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Abstract

Synthetic datasets are gaining traction as a potential solution for allowing access to sen-
sitive data while protecting the privacy of individuals. However, the assessment of both
the utility and disclosure risk of synthetic data is still an open question for which there is
little consensus. Solutions that are theoretically good have been proposed but these are
not currently feasible for most use cases. Meanwhile, most practicable disclosure risk as-
sessments are ad hoc, unsuitable for more than a few sensitive variables, and only consider
a narrow range of risk scenarios. For greater uptake of synthetic data it is important to
establish a standard for its assessment.

In this thesis, we evaluate methods for the assessment of synthetic data and identify
several clear issues in the literature. We develop a practical framework for the quantitative
assessment of disclosure risk for synthetic data. Hierarchical regression models are used for
the evaluation and comparison of disclosure risk for multiple sensitive variables, synthetic
datasets and intruder assumptions simultaneously. We demonstrate our methods on two
example datasets. A small dataset containing less than 1000 samples and 9 variables,
and a larger dataset that contains over 50000 samples and 40 variables. We find that the
method of prediction has a significantly larger effect on attribute disclosure risk than the
synthetic data generation method.
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Chapter 1

Introduction

Statistics and machine learning are two areas of research undergoing rapid growth and
innovation. Two factors primarily drive this growth. The first is the increased gathering
and accessibility of large sets of individual-level data. The second is the development
of modelling approaches that use advances in computing power. These areas of research
have the potential to improve massively the lives of many. In fact, there are already
numerous examples of the benefits of these new technologies, such as providing decision
support to doctors through the automatic detection of time-critical health issues from
clinical notes (Cutforth et al., 2023), triage of COVID-19 patients (Ray et al., 2022), and
segmentation of tumours (W. Zhang & Ray, 2023) to name a few. Despite these benefits,
there is growing recognition of and concern about the gathering, storage, and (willing or
unwilling) dissemination of personal data.

1.1 Motivation

Legislation has been introduced to protect the privacy rights of individuals (see, e.g.,
California Consumer Privacy Act (2018), California Privacy Rights Act (2020), Data Pro-
tection Act 2018 (2018), Health Insurance Portability and Accountability Act (1996), and
The European Union (2016)). These protections include providing individuals with the
rights of ownership over their data and requiring organisations to protect sensitive data
adequately. Organisations that breach these laws can be subject to hefty penalties (Infor-
mation Commissioner’s Office, 2018).

One example, the Health Insurance Portability and Accountability Act (HIPAA) fo-
cuses on protecting personal medical information. For data to be deemed HIPAA com-
pliant, the data has to go through a de-identification procedure where names, identifying
numbers, and dates (except years) are removed from the data, geographical information
must be generalised to areas with greater than 20,000 people, and the age of any per-
son older than 89 years must be truncated (OCR, 2012). There is agreement within the

1



CHAPTER 1. INTRODUCTION 2

statistics and machine learning communities that these de-identification methods reduce
the utility of the data (Drechsler & Reiter, 2010; Purdam & Elliot, 2007; Winkler, 2007).
Even more concerning is the evidence that the de-identification procedures do not ade-
quately protect from disclosure (Sweeney et al., 2017).

Given the need to protect personal data, and particularly personal medical data, and
the need to use this data in research, there is a significant privacy-utility trade-off with de-
identified data. In comes synthetic data. Synthetic data is artificial data generated from a
model that approximates the distribution of real data and was initially proposed by Rubin
(1993) and Little (1993). It is often touted as a solution for releasing personal data that has
a more favourable privacy-utility trade-off. Synthesising data (and, therefore, generative
models) has increased in popularity in the statistics and machine learning communities
over the past several years. Numerous organisations use synthetic data, including the
United States Census Bureau and the Institute for Employment Research (IAB) (Abowd
et al., 2006; Benedetto et al., 2017; Benedetto et al., 2013; Dennett, 2017; Dennett et al.,
2016; Drechsler, Dundler, et al., 2008; Kinney et al., 2014; Kinney et al., 2011; Nowok
et al., 2017; U.S. Census Bureau, 2013, 2018). Synthetic data allows researchers to access
data that would have been unavailable previously.

Due to the novelty of synthesising data and the implementation of generative models,
there is a lack of consensus in the literature (both statistics and machine learning) about
assessing synthetic data and generative models. In terms of assessing synthetic data,
there are two aspects of interest to this thesis. The first aspect is measuring the utility
of synthetic data. The second is measuring the disclosure risk of synthetic data. A
consensus on these two aspects must be reached to enable more effective comparison of
synthetic data generation methods, which would help with the development of new data
generation methods. This thesis focuses on exploring these two aspects. Specifically, this
thesis does the following:

• Answers the question: “How should synthetic data’s utility and disclosure risk be
assessed?”,

• provides a comprehensive review of the synthetic data literature. In particular, our
review of the methods for assessing synthetic data does not yet exist in the literature,

• investigates the impact that the choices of synthetic data evaluation methods have
on the results of the evaluations,

• develops and evaluates a framework for assessing the utility and disclosure risk of
synthetic data (or data produced by other statistical disclosure control (SDC) meth-
ods), and

• introduces methods for assessing attribute disclosure risk.
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1.2 Organisation of the thesis

Chapter 2 contains an overview of methods from the statistical and machine learning lit-
erature utilised throughout the remainder of this thesis. Our novel review of the synthetic
data literature is separated into four chapters. Specifically, in Chapter 3, we review the
literature related to information disclosure and SDC methods, including synthetic data.
In Chapter 4, we summarise the theory underpinning synthetic data and review the liter-
ature on synthetic data generation. We review the literature relating to assessing utility
and disclosure risk of synthetic data in Chapters 5 and 6, respectively. In Chapter 7, a
framework for assessing the privacy and utility of synthetic data is introduced, and we de-
scribe methods for the assessment of synthetic data assessment developed over the course
of this research. In Chapter 8, we demonstrate the framework and methods that were
described using the Pima diabetes data as a simple example. Chapter 9 demonstrates the
framework and methodology but with the more complex 130 Hospitals Diabetes dataset.
Finally, in Chapter 10, we summarise the key findings of the thesis and discuss possible
avenues for future work.



Chapter 2

Statistical and machine learning
methods

This chapter summarises methods from the wider statistical and machine learning (ML)
literature. These methods are required background knowledge for the synthetic data
generation models and synthetic data assessment methods that we implement through this
thesis. However, most content in this chapter will be familiar to those with a background in
statistics or machine learning. Section 2.1 describes regression models in both a Bayesian
and a frequentist setting. Then, in Section 2.2, we describe classification and regression
trees (CART), and random forests.

2.1 Regression models

2.1.1 Generalised linear models

Consider the linear regression model of the form:

E(Yi) = µi = xT
i β, (2.1)

with Gaussian probability density function (PDF)

p(yi|µi, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2
(yi − µi)

2

)
, (2.2)

where

• Yi ∼ N (µi, σ
2) is the ith observation of the response variable,

• xi = (1, xi1, . . . , xip)
T is the ith row of the design matrix of known covariates X, and

• β = (β0, . . . , βp)
T is the vector of unknown coefficients.

4
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We can generalise this for response variables with non-Gaussian distributions.
Let Y be a random variable with a probability distribution that belongs to the expo-

nential family, a flexible class of distributions that includes many of the most commonly
used probability distributions. The PDF of any distribution in the exponential family is
written as

p(y|θ, ϕ) = exp

(
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

)
, (2.3)

where θ is a location parameter called the canonical parameter, and ϕ is a dispersion
parameter. The values of these parameters depend on the probability distribution of
Y . The functions a(ϕ), b(θ), and c(y, ϕ) are known functions that also depend on the
probability distribution of Y .

The mean and variance of probability distributions in the exponential family are ex-
pressed in terms of a(ϕ) and b(θ):

E[Y ] = µ = b′(θ),

V ar[Y ] = b′′(θ)a(ϕ).

Consider the generalised linear regression model of the form

g(E(Yi)) = g(µi) = xT
i β,

where

• Yi is an independently distributed response variable, that belongs to a distribution
in the exponential family given in Equation (2.3).

• g is a monotonic link function that describes the relationship between µi and xT
i β.

• xi = (1, xi1, . . . , xip)
T is the ith row of the design matrix of known covariates X.

• β = (β0, . . . , βp)
T is the vector of unknown parameters.

The link g is any monotone, continuous and differentiable function. One family of conve-
nient link functions are canonical link functions. These are link functions where θ = g(µ).

Generalised linear models for binary response variables

The standard model to represent an unordered categorical response variable is a logistic
regression. To start, consider the case where the response variable is binary. In this case,
the response is assumed to follow a Bernoulli distribution:

Yi ∼ Bernoulli(pi),
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where

• Yi ∈ {0, 1},

• P (Yi = 1) = pi is the probability of “success”,

• P (Yi = 0) = 1− pi is the probability of “failure”, and

• E(Yi) = pi.

The Bernoulli PDF is written as

p(yi|pi) = exp

(
yi log

(
pi

1− pi

)
− log

(
1

1− pi

))
. (2.4)

The standard choice of link function is its canonical link function, the logit written as

g(pi) = log

(
pi

1− pi

)
= xT

i β. (2.5)

The inverse of the logit function is the logistic function,

pi = g−1(xT
i β) =

1

1 + exp(−xT
i β)

. (2.6)

Equation (2.4) can be rewritten in terms of Equation (2.6) such that

p(yi|xi,β) = g−1(xT
i β)

yi
(
1− g−1(xT

i β)
)1−yi . (2.7)

Generalised linear models for nominal response variables

The logistic regression model is extended for an unordered categorical response variable
with K categories as follows

Yi ∼ Categorical(pi),

where

• Yi = (Yi1, . . . , YiK) for Yik ∈ {0, 1} and
∑K

k=1 Yik = 1,

• P (Yik = 1) = pik, and

• pi = (pi1, . . . , piK) for
∑K

k=1 pik = 1.

The PDF of the categorical distribution is written as

p(Yi = yi|pi) = exp

{
K−1∑
k=1

yik log

(
pik

1−
∑K−1

k=1 pik

)
− log

(
1

1−
∑K−1

k=1 pik

)}
.
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The standard choice of link function is the multinomial logit function,

g(pi)k = log

(
pik

1−
∑K−1

s=1 pis

)
= xT

i βk,

where

• xi = (1, xi1, . . . , xip)
T is the ith row of the design matrix, and

• βk = (βk1, . . . , βkp) is a column in the (p×K) matrix of coefficients β.

We enforce the constraint that the predicted probabilities for the K categories must sum
to one by setting the coefficients for the arbitrary Kth level to be zero,

βK = 0.

The inverse of the multinomial logit is the softmax function,

pik =
exp

(
xT
i βk

)∑K
t=1 exp (x

T
i βt)

.

There are two schools of thought commonly used to make inferences on the unknown
parameters of these regression models: Bayesian inference and maximum likelihood esti-
mation (MLE).

2.1.2 Bayesian inference

With Bayesian inference, prior distributions and a likelihood function are specified. The
prior distributions describe prior knowledge of the probability distribution for each un-
known parameter, and the likelihood describes the distribution of the data given the pa-
rameters. Bayes’ rule is used to update the prior with the data according to the likelihood.
This results in a posterior distribution for the unknown parameters, which describes the
probability distribution of each unknown parameter after the data has been considered.

More formally, these Bayesian updates can be written as

P (θ, ϕ|y, τ, γ) = P (y|θ, ϕ, τ, γ)P (θ|τ)P (ϕ|γ)
P (y|τ, γ)

,

∝ P (y|θ, ϕ, τ, γ)P (θ|τ)P (ϕ|γ), (2.8)

where

• P (y|θ, ϕ, τ, γ) =
∏n

i=1 P (yi|θ, ϕ) is the likelihood,

• θ ∼ p(τ) and ϕ ∼ p(γ) are the prior distributions for the model parameters, and
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• τ and γ are the prior distribution hyperparameters.

The marginal distribution of the data,

P (y|τ, γ) =
∫∫

P (y|θ, ϕ, τ, γ)P (θ|τ)P (ϕ|γ) dθ dϕ,

is a constant that normalises the posterior distribution. In practice, the marginal dis-
tribution is intractable. As such, Bayesian methods focus on estimating the posterior
distribution without directly computing the marginal distribution of the data.

Today, the most common approach is using Markov chain Monte Carlo (MCMC) meth-
ods to efficiently sample from the posterior distribution. The MCMC family of methods
includes Gibbs sampling, the Metropolis algorithm, the Metropolis-Hasting’s algorithm,
Hamiltonian Monte Carlo (HMC) and the No-U Turn Sampler (NUTS). This thesis uses
NUTS. It is a variant of Hamiltonian Monte Carlo that uses a “momentum” variable to
efficiently sample from the posterior distribution by taking large jumps in low-density pos-
terior regions and smaller jumps in high-density posterior regions (Hoffman & Gelman,
2011). NUTS is implemented in the Stan programming language (Carpenter et al., 2017)
and is interfaced with R through the packages RStan (Stan Development Team, 2024),
rstanarm (Stan Development Team, 2018), and brms (Bürkner, 2017). These packages
provide high-level interfaces for fitting a wide array of regression models using Stan. For
more information on the HMC and MCMC methods, see Gelman et al. (2014, Chapters
11 & 12).

Expected log posterior density

One method for evaluating the fit of Bayesian models is leave-one-out (LOO) expected log
predictive density (ELPD)

elpdloo(y) =
n∑

i=1

log p(yi|y−i), (2.9)

where p(yi|y−i) is the leave-one-out predictive density for the ith data point. The leave-one-
out predictive density is efficiently computed using Pareto smoothed importance sampling
Vehtari et al. (2017).

Care needs to be taken if comparing a relatively large number of models that are fit to
a comparatively small dataset. In such cases, model selection can induce bias and overfit-
ting, so a model averaging or projection predictive approach would be more appropriate
(Piironen & Vehtari, 2017a).

When the response variable scale differs between models, ELPD must be transformed
to a common scale by making a Jacobian adjustment before model fit can be compared.
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For example, let yi be a positive response variable, then under the change of variables
zi = log(yi),

p(yi|y−i) = p(zi|z−i)

∣∣∣∣∂zi∂yi

∣∣∣∣,
= p(zi|z−i) ·

1

yi
.

Therefore,

elpdloo(y) =
n∑

i=1

log

(
p(zi|z−i) ·

1

yi

)
,

=
n∑

i=1

(
log p(zi|z−i)− log yi

)
,

= elpdloo(z)−
n∑

i=1

log yi.

Regularised horseshoe prior

One approach for specifying simpler Bayesian models is to use shrinkage priors such as
the regularised horseshoe. The regularised horseshoe prior, as described in Piironen and
Vehtari (2016, 2017b), is written as

βj|λj, τ, c ∼ N
(
0, τ 2λ̄2

j

)
, (2.10)

where

λ̄2
j =

c2λ2
j

c2 + τ 2λ2
j

and λj ∼ C+(0, 1).

Here, λj is a local hyperparameter that allows some coefficients to escape shrinkage, c is
the standard deviation of βj as the amount of shrinkage tends towards zero, and τ is a
global hyperparameter that shrinks coefficients towards zero.

When βj is close to zero
τ 2λ2

j ≪ c2.

As such, the prior tends towards the horseshoe prior (Carvalho et al., 2009)

N (0, τ 2λ2
j).

Conversely, when βj is far from zero,

τ 2λ2
j ≫ c2,
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and so the prior tends towards the spike and slab prior

N (0, c2).

According to Piironen and Vehtari (2017b), a sensible choice of prior for c is

c2 ∼ Inv-Gamma(ν/2, νs2/2),

which corresponds to a student-tν(0, s
2) slab for the coefficients that are far from zero.

Following Gelman (2006), τ is generally treated as a half-Cauchy distributed random
variable. This is weakly informative and shrinks variances but allows for occasionally large
values. A more informative variation of this prior, given by Piironen and Vehtari (2016,
2017b), is

τ |σ ∼ C+(0, τ 20 ), (2.11)

where

τ0 =
p0

D − p0

σ√
n
.

p0 is a prior guess for the number of relevant parameters, and σ2 is the variance of the
observations in a Gaussian regression model or the “pseudo variance” for generalised linear
models.

Bayesian regularising linear regression model

One interesting implementation of a regularising linear regression model is described by
Gabry and Goodrich (2020). The method builds on the work of Lewandowski et al.
(2009), who describe an approach for generating random correlation matrices from partial
correlations. The standard linear regression model can be reparameterised using QR-
composition to a form that allows for a prior to be placed on the R2 value (Gabry &
Goodrich, 2020).

Model 2.1 (Linear regression model with prior on R2).

y|R2, α, ω ∼ N
(
α + ωsy

√
R2(NI − 1)XTR−1u, ω2s2y(1−R2)

)
,

with a weakly informative prior on R2 of a Beta distribution with a mode of p

R2 ∼ Beta(p/2, p/2),

a Jeffrey’s prior on ω

ω ∼ p(ω) ∝ 1/ω,
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and an improper uniform prior on the intercept

α ∼ U(−∞, ∞).

In contrast to the standard approach of specifying prior knowledge for the model
parameters, specifying a prior for R2 allows us to indicate how well we expect the model
to fit the data. For cases where we do not have much prior knowledge about the model
parameters, this can be a more sensible approach for specifying weakly informative priors.
The R package rstanarm (Stan Development Team, 2018) contains an implementation of
Model 2.1.

2.1.3 Maximum likelihood estimation

Recall that the likelihood

P (y|θ, ϕ) =
n∏

i=1

p(yi|θ, ϕ),

describes the distribution of the data given the parameters. Maximum likelihood esti-
mation (MLE) aims to find the parameters that maximise the likelihood, or equivalently,
the log-likelihood. The log-likelihood is generally more convenient to work with and, for
distributions in the exponential family (Equation (2.3)), takes the form

ℓ(θ;y) =
n∑

i=1

(
yiθi − b(θi)

a(ϕ)
+ c(y, ϕ)

)
, (2.12)

=
yTθ − b(θ)

a(ϕ)
+ c(y, ϕ), (2.13)

where g−1(XTβ) = θ = (θ1, . . . , θp)
T for θi = g−1(xT

i β).
The parameters that maximise the log-likelihood

θ̂ = argmax
θ

{
yTθ − b(θ)

}
, (2.14)

are found by computing the roots of the first derivative

dℓ(θ;y)

dθ
= 0.

The log-likelihood of the linear regression model

ℓ(β;y) =
n∑

i=1

((
yi − xT

i β
)2

2σ2
− log

(
σ
√
2π
))

, (2.15)



CHAPTER 2. STATISTICAL AND MACHINE LEARNING METHODS 12

is minimised by the least squared estimate

β̂ =
(
XTX

)−1
XTy, (2.16)

σ̂2 =
1

n− p− 1

(
y −Xβ̂

)T (
y −Xβ̂

)
,

where

Var
[
β̂
]
=
(
XTX

)−1
σ̂2.

To avoid the numerical instability of calculating
(
XTX

)−1, the least squared solution is
solved using QR decomposition (Hastie et al., 2009, p. 55).

For other generalised linear models, the maximum likelihood estimate is found using
numerical optimisation methods. The standard optimisation method, implemented in R
by the glm function, is iteratively reweighted least squares (Green, 1984; R Core Team,
2023). An alternative method is coordinate descent (Friedman et al., 2010), which is
implemented in the R package glmnet and can efficiently fit regression models with very
large numbers of observations or parameters.

Penalised maximum likelihood

The maximum likelihood estimate (Equation (2.14)) is the set of parameters that max-
imises the probability of the observed data, given the generalised linear model. However,
maximising the likelihood does not always result in a model that fits unobserved samples
of data well.

Bishop (2006, p. 7) uses a toy example to illustrate how maximising the likelihood for
a model with a large number of parameters relative to the number of observations in the
data can result in a fit that is not generalisable. Polynomial regression models are fit to a
dataset with 9 observations using maximum likelihood

Yi ∼ N

(
M∑
j=0

βjx
j
i , σ

2

)
,

where M = (1, . . . , 9).

The training set error decreases as the order of the polynomial increases, however, the
fit of the 9th order polynomial model (Figure 2.1) shows clear over-fitting. Choosing a
smaller model or gathering more data would be one solution to the problem, but it is not
always feasible to gather more data. Another solution is to remove predictors from the
model. This requires subjective decisions about how many parameters to choose and, in
real-world examples of data with more variables than observations, removing predictors
can remove helpful information.

In Section 2.1.2, we described one Bayesian approach to address over-fitting by placing
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Figure 2.1: Plots showing the fits of polynomial regression models (in red) on 9 observa-
tions of data (Bishop, 2006, p. 7).

stronger priors on the model parameters. When fitting models with maximum likelihood
estimation, a weight penalty can be added to regularise. This weight penalty would
penalise the model as more parameters are added or as parameters grow larger.

For distributions in the exponential family (Equation (2.3)), the general form of the
solution to penalised maximum likelihood is

β̂ = argmax
β

{
yTθ − b(θ) + λPα(β)

}
, (2.17)

where θ = g−1(XTβ) is the canonical parameter,

Pα =

p∑
j=1

αβ2
j + (1− α)|βj|, (2.18)

is the elastic net penalty (Zou & Hastie, 2005), λ > 0 is a hyper-parameter that controls
the degree of regularisation, and α ∈ [0, 1] is a hyper-parameter controlling the mixing
between the lasso penalty P0 and the ridge penalty P1.

Note that the intercept coefficient β0 is not penalised. Penalising the intercept coeffi-
cient would make the fitting procedure dependent on the origin of the response variable.
Furthermore, penalised regression methods are not equivariant under the scaling of the
inputs. As such, X is generally centred and scaled before fitting (Hastie et al., 2009).
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For several of the most common generalised linear models, including linear regression,
Poisson regression, and binary and multi-class logistic regression, Equation (2.17) is solved
using cyclical coordinate descent. In R, this is implemented with the package glmnet
(Friedman et al., 2010).

2.1.4 Generalised additive mixed models

Generalised additive mixed models (GAMMs) are an extremely flexible and diverse class
of models. GAMMs have been well described in many texts. For in-depth reading and
complete proofs of the results discussed in this section, see Wood (2006, ch. 4 & 6) and
Ruppert et al. (2003, ch. 8 & 11).

Consider the non-parametric additive model of the form

g(µi) = f(xi),

where µi = E(yi), g is a monotonic link function and xi is the vector of covariates for the
ith observation. f is a smooth function with a single smoothing parameter

f(x) =
J∑

j=1

bj(x)θj, (2.19)

and associated wiggliness measure

J(f) = θTSθ,

where θ is a vector of unknown coefficients and S is a known positive semi-definite matrix1.
We place a prior on the model coefficients

p(θ|λ) ∝ exp(−λθTSθ/2),

which reflects the belief that f is smooth. As S is positive semi-definite, this prior is
improper. However, the model can be reparameterised into the mixed model representation

g(µi) = x̃T
i β +Zib, (2.20)

where x̃i and Zi are the ith rows of known design matrices for the fixed and random effects,

b ∼ N (0, I/λ),

is a vector of random effects. In this setting, β and λ are unknown parameters. These
1A positive semi-definite matrix allows for some coefficients with zero wiggliness.
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unknown parameters can be estimated with restricted maximum likelihood (REML). Al-
ternatively, the posteriors of the unknown parameters can be modelled with Bayesian
inference.

The smooth function described in Equation (2.19) can be represented with various
spline basis functions. One such function is the penalised low-rank thin-plate splines
(Wood, 2003). It is a lower dimension approximation of the multidimensional generalisa-
tion of smoothing splines. Low-rank thin-plate splines are an efficient low rank approx-
imation of the higher dimensional thin-plate spline basis. They are constructed by the
eigendecomposition of a matrix consisting of thin-plate splines with a knot at every unique
observation of the data. The eigenvectors that correspond to the K largest eigenvalues
then form the low-rank thin-plate spline basis.

The smoothing parameter will control the effective degrees of freedom. Therefore, the
choice of K is arbitrary as long as K is not so large that computation becomes an issue
and not so small that the model lacks the degrees of freedom to represent the data (Wood,
2006, p. 220).

2.2 Decision tree models

Decision trees are a flexible class of models. They have been successfully applied to a wide
range of prediction problems, including the synthesis of both continuous and categorical
data. For a more comprehensive introduction to these models, we direct the reader to
James et al. (2013, pp.327–352).

Definition 2.1 (Decision Trees). Let f(x) be a decision tree that partitions the data
space R into T disjoint subsets {R1, ..., RT} through a series of recursive binary splits.
Each split point is a non-terminal node, and each terminal node or leaf maps to one of
the T subsets.

Subsets of decision trees are called subtrees.

Definition 2.2 (Subtree). A subtree g(x) ∈ f(x) is any tree that can be obtained by
collapsing any number of non-terminal nodes in f(x).

Let f0(x) be a large tree grown until some pre-determined stopping point. For each
value of α there exists a subtree fα(x) ⊂ f0(x) that minimises the cost complexity criterion

Cα

(
f0(x)

)
=

T∑
t=1

Q(Rt) + αT, (2.21)

where T is the number of terminal nodes in the subtree fα(x) and Q is a cost function for
a terminal node that depends on whether the tree is predicting a continuous or a discrete
variable.
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Figure 2.2: Example of a decision tree with four splits, t1, . . . , t4 that partition the co-
domain into five leaves, R1, . . . , R5 (Hastie et al., 2009, p. 306).

For continuous variables, Q(Rt) is the residual sum of squares

RSS(Rt) =
∑
i∈Rt

(yi − ȳRt)
2 ,

where ȳRt is the mean of the observations in Rt. While for discrete variables, Q(Rt) is the
Gini index

G(Rt) =
K∑
k=1

p̂tk(1− p̂tk),

where p̂tk is the proportion of observations in the leaf Rt that belong to the class ck.
Breiman (1984) shows that, for any α, a sequence of trees can be constructed that

must contain the optimal fα(x). That sequence is constructed by sequentially collapsing
the non-terminal node that gives the smallest decrease in the cost complexity criterion
(Equation (2.21)), until a tree with a single node is reached (Ripley, 1996, pp.222–225).

James et al. (2013, Algorithm 8.1) describes the training procedure for CART as fol-
lows:

1. Use recursive binary splitting to grow a large tree on the training data, stopping only
when each terminal node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree to obtain a sequence of best sub-trees
as a function of α.

3. Use cross validation to find the value of α that minimises prediction error.

4. The final trained tree is the sub-tree corresponding to the chosen value of α.
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For unordered categorical predictor variables, recursive binary partitioning scales poorly
with the number of classes. If a predictor has K classes, there are 2K−1−1 possible binary
partitions (Hastie et al., 2009). Consequently, searching through all possible partitions
will be computationally prohibitive when K is large. In addition, the fitting algorithm is
biased in favour of selecting categorical variables that have many levels. The more pos-
sible partitions that exist for a variable, the more likely that the partition that optimises
Equation (2.21) will involve splitting that variable.

2.2.1 Random forests

In a random forest, each tree is trained on a bootstrapped sample of the data and restricted
to only considering a random subset of the variables in the data at each split (Breiman,
2001). This restriction de-correlates the trees in the random forest by forcing them to use
different splits, decreasing the model’s variance (Hastie et al., 2009).

Definition 2.3 (Random Forest). Let gb be a decision tree that is trained on the bth

bootstrapped sample of a training dataset that contains p variables. Each gb is grown
until some minimum node size is reached, unlike CART the trees are not pruned. At each
split we randomly sample m of the p variables and the best split is chosen from those.
The random forest is the ensemble of trained decision trees

f =
B⋃
b=1

{gk}.

A prediction for a data point x = (x1, . . . , xp) is

f(x) =
1

B

B∑
b=1

gb(x),

for regression. For a classification problem we predict the class that is predicted by the
majority of trees

f(x) = majority{g1(x), . . . , gB(x)}.

We can specify several hyperparameters to affect the fit of random forest models,
minimum node size, the number of predictors per split m and the number of trees B. As
with CART, specifying a minimum node size can prevent overfitting. However, Hastie
et al. (2009) find that the gains do not justify the requirement to optimise an additional
parameter and instead they recommend growing trees to full. The optimal value of m

depends on the number of predictor variables and the fraction that are relevant (Hastie
et al., 2009). If a low fraction of the predictors are relevant, then there is a low probability
of selecting a relevant predictor when m is too small relative to the number of predictors.
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Out of sample prediction error is inversely related to B (Hastie et al., 2009). However,
there are diminishing returns, at which point the computational cost of fitting additional
trees no longer justifies the tiny reduction in error. The point that the error stabilises
depends on the data.

Ideally, hyperparameters should be selected by minimising the validation loss, but this
is not always computationally feasible. Unless stated, the random forest hyperparameters
in this thesis are B = 500, with both m and minimum node size depending on whether
a categorical or continuous variable is being predicted. In the continuous case, minimum
node size is 5 and m = max(p/3, 1) variables are considered at each split, where p is the
number of predictor variables. For categorical variables, minimum node size is set to 1 and
m = floor(

√
p). These are the default hyperparameters for the R package randomForests

(Liaw & Wiener, 2002), which is the implementation we use for all random forest models.



Chapter 3

Literature review: information
disclosure and protecting confidentiality

This chapter begins the novel literature review, which continues through Chapter 6. We
summarise the various types of information disclosure in Section 3.1 before motivating
the use of synthetic data with a review of statistical disclosure control (SDC) methods for
protecting confidentiality in Sections 3.2, 3.3 and 3.4.

Information disclosure occurs when a party (a person, group, etc.) gains access to
sensitive information for which they have not been permitted access. The subject or target
is the party for whom the disclosed information concerns. The attacker or intruder is the
party attempting to discover information about a subject or subjects.

Before we discuss the types of disclosure, consider the question, what is the identity
of the person or organisation attempting to learn this sensitive information? This thesis
focuses on synthetic, subject-level data for public release. As such, we presume that the
data is not so sensitive that it is of interest to extremely well resourced intruders, such
as state-sponsored hackers. We also do not consider disclosures that result from allowing
direct access to unmodified sensitive data. For example, if data was leaked by hackers
or if an employee viewed data without permission. These would be a failure of internal
security protocols and can not be solved with synthetic data.

A helpful definition to consider when thinking about the attacker in this thesis is the
motivated intruder (Information Commissioner’s Office, 2012).

Definition 3.1 (Motivated intruder). The motivated intruder is a party that is attempting
to discover sensitive information. It is assumed that they are competent but do not have
access to highly restricted information or specialist techniques. Instead, their attempts at
discovering sensitive information utilise resources available to the general public, such as
public documents and social media.

The motivated intruder is the hypothetical antagonist in the motivated intruder test.
The motivated intruder test determines if a motivated intruder could have made such a
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disclosure. This helps establish if reasonable steps were taken to protect the data from
disclosure. During FOIA appeals and Data Protection Act appeals, the ICO and Infor-
mation Tribunal, respectively, use the motivated intruder test for assessing the disclosure
risk of the datasets (Data Protection Act 2018, 2018; Information Commissioner’s Office,
2012).

3.1 Types of information disclosure

We will focus on three types of information disclosure due to their relevance to synthetic
data. The three types are identity disclosure, attribute disclosure, and membership disclo-
sure. While other types of disclosure exist, they either do not apply to synthetic data or
fall into subcategories of the three types of information disclosure mentioned above (see,
e.g., Willenborg and de Waal (2001, pp. 19–20, 42–52), Duncan and Lambert (1989)).

Identity disclosure

Identity or re-identification disclosure occurs when an intruder identifies the target that
corresponds to a given record in the data (Elliot, 2005, pp. 663–664). Identity disclosures
require observations in the data to be mapped to an individual in the population (Willen-
borg & de Waal, 2001, p. 41). If that mapping does not exist, there is no ground truth to
verify whether an intruder has correctly identified the target. It is important to note that,
for entirely synthetic data, this mapping does not exist. As such, the definition of identity
disclosure is unworkable for completely synthetic data. However, if a dataset contains real
and synthetic records or variables, the mapping exists and identity disclosure is possible.

Attribute disclosure

Following the definition in (Elliot, 2005, pp. 663–664), attribute or predictive disclosure oc-
curs when an intruder learns information about the variables of a record in the data. The
sensitive information can be learned directly from an identity disclosure or inferred with-
out identification. However, in practice, the manner in which the information is acquired
is irrelevant to the harm inflicted on the target of the disclosure. In fact, the disclosure
risk can be grossly underestimated if the possibility of an attribute disclosure that occurs
without identification is ignored. One example of attribute disclosure without identifica-
tion is a homogeneity attack, which is further discussed in Section 3.3.1 (Machanavajjhala
et al., 2007).
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Membership disclosure

Membership disclosure occurs when an intruder identifies that a record belongs to a dataset
(Li et al., 2013). Membership disclosure attacks (or membership inference attacks) have
been studied in a variety of fields including genomics and machine learning (Backes et al.,
2016; Choquette-Choo et al., 2020; Dwork et al., 2015; Hayes et al., 2018; Homer et al.,
2008; Shokri et al., 2017). Recall that, for completely synthetic data, the definition of
identity disclosure is unworkable due to a lack of ground truth. In contrast, membership
disclosure has a known ground truth and is a workable alternative to identity disclosure.

There is discourse in the literature about how often a disclosure of membership can
be considered a disclosure of sensitive information (Reiter, 2023). To illustrate a clear
example of when membership disclosure is a direct disclosure of sensitive information,
consider a database of cancer patients. The disclosure that an individual is a member of
this database would disclose the subject’s cancer diagnosis.

Now, we consider a more complex scenario, a sample of census respondents. The data
within the census dataset is definitively sensitive, but the membership of a household is not
necessarily sensitive information. The 2021 England and Wales Census had a 97% response
rate and the 2022 Scottish Census had a 79% response rate (Office for National Statistics,
2022; Office for Statistics Regulation, 2023). It is likely that any given household in the
United Kingdom has participated in the census. As such, it is questionable whether, in
this scenario, membership disclosure would be a disclosure of sensitive information.

It is our opinion that, for much of the literature, the choice to assess the membership
disclosure risk of synthetic data is a choice of convenience rather than because member-
ship is sensitive. When membership of a dataset is not genuinely sensitive, assessing the
attribute disclosure risk is a more direct assessment of the risk of disclosure.

3.1.1 Risk factors for information disclosure

Now that we have explored the types of disclosure, a sensible follow up question is, what
are the aspects of a record that affect its risk of disclosure? Most of the time, some records
will be more at risk than others, so in this section we discuss the risk factors for identity,
attribute, and membership disclosure.

Throughout the literature, there is agreement that outlying or unique observations are
more vulnerable to membership and identity disclosures (Elliot et al., 2002; Longhurst
& Vickers, 2007; Taylor et al., 2018). There are two reasons why outliers are especially
vulnerable. The first is that outliers have rarer combinations of attributes, so fewer ob-
servations will match. Consequently, there is a higher likelihood of correctly selecting the
outlier from the set of matching observations. The second is that the outlying attributes
of the outlier will influence some summary statistics more than a subject that closely
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matches the average.
The risk factors for attribute disclosure risk are not as widely discussed in the literature.

Palley and Simonoff (1987) find that a lack of a relationship between the attributes in a
dataset will make learning a model which approximates the dataset more difficult. This
suggests that if an intruder utilises predictive modelling, the attribute disclosure risk of
outliers would be lower.

3.2 Protecting confidentiality: non-synthetic methods

In this section, we briefly discuss non-synthetic methods for protecting against disclosures
of confidential data. For a more in-depth discussion of these methods and their drawbacks,
we direct the reader to Matthews and Harel (2011) and Winkler (2007).

3.2.1 Method 1: removal of personal identifiers

One obvious method for protecting against disclosures is the removal of personal identifiers.
This includes but is not limited to, the removal of unique personal identifiers such as
name, date of birth and identification number. However, the removal of unique personal
identifiers alone does not guarantee protection against disclosure.

To illustrate, lets assume that an intruder wishes to identify a target that they know is
contained in a confidential dataset, and that the intruder knows the values for some of the
variables in the dataset for their target. One strategy that the intruder could implement
is to identify a set of observations that contains their target by comparing variables in the
confidential dataset against publicly available information for their target. As the number
of identifying variables increases, the set containing the intruder’s target becomes smaller.
Therefore, the probability of disclosure increases. If the target has a rare value for an
identifying variable, then the size of the set will be smaller than for a more common value.
As such, given enough identifying information, it is possible for the intruder to identify a
small enough set that the risk of identity disclosure is unacceptably high. Dalenius (1986)
refers to these identifying combinations of variables as “quasi-identifiers”. In this thesis
and throughout the literature, such an attack is referred to as a linkage attack, one famous
example of a linkage attack is described in Sweeney (2002).

