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Abstract

Teleoperated robotic systems allow human operators to control robots from a distance, which
mitigates the constraints of physical distance between the operators and offers invaluable appli-
cations in the real world. However, the security of these systems is a critical concern. System
attacks and the potential impact of operators’ inappropriate emotions can result in misbehavior
of the remote robots, which poses risks to the remote environment. These concerns become par-
ticularly serious when performing mission-critical tasks, such as nuclear cleaning. This thesis
explored innovative security methods for the teleoperated robotic system.

Common methods of security that can be used for teleoperated robots include encryption,
robot misbehavior detection and user authentication. However, they have limitations for tele-
operated robot systems. Encryption adds communication overheads to the systems. Robot mis-
behavior detection can only detect unusual signals on robot devices. The user authentication
method secured the system primarily at the access point. To address this, we built motion-
controlled robot platforms that allow for robot teleoperation and proposed methods of perform-
ing user classification directly on remote-controlled robotic behavioral data to enhance security
integrity throughout the operation. We discussed in Chapter 3 and conducted 4 experiments.
Experiments 1 and 2 demonstrated the effectiveness of our approach, achieving user classifica-
tion accuracy of 95% and 93% on two platforms respectively, using motion-controlled robotic
end-effector trajectories. The results in experiment 3 further indicated that control system per-
formance directly impacts user classification efficacy. Additionally, we deployed an AI agent to
protect user biometric identities, ensuring the robot’s actions do not compromise user privacy in
the remote environment in experiment 4. This chapter provided a foundation of methodology
and experiment design for the next work.

Additionally, Operators’ emotions could pose a security threat to the robot system. A re-
mote robot operator’s emotions can significantly impact the resulting robot’s motions leading to
unexpected consequences, even when the user follows protocol and performs permitted tasks.
The recognition of a user operator’s emotions in remote robot control scenarios is, however,
under-explored. Emotion signals mainly are physiological signals, semantic information, facial
expressions and bodily movements. However, most physiological signals are electrical signals
and are vulnerable to motion artifacts, which can not acquire the accurate signal and is not
suitable for teleoperated robot systems. Semantic information and facial expressions are some-
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times not accessible and involve high privacy issues and add additional sensors to the teleoper-
ated systems. We proposed the methods of emotion recognition through the motion-controlled
robotic behaviors in Chapter 4. This work demonstrated for the first time that the motion-
controlled robotic arm can inherit human operators’ emotions and emotions can be classified
through robotic end-effector trajectories, achieving an 83.3% accuracy. We developed two emo-
tion recognition algorithms using Dynamic Time Warping (DTW) and Convolutional Neural
Network (CNN), deriving unique emotional features from the avatar’s end-effector motions and
joint spatial-temporal characteristics. Additionally, we demonstrated through direct comparison
that our approach is more appropriate for motion-based telerobotic applications than traditional
ECG-based methods. Furthermore, we discussed the implications of this system on prominent
current and future remote robot operations and emotional robotic contexts.

By integrating user classification and emotion recognition into teleoperated robotic systems,
this thesis lays the groundwork for a new security paradigm that enhances both the safety of re-
mote operations. Recognizing users and their emotions allows for more contextually appropriate
robot responses, potentially preventing harm and improving the overall quality of teleoperated
interactions. These advancements contribute significantly to the development of more adaptive,
intuitive, and human-centered HRI applications, setting a precedent for future research in the
field.
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Chapter 1

Introduction

1.1 Motivation

Robot teleoperation is that a human operator remotely controls the robotic system to interact
with the remote environments [1]. The robot acts as the slave executing tasks under the di-
rection of the human operator as the master. The teleoperation methods mainly include direct
control using a controller (e.g. joysticks) and multimodal teleoperation control (e.g. human mo-
tion). Teleoperated robots bridge the physical gap between humans and remote environments,
regarded as a key application within the field of Human-Robot Interaction (HRI). Their im-
portance was highlighted during the COVID-19 pandemic, demonstrating their significant role
across various scenarios. Firstly, they enable human to execute tasks in hazardous or inaccessi-
ble environments. For instance, teleoperated robots can be deployed to carry out disinfection in
epidemic areas and cleaning in nuclear power stations [2], thereby minimizing the human risk of
secondary exposure to dangerous environments. Additionally, teleoperated robotics is beneficial
for individuals with disabilities. For example, wheelchair users could perform tasks requiring
upper body or hand movement remotely. The teleoperated robots can be used for remote health
as well. For example, a remote full body motion controlled robot can be used for remote re-
habilitation [3] and telesurgery [4]. Moreover, teleoperated robotics can be applied to remote
education. For example, it can present in the class as a substitute for teachers to mitigate the
students’ potential pressure [5].

However, ensuring robotic security becomes a crucial concern, especially when these vital
applications and missions are involved [6]. Common security methods, including encryption,
robot misbehavior detection and user authentication, that can be used for enhancing the security
of remote control robotic systems exist limitations. Encryption is a security method for signal
transmission by encoding and decoding the signals, but it adds overheads on communication and
decreases the control efficiency. The robot misbehavior detection method is to detect the unusual
signals of robot devices, but it is applied to an autonomous robot and can not protect the remote
control robot system, especially for impersonation attacks. For the user authentication method,
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there are three main categorizations including knowledge-based, token-based and biometrics-
based. The knowledge-based method [7] requires users to remember predefined passwords and
use them to log in to the system, but the system is vulnerable to attacks by any individuals who
know the passwords. The token-based method allows users a preallocate tokens to take, but the
tokens are burdensome and are easy to theft. The biometric-based method requires users’ phys-
ical or behavioral biometric information. But the traditional physical biometrical information is
easy to be theft. For example, fingerprints can be reproduced from a photograph and facial im-
ages can be downloaded from users’ social media. Behavioral biometric user authentication that
allows continuous authentication is a relatively new concept requiring users’ body gestures [8],
but existing methods were applied to the user access point and can not the system security after
user login. The combination of the single modality of user authentication is Multi-Factor Au-
thentication (MFA), but it has a similar limitation to behavioral biometric user authentication,
which can not protect the whole robot system’s security. These methods primarily secure the
human-robot communication at the point of access, however, they may not address the vulnera-
bility of command signals being tampered with during transmission over long distances.

To mitigate this risk, employing user authentication directly through the robotic data offers
a more robust solution, which can protect the whole system’s security without decreasing the
controlling efficiency. We proposed a user classification method on robotic data to verify the
legitimacy of the commands, ensuring the integrity of system security. This approach not only
reinforces the security framework but also maintains the trustworthiness and reliability of the
remote-controlled robotic system. We built a motion-controlled robotic system that allows for
robot teleoperation and analysed motion-controlled robotic behaviors. Instead of relying on data
from human operators, we applied user classification techniques directly to the robotic data. Fur-
thermore, we demonstrated the adaptability of our method across two distinct motion-controlled
robotic platforms, each utilizing different motion capture devices and types of robots. After the
system identifies users, it can provide personalization, such as specific needs and preferences,
for different users. For example, users have different preferences on robotic control velocity,
influencing how comfortable and suitable they feel while managing the robot. Thus, we per-
formed user classification under different controlling parameters. Besides, a concern with direct
user classification on robots is the potential risk of compromising operator privacy, especially
when data is transmitted to remote locations. To address this privacy challenge, we introduced
a reinforcement learning method that the robot can execute commands that do not contain user
biometric identities, which safeguards users’ privacy effectively.

The way to express emotions is different among different human. Thus, human operators’
emotions, which is an indispensable factor in HRI, should be considered after classifying the
users. Emotion influences how messages are sent, received, and interpreted [9]. The ability to
regulate, express and interpret emotions is emotion intelligence, which plays an important role
in HRI and is considered multidisciplinary encompassing psychology, social sciences, cogni-
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tive science, artificial intelligence, design, engineering, and computer science [10]. Endowing
robotics with emotional intelligence allows robots can interpret human emotions and give feed-
back accordingly, thus having the ability to understand human messages appropriately, maintain
relationships and enhance the decision-making process. It can help to build human-centred HRI.
Firstly, in the field of customer service, understanding human emotions can enhance the effec-
tiveness of services by providing personalized services [11]. Secondly, in the field of industry,
understanding workers’ emotions and giving empathy increase user satisfaction and acceptance
of robots in working environments [12]. Thirdly, in healthcare settings, companion robots that
have emotional intelligence for the elderly can provide comfort and companionship, potentially
reducing feelings of loneliness [13]. Fourthly, in the field of education, robots can adapt their
teaching methods to fit the child’s emotional feedback. Lastly, in situations where robots assist
humans in disaster zones, robots that recognize the stress [14] of human operators can avoid
secondary damage to the local area.

Human emotions have a vital influence on teleoperated robot systems, however, they are
rarely discussed in this field. Inappropriate emotions for specific scenarios can compromise sys-
tem safety. For example, a driver’s fatigue could lead to distraction while operating teleoperated
vehicles, potentially causing severe accidents. More critically, if a surgeon is irritable during
telesurgery, it could result in harm to an anesthetized patient who is unaware of the situation.
This highlights the need for integrating emotional intelligence into teleoperated systems to as-
sess the emotional states of operators, ensuring safer and more effective interactions. Thus,
endowing robots with emotional intelligence is quite significant. For example, in the remote
driving scenario, automated driving can be switched on when the driver’s exhausted emotion is
detected, which can lead to improved user satisfaction and greater efficiency in task completion.

A key technology for recognising emotion is emotion recognition (ER), which is a rapidly
evolving interdisciplinary field including AI, natural language processing (NLP), cognitive sci-
ences, social sciences and psychology [15]. Together, these disciplines collaborate to develop
an intelligent system that is capable of sensing and interpreting the emotional states of humans.
It aims to enhance human-computer interaction and create more empathetic and intuitive tech-
nological solutions. There are two main techniques for ER including sensing emotion signals
and implementing AI to classify emotions. The sensing signals from human behaviors include
physiological signals (e.g. heart signals), semantic signals (e.g. Twitter and Instagram), facial
signals and body signals (e.g. shaking hands).

However, ER in the context of HRI remains less explored [16] compared with the human-
computer interaction (HCI) context. Research of ER in HRI mainly focuses on a particular HRI
application area: human-robot social interaction. Specifically, these interactions involve direct,
face-to-face engagement, where robots are designed to detect human behavioral signals, with
facial expressions being the most frequently analyzed signal [17, 18]. Additionally, much of the
research in this area has been conducted using datasets that are publicly available or within the
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CHAPTER 1: INTRODUCTION

controlled settings of a laboratory, a practice that is especially common when the studies involve
physiological data for ER.

However, human-robot social interaction represents just one area of HRI applications. Ac-
cording to Thomas B. Sheridan [19], there are four primary applications within HRI including
human supervisory control of robots, human remote control of robots, autonomous vehicles,
and human social interaction with robots. To our best knowledge, there is no existing work that
studies ER in the robot teleoperated scenario, which is one of the most important parts of HRI
applications. The importance of ER in the human remote control robot HRI scenario cannot be
overstated. However, the existing emotion sensing methods, including sensing human physio-
logical and behavioral signals, show limitations for robot teleoperation scenarios. The common
physiological sensing signals, such as heart signals and brain, are electrical signals which are
sensitive to human motions, so acquiring these signals from operators in our system may add
extra noise. Additionally, operators’ behavioral signals, such as facial expressions and voice,
are hard to capture in our system. More importantly, directly analysing human emotional sig-
nals faces similar limitations to those encountered in using human data for analyzing biometric
identities, as previously discussed. It can only identify the emotional states at the access of
the system. To address these challenges, we used robotic behaviors to classify operators’ emo-
tions enhancing the whole system’s security. We developed one Dynamic Time Warping (DTW)
based method and one Convolutional Neutral Network (CNN) based method to perform user-
dependent and user-independent emotion classification respectively. This innovative approach
not only circumvents the limitations associated with traditional emotion sensing methods but
also contributes to the broader discourse on securing HRI applications through the nuanced un-
derstanding of operator emotions. The research path of this work is visualised in Figure 1.1.

1.2 Research Objectives

The main objective of this thesis is to secure teleoperated system by classifying users and user’s
emotion from motion-controlled robotic behaviors. The following research plan and tasks are
considered to achieve three main objectives.

• Show that motion-controlled robots can inherit user biometric identities and users can be
classified through the robots’ behaviors. Build a foundation for the emotion classification
work.

• Show that motion-controlled robots can inherit human emotions and these emotions can
be classified by using robotic behaviors.
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User Classification from  Motion-Controlled Robotic Behavior
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Figure 1.1: This flowchart depicts the research trajectory in this thesis. Each box represents
different experiments and experiments are categorised into two topics. The connector means the
order and connection between different experiments.
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1.3 Research Contributions

Reflecting on the stated research objectives, this thesis has led to the following three research
contributions:

• We verified that the motion-controlled robotic arm can inherit the operators’ behaviors.
Then, we implemented DTW and CNN algorithms on the robotic arm’s end-effector tra-
jectory data and showed that the users’ identities can be classified. The ten user classifi-
cation accuracy reached 95.0%. This methodology’s adaptability was further evidenced
through its application in real-world social tasks performed by a Kinect motion-controlled
social robot, where user classification accuracy with NAO’s two hands (accuracy: 93%)
achieved results comparable to those with the Franka robot. Additionally, we explored
the impact of varying three control parameters on user classification accuracy, discover-
ing that parameters reducing control performance also diminished classification accuracy.
This indicates that unsuitable control settings may result in the loss of valuable infor-
mation, highlighting the potential for tailoring control systems based on individual user
preferences. Finally, we proposed a reinforcement learning algorithm on the captured
operator’s trajectory data, ensuring the protection of user biometric information within
the robotic arm’s trajectory data. These studies established a solid groundwork for future
ER research, offering a methodological and experimental design basis for forthcoming
studies.

• We presented a comprehensive methodical review of ER in the context of HRI, with two
primary aims. Firstly, we synthesized the current methodologies and applications of ER
in HRI, providing a clear picture of the field’s present state. Secondly, we identified
promising ER techniques with potential future applications in HRI that have not yet been
fully exploited. We contributed a unique taxonomy to categorise existing literature, dis-
tinguishing ER approaches based on various emotional signals, including physiological
and bodily expressions. Furthermore, we positioned our examination of ER application
in four pivotal HRI scenarios identified by the field: supervisory control of robots, tele-
operated control of robots, automated vehicles, and social interactions with robots. We
demonstrated the overall state-of-the-art techniques in most HRI related fields. For the
supervisory and teleoperated control scenarios that have not been explored by ER, so we
provided comprehensive information and practical recommendations for future design-
ers. Our survey not only charted the current landscape of ER in HRI but also highlighted
critical areas for future research, paving the way for more emotionally intelligent robotic
systems.

• We demonstrated that the functional movements of a remote-controlled robotic avatar,
which was not designed for emotional expression, can be used to infer the emotional
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state of the human operator via a machine-learning system. We showed for the first time
that user emotions can be accurately inferred from the movements of a motion-controlled
robotic avatar. Then, We implemented two ER algorithms, based on DTW and CNN
respectively, and developed unique emotional features from the avatar’s end-effector mo-
tions and its joints’ spatial and temporal features. Specifically, our system achieved 83.3%
accuracy in recognizing the user’s emotional state expressed by robot movements, as a re-
sult of their hand motions. Additionally, we demonstrated through direct comparison that
our approach is more appropriate for motion-based telerobotic applications than tradi-
tional ECG-based methods. Furthermore, we discussed the implications of this system on
prominent current and future remote robot operations and affective robotic contexts.

1.4 Thesis Organisation

In this section, we outline the organization of the remaining chapters of the thesis, structured as
follows:

• Chapter 2, Background and Literature Review, research areas that inform this work and
our objectives were reviewed. Firstly, we provided the background of teleoperated robots,
existing controller types and robot types in the remote control scenario. Then, we pro-
vided the existing methods and their limitations for user classification. Based on this, it
illustrated that user classification is one of the methods for robotic security. Next, it intro-
duced the field of ER. It provided a brief introduction to emotion modelling that could be
used for our work and briefly provided ER to the HCI and HRI fields. Then, it categorised
the existing emotion sensing signals roughly into two types including the physiological
signals and behavioral signals and shows the limitations of these signals used in our work.
Furthermore, it provided existing methods of ER using signals from computer and robot
interaction interfaces. Besides, it provided the existing approaches to endow robots with
emotions and shows that robots have the ability to express emotions.

• Chapter 3, User Classification from Motion-Controlled Robotic Behaviors, described four
experiments. The first experiment showed that a motion-controlled robotic arm can in-
herit human operators’ biometric identities and user classification accuracy achieved to
95% using robotic end-effector trajectory data. Experiment 2 verified the versatility of
experiment 1 proposed method on a motion-controlled social robot platform and user
classification accuracy reached 93%. Experiment 3 showed that lower controlling perfor-
mance leads to lower user classification accuracy. Experiment 4 proposed an AI agent to
protect users’ biometric identities.

• Chapter 2.2, Emotion Recognition in Human-Robot Interaction: Taxonomy, Review, Cur-

rent Challenges and Future Trends, conducted an extensive review of emotion sensing and
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recognition techniques, alongside a summary of current ER approaches in HRI applica-
tions. Building on this foundation, we outlined the prospective directions for ER within
HRI. We also discussed practical solutions and challenges that could shape the future of
ER in HRI settings. Based on this comprehensive review, we proposed our novel method
of ER for motion-controlled robotic arm.

• Chapter 4, Inferring Operator Emotions from a Motion-Controlled Robotic Arm, for the
first time showed that human emotions can be inherited from motion-controlled robotic be-
haviors and the ER accuracy using the robotic end-effector trajectory data reached 83.3%.
We extracted 20 emotion-related features in total including the kinematic and expressive
features. The ways to express emotions are different for different individuals, so we pro-
posed a user-dependent method to classify emotions based on identified uses. However,
classifying emotions without identifying users is more practicable in real-world scenar-
ios, so we also proposed a user-independent method using a novel CNN method and the
leave-one-subject-out-cross-validation (LOSOCV) accuracy reached 74.2%.

• In Chapter 5, Conclusions and Future Works, we discussed the research findings and lim-
itations, summarised its contributions, and provided recommendations for future research
along with the conclusions drawn from this thesis.
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Chapter 2

Background and Literature Review

This chapter provides background information and presents a review of research in areas related
to the research objectives in the thesis. Section 2.1 gives an introduction to the teleoperated
robots. In addition, it introduces robot security methods and discusses the benefits and disad-
vantages applied to teleoperated robot systems. Section 2.2 gives an introduction to the emotion
model gives a comprehensive review of emotion sensing signals and discusses future trends of
emotion recognition methods for HRI.

2.1 Security for Teleoperated Robots

2.1.1 Teleoperation for Robot

HRI can be divided roughly into four areas of application, and teleoperation of robots is one of
the most important parts of them. During the COVID-19 pandemic, as people were required to
stay at home, teleoperated robots, which can bridge the physical gap between humans and re-
mote environments, gained significant attention. A teleoperated robot is controlled remotely by
a human operator [20]. Human provide control, while the robot is a follower followed by human
control. It can be applied in the field of health [21], nuclear cleaning [22] and education [3].

Teleoperation Methods

Teleoperation methods for mobile robots can be mainly categorized into three types based on
the controlling mode, including direct, supervisory, and multimodal teleoperation [1]. The first
type is direct teleoperation, in which users provide direct control using traditional controllers,
such as joysticks. The second type is supervisory teleoperation, where the operator provides
high-level supervision. The third one is multimodal teleoperation, which is with an interface
including multiple sensors, such as motion sensor, brain signal sensor and sound sensor. Among
them, a wireless motion capture controlling interface that senses the operator’s motions provides
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mobility, safety and scalability. Among these methods, robot motion control using a motion cap-
ture device [3] provides flexibility and mobility for the users. In addition, it provides interactive
and immersive experiences, enhancing user engagement and immersion. In addition to different
teleoperation methods, there are several types of robots that can be used for teleoperation in
different scenarios, including robot hands (e.g. Shadow Robot Hand), robot arms (e.g. Franka
Robot Arm), social robots (e.g. Nao), and humanoid robots (e.g. Boston Dynamic Dog).

2.1.2 Security Methods for Teleoperated Robots

A teleoperated robot system contain muiltiple devices, such as sensors, controllers and robotic
devices, and refers to long distance data transmission, during which the system is susceptible
to both cyber security threats and physical threats. Securing the teleoeprated robot system can
enhance the human-robot trust, which is crucial in today’s world where modern social robots
are increasingly being deployed [23]. When the robot system is under attack, the robot is not
safe and the system is highly possible to produce negative collaboration outcomes in remote
environments.

Encryption

Teleoperation requires communication of data between the operator and the remote robot, which
may be subject to cyber attacks [24]. Encryption can prevent these attacks by converting regu-
lar data to incomprehensible cypher text [25]. However, these security measures require large
computing resources and create additional overheads in communications, which adds latency to
the operation and impacts the operator’s ability to effectively operate the remote robot in real
time [25].

Robot Misbehavior Detection

In order to address the security issues on robot devices, robot misbehaviors detection techniques
are employed to detect the abnormal and unusual behaviors of robotic devices. The common
used method is learning-based machine learning and deep learning algorithms to detect unusual
signals [26, 27]. However, this method is used for autonomous robotic systems and cannot
protect the robot when there is an impersonation attacker and cannot detect spoofing attacks.

User Authentication

User authentication is a method that confirms the identity of a user while accessing a computing
device, such as a mobile phone and laptop and teleoperated robot systems, or an online service,
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such as an email [28]. A wide variety of authentication methods have been introduced, which
can generally be categorized into three main types including knowledge-based, token-based and
biometrics-based [29]. The knowledge-based method is to store passwords in advance, such as
text passwords, and then the user verifies the ownership of the passwords to log in. It is easy
to use, however, it is susceptible to theft and anyone who knows the text passwords can get
authenticated. Besides, token-based allows users a pre-aligned tokens, such as a mobile phone,
a key and a smart card. They do not need the user to remember, however, the methods are
burdensome and also susceptible to theft. Lost or stolen tokens can easily enable unauthorized
individuals to pass authentication [29]. Finally, for biometric-based method, relies on inherent
biometrics factors of human users. This method requires the user to provide multiple samples
of either a physical (e.g., fingerprint) or a behavioral (e.g., gait pattern) trait. The techniques
are to classify different users using extracted features. However, traditional physical biometrics
(i.e., fingerprint and face recognition) are vulnerable to spoofing attacks [28]. For example,
fingerprints can be easily reproduced from a photograph [30]. Similarly, facial recognition can
be deceived by using a photograph of the victim found on social media. Behavioral biometrics is
a relatively new concept using the data acquired from sensors on personal smart devices [30]. For
example, an accelerometer and gyroscope on a smartwatch can record the specific arm gesture
data that are used for user authentication [31]. It can allow for continuous authentication, which
lasts for a long time after user-login. However, the existing behavioral biometrics authentication
can only protect the security of the access point of the teleoperated robot system and can not
guarantee the whole system’s security during the data long-distance transmission. In addition
to use single modality to authenticate users, multi-Factor authentication (MFA) is to use more
than one authentication mechanism to provide a high level of safety [32]. For the most part,
MFA is based on users’ physical and behavioral biometrics information [32]. For example,
user wear a ring for token-based authentication, to perform gestures for behavioral biometraic
authentication. However, existing MFA methods can only protect the teleoperated robot system
partially (user access point), which can not guarantee data are not tampered with during the data
long-distance transmitting.

