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Abstract 

Background. Prognosis is the determination of risk of future health outcomes in 

people with a given health condition. The primary aim for my thesis was to 

conduct prognostic model research into first episode psychosis (FEP). The 

prognosis of people with FEP is poor in around half of those affected and 

difficult to predict in individuals. Prognostic prediction models to predict 

outcome in individuals could facilitate early intervention to change clinical 

trajectories and improve prognosis. As part of my primary aim, I sought to 

answer four research questions. 1) Is prediction of individual patient outcome 

possible in FEP using clinical variables? 2) Does prediction model performance 

remain robust at external validation? 3) Does prediction model performance 

improve with the addition of biologically relevant disease markers? 4) Does 

prediction model performance improve with the application of advanced 

machine learning classifiers compared to logistic regression? These questions are 

addressed in studies 1 to 3. 

The secondary aim for my thesis was to test whether routinely collected 

electronic healthcare record data could be used for prognostic research in the 

National Health Service (NHS) in Greater Glasgow and Clyde (GG&C). The 

coronavirus pandemic delayed collection of routine data in FEP. I took the 

opportunity to examine this question in a more common area of psychiatric 

disease, delirium, in the hope that information from this would inform future 

prospective studies in FEP. Delirium is an important risk factor for subsequent 

dementia. However, the field lacks large studies with long-term follow-up of 

delirium in subjects initially free of dementia to clearly establish clinical 

trajectories. This formed study 4. 

Study 1. This study aimed to conduct a systematic review of prognostic 

prediction models developed for predicting poor outcome in FEP. Thirteen 

studies reporting 31 prediction models across a range of clinical outcomes met 

criteria for inclusion. Eleven studies used logistic regression with clinical 

variables. External validation was carried out in four studies. Only one study 

assessed whether biologically relevant disease markers added value as 

predictors. Two studies used machine learning but did not provide enough 

information to allow comparison to logistic regression. Most studies had 
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methodological flaws and the potential for prediction modelling in FEP is yet to 

be fully realised. 

Study 2. This study aimed to develop and externally validate a prognostic 

prediction model of symptom nonremission in FEP developed using multivariable 

logistic regression employing clinical variables. The development cohort 

consisted of 673 FEP patients and the validation cohort consisted of 191 FEP 

patients. The prediction model showed good discrimination C-statistic of 0.73 

(0.64, 0.81) and adequate calibration with intercept alpha of -0.014 (-0.34, 

0.31) and slope beta of 0.85 (0.42, 1.27). The model improved the net-benefit 

by 16% at a risk threshold of 50% compared to the strategy of treating all. The 

model could allow clinicians to intervene earlier to change trajectories and 

improve prognosis in first episode psychosis but first requires prospective 

validation and its clinical impact established in a future trial. 

Study 3. This study assessed the potential for biologically relevant disease 

markers as predictor variables and compared advanced machine learning 

classifiers to logistic regression in 168 patients with FEP. The addition of a 

biological variable did not improve the performance of a logistic regression 

model built using clinical variables. It is possible that the usefulness of the 

biological variables for prediction was curtailed by the lack of a mechanistic link 

to the pathophysiology of psychosis thereby limiting their effect size. The naïve 

Bayes machine learning model was better than maximum likelihood estimation 

(MLE) but not elastic net logistic regression in terms of discrimination. However, 

for all models except MLE logistic regression there were problems with 

calibration. 

Study 4. This study consisted of a retrospective cohort study of all patients over 

the age of 65 diagnosed with an episode of delirium who were initially dementia 

free at onset of delirium within NHS GG&C between 1996 and 2020 using 

routinely collected electronic healthcare record (EHR) data. 12949 patients with 

an incident episode of delirium were included and followed up for an average of 

741 days. The estimated cumulative incidence of dementia was 31% by 5 years. 

The estimated cumulative incidence of the competing risk of death without 

dementia was 49.2% by 5 years. The cause-specific hazard of dementia was 
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increased with higher levels of deprivation and also with advancing age from 65, 

plateauing and decreasing from age 90. 

Conclusions. Systematic review of the literature showed that there is 

considerable potential for prognostic prediction modelling in FEP, but that most 

existing models have methodological flaws. Developing on this literature, my FEP 

prognostic prediction model can help to identify individual patients at increased 

risk of nonremission at initial clinical contact and showed robust external 

validation. However, this approach did not benefit from the addition of 

biologically relevant disease markers as predictor variables or the application of 

machine learning methods. Finally, I demonstrated the feasibility of using 

routinely collected EHR data from NHS GG&C for prognostic research into 

delirium and the risk of subsequent dementia. This will inform future 

prospective prognostic modelling studies of routinely collected data in FEP. 

Altogether, this thesis made several contributions to the growing body of clinical 

prognostic research in first episode psychosis and delirium. In particular, 

considerable progress has been made towards the deployment of a useable and 

informative clinical prediction model which will improve care for people with 

first episode psychosis. 
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Chapter 1 Introduction 

1.1 Prognosis research 

The central theme of my PhD thesis is prognosis. Prognosis is the determination 

of risk of future health outcomes in people with a given health condition 

(Hemingway et al., 2013). Prognostic research is of considerable importance. 

Globally, there are more people living with health conditions than ever before 

(Mathers & Loncar, 2006). Prognostic research seeks to improve the outcomes of 

people living with health conditions. However, there is a disparity between the 

potential and actual impact of prognostic research. Research studies often fall 

short of the high methodological standards required. Serious flaws in the design, 

conduct and reporting of prognosis studies have been identified. In response, the 

PROGnosis RESearch Strategy (PROGRESS) initiative has established standards for 

higher quality prognostic research.  

PROGRESS centres on four themes (Figure 1-1): 1) fundamental prognosis 

research, which investigates the course of health conditions in the context of 

their current care; 2) prognostic factor research, which looks at specific factors 

associated with prognosis; 3) prognostic model research, which is concerned 

with the development, validation and impact of models incorporating multiple 

prognostic factors, and; 4) stratified medicine research, which focuses on the 

use of prognostic information to tailor treatments to individuals or groups 

according to their shared risk (Hemingway et al., 2013; Hingorani et al., 2013; 

Riley et al., 2013; Steyerberg et al., 2013). 

 
Figure 1-1 The four themes which make up the PROGRESS Framework.  

Fundamental Prognosis
Research

Prognostic Factor 
Research

Prognostic Model 
Research

Stratified Medicine 
Research

PROGRESS 
Framework
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My thesis will address each of these four PROGRESS themes and is laid out in two 

sections. The first section and main body of the work is focussed on the third 

PROGRESS theme, prognostic model research, and will touch on the fourth 

PROGRESS theme, stratified medicine research. The clinical problem being 

addressed is psychosis.  

The second section of my PhD seeks to address the feasibility of using routinely 

collected clinical data for prognostic research. This section is focussed on the 

first PROGRESS theme, fundamental prognosis research, and the second 

PROGRESS theme, prognostic factor research. As I will lay out below, as a 

consequence of the global coronavirus pandemic the clinical problem I addressed 

changed to delirium and dementia.  

Fundamental prognosis research encompasses studies describing and explaining 

future outcomes in people with a given health condition in the context of 

current clinical practice. Fundamental prognosis research is vital for our overall 

understanding of a health condition. It informs clinical care as well as broader 

public health policy. Public health policy makers require estimates of average 

prognosis to model the population burden of diseases as well as to assess the 

relative contribution of healthcare delivery among those with and without 

disease (i.e., primary and secondary prevention). Fundamental prognosis 

research also focuses future research goals including into disease mechanisms 

and potential therapeutic targets (Hemingway et al., 2013). 

Prognostic factor research involves research into specific factors that are 

associated with prognosis. A prognostic factor is a measure recorded in people 

with a given health condition that is associated with subsequent clinical 

outcome. Measures can be at the individual level like biomarkers or at the 

ecological level such as social deprivation. Research into prognostic factors 

attempts to discover and understand factors which could be modifiable targets 

for interventions, components of a prognostic model or predictors of treatment 

response (Riley et al., 2013). 

I will outline and explain prognostic model research in detail below as well as 

touch on its relationship with stratified medicine. 
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1.2 Psychosis 

1.2.1 Overview 

Psychosis is derived from the Greek for abnormal condition of the mind. It is a 

serious mental disorder characterised by positive symptoms and negative 

symptoms. Positive symptoms include hallucinations (perceptions in the absence 

of a stimulus), delusions (fixed or falsely held beliefs) and disorganised 

behaviour, speech and thoughts. Negative symptoms include emotional blunting, 

reduced speech, loss of motivation, self-neglect and social withdrawal (National 

Institute for Health and Care Excellence (NICE), 2021b). In the United Kingdom 

(UK) mental disorders are diagnosed based on the presence or absence of signs 

and symptoms as defined in the Tenth Revision of the International Classification 

of Diseases (ICD-10) Classification of Mental and Behavioural Disorders. Broadly, 

ICD-10 divides the psychotic disorders into three groups: idiopathic psychoses, 

substance induced psychoses and psychoses due to medical conditions (including 

neurodegenerative disorders). Idiopathic psychoses can be further divided into 

affective and non-affective psychoses based on their involvement of affect or 

mood. The archetypal non-affective psychosis is schizophrenia (World Health 

Organization (WHO), 1992). The peak age of onset of first episode psychosis is 

between 15 and 30 years (Jones, 2013). 

In Scotland psychotic disorders affect between 1-2% of the population and 

estimates are of 1600 new presentations of psychoses per year (The Scottish 

Government, 2012, 2019). In Glasgow specifically, the population prevalence of 

idiopathic nonaffective psychoses was 0.53% between 2002 and 2005 (Srireddy et 

al., 2012). More granular data on the incidence of psychotic disorders is 

available in England. Kirkbride et al calculated the pooled incidence of new 

diagnoses of psychosis (including all idiopathic and substance induced psychoses) 

as 31.7 per 100000 person years based on data published between 1950 and 

2009. The pooled incidence of non-affective psychosis was 23.2, schizophrenia 

15.2 and affective psychosis 12.4 per 100000 person years. Rates of psychosis 

were stable over time with the exception of substance induced psychoses which 

while still rare, were increasing in incidence (Kirkbride et al., 2012). Unlike 

specific substance induced psychoses, substance misuse is common in patients 

diagnosed with psychosis with rates twice that of the general population 
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(Barnett et al., 2007). In contrast to the lack of change over time in England, 

Scottish data found that the prevalence of schizophrenia increased by 53.42% 

between 1981 and 2006 from 2.38/1000 to 3.59/1000 general population in the 

geographically defined area of Nithsdale in South-West Scotland.  Further, in 

2006 patients with schizophrenia were more likely to live in the community and 

to be managed in secondary care than in 1981 (Shivashankar et al., 2013).  

Psychotic disorders are associated with considerable morbidity with symptom 

remission rates of 58% and recovery rates (incorporating both symptomatic and 

functional improvement for at least 2 years) of just 38% (Lally et al., 2017). In 

England the total societal cost of the most common psychotic disorder, 

schizophrenia, was estimated to be greater than £11.8 billion annually (Andrew 

et al., 2012). 

Current Scottish Intercollegiate Guidelines Network (SIGN) and National Institute 

for Health and Care Excellence (NICE) guidelines recommend all patients with a 

first episode of psychosis receive treatment within the context of a specialist 

early intervention service (National Institute for Health and Care Excellence 

(NICE), 2014; Scottish Intercollegiate Guidelines Network (SIGN), 2013). 

Diagnosis at initial clinical contact is frequently difficult and it can take months 

or years before a final diagnosis is made so early intervention is offered to a 

broad spectrum of idiopathic psychoses (National Institute for Health and Care 

Excellence (NICE), 2016b). The key components of an early intervention service 

should be multidisciplinary and include the provision of psychosocial 

interventions, pharmacological treatment, case management involving smaller 

caseloads and an assertive approach to treatment (Bird et al., 2010). The core 

aims of the early intervention service are to reduce duration of untreated 

psychosis and produce effective outcomes in terms of recovery and relapse 

(National Institute for Health and Care Excellence (NICE), 2016b). The rationale 

for early intervention in psychosis is based on the ‘critical period’ hypothesis 

which states that the early stages of psychosis (the first two to three years) is a 

‘critical period’ with major implications for secondary prevention of the 

impairments and disabilities that accompany psychosis (Birchwood et al., 1998). 

Compared to treatment as usual, early intervention is associated with better 

outcomes including reduced hospital admissions, relapse rates and symptom 
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severity and improved treatment adherence and global functioning (Correll et 

al., 2018). 

Much of the early evidence for the effectiveness of early intervention in 

psychosis compared to treatment as usual stems from the influential Danish 

OPUS trial. In OPUS, at 2 years early intervention was superior to treatment as 

usual in terms of symptoms, comorbid substance use, adherence and satisfaction 

with treatment (Petersen et al., 2005). However, these differences were no 

longer significant at 5 years (Bertelsen et al., 2008). Indeed, results from the 

OPUS trial show that evidence for longer term benefit from early intervention is 

more ambiguous. While there was a beneficial effect of the use of supported 

housing and psychiatric hospitalisation at 5 years, this was no longer seen at 10- 

or 20-years follow-up (Hansen et al., 2023; Secher et al., 2015). The authors 

suggest that the lack of sustained treatment effect contradicts the ‘critical 

period’ hypothesis as it suggests treatment induced improvement in the early 

years of first episode psychosis does not alter the longer-term trajectory 

(Hansen et al., 2023). Results are more persuasive when comparing the real-

world implementation of early intervention services to the trial conditions in 

OPUS. Posselt et al found that at 5 years compared to OPUS trial participants, 

real-world implementation of early intervention in Denmark was associated with 

fewer and shorter psychiatry admissions, better occupational functioning and 

more chance of being in a relationship. The treatment as usual group fared 

worse than both the trial and real-world implementation groups (Posselt et al., 

2021). 

1.2.2 Pathophysiology 

1.2.2.1 Neurotransmission 

Psychosis is characterised by altered neurotransmission in the dopamine and 

glutamate pathways which leads to symptoms of psychosis. Evidence for the role 

of dopamine stems from the observation that the clinical efficacy of all effective 

antipsychotics is intrinsically linked to blockade of dopamine D2 receptors 

(Seeman & Lee, 1975). However, dopamine blockade is not effective for 

negative and cognitive symptoms. Further, in a significant proportion of patients 

(those with treatment resistance) it does not improve positive symptoms either. 
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The finding that N-methyl-D-aspartate (NMDA) glutamate receptor antagonists 

induce psychotic symptoms has led to a magnitude of research implicating the 

glutamate system in psychosis (McCutcheon et al., 2020). 

Positron emission tomography (PET) studies have consistently shown increased 

presynaptic dopamine function in the striatum (McCutcheon et al., 2020). The 

pathophysiological relevance of these findings has been supported by a direct 

association between striatal dopamine synthesis capacity and severity of positive 

psychotic symptoms (Jauhar et al., 2017). Further, striatal dopamine synthesis 

capacity correlates with antipsychotic treatment response with higher dopamine 

synthesis capacity in responders compared to non-responders (Jauhar et al., 

2019). In contrast, PET studies have shown little consistent evidence for altered 

dopamine receptor levels in psychosis (McCutcheon et al., 2020). 

Data from magnetic resonance spectroscopy (MRS) implicates excess 

glutamatergic neurotransmission with elevations in glutamate related 

metabolites across several brain regions reported on meta-analysis in 

schizophrenia (Merritt et al., 2016). More recent work points to elevated 

glutamate levels on MRS being associated with greater illness severity in 

schizophrenia and that glutamate levels may be reduced by effective 

antipsychotic treatment (Merritt et al., 2021). However, MRS is not able to 

distinguish between intra- and extracellular compartments. Further, glutamate 

does not solely act as a neurotransmitter but is also involved in protein synthesis 

and nitrogen metabolism, and as a precursor to γ-aminobutyric acid (GABA) 

(McCutcheon et al., 2020). 

Taken together, the literature points to excess synaptic levels of dopamine and 

glutamate that cause increased postsynaptic stimulation with the downstream 

effect of symptoms of psychosis. Deficiencies in GABA interneurons and 

hypofunctioning NMDA receptors are thought to represent the molecular basis of 

these disturbances, altering the inhibitory-excitatory balance of neural systems 

(Howes et al., 2015; Lieberman & First, 2018). 
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1.2.2.2 Environmental factors 

Psychosis has been viewed as a neurodevelopmental disorder. Evidence which 

points to environmental factors includes the fact that exposure to prenatal 

environmental insults (maternal infections, toxins and nutritional deficiencies), 

birth complication, postnatal trauma and deprivation at critical stages of 

development is associated with risk of psychotic disorders. These environmental 

factors and thought to interact with genetics and increase susceptibility to 

psychosis (Lieberman & First, 2018). 

1.2.2.3 Genetics, gene expression and epigenetic factors 

Idiopathic psychotic disorders are highly heritable. Data from large population 

registry studies indicate estimates of the heritability of schizophrenia and 

schizophrenia spectrum disorders are 79% and 73%.(Hilker et al., 2018) Further, 

among siblings and parents of people with idiopathic psychotic disorders, rates 

of the same disorder are 10-15 times as high as the general population. 

(Lieberman & First, 2018) 

Many common genetic variants of low penetrance have been associated with 

psychotic disorders including schizophrenia. Large genome-wide association 

studies highlight the DRD2 gene (coding for dopamine receptor D2, the target of 

all effective antipsychotic drugs) and many genes (for example, GRM3, GRIN2A, 

SRR, GRIA1) involved in glutamatergic neurotransmission and synaptic plasticity. 

In addition, research implicate genes involved in immunological function, 

including the major histocompatibility complex and complement (Ripke et al., 

2014; Sekar et al., 2016). 

The most common rare genetic variant of high penetrance associated with 

psychosis is the chromosome 22q11.2 microdeletion with causes DiGeorge 

syndrome. DiGeorge syndrome occurs in approximately 1 in 4000 live births and 

is characterised by cardiac, facial and limb abnormalities with 24% affected 

patients having symptoms indistinguishable from idiopathic schizophrenia 

(Murphy et al., 1999). 

Recent gene ontology enrichment analysis of rare and common genetic variants 

identified in schizophrenia patients highlight three major functional clusters of 
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genes related to channel or transporter activities, neuronal components 

(synapse, axon, and dendrite) and chromatin or histone organisation (Nakamura 

& Takata, 2023). 

Further downstream, gene expression data in post mortem brain tissue of 

patients with schizophrenia shows particular expression of genes related to 

inflammatory response and receptor activity, similar to the genetic findings 

above (Gandal et al., 2018; Nakamura & Takata, 2023). When looking at 

epigenetic modification post mortem studies show differential methylation of 

genes related to embryo development, cell fate determination and nervous 

system differentiation (Jaffe et al., 2016; Nakamura & Takata, 2023). 

Although large scale genetic studies have uncovered a considerable amount of 

the genetic architecture of psychosis including schizophrenia, there remains a 

considerable gap between the overall heritability reported in epidemiological 

studies (as above, up to 80%) and that explained by identified common genetic 

variants of low penetrance (24%) and rare genetic variants of high penetrance 

(<10%) (Nakamura & Takata, 2023). 

1.2.2.4 Animal and cellular models 

Nakamura and Takata recently systematically reviewed the literature looking a 

mouse models based on rare genetic variant of high penetrance (specifically 

variants with an observed odds ratio of schizophrenia >10). They identified 

studies looking at mouse models of the following genetic variants: 22q11.2 

deletion, 16p11.2 deletion/duplication, 3q29 deletion, 15q11.2–13.1 duplication, 

2p16.3 (NRXN1) deletion, GRIN2A loss of function variant (LOF), GRIA3 LOF, and 

SETD1A LOF. The commonly dysregulated molecular pathways identified in these 

mouse models included neural transmission and regulation of transcription, 

similar to those highlighted in human genetic studies. Morphological analysis of 

the neuronal cells in the models showed reduced axonal and dendritic 

complexity together with abnormal spine morphology. Common 

electrophysiological phenotypes included altered synaptic transmission and 

deficits in long term potentiation. When considering mouse behavioural 

readouts, deficits in sociability, cognitive performance and prepulse inhibition 



9 
 
were identified, in line with those found in human patients with schizophrenia 

(Nakamura & Takata, 2023). 