Example 3.1 (Disclosure of Massachusetts governor’s medical records). The then-governor
of Massachusetts was identified in a supposedly anonymous database containing medical
histories of Massachusetts state employees. The authors were able to cross-reference the
date of birth, sex, and ZIP code information in the database with the voter registration list
for Cambridge, Massachusetts.
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This example was referenced during the development of the HIPAA Privacy Rule
(ASPE, 1999). The HIPAA Privacy Rule introduced numerous safeguards to prevent
the disclosure of personally identifiable healthcare information, including national stan-
dards for de-identifying protected health information and severe penalties for violations of
the act. Other examples of linkage attacks include the successful identification of subjects
in the Personal Genome Project (Sweeney et al., 2013), and the identification of sub-
jects in the “anonymised” Netflix Prize Dataset (Narayanan & Shmatikov, 2007), which is
described below.

Example 3.2 (Disclosure of Netflix prize dataset). In 2006, Netflix organised the first of
several planned competitions to help them improve the quality of their film recommenda-
tions. As part of the competition, they released a dataset that contained over 100 million
film ratings that had been made for nearly 18,000 films by over 480,000 subscribers (Ben-
nett & Lanning, 2007). The dataset contained no information about the subscribers, beyond
their film ratings and the dates that those ratings were made. Users of the website IMDb
can create public profiles that display their ratings for films (“IMDb. The Internet Movie
Database”, 2023). Optionally, these profiles can also include personal information.

Researchers were able to link users in the Netflix database with their IMDb profiles,
by cross referencing the score and date of film reviews in each database (Narayanan &
Shmatikov, 2007). Consequently, all of the information in the supposedly anonymous
Netflix dataset was then linked to the IMDb profiles of those users.

Due to the issues demonstrated by this linkage attack, staff at Netflix raised concerns
about customer privacy, the Federal Trade Commission opened an investigation into Net-
flix’s release of the data, and a lawsuit claiming that the release violated federal privacy laws
was filed against Netflix (Hunt, 2010; Video Privacy Protection Act, 1988). In response,
Netflix suspended plans for the second competition and reached a settlement with the plain-
tiffs of the lawsuit. Netflix also agreed that, prior to any future releases of customer data,
it would implement safeguards to prevent re-identification and discuss the release with the
FTC. These assurances satisfied the FTC, who opted to close the investigation without
taking any action against Netflix (Mithal, 2010).

These examples highlight two problems with removing personal identifiers as a method
of disclosure protection. First, Example 3.1 demonstrates that quasi-identifying attributes,
such as age, location, and sex, constitute enough information to make identity disclosures
for some individuals with high probability. These are useful attributes for many data
analyses, so their complete removal could severely impact the utility of a dataset. Second,
Example 3.2 demonstrates how seemingly innocuous variables can be identifying variables
when cross-referenced with publicly available datasets. On the surface, the linkage of
Netflix film ratings with IMDb ratings is not an especially harmful disclosure. However,
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the authors were still able to infer information about the user’s political opinions and
sexual preferences based on their Netflix film ratings (Narayanan & Shmatikov, 2007).

Even non-sensitive information that is gained from such attacks can potentially allow
an intruder to build up a detailed profile of a person over several linkage attacks. As more
information is gained, there is an increased risk of successful linkage attacks in the future.
In fact, social media profiles are a major source of vulnerability to linkage attacks, such
as those that we have described. Public profiles contain a large amount of information
that is directly associated with a person’s identity. Any information in an “anonymous”
database that has been shared on a person’s public social media profile can potentially be
linked back to that person.

To summarise, removing personally identifying information is not, in itself, a viable
method to prevent linkage attacks. Therefore, if we are to prevent disclosures, we must
look at methods beyond the removal of identifying information.

3.2.2 Method 2: masking techniques

Masking techniques are methods that can be applied to reduce the risk of disclosures.
Examples include random blanking, naïve truncation, sampling, rounding, adding random
noise, swapping, micro-aggregation and removal of outliers (suppression). In the literature,
it is agreed that these masking techniques reduce the utility of the data (Drechsler &
Reiter, 2010; Purdam & Elliot, 2007). According to Winkler (2007), of the masking
methods listed, only the addition of random noise will preserve the analytic properties of
the data. Furthermore, the application of masking techniques may not adequately protect
subjects in a dataset from re-identification. An example of this inadequate protection is
seen in the following example:

Example 3.3. The HIPAA Privacy Rule specifies requirements to de-identify data for
HIPAA compliance. These requirements include removing all names, identifying numbers,
rounding geographical information to areas with greater than 20,000 people, removing all
dates (except year), and truncating the age of any person older than 89 years (OCR, 2012).
Sweeney et al. (2017) compare a HIPAA-compliant database with other publicly available
sources of data. The researchers were able to identify 25% of participants in the study by
name.

The identification of subjects in a supposedly anonymised database is extremely con-
cerning and suggests that more needs to be done to prevent harmful disclosures. A more
extensive application of the masking methods that we have described in this section would
likely help to reduce the risk. However, one must question how much more severe the ap-
plication of masking procedures would have to be, in order to reach a sufficiently low risk
of disclosure? Furthermore, how much utility would such a dataset have? In the following
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section, we discuss various standards that have been proposed in the literature for ensuring
that the disclosure risk of a dataset is sufficiently low.

3.3 Standards for ensuring anonymity

Various standards have been proposed for ensuring that sensitive data is sufficiently pro-
tected from disclosure. In this section, we discuss k-anonymity, ℓ-diversity, t-closeness, and
differential privacy. Later in this thesis we compare synthetic data generation, as a method
of statistical disclosure control, with k-anonymisation, see Chapter 8 and Chapter 9.

3.3.1 k-anonymity

Table 3.1: Sample of observations from Pima data.

Age Pregnancies Diabetes

21 0 yes
21 0 yes
21 1 no
21 1 no
21 1 no
22 0 no
22 0 yes
22 0 no
22 1 yes
22 1 no
23 1 no
23 1 no
24 1 no
24 1 no

Throughout this section we refer to Table 3.1. This table contains some sample obser-
vations from the Pima dataset in Chapter 8. The Pima dataset is the subject of the first
case study in this thesis.

Now, recall the term quasi-identifier from Section 3.2.1. The k-anonymity privacy
model, defined in Definition 3.2, is first described in (Sweeney, 2002).

Definition 3.2 (k-anonymity). Let D be a dataset containing the columns {x1, . . . , xp},
and q ⊆ {x1, . . . , xp} be the set of all quasi-identifying columns. Then, D satisfies k-
anonymity if, for all observed combinations of q, there are at least k observations in D

that match q.

k-anonymity is achieved through some combination of removal of observations, aggre-
gation of quasi-identifying variables, and application of other masking procedures. As
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discussed in Section 3.2.1, these methods often fail to preserve the analytic properties of
the data.

An intruder who knows the values of all quasi-identifying variables for a target in
a k-anonymous dataset, will only be able to learn that the target corresponds to one
of k other observations. As such, k-anonymity ensures a minimum level of protection
against identity disclosure. However, k-anonymity hinges on the assumption that all quasi-
identifiers have been identified. In the case that a quasi-identifier is not included in q, then
k-anonymisation does not guarantee any level of protection against identity disclosure.

For example, lets say that an intruder wishes to identify a particular target in a k-
anonymous dataset D. We assume that the intruder knows their targets values for the
variables (q, x∗), where x∗ ⊈ q. k-anonymity guarantees that the set of observations in D

that match the target on q is at least k. However, the intruder can utilise the variable x∗

to identify a smaller subset, unless every observation in that set also matches the target
on x∗. So, there is no guarantee that the set matching on (q, x∗) will contain at least k

observations. In our discussion of Example 3.2, we noted that variables that seem to be
non-identifying can in fact be identifiers. As such, the assumption that all quasi-identifiers
are known is difficult to verify and, consequently, the privacy guarantees of k-anonymity
or any similar methods are difficult to verify.

Examples of algorithms that produce k-anonymous data include Datafly (Sweeney,
1998a), µ-argus (Hundepool et al., 2014; Hundepool et al., 2012), and k-similar (Sweeney,
1998b) In the following example, we explore how Table 3.1 satisfies 2-anonymity given
some assumptions.

Example 3.4. Assume that age and number of pregnancies are quasi-identifying variables.
Then, there are at least two observations per subject for all combinations of the quasi-
identifiers. Therefore, Table 3.1 satisfies 2-anonymity.

Even if data guardians make sensible guesses about which variables are quasi-identifying,
protection is not guaranteed. Machanavajjhala et al. (2007) describes two types of attacks
on k-anonymous data. The first type of attack is a homogeneity attack. A homogeneity
attack can occur when all observations that match on quasi-identifying variables also share
the same value of a sensitive attribute. Again, consider Table 3.1.

Example 3.5. Assume that age and number of pregnancies are quasi-identifying variables.
In addition, the intruder knows that their target exists in the sample in Table 3.1 and that
their target is 21 years old and has never been pregnant. Since the subjects in the sample
dataset who are 21 years old and have had zero pregnancies have diabetes, the intruder
easily discovers that their target has diabetes.

The second type of attack described by Machanavajjhala et al. (2007) is a background
knowledge attack. A background knowledge attack occurs when the attacker uses ad-
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ditional information not present in the table to learn sensitive information from a k-
anonymous dataset. Again, consider Table 3.1.

Example 3.6. Assume that the intruder knows that their target is 22 years old, obese,
and has had one pregnancy. Given the subjects in Table 3.1, the intruder can conclude that
there is a 50% probability that their target has diabetes. In addition, obesity is a known
risk factor for diabetes Diabetes UK (2019a). As such, the probability of the target having
diabetes is greater than 50%.

3.3.2 ℓ-diversity

To protect against homogeneity and background knowledge attacks, Machanavajjhala et
al. (2007) propose ℓ-diversity.

Definition 3.3 (ℓ-diversity). Let D be a dataset containing the columns {x1, . . . , xp};
q ⊆ {x1, . . . , xp} be the set of all quasi-identifying columns; and {s ⊆ {x1, . . . , xp} : |s| =
1∧ s \ q} be a column containing a sensitive attribute. Then, D satisfies ℓ-diversity if, for
all observed combinations of q, there are at least ℓ “well-represented” values for s among
the observations in D that match q.

Machanavajjhala et al. (2007) suggest three definitions for “well-represented”. Distinct
ℓ-diversity requires that, for all observed combinations of q, there are at least ℓ distinctive
values for the sensitive attribute among the observations that match on q. Entropy ℓ-
diversity and recursive ℓ-diversity both place further restrictions on the distribution of
the sensitive attribute within each set of observations that match on q.

Example 3.7. Consider Table 3.1. Notice that all subjects aged 21 years with zero preg-
nancies are diabetic, and all subjects that are aged 21 years with one pregnancy are not
diabetic. By identifying that a subject belongs to one of those sets, we have identified
whether or not they have diabetes. Hence, neither of the sets satisfies 2-diversity. The sets
of observed subjects aged 22 years, with zero or one pregnancy, both satisfy 2-diversity, as
each set contains two distinct values for diabetes1. However, as 2-diversity is not satisfied
for all observed combinations of age and pregnancies, Table 3.1 does not satisfy 2-diversity.

Machanavajjhala et al. (2007) extend the definition of ℓ-diversity for the case of more
than one sensitive attribute. However, doing so involves treating other sensitive variables
as quasi-identifiers, and the larger number of quasi-identifiers can require more extensive
application of masking techniques to achieve ℓ-diversity.

As described in Li et al. (2007), ℓ-diversity has several limitations. First, achieving
ℓ-diversity may be unnecessary for a dataset to protect against harmful disclosures suffi-
ciently. In Example 3.7, we noted that all subjects aged 21 years with one pregnancy in

1For these sets, 2-diversity is satisfied for all three definitions of “well-represented”.
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Table 3.1 did not have diabetes. We were able to learn this because the set does not satisfy
2-diversity. However, the majority of the population does not have diabetes. Presumably,
if the intruder did not have access to Table 3.1, their default assumption would be that
their target was not diabetic. So, the removal of the subjects aged 21 years with one
pregnancy will have a negligible effect on the risk of harmful disclosures. Furthermore,
satisfying ℓ-diversity is challenging for imbalanced variables because some combinations
of the quasi-identifiers may not exist.

A skewness attack occurs when the distribution of the sensitive attributes differs sig-
nificantly from that of the overall population (Li et al., 2007). For example, recall the
earlier example of an intruder who knows that their target is obese, 22 years old, and has
been pregnant once. Previously, we completely glossed over the fact that the incidence
rate of diabetes for a 21-year-old is far lower than 50%. Simply identifying that the target
has a much higher than average probability of diabetes is itself a disclosure of sensitive
information. A similarity attack occurs when sensitive attributes are technically different
but are similar in nature (Li et al., 2007). For example, imagine that Table 3.1 contains an
additional column that shows that all subjects without diabetes have cancer. Meanwhile,
the disclosure risk of diabetes would be unchanged by the additional column. The overall
risk of harmful disclosures would be drastically increased. Now, the knowledge that a
subject is contained in the table is equivalent to knowing that the subject has diabetes or
cancer.

3.3.3 t-closeness

To protect against skewness and similarity attacks, Li et al. (2007) propose t-closeness, as
follows.

Definition 3.4 (t-closeness). Let D be a dataset containing the columns {x1, . . . , xp};
q ⊆ {x1, . . . , xp} be a set of quasi-identifying columns and {s ⊆ {x1, . . . , xp} : s \ q} a
column containing a sensitive attribute.

D satisfies t-closeness if the earth mover’s distance between the distribution of s for
the observations that match q and the distribution of s for all observations in D, is no
more than a threshold t for all observed combinations of q.

While t-closeness can be applied to datasets with multiple sensitive attributes, the
earth mover’s distance can be challenging to calculate for multivariate distributions. An
alternative, in that case, is to independently calculate the earth mover’s distance for each
sensitive attribute in D. Then D satisfies t-closeness if each sensitive attribute satisfies
t-closeness (Li et al., 2007).

Remark. An alternative approach to calculating t-closeness for datasets with multiple
sensitive attributes is to borrow the method for calculating ℓ-diversity for datasets with
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multiple sensitive attributes (Machanavajjhala et al., 2007). For each sensitive attribute,
all other sensitive attributes would be included in the set of quasi-identifiers when calcu-
lating t-closeness. A dataset would satisfy t-closeness if t-closeness was satisfied for each
sensitive attribute.

3.3.4 Differential privacy

Differential privacy is a radically different approach to the other ideas discussed in this
section. To achieve a certain level of protection against disclosure, k-anonymity, ℓ-diversity
and t-closeness each of which define requirements for a tabular dataset. In contrast,
differential privacy defines requirements for a mechanism (or function) to achieve a certain
level of protection against disclosure (Dwork, 2006).

To define differential privacy consider the amount that a probability distribution of the
output of a randomised function, applied to some dataset, is allowed to change when the
dataset changes by a single observation. Let ϵ be the upper bound of this amount. Then,
an ϵ-differential privacy mechanism restrict the amount of influence that a single data
point can have on the output of a randomised function (Dwork, 2006). The larger ϵ is, the
more the probability is allowed to change. This definition of privacy tends to be extremely
restrictive. Let δ denote the probability that the differentially private mechanism, ϵ, does
not hold. Then, (ϵ, δ)- differential privacy is a relaxation of the ϵ-differential privacy
(Dwork et al., 2006).

The post-processing property of differential privacy ensures that the privacy guarantees
also extend to the output of a differentially private algorithm (Dwork & Roth, 2014, p. 19).
Therefore, any data that was generated by an (ϵ, δ)-differentially private model would
also be (ϵ, δ)-differentially private. The ramifications of this result cannot be overstated.
Consider an (ϵ, δ)-differentially private function that outputs data. If the disclosure risk
of ϵ and δ was acceptable, then the disclosure risk of any data that was output by the
function would also be acceptable. Furthermore, since differential privacy does not make
any assumptions about the intruder, the guarantees are not subject to changes in the
knowledge or capabilities of an intruder.

The theoretical guarantees of differential privacy make it a very attractive idea for
disclosure protection. However, the differential privacy mechanisms add noise to the data,
which can reduce utility. The challenge is to develop efficient differential privacy mecha-
nisms that ensure differential privacy without harming utility. The development of these
algorithms is an active topic of research. In Section 4.3, we discuss examples of differen-
tially private models in the literature.



CHAPTER 3. LITERATURE REVIEW: INFORMATION DISCLOSURE 30

3.4 Protecting confidentiality: synthetic data, a solu-

tion

Given the issues with the SDC methods that we have discussed in Section 3.2 and Sec-
tion 3.3, one solution is the creation of synthetic dataset. These datasets would match
the properties of variables and the relationships between them and, in theory, the risk of
disclosure should be lower, since the data is not real. Synthetic versions of confidential
datasets have been released by organisations from several countries.

Examples 3.8. Examples of synthetic versions of confidential datasets include the follow-
ing:

1. the United States Census Bureau’s synthetic Survey of Income and Program Partic-
ipation (SIPP) (Abowd et al., 2006; Benedetto et al., 2017; Benedetto et al., 2013;
U.S. Census Bureau, 2018),

2. the United States Census Bureau’s synthetic Longitudinal Business Database (SynLBD)
datasets (Kinney et al., 2014; Kinney et al., 2011; U.S. Census Bureau, 2013),

3. the Scottish, England & Wales and Northern Irish Longitudinal Survey datasets
(Dennett, 2017; Dennett et al., 2016; Elliot, 2014; Nowok et al., 2017), and

4. the German Institute for Employment Research’s IAB Establishment panel (Drech-
sler, 2009).

Researchers working with any of the aforementioned synthetic datasets are able to
validate their results by submitting code to the organisations that publish the datasets.
Then, the organisation will run the code on the non-synthetic version of the data (U.S.
Census Bureau, 2023). This allows researchers who do not have permission to view con-
fidential datasets to experiment and develop with the low disclosure risk synthetic data
while still being able to obtain results for the real data and simultaneously protect those
in the real data from disclosure by limiting access to the real data. In addition, it has the
advantage of lowering the quality threshold for the data to be useful, therefore, easing the
privacy-utility trade-off.

In the following chapter, we discuss the theory of data generation and describe synthetic
data generation methods.



Chapter 4

Literature review: synthesising data

In this chapter, we cover a variety of methods for generating synthetic data that are
commonly used in the synthetic data literature. Specifically, in Section 4.1, we discuss
the two theoretical frameworks for describing synthetic data distributions. In Section 4.2,
we describe the combining rules necessary for the correct inference of synthetic datasets.
Finally, Sections 4.3 and 4.4 include the two approaches for generating synthetic data:
joint synthesis and sequential synthesis, respectively.

4.1 Frameworks for synthetic data

In 1993, two articles proposing the generation of synthetic data were published in a single
issue of The Journal of Official Statistics, see Rubin (1993) and Little (1993). Within
these articles, Rubin and Little each propose a framework for the generation of synthetic
data. Throughout this thesis, and the wider literature, Rubin’s approach is referred to as
fully synthetic data and Little’s approach as partially synthetic data (see, e.g., Drechsler
(2011a, pp. 7–10)). In this section, we describe the theory and assumptions that underpin
each of these approaches and advantages and disadvantages of each. In Section 4.1.3,
we discuss a common misconception about these approaches and establish terminology to
address this confusion.

4.1.1 Rubin’s framework: fully synthetic data

The fully synthetic data generation framework is based on Rubin’s work on multiple
imputation for missing data, see Rubin (1987). In standard statistical terminology, a
population refers to an entire group of interest and a sample refers to an observed subset of
the population. For example, if we were conducting polling for an election, the population
would be every possible voter and the sample would be the group of voters that were
surveyed.

31
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Within the fully synthetic framework, all units in the population not in the sample are
treated as missing (Rubin, 1993). Fully synthetic data is generated in two steps (Drechsler,
2011a; T. E. Raghunathan et al., 2003). First, synthetic data is generated by imputing
the unobserved, or missing, units in the population. Then, a new sample of synthetic data
is randomly drawn from this population. Now, we will mathematically define the fully
synthetic framework.

The following is given in (T. E. Raghunathan et al., 2003). Let N denote the size of the
population. Then, the observed data is a sample of n observed units from the population.
Let Y o and Y s be the observed and unobserved units from the population, respectively.
Furthermore, write X for the set of variables available for the entire population. Note
that X is allowed to be empty.

Recall that there are two steps to generating fully synthetic data. First, draw m sets
of simple random samples Xnew from the N −n unobserved units. Second, draw synthetic
replacements from the posterior predictive distribution (PPD) for each unit in the sample.
That is,

Y s ∼ P (Y s|Xnew, Y
o). (4.1)

Note, imputing the entire population is unnecessary (T. E. Raghunathan et al., 2003).
Rather than imputing the entire population and sampling from that population, we have
instead drawn a sample Xnew and then imputed that sample.

As with imputation for missing data, a single synthetic sample will underestimate
the uncertainty of the unobserved data (Rubin, 1987). Consequently, multiple samples
must be drawn to correctly account for this uncertainty. In Section 4.2.2, we describe the
combining rules that are required for valid population inferences from multiple samples of
synthetic data.

Recall that the synthetic data was sampled from a population containing n observed
values and (N − n) synthetic values. If we were to faithfully follow the fully synthetic
framework, then n/(N − n) samples in the synthetic data would be real. In fact, for
inferences on fully synthetic data to be valid, the synthetic data must be a random sub-
sample of the N − n samples of Y s and n samples of Y o (Drechsler, 2018). Presumably,
the motivation for the release of synthetic data is an inability to release the observed (or
real) data. Therefore, the inclusion of any observations seems infeasible. For this reason,
most of the literature suggests that only synthetic observations should be released which
implies that the real data is a sample from an infinite population (T. E. Raghunathan
et al., 2003). This assumption and its validity is discussed in Section 4.2.2. For now, it
suffices to say that the assumption is reasonable if N is large (Drechsler, 2018).

In this section, we summarised the theory of the fully synthetic framework for synthetic
data generation. Next, we define Little’s partially synthetic framework.
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Figure 4.1: Generating synthetic data within the partially synthetic framework.

4.1.2 Little’s framework: partially synthetic data

The partially synthetic framework views the problem as a data-masking one (Little, 1993).
We identify a subset of units and variables in the real sample which are too sensitive to
be released. Then, synthetic values are generated for that sensitive subset. The partially
synthetic dataset will consist of the non-sensitive subset of the real sample and the re-
placement synthetic values. We formally define the partially synthetic framework following
Reiter (2003).

Let Y o be N observations of real data, some of which are too sensitive to be released.
Furthermore, write X for the set of variables available for the entire population. Let
Z = (Z1, . . . , ZN) denote the indicators of whether a unit will be replaced with synthetic
values. Where, Zi = 1 if any values of Y o

i will be replaced with synthetic values and Zi = 0

if no values will be replaced. Note that as in the fully synthetic framework, X is allowed
to be empty.

Partially synthetic data is generated by drawing m sets of synthetic replacements for
the sensitive values

Y s ∼ P (Y s|X, Y o, Z). (4.2)

Then, these values are released along with the non-synthetic variables and observations

D = (X, Y s, Y o).

Note, partially synthetic data is conditioned only on the observed data. As such,
sampling from the PPD is not necessary (Reiter & Kinney, 2012).

As we will discuss in Section 4.1.3, the phrase “partially synthetic” is a misnomer. Un-
der the partially synthetic framework, there are no restrictions on the number of variables
or observations that can be replaced. In practice, replacing synthetic values for all units
in the data is common (see, e.g., Reiter and Kinney (2012)). If the entire observed sample
is replaced, then the synthetic sample is not required to be the same size as the original
(Drechsler, 2011b).
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4.1.3 Addressing a common misconception with synthetic data

terminology

Throughout this thesis, we are consistent with the literature and refer to Rubin’s approach
as fully synthetic data and Little’s approach as partially synthetic data. However, in
Section 4.1.1 and Section 4.1.2 we highlighted how certain aspects of these frameworks are
not consistent with their naming. It is easy to think that fully synthetic data is a dataset
consisting of entirely synthetic data and that partially synthetic data must contain both
real and synthetic data. However, as mentioned previously, this is not the case. That is,
a partially synthetic dataset can consist of entirely synthetic data and a fully synthetic
dataset should, in fact, contain real data.

In fact, the distinction between the two frameworks is based on how the synthetic values
are conditioned (Drechsler, 2018). Fully synthetic data is conditioned on the population,
hence, new values are drawn from the PPD, Equation (4.1). In contrast, partially synthetic
data is conditioned on the observed sample, Equation (4.2). Therefore, partially synthetic
values can be drawn conditional on the fitted values of synthesis models (Reiter & Kinney,
2012).

To help ease the confusion surrounding the terminology, in this thesis, we follow the
terminology proposed by G. Raab et al. (2016). That is, entirely synthetic data is called
completely synthetic data and data containing a mixture of real and synthetic observations
or variables is called incompletely synthetic data.

4.2 Variance estimation for synthetic data

In this section, we discuss methods for correctly estimating uncertainty when using syn-
thetic data for inference. We begin by discussing the reasons to synthesise multiple datasets
and then we discuss the procedures for obtaining valid uncertainty estimates from synthetic
data.

4.2.1 Multiple synthesis

The parallels between synthetic data and multiple imputation are very clear, (Rubin,
1993). In both, we model the probability distribution of synthetic (or missing) observations
and then draw values from that probability distribution, Equation 4.1 and Equation 4.2. A
synthetic (or imputed) dataset is a single set of realisations from the synthetic (or missing)
data distribution. Rubin (2004) explains the need for multiple imputation by pointing out
that a single set of realisations cannot represent the uncertainty of the entire missing data
distribution.
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Let us consider the estimation of population quantities from synthetic data. Esti-
mation must account for two sources of uncertainty, sampling uncertainty and estimation
uncertainty. Sampling uncertainty is due to the sampling of observed values from the pop-
ulation. Estimation uncertainty is due to the estimation of the synthetic data distribution
(Rubin, 2004). Multiple synthesis correctly accounts for both sources of uncertainty when
we estimate population quantities (T. E. Raghunathan et al., 2003; Reiter, 2003).

Now let us consider the estimation of observed sample quantities from completely
synthetic data. In that case, we must still account for the uncertainty due to synthesis.
However, we no longer need to care about sampling uncertainty. G. Raab et al. (2016)
show that, to obtain correct inferences for the observed data, a single completely synthetic
dataset is sufficient. Note, this is not true for incompletely synthetic data.

In summary, the estimation of population quantities from synthetic datasets are sub-
ject to two sources of uncertainty. The solution is combining the inferences for multiple
datasets. However, it is possible to correctly estimate the uncertainty of a sample quantity
estimate from a single completely synthetic dataset. In the following section, we discuss
the various combining rules that are available for drawing inferences with synthetic data.

4.2.2 Variance estimators for synthetic data

In the previous section, we justified the use of multiple synthetic datasets, and combin-
ing rules for correct variance estimation. The choice of appropriate combining rules for
synthetic data depends on several factors. These include the synthetic data framework
that was used to generate the data, whether the data is completely synthetic, and whether
we are estimating a population or sample quantity (Drechsler, 2018). In this section, we
shall briefly describe the estimators and the situations for which they are valid. For a
more in depth discussion, Drechsler (2018) contains an excellent summary of all variance
estimators, when they should be used, and provides simulation studies to demonstrate
their properties.

For all variance estimators, we define no, ns and M to be the number of observations
in the real data, the number of observations in the synthetic datasets and the number of
synthetic replications, respectively. Let qm be the point estimate of the unknown scalar
parameter Q, for the mth synthetic dataset, and vm its associated measure of uncertainty.
Then, calculate the following quantities, which are made use of throughout this section.

Mean point estimate

qM =
1

M

M∑
m=1

qm,
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within sample variance

vM =
1

M

M∑
m=1

vm,

and between sample variance

bM =
1

M − 1

M∑
m=1

(qM − qm)
2.

The variance estimator

Tf =
(
1 +M−1

)
bM − vM , (4.3a)

is appropriate for data that is generated following Rubin’s fully synthetic framework (T. E.
Raghunathan et al., 2003). Tf can be negative, so Reiter (2002) proposes the alternative
estimator

T ∗
f = max (0, Tf) + δ

(
ns

no

vM

)
, (4.3b)

where δ = 1 if Tf < 0, and otherwise δ = 0. Tf is also valid for completely synthesised
data that is generated with Little’s framework (Drechsler, 2018).

Recall from Section 4.1.1, that Rubin’s synthetic framework assumes that the sample
is drawn from a population that includes non-synthetic observations. If that assumption
is ignored, it implies that the synthetic data is a sample from an infinite population (T. E.
Raghunathan et al., 2003). The variance estimate will be positively biased (Drechsler,
2011b), where that bias is a function of the sampling rate. Simulation studies by Drechsler
(2018) show substantial bias for very large sample rates (20%), but that bias was negligible
when sampling rates were smaller (1%). Small sampling rates are the norm, so the release
of completely synthetic data that is generated following Rubin’s framework will often be
reasonable. In the rare cases that the real sample is a large proportion of the entire
population, synthesisers should prefer Little’s framework.

The variance estimator for synthetic data that is generated with Little’s approach

Tp = vM +M−1bM , (4.4a)

was derived by Reiter (2003). An extension for the case that ns ̸= no was proposed by
Drechsler (2011b)

Talt =
ns

no

vM +M−1bM . (4.4b)

Simulation studies by Drechsler (2018) show that variance estimates for partially syn-
thetic data are correct for a variety of conditions where the assumptions are not technically



CHAPTER 4. LITERATURE REVIEW: SYNTHESISING DATA 37

valid. However, in cases where the inference is conditional on population level variables,
the variance estimates from partially synthetic data were huge overestimates. Drechsler
(2018) attributes these overestimates to a failure to account for all available population
information.

Recall from Section 4.2.1, that multiple synthetic datasets are not required to estimate
the variance of sample quantities. G. Raab et al. (2016) derive simpler variance estimators,
for completely synthesised data, that do not require the between sample variance.

For synthetic data generated with Little’s framework

Ts =
(
ns/no +M−1

)
vm, (4.5a)

and for synthetic data drawn from the PPD

Ts(PPD) =
(
ns/no +M−1(1 + ns/no)

)
vm. (4.5b)

These are valid estimators for sample variance as long as the synthetic sample is completely
synthesised and includes all variables on which the synthetic data generation model was
conditioned.

Research has demonstrated that as M increases, attribute disclosure risk also increases
(Taub et al., 2018). As such, the simple variance estimators can be utilised in situations
that the disclosure risk of releasing multiple synthetic datasets is too high. This is only the
case if population inference is not required. Consider, a completely synthesised dataset
generated under Rubin’s Framework. Drechsler (2018) shows that these simpler variance
estimators would overestimate the variance and instead recommends Tf , Equation (4.3a).

If MCMC methods are used, the use of combining rules is unnecessary. Instead, chains
from the multiple synthetic datasets can be combined into a single chain, which can be
used to make posterior inferences (Gelman et al., 2014, p. 452; Zhou & Reiter, 2010). A
key advantage of this Bayesian approach is the avoidance of issues with biased or negative
variance estimates, which can occur with Equation (4.3). Simulation studies by Si and
Reiter (2011) found that, if data was synthesised following Rubin’s approach, posterior
simulation was preferred to Equation (4.3a), particularly for low numbers of synthetic
replications.

4.2.3 Synthesis of missing data

Up to this point, we have assumed that data does not contain missing values. In practice
this is rarely true. Failing to correctly account for missingness can lead to biased estimates,
and either overestimate or underestimate uncertainty (Schafer & Graham, 2002; Rubin,
1987, pp. 4–15; Rubin, 2004). Many strategies that are commonly utilised to address
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missing values do not correctly account for the missingness. These include but are not
limited to, the removal of observations, mean value imputation and single imputation.

We briefly discussed why multiple imputation is the correct approach for the inference
of data that contains missing values in Section 4.2.1. There is a vast literature on miss-
ing data imputation (see e.g., Rubin (1987) and van Buuren and Groothuis-Oudshoorn
(2011)), and it is beyond the scope of this thesis to cover the topic in depth. Instead we
focus on the aspects of missing data that are relevant in the synthetic data context. If we
generate synthetic data from a non-synthetic dataset that contains missing values, then
we must account for two sources of uncertainty (Reiter, 2004). The uncertainty that is
due to our estimation of the synthetic data distribution, and the uncertainty that is due
to our estimation of the missing values.

Reiter (2004) describes a two-step procedure for generating synthetic data, that ac-
counts for both sources of variability. For the first step, we generate R sets of complete
data by imputing replacements for the missing values. At the second step, we generate M

sets of synthetic data for each of the R complete datasets. Following similar notation to
Section 4.2.2, the combining rules for inference of data that is generated from the two-step
procedure are as follows. We denote the point estimate of the unknown scalar parameter
Q for the (m, r)th synthetic dataset and its associated measure of uncertainty as qmr and
vmr respectively.

Then we calculate the quantities:

qM =
1

MR

M∑
m=1

R∑
r=1

qmr =
1

M

M∑
m=1

qm,

vM =
1

MR

M∑
m=1

R∑
r=1

vmr,

bM =
1

M(R− 1)

M∑
m=1

R∑
r=1

(qmr − qm)
2 =

1

M

M∑
m=1

bm,

BM =
1

M − 1

M∑
m=1

(qM − qm)
2.

Finally we compute the variance estimator of qM ,

TM = (1 + 1/M)BM − bM/R + vM .

These combining rules only apply to data that is generated following Little’s framework.
Combining rules for fully synthetic datasets are yet to be developed and derivation of these
rules is a topic for future research (Drechsler, 2011a, p. 65).
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4.3 Joint modelling

In this section we discuss joint modelling, which is one of the two approaches for generating
draws from the synthetic data distribution (Drechsler, 2011a, p. 14). Under the joint
modelling approach, we model the data with a multivariate distribution and then draw
synthetic samples from that model. We begin by outlining the general approach to joint
modelling before we discuss specific joint modelling methods from the literature.

Recall that the synthetic data distribution

Y s ∼ P (Y s|X, Y o),

is modelled conditionally on the observed data Y o and population variables X. Note that,
in this thesis, we omit Z for convenience since we always replace the entire dataset with
synthetic values. If we were only replacing some units with synthetic values we would
condition all synthesis models on Z.

Joint modelling assumes that a multivariate distribution can be specified for the syn-
thetic data,

P (Y s|X, Y o) =

∫
P (Y s, θ|X, Y o) dθ

=

∫
P (Y s|X, Y o, θ)P (θ|X, Y o) dθ. (4.6)

where θ denote the model parameters.
Following Drechsler (2011a, p. 14), synthetic data can be drawn from Equation (4.6)

in two steps.

1. Draw θ̃ ∼ P (θ|X, Y o).

2. Draw Y s ∼ P (Y s|X, Y o, θ̃).

Recall that the first step is not necessary for partially synthetic data (Reiter & Kinney,
2012). Under the partially synthetic approach, both X and Y o are samples. Hence,
P (θ|X, Y o) is fixed. Consequently, Y s can be drawn conditional on the posterior modes
or maximum likelihood estimates of θ. In the completely synthetic data setting, synthetic
data is drawn from the posterior predictive distribution, therefore the first step is still
necessary.

Multivariate normal models

Early synthesis approaches modelled the joint data distribution (Equation (4.6)) as multi-
variate normal. This mirrored the state-of-the-art approach for imputation of multivariate
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data at the time (Schafer & Graham, 2002). T. E. Raghunathan et al. (2003) generate syn-
thetic data from a multivariate normal distribution with an inverse Wishart prior placed
on the covariance matrix. Imputation of missing data with this model was described by
Schafer (1997). Mateo-Sanz et al. (2004) introduce a method that uses Latin hypercube
sampling to generate synthetic data from a multivariate normal distribution.

The assumption that continuous data follows a normal distribution is rarely true in
practice. However, the standard statistical approaches, such as log transformations of
skewed variables, can help achieve a data distribution that is close to normal. Synthesis
models can also be robust to departures from assumptions about normality. For example,
Matthews et al. (2009) generate synthetic binary variables with a discretised multivariate
normal model. This model had previously been applied to the problem of missing data
imputation (Bernaards et al., 2006).

Other models for multivariate categorical or mixed data, such as Dirichlet multinomial,
log-linear and general location models are described in the missing data context by Schafer
(1997). Little et al. (2004) replace a subset of observations in a multivariate mixed dataset
with values that are generated from a general location model. However, there are not many
other examples of synthesising multivariate categorical or mixed data in the early synthetic
data literature.