2.2 Emotion Recognition in Human-Robot Interaction: Tax-
onomy, Review, Current Challenges and Future Trends

2.2.1 Introduction

Emotions play an essential role in human communication and social interaction, influencing and
shaping human behaviors [33]. Human emotions can be recognized using a variety of infor-
mation sources, ranging from exterior physical signals and movements to internal physiological
signals. With advancements in emotion recognition (ER) techniques, automated emotion recog-
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nition (AER) has begun being applied in different areas, such as health [34], education [35],
security [36], marketing [37], entertainment [38] and robotics [17]. ER has also seen increased
development in fields such as human-computer interaction (HCI) [39], virtual reality (VR) [40],
augmented reality (AR) [41], advanced driver assistant systems (ADASs) [42] and human-robot
interaction (HRI) [43]. The most prominent sensors and techniques used in emotion detection
include electroencephalograms (EEG), electrocardiograms (ECG), electromyography (EMG),
cameras, and recorders. Building emotion recognition systems for HRI can further involve the
adaption of techniques including Computer Vision (CV), Machine Learning (ML), Deep Learn-
ing (DL) and Natural Language Processing (NLP).

In order to enhance the interaction and achieve symbiosis between human and robot [44], it
is critical to facilitate emotionally intelligent HRI systems. Emotional intelligence is essential to
recognize, infer, generate, and express the emotions [45], [46], [43], leading to improved com-
munication [47], personalized interactions [48], enhanced user experiences [48], adaptability 1,
and ethical considerations [49]. By incorporating emotion recognition, robots can foster more
engaging, empathetic, and harmonious relationships with humans, which is important for robots
performing complex tasks in social environments which require close interaction and cooper-
ation with humans. For example, social robots in hotels provide guests personalized services
with help of emotion recognition [48]. In addition, inferring passengers’ emotions can improve
user experience and safety in AVs 2. Similarly, industrial robots can dynamically shoulder more
workload when detecting workers’ fatigue from the view of ethical considerations [49]. In terms
of mechanisms, robots can utilise human behaviors, such as touch [50], bodily movements [51],
facial expressions [52], physiological signals [53] and signals from interaction interfaces [54]
to recognize human emotions for enhanced interactions by responding with gestures, facial ex-
pressions and voices [55] or giving warnings and adjusting paths [56].

Related Works

In the existing literature, there are three main categorisations of ER. The first category of works
reviewed the single-modality or multi-modality emotion sensing methods, such as ER using bod-
ily movements [57], facial expressions [58], and combination of visual and audio signals [59].
The second category reviewed and summarized sensing and recognition algorithms for ER. For
example, Dzedzickis et al. [60] summarized different sensors and corresponding algorithms
of ER under these sensing methods, and Wang et al. [61] reviewed the emotion dataset and
surveyed detailed architectures and performances of unimodal and multimodal ER. Finally, the
third category of works surveyed the existing methods of ER for interaction applications. For
example, Cowie et al. [39] reviewed the ER that used speech signals and its application applica-
tion to entertainment robots. Although ER for HRI is a key capability for potential future HRI

1https://www.suaave.eu/
2https://cordis.europa.eu/project/id/815003
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Figure 2.1: Emotion recognition in human-robot interaction.

applications, it is relatively unexplored topic with only one survey study exploring ER applica-
tions in the field of HRI [43]. In the study, the authors summarized the existing ER methods for
HRI applications, but only in the context of human-robot social interaction. However, there are
four main categories of HRI application, including human supervisory control of robots, human
remote control of robots and automated vehicles, alongside human–robot social interaction with
robots [19], which require further exploration.

To address this gap and answer the essential question of how future HRI designers can utilise
ER in emerging applications, we present a comprehensive review of proposed emotion-sensing
methods with more specific branches. In addition, we review existing ER methods in HRI ap-
plications and discuss future trends and challenges, providing insights and recommendations on
how and why ER could be applied to benefit a variety of HRI scenarios. For each HRI applica-
tions, we individually review the existing ER methods and discuss the potential challenges and
practicality of using other ER methods. Furthermore, we provide potential ER methods that can
be applied to specific HRI applications in the future. The overview is shown as figure 2.1.

2.2.2 Background

The importance of emotion recognition in HRI applications

Sheridan et al. identified four main applications of HRI [19], categorized through human in-
volvement factors and robot automation during the interaction. The first category is Remote
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Robot Control which requires human intervention at all times, without any means of auton-
omy. The second is the Human Supervisory Control, which allows the robot to do some routine
tasks, such as assembling, delivery, picking, and placing. During the processing, the robot is
half programmed and half autonomous, endowed with intelligence, such as predicting the op-
erator’s trajectory and avoiding the collision. The third category is Automated Vehicles, where
the robot is entirely autonomous. The last category is Social Robots which are automated but
also express emotional intelligence, such as emotions and empathy, to engage in social interac-
tions with humans. ER can offer essential or beneficial utility to each of these HRI application
areas. Psychologists have shown that emotions are a fundamental aspect of human intelligence
and rationale, and that intelligent behaviors are influenced by emotions [62]. Emotions con-
stitute the primary motivational system for human beings [63], thus by identifying different
emotions, a person’s intrinsic motivations can potentially be inferred. In [64], authors showed
that frustration is an indicator of human interest during the interaction with a robot and can help
to understand whether the interaction is successful or not. In addition, emotions can be an in-
dicator for mental health concerns and ER can be used in the diagnosis of conditions such as
depression [65] and chronic stress [66] based on detection of negative valence and positive
arousal states [67].

Emotion recognition is an interdisciplinary field involving psychology, computer science,
and signal processing, with many application areas such as robotics [55], health [68], secu-
rity [69] [70], education [71], website customization [72] and marketing [73]. ER can benefit
HRI in five core ways.

1. First, ER allows robots to provide personalized interaction and services with humans. For
example, researchers in [48] evaluated service robots in hotels and showed that although
robots showed superiority in repetitive tasks, they cannot provide personalized services,
which requires social ability and emotional intelligence.

2. Second, emotions play an essential role in empathetic human communication and social
interaction. ER can lead to more natural and effective human-robot communication by
enabling robots to perceive human emotional states and respond accordingly, for example
by offering adjusted support, comforting actions, or giving the user some space [44].

3. Third, ER can improve the robot’s adaptability during scenarios where strong emotions
can have a negative impact. For instance, when a telerobot detects intense or suppressed
emotions in surgery, the robot could warn the operator to avoid imprecise or exaggerated
operations that may cause severe injuries to the patient.

4. Fourth, ER could be used to automatically enhance and optimize user experience and
satisfaction. For example, in automated vehicles, the system could adjust the temperature
and music inside the cabin according to the inferred emotion. In addition, the trust and
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adoption of passengers could be evaluated based on inferred emotion, providing implicit
feedback to the system.

5. Fifth, ER can facilitate ethical and responsible interactions in settings with co-present
robots and humans. For example, in human supervisory control of a robot the operator
and robot cooperate in the same workspace to achieve industrial tasks, such as assembling
and delivery. Recognizing human emotions could facilitate a more human-centered and
trustworthy work environment as the robot takes on more workload, initiates stoppages
or calls for support in response to human distress as a result of overwork or a workplace
policy violation.

The Definition of Emotion Modelling and Methods of Elicitation

Psychologists Scherer et al. [74] illustrated that emotion models can be categorized into three
types: discrete emotion, dimensional, and componential. The discrete model defines emotions
according to distinct class labels, which can be six basic emotions: anger, disgust, fear, hap-
piness, sadness, and surprise, as introduced in [75]. The most prominent dimensional model
is Russel’s Circumplex Model of Affect [76], featuring two dimensions: valence and arousal.
Valence represents how positive or negative the emotion is, while arousal refers to how high or
low the physiological arousal occurring during the emotion. Plutchik et al. [77] introduced the
best-known componential emotion model, a hybrid of the first two models, where emotions are
represented hierarchically.

Eliciting emotion is a foundational requirement for ER research and is inherently challeng-
ing as the participant’s observable emotional state is ambiguous and may change during data
collection. Various methodologies have been explored to elicit specific emotions from partici-
pants. Some studies employed a subject-elicited approach [62], such as using actors to express
emotions [78]. Others employed an event-elicited approach [62], seeking to elicit emotion from
participants through evocative songs, video clips, text and pictures, using resources like the
International Affective Picture System (IAPS) [79]. However, gathering high-quality data has
strict experimental environment requirements, thus the majority of work has utilised pre-existing
open-source high-quality datasets. One of the most popular physiological datasets is DEAP [80]
which includes EEG and peripheral physiological signals, but there are many other datasets var-
ied by particular collection methodology or control variables. Katsigiannis and Ramzan [81]
contributed a dataset of ECG and EEG signals in response to emotions elicited using audio and
visual stimuli collected in an isolated environment. Datasets also vary by participant movement,
Koelstra et al. [80] elicited emotion from seated participants, while Busso et al. [82] using mov-
ing participants. Likforman et al. [83] conducted a handwriting dataset, while Gunes et al. [84]
contributed a face and body dataset. However, datasets are typically collected in laboratory con-
ditions, far removed from real-world environments [60, 61]. Consequently, there is a growing
need for ER experiments conducted in real-world scenarios, especially in the field of HRI.
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Figure 2.2: Taxonomy structure of emotion recognition in human-robot interaction.

2.2.3 Taxonomy

In this section, we provide a taxonomy of emotion recognition in HRI, as shown in Figure 2.2.
ER in HRI is an interdisciplinary field and includes robotics, artificial intelligence, and psychol-
ogy. In this survey, we review the existing work of emotion recognition in HRI applications and
propose its potential development in future. The HRI applications are mainly categorized into
four areas [19], including remote control, human supervisory control, automated vehicles, and
human-robot social interaction. We survey the emotion recognition work for the HRI scenarios
that have been explored, including human-robot social interaction and automated vehicles. For
the HRI application that has yet to be explored in ER, we analyze whether these areas would
benefit from ER, whether the existing ER method can be applied in the future, and how to apply
them.

Emotion Signals

The existing studies of emotion signals are categorized into physiological and physical data.
Physical data includes facial expressions [58], speech [85], bodily expressions [57] and text [86].
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Physiological data includes brain activity [87] and peripheral physiological signals, such as
Electrocardiography (ECG), Heart Rate Variability (HRV), Skin Temperature (SKT), Respira-
tion Rate (RR), blood volume pulse (BVP), Skin conductance (SKC), and Galvanic Skin Re-
sponse (GSR) [88]. In addition, these unimodal data streams can be combined to allow for
holistic multimodal affective signal analysis [61, 89].

Existing Emotion Recognition in HRI Applications

Existing studies of ER in HRI have mainly discussed the changes in a human’s emotion when
they socially interact with robots [90–94] to help design interaction interfaces, enhance interac-
tion, monitor excise, assist treatment of children impairment and relieve loneliness of the elder.
Additionally, there exists work of ER for automated vehicles [47, 54, 95–100], where it can
promote the passengers’ mental health, understand the feelings of passengers’ acceptance, sat-
isfaction and trust. ER sensing methods for AVs include facial expressions, voice, physiological
signals and motions of passengers.

Future Emotion Recognition in HRI Applications

ER is necessary to facilitate more interactive and intelligent systems in real-world scenarios for
HRI applications. In human remote control of robots in hazard environments, ER can improve
system security. For example, the detection of intense emotions could avoid imprecise operation.
In human supervisory control of robot in industry, ER can help to build trust between human and
robot, as well as evaluate workers’ satisfaction. While the use of ER in these areas is unexplored,
there are several viable emotion sensing methods which could be implemented. Physiological
signals can be used, but it can be challenging to acquire accurate data in human remote and
supervisory control of robot scenarios, due to data artifacts caused by human movements [101].
Besides, acquiring physiological data can require on-the-body sensors or wearables, which could
present a practical challenge. Compared with the methods of acquiring physiological signals,
observing physical signals is more practical, as physical data can be acquired from different
task scenarios. For example, ER can leverage facial expressions or the operators voice, while
in scenarios where operators do not talk but make hand moves, these hand movements can be
analysed to recognize emotions [102]. Another example is using information from interaction
interfaces, such as haptic controllers [103].

2.2.4 Emotion Signals

Human emotion states can be detected from changes in both internal physiological signals and
outer behaviors’ changes. Inner information is instinctive and often less overt, while behavioral
information, including vocal, facial, and body information, are primary methods of human inter-
personal communication [58]. The following section will discuss existing ER sensing methods,
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Table 2.1: ER methods categorization

Methods References
Peripheral
physiological
signals

Contact sensors [60, 61, 68, 104–109]
Non-contact sensors [78, 110, 111]

Brain signals [43, 112, 113, 113–116]

Facial expressions

Visual Information [58, 117–122]
Thermal information [100, 123, 124]
EMG signals [125]
Eye tracking [126, 127, 127, 128]

Speech, text and
handwriting

Speech [85, 129–131]
Text [86, 86, 132–134]
Handwriting [135, 136]

Bodily expressions [57, 60, 102, 102, 137–145]

MultiModality

Facial& Body [120]
Audio & Visual [146]
EEG & EMG [147]
Facial & Body & Audio [148]
Text & Speech & Visual [149]
Facial & Hand & Body [150]

as summarised in Figure 2.1, in more detail.

Peripheral physiological signals

The autonomic nervous system (ANS) is a general-purpose physiological system [151] and psy-
chologists [152] [152] have shown that emotions influence the activity of the ANS. Physiological
responses can be measured from peripheral physiological signals to facilitate emotion recogni-
tion. Relevant peripheral physiological signals include Electrocardiography (ECG), Heart Rate
Variability (HRV), Skin Temperature (SKT), Respiration Rate Analysis (RR), Blood Volume
Pulse (BVP), Skin conductance (SKC) and Galvanic Skin Response (GSR) [88]. Methodol-
ogy for measuring these signals can be broken down two main categories: sensors that require
contact and contact-less sensors.

• Contact sensing signals:

ECG is most prevalent among the peripheral physiological emotion signals used for ER.
The autonomic nervous system (ANS) connects the brain and heart [153] and brain be-
haviors influences heart behaviors, allowing the detection of emotions from heart activ-
ity [104], [68], [154], [105], [106]. The primary methods of ER using ECG utilise Ma-
chine Learning (ML) and Deep Learning (DL) [61]. For ML-based ECG emotion recogni-
tion, features are extracted manually. The detected ECG signal is a wave from which five
crucial components that contain information about heart activity can be extracted: the P, Q,
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R, S, and T values [105]. Time-domain, frequency-domain, and nonlinear-domain anal-
yses of these features are conducted. ML-based classifiers are used on these features for
emotion recognition, with the SVM classifier being prevalent [61]. For DL-based meth-
ods, [106] self-supervised learning is used to detect ECG transformations and transfer the
trained parameters into the classification network. ECG signals are, however, sensitive to
human movements and therefore can be challenging to collect outside of a controlled en-
vironment. Furthermore, this method requires a large amount of data and can not be used
for instantaneous ER [60], all of which impacts its usefulness in real-world applications.
Another signal which can be used for ER is Skin Temperature Measurements (SKT), using
biomedical sensors attached to human skin to detect temperature changes [108].Emotions,
such as like stress, anxiety and anger, can cause a decrease in finger temperature. The
utility of SKT is, however, impeded by a long latency between temperature change and
emotional stimulation, additionally, it cannot be used to recognize precise emotions [60].
Respiration rate (RR) can also be used for ER [109]. It suffers from limitations, as RR is
influenced such as the human movement and surrounding environment which could con-
found ER [60]. In addition, unlike SKT, RR can also be intentionally changed by the user,
which could result in less accurate data. Finally, the quality of the data acquired by using
contact sensors depends on the quality of the sensor and suffers from the movements of
the users, thus all these methods may be impractical depending on their use in different
real-world HRI applications.

• Wireless sensing signals:

In addition to using contact sensors, prior work [78, 110] has utilised wireless devices to
detect and extract heart activity and achieved comparable ER results using an ECG sen-
sor. For example, SKT signals can be observed using infrared cameras to capture thermal
imaging of skin temperature [111,155]. While contact sensors can be cumbersome, wire-
less signals are more convenient and do not influence or impede normal human activities.
However, current research has utilised strict experimental environments, thus the ability
for wireless methods to achieve precise signal extraction despite naturalistic human inter-
action or movements has not been demonstrated. The wireless sensing methods do not
require physical contact, which is beneficial in environments where contact is challenging
or sensitive and provides flexible deployment. However, due to Wireless signals can be
affected by physical obstructions, such as wall, and environmental interference, such as
electromagnetic disturbances. Besides, some of wireless sensors have lower accuracy and
resolution compared to contact sensors [156].
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Brain signals

Prior work [112] has shown that by observing brain activity, it is possible to correlate physiolog-
ical responses and emotions even more effectively than by observing peripheral physiological
activities. Electroencephalography (EEG) is a widely used non-intrusive technique to detect
brain electrical activity. The features are extracted from time-domain, frequency-domain, time-
frequency domain using electrodes [113] [114] [115]. The predominant features of EEG are fre-
quency features from different frequency bands, including delta, theta, alpha, beta and gamma,
in which the power of each band, the statistical features of different power spectrum, and Higher
Order Spectra (HOS) features have been explored [60, 113, 157]. Suhaimi et al. [116] sum-
marized the popular machine learning algorithms for ER using EEG in recent years: K-nearest
neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN). Others
have utilised a deep learning approach, with the best recognition accuracy (90.40%) achieved
by Zhong et al. using a Dynamical graph convolutional neural network [158]. EEG has two ad-
vantages over other methods. First, it can reach a higher emotion recognition performance, and
second, it is feasible to use a commercial-grade EEG device for ER [43], rather than specialist
equipment. However, most work has focused on developing the method and using the published
EEG dataset DEAP. Furthermore, as EEG is an electrical signal is it sensitive to human motions
and influenced by motion artifacts [159], which could limit its applicability in non-controlled
interactions with robots, as with previously discussed methods.

Facial Expressions

The increase in readily available graphical computational processing power and variants of neu-
ral networks has lead to increased viability of facial emotion recognition (FER) approaches [160].
There are two approaches for FER: traditional FER and neural-networks-based FER. Traditional
FER utilises the general computational flow with five steps: data input, signal preprocessing, fea-
ture selection, and classification [160]. In [161], researchers provided a detailed data processing
method and network design. FER has been applied in real-world applications. For example,
emotions observed using FER are used to evaluate the user satisfaction of tourists in [162].

• Visual information:

Facial expressions are direct and natural signals, and primary information channels in
human interpersonal communications [58, 118]. With the development of the computer
vision field, more FER methods have been explored in recent years. Several emotion
facial datasets have been contributed and researchers have proposed deep learning algo-
rithms using these datasets [121, 122]. There are two ways of using visual information
to recognise emotion. One is to extract features manually, and the other is that deep neu-
ral network output features automatically [58]. Features are calculated from action units
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(AU) and landmarks. AU was proposed in [117] and represents muscle movement. Land-
marks represent the facial characteristic points, such as the nose and eyebrow positions.
Tarnowski et al. [118] used a Kinect to capture face characteristic points and build a 3D
model. Then, AUs are calculated from the selected facial points, and K-Nearest Neighbors
(KNN) and multilayer perceptron (MLP) are used to classify seven emotions. Authors in
[119] used 51 facial landmarks and then extracted the features and used SVM for clas-
sification, deployed on a mobile application. In [120], researchers extracted features by
handcraft and proposed temporal segment detection methods to process video information.
For automatic selection, Jain et al. [121] proposed a CNN and RNN combination method
on the JAFFE-faces dataset. In [122], they used VGGNet architecture on the FER2013
dataset and achieved to highest accuracy of 73.28%. However, there are a few drawbacks
of using facial visual information. Firstly, based on deep learning characteristics that re-
quire a large amount of data, FER needs abundant computing resources. In addition, the
range of human movement can be limited when collecting facial data. Additionally, col-
lecting facial data involves serious privacy issues. More importantly, micro-expressions
are difficult to identify due to their spontaneous and subtle nature of occurring involun-
tarily, and new evaluation metrics are needed to observe micro-expressions from moving
images [58].

• Thermal information:

The visual information of facial expressions is detected over the skin, so it is vulnera-
ble to environmental factors, such as occlusion of external sensors. The thermal infor-
mation of the face can be measured instead [163] via on-the-skin sensors, which can
circumvent such confounding factors. In [100], they used handcraft manual feature selec-
tion, while Shaees et al. [123] used transfer learning to perform FER on a thermal facial
dataset. Additionally, Nayak et al. designed a two-stage approach to recognize emotions
through time-series thermal sequences including Regions of Interest (ROI) detection us-
ing RNN and emotion recognition using DTW [124]. The fusion of facial visual and
thermal information has been applied in face recognition [164,165], which can be further
explored to facilitate FER. Environmental temperature can, however, play a confounding
role when sensing thermal information, a key limitation [43] for its use in ER. Related
experiments [166] were conducted in climate-controlled laboratory settings, while tem-
perature is not controlled in different daily life scenarios. Besides, small sized thermal
imaging systems are needed to provide mobility [166].

• EMG signals

Rather than using visual information, an Electromyogram (EMG) can be used to detect
facial muscle signals. In [125], authors adopted wavelet packet transform on facial EMG
signals and used SVM to classify the extracted features. However, EMG sensing methods
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are in the experimental stage [167, 168] and there is not any application to ER, making
this a possible but unexplored avenue.

• Eye tracking (ET)

Eye tracking devices can detect a person’s eye movements and position [169]. There are
different implementations, including desktop eye-tracking (Gazepoint GP3 eye-tracker),
mobile Eye-Tracking (Tobii Pro Glasses 2 eye-tracker) and Eye-Tracking in Virtual Real-
ity head-mounted displays (HMD) [128]. Eye behaviors can reveal crucial information
related to emotions and cognition processing by observing features such as eye move-
ment, gaze patterns, motion speed, pupillary responses and fixation duration [127, 128].
In [127], they extracted 18 features to classify 3 emotions with an accuracy of 80%. In
most cases, eye tracking is combined with EEG to classify emotions [170, 171]. Plopski
et al. [126] highlighted how ER facilitated by ET in Extended Reality can lead to nuanced
and richer gaze expressions in both remote and co-located collaboration [126]. There are
some downsides to this approach, however, as the features of pupil diameters are influ-
enced by lighting conditions, ET is mostly only used in multimodal ER and it requires
either worn hardware or fixtures which require specific positioning of users.

Semantic Information

Semantic information refers to the meaning and interpretation of words, phrases, and sentences
and it is a key concept in ER, mainly including speech, text and handwriting.

• Speech

Speech is another natural method of interpersonal communication and speech emotion
recognition (SER) has been developed over the past decades [85]. SER shows particular
benefits in scenarios where there is no other signals to observe for ER, as it cannot be vi-
sually occluded or confounded by movement. There are two main approaches: traditional
and deep learning techniques [129]. Traditional techniques include feature extraction,
feature selection, and classification. There are two categories of features: short-period
features such as formants and pitch, and long-period characteristics, such as intensity and
variance. Then these extracted features are fed into a classifier, such as SVM and KNN.
Results in [130] showed that deep learning techniques perform better than traditional tech-
niques in SER. In [130], authors used the transformer (a machine learning model) to recog-
nize emotions in a conversational context. Based on the characteristics of the transformer,
it can learn the immediate previous information in a sequence, instead of learning current
or nearest information, which yielded state-of-art results. Self-supervised learning can
also be used in SER to learn emotional signal representations. Atmaja et al. [131] used
self-supervised on different public speech dataset and showed the accurate relationship
between emotions and classical acoustic features.
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Speech signals are the main semantic information in the scenario of HRI, especially in
the social robot interaction scenario. ER using speech signal can augment reliable, trust-
worthy and low-latency communication between robot and human. For example, a robot
could provide emotional support corresponding to human emotions when talking with
human, which is naturally interpersonal communication and mirrors the empathetic ex-
changes found in human-to-human interactions. Thus, it allows human to build more
trusting relationships with robots.

