfied: e.g., one statement could have the guard that a global variable FTR has value 1, while
another requires that global variable to have value 2, so the resulting expression (FTR=1) ∧
(FTR=2) can never be satisfied.

To combat this, before a translated statement is generated, the reduced fully symmetric ex-
pressions are evaluated. If a value of false is obtained, then the current statement is discarded
and the translation process continues with the next weak composition. Without this functionality
PRISM was unable to successfully build a model as it would detect and report statements with
guards that cannot be satisfied; however, this optimisation significantly reduced the sizes of the
reduced specifications and also reduces the time needed for parsing and building a model based
on those specifications.

6.5 Experimental Results

6.5.1 Past examples

First we run GRIP 3.0 on the seven case studies presented on the GRIP webpage. These are
model specifications without any synchronised statements which GRIP previously was able to
translate correctly. We do this to both show that the updates of GRIP 2.1 have correctly restored
GRIP’s functionality, and that none of the translation features have had any adverse side effects.
Figure 6.7 shows results produced by GRIP 3.0 on those seven models and compares those
results with those produced by PRISM and PRISM-symm. The experiments were performed
on a 2.60 GHz PC with 16 GB RAM, running PRISM version 4.5 under Windows. The Java
maximum memory was set to 6 GB and the maximum memory of the CUDD library set to 1
GB.

Comparing these results to the ones from the introduction of GRIP 2.0 [58], we notice a
number of differences. Firstly, the number of states (model sizes) should be identical to those
listed in [58] as that is a property inherent to the model and not based on the machine it is run

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 103

Model size (states) Build time (sec.) Model check time (sec.)
Case study #M Full Symm. PRISM PRISM GRIP PRISM PRISM GRIP
(|S(M)|) model reduced -symm -symm

6 3.1e+6 31,537 2.009 2.52 4.54 5.438 0.518 0.004
byzantine 8 6.4e+8 298,993 7.323 7.32 11.48 2845.27 3.098 2.26

(10) 12 1.0e+13 7.99e+6 OOM 112.53 27.99 OOM 44.562 29.20
16 OOM 1.08e+8 OOM OOM 64.16 OOM OOM 243.21
6 1.26e+6 12,313 0.104 0.144 0.154 0.005 0.004 0.009

consensus 8 6.10e+7 46,482 0.243 0.384 0.44 0.012 0.011 0.018
(6) 12 1.20e+11 339,729 0.998 1.52 1.45 0.033 0.054 0.057

16 2.08e+14 1.50e+6 4.21 5.87 4.20 0.089 0.081 0.099
4 216,961 12,397 0.578 1.34 2.92 24.19 15.02 62.07

fgf 5 4.33e+6 58,411 3.461 5.31 8.68 613.62 220.32 361.86
(19) 6 7.85e+7 212,856 12.06 17.16 14.65 >1h 1104.21 1205.70

7 1.27e+9 622,262 20.55 32.41 18.92 >1h 3566.57 2239.51
20 3.48e+9 231 0.099 0.208 0.018 0.132 0.029 0.003

leader 60 4.23e+28 1,891 ODD-x ODD-x 0.043 ODD-x ODD-x 0.012
(3) 100 5.15e+47 5,151 ODD-x ODD-x 0.056 ODD-x ODD-x 0.028

140 6.26e+66 10,011 ODD-x ODD-x 0.098 ODD-x ODD-x 0.062
mutex (16) 12 4.90e+12 892,542 2.192 2.483 2.728 1.014 0.307 0.423

4 1.05e+6 52,360 0.024 0.12 0.51 2.244 3.212 0.829
peer2peer 5 3.35e+7 376,992 0.046 0.51 0.634 113.596 25.072 17.42

(32) 6 1.07e+9 2.32e+6 0.067 0.88 1.21 ≈12-20h 131.04 130.09
7 3.44e+10 1.26e+7 0.112 1.61 1.06 >24h 669.98 1087.74
4 201,828 11,130 0.288 0.77 5.30 0.079 0.091 0.189

rabin 5 6.76e+6 87,312 1.11 2.60 15.04 0.23 0.24 0.43
(17) 6 1.30e+8 356,592 1.99 5.14 21.79 0.41 0.70 0.96

8 4.51e+10 4.06e+6 5.69 13.22 44.59 1.09 0.81 3.167

Figure 6.7: Comparison of experimental results for GRIP 3.0, PRISM and PRISM-symm. Cells
labelled with OOM represent models for which PRISM reported an out-of-memory error. Mod-
els for which PRISM could not construct the underlying Ordered Decision Diagram (ODD) due
to running out of memory are labelled as ODD-x.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 104

on or the tool that is used. This is true in most cases both with respect to the full model and
the symmetry reduced model. Differences arise in the five, six and seven symmetric module
instances of the fgf model. As the GRIP webpage [97] and the GRIP source code base [96] only
provide one example specification per case study, we needed to re-generate the specifications
for a variety of numbers of symmetric modules. This was trivial in some cases, where it only
required the addition of new module renaming commands; however, in some cases the behaviour
of a symmetric module depends on the number of modules present. This could, for example,
result in different variable ranges for some or all variables of the model. As GRIP does not
support the declaration of constants and labels, these relationships have become obfuscated in
the specifications. We have examined the relevant case studies on the PRISM webpage [193] to
find the missing declarations and discover those relationships, such as the number of data blocks
to be downloaded by the peer2peer protocol and the shared counter variable of the rabin model,
which depends on the logarithm of the number of symmetric modules, so was causing issues
only in the four module instance. However, the case study related to the fgf model [109] gives
a completely different specification from the fully symmetric one used by GRIP. We choose to
keep fgf as a case study as we believe the differences to result in a change in the verification
results and not prevent us from discussing the space and time performance of the models. Lastly,
the 16 module instance of the byzantine model now results in an out-of-memory error before
computing the number of states of the model. We have been unable to figure out why this is the
case, but will continue to investigate.

Next, we compare the build times and model checking times. The models for the rabin,
peer2peer and fgf all have results similar to the original experiments, with differences explained
by incremental improvements of PRISM and the hardware used over the years since the orig-
inal experiments. The increase in the times for the fgf model are likely due to the incorrect
parameters mentioned above.

The leader case study presents an unexpected change. For instance sizes of 60, 100, and 140
symmetric modules, PRISM now reports the following error message:

Cannot construct ODD for this model, number of states too large

This happens both for the full model checking with PRISM and the symmetry reduced with
PRISM-symm, despite both previously working correctly. leader is a very simple and highly
symmetric model with only three local states, which means that it can be used to model large
numbers of symmetric modules. We note that the full model size is much larger than that of
the other case studies. It is likely that a new feature has been added to PRISM that prevents the
compilation of models for which the number of states is too large. Neither the GRIP webpage,
nor the paper related to it [65] mention any PRISM runtime flag that should be set to avoid this
issue. As PRISM-symm requires a symbolic representation for the full model to be built before
reducing it to a quotient model, it encounters the same issue during the initial construction of

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 105

Model storage (MTBDD nodes) Verification result
Case study #M PRISM PRISM GRIP PRISM PRISM GRIP
(|S(M)|) -symm -symm

6 158,044 49,428 32,138 0.5 0.5 0.5
byzantine 8 732,727 164,218 87,716 0.5 0.5 0.5

(10) 12 OOM 859,184 427,407 n/a 0.0 0.0
16 OOM OOM 1.04e+6 n/a n/a 0.0
6 6,909 7,083 7,235 0.0 0.0 0.0

consensus 8 15,529 15,883 16,657 0.0 0.0 0.0
(6) 12 50,037 50,741 39,454 0.0 0.0 0.0

16 115,385 116,691 86,570 0.0 0.0 0.0
4 56,579 189,815 343,656 4.81e-7 4.81e-7 4.81e-7

fgf 5 112,038 509,516 654,848 4.83e-7 4.83e-7 4.83e-7
(19) 6 174,979 1.04e+6 1.03e+6 n/a 4.84e-7 4.84e-7

7 240,720 1.69e+6 1.44e+6 n/a 4.85e-7 4.85e-7
20 5,300 3,789 626 1.0 1.0 1.0

leader 60 ODD-x ODD-x 1,602 ODD-x ODD-x 1.0
(3) 100 ODD-x ODD-x 2,858 ODD-x ODD-x 1.0

140 ODD-x ODD-x 4,618 ODD-x ODD-x 1.0
mutex (16) 12 40,687 23,459 32,211 true true true

4 11,931 84,932 84,272 0.175... 0.175... 0.175...
peer2peer 5 26,246 197,306 157,468 0.215... 0.215... 0.215...

(32) 6 40,561 359,487 247,114 n/a 0.232... 0.232...
7 56,142 580,889 355,713 n/a 0.235... 0.235...
4 65,624 96,559 133,531 true true true

rabin 5 136,840 257,446 355,240 true true true
(17) 6 206,213 408,291 554,360 true true true

8 381,184 796,324 1.34e+6 true true true

Figure 6.8: Model storage and verification results for GRIP 3.0, PRISM and PRISM-symm.

the full model. Since GRIP only pre-processes model specifications, PRISM manages to run
successfully on the smaller symmetry reduced model (of up to 10,000 states).

In the case of the consensus case study there is a large discrepancy between the current
results and those presented in [58]. In all cases property verification is completed in a fraction
of a second, whereas the full model without symmetry reduction was listed as taking more than
a day. Investigating the Case Studies webpage of the PRISM website, we find that the consensus

specification is based on an earlier case study by Kwiatkowska et al. [145]. We notice that this
case study actually employs synchronisation for a single transition command:

[done] (pc1=3) -> (pc1’=3);

Furthermore, the verification results reported for the property (see Fig. 6.9) are varied and
are very different from the 0.0 values obtained by us (see Fig. 6.8). A lower bound for the
value of this property is established in [10], so a zero value is proven to be incorrect. It is
possible that the synchronisation label was mistakenly removed when consensus was originally
selected as a case study for GRIP 2.0 which did not support synchronisation. Interestingly,
we find that the consensus model is also one of the four case studies presented by PRISM-

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 106

Figure 6.9: Verification results from the consensus case study [145].

Image taken from https://www.prismmodelchecker.org/casestudies/consensus_
prism.php

symm. Surprisingly, despite PRISM-symm supporting synchronisation, all five instances of the
model are also missing the synchronisation label, and consequently obtain the wrong verification
results.

Making use of the ability of GRIP 3.0 to apply symmetry reduction to specifications with
synchronisation labels, we reran the instances from [145]. Instances are specified by N, the
number of symmetric modules, and a constant parameter K, which is used to determine the
boundary conditions for the counter used by the protocol. Figure 6.10 shows the model sizes
and the times taken for property verification. The verification results are within 0.01 of those
originally presented (see again Fig. 6.9) in all cases (larger models have larger deviations).

6.5.2 Rock-Paper-Scissors

We consider a model of a Rock-Paper-Scissors game. Modules represent participants, who
choose between three options: rock, paper and scissors. When all choices have been made, they
are evaluated. If all choices are different or all are the same, the game continues for another
round. Otherwise an outcome is announced, based on the choices made. Synchronised state-
ments are required to ensure that all choices are made before the result is evaluated. The PRISM

https://www.prismmodelchecker.org/casestudies/consensus_prism.php
https://www.prismmodelchecker.org/casestudies/consensus_prism.php

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 107

Model size (states) Model check time (sec.) Verification
Consensus PRISM Reduced PRISM PRISM GRIP result
(N,K) model -symm (if appl.)

2, 2 272 154 0.01 0.005 0.005 0.382
2, 4 528 298 0.026 0.011 0.013 0.437
2, 8 1,040 586 0.09 0.045 0.043 0.468

2, 16 2,064 1,162 0.42 0.279 0.262 0.484
2, 32 4,112 2,314 2.69 1.65 1.46 0.491
2, 64 8,208 4,618 17.63 10.21 9.35 0.493
4, 2 22,656 2,151 0.71 0.118 0.082 0.317
4, 4 43,136 4,087 4.15 0.493 0.381 0.406
4, 8 84,096 7,959 29.28 2.83 2.40 0.452

4, 16 153,216 14,493 154.75 15.58 12.64 0.474
4, 32 329,856 31,191 1,940 123.7 99.32 0.486
6, 2 1.25e+6 12,313 145.9 1.27 0.715 0.294
6, 4 2.38e+6 23,233 1,054 7.23 4.25 0.395
6, 8 4.61e+6 45,073 12,220 49.12 27.4 0.447

6, 16 9.09e+6 88,753 >24h 313.2 176.9 0.472
8, 2 6.10e+7 46,482 19,239 8.68 4.16 0.282
8, 4 1.15e+9 87,378 >24h 55.73 26.74 0.390
8, 8 2.22e+9 169,170 >24h 379.9 175.1 0.444

8, 16 4.37e+9 332,754 >24h 3,735 1,567 0.470
10, 2 2.76e+9 136,708 >24h 45.52 19.56 0.275
10, 4 5.18e+9 256,388 >24h 349.2 158.8 0.387
10, 8 1.00e+10 495,748 >24h 3,159 1,201 0.442

Figure 6.10: Model size and verification results for the Randomised Consensus Shared Coin
Protocol obtained by GRIP 3.0, PRISM and PRISM-symm.

model is shown in Listing 6.10.

1 dtmc

2 global r : [0..1] init 0;

3 global p : [0..1] init 0;

4 global s : [0..1] init 0;

5
6 module player1

7 // choice: 0-undecided, 1-rock, 2-paper, 3-scissors

8 ch1 : [0..3];

9 // local phase

10 ph1 : [1..2];

11 // winner: 1-rock, 2-paper, 3-scissors

12 res1 : [0..3];

13 // make choice

14 []((ch1=0)&(ph1=1)&(res1=0)) -> 1/3: (ch1’=1) & (r’=1)

15 + 1/3: (ch1’=2) & (p’=1)

16 + 1/3: (ch1’=3) & (s’=1);

17 // determine outcome

18 [decided] ((ph1=1) & (res1=0)) -> (ph1’=2) ;

19 []((ph1=2)&(res1=0))&((r=1)&(p=0)&(s=1))->(ch1’=0)&(res1’=1);

20 []((ph1=2)&(res1=0))&((r=1)&(p=1)&(s=0))->(ch1’=0)&(res1’=2);

21 []((ph1=2)&(res1=0))&((r=0)&(p=1)&(s=1))->(ch1’=0)&(res1’=3);

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 108

RPS Model size (MTBDD) Model build time (sec.) Model check time (sec.)
PRISM PRISM GRIP PRISM PRISM GRIP PRISM PRISM GRIP

m -symm -symm -symm
2 453 280 605 0.03 0.066 0.01 0.01 0.03 0.03
3 1774 749 1029 0.04 0.109 0.15 0.01 0.05 0.03
4 4311 1513 2156 0.05 0.112 0.35 0.02 0.04 0.04
5 8021 2394 2880 0.07 0.185 0.88 0.05 0.04 0.05
6 12902 3335 3672 0.08 0.207 2.98 0.15 0.06 0.13
7 18951 4360 4593 0.09 0.339 6.66 0.59 0.07 0.13
8 26153 5442 7240 0.15 0.428 20.73 5.16 0.08 0.08
9 34526 6593 8611 0.16 0.545 30.68 148.21 0.09 0.33

10 44067 7816 10198 0.18 0.712 54.09 261.71 0.12 0.55

Table 6.3: Model size and build times for the Rock-Paper-Scissors model for m participants,
obtained by PRISM, PRISM-symm and GRIP 3.0.

22 []((ph1=2)&(res1=0))&((r=0)&(p=0)&(s=0))->(ch1’=0);

23 []((ph1=2)&(res1=0))&((r=1)&(p=0)&(s=0))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);

24 []((ph1=2)&(res1=0))&((r=0)&(p=1)&(s=0))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);

25 []((ph1=2)&(res1=0))&((r=0)&(p=0)&(s=1))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);

26 []((ph1=2)&(res1=0))&((r=1)&(p=1)&(s=1))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);

27 // reset for next round if needed

28 [reset] ((ch1=0)&(ph1=2)&(res1=0)) -> (ph1’=1) ;

29 endmodule

30 module player2=player1[ch1=ch2,ch2=ch1,ph1=ph2,ph2=ph1,res1=res2,res2=res1]

endmodule

Listing 6.10: Rock-Paper-Scissors model. Multiple module renamings are not shown.

Table 6.3 shows the model sizes and execution times for the Rock-Paper-Scissors model
described above for m participants, for 2 ≤ m ≤ 10, using PRISM, PRISM-symm and GRIP
respectively. The property verified is: “what is the probability that the winning outcome is
rock?”.

Compared to PRISM, the GRIP specification is more complex in all cases but the resulting
model has far fewer states (when m > 2). Consequently the build times increase for reduced
models and the times taken for model checking decrease. On this example GRIP is significantly
out-performed by PRISM-symm. We suspect that this is because, given the size of the exam-
ple, the synchronisation dominates. (Recall from Lemma 2 that synchronisation results in an
exponential increase in translated statements). We expect our approach to be most beneficial
for models that involve a majority of non-synchronised statements. However, we do achieve
a significant improvement in comparison to standalone PRISM. The example also serves to
demonstrate the correctness of GRIP’s new support for synchronisation.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 109

6.5.3 PRISM-symm case studies

Previously, the wider applicability of PRISM-symm has meant that it has been used more widely.
In particular, examples which use synchronisation labels have been out of scope for GRIP. As
an example, PRISM-symm has been used to analyse the IEEE 802.3-2002 CSMA/CD (Carrier
Sense, Multiple Access with Collision Detection) communication protocol (csma) [120] . It is
a communication protocol designed to reduce data collisions (simultaneous uses of the channel)
in networks with a single channel by determining the behaviour of devices participating in the
protocol. The basic operation of the protocol is as follows: when a device wants to send data,
it first listens to the medium. If no one is transmitting on the medium, the device starts to send
its data. On the other hand, if the medium was sensed busy, the device backs off for a random
amount of time and then repeats this process. The same communication protocol has been used
previously as a case study for symbolic model checking using PRISM [148]. Further details are
available from PRISM’s webpage [193]. We attempt to apply GRIP 3.0 to that example in order
to learn the extent of the effect of the new features.

Examining the csma case study we notice that it is the type of model that GRIP is not well
suited for. GRIP excels at a larger number of symmetric copies of a simpler module, while
PRISM-symm is best at a smaller number of more complex modules. The csma specification is
of the latter type. The symmetric module has |S(M)| = 118 local states, an order of magnitude
larger than the typical GRIP case studies. Additionally, most of its synchronised statements
do not have a highly restrictive guard; for example, a single synchronised statement can have
its guard satisfied by modules in 60 out of the 118 possible states. This causes an exponential
increase in the number of weak compositions that need to be considered for statements with that
synchronisation label (see Equation 6.1).

Our first attempt to apply GRIP 3.0 to this example resulted in approximately eight million
weak compositions being generated for a single synchronisation label of the csma specification.
This process would require more than an hour to complete and result in the same number of
reduced transition statements in the reduced specification. The two optimisations described in
Section 6.4.1 allowed a specification to be successfully generated in a smaller amount of time;
however, as previously mentioned, the number of resulting transitions remains unchanged.

We conclude that while theoretically our approach could be applied to the csma case study,
it is better suited to models with less complex symmetric modules. Additionally, the guards of
synchronised statements are preferred to be as restrictive as possible. As a result, our improve-
ment to GRIP makes the tool more widely applicable in the area of models it most excels at,
namely, models with a large number of simpler modules which communicate through a simple
synchronised mechanism.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 110

Byz Model size (MTBDD) Model build time (sec.) Model check time (sec.)
PRISM PRISM GRIP PRISM PRISM GRIP PRISM PRISM GRIP

m -symm -symm -symm
6 130,145 54,512 21,018 1.36 0.207 1.29 2.07 0.30 0.26
8 592,630 214,293 54,887 6.20 0.428 1.92 >10m 1.39 0.66
12 OOM OOM 218,153 OOM OOM 2.98 OOM OOM 4.653
16 OOM OOM 343,941 OOM OOM 6.06 OOM OOM 13.84

Table 6.4: Model size and build times for the Byzantine model obtained by PRISM, PRISM-
symm and GRIP 3.0. OOM signifies models which resulted in an Out-of-Memory error.

6.5.4 Randomised Byzantine Agreement protocol

Our final example before applying GRIP to the Ctrl-MAC protocol is an adaptation of the Byzan-
tine agreement protocol [33]. The original protocol was an example for which GRIP performed
favourably compared to PRISM-symm [59]. We have added a common synchronisation label to
three of the statements that have updates to local states only and compare performance again.
We do so to demonstrate GRIP’s performance on a real-world scenario. Results for a range of
numbers of participants m are shown in Table 6.4. Despite the additional synchronisation, GRIP
still performs well for this example compared with PRISM-symm.

6.5.5 Ctrl-MAC models

We now apply GRIP 3.0 to the Ctrl-MAC models described in Section 5.1 which motivated
our research into GRIP. We use model 3, our best performing model without the use of counter
abstraction, as input to GRIP. We begin with a basic Ctrl-MAC configuration involving 5 request
slots and 5 sensor nodes.

During this process we encountered a number of issues that we had to resolve before we
were able to run GRIP on the Ctrl-MAC models. All of the current example models for GRIP
(see Table 6.2) do not use any const or formula declarations and in fact GRIP 2.0 does
not support their use. In [65] the integration of this part of the PRISM language is left as
future work and the example models used are manually refactored to remove the uses of these
structures. As our Ctrl-MAC models use formulas to a large extent, we introduce a preprocessing
script to GRIP 3.0 that refactors any input PRISM model such that all occurrences of const or
formula are replaced with their values. We do not believe that introducing support for these
two structures to GRIP would provide any significant performance improvements. If that were
the case, GRIP would need to substitute any constants and calculate every formula each time it
encounters them in a transition command in order to find the counters corresponding to the two
states involved in that transition.