Nakamura and Takata also reviewed cellular models of the above identified  

genetic variants. Cellular models enable the reproduction of pathological 

conditions in vitro by creating patient-derived or mutation-carrying induced 

pluripotent stem cells and then differentiating them into central nervous system 

cells or miniature brains. In line with the mouse models, cellular models showed 

dysregulation of genes related to neural transmission and transcriptional 

regulators. Further, there were commonly morphological alterations of the cell 

soma and dendrites. The cellular models also suggested that imbalanced 

excitatory and inhibitory neuronal activity is important to the pathophysiology of 

schizophrenia (Nakamura & Takata, 2023). 

1.2.2.5 Inflammation 

Increasingly compelling data point to an association between inflammation and 

psychosis. Autoimmune disorders are associated with higher rates of psychosis 

(Bergink et al., 2014). As discussed above, the strongest genetic relationship in 

schizophrenia is with the major histocompatibility complex, a region with a key 

role in immunity (Ripke et al., 2014). The association between maternal 

infection and schizophrenia is supported by the animal maternal immune 

activation model of psychotic-like behaviour (Brown & Patterson, 2011). 

Circulating inflammatory biomarkers are associated with psychosis including 

raised neutrophil/lymphocyte ratio (NLR) and monocyte/lymphocyte ratio (MLR), 

abnormalities in circulating proinflammatory cytokines and their receptors, 

reduced nerve growth factor, raised S100 calcium binding protein and raised C-

reactive protein (Mazza et al., 2020; Yuan et al., 2019). Inflammation is linked 

to increased glutamate expression in the brain via the upregulation of the 

enzyme indoleamine 2, 3-dioxygenase (IDO). Quinolinic acid is a downstream 

product which is glutamatergic (Schwarcz et al., 2012). 

1.2.3 Risk factors for psychosis from epidemiology 

Epidemiological studies show that psychotic disorders are more common in the 

young with peak incidence in people in their 20s, in males, in racial or ethnic 
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minorities especially black people, in urban areas and in areas of with higher 

levels of deprivation as indicated by lower levels of owner-occupancy (Jongsma 

et al., 2018; Kirkbride et al., 2012). Further, an epidemiological link between 

cannabis and psychosis was first identified more than 35 years ago (Andreasson 

et al., 1987), with findings replicated in more recent studies (van Os et al., 

2002; Zammit et al., 2002). 

Locally in Glasgow, epidemiological work found that psychosis was most 

prevalent amongst black and minority ethnic groups. The prevalence of psychosis 

was higher in deprived areas in white but not black and minority ethnic 

populations. The authors postulate that belonging to an ethnic minority group 

may be a risk factor for being diagnosed with psychosis independent of 

socioeconomic deprivation. Among the white population, psychosis was also 

twice as likely to be diagnosed in males compared with females (Srireddy et al., 

2012). 

1.2.4 Prognostic factors in psychosis 

1.2.4.1 Definitions 

The Remission in Schizophrenia Working Group defined symptom remission as 

scores of less than or equal to three in Positive And Negative Syndrome Scale 

(PANSS) items P1 Delusions, P2 Conceptual Disorganization, P3 Hallucinatory 

Behavior, N1 Blunted Affect, N4 Apathetic Social Withdrawal, N6 Lack of 

Spontaneity and G9 Unusual Thought Content, present for a period of at least 6 

months (Andreasen et al., 2005). 

Treatment resistance is defined as failing to respond to two standard 

antipsychotic medications of adequate dose and duration. 

The concept of recovery from psychosis is less consistently defined but Lally et 

al’s definition includes both symptomatic and functional improvement for at 

least 2 years (Lally et al., 2017). Functional recovery specifically is the 

treatment outcome most valued by patients (Iyer et al., 2011). 
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1.2.4.2 Psychosis overall 

Systematic review and meta-analysis of observational studies provide evidence 

for prognostic factors for outcomes in people diagnosed with psychosis. Duration 

of untreated psychosis is the most replicated predictor of outcome in psychosis. 

Several meta-analyses have linked longer duration of untreated psychosis poor 

outcomes in psychosis including with lower rates of symptom remission and 

poorer functional recovery (Diana O. Perkins et al., 2005; Farooq et al., 2009; 

Howes et al., 2021; Marshall et al., 2005; Penttilä et al., 2014). Reducing 

duration of untreated psychosis is the key rationale behind early intervention 

services for psychosis and its principal aim (National Institute for Health and 

Care Excellence (NICE), 2016b). 

1.2.4.3 First episode psychosis 

The literature on prognostic factors for first episode psychosis is inconsistent. 

For example, while Lally’s 2017 meta-analysis provided the first robust evidence 

of remission and recovery outcomes in first episode psychosis at 58% and 38% 

respectively, it was unable to establish any key clinical or demographic factors 

which discriminated between patients. In particular, it did not replicate earlier 

findings of longer duration of untreated psychosis and worse outcomes in first 

episode psychosis (Lally et al., 2017). Another more recent 2021 meta-analysis 

by Catalan et al established very similar rates for remission and recovery in first 

episode psychosis, at 54% and 32%. However, yet again this study failed to 

establish any predictors that had a significant effect on remission or recovery. 

Recovery was associated with male sex and positive symptoms, but these 

associations did not survive multiple comparison corrections. As with Lally et al,  

Catalan et al did not find any relationship between duration of untreated 

psychosis and outcome in first episode psychosis (Catalan et al., 2021). 

A comprehensive 2017 meta-analysed identified several factors that were 

associated with better long-term functioning in first episode psychosis. These 

included better cognitive functioning, female sex, education, work history, 

lower positive, negative and joint symptoms at baseline, premorbid adjustment, 

shorter duration of untreated psychosis and duration of illness and remission of 



12 
 
positive, negative and joint symptoms. The strongest association was with 

symptom remission (Santesteban-Echarri et al., 2017). 

Finally, when considering prognostic factors for treatment resistance in the early 

stages of first episode psychosis, male sex was associated with the outcome 

(Siskind et al., 2022). 

1.2.4.4 Early-onset psychosis 

When restricting the population to those with early-onset psychosis (onset 

before the age of 18) findings are more consistent. A 2015 systematic review by 

Díaz-Caneja et al identified history of developmental delay, poor premorbid 

adjustment, greater symptom severity at baseline (especially negative 

symptoms) and longer duration of untreated psychosis as the most replicated 

predictors of poor symptomatic, functional and cognitive outcomes. Diagnosis of 

schizophrenia was a significant predictor of greater disability, worse global 

functioning and poorer quality of life at follow-up. This study was one of the few 

systematic reviews to consider the evidence for biological predictors of outcome 

in psychosis. The review highlighted preliminary evidence for neuroimaging 

markers including regional cortical thickness and grey matter volume at baseline 

which predicted remission (Díaz-Caneja et al., 2015). However, in general, 

evidence for putative biological predictors of outcome in psychosis, such as 

those implicated in the pathophysiology as discussed above, has not been 

consistently identified at systematic review. 

1.2.4.5 Schizophrenia 

Looking at prognostic factors for treatment resistance in schizophrenia 

specifically, systematic review highlighted evidence for younger age of onset, 

schizophrenia diagnosis, level of functioning, male gender and autumn/winter 

season of birth (Smart et al., 2021). 

1.2.5 Prediction of outcome in psychosis 

As discussed above, outcomes in first episode psychosis are heterogeneous with 

remission rates of 58% and recovery rates of 38% (Lally et al., 2017). In the early 

stages of treatment for first episode psychosis, 23% of patients develop 
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treatment resistant schizophrenia (Siskind et al., 2022). Although effective 

interventions exist to combat nonremission, inadequate recovery and treatment 

resistance, there is often a delay in providing these interventions. For example, 

clozapine is more effective than other antipsychotics for alleviating symptoms in 

treatment resistance schizophrenia and is the recommended therapy. However, 

evidence suggests that there is an average delay of nearly four years in initiating 

clozapine (Howes et al., 2012). This is in spite of the fact that according to 

current treatment guidelines, treatment resistance status could be diagnosed in 

as little as 12 weeks (National Institute for Health and Care Excellence (NICE), 

2014). Longer delays before clozapine initiation have been shown to result in a 

worse symptomatic response (Yoshimura et al., 2017). Clinicians have identified 

the difficulties in early identification of patients who are likely to become 

treatment resistant as a barrier to preventing the initiation of effective phase-

specific treatments like clozapine at the optimal time (Farooq et al., 2009). 

Yet, despite the growing body of evidence for prognostic factors from systematic 

review and meta-analysis of observational studies as discussed above, at present 

clinicians still struggle to predict outcome in individuals with psychosis. 

Difficulties are compounded by the fact that group level differences identified in 

observational studies cannot be readily extrapolated to individuals – the 

ecological fallacy (Sedgwick, 2015). Further, insights drawn from explanatory 

research do not necessarily equate to accurate predictions (Shmueli, 2010). 

1.3 Prognostic model research 

1.3.1 Overview 

A prognostic prediction model combines two or more prognostic risk factors (also 

known as predictors, features or independent variables) into an algorithm which 

is used to predict the probability of a future event (the dependent variable or 

outcome). An algorithm is a sequence of statistical, mathematical or 

programmatic rules usually conducted by a computer to achieve a goal (e.g. 

predicting disease) (Dwyer & Krishnadas, 2022). As outlined above, prognostic 

risk factors range from demographic characteristics and clinical features to 

biological disease markers like imaging, genetics, blood or tissue measurements. 
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Prognostic model research, the third PROGRESS theme, has the potential to 

revolutionise medicine by the prediction of individual patient outcome. Early 

identification of patients at a higher risk of poor outcome in first episode 

psychosis via a prognostic model could help facilitate personalised interventions 

according to their individual profile of prognostic factors. This is the basis of 

stratified medicine, the fourth PROGRESS theme. Stratified medicine is 

contrasted with the current approach in most areas of medicine, including 

psychiatry, of “all comer” or “empirical” medicine (Hingorani et al., 2013). A 

stratified medicine approach has had some initial successes. Specific examples 

include the Predict tool which is recommended to guide adjuvant therapy in 

individuals with invasive breast cancer (National Institute for Health and Care 

Excellence (NICE), 2018; Wishart et al., 2010), and, the QRISK tool which is 

recommended to guide lipid lowering treatment based on an individual’s 

cardiovascular risk (Hippisley-Cox et al., 2017; National Institute for Health and 

Care Excellence (NICE), 2016a). These prognostic models aim to assist, not 

replace, clinicians with their prediction of a patient’s future outcome in order to 

enhance informed decision making together with the patient (Steyerberg et al., 

2013). However, such examples of gold standard practice in prognostic model 

research are very much the exception to the rule and the vast majority of 

models are never applied into clinical practice (Riley et al., 2013). 

1.3.2 Prediction modelling versus explanatory modelling 

Prognostic model research relies on prediction modelling. Prediction modelling is 

defined as the process of applying a statistical model or data mining algorithm to 

data for the purpose of predicting outcomes in individuals. The focus is on the 

predictive performance of the model on new (unseen) data, i.e., model 

generalisability. Theoretical models are not necessary and causal interpretation 

is not typically of interest. Model transparency is often of secondary importance 

and so the range of plausible models includes not only regression models but also 

machine learning algorithms. Indeed, many models are often criticised as being 

like a “black box” as they are only viewed in terms of the inputs and outputs 

without any knowledge of the internal workings. Prediction modelling is 

contrasted with explanatory modelling which refers to the application of 

statistical models to data for testing hypotheses. In explanatory research we are 

interested in an average group response of a population. The focus is on how 
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well the explanatory model fits existing data. Explanatory modelling requires 

interpretable statistical models that are easily linked to the underlying 

theoretical model. This explains the popularity of statistical models, especially 

regression type models. Machine learning methods like artificial neural 

networks, which are less amenable to interpretation, may be considered ill-

suited for explanatory modelling (Shmueli, 2010). 

 

Figure 1-2 The trade-off between bias and variance.  

Prediction modelling involves a trade-off between bias and variance to optimise 

out of sample performance (Figure 1-2). In explanatory modelling, however, the 

key criteria for model selection is to minimise bias on existing data. Model 

variance is the spread of our predictions. High variance results from overfitting 

training data and leads to a lack of generalisability to new data. Variance can 

also be conceptualised as the difference in fits between datasets. Bias is the 

difference between the prediction of our model and the correct value. Models 

with a high bias pay little attention to the training data and underfit. This 

results in high error on training and test dataset (James et al., 2021). 

Prediction modelling can be used for both prognostic prediction models which 

estimate the probability that a future outcome will occur and also for diagnostic 

prediction models which estimate the probability that a certain outcome is 

present (Moons et al., 2019). This thesis is concerned with the former. In 

subsequent chapters where “prediction models” are discussed, it is always 

prognostic prediction models that are being referred to. 
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1.3.3 Machine learning versus regression for prediction 

Machine learning is operationally defined as “models that directly and 

automatically learn from data”(Christodoulou et al., 2019). This is in contrast to 

regression models which “are based on theory and assumptions, and benefit 

from human intervention and subject knowledge for model specification” 

(Christodoulou et al., 2019). Clinical prediction models more often involve 

regression modelling techniques (for example, logistic regression with or without 

regularisation) despite the availability of machine learning techniques (for 

example, artificial neural networks, random forest or support vector machines) 

(Moons et al., 2019). For example, Meehan et al reviewed all the published 

evidence for prediction models in psychiatry and found that the majority used 

regression-based methods as opposed to machine learning (Meehan et al., 2022). 

Machine learning algorithms can improve the accuracy of prediction over 

conventional regression models by capturing complex nonlinear relationships in 

the data (Chen & Asch, 2017). Nonlinear interactions can, however, be modelled 

in regression using regression splines. There are specific issues associated with 

the use of machine learning for prediction in a clinical setting. Despite not being 

the primary goal in prediction, a lack of transparency for a model can adversely 

affect applicability and usability especially in a clinical setting. Machine learning 

models are often criticised as being a “black box” which offer no explanation for 

their decisions. For example, they often lack a clear estimate of the importance 

of different features or how they interact to predict the outcome. This is 

contrasted with regression models which are easier to explain and interpret but 

as a consequence are not always capable of modelling the inherent complexities 

in the data. Further, there are potential ethical implications; if doctors cannot 

understand and explain why an algorithm made a decision, how can patients give 

informed consent for the proposed management (Watson et al., 2019)? 

There are additional issues in clinical settings with rarer conditions. Machine 

learning models can be more flexible but as a consequence tend to overfit data 

when sample sizes are small and data is sparse (Moons et al., 2019). Prediction 

models developed using machine learning techniques have been demonstrated to 

require substantially higher events per variable (often >200) to mitigate 

overfitting and optimism in model performance (van der Ploeg et al., 2014). 
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Regression models can be the most sensible choice in datasets with lower events 

per variable. In contrast, machine learning performs best for problems with a 

high signal-to-noise ratio with higher events per variable (Christodoulou et al., 

2019). 

In spite of the above, the distinction between regression models and machine 

learning has been viewed to be artificial. Indeed, many consider logistic 

regression as a type of machine learning model. Alternatively, algorithms may be 

considered to exist “along a continuum between fully human-guided to fully 

machine-guided data analysis” (Beam & Kohane, 2018). 

1.3.4 Further ethical considerations 

There are additional ethical considerations which are common to both regression 

and machine learning prediction models. For example, prediction models may 

disempower patients by undermining their sense of agency (the belief that one 

can shape one’s own life). This may result if patients misinterpret prediction to 

mean that the outcomes they predict (for example, relapse or recovery) are 

predetermined and beyond their ability to influence. As a consequence, patients 

may disengage with their care and treatment or place limits on their goals or 

ambitions. Moreover, if third parties like employers or insurance companies gain 

access to negative predictions patients may suffer discrimination. Finally, 

prediction models may exacerbate existing inequalities in healthcare. For 

example, if a prediction model is trained on a predominantly white population 

(as is typical of research cohorts in the developed countries), it will be less 

accurate in individuals from ethnic minorities and disadvantage these groups 

(Lane & Broome, 2022). 

1.3.5 Stages of prognostic model development 

Prognostic model research proceeds through three main stages: model 

development (including internal validation), external validation and assessment 

of impact in clinical practice (Figure 1-3) (Steyerberg et al., 2013). A 

development study typically involves the identification of important predictors, 

assigning relative weights to each predictor and assessing the model’s 

performance adjusted for overfitting by an internal validation procedure such as 
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cross-validation or bootstrapping. An external validation study tests the model’s 

predictive performance in new subjects from different sites (geographical 

validation), time points (temporal validation) or clinical context (for example, 

from primary to secondary care). Finally, an impact study assesses whether the 

use of a prognostic model in daily practice improves clinical decision making and 

patient outcomes. An impact study is ideally performed as a cluster-based 

randomised control trial with centres randomised to care with or without the 

benefit of a prognostic model. Only a clinical impact study can assess whether 

use of the model is better than usual care. Impact studies can also be used to 

assess other factors which affect implementation such as acceptability of the 

model to clinicians and ease of use (Moons et al., 2009; Steyerberg et al., 2013). 

Further, it needs to be determined whether an assistive or directive approach is 

adopted when presenting a model to clinicians. In an assistive approach 

predictions are simply presented as numerical probabilities without 

corresponding decision recommendations, while a directive approach presents 

decision recommendations with or without corresponding numerical probabilities 

(Kappen et al., 2018; Moons et al., 2009). Prognostic models only influence 

patient outcome when changes in clinical management result from their 

predictions. It is also important to remember that prognostic models have a cost 

in their implementation and could even have adverse consequences on clinical 

outcomes if their use leads to a clinician withholding potential beneficial 

treatment (for example, from a patient whom the model estimates to have low 

risk) (Steyerberg et al., 2013). 

 
Figure 1-3 Steps required in order to translate a prognostic prediction model into clinical 
practice.  

Most publications on prognostic models describe model development, a minority 

report external validation and only very few consider clinical impact. Meehan et 

Development Validation Clinical Impact 
Study
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al recently reviewed all published prediction models in psychiatry (both 

prognostic and diagnostic models in this case). They found that of the 308 

prediction models published only 20% had undergone any form of external 

validation and only one model had undergone a preliminary assessment of 

clinical implementation (Meehan et al., 2022). Similar findings have been 

reported for prognostic models across all of clinical medicine (Steyerberg et al., 

2013). 

1.3.6 Methodological issues in the field 

Despite the existence of clear guidance for the reporting of prediction models, 

the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) statement (Collins et al., 2015), and for the 

assessment of bias in prediction modelling studies, Prediction model Risk Of Bias 

ASsessment Tool (PROBAST) (Wolff et al., 2019), methodological issues in 

prognostic modelling studies are common. In psychiatry, Meenan et al identified 

risk of bias in 94.5% of model development analyses and in 68.6% of external 

validation analyses. Risk of bias occurs when shortcomings in study design, 

conduct or analysis lead to systematically distorted estimates of a model’s 

predictive performance. The most common concern was inappropriately low 

numbers of events per variable with only 26.9% of studies meeting the widely 

adopted benchmark of ≥10. This highlights the importance of sample size. 

Predictor selection was often problematic too with only 8.6% of studies adopting 

the recommended practice to minimise risk of bias by selecting candidate 

predictors based on existing evidence and expert knowledge. Instead, most 

studies adopted data-driven methods of variable selection. Moreover, key 

prediction performance metrics were poorly or inconsistently reported. 