Despite the initial popularity of the joint modelling approach for synthesis of multivari-
ate data. The synthetic data literature followed the trend of the missing data literature,
where sequential modelling became the standard approach for imputing missing values in
multivariate data (T. E. Raghunathan et al., 2001; van Buuren & Groothuis-Oudshoorn,
2011). The flexibility of the sequential modelling approach, which we discuss in Section 4.4,
allows us to synthesise datasets for which the multivariate normal model is completely in-
appropriate. More recently, new models that allow for the specification of more flexible
joint distributions have been applied to the problem of generating synthetic data. For
the remainder of this section, we discuss various methods for modelling the joint data
distribution.

Dirichlet Process Mixture of Products of Multinomial (DPMPM) models

Dirichlet process mixture of products of multinomials (DPMPM) models are a class of non-
parametric Bayesian latent variable models that can model high dimensional multinomial
variables (Dunson & Xing, 2009). Note that any dataset of unordered categorical variables
can be represented as a contingency table. The cells of that contingency table form a high
dimensional multinomial variable, which can be modelled with a DPMPM model.

Examples of applications of DPMPM models include imputing missing values in a
contingency table with 1030 cells (Si & Reiter, 2013), and synthetic generation of a contin-
gency table with 8.7× 107 cells (Hu et al., 2014). Another extension to DPMPM models
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introduces a parameter that can be tuned to balance the utility-privacy tradeoff of the
synthetic data (Hu & Hoshino, 2018).

DPMPM models are capable of handling very large numbers of categories, as evidenced
by the extremely large cell counts of the examples we have mentioned. The number of
cells in the contingency table scales exponentially with the number of variables, and the
number of categories of those variables. As such, the contingency table size will quickly
scale beyond what is possible.

Structural zeros are impossible outcomes for which the corresponding contingency table
cell must be zero (Upton & Cook, 2014). The standard DPMPM model assumes a non-zero
probability of observing any combination of values in the data. Consequently, these models
are not suitable for data with structural zeros. For example, in a dataset of employment
information, one would not expect to find an individual who is both unemployed and
earning a salary. DPMPM models were extended to synthesise data containing structural
zeros by Manrique-Vallier and Hu (2018). The contingency table that they synthesised
contained 5.5× 109 cells, 5.2× 109 of which were structural zeros.

DPMPM models can be fit using the R package NPBayesImputeCat (Hu et al., 2021).
This package contains implementations for both multiple imputation and synthetic data
generation. In addition, it handles structural zeros.

Gaussian mixture models

Gaussian mixture models (GMMs) can be viewed as an extension of the multivariate nor-
mal models that we discussed earlier. Rather than fitting the data to a single multivariate
normal distribution, we assume that the data belongs to one of multiple multivariate nor-
mal distributions. In contrast to the restriction of a single multivariate normal, GMMs
are a flexible model that can fit complex distributions (Bishop, 2006).

There are a few examples in the literature of synthesising data from GMMs. In one,
the minimum prediction volume of a cluster was constrained to reduce the risk of privacy
disclosures occurring (Oganian, 2014). In another, probabilistic k-anonymity was enforced
by constraining clusters to all have a minimum membership probability greater than k/n,
where k is the k-anonymity value and n is the sample size (Oganian & Domingo-Ferrer,
2017). These examples both leverage the clustering of the GMMs for disclosure prevention.
If the GMM is fit without restriction, then outlying observations may be assigned to a
small outlying cluster. However, by enforcing constraints that ensure clusters are of a
reasonable size, the influence of outliers on the model fit is limited.

Generative neural networks: Variational Auto-Encoders (VAEs)

Variational autoencoders (VAEs) are generative neural networks introduced by (Kingma
& Welling, 2014). VAEs use an encoder-decoder pair of neural networks to map between



CHAPTER 4. LITERATURE REVIEW: SYNTHESISING DATA 42

the data and a latent space. The latent variables are assumed to follow some known prior
distribution. New data is generated by randomly sampling latent variables from their
prior distribution. These latent variables are then transformed to the data space by the
decoder network.

Nazábal et al. (2020) describe a general method for the generation of heterogeneous
data with VAEs. This is achieved by specifying a generator that has separate outputs
for each variable. An appropriate probability distribution is chosen for each variable in
the data and, then, the model is trained to optimise an overall likelihood. This overall
likelihood is calculated by summing the log-likelihoods of each variable.

Nazábal et al. (2020) present two formulations of their model. In one formulation, the
prior distribution of the latent variable is formed of independent Gaussian distributions.
This formulation can be too restrictive. As such, in the second formulation of their model,
they place a Gaussian mixture prior on the latent variable.

Generative neural networks: Generative Adversarial Networks (GANs)

Another family of generative neural networks are generative adversarial networks (GANs),
introduced by Goodfellow et al. (2014). GANs consist of a pair of networks, one generates
the data from a random noise input, while the other network is a classifier that learns to
discriminate between real samples of data and samples from the generator network. This
family of models has been successfully applied to many data generation problems. Ex-
amples include image generation, text generation, music generation, and video generation
(Dong et al., 2017; Guo et al., 2017; Saito et al., 2020; Sauer et al., 2021).

While GANs are powerful generators that can learn complex data distributions, they
are also known to be unstable and difficult to train (Arjovsky & Bottou, 2017). One
common issue is mode collapse, a phenomenon where the generator only learns to pro-
duce a small set of outputs. More recently, the Wasserstein GAN (WGAN) variant was
introduced, which rectifies some of these issues (Arjovsky et al., 2017; Gulrajani et al.,
2017).

Choi et al. (2017) use a combination of GANs and autoencoders to generate discrete
medical data. They use an autoencoder to map between data and a latent space. The gen-
erator outputs data in the latent dimension, while the discriminator differentiates between
the real data and the decoded generator output. Torfi and Fox (2020) use a similar setup
with a GAN and autoencoder but with a different architecture for the generator. Specif-
ically, they include 1-dimensional convolutional layers that allow the model to capture
temporal relationships in the data. This model can generate both discrete and continuous
data.
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Generative neural networks: Differentially private GANs

The development of differentially private mechanisms (Section 3.3.4) for training neural
networks is an exciting direction of research. Differential privacy ensures strong privacy
guarantees. Furthermore, the post-processing property ensures that those guarantees will
extend to the output of the model (Dwork & Roth, 2014, p. 19).

Abadi et al. (2016) introduce an (ϵ, δ)-differentially private algorithm for stochastic
gradient descent (DP-SGD) and a method for tracking the privacy loss incurred during
training. Their algorithm achieves differential privacy by clipping and adding noise to
the gradients. Several improvements for differentially private gradient descent were in-
troduced by Mironov (2017). They propose a different relaxation of ϵ-differential privacy.
Their relaxation allows tighter estimates for privacy loss than (ϵ, δ)-differential privacy. In
addition, they simplify the analysis of the Gaussian noise mechanism.

The only part of the GAN that “sees” the data is the discriminator. Consequently,
the generator can be trained with regular stochastic gradient descent. The results from
training GANs with DP-SGD have been mixed so far. A 14 variable dataset was generated
which performed well on the, albeit limited, assessments that they implemented (Frigerio
et al., 2019). A GAN was trained to generate a sequence of blood pressure and heart
rate measurements of comparable quality to the original measurements (Beaulieu-Jones
et al., 2019). In another example, a GAN was trained to generate a high dimensional
dataset of binary variables from electronic health records (Xie et al., 2018). Their results
show that the model had somewhat learned the data distribution, although there was a
noticeable deterioration in quality, even for relatively large values of ϵ. Lin et al. (2019)
found that implementing DP-SGD training destroyed the temporal correlations of the
data, in comparison to regular stochastic gradient descent.

Private aggregation of teacher ensembles (PATE) GAN implements a differentially
private mechanism that does not rely on DP-SGD (Jordon et al., 2019). In PATE GAN,
the discriminator consists of an ensemble of “teacher” networks and a single “student”
network. The teacher networks are trained to discriminate on a disjoint subset of the real
labelled data, while the student network learns to discriminate from a noisy aggregation
of the labels that are output by the teachers. Training the teachers on disjoint subsets
and training both the student and generator on noisy labels from the teachers, ensures
that each query of PATE GAN is differentially private with a known privacy cost.

Stadler et al. (2022) carried out a comparison of the disclosure risk of several imple-
mentations of differentially private GANs. They discovered that the disclosure risk of data
that was generated by the models was higher than one would expect, given the differential
privacy guarantees. Upon investigation, they found that the models required metadata,
such as the ranges of variables, to run. For convenience, they automatically extracted this
from the data but this was outwith the differentially private mechanism. Consequently,
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the models were not actually differentially private. Stadler et al. (2022) patched the mod-
els and found that the disclosure risk was significantly reduced, however, the quality of
data generated was also reduced.

4.4 Sequential modelling

Under the sequential modelling approach, synthetic data is generated one variable at a
time from a sequence of conditional models. This approach is analogous to the popu-
lar multivariate imputation by chained equations (MICE) approach to handling missing
data (van Buuren & Groothuis-Oudshoorn, 2011). We begin with a general overview of
sequential modelling, before we outline the specifics of the sequential modelling step for
both regression and decision tree models in Sections 4.4.2 and 4.4.3.

Let yoj and ysj be the observed and synthetic vectors for the jth variable to be synthe-
sised, and θj be the model parameters for fj, the model from which the jth variable will
be synthesised,

Y o = (yo1, . . . , y
o
p),

Y s = (ys1, . . . , y
s
p),

θ = (θ1, . . . , θp).

The parameterised joint data distribution in Equation (4.6) is factorised into the product
of univariate conditional distributions,

P (Y s, θ|X, Y o) = P (ys1, . . . , y
s
p|X, Y o, θ)P (θ|X, Y o),

≈
p∏

j=1

P (ysj|X, Y o, Y s
−j, θj)P (θj|X, Y o),

where Y−j denotes the first through (j−1)th columns of the matrix Y (T. E. Raghunathan
et al., 2001).

Draws are approximated from the joint distribution by sequentially drawing from the
univariate conditional distributions of each variable j = (1, . . . , p) :

1. Draw θ̂j ∼ P (θj|X, Y o
−j).

2. Draw ysj ∼ fj(y
s
j|X, Y o, Y s

−j, θj = θ̂j).

A sequential modelling step consists of training a model on the observed data and then
drawing values of a synthetic variable conditional on previously synthesised variables (T. E.
Raghunathan et al., 2001). For fully synthetic data, model parameters are drawn from
the PPD. In the case of partially synthetic data, this is unnecessary. As such, step 1 can
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be skipped (Reiter & Kinney, 2012) and ysj is drawn conditional on the posterior modes
or maximum likelihood estimates of θj.

4.4.1 Order of synthesis

Sequential modelling requires us to specify the order that variables are synthesised. There
is some evidence that the quality of synthetic data is affected by this choice (El Emam et
al., 2021; Goncalves et al., 2020; G. M. Raab et al., 2017). Several strategies for deciding
synthesis order are suggested and discussed in the literature. However, Caiola and Reiter
(2010) note the lack of any mathematical theory to suggest a particular ordering strategy.
In this section, we discuss the following commonly utilised strategies for deciding the order
of synthesis:

a) Empirical optimisation,

b) strongest predictors first,

c) high cardinality variables last, and

d) using prior knowledge of the relationships between predictors.

An obvious strategy is to choose an ordering that optimises some metric for utility
or privacy, although this is problematic for several reasons. There is the difficulty of
specifying a good metric for either utility or privacy. We discuss this in Chapters 5 and
6, so for now lets assume that we have a good metric to score synthetic data. The other
problem is the computational cost of optimising the order of synthesis. Not only does the
computation time of sequential synthesis increase with the number of variables. As the
number of variables increases, the number of permutations for synthesis order increases
exponentially. As such, it very quickly becomes impossible to search through more than a
fraction of possible orderings. El Emam et al. (2021) explore a particle swarm optimisation
approach for selecting the order of synthesis and find that it achieves the optimal order
faster than a random search. The particle swarm approach is promising, however, their
study is limited to a comparison of two strategies for choosing order of synthesis. Further
research is necessary to compare the utility of particle swarm optimisation with other
strategies.

For datasets where optimisation is computationally infeasible, strategies b) through d)
select the order of synthesis without repeatedly synthesising datasets. G. M. Raab et
al. (2017) recommends improving utility by synthesising the variables with the strongest
variables together and near the beginning of the sequence. In theory, this allows them to
have the greatest affect on each other, before the synthesis models are diluted by other
variables. Caiola and Reiter (2010) follow a similar reasoning when they suggest generating
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incompletely synthetic data based on the number of replacement values. They presume
that quality of the synthetic variables will be highest towards the start of the sequence,
although there has been little research to verify whether this improves utility. G. M. Raab
et al. (2017) noted that the variable ‘occupation’ had a strong effect on the utility of their
synthetic data, so they experimented with synthesising occupation first. This improved
the utility of other variables that were synthesised early in the sequence. However, the
utility of variables synthesised towards the end of the sequence decreased.

For data that is synthesised with decision trees, synthesising the variables with many
categories at the end of the sequence will speed up synthesis (Caiola & Reiter, 2010).
Recall that the computational complexity of partitioning unordered categorical variables
scales exponentially with the number of categories (see Section 2.2). When we sequentially
synthesise data, we generate each variable by conditioning on all previously synthesised
variables. Consequently, we can expect to partition variables that are synthesised earlier in
the sequence more often than those that are synthesised later. Therefore, by synthesising
variables with many categories at the end of the sequence, we can drastically reduce the
computational complexity of fitting the entire sequence of models.

There is some speculation that synthesising variables with low cardinality first will also
improve the quality of synthetic data (El Emam et al., 2021). Goncalves et al. (2020) find
that, when data is synthesised with logistic regression and low cardinality variables are
synthesised first, the correlation matrices are more similar to the original data. However,
they do not find any improvement from synthesising low cardinality variables first for
CART synthesised data.

The final strategy we will discuss is to select a synthesis order that is logically consistent
with our prior knowledge of the relationships between variables. For example, Reiter
(2005a) opts to synthesise alimony and child support payments after synthesising education
and marital status. This strategy encourages the use of synthesis models that are closer
to the underlying mechanisms that cause the real data. While conceptually this is an
appealing strategy, we are not aware of any research demonstrating that it improves the
quality of synthetic data. Furthermore, there will often be ambiguity when deciding on the
logical synthesis order. For example, Reiter (2005a) follows the logical order of synthesising
marital status before alimony payments, but should child support be synthesised before
or after alimony? One possible solution to deal with such ambiguity is to use strategy b)
or d) as a tiebreaker.

In summary, there is a lack of literature on the topic of choosing the order of synthe-
sis. Several common strategies for selecting synthesis order are justified based on their
hypothesised benefits or the results of limited experimentation. So further research into
understanding how synthesis order affects the quality of synthetic data is necessary. Ideally
we would treat the order as a parameter to optimise, however, that can be time consuming
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when there are many permutations. It is unclear from current research how much utility
is gained by changing the order of synthesis. If the gains are small, then it may be better
to spend computation time on optimising other modelling parameters.

4.4.2 Synthesising with regression models

Regression models for the sequential modelling step can be fit with maximum likelihood
or Bayesian methods. Bayesian methods lend themselves well to fully synthetic data, as
new values can be directly drawn from the posterior predictive distribution. In the case
that a linear regression model was fit with maximum likelihood, Rubin (1987, p. 167)
presents a method for drawing β and σ2 from their posterior predictive distributions,
which we describe in the next section. In the literature, this method is also referred to as
the Bayesian method. Fitting the model with maximum likelihood is equivalent to using
a uniform prior. As such, it may not meet some statistician’s definitions of Bayesian.

In the partially synthetic case, new synthetic values can be drawn conditional on the
maximum likelihood estimates,

Y s ∼ P (Y s
j |X, Y s

−j, θ̂j),

where θ̂j are the maximum likelihood estimates for parameters of the jth model (Reiter &
Kinney, 2012).

Synthesis using linear models: The Bayesian method

For a linear regression model, we assume the jth synthetic variable belongs to the distri-
bution

yi ∼ N (xT
i β, σ

2),

where the design matrix of predictor variables

xT
i = (1, xi1, . . . , xip),

includes the (j − 1) variables that were already synthesised and any additional design
variables such as stratification indicators.

Recall the least squares estimates given in Equation (2.16). The population statistics
β and σ2 are these least squares estimates given via the relationships

β ∼ N
(
β̂, (XTX)−1σ2

)
,

and

(n− p− 1)σ̂2 ∼ σ2χ2
n−p−1.
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For the detailed mathematics of this, see (Hastie et al., 2009, p. 47).
For generating fully synthetic data, the linear regression is fit to the no observations

of data, and we then sample ys from the population distribution. Rubin (1987, p. 167)
describes the procedure for this as follows:

1. Draw a random variable g ∼ χ2
n−p−1 and let

σ2
∗ =

σ̂2(n− p− 1)

g
.

2. Draw p− 1 independent random variables z ∼ N (0, 1) and let

β∗ = β̂ + σ∗(X
TX)−

1
2z,

where (XTX)−
1
2 is the lower triangular matrix from the Cholesky factorisation of

(XTX)−1.

3. Draw new synthetic values for i = (1, . . . , ns)

zi ∼ N (0, 1),

ysi = xT
i β∗ + ziσ∗.

For partially synthetic data, the distribution of the original sample is being synthesised
rather than the distribution of the population to which the original data belongs. There-
fore, β∗ and σ2

∗ can be replaced with the least squares estimators β̂ and σ̂2 and skip to
step 3.

In practice it is rare that continuous data follows a normal distribution. However,
as in many other statistical contexts, linear regression is fairly robust to deviations from
normality and transformations of yi can help to achieve normality. In the case that yi

can not be transformed to a normal distribution, a generalised linear regression may be
appropriate.

Synthesis using generalised linear models: The Bayesian method

Data can be synthesised from generalised linear models (Section 2.1.1) with a similar
procedure to linear regression. Rubin (1987, pp. 169–170) describes the generation of
imputations from a logistic regression model using the procedure which assumes that the
sampling distribution of model parameters are normally distributed with covariance equal
to the inverse Fisher information. We know that the sampling distribution of the model



CHAPTER 4. LITERATURE REVIEW: SYNTHESISING DATA 49

parameters will converge to this for large sample sizes. However, convergence is not guar-
anteed for the finite sample sizes that are dealt with in practice. Brand (1999, pp. 93–95)
and T. E. Raghunathan et al. (2001, Appendix) describe variations for generating impu-
tations from multinomial and Poisson distributions, respectively. Kleinke and Reinecke
(2013) describe variations for synthesising from negative binomial, zero-inflated Poisson
and zero-inflated negative binomial distributions. Rubin (1987) describes the procedure for
generating synthetic data from a generalised linear regression with the Bayesian method
as follows:

Let β̂ be the maximum likelihood estimates for the parameters of a generalised linear
regression model

Y ∼ p(Y |X,β),

g(E[Yi]) = g(µi) = xT
i β,

where

• yo
i = (y1, . . . , yno) are real observations of the jth variable,

• Xo = (xo
1, . . . ,x

o
n)

T is the (no×p) design matrix of real predictor variables — which
includes the real observations of all previously synthesised variables Y o

−j and any
additional design variables such as stratification variables,

• Xs = (xs
1, . . . ,x

s
n)

T is the (ns × p) design matrix of synthetic predictor variables
— which includes all previously synthesised variables Y s

−j and any additional design
variables such as stratification variables.

The steps for synthesising data from this model are as follows:

1. Draw p independent random variables z ∼ N (0, 1) and let

β∗ = β̂ + (XoTXo)−
1
2z,

where A− 1
2 is the lower triangular matrix from the Cholesky factorisation of a matrix

A.

2. Draw ns values of ysi :
ysi ∼ p(y|xs,β∗).

The steps for which are:

(a) Draw ns values of µi as

µi = g−1
(
(xs

i)
T β∗ + zi

)
,
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where zi ∼ N (0, 1) for i = (1, . . . , ns).

(b) Generate random draws from the probability distribution of ysi , conditional on
the parameter µi.

For example:

• If ysi has a Poisson distribution,

ysi ∼ Poi(µi).

• If ysi has a Bernoulli distribution (Section 2.1.1),

ysi ∼ Bernoulli(µi).

• If ys
i has a categorical distribution (Section 2.1.1),

ys
i ∼ Categorical(µi),

where µi contains the predicted probabilities of each category.

For partially synthetic data, we can replace β∗ with β̂ and skip directly to step 2.

4.4.3 Synthesising with decision tree models

Classification and regression tree (CART) models can generate synthetic variables within
the sequential framework by doing the following. First, traversing the fitted tree according
to the values of the already synthesised variables for an observation until a terminal node is
reached and then second, randomly sampling a new value from the terminal node (Reiter,
2005b).

Let yo
j be the real observations of the variable to be synthesised and let Y o

−j and Y s
−j

be the (no × (j − 1)) real and (ns × (j − 1)) synthetic matrices of variables that were
synthesised at the previous j − 1 steps.

To generate synthetic values for the jth variable ys
j from a decision tree:

1. Fit a decision tree that partitions the non-synthetic data into T disjoint subsets,

f
(
yoi,1, . . . , y

o
i,(j−1)

)
−→

{
Rt : t = 1, . . . , T

}
,

such that
Yt =

{
yoi,j : f

(
yoi,1, . . . , y

o
i,(j−1)

)
= Rt

}
,

are the subsets that are mapped by f to Rt.

2. For i = 1, . . . , ns;
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(a) Find the subset to which the ith synthetic observation is mapped by f ,

Rt = f
(
ysi,1, . . . , y

s
i,(j−1)

)
.

(b) Uniformly draw a synthetic observation from the corresponding set of observa-
tions

ysi,j ∼ U(Yt).

Random forests

Caiola and Reiter (2010) show how random forests can be used to generate synthetic
categorical data by drawing synthetic observations from the combined set of leaves that
the trees in the forest predict. We summarise their explanation now. To generate synthetic
values for the jth variable ys

j from a random forest:

1. Fit a random forest model containing B trees

frf
(
yoi,1, . . . , y

o
i,(j−1)

)
−→

{
B⋃
b=1

fb
(
yoi,1, . . . , y

o
i,(j−1)

)}
,

where the bth tree partitions the non-synthetic data into Tb disjoint subsets

fb(y
o
i,1, . . . , y

o
i,(j−1)) −→ Rtb ,

Ytb = {yoi,j : fb(yoi,1, . . . , yoi,(j−1)) = Rtb},

for tb = 1, . . . , Tb.

2. For i = 1, . . . , ns;

(a) Find the set of real observations to which the ith synthetic observation is
mapped by frf ,

Y =

{
B⋃
b=1

Ytb : fb
(
ysi,1, . . . , y

s
i,(j−1)

)
∈ Rtb

}
,

(b) and uniformly draw a synthetic observation from that set,

ysi,j ∼ U(Y).

In Section 2.2.1 we discuss general hyperparameter tuning of random forests, but there is
limited research into hyperparameter tuning in the context of synthetic data generation.
Caiola and Reiter (2010) do not carry out any hyperparameter tuning and synthesise data
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from random forests with 500 trees. Their justification is that 500 trees is a common choice
when fitting random forests. Shah et al. (2014) investigate the effect of the number of trees
parameter in the closely related context of missing data imputation. They find that the
quality of categorical variable imputations is similar for forests with 10 and 100 trees, and
the bias of parameter estimates for continuous variables increases with the number of trees
in the forest. However, these results are based on a single analysis of a single study, so
it’s not clear whether they will generalise to missing data imputation of other datasets
and it’s even less clear whether they will generalise to data synthesis. Ideally, hyperpa-
rameters should be chosen through hyperparameter tuning. But the computational cost
of synthesising large datasets with random forests can be high, so the additional cost of a
hyperparameter search may be prohibitive.

Reducing disclosure risk of decision tree synthesised data

Decision tree models tend to be strong predictors. This helps to produce high-quality data
but it can lead to overfitting, which can be a problem from a disclosure standpoint. Reiter
(2005b) suggests several methods synthesisers can use to control the disclosure risk of the
decision tree models. These methods include reducing the complexity through pruning,
enforcing some minimum number of observations per terminal node, and smoothing the
leaves of trees before drawing samples of numeric variables

Ŷt = s (Yt)∀t, (4.7)

where s is some smoothing function.
The R package synthpop (Nowok et al., 2016) applies smoothing to the entire set of

synthetic values after they have been drawn,

ŷs
j = s

(
ys
j

)
. (4.8)

By default, synthpop smooths with cubic splines (James et al., 2013, p. 277), although
kernel density estimation and rolling average methods are available. In the case of random
forest models, smoothing can be applied to the set of observations to which the forest maps.

Smoothing the data allows the use of smoothing functions that have a minimum value
requirement greater than the minimum node size and it is more computationally efficient
than smoothing the leaves. Intuitively, smoothing the data rather than the leaves will
better protect outliers, especially for trees with a small minimum node size. We are not
aware of any research into the differences in data quality or disclosure risk from smoothing
the leaves or the data.

Disclosure risk can also be managed by controlling the size of the tree. Larger trees
are thought to generate higher quality data with a greater risk of disclosure, and vice
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versa for smaller trees (Reiter, 2005b). Tree size can be controlled by either specifying
a stopping condition for the recursive splitting algorithm, or pruning trees until some
disclosure criteria have been satisfied.

Generating fully synthetic data from decision trees using the bootstrap

The methods for generating synthetic data from decision tree models described in the
previous section are also appropriate for generating partially synthetic data. They do not
account for the uncertainty of sampling the observed data from the population. Therefore,
they are not appropriate for making inferences about the entire population. van Buuren
and Groothuis-Oudshoorn (2011) describes the bootstrap procedure which incorporates
this uncertainty by sampling with replacement from the observed data and fitting models
to the resampled dataset. Mathematically, it is written as follows. The observed data
Xo

−j, which is fixed, is replaced with a non-parametric, non-informative multinomial prior

X̃−j ∼ Multinomial (no, ω̂) ,

where each unique row xo
i ∈ Xo

−j is an event with probability equal to the observed
proportion of rows in Xo

−j that are equal to xo
i (Hastie et al., 2009, pp. 271–272).

This bootstrapping procedure can also be applied to many other data synthesis proce-
dures. For example, it can be used as an alternative to the regression synthesis methods
described in Section 4.4.2.

4.4.4 Examples of sequential modelling

The strength of the sequential approach lies in its flexibility. A model is specified for each
variable, which allows for easy handling of data that contains a mixture of data types. The
data synthesiser can select models that are tailored to the complexities of each variable
and incorporate specific domain expertise.

T. E. Raghunathan et al. (2001) describes how, when imputing missing data, the re-
gression model for each variable could be chosen to match its distribution. For example,
a linear regression on a log transformed variable would be appropriate for a continuous
variable that was right skewed; or a logistic regression for a binary variable; or a Pois-
son regression for a count variable. Drechsler, Bender, et al. (2008) and Reiter (2005a)
synthesise variables with a combination of logistic, multinomial logistic and linear regres-
sions. Kinney et al. (2011) use linear regression models with a one year lag to sequentially
generate values for a variable that was measured repeatedly over several years. Pistner
et al. (2018) use quantile regression to synthesise variables with heavy tails. Sakshaug
and Raghunathan (2010) use a hierarchical regression model to synthesise spatial data.
To introduce hierarchical structure, they stratify the data and independently fit regression
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models to each stratum. Then the coefficients from the stratified regressions are modelled
as multivariate normal, conditioning on group level covariates.

Non-parametric models, such as classification and regression trees (CART) and support
vector machines (SVMs), have also been successfully applied within the sequential frame-
work (Drechsler, 2010; Drechsler & Reiter, 2010; Reiter, 2005b). In contrast to regression
approaches for data synthesis, there are not many design considerations when specifying
a CART synthesis model. For example, to generate synthetic data with regression, an
appropriate distribution must be specified for each variable. This can be time-consuming
and, for some variables, a distribution that fits well may not even exist. G. Raab et al.
(2016) found that regression models were inappropriate for the synthesis of some vari-
ables. The real dataset contained two age variables, measured at 10 year intervals, and
there was also an interaction effect between sex and marital status. When neither the
10 year difference of the age variables or the relationship between sex and marital status
were explicitly specified, the CART data was able to replicate both relationships, while
the regression synthesised data failed to replicate either.

The results of the few studies that compare non-parametric models for synthesis favour
CART. Drechsler and Reiter (2011) replace the quasi-identifying variables in samples
from a census dataset with synthetic values that are generated from CART, bagging,
random forest and SVMs. The quality of data generated from each method is evaluated
by comparing the distributions of descriptive statistics and the coefficients of regression
models. We discuss this method of synthetic data evaluation in Section 5.4.1. Of the
four methods, the 95% confidence intervals for the CART synthesised datasets have the
highest coverage probability, followed closely by SVM, with a large drop off in the coverage
probability for both of the ensemble methods of synthesis. Caiola and Reiter (2010) carry
out a similar comparison, replacing the quasi-identifying variables in a census dataset with
synthetic values that are generated from CART and random forest models. They evaluate
the quality of the synthetic datasets by fitting regression models to each and comparing
which model’s coefficients are closer to the non-synthetic data. Results are inconclusive,
some coefficients are closer for the random forest data and others for the CART data. The
results of both studies are somewhat surprising, given that we would expect the ensemble
methods to outperform the single CART model at a standard prediction task. Given that
these are only two examples, and both evaluate the models in the context of incompletely
synthesised data, we can’t be sure that the results are generalisable to either completely or
incompletely synthesised datasets. Furthermore, neither study carries out any parameter
tuning for the synthesis models, which may improve the performance.

Stratification can be implemented as a means of improving the quality of synthetic
data or reducing the computational complexity of the synthesis model. Alfons et al. (2011)
and Drechsler and Reiter (2011) stratify their data before synthesising each strata inde-
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pendently, but they do not compare the results of stratification and non-stratification. A
stratification approach is also applied by Yu et al. (2017), they replace geographical indica-
tor variables with synthetic values that are generated from increasingly complex synthesis
models. The utility of synthetic data from each model is evaluated by comparing the %
difference and 95% confidence interval overlap for sample statistics and the coefficients of
regression models. Synthetic data performance for an inference task (see Section 5.6) is
evaluated by comparing the goodness of fit statistics for regression models. The results of
these evaluations demonstrate that, by first stratifying patients based on race, ethnicity
and cancer stage, data utility can be improved without major compromises to privacy.
G. M. Raab et al. (2017) stratifies the data by a high cardinality categorical variable in
order to reduce the computational complexity of sequential synthesis.

There are several software packages available that can generate synthetic data with a
sequential approach. These include, the standalone software IVEware (T. Raghunathan
et al., 2016), the R package mice (van Buuren & Groothuis-Oudshoorn, 2011) and the R
package synthpop (Nowok et al., 2016).



Chapter 5

Literature Review: assessing the utility
of synthetic data

In this chapter, we consider methods for assessing the utility of synthetic data.

Definition 5.1 (Utility). Consider a synthetic dataset that is substituted in place of real
data for some purpose. A useful synthetic dataset is one that can be substituted with
minimal difference in the process or outcomes. The smaller the difference, the higher the
utility of the synthetic dataset.

Snoke et al. (2018) group methods for assessing the utility of synthetic data into two
broad categories, general and specific utility. General utility measures aim to quantify
the similarity between the distributions of synthetic and real data. Synthetic data with
high general utility may be relatively close in “distance” to real data. However, there is no
guarantee that the measure of distance captures the aspects of the data that correspond
to being useful. Specific utility methods focus on particular properties or potential uses
of data that a user would find desirable or useful. Examples of methods of specific utility
include sample statistics and determining how the synthetic data performs as a substitute
for real data in a particular task.

Ultimately, the differences between general and specific utility methods are fairly ar-
bitrary and distinctions between the two often can be blurred. We do not find this clas-
sification of general or specific utility to be particularly helpful. As such, in our review of
utility assessment methods we categorise them by methods that are similar. In this chap-
ter, we review utility assessments from the literature of the following categories, measures
of distributional similarity (Section 5.1), model based discriminators (Section 5.2), plots
(Section 5.3), sample statistics (Section 5.4), qualitative feedback (Section 5.5), and task
performance (Section 5.6).

56
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5.1 Measures of distributional similarity

We can view utility (Definition 5.1) through the lens of information loss, where the utility
of a synthetic dataset is inversely related to the information loss from approximating the
real data distribution with the synthetic data distribution. Various measures are used
to quantify this information loss or equivalently, the statistical distance between the two
distributions. Collectively, we will refer to these as measures of distributional similarity. In
the synthetic data literature, the Kullback-Leibler divergence is probably the most widely
used of these measures, see e.g., (Debnath et al., 2021; Goncalves et al., 2020; Karr et al.,
2006).

Let P and Q be continuous random variables with probability density functions p and
q. Then, the KL divergence from P to Q is defined as

DKL

(
P || Q)

)
=

∫
Rk

p(x) log

(
p(x)

q(x)

)
dx. (5.1)

The KL divergence can be difficult to calculate for larger k. Although, if the data is
multivariate Gaussian then a closed-form solution exists, see (Duchi, 2014).

Other measures of distributional similarity, which have been applied to synthetic data
are earth mover’s distance (Wiese et al., 2019) and log-likelihood (Collier et al., 2021).
However, these are also difficult to compute for higher dimensional data. Given the diffi-
culty of computing these distributional similarity metrics for multivariate data, it is com-
mon to instead compute them for the marginal distributions (Collier et al., 2021; Debnath
et al., 2021; Goncalves et al., 2020; Wiese et al., 2019). While this does significantly
ease computation, it comes at the cost of losing all information about the multivariate
relationships in the data.

When similarity metrics do not consider dependency structures in the data, analysts
can instead take a pragmatic approach and use plots to verify that dependency structures
are preserved in multivariate synthetic datasets. In Section 5.3, we describe examples of
plots for checking multivariate and conditional relationships in synthetic datasets. Alter-
natively, there are simple measures, such as pairwise correlation difference, that compare
aspects of the multivariate relationships between datasets.

Pairwise correlation difference (PCD) is a single number summary, which measures the
similarity of the correlations of two datasets (Goncalves et al., 2020). They define PCD
as follows:

pcd(Xo,Xs) = ||cor(Xo)− cor(Xs)||F, (5.2)
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where ||.||F is the Frobenius Norm (Golub & Van Loan, 1996, p. 55) and

cor(X) =


ρ11 . . . ρ1p
... . . . ...
ρp1 . . . ρpp

 ,

is the matrix of Pearson correlation coefficients for pairs of columns in the (n× p) matrix
of continuous variables X,

ρij =
Cov(xi,xj)

σiσj

. (5.3)

PCD can quickly highlight large differences in the correlations of synthetic data and
real data. Information is lost when the correlation matrix is distilled down to a single
number. Furthermore, its use as a utility measure is limited because the Pearson correla-
tion, Equation (5.3), is not appropriate for categorical variables or non-linear relationships
between variables.

5.2 Model based discriminators

The next class of utility assessments use models that try to distinguish between real and
synthetic data. The idea is that when the synthetic data has a similar distribution to the
real data, the discriminator model should struggle to distinguish between the two.

The use of model-based discriminators is commonplace in the machine learning liter-
ature. The Inception score method (Salimans et al., 2016) uses the Inception classifier
(Szegedy et al., 2015) to assess image-generating GANs. The GANs are scored on the
confidence and diversity of the Inception classifier’s (Szegedy et al., 2015) predictions.
Debnath et al. (2021) and X. Zhang et al. (2018) both applied a model-based discrim-
inator to the problem of evaluating the quality of images generated by GANs. In each
paper, a neural network was trained to classify a sample of real and GAN-generated im-
ages as real or synthetic. They formulate this as a hypothesis test by calculating the
Jenson-Shannon divergence between the distribution of discriminator predictions and a
Bernoulli(0.5) distribution.

One of the first examples of applying model-based discriminators to synthetic data is
propensity score (Woo et al., 2009). The propensity score is used throughout the synthetic
data literature, see, e.g., (Bowen & Snoke, 2020; Oganian, 2014; Oganian & Domingo-
Ferrer, 2017; Pistner et al., 2018; Snoke et al., 2018). Propensity scores are calculated
by training a model to discriminate between real and synthetic data and then scoring the
synthetic data based on how well the model discriminates.

Following the definitions of (Bowen & Snoke, 2020; Oganian, 2014; Oganian & Domingo-
Ferrer, 2017; Pistner et al., 2018; Snoke et al., 2018), the matrix that contains n = no+ns
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rows xi is written as
X =

[
Xo Xs

]T
,

where
i =

[
i1 · · · ino ino+1 · · · ino+ns

]T
,

is a vector of indicators for whether observations are real or synthetic

ii =

0, xi ∈Xo,

1, xi ∈Xs.

In addition, f : X → i is called the discriminator, a binary classifier that outputs a
probability that each xi is synthetic

pi = P (ii = 1|X).