Another issue is that GRIP does not support the use of in-line if statements, whereas our
Ctrl-MAC models heavily rely on them in order to calculate the number request slots that have
experienced a conflict and the back-off duration that should be applied to each sensor node. For

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 111

example, the number of conflicts in an RRM is given by

formula new_contentions = ((c0=2?1:0) + (c1=2?1:0)
+ (c2=2?1:0) + (c3=2?1:0) + (c4=2?1:0));

We have two possible solutions to this issue. The first is to replace each transition command
involving an in-line if statement with two transition commands: one for the true case and one
for the false case. For example, the command

[] s1 = 6 -> (s1’=((backoff=0)?7:2));

can be substituted by the following two commands

[] s1 = 6 & backoff=0 -> (s1’=7);

[] s1 = 6 & backoff>0 -> (s1’=2);

where each has an additional expression in their guard and a corresponding change to the re-
sulting update. This option can be implemented as a preprocessing script, and while this is the
simpler solution, it also can result in an exponential increase in the number of transition state-
ments used by the model. This change would typically have no effect on the size of the model,
but does heavily influence the size of GRIP 3.0’s output model. Specifically for the Ctrl-MAC
models, the in-line if statements are mainly used when sensors are assigned back-off durations,
which are all synchronised commands as back-offs are assigned simultaneously as the RRM is
transmitted.

Sensors GRIP Time (s) Weak Compositions Output model size Output file size
2 1.1 7326 OOM 7515
3 14.2 283,765 OOM 283,964
4 OOM ≈8e+6 n/a n/a
5 OOM ≈8e+8 n/a n/a

Table 6.5: Model sizes and computation times of GRIP to preprocessed models of Ctrl-MAC.
Cells labelled with OOM represent models for which PRISM or GRIP reported an out-of-
memory error.

We use this approach to investigate its performance on the Ctrl-MAC models. Table 6.5
shows the results obtained by GRIP. The number of weak compositions reported are the max-
imum possible as calculated by Equation (6.1). It is likely that many of these will not result
in valid transitions. Models with four or more sensor modules resulted in GRIP running out of
memory during the translation process due to an exponential increase in the number of weak
compositions considered. Models involving only two and three sensor nodes were successfully
generated; however, they were unable to be built by PRISM as they resulted in out-of-memory
errors. The input model used is listed in Appendix A.1.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 112

Subsequently, we reduce the number of request slots to two - the smallest possible number
of request slots that exhibits Ctrl-MAC’s back-off strategy. As mentioned in Chapter 5 existing
wireless medium regulations require Ctrl-MAC implementations to use at least five request slots,
so such a configuration is unusable in practice; however, it can serve as a proof of concept for
our approach. Table 6.6 shows verification results for Ctrl-MAC models ranging from two to
five sensors.

As stated previously, our Ctrl-MAC models treat the environment in two ways: either no
new data is detected until all conflicts are resolved, or sensors detect new data upon successful
transmission. We present the verification results from two fully symmetric properties: 1 “what
is the probability that all sensor nodes simultaneously choose a given request slot”, and 2 “what
is the probability that all sensor nodes experience congestion during an RRC”. The models
produced by GRIP achieve the same verification results, while obtaining a drastic decrease in
the number of states and transitions. In fact, we note that the sizes of the state spaces of the
models produced by GRIP are linearly related. However, despite this decrease, the symmetry-
reduced models reach an out-of-memory error when built by PRISM much sooner than their
non-reduced counterparts. Despite the lower number of states and transitions, the number of
nodes in the transition matrix of the models is often higher than that of the original model.

Reducing the number of request slots to two allowed us to investigate a larger suite of mod-
els; however, even in this case we were unable to verify a protocol configuration of a large
number of sensor nodes. Even though our Ctrl-MAC models were expected to be well suited
for counter abstraction performed by GRIP, i.e. they model a large number of devices that are
simple in their control logic, their synchronised blocks are not. We introduced synchronisation
to GRIP in a way contrary to the usual counter abstraction methodology. Synchronised blocks
need to explicitly bridge states occupied by modules prior to the execution of the block to those
occupied after execution. As such, models translated by GRIP should contain synchronised
blocks that are as simple as possible. This is not the case for our Ctrl-MAC models. When a
Request-Reply Message occurs, a sensor node can have a successful request, an unsuccessful
request, or be backed off from a previous conflict. Even with only two request slots, each of
these scenarios admits a variety of local and global states according to: FTR value, number of
requests per request slot, back-off to be assigned. This results in an increase in size of the tran-
sition matrix of the symmetry-reduced model. The current method of reducing synchronisation
with GRIP allows us to handle models that have a small number of synchronised commands as a
secondary aspect of the model. However, it is not well suited to our Ctrl-MAC models for which
a large part of the complexity lies in synchronised statements.

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 113

Sensors (version) Time (s) States Transitions Matrix (nodes) PCTL result
The models below do not generate new events

2 (normal-1) 0.059 47 81 564 0.333
2 (grip-1) 1.45 29 44 2220 0.333

2 (normal-2) 0.059 47 81 564 0.5
2 (grip-2) 1.45 29 44 2220 0.5

3 (normal-1) 0.044 449 979 1855 0.285
3 (grip-1) 12.025 113 197 5497 0.285

3 (normal-2) 0.044 449 979 1855 0.249
3 (grip-2) 12.025 113 197 5497 0.25

4 (normal-1) 0.077 4047 10389 6155 0.179
4 (grip-1) n/a OOM OOM n/a n/a

4 (normal-2) 0.077 4047 10389 6155 0.5
4 (grip-2) n/a OOM OOM n/a n/a

The models below generate events continuously
2 (normal-1) 0.031 55 99 672 0.333

2 (grip-1) 0.49 33 53 2739 0.333
2 (normal-2) 0.031 55 99 672 0.5

2 (grip-2) 0.49 33 53 2739 0.5
3 (normal-1) 0.036 215 547 1658 0.143

3 (grip-1) 3.23 63 119 5225 0.143
3 (normal-2) 0.036 215 547 1658 0.249

3 (grip-2) 3.23 63 119 5225 0.25
4 (normal-1) 0.048 881 2424 5840 0.066

4 (grip-1) 5.171 106 193 5946 0.066
4 (normal-2) 0.048 881 2424 5840 0.5

4 (grip-2) 5.171 106 193 5946 0.5
5 (normal-1) 0.123 10671 35447 13,737 0.032

5 (grip-1) 18.688 208 411 9772 0.032
5 (normal-2) 0.123 10671 35447 13,737 0.687

5 (grip-2) 18.688 208 411 9772 0.687
6 (normal-1) 0.141 32335 119071 33,626 0.015

6 (grip-1) n/a OOM OOM n/a n/a
6 (normal-2) 0.141 32335 119071 33,626 0.812

6 (grip-2) n/a OOM OOM n/a n/a

Table 6.6: Model sizes and computation times for PRISM models of Ctrl-MAC compared to
their symmetry reduced counterparts produced by GRIP. The table shows verification results of
two properties (-1 and -2 respectively). Cells labelled with OOM represent models for which
PRISM reported an out-of-memory error.

6.6 Summary

In this chapter we introduced the GRIP symmetry reduction tool and the improvements we have
made. We restored all of the functionality that it was missing and added support for the trans-
lation of synchronised commands in order to increase the range of models it can be applied

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 114

to. Additionally, we corrected a long-standing issue that prevented the use of division in any
expression in models input into GRIP. These updates resulted in two new versions: GRIP 2.1
and GRIP 3.0. We have defined new translation rules for SPSL, the language GRIP is based on,
and shown that those are sound in the translation of synchronised statements. We discussed the
limitations of the translation method and calculated the order of the size of the translated spec-
ification: the output model is not guaranteed to achieve a state space reduction from applying
counter abstraction to its synchronised statements. The goal is to allow the process to be applied
to models that use synchronisation, so that we can benefit from the state space reduction gained
from applying counter abstraction to the non-synchronised transition statements. We expect this
to be most beneficial for models that involve a majority of non-synchronised commands and a
few synchronised ones.

We measure the effectiveness of our approach by applying GRIP 3.0 to a suite of specifi-
cations involving symmetry. We show that we have restored GRIP’s functionality on all of the
example specifications used for GRIP 2.0. We present results from GRIP 3.0’s application to
models involving synchronised statements. While our main reason for looking into GRIP, the
Ctrl-MAC models presented in Chapter 5, were not well suited for this symmetry reduction pro-
cess due to an extensive use of synchronised statements, we achieved a reduction in model sizes
of some of the specifications. In particular, the consensus case study, which was previously in-
correctly implemented by both GRIP and PRISM-symm, achieved significant reductions in state
space using GRIP 3.0. Its specification used only a single synchronised statement, making it an
ideal application for our translation method.

6.6.1 GRIP future work

We briefly outline some ideas for future versions of GRIP. First, even though SPSL translation
rules are designed so that any symmetric PRISM model can be translated to a symmetry-reduced
one that has had counter abstraction applied, in practice there are a number of issues that prevent
this from happening. These are due to features of PRISM that GRIP does not support and result
in either an inability of GRIP’s parser to parse the model or a failure of some of GRIP’s safety
checks. We present a brief list of some of the issues that we have identified:

• PRISM’s variables can be boolean. GRIP’s grammar supports boolean expressions, but
those expressions cannot be assigned to a variable as the syntax for declaring a boolean
variable is not supported.

• PRISM allows negative values to be assigned to its variables whereas GRIP does not.

• PRISM’s module renaming rules are less strict that those of GRIP. GRIP requires mod-
ule renamings declarations to be of the form “module M2 = M1 [x=y, y=x]

endmodule” which is the format listed on the PRISM website. However, investigating

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 115

the case studies on the PRISM website, we notice that renamings are typically written in
only one direction, i.e. “module M2 = M1 [x=y] endmodule”. This is likely
due to a change in PRISM that has been introduced since the release of GRIP 2.0.

• The names of global variables cannot contain digits. While this is not an error that limits
the range of models GRIP can be applied to, we believe that this change could make the
use of the tool more convenient.

• PRISM allows a PRISM model to start with a comment rather than a model type decla-
ration. GRIP’s grammar correctly identifies comments as tokens that should be ignored;
however, there is an issue that prevents this from happening prior to the model type dec-
laration, which the algorithm expects to be the first line of the input specification.

While GRIP currently does not support translation of steady-state properties, it can be easily
extended to do so. We have manually translated and verified steady-state properties for some
of the models described above as a proof of concept, and we wish to formally describe and im-
plement this feature into GRIP. Similarly, we could introduce support for analysis of properties
based on costs and rewards into GRIP. Any rewards structure would need to be well-defined in
order to be translated by GRIP (i.e. any expressions used cannot reference individual symmet-
ric modules, similar to rules in Figure 3.5). Additionally, GRIP and SPSL would need to be
extended to support the translation of reward-based properties. This would increase the expres-
siveness of properties that can be verified by GRIP.

One of the main building blocks for our approach to synchronised statements in GRIP 3.0
is the generation of weak compositions of states. At present, our algorithm goes through all
possible weak compositions and discards those which would result in commands whose guards
can never be satisfied. This is caused by conflicts in the global part of the guards of two or
more synchronised statements. For example, consider a symmetric module whose synchronised
commands are based on a global variable switch

[action] s1=1 & switch=0 -> (s1’=2);

[action] s1=1 & switch=1 -> (s1’=3);

These two commands are mutually exclusive as when this synchronised transition is executed, it
is impossible for symmetric modules to satisfy the guards of both statements. Cases such as this
one occur more frequently than expected due to the way in which GRIP translates commands
which use global variables in the expressions for the updates of local variables. GRIP uses
valuations, so the command

[action] (s1=1) -> (s1’=2) & (choice1’=counter+2);

where s1 and choice1 are local variables, and counter is a global variable with a range

CHAPTER 6. GRIP - STATE OF THE ART AND NEW CONTRIBUTION 116

from 0 to 3, is considered on a case by case basis for each value of counter. Therefore, during
the translation process of GRIP, the command above is equivalent to

[action] (s1=1) & (counter=0) -> (s1’=2) & (choice1’=2);

[action] (s1=1) & (counter=1) -> (s1’=2) & (choice1’=3);
[action] (s1=1) & (counter=2) -> (s1’=2) & (choice1’=4);
[action] (s1=1) & (counter=3) -> (s1’=2) & (choice1’=5);

If GRIP generates weak compositions using a case by case approach based on the set of val-
ues of the global variables present in the guards of synchronised statements, it can significantly
decrease the worst case complexity of the translation algorithm as the number of weak composi-
tions is exponential in the number of states accepted by the guards of synchronised commands.

Lastly, GRIP’s expressions are restricted in comparison to those of PRISM. GRIP’s grammar
does not support the use of the if-and-only-if (<=>) and condition evaluation (condition ?

a : b) operators, and only two of the eight PRISM built-in functions (e.g. min, min, max,
floor, pow, log, etc). The lack of these features reduces the number of model specifications
that can be translated by GRIP without requiring pre-processing by the user.

Chapter 7

Conclusions

In this thesis we investigate the use of formal methods to provide guarantees of correctness for
communication protocols used by sensor networks. We find that formal methods are effective
for wireless sensor systems of moderate size, and can be used as a basis for the development
of communication protocols and can aid in the construction of mathematical results for larger
systems. While our research is motivated by its application to sensor systems, the results we
produced can be applied to a wider range of systems. We used the Ctrl-MAC sensor network
communications protocol as a starting point for our research and the discoveries we arrived at
were based on challenges encountered throughout the verification process.

We started our investigation by providing an overview of the current state of CPSs with a
focus on WSNs. We looked at the characteristics of a wireless sensor network, and the ways in
which networks are classified according to their structure. We briefly discussed where Ctrl-MAC
fits in this background, the challenges it was designed to overcome, and the design choices made
to achieve this goal. We then presented formal verification technologies and compared available
model checking tools. We introduced the state space explosion problem and the techniques
most frequently used to overcome it (e.g. partial order reduction, symmetry reduction, etc.). We
also reviewed some of the tools that can be used to carry out these techniques. We then gave
on overview of how formal verification has been used for the analysis of sensor systems and
discussed the difficulties presented by this type of systems.

In chapter 3 we presented all of the definitions and mathematical concepts used in this the-
sis. We introduced DTMCs and MDPs, the core structures that model checking is based on,
and gave a brief overview of the probabilistic logic PCTL, one of the most common ways of
expressing desired properties of probabilistic systems, as well as of cost and rewards structures.
We introduced the PRISM model checker, the model checker we predominantly use through-
out the thesis, and looked in more detail at the syntax of the PRISM modelling language. We
then introduced the most frequently used state space reduction techniques and the mathematical
concepts they are based on. We presented in more detail two symmetry reduction tools that
implement these concepts, PRISM-symm and GRIP. We then focus on GRIP for a large part of

117

CHAPTER 7. CONCLUSIONS 118

the thesis. We then introduced the Ctrl-MAC protocol in greater technical detail in Chapter 4,
and introduced some of the more intricate details that presented a challenge in modelling the
protocol.

During the process of creating a model for Ctrl-MAC, a number of conversations with the
protocol developers from Imperial College London were carried out, and we were successful
in identifying a number of mistakes in the original protocol specification. This was a very
important result as the specification would otherwise lead to wrong implementations of the pro-
tocol and sub-optimal performance of those implementations, which is a frequent problem in
computer networks. We created a suite of PRISM models that could be used to analyse the Ctrl-
MAC protocol. These models were incrementally constructed, with each of them introducing
improvements to issues faced by the previous iteration. We crafted the individual models so that
they would be best suited to model the type of properties that we were interested in, and were
subsequently able to successfully model Ctrl-MAC implementations of a moderate number of
sensor devices. However, this was still insufficient to analyse the large number of devices that
were expected for a typical Ctrl-MAC implementation. We then used the results obtained in the
models, and the behavioural patterns observed, in order to devise a statistical approach capable
of producing probability distributions for protocols involving a large number of sensors.

We identified GRIP as the symmetry reduction tool that is best suited to perform symmetry
reduction on the Ctrl-MAC models. In order to successfully apply GRIP, we needed to first
update and extend its functionality. The tool was in a state that prevented it from successfully
being used to perform symmetry reduction on any non-trivial PRISM model. We introduced
a number of fixes to the tool, and restored it to its previous functionality. Additionally, we
extended the tool by providing support for the application of symmetry reduction to models that
used synchronised statements. To do so, we developed new language translation rules for the
SPSL language and extended its expressiveness. When this new version of GRIP was applied
to the models of the Ctrl-MAC protocol, we discovered that Ctrl-MAC was a protocol that was
badly suited for the translation process of synchronised statements, due to the high number of
states sensors can be in when synchronising during an RRM. Despite not being to apply GRIP
to our original goal, our contribution performed well on models that were better suited to the
approach we used. This allowed us to find and resolve a long-standing error due to synchronised
commands, that was present in a model used as an example specification by both GRIP and
PRISM-symm.

7.1 Future work

We identify some avenues for future work, some of which have been previously discussed at
greater length in the thesis.

In section 5.3.2 we proposed the use of a population based approach when modelling an

CHAPTER 7. CONCLUSIONS 119

environment which triggers the sensors at an uniform rate. This approach was deemed out of
scope for this thesis, but we make note of it here as future work. In addition, we propose
the investigation of statistical model checkers for modelling Ctrl-MAC. The properties we are
interested in are not rare events, we are in fact interested in the most common behaviour of the
model, so the simulation-based approach should be well suited to this problem.

Following the discussion in Section 5.3.3, we established that for an instance of the Ctrl-
MAC protocol in which sensors detect new phenomena at a uniform rate, at the equilibrium
position the number of successful requests at each RRC is much less than the number of request
slots available. Currently, the default Ctrl-MAC implementation consists of five requests slots
on one channel, and three data channels each with three slots per RRC. In [22], simulations
are performed to show that the use of a dedicated channel for requests is preferred to the free
use of all available channels. While in this thesis we have not focused on the transmission of
data following a successful transmission request, our results hint that a large number of the data
slots available would go unused. Essentially, using a single channel for requests does not enable
the full utilisation of the data channels. This is not necessarily a drawback of the protocol,
but an investigation could be performed into dedicating two channels for requests. This will
not be a straightforward task as currently the requests channel has a 10% duty cycle, while the
data channels use a 1% duty cycle, so care must be taken when establishing such a structure.
The simulations in [22] showed that using all four channels for both data and requests achieved
higher transmission delays and lower packet delivery ratios than having one dedicated channel
for requests and three for data transmission. It was also claimed that the dedicated approach
allowed for data load to be distributed evenly. We find that even under optimal transmission
request conditions, we do not expect enough successful requests to fully utilise the data channels.

Lastly, we have noticed that our models contain a large amount of states that have an ex-
tremely small probability of being reached. For example, the probability of the event in which
all sensors send transmission requests on the same request slot decreases exponentially in the
number of transmitting sensor devices. Furthermore, we have seen that depending on the appli-
cation of the protocol, it is likely that a protocol never reaches any extremes in its behaviour: i.e.
never has all sensor devices backed off, never has all sensor devices transmitting requests at the
same time, etc. In [87], an “abstracting the abstraction” approach is proposed for this scenario.
This approach is based on the idea that states with small probabilities could be grouped together.
For example, instead of keeping track of the exact number of sensor devices that are currently
idle for a model with 100 devices, we could instead use a number of ranges we define such as:
“less than 10”, “between 10 and 20”, “21”, “22”, “23”, “24”, “between 25 and 50”, “more than
50”. The ranges would be defined such that the total probabilities of each range is similar.

In Section 6.6.1 we outlined a variety of issues encountered by GRIP in the translation of
PRISM models and presented possible features that could be added to GRIP to broaden the
range of PRISM specifications it can be applied to without the need of any pre-processing. Ad-

CHAPTER 7. CONCLUSIONS 120

ditionally, we proposed GRIP to be extended with support for steady-state and reward-based
properties. Such properties are often used in the verification of PRISM models and their transla-
tion could be based on the current translation rules for PRISM properties. We also identified that
our current implementation of the generation of weak compositions of states can be significantly
improved. Due to the nature of the translation process a large number of weak compositions re-
sult in guards that can never be satisfied. An optimised algorithm could identify incompatible
states and exclude any weak compositions that result in unsatisfiable guards.

Appendix A

Model listings

Here we present the full versions of some of the models and algorithms referenced throughout
the thesis.