Steyerberg et al outline four key measures of predictive performance that should 

be assessed in any prediction-modelling study: two measures of calibration (the 

calibration-in-the-large Alpha (A) and the calibration slope Beta (B)), 

discrimination via a Concordance statistic (C) and clinical usefulness with 

Decision-curve analysis (D) (Steyerberg & Vergouwe, 2014). Model calibration is 

the level of agreement between the observed outcomes and the predictions. 

Discrimination is the ability of a model to distinguish between a patient with the 

outcome and one without. Yet, Meehan et al found that while 88% of models 

reported discrimination, just 22.1% of models assessed calibration and only two 
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models considered clinical usefulness. Finally, only 11.4% of development studies 

were judged to have performed internal validation to a sufficient statistical 

standard. The main issue was the use of random split sampling instead of the 

recommend cross-validation or bootstrapping. However, even when this was 

performed, only 23% appropriately nested feature selection and tuning 

procedures (Meehan et al., 2022). While not specifically raised by Meehan et al, 

inappropriate handling of missing data (which should ideally be via multiple 

imputation) is another methodological issue common across the field (Moons et 

al., 2019; Steyerberg et al., 2013). However, despite these shortcomings there 

remains great potential for clinical benefit from prognostic model research and 

stratified medicine in psychiatry and across medicine. 

1.4 Routinely collected clinical data for prognostic 
research 

In recent years, prognosis research has benefitted from the exponential growth 

in the availability of routinely collected health data. Its use is a key 

recommendation from PROGRESS (Hemingway et al., 2013). Routinely collected 

data are data collected without a specific a priori research question. Sources of 

routinely collected data include disease registries and electronic healthcare 

records (Benchimol et al., 2015). It is extremely valuable for prognosis research 

because it allows pragmatic cost-effective research to be conducted in an 

entirely naturalistic clinical setting, with much larger numbers of participants. 

Linkage of electronic health records across different sources enables the 

possibility of examining the patient journey with repeated measures of care in 

larger populations than would be feasible in traditional observational studies 

(Hemingway et al., 2013). In addition, routinely collected data enables the 

researcher to circumvent any issues with selection bias. 

A principal aim of my PhD fellowship was to be the establishment of the 

Electronic Measures in Psychosis – Assessing Trajectory and Health-Outcomes 

(EMPATH) platform for the collection of outcome data for first episode psychosis 

patients treated withing Esteem National Health Service (NHS) Greater Glasgow 

& Clyde (GG&C) early intervention in psychosis service. EMPATH aims to 

operationalise the routine collection of standard outcome measures within the 

service.  
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Data collected within EMPATH will be securely deposited within West of Scotland 

Safe Haven which allows research use of linked unconsented routinely collected 

datasets. Safe Haven has ethical approval (17/WS/0237) to create a research 

database using routinely collected, un-consented patient data. Safe Haven 

provide a secure environment for hosting and analysing routinely collected 

patient data from NHS GG&C. Researchers benefit from accelerated ethical 

approval via the Safe Haven Local Privacy Advisory Committee. Safe Haven have 

access to many large datasets of NHS encounters in secondary care, 

demographics and death data for Glasgow populations, prescribing information, 

and many more specialised thematic datasets drawn from various NHS and 

patient research sources (NHS Greater Glasgow & Clyde, 2023). 

I had planned to use EMPATH as a source of routinely collected data to 

undertake prognosis research into patients with a first episode of psychosis as 

part of my PhD. Unfortunately, there have been significant delays in developing 

and deploying the EMPATH platform as a consequence of the global coronavirus 

pandemic such that deployment was postponed until 2023. Routinely collected 

data should be available for prognosis research from 2024. 

Given this, in order to establish the feasibility of using routinely collected data 

from NHS GG&C for prognosis research using Safe Haven, in advance of accessing 

routinely collected data from EMPATH, I looked at another clinical area with 

unanswered prognosis questions: delirium and the risk of subsequent dementia. 

This work falls under the first PROGRESS theme, fundamental prognosis 

research, and second PROGRESS theme, prognostic factor research. The data for 

this study came from the West of Scotland Safe Haven. 

1.5 Delirium and the risk of subsequent dementia 

With an aging population in industrialised countries, cognitive impairment is an 

increasingly frequent problem. Delirium and dementia are among the leading 

causes of cognitive impairment (Fong et al., 2015). Dementia is characterised by 

an irreversible progressive global cognitive decline. Delirium is characterised by 

an acute and fluctuating disturbance in attention and awareness with associated 

disturbance in cognition (for example, memory deficit, disorientation, language, 

visuospatial ability or perception), which cannot be explained by another 
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neurocognitive disorder and does not occur in the context of a severely reduced 

level of arousal, such as coma. It is a serious and life-threatening 

neuropsychiatric syndrome, which is a direct physiological consequence of 

another medical condition, substance intoxication or withdrawal, toxins or 

multiple aetiologies (Slooter et al., 2020). 

Delirium affects as much as 50% of those over 65s in hospital but is less common 

in the community with a prevalence of 1-2% (Inouye et al., 2014). In comparison, 

the prevalence of dementia is 7.1% in the over 65s (Prince et al., 2014). The 

rates are particularly high in hospital settings with 1 in 4 UK hospital beds 

occupied by people with dementia at any one time (Royal College of 

Psychiatrists, 2019). 

Delirium and dementia are clinical diagnoses which can be distinguished by 

several features. In delirium the onset is typically abrupt over hours to days, 

whereas dementia is insidious and progressive over months to years. In delirium, 

attention and consciousness are reduced and fluctuate, while in dementia these 

cognitive domains remain intact until the advanced stages (Fong et al., 2015). 

There are a number of possible pathways linking delirium to subsequent 

dementia. Delirium may represent an epiphenomenon which simply exposes pre-

existing cognitive impairment. The effect of delirium on dementia may be 

related to its precipitating factors. Alternatively, delirium itself may cause 

permanent neuronal damage and precipitate dementia. If delirium causes 

dementia this has important implications. Delirium is estimated to be 

preventable in 30 to 40% of cases (Inouye et al., 1999; Marcantonio et al., 

2001).This suggests that many cases of dementia itself could therefore also be 

prevented.  

Evidence linking delirium to subsequent cognitive impairment and dementia has 

emerged from a number of meta-analyses of observational case-control studies. 

A 2010 meta-analysis of two studies and 241 patients aged 65 or older by Witlox 

et al found that delirium is associated with an increased risk of dementia 

independent of age, sex, comorbid illness and illness severity with an odds ratio 

of 12.52 (95% CI 1.86 to 84.21) (Witlox et al., 2010). A 2021 meta-analysis of six 

studies and 901 patients by Pereira et al looked specifically at the relationship 
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between delirium and new dementia in inpatients aged 65 or older. They showed 

inpatients who developed delirium had 11.9 times the odds (95% CI 7.29 to 19.6) 

of subsequent dementia (Pereira et al., 2021). A much larger 2020 meta-analysis 

of 24 studies and 10549 patients by Goldberg et al showed that delirium was 

associated with 2.3 times the odds (95% CI 1.85 to 2.86) of cognitive decline 

including dementia compared to controls. This study also tried to disentangle 

whether delirium simply unmasked pre-existing cognitive decline or whether it 

was causative by performing a series of sensitivity analyses. First, they included 

only patients with no baseline cognitive impairment and tested the hypothesis 

that neither group should show cognitive decline if delirium was not causative. 

However, they showed that the delirium group had worse cognitive decline. 

Second, they assessed whether cognitive decline was unrelated to delirium by 

explicitly examining patients with cognitive decline, hypothesising that the 

delirium and non-delirium groups should decline equally if delirium was simply 

an epiphenomenon. However, the delirium group experienced greater decline. 

Finally, they compared delirious and non-delirious patients from studies that 

matched for baseline cognition and from studies that did not match for baseline 

cognition. They showed that effect sizes were larger in those studies that 

matched for baseline cognition suggesting that baseline cognitive compromises 

were not a major driver of the effect of delirium. Taken together, these 

sensitivity analyses indicated that delirium was causative (Goldberg et al., 

2020). 

Evidence that delirium is a strong risk factor for dementia also comes from a 

well-designed longitudinal study of 553 people over the age of 85. The Vantaa 

85+ study showed that delirium increased the risk of incident dementia with an 

odds ratio of 8.7 (95% CI 2.1 to 35). Intriguingly, this study also showed that 

compared to those who developed dementia without delirium, those that 

developed dementia after delirium had different pathological changes from 

those normally associated with dementia (for example, as in Alzheimer’s, 

vascular or Lewy body dementia). This suggests that the acceleration of 

cognitive decline after delirium might result from alternative mechanisms of 

neuronal damage (Davis et al., 2012). 
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Altogether, increasing evidence suggests that delirium causes cognitive decline. 

However, leading authors in the field suggest that long-term studies of patients 

with delirium initially free of dementia are required to help clarify whether 

incident delirium leads to new-onset dementia (Fong et al., 2015; Inouye et al., 

2014). 

1.6 Summary 

In this chapter, I have provided an overview of prognostic research with a focus 

on prognostic model research. I explored psychosis as a clinical problem. Despite 

growing evidence for prognostic factors, the prediction of individual patient 

outcomes in first episode psychosis is still a challenge. Finally, I outlined another 

clinical area with unanswered prognostic questions – delirium and the risk of 

subsequent dementia. 

1.7 Thesis aims and outline 

The primary aim for this thesis is to conduct prognostic model research into first 

episode psychosis. As part of my primary aim, I will attempt to answer four 

questions: 

1) Is prediction of individual patient outcome possible in first episode 

psychosis using clinical variables?  

2) Does prediction model performance remain robust at external validation?  

3) Does prediction model performance improve with the addition of 

biologically relevant disease markers as predictors?  

4) Does prediction model performance improve with the application of 

advanced machine learning classifiers compare to logistic regression? 

Chapter 2 examines questions 1 to 4 in the context of a systematic review of 

existing literature. Chapter 3 explores questions 1 and 2 in two large naturalistic 

cohorts of first episode psychosis patients from NHS England. Chapter 4 

examines question 3 and 4 in a cohort of first episode psychosis patients from a 

randomised controlled trial. 
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The secondary aim for my thesis is to answer a final question: 

5) Can routinely collected electronic healthcare record data be used for 

prognostic research in the National Health Service in Greater Glasgow and 

Clyde? 

As a consequence of the global coronavirus pandemic, the prognostic area I 

addressed changed to delirium and the risk of subsequent dementia. Chapter 5 

seeks to answer this in a large cohort of patients with an incident episode of 

delirium derived from electronic healthcare records. 
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Chapter 2 Prediction models in first episode 
psychosis: a systematic review and critical 
appraisal 

2.1 Overview of this chapter 

This chapter presents a systematic review of prediction models in first episode 

psychosis. The review was published in the British Journal of Psychiatry on 24th 

January 2022 and is presented as published in this thesis. I am a joint first 

author with Rebecca Lee, University of Birmingham. We both collected and 

analysed the data presented herein. Rebecca Lee contributed to an earlier draft 

of this chapter which I substantially changed and redrafted. 

2.2 Introduction 

Psychosis is a mental illness characterised by hallucinations, delusions and 

thought disorder. The median lifetime prevalence of psychosis is around eight 

per 1000 of the global population (Moreno-Kustner et al., 2018). Psychotic 

disorders, including schizophrenia, are in the top 20 leading causes of disability 

worldwide (Institute for Health Metrics and Evaluation (IHME), 2020). People 

with psychosis have heterogeneous outcomes. More than 40% fail to achieve 

symptomatic remission (Lally et al., 2017). At present, clinicians struggle to 

predict long term outcome in individuals with first episode psychosis (FEP).  

Prediction modelling has the potential to revolutionise medicine by predicting 

individual patient outcome (Darcy et al., 2016). Early identification of those 

with good and poor outcomes would allow for a more personalised approach to 

care, matching interventions and resources to those most at need. This is the 

basis of precision medicine. Risk prediction models have been successfully 

employed clinically in many areas of medicine; for example, the QRISK tool 

predicts cardiovascular risk in individual patients (Hippisley-Cox et al., 2017). 

However, within psychiatry, precision medicine is not yet established within 

clinical practice. In FEP, precision medicine could enable rapid stratification and 

targeted intervention thereby decreasing patient suffering and limiting 

treatment associated risks such as medication side effects and intrusive 

monitoring. 
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Salazar de Pablo et al recently undertook a broad systematic review of 

individualised prediction models in psychiatry. They found clear evidence that 

precision psychiatry has developed into an important area of research, with the 

greatest number of prediction models focussing on outcomes in psychosis. 

However, the field is hindered by methodological flaws, for example lack of 

validation. Further, there is a translation gap with only one study considering 

implementation into clinical practice. Systematic guidance for the development, 

validation and presentation of prediction models is available (Steyerberg & 

Vergouwe, 2014). Further, the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement sets 

standards for reporting (Collins et al., 2015). Models that do not adhere to these 

guidelines result in unreliable predictions, which may cause more harm than 

good in guiding clinical decisions (Wynants et al., 2020). Salazar de Pablo et al ‘s 

review was impressive in scope but necessarily limited in detailed analysis of the 

specific models included (Salazar de Pablo et al., 2021). Systematic reviews 

focussing on the predicting the transition to psychosis (Rosen et al., 2021; 

Studerus et al., 2017), and predicting relapse in psychosis have also been 

published (Sullivan et al., 2017). In our present review, we focus on FEP with the 

aim to systematically review and critically appraise the prediction models for 

the prediction of poor outcomes. 

2.3 Methods 

We designed this systematic review in accordance with the CHecklist for critical 

Appraisal and data extraction for systematic Reviews of prediction Modelling 

Studies (CHARMS) (Moons et al., 2014). A protocol for this study was published 

on the International Prospective Register of Systematic Reviews (PROSPERO), 

registration number CRD42019156897. 

We developed the eligibility criteria under the Population, Index, Comparator, 

Outcome, Timing and Setting (PICOTS) guidance (see Table 2-1). A study was 

eligible for inclusion if it utilised a prospective design, including patients 

diagnosed with FEP, and developed, updated, or validated prognostic prediction 

models for any possible outcome, in any setting. We excluded non-English 

language studies, those where the full text was not available, those involving 

diagnostic prediction models, and those where the outcome predicted was less 
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than or equal to 3 months from baseline because we were interested in longer 

term prediction. 

Table 2-1 Population, Index, Comparator, Outcome, Timing and Setting (PICOTS)  

Population Patients with a first episode of psychosis 
Intervention 
(model) 

Any prognostic prediction model 

Comparator N/A 
Outcome(s) Any outcome 
Timing Greater than 3 months from baseline 
Setting Any setting 

 

We searched PubMed, PsychINFO, EMBASE, CINAHL Plus, Web of Science Core 

Collection and Google Scholar from inception up to 28th January 2021. In 

addition, we manually checked references cited in the systematically searched 

articles. The search terms were based around three themes – ‘Prediction’, 

‘Outcome’ and ‘First Episode Psychosis’ terms. The full search strategy is 

available in Appendix 1. Two reviewers (RL and LT) independently screened the 

titles and abstracts. Full text screening was completed by three independent 

reviewers (RL, PM and SPL). Disagreements were resolved by consensus. 

Data extraction was conducted independently by two reviewers (RL and SPL) 

following recommendations in the CHARMS checklist (Moons et al., 2014). From 

all eligible studies, we collected information on study characteristics, 

methodology and performance. Study characteristics collected included first 

author name, year, region, whether multicentre, study type, setting, participant 

description, outcome, outcome timing, predictor categories and number of 

models presented. Methodology considered sample size, events per variable 

(EPV), number of events in validation dataset, number of candidate and retained 

predictors, methods of variable selection, presence and handling of missing 

data, modelling strategies, shrinkage, validation strategies (see below), whether 

models were recalibrated, if clinical utility was assessed and whether the full 

models were presented. Steyerberg and Harrell outline a hierarchy of validation 

strategies from apparent (which assesses model performance on the data used to 

develop it and will be severely optimistic), to internal (via cross validation or 

bootstrapping), internal-external (for example, validation across centres in the 

same study) and external validation (to assess if models generalise to related 
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populations in different settings) (Steyerberg & Harrell, 2016). Apparent, 

internal and internal-external validation use the derivation dataset only, while 

external validation requires the addition of a validation dataset. Performance 

for the best performing model per outcome in each article was considered by 

model validation strategy, including model discrimination (reported as the c-

statistic which is equal to the area under the receiver operating characteristic 

(ROCAUC) curve for binary outcomes), calibration, other global performance 

measures, and classification metrics. If not reported, where possible, the 

balanced accuracy (sensitivity + specificity / 2) and the prognostic summary 

index (positive + negative predictive value - 1) were calculated. 

Two reviewers (RL and SPL) independently assessed the risk of bias (ROB) in 

included studies using the Prediction model Risk Of Bias Assessment Tool 

(PROBAST), a risk of bias assessment tool designed for systematic reviews of 

diagnostic or prognostic prediction models (Moons et al., 2019; Wolff et al., 

2019). We considered all models reported in each article and assigned to the 

article an overall rating. PROBAST uses a structured approach with signalling 

questions across four domains: ‘participants’, ‘predictors’, ‘outcome’ and 

‘statistical analysis’. Signalling questions are answered ‘yes’, ‘probably yes’, 

‘no’, ‘probably no’ or ‘no information’. Answering ‘yes’ indicates a low ROB, 

while ‘no’ indicates high ROB. A domain where all signalling questions are 

answered as ‘yes’ or ‘probably yes’ indicates low ROB. Answering ‘no’ or 

‘probably no’ flags the potential for the presence of bias and reviewers should 

use their personal judgement to determine whether issues identified have 

introduced bias. Applicability of included studies to the review question is also 

considered in PROBAST. 

We reported our results according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement (Page et al., 

2021). 

2.4 Results 

Systematic review of the literature yielded 2353 records from database searches 

and 67 from additional sources. After removal of duplicates, 1543 records were 

screened. Of these, 82 full texts were reviewed, which resulted in 13 studies 



30 

meeting criteria for inclusion in our qualitative synthesis (Figure 2-1) (Ajnakina 

et al., 2020; Bhattacharyya et al., 2021; Chua et al., 2019; de Nijs, 2019; 

Demjaha et al., 2017; Derks et al., 2010; Flyckt et al., 2006; Gonzalez-Blanch et 

al., 2010; Koutsouleris et al., 2016; Leighton, Krishnadas, et al., 2019; Leighton 

et al., 2021; Leighton, Upthegrove, et al., 2019; Puntis et al., 2021). 

 
Figure 2-1 Prisma flow diagram 

Study characteristics are summarised in Table 2-2. The 13 included studies, 

comprising a total of 19 different patient cohorts, reported 31 different 

prediction models. Dates of publication ranged from 2006 and 2021. Twelve 

studies (92%) recruited participants from Europe, with two studies (15%) also 

recruiting participants from Israel and one study (8%) from Singapore. Over two-

thirds (n=9) of studies were multicentre. Ten studies (77%) included participants 

from cohort studies, three studies (23%) included participants from randomised 

controlled trials and two studies (15%) included participants from case registries. 