The propensity scores for each observation are the predicted probabilities from the trained
model

p̂i = f(xi),

from which the single number summary for evaluating the utility of a synthetic dataset is
calculated as

pMSE(Xo,Xs) =
1

n

n∑
i=1

(
p̂i −

ns

n

)2
. (5.4)

If a discriminator model can distinguish between the original and synthetic data, then
the propensity scores will be close to zero or one and pMSE will be larger. On the other
hand, if a discriminator model struggles to distinguish between the real and synthetic
observations, then propensity scores will be close to ns/n and pMSE will be smaller. It is
important to note that, while pMSE will be low when the original and synthetic datasets
have high similarity, this can also occur when the discriminator is poorly specified and
unable to detect differences in the data. For example, pMSE is trivially optimised by the
discriminator

i ∼ Bernoulli
(ns

n

)
.

Woo et al. (2009) suggest improving the quality of the discriminator by including second-
order and third-order terms of variables. For any dataset with a reasonable number of
variables, this may require fitting an extremely large regression model and still may not
result in a good discriminator. Bowen and Snoke (2020) note that different discriminators
will consider different aspects of distributional similarity and recommend comparing the
results from multiple discriminator models.

Small pMSE values can indicate high utility. However, interpreting “small” pMSE val-
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ues is problematic for several reasons. First, the definition of small is relative. Second,
pMSE is minimised when the original and synthetic data are identical which would gen-
erally be highly undesirable for synthetic data. To address difficulties with interpreting
pMSE, Snoke et al. (2018) propose normalising by dividing the pMSE by a null value

pMSEratio (Xo,Xs) =
pMSE (Xo,Xs)

pMSEnull (Xo)
. (5.5)

If the discriminator is a logistic regression model with k − 1 degrees of freedom, then the
null pMSE has a chi-squared distribution

pMSEnull ∼
(no/n)

2 (ns/n)

n
χ2
k−1, (5.6)

with expected value

E[pMSE] =

(
k − 1

n

)(no

n

)2 (ns

n

)
,

and standard deviation

SD[pMSE] =

√
2(k − 1)

n

(no

n

)2 (ns

n

)
.

For discriminator models where the number of fitted parameters is not fixed, such as
CART, Bowen and Snoke (2020) suggests the following. First, estimate the mean and
standard deviation by repeatedly generating pairs of data by sampling the original data
with replacement. Then, calculate the pMSE, as given in Equation (5.4), for those pairs.

Algorithm 1 Bootstrapped pMSEnull estimate (Bowen & Snoke, 2020)

1: Inputs nr, X =
[
x1 · · · xn

]T
2: for r : 1, . . . , nr do
3: X1,X2 ← sample (X)
4: pMSE(r) ← pMSE (X1,X2)
5: end for
6: E[pMSEnull]← 1

nr

∑
r pMSE(r)

7: SD[pMSEnull]←
√

1
nr

∑
r

(
pMSE(r) − E[pMSEnull]

)2
8: return E[pMSEnull], SD[pMSEnull]

pMSE ratios that are greater than one indicate that the discriminator model has better
performance discriminating between Xo and Xs than between two samples of real data.
pMSE values are only comparable if the discriminator model is the same. For a CART
discriminator, this means that the complexity parameter is fixed. As such, Bowen and
Snoke (2020) use cross-validation to choose the complexity parameter of the CART model
used for all pMSE and pMSEnull values.
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5.3 Plots of data distributions

Another method for assessing utility is to compare the univariate distribution variables
from the real and synthetic datasets. This comparison can highlight when the distributions
of synthetic variables are wrong. For numerical variables, histograms (Choi et al., 2017),
cumulative distribution function (CDF) plots and boxplots (Alfons et al., 2011; Lin et al.,
2019; Templ & Alfons, 2010) have been used to compare distributions. For categorical
variables one can compare the proportions of each level in the real and synthetic data
(Choi et al., 2017; Drechsler, 2010; Kinney et al., 2011).

For multivariate data, univariate plots do not provide a complete picture. Hence,
conditional distributions are frequently plotted to determine whether relationships between
variables have been preserved. Alfons et al. (2011) show how relationships between pairs
of variables are preserved in synthetic data by using mosaic plots and plotting the relative
differences between coefficients of contingency tables. Note that both can be difficult to
interpret for more than a few variables. Beaulieu-Jones et al. (2019) plot pairwise Pearson
correlation coefficients to check whether strong relationships between pairs of variables
are preserved. However, the interpretability of these plots also scales poorly with the
number of variables. Hu and Hoshino (2018) and Hu and Savitsky (2021) plot the densities
of the differences in relative frequencies for all one-way, two-way, and three-way cross-
tabulations. The plots show larger peaks at zero when the relative frequencies between
the real and synthetic cross-tabulations are close. Manrique-Vallier and Hu (2018) also
plot comparisons of cross-tabulations. However, they consider uncertainty by comparing
the mean 95% interval coverage for the three-way proportions.

For time series data, plotting the real and synthetic variables against time can show how
well the data synthesis model captures temporal variations (Frigerio et al., 2019; Kinney
et al., 2011). Lin et al. (2019) use auto-correlation plots to show that their synthesis
model captures both weekly and annual variations in the data. In addition, they plot the
distribution of sequence length to show that their model can capture that aspect of the
data.

Choi et al. (2017) introduce dimension-wise prediction (DWP), a flexible method for
assessing how well conditional relationships between binary variables are preserved in
synthetic data. Each variable is regressed on all others in the dataset and the prediction
scores between the real and synthetic data were compared using F1 Score. Slight variations
of the same approach have been implemented elsewhere. For example, Xie et al. (2018)
score predictions using the area under the receiver operating characteristic (AUROC) curve
instead of F1 score. Sometimes these approaches are referred to as feature prediction.
Extension to other data types requires the specification of an appropriate loss function for
that data type.

We can formally describe the general procedure of DWP for arbitrary variable distri-
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butions as follows.

Definition 5.2 (Dimension-wise prediction). Let O be the (no × p) original dataset, T
be a (nt × p) dataset such that

O,T ⊂ D : O ∩ T = ∅,

are disjoint samples from the population D and

S = f(O),

is the synthetic dataset, generated with the model f : R→ R.
Identical prediction models are trained to predict the jth variable on the original and

synthetic datasets respectively

gj : Rno×(p−1) → Rno ,

and

hj : Rns×(p−1) → Rns .

Test error is evaluated for each model

coj = lj
(
tj, gj(T\j)

)
,

csj = lj
(
tj, hj(T\j)

)
,

where lj is an appropriate loss function. coj and csj are plotted against each other for all
p. Variables that are similarly well predicted by both models will lie close to the line of
equality.

We have already discussed some examples of loss functions for categorical variables.
For non-categorical variables, possible loss functions include root mean squared error for
continuous variables or Poisson log-likelihood for count variables.

Similar to model based discriminator methods, DWP also relies on a well specified
prediction model. As such, good performance on DWP can indicate well-synthesised data,
but it can also indicate a prediction model that cannot model the differences between the
conditional distributions. Torfi and Fox (2020) repeat DWP with four prediction models,
which increases the likelihood that at least one prediction model is well specified. However,
this is by no means perfect. It is entirely possible that all of the prediction models are
poorly specified. Note, the flexibility of the models that can be specified for DWP helps
to address several of the limitations of PCD (see Section 5.1).

Comparing plots is inherently qualitative, which brings both advantages and disadvan-
tages. They do not allow for direct and objective comparison of datasets such as measures
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of distributional similarity (Section 5.1). Many of those measures average over the data,
making identifying poorly synthesised aspects of the data difficult. In contrast, the plots
can display a lot of information in a format that is easy to interpret. This is invaluable
information, especially during the development of the synthesis model. We believe that
many of the measures of distributional similarity would be more useful if they were not
averaged over all variables, but were instead plotted.

5.4 Sample statistics

Comparison of the sample statistics for real and synthetic datasets is used as a basic
verification in countless examples; most commonly, means or regression coefficients are
compared (Drechsler, 2011a, 2018; Drechsler, Bender, et al., 2008; Drechsler, Dundler,
et al., 2008; Drechsler & Reiter, 2010; Reiter, 2002; Yu et al., 2017). In another example,
standard deviations, tail values, and the percentage of zeros are compared for different
stratum (Alfons et al., 2011).

There are endless potential choices of statistics that capture important aspects of the
data. Many interesting examples are contained in the synthetic survey data literature.
Sakshaug and Raghunathan (2010) synthesise spatial data and compare the means and
standard deviations of variables within each spatial unit. For each variable, the observed
point estimates for each real and synthetic spatial unit are regressed against each other. A
slope close to zero indicates a strong linear correspondence between the point estimates of
that variable for each area. In another example of synthesising spatial data, distributions of
the geographical indicators for respondents with different combinations of gender, income,
and age are compared (Hu & Savitsky, 2021). Other interesting examples from synthetic
survey literature include “the % of people who are divorced and have child support or
social security payments” (Reiter, 2005a), “the percentage of households with an income
over $200,000” (Reiter, 2005b), “the proportion of households with two workers” (Hu et al.,
2016), “incidence rates (of cancer) by race/ethnicity” (Yu et al., 2017), and “percentage
of patients with systolic blood pressure above a target value and that had a medication
added” (Beaulieu-Jones et al., 2019).

The choices of statistics should reflect the complexities of the data. For example,
whether trends are preserved in synthetic time series data and in an assessment of synthetic
stock data, authors compared the values of the DY metric, ACF and leverage scores, which
are measures of the expected returns and correlation of returns over time (Wiese et al.,
2019). In another example of synthesising time series data, the synthetic and real data
were compared by computing the mean squared error of the difference between the auto-
correlations of each sample (Lin et al., 2019).
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5.4.1 Sample statistics: methods of comparison

Various methods have been developed for comparing synthetic data sample statistics with
real data sample statistics. The naïve approach of comparing the differences in point
estimates does not contextualise the scale or account for the uncertainty. Methods that
account for the scale include the relative percentage difference of point estimates (Oganian
& Domingo-Ferrer, 2017) and the ratio of point estimates (Taub et al., 2020). Both are
undefined when the denominator is zero and neither accounts for uncertainty.

To account for uncertainty while comparing sample statistics, uncertainty interval over-
lap is the standard approach (Karr et al., 2006). Let (lok, uok) and (lsk, usk) be the un-
certainty interval bounds of the kth statistical quantity that is calculated on the original
and the synthetic data respectively. For synthetic datasets, proper computation of the
uncertainty intervals will require an appropriate variance estimator (see Section 4.2.2).

The overlap of these intervals, (lik, uik), has the lower and upper bounds

lik = max (lok, lsk) and uik = min (uok, usk) ,

where uik ≥ lik.

The relative interval overlap for k is

Jk =
1

2

(
uik − lik
uok − lok

+
uik − lik
usk − lsk

)
, (5.7)

where Jk = 1 when the confidence intervals are equal and Jk = 0 when they are disjoint.
Interpreting this for more than a few variables is complicated. A possible single-number
summary for a synthetic dataset is

J =
1

K

K∑
k=1

Jk.

As with the distributional similarity measures, averaging does lose information. Another
option is to plot the overlaps for all k.

Uncertainty interval overlaps do not account for the scales of the estimates themselves.
This can be an issue when the uncertainty of an estimate is small in comparison to the
estimate. In such cases, the relative interval overlap may be low despite the close point
estimates. When this occurs, comparing the ratio of point estimates may be more appro-
priate. While it does not account for uncertainty, that is far less problematic when the
uncertainty is small.

One critique of uncertainty interval overlaps is that they can be hard to interpret when
the intervals overlap due to becoming negative (Barrientos et al., 2023). Negative interval
overlaps arise from computing Equation (5.7) when uik < lik. In actuality, the interval
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overlap should be undefined for uik < lik, although one could reasonably argue that the
overlap should be zero. While we do not wholly agree with this premise, interpreting the
interval overlap for non-overlapping intervals is difficult. The real problem with inter-
preting non-overlapping intervals is that there is no way to differentiate between two sets
of non-overlapping intervals. Irrespective of how close the point estimates may be, both
overlaps will be undefined or zero.

We are not aware of any examples of methods in the synthetic data literature that com-
pare sample statistics and consider both their uncertainty and scale. There are methods
that compute the uncertainty for a ratio of two sample statistics that could be explored.
These include bootstrapping, Bayesian simulation, and Fieller’s theorem (Fieller, 1954).

5.5 Human feedback

Human feedback refers to any utility assessment that relies on quantitative feedback.
These assessments are beneficial when utility is easy to see but difficult to measure. Ex-
amples of such situations include identifying whether an image is clear or looks like a real
thing and identifying that a sentence is semantically correct. Examples of using the eye
test as a measure of quality can be found throughout the literature for image, video and
text generation (Guo et al., 2017; Saito et al., 2020; Sauer et al., 2021).

Flaws in tabular data may not be as easily perceptible as in text, images, or video, but
expert opinion can still provide a measure of quality. Beaulieu-Jones et al. (2019) and Choi
et al. (2017) both ask doctors to rate the realism of real and synthetic samples. While this
type of quality check may not pick up on the details of complicated relationships between
variables, for some uses of synthetic data not all relationships need to be well preserved.
For example, if the data were to be used as a teaching aid for medical students who need
to see what patient databases look like, the eye test may be an acceptable quality check.

5.6 Task performance

The final approach for assessing the utility of a dataset that we discuss in this chapter is
task performance. In this approach the performance of the synthetic data at a relevant task
is compared to the performance of the real data at the same task. An exceedingly common
example of this type of assessment in the synthetic data literature is to fit a regression
model that is known to work well on the real data to both the real and synthetic data. Then
compare the 95% confidence interval overlap in Equation (5.7) of all regression coefficients
(Caiola & Reiter, 2010; Drechsler, 2010, 2011a, 2018; Drechsler, Bender, et al., 2008;
Drechsler, Dundler, et al., 2008; Drechsler & Reiter, 2010; Hu & Hoshino, 2018; Hu et al.,
2014; Hu & Savitsky, 2021; Karr et al., 2006; Reiter, 2002; Sakshaug & Raghunathan,
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2010; Taub et al., 2020; Yu et al., 2017).
Both confidence interval overlap and relative percentage difference can give an idea of

how the inference results are similar. However, neither can tell you with certainty that
the results of hypotheses tests on real and synthetic data will give the same results. In an
attempt to address this problem, Taub et al. (2020) use severity ratings, which are a more
subjective measure that compare whether conclusions made from an inference on real data
would still be made if the inference had been carried out on a particular synthetic dataset.

In the machine learning literature, the synthesised datasets are often associated with
a prediction task. The standard approach is to train a prediction model on both synthetic
and real datasets and then compare the predictive performance of each of those models
on a real test set (Beaulieu-Jones et al., 2019; Frigerio et al., 2019; Jordon et al., 2019;
Lin et al., 2019; Torfi & Fox, 2020). This approach, sometimes called “train on synthetic,
test on real”, mirrors a common motivation for using synthetic data for many analysts and
researchers. They are interested in making predictions about the real world but they are
not able to access the data that is necessary to train a predictive model. For time series
data, predictive performance can be assessed by interpolating observations and predicting
future steps or entire sequences (Che et al., 2018; Debnath et al., 2021). Frequently,
comparisons are repeated for multiple prediction models. This repetition can guard against
the prediction model biasing the results in favour of a particular data synthesis method.

X. Zhang et al. (2018) compare the performance of an image classifier trained on a
small set of real images and the performance of the same classifier trained on a larger
dataset comprised of a small amount of real and a large amount of synthetic images. They
encountered some difficulties with training the model on the larger dataset. However, by
slowly introducing the synthetic images, they saw a significant improvement of the classi-
fier, especially when the sample of real images was small. Our concern with introducing
synthetic data in this manner is that because the image classifier’s training data includes
synthetic images that it labelled itself, the training data will end up containing a higher
proportion of labels than the classifier already tends to predict. Presumably, the labels
that the classifier prefers to predict tend to be common in the real data, in which case the
classifiers predictions could become biased towards the most common labels. X. Zhang
et al. (2018) assess the classifier proportion with accuracy, which could be improved by
predicting the common labels. Recent research has found that introducing generated data
into the training data for generative models can reduce the quality of generated data
(Shumailov et al., 2023). While not all of their reasons for this phenomenon apply to the
training of an image classifier, the synthetic samples are an imperfect approximation of
the real data.

While most prediction assessments for synthetic data test performance on real-world
data, there are some scenarios where predictive performance on synthetic data is the goal,
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such as synthesising data to be used in challenges or to teach students. In these cases, it
may be preferable to compare the predictive performance of a model trained and tested
on real data with one trained and tested on synthetic data. For such a comparison, the
rankings of the prediction models can be more important than the actual scores of each
model. Jordon et al. (2019) and Lin et al. (2019) both assess data in this manner. They
use Spearman’s rank correlation coefficient to score how well the predictions of each model
align when trained on the synthetic and real datasets.

With many utility assessments, it is not clear that good performance on the assess-
ment will correspond to high utility. Directly testing the performance of a dataset in
the scenario in which it is intended to be used is a very effective method of evaluating
utility. Performance evaluation tends to be difficult for more complex tasks, so task based
assessments will often be more qualitative.



Chapter 6

Literature Review: Assessing disclosure
risk of synthetic data

In this chapter, we consider the assessment of disclosure risk for synthetic and SDC
datasets. Expanding on the disclosure concepts that we introduced in Chapter 3, we
discuss methods for assessing the three types of disclosure risk when a motivated intruder
(Definition 3.1) is attempting to learn information about targets in a synthetic dataset.

6.1 Identity disclosures

Recall from Section 3.1 that identity disclosures are not applicable to completely synthetic
data due to the lack of a clear mapping from the synthetic observations to individuals in
the population. However, despite the focus on completely synthetic data in this thesis,
identity disclosure risk is frequently assessed for incompletely synthesised data and other
SDC methods preserving the identity of real observations.

Reiter and Mitra (2009) introduce a general framework that uses a Monte Carlo ap-
proach for estimating the probability of an identity disclosure. They establish a prior
distribution for assumptions of the intruder in order to account for uncertainty in the
assumptions. We give a specific example of this approach for incompletely synthetic data
in Example 6.1. For other examples, see, e.g., (Caiola & Reiter, 2010; Drechsler, 2011a;
Drechsler & Reiter, 2010; Hu & Hoshino, 2018).

Example 6.1. Hu and Savitsky (2021) assess the risk of identity disclosures by assuming
that an intruder, with prior knowledge of a subset of variables for all observations in
the original data, will attempt to use that subset to match the original observations with
observations in the incompletely synthetic data. They calculate three values. First, they
calculate the probability that an intruder will get a correct match. Then, they calculate
proportion of original observations with a unique and correct match in the synthetic data.

68
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Finally, they calculate the proportion of original observations with a unique but incorrect
match in the synthetic data.

After calculating these values, Hu and Savitsky (2021) calculate these statistics for two
non-synthetic baselines. They do this in order to contextualise the identity disclosure risk of
their synthesis method. The first non-synthetic baseline is a masking procedure and serves
as a “worse” utility, SDC procedure. Specifically, they replace the geographical variable with
random values sampled from a uniform distribution. The second non-synthetic baseline is
the unchanged original data, which serves as the “best” utility but the worst disclosure case.

Comparison to these baselines can show one of two results. One result is that synthetic
data offers similar disclosure risk and better utility than alternative SDC procedures. The
other result is that synthetic data offers similar utility but better disclosure risk than the
real data.

6.2 Membership disclosure

A membership inference attack models the scenario in which an attacker has black-box
or white-box access to a model and attempts to predict whether certain samples of data
have been used to train the model. Two examples of membership inference attack models
include Shokri et al. (2017) and Hayes et al. (2018). Shokri et al. (2017) presents a
membership inference attack against models for when the attacker has black-box access
to a model. Hayes et al. (2018) present a method for carrying out membership inference
attacks that uses GANs and can be applied when an attacker has either black or white box
access to the target model. Differential privacy and strong L2 regularisation are effective
counters to MI attacks (Choquette-Choo et al., 2020).

Choi et al. (2017) implement a simple procedure to qualitatively assess the risk of
membership disclosure. For their procedure, they assume that the intruder’s goal is to
predict membership. In addition, they assume that the intruder’s prior knowledge consists
of the entire synthetic dataset and a subset of k variables for real observations. Now, write
Xs for the synthetic dataset and

Xr =
[
Xo Xt

]T
for the intruder’s prior knowledge. Choi et al. (2017) define the indicator vector as a
vector consisting of 0’s and 1’s. These 0’s and 1’s denote whether a real observation in
Xr is a part of the training set or the test set. The indicator vector is written as

y =
[
y1 · · · y2n

]T
.

The intruder attempts to determine membership by finding observations in the real dataset,
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Xr, that are close to observations in the synthetic dataset Xs. They do this by classify-
ing each observation as part of the training set if the observation is within the distance
threshold, d̂, or classifying it as part of the test set if the observation is outwith d̂. Math-
ematically, the prediction for membership is written as follows:

ŷi =

1, ∃xsj ∈Xs : d(xri,xsj) < d̂,

0, ∄xsj ∈Xs : d(xri,xsj) < d̂,

where i = 1, . . . , 2n and
d : R(2×k) → R+

where d is the measure of distance between observations.
Both the real and synthetic datasets of Choi et al. (2017) consist entirely of binary

variables. Therefore, they calculate the distance between observations using Hamming
distance. Note that any appropriate measure of the distance between two observations
from a dataset can be used. They score their membership disclosure predictions for the
distance threshold, d̂, with precision and recall, written as,

precisiond̂(y, ŷ) and recalld̂(y, ŷ).

They calculate the precision and recall for each d̂. Then, they plot these precision and
recall scores and qualitatively compare the precision-recall curves to see the disclosure risk.

6.3 Attribute disclosure

One example of assessing attribute disclosure is explored in Reiter (2005a) and is discussed
in the following example, Example 6.2.

Example 6.2. Reiter (2005a) assess the attribute disclosure risk of a household income
variable. To do this, first, they calculate the prediction error of using the synthetic income
values instead of the observed income values. Then, they compare the prediction error with
the standard deviation of the observed income values. They find that the two values are
similar. Hence, they conclude that the attribute disclosure risk of releasing the synthetic
income values is comparable to the release of the average household income. In addition,
they point out that, from a sample of approximately 50,000, this would be reasonable in-
formation to release.

Another example of assessing attribute disclosure is given in Yu et al. (2017) and is
discussed in the following, Example 6.3.
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Example 6.3. Yu et al. (2017) assess the attribute disclosure risk of an incompletely
synthesised database of cancer patients. In their synthetic data, they replace geographical
indicators with synthetic values. They do not change variables containing patient demo-
graphic information or information about their cancer.

Yu et al. (2017) consider two scenarios. In one scenario an intruder obtains a single
replication of synthetic data. In the other scenario an intruder obtains multiple synthetic
replications and treats the most common replacement as the truth. They calculate two
measures to assess the risk of these scenarios. One measure is the % of subjects for which
the synthesised variable is the wrong value. The other measure is the % of correct guesses
when the intruder guesses that the attribute value for a subject is the most common value
in the synthetic replications. Then they compare these measures for various synthetic data
generation models and other SDC methods. Note that their methodology relies on the
existence of a one-to-one correspondence between real and synthetic data. As such, it is
only relevant for incompletely synthesised data.

Hu and Savitsky (2021) implement a similar assessment to the one described in Ex-
ample 6.3. Their approach is discussed in Example 6.4.

Example 6.4. Hu and Savitsky (2021) study the attribute disclosure risk of an incom-
pletely synthetic dataset where County labels are synthesised and other demographic vari-
ables remain unchanged. We have several critiques of their methodology.

Our first critique is that they treat all correct predictions of all geographic regions as
equal despite the fact that we would expect more populous regions to be easier to guess.
“Census tracts generally have a population size between 1,200 and 8,000 people, with an
optimum size of 4,000 people” (U.S. Census Bureau, 2022). This is a considerable range
that needs to be accounted for, but we do not know the specifics of the regions in either
study so perhaps they were all close in population size and the assumption is reasonable.
They also do not consider the possibility that the intruder is aware that the synthesised
variables are synthetic and may be wrong. Perhaps an intruder aware of this possibility
would also know that the synthesis model may take into account the spatial relationships in
the data and would widen their predictions to include regions that are nearby to the values
in the synthetic dataset.

Another significant issue with the methodology of Hu and Savitsky (2021) is that they
assessed attribute disclosure risk for the geographic region. In fact, the geographic region
is a quasi-identifier, not a sensitive variable in the data. The risk posed by a correct
prediction of geographic region is that it could lead to a successful linkage attack where the
intruder learns truly sensitive information. A better assessment of the disclosure risk of
sensitive variables would be to directly evaluate the intruder predictions for those sensitive
variables. A motivated intruder could know some demographic information about their
targets. As such, it would have been a reasonable scenario to evaluate the probability of
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predicting either the cancer diagnostic factors or household income from the demographic
information and synthesised geographic region variable.

Choi et al. (2017) assumes that a potential intruder, who has access to a completely
synthesised dataset and subset of variables from the original data, will predict attribute
values using a k-nearest neighbours model trained on the synthetic dataset. They score
intruder predictions using precision and recall scores. In addition, they explore the effect
of different numbers of neighbors and synthetic dataset sizes on the quality of predictions.
The size of the synthetic dataset does not have any effect on the risk of an attribute
disclosure and k = 1 is the most effective strategy for the intruder. The precision and
recall scores do not provide much information about the disclosure risk in a vacuum,
although a qualitative assessment of different synthetic or SDC datasets could be made
through a comparison of their precision and recall curves.

Notice that there is a general lack of consistency in the choices for intruder prior knowl-
edge, prediction methods, and the methods of evaluating those predictions. Furthermore,
that all of these implementations assess the disclosure risk for each sensitive attribute
independently. Both of these issues are noted by Reiter (2023), who criticises the “ad hoc”
nature and failure to quantify risk of most assessments of attribute disclosure risk.

6.3.1 A Bayesian approach

Reiter et al. (2014) introduces a general framework for assessing the risk of attribute
disclosure in both completely and incompletely synthesised data. They formalise the
predictions of the sensitive attributes for a subject xi, by a hypothetical intruder, as a
Bayesian posterior distribution

P (Xi = xi|Z,A, S) ∝ P (Z|Xi = xi, A, S)P (Xi = xi|A, S),

conditioned on the synthetic data Z, and the intruder’s prior beliefs for the real data A

and the synthesis model S.
Their conservative prior assumptions are that the intruder knows the synthesis model

and all sensitive values for all observations in the real data except for their target

A = X−i =
⋃
j ̸=i

xj.

These assumptions are unrealistically strict. However, the resulting posterior distribution
can be considered a worst case for the probability of the intruder correctly predicting the
sensitive attributes. In theory, this approach is ideal for the assessment of attribute disclo-
sure risk. While the need to make intruder assumptions is not eliminated, the uncertainty
of these assumptions can be reflected in the prior and likelihood distributions.
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In practice, calculation of the posterior distribution is often infeasible. If there are too
many sensitive attributes, the support of Xi quickly becomes too large to search. If the
number of observed combinations xi is too large or the synthesis model too slow to fit,
then the computation of

P (Z|Xi = xi, X−i, S), (6.1)

is computationally prohibitive for all i.
The issues computing the likelihood in Equation (6.1) can be overcome for Bayesian

synthesis models. This is achieved with importance sampling and restricting the sample
space Xi to only combinations that are close to the truth (Hornby & Hu, 2021; Hu et al.,
2014). However, Manrique-Vallier and Hu (2018) found that the estimator is still too
unstable to be sampled from and variance of the posterior is very high.

In theory, the framework of Reiter et al. (2014) addresses all of the criticisms that
Reiter (2023) makes of other examples of attribute disclosure assessment in the literature.
However, the current limitations are quite prohibitive. If the goal is to develop a standard-
ised approach for disclosure assessment, then it stands to reason that is must be widely
applicable. If the framework is to become the standardised approach to disclosure risk,
then the inability to apply it to high-dimensional data and many synthesis models must
be overcome.

6.3.2 An empirical approach

Elliot (2014) introduces procedures for assessing the attribute disclosure risk of numeric
and categorical variables. Taub et al. (2018) formally describes these procedures for cate-
gorical variables as follows.

We assume that the intruder knows the values of some quasi-identifying variables for
their target, and will attempt to predict the value of some sensitive attribute. Let S be
the synthetic dataset consisting of n rows, where

sTi =
(
kT
si, tsi

)
,

is a row that contains the quasi-identifying variables ksi and the target variable tsi. Simi-
larly, let O be the original dataset, consisting of m rows, where the row for the intruder’s
jth target is written

oT
j = (kT

oj, toj).

Then, the correct attribution probability (CAP) for the record oj is the empirical proba-
bility of its target variables given the key variables. We write this

CAP(oj,S) =

∑n
i=1[tsi = toj,ksi = koj]∑n

i=1[ksi = koj]
, (6.2)
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where the square brackets are Iverson brackets.
For numerical attributes, Elliot (2014) describes a slightly different method that they

call “General empirical differential privacy procedure assuming a continuous target vari-
able”. However, we refer to it as correct attribution error (CAE). Specifically, the correct
attribution error is defined as,

CAE(oj,S) =

∣∣∣∣toj − ∑n
i=1 tsi[ksi = koj]∑n
i=1[ksi = koj]

∣∣∣∣. (6.3)

Note that when the dataset S contains no observations that match the target obser-
vation oj we have,

n∑
i=1

[ksi = koj] = 0.

As such, CAP and CAE (see Equation (6.2) and Equation (6.3)) are both undefined.
Elliot (2014) proposes several suggestions to address non-matches, but none are partic-

ularly satisfactory. We will go through each suggestion and discuss the issues that we have.
For observations with undefined CAP scores, Elliot (2014) suggests scoring non-matches
as zero. In effect, a score of zero represents an intruder with zero probability of making
a disclosure. Although, the only scenario that an intruder has zero probability of being
correct, is if they do not make a prediction. Perhaps this is a reasonable assumption. If
there was a time or financial cost to the intruder for making a prediction then, in the case
of a non-match, it would not be worthwhile for them to make a prediction. However, if the
intruder would still make a prediction in the case of a non-match then scoring non-matches
as a zero will underestimate the risk of disclosure.

Another suggestion for dealing with non-matches during CAP score calculations is to
ignore them (Elliot, 2014). However, this can then overestimate the risk of disclosure.
Consider, that we measure the CAP scores for two datasets and find that both are equal.
In the first dataset, we are able to find at least one match for every observation, whereas
the second dataset contains many non-matched observations which we choose to ignore.
According to the CAP scores, the disclosure risk of both datasets is equal. However, this
is only because we discounted many observations that presumably have a lower disclosure
risk than the average observation in either dataset. Consequently, by ignoring non-matches
we have overestimated the disclosure risk for the second dataset.

For non-matches that are encountered when calculating during CAE, Elliot (2014)
suggests predicting the mean value of the variable. Of the three suggestions, this is
the most sensible because it does not assume that the intruder immediately gives up in
the face of adversity. Furthermore, it does utilise some information that is available to
the intruder. However, assuming that the intruder knows the values of multiple quasi-
identifying variables, they could have instead made a guess that utilised a smaller set of
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the quasi-identifiers. That would be a more informed guess than the average value.
In addition to defining the CAP and CAE measures for quantifying risk of attribute

disclosure, Elliot (2014) introduces empirical differential privacy or differential correct
attribution probability (DCAP). DCAP is a method for assessing whether attribute dis-
closure scores represent an acceptable risk of disclosure, by comparing them against some
acceptable baseline of disclosure risk. “A dataset is differentially confidential in respect of
a given target and key if on average there is no difference in the CAP score for a record
whether the record is in the original dataset or not” (Taub et al., 2018). In the original
work of Elliot (2014), this is tested as follows.

Let f be a data synthesis model, that is used to synthesise the consecutive years of a
survey dataset, O1 and O2,

S1 = f(O1) and S2 = f(O2).

For each of the synthetic datasets, the mean CAP score is calculated across all observations
o1j ∈ O1. That is,

c1 =
1

m

m∑
j=1

CAP(o1j,S1), (6.4a)

and

c2 =
1

m

m∑
j=1

CAP(o1j,S2). (6.4b)

Then, the mean scores are compared. If they are indistinguishable, then S1 is differentially
confidential with respect to the quasi-identifying variables.

Taub et al. (2018) propose a method of formally testing for differential confidentiality.
Rather than averaging the CAP scores (as in Equation (6.4)), they instead use Welch’s
t-test to test the difference between the two sets of m CAP scores. If the t-test shows that
the disclosure risk is significantly lower for S2, then we conclude that S1 is not differentially
confidential.

Remark. In our opinion, a paired sample t-test would be a more appropriate choice than
Welch’s t-test. When testing the difference between two sets of m samples,

{
CAP(oj,S1) : j = 1, . . . ,m

}
,{

CAP(oj,S2) : j = 1, . . . ,m
}
.

it is easy to see that this can be constructed as a set of paired observations,

{(
CAP(oj,S1), CAP(oj,S2)

)
: j = 1, . . . ,m

}
.
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In which case, a paired t-test better reflects the paired nature of the data.

On the surface, testing the difference using t-tests is preferable to an informal com-
parison of mean values. However, in practice, proving differential confidentiality using a
t-test is highly unlikely. This is due to the fact that differential confidentiality is the null
hypothesis of the t-test. As such, the realistic best case scenario will be a failure to reject
the null. In theory, it is possible to carry out a test where the CAP score of S1 is lower
than S2. We expect this to be difficult to achieve for synthetic datasets with reasonably
high utility. If that were to be the result of a hypothesis test, we would have concerns
that it was a type I error. Another problem with t-tests, is that they do not scale well
when there are multiple synthetic or SDC datasets to be compared. While p-values can
be adjusted for multiple comparisons, interpreting the results of large numbers of tests
can be difficult. In the scenario that we compare multiple synthetic datasets that have
multiple sensitive attributes, the number of comparisons could become very large.

The methods described above, assess disclosure risk by comparing the attribute disclo-
sure risk of an observation being included or excluded from the synthetic data training set.
As we have discussed, we are unlikely to prove that the disclosure risk of an observation is
lower when included than excluded. As an alternative method, Taub et al. (2018) proposes
the comparison of CAP scores to a baseline that represents a reasonable disclosure risk.
Their choice of baseline, written as

CAPbase(oj) =
1

n

n∑
i=1

[toi = toj],

is the risk of disclosure when the an intruder knows the average value for the sensitive
attribute. As they and others have pointed out, summary statistics such as the mean are
routinely presented for sensitive datasets (Reiter, 2005a; Taub et al., 2018). Therefore, if
disclosure risk of synthetic data is equivalent to the release of summary statistics, than
presumably it is acceptable.

It is arguable whether CAP or CAE reflects a realistic assessment of disclosure risk.
Unlike other methods, e.g, Reiter et al. (2014), that make unrealistically strict assumptions
about the capabilities of intruders, we are concerned that CAP and CAE do not meet the
criteria of a motivated intruder.

While Elliot (2014) does not formally outline the approach of the hypothetical intruder,
we can infer from Equation (6.2) and Equation (6.3) that their methods are as follows.
For an observation oT

j , the intruder will identify the subset of observations in a synthetic
dataset S that match on all quasi-identifiers k. Then, for categorical variables, they will
either randomly sample or predict the most common value of tsi from the matching subset.
While, for numeric variables, they will predict the sample mean of tsi for the matching
subset. For the remainder of this thesis, we refer to this method of attribute prediction as
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empirical matching.
Empirical matching does not utilise information about ordering or distance between

values the quasi-identifying variables. As such, there are surely better methods for at-
tribute prediction when quasi-identifying variables are numeric or ordinal variables. Even
in the case that all quasi-identifiers are categorical, given the many prediction methods
that are available, it is hard to believe that the empirical matching is the best prediction
method. As such, it is hard to justify that the methods of Elliot (2014) and Taub et al.
(2018) represent a motivated intruder.

In contrast to the Bayesian attribute disclosure risk assessment of Reiter et al. (2014),
the empirical attribute disclosure risk assessment of Elliot (2014) and Taub et al. (2018) has
some clear issues. First, the disclosure risk of each attribute is measured individually. This
complicates the risk assessment when there are many sensitive attributes. Furthermore,
all assumptions about the intruder’s prior knowledge or methods are treated as fixed.
Although it is entirely possible to change the quasi-identifiers or implement a different
intruder prediction method, this choice will still be fixed. While it is reasonable to argue
that the prior knowledge of the intruder in Elliot (2014) is too restrictive, it is also true
that we can never be certain of the intruder’s methods or prior knowledge (see discussion
of Example 3.2). Therefore, representing this prior knowledge as a probability distribution
allows us to reflect that uncertainty.