However, using SER methods requires a conditional experiment set up and implementa-
tion in the robot can add noise from the robotic engine. Authors in [172] proposed a
DNN method to improve the robustness of SER in a real robotic settingby using several
data augmentation techniques so that the model can resist noise from robots, rooms and
acoustic events.

• Text

Emotion recognition from text is one of the most significant and challenging natural lan-
guage processing (NLP) tasks [86]. There are five approaches to speech ER: keyword-
based, rule-based, classical learning-based, deep learning-based, and hybrid [86]. The
keyword-based method finds the occurrences of keywords in the text and assign emotion
labels corresponding to keywords. The main steps of rule-based text ER are rules extrac-
tion and selection. For classical learning-based, researchers extracted the features through
human speech and used these features to feed machine learning classifiers to recognize dif-
ferent emotions. In addition, deep learning is also used in this field. The most used deep
learning model is long short-term memory (LSTM). The hybrid method combines the
first four approaches, such as a combination of keyword-based and learning-based meth-
ods [132] and rule-based and learning-based [133]. According to Alswaidan et al., [86],
keyword-based methods are mostly used in a text to recognize explicit emotions, while the
others are for implicit emotions. Using a transformer can solve these problems because
it learns information from previous content. For example, prior work [134], adopted
bidirectional encoder representations from transformers (BERT) to recognize emotions
considering contextual information. However, text ER is mainly used in human-computer
interaction (HCI), where text data is directly acquired, while text is harder to acquire in
HRI scenarios.

• Handwriting

Handwriting is controlled in real-time by a person’s brain and research has found that
a person’s emotions, mental health, and other personality traits can be conveyed from
handwriting analysis [135,173]. The primary method of handwriting emotion recognition
(HER) is traditional machine learning. Features such as Slant, baseline, pen-pressure, size,
margin, and zone [135] are extracted manually, as well as stroke-related features, such as
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stroke duration and length [136]. Then, these features are fed into a classifier. HER can be
used in mobile and ubiquitous computing or depressed detection [135, 136]. However, it
is not a widely discussed topic and few works studied it, with the most accurate detection
rate being 70%, achieved in [136]. However, it has similar real-world implementation
problems with text methods, which is not directly acquired.

Bodily Expressions

Mauss et al., [112] introduced that physical human behaviors, including facial displays, vocal
information, and bodily expressions, are primary ways to convey emotions between interper-
sonal communications. Although bodily expressions are a less discussed topic, Ahmend et
al. [102] suggested that ER from analysis of bodily expressions has huge potential to revolu-
tionize robotics by impacting human interaction behaviors. Bodily expression information can
be observed from the head, hands, torso, upper body, or whole body. The general pipeline of
ER for bodily expressions includes body detection, human body modeling, feature extraction,
and emotion recognition. The measurement techniques are non-contact techniques, including
a depth camera (e.g., Kinect), RGB camera, and motion capture system (e.g., Optitrack, Vi-
con [143]). Previous studies [57, 102, 137–139] have used bodily movements to recognize
different emotions. Glowinski et al. [137] introduced the analysis of upper body features,
including expressive and dynamic features. Expressive features include energy, spatial extent,
smoothness, symmetry, and head tilt. Except for the expressive features, 25 dynamic features
can be considered, including the variance, peak duration, main peak duration, and Number of
Maxima from video data. In [137], the authors used the displacement of major joints, motion
features, and the Laban Movement Analysis (LMA) effort component and mass displacement.
In [140], CNN and RNN were used to analyse basic discrete emotions using body skeleton
movements that are built using main body joints, while others have recognized continuous emo-
tions based on the features from LMA [141]. Most prior studies have used stylized motion
tasks (tasks that explicitly are designed to express different emotional states) [137] [102] [138],
but some studies have also demonstrated the potential of using non-stylized motions, i.e., func-
tional movements to accomplish tasks irrelevant to emotional expression [142–144]. In [144]
and [143], authors analyzed non-stylized gait to recognize emotions using the captured skele-
ton movement. Additionally, according to Ding et al. [145], hand gestures can also be used
to classify emotions, while Dzedzickis et al. [60] asserts that bodily expression is a promising
approach in future practical ER cases, due to its wide applicability.

Multimodal information

As emotion information can be conveyed from many different sources, combining more than
two sensors or modalities can allow for more information and a higher resulting recognition
accuracy. Prior work has explored several signal combinations. The main combination types
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are different physiological signals combination, physiological and behavioral signals combina-
tion, and behavioral signals combination. Prior work [120] has combined facial expressions and
bodily displays and showed that the performance of feature-level fusion (early fusion) is better
than the decision-level fusion (late fusion). Facial expressions, hand gestures, and body postures
has also been combined together to classify students’ emotions in classroom environment [150].
Others [148] have combined facial expression, body gestures, and acoustic information in a
speech-based scenario where humans communicate with the agent. Previous research [174]
designed deep neural networks to learn facial, body, and audio information. Self-supervised
learning was used to select features from text, speech, and vision signals that were fed into
the transformer [149]. Siriwardhana et al. [149] collected the features of text, audio and vision
signals, then used a transformer to recognize different emotions, while Schoneveld et al. [146]
leveraged a deep learning method on audio-visual emotion recognition. Zhu et al. [147] used
EEG to evaluate customer preference and used eye tracking to fine-tune parameters at the ap-
plication level. The efficacy of EEG and ECG signals when isolated or combined has also been
explored, showing a 35.78% increase in performance when used in combination [175]. De-
spite the upsides of these multimodal approaches, there are some disadvantages and limitations.
These approaches may require that more data is collected, raising greater concerns over privacy
issues. Additionally, the cost and complexity of these approaches will be higher as a result of
combining or coordinating multiple pieces of hardware and data-streams.

2.2.5 ER in HRI Applications

There are two types of HRI application where the use of ER has been explored: Automated
Vehicles and Social HRI (see Table 2.3).

Emotion recognition for automated vehicles

In this use case, the robot is an automated vehicle (AV) that makes decisions and judgements by
itself, while the human is primarily just a participant. ER in AVs is an emerging area of research
that aims to understand how people perceive and respond to AVs from an emotional perspective,
which improves user experience and supports the acceptance of AVs 3. A comprehensive sur-
vey on driver emotion recognition [96] showed that the facilitation of ER in intelligent vehicles
potentially promotes passengers’ greater mental health and as AVs become more prevalent there
is a growing need to use ER to understand passengers’ feelings of acceptance or satisfaction
inside the car 4. For example, anxiety passenger anxiety could be used to indicate dissatisfaction
with the experience. By recognizing passengers’ emotions that indicate their feelings of willing-
ness, trust, comfort, and safety, the AV can adapt and adjust its behaviour. The EU has funded

3https://cordis.europa.eu/project/id/815003
4https://projects.research-and-innovation.ec.europa.eu/en/projects/success-stories/all/building-automated-

vehicles-are-tune-your-emotions
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Table 2.2: State-of-the-art emotion classification methodologies encompass a comprehensive
analysis of employed emotion sensing techniques, algorithms, method performance, and the
types of emotions identified.

Emotion
Signals Methods Performance Emotions Ref.

ECG
Self-Supervised

Learning

Averaged
accuracy:
96.15%

Arousal
and valence [106]

EEG
Dynamical graph

convolutional
neural network

Accuracy:
90.40%

Negative,
neutral and positive [158]

Facial
Expressions

CNNs:
VGGNet

architecture

Accuracy:
73.28%

Anger, disgust,
fear, happiness,

sadness, surprise
and neutrality

[122]

Eye
Tracking

17 Features
extraction

SVM classifier

Accuracy:
80%

C1:high arousal
and high valence
C2: low arousal

and moderate valence
C3: high arousal
and high valence

[127]

Semantic
Information Transformer WAA: 68%

Happiness, sadness,
neutral, anger, excitement

and frustration
[130]

Body Language
Generalized
Zero-Shot

Learning (GZSL)

Accuracy:
72.92%

Happiness, sadness,
surprise, fear

and anger
[176]

emotion recognition in AVs to enhance user acceptance, such as Trustonomy 5, DriveToTheFu-
ture 6 and SUaaVE 7. By understanding the emotional responses of users to AVs, developers can
design systems that are more appealing and user-friendly, or this could allow AVs to respond
accordingly to passenger emotions.This can be important for providing a more personalized and
responsive driving experience. If the autonomous vehicle detects that the passenger is feeling
anxious or stressed, it has the ability to modify its driving style or provide soothing features such
as music or lighting.

There are few papers that use ER in AVs for implemented applications, but several papers
explored it without implementing an adaptive response. Several ER signal sensing methods have
been explored for an AV application. Ma et al. used RGB cameras to observe facial expressions
and head gestures inside a car [99], but their primary focus was to develop effective algorithms
based on an existing dataset and did not consider the images in real driving scene. Furthermore,

5https://cordis.europa.eu/project/id/815003
6https://cordis.europa.eu/project/id/815001
7https://www.suaave.eu/
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Table 2.3: Applying ER in existing and future HRI applications

E
X

IST
IN

G
M

E
T

H
O

D
S

Application
Areas

Methods Emotion
Model

Aim & Out-
comes

Refs

Automated
Vehicles

Facial expressions
and head gestures

4 discrete
emotions

Feelings of ac-
ceptance or satis-
faction

[99]

Automated
Vehicles

Biophysiological
signals

None Feelings of ac-
ceptance or satis-
faction

[96]

Automated
Vehicles

Speech and driving
styles

None Feelings of ac-
ceptance or satis-
faction

[54]

Social
Robots
(NAO)

Touch 8 discrete
emotions

Robot design [50]

Social
Robots
(NAO)

Bodily movements 6 discrete
emotions

Effective interac-
tion

[51]

Social
Robots
(NAO)

Facial expressions 7 discrete
emotions

Better aid and
support

[52,
177]

Social
Robots
(NAO)

Multimodalities Positive
Negative
and neutral

Older rehabilita-
tion

[55]

Social
Robots
(NAO)

Combination phys-
iological signals

Positive,
negative
and neutral

Children impair-
ment

[53]

Social
Robots
(NAO)

Facial expressions
physiological sig-
nals

2 dimen-
sional
emotions

Exercise monitor [178]

FU
T

U
R

E
M

E
T

H
O

D
S

Possible Application
Areas

Possible Methods Potential Outcomes
& Benefits

Remote Control (Haz-
ardous & Inaccessible
Environments)

Facial Expressions; Bodily
Movements; Physiological
Signals; Multimodal Data

Guarantee Security;
Control Improve;

Supervisory Control (In-
dustrial Routine Tasks)

Facial Expressions; Bodily
Movements; Physiological
Signals; Multimodal Data

Human-centered; Bal-
anced work; Social
Acceptance; Trustwor-
thy
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biophysiological signals such as cardiac activity, electrodermal activity, skin temperature and
respiration can be detected in cars [96], but these methods are influenced by the passengers’
motions and need to be combined with other sensing methods to be effective. Speech can also
be detected by microphones in cars, as can driving styles, grip strength, sitting postures, all of
which can be used to facilitate ER [54]. Driver emotion is detected through a thermal camera
[100], which is a non-intrusive car driver’s emotion recognition, but the data was collected in a
controlled environment. Overall, there are several potentially viable ER methods in AVs to ac-
quire multimodal data from passengers, but many of these methods are at the preliminary stage
and can suffer from interference from the passengers’ motion artifacts and the in-car environ-
ments. As a result, these works are still at the speculative design stage and implementation and
testing in-the-wild is lacking.

Emotion recognition for Human-robot social interaction

Several social robots are designed with social abilities to facilitate more natural interaction with
humans, such as speech recognition and emotional intelligence [47]. Compared with the re-
mote control, co-presence social robot interactions often aim to emulate human-like interac-
tions [179]. For example, the robot may communicate with humans through visual, speech,
and tactile communication. Based on this information, the robot can provide related and appro-
priate reactions or responses to assist or engage better with the user. This adaptive assistance
approach which can be applied in sectors such as education, hotel service, therapeutic treatment,
and entertainment [90–94]. Emotion intelligence (EI) is regarded as an essential ability in hu-
man interpersonal communications and even more critical than IQ [180], which is the ability to
observe, interpret, generate, and express emotions. Endowing social robots with emotional in-
telligence will, thus, facilitate more natural and human-like communication. Existing ER work
for HRI has primarily explored this context of this human-robot social interaction, which this
section will now discuss.

NAO is a bipedal robot prominently used in this field. It can acquire touch signals, visual
signals and audio signals to facilitate ER and EI. In [50], authors used human touch parameters,
including intensity, duration, location and type of touch, on the NAO robot to recognize human
emotions, highlighting the need for consideration of tactile sensor placement on the humanoid
robots. Zhu et al. [181] developed a scheme for NAO robots to recognize emotions by ana-
lyzing human body visual information, which allowed the robot to perform natural interactive
behaviors. Elfaramawy et al. [51] collected human full-body motion patterns from the depth
camera attached to the head of NAO and used body skeletons to classify emotions, while Faria
et al. [177] proposed a framework on NAO to recognise emotions using public dataset of facial
expressions, although did not use emotional data produced in interactive social situations to train
the model. In [52], authors integrated facial emotion recognition (FER) into NAO and the model
was trained using the public FER dataset and tested using collected data using NAO. However,
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the interaction was conducted in a controlled environment to ensure that the testing and train-
ing data were consistent. There are other challenges in facial expression recognition for HRI.
Variations in lighting conditions, poses, and occlusions can affect recognition accuracy, as can
variable distance between the human’s face and the cameras attached to the robot, making the
interaction limited to a certain range. In [44], they developed an algorithm that allows a robot to
recognize human emotions throughout their non-stylized daily motions acquired by an attached
Kinect sensor, to enable the robot to act in a more human-oriented way, although the datasets
were not produced in real interaction scenarios. Existing work has explored using multimodal
setups to capture user emotions during interactions with robots. In [55], authors augmented a so-
cially assistive robot (SAR) using multiple signal input modalities, including facial expressions
and speech, to recognize emotions of older adults during interaction. The experiments con-
ducted on older adults living in care facility showed that empathetic SAR had positive effects on
interaction and was more engaging and likable, however, this study included a small dataset and
the dialogue was not open-ended. In addition to using sensors mounted on robots, sensors that
detect the physiological signals can also be equipped for users to detect their emotions. In [53],
they implemented ER in an assistive robot that supported children with hearing impairment,
which could classify negative and positive emotions and showed that children had more positive
emotions when interacting with the emotional robot. Participants wore a wristband to measure
physiological signals, including skin conductivity and temperature, electrodermal activity, and
BVP, and a video camera to collect facial expressions. In [178], authors implemented ER along-
side a social robot for rehabilitation. The robot utilised used multiple signals, including facial
expressions to detect user engagement, EEG signals to detect positive or negative emotions, and
heart rate signals to monitor the physical activity during exercise and avoid excessive fatigue.
The results showed that most participants has positive emotions during interacting.

2.2.6 Discussion on Future ER in HRI Applications

As robotics continues to evolve, gaining more capabilities and functionalities, their interaction
with humans becomes more frequent and intimate. The future of Human-Robot Interaction
(HRI) is unequivocally human-centred, which emphasizes the importance of considering hu-
man feelings, needs, behaviors and capabilities. The vision is for the robots to work alongside
humans as partners, supporting human activities without taking over completely or making hu-
mans feel redundant. Furthermore, robots are likely to be perceived as more reliable and friendly,
thereby enhancing people’s willingness to incorporate them into their daily lives and workplaces.

To realize this vision, equipping robots with the capability to recognize and understand hu-
man emotions plays a critical role. Emotion recognition significantly enriches human-centred
HRI in various ways, as previously discussed in Section 2.2.2, including allowing for more
nuanced and context-aware communications, providing more personalized and satisfying inter-
actions, increasing trust and acceptance and contributing to safer interactions in collaborative
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environments. In the subsequent two subsections, we explore potential applications of emo-
tion recognition (ER) in two underexplored areas of Human-Robot Interaction (HRI) including
remote control and supervisory control of robots.

Future Trends of Emotion Recognition in Remote Robotic Control Scenarios

Human remote control of a robot involves a human operator controlling the robot’s actions
through a remote control interface. In this context, the operator sends commands to the robot
through the interface, and the robot responds by performing the desired action [182], thus the
remote robot can inherit human behaviors and is a physical avatar of the human. The human
operator may be in a different physical location from the robot and may use various input de-
vices, such as controllers (haptic device [183, 184]) and cameras (leap motion [185] and opti-
track [186]) to send commands. Human remote control of a robot is essential in various ap-
plications, including space exploration [187], search and rescue operations [188], and military
operations [189]. This type of control is often used when the robot is operating in a remote
or hazardous environment, where direct human interaction is not possible or safe, to perform
the mission-critical tasks [19, 182, 190]. The implementation of ER could further improve these
systems, such as facilitating the prevention of danger or harm. For example, the emotions of a
doctor may cause an imprecise operation while controlling a telerobot, causing severe harm to
the patient. If the system can recognise problematic emotional states or behaviours and warn
the operator or intervene, it could reduce adverse impacts on the remote environment. ER could
also be used to recognise emotive features in controlled-robot movements, which could be dy-
namically normalised in real time to help the operator maintain smooth and safe control of using
shared control [191]. No ER work in remote control exists, despite these potential upsides.

Future Trends of Emotion Recognition for Human Supervisory Control of Robots

The fourth category of HRI application is the human supervisory control of a robot to conduct
industrial tasks, such as pick-and-place, assembling and delivery. During this process, humans
and robots need to cooperate to complete the tasks in the shared workspace. Human workers
monitor and direct the autonomous or semi-autonomous actions of one or more robots, rather
than taking direct control. The human operator has a higher-level understanding of the robot’s
task and provides high-level commands and goals to the robot. The robots adapt to workers’
behaviors and changing circumstances to be in conjunction with workers, which are regarded
as collaborative robots or cobots [179]. The fifth Industrial Revolution (Industry 5.0) aims to
be human-centered, and the collaboration between human and cobots is one of the keywords in
Industry 5.0 (proposed by the European Commission) [192]. Compared with the remote control
of robots, a human supervisor is not directly involved in robot interaction, instead they monitor
the robot and thus their emotions do not directly influence the robot’s operation. However,
their emotions can still reflect their interest and satisfaction with the work, which could be used
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to configure a balanced work proportion between humans and robots, or identify persistent or
concerning issues with current operational procedures.

During cooperation, emotion is an essential but often overlooked factor. In [193], authors
introduced the challenges of cobots, including social acceptance, security, and cognition. One
aspect of social acceptance is the human response to robots’ characteristics or actions, which
ER can be used to analyze. Furthermore, safety and security issues can be addressed by check-
ing the nervous, anxious, and annoyed emotions to avoid a negative impact on the operation.
Lu et al. [49] indicated that there are five levels of industrial human needs. The first level is
safety: robots must predict and adapt workers’ behaviors. The second level is health: robots
should anticipate workers’ physical fatigue and mental health to minimize the impact on the
workers’ health. The third level is belonging: robots should respond to the workers’ social
attributes and to human emotional needs, building trustworthy human-robot relationships and
enabling them to cooperate with common goals via mutual communication and understanding.
The fourth level is self-actualization: in which humans achieve self-fulfillment as the system
offers personalized co-learning, enabling bi-directional learning between human and machine
agents. Based on these, in Industry 5.0, human emotion recognition is a crucial component.
For example, emotions are used to evaluate human physical fatigue, allowing the robot to make
relative judgements, such as taking on more work. Emotions can also be regarded as mental
health cues or can be used to evaluate human satisfaction with robots, facilitating present or
future improvement of the user’s experience with the robot. In addition, understanding human
workers’ emotions allows industrial robots to exhibit emotional intelligence and adapt to their
coworkers’ emotional needs, taking this field to new empathetic heights. We now discuss how
existing methods of ER could be applied to this area in future work and the existing challenges.

ER Challenges in HRI Scenarios

Choosing how to conduct ER in these scenarios could be a challenge. Physiological signals can
reveal a human’s instinctive affective states [194], but there are some limitations when using one
of these modalities recognize emotions in remote control applications. Some peripheral physio-
logical data need humans to stay stable, such as ECG, EEG [60] and HRV [195], while others,
such as SKC and GSR, can suffer from latency issues [60]. In remote control, the human opera-
tor moves while controlling, so extracting implicit physiological signals also provide a challenge
as motions can cause artifacts in the electrical signals [159,196]. Alternatively, FER can be used,
but most existing methods have used public data and were not implemented in real interaction
scenarios, where some problems could occur, such as uncontrolled environments, obstacles,
lightning and the user’s moving face. Cameras can also be used to observe bodily expressions,
but they face similar problems to FER caused by the camera-captured data. Methods using a
single part of the body, such as hands, arms and heads, need further exploration, as operators
do not move their whole body during control in many use cases. Other options, such as voice,
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text, and handwriting signals, do not necessarily appear in remote-control scenarios. Based on
these, the combination of different signals may be a solution to improve the performance in
remote control scenarios. Apart from building multimodal systems, emotion recognition meth-
ods primarily focus on algorithmic research and experimental environments, so enhancing the
generalization of algorithms is essential. For example, using data augmentation to increase the
diversity of the data and using regularization to reduce overfitting. Additionally, applying mo-
tion artifacts removal methods [197] in physiological signals could allow them to be used in
HRI scenarios. Furthermore, improved human detection methods of visual information could
promote facial and bodily signals applied to classify emotions in real HRI scenarios.

2.2.7 Conclusions

Emotion recognition is an irreplaceable ability in interpersonal communication. We can predict
other people’s motivations by understanding emotions. Up to now, robots mainly perform indus-
trial tasks without much consideration for the emotions of the humans they share interaction or
space with. However, the final aim of robots is to serve human beings as effectively as possible.
Based on this, it is increasingly important to endow robots with emotional intelligence. In this
work, we comprehensively review the existing literature on ER in HRI, existing HRI application
types and state-of-art ER work in HRI. The most effective ER methods for social robots are
facial, voice and bodily expressions, which are interpersonal information. For AVs, it is more
effective to use multimodal physiological data, as well as driving telemetry. In remote control
scenarios, it is more effective to use human operation data, such as arm movements. In supervi-
sory control of robot applications, facial and physiological data are promising, although further
exploration is needed. This work provides an overview of the whole field of ER and its inter-
section with HRI, as well as key takeaways for which ER sensing methods may be appropriate
for different applications and which current and future applications are promising. We also give
our view on the most pressing under-explored areas of ER in HRI, including remote control and
supervisory control. We further provide practical ER methods for these two HRI applications
to encourage future research. In conclusion, we aim to promote a future-facing approach to
promote the next generation of emotionally intelligent robotics.

2.3 Literature Review Conclusions

Teleoperated robotic system is vulnerable to cyber and physical attacks. Encryption can protect
the cyber attack during communication, but it adds latency and decrease the control efficiency
of the teleoperated robot system. Robot misbehavior detection method can protect the robot
device, but it is applied in the autonomous robot system and can not protect the spoofing. User
authentication method can protect the access point of the system, but it can not guarantee the
security of the signals being tampered during long-distance transmission.
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Emotion factors can also influence the robotic system’s security. The existing emotion sig-
nals are physiological signals, facial signals, semantic signals and body signals. We studied
the emotion recognition method in four crucial application areas of HRI [19] including hu-
man supervisory control of robots, human remote control of robot, automated vehicles and
human–robot social interaction with robot. We demonstrated the overall state-of-the-art tech-
niques in most HRI related fields, including eye tracking and the use of new AI techniques in
the applications of ER. Additionally, we for the first time discussed the potential challenges and
opportunities of emotion recognition in the area of HRI in the future.
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Chapter 3

User Classification from
Motion-Controlled Robotic Behaviors

3.1 Introduction

Common methods of robotic security include abnormal signal detection, password-based login
and user classification using behavioral biometrics. Password-based login allows users to en-
ter pre-set passwords to the master controller platform. Behavioral biometrics identify focuses
on the unique patterns in human behaviors that are unique and difficult to replicate or forge,
which could provide a continuous user classification. However, these two methods have a key
limitation: they can not guarantee the data does not tamper when transmitting from user mas-
ter controllers to the remote slave robot, which causes the remote robot misbehavior that may
damage the local environments and loss human operators’ trust. Based on this, using the robotic
beahviors to do the user classification can guarantee the data is not tampered with until the robot
is executed, which was discussed in this Chapter.