Two studies (15%) included only out-patients, four (31%) included in-patients and 

out-patients and the rest did not specify their setting. Cohort sample size ranged 
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from 47 to 1663 patients. The average age of patients ranged from 21 to 28 

years, and 49% to 77% of the cohorts were male. Where specified, the average 

duration of untreated psychosis ranged from 34 to 106 weeks. Ethnicity was 

reported in eight studies (62%) with the percentage non-white patients in the 

cohorts ranging from 4% to greater than 75%. The definition of FEP was primarily 

non-affective psychosis in the majority of patient cohorts, with the minority also 

including affective psychosis and two cohorts also including drug-induced 

psychosis patients. All but one study (92%) considered solely sociodemographic 

and clinical predictors. A wide range of outcomes were assessed across the 13 

included studies including symptom remission in five studies (38%), global 

functioning in five studies (38%), vocational functioning in three studies (23%), 

treatment resistance in two studies (15%), rehospitalisation in two studies (15%), 

and quality of life in one study (8%). All the outcomes were binary. The follow-

up period of included studies ranged from 1 to 10 years. 
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Table 2-2 Study characteristics  

Study ID Country 
Multi-
centre 

Recruitment 
Dates 

Type of 
Study Setting 

Participants included in modelling Outcome 

Predictor 
Categories 

No. of 
Models  

Sex (% 
male) 

Age 
(mean) Ethnicity 

DUP 
(mean 
weeks) FEP Definition Definition Timing 

AJNAKINA 2020 UK No 
Dec 2005 to 
Oct 2010 Cohort 

In-patients 
& out-
patients 67.5% 

27.2 (at 
baseline) 

39.9% 
white, 
60.1% 
black 34.3 Non-affective 

Early treatment 
resistance from 
illness onset 
 
Later treatment 
resistance 

f/u for 
5 years 

Socio-
demographic, 
Clinical 4 

BHATTACHARYYA 
2021 UK No 

Sample 1 - 1st 
Apr 2006 to 
31st Mar 2012 
 
Sample 2 - 12th 
Apr 2002 to 
26th Jul 2013 

Sample 1 - 
Case Registry 
 
Sample 2 - 
Cohort 

Sample 1 - 
out-
patients 
 
Sample 2 - 
out-
patients 

Sample 1 
- 63.9% 
 
Sample 2 
- 60% 

Sample 1 - 
24.4 (at 
onset) 
 
Sample 2 - 
28.1 (at 
onset) 

Sample 1 - 
31.1% 
white, 
50.6% 
black 
 
Sample 2 - 
34.2% 
white, 
54.2% 
black NR 

Sample 1 - 
Non-affective 
& affective 
 
Sample 2 - 
Non-affective 
& affective 

Psychiatric 
rehospitalisation 

f/u for 
2 years 

Socio-
demographic, 
Clinical 3 

CHUA 2019 Singapore No 2001 to 2012 Cohort NR 49.2% 
27.5 (at 
baseline) 

76.7% 
Chinese 65.4 Non-affective EET status 

At 2 
years 

Socio-
demographic, 
Clinical 2 

DEMJAHA 2017 UK Yes 
Sep 1997 to 
Aug 1999 Cohort NR 58.4% 

28.9 (at 
onset) 

48.2% 
white, 
39.8% 
black NR 

Non-affective 
& affective 

Early treatment 
resistance from 
illness onset 

f/u for 
10 
years 

Socio-
demographic, 
Clinical 1 

DENIJS 2019 
Netherlands & 
Belgium Yes 

8th Jan 2004 to 
6th Feb 2008 Cohort  

In-patients 
& out-
patients 76.9% 

27.6 (at 
baseline) 

85.9% 
white NR Non-affective 

Andreasen 
symptom remission 
(6 months 
duration) 
 
GAF ≥65 

At 3 
years & 
at 6 
years 

Socio-
demographic, 
Clinical, 
Genetic, 
Environmental 8 

DERKS 2010 

Austria, Belgium, 
Bulgaria, Czech 
Republic, Germany, 
France, Israel, Italy, 
Netherlands, 
Poland, Rumania, 
Spain, Sweden & 
Switzerland Yes 

23rd Dec 2002 
to 14th Jan 
2006 

Randomised 
Controlled 
Trial NR 56.5% 

26.0 (at 
baseline) NR NR Non-affective 

Andreasen 
symptom remission 
(6 months 
duration) 

f/u for 
1 year 

Socio-
demographic, 
Clinical 1 
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FLYCKT 2006 Sweden Yes 
1st Jan 1996 to 
31st Dec 1997 Cohort NR 52.9% 

28.8 (at 
baseline) NR 62.4 

Non-affective 
& affective 
(with mood-
incongruent 
delusions) 

Global functioning 
(independent 
living, EET status & 
GAF ≥60) 

At 
mean 
of 5.4 
years 

Socio-
demographic, 
Clinical 1 

GONZALEZ-
BLANCH 2010 Spain No 

Feb 2001 to 
Feb 2005 Cohort NR 62% 

26.6 (at 
baseline) NR 66.6 Non-affective 

Global functioning 
(EET status & DAS 
≤1) 

At 1 
year 

Socio-
demographic, 
Clinical 1 

KOUTSOULERIS 
2016 

Austria, Belgium, 
Bulgaria, Czech 
Republic, Germany, 
France, Israel, Italy, 
Netherlands, 
Poland, Rumania, 
Spain, Sweden & 
Switzerland Yes 

23rd Dec 2002 
to 14th Jan 
2006 

Randomised 
Controlled 
Trial NR 56% 

26.1 (at 
baseline) NR NR Non-affective GAF ≥65 

At 1 
year 

Socio-
demographic, 
Clinical 1 

LEIGHTON 2019 
(1) UK Yes 

Dev. - 2011 to 
2014 
 
Val. - 1st Sep 
2006 to 31st 
Aug 2009 

Dev. – Cohort 
 
Val. - Cohort 

Dev. - In-
patients & 
out-
patients 
 
Val. - In-
patients & 
out-
patients 

Dev. - 
66% 
 
Val. - 
68% 

Dev. - 
25.2 (at 
baseline) 
 
Val. - 24.6 
(at 
baseline) 

Dev. - 81% 
white 
 
Val. - 96% 
white NR 

Dev. - Non-
affective & 
affective 
 
Val. - Non-
affective & 
affective 

EET Status 
 
Andreasen 
symptom remission 
(no duration 
criteria) 
 
Andreasen 
symptom remission 
(6 months 
duration) 

At 1 
year 

Socio-
demographic, 
Clinical 3 

LEIGHTON 
2019 (2) UK & Denmark Yes 

Dev. - Aug 
2005 to Apr 
2009 
 
Val. UK - 1st  

Sep 2006 to 
31st Aug 2009 & 
2011 to 2014 
 
Val Denmark - 
Jan 1998 to 
Dec 2000 

Dev. - Cohort 
 
Val. UK - 2 
Cohort 
studies 
 
Val. Denmark 
- Randomised 
Controlled 
Trial 

Dev. - NR 
 
Val. UK - 
In-patients 
& out-
patients 
 
Val. 
Denmark - 
In-patients 
& out-
patients 

Dev. - 
69% 
 
Val. UK - 
67% 
 
Val. 
Denmark 
- 59% 

Dev. - 
21.3 (at 
baseline) 
 
Val. UK - 
24.9 (at 
baseline) 
 
Val. 
Denmark - 
26.6 (at 
baseline) 

Dev. - 73% 
white 
 
Val. UK - 
88% white 
 
Val. 
Denmark - 
94% white 

Dev. - 44 
 
Val. UK - 
44.4  
 
Val. 
Denmark 
- 106 

Dev. - Non-
affective, 
affective & 
drug induced 
 
Val. UK - Non-
affective & 
affective 
 
Val. Denmark - 
Non-affective 

EET Status 
 
GAF ≥65 
 
Andreasen 
Symptom Remission 
(6 months 
duration) 
 
Quality of Life 

At 1 
year 

Socio-
demographic, 
Clinical 4 
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LEIGHTON 2021 UK Yes 

Dev. - Aug 
2005 to Apr 
2009 
 
Val. - Apr 2006 
to Feb 2009 

Dev – Cohort 
 
Val - Cohort NR 

Dev. - 
68.8% 
 
Val. - 
61.8% 

Dev - 22.6 
(at 
baseline) 
 
Val. - 25.0 
(at 
baseline) NR 

Dev. - 
41.3 
 
Val. - 
48.9 

Dev. - Non-
affective, 
affective & 
drug induced 
 
Val. - Non-
affective, 
affective & 
drug induced 

Andreasen 
Symptom Remission 
(6 months 
duration) 

At 1 
year 

Socio-
demographic, 
Clinical 1 

PUNTIS 2021 UK Yes 

Dev. - 1st Jan 
2011 to 8th Oct 
2019 
 
Val. - 31st Jan 
2006 to 18th 
Jun 2019 

Dev. - Case 
Registry 
 
Val. - Case 
Registry 

Dev. - out-
patients 
 
Val. - out-
patients 

Dev. - 
63% 
 
Val. - 
63% 

Dev. - 
25.6 (at 
baseline) 
 
Val. - 26.7 
(at 
baseline) 

Dev. - 
74.8% 
white 
 
Val. - 
35.4% 
white NR NR 

Psychiatric 
hospitalisation 
after discharge 
from early 
intervention 

f/u for 
1 year 

Socio-
demographic, 
Clinical 1 

FEP – first episode psychosis; NR – not reported; DUP – duration of untreated psychosis; Dev. – development sample; Val. – validation sample; EET – employment, 
education or training; f/u – follow-up; GAF – Global Assessment of Functioning; DAS – Disability Assessment Schedule 
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Study prediction modelling methodologies are outlined in Table 2-3. Nine (69%) 

studies pertained solely to model development with the highest level of 

validation reported being apparent validity in four of the studies, internal 

validity in three of the studies and internal-external validity (via leave one-site 

out cross-validation) in two of the studies. The remaining four (31%) studies also 

included a validation cohort and reported external validity. High dimensionality 

was common across the study cohorts, with the majority having a very low EPV 

ratio and up to 258 candidate predictors considered. Some form of variable 

selection was employed in the majority (62%) of studies. The number of events 

in the external validation cohort ranged from 23 to 173. All the studies had 

missing data. Six studies (46%) used complete case analysis, five (38%) used 

single imputation and the remaining two (15%) applied multiple imputation.  
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Table 2-3 Study methodology  

Study ID Sample Size  EPV 

No. Events 
in 
Validation 
Dataset 

No. 
Candidate 
Predictors 

No. 
Retained 
Predictors 

Variable 
Selection 

Missing 
Data Per 
Predictor 

Handling of 
Missing 
Data 

Modelling 
Method Shrinkage 

Validation 
Method 
Reported 

Re-
calibration 
Performed 

Full Model 
Presented 

Clinical 
Usefulness 
Assessed 

AJNAKINA 2020 

Recruited – 
283; Included 
in modelling - 
190 to 222 

2 to 
4 

No external 
validation 13 12 to 13 

Full model 
approach or 
LASSO up to 59.9% 

Single 
imputation 

Logistic 
regression via 
ridge & LASSO 

Penalised 
estimation & 
then uniform Internal Yes Yes No 

BHATTACHARYYA 
2021 

Sample 1 - 
Recruited - 
1738; Included 
in modelling - 
1663 
 
Sample 2 - 
Recruited - 
240; Included 
in modelling - 
240 

4 to 
62 

No external 
validation 10 to 21 10 to 21 

Full model 
approach 

Sample 1 - 
up to 4.3% 
 
Sample 2 - 
none 

Complete 
case 
analysis 

Logistic 
regression via 
MLE None 

Apparent & 
internal No Yes No 

CHUA 2019 

Recruited - 
1724; Included 
in modelling - 
1177 16 

No external 
validation 22 22 

Full model 
approach Yes but NR 

Complete 
case 
analysis 

Logistic 
regression via 
MLE None Apparent No No No 

DEMJAHA 2017 

Recruited - 
557; Included 
in modelling - 
286 8 

No external 
validation 8 6 LASSO Yes but NR 

Complete 
case 
analysis 

Logistic 
regression via 
LASSO 

Penalised 
estimation Internal No Yes No 

DENIJS 2019 

Recruited - 
1100; Included 
in modelling - 
442 to 523 2 

No external 
validation 258 119 to 152 

Recursive 
feature 
elimination up to 20% 

Single 
imputation 

Linear Support 
Vector 
Machine None 

Internal & 
internal-
external No No No 

DERKS 2010 

Recruited - 
498; Included 
in modelling - 
297 

9 to 
18 

No external 
validation 10 to 20 10 to 20 

Full model 
approach Yes but NR 

Complete 
case 
analysis 

Logistic 
regression via 
MLE None Apparent No No No 

FLYCKT2006 

Recruited 175; 
Included in 
modelling - 
111 2 

No external 
validation 32 5 

Forward 
selection Yes but NR 

Complete 
case 
analysis 

Logistic 
regression via 
MLE None Apparent No Yes No 

GONZALEZ-
BLANCH 2010 

Recruited - 
174; Included 
in modelling – 
92 4 

No external 
validation 23 2 

Univariate 
significance 
testing (p<0.1) 
then forward 
selection Yes but NR 

Complete 
case 
analysis 

Logistic 
regression via 
MLE None Apparent No Yes No 



37 

KOUTSOULERIS 
2016 

Recruited - 
498; Included 
in modelling - 
334 <1 

No external 
validation 189 NR 

Forward 
selection up to 20% 

Single 
imputation 

Nonlinear 
Support 
Vector 
Machine None 

Internal & 
internal-
external No No No 

LEIGHTON 2019 
(1) 

Dev. - 
Recruited - 
83; Included 
in modelling - 
67 to 75 
 
Val. - 
Recruited - 
79; Included - 
64 to 67 <1 27 to 46 56 5 to 13 Elastic net 

Dev. - up 
to 13% 
 
Val. - up to 
37% 

Single 
imputation 

Logistic 
regression via 
elastic net 

Penalised 
estimation External No No No 

LEIGHTON 2019 
(2) 

Dev. - 
Recruited - 
1027; Included 
in modelling - 
673 to 829 
 
Val. UK - 
Recruited - 
162; Included 
- 47 to 142 
 
Val. Denmark 
- Recruited - 
578; Included 
- 226 to 553 

1 to 
2 23 to 173 163 17 to 26 Elastic net 

Dev. - up 
to 20% 
 
Val. - Yes 
but NR 

Single 
imputation 

Internal 
Validation - 
Logistic 
regression via 
elastic net 
 
External 
Validation - 
Logistic 
regression via 
MLE 

Internal-
external 
validation - 
penalised 
estimation 
 
External 
validation - 
none 

Internal-
external & 
external No No No 

LEIGHTON 2021 

Dev. - 
Recruited - 
1027; Included 
in modelling – 
673 
 
Val. - 
Recruited - 
399; Included 
- 191 25 103 14 14 

Full model 
approach 

Dev.- up to 
14.9% 
 
Val. - up to 
56.5% 

Multiple 
imputation 

Logistic 
regression via 
MLE Uniform 

Internal & 
external Yes Yes Yes 
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PUNTIS 2021 

Dev. - 
Recruited - 
NR; Included 
in modelling - 
831 
 
Val. - 
Recruited - 
NR; Included - 
1393 10 162 8 8 

Full model 
approach 

Dev. - up 
to 15.4% 
 
Val. - up to 
5.5% 

Multiple 
imputation 

Logistic 
regression via 
MLE Uniform 

Internal & 
external Yes Yes Yes 

NR – not reported; Dev. – development sample; Val. – validation sample; EPV – events per variable; LASSO – least absolute shrinkage and selection operator; MLE – 
maximum likelihood estimation 
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The most common modelling methodology was logistic regression fitted by 

maximum likelihood estimation, then logistic regression with regularisation. Only 

two studies employed machine learning based methods, both via support vector 

machines. Just over half of studies (54%) did not use any variable shrinkage and 

only three studies (23%) recalibrated their models based on validation to 

improve performance. The full model was presented in seven (54%) studies. Only 

two studies (15%) assessed clinical utility. 

The performance of the best model per study outcome grouped by method of 

validation to allow for appropriate comparisons is reported in Table 2-4. For the 

five studies (38%) reporting only apparent validity, two reported a measure of 

discrimination and only one considered calibration. For the seven studies (54%) 

reporting internal validation performance, four reported discrimination with a c-

statistic ranging from 0.66 to 0.77 and four reported calibration. For the three 

studies (23%) reporting internal-external validation only one study considered 

discrimination with a c-statistic which ranged from 0.703 to 0.736 across each of 

its four models. None of the studies reporting internal-external validation 

considered any measure of calibration. All four studies (31%) reporting external 

validation considered model discrimination with c-statistics ranging from 0.556 

to 0.876. However, only two of these studies considered calibration. Table 2-4 

also records any global performance metrics which included the Brier score and 

McFadden’s pseudo-R2, both of which incorporate aspects of discrimination and 

calibration. Various classification metrics were reported across the study 

models, but it is difficult to make any meaningful comparisons between these 

alone, without considering the models’ corresponding discrimination and 

calibration metrics which were not universally reported. 
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Table 2-4 Performance metrics for best model per outcome in each study  

Study ID Outcome 
Discrimination C-
Statistic Calibration 

Other Global 
Performance Metrics Classification Metrics 

Studies Reporting Apparent Validity 

BHATTACHARYYA 2021 
Psychiatric 
rehospitalisation 0.749 

Calibration plot only; No α 
or β Brier score - 0.192 NR 

CHUA 2019 EET Status at 2 years 
0.759 (95%CI: 
0.728, 0.790) NR NR Classification Accuracy - 0.759; PPV - 0.64; NPV - 0.78; PSI - 0.42 

DERKS 2010 

Andreasen symptom 
remission (6 months 
duration) with 1 year 
f/u NR NR NR 

Classification Accuracy - 0.63; Balanced Accuracy - 0.665; Sensitivity - 0.73; 
Specificity - 0.60; PPV - 0.73; NPV - 0.61; PSI - 0.34 

FLYCKT 2006 

Global functioning 
(Independent living, EET 
status, GAF ≥60) at 
mean 5.4 years NR NR NR 

Classification Accuracy - 0.81; Balanced Accuracy - 0.805; Sensitivity - 0.84; 
Specificity - 0.77 

GONZALEZ-BLANCH 
2010 

Global functioning (EET 
status, DAS ≤1) at 1 year NR 

Hosmer–Lemeshow test - p 
= >0.05 NR 

Classification Accuracy - 0.750; Balanced Accuracy - 0.587; Sensitivity - 0.261; 
Specificity - 0.913; PPV - 0.500; NPV - 0.788; PSI - 0.288 

Studies Reporting Internal Validity 

AJNAKINA 2020 

Early treatment 
resistance from illness 
onset with 5 years f/u 0.77 

α - 0.028; β - 1.264; No 
calibration plot NR 

Balanced Accuracy - 0.5; Sensitivity - 0; Specificity - 1.00; PPV - 0.48, NPV - 0.84; 
PSI - 0.32 

Later treatment 
resistance with 5 years 
f/u 0.77 

α - 0.504; β - 1.838; No 
calibration plot NR 

Balanced Accuracy - 0.81; Sensitivity - 0.62; Specificity - 1.00; PPV - 0.42; NPV - 
1.00; PSI - 0.42 

BHATTACHARYYA 2021 
Psychiatric 
rehospitalisation 0.66 

Calibration plot only; No α 
or β Brier score - 0.232 NR 

DEMJAHA 2017 

Early treatment 
resistance from illness 
onset with 10 years f/u NR NR 

Brier score - 0.146; 
McFadden pseudo R² 
- 0.1 NR 

DENIJS 2019 

Andreasen symptom 
remission (6 months 
duration) at 3 years NR NR NR 

Balanced Accuracy - 0.644; Sensitivity - 0.76; Specificity - 0.50; PPV - 0.722; NPV - 
0.548; PSI - 0.27 

GAF ≥65 at 3 years NR NR NR 
Balanced Accuracy - 0.676; Sensitivity - 0.749; Specificity - 0.584; PPV - 0.701; NPV 
- 0.642; PSI - 0.343 

Andreasen symptom 
remission (6 months 
duration) at 6 years NR NR NR 

Balanced Accuracy - 0.647; Sensitivity - 0.787; Specificity - 0.465; PPV - 0.690; NPV 
- 0.590; PSI - 0.28 