1 dtmc

2
3 global c0:[0..2]; // requests for slot 1, 0=no requests, 1= 1 request, 2=

more than one request

4 global c1:[0..2]; // same

5 global c2:[0..2]; // same

6 global c3:[0..2]; // same

7 global c4:[0..2]; // same

8
9 module gateway

10 g: [1..3] init 1;

11 FTR : [0..2] init 0;

12
13 [request_reply] g=1 -> (g’ =2); // synchronise with the nodes,relay schedule

14 [] g=2 & c0 = 2 & c1 = 2 & c2 = 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+5-1,2),0)) & (g’=3); //

generate schedule

15 [] g=2 & c0 = 2 & c1 = 2 & c2 = 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+4-1,2),0)) & (g’=3); //

generate schedule

16 [] g=2 & c0 = 2 & c1 = 2 & c2 = 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+4-1,2),0)) & (g’=3); //

generate schedule

17 [] g=2 & c0 = 2 & c1 = 2 & c2 = 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

18 [] g=2 & c0 = 2 & c1 = 2 & c2 < 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+4-1,2),0)) & (g’=3); //

generate schedule

121

APPENDIX A. MODEL LISTINGS 122

19 [] g=2 & c0 = 2 & c1 = 2 & c2 < 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

20 [] g=2 & c0 = 2 & c1 = 2 & c2 < 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

21 [] g=2 & c0 = 2 & c1 = 2 & c2 < 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

22 [] g=2 & c0 = 2 & c1 < 2 & c2 = 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+4-1,2),0)) & (g’=3); //

generate schedule

23 [] g=2 & c0 = 2 & c1 < 2 & c2 = 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

24 [] g=2 & c0 = 2 & c1 < 2 & c2 = 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

25 [] g=2 & c0 = 2 & c1 < 2 & c2 = 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

26 [] g=2 & c0 = 2 & c1 < 2 & c2 < 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

27 [] g=2 & c0 = 2 & c1 < 2 & c2 < 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

28 [] g=2 & c0 = 2 & c1 < 2 & c2 < 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

29 [] g=2 & c0 = 2 & c1 < 2 & c2 < 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+1-1,2),0)) & (g’=3); //

generate schedule

30
31 [] g=2 & c0 < 2 & c1 = 2 & c2 = 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+4-1,2),0)) & (g’=3); //

generate schedule

32 [] g=2 & c0 < 2 & c1 = 2 & c2 = 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

33 [] g=2 & c0 < 2 & c1 = 2 & c2 = 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

34 [] g=2 & c0 < 2 & c1 = 2 & c2 = 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

APPENDIX A. MODEL LISTINGS 123

35 [] g=2 & c0 < 2 & c1 = 2 & c2 < 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

36 [] g=2 & c0 < 2 & c1 = 2 & c2 < 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

37 [] g=2 & c0 < 2 & c1 = 2 & c2 < 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

38 [] g=2 & c0 < 2 & c1 = 2 & c2 < 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+1-1,2),0)) & (g’=3); //

generate schedule

39 [] g=2 & c0 < 2 & c1 < 2 & c2 = 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+3-1,2),0)) & (g’=3); //

generate schedule

40 [] g=2 & c0 < 2 & c1 < 2 & c2 = 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

41 [] g=2 & c0 < 2 & c1 < 2 & c2 = 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

42 [] g=2 & c0 < 2 & c1 < 2 & c2 = 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+1-1,2),0)) & (g’=3); //

generate schedule

43 [] g=2 & c0 < 2 & c1 < 2 & c2 < 2 & c3 = 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+2-1,2),0)) & (g’=3); //

generate schedule

44 [] g=2 & c0 < 2 & c1 < 2 & c2 < 2 & c3 < 2 & c4 = 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+1-1,2),0)) & (g’=3); //

generate schedule

45 [] g=2 & c0 < 2 & c1 < 2 & c2 < 2 & c3 = 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+1-1,2),0)) & (g’=3); //

generate schedule

46 [] g=2 & c0 < 2 & c1 < 2 & c2 < 2 & c3 < 2 & c4 < 2 -> (c0’=0) & (c1’=0) & (

c2’=0) & (c3’=0) & (c4’=0) & (FTR’=max(min(FTR+0-1,2),0)) & (g’=3); //

generate schedule

47 [time] g=3 -> (g’=1); // RRM has been generated and broadcast

48 endmodule

49
50
51 //node 1

52 module node1

53 backoff_counter1:[0..2] init 0;

54 slot1 : [-1..5-1] init -1;

55
56 // local state

APPENDIX A. MODEL LISTINGS 124

57 s1 : [2..8] init 3; // modify this

58 [request_reply] (s1=3) & (backoff_counter1<=1) -> (s1’=7) & (

backoff_counter1’=0) ; //synchronise, ready to send

59 [request_reply] (s1=3) & (backoff_counter1>1) -> (s1’=2) & (

backoff_counter1’=backoff_counter1-1) ; //count down

60
61 // progress time while backed off

62 [time] s1 = 2 -> (s1’=3) ; // keep progressing through slots

63
64 // randomly choose slot

65 [] s1 = 4 -> 1/5: (slot1’=0) & (s1’=5) + 1/5: (slot1’=1) & (s1’=5) + 1/5:

(slot1’=2) & (s1’=5)+

66 1/5: (slot1’=3) & (s1’=5) + 1/5: (slot1’=4) & (s1’=5); //

randomly choose request slot

67
68 // send request

69 [] s1= 5 & slot1 = 0 -> (c0’ = min(c0+1,2)) & (s1’ = 6);

70 [] s1= 5 & slot1 = 1 -> (c1’ = min(c1+1,2)) & (s1’ = 6);

71 [] s1= 5 & slot1 = 2 -> (c2’ = min(c2+1,2)) & (s1’ = 6);

72 [] s1= 5 & slot1 = 3 -> (c3’ = min(c3+1,2)) & (s1’ = 6);

73 [] s1= 5 & slot1 = 4 -> (c4’ = min(c4+1,2)) & (s1’ = 6);

74
75 // all sensors have chosen their request slots

76 [time] s1= 7 -> (s1’ = 4);

77
78 [request_reply] s1 = 6 & slot1 = 0 & c0 <= 1 -> (s1’=8); //can now send

data

79 [request_reply] s1 = 6 & slot1 = 1 & c1 <= 1 -> (s1’=8); //can now send

data

80 [request_reply] s1 = 6 & slot1 = 2 & c2 <= 1 -> (s1’=8); //can now send

data

81 [request_reply] s1 = 6 & slot1 = 3 & c3 <= 1 -> (s1’=8); //can now send

data

82 [request_reply] s1 = 6 & slot1 = 4 & c4 <= 1 -> (s1’=8); //can now send

data

83
84 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 = 2 & c3 = 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 4,2),0)) & (s1’=2); //need to

retransmit

85 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 = 2 & c3 < 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 3,2),0)) & (s1’=2); //need to

retransmit

86 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 = 2 & c3 = 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 3,2),0)) & (s1’=2); //need to

retransmit

APPENDIX A. MODEL LISTINGS 125

87 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 = 2 & c3 < 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

88 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 < 2 & c3 = 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 3,2),0)) & (s1’=2); //need to

retransmit

89 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 < 2 & c3 < 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

90 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 < 2 & c3 = 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

91 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 = 2 & c2 < 2 & c3 < 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

92 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 = 2 & c3 = 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 3,2),0)) & (s1’=2); //need to

retransmit

93 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 = 2 & c3 < 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

94 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 = 2 & c3 = 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

95 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 = 2 & c3 < 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

96 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 < 2 & c3 = 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

97 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 < 2 & c3 < 2 &

c4 = 2 -> (backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

98 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 < 2 & c3 = 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

99 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & c1 < 2 & c2 < 2 & c3 < 2 &

c4 < 2 -> (backoff_counter1’=max(min(FTR + 0,2),0)) & (s1’=2); //need to

retransmit

100
101 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 = 2 & c3 = 2 & c4 = 2 ->

(backoff_counter1’=max(min(FTR + 3,2),0)) & (s1’=2); //need to

retransmit

102 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 = 2 & c3 < 2 & c4 = 2 ->

(backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

APPENDIX A. MODEL LISTINGS 126

103 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 = 2 & c3 = 2 & c4 < 2 ->

(backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

104 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 = 2 & c3 < 2 & c4 < 2 ->

(backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

105 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 < 2 & c3 = 2 & c4 = 2 ->

(backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to

retransmit

106 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 < 2 & c3 < 2 & c4 = 2 ->

(backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

107 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 < 2 & c3 = 2 & c4 < 2 ->

(backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to

retransmit

108 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & c2 < 2 & c3 < 2 & c4 < 2 ->

(backoff_counter1’=max(min(FTR + 0,2),0)) & (s1’=2); //need to

retransmit

109
110 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & c3 = 2 & c4 = 2 -> (

backoff_counter1’=max(min(FTR + 2,2),0)) & (s1’=2); //need to retransmit

111 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & c3 < 2 & c4 = 2 -> (

backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to retransmit

112 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & c3 = 2 & c4 < 2 -> (

backoff_counter1’=max(min(FTR + 1,2),0)) & (s1’=2); //need to retransmit

113 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & c3 < 2 & c4 < 2 -> (

backoff_counter1’=max(min(FTR + 0,2),0)) & (s1’=2); //need to retransmit

114
115 [request_reply] s1 = 6 & slot1 = 3 & c3 = 2 & c4=2 -> (backoff_counter1’=

max(min(FTR+1,2),0)) & (s1’=2); //need to retransmit

116 [request_reply] s1 = 6 & slot1 = 3 & c3 = 2 & c4<2 -> (backoff_counter1’=

max(min(FTR ,2),0)) & (s1’=2); //need to retransmit

117 [request_reply] s1 = 6 & slot1 = 4 & c4 = 2 -> (backoff_counter1’=max(min(

FTR,2),0)) & (s1’=2); //need to retransmit

118
119 [] s1=8 -> (s1’=3);

120 endmodule

121
122 module node2=node1[s1=s2,

123 backoff_counter1=backoff_counter2,

124 slot1=slot2]

125 endmodule

Listing A.1: Ctrl-MAC model for 5 request slots and 2 sensor devices that has been
preprocessed, so that GRIP is able to accept it as input.

1 // ctrl_MAC protocol

APPENDIX A. MODEL LISTINGS 127

2 dtmc

3
4 //add constants

5 const int TICK = 1; //scaled - 0.05 sec

6 const int REQUESTSLOT_TIME = 2*TICK; // scaled - 0.1 sec

7 const int DATASLOT_TIME = 3*TICK; // scaled - 0.15 sec

8
9 const int DATA_CHANNELS = 3;

10 const int SLOTS_PER_CHAN = 3;

11 const int REQUEST_SLOTS = 5;

12 const int DATA_SLOT = DATA_CHANNELS*SLOTS_PER_CHAN;

13 const int TIME_MAX = REQUESTSLOT_TIME*(REQUEST_SLOTS + 1); // length of a

whole period

14 const int MAX_FTR = 20; // just a guess at the moment

15 const int MAX_BACKOFF = 25; // also a guess

16
17 // need one of these per request slot

18 // represent the physical state of the slots

19 global c0:[0..2]; // requests for slot 1, 0=no requests, 1= 1 request, 2=

many requests

20 global c1:[0..2]; // same

21 global c2:[0..2]; // same

22 global c3:[0..2]; // same

23 global c4:[0..2]; // same

24
25 module gateway

26
27 active1: [0..1] init 1; //if 1 then ready to send request_reply message

28 active2: [0..1] init 1; //if 1 then not yet decremented FTR

29 x : [0..TIME_MAX]; //clock for gateway

30 //local state

31 g: [1..3] init 1;

32 //1 at start of request-reply slot

33 //2 receiving data and request messages

34 //3 generate schedule

35 C00 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

36 C10 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

37 C20 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

38 C30 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

39 C40 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

40 FTR : [0..MAX_FTR] init 0;

41
42 [request_reply] g=1 & x = 0 & active1=1 & active2=1-> (active1’=0); //

synchronise with the nodes, relay schedule

43 [] g=1 & x=0 & active1=0 & active2=1 -> (FTR’=newFTR) & (active2’=0); //

decrement FTR if appropriate

APPENDIX A. MODEL LISTINGS 128

44 [time] g=1 & active1=0 & active2=0 & x<REQUESTSLOT_TIME-1-> (x’=x+1); //

increment time through RR slot

45 [time] g=1 & x=REQUESTSLOT_TIME-1-> (x’=x+1) & (g’=2); //increment time out

of RR slot

46 [time] g=2 & (x<TIME_MAX-1) -> (x’=x+1); // move through remaining slots,

receive data

47 [time] g=2 & (x=TIME_MAX-1) -> (g’=3); // approach next RR slot

48 [] g=3 & x>0 -> (x’=0) & (FTR’= min(FTR + new_contentions,MAX_FTR));

49 [] g=3 & x=0 -> (C00’=c0) & (C10’=c1) & (C20’=c2) & (C30’=c3) & (C40’=c4) &

50 (active1’=1) & (active2’=1) & (c0’=0) & (c1’=0) & (c2’=0) & (c3’

=0) & (c4’=0) & (g’=1); //generate schedule

51 endmodule

52
53
54 //node 1

55 module node1

56 // clock for station 1

57 x1 : [0..TIME_MAX];

58 backoff_counter1:[0..MAX_BACKOFF] init 0;

59 slot1 : [-1..REQUEST_SLOTS-1] init -1;

60 // local state

61 s1 : [2..12] init 3; // modify this

62 // 1 idle

63 // STAGE 2

64 // 2 message to send

65 // 3 Read feedback_1

66 // 4 choose random minislot (MS)

67 // 5 start send in MS

68 // 6 MS requested

69 // 7 collision queue

70 // 8 start new MS request

71 // STAGE 3

72 // 9 Read feedback_2

73 // 10 Change frequency

74 // 11 Data queue

75 // 12 send data

76 // 13 complete data transmission

77
78 synchronised1 : bool init false;

79 send_data1 : bool init false;

80
81 [request_reply] s1=3 & backoff_counter1 =0 -> (x1’ =0) & (s1’ =4) & (

synchronised1’ = true); //synchronise, ready to send

82 [request_reply] (s1=3) & (backoff_counter1 > 0) -> (s1’ =2) & (

backoff_counter1’=backoff_counter1 - 1) & (x1’=0); //count down

83 // progress time while backed off

APPENDIX A. MODEL LISTINGS 129

84 [time] s1 = 2 & x1 < TIME_MAX-1 -> (x1’ = x1+1); // keep progressing

through slots

85 [time] s1 = 2 & x1 = TIME_MAX-1 -> (x1’ = x1+1) & (s1’ = 3); // keep

progressing through slots

86 // randomly choose slot

87 [] s1 = 4 -> 1/5: (slot1’=0) & (s1’=5)+ 1/5: (slot1’=1) & (s1’=5) + 1/5: (

slot1’=2) & (s1’=5)+

88 1/5: (slot1’=3) & (s1’=5)+ 1/5: (slot1’=4)& (s1’=5); //

randomly choose request slot

89 // if time - send request

90 [] s1= 5 & slot1 = 0 & x1 = REQUESTSLOT_TIME ->(c0’ = min(c0+1,2)) & (s1’

=6);

91 [] s1= 5 & slot1 = 1 & x1 = 2*REQUESTSLOT_TIME ->(c1’ = min(c1+1,2)) & (s1

’ = 6);

92 [] s1= 5 & slot1 = 2 & x1 = 3*REQUESTSLOT_TIME -> (c2’ = min(c2+1,2))& (s1

’ = 6);

93 [] s1= 5 & slot1 = 3 & x1 = 4*REQUESTSLOT_TIME -> (c3’ = min(c3+1,2))& (s1

’ = 6);

94 [] s1= 5 & slot1 = 4 & x1 = 5*REQUESTSLOT_TIME -> (c4’ = min(c4+1,2))& (s1

’ = 6);

95 // if not time to send message, move on

96 [time] s1 = 5 & slot1 >= 0 & x1 < slot1*REQUESTSLOT_TIME +

REQUESTSLOT_TIME -> (s1’=5) & (x1’=x1+1);

97 // message is sent, keep progressing through the slots

98 [time] s1 = 6 & x1 < TIME_MAX -> (x1’ = x1+1); // keep progressing through

slots

99
100 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 0 & C00 <= 1 -> (x1’=0) &

(s1’=12) & (slot1’=-1); //can now send data

101 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 1 & C10 <= 1 -> (x1’=0) &

(s1’=12) & (slot1’=-1); //can now send data

102 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 2 & C20 <= 1 -> (x1’=0) &

(s1’=12) & (slot1’=-1); //can now send data

103 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 3 & C30 <= 1 -> (x1’=0) &

(s1’=12) & (slot1’=-1); //can now send data

104 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 4 & C40 <= 1 -> (x1’=0) &

(s1’=12) & (slot1’=-1); //can now send data

105
106 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 0 & C00 = 2 -> (x1’=0) &

(backoff_counter1’=backoff0) & (s1’=2) & (slot1’=-1); //need to

retransmit

107 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 1 & C10 = 2 -> (x1’=0) &

(backoff_counter1’=backoff1) & (s1’=2) & (slot1’=-1); //need to

retransmit

108 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 2 & C20 = 2 -> (x1’=0) &

(backoff_counter1’=backoff2) & (s1’=2) & (slot1’=-1); //need to

APPENDIX A. MODEL LISTINGS 130

retransmit

109 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 3 & C30 = 2 -> (x1’=0) &

(backoff_counter1’=backoff3) & (s1’=2) & (slot1’=-1); //need to

retransmit

110 [request_reply] s1 = 6 & x1 = TIME_MAX & slot1 = 4 & C40 = 2 -> (x1’=0) &

(backoff_counter1’=backoff4) & (s1’=2) & (slot1’=-1); //need to

retransmit

111
112 [request_reply] s1 = 7 -> (s1’=7); // collision // This state is never

reached; Delete?

113
114 [end] s1=12 -> (send_data1’ = true); // ready to send data, for now just

end here

115 // progress time at the end

116 [time] s1 = 12 & x1 < TIME_MAX -> (x1’ = x1+1); // keep progressing

through time slots

117 [request_reply] s1 = 12 & x1 = TIME_MAX -> (x1’=0); // This sensor has

successfully sent its message; for now just listen to future RRs and do

nothing

118 endmodule

119
120 module node2=node1[x1=x2,

121 s1=s2,

122 backoff_counter1=backoff_counter2,

123 slot1=slot2,

124 synchronised1=synchronised2,

125 send_data1=send_data2]

126 endmodule

127
128 module node3=node1[x1=x3,

129 s1=s3,

130 backoff_counter1=backoff_counter3,

131 slot1=slot3,

132 synchronised1=synchronised3,

133 send_data1=send_data3]

134 endmodule

135
136 module node4=node1[x1=x4,

137 s1=s4,

138 backoff_counter1=backoff_counter4,

139 slot1=slot4,

140 synchronised1=synchronised4,

141 send_data1=send_data4]

142 endmodule

143
144 module node5=node1[x1=x5,

APPENDIX A. MODEL LISTINGS 131

145 s1=s5,

146 backoff_counter1=backoff_counter5,

147 slot1=slot5,

148 synchronised1=synchronised5,

149 send_data1=send_data5]

150 endmodule

151
152 module node6=node1[x1=x6,

153 s1=s6,

154 backoff_counter1=backoff_counter6,

155 slot1=slot6,

156 synchronised1=synchronised6,

157 send_data1=send_data6]

158 endmodule

159
160 module node7=node1[x1=x7,

161 s1=s7,

162 backoff_counter1=backoff_counter7,

163 slot1=slot7,

164 synchronised1=synchronised7,

165 send_data1=send_data7]

166 endmodule

167
168 module node8=node1[x1=x8,

169 s1=s8,

170 backoff_counter1=backoff_counter8,

171 slot1=slot8,

172 synchronised1=synchronised8,

173 send_data1=send_data8]

174 endmodule

175
176
177 formula new_contentions = ((C00=2?1:0) + (C10=2?1:0) + (C20=2?1:0) + (C30

=2?1:0) + (C40=2?1:0));

178
179 //formulas assume p starts from 0

180
181 //one per request slot

182 formula position0 = 0; // position of slot 0 among contention slots in

this round

183 formula position1 = (C00=2?1:0); // position of slot 1 among contention

slots in this round

184 formula position2 = (C00=2?1:0) + (C10=2?1:0); // position of slot 2 among

contention slots in this round

185 formula position3 = (C00=2?1:0) + (C10=2?1:0) + (C20=2?1:0); // position of

slot 3 among contention slots in this round

APPENDIX A. MODEL LISTINGS 132

186 formula position4 = (C00=2?1:0) + (C10=2?1:0) + (C20=2?1:0) + (C30=2?1:0);

// position of slot 4 among contention slots in this round

187
188 formula newFTR = (FTR>0?FTR-1:FTR);

189
190
191 //one per request slot);

192 formula backoff0 = min(FTR + new_contentions-position0,MAX_BACKOFF);

193 formula backoff1 = min(FTR + new_contentions-position1,MAX_BACKOFF);

194 formula backoff2 = min(FTR + new_contentions-position2,MAX_BACKOFF);

195 formula backoff3 = min(FTR + new_contentions-position3,MAX_BACKOFF);

196 formula backoff4 = min(FTR + new_contentions-position4,MAX_BACKOFF);

197
198 // labels

199 label "firstSynch1" = synchronised1=true;

200 label "sent1" = send_data1=true;

Listing A.2: PRISM code for model 1

1 // ctrl_MAC protocol

2 dtmc

3
4 //add constants

5 const int REQUEST_SLOTS = 5;

6 const int MAX_FTR = 2; // just a guess at the moment

7 const int MAX_BACKOFF = 2; // also a guess

8
9 // need one of these per request slot

10 // represent the physical state of the slots

11 global c0:[0..2]; // requests for slot 1, 0=no requests, 1= 1 request, 2=

more than one request

12 global c1:[0..2]; // same

13 global c2:[0..2]; // same

14 global c3:[0..2]; // same

15 global c4:[0..2]; // same

16
17 module gateway

18 //1 at start of request-reply slot

19 //2 receiving data and request messages

20 //3 generate schedule

21 g: [1..4] init 1;

22
23 C00 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

24 C10 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

25 C20 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

26 C30 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

27 C40 : [0..2]; // 0 - no request, 1 - no contention, 2 - contention

APPENDIX A. MODEL LISTINGS 133

28 FTR : [0..MAX_FTR] init 0;

29
30 [request_reply] g=1 -> (g’ =2); // synchronise with the nodes,relay schedule

31 [] g=2 -> (g’=3);

32 [time] g=3 -> (g’=2); // sensors have chosen request slots, can generate RRM

33 [] g=4 -> (C00’=c0) & (C10’=c1) & (C20’=c2) & (C30’=c3) & (C40’=c4) &

34 (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

35 (FTR’=min(newFTR+new_contentions,MAX_FTR)) & (g’=1); // schedule

36 endmodule

37
38
39 //node 1

40 module node1

41 backoff_counter1:[0..MAX_BACKOFF] init 0;

42 slot1 : [-1..REQUEST_SLOTS-1] init -1;