The first experiment built a motion-controlled Franka robotic arm. The robot followed hu-
man operators’ trajectories in real-time. We verified that the robotic arm can inherit human
biometric identities through the trajectories and user classification accuracy reached 95%. This
experiment provided a foundation for the next three experiments, which continuously investi-
gated the user classification using robotic behaviors. Experiment 2 implemented user classi-
fication on motion-controlled social robot trajectory. Although the identity information in the
behaviors of one arm was slightly lost, the identity information from two hands of the NAO
robot increased and the user classification result of two arms’ end-effectory trajectories reached
to comparable results with one Franka arm. Besides, users can be classified through social
tasks, which provides the foundation of the real application. Experiment 3 investigated three
controlling parameters’ influences on robotic behaviors. When we adjusted these parameters to
decrease the system performance, the user classification was decreased. We found that lower
system performance leads to a lower user classification performance. However, allowing remote
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areas to know the user’s identity leaks user privacy to the remote areas. In experiment 4, we
implemented Reinforcement Learning (RL) on the captured operators’ trajectory data to keep
the operators’ privacy.

3.2 Background

3.2.1 Robotics Control

Robotic Kinematics

A robotic manipulator consists of a series of rigid links connected in a serial configuration,
where each link is joined to the next by a joint [198]. The common joint types are revolute,
prismatic, and continuous joints. Besides, a robot’s degree of freedom (DOF) is the total number
of freedoms minus the number of constraints. Motors are employed to control the movement
of these joints by transforming electrical energy into mechanical motion. The movement of the
joint drives the movement of the links, eventually driving the movement of the effector at the end
of the robotic manipulator, known as the robotic end-effector. The end-effector is the component
designed to interact with the environment, such as grasping objects, walking, shaking heads or
performing other tasks. In robot kinematics, forward kinematics is to apply the robot’s kinematic
equations to determine the end-effector’s position based on given joint parameter values [199].
On the other hand, inverse kinematics focuses on determining the values of the robot’s joints
based on the position and orientation of the end-effector.

Robot Control Methods

The robotic controller receives the sensor signals and then controls the actuators to achieve the
target behaviors of the robot. Robotic control mainly has four categorizations including motion
control, force control, hybrid motion-force control, and impedance control. Motion control with
velocity inputs is a common method, known as velocity control, to allow robots to achieve the
required velocity. The proportional integral derivative (PID) control algorithm that is stable and
robust control of systems is widely used to achieve velocity control. The PID controller includes
three components proportional where output is proportional to the error, integral where output
is adjusted in regard to the sum of errors, and derivative where output is adjusted by the change
rate of the error. They are combined together to maintain the desired output, shown as 3.1. In
3.1, e(t) is the error at time t and u(t) is the control output at time t. The terms Kp, Ki and Kd

correspond to the proportional, integral, and derivative gains respectively.

u(t) = kpe(t)+ ki

∫ t

0
e(t)dt + kd

de(t)
dt

(3.1)
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3.2.2 AI for Robtics

Artificial Intelligence (AI) has profoundly revolutionized numerous fields, such as healthcare, fi-
nancial services, manufacturing, education and robotics. The integration of AI into robotics has
resulted in enhanced capabilities in robots, enabling them to perform complex industrial tasks,
adapt to their environments, and work alongside humans. With the robotic endowing more and
more capabilities, they have more work in different scenarios. They have more opportunities to
interact with people and work more frequently and closely with human. There are several com-
monly used AI techniques applied in Human-Robot Interaction (HRI), including Convolutional
Neural Networks (CNNs), Dynamic Time Warping (DTW), K-Nearest Neighbors (KNN) and
Support Vector Machine (SVM). CNNs have been widely applied in various HRI scenarios. For
instance, in face-to-face interactions between a social robot and a human, a robot equipped with
a CNN can interpret the information conveyed by the human through semantic analysis. DTW is
used for the analysis of human movement time-series data to classify emotions. SVM is applied
for the analysis of ECG data to detect human heart health, mental health and emotion.

CNN

Classification tasks are fundamental challenges that neural networks are designed to address.
The structure of neural networks are simulations and simplifications inspired by biological neu-
rons found in human and animals. Multi-layer Perceptron (MLP), regarded as the conventional
fully connected (FC) networks, is the fundamental form of neural network and contains three
layers including input layers, hidden layers and output layers, shown as 3.1. The forward prop-
agation of data between neurons is by using values weights and bias. For example, the input
X1 forward propagates to H1 neuron by calculating weight (W1) multiply input (X1) plus bias
(b1) seen in 3.2. After calculating and adding together all the input to this neuron, the value in
this neuron passes through an activation function f such as ReLU, Sigmoid and Tanh to get the
output with the non-linear feature. After forward propagation and getting a prediction value, the
network’s prediction value is compared to the actual target value to calculate the cost function,
or loss function, such as square error and cross entropy. Finally, the optimization function is
used to minimize this error by adjusting the weights and biases. The network undergoes mul-
tiple iterations of forward and backpropagation on the training data, adjusting its weights and
biases to minimize error. After sufficient training, the network’s predictions should match the
actual values, indicating that it has learned the underlying patterns in the data.

H1 =W1∗X1+b1. (3.2)

However, when the input data is large, FC networks produce abundant parameters. Com-
pared with conventional FC networks, CNN utilize shared weights and local connections to
effectively leverage the two-dimensional structure of input data, such as images [200]. Based
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Figure 3.1: Multi-layer Perceptron (MLP) Structure

on this, this operation not only simplifies the training process but also accelerates the network’s
performance, by employing a significantly reduced number of parameters [200]. CNNs are par-
ticularly powerful for tasks related to image recognition, classification, and analysis. CNNs
generally contain 5 types of network structure including an input layer, convolutional layer, ac-
tivation layer, pooling layer, fully connected layer and output layer. In the input layer, the raw
data is pre-processed by using methods, such as normalization, regulazation, PCA and whiten-
ing. Then, in the convolutional layer which is the core block of CNNs structure, features are
extracted by the kernels, or filters, multiplying with the input matrix. Suppose we have one
N×N matrix as input defined as I and one m×m matrix as kernel defined as K. After the convo-
lutional layer, the convolutional layer output will be the size of (N−m+1)× (N−m+1). The
convolutional calculating equation is defined as 3.3, where I(i, j) is the value of I at position (i,j)
and K(m, n) is the weight value of the kernel at the position (m, n).

(I ∗K)(i, j) = ∑
n

∑
m

I(i+m, j+n) ·K(m,n) (3.3)

The activation layer is applied to introduce non-linear properties to the system. The pooling
layer, also called the down-sampling or subsampling layer, is often used after the convolutional
layer and is used to reduce the feature dimension of the convolutional layer output, which can
effectively reduce network parameters and prevent overfitting. Common pooling methods in-
clude general pooling, overlapping pooling and spatial pyramid pooling. The fully connected
Layer is responsible for summarizing the features extracted from the convolutional and pooling
layers and mapping the multi-dimensional feature input into a two-dimensional feature output.
The architecture of one CNN is shown as 3.2. CNN has applied many fields, such as image
processing [201], natural language processing [202] and speech processing [203].
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Figure 3.2: CNN Structure

Then, the training set of input x and output y are fed into the network model. After, training
the model and learning the parameters. However, the model may overfit the training data, so
in order to limit the overfitting, validation data is used for evaluating the model and adjusting
the hyperparameters, such as learning rate, epoch number, batch size and dropout. The com-
mon methods of validation include hold-out validation and cross validation. Hold-out validation
provides a static partition, splitting the dataset into training, testing and validation datasets ran-
domly. However, when the dataset is small, a random partition makes different results for dif-
ferent test sets. To deal with this, cross-validation is implemented, which repeatedly partitions
the dataset into train and test sets. The common methods are K-fold and Leave-one-out. K-fold
cross-validation is to split data into K groups one of which is used for training and the rest is
used for testing. Leave-one-out cross-validation (LOOCV) is when K equals to one. In LOOCV,
a single data sample is selected as the test set, while the remaining samples are used to train the
model each time.

Finally, the performance metrics are used on the results to evaluate the model. For the clas-
sification model, the common metrics are confusion matrix, accuracy, precision, recall and F1
Score. The confusion matrix is composed of the true positive (TP) which is the number of pos-
itive samples that are classified correctly, false positive (FP) which is the number of negative
samples that are classified incorrectly, true negative (TN) which is the number of negative sam-
ples that are classified correctly, and false negative (FN) which is the number of positive samples
that are classified incorrectly. Classification accuracy is calculated by dividing the number of
correct predictions by the total number of predictions and then multiplying the result by 100 to
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express it as a percentage.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.4)

Precision is calculated as the ratio of true positive samples to the total number of predicted
positive samples.

Precision =
T P

T P+FP
(3.5)

Recall is fundamentally the proportion of true positive sample relative to the total number of
actual positive samples in the ground truth data.

Recall =
T P

T P+FN
(3.6)

The F1-score metric uses a combination of precision and recall. In fact, the F1 score is the
harmonic mean of the two. The formula of the two essentially is:

F1 = 2× precision× recall
precision+ recall

(3.7)

DTW

It is changeable to compare the similarities of different temporal sequences, given the fact that
in practical scenarios two different time series exhibit approximate similarities along the time
axis, but their exact correspondences remain unclear. For instance, when two individuals utter
the same word, variations in their voice timbre and frequency mean that correspondence of
the two voice data between specific moments may not align while the pronunciations sound
similar. Thus, the DTW algorithm stands out and shows high performance in understanding the
alignment and similarity between time-sequenced data. DTW has the capability to stretch and
compress segments of the data to find an optimal match between two time series sequences.

DTW is essentially a dynamic programming algorithm. For example, we have two time
series sequences. One is denoted as fq = fq(1), fq(2), fq(3), ... fq(i)..., fq(N), where N is the
time length. The other one is denoted as fw = fw(1), fw(2), fw(3), ... fw( j)..., fw(M), where M

is the time length. When N and M are equal. We can directly calculate the distance of them
using Euclidean distance. Otherwise, we need to find the shortest distance between them by
building a N ×M matrix. The The distance between point fq(i) and fw( j) is calculated as
d( fq(i), fw( j)) = ( fq(i)− fw( j))2. The DTW algorithm seeks to find the shortest path from the
origin to ( fq(n), fw(m)). We define the path as 3.8 and DTW is calculated as 3.9.

W = w1,w2,w3, ...,wk max(m,n)≤ K < m+n−1 (3.8)
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DTW ( fq. fw) = min


√√√√k=1

∑
k

wk/k

 (3.9)

KNN

The KNN algorithm is a widely utilized machine learning technique for tackling classification
tasks. Its fundamental principle involves determining the similarity between training data and
test data based on distance metrics. The KNN classifier performance relies on a distance metric.
The higher the ability of that metric to find the similarity between data, the higher performance
the classifier will have. The most commonly used distance measure is Euclidean distance 3.2.2.
In practice, KNN identifies the k closest training examples to a given test point and then classifies
this point based on the majority class among these neighbors.

d(x,y) =

√
m

∑
i=1

(xi− yi)2 (3.10)

3.3 Experimental 1: User Classification of Motion-Controlled
Franka Robotic Arm

The first experiment was to classify different human operators through the motion-controlled
robotic arm’s behaviors. It was driven by three primary objectives. We built a motion-controlled
robot platform utilizing a Franka robotic arm. Two gestural motions with significant real-world
applicability were designed, reflecting natural methods of human communication and control in
HRI contexts. The introduced tasks were the “in-air” task and the “line-tracing” task, each rooted
in practical HRI scenarios. The in-air task finds its application in contexts such as remote robot
education [204] and telehealth rehabilitation on robotic platforms [205], while the line-tracing
task is crucial in mission-critical environments like remote robotic dentistry [206] and robot-
assisted spine surgery [207]. Subsequently, we applied two algorithms to distinguish among 10
different users across these tasks, achieving a classification accuracy of 95.0%.

Therefore, the first aim was to validate that the motion-controlled robotic arm could inherit
human behaviors and that users could be uniquely identified through robotic data. Secondly,
to demonstrate the application of this methodology to tasks with genuine real-world relevance,
laying the groundwork for its method in remote control robot scenarios. To provide a prelimi-
nary testing ground for task design, experimental setup, data collection methods, and algorithm
implementation, all of which are poised for future research endeavors.
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3.3.1 System Overview

The aim of this system is to verify that the motion-controlled robotic arm can inherit human
operators’ behaviors and that three different implemented algorithms can identify users through
robotic joint data. The system overview is illustrated in Figure 3.3, which mainly includes
two parts. One is the user end where users’ motions are captured and control commands are
generated. The other is the robotic arm end for executing control signals and generating motions
where the learning-based user authentication happens. The green box shows the human operator.
An operator wore hand gloves and attached three markers to control the robot to perform motion
tasks in the air. Then the cameras captured the trajectory of the markers. Then, the acquired
position and orientation of human hand trajectory are converted to 7 joint angles of the robot
with inverse kinematics. Next, we provided velocity control commands to robot joints to move
the end-effector to the desired position and orientation. Meanwhile, operators monitored the
movements of the robotic avatar and modifies their own actions to facilitate interactive control
through hand-eye coordination. Two user classification algorithms were deployed on the robotic
arm’s joint to classify different users.

3.3.2 Motion-Controlled Franka Robotic Arm Platform

We built a motion-controlled Franka Emika Panda Robot [208] arm platform, where a human
interactively controled a robot arm, as shown in Figure 3.4. Franka is a state-of-the-art robotic
arm, which has seven joints (7 DoF) and provides high-precision performance. The motion
capture system is OptiTrack [209], which is designed to deliver sub-millimeter accuracy in
tracking motion and provides real-time feedback. These six cameras were arranged in a circle
to capture the operator’s hand motion trajectory via a glove attached with four markers. There
were two personal computers (PCs).

The first PC calculated the position and orientation of human hand trajectory in a Cartesian
coordinate system and sampled the data at 120 Hz. Then, these data were sent to a second PC
using a local network. The second PC provided velocity control using PID path-planning 3.2.1,
in which joint angle values were then converted into robot adaption commands. Finally, the
robotic end-effector moved to the desired position and orientation. When the robot received
commands and performed motions, users observed the robot’s behaviors and adjusted their own
behaviors to interact with the robot forming a control loop.

3.3.3 User Classification Algorithm Design

In this section, we introduced the method of robotic arm end-effector reconstruction and gave
descriptions of the methods for user identification.
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Figure 3.3: The overview of user identification through motion-controlled Franka robotic arm
system.
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Figure 3.4: The platform of user identification from motion-controlled Franka robotic arm.

Franka Robotic Arm Forward Kinematics

Forward kinematics is a fundamental concept in robotics that involves determining the posi-
tion and orientation of the robot’s end-effector given the values of its joint variables. Denavit-
Hartenberg method is the most common method for robot forward kinematics [198], allowing
engineers and roboticists to predict the final location of the end-effector based on the parameters
of each joint. There are four parameters of the Denavit-Hartenberg method including ai, di, αi

and θi, which are the name of link twist, link offset, link length and joint angle, respectively.
There is the coordinate frame for each link aligned by DH parameters. i−1Ti is the transformation
matrix which describes the position and orientation of frame i in frame i-1.

i−1Ti =


cosθi −sinθi 0 ai−1

cosai−1 sinθi cosai−1 cosθi −sinai−1 −sinai−1di

sinai−1 sinθi cosθi sinai−1 cosai−1 cosai−1di

0 0 0 1

 (3.11)

The kinematic chains are assembled by links and joints to produce a desired motion. 3.12
calculates a kinematic chain of 7 DOFs manipulator by multiplying all the transformation matrix
starting from 0T1 to 6T7. 0T7 describes the position and orientation of the end-effector frame in
the base frame.

0T7 =
0 T1 ∗1 T2 ∗2 T3 ∗3 T4 ∗4 T5 ∗5 T6 ∗6 T7 (3.12)

43



CHAPTER 3: USER CLASSIFICATION FROM MOTION-CONTROLLED ROBOTIC
BEHAVIORS

The transformation matrix is composed by a rotation matrix and a translation matrix shown as
3.13. R̂ defines the rotation matrix and the [dxdydz] defines the translation.

T =


R̂

 dx

dy

dz


[

0 0 0
]

1

 (3.13)

Based on this, we calculated the 3D coordinate position of the end-effector by multiplying
0T7 and [0 0 0 1]. After this, we reconstructed the robotic end-effector data by using the 7 joint
values.

Data Segmentation and Normalization

After determining the values for the end-effector, we segmented the data into distinct instances
based on timestamps to identify the start and end points of each instance. In our study, an
instance referred to a single task trajectory for a specific operation, or we considered it a single
instance each time a user instructed the robot to perform a particular task trajectory, thus an
instance was a 3D trajectory. Subsequently, we normalized each instance as outlined in 3.14,
scaling them within the range [0, 1] to make each instance comparable.

Xnorm =
X−Xmin

Xmax−Xmin
(3.14)

CNN Algorithm Design

The end-effector data is 3D trajectory data, as shown in Figure 3.7, which contains both time
and spatial information. We utilized two steps to encode the spatiotemporal information of 3D
images into 2D images. Wang et al. [210] proposed an approach for encoding the spatiotemporal
information contained in 3D skeleton sequences into multiple 2D images. Based on this, we
first converted the 3D image into three 2D grayscale images, during which the 3D end-effector
trajectory is projected to three viewings including the front plane, top plane and side plane of the
3D image, and the spatial information of the end-effector trajectory was preserved. Secondly, we
encoded the time information into the 2D image and the temporal information is shown by the
color gradient approach, using the color brightness change to present how fast the end-effector is
moving. An end-effector trajectory-based representation of robot motion is shown in Figure 3.5.
The three greyscale images are regarded as three channels of RGB images and then fed into a
CNN-based model for user classification. The CNN contains three convolutional layers and is
followed by a fully connected layer and a dropout layer to avoid overfitting.
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(a) Front. (b) Side. (c) Top.

Figure 3.5: The three-view of end-effector trajectory.

KNN+DTW

Feature Extraction:

We first extracted 11 features related to human behavioural biometrics from robotic end-effector
trajectory. These kinematic features are commonly used biometric features extracted from hu-
man motion for user identification analysis. These biometric features are used on different
human behaviors including gait [211], hand movement [138], gestures [212] and mouse dynam-
ics [213]. In specific, 3D position over time provides a detailed understanding of movements.
Velocity, which refers to the speed and direction of movement, can help differentiate between
similar actions performed at different speeds. Acceleration which is the speed of a movement
that changes over time is another biometric feature. Different individuals may accelerate or
decelerate their movements in unique ways, even if the overall pattern looks similar.

These 11 features are time series and donated as vectors p(t), ˙p(t), ||p(t + 1)− p(t)||, ¨p(t),

|| ¨p(t)||, where the t means the time sampling index, t=1,...,N. We illustrate the mathematical
formulas of biometric features analyzed in our study and how they are constructed below.
Feature Construction:

• Vector of x-axis of trajectory: X(t)

• Vector of y-axis of trajectory: Y(t)

• Vector of z-axis of trajectory: Z(t)

• Vector of x-axis of velocity: ˙X(t)

• Vector of y-axis of velocity: ˙Y(t)

• Vector of z-axis of velocity: ˙Z(t)

• Vector of x-axis of acceleration: ¨X(t)

• Vector of y-axis of acceleration: ¨Y(t)

• Vector of z-axis of acceleration: ¨Z(t)

• Vector of Euclidean norm of position frames difference: ||P(t+1)-P(t)||
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• Vector of Euclidean norm of acceleration difference: || ¨P(t +1)− ¨P(t) ||

As the feature vectors shown above, 3D trajectory is constructed by vector of P(t)=[X(t), Y(t),
Z(t)]. 3D velocity is constructed by vector of ˙P(t)=[ ˙X(t), ˙Y(t), ˙Z(t)]. 3D acceleration is con-
structed by a vector of ¨P(t)=[ ¨X(t), ¨Y(t), ¨Z(t)]. The position difference between time frames
is to calculate the straight-line distance between two points in 3D space using Euclidean dis-
tance. The acceleration magnitude is to calculate the Euclidean distance of three-axis values
of acceleration. Finally, we construct all these 11 vectors into a matrix as one instance, I(t) =
[p(t), ˙p(t), ||p(t +1)− p(t)||, ¨p(t), || ¨p(t)||].
Feature Normalization:

After extracting these 11 features, we applied feature scaling, also called feature normalization,
to standardize features. This technique involves rescaling each single feature to the range of
0 to 1. This adjustment is particularly important for machine learning algorithms whose fea-
tures vary significantly in scale due to the diverse properties they represent. Thus, standardizing
makes each feature contribute equally to the classification analysis.
KNN+DTW algorithm:

KNN, as detailed in Section 3.2.2, identifies similarities between data points by computing their
distance. However, for time series data, DTW provides a more efficient way to calculate dis-
tances than the traditional Euclidean distance. As discussed in Section 3.2.2, DTW is partic-
ularly suitable for analyzing temporal signals where the sequences are not aligned. Thus, the
combination of KNN and DTW allows KNN to more accurately classify time series data, as
demonstrated in the work by Marcacini et al. [214]. We used the DTW to find the similarities
between testing and training data. In specific, we split 60% of the dataset into training sets,
while the remaining 40% was the testing sets. For each test instance, we compared the distance
between it and the training instance and found the nearest 5 training instances as its predicted
class. Figure 3.6 illustrates the details of the KNN+DTW algorithm, where the green box is the
testing instance, while the green and blue circles are training instances with different labelled
user classes.

3.3.4 Experiments

In this section, we described the experiments of user classification from the motion-controlled
Franka robotic arm platform, including experiment setup, task design and data collection.

We recruited ten different volunteers to participate in this experiment. Half of them are
females and remain are males, all of whom are students from college and the ages range from 19
to 22 (mean=20.2, σ =1.2). All these ten volunteers signed the consent forms and were given 5
minutes to be familiar with the robotic controlling before data collection. Then, they were given
5 minutes to control the robot, by performing some random tasks in the air while observing the
robotic behaviours and adjusting their controlling behaviors based on the robotic feedback.
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Figure 3.6: The DTW and KNN combination Algorithm

We developed two types of tasks for this study: in-air and line-tracing tasks. The in-air task
involved participants writing the initials "LW" [215] in the air, employing their writing style.
For the line-tracing task, participants were instructed to trace a predefined version of "LW," as
illustrated in Figure 3.4. The initials "LW" stand for "Lucky Win." Each participant executed
the robotic arm to perform 30 times for each task. As we mentioned in Section 3.3.3, each time
repetition represents one instance. Consequently, the total number of instances generated was
6000 (10users× 30 samples× 2 tasks).

3.3.5 Results Analysis

We verified that the robotic can inherit human behaviors and evaluated our user classification
method based on the motion-controlled Franka Emika Panda Robot platform. Besides, we com-
pared the results on robot and human data respectively.

The Similarity between Optitrack Captured Human Arm and Franka Robotic Arm End-
Effector Trajectory

We plotted the 3D motion of the human arm and robotic arm in Figure 3.7. The read trajectory
is the human hand trajectory captured by the Optitrack, while the blue one is the robotic arm’s
trajectory motion controlled by a human in real time. This figure shows that the robot can
show a similar trajectory as the human. The difference between them is caused by the precision
difference between the robot and the motion capture system. The Optitrack, as a high-precision
motion camera, is able to demonstrate a more accurate human movement, while there could loss
of some information on the robot.
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Figure 3.7: Human arm trajectory (red) VS robotic arm trajectory (blue).