Elliot (2014) and Taub et al. (2018) describe a framework for quantifying the attribute
disclosure risk of synthetic data. Despite the disadvantages that we have described, their
framework has a significant advantage in computability over the framework of Reiter et al.
(2014). As such, we believe that is currently the best available approach for a standardised
method of assessing the risk of disclosure for completely synthetic data.

6.4 Disclosure risk of outliers

In Section 3.1.1 we discussed how outliers are generally considered to be more vulnerable
to information disclosures than other data points. Statistical disclosure control methods
combat vulnerabilities of outliers by rounding rare categories, truncating outlying val-
ues, or synthesising outliers (Reiter, 2003). In addition, some disclosure risk assessments
specifically consider the disclosure risk of outliers.

Whether protecting outliers or assessing their disclosure risk, the first step is the identi-
fication of the outliers. This is often done on an ad hoc basis where values of variables that
are infrequent enough to be considered outliers are identified. There are also procedural
methods of identifying outliers, such as those implemented by algorithms for achieving
k-anonymity (Definition 3.2).

Taub et al. (2018) calculate disclosure metrics for the entire set of training data and for
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two subsets of outliers. The first subset, called uniques, consists of all training observations
that have a unique combination of values for identifying variables. The second subset,
called special uniques, consists of observations for which the combination of identifying
variables is in the top 10% of special unique detection algorithm (SUDA) scores. SUDA is
an algorithm that identifies observations that are unique due to an unusual combination
of a small set of variables (Elliot et al., 2002). We highlight the fact that SUDA does not
consider the order or the distance between values of a variable. Therefore, SUDA does
not work well with non-categorical variables so alternative methods such as local outlier
factor (LOF) should be used (Breunig et al., 2000).

6.4.1 Local outlier factor

An alternative method to find outliers, local outlier factor (LOF), is implemented by Ichim
(2009). This method attempts to identify observations in low density regions that may be
vulnerable to membership disclosure. LOF only requires that a measure of the distance
between observations can be specified. Hence, LOF is more widely applicable than SUDA.
In particular, LOF is applicable to datasets containing mixtures of data types.

LOF identifies outliers by comparing the local density (or reachability) of a point with
the local density of neighbouring points (Breunig et al., 2000). Outlying points will have
significantly lower local densities than their neighbours. The distance that encapsulates
the neighbourhood of an observation can be defined in one of two manners.

Definition 6.1 (k-distance of Oi). For any positive integer k, the k-distance of an obser-
vation, Oi, is written as dk(Oi) and is defined as the distance d(Oi, Oj) between Oi and
an observation Oj ∈ O such that:

i. for at least k objects O′
j ∈ O \Oi it holds that d(Oi, O

′
j) ≤ d(Oi, Oj), and

ii. for at most k − 1 objects O′
j ∈ O \Oi it holds that d(Oi, O

′
j) < d(Oi, Oj).,

This definition can be problematic when there are k or more identical observations.
This is because a neighbourhood can consist of solely identical observations which will be
infinitely unreachable from other observations. In such cases, considering the neighbour-
hood size in terms of k-distinct distance is preferred. This definition is given in Breunig
et al. (2000) and is as follows:

Definition 6.2 (k-distinct distance of Oi). For any positive integer k, the k-distinct
distance of an observation Oi, written as ddk(Oi), and defined as the distance d(Oi, Oj)

between Oi and an observation Oj ∈ O such that:

i. for at least k objects O′
j ∈ Ou \Oi it holds that d(Oi, O

′
j) ≤ d(Oi, Oj), and

ii. for at most k − 1 objects O′
j ∈ Ou \Oi it holds that d(Oi, O

′
j) < d(Oi, Oj),
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where Ou is the set of all unique observations

Ou = {O : ∀i ̸= j, Oi ̸= Oj}.

In short, ddk(Oi) is the distance between Oi and its kth-nearest unique neighbour.
For sets of data that contain no duplicates, k and k-distinct distance are equivalent.
Subsequent definitions are written with the neighbourhood size defined by k-distance but
are also valid for k-distinct distance.

For more information on the following definition, see (Breunig et al., 2000).

Definition 6.3 (Reachability distance of Oi w.r.t Oj). For any positive integer k, the
reachability distance of an observation Oi with respect to an observation Oj is written as

rdk(Oi, Oj) =

dk(Oj), for Oi ∈ Nk(Oj),

d(Oi, Oj), for Oi /∈ Nk(Oj),

where Nk(Oi) is the set of k-nearest neighbours for the observation Oi.

Reachability distance ensures that all observations within a neighbourhood are treated
as equidistant from the observation at the center. Note that it is whether Oi is in the
neighbourhood of Oj that is relevant, rather than the reverse.

For more information on the following definition, see (Breunig et al., 2000).

Definition 6.4 (Local reachability density of Oi). The local reachability density of an
observation Oi is defined as

lrdk(Oi) =
|Nk(Oi)|∑

Oj∈Nk(Oi)
rdk(Oi, Oj)

. (6.5)

Local reachability density is a measure of how outlying an observation is. Observations
that are in the neighbourhoods of most of their neighbours will tend to have lrdk close to
one. Those that are not will have smaller values, with the value tending towards zero, as
the distance from those neighbours increases.

Again, see Breunig et al. (2000) for more information on the following definition.

Definition 6.5 (Local outlier factor of Oi). The local outlier factor of an observation Oi

is defined as

lofk(Oi) =

∑
Oj∈Nk(Oi)

lrdk(Oj)

lrdk(Oi)

|Nk(Oi)|
. (6.6)

LOF scales the local reachability densities given in Equation (6.5) with respect to each
other. Inlying observations will have similar reachability densities to their neighbours.
Therefore, they will have an LOF close to one. Outlying observations will have local
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reachability densities that are less than neighbours. Consequently, their LOF will be
greater than one, with greater differences in local reachability density corresponding to a
larger LOF (Breunig et al., 2000).

LOF is sensitive to the choice of k. Choosing k that is too small can lead to prob-
lems where larger clusters are not differentiated from much smaller clusters. In contrast,
choosing k too large can lead to a failure to identify outliers. Breunig et al. (2000) advises
against choosing k values smaller than 10 since lofk fluctuates wildly when k is small.
They suggest calculating the lofk over a range of k values and then, for each observation
in a dataset, selecting the maximum lofk score. They provide guidance on choosing up-
per and lower bounds. The lower bound of the range should be the minimum number of
observations that could be considered a cluster, so that other nearby observations can be
considered local outliers to that cluster rather than within. The upper bound should be
the maximum number of nearby observations that can potentially be outliers to a cluster,
rather than their own separate cluster. Ichim (2009) make a loose comparison between the
k values of LOF and k-anonymity. In addition, they choose k = 5 which is smaller than
the minimum value recommended previously. It is true that, in both contexts, k can be
seen as some minimum number of observations that should be similar to an observation
in order for it to be protected from disclosure. However, the requirement that at least
k observations should be identical to an observation and the requirement that at least
k observations should be in the neighbourhood of an observation are not comparable re-
strictions of privacy. Intuitively, k neighbours seems much less restrictive than k identical
observations, so k = 5 feels like a low privacy criteria, but it is not clear how the size of k
for lofk affects the eventual classification of a point as an outlier.

Once lofk has been calculated for each observation, a threshold to classify observations
as outlier should be selected. Ichim (2009) makes three suggestions. The first is to classify
observations within the top α% of lofk scores as outliers. However, the choice of α is
not always obvious and will vary between datasets. A more data driven method is to
plot lofk in ascending order and select the elbow of the curve as the threshold to classify
outliers. This procedure can be automated by fitting a structural change model (Zeileis
et al., 2003) with a single break point to the sorted lofk scores and using the break point
as the threshold to classify outliers.

Specifically, the LOF score of each observation, xi, was calculated over a range of
k ∈ [10, 50] and choose the maximum lofk score for each,

lof(xi) = max
50⋃

k=10

lofk(xi). (6.7)

The outliers were classified according to a threshold which was found with a structural
change model (Zeileis et al., 2002). LOF scores were sorted into ascending order and a
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structural change model with a single break point was fit.

yi ∼ N (βj, σ
2) for yn ≥ yn−1 ≥ . . . ≥ 1,

where (i = ij−1 + 1, . . . , ij, j = 1, 2), j indicates the segment index, i1 is the single break
point, i0 = 0 and i2 = n.

The least squares estimate for the break point is the value i1 that minimises

î1 = min
i1

{
i1∑
i=1

(yi − β̂1)
2 +

n∑
i=i1+1

(yi − β̂2)
2

}
,

where β̂1 =
∑i1

i=1 yi/i1 and β̂2 =
∑n

i=1+i1
yi/(n− i1). Any observations with LOF greater

than the break point is classified as an outlier

Youtlier =
{
i : yi > î1

}
. (6.8)

6.5 Summary of the literature review

We have reviewed an extensive and diverse range of utility assessments and disclosure risk
assessments for synthetic data and other SDC methods. It is clear that there is a lack
of consensus on how to assess utility and disclosure risk. The development of a broader
consensus would aid in the comparison of synthetic data generation methods with other
synthetic or non-synthetic privacy preserving techniques. This would then lead to more
efficient development of new methods.

We have identified several obstacles that make assessment of synthetic data utility
challenging. The first is that utility is quite difficult to describe. The qualities of a useful
dataset will depend on the dataset itself and the datasets purpose.

This difficulty is further magnified by the privacy-utility trade-off that exists for syn-
thetic data. If the perfect utility metric was to be defined it would not be enough to
optimise that, because one must also be concerned about disclosure risk. It is not always
clear, for some utility assessment methods, how good performance corresponds to the
actual utility for a user of the data.

Unfortunately, these issues are not easy to solve. The best solutions that we have seen
are those that implement a diverse suite of multiple evaluations (e.g. Beaulieu-Jones et al.
(2019), Bowen and Snoke (2020), Goncalves et al. (2020), Hu and Savitsky (2021), and Lin
et al. (2019)). Rather than attempt to use the single “best” utility assessment, these papers
accept that “best” does not exist, and instead consider a multiple utility assessments.

The obstacles to establishing a consensus for assessing the disclosure risk of synthetic
datasets are very different. The solutions to these obstacles are also clearer. Completely
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and incompletely synthesised data are not at risk from the same types of disclosure. While
attribute disclosures can occur for either, identity disclosures can only occur for incom-
pletely synthesised datasets. The solution to this problem seems to be clear. We should
prefer to directly assess the disclosure scenario that is most concerning. Attribute disclo-
sure represents the disclosure scenario that is generally most concerning and this can be
assessed for both completely and non-completely synthesised data.

We identified two promising attribute disclosure risk assessments in the literature, the
Bayesian framework of Hu et al. (2014) and Reiter et al. (2014) and the empirical at-
tribute disclosure risk framework of Elliot (2014) and Taub et al. (2018). The Bayesian
framework is appealing in theory but, in practice, it is difficult to implement, at least,
outside of smaller examples and a few synthesis methods. It requires further development
before it can be practically applied to a wide range of datasets and synthetic data gen-
eration methods. In contrast, the empirical framework establishes the foundations of an
attribute disclosure assessment framework that can be applied to a diverse array of SDC
datasets, but the intruder assumptions are fixed and do not reflect a motivated intruder
(Definition 3.1).



Chapter 7

Methods for assessing synthetic data

In Chapters 5 and 6, we reviewed many of the commonly used methods for assessing the
utility and disclosure risk of synthetic data. In this chapter, we establish our methodology
for the assessment of synthetic data which we implement in Chapters 8 and 9. This includes
methods that we have developed to address some of the issues that we encountered in our
review of methods for the assessment of synthetic data.

This chapter is structured as follows. In Section 7.1, we focus on methods for assessing
the utility of synthetic data. Section 7.2 concerns the disclosure risk assessment of synthetic
data. Specifically, this chapter contains our novel framework for assessing disclosure risk
of synthetic data.

7.1 Assessing the utility of synthetic data

In our review of utility assessment methods from the literature, we found that there is a lack
of agreement within the statistics and ML communities for methods of utility assessment.
Furthermore, we highlighted the difficulty of specifying assessments that encapsulate gen-
uine utility and determined that there was no single “best” utility assessment. We found
that the most effective examples of evaluating the utility of synthetic data were those that
implemented several utility assessments (see, e.g., Beaulieu-Jones et al. (2019), Bowen and
Snoke (2020), Goncalves et al. (2020), Hu and Savitsky (2021), and Lin et al. (2019)). As
such, we mirror this approach for our utility assessments in Chapter 8 and Chapter 9.
We consider a broad range of utility assessments that we found to be most effective in
the literature. Specifically, we found that single number summaries can mask underlying
problems with synthetic data (see Section 5.1), whereas, if many synthetic datasets are
compared, the results of qualitative assessments can be difficult to interpret. We view
the weaknesses of these single number summaries and qualitative assessments as comple-
mentary. Consequently, we incorporate both into our suite of utility assessments. We
discuss some of those utility assessments in the following sections. Additional details of
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the specifics of utility assessments for each example are described in the methods sections
of each chapter (Section 8.2.3 and Section 9.2.3).

7.1.1 Plots

We use a variety of plots to assess our synthetic data, including univariate distribution
plots, quantile plots and dimension-wise prediction (DWP) plots. For our DWP assess-
ment, we use root mean squared error as the loss for continuous variables, Poisson log-
likelihood for count variables, and area under the ROC curve for categorical variables.
Furthermore, we follow the approach of Torfi and Fox (2020) and assess DWP with three
prediction models: generalised linear regression, CART, and XGBoost.

7.1.2 Task performance

As discussed in our literature review in Section 5.6, evaluation of task performance is
an invaluable method of assessment for synthetic datasets, especially those that have a
specific intended use case. We generally associate the datasets that we synthesise in
the later chapters of this thesis with prediction tasks. However, a prediction task would
have considerable overlap with DWP. Therefore, we evaluate performance using statistical
inference tasks. When carrying out our research, we were conscious of introducing potential
researcher bias into our choices of inference models. In other words, if we chose the
synthesis models and the inference task models, the data may perform better than if
someone else chose the inference task models. Consequently, for each dataset, we evaluate
performance on the inference task by replicating the statistical inference methods of others,
such as Strack et al. (2014) and Vehtari et al. (2022).

Throughout our utility assessments we utilise the simple sample variance estimator
(Equation (4.5a)) (G. Raab et al., 2016) to calculate variance estimates for synthetic data
(see Section 4.2). This choice is appropriate as all synthetic data is completely synthetic
and generated with Little’s approach (Section 4.1.2).

7.2 Assessing the disclosure risk of synthetic data

This section contains our methodology for evaluating disclosure risk. In Section 3.1, we
concluded that, when considering the release of completely synthetic datasets containing
sensitive, subject-level data, attribute disclosure is the most relevant type. Furthermore,
we found that, based on current capabilities, the attribute disclosure methods described by
Elliot (2014) and Taub et al. (2018) represent the best option for a standardised disclosure
assessment framework. Our methodology for assessing the risk of disclosure builds on the
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work of Elliot (2014) and Taub et al. (2018) and addresses several of the issues that we
identified with their methods.

Now, we introduce our framework for assessing disclosure risk on synthetic data. We
describe formal testing for whether attribute disclosure risk is acceptable and how infor-
mation about outlying observations can be incorporated into an analysis of disclosure risk.
To begin with, we outline four key elements of any effective framework for disclosure risk
assessment.

1. The prior knowledge of the intruder,

2. the method(s) the intruder will use to predict sensitive information,

3. a metric to quantify the risk of disclosure, and

4. the criteria for the risk of disclosure to be deemed acceptable.

Most disclosure assessment methods in the literature establish several elements of this
framework, however, a proper assessment of disclosure risk requires all four. Furthermore,
the choices for these elements should reflect a reasonable disclosure scenario where, at the
absolute minimum, a reasonable scenario is one that reflects a motivated intruder. As we
discussed in our literature review in Sections 3.2.1 and 3.3.1, current and future intruder
capabilities are unknown. As such, there is an argument to be made for choosing more
conservative assumptions. Carrying out a comprehensive evaluation into the potential
prior information and prediction methods for a motivated intruder will aid the design of
an effective disclosure assessment.

We now discuss our choices for the four elements of the disclosure risk assessment that
we implement in Chapters 8 and 9.

7.2.1 The prior knowledge of the intruder

In Chapters 8 and 9, we assume that the intruder is attempting to disclose multiple
sensitive attribute values for the original data. For each subject in the original data, the
intruder knows a set of quasi-identifying attributes which we will identify in each chapter.
Furthermore, we assume that the intruder has full access to the synthetic dataset that is
being assessed. We will generate multiple synthetic replications of each dataset; however,
we assess the disclosure risk of each replication independently of all other replications.

All of these assumptions are quite standard (see, e.g., Choi et al. (2017), Elliot (2014),
and Taub et al. (2018)) and reflect a reasonable motivated intruder. That said, our
methods could be modified for a much stricter scenario. For example, we could modify by
assuming that the intruder knows all attributes in the original data except for the sensitive
attribute that they are predicting.
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7.2.2 Intruder prediction method(s)

We emulate the scenario of a motivated intruding by training models to predict sensitive
attributes conditional on the quasi-identifying variables. These models are trained on the
synthetic data before predicting the sensitive attributes for each observation in the original
data. In order to reflect uncertainty about the intruder’s choice of prediction method, we
consider multiple prediction models:

• generalised linear regression,

• classification and regression trees (CART),

• random forest,

• XGBoost, and

• Modified empirical matching.

Additionally, we implement a modification of the empirical matching methods of Elliot
(2014), which we introduce below. Recall that the empirical matching methods are the
attribute prediction methods implied by the CAP and CAE methods of Section 6.3.2.

Modification to methods of Elliot (2014)

From Section 6.3.2, recall the issues we identified with the proposed solutions for undefined
CAP and CAE scores that occur in the case of non-matches. Specifically, the proposals
fail to utilise all of the information that is available to the intruder and, depending on the
chosen solution, disclosure risk will be either overestimated or underestimated. To address
these problems, we propose a modification to the prediction methods of Elliot (2014) and
Taub et al. (2018) that better utilises the information that would be available to the
intruder. We assume that, rather than giving up after a failed match, the intruder will
continue to search for matches on subsets of the quasi-identifiers. Following the notation
used in Section 6.3.2, our modification is defined as follows:

Definition 7.1 (Procedure for estimating undefined correct attribution probabilities).
Let S be the synthetic dataset consisting of n rows, where

sTi =
(
kT
si, tsi

)
,

is a row that contains the quasi-identifying variables ksi and the target variable tsi. Simi-
larly, let O be the original dataset, consisting of m rows, where the row for the intruder’s
jth target is written as

oT
j = (kT

oj, toj).
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Let CAPk(oj,S) be the correct attribution probability given in Equation (6.2), where
k is the set of quasi-identifiers that the intruder will match on.

For oj where no match with S exists we say that CAPk(oj,S) is undefined.
We initialise the variable k = 0, which defines how many values in k will be used to

match and proceed as follows:

1. Identify all combinations of length p − k vectors that are within k. We denote the
set of

(
p

p−k

)
combinations as

{
kc ⊂ k : |kc| = p− k

}
,

where c = 1, . . . ,
(

p
p−k

)
.

2. For each combination kc, calculate CAPkc(oj,S).

3. If at least one CAPkc(oj,S) score is defined then we use the average as our estimate
for CAP(oj,S), ignoring undefined values,

CAP(oj,S) =

∑
cCAPkc(oj,S) [CAPkc(oj,S) ∈ R]∑

c [CAPkc(oj,S) ∈ R]
.

If not, increment k by one and return to step 1.

Note that, when k = 0, the steps define the original CAP score. When k = p, kc is
empty and the modified CAP score is equivalent to the empirical probability of tsi,

CAP(oj,S) =
1

n

n∑
i=1

[tsi = toj] .

The modification to CAE is almost identical but with all instances of CAP replaced
with CAE. That is, when the subset kc is empty,

CAE(oj,S) =

∣∣∣∣∣toj − 1

n

n∑
i=1

tsi

∣∣∣∣∣,
which is equivalent to the solution that Elliot (2014) proposed if CAE was undefined.
The modification we have described is a more realistic scenario for how an attacker would
proceed if they do not find an initial match. However, other problems with CAP and CAE
still have not been addressed. Specifically, that the ordering of quasi-identifiers is ignored
and all unique values are treated as distinct, so, for numerical or ordinal variables, it will
be more appropriate to use other attribute prediction methods.
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7.2.3 Quantifying the risk of disclosure

Our methodology for scoring predictions is different in Chapter 8 than it is in Chapter 9.
For the dataset in Chapter 8, we score categorical variables using log-loss and numerical
variables with mean squared error. We chose these loss functions to reflect our belief that
the risk of disclosure decreases very quickly as an intruder’s prediction is further from the
truth. We demonstrate this in the following example.

Example 7.1. Suppose that we have a person with diabetes, who we denote P , and we
have three intruders, who we denote I1, I2, and I3. Each intruder independently predicts
whether P has diabetes, their predictions are as follows:

1. I1 believes that P has diabetes with probability p1 = 1,

2. I2 believes that P has diabetes with probability p2 = 0.75, and

3. I3 believes that P has diabetes with probability p3 = 0.5.

If we rank these predictions in order of the severity of disclosure, it is p1 then p2 then p3.
However, if we were to assign some numerical values to the severity, what would it look
like? Consider the following two possibilities:

(1) The difference in severity from p1 to p2 and then p2 to p3 is about the same,

p1 > p2 > p3.

(2) The difference in severity from p1 to p2 is much larger than p2 to p3,

p1 ≫ p2 > p3.

Possibility (1) tells us that the severity of a disclosure decreases roughly linearly as the
prediction is further from the truth. On the other hand, possibility (2) tells us that the
severity of a disclosure decreases rapidly as the prediction is further from the truth.

Since we believe that possibility (2) reflects the reality of most disclosure scenarios,
we chose to penalise with log-loss and mean squared error. This is different from the
methods of Elliot (2014), where he scores numerical predictions with mean absolute error
and categorical predictions with the probability of the intruder predicting the true value.
Under these choices, the loss increases linearly as the prediction moves further from the
truth, so they reflect a belief in possibility (1). Neither approach is correct or incorrect,
they simply quantify the disclosure risk differently.
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That said, in Chapter 9, our scoring method for categorical variables changes, and we
score with the probability of the intruder predicting the true value. This change is due
to difficulties we encountered during the evaluation of the disclosure risk scores for both
datasets, but more acutely for the dataset in Chapter 9. We explain the details of these
problems in Section 9.2.4.

7.2.4 Evaluating acceptability of disclosure risk

In Chapters 8 and 9, we compare the risk of disclosure for several methods of synthetic
data generation. We evaluate the risk of disclosure by comparing the synthetic datasets
against each other and against disclosure risk baselines. We carry out these evaluations
by fitting inference models to the disclosure risk scores (see Section 7.2.3). Specifically, we
wish to answer these questions:

Questions 7.2.1.

a. Which intruder attribute predictions methods result in the highest risk of disclosure?

b. What is the relationship between method of synthetic data generation and risk of
disclosure?

c. How does the risk of disclosure for synthetic data compare with the test partition
and k-anonymised baseline?

In this section, we describe the baselines and then introduce the inference modelling
approach that we implemented.

Baselines

As in other examples of the literature (see, e.g, (Hu & Savitsky, 2021; Taub et al., 2018)),
the following baselines represent acceptable levels of disclosure risk:

1. the test sample of data, and

2. the k-anonymous data (Definition 3.2), which is the training data with
k-anonymisation conditioned on the quasi-identifiers.

The k-anonymised data (2) is a privacy baseline that we chose in order to reflect the
masking methods described in Section 3.2.2. Recall that k-anonymised data is vulnerable
to several types of disclosure attacks. Given these vulnerabilities, it does not reflect a
realistic masking method by current standards. However, our intruders do not attempt
any of the disclosure attacks that k-anonymised data is specifically vulnerable to so that
will not impact our analysis.
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The test data is independent and identically distributed to the training data. Therefore,
if there was no risk of disclosure from releasing the test partition, it would be the best
possible alternative to releasing the training data. Note that the risk of attribute disclosure
will generally be higher for datasets that are more closely distributed to the training data
(Palley & Simonoff, 1987). As such, the disclosure risk scores for the testing data are
effectively as large as possible without any leakage of information from the training data.

Modelling risk of disclosure

In our disclosure risk evaluation, we consider the disclosure risk of multiple sensitive at-
tributes (Section 7.2.1) and several intruder prediction methods (Section 7.2.2). Further-
more, we consider multiple synthetic data generation methods and multiple baselines.
These choices were made to reflect uncertainty in the prior assumptions but they signifi-
cantly complicate the risk evaluation.

In the literature review, we noted the difficulty of interpreting the results of attribute
risk assessments for multiple attributes (Section 6.5). In our case, this difficulty is further
complicated by our consideration of multiple sets of prior assumptions. With so many
comparisons, it becomes infeasible to evaluate risk with t-tests. As such, we model the
disclosure risk scores with regression models.

The regression framework is well suited to multiple comparisons. Model coefficients
can describe the similarities and differences in between each set of prior assumptions. We
consider the disclosure risk for multiple replications of the same synthesis method, and are
able to incorporate this repeated measures design into our inference model. Furthermore,
disclosure risks can be modelled for individual subjects, allowing for the possibility of
including subject level details, such as whether an observation is an outlier.

During our disclosure assessments in Chapter 8 and Chapter 9 we encounter several
challenges that require different modelling approaches to overcome. We describe these
challenges and the specific details of the inference models that we implement in Sec-
tion 8.2.3 and Section 9.2.4. After modelling our disclosure scores, we carry out model
inference to answer the questions in posed Questions 7.2.1.

Membership disclosure

Earlier in this thesis we explained why we believe that, in the majority of cases, attribute
disclosures are the most relevant disclosure type for synthetic data (Section 3.1). Con-
sequently, our membership disclosure evaluations are far less rigorous. In the case that
membership disclosures are the most relevant, the disclosure assessment that we discussed
in Section 7.2 can be modified to handle membership disclosure. In fact, this would signif-
icantly simplify the process of fitting models for disclosure risk evaluation since we would
no longer need to model the risks for several sensitive attributes.



CHAPTER 7. METHODS FOR ASSESSING SYNTHETIC DATA 91

The membership disclosure risk of each replication of synthetic data was evaluated
following Choi et al. (2017), an approach we discussed in Section 6.2. The datasets in
our examples contain a mixture of variable types, so we measure distance with Euclidean
distance, we one-hot encode categorical variables, and standardise all variables by the mean
and standard deviation of the training partition. We compute precision-recall curves at
increasing distance thresholds and smooth the curves for each replication. Finally, we plot
the smoothed precision-recall curves for each replication for comparison.



Chapter 8

Generating and assessing synthetic
Pima data

In this chapter, we use the Pima Indians data as a simple example to demonstrate how
synthetic data can be generated and evaluated. We use a variety of models to synthesise
Pima data and subsequently evaluate the synthetic data following the methods described
in Chapter 7.

Understanding some risk factors associated with diabetes is useful for determining the
order in which we synthesise data. As such, we begin by briefly summarising the two types
of diabetes and their risk factors, as well as the relevance of diabetes to the Pima dataset.

8.1 Diabetes and the Pima dataset

Diabetes is a serious and lifelong condition where a person’s body is unable to regulate
its blood sugar levels. There are two main types of diabetes, type 1 and type 2. Of
the people in the UK that have diabetes, fewer than 10% have type 1, while 90% have
type 2 (Diabetes UK, 2017b, 2019b). Several other types of diabetes also exist, most
notably gestational diabetes, which affects 4-5% of pregnant women and develops during
pregnancy (Diabetes UK, 2017c, 2017d; NHS, 2022).

The risk factors that are associated with developing diabetes differ for each type. The
majority of people with type 1 diabetes are diagnosed as children. Additionally, there is
a slightly increased risk of developing type 1 diabetes if another family member has it,
(Diabetes UK, 2017a, 2017b).

According to Diabetes UK (2019b, 2023) and the NHS (2023), the factors that are
associated with an increased risk of type 2 diabetes include, but are not limited to,

• being overweight or obese,

• being older,

92
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• a family history of diabetes,

• high blood pressure,

• gestational diabetes during a pregnancy (NHS, 2022),

• being of African Caribbean, Black African, South Asian or Chinese ethnicity, and

• having a history of high blood pressure (hypertension), heart attacks, strokes or
severe mental illness.

According to Diabetes UK (2017d) and the NHS (2022), the factors that are associated
with a greater risk of developing gestational diabetes are

• being overweight or obese,

• being older,

• having a family history of diabetes,

• gestational diabetes during prior pregnancies,

• previously giving birth to very large babies (over 4.5kg), and

• being of African Caribbean, Black African, South Asian or Middle Eastern ethnicity.

The Pima Indians Diabetes dataset is a dataset frequently used to demonstrate classifi-
cation methods. The dataset contains personal information and measurements for women
(N = 768) from the Pima Indian population near Phoenix, Arizona (Smith et al., 1988).
Participants were aged 21 years or older and did not have diabetes when they entered the
study. The dataset has nine variables, they are:

1. age,

2. number of pregnancies,

3. plasma glucose concentration1 (Eyth et al., 2023),

4. diastolic blood pressure,

5. triceps skin fold thickness,

6. 2-hour serum insulin,

7. body mass index (BMI),
1Subjects with plasma glucose concentration ≥ 200mg/dl were specifically excluded from the original

data. This is because the authors were interested in predicting whether the subjects would develop
diabetes in the future and that is the threshold to be classified as diabetic (CDC, 2019).
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8. diabetes pedigree function (DPF)2, and

9. whether a subject developed diabetes within the next five years.

8.2 Methods

Our data pre-processing steps mirror those of Ripley (1996, p. 14). We remove the insulin
variable (48% missing) and any incomplete cases. Then, we divide the data into training
(n = 200) and test (n = 332) splits3. By removing observations that contain missing
values instead of imputing them, the variance and the covariance of variables in the data
are biased to be smaller than the true values. Unless the values are missing completely at
random, the means will also be biased. To correctly account for missingness, data should
be multiply imputed. This can be incorporated into synthesis by following the two-step
procedure that we described in Section 4.2.3. However, in the interest of keeping the
example simple and easy to follow, we forgo imputation during synthetic data generation.

8.2.1 Synthesising Pima data

Order of synthesis

We synthesise Pima data using sequential synthesis. As such, we must determine the
order in which we will synthesise the data (see Section 4.4.1). For the Pima dataset,
there are well-established associations between some of the variables, so we opt to select a
synthesis order that is logically consistent with those relationships. Notice that the seven
variables we focus on can be sorted into two groupings. The first grouping is for a variable
that describes a medical test result or risk factor for diabetes. That is, the first grouping
consists of variables (1) through (8). The second grouping is the outcome variable, that
is, variable (9) in the above list. Since the outcome variable is conditional on all other
variables, the logical choice for the order of synthesis is to synthesise the variables in the
first grouping and then synthesise the variable in the second grouping. As for the order
of synthesis within the first grouping, we make several assumptions about the dependence
between variables. These assumptions are informed by risk factors and pathophysiology
of diabetes, see Figure 8.2.

First, we assume that age and DPF are independent of other variables. As such,
we synthesise these variables first. Then, we synthesise number of pregnancies, which
we assume depends on age. Next, notice that skin thickness and BMI are measures for
whether a person is overweight. In fact, the prevalence of this increases with age and

2DBF is a metric developed by Smith et al. (1988). It uses a person’s family history of diabetes to
estimate the genetic influence on their chances of developing diabetes.

3These splits can be found in the R package, MASS (Venables & Ripley, 2002)
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Figure 8.1: Prevalence of obesity in the UK for different age groups and sexes (NHS
Digital, 2019).

in postpartum women (see, Figure 8.1 and Hollis et al. (2017), respectively). Therefore,
we synthesise these variables next. Then, we assume that plasma glucose concentration is
conditional on all risk factors of diabetes. To summarise, we synthesise the variables in the
following order: age, DPF, number of pregnancies, skin thickness, BMI, plasma glucose
concentration, and the outcome variable, whether a subject developed diabetes within five
years.
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Figure 8.2: The variables of the Pima Indians dataset, arranged from left to right in order
of synthesis. Shaded squares indicate predictor variables for each response, and darker
squares indicate conditional relationships that were assumed when deciding the order of
synthesis.

Synthesis models

We use Little’s framework (defined in Section 4.1.2) to generate 100 replications of com-
pletely synthetic Pima data for eight variations of synthesis models. Two regression vari-
ations (Model 8.1), three classification and regression trees (CART) variations (Model
8.2), and three random forest variations (Model 8.3). For all variations, we will keep the
order of synthesis constant, see Section 8.2.1. With the exception of age, we generate all
variables using the models we list below. As the first variable to be synthesised, age is
generated by sampling with replacement.

For the generalised linear models, we will synthesise data from both penalised and
non-penalised regression models.

Model 8.1 (Regression synthesis model). For the first variation, regression models for
each variable are fit with no penalty. Whereas, for the second variation, the regression
models for each variable are fit with an elastic net penalty, where α = 0.5 is the mixing
parameter (see Equation 2.17) and the regularisation penalty is fixed to λ = 10−5. These
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hyperparameters were chosen to enforce a small degree of shrinkage and variable selection.
We will model the diabetes variable with a Bernoulli distribution, as in Equation (2.7).

Then, we will model the eight numeric variables as normally distributed, see Equa-
tion (2.2). However, during the exploratory analysis of the data we noted that some
numeric variables are right skewed. We will address this by transforming those variables
pre-synthesis, and then reversing those transformations post-synthesis. The variables age,
BMI, number of pregnancies, 2-hour serum insulin and number of pregnancies are log
transformed. As the number of pregnancies variable contains zeroes, we will increment by
one before the log transformation.

Now, for the CART synthesis models, we will explore three approaches of smoothing
the numeric variables with cubic splines.

Model 8.2 (CART synthesis model). For each numeric variable, data is generated accord-
ing to one of the following strategies, no smoothing, smoothing the leaves and smoothing
the data (see Equation (4.7) and Equation (4.8)). For all variables, the minimum node
size is set to 5.

For the random forest synthesis models, we will also explore three approaches of
smoothing the numeric variables with cubic splines.

Model 8.3 (Random forest synthesis model). For each numeric variable, data is generated
according to one of the following strategies, no smoothing, smoothing the leaves and
smoothing the data (see Equation (4.7) and Equation (4.8)). Minimum node size, the
number of variables considered at each split and the number of trees were set to the
default values for the randomForest package (see Section 2.2.1).

Ideally we would choose the hyperparameter values for each regression, CART and
random forest model through hyperparameter tuning. If the hyperparameters for the
models of individual variables are optimised, the models will fit the data better and this
should improve the quality of the synthetic data. However, hyper-parameter tuning would
increase the computational complexity of the synthesis models and so we leave this for
future work.

8.2.2 Assessing the utility of synthetic Pima data

Recall the methods for assessing the privacy and utility of synthesised data from Chapter 7.
In this section, we describe our method of implementation for the Pima dataset.

Baseline datasets

Throughout this chapter, we will compare the utility and privacy of the synthesised
datasets with each other, but also against three baseline datasets.
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1. The training sample of Pima data,

2. the test sample of Pima data, and

3. the 5-anonymous data, which is the training data with k-anonymisation (k = 5),
where the quasi-identifiers are age and number of pregnancies.

The training data (1) is a “high” utility baseline, so we will compare the synthetic
data against that for utility assessments. The k-anonymised data (3) is a “high” privacy
baseline. Therefore, we are interested in whether the synthetic datasets have similar or
higher utility while maintaining a similar or lower risk of disclosure. The test partition
(2) is both a “high” utility and “high” privacy baseline. The test data is independent
and identically distributed to the training. Therefore, if there was no risk of disclosure
from releasing the test partition, it would be the best possible alternative to releasing
the training data. Any differences in the utility of the training and testing partitions can
be attributed to sampling variance. The disclosure risk scores for the testing data are
effectively as large as is possible, without any leakage of information from the training
data.

Dimension-wise prediction (DWP)

We will use dimension-wise prediction (Definition 5.2) to check conditional relationships in
the synthetic datasets. All 8 variables will be predicted with each of the following models.

Model 8.4 (Dimension-wise prediction).

a. Penalised generalised linear regression with an elastic net penalty,

b. random forest, and

c. the gradient boosting algorithm XGBoost (Chen & Guestrin, 2016).

Predictions for the diabetes variable will be scored using area under the receiver oper-
ating characteristic (AUROC), while the numeric variables will be scored using root mean
squared error (RMSE).