43
44 // local state

45 s1 : [2..12] init 3; // modify this

46
47 [request_reply] (s1=3) & (backoff_counter1=0) -> (s1’=4) ; //synchronise,

ready to send

48 [request_reply] (s1=3) & (backoff_counter1>0) -> (s1’=2) & (

backoff_counter1’=backoff_counter1-1) ; //count down

49
50 // progress time while backed off

51 [time] s1 = 2 -> (s1’ = 3) ; // keep progressing through slots

52
53 // randomly choose slot

54 [] s1 = 4 -> 1/5: (slot1’ = 0) & (s1’=5)+ 1/5: (slot1’ = 1) & (s1’=5) +

1/5: (slot1’ = 2) & (s1’=5)+

55 1/5: (slot1’ = 3) & (s1’=5)+ 1/5: (slot1’=4)& (s1’=5); //

randomly choose request slot

56
57 // send request

58 [] s1= 5 & slot1 = 0 -> (c0’ = min(c0+1,2)) & (s1’ = 7);

59 [] s1= 5 & slot1 = 1 -> (c1’ = min(c1+1,2)) & (s1’ = 7);

60 [] s1= 5 & slot1 = 2 -> (c2’ = min(c2+1,2)) & (s1’ = 7);

61 [] s1= 5 & slot1 = 3 -> (c3’ = min(c3+1,2)) & (s1’ = 7);

62 [] s1= 5 & slot1 = 4 -> (c4’ = min(c4+1,2)) & (s1’ = 7);

63
64 // all sensors have chosen their request slots

65 [time] s1= 7 -> (s1’ = 6);

66
67 [request_reply] s1 = 6 & slot1 = 0 & C00 <= 1 -> (s1’=12) & (slot1’=-1);

//can now send data

68 [request_reply] s1 = 6 & slot1 = 1 & C10 <= 1 -> (s1’=12) & (slot1’=-1);

APPENDIX A. MODEL LISTINGS 134

//can now send data

69 [request_reply] s1 = 6 & slot1 = 2 & C20 <= 1 -> (s1’=12) & (slot1’=-1);

//can now send data

70 [request_reply] s1 = 6 & slot1 = 3 & C30 <= 1 -> (s1’=12) & (slot1’=-1);

//can now send data

71 [request_reply] s1 = 6 & slot1 = 4 & C40 <= 1 -> (s1’=12) & (slot1’=-1);

//can now send data

72
73 [request_reply] s1 = 6 & slot1 = 0 & C00 = 2 & backoff0>=0 -> (

backoff_counter1’=backoff0) & (s1’=((backoff0=0)?4:2)) & (slot1’=-1); //

need to retransmit

74 [request_reply] s1 = 6 & slot1 = 1 & C10 = 2 & backoff1>=0 -> (

backoff_counter1’=backoff1) & (s1’=((backoff1=0)?4:2)) & (slot1’=-1); //

need to retransmit

75 [request_reply] s1 = 6 & slot1 = 2 & C20 = 2 & backoff2>=0 -> (

backoff_counter1’=backoff2) & (s1’=((backoff2=0)?4:2)) & (slot1’=-1); //

need to retransmit

76 [request_reply] s1 = 6 & slot1 = 3 & C30 = 2 & backoff3>=0 -> (

backoff_counter1’=backoff3) & (s1’=((backoff3=0)?4:2)) & (slot1’=-1); //

need to retransmit

77 [request_reply] s1 = 6 & slot1 = 4 & C40 = 2 & backoff4>=0 -> (

backoff_counter1’=backoff4) & (s1’=((backoff4=0)?4:2)) & (slot1’=-1); //

need to retransmit

78
79 [time] s1=12 -> (s1’=12);

80 [request_reply] s1=12 -> (s1’=12);

81 endmodule

82
83 module node2=node1[s1=s2,

84 backoff_counter1=backoff_counter2,

85 slot1=slot2]

86 endmodule

87
88 module node3=node1[s1=s3,

89 backoff_counter1=backoff_counter3,

90 slot1=slot3]

91 endmodule

92
93 module node4=node1[s1=s4,

94 backoff_counter1=backoff_counter4,

95 slot1=slot4]

96 endmodule

97
98 module node5=node1[s1=s5,

99 backoff_counter1=backoff_counter5,

100 slot1=slot5]

APPENDIX A. MODEL LISTINGS 135

101 endmodule

102
103 module node6=node1[s1=s6,

104 backoff_counter1=backoff_counter6,

105 slot1=slot6]

106 endmodule

107
108 module node7=node1[s1=s7,

109 backoff_counter1=backoff_counter7,

110 slot1=slot7]

111 endmodule

112
113 // Use this only for the new FTR calculation in the generation of a schedule

114 formula new_contentions = ((c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0) + (c3=2?1:0)

+ (c4=2?1:0));

115
116 formula position0 = 0; // position of slot 0 among contention slots in

this round

117 formula position1 = (C00=2?1:0); // position of slot 1 among contention

slots in this round

118 formula position2 = (C00=2?1:0) + (C10=2?1:0); // position of slot 2 among

contention slots in this round

119 formula position3 = (C00=2?1:0) + (C10=2?1:0) + (C20=2?1:0); // position of

slot 3 among contention slots in this round

120 formula position4 = (C00=2?1:0) + (C10=2?1:0) + (C20=2?1:0) + (C30=2?1:0);

// position of slot 4 among contention slots in this round

121
122 formula newFTR = (FTR>0?FTR-1:FTR);

123
124 formula backoff0 = min(FTR - (new_contentions-position0),MAX_BACKOFF);

125 formula backoff1 = min(FTR - (new_contentions-position1),MAX_BACKOFF);

126 formula backoff2 = min(FTR - (new_contentions-position2),MAX_BACKOFF);

127 formula backoff3 = min(FTR - (new_contentions-position3),MAX_BACKOFF);

128 formula backoff4 = min(FTR - (new_contentions-position4),MAX_BACKOFF);

Listing A.3: PRISM code for model 2

1 // ctrl_MAC protocol

2 dtmc

3
4 //add constants

5 const int REQUEST_SLOTS = 5;

6 const int MAX_FTR = 2; // just a guess at the moment

7 const int MAX_BACKOFF = 2; // also a guess

8
9 // need one of these per request slot

10 // represent the physical state of the slots

APPENDIX A. MODEL LISTINGS 136

11 global c0:[0..2]; // requests for slot 1, 0=no requests, 1= 1 request, 2=

more than one request

12 global c1:[0..2]; // same

13 global c2:[0..2]; // same

14 global c3:[0..2]; // same

15 global c4:[0..2]; // same

16
17 module gateway

18 //1 at start of request-reply slot

19 //2 generate schedule

20 //3 receiving data and request messages

21 g: [1..3] init 1;

22
23 FTR : [0..MAX_FTR] init 0;

24
25 [request_reply] g=1 -> (g’ =2); // synchronise with the nodes,relay schedule

26 [] g=2 -> (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

27 (FTR’=newFTR) & (g’=3); // schedule

28 [time] g=3 -> (g’=1); // RRM has been generated and broadcast

29 endmodule

30
31
32 //node 1

33 module node1

34 backoff_counter1:[0..MAX_BACKOFF] init 0;

35 slot1 : [-1..REQUEST_SLOTS-1] init -1;

36
37 // local state

38 s1 : [2..8] init 3; // modify this

39
40 [request_reply] (s1=3) & (backoff_counter1<=1) -> (s1’=7) & (

backoff_counter1’=0) ; //synchronise, ready to send

41 [request_reply] (s1=3) & (backoff_counter1>1) -> (s1’=2) & (

backoff_counter1’=backoff_counter1-1) ; //count down

42
43 // progress time while backed off

44 [time] s1 = 2 -> (s1’=3) ; // keep progressing through slots

45
46 // randomly choose slot

47 [] s1 = 4 -> 1/5: (slot1’=0) & (s1’=5) + 1/5: (slot1’=1) & (s1’=5) + 1/5:

(slot1’=2) & (s1’=5)+

48 1/5: (slot1’=3) & (s1’=5) + 1/5: (slot1’=4) & (s1’=5); //

randomly choose request slot

49
50 // send request

51 [] s1= 5 & slot1 = 0 -> (c0’ = min(c0+1,2)) & (s1’ = 6);

APPENDIX A. MODEL LISTINGS 137

52 [] s1= 5 & slot1 = 1 -> (c1’ = min(c1+1,2)) & (s1’ = 6);

53 [] s1= 5 & slot1 = 2 -> (c2’ = min(c2+1,2)) & (s1’ = 6);

54 [] s1= 5 & slot1 = 3 -> (c3’ = min(c3+1,2)) & (s1’ = 6);

55 [] s1= 5 & slot1 = 4 -> (c4’ = min(c4+1,2)) & (s1’ = 6);

56
57 // all sensors have chosen their request slots

58 [time] s1= 7 -> (s1’ = 4);

59
60 [request_reply] s1 = 6 & slot1 = 0 & c0 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

61 [request_reply] s1 = 6 & slot1 = 1 & c1 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

62 [request_reply] s1 = 6 & slot1 = 2 & c2 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

63 [request_reply] s1 = 6 & slot1 = 3 & c3 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

64 [request_reply] s1 = 6 & slot1 = 4 & c4 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

65
66 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & backoff0>=0 -> (

backoff_counter1’=backoff0) & (s1’=((backoff0=0)?7:2)) & (slot1’=-1); //

need to retransmit

67 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & backoff1>=0 -> (

backoff_counter1’=backoff1) & (s1’=((backoff1=0)?7:2)) & (slot1’=-1); //

need to retransmit

68 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & backoff2>=0 -> (

backoff_counter1’=backoff2) & (s1’=((backoff2=0)?7:2)) & (slot1’=-1); //

need to retransmit

69 [request_reply] s1 = 6 & slot1 = 3 & c3 = 2 & backoff3>=0 -> (

backoff_counter1’=backoff3) & (s1’=((backoff3=0)?7:2)) & (slot1’=-1); //

need to retransmit

70 [request_reply] s1 = 6 & slot1 = 4 & c4 = 2 & backoff4>=0 -> (

backoff_counter1’=backoff4) & (s1’=((backoff4=0)?7:2)) & (slot1’=-1); //

need to retransmit

71
72 [time] s1=8 -> (s1’=8);

73 [request_reply] s1=8 -> (s1’=8);

74 endmodule

75
76 module node2=node1[s1=s2,

77 backoff_counter1=backoff_counter2,

78 slot1=slot2]

79 endmodule

80
81 module node3=node1[s1=s3,

82 backoff_counter1=backoff_counter3,

APPENDIX A. MODEL LISTINGS 138

83 slot1=slot3]

84 endmodule

85
86 module node4=node1[s1=s4,

87 backoff_counter1=backoff_counter4,

88 slot1=slot4]

89 endmodule

90
91 module node5=node1[s1=s5,

92 backoff_counter1=backoff_counter5,

93 slot1=slot5]

94 endmodule

95
96 module node6=node1[s1=s6,

97 backoff_counter1=backoff_counter6,

98 slot1=slot6]

99 endmodule

100
101 module node7=node1[s1=s7,

102 backoff_counter1=backoff_counter7,

103 slot1=slot7]

104 endmodule

105
106 module node8=node1[s1=s8,

107 backoff_counter1=backoff_counter8,

108 slot1=slot8]

109 endmodule

110
111 module node9=node1[s1=s9,

112 backoff_counter1=backoff_counter9,

113 slot1=slot9]

114 endmodule

115
116 module node10=node1[s1=s10,

117 backoff_counter1=backoff_counter10,

118 slot1=slot10]

119 endmodule

120
121 // Note that these are ALL contentions so (r+1)

122 formula new_contentions = ((c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0) + (c3=2?1:0)

+ (c4=2?1:0));

123
124 formula position0 = 0; // position of slot 0 among contention slots in

this round

125 formula position1 = (c0=2?1:0); // position of slot 1 among contention

slots in this round

APPENDIX A. MODEL LISTINGS 139

126 formula position2 = (c0=2?1:0) + (c1=2?1:0); // position of slot 2 among

contention slots in this round

127 formula position3 = (c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0); // position of

slot 3 among contention slots in this round

128 formula position4 = (c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0) + (c3=2?1:0); //

position of slot 4 among contention slots in this round

129
130 formula newFTR = max(min(FTR+new_contentions-1,MAX_FTR),0);

131
132 //one per request slot);

133 formula backoff0 = max(min(FTR + new_contentions-1-position0,MAX_BACKOFF),0)

;

134 formula backoff1 = max(min(FTR + new_contentions-1-position1,MAX_BACKOFF),0)

;

135 formula backoff2 = max(min(FTR + new_contentions-1-position2,MAX_BACKOFF),0)

;

136 formula backoff3 = max(min(FTR + new_contentions-1-position3,MAX_BACKOFF),0)

;

137 formula backoff4 = max(min(FTR + new_contentions-1-position4,MAX_BACKOFF),0)

;

Listing A.4: PRISM code for model 3

1 // ctrl_MAC protocol

2 dtmc

3
4 //add constants

5 const int TICK = 1; //scaled - 0.05 sec

6 const int REQUESTSLOT_TIME = 2*TICK; // scaled - 0.1 sec

7 const int DATASLOT_TIME = 3*TICK; // scaled - 0.15 sec

8
9 const int DATA_CHANNELS = 3;

10 const int SLOTS_PER_CHAN = 3;

11 const int REQUEST_SLOTS = 5;

12 const int DATA_SLOT = DATA_CHANNELS*SLOTS_PER_CHAN;

13 // number of sensors = 6

14 const int TOTAL_SENSORS = 5;

15 const int POPULATION = TOTAL_SENSORS-1;

16 const int MAX_FTR = 2; // this should be floor(number of sensors/2)

17 const int MAX_BACKOFF = 2; // This value should either be he same as MAX_FTR

or MAX_FTR+1

18
19 // need one of these per request slot

20 // represent the physical state of the slots

21
22 global c0:[0..2]; // requests for slot 1, number of requests

23 global c1:[0..2]; // same

APPENDIX A. MODEL LISTINGS 140

24 global c2:[0..2]; // same

25 global c3:[0..2]; // same

26 global c4:[0..2]; // same

27
28 module gateway

29 g: [1..4] init 1;

30 FTR : [0..MAX_FTR] init 0;

31 // population counters

32 idle: [0..POPULATION] init POPULATION;// idle sensors

33 sending: [0..POPULATION] init 0; // sensors sending requests this round

34 send0: [0..POPULATION] init 0; // sensors having chosen request slot 0

35 send1: [0..POPULATION] init 0; // sensors having chosen request slot 1

36 send2: [0..POPULATION] init 0; // sensors having chosen request slot 2

37 send3: [0..POPULATION] init 0; // sensors having chosen request slot 3

38 send4: [0..POPULATION] init 0; // sensors having chosen request slot 4

39 backed_off1: [0..POPULATION] init 0;// sensors backed off for 1 RR cycle

40 backed_off2: [0..POPULATION] init 0;// sensors backed off for 2 RR cycles

41
42 [] g=1 & idle>0 & sending>=0-> (idle’=0) & (sending’=min(sending+idle,

POPULATION)); // transition to attempt to send

43 // each sending sensor chooses the slot they like

44 [] g=1 & idle=0 & sending>0 ->

45 1/5:(sending’=sending-1)&(send0’=min(send0+1,POPULATION))&(c0’=min(c0+1,2))+

46 1/5:(sending’=sending-1)&(send1’=min(send1+1,POPULATION))&(c1’=min(c1+1,2))+

47 1/5:(sending’=sending-1)&(send2’=min(send2+1,POPULATION))&(c2’=min(c2+1,2))+

48 1/5:(sending’=sending-1)&(send3’=min(send3+1,POPULATION))&(c3’=min(c3+1,2))+

49 1/5:(sending’=sending-1)&(send4’=min(send4+1,POPULATION))&(c4’=min(c4+1,2));

50 // every sensor has chosen a slot

51 [time] g=1 & idle=0 & sending=0 -> (g’=2);

52 // change populations to specific backoff population based on congestion and

current FTR

53 [] g=2 & c0>1 & send0>0 & (FTR+new_contentions-position0=1)->(send0’=0)&(

backed_off1’=min(backed_off1+send0,POPULATION));

54 [] g=2 & c0>1 & send0>0 & (FTR+new_contentions-position0=2)->(send0’=0)&(

backed_off2’=min(backed_off2+send0,POPULATION));

55
56 [] g=2 & c1>1 & send1>0 & (FTR+new_contentions-position1=1)->(send1’=0)&(

backed_off1’=min(backed_off1+send1,POPULATION));

57 [] g=2 & c1>1 & send1>0 & (FTR+new_contentions-position1=2)->(send1’=0)&(

backed_off2’=min(backed_off2+send1,POPULATION));

58
59 [] g=2 & c2>1 & send2>0 & (FTR+new_contentions-position2=1)->(send2’=0)&(

backed_off1’=min(backed_off1+send2,POPULATION));

60 [] g=2 & c2>1 & send2>0 & (FTR+new_contentions-position2=2)->(send2’=0)&(

backed_off2’=min(backed_off2+send2,POPULATION));

61

APPENDIX A. MODEL LISTINGS 141

62 [] g=2 & c3>1 & send3>0 & (FTR+new_contentions-position3=1)->(send3’=0)&(

backed_off1’=min(backed_off1+send3,POPULATION));

63 [] g=2 & c3>1 & send3>0 & (FTR+new_contentions-position3=2)->(send3’=0)&(

backed_off2’=min(backed_off2+send3,POPULATION));

64
65 [] g=2 & c4>1 & send4>0 & (FTR+new_contentions-position4=1)->(send4’=0)&(

backed_off1’=min(backed_off1+send4,POPULATION));

66 [] g=2 & c4>1 & send4>0 & (FTR+new_contentions-position4=2)->(send4’=0)&(

backed_off2’=min(backed_off2+send4,POPULATION));

67 // change population to idle if transmission was successful

68 [] g=2 & c0=1 -> (idle’=min(idle + send0,POPULATION)) & (send0’=0);

69 [] g=2 & c1=1 -> (idle’=min(idle + send1,POPULATION)) & (send1’=0);

70 [] g=2 & c2=1 -> (idle’=min(idle + send2,POPULATION)) & (send2’=0);

71 [] g=2 & c3=1 -> (idle’=min(idle + send3,POPULATION)) & (send3’=0);

72 [] g=2 & c4=1 -> (idle’=min(idle + send4,POPULATION)) & (send4’=0);

73 // all requests have been sorted; make RR

74 [request_reply] g=2 & send0+send1+send2+send3+send4=0 -> (g’=3)

75 & (sending’=min(sending+backed_off1,POPULATION))

76 & (backed_off1’=backed_off2) & (backed_off2’=0);

77 // reset request slot counters

78 [] g=3 -> (c0’=0) & (c1’=0) & (c2’=0) & (c3’=0) & (c4’=0) & // generate

79 (FTR’=newFTR) & (g’=4); // schedule

80 [rr_end] g=4 -> (g’=1);

81 endmodule

82
83 //node 1

84 module node1

85 backoff_counter1:[0..MAX_BACKOFF] init 0;

86 slot1 : [-1..REQUEST_SLOTS-1] init -1;

87
88 // local state

89 s1 : [1..8] init 2; // modify this

90
91 [request_reply] (s1=3) & (backoff_counter1<=1) -> (s1’=7) & (

backoff_counter1’=0) ; //synchronise, ready to send

92 [request_reply] (s1=3) & (backoff_counter1>1) -> (s1’=2) & (

backoff_counter1’=backoff_counter1-1) ; //count down

93
94 // progress time while backed off

95 [rr_end] s1 = 2 -> (s1’=2) ; // keep progressing through slots

96 [time] s1 = 2 -> (s1’=3) ; // keep progressing through slots

97
98 // randomly choose slot

99 [] s1 = 4 -> 1/5: (slot1’=0) & (s1’=5) + 1/5: (slot1’=1) & (s1’=5) + 1/5:

(slot1’=2) & (s1’=5)+

100 1/5: (slot1’=3) & (s1’=5) + 1/5: (slot1’=4) & (s1’=5); //

APPENDIX A. MODEL LISTINGS 142

randomly choose request slot

101
102 // send request

103 [] s1=5 & slot1=0 -> (c0’ = min(c0+1,2)) & (s1’ = 1);

104 [] s1=5 & slot1=1 -> (c1’ = min(c1+1,2)) & (s1’ = 1);

105 [] s1=5 & slot1=2 -> (c2’ = min(c2+1,2)) & (s1’ = 1);

106 [] s1=5 & slot1=3 -> (c3’ = min(c3+1,2)) & (s1’ = 1);

107 [] s1=5 & slot1=4 -> (c4’ = min(c4+1,2)) & (s1’ = 1);

108
109 // all sensors have chosen their request slots

110 [rr_end] s1=7 -> (s1’=4);

111 [time] s1=1 -> (s1’=6);

112
113 [request_reply] s1 = 6 & slot1 = 0 & c0 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

114 [request_reply] s1 = 6 & slot1 = 1 & c1 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

115 [request_reply] s1 = 6 & slot1 = 2 & c2 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

116 [request_reply] s1 = 6 & slot1 = 3 & c3 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

117 [request_reply] s1 = 6 & slot1 = 4 & c4 <= 1 -> (s1’=8) & (slot1’=-1); //

can now send data

118
119 [request_reply] s1 = 6 & slot1 = 0 & c0 = 2 & backoff0>=0 -> (

backoff_counter1’=backoff0) & (s1’=((backoff0=0)?7:2)) & (slot1’=-1); //

need to retransmit

120 [request_reply] s1 = 6 & slot1 = 1 & c1 = 2 & backoff1>=0 -> (

backoff_counter1’=backoff1) & (s1’=((backoff1=0)?7:2)) & (slot1’=-1); //

need to retransmit

121 [request_reply] s1 = 6 & slot1 = 2 & c2 = 2 & backoff2>=0 -> (

backoff_counter1’=backoff2) & (s1’=((backoff2=0)?7:2)) & (slot1’=-1); //

need to retransmit

122 [request_reply] s1 = 6 & slot1 = 3 & c3 = 2 & backoff3>=0 -> (

backoff_counter1’=backoff3) & (s1’=((backoff3=0)?7:2)) & (slot1’=-1); //

need to retransmit

123 [request_reply] s1 = 6 & slot1 = 4 & c4 = 2 & backoff4>=0 -> (

backoff_counter1’=backoff4) & (s1’=((backoff4=0)?7:2)) & (slot1’=-1); //

need to retransmit

124
125 [request_reply] s1=8 -> (s1’=8);