Table 3.1: The user classification accuracy under the combination of task types and data types.

Franka robotic arm end-effector data Optitrack captured human hand data
Line-tracing task 0.8 0.9

In-air task 0.95 0.98

KNN+DTW User Classification Results

Table 3.1 shows that the highest user classification accuracy of using robotic arm data reaches
95.0%. The accuracy of using robotic line-tracing task data is lower, that is 80% compared with
that of using in-air data. This is reasonable because the predefined reference trajectory reduces
the 3D position variance among users. Consequently, this underscores the efficacy of higher-
level features, such as velocity and acceleration, in differentiating between users. In addition,
the human data shows a similar conclusion on the in-air and line-tracing tasks.

Besides, we compared our user classification results on the robotic data and human data,
respectively. In Table 3.1, we can observe that for both tasks, the classification accuracy is higher
with human trajectory data than with data from the robotic arm. This supports the insights drawn
in Section 3.3.5, indicating that while the motion-controlled robotic arm can capture much of the
human behavioral information, there is a loss of certain features that leads to lower classification
performance for the robotic arm trajectories.

Furthermore, we presented each type combination’s confusion matrix in Figure 3.8. For the
in-air task of both the robot and line-tracing task, users 0, 1, 4, 7, 8, and 9 are classified with
100% accuracy, while there is a confusion between user 3 and 8, shown as Figure 3.8a and
Figure 3.8b. There is a lower performance of the line-tracing task for 10 users on both robot
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(b) Optitrack captured human hand data for in-air
task
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Figure 3.8: The confusion matrix of user classification for in-air and line-tracing tasks using
Optitack captured data and robotic end-effector data, respectively.

and human data, shown in Figure 3.8d and Figure 3.8c. We can see that for each user there is a
performance decrease on the line-tracing task.

CNN User Classification Results

The performance metrics of the CNN model for user classification based on robotic arm end-
effector data are presented in Tables 3.2 and 3.3. Specifically, the accuracy for the in-air task
is reported at 80%, which surpasses the 78% accuracy observed for the line-tracing task. Addi-
tionally, detailed metrics, including precision (referenced in Equation 3.5), recall (Equation 3.6),
and the F1-score (Equation 3.7) are provided within these tables. The overall performance of the
CNN approach decreases compared with the performance achieved by the KNN+DTW method.
This discrepancy can be attributed to the inherent strengths of each approach regarding dataset
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Table 3.2: The classification report of user classification for in-air task using robotic data.

precision recall f1-score
U0 0.67 0.50 0.57
U1 0.75 1.0 0.86
U2 0.8 0.8 0.8
U3 0.5 1 0.67
U4 1 0.8 0.89
U5 1.0 1.0 1.0
U6 0.8 1.0 0.89
U7 1 0.5 0.67
U8 1 0.6 0.75
U9 0.67 1.0 0.8

accuracy 0.8
macro avg 0.82 0.82 0.79

weighted avg 0.84 0.8 0.8

Table 3.3: The classification report of user classification for line-tracing task using robotic data.

precision recall f1-score
U0 0.67 0.50 0.57
U1 0.75 1 1
U2 0.62 1 0.77
U3 1 1 1
U4 1 1 1
U5 0.6 0.75 0.67
U6 0.8 1 0.89
U7 1 0.75 0.86
U8 1 0.2 0.33
U9 0.75 0.75 0.75

accuracy 0.78
macro avg 0.82 0.80 0.77

weighted avg 0.82 0.78 0.75

size, which is that KNN+DTW is good at smaller datasets, while CNNs is good at handling
larger datasets.

3.3.6 Discussion

The first experiment assessed the motion-controlled robotic behaviors inherited from human
operators’ behaviors. In this experiment, we developed a motion-controlled robotic arm using
a 7DoF Franka robot, serving as a foundational platform for our study. This experiment not
only facilitated our understanding of the experimental setup and data collection processes but
also prepared us for future investigations. Additionally, we designed only two task types, which
provide a task prototype for our future task design. Furthermore, we deployed two algorithms
aimed at distinguishing between different users, thereby establishing a solid basis for the de-
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velopment of further algorithms in subsequent studies. The results of this experiment directly
verified that we can classify users through motion-controlled robotic behaviors and the accuracy
reaches 95%. In addition, the results on in-air and line-tracing tasks showed that performing
line-tracing tasks limits human biometric identity information. Subsequently, we verified our
experiments’ versatility on the social robot platform.

3.4 Experimental 2: User Classification of Motion-Controlled
NAO Robot

The second experiment was to classify human operators through motion-controlled social robot
behaviors. It investigated whether the robotic mechanical structure, kinematic principles and the
joint number would influence the performance of user classification on motion-controlled robot
behaviors. Furthermore, we designed social tasks that appear in real-world human-robot social
interaction scenarios and demonstrated the adaptability of our user classification approach to
these social tasks.

In specific, we built a motion-controlled social robot platform. Utilizing both hands of an
NAO robot, we achieved a user classification accuracy of 95.2%, yielding results comparable to
those obtained with the Franka robotic arm illustrated in Section 3.3.

3.4.1 System Overview and Platform

The system overview is shown in Figure 3.9. The basic idea behind this Kinect motion-controlled
NAO robot is similar to the motion-controlled Franka robot, as we described in Section 3.3.1.
The human motion was captured by a vision-based tracking device (Kinect). Compared with Op-
titrack, Kinect is a markless and low-cost motion capture device, and it applies to the full body
control of the NAO robot. Then, the captured human signals were transferred into the robotic
joint angles using the inverse kinematic solver. After this, NAO executed the controlling signals
and followed the human upper motion. Finally, the KNN+DTW method was implemented on
both arms’ end-effector trajectories of NAO. However, we used Kinect as our motion capture
device. Compared with Optitrack’s end-effector control, Kinect is low-cost and markless, which
can be applied in more applications in different fields. Besides, the NAO robot was controlled
by the human upper body, while Franka was controlled by human one arm. The Kinect tracked
the human skeleton, represented by the red line on the human. The green circle was the Kinect
located joint position values in Cartesian coordinates. The joint positions were transformed into
commands of angular values of the robot to control the related NAO’s joint with API provided
by the NAOqi library.
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Figure 3.9: Kinect motion-controlled NAO overview.

52



CHAPTER 3: USER CLASSIFICATION FROM MOTION-CONTROLLED ROBOTIC
BEHAVIORS

3.4.2 User Classification Algorithm

Firstly, for NAO’s upper body forward kinematics calculations, we utilized the DenavitHarten-
berg (DH) convention, mirroring the approach adopted for the Franka robotic arm as detailed
in Section 3.3.3 and further exemplified by the transformation matrix in Equation3.11. This
methodology constructed trajectories for the end-effectors of NAO’s right and left arms, based
on the three joint angle values for each arm. In terms of user classification, our approach was
aligned with the method outlined in 3.3. Initially, the end-effector data were segmented and nor-
malized. Subsequently, we extracted 11 features per hand, including vectors p(t), ˙p(t), ||p(t +
1)− p(t)||, ¨p(t), and || ¨p(t)||, culminating in a total of 22 features for both hands. For user clas-
sification, we adopted the KNN+DTW algorithm, as detailed in 3.3.3, due to its demonstrated
efficacy in achieving high accuracy on small datasets.

3.4.3 Experiments

In this section, we described the experiment setup and data collection in our experiments on
user classification via the motion-controlled NAO platform. We had the participation of five
volunteers, comprising two females and three males. All participants are college students, with
ages ranging from 19 to 22 years (mean age = 21.2, standard deviation = 1.0). Before the
experiment, each volunteer consented to participate and was allotted a 10-minute session to
familiarize themselves with the robot’s operations. The NAO robot, designed as social entities,
are engineered to facilitate interaction with humans. Based on this, we selected three social
tasks for the experiment, including “Waving”, “Opening Arms”, and “Clapping”. These tasks
were chosen for their relevance to social interactions and the requirement for bilateral hand
coordination. Each of the five participants was tasked with executing 30 instances of each task,
culminating in a total of 450 instances.

3.4.4 Results Analysis

The accuracy of classifying five users across three tasks using different robotic arms is detailed
in Table 3.4. User classification was conducted separately for each hand across the three tasks.
The accuracy on the left hand ranges from 93.9% to 94.4%, higher than that on the right hand
ranging from 91.6% to 92.8%. Then, we combined two robot hands, by adding 22 features of
two hands together. The feature number is increased and the information contained in the end-
effector trajectory increases leading to the increase of the accuracy. The accuracy of combining
two robot hands was higher than any of the two hands’ results showing that robotic arm number
can increase the user classification accuracy. A single NAO arm, with its 3 joints, offers less
flexibility and results in lower accuracy compared to a single Franka arm, which has 7 degrees
of freedom (DoF) and facilitates more complex trajectories. Nevertheless, the combined results

53



CHAPTER 3: USER CLASSIFICATION FROM MOTION-CONTROLLED ROBOTIC
BEHAVIORS

Table 3.4: Five user classification on right and left hand separately and combined for each task

Left hand Right hand
Average of

left and right hand
Combination of

left and right hand
Clap 0.9389 0.9284 0.9336 0.9516
Wave 0.9440 0.9160 0.9300 0.9470

Openarm 0.9389 0.9242 0.9315 0.9347

for two NAO arms ranged from 93.5% to 95.2%, demonstrating that they can achieve user
classification accuracy comparable to that of a single Franka arm.

This outcome suggested that the limitations imposed by the fewer joints in NAO arms can be
mitigated by leveraging both arms, effectively compensating for the mechanical structure and
kinematic principles’ constraints due to fewer robot joints. Moreover, we see that the “Clap”
task achieved the highest performance on the combined hand data, which is 95.1%, while the
“Openarm” task achieved the lowest performance, which is 93.5%. Through these experiments,
we validated our methods on social tasks, illustrating their applicability and effectiveness in
practical HRI scenarios.

3.4.5 Discussion

In this experiment, we approached user classification from a practical standpoint, focusing on
a remote-controlled social robot and tasks that mimic real-world social interactions. In this
experiment, we developed a motion-controlled social robot. In this work, we first showed that
two hand movements cooperatively can improve user classification. Additionally, more joints
such as the head joints of the NAO robot can be included to increase the user classification
performance in the future. Subsequently, we investigated the control mechanisms’s influence
on user classification performance, focusing on the control parameters. The current model’s
immediate generalizability to the broader population and real-world applications is constrained
by the number of participants, so future work could increase the participants’ number.

3.5 Experiment 3: The User Classification under Different
Controlling Parameters

The third experiment was to classify different human operators through motion-controlled robot
behaviors under different controlling parameter values. From the experiment 1 and 2, we found
the feasibility of our user classification method on different motion-controlled systems. In ad-
dition, we showed that the number of joints can provide more behavior information increasing
the user classification performance. From the work mentioned above, I questioned whether the
control capability or some control parameters that influence the robotic controlling performance
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Figure 3.10: The overview of how various parameters impact user classification performance in
the motion-controlled robotic system

could influence user classification performance and how they will influence them, such as three
PID control parameters, including the gain Kp, Ki and Kd , as we explained in Section 3.2.1.
In this experiment, we selected three main controlling parameters and investigated their influ-
ence on the user classification performance on the robotic end-effector trajectory. The three
parameters are Kp, the robot arm’s minimal velocity and the sampling rate of Optitrack.

3.5.1 System Overview

The system overview is shown in Figure 3.10. This study was based on the motion-controlled
Franka robot platform, seen in Section 3.3.1. We adjusted the values of three parameters and
implemented the KNN+DTW method on the robot end-effector data to classify different users.
These three parameters have practical influence, but there is no work to study their influence on
user classification performance.

Kp is the most basic component of PID control. It adds the linear error, so it gives the
system a more direct and quick response. Too strong of an integral action, however, can lead to
overshooting and instability. The minimal velocity for a robot arm refers to the slowest speed at
which the robot can move its joints while maintaining precise control. Optitrack sampling rates
decide the precision of the captured motions.
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Figure 3.11: User classification results on different control parameter values

3.5.2 Experiments

The experiment was on the motion-controlled Franka arm platform. We had two volunteers, one
female and one male, who were both college students. Before the experiment, each volunteer
consented to participate and was allotted a 10-minute session to familiarize themselves with the
robot’s operations. We designed “S” as our task this time. We set 3 values for each parameter.
Each participant executed this task 30 times under different control parameters’ values in the air.
The total number of instances was 540 (2users×3parameters×3values×30times).

3.5.3 Results

The user classification accuracy under different control parameters is shown in Figure 3.11. Fig-
ure 3.11ashows the user classification accuracy when changing the robot arm’s minimal velocity
from 0.8m/s, 1.2m/s to 2m/s. Figure 3.11b illustrates the user classification accuracy when Kp
values were changed from 0.1m, 0.5m to 1m. The user classification accuracy is shown in Fig-
ure 3.11c when the sampling rate of Optitrack was changed from 40Hz, 180Hz to 240Hz. These
values of each parameter were not most suitable for our system and did not allow our system at
the best controlling performance, thus leading to the robotic more behavioral differences with
operators’ behaviors. Thus, we can see that the value change of these parameters leads to varying
degrees of accuracy decrease. Among them, the change of sampling rate has minimal impact on
the performance, while Kp leads to lower accuracy. Besides, we found that there is not a linear
relationship between parameters’ value and user classification accuracy.

3.5.4 Discussion

Up to this section, we found that the lower system controlling performance not only decreases
the interaction efficiency but also decreases the user classification performance, thus decreasing
the system’s security and trustworthiness. In the future, suitable controlling parameters will be
quite important to the control system design, which will help build a more secure, effective and
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Figure 3.12: The decision processing of Reinforcement Learning

trustworthy HRI system.

3.6 Experiment 4: User Identity Protection of Motion-Controlled
Robotic Arm

The fourth experiment was to implement a reinforcement learning algorithm on human-captured
trajectories to dampen behavioral biometrics to protect privacy. However, in certain scenarios,
human biometric information may be unnecessary to be provided. From a privacy perspective,
some users may be reluctant to share their personal data with remote systems. Moreover, certain
mission-critical tasks may not require the high level of personal identification that biometrics
provide. For instance, during performing spine surgery, the system may not necessitate the
surgeon’s personal behavior data. This is particularly relevant in procedures involving young
surgeons, where the priority is to offer ample practice opportunities without compromising pa-
tient safety. Based on this, the remote controlled robot should have autonomy instead of fully
controlled by a remote human operator.

Shared control is a method that combines human decision and robot autonomy, which is able
to assist human control intelligently. Compared with the traditional robot control, in which the
robot is fully controlled by a human, there is an AI agent that processes human controlling data
in the shared control system. It facilitates a nuanced collaboration that optimizes both human
insights and robotic efficiency.

RL is a common algorithm used in shared control. It can learn from the environment by
feeding rewards. Based on this I used Deep Deterministic Policy Gradient (DDPG) to change
human hand trajectory to a standard trajectory in real time.
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3.6.1 Background

Reinforcement Learning

RL is a branch of machine learning that draws inspiration from behaviorist psychology [216]. It
focuses on how the intelligent agent should act within an environment to maximise a cumulative
reward that has a certain measure. This area primarily concerns identifying optimal actions
for the agent under uncertain conditions to achieve their goals. The learning process involves
the agent interacting with its environment, performing actions, and receiving feedback from the
environment by the ways of rewards and penalties. Thus, RL is distinguished by its emphasis
on learning through their own actions and experiences, rather than from a labelled dataset.

RL is primarily conducted within the framework of Markov Decision Processes (MDPs).
MDP is a mathematical framework used to describe decision-making problems in uncertain
environments. If a problem can be formulated as a MDP, then it can be addressed using RL
techniques to build models and find solutions. The core components of a LR system include
the agent, environment, state, action and reward. The agent is the learner or decision-maker
that interacts with the environment. The external system with which the agent interacts and
which provides feedback to the agent. The state is a representation of the current situation or
condition of the environment. The action is any operation or move the agent can make in the
current state of the environment. The reward is the feedback from the environment in response
to an action taken by the agent, indicating the value of that action. The decision flowchart is
shown in Figure 3.12 RL has been applied in the field of HRI. Akalin et al. [217] provided a
comprehensive review of RL in social robotics, emphasizing its effectiveness in learning optimal
behaviors through environment interactions, essential for engaging with social robots.

3.6.2 System Overview

This experiment employed the motion-controlled Franka robotic arm platform, augmented with
a RL AI agent that processed human trajectory data captured by Optitrack. The agent eliminated
the operators’ biometric identities from the data. The processed commands were then sent to the
robotic arm. As a result, the users can not be classified through the robotic arm’s trajectories.

3.6.3 User Identity Protection Algorithm

Global translation:to ensure spatial comparability among different 3D signatures, we applied
a global translation to each signature. This adjustment aligned the rear-right corner of its 3D
bounding box with the origin point. DDPG algorithm: The DDPG algorithm is a model-free,
online, off-policy RL method. We set three states. They are the moving distance along the three
axes of the Cartesian coordinate. The reward is the norm distance between the standard point
and the state point. The Pseudo-code of the algorithm is shown in Algorithm 1. Firstly, the critic,
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Figure 3.13: The overview of user identity protection system.
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actor, target network and replay buffer are initialized. Then, for each Episode, we received the
initial observation state. Action is chosen by the actor-network and is executed, after which the
reward and new state are observed. Then, the transition is stored in the buffer. Then, the target
Q value is calculated and combined with the prediction Q value to calculate the loss function.
Finally, the critic, actor and target Networks are updated.

Algorithm 1: Pseudo-code of DDPG Model
Randomly initialize critic network Q(s,a|θ Q) and actor µ(s|θ µ) with weights θ Q and
θ µ

Initialize target network Q
′
and µ

′
and weights θ Q

′
← θ Q, θ µ

′
← θ µ

Initialize buffer R
for: episode = 1, M do do

Initialize a random process N for action exploration
Receive initial observation state s1
for: t=1, T do

Select action at = µ(st |θ µ)+Nt
Execute action at and observe reward γt and new state st+1
Store transition (st , at , γt , st+1) in R
Sample a random mini batch of N transitions from R
Set yi = γi + γQ

′
(si+1,µ

′
(si+1|θ µ

′
|θ Q

′
))

Update critic by minimizing the loss function: L = 1
N ∑i(yi−Q(si,ai|θQ))

2

Update the actor policy using the sampled policy gradient:
∇θ µ J ≈ 1

N ∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|si

Update the target networks:
θ Q

′
← τθ Q +(1− τ)θ Q

′

θ µ
′
← τθ µ +(1− τ)θ µ

′

end for
end for

3.6.4 Results Analysis

Figure 3.14 shows the RL training process. In specific, the blue line is the agent trajectory. The
red line is a normalized target trajectory that does not contain user biometric identity informa-
tion. The black line is the input trajectory to the AI agent, that is the user trajectory captured by
Optitrack. The four figures show the AI learning process and learning results. The first epoch
learning process is shown in Figure 3.14a. As Figure 3.14b shows, the AI agent (blue line) is
hard to close to the target line. For the second epoch, the AI agent (blue line) found a rough
trajectory as the target one (red line). Then, Figure 3.14c shows the third epoch trajectory and
we can see that AI gradually found the target line and was close to the target line. Finally, the
AI agent produced quite a close trajectory with the target line, shown in Figure 3.14d. During
this process, AI assisted the robot on each point to move towards to standard point that has no
human identity.
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(a) AI agent trajectory for first epoch. (b) AI agent trajectory for second epoch.

(c) AI agent trajectory for third epoch. (d) AI agent trajectory for forth epoch.

Figure 3.14: Trajectory learning process of AI agent.
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3.6.5 Discussions

This experiment generalized all features of human behavior to a universal level. We designed
an AI agent using RL to change the human motion trajectory to a trajectory without any human
biometric identity. Such an approach prioritized user privacy and increased human trust to sys-
tem. Based on this work, future work could be done to protect the specific information of human
identities. For instance, in the context of telesurgery, if a surgeon’s distinctive hand trajectory,
characterized by sharp turns, is not prefered, the system could tailor an AI assistant specific
to that surgeon following user classification. This personalized assistance could significantly
enhance control efficiency and operational outcomes.

3.7 Chapter3 Discussion

Chapter 3 featured a series of four experiments which explored and developed a novel category
of user classification for the motion-controlled robotic arm and laid the foundation of the plat-
form, task design, feature extraction, algorithm, experiment set-up, data collection and result
analysis for developing an emotion classification system for the motion-controlled robot. User
classification using the motion-controlled robotic arm end-effector trajectory was conducted in
experiment 1. The accuracy of ten users on two tasks achieved 95%. However, this method
was tested on one high-precision robotic arm and motion capture system, and the tasks are
not specific tasks that appear in certain interaction situations. Therefore, experiment 2 built a
Kinect motion-controlled NAO robot and implemented a similar algorithm for user classification
across social tasks. We used two NAO arms’ end-effector trajectories to perform user classifi-
cation, reaching 93%. It got comparable results with one single Franka’s arm, which showed
the versatility of our user classification method. Whether the controlling parameters, however,
will influence the user classification or not. Therefore, experiment 3 replicated experiment 1
and the study design while changing three controlling parameter values. The results showed that
these unsuitable parameters not only decrease the controlling performance but also decrease
the user classification performance. Therefore, after classifying the user, we can provide the
most suitable controlling parameters to this user to enhance the interaction. However, in some
specific scenarios, there is no need for user biometric information. Therefore, we proposed ex-
periment 4 to train an AI agent to protect human personal information. These 4 experiments
put a foundation for future human-centered HRI. More importantly, Chapter 3 lays a foundation
for the next emotion classification work for motion-controlled robotic arms. They were derived
from the same motion-controlled robotic trajectory data. The movements of the robot during
interaction provide rich information for both identities and emotions leveraging similar features
such as speed and acceleration. The generalizability of our methods to the broader population
and real-world applications is limited by the number of participants, so future work could ex-
pand the participant pool. Future work could verify our method’s robustness on human attackers
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especially the insider attackers who observe how a user signs in space and imitate [29].
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Chapter 4

Inferring Operator Emotions from a
Motion-Controlled Robotic Arm

4.1 Introduction

Telerobots are a type of robotic avatar: systems operated by humans that can replicate the oper-
ator’s senses and actions, allowing the operator to interact with objects in a remote location and
receive relevant feedback. Utilising telerobots allows operators to overcome physical distance
between themselves and a remote environment and perform actions to complete important tasks
in many fields, such as healthcare and industry. Such use cases can include safety-critical and
precise tasks telesurgery, nuclear waste cleaning, and remote driving, where understanding the
operators’ emotional state becomes crucial to avoiding dangerous outcomes. To address this,
robotic systems could be imbued with emotional intelligence systems, the ability to infer and
respond to human emotional states [44], in order to facilitate more effective, efficient, and en-
gaging interactions [43] with humans operators and human bystanders. For example in remote
driving scenarios, a teledriver could be warned to take safety measures when significant fatigue
or stress is detected. Further, understanding the user’s emotional state could allow intelligent re-

Figure 4.1: The emotions of a human impacting the trajectory of the motion-controlled robot
arm they operate. We investigate how the robot’s movement can be used to infer these operator
emotions.
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mote control algorithms to automatically adapt to potential emotional actions, improving control
efficiency and mitigating negative outcomes. For example, such a system could assist surgeons
with crucial emotion regulation [218]. While surgeons undergo self-assessment procedures,
their efficacy is impacted by a stressful environment and surgeon’s level of experience [219].
When using a telerobot to conduct surgery under intense or suppressed emotions, imprecise or
exaggerated movements may result. Our approach could complement self-assessment as a safe-
guard, detecting in-the-moment emotional change, which could in turn be used to normalise
emotional movements. Finally, this work could lay the foundation for understanding and facil-
itating more emotional and expressive encounters between co-located humans and telerobotic
avatars in work and social contexts.