Some hyperparameter tuning is carried out using 10-fold stratified cross validation,
however, to keep the run time reasonable we choose fixed values for other parameters. For
penalised regression, the weight penalty λ is optimised and the elastic net penalty α is set
at 0.5 to allow for both shrinkage and variable selection. The number of trees in the random
forest is set to 128, which is reasonable for a dataset that contains 200 observations. More
trees may have improved predictions, however, the ensemble models are the bulk of the
total runtime for dimension-wise prediction, and using fewer trees shortens the runtime
of the random forests. For the remaining random forest hyperparameters, we use the
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default values that were described in Section 2.2.1. For XGBoost, the depth of each tree
is optimised with a grid search and models are trained with early stopping. A maximum
of 128 rounds of boosting are carried out, but the algorithm is terminated if there is no
improvement in validation loss for 15 consecutive boosting rounds. Default values were
used for all other XGBoost hyperparameters (XGBoost developers, 2023).

Propensity scores

We will also implement the propensity scores assessment given in Section 5.2. We explore
two discriminator models, a logistic regression that includes first order terms, and CART.

Initially, the complexity parameter for the CART discriminator is chosen to be the
average of the best values (according to 10 fold CV) for all synthetic datasets. However,
in contrast to Bowen and Snoke (2020), we note that there are large differences in the best
complexity parameters across the datasets. Furthermore, for some datasets, the average of
the best complexity parameters leads to trees that have a single node, which is equivalent
to a random Bernoulli draw. As we noted in Section 8.2.2, a Bernoulli model will optimise
pMSE, regardless of the data. Consequently, we instead fix the complexity parameter of
the CART discriminator individually for each synthesis model. We choose this value to
be the average of the best values (according to 10 fold CV) for all 100 replications of
that synthesis model. In addition, we find the minimum value for the discriminator to
have at least one split for all replications of a synthesis model. Then, we ensure that the
complexity parameter for each model is greater than that minimum value.

For each synthetic dataset, we use pMSE ratio to assess predictions from each dis-
criminator, see Equation 5.5. Notice that we calculate the null distribution of the CART
discriminator (Algorithm 1) individually for each synthesis model so that the complexity
parameters match. This ensures that pMSE values are comparable.

Task performance: inference

We will be assessing the utility of the synthetic Pima data in a teaching scenario, by
replicating an inference that was previously carried out on the dataset by Vehtari et al.
(2022). Our goal is to compare the conclusions of a person that has access to the synthetic
data, with those of a person that has access to the original data.

Vehtari et al. (2022) do not partition the data or remove the serum insulin variable,
and they remove all observations with missing data. However, we prefer to use the same
training, test and synthetic data for all utility and privacy assessments. So we will carry
out the real data inferences on the training partition (see Section 8.2). As discussed in
Sections 4.2.3 and 8.2, the removal of observations will bias the data. The missing obser-
vations were removed before the synthesis models were fit, therefore both the training and
synthetic datasets should be similarly biased. Since we are interested in whether inferences
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align between the synthetic and training data, the biased data is not as problematic as it
would be if the main goal was a valid inference of the original Pima data. Although, it
is still possible that the bias could affect the results for the comparison of inferences. For
example, the conditional distributions of the biased training data may be simpler than
the true conditional distributions, which might benefit a poor synthesis model that would
have struggled to accurately model the true distribution.

We fit inference models to each dataset, with diabetes within the next five years mod-
elled as a Bernoulli distributed variable

yi ∼ Bernoulli(pi).

Note that we scale and centre all covariates prior to fitting.
The first inference model that we fit is a standard logistic regression with weakly

informative priors.

Model 8.5 (Pima inference, normal prior).

pi =
(
1 + exp(−α− xT

i β)
)−1

,

α ∼ N (0, 2.5) and β
iid∼ N (0, 2.5),

where xT
i contains all covariates in the Pima data.

We then fit a more sparse model, a logistic regression with a regularised horseshoe
prior, see Equation (2.10).

Model 8.6 (Pima inference, horseshoe prior).

pi =
(
1 + exp(−α− xT

i β)
)−1

,

α ∼ N (0, 2.5), βj|λj, τ, c ∼ N
(
0, τ 2λ̄2

j

)
, λj ∼ C+(0, 1),

τ |σ ∼ C+(0, τ 20 ), τ0 =
2

7

σ√
n
, c2 ∼ Inv-Gamma(2, 12.5),

where xT
i contains all covariates in the Pima data and σ2 is the estimated psuedo-variance

for the Bernoulli distribution
σ2 =

1

ȳ(1− ȳ)
.

Finally we fit a generalised additive mixed model (GAMM), which was the best fitting
model in the original inference (Vehtari et al., 2022).

Model 8.7 (Pima inference, generalised additive mixed model).

pi =

(
1 + exp(−

4∑
j=1

fj(xij)

)−1

,



CHAPTER 8. GENERATING AND ASSESSING SYNTHETIC PIMA DATA 101

where xT
i = (xi1, xi2, xi3, xi4) are the covariates, glucose, age, BMI and DPF, and fj is the

low rank thin-plate regression spline basis for the jth covariate.

This model is reparameterised to the mixed model representation (see Section 2.1.4),

g(µi) = x̃T
i β +Zib,

where g is the logit function.

Weakly informative priors are selected for the coefficients of the fixed effects

β
iid∼ N (0, 2.5),

the coefficients of the random effects

b ∼ N (0, I/λ),

and the smoothing penalty

λ ∼ Exponential(1).

We evaluate the fit of each model using expected log predictive density (ELPD), see
Equation (2.9). Then, we check which model has the “best” fit for each dataset, where we
have two definitions for “best”. Under our first definition, we consider the model with the
highest ELPD for a replication to be the best. However, in practice, if multiple models have
virtually indistinguishable fits then we would not rule out the marginally worse model.
In fact, if the difference is not significant, we may prefer a more sparse model that is
slightly worse fitting. Consequently, our second definition of “best” is that all models with
an ELPD within 1 standard deviation of the model with the highest ELPD are the best
for that replication. In the original analysis by Vehtari et al. (2022), the ELPD of the
GAMM (Model 8.7) was significantly larger than either of the generalised linear models
(Model 8.5 and Model 8.6). That is to say, the GAMM was the best fitting model under
both definitions.

We will also compare the 90% credible intervals interval overlaps of the synthetic and
training datasets, see Equation (5.7). For each replication of data and coefficient, we
will average over all coefficients to obtain an interval overlap per replication. However, by
averaging over all coefficients, we lose information about the percent overlaps of individual
variables. Therefore, we will also average the overlap for a coefficient over all replications.
Note, it is only possible to compare interval overlaps for the coefficients of the generalised
linear models, Model 8.5 and Model 8.6, as the smooths of Model 8.7 will change across
datasets.

As mentioned previously, we are interested in whether the conclusions of the synthetic
and original data align. Therefore, we also check whether the hypothesis test results of
these 90% credible intervals align with each other. For each coefficient, we count the
number of synthetic data replications that the hypothesis test result matches the result
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for the original data. Let us introduce some formal notation to clarify this.
Consider a posterior sample β̃, and let β̃[p] donate the pth percentile of that posterior

sample. Then the 90% credible interval of β̃ is(
β̃[5], β̃[95]

)
.

For our analysis, we use a two-sided hypothesis test. As such, there are three possible
outcomes for the hypothesis test result. Without loss of generality, the null hypothesis of
our hypothesis test is that β = 0, and the three possible outcomes are

H(β̃) =


HA+, if β̃[5] > 0,

HA−, if β̃[95] < 0,

H0, otherwise.

For us to consider the hypothesis of a synthetic data to match the original data, the result
must match. Lets clarify this with an example of a non-match. Suppose the original data
hypothesis H(β̃o) and the synthetic data hypothesis H(β̃s) are equal to HA+ and HA−,
respectively. Despite both results indicating that the respective parameter is significant,
the hypotheses of the original and synthetic data do not match.

8.2.3 Assessing disclosures risks of synthesised Pima datasets

In this section, we assess the risk of attribute disclosure by a motivated intruder (see
Definition 3.1). The potential quasi-identifiers for the Pima dataset are age and the number
of pregnancies. We assume that the intruder knows these quasi-identifying variables for
all observations in the training data, that the intruder has access to a synthetic dataset,
and that they will attempt to predict the values of the attributes BMI, blood pressure,
plasma glucose concentration and diabetes for observations in the training partition. As
we are unsure which prediction methods the intruder will use, or what the most effective
methods are, we compare the 5 methods discussed in Section 7.2.2.

Model 8.8 (Attribute prediction). Attributes will be predicted with the following predic-
tion models

a. CART,

b. random forest,

c. generalised linear regression,

d. empirical matching (see Section 7.2.2), and
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e. XGBoost (Chen & Guestrin, 2016).

So, our intruder will be training their chosen prediction method on the synthetic
dataset, before predicting the attribute values for each observation in the real data. We
introduce some notation for this scenario. We denote the intruder’s target observation i,
intruder’s prediction method j, the attribute they will predict t, and the rth replication
from the sth synthesis model to be rs. Also, let

f : k→ t,

be a prediction method, which takes the two quasi-identifying variables k as input and
predicts an attribute.

So, the intruder will proceed as follows. First, they will use the synthetic data, rs, to fit
their prediction method, which we denote fjrst. Then, they will use their fitted prediction
method to predict values for observations in the training partition,

fjrst(xi,k).

We use a prediction scoring function to evaluate the risk of disclosure for each prediction.
However, our target attributes are not all the same data type. Consequently, we must use
different scoring functions for different data type.

yijrst = lt(fjrst(xi,k), xi,t), (8.1)

where lt is the attribute disclosure scoring method for the tth attribute. We want to choose
scoring functions that penalise predictions more severely as they are further from the truth.
Consequently, lt is the logistic likelihood for categorical variables, and root mean squared
error for numeric variables.

We have now described the process that we use to model a scenario where a motivated
intruder utilises a synthetic dataset and some background knowledge to disclose sensitive
attribute information. Before we describe the methods for analysing the results of this
scenario, let us consider the questions that we would like to answer.

We had several questions of interest when evaluating the attribute disclosure scores.

Questions 8.2.1.

a. Which attribute predictions methods result in the highest risk of disclosure?

b. What is the relationship between method of synthetic data generation and risk of
disclosure?

c. Does smoothing or regularisation during data synthesis affect the risk of disclosure?
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Figure 8.3: Histogram of attribute disclosure scores.

d. How does the risk of disclosure for synthetic data compare with the test partition
and k-anonymised baseline?

e. Is the risk of disclosure higher for outliers?

We can answer all of these questions by fitting an inference model to the attribute
disclosure data, see Equation 8.1. Let us carry out an exploratory analysis of the attribute
disclosure data, to determine if that is feasible.

The first thing to note is that there are 200 subjects in the training data, 5 attribute
prediction methods, 4 target variables, and 100 replications of 8 synthesis models. Con-
sequently, the dataset is quite large (3,200,000) and contains 16,000 repeated measures
per subject. If we were to fit a simple model, 3,200,000 observations would not be a
problem. However, at minimum, we need a hierarchical model to handle the repeated
measures. Furthermore, we are about to discuss some other challenging aspects of the
data distribution that we must also model. In short, a simple inference model is not going
to work.

Consider the histogram of attribute disclosure data (Figure 8.3). The distribution is
heavily right skewed, so we require an inference model that can handle heavily skewed
data, such as log-normal or gamma. Alternatively, we can consider modelling the data
as normally distributed, if we can find a transformation to address the skew. However,
the data also contains a large number of zeros, see Table 8.1. This complicates things, as
neither log transformations, log-normal models or gamma models can handle zeros.

Another issue with the attribute disclosure data (Figure 8.3) is that the distribution
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Disclosure method Percentage zeros

CART 0.056%
Empirical 1.195%
Regression 0.000%
Random forest 0.000%
XGBoost 0.000%

Target variable Percentage zeros

Blood pressure 0.505%
BMI 0.293%
Diabetes 0.000%
Glucose 0.202%

Table 8.1: The percentage of subsets of attribute disclosure scores yijrst equal to zero.

of yijrst is multi-modal. While the numeric variables BMI, blood pressure and glucose all
display similar peaks at zero and long tails, the distribution of the categorical variable
diabetes has a much shorter tail. It will be challenging to find an inference model that
can fit both the numeric and categorical scores. The simplest solution would be to model
them separately. Although, the effects of the covariates for the two models would then be
completely independent of each other.

We could also consider a distributional model which is a model that allows for specifica-
tion of predictor terms for all parameters, rather than just the location or shape parameter
(Bürkner, 2017). This relaxes the regression assumption that errors are independently and
identically distributed. Instead, we assume that the errors are conditionally independent,
and depend on some covariates. With a distributional model, the effects of the covariates
on disclosure risk are shared for all attributes.

The final issue to note from our exploratory analysis is a worrying spike of extremely
high values around 35. Further investigation reveals that these high values occur for
every observation that the prediction model is wrongly certain about a prediction. More
formally, as the predicted probability of the true value tends towards 0, the log-loss function
converges to infinity. It will be very difficult to find a model that fits the extreme values
without modelling them as separate processes. However, we believe that a large enough
sample of Pima data would contain a value that contradicts any certain prediction. In
other words, the values of exactly zero or 35 are the result of a lack of precision rather
than a different process. Due to the difficulties that we would face in modelling these
extreme values, we need to average over some dimensions of the data.

Let’s consider two options for averaging data. Averaging over the subjects in the
training data and averaging over each replication. By averaging over the subjects

yjrst =
1

ni

ni∑
i=1

yijrst, (8.2)

each yjrst is now the average attribute disclosure score for all subjects in the training par-
tition. This reduces the size of the data to 16,000 observations. We can see that averaging
over all of the subjects has removed the extreme values at both 0 and 35 (Figure 8.4).



CHAPTER 8. GENERATING AND ASSESSING SYNTHETIC PIMA DATA 106

Figure 8.4: Histograms of yjrst for each combination of target variable and disclosure
method, see Equation 8.2.

However, we are no longer able to model the effect of the subject on disclosure risk. This
does simplify the modelling, but we would not be able to explore whether outliers were at
greater risk of disclosure (see Question 8.2.1e).

Instead, if we were to average over the replications

yijst =
1

100

100∑
r=1

yijrst, (8.3)

each yijst is now the average disclosure risk for the ith subject, we would reduce the size
of the data to 32,000 observations and has removed the extreme values at both 0 and 35
(Figure 8.5). However, we are still able to model the effect of subject on disclosure risk,
which was not possible with Equation (8.2). Note, by averaging over the replications, we
underestimate the variance in disclosure risk for a single replication of synthetic data.

We will attempt to model the attribute disclosure scores (Equation (8.2) and Equa-
tion (8.3)) by fitting increasingly complex regression models. Our goal is to find the
simplest regression model that explains the attribute disclosure and use that model to
answer the questions posed in Questions 8.2.1. However, let us first begin where almost
all statistical inference starts, a linear regression model. More specifically, we will fit the
implementation that allows us to specify priors on R2, see Model 2.1 for more details.

Recall, linear regression assumes that the errors are independent and identically dis-
tributed. Given the multimodalities and repeated measures that we discussed in the ex-
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Figure 8.5: Distribution of yijst for each target variable and disclosure method, see Equa-
tion 8.3.

ploratory analysis, this is not the case for our data. Consequently, we will further simplify
the attribute disclosure scores

yjst =
1

nrni

100∑
r=1

ni∑
i=1

yijrst. (8.4)

Note the distribution of yjst, see Figure 8.6. Due to differences in type and scoring function
for our attributes (Equation 8.1), this data is not identically distributed. We address this
in the models defined in this chapter, see Model 8.9 through Model 8.16.

It is difficult to draw any conclusions about the distribution of yjst, due to the small
number of observations but there is some evidence of a right skew. Consequently, we will
log transform the scores before fitting the linear regression model.

Model 8.9 (Full linear model log yjst).

log yjst|R2 ∼ N (α + β1,j + β2,s + β3,t + β4,(j,t), σ
2
ϵ ),

with a weakly informative prior

R2 ∼ Beta

(
1

4
,
1

4

)
.

From our exploratory analysis, we found the synthesis model to be the weakest pre-
dictor. Therefore, we will also consider a further simplification of removing the synthesis
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Figure 8.6: Histogram of simplified attribute disclosure scores, see Equation 8.4.

model coefficient4.

Model 8.10 (Simplified linear model log yjst).

log yjst ∼ N (α + β1,j + β3,t + β4,(j,t), σ
2
ϵ ),

with a weakly informative prior

R2 ∼ Beta

(
1

4
,
1

4

)
.

We run each of the linear regression models for 6 chains. Each chain has 5000 warm-up
iterations followed by 5000 iterations of sampling from the posterior.

Next, we consider fitting distributional models to the data. As we discussed in our
exploratory analysis, we prefer distributional models over separate models for each at-
tribute. As there is no hierarchical component to these distributional models, they are
not appropriate for the subject level data. Consequently, we will fit these models to yjrst

(Equation 8.2). The distribution of yjrst contains modalities for target variable and disclo-
sure method that have different variances (Figure 8.4). Furthermore, these distributions
are right-skewed, with the degree of skewedness varying between modalities. Given the
skewed data, we will model log-transformed yjrst as normally distributed.

4We also considered other simplifications, including the removal of the interaction, however this was
excluded for brevity.
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Model 8.11 (Gaussian distributional).

log yjrst|α,β,γ, π ∼ N (µjst, σ
2
jst),

µjst = α + β1,j + β2,s + β3,t + β4,(j,t),

log σjst = π + γ1,j + γ2,s + γ3,t + γ4,(j,t).

Additionally, we also consider modelling yjrst with a log-normal and Gamma distribu-
tions.

Model 8.12 (log-normal distributional).

yjrst|α,β,γ, π ∼ Lognormal(µjst, σ
2
jst),

µjst = α + β1,j + β2,s + β3,t + β4,(j,t),

log σjst = π + γ1,j + γ2,s + γ3,t + γ4,(j,t).

Model 8.13 (Gamma distributional).

yjrst|α,β,γ, π ∼ Gamma(kjst, θjst),

log kjst = α + β1,j + β2,s + β3,t + β4,(j,t),

log θjst = π + γ1,j + γ2,s + γ3,t + γ4,(j,t).

Exploratory analysis and initial model fitting show that the attribute scores are rel-
atively small and variance between the models is not too extreme. As such, we will use
the same weakly informative priors for all three models (Model 8.11, Model 8.12 and,
Model 8.13).

α ∼ N
(
0, 2.52

)
, β

iid∼ N
(
0, 2.52

)
,

π ∼ student-t3 (0, 2.5) and γ
iid∼ N

(
0, 12

)
Prior predictive draws from the models contained many samples that were orders of mag-
nitude smaller and larger than the data. This indicates that the priors are not strongly
informative and that, if necessary, we can specify more informative priors.

During early experimentation with distributional models, we find that it takes more
than 24 hours to run Model 8.11 for 2000 iterations. Given that Models 8.12 and 8.13
will be slower to train, and estimation of ELPD can also require refitting the models
multiple times, it is unrealistic to train all models on the entire dataset within a reasonable
timeframe. As such, we save time by randomly sampling 20 of the 100 replications and
only training the models on those. In our experimentation, we found that reducing the
training data to 20 replications had a negligible effect on the coefficients of Model 8.11.
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We run 4 chains with 1000 warm-up iterations and 1000 sampling iterations per model
and find this to be sufficient for convergence.

With such flexible models, there is a danger of over-fitting. So we will consider reducing
model complexity by removing parameters and enforcing regularising priors (Model 8.14d).
Recall that, exploratory analysis showed that synthesis method was the weakest predictor.
Therefore, we will introduce simplifications that remove the synthesis method for either
the location or scale parameter, see Models 8.14a and 8.14b. Furthermore, recall that the
distributions of BMI, blood pressure and glucose were similar, as were the distributions for
variants of the same synthesis model (Model 8.1, Model 8.2 and, Model 8.3). So, we also
consider simplifying the model by changing σjst to depend only on the synthesis model
type, and whether an attribute is numeric or categorical (Model 8.14c).

Model 8.14 (Simplified Gaussian distributional regression). We consider four simplifica-
tions to the Gaussian distributional regression model in Model 8.11. These simplifications
are as follows:

a. µjst does not depend on synthesis method

∀s β2,s = 0.

b. σjst does not depend on synthesis method

∀s γ2,s = 0.

c. σjst only depends on whether the attribute is numeric or categorical, and does not
depend on the specific variation of CART, random forest, or regression synthesis
model.

γ3,t : t = 1, . . . , nt → γ3,t′ : t
′ = 1, 2;

γ2,s : s = 1, . . . , ns → γ1,s′ : s
′ = 1, . . . , 3; and

γ4,(j,t) : t = 1, . . . , nt → γ4,(j,t′) : t
′ = 1, 2.

d. Placing a regularised horseshoe prior (see Section 2.1.2) on the synthesis method
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coefficients for µjst
5.

β2,s|λs, τ, c ∼ N (0, τ 2λ̄2
s), λs ∼ C+(0, 1),

τ |σ ∼ C+(0, τ 20 ), τ0 =
1

5

σ√
n
, c2 ∼ Inv-Gamma(2, 8),

γ
iid∼ N (0, 0.52) and π ∼ N (0, 0.52).

We do encounter issues with divergent transitions when fitting the Gaussian distri-
butional model with a horseshoe prior (Model 8.14d). Recall that issues are common
with the horseshoe prior due to the difficult posterior geometry that it can induce (Betan-
court, 2021). We attempt to resolve this by experimenting with centered and non-centered
parameterisations for the model coefficients, as this can improve the posterior geometry
(Betancourt, 2021). We find that most parameterisations have no effect and that divergent
transitions can not be completely eliminated. However, a non-centered parameterisation
for β2,s and a centered parameterisation for γ2,s results in the fewest divergent transitions.
Finally, we resolve to brute forcing the sampling from the posterior distribution. We
drastically reduce the step size of the sampler and increasing the warm-up phase to 5000
iterations. This helped to reduce the number of divergent transitions, but there were still
6 divergent transitions in the final sample of 4000 draws. As such, posterior samples from
Model 8.14d will be biased.

The final inference models that we will consider for the disclosure scores incorporate a
hierarchical structure for the subjects. Recall, that we considered the alternative approach
of averaging the attribute disclosure scores over all replications, see Equation (8.3). Fur-
thermore, recall our question about the disclosure risk of outliers, see Question 8.2.1e. In
general, we expect that some subjects in the data will be more vulnerable to disclosures
than others. As such, we would prefer to model attribute scores at the subject-level and
test this.

We calculate local outlier factor (see Equation (6.7)) for the observations in training
data, as a measure of how outlying they are. An initial exploration of the relationship
between yijst and log(lofi) indicates a weak positive correlation (Figure 8.7). Therefore,
we will fit a Gaussian hierarchical distributional regression to the data. We run this model
for 6 chains with 6000 warm-up iterations and 5000 sampling iterations per chain.

5When using the regularised horseshoe prior, we specify narrower prior distributions for the scale
coefficients as it was found to reduce the number of divergent transitions.
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Figure 8.7: log(lofi) against yijst for a small sample of the attribute disclosure scores.

Model 8.15 (Gaussian hierarchical distributional).

log yijst|α,β,γ, π, σb ∼ N (µijst + b[i], σ
2
jst),

µijst = α + β1,j + β2,s + β3,t + β4,(j,t) + x5,iβ5,

log σjst = π + γ1,j + γ2,s + γ3,t + γ4,(j,t).

With weakly informative parameters priors

α ∼ N (0, 2.52), β ∼ N (0, 2.52),

π ∼ student-t3(0, 2.5), γ ∼ N (0, 12),

b[i] ∼ N (0, σ2
b ) and σb ∼ Exponential(1).

where x5,i is log(lofi).

Note, these are narrower priors than for previous models but we find that they are
necessary for convergence. We check the prior predictive distribution for the model and
verify that the distribution is many orders of magnitude more varied than the data. In fact,
we could improve training by selecting more informative priors. However, this is difficult
for such a complex model so we prefer to keep our very weakly informative choices.

Given the complexity of Model 8.15 we will explore several choices for simpler models.

Model 8.16 (Simplified Gaussian hierarchical distributional regression). We consider
the following simplifications to the Gaussian hierarchical distributional regression model
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(Model 8.15).

a. σjst only depends on whether the attribute is numeric or categorical, and does not
depend on the specific variation of CART, random forest or regression synthesis
model.

γ3,t : t = 1, . . . , nt → γ3,t′ : t
′ = 1, 2;

γ2,s : s = 1, . . . , ns → γ1,s′ : s
′ = 1, . . . , 3; and

γ4,(j,t) : t = 1, . . . , nt → γ4,(j,t′) : t
′ = 1, 2.

b. attribute disclosure score does not depend on local outlier factor (LOF)

β5 = 0.

c. A hierarchical non-distributional regression model

σ2
jst = σ2,

where

σ ∼ Exponential(1).

Most of these simplifications are similar to the simplified Gaussian distributional regres-
sion (Model 8.14), so we will only discuss the notable changes. We removed the horseshoe
prior simplification (Model 8.14d), which we found to be very difficult to sample from.
The hierarchical model is more difficult to train, so these problems would only become
worse.

Recall, that the exploratory analysis of LOF indicated that the effect on yijst was quite
weak (see Figure 8.7). Furthermore, with the inclusion of a hierarchical term on each
subject, LOF of the subjects may not provide much additional information. Therefore, we
consider the simplification of removing the LOF term (Model 8.16b). Also, we compare
the fit to a non-distributional hierarchical model (Model 8.16c) but we do not expect this
to fit well.

Membership disclosure

We evaluate membership disclosure risk in the scenario where the hypothetical attacker
knows the age and number of pregnancies of all training subjects, and also when they
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know all variables for the training subjects. We calculate membership predictions for the
entire training set, and also separately for the training set inliers and outliers. We plot
precision-recall curves for all sets of membership predictions and we test for significant
differences in the membership disclosure risk of outliers by fitting a regression model to
the area under the precision-recall curves for both inliers and outliers.

Let yrst be the area under the precision recall curve for the rth replication of the sth

synthetic data generation method, calculated for the training set inliers (t = 0) and outliers
(t = 1). We model yrst with the hierarchical linear regression model:

yrst ∼ N (µst, σ
2
ϵ ), (8.5)

where

µjs = α + α[s] + βt,

for

r = 1, . . . , Nr; s = 1, . . . , Ns; t = 0, 1; β0 = 0;

with weakly informative hierarchical priors
α, β1 ∼ N (0, 2.5),

α[s] ∼ N (0, σ2
s), and

σϵ, σs ∼ Exponential(1).

(8.6)

8.3 Results

8.3.1 Results of utility assessments of synthetic Pima data

Consider the univariate plots of the Pima variables for 50 replications of the eight synthesis
models (Figure 8.8). All synthetic data generation methods have accurately replicated
the general distribution of most variables in the original data, However, the regression
synthesised data (Model 8.1) fails to capture the bimodality of BMI and the slight right
skew of glucose.

We explore the issue of skewed variables further by looking at quantile plots for DPF
and pregnancies (Figure 8.9). These reveal that Model 8.1 generates more extreme values
than we observe for the other datasets. For example, the regression data contain values
such as 60, 100 and −1 pregnancies. The extreme values at the tails of the distributions
are caused by a combination of two aspects of the regression synthesis approach. The
first is that we synthesised the variable from a Gaussian distribution, which is unbounded.
The second is that we applied the log transformation to right skewed variables. Reversing
this transformation after synthesis causes the scale of the outliers at the upper end to be
magnified. At the lower end, most inverse transformed variables are bounded by zero.
However, recall that pregnancies contained zero values which we addressed by adding one
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and then log transforming. As such, the inverse transformed values are lower bounded by
negative one, which is why we observe a few −1 values.

Figure 8.8: Univariate variable distributions for 50 replications of synthetic Pima data.

Recall that subjects with plasma glucose concentration ≥ 200mg/dl were specifically
excluded from the original data (see Section 8.1). However, plots of plasma glucose con-
centration show that the regression synthesised data contains subjects with plasma glucose
concentration values that are above the 200 (Figure 8.10).

Overall, the distributions of the numeric variables for the regression synthesised data
indicate a clear problem with model selection. The linear regression model is not able to
model the tail distributions of the log transformed variables, and this problem is magni-
fied on the original scale. Truncating the distributions of pregnancies and plasma glucose
concentration would remove the impossible values, however, this would also introduce
bias. These problems can be addressed in the future by choosing more appropriate mod-
els for variables with skewed, truncated and/or count distributions. Poisson regression,
negative binomial regression, zero-inflated Poisson regression, zero-inflated negative bino-
mial regression, CART and random forest models are all potential solutions (Kleinke &
Reinecke, 2013).

We check whether relationships between variables are preserved in the synthetic data.
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Figure 8.9: Synthetic data quantile distributions for pregnancies and diabetes pedigree
function.

Figure 8.10: Distribution of synthesised glucose variables.
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Figure 8.11: Pairwise correlation difference between original Pima data and 100 replica-
tions of data from eight synthesis methods.

The pairwise correlation differences (PCDs) for all eight data synthesis methods are signif-
icantly better than the 5-anonymised data. We can conclude that the removal of outlying
values has weakened the linear associations between variables (Figure 8.11). In fact, PCDs
for all eight data synthesis methods are slightly better than the test data, which has the
same underlying distribution as the training data (see Section 8.2.2). As such, if the PCDs
values were much lower, then we may have concluded that the models were overfit.

The dimension-wise prediction (DWP) results for all replications of synthetic data
are very close to the the results for the original data (see Figure 8.12). This is the
case for all three prediction models (see Models 8.4a, 8.4b and 8.4c). In comparison
the results for the 5-anonymous data are significantly worse. We can conclude that the
conditional relationships are better preserved in the synthetic data than the 5-anonymous
data. However, recall that the near-perfect results can also be indicative of prediction
models that are unable to model the differences between conditional distributions (see
Section 5.3).

Now we consider the results of the propensity score assessment (see Section 8.2.2).
Plots of pMSE ratio show weak but not conclusive evidence that the CART discriminator
is able to distinguish the regression synthesised data from the training data (Figure 8.13a).
The results for data synthesised from CART and random forest variants do not show any
evidence that the discriminators can identify the synthetic data. However, recall that we
would observe the same if the discriminators were poorly specified (see Section 5.2).

Task performance: inference

Now, we consider the model comparison results of the Pima inference task (Figure 8.14).
Recall, the GAMM inference model (Model 8.7) fit the training data best. It was also
the best fitting model for the majority of replications of all synthesis models. However,
there are differences in how many replications it was best, and whether other methods
were similarly well fitting. There were clearly more replications of CART synthesised data
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Figure 8.12: Dimension-wise prediction scores for 20 replications of synthetic datasets and
5-anonymised data. For three prediction models (see Models 8.4a, 8.4b and 8.4c).

(Model 8.2) that the GAMM was the best fitting model. Also, there were more replications
and the GAMM was significantly better than the other inference models. Consequently,
the CART synthesised data best aligns with the original data. Both variants of regres-
sion synthesised data (Model 8.1) performed particularly poorly on this comparison. In
particular, penalised regression, for which there was no significant difference between any
inference models in about 90% of replications. Such a result is perhaps not surprising. We
would expect a logistic regression model to fit well to a variable that was synthesised with
linear regression. In fact, it would be odd if the GAMM model was significantly better
than the logistic regression models.

The 90% credible interval overlaps are similar for most synthesis methods. The notable
exception is penalised regression, Model 8.1, which clearly has the least overlap for both
inference models, see Figure 8.15 and Figure 8.16. The overlaps are slightly higher for
the coefficients of the inference model with the horseshoe prior (Model 8.6). Our current
theory for why this might be, is that the synthesis models replicate strong conditional
relationships better than they replicate weak relationships. Therefore, the interval overlaps
of the coefficients for the strongly related variables are larger than the weakly related
variables. However, since the horseshoe prior shrinks weak coefficients towards zero, this
improves the overlap. In comparison to the baseline datasets, the synthesis models all have
lower overlap than the test baseline, on average. However, we do observe better overlaps
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(a) CART discriminator

(b) Logistic regression discriminator

Figure 8.13: Boxplots of pMSEratio scores for 100 replications of data generated with eight
synthesis methods, calculated with both a CART and a logistic regression discriminator.
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(a) Only the model with the largest ELPD.

(b) All models that were within 1 standard error of largest ELPD.

Figure 8.14: The number of synthetic Pima replications that each inference model was the
best fit.

Figure 8.15: 90% credible interval overlap for Pima inference, Model 8.5 and Model 8.6,
averaged over all coefficients.
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Figure 8.16: 90% credible interval overlap for Pima inference, Model 8.5 and Model 8.6,
averaged over all replications.

for some replications, Meanwhile, the interval overlap is very low for the 5-anonymised
data. In fact, it is significantly lower than even the penalised regression.

Let us now compare the results of hypothesis tests for the Pima inference models, see
Figure 8.17. First, we consider the inference model with the normal prior (Model 8.5).
In this case, the regression synthesised datasets (Model 8.1) are most aligned with the
original data. In contrast, for the inference model with the horseshoe prior (Model 8.6),
the CART synthesised data (Model 8.2) aligns most with the original data. However, we
can see that there is another underlying pattern here. Let us consider the hypotheses tests
for both inference models where we reject the null hypothesis. For tests that reject the
null, the regression synthesised replications tend to align better. On the other hand, if the
hypothesis test result is a failure to reject the null, then the CART synthesised replications
tend to align better. The reason that we see the regression synthesised data performing
better for the normal prior is because coefficients are more likely to be significant. Con-
versely, coefficients are less likely to be found significant for the horseshoe prior, so the
CART synthesised data performs better.

These results have highlighted that the comparison of hypothesis test results is very
sensitive to the hypothesis test. For our example, the conclusion of the comparison are
strongly influenced by the choice of inference model. This represents a major flaw in the
comparison of hypothesis test results. As such, it is also worth questioning if other utility
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Figure 8.17: The number of replications of synthetic data for which the hypothesis test
result aligns with the original data.

assessments that are based on hypothesis tests, such as severity ratings, are of value (Taub
et al., 2020).

8.3.2 Results of disclosure risk assessments of synthetic Pima data

Risk of membership disclosure and memorisation

The results of the membership disclosure assessment show that the risk of membership
disclosures for observations in the training data when the intruder has access to synthetic
data depend on the synthetic data generation methods, the amount of prior knowledge the
intruder has of the real observations, and whether the training observations are outliers.
When the intruder knows all variables for the real observations, they are able to reliably
classify the few training observations that are extremely close to the synthetic CART or
random forest synthesised data. More often than not, the intruder can correctly classify
observations as training at larger distance thresholds (> 1) (Figure 8.18). When the
intruder only knows the quasi-identifying variables (age and number of pregnancies), they
are still able to correctly classify training observations about as well as they were for
all variables at thresholds larger than 1, but they can not classify nearly as reliably at
very small thresholds. The risk of membership disclosures are significantly lower when
the intruder attempts to match on regression synthesised data, regardless of whether they
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Figure 8.18: Precision-recall curves for changing intruder prior knowledge.

Figure 8.19: Precision-recall curves for changing intruder prior knowledge and training
subsets.

only know quasi-identifiers or all variables.
The membership disclosure risk differs for inliers and outliers. Fitting the regression

model to the area under the precision-recall curves of inliers and outliers indicates that the
membership disclosure risk of inliers is significantly higher when matching on all variables,
but the disclosure risk of outliers is significantly higher when matching on the quasi-
identifiers (Figure 8.20 and Table 8.2). Looking at the separate precision-recall curves for
the inliers and outliers (Figure 8.19), we can see that the difference between area under the
precision-recall curve when matching on all variables is mostly explained by lower precision
scores at lower distance thresholds. It appears that the synthetic data generation methods
tend to generate observations that are closer to average, and so the synthetic observations
are closer to the test observations than the training observations.

Looking at the closest training and synthetic pairs for each data synthesis method
when matching on all variables (Table 8.3), the non-smoothed CART and random forest
observations are identical to the closest training observation. Applying smoothing to the
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Figure 8.20: PPD of area under precision-recall curves for changing intruder prior knowl-
edge and training subsets.

Table 8.2: Differences between area under precision-recall curve of inliers (β0) and outliers
(β1), from the model in Equation (8.5) for both intruder prior knowledge scenarios.

Intruder knowledge E(β1 − β0) 90% HDPI β1 − β0

All variables −0.225 (−0.228,−0.223)
Quasi-identifiers 0.073 (0.071, 0.074)

numeric variables introduces small differences between the synthetic and real observations.
However, these differences are negligible and do not appear to affect the risk of membership
disclosure. The situation is especially bad for the random forest synthesised datasets,
where there were many more identical pairs of training and synthetic data than could be
shown (Table A.1). In contrast, the regression synthesised observations are similar but
not identical to the training observations. It is important to note that we would expect
the closest of those pairs to be fairly similar because there were 4 million possible pairs of
training and synthetic observations for each synthetic method shown. While the closest
test and synthetic pairs (6.64 million possible pairs) are not identical, they are still very
similar (Table 8.4).
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Table 8.3: A subset† of the closest pairs of training (original) and synthetic Pima obser-
vations for each data synthesis method when matching on all variables.