126 [rr_end] s1=8 -> (s1’=8);

127 [time] s1=8 -> (s1’=8);

128 endmodule

129
130 formula new_contentions = ((c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0) + (c3=2?1:0)

APPENDIX A. MODEL LISTINGS 143

+ (c4=2?1:0));

131
132 //one per request slot

133 formula position0 = 0; // position of slot 0 among contention slots in

this round

134 formula position1 = (c0=2?1:0); // position of slot 1 among contention

slots in this round

135 formula position2 = (c0=2?1:0) + (c1=2?1:0); // position of slot 2 among

contention slots in this round

136 formula position3 = (c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0); // position of

slot 3 among contention slots in this round

137 formula position4 = (c0=2?1:0) + (c1=2?1:0) + (c2=2?1:0) + (c3=2?1:0); //

position of slot 4 among contention slots in this round

138
139 formula newFTR = (FTR>0?FTR-1:FTR);

140
141
142 //one per request slot);

143 formula backoff0 = min(FTR + new_contentions-position0,MAX_BACKOFF);

144 formula backoff1 = min(FTR + new_contentions-position1,MAX_BACKOFF);

145 formula backoff2 = min(FTR + new_contentions-position2,MAX_BACKOFF);

146 formula backoff3 = min(FTR + new_contentions-position3,MAX_BACKOFF);

147 formula backoff4 = min(FTR + new_contentions-position4,MAX_BACKOFF);

Listing A.5: PRISM code for model 4

Appendix B

List of Terms

144

Acronyms

BDD Binary Decision Diagram. 11, 15, 17

CDMA Code Division Multiple Access. 23

CPS Cyber-Physical System. 2, 3, 12, 24, 53, 117

CTMC Continious Time Markov Chain. 81

DTMC Discrete Time Markov Chain. 28, 32, 33, 35, 39, 53, 81, 117

FDMA Frequency Division Multiple Access. 23

FTR Failed Transmission Requests. viii, 49, 50, 54, 57, 58, 61, 63, 64, 67, 68, 74, 75, 112

LPWA Low-Power Wide Area. 4, 5, 24, 46, 47

MDP Markov Decision Process. 17, 33, 39–42, 81, 117

RRC Request-Reply Cycle. v, 47, 50–52, 54–61, 65, 69, 70, 73–75, 77–79, 112, 119

RRM Request-Reply Message. 47–52, 54, 56–58, 61, 63, 68–70, 73, 74, 76, 78, 111, 118

S4 Science of Sensor Systems Software. 4, 46

TDMA Time Division Multiple Access. 23, 24, 52

WA-CPS Wide Area Cyber-Physical System. 3, 4, 24, 46, 47

WSN Wireless sensor network. vii, 20–24, 26, 27, 117

145

Bibliography

[1] Muhammad Umar Aftab et al. “A Review Study of Wireless Sensor Networks and Its
Security”. In: Communications and Network 7 (2015), pp. 172–179.

[2] Sheldon B. Akers. “Binary Decision Diagrams”. In: IEEE Transactions on Computers

C-27 (1978), pp. 509–516.

[3] Kemal Akkaya and Mohamed Younis. “A survey on routing protocols for wireless sensor
networks”. In: Ad hoc networks 3.3 (2005), pp. 325–349.

[4] I.F. Akyildiz et al. “A survey on sensor networks”. In: IEEE Communications Magazine

40.8 (2002), pp. 102–114. DOI: 10.1109/MCOM.2002.1024422.

[5] R. Alur, R. Brayton, et al. “Partial-Order Reduction in Symbolic State Space Explo-
ration”. In: vol. 1254. Apr. 2006, pp. 340–351. ISBN: 978-3-540-63166-8. DOI: 10.
1007/3-540-63166-6_34.

[6] Rajeev Alur, Costas A. Courcoubetis, and Thomas A. Henzinger. “Computing Accumu-
lated Delays in Real-time Systems”. In: Formal Methods in System Design 11 (1993),
pp. 137–155.

[7] Rajeev Alur and Thomas A. Henzinger. “Reactive Modules”. In: Formal Methods in

System Design 15 (1996), pp. 7–48.

[8] Dana Angluin et al. “Computation in Networks of Passively Mobile Finite-State Sen-
sors”. In: Distributed Computing. ACM Press, 2004, pp. 290–299.

[9] Blair Archibald, Géza Kulcsár, and Michele Sevegnani. “A Tale of Two Graph Models:
A Case Study in Wireless Sensor Networks”. In: Form. Asp. Comput. 33.6 (Dec. 2021),
pp. 1249–1277. ISSN: 0934-5043. DOI: 10.1007/s00165-021-00558-z. URL:
https://doi.org/10.1007/s00165-021-00558-z.

[10] J. Aspnes and M. Herlihy. “Fast Randomized Consensus Using Shared Memory”. In:
Journal of Algorithms 15.1 (1990), pp. 441–460.

[11] Mauricio Ayala-Rincón and César A. Muñoz. “Interactive Theorem Proving: 8th Inter-
national Conference, ITP 2017, Brasília, Brazil, September 26–29, 2017, Proceedings”.
In: Interactive Theorem Proving (2017).

146

https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/s00165-021-00558-z
https://doi.org/10.1007/s00165-021-00558-z

BIBLIOGRAPHY 147

[12] Tomáš Babiak et al. “The Hanoi Omega-Automata Format”. In: Computer Aided Verifi-

cation. Ed. by Daniel Kroening and Corina S. Păsăreanu. Cham: Springer International
Publishing, 2015, pp. 479–486. ISBN: 978-3-319-21690-4.

[13] Hamid Bagheri et al. “Detection of Design Flaws in the Android Permission Protocol
Through Bounded Verification”. In: (Jan. 2015).

[14] R.I. Bahar et al. “Algebraic decision diagrams and their applications”. In: Proceedings

of 1993 International Conference on Computer Aided Design (ICCAD). 1993, pp. 188–
191. DOI: 10.1109/ICCAD.1993.580054.

[15] C. Baier, M. Grosser, and F. Ciesinski. “Partial order reduction for probabilistic sys-
tems”. In: First International Conference on the Quantitative Evaluation of Systems,

2004. QEST 2004. Proceedings. 2004, pp. 230–239. DOI: 10.1109/QEST.2004.
1348037.

[16] Christel Baier, Marcus Größer, and Frank Ciesinski. “Partial order reduction for prob-
abilistic systems”. In: First International Conference on the Quantitative Evaluation of

Systems, 2004. QEST 2004. Proceedings. (2004), pp. 230–239. URL: https://api.
semanticscholar.org/CorpusID:196683.

[17] Davide Basile, Alessandro Fantechi, and Irene Rosadi. “Formal Analysis of the UNISIG
Safety Application Intermediate Sub-layer”. In: Formal Methods for Industrial Criti-

cal Systems. Ed. by Alberto Lluch Lafuente and Anastasia Mavridou. Cham: Springer
International Publishing, 2021, pp. 174–190. ISBN: 978-3-030-85248-1.

[18] Noor Cholis Basjaruddin, Didin Saefudin, and Nela Andriani. “Hardware Simula-
tion of Camera-Based Adaptive Cruise Control Using Fuzzy Logic Control”. In:
Autom. Control Comput. Sci. 55.6 (Nov. 2021), pp. 501–509. ISSN: 0146-4116. DOI:
10.3103/S0146411621060031. URL: https://doi.org/10.3103/
S0146411621060031.

[19] Andreas Bauer, M. Leucker, and Christian Schallhart. “Monitoring of Real-Time Proper-
ties”. In: Foundations of Software Technology and Theoretical Computer Science. 2006.
URL: https://api.semanticscholar.org/CorpusID:2852777.

[20] Gerd Behrmann et al. “UPPAAL 4.0”. In: Third International Conference on the Quan-

titative Evaluation of Systems - (QEST’06) (2006), pp. 125–126.

[21] Fatma Benkhelifa et al. “Recycling Cellular Energy for Self-Sustainable IoT Networks:
A Spatiotemporal Study”. In: IEEE Transactions on Wireless Communications (Jan.
2020). DOI: 10.1109/TWC.2020.2967697.

[22] Laksh Bhatia et al. “Control Communication Co-Design for Wide Area Cyber-Physical
Systems”. In: ACM Trans. Cyber Phys. Syst. 5.2 (2021), 18:1–18:27. DOI: 10.1145/
3418528. URL: https://doi.org/10.1145/3418528.

https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://api.semanticscholar.org/CorpusID:196683
https://api.semanticscholar.org/CorpusID:196683
https://doi.org/10.3103/S0146411621060031
https://doi.org/10.3103/S0146411621060031
https://doi.org/10.3103/S0146411621060031
https://api.semanticscholar.org/CorpusID:2852777
https://doi.org/10.1109/TWC.2020.2967697
https://doi.org/10.1145/3418528
https://doi.org/10.1145/3418528
https://doi.org/10.1145/3418528

BIBLIOGRAPHY 148

[23] Armin Biere, Alessandro Cimatti, et al. “Symbolic Model Checking without BDDs”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by W. Rance
Cleaveland. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 193–207. ISBN:
978-3-540-49059-3.

[24] Armin Biere, Edmund Clarke, et al. “Verifying Safety Properties of a PowerPC- Mi-
croprocessor Using Symbolic Model Checking without BDDs”. In: Computer Aided

Verification. Ed. by Nicolas Halbwachs and Doron Peled. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 60–71. ISBN: 978-3-540-48683-1.

[25] Rafael H. Bordini et al. “State-Space Reduction Techniques in Agent Verification”. In:
Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems - Volume 2. AAMAS ’04. New York, New York: IEEE Computer
Society, 2004, pp. 896–903. ISBN: 1581138644.

[26] Rafael Heitor Bordini et al. “Verifying Multi-agent Programs by Model Checking”. In:
Autonomous Agents and Multi-Agent Systems 12 (2006), pp. 239–256.

[27] D. Bosnacki, D.R. Dams, and L. Holenderski. “Symmetric Spin”. English. In: SPIN

model checking and software verification : 7th international SPIN workshop, Stanford

CA, USA, August 30-September 1, 2000 : proceedings. Ed. by K. Havelund, J. Penix,
and W. Visser. Lecture Notes in Computer Science. Germany: Springer, 2000, pp. 1–19.
ISBN: 3-540-41030-9. DOI: 10.1007/10722468_1.

[28] Amira Boulmaiz et al. “Chapter 9 - The use of WSN (wireless sensor network) in the
surveillance of endangered bird species”. In: Advances in Ubiquitous Computing. Ed.
by Amy Neustein. Advances in ubiquitous sensing applications for healthcare. Aca-
demic Press, 2020, pp. 261–306. DOI: https://doi.org/10.1016/B978-
0-12-816801-1.00009-8. URL: https://www.sciencedirect.com/
science/article/pii/B9780128168011000098.

[29] Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE Trans-

actions on Computers C-35.8 (1986), pp. 677–691. DOI: 10 . 1109 / TC . 1986 .
1676819.

[30] Carlos E. Budde et al. “On Correctness, Precision, and Performance in Quantitative Veri-
fication: QComp 2020 Competition Report”. In: Rhodes, Greece: Springer-Verlag, 2020,
pp. 216–241. ISBN: 978-3-030-83722-8. DOI: 10.1007/978-3-030-83723-
5_15. URL: https://doi.org/10.1007/978-3-030-83723-5_15.

[31] J.R. Burch, E.M. Clarke, D.E. Long, et al. “Symbolic model checking for sequential
circuit verification”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 13.4 (1994), pp. 401–424. DOI: 10.1109/43.275352.

https://doi.org/10.1007/10722468_1
https://doi.org/https://doi.org/10.1016/B978-0-12-816801-1.00009-8
https://doi.org/https://doi.org/10.1016/B978-0-12-816801-1.00009-8
https://www.sciencedirect.com/science/article/pii/B9780128168011000098
https://www.sciencedirect.com/science/article/pii/B9780128168011000098
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1109/43.275352

BIBLIOGRAPHY 149

[32] J.R. Burch, E.M. Clarke, K.L. McMillan, et al. “Symbolic model checking: 1020 States
and beyond”. In: Information and Computation 98.2 (1992), pp. 142–170. ISSN: 0890-
5401. DOI: https : / / doi . org / 10 . 1016 / 0890 - 5401(92) 90017 - A.
URL: https://www.sciencedirect.com/science/article/pii/
089054019290017A.

[33] C. Cachin, K. Kursawe, and V. Shoup. “Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography (extended abstract)”. In: Proc.

Symposium on Principles of Distributed Computing. 2000, pp. 123–132.

[34] M. Calder and A. Miller. Five ways to use induction and symmetry in the verification of

networks of processes by model-checking. 2002. URL: http://eprints.gla.ac.
uk/78678/.

[35] Muffy Calder, Simon Dobson, et al. “Making Sense of the World: Framing Models for
Trustworthy Sensor-Driven Systems”. In: Computers 7.4 (2018). ISSN: 2073-431X. DOI:
10.3390/computers7040062. URL: https://www.mdpi.com/2073-
431X/7/4/62.

[36] Muffy Calder and Alice Miller. “Automatic verification of any number of concurrent,
communicating processes”. In: Feb. 2002, pp. 227–230. ISBN: 0-7695-1736-6. DOI: 10.
1109/ASE.2002.1115017.

[37] Georgiana Caltais and Christian Schilling, eds. Model Checking Software - 29th In-

ternational Symposium, SPIN 2023, Paris, France, April 26-27, 2023, Proceedings.
Vol. 13872. Lecture Notes in Computer Science. Springer, 2023. ISBN: 978-3-031-
32156-6. DOI: 10.1007/978-3-031-32157-3. URL: https://doi.org/
10.1007/978-3-031-32157-3.

[38] J. Capetanakis. “Tree algorithms for packet broadcast channels”. In: IEEE Transac-

tions on Information Theory 25.5 (1979), pp. 505–515. DOI: 10.1109/TIT.1979.
1056093.

[39] Alessandro Cimatti et al. “NUSMV: a new symbolic model checker”. In: STTT 2 (Mar.
2000), pp. 410–425. DOI: 10.1007/s100090050046.

[40] E. M. Clarke, T. Filkorn, and S. Jha. “Exploiting symmetry in temporal logic model
checking”. In: Computer Aided Verification. Ed. by Costas Courcoubetis. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1993, pp. 450–462. ISBN: 978-3-540-47787-7.

[41] E.M. Clarke, O. Grumberg, D. Kroening, et al. Model Checking, second edition. Cyber
Physical Systems Series. MIT Press, 2018. ISBN: 9780262349451. URL: https://
books.google.co.uk/books?id=qJl8DwAAQBAJ.

https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://www.sciencedirect.com/science/article/pii/089054019290017A
http://eprints.gla.ac.uk/78678/
http://eprints.gla.ac.uk/78678/
https://doi.org/10.3390/computers7040062
https://www.mdpi.com/2073-431X/7/4/62
https://www.mdpi.com/2073-431X/7/4/62
https://doi.org/10.1109/ASE.2002.1115017
https://doi.org/10.1109/ASE.2002.1115017
https://doi.org/10.1007/978-3-031-32157-3
https://doi.org/10.1007/978-3-031-32157-3
https://doi.org/10.1007/978-3-031-32157-3
https://doi.org/10.1109/TIT.1979.1056093
https://doi.org/10.1109/TIT.1979.1056093
https://doi.org/10.1007/s100090050046
https://books.google.co.uk/books?id=qJl8DwAAQBAJ
https://books.google.co.uk/books?id=qJl8DwAAQBAJ

BIBLIOGRAPHY 150

[42] Edmund Clarke, Armin Biere, et al. “Bounded Model Checking Using Satisfiability
Solving”. In: Form. Methods Syst. Des. 19.1 (July 2001), pp. 7–34. ISSN: 0925-9856.
DOI: 10.1023/A:1011276507260. URL: https://doi.org/10.1023/A:
1011276507260.

[43] Edmund M. Clarke and E. Allen Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Logics of Programs. Ed. by Dexter
Kozen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 52–71. ISBN: 978-3-
540-39047-3.

[44] Edmund M. Clarke, Orna Grumberg, Somesh Jha, et al. “Counterexample-guided ab-
straction refinement for symbolic model checking”. In: J. ACM 50 (2003), pp. 752–794.

[45] Edmund M. Clarke, William Klieber, et al. “Model Checking and the State Explosion
Problem”. In: Tools for Practical Software Verification: LASER, International Summer

School 2011, Elba Island, Italy, Revised Tutorial Lectures. Ed. by Bertrand Meyer and
Martin Nordio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–30. ISBN:
978-3-642-35746-6. DOI: 10.1007/978-3-642-35746-6_1. URL: https:
//doi.org/10.1007/978-3-642-35746-6_1.

[46] Edmund M. Clarke and Bernd-Holger Schlingloff. “Chapter 24 - Model Checking”.
In: Handbook of Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov.
Handbook of Automated Reasoning. Amsterdam: North-Holland, 2001, pp. 1635–
1790. ISBN: 978-0-444-50813-3. DOI: https://doi.org/10.1016/B978-
044450813- 3/50026- 6. URL: https://www.sciencedirect.com/
science/article/pii/B9780444508133500266.

[47] Edmund M. Clarke and Paolo Zuliani. “Statistical Model Checking for Cyber-Physical
Systems”. In: Automated Technology for Verification and Analysis. Ed. by Tevfik Bultan
and Pao-Ann Hsiung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–12.
ISBN: 978-3-642-24372-1.

[48] Lora Alliance Technical Committee. LoRaWAN 1.1 Specification. URL: https://
lora-alliance.org/sites/default/files/2018-07/lorawan1.0.

3.pdf (visited on 07/07/2020).

[49] P. D’Argenio and Peter Niebert. “Partial order reduction on concurrent probabilistic
programs”. In: First International Conference on the Quantitative Evaluation of Sys-

tems, 2004. QEST 2004. Proceedings. (2004), pp. 240–249. URL: https://api.
semanticscholar.org/CorpusID:15195776.

[50] Samar Dajani-Brown et al. “Formal Modeling and Analysis of an Avionics Triplex
Sensor Voter”. In: Proceedings of the 10th International Conference on Model Check-

ing Software. SPIN’03. Portland, OR, USA: Springer-Verlag, 2003, pp. 34–48. ISBN:
3540401172.

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf
https://api.semanticscholar.org/CorpusID:15195776
https://api.semanticscholar.org/CorpusID:15195776

BIBLIOGRAPHY 151

[51] Antônio Vicente Lourenço Dâmaso, Nelson Souto Rosa, and Paulo Romero Martins
Maciel. “Using Coloured Petri Nets for Evaluating the Power Consumption of Wireless
Sensor Networks”. In: International Journal of Distributed Sensor Networks 10 (2014).

[52] Ornela Dardha. “Background on Session Types”. In: Type Systems for Distributed Pro-

grams: Components and Sessions. Paris: Atlantis Press, 2016, pp. 61–71. ISBN: 978-94-
6239-204-5. DOI: 10.2991/978-94-6239-204-5_5. URL: https://doi.
org/10.2991/978-94-6239-204-5_5.

[53] Priyanka Darke, Sakshi Agrawal, and R. Venkatesh. “VeriAbs: A Tool for Scalable Ver-
ification by Abstraction (Competition Contribution)”. In: Tools and Algorithms for the

Construction and Analysis of Systems. Ed. by Jan Friso Groote and Kim Guldstrand
Larsen. Cham: Springer International Publishing, 2021, pp. 458–462. ISBN: 978-3-030-
72013-1.

[54] Yuxin Deng and Davide Sangiorgi. “Ensuring termination by typability”. In: Information

and Computation. 2006.

[55] Maria Domenica Di Benedetto, Stefano Di Gennaro, and Alessandro D’Innocenzo. “Hy-
brid Systems and Verification by Abstraction”. In: Hybrid Dynamical Systems: Observa-

tion and Control. Ed. by Mohamed Djemai and Michael Defoort. Cham: Springer Inter-
national Publishing, 2015, pp. 1–25. ISBN: 978-3-319-10795-0. DOI: 10.1007/978-
3-319-10795-0_1. URL: https://doi.org/10.1007/978-3-319-
10795-0_1.

[56] S. Dolev, A. Israeli, and S. Moran. “Analyzing Expected Time by Scheduler-Luck
Games”. In: IEEE Transactions on Software Engineering 21.5 (1995), pp. 429–439.

[57] A. Donaldson and A. Miller. “Symmetry Reduction for Probabilistic Model Checking
using Generic Representatives”. In: Proc. 4th Int. Symp. Automated Technology for Veri-

fication and Analysis (ATVA’06). Ed. by S. Graf and W. Zhang. Vol. 4218. Lecture Notes
in Computer Science. Springer, 2006, pp. 9–23.

[58] A. Donaldson, A. Miller, and D. Parker. “Language-level Symmetry Reduction for Prob-
abilistic Model Checking”. In: Proc. 6th International Conference on Quantitative Eval-

uation of Systems (QEST’09). IEEE Computer Society, 2009, pp. 289–298.

[59] Alastair Donaldson, Alice Miller, and David Parker. “Language-Level Symmetry Re-
duction for Probabilistic Model Checking”. In: QEST - 6th International Conference

on the Quantitative Evaluation of Systems. Oct. 2009, pp. 289–298. DOI: 10.1109/
QEST.2009.21.