Existing approaches that allow robots to classify human emotions rely on analyzing indi-
vidual human status data, including the physiological and behavioural signals [220]. Promi-
nent physiological affective measures based on electrical signals include electrocardiography
(ECG), electroencephalography (EEG) and electromyography (EMG), while behavioural sig-
nals include facial expressions, bodily movement, and speech signals [60]. These methods can,
however, be unsuitable for telerobotic avatar operation. Movement by the operator to control
the robot can interfere with data collection, as wearable sensors may struggle to maintain a
stable position to capture reliable physiological signals [60] and electrical signals are sensi-
tive to movement artifacts. Furthermore, cameras may fail to capture facial expressions due to
the visual occlusion [221] and speech recordings may be unavailable or indistinct in work set-
tings [43]. Additionally, these methods require users or their workplaces to be burdened with
additional devices [60, 222] and the data captured, such the user’s physiological signals and
facial expressions, can contain highly sensitive information, raising privacy issues.

To address these concerns we propose an alternate approach, inferring the human operator’s
emotions by studying the movements of the robotic avatar. Bodily movements, such as the
movement of hands and head, are emotional cues that can communicate emotional status [223]
and work by Huang et al. [224] has demonstrated that a motion-controlled robot can inherit
the human operator’s motion behaviours. Building upon this prior knowledge, we verified this
finding and leveraged it to present a first-of-its-kind system that automatically detects a human
operator’s emotions based solely on the movements of the robotic avatar they are controlling. We
developed both a physical motion-controlled robotic avatar platform and learning-based emotion
recognition algorithms to analyze the joint and end-effector readings of the avatar’s non-stylized
motions.

Two task types representing different remote control scenarios were used: 1) mid-air ges-
tures to represent general industrial telerobot scenarios [225] and gesture tasks representing
social scenarios [44, 138], 2) a line-tracing task to represent safety-critical scenarios [215]. The
participants listened to affective audio files, such as symphony, noise and comedy, to stimu-
late different emotions [104, 226], while controlling the robotic arm to perform tasks and data
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was collected from both the robotic avatar and an ECG device fitted to the participant. We
developed a Dynamic Time Warping (DTW)-based algorithm and a Convolutional Neural Net-
works (CNN)-based algorithm to recognize the user’s emotions, while the training model can be
subject-independent or subject-dependent. We further derived unique features from the robotic
arm’s movement to capture the human user’s emotion inherited by the robotic avatar. The emo-
tion recognition accuracy among five emotional states of our method reaches to 83.3%, while
the accuracy of the ECG-based classification was 54.6%. We finish by discussing the implica-
tions of our method on telerobotic applications both present and future. The contributions of our
work are summarized as follows:

• We demonstrate for the first time that a motion-controlled robotic avatar can inherit human
affective states, achieving an emotion recognition accuracy of 83.3% across five emotions
based on the robot’s movements.

• We developed two alternative emotion recognition algorithms based on DTW and CNN,
respectively, and further developed unique emotional features from the robotic avatar’s
end-effector motions and the robot joints’ spatial and temporal features.

• We demonstrate through direct comparison that our approach is more effective and appro-
priate for motion-based telerobotic applications than traditional ECG-based methods.

• We discuss the implications of our approach and findings on current and future Human
Robot Interaction (HRI) applications.

4.2 Background

4.2.1 Modelling Emotion

Prior works [61, 74] classified the emotion models into four categories including dimensional,
discrete, meaning-oriented, and componential emotion models. Dimensional emotion models
include uni-dimensional and multidimensional models. Russell popularized a multidimensional
model [61, 227], proposing a two-dimensional circumplex emotion model in which the x-axis
represents valance and the y-axis represents arousal. Valance represents the hedonism of emo-
tion, whether it is positive/good or negative/bad, while arousal represents how alerting/attention-
grabbing/exciting the emotion is. For example, joy is a high-arousal and positive emotion, while
sadness is a low-arousal negative emotion. Ekman [61, 75] popularized the discrete model
and proposed basic emotions. Meaning-oriented models use lexical meaning and social con-
structivism to represent emotion, while componential models represent emotions by elicitation
of emotional responses. There are two reasons why we chose to use Russell’s model in this
work [61, 227]. First, the majority of research on emotion recognition uses the circumplex
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Figure 4.2: Our robot platform with motion-based emotion transmission.

model, allowing for external validity and comparison [60, 104, 228]. Secondly, the circumplex
model allows for a more holistic and less discrete spectrum of emotions, as opposed to selecting
a limited set of emotions. In this thesis we induced and observed emotions from each of quadrant
of the circumplex model (Joy, Sadness, Anger, Pleasure) with the addition of a neutral emotional
state between them, an established approach used across many prior works [44, 104, 228–232].
We visulised the emotion model shown in Figure 4.5

4.2.2 Emotion Recognition during Human-Computer and Human-Robot
Interaction

Emotional intelligence is the ability to recognize and generate emotions [44]. Endowing com-
puters and robots with emotional intelligence could enable more intuitive, efficient, and collab-
orative human-computer and human-robot interaction [43, 44, 233, 234]. By enabling an intel-
ligent computer or robotic agent to infer human emotions, the agent could give corresponding
feedback, such as activating alarms and generating expressive behaviors [234]. The application
of emotion recognition includes health monitoring, user experience assessment, intelligent as-
sistance, social interaction [220], education, surgery [235], and robot rehabilitation. The data
utilized for emotion recognition can be categorized into two types: human individual status data
and interaction information left on computers or mobile devices [220]. Below, we summarize
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the existing works which implement emotion recognition using these two types of data.

4.2.3 Emotion Recognition Using Human Individual Status Data

The human individual status data can be further divided into two categories: physiological sig-
nals [60] and behavioural signals [223].

Physiological Signals

Emotion recognition using physiological signals is a hot topic [88]. Physiological signals in-
clude electroencephalography (EEG), electrocardiography (ECG), HRV, galvanic skin Response
(GSR), respiration rate analysis (RR), skin temperature Measurements (SKT), electromyogram
(EMG), and electrooculography (EOG) [60]. Among these, EEG and ECG are most frequently
used for emotion recognition [61]. EEG records the electrical activity of the brain by placing
electrodes on the head, using 8, 16, or 32 electrode pairs in most cases [60]. ECG detects the
electrical activity of the heart by attaching three electrodes around the body [60], while Zhao et
al. [228] has also proposed using a wireless device to capture ECG signals. There are limita-
tions to these techniques, however. Human motions produce motion artifacts and interfere with
inferring from electrical signals for both EEG [159] and ECG [101]. Based on this, it is advised
not to collect EEG and ECG data when participants are moving, rather authors like Dzedzickis
et al. [60] advise that EEG and ECG should be administered when the subject is calm and stays
stable. Similarly, EMG and EOG, which have been used to detect electrical signals of muscle
cells and eye movements respectively, can be influenced by motion artifacts. SKT is limited by
the latency between emotion generation and skin response [60]. These limitations provide mo-
tivation for an emotion inference system usable in the movement-based scenario of telerobotic
operation. To compare the suitability of our novel approach with an established technique, we
utilised ECG in this study.

Behavioral Signals

The behavioural signals can be divided into two types, verbal signals [236] and non-verbal
signals [223], where non-verbal signals further include facial expressions and bodily move-
ments. Voice signals and facial expressions require additional devices and abundant com-
puting resources to process in real-time and are hard to capture while humans are moving.
Recognizing emotions from gestures and bodily movements remains an under-explored and
underestimated topic [140, 223]. Emotion-related features that can be extracted from kine-
matic features of bodily movement (e.g., head, arm, upper body or the whole body) and ex-
pressive features [237]. Kinematic features include velocity, acceleration, and jerk of trajec-
tory [44, 138, 142, 235, 237], while expressive features include spatial extent, energy, symmetry
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and leaning of the head [237, 238]. Speed is related to how energetic the movement is, accel-
eration indicates muscle tension, and jerk represents the force [239]. Prior emotion recognition
research has used average hand speed, acceleration and jerk [102, 142]. 14 joint velocities, ac-
celeration, time duration, as well as the mean and standard deviation values of velocity and
acceleration, were also used [61, 235]. Pollick et al. [138] found correlations between the kine-
matics features of the arm and emotion model space, and this finding is across many prior works
and the years [44,240]. In particular, correlations were found between higher arousal levels and
several other factors: shorter duration, greater magnitudes of velocity, acceleration and jerk the
movements have. Another correlation was found between positive, higher valence emotions and
kinematic features with smaller magnitudes and longer levels of duration. There are, however,
privacy concerns when using human facial or movement data directly to infer emotions, as so-
phisticated camera setups may be required and detailed live video data sent over networks for
remote processing. By instead inferring emotion from a robotic avatar, one could bypass this
invasive step.

4.2.4 Emotion Recognition via Interaction with Desktop and Mobile De-
vice Interfaces

Human behavior when interacting with computer interfaces can also be used to infer emotions.
For example, the user’s typing content in X (Twitter) [241], phone calls, browsing websites, lo-
cation information, and the frequency of app usage in mobile phone [220] can be used to analyse
and recognize different emotions. Similarly, Andreasson et al. [50] used human touch informa-
tion on a robot to classify emotions and other work has demonstrated that mouse movement and
touchscreen dynamics can also reveal the user’s emotional state [242,243]. Besides, mouse and
keystroke dynamic information can be used for emotion recognition as well [242]. However,
these methods all require a long period of data collection and cannot recognize emotions in real
time, limiting their usefulness to safety-critical applications.

4.2.5 Robot Emotion Expression

Prior work has explored autonomous robotic emotion expression across different form factors.
For example, Ghafurian et al. varied the movements of body parts such as the tail, ears, eyes
and head of the animal-like robot Miro [244] to express emotion. Saerbeck et al. [56] explored
how a vacuum robot’s movement can convey emotion while others have explored adjusting
the motion parameters of humanoid robots, including acceleration, velocity, and curvature [245,
246]. They showed that robots have abilities to express emotions through their motions and there
exist relations between motion parameters and emotions. Empowering robots with emotional
intelligence could endow robots with the ability to not only recognize emotions but express
emotions. The robot’s ability to express emotions can greatly influence the resulting social
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interaction [43]. Following emotional inference, robots could adjust their emotional display to
show empathy or positively influence the emotions of the user. For example, when the user is
sad, a robot could attempt to induce happy emotions to comfort them. While prior work has
explored the emotional expression of social robots, we present novel findings on how emotions
manifest in the movement of robotic arms used in industrial or medical settings, paving the way
for more affective interactions between humans and operated or autonomous robots in current
and future human-robot workplaces.

4.3 System Overview

In this section, we introduce a motion-controlled robotic avatar platform and present an initial
feasibility study to demonstrate that a robotic avatar can inherit the operator’s emotions. Addi-
tionally, we introduce the architecture of the proposed emotion classification approach.

4.3.1 Motion-controlled Robotic Avatar Platform

We built a motion-controlled robotic avatar platform, where a human interactively controls a
robot arm, as shown in Figure 4.2. An OptiTrack system [209] was built using six cameras
arranged in a circle to capture the operator’s hand motion trajectory via a glove attached with
four markers. A personal computer (PC1) calculated the 3D hand coordinates and sent the
pose data to a second PC (PC2). PC2 calculated the position velocity and angular velocity via
the received 3D hand trajectory data from OptiTrack. PC2 was also installed with the robot
operating system (ROS) [247] which controlled the Universal Robot UR3e [248] in real-time
with the help of MoveIt, a 3D motion visualisation and control software platform [249]. During
operation the human receives the visual feedback of the robot’s current position and adjusts their
hand motions for interactive control, leveraging hand-eye coordination.

4.3.2 System Architecture

The basic aim of our system is to use the robotic avatar’s motions to infer the operator’s emotions
during interactive control. The architecture of the proposed robotic avatar emotion classification
approach is illustrated in Figure 4.4. An operator controls the robot to perform motion tasks
while in different emotional states. The operator’s hand motions are first captured by a motion
capture system and further calculated to control command sequences that are sent to the robot
to enable the robot to execute tasks in real time. Meanwhile, the operator observes the robotic
avatar’s motions and adjusts his/her own motions to perform interactive control, using hand-eye
coordination. Two emotion classification methods are deployed on the robotic avatar. When the
robotic avatar executes the motion tasks, the values of the robot’s joints and the end-effector data
(the endpoint movement of the robotic arm) are input to our classifiers.
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Segmentation and Calibration is first applied to acquire the instances of the performed motion
tasks. In order to observe how the operator’s emotion influences in the robotic avatar’s motions,
we developed two emotion classification algorithms, a DTW-based algorithm, and a CNN-based
algorithm. In the DTW-based algorithm, segmented end-effector trajectory is used, after which
Emotion Related Feature Extraction derives unique motion features to capture the operator’s
emotion information. The derived features are then normalized and analyzed by DTW to infer
the operator’s emotion. In the CNN-based algorithm, the segmented time series of all the robot’s
joint rotation angles are analyzed and mapped into polar coordinates by Joint Trajectory Map-

ping to generate colour gradient polar plots, with different colours to present different joints and
a light to dark gradient to present time (see Figure 4.8). This approach presents both spatial and
temporal features of a task instance as a 2D image. These colour gradient plots are evenly split
into training and testing datasets and fed into a CNN-based model for emotion classification.
Finally, based on the classification result, we can infer the operator’s emotions. At this stage,
a real-world system could decide whether to continue or abort the operation according to the
inferred emotions and the importance of the current task.

4.4 Feasibility Studies

In this section, we did two feasibility studies on two different motion-controlled robotic arm
platforms. One is conducted on the Franka robotic arm and the other one is conducted on the
UR3e robotic arm. These two studies verified that the motion-controlled robotic arm can inherit
human operators’ behaviors and showed that the robot can inherit the operator’s emotions. Be-
sides, we showed that 20 emotion-related features can distinguish two emotions and the three
emotion classifications reached to 89%. The feasibility studies provided a solid foundation for
our emotion classification study.

4.4.1 Inheriting human behaviours of the motion-controlled robotic arm

Emotional state impacts our behaviours to varying degrees, and emotional changes can be de-
tected through human motion behaviors [250, 251]. Can these emotional changes be inherited
by the robotic avatar? Huang et al. [224] showed that a robot could inherit the human operator’s
behaviours and human behavioural biometrics are embedded in the robot. We verified that the
robot can inherit behaviors in Section 4.4.1, however, it was unclear at this stage if the affective
state is also inherited.

This pre-study investigated whether the robotic avatar can inherit the human operator’s emo-
tions such that it manifests in distinct differences in motion. One participant, a twenty-five-year-
old female volunteer, was asked to draw “Lw” repeatedly according to a reference trajectory on
a whiteboard while controlling the robot. At the same time, the participant was asked to listen
to audio files to stimulate emotions during the experiment. The audio files were picked up by
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Figure 4.3: Robot’s 3D movement trajectory, velocity, acceleration and jerk plot for joy, annoy-
ance and neutral emotions.
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the participant in advance. This audio induction method is a well-established approach includ-
ing the use of music [104] and sound [226]. For the pre-study three emotional states from the
circumplex model were used: joy, annoyance and a neutral/baseline emotion. The participant
repeated the drawing task 12 times under each emotion, respectively. Figure 4.3a, Figure 4.3b,
and Figure 4.3c show the robotic avatar movement trajectory, velocity, acceleration, and jerk
plots under three different emotion conditions. The illustrated figures show the difference in the
robot’s motion information between different emotions.

We observed that, when the operator was emotionally neutral, the robotic avatar’s trajectories
were less frenetic or dramatic, while the joyful and annoyed trajectories featured more sudden
shifts in motion, as well as greater peaks and troughs. More specifically, the widest range of
trajectory velocities occurred during annoyed emotional states, followed by joyful states, with
neutral states having the smallest range. Trajectory acceleration was more consistent during
neutral states than joyful and had fewer fluctuations than during annoyed states. Joyful and
annoyed trajectories were more disordered and erratic than neutral and jerks were more common.
This indicates the operator was either less concentrated on their motions when influenced by
these stronger emotions [252, 253], or that these high arousal emotional states [61, 227] caused
with the operator to subconsciously performing stronger, more active and more erratic gestures,
an effect identified by Glowinski et al. [237], Pollick et al. [138] and Wallbottet al. [238]. These
effects can also be observed in mouse movement and touchscreen dynamics [242, 243]. Initial
findings from this pre-study suggested that when operators express higher arousal emotional
states, their motions become more energetic and less stable, further suggesting that emotional
state can influence a robotic avatar’s trajectories.

4.5 Emotion Classification Algorithm Design

In this section, we introduce the adopted emotion model and give detailed descriptions of meth-
ods for feature selection and emotion classification.

4.5.1 Dimensional model of emotions

Our work utilised the two-dimensional emotion model established by Russell et al. [254], a
common approach for researchers [60,104,228,255] (see Section 4.2.1). The x-axis represents
the valence, and the y-axis represents the arousal of the emotion. We used five basic emotions
defined in each of the four quadrants of the model respectively: joy, pleasure, sadness, annoy-
ance and a central neutral emotion [44, 104, 228]. Figure 4.5 is 2D coordination picture, where
the x axes is valence and the y axes is arousal. We locate the four basic emotions to represent in
each quadrant respectively and the neural emotion in the center using the orange cross symbol.
Joy is categorized in the positive valence and high arousal quadrant, while pleasure is catego-
rized in the positive valence and low arousal quadrant. Annoyance is categorized in the negative
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Figure 4.4: The architecture of the proposed human emotion inference through the robotic
avatar. The red lines represent the transmission process of emotions. In specific, the operator
performs emotional hand motions, which are executed by the robotic avatar in real time. During
motion transmission, the emotional contents in motions are also transmitted. Then, these emo-
tional contents are classified and the operator’s emotion is inferred.

valence and high arousal quadrant, while sadness is categorized in the negative valence and low
arousal quadrant. Our method analyses these five emotions, as shown in Figure 4.5.

We collected five basic emotions that were used across many prior works and the years in
the field of affective computing as explained in Section 4.2.1. In the future, we can analyse
non-basic emotions, such as confusion, frustration, boredom and engagement, which may occur
when participants interact with robotic interfaces in the real world [256,257]. Future work could
also build on our work to test how well it can apply to real HRI contexts, such as medicine and
education, as in different contexts the requirements and benchmarks for emotion recognition
may change. For example, in telesurgery emotion recognition should focus on the intense emo-
tional status, while in e-learning emotion recognition may focus on more positive and negative
emotion detection.

4.5.2 Data Segmentation, Normalization, and Calibration

The robot’s positional data was first segmented into instances based on the end-effector’s tra-
jectory. Specifically, we set a threshold to the velocity of the end-effector’s trajectory and use
this threshold to determine each instance’s starting and ending positions. Each repetition of one
completed task is regarded as one instance. The x, y, and z axes of segmented instances are then
normalized into a 1×1×1 bounding box to make them comparable to each other. In addition,
the starting position of the trajectories was aligned with the origin of the UR3e to make the
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Figure 4.5: The four emotional states we induced in this work, Joy, Pleasure, Annoyance and
Sadness mapped to each of the four quadrants of Russel’s circumplex model of emotion, with
neutral at the origin.
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Table 4.1: Emotion features of robotic end-effector trajectory for DTW

Kinematic
Features

3D position p(t) = (x(t), y(t), z(t))

3D velocity ˙p(t) = dx
dt +

dy
dt +

dz
dt

3D position difference || p(t+1)-p(t) ||

3D accerlation ¨p(t) = d2x
dt2 +

d2y
dt2 +

d2z
dt2

3D acceleration norm || ¨p(t) ||

Expressive
Features

Time range t(N)-t(1)

Energy H=-∑(P(pos(t))∗ log2(pos(t)))

Spatial extent
√

Range(posx(t))2 +Range(posy(t))2 +Range(posz(t))2

Jerkness
...

p(t) = d3x
dt3 +

d3y
dt3 +

d3z
dt3

Curvature κ(t) =
√

c2
zy(t)+c2

xz(t)+c2
yx(t)

(ẋ2(t)+ẏ2(t)+ż2(t))3/2 ; c2
zy(t) = ¨z(t)× ˙y(t)− ¨y(t)× ˙z(t)

Slop angle βxy(t) = arctan
˙y(t)
˙x(t)

βzx(t) = arctan
˙x(t)
˙z(t)

instances spatially comparable.

4.5.3 Robotic Avatar Emotion Classification by Using DTW

We developed a DTW-based algorithm to classify the robotic avatar-inherited human emotions,
which utilizes the positional data of the robot end-effector within the segmented instances.

Emotional Related Feature Extraction

In order to capture the operator’s emotions manifesting in the robot motions, 20 emotion-related
features were extracted from the robot end-effector time-sequenced data. They are donated as
p(t), ˙p(t), ||p(t +1)− p(t)||, ¨p(t), || ¨p(t)||,

...
p(t),β (t),κ(t), where the t means the time sampling

index, t = 1, ...,N. As illustrated in the following table 4.1, we provided mathematical formulas
of emotion features analyzed in our study.

These features can be categorized into two types. The first type is kinematic features, in-
cluding the robot’s 3D trajectories, 3D velocity, 3D acceleration, 3D jerkiness, and position
difference. The second type is expressive features, including slope angle, curvature, energy,
spatial extent, and time range. We chose to examine motion features to further establish whether
distinct differences in trajectory can be observed between a wider range of emotional states, fol-
lowing promising early results from our pre-study (see Figure 4.3). It was natural to investigate
the expressive features, including energy, spatial extent and time duration, as these have been
shown in prior work to convey emotional information in other contexts [237]. We calculated the
energy of trajectories by calculating the entropy of signals and the spatial extent of each task
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instance by calculating the size of each trajectory. Higher energy motion relates to high arousal
emotion, while lower energy relates to low arousal energy [61, 237, 238]. The motions’ use of
space indicates valence of emotions [61,237,238]. The time range is a key factor in judging the
human emotion’s arousal level [258], so we calculated the time of performing each trajectory.
In addition, we extracted jerkiness, slope angle, and the curvature of trajectories to represent the
motion smoothness, as Glowinski et al. [237] showed that smoother movement correlated with
emotional expressions.
The Emotional Classification Capability of these Features:

After conducting two rounds of analysis, the first being a pre-study 4.4.1 where we presented
figures illustrating the direct robotic kinematic features to examine the relationship between
emotions and motion trajectories. The second focusing on the theoretical foundation underlying
the connection between specific features and specific emotional states, as well as the broader
relationship between motions and behaviors, where we proposed 20 emotion-related features.
Based on this, we implemented two methods to evaluate the selected emotion features, includ-
ing one DTW boxplot method and one PCA visualization method.
Boxplot Method:

We used the DTW algorithm to evaluate the discriminative ability of these features. Firstly, we
selected two emotions with substantial differences: neutral and annoyed emotions. Then, we
split the 60% of date sets into training sets and 40% into test sets. We used DTW to iteratively
compare the distances between two instances of the training dataset and computed the values.
After this comparison, we located the instance that calculated the smallest distance and regarded
it as the template instance. In the test datasets, we compared each instance with the neutral
emotion template and the annoyed emotion template respectively. We applied this method to
all participants and they showed similar results in emotions. Figure 4.6 shows an example of
one subject’s feature comparison results in two emotions. In specific, there are 40 boxes in total
in this boxplot and for each emotion feature, there are two boxes, where the outline one and
the black-filled one represent the distance between the annoyed emotion template and the neu-
tral emotion template, respectively. For each box, there are a median value and the box width.
The figure shows that 20 features show significant distance discrepancy in regard to these two
emotions. It shows that the DTW distance difference is quite large between two emotions for
time range and energy feature. Besides, velocity, acceleration and jerk in three dimensions show
larger distance differences, compared with the other features.
PCA Visualization Analysis:

Principal Component Analysis (PCA) is a statistical technique used to reveal the underlying
structure of data and preserve the maximal information by reducing its dimensionality, while
preserving as much of the original data’s variability as possible [259]. Simply put, PCA seeks
to identify the most important features in the data, transforming them into a new, smaller set
of features called principal components. This method is commonly used in data preprocessing,
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Figure 4.6: The normalized DTW distance between neutral and annoyed emotions.