Dataset Distance Preg. Gluc. BP Skin. BMI DPF Age Diab.

Training 6.68E-03 1 107 68 19 26.5 0.165 24 0
Regression (pen.) 6.68E-03 1 108 67 18 27.3 0.131 23 0
Training 8.34E-03 1 111 62 13 24.0 0.138 23 0
Regression (no pen.) 8.34E-03 1 112 62 11 24.7 0.176 24 0
Training 1.10E-03 1 96 64 27 33.2 0.289 21 0
CART (smooth leaves) 1.10E-03 1 96 64 28 33.2 0.277 21 0
Training 2.12E-05 1 96 64 27 33.2 0.289 21 0
CART (smooth data) 2.12E-05 1 96 64 27 33.2 0.293 21 0
Training 0 1 99 58 10 25.4 0.551 21 0
CART (no smooth) 0 1 99 58 10 25.4 0.551 21 0
Training 0 9 152 78 34 34.2 0.893 33 1
RF (smooth leaves) 0 9 152 78 34 34.2 0.893 33 1
Training 1.32E-06 4 154 72 29 31.3 0.338 37 0
RF (smooth data) 1.32E-06 4 154 72 29 31.3 0.337 37 0
Training 0 5 139 80 35 31.6 0.361 25 1
RF (no smooth) 0 5 139 80 35 31.6 0.361 25 1

Table 8.4: A subset of the closest pairs of test and synthetic Pima observations for each
data synthesis method when matching on all variables.

Dataset Distance Preg. Gluc. BP Skin. BMI DPF Age Diab.

Testing 3.14E-03 1 89 66 23 28.1 0.167 21 0
Regression (pen.) 3.14E-03 1 88 66 24 27.6 0.167 22 0
Testing 4.46E-03 1 73 50 10 23.0 0.248 21 0
Regression (no pen.) 4.46E-03 1 73 49 9 22.0 0.253 21 0
Testing 7.00E-03 1 95 60 18 23.9 0.260 22 0
CART (smooth leaves) 7.00E-03 1 98 60 18 22.7 0.297 21 0
Testing 5.17E-03 7 102 74 40 37.2 0.204 45 0
CART (smooth data) 5.17E-03 7 100 74 39 36.6 0.242 46 0
Testing 4.65E-03 1 95 60 18 23.9 0.260 22 0
CART (no smooth) 4.65E-03 1 99 60 19 24.0 0.252 21 0
Testing 5.69E-03 1 97 66 15 23.2 0.487 22 0
RF (smooth leaves) 5.69E-03 1 96 68 14 22.5 0.493 22 0
Testing 7.08E-03 0 105 64 41 41.5 0.173 22 0
RF (smooth data) 7.08E-03 0 106 66 40 41.1 0.207 21 0
Testing 5.55E-03 2 107 74 30 33.6 0.404 23 0
RF (no smooth) 5.55E-03 2 107 75 29 34.2 0.364 24 0

† Table A.1 in Appendix A includes 14 pairs of random forest (no smooth), 2 pairs of random
forest (smooth data), and 9 pairs of random forest (smooth leaves) that were equidistant to
those in the Table 8.3.
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Risk of attribute disclosure

Now we explore the results from our scenario modelling the attribute disclosure risk of a
motivated intruder (see Section 8.2.3). First, we shall consider the two linear regression
models (see Models 8.9 and 8.10). The chains for each model ran without issues and both
trace plots and R hat values (R̂ < 1.01) showed convergence. ELPD indicates that the
full model is a significantly better fit to the data (Table 8.5). Therefore, despite the small
difference we observed between observations for between different synthesis models, their
coefficients do improve the fit. Most of the posterior samples from each model have been
excluded for brevity but they showed that the model fit the data well. However, we can
see that combinations of attribute prediction methods and attribute are not modelled well
(Figure 8.21). Since the simplified data is very small (120 observations) and not identically
distributed, we would not expect it to be able to model such fine aspects of the data. That
said, we can clearly see that the lower variance of the regression prediction model and some
other panels are not well modelled.

Figure 8.21: Posterior samples from linear regression (Model 8.9) grouped by attribute
and attribute disclosure method.

Next, we consider the Gaussian, log normal, and gamma distributional regression mod-
els (see Models 8.11, 8.12 and 8.13 respectively). All trained well, with all R̂ values well
below 1.01 and trace plots indicating good mixing of chains. Overall, it is difficult to
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Table 8.5: ELPD difference for linear regression models.

ELPD difference SE difference

Full simple model (Model 8.9) 0.0 0.0
No synthesis method (Model 8.10) -5.9 4.4

discern much difference between posterior distributions of the three models, since each
fits the observed data well (Figure 8.22). Separating the posterior distribution plots by
attribute and attribute prediction method really highlights the flexibility of the distribu-
tional model (Figure 8.23)6. Recall, that the linear regression model was unable to model
differences in variance (Figure 8.21). In contrast, the distributional model can capture the
difference in variances that we see for some groups. There are still some difficult values
at the upper tail of scores for CART and diabetes attribute. It would be very difficult to
find a regression model that could fit those without overfitting to the data.

(a) Gaussian (Model 8.11). (b) Log-normal (Model 8.12). (c) Gamma (Model 8.13).

Figure 8.22: Posterior distributions ỹjrst|yjrst of distributional models.

The ELPD of the Gaussian distributional model was significantly larger than the
gamma and log-normal (Table 8.6). As such, we will only consider simplifications for
the Gaussian distributional model (Model 8.14). Of these simplifications, the models with
either collapsed categories (Model 8.14c) or horseshoe shrinkage priors (Model 8.14d) both
essentially fit the data as well as the full model (Table 8.7). The models without synthesis
method (Model 8.14a and Model 8.14b) fit significantly worse. Recall that the model
with the horseshoe shrinkage priors was difficult to train and contained divergent tran-
sition whereas the model with collapsed categories trained without issue. Therefore the
model with collapsed categories (Model 8.14c) is our preferred distributional model for the
attribute disclosure scores.

6We omit the corresponding figures for the log-normal and gamma distributional models, as they are
virtually indistinguishable.
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Figure 8.23: Posterior distribution ỹjrst|yjrst from normal distributional model (see
Model 8.11), grouped by target variable and disclosure method.

Table 8.6: ELPD difference for Gaussian, log normal, and gamma distributional models.

ELPD difference SE difference

Gaussian distributional (Model 8.11) 0.0 0.0
Log-normal distributional (Model 8.12) -0.7 0.4
Gamma distributional (Model 8.13) -44.1 4.9

Table 8.7: ELPD difference of full and simplified Gaussian distributional models.

Simplification ELPD difference SE difference

Collapsed categories for γ2,s, γ3,t, γ4,(j,t) (Model 8.14c) 0.0 0.0
Regularised horseshoe prior (Model 8.14d) -0.1 6.9
Full model (Model 8.11) -0.4 6.6
σjst not dependent on synthesis method (Model 8.14b) -36.9 11.2
µjst not dependent on synthesis method (Model 8.14a) -43.2 13.0
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Now, we explore the Gaussian hierarchical distributional models (Model 8.15). They
trained well with R̂ values (R̂ < 1.04) and trace plots indicating good mixing of chains.
Posterior draws fit the data reasonably well for most combinations of the attribute pre-
diction method and target variables, and for individual subjects (see Figure 8.24 and
Figure 8.25, respectively). The scale of the posterior draws is generally good. There are
some clear bimodalities in the data that have not modelled. For example, the combina-
tion of CART attribute prediction method and diabetes attribute was also problematic
for the Gaussian distributional model (Figure 8.23). However, in general the model fits a
challenging distribution quite well.

Consider the results for simplifications to the hierarchical distributional model (Ta-
ble 8.8). The difference between the full model and model without LOF are clearly the
best fitting, with little to separate them. Usually, we would prefer the more parsimonious
model between two models that fit nearly equally well. However, one of our questions of in-
terest is about whether outliers have a higher disclosure risk (Question 8.2.1e). Therefore,
in this case we prefer hierarchical distributional model that includes LOF (Model 8.15).

Table 8.8: ELPD difference of full and simplified Gaussian hierarchical distributional
models.

Simplification ELPD difference SE difference

Full model (Model 8.15) 0.0 0.0
Without local outlier factor (Model 8.16b) -0.2 0.3
Collapsed categories for γ2,s, γ3,t, γ4,(j,t) (Model 8.16a) -3656.3 91.4
Non-distributional (Model 8.16c) -4348.8 115.3
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Figure 8.24: Posterior distribution of Gaussian hierarchical distributional (Model 8.11),
grouped by target variable and disclosure method.

Figure 8.25: Posterior distribution of Gaussian hierarchical distributional (Model 8.11),
grouped by subject.
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Results: Evaluating the risk of disclosure

We use the best fitting non-hierarchical and hierarchical models from the previous section
(Models 8.14c and 8.15) to answer the questions of interest posed (see Questions 8.2.1).
We begin by exploring which attribute prediction method results in the highest risk of
disclosure (Question 8.2.1a). That is, of the five methods that we explored, which repre-
sents the “best” intruder? We first consider the posterior predictive distribution (PPD)
of the hierarchical model (Figure 8.26b). However, there is little evidence of any differ-
ences between attribute disclosure methods. We consider the PPD of the distributional
regression model (Figure 8.26a). The CART, random forest and regression models (see
Model 8.8a, Model 8.8b and Model 8.8c) were consistently good at predicting all variables.
While, XGBoost and empirical matching were good at predicting the categorical and nu-
meric variables, respectively, and terrible at predicting the other type. While there are
clear differences between the disclosure risk scores for different prediction methods, it is
difficult to define a “best” attribute prediction method.

Now we move on to considering which synthesis models offer the best protection against
disclosure (Question 8.2.1b). There is evidence that the disclosure risk of some syn-
thesis methods is lower than others (Figure 8.27). The rankings of synthesis methods
slightly change between the distributional regression and hierarchical distributional re-
gression models. However, note that the scales of the coefficients for synthesis models
are much smaller than the coefficients for attribute prediction methods. Consequently,
despite there being evidence of a significant difference in disclosure risk between the syn-
thetic datasets, the actual effect on disclosure risk is negligible. We can see that negligible
difference when we look at the highest density posterior intervals (HDPIs) of the PPDs for
each model (Figure 8.28). For both inference models (see Model 8.14c and Model 8.15),
the HDPI of disclosure risk almost entirely depends on the attribute prediction method.
As such, it is difficult to conclude that any synthesis model offers better disclosure risk
than others.

The next question that we answer is whether smoothing or regularisation affect the
risk of disclosure (Question 8.2.1c). There was very weak evidence from the distribu-
tional model that smoothing the leaves improved the disclosure risk of random forest, and
stronger evidence that a weight penalty improved the disclosure risk of regression. How-
ever, as we discussed for Question 8.2.1b, the impact of any synthesis method is negligible.

Let us now consider how the risk of disclosure of synthetic data compares to the
test partition and 5-anonymous baseline (Question 8.2.1d). Recall, that the test baseline
dataset contains no information about the training data (see Section 8.2.2). There is
not any evidence that the synthetic datasets and test baseline have different disclosure
risks (see Figure 8.26). This is a very positive result, as we have shown that the risk of
disclosure of synthetic data is similar to a dataset that represents little disclosure risk.
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The disclosure risk for the 5-anonymous baseline (see 3) is generally quite similar to the
synthetic datasets. However, the disclosure risk of the 5-anonymous data is significantly
lower if the intruder uses regression as a prediction method, or if the intruder is predicting
blood pressure. Given the results in the utility assessment (see Section 8.3.1), it seems
likely that these differences are due to the significantly lower quality of the k-anonymous
data. Furthermore, a motivated intruder could recognise that regression is a particular
poor attribute prediction method against some anonymisation procedures (see Winkler
(2007)). In which case, they may implement a prediction method that is more robust
against a variety of anonymisation procedures, such as CART or random forest. This
would completely negate almost all the scenarios that k-anonymous data has a lower
disclosure risk.

The final question to consider is whether the disclosure risk of outliers is higher (Ques-
tion 8.2.1e). The attribute disclosure scores tended to be lower for observations that were
more outlying, with a slightly positive relationship between local outlier factor and at-
tribute disclosure score (Figure 8.30). On average, log local outlier factor increasing by
1 will correspond to a 1.15 increase in log attribute disclosure score (Figure 8.29). So in
fact, our results show evidence that the disclosure risk of outliers is lower.
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(a) Gaussian distributional regression (Model 8.14c).

(b) Gaussian hierarchical distributional regression (Model 8.15).

Figure 8.26: Posterior distributions of attribute prediction method coefficient, for each
target variable and disclosure method.
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(a) Gaussian distributional regression.

(b) Gaussian hierarchical distributional regression.

Figure 8.27: Posterior distributions of synthesis method coefficient, for Gaussian dis-
tributional regression (Model 8.14c) and Gaussian hierarchical distributional regression
(Model 8.15).
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(a) Gaussian distributional regression.

(b) Gaussian hierarchical distributional regression.

Figure 8.28: 90% HDPIs of attribute disclosure score from Gaussian distributional regres-
sion (Model 8.14c) and hierarchical distributional regression (Model 8.15).
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Figure 8.29: Posterior density for the coefficient of log local outlier factor (see Model 8.15).

Figure 8.30: Posterior predictive distribution of log attribute disclosure score given log
local outlier factor (see Model 8.15).
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8.4 Conclusions

Based on the results of this chapter, of the synthesis methods that were compared, CART
appears to be the best. CART synthesised datasets consistently performed well across all
utility assessments. The distributions for some of the regression synthesised count variables
were clearly affected by poor model specification, however, that lack of robustness against
misspecification is a major disadvantage in comparison to CART. It is somewhat surprising
that the random forest synthesised datasets performed worse in the utility assessments.
We would generally expect an ensemble of decision tree models to outperform a single
decision tree. The lack of parameter tuning for the random forest synthesiser may have
been a contributing factor, but these results do mirror similar findings for incompletely
synthesised data (Caiola & Reiter, 2010) and missing data imputation (Drechsler & Reiter,
2011).

Overall, most utility assessments do not identify many differences between synthetic
datasets. This provides strong justification of our decision to evaluate utility using a variety
of utility assessments. There are however, clear indications that k-anonymisation signifi-
cantly lowered the quality of the data. When utility assessments do identify a difference
between synthetic datasets, it is generally that regression synthesised data (Model 8.1) is
worse than the other synthesis methods. As stated previously, many of the issues with
the regression data are likely the result of poor model specification and could be resolved
with better choices of synthesis model. The utility assessment which identifies the clearest
differences between synthetic datasets is the inference task, which justifies our choice to
implement a task based utility assessment.

For our disclosure risk assessment, we implemented a unified comparison of multiple
attributes and prediction methods. Fitting models for this unified comparison required
overcoming several challenges. It was difficult to identify major differences, especially
in the hierarchical models. While we could identify differences in the non-hierarchical
model, the results differed between attributes of different types. Whether this reflects
the reality of the situation or is a result of the complications of the data is unknown and
requires further experimentation. These findings are somewhat disappointing, especially
the hierarchical results, as we would prefer to assess disclosure risk by modelling the risk
for individuals.

Despite those difficulties there were some interesting results. We found that average
disclosure risk for the training observations was mostly affected by the attribute prediction
method and not by the synthetic data. This demonstrates the dangers of evaluating
disclosure risk with a single set of fixed intruder assumptions, which was an issue that
we discussed in the literature review in Section 6.3.2. Furthermore, we identified that
the attribute disclosure risk would be lower for outliers. Our findings suggest that, for
some intruder strategies, outliers are less vulnerable to attribute disclosures. This is
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somewhat contrary to the widely held view. However, they support our discussion in
Section 3.1.1 that an intruder using predictive modelling may find it more difficult to
predict the attributes of outliers.

The membership disclosure assessment demonstrated that a simple membership in-
ference attack can successfully predict training observations when data was synthesised
from CART or random forest models, regardless of smoothing, while the risk for data
that was synthesised with regression methods was significantly lower. Some CART and
many random forest synthesised observations were identical or near identical to training
observations. If membership disclosures are an issue, then these results are concerning.
As we have previously discussed, the assumption that the intruder knows the values of
all variables for a training observation only reflects a disclosure of sensitive information in
cases where membership of the dataset is sensitive.



Chapter 9

Generation and assessment of large
synthetic microdata

One major motivator for research into synthetic data is the potential of releasing large
samples of microdata. Microdata is data that contain detailed information about synthetic
individuals (Reiter, 2005a). In the previous chapter, we demonstrated methods for gener-
ating and assessing synthetic data with the Pima dataset. However, the Pima dataset is a
small and relatively simple dataset compared to a census or healthcare database. In this
chapter, we expand on the work of the previous chapter by demonstrating methods for
generating and assessing synthetic data on the larger 130 Hospitals Diabetes dataset (also
referred to as diabetes-130). We implement changes to our methods of assessing disclosure
risk that affect both the larger scale of the new dataset, and the difficulties that we faced
with our inferences of the disclosure risk results.

9.1 Exploratory analysis

The diabetes-130 dataset contains 101,766 inpatient encounters (also called visits) from
130 hospitals and integrated delivery networks during the years 1999–2008 that include any
type of diabetes as a diagnosis code (Table A.2). The data was originally extracted for a
study investigating the link between measuring HbA1c (blood sugar) and early readmission
Strack et al. (2014). The dataset is available for download from UCI Machine Learning
Repository (Dua & Graff, 2017).

An initial exploration of the dataset highlights several challenges for data synthesis.
The first is that many of the patients in the dataset have repeated visits. Of the 101,766
patient encounters only 71,518 of these encounters are unique patients. That is, most
patients make a single visit but a small number make significantly more (Figure 9.1).
Repeated visits are not independent of each other. As such, we must remove the repeated
visits or account for the dependence between repeated visits by a single person.

139
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Figure 9.1: Total number of visits for each patient in 130 hospitals dataset.

The 48 variables that are observed per visit are a diverse mix of data types and distri-
butions. The data is sparse, containing high cardinality variables such as ICD-9 diagnosis
codes (Figures 9.4 & 9.5) and variables with imbalanced class distributions (Figure 9.3).
There are dependencies between variables, such as the dosage of specific medications and
the overall count of prescribed medications. Some dependencies span across multiple vis-
its, such as age, weight and the number of inpatient visits in the year preceding the current
visit (Figure 9.6). Generally, variables that contain patient demographic information re-
main constant across their multiple visits.

The count variables (Figure 9.2) are right skewed and several are zero-inflated. The
number of diagnoses, number of procedures and time in hospital variables have clearly
been truncated. The truncated time in hospital variable is due to the exclusion of patient
visits longer than 14 days from the sample, but the truncation of the other variables is
not mentioned in the original paper (Strack et al., 2014).

The distribution of the lab procedure variable is particularly interesting. The major
mode of the distribution is what we would expect for a count variable with zero-inflation.
However, at semiregular intervals there are spikes of random noise. These spikes are
more prevalent when the number of lab procedures is under 50. Often, spikes throughout
the distribution of a numeric variable can indicate rounding, however the random noise
suggests that this is not the case. One possible explanation is if there are standard
sets of lab procedures that doctors tend to use. This could cause certain numbers of
procedures to be more common than others, especially at the lower end of the distribution.
This explanation would align with random variation of the peaks, and the seemingly
inverse relationship between the number of lab procedures and the magnitude of the peaks.
Without a clear understanding of the underlying mechanism that causes this pattern, it
will be very challenging to model.

There are also restrictions in the data, observations that would be impossible outside
of errors in recording the data. These include non-negative values and structural zeros
(Upton & Cook, 2014) as well as more complicated dependencies that affect multiple
visits. For example, patient demographic information should not change across repeat
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Figure 9.2: Distributions for count variables in the 130 hospitals data.

visits. With the obvious exception of age, which should never decrease. Another example
is, if a patient were to die during a visit, then there should not be a later visit. Values that
should be impossible are occasionally observed in the dataset, presumably this is due to
data input mistakes. Due to all of these factors, the 130 Hospitals dataset is challenging
to synthesise without making multiple simplifying assumptions.
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Figure 9.3: Distributions of medicine variables in the 130 hospitals data.
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Figure 9.4: ICD-9 code for primary diagnosis of each visit in the 130 hospitals data.
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Figure 9.5: Speciality of admitting physician for each visit in the 130 hospitals data.
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Figure 9.6: Distributions of categorical variables across all visits in the 130 hospitals data.
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9.2 Methods

9.2.1 Synthesising Diabetes-130 data

In Chapter 8, we compared several variations of different methods of sequential synthesis.
In this chapter, we will synthesise the 130 hospitals diabetes data with a smaller selection
of models that reflect the results of the previous chapter and the additional challenges of
the Diabetes-130 dataset.

Due to the large number of variables and observations, sequential synthesis of the
Diabetes-130 data will be much slower than it was for the Pima data. We attempt to
generate synthetic data with regression, CART and random forests, but it becomes clear
that synthesising the large dataset with random forests is not feasible. The compute time
is notably slower at each subsequent step and, less than halfway through the sequence of
variables, progress slows to a crawl. Synthesising the high cardinality variables last helps
to speed up computation, but not enough to finish the synthesis process. It is possible
that a more efficient implementation of random forest sequential modelling would allow
for synthesis of this dataset, however, due to time constraints we leave this for future
research.

Smoothing of numeric variables had little effect on the utility or disclosure risk of the
CART and random forest synthesised Pima data. There is no guarantee that this result
will generalise to the diabetes dataset, which is very different to the Pima data. However,
given the additional computational burden of synthesising the larger dataset, we forgo the
comparison of smoothing and leave it as an avenue for future research.

In the previous chapter, we saw that the regression models performed poorly. Pe-
nalised regression methods were the worst performing on most utility assessments, but the
non-penalised methods were still poor. Even simple checks of the univariate distributions
showed that transforming and then synthesising count variables from linear regression
models was not an effective synthesis method. The tails of the variables that were syn-
thesised in this manner included impossible or very extreme values. Two approaches for
synthesising numeric variables are explored. The first was to also synthesise these variables
with CART and the second was to model these variables with count regression models,
following the approach described in Section 4.4.2 (Kleinke & Reinecke, 2013).

An initial exploration of count regression models is carried out by fitting intercept
only models to the data, and then using histograms to compare values that were generated
from each model (Figure 9.7). Poisson, quasi-Poisson and negative binomial models are all
considered. Additionally, hurdle and zero-inflated (or one-inflated) variants of Poisson and
negative binomial models are also explored. Based on the results of this exploration, we
decide to use quasi-Poisson models to synthesise time in hospital, medications, inpatient,
outpatient and emergency visits, while number of lab procedures is synthesised from a
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Figure 9.7: Results from the initial exploration of regression models for synthesising count
variables.

zero-inflated negative binomial model. Number of diagnoses is clearly censored and none
of the regression models seem appropriate, so we will use a CART synthesis model. The
CART model will capture the truncated nature of the distribution, however, a regression
model that is appropriate for right censored may have enabled the synthesis of number of
diagnoses, as if the censoring had never been applied. We are not aware of any examples
of synthesising right censored data with regression models. Although, such models have
been utilised in the context of missing data imputation and their application to synthetic
data is a potential future area of research (van Buuren & Groothuis-Oudshoorn, 2011,
Section 3.7.3).

In total, 10 datasets were synthesised solely from CART models and 10 from the
mixture of CART and generalised linear regression models. This was a significant reduction
from the 100 sets of Pima data that were synthesised for each method in Chapter 8,
however evaluating the results of a large number of replications would have been overly
time consuming for such a large dataset. Previous results on the Pima data also showed
that the variation in the assessment results between replications was relatively small in
comparison to other sources of variance, so we do not expect the reduction to significantly
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change the results.

Preprocessing

The pre-synthesis preprocessing loosely follows the methods of Strack et al. (2014). We
make exceptions in cases where we feel that the authors of the original paper oversimplified
the data. We remove all but the first visit for each patient and then reduce the dimension-
ality by grouping together similar levels of categories into single categories (Table A.3).
The variables for the dosage of individual medicines are dominated by the “no” category,
with the remaining three levels — decreased dose, steady dose and increased dose — very
rarely or never observed. The extra levels would increase model complexity and their spar-
sity would be challenging to model. As such, we simplify all individual medicines except
insulin to binary variables that indicate if the patient was prescribed that medicine. We
also remove patients with a missing primary diagnosis (n = 21) and gender (n = 3). Then,
we randomly divide the remaining visits (n=71504) into training (75%) and testing (25%)
partitions, without stratification. We choose to not use stratified sampling because the
data contains many categorical variables but no clear outcome variable.

Order of synthesis

As in Chapter 8, we synthesise the data using sequential synthesis, with each variable
synthesised conditional on all previous variables. Note that we keep the order constant for
all synthesis models. In the previous chapter, we determined synthesis order solely based
on assumptions about the dependence between the variables. However, the diabetes-130
data contains variables with many missing values or very imbalanced classes. We expect
this to be more difficult to model. While assumptions on dependence between variables are
still an important factor for the order of synthesis, we want to synthesise very imbalanced
and heavily missing variables towards the end to reduce their influence on other synthesised
variables.

We first synthesise the variables that define a general profile of the patient and their
health. Following that, we synthesise the variables that define the type of hospital visit:

1. race,
2. gender,
3. age,
4. primary diagnosis,
5. secondary diagnosis,

6. tertiary diagnosis,
7. number of inpatient visits,
8. number of outpatient visits,
9. number of emergency visits.

Next, we synthesise variables that relate to tests, procedures, and medications given
during the visit and whether the patient was readmitted following that visit:
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10. admission type,
11. admission source,
12. discharge information,
13. physician speciality,
14. time in hospital,
15. number of procedures,
16. number of lab procedures,
17. number of diagnoses,

18. number of medications,
19. HbA1C result
20. max glucose serum result,
21. diabetes medication,
22. change of medication,
23. insulin,
24. readmitted.

Finally, we synthesise the variables with high degrees of missingness or class imbalances:

25. weight
26. metformin,
27. glipizide
28. glyburide,
29. pioglitazone,
30. rosiglitazone,
31. glimepiride,
32. repaglinide,
33. glyburide metformin
34. nateglinide,
35. acarbose
36. chlorpropamide,

37. tolazamide,
38. miglitol,
39. tolbutamide,
40. glipizide metformin,
41. troglitazone,
42. acetohexamide,
43. metformin pioglitazone,
44. metformin rosiglitazone,
45. citoglipton,
46. examide,
47. glimepiride pioglitazone.

9.2.2 Baseline datasets

We compare the utility and privacy of the synthesised datasets against the training and
testing datasets and a k-anonymised training dataset (k = 50). For the k-anonymised
training dataset, we treat age, race, gender, and weight as quasi-identifying variables,
where, “missing” was treated as a category. Treating missingness as its own category is not
generally recommended, as this can bias the data (van Buuren & Groothuis-Oudshoorn,
2011, Section 1.3.7). However, masking procedures such as k-anonymising data are already
known to bias data (Winkler, 2007) and it is reasonable to assume that weight is quasi-
identifying. The k-anonymised dataset contains 51,812 observations. This is a much
higher percentage of the training observations (96.7%) than the k-anonymised dataset
in the Pima example (see Section 8.2.2). Presumably, the low number of observations
that were removed by k-anonymisation is due to the application of other de-identification
procedures. While we are not aware of the details of de-identification procedures that
were applied to the 130 hospitals dataset, at the absolute minimum, HIPAA compliant
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de-identification (see Example 3.3) will have been mandatory to allow for the public release
of the data.

9.2.3 Assessing the utility of synthetic Diabetes-130 data

For the initial exploration of the synthetic data, we check how well univariate and con-
ditional distributions from the training data are preserved. We plot the proportions of
categorical variables and distributions of numeric variables and compare with those of the
training data.

We check conditional relationships between variables in each synthetic replication using
dimension-wise prediction (see Definition 5.2). We predict each variable using the same
three prediction models as the Pima example (Models 8.4a, 8.4b and 8.4c). Although
differences in the size of the dataset and the types of variables necessitate some changes.
Unlike the Pima example, the Diabetes data contains categorical and count variables,
which we score with AUROC and Poisson log loss respectively.

We increase the number of trees of the random forest model to 500, because we expect
that more trees will be required to stabilise the prediction error of the larger dataset. An
investigation of how the random forest fits to the training partition shows that prediction
error has stabilised at 250 trees. While it is not guaranteed that the same holds true for
the synthetic data, their distributions should be simpler than the original data. Therefore,
we believe it is unlikely that more trees would be required than the training data.

For the boosted trees, we implement subsampling. At each round of boosting, the
tree is fit to a uniform random sample that contains 50% of the training data. This
helps to prevent overfitting (Hastie et al., 2009, p. 365) and has the nice side effect of
reducing the runtime of each boosting round. In the expectation that more boosting rounds
would be required for the boosted trees algorithm to stabilise, the maximum number of
boosting rounds and the number of rounds without improvement before early stopping
activated were increased to 500 and 25 respectively. Although, in practice we found
that early stopping occurred within 50 rounds of boosting, for most variables. The step
size parameter for each boosted tree is optimised using 10-fold cross validation, and the
remaining hyperparameters are fixed at the default values (XGBoost developers, 2023). It
would be preferable to optimise the maximum depth, however, this drastically increases
the run time.

We also compute pairwise correlation differences, as given in Equation (5.2), for nu-
meric variables. In this exploration, we are particularly interested in how well the distri-
butions of categorical variables with imbalanced classes and the tails of numeric variables
are preserved, as these tend to be the more challenging variables to model.

We check for four specific examples of structural zeros for each synthetic record:

1. Diabetes medications is false but any specific diabetes medication (e.g. insulin,
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metformin, etc.) is true.

2. The number of diabetes medications prescribed is less than the number of specific
diabetes medications that are true.

3. The number of lab procedures is less than the number of lab results (HbA1C and
max glucose serum).

4. The number of diagnoses is less than the number of non-missing diagnoses (primary,
secondary and tertiary).

We confirm that all four are structural zeros by checking the training and test subsets and
finding zero observations that match these definitions.

We will calculate the pMSE ratio as a general utility measurement for both datasets.
We follow the same procedure that was described in Section 8.2.2.

Inference task

We assess task performance for each synthetic replication by repeating the inference carried
out on the 130 hospitals dataset by Strack et al. (2014). They explore the impact of HbA1c
measurement on early readmission rates for patients with diabetes by systematically fitting
logistic regression models of increasing complexity.

Despite flaws in the methodology of Strack et al. (2014), which we will discuss through-
out this section, we choose to replicate the majority of their methodology. As in the
previous chapter (Section 8.2.2), the purpose of the comparison of inferences is to gauge
whether the inference results are similar for the synthetic datasets. So, while it is not
ideal if the inferences for the real data are incorrect, it is less problematic than if valid
inferences of the real data were our primary goal.

We preprocess the data following the original inference as faithfully as possible. This
is in contrast to the pre-synthesis preprocessing, which ignored choices that were felt to
be over-simplifying. This additional preprocessing consists of

• removing patients that were discharged to hospices or expired during their visit,

• recoding the readmission variable to a binary factor for whether a patient was read-
mitted within 30 days,

• recoding the missing category into the ‘other’ category, for admission source and
discharge disposition,

• recoding the Asian and Hispanic categories of race into ‘other’, and

• the creation of a new variable that combines HbA1c and change of medicine into a
single variable (Table 9.1).
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Collapsing categories removes information from the data and can bias data, as can non-
imputation of missing data.

In the original paper a plot of the relationship between age and probability of readmis-
sion shows that age could be grouped into three distinct intervals for which the probability
of readmission stayed relatively similar. This plot was used to justify collapsing age from
ten categories to three. We replicate this plot for each synthetic dataset to see if the same
conclusion can be drawn.

Table 9.1: How HbA1c and change variable was defined (Strack et al., 2014).

HbA1c measurement Diabetes medication changed? HbA1c change

> 8 Yes High, changed
> 8 No High, not changed
> 7 - Normal
Normal - Normal
None - Not measured

We calculate various sample statistics for each synthetic dataset:

• The proportion of patients where HbA1c was measured.

• The proportion of patients where HbA1c was less than 8%.

• The proportion of patients where HbA1c was not measured and they had a medica-
tion change during their hospitalisation.

• The proportion of patients where HbA1c was measured and they had a medication
change during their hospitalisation.

• The proportion of patients where HbA1c was greater than 8% and they had a med-
ication change during their hospitalisation.

For each synthetic dataset, we calculate the 95% confidence intervals of these proportions
using the normal approximation, and we estimate sample variance using the simple vari-
ance estimator (Equation (4.5a)). Then, we calculate the confidence interval overlap for
the synthetic and training data (Equation (5.7)).

Rather then replicate the regression methods of the original paper, we fit a simpler,
Bayesian regression model that contains only the main effects. Strack et al. (2014) im-
plements a step-wise procedure to regression modelling, where a many permutations of
covariates are considered and the most “statistically significant” models are chosen. In-
ference carried out in this manner is well known to lead to an increase in false positives
from inference, see, e.g. (Gelman & Loken, 2013). Additionally, comparison of inference
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results across multiple datasets would be challenging because the covariates for the infer-
ence models differ. We were able to faithfully replicate their step-wise procedure and the
large difference between the models fit to the training and test partitions was evidence that
the models chosen by their procedure were overfit to the real data. None of the interaction
terms that were chosen in the inference model for the training partition were included in
the model for the testing partition, and vice versa. As such, we opt for a simpler choice
of inference model that does not include any interaction terms.

Model 9.1 (Diabetes-130 inference model). We model readmission within 30 days

yi ∼ Bernoulli(pi),

with a simple linear regression that contains all the main effects

logit(pi) = α +
9∑

j=1

XT
ijβj, (9.1)

where j = 1, . . . , 9 correspond to the variables discharge, race, source, speciality, time in
hospital, age, gender, primary diagnosis and A1C change. We assign weakly informative
priors to each parameter

α ∼ N (0, 2.5), β
iid∼ N (0, 2.5) and σ ∼ Exponential(5). (9.2)

When fitting this model, we treat age as a continuous variable. This deviates from
the original paper, but we feel that this is the more correct treatment of the age variable
because treating age as categorical does not reflect its natural ordering.

Recall, that the posterior distribution of a parameter can be estimated by combining
the posterior distributions for multiple synthetic replications, Section 4.2.2. We run four
chains, each containing 2000 samples, for each baseline dataset and synthetic replication.
For each synthesis method, we combine the chains for all replications and calculate 90%
credible intervals. Then we compute the percent overlap with the 90% credible interval of
the training partition. The percent overlap of each coefficient is compared for all synthesis
method and baseline datasets.

We briefly explore the idea of fitting an additional inference model with regularised
horseshoe priors (Equation (2.10)) on the coefficients, to more closely mirror the variable
selection aspect of the stepwise procedure in the original research. We are able to train
these horseshoe prior models on the baseline partitions, however, upon trying, one finds
it extremely challenging to train those models on the synthetic replications. Despite the
relatively simple model design, the posterior geometry that is induced by the horseshoe
prior is very complex and so the chains sample very slowly and contain many divergent
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transitions. We attempt to address this by setting the acceptance probability to be ex-
tremely small. This change reduces the number of divergent transitions but paired plots
of the posterior draws indicate that the model is not exploring the entire posterior. It is
possible that keeping the low acceptance probability and increasing the number of sam-
ples would have helped. However, there was no guarantee of this working and it would
have been time consuming, so ultimately we decided to settle for the inference model with
weakly informative Gaussian priors (Model 9.1).

9.2.4 Assessing the disclosure risk of synthetic Diabetes-130 data

We assess attribute disclosure risk following a similar approach to that applied in Chapter
8. However, we make adjustments to reflect the challenges faced during that assessment
and also the new challenges introduced by the larger scale of the 130 hospitals dataset. We
evaluate attribute disclosure risk by comparing the errors of attribute predictions made
on the training partition of the data from models trained on the synthetic replications of
data or testing and k-anonymous baseline datasets.