[60] Alastair F. Donaldson and Alice Miller. “Automatic Symmetry Detection for Model
Checking Using Computational Group Theory”. In: World Congress on Formal Meth-

ods. 2005.

https://doi.org/10.2991/978-94-6239-204-5_5
https://doi.org/10.2991/978-94-6239-204-5_5
https://doi.org/10.2991/978-94-6239-204-5_5
https://doi.org/10.1007/978-3-319-10795-0_1
https://doi.org/10.1007/978-3-319-10795-0_1
https://doi.org/10.1007/978-3-319-10795-0_1
https://doi.org/10.1007/978-3-319-10795-0_1
https://doi.org/10.1109/QEST.2009.21
https://doi.org/10.1109/QEST.2009.21

BIBLIOGRAPHY 152

[61] Alastair F. Donaldson and Alice Miller. “Automatic Symmetry Detection for Promela”.
In: Journal of Automated Reasoning 41 (2008), pp. 251–293. URL: https://api.
semanticscholar.org/CorpusID:16298636.

[62] Alastair F. Donaldson and Alice Miller. “Evaluating a formal methods technique via
student assessed exercises”. In: Formal Methods in the Teaching Lab: Examples, Cases,

Assignments and Projects Enhancing Formal Methods Education. Workshop at the For-

mal Methods 2006 Symposium, Hamilton, Ontario, Canada. 2006, pp. 93–98.

[63] Alastair F. Donaldson and Alice Miller. “Exact and Approximate Strategies for Symme-
try Reduction in Model Checking”. In: World Congress on Formal Methods. 2006.

[64] Alastair F. Donaldson and Alice Miller. “Symmetry reduction techniques for explicit-
state model checking”. In: First International Symmetry Conference. Edinburgh, UK,
Jan. 2007, pp. 41–45.

[65] Alastair F. Donaldson, Alice Miller, and David Parker. “GRIP: Generic representatives
in PRISM”. In: in Proceedings of the 4th International Conference on Quantitative Eval-

uation of Systems (QEST’07). IEEE Computer Society, pp. 115–116.

[66] Jin Song Dong et al. “Specifying and Verifying Sensor Networks: An Experiment of
Formal Methods”. In: IEEE International Conference on Formal Engineering Methods.
2008.

[67] Jean-François Dufourd. “Pointer Program Derivation Using Coq: Graphs and Schorr-
Waite Algorithm”. In: Formal Methods and Software Engineering. Ed. by Stephan Merz
and Jun Pang. Cham: Springer International Publishing, 2014, pp. 139–154. ISBN: 978-
3-319-11737-9.

[68] Stephen Edwards et al. “Design of Embedded Systems: Formal Models, Validation,
and Synthesis”. In: Readings in Hardware/Software Co-Design. Ed. by Giovanni De
Micheli, Rolf Ernst, and Wayne Wolf. Systems on Silicon. San Francisco: Morgan
Kaufmann, 2002, pp. 86–107. DOI: https : / / doi . org / 10 . 1016 / B978 -
155860702- 6/50009- 0. URL: https://www.sciencedirect.com/
science/article/pii/B9781558607026500090.

[69] E. Emerson and A. Sistla. “Symmetry and Model Checking”. In: Formal Methods in

System Design 9 (Aug. 1996), pp. 105–131. DOI: 10.1007/BF00625970.

[70] E. Allen Emerson and Thomas Wahl. “Dynamic Symmetry Reduction”. In: Interna-

tional Conference on Tools and Algorithms for Construction and Analysis of Systems.
2005.

[71] E. Allen Emerson and Thomas Wahl. “On Combining Symmetry Reduction and Sym-
bolic Representation for Efficient Model Checking”. In: In Conference on Correct Hard-

ware Design and Verification Methods (CHARME. Springer, 2003, pp. 216–230.

https://api.semanticscholar.org/CorpusID:16298636
https://api.semanticscholar.org/CorpusID:16298636
https://doi.org/https://doi.org/10.1016/B978-155860702-6/50009-0
https://doi.org/https://doi.org/10.1016/B978-155860702-6/50009-0
https://www.sciencedirect.com/science/article/pii/B9781558607026500090
https://www.sciencedirect.com/science/article/pii/B9781558607026500090
https://doi.org/10.1007/BF00625970

BIBLIOGRAPHY 153

[72] Shifeng Fang et al. “An integrated approach to snowmelt flood forecasting in wa-
ter resource management”. In: IEEE Transactions on Industrial Informatics 10.1
(2014). Cited by: 101, pp. 548–558. DOI: 10.1109/TII.2013.2257807. URL:
https://www.scopus.com/inward/record.uri?eid=2- s2.0-

84890935327&doi=10.1109%2fTII.2013.2257807&partnerID=40&

md5=0cc558e79e3ebac0d5a85113c327db41.

[73] Ansgar Fehnker et al. “A Process Algebra for Wireless Mesh Networks”. In: Program-

ming Languages and Systems. Springer Berlin Heidelberg, 2012, pp. 295–315. DOI:
10.1007/978- 3- 642- 28869- 2_15. URL: https://doi.org/10.
1007%2F978-3-642-28869-2_15.

[74] Jinglang Feng, Ron Noomen, et al. “Modeling and analysis of periodic orbits
around a contact binary asteroid”. In: Astrophysics and Space Science 357.2
(2015). Cited by: 12; All Open Access, Green Open Access, Hybrid Gold Open
Access. DOI: 10 . 1007 / s10509 - 015 - 2353 - 0. URL: https : / / www .
scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 84929095035 &

doi = 10 . 1007 % 2fs10509 - 015 - 2353 - 0 & partnerID = 40 & md5 =

688a70a6a0a9f1c6d25ecef81cf7e292.

[75] Yuan Feng, Ernst Moritz Hahn, et al. “Model Checking ω-regular Properties for Quan-
tum Markov Chains”. In: 2017.

[76] Jaroslav Fogel. “A Survey of Verification Techniques for Solving the State Explosion
Problem”. In: IFAC Proceedings Volumes 33.13 (2000). IFAC Conference on Control
Systems Design (CSD 2000), Bratislava, Slovak Republic, 18-20 June 2000, pp. 361–
366. ISSN: 1474-6670. DOI: https://doi.org/10.1016/S1474-6670(17)
37216-6. URL: https://www.sciencedirect.com/science/article/
pii/S1474667017372166.

[77] Formal Methods and Software Engineering: 23rd International Conference on Formal

Engineering Methods, ICFEM 2022, Madrid, Spain, October 24–27, 2022, Proceedings.
Madrid, Spain: Springer-Verlag, 2022. ISBN: 978-3-031-17243-4.

[78] Jeffrey S. Foster, Michael W. Hicks, and William Pugh. “Improving Software Quality
with Static Analysis”. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Work-

shop on Program Analysis for Software Tools and Engineering. PASTE ’07. San
Diego, California, USA: Association for Computing Machinery, 2007, pp. 83–84.
ISBN: 9781595935953. DOI: 10 . 1145 / 1251535 . 1251549. URL: https :
//doi.org/10.1145/1251535.1251549.

[79] Gordon Fraser and José Miguel Rojas. “Software Testing”. In: Handbook of Software

Engineering. Ed. by Sungdeok Cha, Richard N. Taylor, and Kyochul Kang. Cham:
Springer International Publishing, 2019, pp. 123–192. ISBN: 978-3-030-00262-6. DOI:

https://doi.org/10.1109/TII.2013.2257807
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890935327&doi=10.1109%2fTII.2013.2257807&partnerID=40&md5=0cc558e79e3ebac0d5a85113c327db41
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890935327&doi=10.1109%2fTII.2013.2257807&partnerID=40&md5=0cc558e79e3ebac0d5a85113c327db41
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890935327&doi=10.1109%2fTII.2013.2257807&partnerID=40&md5=0cc558e79e3ebac0d5a85113c327db41
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007%2F978-3-642-28869-2_15
https://doi.org/10.1007%2F978-3-642-28869-2_15
https://doi.org/10.1007/s10509-015-2353-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929095035&doi=10.1007%2fs10509-015-2353-0&partnerID=40&md5=688a70a6a0a9f1c6d25ecef81cf7e292
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929095035&doi=10.1007%2fs10509-015-2353-0&partnerID=40&md5=688a70a6a0a9f1c6d25ecef81cf7e292
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929095035&doi=10.1007%2fs10509-015-2353-0&partnerID=40&md5=688a70a6a0a9f1c6d25ecef81cf7e292
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929095035&doi=10.1007%2fs10509-015-2353-0&partnerID=40&md5=688a70a6a0a9f1c6d25ecef81cf7e292
https://doi.org/https://doi.org/10.1016/S1474-6670(17)37216-6
https://doi.org/https://doi.org/10.1016/S1474-6670(17)37216-6
https://www.sciencedirect.com/science/article/pii/S1474667017372166
https://www.sciencedirect.com/science/article/pii/S1474667017372166
https://doi.org/10.1145/1251535.1251549
https://doi.org/10.1145/1251535.1251549
https://doi.org/10.1145/1251535.1251549

BIBLIOGRAPHY 154

10.1007/978-3-030-00262-6_4. URL: https://doi.org/10.1007/
978-3-030-00262-6_4.

[80] M. Fruth. “Formal Methods for the Analysis of Wireless Network Protocols”. PhD the-
sis. Oxford University, 2011.

[81] Chen Fu, Ernst Moritz Hahn, et al. “EPMC Gets Knowledge in Multi-agent Systems”.
In: Verification, Model Checking, and Abstract Interpretation. Ed. by Bernd Finkbeiner
and Thomas Wies. Cham: Springer International Publishing, 2022, pp. 93–107. ISBN:
978-3-030-94583-1.

[82] Chen Fu, Andrea Turrini, et al. “Model Checking Probabilistic Epistemic Logic for
Probabilistic Multiagent Systems”. In: Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences
on Artificial Intelligence Organization, July 2018, pp. 4757–4763. DOI: 10.24963/
ijcai.2018/661. URL: https://doi.org/10.24963/ijcai.2018/661.

[83] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. “Multi-Terminal Binary Decision Diagrams:
An Efficient DataStructure for Matrix Representation”. In: 10.2–3 (Apr. 1997), pp. 149–
169. ISSN: 0925-9856. DOI: 10.1023/A:1008647823331. URL: https://doi.
org/10.1023/A:1008647823331.

[84] Etienne Gagnon and Laurie Hendren. “SableCC An Object-Oriented Compiler Frame-
work”. In: Proceedings of TOOLS 1998 (Apr. 1998). DOI: 10.1109/TOOLS.1998.
711009.

[85] Paul Gainer, Clare Dixon, and Ullrich Hustadt. “Probabilistic Model Checking of Ant-
Based Positionless Swarming”. In: Towards Autonomous Robotic Systems. Ed. by Lyuba
Alboul, Dana Damian, and Jonathan M. Aitken. Cham: Springer International Publish-
ing, 2016, pp. 127–138. ISBN: 978-3-319-40379-3.

[86] Paul Gainer, Sven Linker, et al. “Investigating Parametric Influence on Discrete Syn-
chronisation Protocols Using Quantitative Model Checking”. In: Quantitative Evalua-

tion of Systems. Ed. by Nathalie Bertrand and Luca Bortolussi. Cham: Springer Interna-
tional Publishing, 2017, pp. 224–239. ISBN: 978-3-319-66335-7.

[87] Paul Gainer, Sven Linker, et al. Multi-Scale Verification of Distributed Synchronisation.
Sept. 2018.

[88] S. Gay and A. Ravara. Behavioural Types: from Theory to Tools. River Publishers Series
in Automation, Control and Robotics. River Publishers, 2017. ISBN: 9788793519824.
URL: https://books.google.co.uk/books?id=6x0vDwAAQBAJ.

[89] Simon J. Gay and Malcolm Hole. “Subtyping for session types in the pi calculus”. In:
Acta Informatica 42 (2005), pp. 191–225.

https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.24963/ijcai.2018/661
https://doi.org/10.24963/ijcai.2018/661
https://doi.org/10.24963/ijcai.2018/661
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1109/TOOLS.1998.711009
https://doi.org/10.1109/TOOLS.1998.711009
https://books.google.co.uk/books?id=6x0vDwAAQBAJ

BIBLIOGRAPHY 155

[90] B. Gebremichael-Tesfagiorgis, Frits W. Vaandrager, and M. Zhang. “Analysis of a Proto-
col for Dynamic Configuration of IPv4 Link Local Addresses Using Uppaal”. In: CTIT

technical report series (2006).

[91] L. Georgiadis and P. Papantoni-Kazakos. “A 0.487 throughput limited sensing algo-
rithm”. In: IEEE Transactions on Information Theory 33.2 (1987), pp. 233–237. DOI:
10.1109/TIT.1987.1057278.

[92] P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems.
Vol. 1032. Berlin, 1996.

[93] Patrice Godefroid and Didier Pirottin. “Refining dependencies improves partial-order
verification methods (extended abstract)”. In: Computer Aided Verification. Ed. by
Costas Courcoubetis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 438–
449. ISBN: 978-3-540-47787-7.

[94] Anjana Gosain and Ganga Sharma. “A Survey of Dynamic Program Analysis Tech-
niques and Tools”. In: Proceedings of the 3rd International Conference on Frontiers of

Intelligent Computing: Theory and Applications (FICTA) 2014. Ed. by Suresh Chan-
dra Satapathy et al. Cham: Springer International Publishing, 2015, pp. 113–122. ISBN:
978-3-319-11933-5.

[95] D. Graham, M. Calder, and A. Miller. “An inductive technique for parameterised model
checking of degenerative distributed randomised protocols”. In: Electronic Notes in The-

oretical Computer Science 250.1 (2009), pp. 87–103. DOI: 10.1016/j.entcs.
2009.08.007. URL: http://eprints.gla.ac.uk/39289/.

[96] GRIP source code. https://github.com/afd/symmetrytools/. Accessed:
2023-03-27.

[97] GRIP website. www.prismmodelchecker.org/grip. Accessed: 2023-02-27.

[98] Ian Grout. “CHAPTER 2 - Electronic Systems Design”. In: Digital Systems Design with

FPGAs and CPLDs. Ed. by Ian Grout. Burlington: Newnes, 2008, pp. 43–121. ISBN:
978-0-7506-8397-5. DOI: https://doi.org/10.1016/B978- 0- 7506-
8397-5.00002-7. URL: https://www.sciencedirect.com/science/
article/pii/B9780750683975000027.

[99] “Relaxed visibility enhances partial order reduction”. In: Computer Aided Verification

- 9th International Conference, CAV 1997, Proceedings. Ed. by Orna Grumberg. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Springer Verlag, 1997, pp. 328–339. ISBN:
3540631666. DOI: 10.1007/3-540-63166-6_33.

https://doi.org/10.1109/TIT.1987.1057278
https://doi.org/10.1016/j.entcs.2009.08.007
https://doi.org/10.1016/j.entcs.2009.08.007
http://eprints.gla.ac.uk/39289/
https://github.com/afd/symmetrytools/
www.prismmodelchecker.org/grip
https://doi.org/https://doi.org/10.1016/B978-0-7506-8397-5.00002-7
https://doi.org/https://doi.org/10.1016/B978-0-7506-8397-5.00002-7
https://www.sciencedirect.com/science/article/pii/B9780750683975000027
https://www.sciencedirect.com/science/article/pii/B9780750683975000027
https://doi.org/10.1007/3-540-63166-6_33

BIBLIOGRAPHY 156

[100] Orna Grumberg and Helmut Veith. 25 Years of Model Checking - History, Achievements,

Perspectives. Vol. 5000. Jan. 2008. ISBN: 978-3-540-69849-4. DOI: 10.1007/978-
3-540-69850-0.

[101] Safa Guellouz et al. “Designing Efficient Reconfigurable Control Systems Using
IEC61499 and Symbolic Model Checking”. In: IEEE Transactions on Automation

Science and Engineering 16.3 (2019), pp. 1110–1124. DOI: 10.1109/TASE.2018.
2868897.

[102] Susmita Guha, Akash Nag, and Rahul Karmakar. “Formal Verification of Safety-Critical
Systems: A Case-Study in Airbag System Design”. In: Intelligent Systems Design and

Applications. Ed. by Ajith Abraham et al. Cham: Springer International Publishing,
2021, pp. 107–116. ISBN: 978-3-030-71187-0.

[103] Ernst Hahn, Arnd Hartmanns, et al. “The 2019 Comparison of Tools for the Analysis
of Quantitative Formal Models: (QComp 2019 Competition Report)”. In: Apr. 2019,
pp. 69–92. ISBN: 978-1-4939-9100-6. DOI: 10.1007/978-3-030-17502-3_5.

[104] Ernst Moritz Hahn, Guangyuan Li, et al. “Lazy Determinisation for Quantitative Model
Checking”. In: ArXiv abs/1311.2928 (2013).

[105] Gertjan P. Halkes and Koen Langendoen. “Energy-Efficient Medium Access Control”.
In: Embedded Systems Handbook. 2005.

[106] Sylvain Hallé et al. “A Formal Validation Model for the Netconf Protocol”. In: Util-

ity Computing. Ed. by Akhil Sahai and Felix Wu. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 147–158. ISBN: 978-3-540-30184-4.

[107] Hans Hansson and Bengt Jonsson. “A Logic for Reasoning about Time and Reliability”.
In: Form. Asp. Comput. 6.5 (Sept. 1994), pp. 512–535. ISSN: 0934-5043. DOI: 10.
1007/BF01211866. URL: https://doi.org/10.1007/BF01211866.

[108] Justin E. Harlow and Franc Brglez. “Design of experiments and evaluation of BDD or-
dering heuristics”. In: International Journal on Software Tools for Technology Transfer

3 (2001), pp. 193–206.

[109] J. Heath et al. “Probabilistic model checking of complex biological pathways”. In: Proc.

Computational Methods in Systems Biology (CMSB’06). Ed. by C. Priami. Vol. 4210.
Lecture Notes in Bioinformatics. Springer Verlag, 2006, pp. 32–47.

[110] J. Heath et al. “Probabilistic model checking of complex biological pathways”. In: The-

oretical Computer Science 319.3 (2008), pp. 239–257.

[111] Martijn Hendriks et al. “Adding Symmetry Reduction to Uppaal”. In: International Con-

ference on Formal Modeling and Analysis of Timed Systems. 2003.

https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1109/TASE.2018.2868897
https://doi.org/10.1109/TASE.2018.2868897
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866

BIBLIOGRAPHY 157

[112] Christian Hensel et al. “The Probabilistic Model Checker Storm”. In: CoRR

abs/2002.07080 (2020). arXiv: 2002 . 07080. URL: https : / / arxiv . org /
abs/2002.07080.

[113] Ruth Hoffmann et al. “Autonomous Agent Behaviour Modelled in PRISM – A Case
Study”. In: Model Checking Software. Ed. by Dragan Bošnački and Anton Wijs. Cham:
Springer International Publishing, 2016, pp. 104–110. ISBN: 978-3-319-32582-8.

[114] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. 1st.
Addison-Wesley Professional, 2011.

[115] Gerard J. Holzmann and Margaret H. Smith. “Automating software feature verification”.
In: Bell Labs Technical Journal 5 (2000), pp. 72–87.

[116] Xiaowei Huang, Marta Kwiatkowska, et al. “Safety Verification of Deep Neural Net-
works”. In: CoRR abs/1610.06940 (2016). arXiv: 1610.06940.

[117] Xiaoxia Huang and Yuguang Fang. “Multiconstrained QoS multipath routing in wireless
sensor networks”. In: Wireless Networks 14 (2008), pp. 465–478.

[118] M. Huisman, C. Păsăreanu, and N. Zhan. Formal Methods: 24th International Sym-

posium, FM 2021, Virtual Event, November 20–26, 2021, Proceedings. Lecture Notes
in Computer Science. Springer International Publishing, 2021. ISBN: 9783030908706.
URL: https://books.google.co.uk/books?id=l4ZNEAAAQBAJ.

[119] Pierre A. Humblet. “On the Throughput of Channel Access Algorithms with Limited
Sensing”. In: IEEE Trans. Commun. 34 (1986), pp. 345–347.

[120] “IEEE Standard for Information technology-Telecommunications and information ex-
change between systems-Local and metropolitan area networks-Specific requirements
Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method
and physical layer specifications”. In: IEEE Std 802.3-2002 (Revision of IEEE Std 802.3,

2000 edn) (2002), pp. 1–1550. DOI: 10.1109/IEEESTD.2002.93570.

[121] Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM Trans.

Softw. Eng. Methodol. 11.2 (Apr. 2002), pp. 256–290. ISSN: 1049-331X. DOI: 10.
1145/505145.505149.

[122] Márk Jelasity et al. “Gossip-Based Peer Sampling”. In: ACM Trans. Comput. Syst. 25.3
(Aug. 2007), 8–es. ISSN: 0734-2071. DOI: 10.1145/1275517.1275520. URL:
https://doi.org/10.1145/1275517.1275520.

[123] Henrik Jensen, Kim Larsen, and Arne Skou. “Modelling and Analysis of a Collision
Avoidance Protocol using SPIN and UPPAAL”. In: BRICS Report Series 3 (Jan. 2002).
DOI: 10.7146/brics.v3i24.20005.

https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/1610.06940
https://books.google.co.uk/books?id=l4ZNEAAAQBAJ
https://doi.org/10.1109/IEEESTD.2002.93570
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/1275517.1275520
https://doi.org/10.1145/1275517.1275520
https://doi.org/10.7146/brics.v3i24.20005

BIBLIOGRAPHY 158

[124] Zill-E-Huma Kamal and Mohammad Salahuddin. “Introduction to Wireless Sensor Net-
works”. In: Jan. 2015, pp. 3–32. ISBN: 978-1-4939-2468-4. DOI: 10.1007/978-1-
4939-2468-4_1.