GAF ≥65 at 6 years NR NR NR 
Balanced Accuracy - 0.676; Sensitivity - 0.818; Specificity - 0.477; PPV - 0.718; NPV 
- 0.616; PSI - 0.334 

KOUTSOULERIS 2016 GAF ≥65 at 1 year NR NR NR 
Balanced Accuracy - 0.738; Sensitivity - 0.667; Specificity - 0.809; PPV - 0.515; NPV 
- 0.888; PSI - 0.403 

LEIGHTON 2021 

Andreasen symptom 
remission (6 months 
duration) at 1 year 0.74 (0.72, 0.76) 

β - 0.84 (95%CI: 0.76, 0.92); 
No calibration plot NR NR 
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PUNTIS 2021 

Psychiatric 
hospitalisation after 
discharge from early 
intervention 0.76 (0.75, 0.77) 

α - 0.01 (95%CI: -0.25, 
0.24); β - 0.89 (95%CI: 0.88, 
0.89); Calibration plot Brier score - 0.078 NR 

Studies Reporting Internal-External Validity 

DENIJS 2019 

Andreasen symptom 
remission (6 months 
duration) at 3 years NR NR NR 

Balanced Accuracy - 0.638; Sensitivity - 0.629; Specificity - 0.647; PPV - 0.758; NPV 
- 0.485; PSI - 0.243 

GAF ≥65 at 3 years NR NR NR 
Balanced Accuracy - 0.648; Sensitivity - 0.658; Specificity - 0.638; PPV - 0.727; NPV 
- 0.565; PSI - 0.292 

Andreasen symptom 
remission (6 months 
duration) at 6 years NR NR NR 

Balanced Accuracy - 0.625; Sensitivity - 0.685; Specificity - 0.565; PPV - 0.743; NPV 
- 0.493; PSI - 0.236 

GAF ≥65 at 6 years NR NR NR 
Balanced Accuracy - 0.640; Sensitivity - 0.718; Specificity - 0.561; PPV - 0.732; NPV 
- 0.553; PSI - 0.285 

KOUTSOULERIS 2016 GAF ≥65 at 1 year NR NR NR 
Balanced Accuracy - 0.711; Sensitivity - 0.641; Specificity - 0.781; PPV - 0.472; NPV 
- 0.877; PSI - 0.349 

LEIGHTON 2019 (2) 

EET Status at 1 year 
0.736 (95%CI: 
0.702 - 0.771) NR NR 

Classification Accuracy - 0.693 (95%CI: 0.660, 0.725); Balanced Accuracy - 0.694 
(95%CI: 0.562, 0.812); Sensitivity - 0.722 (95%CI: 0.573, 0.821); Specificity - 0.666 
(95%CI: 0.550, 0.803); PPV - 0.719 (95%CI: 0.673, 0.785); NPV - 0.668 (95%CI: 0.606, 
0.736); PSI - 0.387 (95%CI: 0.279, 0.521) 

GAF ≥65 at 1 year 
0.731 (95%CI: 
0.697, 0.765) NR NR 

Classification Accuracy - 0.687 (95%CI: 0.657, 0.718); Balanced Accuracy - 0.691 
(95%CI: 0.541, 0.825); Sensitivity - 0.722 (95%CI: 0.487, 0.778); Specificity - 0.660 
(95%CI: 0.594, 0.871); PPV - 0.650 (95%CI: 0.616, 0.769); NPV - 0.726 (95%CI: 0.655, 
0.766); PSI - 0.376 (95%CI: 0.271 - 0.535) 

Andreasen symptom 
remission (6 months 
duration) at 1 year 

0.703 (95%CI: 
0.664, 0.742) NR NR 

Classification Accuracy - 0.670 (95%CI: 0.636, 0.703); Balanced Accuracy - 0.668 
(95%CI: 0.518, 0.827); Sensitivity - 0.584 (95%CI: 0.491, 0.827); Specificity - 0.751 
(95%CI: 0.544, 0.827); PPV - 0.679 (95%CI: 0.601, 0.739); NPV - 0.667 (95%CI: 0.631, 
0.734); PSI - 0.346 (95%CI: 0.232, 0.473) 

Quality of life at 1 year 
0.704 (95%CI: 
0.667, 0.742) NR NR 

Classification Accuracy - 0.668 (95%CI: 0.632, 0.704); Balanced Accuracy - 0.667 
(95%CI: 0.532, 0.789); Sensitivity - 0.623 (95%CI: 0.512, 0.774); Specificity - 0.711 
(95%CI: 0.551, 0.803); PPV - 0.633 (95%CI: 0.575, 0.701); NPV 0.700 (95%CI: 0.659, 
0.759); PSI - 0.333 (95%CI: 0.234, 0.460) 

Studies Reporting External Validity 

LEIGHTON 2019 (1) 

EET status at 1 year 
0.876 (95%CI: 
0.864, 0.887) NR NR 

Classification Accuracy - 0.851; Balanced Accuracy - 0.845; Sensitivity - 0.815; 
Specificity - 0.875; PPV - 0.815; NPV - 0.875; PSI - 0.690 

Andreasen symptom 
remission (no duration 
criteria) at 1 year 

0.652 (95%CI: 
0.635, 0.670) NR NR 

Classification Accuracy - 0.612; Balanced Accuracy - 0.623; Sensitivity - 0.578; 
Specificity - 0.667; PPV - 0.794; NPV - 0.424; PSI - 0.218 

Andreasen symptom 
remission (6 months 
duration) at 1 year 

0.630 (95%CI: 
0.612, 0.647) NR NR 

Classification Accuracy - 0.625; Balanced Accuracy - 0.626; Sensitivity - 0.606; 
Specificity - 0.645; PPV - 0.645; NPV - 0.606; PSI - 0.251 

LEIGHTON 2019 (2) - 
Validated in UK EET Status at 1 year 

0.867 (95%CI: 
0.805, 0.930) NR NR 

Classification Accuracy - 0.838 (95%CI: 0.775, 0.894); Balanced Accuracy - 0.853 
(95%CI: 0.740, 0.935); Sensitivity - 0.898 (95%CI: 0.780, 0.966); Specificity - 0.807 
(95%CI: 0.699, 0.904); PPV - 0.766 (95%CI: 0.679, 0.867); NPV - 0.911 (95%CI: 0.840, 
0.971); PSI - 0.677 (95%CI: 0.519, 0.838) 
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Andreasen symptom 
remission (6 months 
duration) at 1 year 

0.680 (95%CI: 
0.587, 0.773) NR NR 

Classification Accuracy - 0.695 (95%CI: 0.618, 0.771); Balanced Accuracy - 0.695 
(95%CI: 0.535, 0.841); Sensitivity - 0.621 (95%CI: 0.455, 0.773); Specificity - 0.769 
(95%CI: 0.615, 0.908); PPV - 0.729 (95%CI: 0.636, 0.854); NPV - 0.667 (95%CI: 0.593, 
0.759); PSI - 0.396 (95%CI: 0.229, 0.613) 

Quality of life at 1 year 
0.679 (95%CI: 
0.522, 0.836) NR NR 

Classification Accuracy - 0.702 (95%CI: 0.596, 0.809); Balanced Accuracy - 0.729 
(95%CI: 0.407, 0.917); Sensitivity - 0.957 (95%CI: 0.564, 1.000); Specificity - 0.500 
(95%CI: 0.250, 0.833); PPV - 0.640 (95%CI: 0.561, 0.800); NPV - 0.900 (95%CI: 0.643, 
1.000); PSI - 0.540 (95%CI: 0.204, 0.800) 

LEIGHTON 2019 (2) - 
Validated in Denmark 

EET Status at 1 year 
0.660 (95%CI: 
0.610, 0.710) NR NR 

Classification Accuracy - 0.680 (95%CI: 0.609, 0.725); Balanced Accuracy - 0.655 
(95%CI: 0.516, 0.774); Sensitivity - 0.584 (95%CI: 0.457, 0.723); Specificity - 0.726 
(95%CI: 0.574, 0.824); PPV - 0.490 (95%CI: 0.421, 0.563); NPV - 0.793 (95%CI: 0.760, 
0.831); PSI - 0.283 (95%CI: 0.181, 0.394) 

GAF ≥65 at 1 year 
0.573 (95%CI: 
0.504, 0.643) NR NR 

Classification Accuracy - 0.456 (95%CI: 0.328, 0.817); Balanced Accuracy - 0.589 
(95%CI: 0.234, 0.926); Sensitivity - 0.781 (95%CI: 0.233, 0.945); Specificity - 0.396 
(95%CI: 0.234, 0.906); PPV - 0.179 (95%CI: 0.158, 0.333); NPV - 0.914 (95%CI: 0.876, 
0.967); PSI - 0.093 (95%CI: 0.034, 0.300) 

Andreasen symptom 
remission (6 months 
duration) at 1 year 

0.616 (95%CI: 
0.553, 0.679) NR NR 

Classification Accuracy - 0.618 (95%CI: 0.524, 0.704); Balanced Accuracy - 0.621 
(95%CI: 0.342, 0.864); Sensitivity - 0.612 (95%CI: 0.306, 0.843); Specificity - 0.629 
(95%CI: 0.378, 0.885); PPV - 0.476 (95%CI: 0.412, 0.636); NPV - 0.742 (95%CI: 0.687, 
0.829); PSI - 0.217 (95%CI: 0.099, 0.465) 

Quality of life at 1 year 
0.556 (95%CI: 
0.481, 0.631) NR NR 

Classification Accuracy - 0.589 (95%CI: 0.540, 0.637); Balanced Accuracy - 0.589 
(95%CI: 0.312, 0.845); Sensitivity - 0.876 (95%CI: 0.419, 0.947); Specificity - 0.301 
(95%CI: 0.204, 0.743); PPV - 0.559 (95%CI: 0.527, 0.642); NPV - 0.706 (95%CI: 0.555, 
0.841); PSI - 0.265 (95%CI: 0.081, 0.483) 

LEIGHTON 2021 

Andreasen symptom 
remission (6 months 
duration) 

0.73 (95%CI: 0.64, 
0.81) 

α - -0.014 (95%CI: -0.34, 
0.31); β - 0.85  (95%CI: 
0.42, 1.27); Calibration plot NR NR 

PUNTIS 2021 

Psychiatric 
hospitalisation after 
discharge from early 
intervention 

0.70 (95%CI: 0.66, 
0.75) 

α - -0.01 (95%CI: -0.17, 
0.167); β - 1.00 (95%CI: 
0.78, 1.22); Calibration plot Brier score - 0.094 NR 

NR – not reported; EET – employment, education or training; GAF – Global Assessment of Functioning; DAS – Disability Assessment Schedule; PPV – positive 
predictive value; NPV – negative predictive value; PSI – prognostic summary index; f/u – follow-up 
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We applied the PROBAST tool to the 31 different prediction models across the 13 

studies in our systematic review and determined an overall risk of bias rating for 

each study as summarised in Table 2-5. The majority (85%) of studies had an 

overall ‘high’ ROB. In each of these studies, the ROB was rated ‘high’ in the 

analysis domain with one study also having a ‘high’ ROB in the predictors 

domain. The main reasons for the ‘high’ ROB in the analysis domain were 

insufficient participant numbers and consequently low EPV, inappropriate 

methods of variable selection including via univariable analysis, a lack of 

appropriate validation with only apparent validation, an absence of reported 

measures of discrimination and calibration, and inappropriate handling of 

missing data by either complete case analysis or single imputation. Two studies, 

Leighton et al 2021 (Leighton et al., 2021) and Puntis et al 2021,(Puntis et al., 

2021) were rated overall ‘low’ ROB. These studies considered symptom remission 

and psychiatric rehospitalisation outcomes, respectively. Both studies externally 

validated their prediction model and considered its clinical utility. However, 

neither study considered the implementation of the prediction model into actual 

clinical practice. When we assessed the 13 included studies according to 

PROBAST applicability concerns, all the studies were considered overall ‘low’ 

concern. This is indicative of the broad scope of our systematic review.
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Table 2-5 PROBAST risk of bias for each study  

Study ID Participants Predictors Outcome Analysis Overall 

AJNAKINA 2020 Low Low Low High High 
BHATTACHARYYA 
2021 Low Low Low High High 

CHUA 2019 Low High Low High High 

DEMJAHA 2017 Low Low Low High High 

DENIJS 2019 Low Low Low High High 

DERKS 2010 Low Low Low High High 

FLYCKT 2006 Low Low Low High High 
GONZALEZ-BLANCH 
2010 Low Low Low High High 

KOUTSOULERIS 2016 Low Low Low High High 

LEIGHTON 2019 (1) Low Low Low High High 

LEIGHTON 2019 (2) Low Low Low High High 

LEIGHTON 2021 Low Low Low Low Low 

PUNTIS 2021 Low Low Low Low Low 
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2.5 Discussion 

Our systematic review identified 13 studies reporting 31 prognostic prediction 

models for the prediction of a wide range of clinical outcomes. The majority of 

models were developed via logistic regression. There were several 

methodological limitations identified including a lack of appropriate validation, 

issues with handling missing data and a lack of reporting of calibration and 

discrimination measures. We identified two studies with models at low risk of 

bias as assessed with PROBAST, both of which externally validated their models. 

2.5.1 Principal findings in context 

Our systematic review found no consistent definition of FEP across the different 

cohorts used for developing and validating prediction models. A lack of an 

operational definition for FEP within clinical and research settings has previously 

been identified as major a barrier to progress (Breitborde et al., 2009). The 

majority of cohorts in our systematic review included only individuals with non-

affective psychosis with a minority also including affective psychosis. In 

contrast, early intervention services typically do not make a distinction between 

affective and non-affective psychosis in those whom they accept into their 

service (National Institute for Health and Care Excellence (NICE), 2016b). As 

such, there may be issues with generalisability of prediction models developed 

in cohorts with solely non-affective psychosis to real-world clinical practice.  

A wide range of different outcomes were predicted by the FEP models including 

symptom remission, global functioning, vocational functioning, treatment 

resistance, rehospitalisation and quality of life outcomes. This is reflective of 

the fact that recovery from FEP is not readily distilled down to a single factor 

like symptom remission. Meaningful recovery is represented by a constellation of 

multidimensional outcomes unique to each individual (Jaaskelainen et al., 2013). 

We should engage people with lived experience, to ensure that prediction 

models are welcomed and are predicting outcomes most relevant to the people 

they are for. 

All the prediction models were developed in populations from high-income 

developed countries and only three studies included participants from countries 
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outside of Europe, an issue not unique to FEP research. Consequently, it is 

currently unknown how prediction models for FEP would generalise to low-

income developing countries. Prediction models may have considerable benefit 

in developing countries where almost 80% of patients with FEP live but where 

mental health support is often scarce (Singh et al., 2020). Prediction models 

could help prioritise the appropriate utilisation of limited healthcare resources. 

Only one study considered predictor variables other than clinical or 

sociodemographic factors. In this study, the additional predictors did not add 

significant value (de Nijs, 2019). In recent years substantial progress has been 

made in elucidating the pathophysiological mechanisms underpinning the 

development of psychosis. We now recognise important roles for genetic factors, 

neurodevelopmental factors, dopamine and glutamate (Lieberman & First, 

2018). Prediction model performance may be improved by the incorporation of 

these biological relevant disease markers as predictor variables. However, the 

cost-benefit of adding more expensive and less accessible disease markers must 

be carefully considered, especially if models are to be utilised in settings where 

resources are more limited. 

Machine learning can be operationally defined as “models that directly and 

automatically learn from data” (Christodoulou et al., 2019). This is to be 

contrasted with regression models which “are based on theory and assumptions, 

and benefit from human intervention and subject knowledge for model 

specification”(Christodoulou et al., 2019). Just two studies employed machine 

learning techniques for their modelling (de Nijs, 2019; Koutsouleris et al., 2016). 

The rest of the studies employed logistic regression. We were unable to make 

any comparison between the discrimination and calibration ability of the two 

studies employing machine learning and the other studies because these metrics 

were not provided. However, a recent systematic review found no evidence of 

superior performance of clinical prediction models using machine learning 

methods over logistic regression (Christodoulou et al., 2019). In any case, the 

distinction between regression models and machine learning has been viewed to 

be artificial. Instead, algorithms may exist “along a continuum between fully 

human-guided to fully machine-guided data analysis” (Beam & Kohane, 2018). An 

alternative comparison may be between linear and non-linear classifiers. Only 

one study employed a non-linear classifier (Koutsouleris et al., 2016), but again 
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we were unable to gain meaningful insights into its relative performance 

because appropriate metrics were not provided.  

A principal finding from our systematic review is the presence of methodological 

limitations across the majority of studies. Steyerberg et al outline four key 

measures of predictive performance that should be assessed in any prediction 

modelling study – two measures of calibration (the model intercept (A) and the 

calibration slope (B)), discrimination via a concordance statistic (C), and clinical 

usefulness with decision-curve analysis (D) (Steyerberg & Vergouwe, 2014). 

Model calibration is the level of agreement between the observed outcomes and 

the predictions. For example, if a model predicts a 5% risk of cancer, then, 

according to such a prediction, the observed proportion should be five cancers 

per 100 people. Discrimination is the ability of a model to distinguish between a 

patient with the outcome and one without (Steyerberg & Vergouwe, 2014). Our 

review found that only seven studies (54%) reported discrimination and just five 

(38%) reported any measure of calibration. The remaining studies reported only 

classification metrics, such as accuracy or balanced accuracy. The problem with 

solely reporting classification metrics is that they vary both across models and 

across different probability thresholds for the same model. This renders the 

comparison between models less meaningful. It is further argued that setting a 

classification threshold for a probability generating model is premature. Rather, 

a clinician may choose to set different probability thresholds for the same 

prediction model depending on the situation at hand in order to optimise the 

balance between false positives and false negatives. For example, in the case of 

a model predicting cancer, a clinician may choose a lower probability threshold 

to offer a non-invasive screening test and a higher probability threshold to 

suggest an invasive and potentially harmful biopsy. Further, without any 

measure of model calibration we are unable to assess if the model can make 

unbiased estimates of outcome (Harrell, 2015). The final key step in assessing 

the performance of a prediction model is to determine its clinical usefulness – 

that is, can better decisions be made with the model than without? Decision-

curve analysis considers the net-benefit (the treatment threshold weighted sum 

of true- minus false-positive classifications) for a prediction model in comparison 

the default strategy of treating all or no patients, across an entire range of 

treatment thresholds (Vickers et al., 2019). Only two studies (15%) included in 
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our review considered whether the model was clinically useful. Without proper 

validation of prediction models, the reported performances are likely to be 

overly optimistic. Four studies (31%) report only apparent validity. Just four 

studies (31%) reported external validation, considered essential before applying 

a prediction model to clinical practice (Steyerberg & Harrell, 2016). 

Altogether, just two studies (15%) had an overall ‘low’ risk of bias according to 

PROBAST, reflecting these methodological limitations. Neither study considered 

real-world implementation. To progress with implementation, impact studies are 

required. These would involve a cluster randomised trial comparing patient 

outcomes between a group with treatment informed by a clinical prediction 

model and a control group (Moons et al., 2012). We are not aware of any such 

study having been carried out within the field of psychiatry. However, Salazar de 

Pablo et al suggest that PROBAST thresholds for considering a study to be a ‘low’ 

risk of bias may be too strict (Salazar de Pablo et al., 2021). Indeed, in the field 

of machine learning multiple imputation is frequently computationally infeasible 

and single imputation may be viewed as sufficient. This is especially true in 

larger datasets or in the presence of relatively few missing values (Steyerberg, 

2019). 

2.5.2 Strengths and limitations 

Our review had a number of strengths. We provide the first systematic overview 

of prediction modelling studies for use in patients with FEP. We offer a detailed 

critique of the study characteristics, their methodologies and model 

performance metrics. Further, our review adheres to gold standard guidance for 

extracting data from prediction models and for assessing bias, namely the 

CHARMS checklist and PROBAST. 