78



CHAPTER 4: INFERRING OPERATOR EMOTIONS FROM A MOTION-CONTROLLED
ROBOTIC ARM

data compression, and visualization, especially when dealing with high-dimensional datasets.
The steps of downsampling PCA can be summarized as follows:

Algorithm 2: Downsampling PCA
Paramerers: Number of dimension K.
Input: Dataset as matrix X ∈ RN×M
Output: Eigenvectors W ∈ RM×K

X
′
= RandomColumnSampling(X)

U1BW T
1 = Householder(X

′
)

U2CW T
2 = Diagonalization(B)

W = W1W2

It was applied to these features to validate whether they have the ability to distinguish dif-
ferent emotions. Specifically, we calculated the mean, variance and standard deviation values
for each feature sequence, resulting in 39 static feature values in total for each instance. Then
we reduced this 139 vector to 12 vector using PCA and visualized each instance according to
different emotions.

We applied this method to all participants and they showed similar boundaries between dif-
ferent emotions. Figure 4.7 shows an example of one subject’s instances in five affective states,
and different emotions are represented by different colors. Clear and discriminated boundaries
can be observed between all the different emotions, indicating that the features we extracted can
be used to distinguish between them. In Figure 4.7, each emotion type is one cluster with the
same colors and symbols. There are five emotion clusters. Annoyance is purple crosses. Joy
is purple left-pointing triangles pleasure is orange circles. Sadness is blue dots. Neutral is blue
squares.

DTW-based Emotion classification

The extracted features were normalized to make the data comparable, and then fed into a DTW-
based algorithm for emotion classification. The 20 time-sequenced features constructed one
matrix 4.1 that is represented as one instance, where n in [1, N]. Then, equation 4.2 shows all
the instances, where m is the instance number.

Finstance=i(n) = [ f eature1,instance=i(n), f eature2,instance=i(n), ..., f eature20,instance=i(n)] (4.1)

Fi(n) = [F1(n),F2(n), ...,Fi(n)] i ∈ [1,m] (4.2)

DTW allows non-rigid warping along the temporal axis and can also compensate for the
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Figure 4.7: Emotion distributions of one subject’s subject-dependent data by using PCA reduced
features.

feature difference caused by different motion speeds [29]. Furthermore, DTW requires less
training data and occupies less computational resources than other learning-based algorithms.
Our DTW-based algorithm first selects templates for each emotion from the training data and
then compares the testing instance to those templates. The instance is classified into the emotion
templates with it has the shortest DTW distance. Specifically, each emotion’s templates are the
most representative instances of this emotion. They are selected by a pairwise comparison within
each emotion during training. For every two instances, DTW distance is calculated between their
feature sequences. The templates are selected for each instance based on whose DTW distances
to all the other instances within the training dataset are minimal. The template number selected
for each emotion can be tuned according to the number of users involved. We used 5 emotion
templates in total in order to achieve both high performance and low computational cost.

The emotion template sets are constructed by these 5 instances as Fi(n)|i = 1, ...,5. All types
of emotion template are formed as Fi,emotions(n)|k = 1, ...,5;emotions = 1, ...,5. Then the testing
data set will be compared with each type of emotion template 4.3.
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Emotionpredicted = min[
n

∑
i=1

DTW (Ftest,emotion=1(n),Ftrain,emotion=1(n))

,
n

∑
i=1

DTW (Ftest,emotion=2(n),Ftrain,emotion=2(n))

,
n

∑
i=1

DTW (Ftest,emotion=3(n),Ftrain,emotion=3(n))

,
n

∑
i=1

DTW (Ftest,emotion=4(n),Ftrain,emotion=4(n))

,
n

∑
i=1

DTW (Ftest,emotion=5(n),Ftrain,emotion=5(n))]

(4.3)

4.5.4 Robotic Avatar Emotion Classification by Using CNN

The data on the movement of the robotic arm’s joints are joint rotation angular trajectories across
time. They contain spatiotemporal information, which means that the information captures both
the spatial positioning of the robotic arm’s joints in polar space and how these positions change
over time. We employed the method [210] and encoded the spatiotemporal information con-
tained within joint time sequences into 2D images. In specific, the joint sequences of the robotic
arm are rotation angular values of six joints over time. The joint rotation time series are mapped
into polar coordination, where the polar degree represents the joint rotation angles and the radius
represents the time frames. We employed two steps to encode the spatial and time information
into 2D images. The first step was to plot spatial information of seven joints as a curved line
and the trajectories of the different 7 joints are depicted in distinct colours to illustrate their
respective sequences. The second step was to encode the time information into the 2D image.
The rotation angular value of each joint was plotted with a colour gradient from light to dark to
present the temporal information.

One example encoded 2D image is illustrated in Figure 4.8. There are six different colored
lines on the plot, each representing the rotational trajectory of a different joint over a time period.
Each trajectory has a different fade color. Joint 0, 1, 2, 3, 4, 5 and 6 are represented by a grey,
purple, blue, green, yellow and red line. The polar plots were scaled to 150 × 150 resolution
image with no background grid before being input to the CNN.

Network Architecture

The structure of the CNN is built from three convolutional layers followed by four fully con-
nected layers, as illustrated in Figure 4.9.

The convolutional layers are efficient in extracting high-level features in the input image and
the dense (fully connected) layers flatten the features and make classification decisions. Each
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Figure 4.8: Six joint rotation angular trajectories mapping.
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Figure 4.9: The CNN architecture starting from the left, the input is represented by an image
of a polar plot. The network consists of several layers. Finally, the output is represented by a
vertical bar labelled "Emotions".

convolutional layer is followed by max pooling and RELU functions. A dropout is added after
the second convolutional layer to prevent overfitting. The size of the final dense layer has the
same output size as the number of emotions. The pseudo-code of the algorithm is given below
3. Firstly, we processed the input and output data. Then, we built the network model, shown as
illustrated in Figure 4.9. Then, we trained the model. We employed the cross entropy as the loss
function that is . We used the RMSProp as the optimization function that is .

In order to understand the number of parameters in convolution neural networks (CNNs), we
calculated the parameters of the different layers shown in 4.2.
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Algorithm 3: Pseudo-code of CNNs Model
Input: X← Robotic joint Images in 150 × 150× 3 dimension
Output: Y← Categories (Annoyance, Pleasure, Sadness, Joy and Neutral states)
X: X← Normalization (X)
Y: Y← Encoding(Y) (Annoyance=0, Pleasure=1, Sadness=2, Joy=3 and Neutral=4)
// Build CNNs Model
Model← Sequential()
Model← CNN layers
//
// Performing training and testing of CNNs
kf =KFold(n_splits=1)
For train index, test index in kf.split(X) do

x train← X[train index], y train← Y[train index]
x test← X[test index], y test← Y[test index]
model.compile(loss="CrossEntropyLoss"; optimizer="RMSprop",

metrics=["accuracy"])
history←model.fit(x train, y train, epochs = 40)
Calculate performance metrics(confusion matrix and accuracy) for each epoch

End for
Output CNNs classifier and classification results

Table 4.2: Parameters in Convolution Neural Networks (CNNs).

Activation Shape Activation Size Parameters
Input Layer: (150,150,3) 67500 0

CONV1 (f=3, s=1) (148,148,32) 700928 896
POOL1 (74,74,32) 175232 0

CONV2 (f=3, s=1) (72,72,64) 331776 18496
POOL2 (36,36,64) 82944 0

CONV3 (f=3, s=1) (34,34,128) 147968 39296
POOL3 (17,17,128) 36992 0

FC4 (256,1) 256 9470208
FC5 (256,1) 256 65792
FC6 (128,1) 128 32896
FC7 (5,1) 4 645
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Figure 4.10: A standard ECG signal.

4.5.5 ECG Signals Emotion Classification

We selected ECG as a comparable emotion recognition method due to its potential suitability
for the task, when compared to other options such as facial or voice. Changes in facial expres-
sions or voice signals may be hard to capture in a telerobotic scenario, as this would require
head-facing cameras to be installed in telerobotic workstations, while speech is not inherent to
many tasks. Besides, ECG is a well-established and state-of-the-art emotion classification sens-
ing method [60] and shows higher performance compared with other physiological signals on
the emotion recognition reaching 90.0% [68]. An ECG detects the electrical activity of the
robot operator’s heart in real time [60]. Each heartbeat is a specific waveform, QRS complex
waveform, caused by the ventricles contraction 4.10 [60, 104, 228]. For each beat, there are 6
main points (P, Q, R, S, T, U) and the NN interval refers to the time between two R-peak, shown
as Figure 4.10.

We then extracted emotion features from time-domain and frequency-domain features, in-
cluding pNN50, Welch PSD: LF/HF, Lomb-Scargle PSD: LF/HF, Autoregressive LF/HF, Poincar
SD1, Poincar SD1/SD2, and Detrended Fluctuation Analysis(DFA), following well-established
methodology from across prior work [60, 104, 105, 228]. These features are described in 4.3.
For DFA, Xt is divided into windows of different lengths, with the window length denoted as n,
and then the squared error within each time window is minimized to obtain a fitted line of local
least squares, where Yt is the fitted line. Lomb-Scargle PSD computes a Power Spectral Den-
sity (PSD) estimation from the NNI series using the Lomb-Scargle Periodogram. Lomb-Scargle
PSD LF/HF is the ratio of high frequency band and low frequency band. Autoregressive com-
putes a PSD estimation from the NNI series using the Autoregressive method and autoregressive
PSD LF/HF is the ratio of high frequency band and low frequency band. Then these features are
fed to the Support Vector Machine (SVM) [228] for emotion classification. We selected the lin-
ear kernel which is the most efficient one of the SVM. SVM is a supervised learning algorithm
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Table 4.3: ECG features extraction for KNN.

Features Formula
pNN50 PNN50= NN50

TotalNN×100% ;
Welch PSD: LF/HF Pxm,M(wk) =

1
M |FFTN,k(xm)|2 = 1

M |∑
n=0
N−1 xm(n)e− j2πnk/N |2

Lomb-Scargle PSD: LF/HF Ratio of LF and HF of PSD using Lomb-Scargle method
Autoregressive: LF/HF Ratio of LF and HF of PSD using Autoregressive method

Poincar SD1

x = RR1,RR2, ...,RRn
meanRRn = abs(RRn−RRn+1)

SD1 =

√
0.5(std(RR))2

Poincar SD1/SD2 SD2 =
√

2(std(RR))2−0.5(std(RR))2

Detrended Fluctuation Analysis(DFA)
Xt = ∑

t=1
t (xi−⟨x⟩)

F(n) =
√

1
n ∑

n
t=1(Xt−Yt)2

designed for classification, regression, and outlier detection tasks. SVM particularly is efficient
in high-dimensional datasets.

4.6 Experiments

In this section, we describe the experiments conducted on the motion-controlled robotic avatar
platform to evaluate our emotion classification approach, including emotion stimulation, motion
selection, and experimental setup.

4.6.1 Emotion Stimulation

Emotion stimulation is an established method for obtaining high-quality emotion data [228].
People have different emotional reactions to sound and music based on their personal experi-
ences, and cultural background and musical training can also influence these reactions [104,
228]. Given this, we followed an established personalisation approach: participants were al-
lowed audio files of their choice, such as songs, noise, or even stand-up comedy recordings
to stimulate each corresponding emotion individually [104, 228, 228]. While choosing not to
strictly control the emotional stimuli could add variance, we chose the personalised approach in
the absence of any truly consistent way to elicit emotion in people, a limitation which impacts
the entire field.

4.6.2 Non-Stylized Motions

Our work focuses on the functional, non-stylized motions that are likely to be performed during
telerobot control, rather than motions intended to express emotion as the primary goal [44].
Specifically, we designed 14 non-stylized motions as tasks and divided them into two categories.
The first category was mid-air gestures, which are performed in many motion-controlled robotic
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(a) “S” (b) “Star” (c) “Stir” (d) “Triangle”

Figure 4.11: Designed tasks with curve lines, straight lines, and sharp curve characteristics.
There are four 3D trajectory figures drew by robotic arm including one s letter, star, stir and

triangle.

avatar scenarios to move the perform actions in the 3D space. The second category is the line-
tracing tasks, commonly performed in motion-critical scenarios. Operators are required to move
the robotic avatar to follow pre-designed trajectories, which restrict their motions.

Mid-air Gestures

We designed nine mid-air gestures: (1) cursive “Lw”, (2) “Star”, (3) “Stir”, (4) “S”, (5) “Trian-
gle”, (6) “Drinking”, (7) “Knocking”, (8) “Throwing”, and (9) “Waving”. The mid-air gestures
(6) to (9) are examples of typical social tasks that appear in social HRI and freestyle tasks in
remote education scenarios [204,260]. The participants controlled the robotic avatar to perform
these mid-air gestures in a non-prescriptive manner without hard constraints.

Line-tracing Tasks

We also designed five line-tracing tasks which contain typical features of motions that would
appear in motion control scenarios including (1) “Lw”, (2) “Star”, (3) “Stir”, (4) “S”, and (5)
“Triangle” (see Figure 4.11). For example, “Star” and “Triangle” contain sharp turning points.
“S” contain smooth turns, while “Stir” contains consecutive turns. Cursive “Lw” synthesizes
the all features of the other drawing tasks. Compared with the mid-air gestures, the line-tracing
tasks required the participants to follow the printed trajectory reference, such as robotic-assisted
spine surgery [207], total knee arthroplasty [261] and dental implantology [262]. To be more
specific, we add constraints to these tasks, which simulate mission-critical control scenarios.

In this work, we followed an approach of Huang et al.: utilising a classification of founda-
tional tasks that can be widely applicable to different telerobotic scenarios [225]. We included
a selection of task types representative of the core movements of real-world tasks, including
surgery, education and social scenarios, as featured in prior work [204, 207] to provide a good
foundation. However, our study has a necessarily narrower scope than real-world use, which
should addressed in future by co-designing tasks with real-world telerobotic users, to ensure
specific and highly ecologically valid tasks for specific domains.
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4.6.3 Experimental Setup and Data Collection

We recruited ten volunteers (3 female, 7 male) to conduct the experiments. They are all uni-
versity students with ages ranging from 20 to 25 (mean = 24.3, σ = 1.42). All ten volunteers
first read an information sheet, signed a consent form and brought their individual pre-pickup
audio clips (See Section 4.6.1) to trigger emotional responses (joy, pleasure, annoyance and
sadness). Before the experiments, each volunteer underwent 30 minutes of training to become
familiar with the control process. Then, participants took a 10-minute break to relax and calm
down, which was done to help them reset to a more neutral emotional state. The experiments
were conducted using the motion-controlled Universal Robot UR3e platform, as introduced in
Section 4.3.1, which is deployed in a quiet 50m2 laboratory room. Six OptiTrack cameras are
placed in a 5m-by-5m square area. Participants wore a marker glove on their right hand and the
ECG devices were attached to their other hand and the ipsilateral ankle. During the experiments,
participants sat in the centre of the OptiTrack cameras to control the UR3e while listening to the
audio they selected. Operators were given three minutes of emotional stimulation at the begin-
ning of each task and the collection time was approximately 2.5 minutes per task. A 10-minute
emotional recovery break was given between each task. The order of emotion stimulation was
random to offset the influence between different emotions.At the end of each task, an interview
was conducted to assess if the stimulated emotions were consistent with the target emotions. If
yes, then the collected data was labelled with the subject’s reported emotion. As “Lw” synthe-
sized all the drawing motions task, we required all participants to perform both the line-tracing
“Lw” and in-air “Lw” under all five emotions (joy, pleasure, sadness, annoyance, and neutral).
Each task is performed 15 times under each emotion. Given this, there were 1500 total in-
stances of the “Lw” task (10 subjects × 5 emotions × 15 times × 2 non-stylised tasks types).
Then, five of the ten participants are asked to perform the remaining twelve tasks, which include
eight mid-air gestures (“Star”, “Stir”, “S”, “Triangle”, “Drinking”, “Knocking”, “Throwing”
and “Waving”) and four line-tracing tasks (“Star”, “Stir”, “S” and “Triangle”). These five par-
ticipants performed each task 15 times under each emotion, resulting in 4500 (5 subjects × 5
emotions × 15 times × 12 non-stylised tasks types) task instances. We did not ask the remain-
ing 5 participants to complete these extra tasks due to time constraints per experimental session,
as these participants took significantly longer to complete the “Lw” task. In total, 6000 task
instances were collected from the experiments to serve as the dataset.

ECG data collection

As mentioned in Section 4.2.3, ECG is a well-established emotion recognition method, so
we collected ECG data to compare its suitability to our method. There are reasons why ECG
may not be ideal for telerobotic scenarios: ECG signal collection for emotion classification is
normally taken for around 8 minutes [228] [104], and it can be confounded by motion artefacts.
In telerobotic motion control scenarios, the subject is not liable to be stationary and tasks can
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Figure 4.12: The emotion classification results for different classifiers trained by different algo-
rithms and different data (“S” stands for “Subject”, “J” stands for “Robot Joint Data”, and “T”
stands for “Robot Trajectory Data”).

be quite short, such as pick and place or stirring tasks [215, 263, 264]. Even in longer tasks,
such as teledriving, the inherent motion of the task has led to ECG classification being limited
in past work [265–268]. We sought to understand whether our proposed approach could prove
a more suitable alternative, and so compared the two in this work. To assess this, we outfitted
participants with an integrative ECG [249] Attys biomedical sensor device on the hand they
did not use for operation and instructed them to keep this hand as steady as possible. The
ECG signals collected during task execution were then used to implement traditional ECG-
based emotion classification, to compare its suitability with our proposed robotic avatar emotion
classification approach.

4.7 Results and Analysis

In total, 6000 instances were collected from the UR3e platform to evaluate our emotion classifi-
cation approach on the robotic avatar, a relatively large amount of data when compared to prior
work [44, 228]. Following the task classification [225], we trained two types of emotion classi-
fiers for each task category: a subject-dependent classifier and a subject-independent classifier.
The subject-dependent classifier was trained and tested on the dataset of each individual subject,
while the subject-independent classifier was trained in a leave-one-subject-out procedure.

Emotion expressions are highly individual [269] and vary between people. Subject-dependent
classifiers can study these individuals’ emotional expressions, allowing for more accurate and
sensitive emotion detection by providing high personalization. This personalised training and
optimisation could be deployed to individuals when using shared workplace equipment when
they identify themselves by logging in. Subject-independent classifiers are, however, also im-
portant and a priority for real-world use, as it is likely that classifiers would also be trained on
the common emotion information of other operators. Thus, we implemented and explored both
subject-dependent and independent classifiers to fully explore this field.

We used a DTW-based algorithm (introduced in Section 4.5.3) and a CNN-based algo-
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rithm (introduced in Section 4.5.4), respectively, to train the subject-dependent and subject-
independent classifiers. The emotion classification results for different classifiers trained by
different algorithms and different data are shown in Figure 4.12. There are three bar graphs
and each bar graph has the result of accuracy of different algorithm and datatype combinations.
The first graph compares the average accuracy of two algorithms, DTW and CNN, with the
data being either subject-dependent or subject-independent. The bars are color-coded to distin-
guish between algorithms and dependency, with four sets of bars representing the accuracy of
each condition applied to either trajectory data or joint data. The second graph also displays
average accuracy but focuses on comparing the performance of the DTW and CNN algorithms
under the conditions of joint and trajectory data, with each being subject-dependent or subject-
independent. The third graph, shows the average accuracy of DTW and CNN algorithms when
applied to joint and trajectory data, with distinction between subject-dependent and subject-
independent. The bars are grouped by subject condition and then further by the type of data
with each algorithm’s performance distinctly color-coded. In particular, Figure 4.12a shows
that, when using the robot end-effector’s trajectory data as the input, the DTW-based algorithm
achieved the highest performance, while when using the robot joint data as the input, the CNN-
based algorithm had the best performance. Figure 4.12b shows that the average performance of
the CNN-based algorithm is better than the DTW-based algorithm, as the DTW-based algorithm
did not perform well in training the subject-independent classifier. Figure 4.12c shows that the
accuracy of subject-independent classification is lower than that of subject-dependent classi-
fication, which is as expected. Based on the above results, we decided to use the DTW-based
algorithm and the robot end-effector’s trajectory data to train the subject-dependent classifier and
use the CNN-based algorithm and the robot joint data to train the subject-independent classifier.
Individual differences in emotion expression may explain the lower performance of the DTW al-
gorithm for subject-independent data. For example, one person may move faster or further than
another, even when both are annoyed. The DTW algorithm measures the distance difference
between two different emotional instances, so different expressions of emotions between people
make the emotion instances less comparable and finding common emotion information across
people more difficult. The emotion classification performance of these two types of classifiers
is presented below.

The trajectories of the performed task under different emotions are shown in Figure 4.13.
There are two 3D letter lw trajectories. Each 3D box contains 5 lw trajectories and different
colors are used to represent different emotions. The left one is the Line-tracing lw and the right
one is the mid-air lw.
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(a) Line-tracing “Lw”. (b) Mid-air “Lw”.

Figure 4.13: The trajectory of line-tracing “Lw” task and mid-air “Lw” task under different
emotions.

4.7.1 Subject-Dependent Results

Classification Performance Variance By Subject

Figure 4.14 is a bar graph showing the accuracy of each subject. The provided image is a
vertical bar graph representing the average accuracy for two different tasks across a sample of
ten subjects. Each subject is represented by an index number on the x-axis, which runs from 1
to 10. The y-axis measures the average accuracy, ranging from 0 to 1. There are two sets of bars
for each subject, color-coded to distinguish between the two tasks: mid-air gestures and line-
tracing tasks. It shows the average emotion classification result of all mid-air gestures and line-
tracing tasks, for each of the ten subjects respectively. Overall, the average accuracy achieved
by the subject-dependent classification among all subjects was 83.3%. We can observe that
the performance on mid-air gestures and line-tracing tasks are similar among different subjects,
which indicates the proposed approach works for different types of motions. The results show
our approach can classify each operator’s emotions with relatively high accuracy.

Classification Performance Variance By Task

The subject-dependent classifier’s average performance among all the subjects for each of the
mid-air gestures and line-tracing tasks is presented in Table 4.4. The average accuracy achieved
by the mid-air gestures was 86.5%, while the average accuracy of the line-tracing tasks was
77.9%. The performance of the ten drawing tasks ranged from 73.7% to 92.0%, with the “S”
task showing the best overall performance in both the mid-air gestures and line-tracing tasks.

Table 4.4: Subject-dependent emotion classification for each of the mid-air gestures and line-
tracing tasks.

Tasks Lw Star Stir S Triangle Drink Knock Throw Wave
Mid-air gestures 0.851 0.853 0.817 0.913 0.920 0.807 0.860 0.858 0.909

Line-tracing tasks 0.777 0.737 0.757 0.833 0.791 NA NA NA NA
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Figure 4.14: Subject-dependent emotion classification of mid-air gestures and line-tracing tasks
for ten subjects.

The performance of the four social tasks ranges from 80.7% to 90.9%, with the “Wave” task
performing the best. The results show that our subject-dependent algorithm can be used to infer
emotions from a wide range of tasks performed by different users.