[125] JN Al-Karaki and Ahmed Kamal. “Routing Techniques in Wireless Sensor Networks:
A Survey”. In: Wireless Communications, IEEE 11 (Jan. 2005), pp. 6–28. DOI: 10.
1109/MWC.2004.1368893.

[126] Pim Kars. “The application of Promela and Spin in the BOS project”. In: The Spin

Verification System. 1996.

[127] Joost-Pieter Katoen et al. “The Ins and Outs of the Probabilistic Model Checker
MRMC”. In: 2009 Sixth International Conference on the Quantitative Evaluation of

Systems. 2009, pp. 167–176. DOI: 10.1109/QEST.2009.11.

[128] Mark Kattenbelt et al. “Abstraction Refinement for Probabilistic Software”. In: Verifi-

cation, Model Checking, and Abstract Interpretation. Ed. by Neil D. Jones and Markus
Müller-Olm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 182–197. ISBN:
978-3-540-93900-9.

[129] Shmuel Katz and Doron Peled. “An efficient verification method for parallel and dis-
tributed programs”. In: Linear Time, Branching Time and Partial Order in Logics and

Models for Concurrency. Ed. by J. W. de Bakker, W. -P. de Roever, and G. Rozenberg.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 489–507. ISBN: 978-3-540-
46147-0.

[130] Shmuel Katz and Doron Peled. “Defining conditional independence using collapses”.
In: Theoretical Computer Science 101.2 (1992), pp. 337–359. ISSN: 0304-3975.
DOI: https : / / doi . org / 10 . 1016 / 0304 - 3975(92) 90054 - J. URL:
https : / / www . sciencedirect . com / science / article / pii /

030439759290054J.

[131] Lucia Keleadile Ketshabetswe et al. “Communication protocols for wireless sensor
networks: A survey and comparison”. In: Heliyon 5.5 (2019), e01591. ISSN: 2405-
8440. DOI: https://doi.org/10.1016/j.heliyon.2019.e01591.
URL: https://www.sciencedirect.com/science/article/pii/
S2405844018340192.

[132] Shahid Khan et al. “Modelling and Analysis of Fire Sprinklers by Verifying Dynamic
Fault Trees”. In: 2021 10th Latin-American Symposium on Dependable Computing

(LADC). 2021, pp. 1–10. DOI: 10.1109/LADC53747.2021.9672579.

https://doi.org/10.1007/978-1-4939-2468-4_1
https://doi.org/10.1007/978-1-4939-2468-4_1
https://doi.org/10.1109/MWC.2004.1368893
https://doi.org/10.1109/MWC.2004.1368893
https://doi.org/10.1109/QEST.2009.11
https://doi.org/https://doi.org/10.1016/0304-3975(92)90054-J
https://www.sciencedirect.com/science/article/pii/030439759290054J
https://www.sciencedirect.com/science/article/pii/030439759290054J
https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01591
https://www.sciencedirect.com/science/article/pii/S2405844018340192
https://www.sciencedirect.com/science/article/pii/S2405844018340192
https://doi.org/10.1109/LADC53747.2021.9672579

BIBLIOGRAPHY 159

[133] Hokeun Kim et al. “A Toolkit for Construction of Authorization Service Infrastructure
for the Internet of Things”. In: Proceedings of the 2nd ACM/IEEE International Confer-

ence on Internet-of-Things Design and Implementation (IoTDI). Winner of the Best
Paper Award, presented during CPS Week, 2017, Pittsburgh, PA. Apr. 2017. URL:
http://chess.eecs.berkeley.edu/pubs/1187.html.

[134] Ryan Kirwan et al. “Formal Modeling of Robot Behavior with Learning”. In: Neural

Computation 25.11 (Nov. 2013), pp. 2976–3019. ISSN: 0899-7667. DOI: 10.1162/
NECO_a_00493. eprint: https://direct.mit.edu/neco/article-
pdf/25/11/2976/901360/neco_a_00493.pdf. URL: https://doi.
org/10.1162/NECO%5C_a%5C_00493.

[135] Joseph Migga Kizza. “Software Issues: Risks and Liabilities”. In: Ethical and Secure

Computing: A Concise Module. Cham: Springer International Publishing, 2019,
pp. 149–176. ISBN: 978-3-030-03937-0. DOI: 10.1007/978-3-030-03937-0_7.
URL: https://doi.org/10.1007/978-3-030-03937-0_7.

[136] Jan Kleissl and Yuvraj Agarwal. “Cyber-physical energy systems: Focus on
smart buildings”. In: Design Automation Conference. 2010, pp. 749–754. DOI:
10.1145/1837274.1837464.

[137] Vasileios Klimis et al. “Taking Back Control in an Intermediate Representation for
GPU Computing”. In: Proceedings of the ACM on Programming Languages 7 (2023),
pp. 1740–1769.

[138] Naoki Kobayashi. “A New Type System for Deadlock-Free Processes”. In: CONCUR

2006 – Concurrency Theory. Ed. by Christel Baier and Holger Hermanns. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006, pp. 233–247. ISBN: 978-3-540-37377-3.

[139] Savas Konur, Clare Dixon, and Michael Fisher. “Analysing Robot Swarm Behaviour via
Probabilistic Model Checking”. In: Robotics and Autonomous Systems 60 (Feb. 2012),
pp. 199–213. DOI: 10.1016/j.robot.2011.10.005.

[140] Thomas Kropf. “Introduction to Formal Hardware Verification: Methods and Tools for
Designing Correct Circuits and Systems”. In: 1999.

[141] Marcin Kubica, Adam Opara, and Dariusz Kania. “Ordering Variables in BDD Dia-
grams”. In: Technology Mapping for LUT-Based FPGA. Cham: Springer International
Publishing, 2021, pp. 65–70. ISBN: 978-3-030-60488-2. DOI: 10.1007/978-3-
030-60488-2_6. URL: https://doi.org/10.1007/978-3-030-60488-
2_6.

http://chess.eecs.berkeley.edu/pubs/1187.html
https://doi.org/10.1162/NECO_a_00493
https://doi.org/10.1162/NECO_a_00493
https://direct.mit.edu/neco/article-pdf/25/11/2976/901360/neco_a_00493.pdf
https://direct.mit.edu/neco/article-pdf/25/11/2976/901360/neco_a_00493.pdf
https://doi.org/10.1162/NECO%5C_a%5C_00493
https://doi.org/10.1162/NECO%5C_a%5C_00493
https://doi.org/10.1007/978-3-030-03937-0_7
https://doi.org/10.1007/978-3-030-03937-0_7
https://doi.org/10.1145/1837274.1837464
https://doi.org/10.1016/j.robot.2011.10.005
https://doi.org/10.1007/978-3-030-60488-2_6
https://doi.org/10.1007/978-3-030-60488-2_6
https://doi.org/10.1007/978-3-030-60488-2_6
https://doi.org/10.1007/978-3-030-60488-2_6

BIBLIOGRAPHY 160

[142] Tomas Kulik et al. “A Framework for Threat-Driven Cyber Security Verification of IoT
Systems”. In: 2018 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW). 2018, pp. 89–97. DOI: 10.1109/ICSTW.2018.
00033.

[143] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-Time Systems”. In: CAV 2011, pp. 585–591.

[144] M. Kwiatkowska, G. Norman, and D. Parker. “Symmetry Reduction for Probabilistic
Model Checking”. In: Proc. 18th International Conference on Computer Aided Verifica-

tion (CAV’06). Ed. by T. Ball and R. Jones. Vol. 4114. LNCS. Springer, 2006, pp. 234–
248.

[145] M. Kwiatkowska, G. Norman, and R. Segala. “Automated Verification of a Randomized
Distributed Consensus Protocol Using Cadence SMV and PRISM”. In: Proc. 13th In-

ternational Conference on Computer Aided Verification (CAV’01). Ed. by G. Berry, H.
Comon, and A. Finkel. Vol. 2102. LNCS. Springer, 2001, pp. 194–206.

[146] M. Kwiatkowska, G. Norman, and J. Sproston. “Probabilistic Model Checking of the
IEEE 802.11 Wireless Local Area Network Protocol”. In: Proc. 2nd Joint Interna-

tional Workshop on Process Algebra and Probabilistic Methods, Performance Modeling

and Verification (PAPM/PROBMIV’02). Ed. by H. Hermanns and R. Segala. Vol. 2399.
LNCS. Springer, 2002, pp. 169–187.

[147] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. “Symbolic Model Checking
for Probabilistic Timed Automata”. In: Proc. Joint Conference on Formal Modelling

and Analysis of Timed Systems and Formal Techniques in Real-Time and Fault Tolerant

Systems (FORMATS/FTRTFT’04). Ed. by Y. Lakhnech and S. Yovine. Vol. 3253. LNCS.
Springer, 2004, pp. 293–308.

[148] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. “Symbolic Model Checking
for Probabilistic Timed Automata”. In: Information and Computation 205.7 (2007),
pp. 1027–1077.

[149] Marta Kwiatkowska, Gethin Norman, and David Parker. “Probabilistic Model Checking:
Advances and Applications”. In: Formal System Verification: State-of the-Art and Future

Trends. Ed. by Rolf Drechsler. Cham: Springer International Publishing, 2018, pp. 73–
121. ISBN: 978-3-319-57685-5. DOI: 10.1007/978-3-319-57685-5_3. URL:
https://doi.org/10.1007/978-3-319-57685-5_3.

[150] Ivan Lanese and Davide Sangiorgi. “An operational semantics for a calculus for wireless
systems”. In: Theor. Comput. Sci. 411 (2010), pp. 1928–1948.

https://doi.org/10.1109/ICSTW.2018.00033
https://doi.org/10.1109/ICSTW.2018.00033
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-319-57685-5_3

BIBLIOGRAPHY 161

[151] Koen Langendoen, Aline Baggio, and Otto Visser. “Murphy loves potatoes: experiences
from a pilot sensor network deployment in precision agriculture”. In: Proceedings 20th

IEEE International Parallel & Distributed Processing Symposium (2006), 8–pp.

[152] Paola Lecca and Corrado Priami. “Cell Cycle Control in Eukaryotes: A BioSpi model”.
In: BioConcur@CONCUR. 2007. URL: https://api.semanticscholar.org/
CorpusID:52809002.

[153] Benjamin C. Lee. “Hardware Simulation”. In: Datacenter Design and Management:

A Computer Architect’s Perspective. Cham: Springer International Publishing, 2016,
pp. 55–78. ISBN: 978-3-031-01752-0. DOI: 10.1007/978-3-031-01752-0_5.
URL: https://doi.org/10.1007/978-3-031-01752-0_5.

[154] Choong Y. Lee. “Representation of switching circuits by binary-decision programs”. In:
Bell System Technical Journal 38 (1959), pp. 985–999.

[155] Axel Legay, Benoît Delahaye, and Saddek Bensalem. “Statistical Model Checking: An
Overview”. In: Runtime Verification. Ed. by Howard Barringer et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 122–135. ISBN: 978-3-642-16612-9.

[156] Axel Legay, Anna Lukina, et al. “Statistical Model Checking”. In: Computing and Soft-

ware Science: State of the Art and Perspectives. Ed. by Bernhard Steffen and Gerhard
Woeginger. Cham: Springer International Publishing, 2019, pp. 478–504. ISBN: 978-
3-319-91908-9. DOI: 10.1007/978- 3- 319- 91908- 9_23. URL: https:
//doi.org/10.1007/978-3-319-91908-9_23.

[157] D. Lehmann and M. Rabin. “On the Advantage of Free Choice: A Symmetric and Fully
Distributed Solution to the Dining Philosophers Problem (Extended Abstract)”. In: Proc.

8th Annual ACM Symposium on Principles of Programming Languages (POPL’81).
1981, pp. 133–138.

[158] Michael Leuschel. “The High Road to Formal Validation:” in: Abstract State Machines,

B and Z. Ed. by Egon Börger et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 4–23. ISBN: 978-3-540-87603-8.

[159] N.G. Leveson and C.S. Turner. “An investigation of the Therac-25 accidents”. In: Com-

puter 26.7 (1993), pp. 18–41. DOI: 10.1109/MC.1993.274940.

[160] Xu Li et al. “Smart community: an internet of things application”. In: IEEE Communi-

cations Magazine 49.11 (2011), pp. 68–75. DOI: 10.1109/MCOM.2011.6069711.

[161] David Liben-Nowell, Hari Balakrishnan, and David Karger. “Analysis of the Evolu-
tion of Peer-to-Peer Systems”. In: Proceedings of the Twenty-First Annual Symposium

on Principles of Distributed Computing. PODC ’02. Monterey, California: Association
for Computing Machinery, 2002, pp. 233–242. ISBN: 1581134851. DOI: 10.1145/
571825.571863. URL: https://doi.org/10.1145/571825.571863.

https://api.semanticscholar.org/CorpusID:52809002
https://api.semanticscholar.org/CorpusID:52809002
https://doi.org/10.1007/978-3-031-01752-0_5
https://doi.org/10.1007/978-3-031-01752-0_5
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MCOM.2011.6069711
https://doi.org/10.1145/571825.571863
https://doi.org/10.1145/571825.571863
https://doi.org/10.1145/571825.571863

BIBLIOGRAPHY 162

[162] Chenyang Lu, Abusayeed Saifullah, et al. “Real-Time Wireless Sensor-Actuator Net-
works for Industrial Cyber-Physical Systems”. In: Proc. IEEE 104.5 (2016), pp. 1013–
1024. DOI: 10.1109/JPROC.2015.2497161. URL: https://doi.org/10.
1109/JPROC.2015.2497161.

[163] Yu Lu, Alice Miller, et al. “Availability Analysis of Satellite Positioning Systems for
Aviation Using the PRISM Model Checker”. In: 2014 IEEE 17th International Confer-

ence on Computational Science and Engineering. 2014, pp. 704–713. DOI: 10.1109/
CSE.2014.148.

[164] Yu Lu, Zhaoguang Peng, et al. “How reliable is satellite navigation for aviation? Check-
ing availability properties with probabilistic verification”. In: Reliability Engineering &

System Safety 144 (2015), pp. 95–116. ISSN: 0951-8320. DOI: https://doi.org/
10.1016/j.ress.2015.07.020. URL: https://www.sciencedirect.
com/science/article/pii/S0951832015002252.

[165] José A. Mateo et al. “Probabilistic Model Checking: One Step Forward in Wireless
Sensor Networks Simulation”. In: International Journal of Distributed Sensor Networks

11.5 (2015), p. 285396. DOI: 10.1155/2015/285396. eprint: https://doi.
org/10.1155/2015/285396. URL: https://doi.org/10.1155/2015/
285396.

[166] José A. Mateo et al. “Probabilistic Model Checking: One Step Forward in Wireless
Sensor Networks Simulation”. In: International Journal of Distributed Sensor Networks

11.5 (2015), p. 285396. DOI: 10.1155/2015/285396. eprint: https://doi.
org/10.1155/2015/285396. URL: https://doi.org/10.1155/2015/
285396.

[167] K.L. McMillan. Symbolic Model Checking. Boston, U.S.A., 1993.

[168] KL McMillan and James Schwalbe. “Formal verification of the gigamax cache consis-
tency protocol”. In: Proceedings of the International Symposium on Shared Memory

Multiprocessing. 1992, pp. 111–134.

[169] Francesco Mercaldo, Fabio Martinelli, and Antonella Santone. “Real-Time SCADA At-
tack Detection by Means of Formal Methods”. In: 2019 IEEE 28th International Confer-

ence on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
2019, pp. 231–236. DOI: 10.1109/WETICE.2019.00057.

[170] A. Miller and M. Calder. An application of abstraction and induction techniques to

degenerating systems of processes. 2003. URL: http://eprints.gla.ac.uk/
78674/.

[171] A. Miller and A. Donaldson. Property preservation in quotient structures. Tech. rep.
2008.

https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/CSE.2014.148
https://doi.org/10.1109/CSE.2014.148
https://doi.org/https://doi.org/10.1016/j.ress.2015.07.020
https://doi.org/https://doi.org/10.1016/j.ress.2015.07.020
https://www.sciencedirect.com/science/article/pii/S0951832015002252
https://www.sciencedirect.com/science/article/pii/S0951832015002252
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1155/2015/285396
https://doi.org/10.1109/WETICE.2019.00057
http://eprints.gla.ac.uk/78674/
http://eprints.gla.ac.uk/78674/

BIBLIOGRAPHY 163

[172] A. Miller, A. Donaldson, and M. Calder. “Symmetry in temporal logic model checking”.
In: ACM Computing Surveys 38.3 (Sept. 2006). DOI: 10.1145/1132960.1132962.
URL: http://eprints.gla.ac.uk/3197/.

[173] Nazeeruddin Mohammad et al. “Design and modeling of energy efficient wsn archi-
tecture for tactical applications”. In: 2017 Military Communications and Information

Systems Conference (MilCIS). IEEE. 2017, pp. 1–6.

[174] Abhijit Mohanta and Anoop Saldanha. “Static Analysis”. In: Malware Analysis and De-

tection Engineering: A Comprehensive Approach to Detect and Analyze Modern Mal-

ware. Berkeley, CA: Apress, 2020, pp. 377–402. ISBN: 978-1-4842-6193-4. DOI: 10.
1007/978-1-4842-6193-4_12. URL: https://doi.org/10.1007/978-
1-4842-6193-4_12.

[175] Mujahid Mohsin et al. “IoTRiskAnalyzer: A Probabilistic Model Checking Based
Framework for Formal Risk Analytics of the Internet of Things”. In: IEEE Access 5
(2017), pp. 5494–5505.

[176] Alexandre Mouradian and Isabelle Augé-Blum. “Formal verification of real-time wire-
less sensor networks protocols with realistic radio links”. In: International Conference

on Real-Time and Network Systems. 2013.

[177] Khoa Ngo, Trong Huynh, and De Huynh. “Simulation Wireless Sensor Networks in
Castalia”. In: Feb. 2018, pp. 39–44. DOI: 10.1145/3193063.3193066.

[178] Gerard O’Regan. “Software Testing”. In: Concise Guide to Software Engineering: From

Fundamentals to Application Methods. Cham: Springer International Publishing, 2022,
pp. 137–153. ISBN: 978-3-031-07816-3. DOI: 10.1007/978-3-031-07816-3_8.
URL: https://doi.org/10.1007/978-3-031-07816-3_8.

[179] Gerard O’Regan. “Verification of Safety-Critical Systems”. In: Concise Guide to Soft-

ware Testing. Cham: Springer International Publishing, 2019, pp. 235–250. ISBN: 978-
3-030-28494-7. DOI: 10.1007/978- 3- 030- 28494- 7_13. URL: https:
//doi.org/10.1007/978-3-030-28494-7_13.

[180] Iulian Ober, Susanne Graf, and David Lesens. “Modeling and Validation of a Software
Architecture for the Ariane-5 Launcher”. In: Formal Methods for Open Object-Based

Distributed Systems. Ed. by Roberto Gorrieri and Heike Wehrheim. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 48–62. ISBN: 978-3-540-34895-5.

[181] Pangun Park et al. “Wireless Network Design for Control Systems: A Survey”. In: IEEE

Communications Surveys & Tutorials 20 (2017), pp. 978–1013.

[182] M. Paterakis. “A Limited Sensing Random Access Algorithm With Binary Success-
failure Feedback”. In: Twenty-Second Asilomar Conference on Signals, Systems and

Computers. Vol. 1. 1988, pp. 97–101. DOI: 10.1109/ACSSC.1988.753961.

https://doi.org/10.1145/1132960.1132962
http://eprints.gla.ac.uk/3197/
https://doi.org/10.1007/978-1-4842-6193-4_12
https://doi.org/10.1007/978-1-4842-6193-4_12
https://doi.org/10.1007/978-1-4842-6193-4_12
https://doi.org/10.1007/978-1-4842-6193-4_12
https://doi.org/10.1145/3193063.3193066
https://doi.org/10.1007/978-3-031-07816-3_8
https://doi.org/10.1007/978-3-031-07816-3_8
https://doi.org/10.1007/978-3-030-28494-7_13
https://doi.org/10.1007/978-3-030-28494-7_13
https://doi.org/10.1007/978-3-030-28494-7_13
https://doi.org/10.1109/ACSSC.1988.753961

BIBLIOGRAPHY 164

[183] M. Paterakis, Leonidas Georgiadis, and P. Papantoni-Kazakos. “A full sensing window
Random-Access algorithm for messages with strict delay constraints”. In: Algorithmica

4 (Jan. 1989), pp. 313–328. DOI: 10.1007/BF01553894.

[184] M. Paterakis and P. Papantoni-Kazakos. “A simple window random access algorithm
with advantageous properties”. In: IEEE Transactions on Information Theory 35.5
(1989), pp. 1124–1130. DOI: 10.1109/18.42234.

[185] Doron Peled. “All from one, one for all: on model checking using representatives”. In:
Computer Aided Verification. Ed. by Costas Courcoubetis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993, pp. 409–423. ISBN: 978-3-540-47787-7.

[186] Doron Peled. “Partial-Order Reduction”. In: Handbook of Model Checking. Ed. by Ed-
mund M. Clarke et al. Cham: Springer International Publishing, 2018, pp. 173–190.
ISBN: 978-3-319-10575-8. DOI: 10.1007/978- 3- 319- 10575- 8_6. URL:
https://doi.org/10.1007/978-3-319-10575-8_6.

[187] Zhaoguang Peng et al. “Formal Specification and Quantitative Analysis of a Constel-
lation of Navigation Satellites”. In: Quality and Reliability Engineering International

32.2 (2016), pp. 345–361. DOI: https://doi.org/10.1002/qre.1754. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.1754.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.
1754.

[188] Radia J. Perlman. “An algorithm for distributed computation of a spanningtree in an
extended LAN”. In: Conference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communication. 1985.