There were several limitations. Our initial aim was to perform a meta-analysis of 

any prediction model which was validated across different settings and 

populations. However, no meta-analysis was possible because no single 

prediction model was validated more than once. In addition, as a consequence 

of poor reporting of discrimination and calibration performance across the 

studies, it was often difficult to make meaningful comparison between the 

prediction models. Also, the lack of consensus as to the most important outcome 
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measure in FEP, with six different outcomes considered across only 13 included 

studies, further hindered efforts at drawing meaningful comparisons between 

the included studies and their respective prediction models. Likewise, if more 

studies had considered the same outcome measures, this may have afforded the 

opportunity to validate existing prediction models rather than necessitating the 

creation of additional new models. All published prediction modelling studies in 

FEP reported significant positive findings. It is possible that studies which had 

negative findings were held back from publication reflecting the possibility of 

publication bias. We originally intended to evaluate the overall certainty in the 

body of evidence using the Grading of Recommendations Assessment, 

Development and Evaluation (GRADE) framework (Schunemann et al., 2008). 

GRADE was originally designed for reviews of intervention studies but has not yet 

been adapted for use in systematic reviews of prediction models. Consequently, 

in its current form we did not find GRADE to be a suitable tool for our review 

and decided not to use it. Future research should consider how to adapt GRADE 

for use in systematic reviews of prediction models. 

2.5.3 Implications for future research 

It is clear that there is a growing trend for the development of prediction models 

in FEP (Salazar de Pablo et al., 2021). FEP is an illness which responds best to an 

early intervention paradigm (Birchwood et al., 1998). Prediction models have 

the potential to optimise the allocation of time-critical interventions, like 

clozapine for treatment resistance (Farooq et al., 2019). However, prior to 

meaningful implementation into real-world clinical practice several steps are 

necessary. The field must prioritise external validation and replication of 

existing prediction models in larger sample sizes to increase the EPV. This is best 

accomplished by an emphasis on data-sharing and open collaboration. Prediction 

studies should include FEP cohorts from low-income countries where there is 

considerable potential for benefit by helping to prioritise limited resources to 

those most in need. Harmonisation of data collection across the field both in 

terms of predictors and outcomes measured would facilitate validation efforts. 

There should be a greater consideration of biologically relevant and cognitive 

predictors based on our growing understanding of disease mechanisms, which 

could optimise prediction model performance. Finally, our review highlights 

considerable methodological pitfalls in much of the current literature. Future 
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prediction modelling studies should focus on methodological rigour with 

adherence to accepted best practice guidance (Harrell, 2015; Steyerberg & 

Harrell, 2016; Steyerberg & Vergouwe, 2014). Our goal in psychiatry should be to 

develop an innovative approach to care using prediction models. Application of 

these approaches into clinical practice would enable rapid and targeted 

intervention thereby limiting treatment associated risks and reducing patient 

suffering.
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Chapter 3 Development and validation of a 
nonremission risk prediction model in first-
episode psychosis: an analysis of two 
longitudinal studies 

3.1 Overview of this chapter 

This chapter presents the development and validation of a nonremission risk 

prediction model in first-episode psychosis (FEP). The article was published in 

Schizophrenia Bulletin Open on 31st August 2021.  

A corrigendum was published on 20th November 2022 which corrected an error 

which had resulted when calculating the confidence intervals for the results 

after combining the data across multiple imputations. This had resulted in the 

estimates of the values with narrower confidence intervals than if we had 

correctly applied Rubin’s Rules (Rubin, 1987). 

A further corrigendum was published on 3rd April 2023 which corrected an error 

resulting from the fact we had originally standardised (centred and scaled) the 

development (NEDEN) and validation cohort (Outlook) data separately. This is 

not best practice and instead we should have used the means and standard 

deviations from the development cohort to standardise the validation cohort 

(Hastie et al., 2009; Matthew Drury 

(https://stats.stackexchange.com/users/74500/matthew-drury)). The results 

are very similar to the original published results and the interpretation is largely 

unchanged. The only change is that the external validation calibration slope, 

although its confidence intervals still overlap the ideal, does suggest a degree of 

overfitting. 

This chapter presents the corrected version of the original article. 

3.2 Introduction 

Psychotic disorders, including schizophrenia, are among the 20 leading causes of 

disability worldwide in 2017. People with psychosis have heterogeneous 

outcomes with more than 40% not achieving symptomatic remission (Lally et al., 
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2017). Symptom remission after the FEP is associated with long-term functional 

outcome (Jordan et al., 2014). The main modifiable reasons for nonremission 

include treatment resistance (Smart et al., 2021), medication nonadherence 

(Kane et al., 2013), and comorbid substance misuse (Weibell et al., 2017). 

Although there are effective interventions to ameliorate the reasons for 

nonremission, there is often a delay in providing these interventions. For people 

with treatment-resistant psychosis, delays of around four years in initiating 

effective interventions have been reported – for example, clozapine for 

treatment resistance (Howes et al., 2012). Delay is associated with poorer 

outcomes. Clinicians have identified the difficulty of early identification of 

patients likely to become treatment-resistant as a barrier preventing the 

initiation of effective phase-specific treatments like clozapine at the optimal 

time (Farooq et al., 2019). 

Early identification of individuals with a higher risk of nonremission at initial 

clinical contact may facilitate personalized interventions, reduce time to their 

initiation and improve utilization of resources. Although there have been recent 

attempts to develop models to predict the individual risk of poor outcome in FEP 

(Koutsouleris et al., 2016; Leighton, Krishnadas, et al., 2019; Leighton, 

Upthegrove, et al., 2019), these are affected by suboptimal study design and 

reporting, lack of external validation (Koutsouleris et al., 2016), small sample 

sizes (Leighton, Krishnadas, et al., 2019), and no measures of calibration or 

clinical utility (Koutsouleris et al., 2016; Leighton, Krishnadas, et al., 2019; 

Leighton, Upthegrove, et al., 2019). This study aimed to develop and externally 

validate a new prediction model to predict the individual risk of nonremission at 

one year for individuals with first-episode psychosis. 

3.3 Methods 

3.3.1 Data sources and study population 

We used data from the National Evaluation of Development of Early intervention 

Network study (NEDEN) for model development and internal validation. We used 

data from the Outlook study for external validation. Written informed consent 

was obtained from all participants. Both studies had NHS Research Ethics 

Committee approval. 
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3.3.2 Development cohort 

NEDEN is a longitudinal naturalistic study of 1027 patients aged 14–35 with FEP 

recruited from 14 early intervention services across the National Health Service 

(NHS) in England (2005–2010); the methods and baseline characteristics have 

been outlined previously (Birchwood et al., 2014). An analysis of the potential of 

prediction modelling in FEP using this dataset has been published. We conducted 

a reanalysis to address methodological issues with our previous analysis 

(Leighton, Upthegrove, et al., 2019) (including the lack of any measures of 

calibration or clinical utility) and to take advantage of an external validation 

dataset that was similar to the development dataset (in terms of patients, 

geography, and clinical service they were drawn from) allowing for better 

assessment of generalizability. Models in the previous analysis did not inform the 

present study. 

3.3.3 Validation cohort 

The Outlook study (which was part of the PsyGrid study) is a longitudinal 

naturalistic study of 399 patients recruited from a further 11 NHS England early 

intervention services, throughout April 2006–February 2009 (Drake et al., 2020). 

Inclusion criteria: age 16–35, International Classification of Diseases 10th 

Revision (ICD-10) diagnosis of schizophrenia, schizoaffective disorder, delusional 

disorder, mania or severe depression with psychosis, acute and transient 

psychoses, drug-induced psychoses and psychosis not otherwise specified; those 

with organic brain disorders were excluded. 

In both cohorts, participants were recruited as soon after the first contact with 

the early intervention services as possible. Baseline assessment occurred as soon 

as a referral was received by a participating service, regardless of whether the 

potential participant was in the hospital or the community. 

3.3.4 Outcome measure 

Our outcome measure was symptom nonremission at one year. Nonremission was 

defined as failing to meet the Remission in Schizophrenia Working Group criteria 

using the Positive And Negative Syndrome Scale (PANSS) at six and 12 months, a 

reliable and valid scale in clinical and research settings. The Remission in 
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Schizophrenia Working Group defined remission as scores of less than or equal to 

3 in PANSS items P1 Delusions, P2 Conceptual Disorganization, P3 Hallucinatory 

Behavior, N1 Blunted Affect, N4 Apathetic Social Withdrawal, N6 Lack of 

Spontaneity and G9 Unusual Thought Content, present for a period of at least six 

months (Andreasen et al., 2005). 

3.3.5 Candidate predictors 

In both cohorts, psychologists not directly involved in clinical care trained in the 

use of the rating scales assessed participants at baseline, six- and 12-month 

follow-up. Both studies collected candidate predictors based on existing 

literature and expert knowledge using standardized assessment instruments. 

These included sociodemographic and clinical variables, the Premorbid 

Adjustment Scale, PANSS, Young Mania Rating Scale, Birchwood Insight Scale, 

Calgary Depression Scale for Schizophrenia, Global Assessment of Functioning, 

and EQ-5D. In addition, participant UK postcode outward code was mapped to 

primary care trust (PCT). Summary PCT level UK Government Index of Multiple 

Deprivation (IMD) data (collected between 2001 and 2005, released 2007) was 

then linked to each patient. 

Fourteen predictors were chosen based on previous research and consensus 

between five psychiatrists working in the field of Early intervention in Psychosis. 

The list of predictors is provided in Table 3-1. As outlined above, similar 

research involving feature selection was performed using the NEDEN dataset 

(Leighton, Upthegrove, et al., 2019). This did not influence the choice of 

predictors for the present study. 

Table 3-1 The final logistic regression nonremission prediction model specification. We now 
provide mean and standard deviation values to allow the transformation of the predictor 
variables to Z-scores for their use in the model. This was omitted from the original 
published paper but is required to apply the model to new patients. 

Variable Values to 
transform 
to Z-score 

Unadjusted Final 
Model 
 

Adjusted Final Model 
(Shrinkage Factor = 
0.84) 

Mean (SD) β 
Coefficient 
(95% CI) 

Odds 
Ratio 
(95% CI) 

β 
Coefficient 

Odds 
Ratio 

Intercept  0.022 
(-0.334, 
0.379) 

 0.029  
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Male Sex 
(1 or 0) 

N/A 0.259 
(-0.129, 
0.646) 

1.295 
(0.879, 
1.908) 

0.217 1.242 

Age at Study 
Entry 

22.51 
(4.887) 

-0.037 
(-0.210, 
0.137) 

0.964 
(0.810, 
1.147) 

-0.031 0.970 

Past Drug Use 
(1 or 0) 

N/A -0.101 
(-0.478, 
0.277) 

0.904 
(0.620, 
1.319) 

-0.084 0.919 

DUP (days) 307.5 
(632.3) 

0.546 
(0.255, 
0.838) 

1.727 
(1.291, 
2.311) 

0.460 1.581 

PAS Highest 
Functioning 
Achieved 

1.745 
(1.446) 

0.427 
(0.241, 
0.613) 

1.533 
(1.273, 
1.847) 

0.358 1.431 

PANSS P1 
Delusions 

2.828 
(1.683) 

0.060 
(-0.166, 
0.287) 

1.062 
(0.847, 
1.332) 

0.051 1.052 

PANSS P2 
Conceptual 
Disorganization 

1.945 
(1.254) 

-0.359 
(-0.568, -
0.151) 

0.698 
(0.567, 
0.860) 

-0.301 0.740 

PANSS P3 
Hallucinatory 
Behavior 

2.931 
(1.686) 

0.543 
(0.334, 
0.753) 

1.722 
(1.396, 
2.123) 

0.455 1.577 

PANSS N4 
Passive Social 
Withdrawal 

2.68  
(1.576) 

0.346 
(0.146, 
0.545) 

1.413 
(1.157, 
1.725) 

0.290 1.336 

PANSS G6 
Depression 

3.229 
(1.681) 

-0.198 
(-0.398, 
0.002) 

0.820 
(0.672, 
1.002) 

-0.166 0.847 

Insight Scale – 
Nervous or 
Mental Illness 

1.288 
(0.7951) 

-0.075 
(-0.263, 
0.114) 

0.928 
(0.768, 
1.121) 

-0.062 0.940 

GAF Symptoms 51.48 
(16.72) 

-0.272 
(-0.540, -
0.005) 

0.762 
(0.583, 
0.995) 

-0.228 0.780 

GAF Disability 53.27 
(15.58) 

-0.019 
(-0.267, 
0.229) 

0.981 
(0.765, 
1.257) 

-0.016 0.984 

Average 
Deprivation 
Score in 
Patient’s PCT 

27.27 
(12.22) 

0.221 
(0.029, 
0.414) 

1.248 
(1.029, 
1.513) 

0.185 1.204 

DUP = duration of untreated psychosis; PAS = premorbid adjustment scale; PANSS = Positive and 
Negative Syndrome Scale; GAF = Global Assessment of Functioning; PCT = Primary Care Trust; 
N/A = not applicable  

3.3.6 Sample size calculation 

Using Riley et al’s (Riley et al., 2019) criteria for multivariable prediction model 

development for binary outcomes, the minimum sample size required given a 



56 

50% prevalence of nonremission with 14 predictor parameters (meeting the 

assumptions of global shrinkage factor of ≥0.90, an absolute difference of ≤0.05 

between apparent and adjusted R-squared, and a 0.05 margin of error in the 

estimation of intercept) is 431 with 216 nonremitters (Events per Predictor 

Parameters [EPP] = 15). Our development cohort included 673 FEP individuals 

with 353 individuals meeting criteria for nonremission at one year. This provides 

an EPP of 25, which is above requirements. Further, the number of nonremission 

events in both the development and validation cohort was >100, which is in line 

with suggested criteria (Steyerberg, 2019). The number of nonevents in the 

validation cohort was 88, just below suggested criteria. 

3.3.7 Missing data 

Missing data were multiply imputed (m = 10) by chained equations using all 

predictors, auxiliary variables, and outcomes based on the assumption that data 

was missing at random. Imputed outcome data were then deleted (von Hippel, 

2007). It is proposed that this strategy leads to more efficient estimates than an 

ordinary multiple imputation strategy while also protecting the estimates from 

problematic imputations in the outcome variable (Steyerberg, 2019). This 

multiple imputation strategy was carried out separately for the development and 

validation datasets. Ordinal variables were treated as continuous and binary 

variables were dummy coded. All predictor variables were standardized prior to 

model construction. 

3.3.8 Statistical analysis for model development 

We followed the TRIPOD (Transparent Reporting of a multivariable model for 

Individual Prognosis Or Diagnosis) guidance for development and reporting of 

multivariable prediction models (Moons et al., 2015). 

3.3.9 Model development, internal, and external validation 

A logistic regression model was fitted by maximum likelihood estimation on the 

14 chosen predictors. Internal validation performance was assessed by 10-fold 

cross-validation repeated five times on the 10 imputed datasets. The model 

performance was considered using discrimination and calibration measures. 

Discrimination, or the ability of our model to distinguish a patient with the 
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outcome (nonremission) from a patient without (remission), was assessed via the 

c-statistic (with 95% CIs were established via U-statistic theory and permutation 

testing to confirm significance). Calibration is the level of agreement between 

the observed outcomes and the model’s predictions. Two measures of model 

calibration were calculated: calibration-in-the-large (alpha) which is the 

intercept on the calibration plot and compares mean observed to mean 

predicted, and, the calibration slope (beta) which relates to the shrinkage of the 

regression coefficients. A perfectly calibrated model would show an ideal line 

with intercept alpha of 0 and a slope beta of 1. For internal validation, only the 

slope beta is of value and corresponds to the shrinkage factor or measure of 

overfitting (Steyerberg & Vergouwe, 2014). This uniform shrinkage factor was 

applied to the final logistic regression model and the intercept was re-estimated 

prior to external validation on the Outlook dataset. 

3.3.10 Clinical utility 

Clinical utility was assessed in the external validation cohort, in addition to 

discrimination and calibration. We assessed the clinical usefulness of using a 

treatment strategy based on the prediction model compared with treating all, 

treating none, or treating based on the duration of untreated psychosis (DUP) 

alone (DUP is the most researched and consistent predictor of poor outcome in 

FEP). Hereto, a decision curve analysis was performed (Vickers & Elkin, 2006). 

Clinical usefulness is considered in terms of net-benefit (the treatment threshold 

weighted sum of true- minus false-positive classifications for each strategy – 

Equation 3-1) plotted against an entire range of treatment thresholds. A 

treatment threshold is defined as the point where the likelihood of benefit, in 

our case, reduced rates of nonremission, exactly balances the likelihood of 

harm. Treatment thresholds vary between individual clinicians and patients 

depending on their context-specific weighting of relative harms and benefits. 

Equation 3-1 Net benefit  

𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝑁𝑁𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝑁𝑁 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑁𝑁𝐵𝐵𝑃𝑃𝑁𝑁𝑃𝑃

𝑁𝑁
 −  

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑁𝑁𝐵𝐵𝑃𝑃𝑁𝑁𝑃𝑃
𝑁𝑁

 𝑥𝑥 
𝑇𝑇ℎ𝑇𝑇𝑁𝑁𝑃𝑃ℎ𝑃𝑃𝐹𝐹𝑜𝑜 𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐵𝐵𝐹𝐹𝑁𝑁𝑃𝑃

1 − 𝑇𝑇ℎ𝑇𝑇𝑁𝑁𝑃𝑃ℎ𝑃𝑃𝐹𝐹𝑜𝑜 𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐵𝐵𝐹𝐹𝐵𝐵𝑁𝑁𝑃𝑃
 

N = total sample size  
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The intervention (“treatment”) proposed on the prediction of a high risk of 

nonremission is “enhanced monitoring” over routine care leading to early 

identification and intervention for treatment resistance, substance misuse, or 

nonconcordance. To use a prediction model for such treatment decisions, we 

require to specify a probability threshold above which we would consider the 

treatment. 

We consulted NHS early-intervention specialists (eight NHS Consultant 

Psychiatrists) to ascertain the probability threshold at which they would consider 

treatment. The range of thresholds varied between 40% and 60% That is; they 

would adopt an assertive monitoring and intervention approach when an 

individual’s probability of nonremission is above 40%–60% to balance the 

likelihood of benefits versus the harms/costs (in this case, the benefit of 

reduced rates of nonremission against the probability of harm via intrusive 

monitoring, side-effects, and increased costs). 

Net-benefit is calculated across the range of threshold probabilities of the 

outcome (nonremission) at which further intervention would be warranted. Net-

benefit differs from other performance metrics such as discrimination and 

calibration because it incorporates the consequences of the decisions made 

based on a model. 

All analyses were performed using R, Comprehensive R Archive Network (CRAN) 

version 4.1.0 (R Core Team, 2021) (with the “mice” (van Buuren & Groothuis-

Oudshoorn, 2011), “caret” (Kuhn, 2008), “pROC” (Robin et al., 2011), 

“CalibrationCurves,” and “dca” packages) and code is available in Appendix 2. 

The analysis pipeline is provided in Figure 3-1. 
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Figure 3-1 Analysis pipeline 
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3.4 Results 

3.4.1 Study populations 

In the NEDEN study, 673 (66%) of 1027 participants had outcome data, of which 

353 (52%) met criteria for 1-year symptom nonremission. In the Outlook study, 

191 (48%) of 399 participants had outcome data, of which 103 (54%) met criteria 

for nonremission. The baseline characteristics of the development (NEDEN) and 

validation (Outlook) cohorts are summarized in Table 3-2. 

Table 3-2 Baseline characteristics of the development (NEDEN) and validation (Outlook) 
cohorts.  