Classification Performance Variance By Emotions

The average detection accuracy for each type of emotion among different tasks performed by
each subject is presented in Table 4.5. Our approach detected all five types of emotions with an
average accuracy of 83.3%. In particular, the average detection rate for “Joy”, “Sadness”, “An-
noyance”, “Pleasure” and “Neutral” among the ten subjects is 83.12%, 86.67%, 90.75%, 68.11%
and 87.31%, respectively. The results show that this approach generally works for detecting dif-
ferent types of emotions. Pleasure was something of an outlier with worse performance, which
may indicate that being in this high valence low arousal affective state resulted in less distinct
and expressive movement features than the other emotional states, particularly Joy (high valence
high arousal).

Classification Performance Variance By Number of Emotions

Figure 4.15a is subject-dependent emotion accuracy result among 2, 3, 4, and 5 emotion types
using DTW method. It shows the average emotion classification results among all tasks and
subjects when different numbers of emotion types are involved. Each box plot is color-coded
differently and contains a diamond shape that represents the mean accuracy. The boxes them-
selves represent the interquartile range (IQR), extending from the 25th to the 75th percentile,
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Table 4.5: Subject-dependent classifier’s average emotion detection accuracy for different sub-
jects.

Subject No. Annoyance Pleasure Sadness Joy Neutral
1 0.9167 0.7500 0.9167 0.9167 0.9167
2 0.8488 0.8750 0.8310 0.7952 0.8690
3 1.0000 0.5500 0.9000 0.9000 0.9000
4 1.0000 0.3333 0.9167 0.9167 0.8333
5 0.9167 0.8333 0.7500 0.6667 1.0000
6 0.8810 0.7381 0.8810 0.8571 0.8571
7 0.9286 0.7619 0.8452 0.7024 0.9405
8 0.8214 0.7452 0.9262 0.8762 0.9286
9 0.9167 0.5000 0.9167 0.9167 0.7500

10 0.8452 0.7238 0.7833 0.7643 0.7357
Average 0.9075 0.6811 0.8667 0.8312 0.8731

Standard deviation 0.0608 0.1674 0.0621 0.0936 0.0832

(a) Subject-dependent classifier. (b) Subject-independent classifier.

Figure 4.15: Emotion classification results regarding different numbers of emotion types for
different classifiers.
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with ’whiskers’ that indicate the range within 1.5 times the IQR above and below the box. A
horizontal line within each box shows the median accuracy. The second box plot, Both plots
have an x-axis that categorizes the boxes by the number of emotion types, and a y-axis that
measures emotion detection accuracy from 0 to 1. When classifying two types of emotions
(e.g.annoyance and neutral), our approach achieved an average accuracy of 94.05%. When
classifying three types of emotions (e.g.joy, annoyance, and neutral), the average performance
degraded to 89.8%. And when classifying four types of emotions across all types, the perfor-
mance further degraded to 86.3%. When there are five emotions (joy, pleasure, sad, annoyance,
and neutral) to be classified, our approach can still achieve an accuracy of 83.3%. The results
demonstrate that our approach is able to classify common emotions with relatively high accu-
racy.

4.7.2 Subject-Independent Results

Trajectories of a task performed by different operators under the same emotion showed different
motion features, thus it is hard to use the robot end-effector’s trajectory to implement subject-
independent emotion classification, as Figure 4.12 shown. Instead, we use the robot joint data
to train the subject-independent classifier introduced above. Intrinsically, subject-independent
emotion recognition is more of a challenge as the way subjects express emotions varies, which
can be seen manifesting in the performance variance of the DTW (see Section 4.7). As expected,
subject-independent performance was lower than that of subject-dependent. We split the datasets
into 60% training data and 40% testing data. Across tasks and five affective states, the average
accuracy of emotion recognition on testing data was achieved at 74.2%.

To study the capability of our system to recognize the emotions of users not included in the
training model, we utilised a leave-one-subject-out cross-validation (LOSOCV) procedure(each
subject was left out of the training dataset for their testing), as discussed in Section 3.2.2. The
pseudo-code of LOSOCV is shown in 4.

Algorithm 4: Pseudo-code of LOSOCV Algorithm
1. Divide data into N folds ▷ N is the number of instances
2. Loop For 1 in N:

1. Set 1 as the testing set
2. Set N-1 as the training set
3. Train model on N-1 training set
4. Test model on 1 testing set

3. Calculate the average performance over N

Across tasks and affective states, the LOSOCV analysis achieved an average emotion recog-
nition accuracy of 76.5%. The following sections discuss accuracy variance between tasks and
affective states.
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Table 4.6: Subject-independent emotion classification for each of the mid-air gestures and line-
tracing tasks.

Tasks Lw Star Stir S Triangle Drink Knock Throw Wave
Mid-air gestures 0.775 0.734 0.757 0.758 0.828 0.711 0.789 0.719 0.844

Line-tracing tasks 0.682 0.828 0.664 0.766 0.852 NA NA NA NA

Table 4.7: Average emotion detection accuracy achieved by the subject-independent method.

Emotion Annoyance Joy Sad Pleasure Neutral
Detection Accuracy 0.676 0.779 0.870 0.700 0.779

Classification Performance Variance By Task

The subject-independent emotion classification result for each of the mid-air gestures and line-
tracing tasks is shown in Table 4.6. The “LW” task was trained and tested on 10 subjects while
the rest were trained and tested on 5 subjects. Our approach achieved an average accuracy of
76.8% and 75.8% for the mid-air gestures and line-tracing tasks, respectively. The emotion
classification performance ranges from 66.4% to 85.2%, which is comparable to the results of
the existing work [44] that used human motion signals for emotion classification.

Emotion Detection Accuracy

As shown in Table 4.7, our subject-independent method achieved over 76.5% emotion detection
accuracy across all five types of emotions: “Joy”, “Sadness”, “Annoyance”, “Pleasure”, and
“Neutral”. Interestingly our approach achieved higher detection accuracy for emotions with
lower arousal. A possible reason for this could be that low arousal emotions may contain more
subject-independent features than high arousal states.

Classification Performance Variance By Number of Emotions

Figure 4.15b is subject-independent emotion accuracy result among 2, 3, 4, and 5 emotion types
using CNN method. The figure shows similar information as the Figure 4.15a. It shows the
performance of our subject-independent method when there are different numbers of emotion
types. Specifically, the average emotion classification accuracy is 88.3% for two emotions (e.g.,
annoyance and neutral), 84.0% for three emotions (e.g.joy, annoyance, and neutral), 80.9% for
four emotions (e.g., joy, sad, annoyance, and neutral), and 76.5% for all five emotions (joy,
pleasure, sad, annoyance, and neutral).

4.7.3 Our approach versus ECG-based emotion recognition

As we discussed in Section 4.2.3, ECG-based emotion classification uses minor changes in phys-
iological signals (heart rate) to detect emotional changes and requires physical contact sensors to
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observe the ECG signal. These two factors constrain the application scenarios of the ECG-based
emotion classification. In order to compare the suitability of our emotion recognition method,
we collected the ECG data of the subjects during the study. The time length of each ECG in-
stance was around 210s. We used IIR to filter the ECG data and extracted the emotion-related
features as mentioned in 4.5.5. As expected, the average accuracy across ten subjects was 56.6%
lower than the existing results 87% [228], likely due to both motion artifacts and measurement
duration.

4.8 Discussion

Our work shows that a robotic avatar’s motion behaviors can be used to infer the operator’s
emotions. We know now that emotions can have a vital role in the interaction between humans
and robots, as they have a direct impact on the control of the remote robot. Thus, it is bene-
ficial to understand and observe operator emotions to avert any erroneous operations that may
potentially cause harm to the safety-critical scenarios.

4.8.1 Current Performance of the Approach, Limitations and Next Steps

Current performance of the Approach

Emotional Information Involved in Interaction
Our robotic avatar can inherit human hand trajectories but can not reproduce human trajec-

tories perfectly. On the one hand, the skeleton and the degree of freedom (DOF) of the robot
arm and the human arm are different. On the other hand, the limitation of the control algo-
rithm and the communication delay cause a deviation between the robot’s and human’s trajec-
tory. Although the robotic arm can only reproduce lossy trajectories, our emotion classification
outperforms the work [44] of using individual human status data. The data set for their work
[44] was 235 and the average classification performance among four emotions for five sub-
jects was 70.05%. The data set of our work is 6000 and the average classification performance
among five emotions for five subjects is 83.3%. This indicates that measuring emotion using
our methodology via inference of robotics arm trajectories may be as, or more, sensitive than
prior approaches. Both our work and Loghmani et al. [44] used non-stylized motions, but our
participants were performed in an interactive control scenario, i.e., operators observe a robot’s
movements to adjust their own behaviours in real-time. It could be that emotional expressions
are more pronounced in such interactive control scenarios. The influence of interaction scenarios
on emotion expression should be further explored in the future, which could profoundly impact
subsequent interaction design.
Benefits of Telerobot Emotion Classification Compared to Traditional Methods

We attached the ECG device to the operators’ stable hands and ankles to capture their heart
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rate signals. We found this to be a limitation of the ECG experiment setup, which requires longer
measurement time and for operators to remain stable for optimal performance, as in motion-
controlled scenarios, users need to move and are unlikely to remain still enough. Similarly,
many existing methods of using physiological signals to classify emotions require humans to
stay stable, which limits the application of ECG emotion classification. While applicable in
controlled laboratory experiments, these limitations would preclude the real-world use of these
techniques in telerobot scenarios. Our work verifies, for the first time, the limitation of ECG in
human remote-control robot scenarios and shows that this method lacks ecological validity for
this use case. For example, when we evaluate whether a driver is exhausted or not, we can not
require him/her to stay stable while driving. Our approach overcomes this limitation, however,
by utilizing their motions to infer emotions. From this point of view, behaviour-based emotion
classification is more practical and promotes many applications in this field.

Limitations and Future Work

In this study, we used audio files, a well-established emotion stimulation method [270], to elicit
emotions and interviewed participants to check they felt the correct emotion was evoked. This
approach has limitations, however, as it has been regarded as non-immersive when immersion is
an important aspect of eliciting emotions in real experiences [270]. Future work could seek to
adopt a more immersive emotion elicitation approach, such as leveraging Virtual Reality [270].

Another core limitation of this work is that emotion is inherently ambiguous and complex,
so there may exist disagreements between participant annotators’ labels and their real emotions
[269]. In addition, while we took steps to help participants regain a neutral emotional state
between tasks, this cannot be fully controlled. While we used established methodology in this
work, this is a general problem within the field of affective computing [105].

Our work features a participant sample size of 10, with some tasks only performed by 5,
which limits the immediate generalisability of our current model to the wider population and
real-world applications. We did, however, collect 6000 instances in total, a larger set than similar
prior affective computing studies [44, 228], and we achieved comparable results. This demon-
strates the feasibility of our emotion inference method, but in future, a larger participant pool
conducting a wider set of tasks would help in directly applying this method to remote-operation
scenarios. Emotional expression may also vary in intensity in different tasks. For example, lin-
ear motions may show less emotive features than complex motions. This should be accounted
for when aiming to achieve real-world generalisability. Similarly, future work could adopt dif-
ferentiation between tasks used in training and testing to further explore applicability to unseen
real-world tasks. Participants also received 30 minutes of training, which is necessarily limited
compared to a full training regime for real-world telerobotic operation.

In this work, we used an ECG device, but found it unsuitable for telerobotic scenarios, as
ECG data collection suffered from motion artifacts in the data. This intrinsic limitation made
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it difficult to capture effective emotional information, and thus it was difficult to compare its
efficacy with our method. Future work should seek to utilise additional sensors for multimodal
data, such as EEG and respiration rate, which could achieve accuracy comparable with that pre-
viously shown by ECG [68] while minimising the impact of motion artefacts [89]. This would
allow for a more robust comparison with this novel robot motion-based inference approach.

4.8.2 Implications for Current and Future Telerobotic Applications

Current Remote Robot Operation:

Our work found that operator emotion can be successfully inferred from telerobotic movement
and that certain emotions can result in more vigorous and pronounced movement. With this in
mind, it is prudent to consider how this might impact current telerobot applications differently.
For example, telerobotic keyhole surgery is an extremely precise and safety-critical environment
where small movements could have dire health consequences. Given this, intervening swiftly
to remove control during moments of heightened operator emotion could be highly beneficial.
This would render the end-effector suddenly stationary, which is unlikely to be consistently
dangerous, as keyhole surgery is made up of prolonged pauses and slow movements, but could
be problematic if the effector is currently interacting with tissue. Furthermore, keyhole surgeons
are highly specialised, so handing over control to a replacement operator may be difficult.

By contrast, teledriving presents a more difficult scenario for intervention after knowing the
driver’s emotions. While prior work has observed driver emotion directly from onboard control
telemetry [96], it is still unclear how this information should be applied to reduce danger or
risk. While driving is a less precise task than telesurgery, it is still a safety-critical task where
erratic operator behaviour may warrant the removal of control. Unlike telesurgery, however,
removing control of teledriving leaves a vehicle that is still in motion, potentially turning and
will need to be brought to a controlled stop. Given this, an intervention may need to either hand
over to an autonomous driving system or perhaps reduce noise in the operator’s control, rather
than remove it (see 4.8.2). Another context to consider is industrial applications, such as the
telerobotic handling of nuclear waste containers. While also safety-critical, this operation is
less precise than surgery, making the emotional level required to intervene more extreme, and
control may be safely paused and handed over to another remote technician to complete the
task. Beyond the differing practical concerns of observing operator emotions and intervening in
different contexts, we must also consider the potential impact on these humans in the loop and
how the system can be designed to be cooperative with users, rather than combative.

More enhanced feature extraction and advanced machine learning techniques are required
in the future to generalise tasks across varied operation in the real world. For example, trans-
fer learning-based methods could be developed [271–273] that can transfer previously learned
knowledge from available large-scale data and establish a new model. We could utilize such
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approaches to achieve cross-subject emotion recognition. Outside of using motion tracking to
control remote robots using the Optitrack sensor, alternative control schemes, such as haptics
globes and physical controllers have been applied to control remote robots. It would be valuable
to explore if our method of emotion inference is still effective across these input devices through
formal testing and investigation.

Understanding the Human Impact:

While emotional inference could be used to intervene during safety-critical telerobotic scenar-
ios, possible pitfalls must be considered. First is the issue of privacy. Safety-critical telerobotic
operation supports various applications including those for which humans cannot be physically
present, such as nuclear waste handling, as well as healthcare, transport and industry. Working
remotely can afford employees increased privacy when compared to those to work on-site, which
they may value [274,275]. Operators may feel that having their emotional state inferred through
robotic arm movement infringes on their right to work while managing their private internal
emotional state. While co-located workers would naturally display emotional cues through their
body language or voice, systematically monitoring and using their emotions to assess perfor-
mance or intervene for safety reasons would require fitting with traditional electric-signal-based
monitoring devices. As discussed in Section 4.2.3, such devices can be confounded by the
movement inherent in telerobotic operation. Our system could, therefore, offer a functional re-
placement for this context. While it would be clear to an employee that they have been fitted
with a wearable monitor, it may be less clear that they are being monitored based on robotic
avatar movement. Thus, this system should be clearly signposted and the informed consent of
operators obtained.

Another issue operators could experience is fear of loss of agency, as they know their control
could be removed due to automatic inference of their involuntary emotional state, which could
in turn lead to an adversarial relationship between user and system. For example, operators may
seek to practice emotion regulation using real-time Response Modulation [276] in order to avoid
losing control, which in turn may deplete attentional resources and risk worsening performance.
Losing control, when they otherwise would not have, could also damage an operator’s confi-
dence and mental well-being. If the loss of control is observable by peers, it may also lead to
perceptions of incompetence or feelings of shame. Repeated interventions or interruptions by
such a system could also be seen as frustrating or annoying. Given this, such a system should
be implemented in an ethical and empathetic manner, with the removal of control treated as a
safety-driven last resort, in order to mitigate users harbouring resentment for the system. As
an aside, there are less disruptive ways emotional information during interaction could be used,
such as evaluating the operator satisfaction as feedback to improve the robot’s control algo-
rithms. In the next section, we propose an alternative moderate approach to removing operator
control, emotive-motion dampening, which could mitigate these issues while still improving
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safety outcomes.

Future Applications:

AI-Assisted Emotive-Motion Dampening
As discussed, emotional influence on telerobotic avatar movement could have negative safety

outcomes, but simultaneously the sudden removal of operator control based on their emotional
state could have negative practical and psychological ramifications. Given this, we propose an
intermediate solution, the real-time dampening of emotive-motion features. When enabled, real-
time AI would be leveraged to filter out the drastic and jerky features of user input motion that
are caused by a high-arousal emotion state, normalising to a smoother trajectory. This approach
is analogous to the aim-assist feature used in some first-person video games [277], or with
shared control paradigm explored in prior work [278–280], whereby control is shared between
the human and the robotics autonomy. Extending prior work, we propose to apply this technique
responsively based on the operator’s inferred emotional state.

In some scenarios, this could be enabled by default, although in high-precision scenarios,
such as telesurgery, it could reduce the operator’s level of fine-grain control. In these scenarios,
the dampening system could instead be enabled only when an emotional state which could com-
promise the safety-critical task is detected. Such a system could also have privacy benefits, as
normalising robotic avatar motion could be used to prevent further observation of the operator’s
emotions. The calibration of such a system and its impact on different telerobotic tasks would
be valuable topics for future research.
Emotionally Intelligence Encounters with Robotic Avatars

By using similar emotion inference approaches, we could facilitate the recognition of natu-
ralistic body language, trained on real human motion data, in both virtual and physical robotic
avatars. VR allows people to be embodied within virtual environments and act within them
using virtual avatars which can express their body language. Liebers et al. [281] found it is
possible to identify individuals via their virtual body language in VR and it has been shown that
virtual agents can express emotion through body language [282, 283]. Our methods could be
applied to these virtual avatars, allowing for the automatic detection of users’ emotions in VR
settings. This could be used to tailor user experiences; for example, if during a VR game a user
is expressing anger or sadness the game could dynamically become easier or calmer, as seen in
prior work [284]. Furthermore, our approach could be leveraged to enable more emotionally
intelligent interactions with the virtual world, NPCs and other users.

These emotionally intelligent encounters could also take place in real-world settings. In the
wake of the COVID-19 pandemic, working from home has become more prominent as a current
and future labour trend. In future, we may see physical robotic avatars, such as robotic arms,
partially or fully replace human workplaces such as offices or factories. If these avatars could
both express emotion and have their operator’s emotion understood by other co-located humans
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or robotic avatars, it would help maintain affective relationships commonplace in social and
working contexts. Our work shows that robot arm avatars have inherent distinct movement traits
from differing operator emotions. Humans already possess the ability to infer affect from human
arm movement [138] and future work could now explore if this also extends to the emotive
movements of robotic arms inherited from their operators.

Finally, future work could investigate how other robotic form factors may inherit emotions,
such as quadruped robots, such as Boston Dynamic’s Spot1, more limited humanoid social robots
such as Pepper2 andSophia3, which can only articulate their heads, arms and torso, or robotic
hands, such as Shadow Hand4. While telerobotic avatars inherent emotion from the operator’s
natural arm movements, these quadrupedal or social robots are instead operated using a con-
troller, such as a gamepad, so whether emotion can be inferred from such control mechanisms
should also be investigated. Finally, future full-bodied robotic avatars could inherit yet more
complicated and nuanced emotional features, as more pronounced movement across the whole
body is used to express emotive movement features and the relationship between different body
parts can provide more emotional information, as has been explored with virtual agents [282].

4.9 Conclusion

This paper demonstrates that a motion-controlled robotic arm can inherit the human operator’s
emotions, then both describes and evaluates an approach for classifying human emotions based
on motion-controlled robotic avatar motion behaviours in interactive control scenarios. We ex-
tracted the emotion-related features from robot end-effector data and developed a DTW-based
algorithm to classify individual subjects’ emotions. We further develop an alternative CNN-
based algorithm to classify emotions. The training model used could be subject-dependent or
independent. Analysis of a dataset of 6000 tasks using a motion-controlled robotic avatar plat-
form found that our approach achieved up to 83.3% accuracy in recognizing the user’s emotion.
Our approach is highly suited to motion-based telerobotic use cases when compared to tradi-
tional methods. We discuss how this method can be applied to current remote robot operations
to build efficient, safe and human-centred interactions. Furthermore, we explore promising
future applications for this approach, including virtual robotic avatars, emotional intelligence
encounters between man and machine and AI-assisted emotive-motion dampening.

1Spot by Boston Dynamics - https://bostondynamics.com/products/spot/ - Accessed 23/08/23.
2Pepper by Aldabaren Robotics - https://www.aldebaran.com/en/pepper - Accessed 23/08/23.
3Sophia by Hanson Robotics - https://www.hansonrobotics.com/sophia/ - Accessed 23/08/23.
4Shadow Hand by Shadow Robot - https://www.shadowrobot.com/ - Accessed 23/08/23.
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Chapter 5

Conclusions and Future Works

This thesis classified users’ identities and users’ emotions using the motion-controlled robot’s
end-effector trajectory enhancing the teleoperation system security. In this thesis, we did exten-
sive experiments and implemented machine learning and deep learning algorithms to analyse
robotic data. We proposed a more holistic approach to studying motion-controlled robotic sys-
tems. This integrated perspective could significantly contribute to the fields of building secure,
trustworthy, personalized and human-centered HRI.

Chapter 3 investigated user classification using motion-controlled robots. It showed that both
motion-controlled Franka robot (7DoFs) and NAO (6DoF) robot can inherit human operators’
biometric information in the hand trajectory, and they achieved comparable accuracy. Besides,
we verified that the lower controlling system performance leads to lower user classification ac-
curacy. Future work could design customized control systems based on users’ personal control
preferences. However, in some situations, user identities should be protected to secure users’
privacy. Thus, we proposed a reinforcement learning method to protect user biometric infor-
mation in robotic trajectory. We wiped human identity information in general, so future work
could design more specific identity features wipe to adapt different users’ control habits. User
classification provided a foundation for emotion classification work. Different individuals have
different ways of expressing emotions, so we performed emotion classification using a motion-
controlled robotic arm’s end-effector trajectory based on identified users in Chapter 4. Before
this, Chapter 2.2 provided a comprehensive review of existing emotion recognition methods
and their application for HRI. To our best knowledge, there is no work to study the emotion
inherited by the motion-controlled robotic arm, but we can not underestimate the values. We
selected one method that is most suitable for our motion-controlled robotic arm platform. We
proposed methods of human emotion classification from a motion-controlled robotic arm’s tra-
jectory. In addition, we selected ECG, a common and well-established emotion recognition
method, to verify our methods’ efficiency. Our study focused on the basic emotions, however,
future work could investigate emotions that highly appear in the teleoperated scenario. How-
ever, for both user classification and emotion classification experiment setup, we selected tasks
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that mirror real-world activities, yet they were not conducted in actual real-world settings. Ad-
ditionally, our focus was primarily on the use of robotic arms, while the future of teleoperated
robots may encompass full-body control. Based on different robotic types and their related
scenarios. Future research could explore a broader range of tasks in real-world Human-Robot
Interaction (HRI) applications, considering various robotic types and their respective scenarios.
For instance, future studies could develop manipulative motions tailored for industrial robots,
involving the direct manipulation of objects such as picking up, moving, or assembling items.
Additionally, there is potential to design locomotive motions, which involve the movement of
the human body in space, such as walking, turning, and bending, that are useful in navigation or
search and rescue operations applications. Moreover, future research could focus on designing
sequential motions, which are complex tasks requiring a series of actions performed in a spe-
cific sequence, like assembling machine parts. These directions allow our proposed methods in
diverse real-world scenarios, enhancing the applicability of teleoperated robots.
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