[189] Sophia Petridou, Stylianos Basagiannis, and Manos Roumeliotis. “Survivability analysis
using probabilistic model checking: A study on wireless sensor networks”. In: IEEE

systems journal 7.1 (2012), pp. 4–12.

[190] Alberto Pettorossi and Maurizio Proietti. “Program Derivation = Rules + Strategies”. In:
Computational Logic: Logic Programming and Beyond: Essays in Honour of Robert A.

Kowalski Part I. Ed. by Antonis C. Kakas and Fariba Sadri. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 273–309. ISBN: 978-3-540-45628-5. DOI: 10.1007/3-
540-45628-7_12. URL: https://doi.org/10.1007/3-540-45628-
7_12.

[191] A. Pnueli and L. Zuck. “Verification of Multiprocess Probabilistic Protocols”. In: Dis-

tributed Computing 1.1 (1986), pp. 53–72.

[192] Vidyasagar Potdar, Atif Sharif, and Elizabeth Chang. “Wireless Sensor Networks: A
Survey”. In: 2009 International Conference on Advanced Information Networking and

Applications Workshops. 2009, pp. 636–641. DOI: 10.1109/WAINA.2009.192.

https://doi.org/10.1007/BF01553894
https://doi.org/10.1109/18.42234
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/https://doi.org/10.1002/qre.1754
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.1754
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.1754
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.1754
https://doi.org/10.1007/3-540-45628-7_12
https://doi.org/10.1007/3-540-45628-7_12
https://doi.org/10.1007/3-540-45628-7_12
https://doi.org/10.1007/3-540-45628-7_12
https://doi.org/10.1109/WAINA.2009.192

BIBLIOGRAPHY 165

[193] Prism - Case Studies. https : / / www . prismmodelchecker . org /

casestudies/index.php. Accessed: 2023-05-19.

[194] Tim Quatmann, Christian Dehnert, et al. Parameter Synthesis for Markov Models: Faster

Than Ever. 2016. arXiv: 1602.05113 [cs.LO].

[195] Tim Quatmann, Sebastian Junges, and Joost-Pieter Katoen. “Markov automata with
multiple objectives”. In: Formal Methods in System Design 60 (Mar. 2021). DOI: 10.
1007/s10703-021-00364-6.

[196] J. P. Queille and J. Sifakis. “Specification and verification of concurrent systems in
CESAR”. In: International Symposium on Programming. Ed. by Mariangiola Dezani-
Ciancaglini and Ugo Montanari. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982,
pp. 337–351. ISBN: 978-3-540-39184-5.

[197] M. Rabin. “N-Process Mutual Exclusion with Bounded Waiting by 4log2 N-Valued
Shared Variable”. In: Journal of Computer and System Sciences 25.1 (1982), pp. 66–75.

[198] Sayra Ranjha et al. “Partial-order reduction in reachability-based response-time analyses
of limited-preemptive DAG tasks”. In: Real-Time Systems 59 (June 2023), pp. 1–55. DOI:
10.1007/s11241-023-09398-x.

[199] Anand S. Rao. “AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage”. In: Agents Breaking Away. Ed. by Walter Van de Velde and John W. Perram.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 42–55. ISBN: 978-3-540-
49621-2.

[200] A. J. Dinusha Rathnayaka and Vidyasagar Potdar. “Wireless Sensor Network transport
protocol: A critical review”. In: J. Netw. Comput. Appl. 36 (2013), pp. 134–146.

[201] Priyanka Rawat et al. “Wireless Sensor Networks: A Survey on Recent Developments
and Potential Synergies”. In: J. Supercomput. 68.1 (Apr. 2014), pp. 1–48. ISSN: 0920-
8542. DOI: 10.1007/s11227-013-1021-9. URL: https://doi.org/10.
1007/s11227-013-1021-9.

[202] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. “Low Power Wide Area
Networks: An Overview”. In: IEEE Communications Surveys & Tutorials 19.2 (2017),
pp. 855–873. DOI: 10.1109/COMST.2017.2652320.

[203] Andrew Rebeiro-Hargrave et al. “MegaSense: Cyber-Physical System for Real-time Ur-
ban Air Quality Monitoring”. In: 2020 15th IEEE Conference on Industrial Electronics

and Applications (ICIEA). 2020, pp. 1–6. DOI: 10.1109/ICIEA48937.2020.
9248143.

https://www.prismmodelchecker.org/casestudies/index.php
https://www.prismmodelchecker.org/casestudies/index.php
https://arxiv.org/abs/1602.05113
https://doi.org/10.1007/s10703-021-00364-6
https://doi.org/10.1007/s10703-021-00364-6
https://doi.org/10.1007/s11241-023-09398-x
https://doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1109/COMST.2017.2652320
https://doi.org/10.1109/ICIEA48937.2020.9248143
https://doi.org/10.1109/ICIEA48937.2020.9248143

BIBLIOGRAPHY 166

[204] M. Roggenbach et al. Formal Methods for Software Engineering: Languages, Methods,

Application Domains. Texts in Theoretical Computer Science. An EATCS Series.
Springer International Publishing, 2022. ISBN: 9783030387990. URL: https :

//books.google.co.uk/books?id=bH45zAEACAAJ.

[205] Fernando Royo, Miguel Lopez-Guerrero, et al. “2C-WSN: A Configuration Protocol
Based on TDMA Communications over WSN”. In: GLOBECOM 2009 - 2009 IEEE

Global Telecommunications Conference. 2009, pp. 1–6. DOI: 10.1109/GLOCOM.
2009.5425742.

[206] Fernando Royo, Miguel López-Guerrero, et al. “2C-WSN: A configuration protocol
based on TDMA communications over WSN”. In: Nov. 2009, pp. 1–6. DOI: 10.1109/
GLOCOM.2009.5425742.

[207] M. Carmen Ruiz, Hermenegilda Macià, and Javier CALLEJA. “New Proposals to Im-
prove a MAC Layer Protocol in Wireless Sensor Networks”. In: Informatica 30 (Mar.
2019), pp. 91–116. DOI: 10.15388/Informatica.2019.199.

[208] Ahmed Yousuf Saber and Ganesh Kumar Venayagamoorthy. “Efficient Utilization of
Renewable Energy Sources by Gridable Vehicles in Cyber-Physical Energy Systems”.
In: IEEE Systems Journal 4.3 (2010), pp. 285–294. DOI: 10.1109/JSYST.2010.
2059212.

[209] Bahare Salmani and Joost-Pieter Katoen. “Fine-Tuning the Odds in Bayesian Net-
works”. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty.
Ed. by Jiřina Vejnarová and Nic Wilson. Cham: Springer International Publishing,
2021, pp. 268–283. ISBN: 978-3-030-86772-0.

[210] Mustapha Reda Senouci and Abdelhamid Mellouk. “1 - Wireless Sensor Networks”.
In: Deploying Wireless Sensor Networks. Ed. by Mustapha Reda Senouci and
Abdelhamid Mellouk. Elsevier, 2016, pp. 1–19. ISBN: 978-1-78548-099-7. DOI:
https : / / doi . org / 10 . 1016 / B978 - 1 - 78548 - 099 - 7 . 50001 - 5.
URL: https://www.sciencedirect.com/science/article/pii/
B9781785480997500015.

[211] Laya Shamgah et al. “Reactive Symbolic Planning and Control in Dynamic Adversarial
Environments”. In: IEEE Transactions on Automatic Control 68 (2023), pp. 3409–3424.
URL: https://api.semanticscholar.org/CorpusID:251419122.

[212] Natarajan Shankar. “Verification by Abstraction”. In: Formal Methods at the Cross-

roads. From Panacea to Foundational Support: 10th Anniversary Colloquium of

UNU/IIST, the International Institute for Software Technology of The United Nations

University, Lisbon, Portugal, March 18-20, 2002. Revised Papers. Ed. by Bernhard K.
Aichernig and Tom Maibaum. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,

https://books.google.co.uk/books?id=bH45zAEACAAJ
https://books.google.co.uk/books?id=bH45zAEACAAJ
https://doi.org/10.1109/GLOCOM.2009.5425742
https://doi.org/10.1109/GLOCOM.2009.5425742
https://doi.org/10.1109/GLOCOM.2009.5425742
https://doi.org/10.1109/GLOCOM.2009.5425742
https://doi.org/10.15388/Informatica.2019.199
https://doi.org/10.1109/JSYST.2010.2059212
https://doi.org/10.1109/JSYST.2010.2059212
https://doi.org/https://doi.org/10.1016/B978-1-78548-099-7.50001-5
https://www.sciencedirect.com/science/article/pii/B9781785480997500015
https://www.sciencedirect.com/science/article/pii/B9781785480997500015
https://api.semanticscholar.org/CorpusID:251419122

BIBLIOGRAPHY 167

pp. 367–380. ISBN: 978-3-540-40007-3. DOI: 10.1007/978-3-540-40007-
3_23. URL: https://doi.org/10.1007/978-3-540-40007-3_23.

[213] Oliver Sharma et al. “Towards Verifying Correctness of Wireless Sensor Network Ap-
plications Using Insense and Spin”. In: Model Checking Software. Ed. by Corina S.
Păsăreanu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 223–240. ISBN:
978-3-642-02652-2.

[214] Jang-Ping Sheu, Jehn-Ruey Jiang, and Ching Tu. “Anonymous Path Routing in Wireless
Sensor Networks”. In: 2008 IEEE International Conference on Communications (2008),
pp. 2728–2734.

[215] Gagandeep Singh and Caterina Urban, eds. Static Analysis - 29th International Sympo-

sium, SAS 2022, Auckland, New Zealand, December 5-7, 2022, Proceedings. Vol. 13790.
Lecture Notes in Computer Science. Springer, 2022. ISBN: 978-3-031-22307-5. DOI:
10.1007/978-3-031-22308-2. URL: https://doi.org/10.1007/978-
3-031-22308-2.

[216] Stephen Smaldone et al. “The Cyber-Physical Bike: A Step towards Safer Green Trans-
portation”. In: Proceedings of the 12th Workshop on Mobile Computing Systems and

Applications. HotMobile ’11. Phoenix, Arizona: Association for Computing Machinery,
2011, pp. 56–61. ISBN: 9781450306492. DOI: 10.1145/2184489.2184502. URL:
https://doi.org/10.1145/2184489.2184502.

[217] Ana Sokolova and Erik P. de Vink. “Probabilistic Automata: System Types, Parallel
Composition and Comparison”. In: Validation of Stochastic Systems. 2004.

[218] Jianping Song et al. “WirelessHART: Applying Wireless Technology in Real-Time In-
dustrial Process Control”. In: 2008 IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (2008), pp. 377–386.

[219] “Static Analysis”. In: Reanalysis of Structures: A Unified Approach for Linear, Non-

linear, Static and Dynamic Systems. Dordrecht: Springer Netherlands, 2008, pp. 1–
36. ISBN: 978-1-4020-8198-9. DOI: 10.1007/978-1-4020-8198-9_1. URL:
https://doi.org/10.1007/978-1-4020-8198-9_1.

[220] W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton, 1994.

[221] Lei Tang et al. “PW-MAC: An energy-efficient predictive-wakeup MAC protocol for
wireless sensor networks”. In: May 2011, pp. 1305–1313. DOI: 10.1109/INFCOM.
2011.5934913.

[222] Frank Tip. “A survey of program slicing techniques”. In: J. Program. Lang. 3 (1994).

https://doi.org/10.1007/978-3-540-40007-3_23
https://doi.org/10.1007/978-3-540-40007-3_23
https://doi.org/10.1007/978-3-540-40007-3_23
https://doi.org/10.1007/978-3-031-22308-2
https://doi.org/10.1007/978-3-031-22308-2
https://doi.org/10.1007/978-3-031-22308-2
https://doi.org/10.1145/2184489.2184502
https://doi.org/10.1145/2184489.2184502
https://doi.org/10.1007/978-1-4020-8198-9_1
https://doi.org/10.1007/978-1-4020-8198-9_1
https://doi.org/10.1109/INFCOM.2011.5934913
https://doi.org/10.1109/INFCOM.2011.5934913

BIBLIOGRAPHY 168

[223] Flavio Tonelli et al. “Cyber-physical systems (CPS) in supply chain management: from
foundations to practical implementation”. In: Procedia CIRP 99 (2021). 14th CIRP Con-
ference on Intelligent Computation in Manufacturing Engineering, 15-17 July 2020,
pp. 598–603. ISSN: 2212-8271. DOI: https://doi.org/10.1016/j.procir.
2021.03.080. URL: https://www.sciencedirect.com/science/
article/pii/S221282712100370X.

[224] Güliz Tuncay et al. “Resolving the Predicament of Android Custom Permissions”. In:
Jan. 2018. DOI: 10.14722/ndss.2018.23221.

[225] Ivaylo Valkov, Alastair F. Donaldson, and Alice Miller. “Synchronisation in Language-
level Symmetry Reduction for Probabilistic Model Checking”. In: 30th International

SPIN symposium on Model Checking of Software (SPIN 2024), Luxembourg (Apr. 2024).

[226] Antti Valmari. “Stubborn sets for reduced state space generation”. In: Advances in Petri

Nets 1990. Ed. by Grzegorz Rozenberg. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 491–515. ISBN: 978-3-540-46369-6.

[227] Chaitanya Varma. “An Enhanced Algorithm for Variable Reordering in Binary Decision
Diagrams”. In: 2018 9th International Conference on Computing, Communication and

Networking Technologies (ICCCNT). 2018, pp. 1–4. DOI: 10.1109/ICCCNT.2018.
8493495.

[228] Xavier Vilajosana et al. “6TiSCH: Industrial Performance for IPv6 Internet-of-Things
Networks”. In: Proceedings of the IEEE 107 (June 2019), pp. 1153–1165. DOI: 10.
1109/JPROC.2019.2906404.

[229] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. “Boolean Satisfiability Solvers
and Their Applications in Model Checking”. In: Proceedings of the IEEE 103.11 (2015),
pp. 2021–2035. DOI: 10.1109/JPROC.2015.2455034.

[230] Mehmet Can Vuran and Ian F. Akyildiz. “XLP: A Cross-Layer Protocol for Efficient
Communication in Wireless Sensor Networks”. In: IEEE Transactions on Mobile Com-

puting 9 (2010), pp. 1578–1591.

[231] Thomas Wahl, Nicolas Blanc, and E. Allen Emerson. “SVISS: Symbolic Verification of
Symmetric Systems”. In: International Conference on Tools and Algorithms for Con-

struction and Analysis of Systems. 2008.

[232] Thomas Wahl and A. F. Donaldson. “Replication and Abstraction: Symmetry in Auto-
mated Formal Verification”. In: Symmetry 2.2 (2010), pp. 799–847. DOI: 10.3390/
SYM2020799.

https://doi.org/https://doi.org/10.1016/j.procir.2021.03.080
https://doi.org/https://doi.org/10.1016/j.procir.2021.03.080
https://www.sciencedirect.com/science/article/pii/S221282712100370X
https://www.sciencedirect.com/science/article/pii/S221282712100370X
https://doi.org/10.14722/ndss.2018.23221
https://doi.org/10.1109/ICCCNT.2018.8493495
https://doi.org/10.1109/ICCCNT.2018.8493495
https://doi.org/10.1109/JPROC.2019.2906404
https://doi.org/10.1109/JPROC.2019.2906404
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.3390/SYM2020799
https://doi.org/10.3390/SYM2020799

BIBLIOGRAPHY 169

[233] Changjing Wang and Jinyun Xue. “Formal Derivation of a High-Trustworthy Generic
Algorithmic Program for Solving a Class of Path Problems”. In: Frontiers in Algo-

rithmics. Ed. by Xiaotie Deng, John E. Hopcroft, and Jinyun Xue. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 27–39. ISBN: 978-3-642-02270-8.

[234] Chong Wang, Hai-ming Li, and Jia-jia Ye. “Software Simulation of Lifts”. In: Network

Computing and Information Security. Ed. by Jingsheng Lei et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 315–322. ISBN: 978-3-642-35211-9.

[235] Zijian Wang, Eyuphan Bulut, and Boleslaw Karol Szymanski. “Energy Efficient Colli-
sion Aware Multipath Routing for Wireless Sensor Networks”. In: 2009 IEEE Interna-

tional Conference on Communications (2009), pp. 1–5.

[236] M. Webster et al. “Formal verification of synchronisation, gossip and environmental
effects for wireless sensor networks”. English. In: EASST Electronic Communications

(2019). ISSN: 1863-2122. DOI: 10.14279/tuj.eceasst.76.1078.1045.

[237] Matt Webster et al. “Formal verification of synchronisation, gossip and environmental
effects for wireless sensor networks”. In: Electronic Communications of the EASST 76
(2019).

[238] Stephan Weyer et al. “Future Modeling and Simulation of CPS-based Factories: an Ex-
ample from the Automotive Industry”. In: IFAC-PapersOnLine 49.31 (2016). 12th IFAC
Workshop on Intelligent Manufacturing Systems IMS 2016, pp. 97–102. ISSN: 2405-
8963. DOI: https://doi.org/10.1016/j.ifacol.2016.12.168.
URL: https://www.sciencedirect.com/science/article/pii/
S2405896316328397.

[239] Xin Xin et al. “Dynamic probabilistic model checking for sensor validation in Industry
4.0 applications”. In: 2020 IEEE International Conference on Smart Internet of Things

(SmartIoT). IEEE. 2020, pp. 43–50.

[240] Li Da Xu, Wu He, and Shancang Li. “Internet of Things in Industries: A Survey”. In:
IEEE Transactions on Industrial Informatics 10.4 (2014), pp. 2233–2243. DOI: 10.
1109/TII.2014.2300753.

[241] Shuang-Hua Yang. Wireless Sensor Networks: Principles, Design and Applications. 1st.
Springer Publishing Company, Incorporated, 2016. ISBN: 1447169328.

[242] Yang Yang et al. “Software Simulation”. In: 5G Wireless Systems: Simulation and Eval-

uation Techniques. Cham: Springer International Publishing, 2018, pp. 157–233. ISBN:
978-3-319-61869-2. DOI: 10.1007/978-3-319-61869-2_4. URL: https:
//doi.org/10.1007/978-3-319-61869-2_4.

https://doi.org/10.14279/tuj.eceasst.76.1078.1045
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.12.168
https://www.sciencedirect.com/science/article/pii/S2405896316328397
https://www.sciencedirect.com/science/article/pii/S2405896316328397
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1007/978-3-319-61869-2_4
https://doi.org/10.1007/978-3-319-61869-2_4
https://doi.org/10.1007/978-3-319-61869-2_4

BIBLIOGRAPHY 170

[243] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. “Wireless sensor network
survey”. In: Computer Networks 52.12 (2008), pp. 2292–2330. ISSN: 1389-1286.
DOI: https : / / doi . org / 10 . 1016 / j . comnet . 2008 . 04 . 002. URL:
https : / / www . sciencedirect . com / science / article / pii /

S1389128608001254.

[244] Håkan L. S. Younes. “Ymer: A Statistical Model Checker”. In: International Conference

on Computer Aided Verification. 2005.

[245] Håkan L. S. Younes and Reid G. Simmons. “Probabilistic Verification of Discrete Event
Systems Using Acceptance Sampling”. In: Computer Aided Verification. Ed. by Ed
Brinksma and Kim Guldstrand Larsen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 223–235. ISBN: 978-3-540-45657-5.

[246] Theodore Zahariadis et al. “Efficient Detection of Routing Attacks in Wireless Sensor
Networks”. In: July 2009, pp. 1–4. DOI: 10.1109/IWSSIP.2009.5367775.

[247] Pamela Zave. “Lightweight Verification of Network Protocols : The Case of Chord”. In:
2009.

[248] Yun Zhou, Yuguang Fang, and Yanchao Zhang. “Securing wireless sensor networks: a
survey”. In: IEEE Communications Surveys & Tutorials 10.3 (2008), pp. 6–28. DOI:
10.1109/COMST.2008.4625802.

https://doi.org/https://doi.org/10.1016/j.comnet.2008.04.002
https://www.sciencedirect.com/science/article/pii/S1389128608001254
https://www.sciencedirect.com/science/article/pii/S1389128608001254
https://doi.org/10.1109/IWSSIP.2009.5367775
https://doi.org/10.1109/COMST.2008.4625802

	Thesis cover sheet
	2023ValkovPhD
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Thesis Statement
	Main Results

	Organisation of Thesis

	Background
	Formal Methods
	Model Checking
	Probabilistic Model Checking
	Model Checkers
	State space explosion
	Symmetry reduction
	State space reduction tools

	Wireless Sensor Networks
	Characteristics of Wireless Sensor Networks
	Ctrl-MAC
	2C protocol

	Verification of Wireless Sensor Networks

	Preliminaries 1: Model checking
	Discrete Time Markov Chains
	Property specification
	Markov Decision Processes
	Costs and Rewards
	Tools for probabilistic model checking
	The PRISM Model Checker

	State space reduction techniques
	Symmetry reduction, Automorphisms and Quotient MDPs
	Counter abstraction/ Generic representatives
	Symmetry reduction in PRISM

	Preliminaries 2: Ctrl-MAC
	Technical description of Ctrl-MAC

	Initial Ctrl-MAC verification
	Initial Ctrl-MAC PRISM models
	Ctrl-MAC PRISM model with manual counter abstraction
	Performance comparison for different models

	Applying combinatorics
	Obtaining the probability distributions
	Implementation of Statistical approach
	Optimal number of requests

	Summary

	GRIP - state of the art and new contribution
	Introduction
	Current state of GRIP
	Local reachability analysis optimisation

	Synchronisation and Generic Representatives
	Implementation of Synchronisation in GRIP
	Implementation

	Experimental Results
	Past examples
	Rock-Paper-Scissors
	PRISM-symm case studies
	Randomised Byzantine Agreement protocol
	Ctrl-MAC models

	Summary
	GRIP future work

	Conclusions
	Future work

	Model listings
	List of Terms
	Bibliography