Baseline 

Characteristic 

Development Cohort 

(NEDEN) 

(n=1027) 

Validation Cohort 

(Outlook) 

(n=399) 

P-Value 

All With 

Outcome 

Data 

(n=673; 

66%) 

All With 

Outcome 

Data 

(n=191; 

48%) 

Age (Years) 

Mean (SD) 

Missing 

 

22.5 (4.89) 

1 (0.1%) 

 

22.6 (5.01) 

1 (0.1%) 

 

25.6 (7.91) 

0 (0%) 

 

25.0 (7.84) 

0 (0%) 

ANOVA 

F(3,2284) 

= 35.7, p =  

<0.001* 
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Sex 

Male 

 

Female 

 

 

Missing 

 

709 

(69.0%) 

318 

(31.0%) 

 

0 (0%) 

 

463 

(68.8%) 

210 

(31.2%) 

 

0 (0%) 

 

246 

(61.7%) 

153 

(38.3%) 

 

0 (0%) 

 

118 

(61.8%) 

73 

(38.2%) 

 

0 (0%) 

Chi-

squared 

test 

χ2(3) = 

10.4, p = 

0.015* 

In Employment, 

Education or 

Training 

Missing 

284 

(32.5%) 

 

154 

(15.0%) 

190 

(33.2%) 

 

100 

(14.9%) 

174 

(43.6%) 

 

0 (0%) 

85 

(44.5%) 

 

0 (0%) 

Chi-

squared 

test 

χ2(3) = 

22.6, p = 

<0.001* 

Highest 

Qualification 

None 

 

GCSE/NVQ level 

1 or 2 

A-level/GNVQ/ 

BTEC/NVQ level 

3 

Degree/HND/NV

Q level 4 or 

above 

Missing 

 

 

245 

(24.4%) 

399 

(39.7%) 

262 

(26.1%) 

 

98 (9.8%) 

 

 

23 (2.2%) 

 

 

156 

(23.7%) 

255 

(38.8%) 

173 

(26.3%) 

 

74 (11.2%) 

 

 

15 (2.2%) 

 

 

89 

(23.4%) 

130 

(34.2%) 

92 

(24.2%) 

 

69 (18.2%) 

 

 

19 (4.8%) 

 

 

40 

(21.3%) 

67 

(35.6%) 

46 

(24.5%) 

 

35 (18.6%) 

 

 

3 (1.6%) 

Chi-

squared 

test  

χ2(9) = 

26.2, p = 

0.002* 
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Adjusted 

Duration of 

Untreated 

Psychosis 

(Days) 

Mean (SD) 

Missing 

 

 

 

 

 

308 (633) 

16 (1.6%) 

 

 

 

 

 

289 (589) 

7 (1.0%) 

 

 

 

 

 

293 (839) 

62 (15.5%) 

 

 

 

 

 

342 (1000) 

39 (20.4%) 

ANOVA 

F(3, 2162) 

= 0.291, p 

= 0.832 

Average 

Deprivation 

Score in 

Patient’s 

Primary Care 

Trust 

Mean (SD) 

Missing 

 

 

 

 

 

 

27.3 (12.2) 

6 (0.6%) 

 

 

 

 

 

 

26.6 (11.6) 

4 (0.6%) 

 

 

 

 

 

 

30.0 (8.0) 

209 

(52.4%) 

 

 

 

 

 

 

28.9 (7.9) 

108 

(56.5%) 

ANOVA  

F(3, 1959) 

= 5.0, p = 

0.002* 

 

 

 

Positive and 

Negative 

Syndrome Scale 

Total 

Mean (SD) 

Missing 

 

 

 

 

62.7 (18.8) 

105 

(10.2%) 

 

 

 

 

64.1 (19.0) 

42 (6.2%) 

 

 

 

 

63.0 (15.5) 

67 (16.8%) 

 

 

 

 

60.9 (14.5) 

18 (9.4%) 

ANOVA 

F(3, 2054) 

= 1.64, p = 

0.178 

* indicates significance after Bonferroni-Holm correction (n = 7) 
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3.4.2 Model development and internal validation 

The 14 variable logistic regression prediction model is specified in Table 3-1. 

At internal validation, the discrimination c-statistic was 0.74 (0.72, 0.76), while 

the calibration slope beta of 0.84 (0.76, 0.92). This shrinkage factor was applied 

to the final model coefficients and the intercept was re-estimated (see Appendix 

3 for note on internal validation method). 

3.4.3 External validation 

At external validation, the model showed fair discrimination with a c-statistic of 

0.73 (0.64–0.81). There was a good spread of risk, with good correspondence 

between observed proportions with psychosis for subjects grouped by similar 

predicted risk (Figure 3-2). 
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Figure 3-2 External validation calibration plot (first imputed dataset). The calibration 
intercept of -0.014 (-0.34, 0.31) and slope 0.85 (0.42, 1.27). Triangles represent quintiles of 
subjects grouped by similar predicted risk. The distribution of subjects is indicated with 
spikes at the bottom of the graph, stratified by endpoint (nonremitters above the x-axis, 
remitters below the x-axis). Although both sets of confidence intervals overlapped the ideal 
values, the calibration slope point estimate is smaller than 1 indicating that the predicted 
risks were too extreme in the sense of overestimating for patients at high risk while 
underestimating for patients at low risk and is indicative of overfitting of the model. The 
calibration intercept point estimate was close to ideal suggesting no general over- or 
underestimation of predicted risks. 

For the Outlook external validation, the 54% overall rate of nonremission at one 

year implies a maximal net-benefit of 54% at a decision threshold for treatment 

of 0%. Figure 3-3 shows that, between thresholds of 35%–70%, treating based on 

our model is better than treating all, treating none or treating using DUP alone. 

At a probability threshold of 50% (midpoint of the range of clinician chosen 

thresholds), treating based on our model has an increased net-benefit of 16% 

compared the strategy of treating all, equivalent to 16 more detected 

nonremitted FEP individuals per 100 FEP individuals without an increase in 

incorrect classification of remitted FEP individuals as high risk. 
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Figure 3-3 External validation decision curve analysis plot. Net-benefit is the treatment 
threshold weighted sum of true- minus false-positive classifications for each strategy 
plotted against an entire range of treatment thresholds. Green line: no patients are treated, 
net-benefit is zero (no true-positive and no false-positive classifications); red line: all 
patients are treated; purple and cyan lines: patients are treated if predictions exceed a 
threshold, with nonremission predictions based on adjusted DUP only, or on our prediction 
model. Between thresholds of 35% to 70%, treating based on our model is better than 
treating all, treating none or treating using DUP alone. 

3.5 Discussion 

We have developed a new risk prediction model based on baseline demographic 

and clinical variables to predict the risk of nonremission at one year after the 

onset of first-episode psychosis in a large sample of FEP individuals. The model 

was validated across services in the development population and externally 

validated on an independent cohort. The prediction model had fair 

discrimination and was fairly well-calibrated. The model showed an increase in 

net benefit. 
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3.5.1 Strengths and weakness of the study 

Our study has some strengths. Both our development and validation cohorts 

included a representative sample of FEP participants from early intervention 

services in England, who were prospectively followed up for a year. Both the 

cohorts were assembled in similar services (early intervention) and periods in 

England which improves generalizability to patients within these services, 

though they have potentially changed in the past 10 years resulting from 

financial austerity measures. The candidate predictors and outcomes were 

measured using standardized instruments by graduate psychologists who were 

not directly involved in the care of the participants, which minimized the 

measurement bias. We used an operationalized, and well-established outcome 

definition for nonremission, which further minimizes measurement bias. We 

provided four measures of model performance—discrimination, two measures of 

calibration, and decision curve analysis (Steyerberg & Vergouwe, 2014). Though 

the baseline measures were meant to be measured on the first presentation to 

early intervention service, in practice, there was variation: in NEDEN 32% within 

three weeks of presentation; in Outlook 21% within three weeks. The model will 

apply to patients at least three weeks after their presentation to early 

intervention services. 

There are some weaknesses to the study. Ethnicity was not included as a 

predictor in our model. This is some evidence that treatment resistance may be 

predicted by ethnicity (Smart et al., 2021). Only around half of the eligible 

participants consented to participate in the NEDEN study, which may affect the 

generalizability of our models to the general FEP population. However, those 

who did not consent were largely similar at baseline to people who did 

(Birchwood et al., 2014). Outcome data was not available for 34% of the NEDEN 

cohort and 52% in the Outlook cohort, which could further limit the validity of 

the results. As a result, while the number of events in the validation cohort was 

>100 (103), the number of nonevents was <100 (88). This is slightly less than 

suggested criteria. The method used for imputation of missing predictors using 

all the available data including outcome data and deletion of imputed outcome 

data has the advantage of the predictor imputation benefitting from the full 

data structure, whilst protecting the regression estimates from often 

problematic outcome imputations (Steyerberg, 2019). This approach has been 
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subject to criticism (Sullivan et al., 2015), though it is recognized that outcome 

imputation remains controversial. Further, there were differences in rates of 

missing data between the development and validation datasets. The outcome 

was measured only at the six- and 12-month time points. Study subjects may not 

have met remission criteria for the entire six months in between. The cohorts 

did not collect biomarkers of illness including inflammatory or neuroimaging 

data which a previous study in clinical high-risk populations has found to 

increase prognostic certainty when added to models based on clinical variables 

(Koutsouleris et al., 2018). Another weakness is that we have not accounted for 

treatment effects, which can lead to suboptimal model performance, albeit only 

in the presence of strong treatment effects. We assumed that standardized 

treatment was provided to all participants as they were drawn from early 

intervention services. 

3.5.2 Comparison with previous studies 

Three prediction models for outcome in first-episode psychosis have been 

reported, though they are yet to be used in clinical practice. One study has 

examined the prediction of social recovery in FEP participants from a 

randomised controlled trial (Koutsouleris et al., 2016), while the other two 

studies have examined prediction for remission and recovery measures in cohort 

studies (Leighton, Krishnadas, et al., 2019; Leighton, Upthegrove, et al., 2019). 

The discrimination performance for the remission outcome in our study is higher 

than that reported for models in two previous studies (c-statistic of 0.63 on 

external validation (Leighton, Krishnadas, et al., 2019), and 0.70 and 0.61 on 

internal and external validation respectively (Leighton, Upthegrove, et al., 

2019)), which could be explained by the smaller sample sizes used in their 

development and validation (Leighton, Krishnadas, et al., 2019), and the higher 

number of predictors used for their model development (Leighton, Upthegrove, 

et al., 2019). Measures of calibration and clinical usefulness have not been 

provided by the other two studies, which adds to the novelty and importance of 

the current study. 
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3.5.3 Implications for clinicians and policymakers 

The early identification of FEP individuals with higher risk prediction of 

nonremission may allow for changes to their treatment strategies, leading to 

improved remission rates. Though suggestions for such a strategy to improve 

remission rates have been made previously, there have been limited attempts 

towards a targeted approach to identify FEP individuals at high risk of 

nonremission. 

Health services globally has introduced measures to improve access to services 

and to ensure that FEP individuals receive evidence-based care. A validated 

prediction model closely aligns with the policy agenda of early identification of 

FEP individuals with a high risk of nonremission so that their care can be 

optimized, and resources targeted according to need. 

3.5.4 Future research 

Prospective validation in additional cohorts from plausibly related settings is 

required to establish the utility of our model in clinical settings. This will help to 

compare the model predictions versus clinical intuition and address the issue of 

treatment effect. Future research also needs to address what biomarkers, such 

as neuroimaging and immune markers, add to the performance of the model. 

The model should be validated in a range of clinical settings for its use in 

services outside England, and in settings that do not have early intervention 

psychosis services, which may show a need for local updating to improve the 

accuracy of predictions for specific settings.
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Chapter 4 Prediction modelling in first episode 
psychosis: an assessment of biological disease 
markers and machine learning classifiers 

4.1 Overview of this chapter 

This chapter presents an internal validation analysis of the potential for 

biological disease markers and machine learning classifiers in prediction 

modelling in first episode psychosis. A manuscript is in preparation. 

4.2 Introduction 

Psychosis is a major mental illness characterised by hallucinations, delusions and 

thought disorder. On average, more than 40% fail to achieve symptomatic 

remission (Lally et al., 2017). However, this average is often a poor guide for 

individual patients. At present, clinicians struggle to predict outcome in 

individuals and consequently an empirical approach to care is taken with all 

patients receiving the same treatment (National Institute for Health and Care 

Excellence (NICE), 2014). In contrast, the goal of clinical prediction model 

research is to enable the targeting of treatments according to individual patient 

risk. Expensive or higher risk treatment may be reserved for those at higher risk. 

This is the basis of stratified medicine (Hingorani et al., 2013; Steyerberg et al., 

2013). We have recently published an external validation study of a binary 

logistic regression first episode psychosis (FEP) nonremission risk prediction 

model fit by maximum likelihood estimation (MLE) built using solely clinical 

variables (Leighton et al., 2021). 

The majority of clinical prediction modelling studies for binary outcomes are 

based on logistic regression. In our recent systematic review of prediction 

models in FEP, only two of the 13 studies included used machine learning to 

develop prediction models while the rest used logistic regression (either MLE or 

regularised MLE) (Lee et al., 2022). However, across the field there is a growing 

interest in machine learning methods which promise to better capture 

nonlinearity and model complex interactions in medical data (van der Ploeg et 

al., 2016). Yet, such flexible machine learning models especially have been 

demonstrated to show particular issues with calibration in spite of good 
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discrimination performance (van der Ploeg et al., 2016; van Hoorde et al., 

2015). 

Across the field of psychiatry, there is a drive to find novel biomarkers of disease 

state or trait (Carvalho et al., 2020). However, the potential of such biological 

variables to improve clinical prediction model performance in FEP has not been 

adequately explored (Lee et al., 2022). Compelling evidence points to an 

association between inflammation and psychosis. Recent meta-analysis has 

highlighted the potential of inflammatory ratios, especially the 

monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), as a 

biomarker in psychosis (Mazza et al., 2020). Inflammation is in turn linked to 

increased glutamate expression in the brain via the upregulation of the enzyme 

indoleamine 2, 3-dioxygenase (Schwarcz et al., 2012). Meta-analysis of magnetic 

resonance spectroscopy (MRS) glutamate measures has shown potential as a 

putative biomarker in psychotic disorders including schizophrenia (Merritt et al., 

2016). 

Our study has two aims: 1) to compare the discrimination and calibration 

performance of a binary MLE logistic regression FEP nonremission risk prediction 

model built using solely clinical variables to models built using putative 

peripheral inflammatory and MRS glutamate disease biomarkers in addition to 

clinical variables; 2) to compare the performance of FEP nonremission risk 

prediction models derived by logistic regression fit using MLE and elastic net to 

models built using machine learning methods including naïve Bayes, random 

forest, linear and radial support vector machines (SVMs). 

4.3 Methods 

4.3.1 Data source and study population 

In this post-hoc analysis, we used data from the Lilly F1D-MC-HGDH trial. Lilly 

has not contributed to or approved, and is not in any way responsible for, the 

contents of this publication. The F1D-MC-HGDH trial was a double-blind, 

multicentre, randomised controlled trial of Olanzapine versus Haloperidol 

treatment in 263 participants meeting diagnostic criteria for a FEP (including 

schizophrenia, schizophreniform disorder, and schizoaffective disorder) as 
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defined by the Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition (DSM-IV). The trial was carried out in 14 international centres between 

March 1997 and July 2001.  

Participants were enrolled in the study if they met the following inclusion and 

exclusion criteria as outlined previously (Lieberman et al., 2005): age 16 to 40 

years; onset of psychosis before age 35; DSM-IV diagnosis of schizophrenia, 

schizophreniform, or schizoaffective disorder; no more than 16 weeks previous 

antipsychotic treatment or clozapine treatment; no current substance 

dependence (except caffeine and nicotine) by DSM-IV within one month before 

study entry; no current serious suicidal risk; female participants not pregnant or 

breastfeeding; premorbid intelligence quotient of 70 or higher; no requirement 

for concurrent anticonvulsants, benzodiazepines (except for agitation and 

control of extrapyramidal symptoms), antidepressants, psychostimulants, or 

other antipsychotic medications at study entry; and no contraindication for 

neuroimaging. Each participant (or their authorised legal representative) had to 

understand the nature of the study and sign an informed consent document. 

Each site’s institutional review board approved the study. 

4.3.2 Outcome measure 

Our outcome measure was symptom nonremission, defined as failing to meet the 

Remission in Schizophrenia Working Group criteria using the Positive And 

Negative Syndrome Scale (PANSS), at three months. The Remission in 

Schizophrenia Working Group defined remission as scores of less than or equal to 

three in PANSS items P1 Delusions, P2 Conceptual Disorganization, P3 

Hallucinatory Behavior, N1 Blunted Affect, N4 Apathetic Social Withdrawal, N6 

Lack of Spontaneity and G9 Unusual Thought Content (Andreasen et al., 2005). 

4.3.3 Candidate predictors 

Clinical variables were chosen based on the literature and consensus between 

five psychiatrists working in the field of early intervention in psychosis, as 

outlined previously (Leighton et al., 2021). Putative peripheral inflammatory and 

MRS glutamate candidate variables were selected based on a review of the 

literature and their availability in the Lilly dataset. The peripheral inflammatory 
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biomarkers considered were peripheral blood MLR and NLR. Combined glutamate 

and glutamine signal (GLX) as a ratio to creatine (Cr) was measured at three MRS 

regions of interests (ROIs) – in the frontal lobe, the hippocampus and the basal 

ganglia in the left hemisphere. Ordinal variables were treated as continuous and 

due to sample size we did not attempt to model non-linearities in continuous 

variables. 

4.3.4 Magnetic resonance spectroscopy 

MRS scans were obtained at 1.5 Tesla. 1H-MRS single-voxel spectroscopy was 

used to assess proton metabolites in three ROI – the frontal lobe, hippocampus 

and basal ganglia in the left hemisphere. The combined glutamate and 

glutamine (GLX) signal was measured as a ratio relative to creatine (Cr). Single-

voxel spectra were acquired using a Point RESolved Spectroscopic (PRESS) pulse 

sequence as part of the Probe P spectroscopy package. Each spectroscopic voxel 

was prescribed from three-dimensional high resolution axial images (Time to 

Echo (TE)/Repetition Time (TR) = 35-45 / 175 ms ; 256 x 128 matrix, field-of-

view (FOV) =  22 cm ; 15mm slice thickness; one number of excitations (NEX)). 

The 1H-MRS sequence for the frontal cortex, basal ganglia and hippocampus 

were as follows: TR 1500ms, TE 45 ms (range 35 ms - 45 ms), voxel dimension 15 

(superior-inferior) x 20 (right-left) x 20 (anterior-posterior) mm, 2048 points, 

2500Hz (range 2000 Hz – 2500 Hz), NEX (256 minimum, 512 maximum). 

4.3.5 Sample size 

The original Lilly study was powered to detect a change in using the Positive and 

Negative Syndrome Scale (PANSS) scores. Our study is a post-hoc analysis. 

According to the Prediction model Risk Of Bias Assessment Tool (PROBAST) 

guidance, for prediction model development the number of events per variable 

(EPV) should be at least ten to minimise overfitting (Wolff et al., 2019). With 86 

events, we considered models with seven clinical predictors with or without one 

additional biological variable. The seven clinical variables selected were those 

with the highest absolute standardised regression coefficients from our earlier 

study that were also present in the Lilly dataset – in descending order PANSS P3, 

Premorbid Adjustment Scale highest level of functioning, PANSS P2, PANSS N4, 

Global Assessment of Functioning (GAF) Symptoms, sex and PANSS G6 (Leighton 
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et al., 2021). Due to predictor availability in the Lilly dataset, we substituted 

GAF symptom score for the clinical global impression severity scale. 