In the previous chapter, we considered the attribute disclosure risk of four attributes,
which were predicted by an intruder that knew two quasi-identifying variables. While we
were able to draw inferences about the disclosure risks for the four attributes that we
considered, it was not clear if the results could be extrapolated to other attributes in the
data. Since the 130 hospitals data contains a much larger number of attributes, we can
address this issue. We assume that the intruder will attempt to predict the values of the
attributes primary diagnosis, secondary diagnosis, tertiary diagnosis, medical speciality,
admission type, maximum glucose serum, HbA1C measurement, whether the patient was
prescribed any diabetes medication, and the individual prescription information for sev-
eral diabetes medications. Note, we do not expect that an attacker will be interested in
predicting that an attribute is missing. Therefore, if a subject has a missing value for an
attribute, we will exclude it from the disclosure risk assessment of that attribute.

Recall that, in the previous chapter, a large source of the difficulty of modelling the
attribute disclosure scores was due to differences in the prediction error distributions
of each attribute. In particular, the difficulty was due to the difference between the
numerical and the categorical attributes. While attempting to unify the results for different
types of attributes is an interesting problem, the larger scale of the 130 hospitals data is
computationally challenging in itself. In addition, we do not believe that the numeric
variables in the data reflect the types of variables that an intruder would be interested
in. In fact, several of the numeric variables are summaries derived from other categorical
variables in the data. Due to all of these factors, we only consider the attribute disclosure
risk of categorical variables.

Recall that the method of attribute prediction was a strong predictor of the disclosure



CHAPTER 9. LARGE SYNTHETIC MICRODATA 155

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00

Probability of correct predictions

D
en

si
ty

Attribute
A1C
Type
Diabetes med.

Diag. 1
Diag. 2
Diag. 3

Glipizide
Glyburide
Insulin

Glucose
Metformin
Speciality

Figure 9.8: Proportion of correct attribute predictions for different attributes in the 130
hospitals training partition.

risk scores for the Pima data, Section 8.3.2. In fact, the method of attribute prediction
was a stronger predictor than the method of synthesis. Consequently, we will continue to
assess attribute disclosure risk for a range of prediction methods. We will assume that
the intruder utilises the following attribute prediction models: CART, random forest,
XGBoost, and the empirical matching procedure (see, Definition 7.1).

The dataset of results consisted of 50,084,848 observations

pijrst = P (fj(ti|Qsr, tsr) = ti),

where pijrst is the probability that the jth attribute prediction model will predict the correct
class for ti, the tth attribute of the ith training observation, when trained on Qsr and tsr,
the quasi-identifier and target variable columns from the rth replication of a synthetic
dataset that was generated with the sth synthesis method.

An initial exploration of the data highlights large variations in the probabilities of
correct predictions for different attributes and training observations (Figures 9.8 and 9.9).
Paired differences indicate that the probability of correct predictions are smaller for XG-
Boost than for the other attribute prediction methods. However, they show little evidence
of differences between synthetic and baseline datasets (Figure 9.10).

Initially, we thought to consider modelling pijrst as beta distributed, since this seems
like a natural approach for modelling probabilities. However, some observed values are
exactly zero or one, which is outside the support of the beta distribution. We could model
zeros and ones with a zero-one inflated beta distribution. However, this would model those
observations with a separate process. Recall from earlier (Section 8.2.3), that we consider
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certain predictions to be due to a lack of precision, rather than a separate process. Given
that we have a strong belief that zeros and ones are the result of the same process as the
other observations, a zero-one inflated beta model is inappropriate.

Instead, we reformulate our results as Bernoulli trials for whether an attribute predic-
tion is correct. For each observation, we draw a binary random variable with probability
of success pijrst,

yijrst ∼ Bernoulli(pijrst).

Notice, for each ijst, we can view the nr replications as a series of Bernoulli trials. There-
fore, we further simplify by modelling the total number of correct predictions as a Binomial
variable.

yijst ∼ Binomial(pijst, nr), (9.3)

where nr is 10 for synthetic datasets and 1 for baseline datasets.

Modelling the attribute disclosure scores

Our data has a repeated measurements design where, for each training observation i,
predictions are made for all combinations of attribute, attribute prediction model, and
synthesis model. Even simple regression models, without any hierarchical structure, can
take an entire day to run in Stan. Fitting models with hierarchical structure could take
weeks. Reformulating our results as Bernoulli reduces our data to 9,106,336 observations.
This is a huge improvement from our initial results. Unfortunately, the data is still large
enough that model fitting will be time consuming. Additionally, the amount of data is
large enough that we expect the likelihood will dominate the prior, hence, removing much
of the benefit of a Bayesian model. Given these factors, we fit our models using maximum
likelihood methods instead of MCMC.

Our generalised linear mixed model accounts for the repeat measurements by includ-
ing a random intercept for each training subject. We could reasonably treat attribute,
attribute disclosure model, and synthesis model as either fixed or random effects, depend-
ing on whether we are interested in unobserved levels of these covariates. Initially attribute
was also modelled as a fixed effect, since our experiments already included most attributes
in our data, while synthesis method and attribute disclosure methods were treated as ran-
dom effects because there were many potential methods of both synthesis and attribute
prediction that were not tested. However, we found the models would not converge when
either synthesis method or attribute prediction model were treated as random effects. Pre-
sumably, this is because the differences between levels of those variables are so small that
the random effect variance estimates as near zero. Also, models do not converge unless
attribute is treated as a random effect. As such, we fit a generalised linear model of the
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form

yijst ∼ Binomial(pijst, ns),

E[logit(pijst)] = α + ai + bj + β1s + β2t,
(9.4)

where

ai ∼ N (0, σ2
subj),

bj ∼ N (0, σ2
attr),

and

β11 = β21 = 0.

The large number of unique subjects (53,628) was another source of convergence issues
that arose when attempting to fit the model to the entire dataset. We attempt to address
this by randomly sampling 30,000 subjects for model training. Also, we can later use the
23,628 observations that we removed as a validation set. However, despite the reduction
in the amount of training data, there are still convergence warnings during model fitting.
In fact, these warnings persist unless the model is fit with 10,000 or fewer training sub-
jects. The documentation for the lme4 package, which we are using to fit mixed models,
recommends fitting a model with multiple optimisers and checking if they each converge
to the same model (Bates et al., 2015). We fit the model to 30,000 subjects, using eight
different optimisers. In all cases, the optimisers converge to models that have identical
log-likelihoods and very similar fitted values. While we cannot be certain, it is unlikely
that this would happen if the models were not converging. Therefore, we assume that the
warnings are false positives.

We validate the trained model by repeatedly drawing from the fitted values of the model
in Equation (9.4): α̂, b̂j, β̂1s, β̂2t, and σ̂subj. We use these fitted values to predict counts
for the validation data, which we compare with their observed values. Then, we assess
the effects of attribute disclosure and data synthesis models on probability of a correct
attribute prediction. We use the 95% confidence intervals for the model coefficients β̂1s

and β̂2t, to assess differences in the effects of each attribute disclosure model and data
synthesis model. Also, we calculate 95% prediction interval for the probability of a correct
attribute prediction. However, we are not aware of any method to include the uncertainty
of random effects in prediction intervals. As such, the 95% prediction intervals are only
conditioned on the uncertainty of the fixed effects.
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9.3 Results

9.3.1 Results of utility assessments of synthetic Diabetes-130 data

The univariate distributions of all categorical variables are reasonably close to the training
data (Figures 9.11, 9.12, and 9.13). In addition, dimension-wise prediction shows that the
conditional distributions of most categorical variables are also quite good (Figure 9.14).
However, there are some categorical variables for which the synthetic data losses are ex-
tremely poor, such as acarbose and chloropropamide. Both are binary variables with severe
class imbalances where the rarer classes are observed for less than 0.3% of the training and
test datasets. Predicting variables with severe class imbalances is a challenging problem
in and of itself. However, the training data loss demonstrates that some variables in the
training data are strong predictors for acarbose and chloropropamide. Whereas, the syn-
thetic data loss indicates that those strong relationships have not been captured by either
data synthesis model.
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Figure 9.11: Comparing the proportions of levels of categorical variables in synthetic and
baseline datasets.

The univariate distributions of most numeric variables appear to be quite reasonable
(Figure 9.15). Notice that the lower tails do not contain any impossible values, which
was a major problem when synthesising the Pima data with regression (Section 8.3.1). In
addition, the upper tails of the regression synthesised variables are notably longer than
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Figure 9.12: Comparing the proportions of levels of diagnosis code variables in synthetic
and baseline datasets.
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Figure 9.13: Comparing the proportions of levels of medicine variables in synthetic and
baseline datasets.

those synthesised with CART, which is expected given that the output of the regression
model is unbounded, whereas the CART model output is not. The regression data con-
tains three numerical variables with impossible or very unlikely values. These are, 200
medications prescribed, 100 emergency visits to the hospital within one year, and hospital
stays that are over 14 days. We lack the subject specific knowledge to say if the first two
examples are impossible, or just very unlikely. However, visit lengths of over 14 days were
specifically excluded from the 130 hospitals data, so those values should not be observed
in the data. These longer visit lengths are due to a failure to account for the truncation
of the variable when defining the synthesis model. Consequently, impossible values were
generated and the visit length is more right skewed than the training data.

The zero-inflated negative binomial distribution has modelled the upper tail of the
number of lab procedures reasonably well but it does not fit the smaller non-zero values
in the data or the multiples of 10, which are inflated in comparison to what one would
expect for the commonly used distributions of count variables. It is possible that a better
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understanding of the mechanisms that leads to lab procedures being arranged or input
into the systems would allow for the specification of a regression model that better fit
the data. However, without that information, the regression is a poor choice of synthesis
model, and the flexible nature of non-parametric methods such as CART is more suited
to variables with such challenging distributions.

Dimension-wise prediction scores for all numeric variables look very good and do not
indicate any issues with the conditional distributions. However, pairwise correlation dif-
ferences for the synthetic datasets are larger than either of the baseline datasets (Figures
9.16, 9.14 & 9.17). There is weak evidence that the differences are smaller for the dataset
in which those variables were solely synthesised with CART, but not enough of a difference
to say with any certainty.

Replications of both types of synthetic datasets contained examples of all four types
of structural zeros. This is not particularly surprising, given that we did not consider the
strict relationships that govern those variables when building the data synthesis models.

The pMSE ratios for both synthetic datasets are greater than one for both discriminator
models and larger than one for the replications where the count variables were generated
with regression (Figure 9.19). This indicates that both the logistic regression and CART
discriminators are able to differentiate between synthetic and training samples of the 130
hospitals data. In addition, it indicates that they are able to more reliably differentiate
the difference for the dataset with regression synthesised count variables.

Comparison of results for inference task on diabetes-130 data

Table 9.2: 95% confidence interval overlaps for various sample statistics in 130 hospitals
data.

CART CART & GLM Testing k-anon.

HbA1c measured 0.544 0.000 0.789 0.942
HbA1c measured & meds changed 0.229 0.000 0.714 0.939
HbA1c not measured & meds changed 0.977 0.584 0.350 0.736
HbA1c ≤ 8% 0.735 0.946 0.790 0.730
HbA1c > 8% & meds changed 0.277 0.459 0.788 0.809
Readmitted & HbA1c measured 0.606 0.977 0.791 0.949

Point estimates for all sample statistics are reasonably close to the training data for
both the synthetic and baseline datasets (Figure 9.20). However, the 95% confidence
interval overlaps for these statistics tell a mixed story (Table 9.2). In contrast to the
k-anonymous data, both synthetic datasets and the test data have much less overlap
with the real data. However, given that the training and test data are independent and
identically distributed samples of the real population (see Section 8.2.2), the overlap of the
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Table 9.3: Ratio of estimates (divided by training estimate) for various sample statistics
in 130 hospitals data.

CART CART & GLM Testing k-anon.

HbA1c measured 0.983 0.998 0.921 1.003
HbA1c measured & meds changed 0.960 1.003 0.906 0.977
HbA1c not measured & meds changed 0.999 1.006 1.010 1.022
HbA1c ≤ 8% 1.011 1.011 1.002 1.010
HbA1c > 8% & meds changed 0.968 1.008 0.976 0.997
HbA1c measured & readmitted 1.056 1.007 0.999 0.987

k-anonymous data appears to be an unrealistically high. If we instead consider the testing
data percentage overlap to be a more reasonable target, then the percentage overlap of
both synthetic datasets is reasonable. Comparing just the synthetic datasets, there is
an equal amount of statistics that each has the greater overlap. However, the average
confidence interval overlap for the entirely CART synthesised dataset is greater than the
dataset that was synthesised with both CART and regression.

Recall, that confidence interval overlap are a poor utility measure if the variance is
small in comparison to the point estimate (see Section 5.4.1). Instead, we compare the
statistics for the synthetic and training data using ratio of point estimates. These ratios
are all close to 1, showing that the statistics are well preserved across all synthetic and
baseline datasets (Table 9.3)

Plotting age against probability of readmission shows a stable linear trend between
age and re-admissions for the synthetic datasets (Figure 9.21). In their analysis, Strack
et al. (2014) identified three distinct intervals for age. Although, is is not clear to us that
these intervals exist for either the training or testing partitions. There is weak evidence
of a steeper increase in the probability of readmission from 0 to 30. However, it would be
perfectly reasonable to conclude that there is a consistent linear trend of the probability
of readmission increasing with age. That said, the probably of readmission of younger
patients does appear to be higher in the synthetic data than either the training or test
data.

Moving onto the comparisons of inference models, we plot the 90% credible intervals
for the posteriors of the Bayesian inference model (9.1) that was fit to the synthetic and
baseline datasets (Figure 9.22). In general, the posterior interval overlaps for the synthetic
models are smaller than either the testing partition or k-anonymous models (Figure 9.23).
The significant positive relationships for age, discharge, and visit length are captured
in the synthesis model, although the strength of the effect of the latter two effects was
underestimated for both synthetic datasets. We were not able to run models with shrinkage
priors on the synthetic replications but we were able to fit them to the training and testing
partitions, and the majority of coefficients were shrunk to zero (Figure 9.24). The only
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coefficients for the testing partition that were not shrunk towards zero were age, discharge,
and visit length. Our synthetic data somewhat captures all of the coefficients with the
strongest relationships to readmission and struggles with those weaker relationships.

9.3.2 Results of disclosure risk assessment of synthetic Diabetes-

130 data

Consider the plots that compare model predictions and observed values for the validation
data (Figures 9.25 and 9.26). These show that the model fits the validation data well,
except for a very small amount of under-dispersion in the tails of some attributes.

From the coefficients, there is no evidence of a significant difference in the probability
of correct attribute predictions the synthesis models (Table 9.4). Let us consider the dif-
ference between the CART synthesis model and the k-anonymous or test baseline datasets.
In this case, there is evidence of a small but significant increase in the probability of a
correct prediction if the intruder has access to either of the two baseline datasets. The
coefficients for attribute prediction method show that XGBoost is by far the worst pre-
diction method. Furthermore, random forest, generalised linear models, and the empirical
method are all slightly better attribute prediction methods than CART.

We would like to know if the attribute prediction method results apply to all attributes,
or if there are some variables that CART or XGBoost are better at predicting. However,
attempts to fit a model with a random slope for each combination of attribute and attribute
prediction method were unsuccessful. This occurred due to the relatively small variance
of random slope effect in comparison to the variance of the other random effects. As such,
we are unfortunately unable to answer questions about the relationships between attribute
and attribute prediction method.

The 95% prediction intervals show that there is little difference between the probability
of a correct prediction for any method of attribute prediction and method any of the
synthetic or baseline datasets (Figure 9.27).
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Table 9.4: Estimates of fixed and random effects from fitted model on the log-odds scale
(Equation (9.4)).

Term Estimate Std. error 95% conf. interval

Intercept 0.811 2.272E-01 (0.468, 1.404)
Synthesis model = CART reference
Synthesis model = k-anon 1.011 2.435E-03 (1.006, 1.015)
Synthesis model = CART & GLM 1.001 1.028E-03 (0.999, 1.003)
Synthesis model = test 1.006 2.425E-03 (1.002, 1.011)
Prediction method = CART reference
Prediction method = empirical 1.020 1.483E-03 (1.017, 1.023)
Prediction method = RF 1.007 1.464E-03 (1.004, 1.010)
Prediction method = GLM 1.017 2.031E-03 (1.013, 1.021)
Prediction method = XGBoost 0.843 1.228E-03 (0.840, 0.845)
SD(ID) 0.284
SD(attribute) 0.970
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Figure 9.14: Feature prediction scores for categorical variables from the 130 hospitals
dataset.
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Figure 9.15: Comparing the distributions of numeric variables in synthetic and baseline
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Figure 9.16: Feature prediction scores for numeric variables from the 130 hospitals dataset.
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Figure 9.19: pMSE score ratios for synthetic replications of 130 hospitals data.
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Figure 9.20: Sample statistics for synthetic and baseline 130 hospitals datasets.
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Figure 9.21: Percentage of re-admissions for different age brackets in synthetic and baseline
130 hospitals datasets.
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Figure 9.22: 90% credible intervals for coefficients of Bayesian regression model with
Gaussian priors (Equation (9.1)).
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Figure 9.23: 90% credible interval overlap for coefficients of Bayesian regression model
(Equation (9.1)).
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Figure 9.24: 90% credible intervals for coefficients of Bayesian regression model with
horseshoe priors.
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Figure 9.25: Observed and predicted values (50 replications from fitted model (9.4)) for
each attribute in validation data.
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Figure 9.26: Observed and predicted values (50 replications from fitted model (9.4)) for
each attribute prediction model and synthesis model in validation data.
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Figure 9.27: 95% prediction intervals from the fitted model (Equation (9.4)), conditioned
on the uncertainty of fixed effects only.
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9.4 Conclusions

In this chapter, we expanded on the work of Chapter 8 by applying sequential synthe-
sis methods to generate the larger 130 Hospitals dataset and then assessed the data by
implementing the framework described in Chapter 7. Exploratory plots of the synthetic
datasets demonstrate that the sequential synthesis was able to capture the univariate dis-
tributions of most variables and that conditional relationships were also reasonably well
preserved. However, the propensity scores indicated that both discriminator models were
able to differentiate between the training and synthetic datasets.

The synthetic datasets had worse performance on the inference task than the baseline
datasets although, if we only consider the coefficients that were significant for the real
data, the inference results were far more reasonable. An analyst who only had access
to the synthetic data would be able to identify almost all significant coefficients that an
analyst with access to the test data would. It would have been interesting if we had been
able to fit the model with shrinkage priors, as the overlap may have been improved by the
shrinking of coefficients with weaker effects. That said, the difficulty of fitting the models
with shrinkage priors to some synthetic replications should be seen as a negative of the
synthetic data.

In addition, we modified the attribute disclosure assessment from the previous chapter
to model the probability of a correct prediction instead of the prediction loss. This change
was necessary since we previously found it difficult to model the prediction losses. However,
we prefer approach after the change, as it allows us to directly assess the probability
that an intruder correctly predicts an attribute. Unfortunately, the changed approach
is only suited to categorical variables, as it models disclosures as binary events. While
an application of the method to numeric variables would be possible, this would involve
the specification of a hard threshold, where a prediction within the threshold would be
considered to be correct.

Our attribute disclosure results show that the probability of disclosure was very slightly
lower for the synthetic data than either of the baseline datasets. However, the difference
in probability between the synthesis and baseline datasets was smaller than the difference
between attribute prediction method. In fact, the effect of any of the datasets on the
probability of disclosure was negligible, in comparison to the effect of the attribute or
subject. As with the previous chapter, this highlights the importance of carrying out an
attribute disclosure assessment that considers multiple methods of attribute prediction.

In stark contrast to the previous chapter, the k-anonymous baseline performed well for
every utility assessment. A large reason for this difference is that 2% of observations were
removed with k-anonymisation in this chapter, in comparison to removing 75% of obser-
vations in the Pima chapter. The reduction in the quality of the data will be drastically
different between the two k-anonymous datasets. The choice of appropriate comparisons
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for utility and disclosure risk warrants further discussion. Such discussion is included in
the next chapter, Chapter 10.

Overall, the results of this chapter show that larger datasets generated with sequential
synthesis methods look somewhat realistic. However, the synthetic data performed more
poorly on some of the more extensive checks than in the Pima scenario of the previous
chapter. This reflects the additional complications of synthesising a dataset that contains
many more variables. The larger size of the data also contributed to issues with both gen-
eration and assessment of the data, as we found it prohibitively slow to synthesise variables
with random forest models, to calculate distances between observations for membership
disclosure assessments and identifying outliers, and to run hierarchical Bayesian inference
models in our inference of the disclosure assessment results.



Chapter 10

Discussion

10.1 Discussion of Literature Review

In this thesis, we carried out an extensive review of a variety of utility and disclosure
risk assessment methods. This review does not exist elsewhere in the literature. Others
have noted issues and a lack of consensus for methods of assessing synthetic data. Our
critiques and discussions of the limitations of utility assessments is informative for future
approaches for evaluating the utility of synthetic data. We discussed the assessment of
disclosure risk for completely synthetic data and argued that attribute disclosure is the
most reasonable choice. Our views on this are echoed by Reiter (2023). Despite the
arguments for assessing attribute disclosure risk, much of the synthetic data literature
prefers to assess membership disclosure risk. We suspect that the ease of assessing the
results of membership disclosure in comparison to attribute disclosure plays a large part
in this preference. Furthermore, we discussed some issues with the current methods for
attribute disclosure assessment.

10.2 Our Framework

In Chapter 7, we described our methodology for the assessment of synthetic data. This
builds on the lessons learned in our literature review. The broad range of utility assess-
ments implemented in this thesis echoes the examples of others in the literature. Given
the issues discussed in our literature review, we believe that considering a variety of as-
sessments is the best approach to assessing utility.

Our practical framework for the assessment of disclosure risk builds on the work of
Elliot (2014) and Taub et al. (2018). We addressed limitations of their work (mentioned
in our literature review) by extending their work to a wider set of intruder assumptions.
Our framing of disclosure assessment in general terms allows for others to integrate their
own beliefs and assumptions about a disclosure scenario into their assessment.
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Furthermore, we described and implemented a novel approach of modelling the disclo-
sure risk scores and then evaluating the models. This addresses the difficulty of assessing
attribute disclosure in the scenario of there being many sensitive attributes. Additionally,
modelling the scores allows for the simultaneous evaluation of multiple sets of prior as-
sumptions and data synthesis methods. This addresses other limitations that previously
existed with many approaches to disclosure assessment. We demonstrated our framework
for two comprehensive examples. In Chapter 8, eight variants of three synthetic data
generation methods were compared on a small dataset. In Chapter 9, we demonstrate
the framework on a much larger and more complex dataset that contains over 50,000
observations and 40 variables.

10.3 Our Utility Assessment

The results of utility assessments in Chapter 8 highlighted that many utility assessments
were unable to identify differences between the real and synthetic data even when other as-
sessments showed clear differences in the quality of the data. The results of Chapter 9 were
similar. However, the additional complexity of the data led to poorer quality synthesis. As
such, more utility assessments were able to identify differences. Despite many assessments
failing to identify differences, the combination of assessment results highlighted clear pat-
terns in both datasets. This supports our conclusions in the literature review and further
justifies the advantages of evaluating synthetic data with a diverse and varied set of utility
assessments.

We implemented several utility assessment that were based on the results of hypothesis
tests. Assessments of this type have been considered before but our results showed that
such comparisons are problematic as they depend heavily on the choice of hypothesis. In
the first hypothesis test example in Chapter 8, the best synthetic dataset depended on
whether weakly informative or regularising priors were chosen. In the second hypothesis
test example in Chapter 9, we compared Bayesian regression models fit to real and syn-
thetic datasets. The synthetic data performance was poor in comparison to the training
data but a comparison of the training and test data indicated the extreme over-fitting of
the procedure. Researchers should be aware of the potential to unintentionally bias their
results by implementing such subjective assessments.

10.4 Our Disclosure Risk Assessment

Our disclosure assessment of the Pima data in Chapter 8 considered the attribute disclo-
sure risk of many synthetic datasets for a large set of intruder prior assumptions. Con-
sequently, there were a large number of comparisons and a difficult distribution, which
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required us to fit a very complex distributional model.
In the 130 hospitals example in Chapter 9, we considered the disclosure risk of many

more sensitive attributes. The increased number of sensitive attributes and the obser-
vations necessitated a different modelling approach. By reframing intruder predictions
as a set of Bernoulli trials we were able to drastically simplify the problem and fit a far
simpler model to the data than in the previous chapter. The potential of this approach to
attribute disclosure risk assessment is very exciting as it allows for subject level disclosure
risk to be simultaneously modelled for large numbers of comparisons.

The inference of the disclosure results in both Chapter 8 and Chapter 9 highlighted that
the impact of synthetic data generation model on disclosure risk was small in comparison to
both attribute prediction methods and attributes. This is noteworthy because it indicates
the potential to draw misleading conclusions from disclosure assessments if they only
consider a single set of assumptions about the intruder. Given this finding, we must be
wary of the results of disclosure assessments that only consider a single set of assumptions
about the intruder. Furthermore, the results justify our choice to consider several intruder
prediction methods and show why our approach to modelling the results simultaneously
is necessary.

In Chapters 8 and 9, we compared synthetic data to two baseline datasets. In Chap-
ter 8, the disclosure risk of the synthetic datasets are comparable to the test baseline,
while the disclosure risk was lower for the 130 hospitals dataset in Chapter 9. This differ-
ence likely reflects the lower quality of the synthetic 130 hospitals data. Disclosure risk of
the synthetic data in comparison to the k-anonymous baseline changed from Chapter 8 to
Chapter 9. This reflects the clear difference of the quality of the datasets for the respective
examples.

10.5 Limitations and future work

Through our examples we have demonstrated the potential of our methods for the assess-
ment of attribute disclosure risk. However, these demonstrations are limited to a small
set of synthesis models and datasets. As such, the exploration of other examples would
highlight unforeseen issues that need to be addressed.

In hindsight, the choice to implement k-anonymous data as a baseline was uninfor-
mative. While there is a genuine use case for the comparison of the disclosure risk of
synthetic data with a non-synthetic statistical disclosure control (SDC), the sample av-
erage baseline that Taub et al. (2018) implements reflects a more reasonable disclosure
scenario. Furthermore, it would simplify the analysis.

The difficulties faced in Chapter 8 demonstrated the problems of a simultaneous com-
parison of disclosure risk for numeric and categorical variables. However, implementing
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numeric variables into the Bernoulli model of Chapter 9 would be possible and interesting
to explore further. Hu and Savitsky (2021) implement one such approach, where numeric
variables are correctly predicted if the prediction is within a predefined threshold. The
requirement to specify this threshold is not ideal, but the payoff of simultaneous risk
assessment of numeric and categorical variables would justify this.



Appendix A

Additional tables

Table A.1: The closest pairs of training (original) and synthetic Pima observations for
each data synthesis method when matching on all variables.
*Training set outliers

Dataset Distance Preg. Gluc. BP Skin. BMI DPF Age Diab.

Training 6.68E-03 1 107 68 19 26.5 0.165 24 0
Regression (pen.) 6.68E-03 1 108 67 18 27.3 0.131 23 0
Training 8.34E-03 1 111 62 13 24.0 0.138 23 0
Regression (no pen.) 8.34E-03 1 112 62 11 24.7 0.176 24 0
Training 1.10E-03 1 96 64 27 33.2 0.289 21 0
CART (smooth leav.) 1.10E-03 1 96 64 28 33.2 0.277 21 0
Training 2.12E-05 1 96 64 27 33.2 0.289 21 0
CART (smooth data) 2.12E-05 1 96 64 27 33.2 0.293 21 0
Training 0 1 99 58 10 25.4 0.551 21 0
CART (no smooth) 0 1 99 58 10 25.4 0.551 21 0
Training 0 9 152 78 34 34.2 0.893 33 1
RF (smooth leav.) 0 9 152 78 34 34.2 0.893 33 1
Training 0 1 99 58 10 25.4 0.551 21 0
RF (smooth leav.) 0 1 99 58 10 25.4 0.551 21 0
Training 0 0 137 68 14 24.8 0.143 21 0
RF (smooth leav.) 0 0 137 68 14 24.8 0.143 21 0
Training 0 6 80 66 30 26.2 0.313 41 0
RF (smooth leav.) 0 6 80 66 30 26.2 0.313 41 0
Training 0 2 122 70 27 36.8 0.340 27 0
RF (smooth leav.) 0 2 122 70 27 36.8 0.340 27 0
Training 0 1 120 80 48 38.9 1.162 41 0
RF (smooth leav.) 0 1 120 80 48 38.9 1.162 41 0
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Training 0 1 111 62 13 24.0 0.138 23 0
RF (smooth leav.) 0 1 111 62 13 24.0 0.138 23 0
Training 0 2 122 76 27 35.9 0.483 26 0
RF (smooth leav.) 0 2 122 76 27 35.9 0.483 26 0
Training 0 7 114 76 17 23.8 0.466 31 0
RF (smooth leav.) 0 7 114 76 17 23.8 0.466 31 0
Training 1.32E-06 3 171 72 33 33.3 0.199 24 1
RF (smooth data) 1.32E-06 3 171 72 33 33.3 0.200 24 1
Training 1.32E-06 4 154 72 29 31.3 0.338 37 0
RF (smooth data) 1.32E-06 4 154 72 29 31.3 0.337 37 0
Training 0 4 99 72 17 25.6 0.294 28 0
RF (no smooth) 0 4 99 72 17 25.6 0.294 28 0
Training 0 9 154 78 30 30.9 0.164 45 0
RF (no smooth) 0 9 154 78 30 30.9 0.164 45 0
Training* 0 1 144 82 46 46.1 0.335 46 1
RF (no smooth) 0 1 144 82 46 46.1 0.335 46 1
Training 0 5 77 82 41 35.8 0.156 35 0
RF (no smooth) 0 5 77 82 41 35.8 0.156 35 0
Training 0 12 140 82 43 39.2 0.528 58 1
RF (no smooth) 0 12 140 82 43 39.2 0.528 58 1
Training 0 5 97 76 27 35.6 0.378 52 1
RF (no smooth) 0 5 97 76 27 35.6 0.378 52 1
Training 0 5 139 80 35 31.6 0.361 25 1
RF (no smooth) 0 5 139 80 35 31.6 0.361 25 1
Training* 0 3 191 68 15 30.9 0.299 34 0
RF (no smooth) 0 3 191 68 15 30.9 0.299 34 0
Training 0 9 112 82 32 34.2 0.260 36 1
RF (no smooth) 0 9 112 82 32 34.2 0.260 36 1
Training 0 3 99 80 11 19.3 0.284 30 0
RF (no smooth) 0 3 99 80 11 19.3 0.284 30 0
Training 0 5 158 84 41 39.4 0.395 29 1
RF (no smooth) 0 5 158 84 41 39.4 0.395 29 1
Training* 0 1 71 78 50 33.2 0.422 21 0
RF (no smooth) 0 1 71 78 50 33.2 0.422 21 0
Training* 0 8 167 106 46 37.6 0.165 43 1
RF (no smooth) 0 8 167 106 46 37.6 0.165 43 1
Training 0 7 114 76 17 23.8 0.466 31 0
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RF (no smooth) 0 7 114 76 17 23.8 0.466 31 0

Table A.2: List of variables from Diabetes-130 dataset and their descriptions (Strack et al.,
2014).

Variable
name

Type Description and values %
miss-
ing

Encounter
ID

Numeric Unique identifier of an encounter 0%

Patient
number

Numeric Unique identifier of a patient 0%

Race Nominal Values: Caucasian, Asian, African American, Hispanic,
and other

2%

Gender Nominal Values: male, female, and unknown/invalid 0%
Age Nominal Grouped in 10-year intervals:[0, 10),[10, 20),...,[90, 100) 0%

Weight Numeric Weight in pounds 97%
Admission
type

Nominal Integer identifier corresponding to 9 distinct values, for
example, emergency, urgent,elective, newborn, and not
available

0%

Discharge
disposition

Nominal Integer identifier corresponding to 29 distinct values, for
example, discharged to home, expired, and not available

0%

Admission
source

Nominal Integer identifier corresponding to 21 distinct values, for
example, physician referral, emergency room, and transfer
from a hospital

0%

Time in
hospital

Numeric Integer number of days between admission and discharge 0%

Payer code Nominal Integer identifier corresponding to 23 distinct values, for
example, Blue Cross/Blue Shield, Medicare, and self-pay

53%

Medical
Speciality

Nominal Integer identifier of a speciality of the admitting physician,
corresponding to 84 distinct values, for example, cardiol-
ogy, internal medicine, family/general practice, and sur-
geon

0%

Number of
lab proce-
dures

Numeric Number of lab tests performed during the encounter 0%

Number of
procedures

Numeric Number of procedures (other than lab tests) performed
during the encounter

0%
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Number
of medica-
tions

Numeric Number of distinct generic names administered during the
encounter

0%

Number of
outpatient
visits

Numeric Number of outpatient visits of the patient in the year pre-
ceding the encounter

0%

Number of
emergency
visits

Numeric Number of emergency visits of the patient in the year
preceding the encounter

0%

Number of
inpatient
visits

Numeric Number of inpatient visits of the patient in the year pre-
ceding the encounter

0%

Diagnosis 1 Nominal The primary diagnosis (coded as first three digits of
ICD9); 848 distinct values

0%

Diagnosis 2 Nominal Secondary diagnosis (coded as first three digits of ICD9);
923 distinct values

0%

Diagnosis 3 Nominal Additional secondary diagnosis (coded as first three digits
of ICD9); 954 distinct values

1%

Number of
diagnoses

Numeric Number of diagnoses entered to the system 0%

Glucose
serum test
result

Nominal Indicates the range of the result or if the test was not
taken. Values: > 200, > 300, normal, and none” if not
measured

0%

A1c test re-
sult

Nominal Indicates the range of the result or if the test was not
taken. Values: > 8 if the result was greater than 8%, > 7

if the result was greater than 7% but less than 8%, normal
if the result was less than 7%, and none if not measured

0%

Change of
medica-
tions

Nominal Indicates if there was a change in diabetic medications
(either dosage or generic name). Values: change and no
change

0%

Diabetes
medica-
tions

Nominal Indicates if there was any diabetic medication prescribed.
Values: yes and no

0%
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24 vari-
ables for
medica-
tions

Nominal For the generic names: metformin, repaglinide,
nateglinide, chlorpropamide, glimepiride, acetohexam-
ide, glipizide, glyburide, tolbutamide, pioglitazone,
rosiglitazone, acarbose, miglitol, troglitazone, tolaza-
mide, examide, sitagliptin, insulin, glyburide-metformin,
glipizide-metformin, glimepiride-pioglitazone, metformin-
rosiglitazone, and metformin-pioglitazone, the feature in-
dicates whether the drug was prescribed or there was a
change in the dosage. Values: up if the dosage was in-
creased during the encounter, down if the dosage was de-
creased, steady if the dosage did not change, and no if the
drug was not prescribed

0%

Readmitted Nominal Days to inpatient readmission. Values: < 30′’ if the pa-
tient was readmitted in less than 30 days, > 30′’ if the
patient was readmitted in more than 30 days, and No for
no record of readmission.

0%

Table A.3: List of groupings made to levels of categorical variables in Diabetes-130 dataset.

Grouped categories Subcategories %
Primary diagnoses
Circulatory 390–459, 785 30.56
Respiratory 460–519, 786 13.56
Digestive 520–579, 787 9.27
Diabetes 250.xx 8.21
Injury 800–999 6.71
Musculoskeletal 710–739 5.81
Genitourinary 580–629, 788 4.92
Neoplasms 140–239 3.63
Other — 17.34
Discharge Disposition
Discharged to home Discharged to home 63.33
Missing Not Mapped, NULL 4.65
Other — 32.03
Admission Source
Physician/Clinical referral Physician Referral, Clinic Referral 32.37
Emergency Room Emergency Room 53.25
Missing Not Mapped, NULL 7.11
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Grouped categories Subcategories %
Other — 7.27
Medical Speciality
Surgery All surgical categories 5.36
Internal Medicine Internal Medicine 15.20
Cardiology Cardiology, Cardiology-Pediatric 6.02
Family or General Practice Family/General Practice 7.11
Missing Missing 48.08
Other — 18.22
Readmitted
Within 30 days < 30 8.98
Not within 30 days > 30, Not readmitted 91.02
Race
African American African American 18.04
Caucasian Caucasian 74.74
Other Hispanic, Asian, Other 4.48
Missing Missing 2.74
Gender
Female — 53.21
Male — 46.79
Age
Under 30 [0–10), [10–20), [20–30) 2.58
30 to 60 [30–40), [40–50), [50–60) 31.25
Over 60 [60–70), [70–80), [80–90), [90–100) 66.17
HbA1c
High & changed HbA1c > 8 & medicine changed 5.80
High & not changed HbA1c > 8 & medicine not changed 3.12
Normal HbA1c > 7, Normal 9.44
Not Measured HbA1c Not Measured 81.65
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