4.3.6 Missing data 

For prediction modelling missing data were multiply imputed (m = 5) by chained 

equations using all predictors, auxiliary variables, and outcomes based on the 

assumption that data was missing at random. Imputed outcome data were then 

deleted. It is proposed that this strategy leads to more efficient estimates than 

an ordinary multiple imputation strategy while also protecting the estimates 

from problematic imputations in the outcome variable (von Hippel, 2007). 

4.3.7 Statistical analysis 

All statistical analyses were performed using R, Comprehensive R Archive 

Network (CRAN) version 4.1.0,(R Core Team, 2021) and code is available in 

Appendix 4. 

For baseline demographic and clinical comparisons, independent t-tests were 

used for normally distributed data, with Welch’s correction if the assumption of 

homogeneity of variances was not met. For data that was not normally 

distributed, Wilcoxon’s rank sum test was used. For categorical variables, 

Pearson’s chi-squared test was used. PANSS measures were mapped to van der 

Gaag’s five-factor model for baseline comparisons (van der Gaag et al., 2006). 

Prediction model performance was tested at internal validation by n (10) fold 

repeated (50) cross-validation. A model was built on nine tenths of the data and 

performance was estimated on the left out tenth. This was repeated 500 times. 

Where models required tuning of hyperparameters, cross validation was nested 

with the hyperparameter tuning performed on an inner n (10) fold repeated 

(five) cross-validation. This process was repeated five times for each multiple 

imputation. Estimates and statistical tests were pooled using Rubin’s rules 

(Rubin, 1987). 

The distribution of the probabilities at internal validation across all cross-

validation folds was inspected using histograms on the first imputed dataset. 
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Discrimination was quantified by the concordance (c) statistic. For binary 

outcomes the c-statistic is equal to the area under the receiver operating 

characteristic (ROC) curve which plots the sensitivity versus 1-specificity for 

consecutive probability thresholds of the predicted risk. The c-statistic can be 

interpreted as the probability that a randomly selected participant with the 

outcome will be ranked higher than a randomly selected participant without the 

outcome (Steyerberg & Vergouwe, 2014; van Calster et al., 2019). 

Calibration was assessed based on the logistic calibration framework first 

proposed by Cox in 1958 (Cox, 1958). Herein, calibration was assessed by 

regressing the observed binary outcomes (Y) on the log odds of the predictions 

(the linear predictor (LP)) with a logistic model: logit(Y) = a + bLP × LP. The 

coefficient bLP is known as the calibration slope while the intercept a is 

interpreted as the calibration-in-the-large when the slope is fixed at unity 

(a|bLP=1). The calibration slope bLP is ideally 1 when a model is well calibrated. 

If bLP < 1, this indicates that the prediction model overfits and its risk estimates 

are too extreme (high risks are overestimated and low risks are underestimated). 

If bLP > 1, the prediction model tends to underfit the data and the opposite 

pattern is observed (i.e. its predictions are too modest). The calibration-in-the-

large (a|bLP=1) is ideally 0 indicating mean calibration whereby the observed 

event rate in a dataset equals the average of the predicted risks. Predicted risks 

are underestimated on average if a|bLP=1 > 0 and overestimated if a|bLP=1 < 0 

(Huang et al., 2020; van Calster et al., 2019; van Calster et al., 2016). At 

internal validation, (by either cross-validation or bootstrap) the focus is usually 

on assessment of the calibration slope. This is because if model fitting is by 

standard statistical estimation methods such as maximum likelihood, the 

calibration-in-the-large is guaranteed to be ideal (van Calster et al., 2019; van 

Calster et al., 2016). However, this does not hold for some complex model 

fitting procedures like neural networks (Karhade et al., 2018). As such, we 

report both the calibration-in-the-large and the calibration slope for our internal 

validation study. 

For our first analysis, we compared the performance of a MLE logistic regression 

prediction model built using solely clinical variables to models built with the 

addition of a candidate biological variable, as detailed above. 
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For our second analysis, we compared the performance of a prediction model 

built with seven clinical variables using to logistic regression fit by MLE and 

elastic net to a number of popular machine learning approaches using the ‘caret’ 

package (Kuhn, 2008). Elastic net logistic regression was fit by regularised MLE 

tuned over a grid of alpha and lambda hyperparameters using the ‘glmnet’ 

package (Friedman et al., 2010). Alpha controls the balance between ridge and 

lasso penalty and lambda controls the amount of penalty. Naïve Bayes is a 

probabilistic classifier based on applying Bayes’ theorem with the “naïve” 

assumption of conditional independence between the predictor variables. Using 

the ‘naivebayes’ package we tuned whether numeric predictors were handled by 

assuming they follow Gaussian distributions or whether kernel density estimation 

was used to estimate their class-conditional distributions (Majka, 2020). Random 

forest is an ensemble classifier that builds and combines multiple decision trees. 

Using the ‘party’ package, we implemented random forest in a conditional 

inference framework, tuning how many variables are available to select while 

splitting a tree at each node (Hothorn et al., 2006). SVMs perform classification 

tasks by constructing hyperplanes which separate data into classes by 

maximising a margin which is the distance from the hyperplane to the nearest 

training point. We tuned the cost hyperparameter which determines how hard or 

soft the margin is. The choice of kernel determines the type of hyperplane. We 

used a linear kernel using the ‘e1071’ package (Meyer et al., 2021) and a radial 

kernel using the ‘kernlab’ package (Karatzoglou et al., 2004). 

One-way analysis of variance (ANOVA) was used to compare the performance 

metrics of the models in each of the above analyses. The calibration-in-the-large 

and calibration slope have been shown to follow a normal distribution but to 

ensure normality the c-statistic was logit transformed before analysis as 

recommended by Snell et al (Snell et al., 2018). Tukey’s post-hoc tests were 

applied. If data was heterogeneous Welch’s ANOVA was used and Games-Howell 

post-hoc tests were applied which adjusts p-values using Tukey’s method. In the 

absence of the ability to pool post-hoc tests using Rubin’s rules within the R 

programming environment, the Median P Rule was applied across multiple 

imputations (Eekhout et al., 2017). 
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4.4 Results 

4.4.1 Baseline comparisons 

Of the total 263 participants, 168 had PANSS data at 3 months. As shown in 

Table 4-1, the remitters did not differ from non-remitters in age (W = 3164; p = 

0.3), sex (χ2(1) = 0.568; p = 0.451) and smoking status (χ2(1) = 1.278; p = 0.258). 

However, they did differ in baseline PANSS scores. Those who remitted had 

lower PANSS positive (t(166) = 2.4; p = 0.02) and PANSS negative scores (W = 

4677; p = 0.0003). There was no difference in baseline characteristics between 

participants randomised to haloperidol versus olanzapine therapy (Table 4-2). 
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Table 4-1 Baseline characteristics for remitters versus non-remitters  

Baseline 
Characteristic 

Non-
remission 
at 3 
months 
(N=86) 

Remission 
at 3 
months 
(N=82) 

Statistic p-value Effect Size 
(95% CI) 

Age (Years) 
Median (IQR) 

22.8 (20.1, 
26.9) 

23.2 (21.1, 
26.2) 

W = 3164 0.3 r = 0.089 
(0.005, 
0.240) 

Sex (Female) 
N (%) 

13 (15.1) 16 (19.5) χ2(1) = 
0.568 

0.451 
 

OR = 0.736 
(0.301, 
1.771) 

Non-Smoker 
N (%) 

41 (47.7) 32 (39.0) 
 

χ2(1) = 
1.278 

0.258 OR = 1.421 
(0.737, 
2.753) 

PANSS Positive 
Mean (SD) 

25.1 (4.20) 23.4 (4.49) t(166) = 2.4 0.02 d = 0.378 
(0.060, 
0.680) 

PANSS Negative 
Median (IQR) 

21.5 (16.0, 
26.0) 

17.5 (10.2, 
22.0) 

W = 4677 0.0003 r = 0.282 
(0.140, 
0.420) 

PANSS 
Disorganisation 
Median (IQR) 

30.0 (24.0, 
34.0) 

28.0 (22.0, 
32.8) 

W = 3948 0.2 r = 0.103 
(0.005, 
0.250) 

PANSS 
Excitement 
Median (IQR) 

17.5 (14.0, 
20.8) 

16.0 (14.0, 
20.0) 

W = 3852 0.3 r = 0.080 
(0.003, 
0.230) 

PANSS 
Emotional 
Distress 
Median (IQR) 

22.5 (20.0, 
25.0) 

22.0 (18.0, 
25.0) 

W = 3870 0.3 r = 0.085 
(0.003, 
0.230) 

IQR – interquartile range; SD – standard deviation; PANSS – Positive and Negative Syndrome 
Scale; W – Wilcoxon rank sum test; χ2 – Pearson’s chi-squared test; t – independent t-test; 95% CI 
– 95% confidence intervals; r – Pearson’s correlation coefficient; OR – odds ratio; d – Cohen’s d; 
mean and SD are depicted where the data was normal; median and IQR depicted where the data 
was not normally distributed.  
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Table 4-2 Baseline characteristics for haloperidol versus olanzapine groups  

Baseline 
Characteristic 

Haloperidol 
Therapy 
(n=132) 

Olanzapine 
Therapy 
(n=131) 

Statistic p-value Effect Size 
(95% CI) 

Age (Years) 
Median (IQR) 
 

22.8 (20.3, 
26.8) 

22.7 (20.3, 
25.9) 

W = 9071 0.5 r = 0.042 
(0.002, 
0.170) 

Sex (Female) 
N (%) 

21 (15.9) 27 (20.6) χ2(1) = 
0.974 

0.324 
 

OR = 0.730 
(0.367, 
1.433) 

Non-Smoker 
N (%) 

54 (40.9) 63 (48.1) χ2(1) = 
1.373 

0.241 OR = 0.748 
(0.456, 
1.253) 

PANSS Positive 
Median (IQR) 
Missing N (%) 

24.0 (21.0, 
28.0) 
0 (0) 

23.5 (20.0, 
27.0) 
1 (0.8) 

W = 9418 0.2 r = 0.085 
(0.006, 
0.210) 

PANSS Negative 
Mean (SD) 
Missing N (%) 

20.3 (8.32) 
0 (0) 

19.2 (6.85) 
1 (0.8) 

t(252) = 1.1 0.3 
 

d = 0.140 (-
0.110, 
0.380) 

PANSS 
Disorganisation 
Median (IQR) 
Missing N (%) 

29.0 (22.0, 
33.0) 
0 (0) 

28.0 (23.0, 
33.0) 
1 (0.8) 

W = 8396 0.8 r = 0.019 
(0.002, 
0.150) 

PANSS 
Excitement 
Median (IQR) 
Missing N (%) 

18.0 (13.8, 
21.0) 
0 (0) 

17.0 (14.0, 
20.0) 
1 (0.8) 

W = 9230 0.3 r = 0.066 
(0.005, 
0.180) 

PANSS 
Emotional 
Distress 
Median (IQR) 
Missing N (%) 

22.0 (19.0, 
26.0) 
0 (0) 

22.0 (19.0, 
25.8) 
1 (0.8) 

W = 8886 0.6 r  = 0.031 
(0.003, 
0.160) 

IQR – interquartile range; SD – standard deviation; PANSS – Positive and Negative Syndrome 
Scale; W – Wilcoxon rank sum test; χ2 – Pearson’s chi-squared test; t – independent t-test; 95% CI 
– 95% confidence intervals; r – Pearson’s correlation coefficient; OR – odds ratio; d – Cohen’s d; 
mean and SD are depicted where the data was normal; median and IQR depicted where the data 
was not normally distributed.  
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4.4.2 Analysis 1 – clinical variables vs clinical + biological 
variable models 

Results are outlined in Table 4-3 and Figure 4-1. There was no significant effect 

of model type on the c-statistic (F(5, 14.6) = 0.184; p = 0.9640),  calibration-in-

the-large (F(5, 176512.09) = 0.021; p = 0.9998), and calibration slope (F(5, 

114.8) = 0.206; p = 0.9594). Discrimination was between 0.66 and 0.67 for all 

models. Calibration-in-the-large was close to optimal (a|bLP=1 = 0) for all 

models. The mean calibration slope was closest to optimal (bLP = 1) for the 

original model with varying degrees of overfitting for the other models with the 

addition of a biological variable albeit this difference was not significant. The 

distributions of the predicted probabilities were broadly similar across all models 

each without obvious systemic issues with predicted probabilities (Figure 4-2). 
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Table 4-3 Performance metrics for clinical +/- biological variable models  

 Original 7 
Clinical 
Variable 
Model 

Original 
Model + 
Basal 
Ganglia 
GLX/Cr  

Original 
Model + 
Frontal 
GLX/Cr  

Original 
Model + 
Hippocampus 
GLX/Cr 

Original 
Model + MLR 

Original 
Model + NLR 

Statistic p-value 
 

c-statistic 
(95% CI) 

0.6703 
(0.6559, 
0.6843) 

0.6666 
(0.6492, 
0.6835) 

0.6760 
(0.6551, 
0.6963) 

0.6656 
(0.6420, 
0.6884) 

0.6621 
(0.6461, 
0.6776) 

0.6651 
(0.6507, 
0.6792) 

F(5, 14.6) = 
0.184 

0.9640 

CITL (95% 
CI) 

0.0061  
(-0.0164, 
0.0287) 

0.0030 
(-0.0200, 
0.0259) 

0.0041 
(-0.0202, 
0.0283) 

0.0100 
(-0.0180, 
0.0381) 

0.0067 
(-0.0164, 
0.0297) 

0.0073 
(-0.0157, 
0.0303) 

F(5, 
176512.09) = 
0.021 

0.9998 

Calibration 
Slope (95% 
CI) 

0.9745 
(0.8908, 
1.058) 

0.9513 
(0.8568, 
1.046) 

0.9559 
(0.8624, 
1.049) 

0.9274 
(0.8200, 
1.035) 

0.9100 
(0.8292, 
0.9908) 

0.9284 
(0.8491, 
1.008) 

F(5, 114.8) = 
0.206 

0.9594 

Performance metrics for each model with estimates combined using Rubin’s rules across five multiple imputations. The c-statistic was logit transformed before 
estimates were combined and statistical testing. 95% CI – 95% confidence intervals; F – one-way independent ANOVA; CITL – calibration-in-the-large; GLX/Cr – 
combined glutamate and glutamine signal measured as a ratio relative to creatine; MLR – monocyte/lymphocyte ratio; NLR – neutrophil/lymphocyte ratio. 
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A B C 

   
Figure 4-1 Performance metrics for clinical +/- biological variable models. A – c-statistic; B – Calibration-in-the-large; C – Calibration slope. BG – basal 
ganglia; F – frontal cortex; H – hippocampus; GLX/Cr – combined glutamate and glutamine signal measured as a ratio relative to creatine; MLR – 
monocyte/lymphocyte ratio; NLR – neutrophil/lymphocyte ratio. 
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A B C 

   
D E F 

   
Figure 4-2 Distribution of probabilities at internal validation for clinical +/- biological variable models. A – original seven clinical variable model; B – original 
model + basal ganglia GLX/Cr; C – original model + frontal GLX/Cr; D – original model + hippocampus GLX/Cr; E – original model + MLR; F – original model 
+ NLR. GLX/Cr – combined glutamate and glutamine signal measured as a ratio relative to creatine; MLR – monocyte/lymphocyte ratio; NLR – 
neutrophil/lymphocyte ratio. 
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4.4.3 Analysis 2 – MLE & elastic net logistic regression vs 
machine learning models 

Results are outlined in Table 4-4 and Figure 4-3. There was a significant effect of 

model type on the c-statistic (F(5, 398.66) = 7.225; p = <0.0001). Post-hoc 

Tukey’s tests showed that compared to MLE logistic regression but not elastic 

net logistic regression, Naïve Bayes had significantly improved discrimination. In 

addition, linear and radial SVM had significantly worse discrimination than 

elastic net logistic regression. 

The was a significant effect of model type on calibration-in-the-large (F(5, 5.87) 

= 56.356; p = <0.0001). Post-hoc Games-Howell tests, showed that the 

calibration-in-the-large was significantly worse for Naïve Bayes and radial SVM 

compared to all other models. 

There was no significant effect of model type on calibration slope (F(5, 218.1) = 

1.139; p = 0.3405). However, MLE logistic regression was the only model with a 

mean slope close to optimal (bLP = 1)  and with a low variance across cross 

validation folds. The variance of the calibration slope was much larger for 

elastic net logistic regression, random forest and linear SVM compared to the 

three other techniques. 
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Table 4-4 Performance metrics for MLE & elastic net logistic regression versus machine learning models.  

 MLE LR Elastic Net 
LR 

Naïve Bayes Random 
Forest 

Linear SVM Radial SVM Statistic p-value 

c-statistic 
(95% CI) 

0.6703 
(0.6559, 
0.6843) 

0.6846 
(0.6697, 
0.6992) 

0.6972 
(0.6834, 
0.7106) 

0.6746 
(0.6624, 
0.6866) 

0.6600 
(0.6460, 
0.6737) 

0.6542 
(0.6415, 
0.6667) 

F(5, 398.66) 
= 7.225 

<0.0001 

CITL (95% CI) 0.0061  
(-0.0164, 
0.0287) 

-0.0002 
(-0.0135, 
0.0131) 

0.4548 
(0.3900, 
0.5196) 

0.0035 
(-0.0087, 
0.0156) 

0.0074 
(-0.0062, 
0.0211) 

0.0608 
(0.0418, 
0.0799) 

F(5, 5.87) = 
56.356 

<0.0001 

Calibration 
Slope (95% CI) 

0.9745 
(0.8908, 
1.058) 

3.994 
(0.6304, 
7.359) 

0.7009 
(0.6317, 
0.7702) 

5.203 
(-5.720, 
16.12) 

10.89 
(-21.72, 
43.50) 

1.737 
(1.522, 
1.953) 

F(5, 218.1) = 
1.139 

0.3405 

Performance metrics for each model with estimates combined using Rubin’s rules across five multiple imputations. The c-statistic was logit transformed before 
estimates were combined and statistical testing. 95% CI – 95% confidence intervals; CITL – calibration-in-the-large; F – one-way independent ANOVA; LR – logistic 
regression; MLE – maximum likelihood estimation; SVM – support vector machine. 
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Figure 4-3 Performance metrics for MLE & elastic net logistic regression versus machine learning models. A – c-statistic; B – Calibration-in-the-large; C – 
Calibration slope. LR – logistic regression; MLE – maximum likelihood estimation; SVM – support vector machine. 
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The distributions of the predicted probabilities across all the cross-validation 

folds showed more modest predictions for the elastic net logistic regression, 

random forest, linear and radial SVM than MLE logistic regression while Naïve 

Bayes showed more extreme predictions. This is reflected by the mean 

calibration slopes which compared to MLE logistic regression indicated varying 

degrees of underfitting (bLP = >1) on average for all other methods except Naïve 

Bayes which showed overfitting (bLP = <1) on average. Naïve Bayes predicted 

probabilities also tended to be underestimated on average reflective of its mean 

calibration-in-the-large much greater than zero (Figure 4-4).  
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Figure 4-4 Distribution of probabilities at internal validation for MLE & elastic net logistic regression versus machine learning models. A – MLE logistic 
regression; B – Elastic net logistic regression; C – Naïve Bayes; D – Random forest; E – Linear SVM; F – Radial SVM. MLE – maximum likelihood 
estimation; SVM – support vector machine. 
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4.5 Discussion 

This is the first study to directly compare machine learning methods to logistic 

regression in a first episode psychosis population. Further, we are only aware of 

one other first episode psychosis study that considered biological variables in 

addition to clinical and demographic predictors to predict outcome in a 

psychosis population. In that study of 523 patients, the biological variables 

(genetic) did not add value (de Nijs et al., 2021). 

Our results from analysis 1, suggest that that models with an additional 

biological variable were no better than models with clinical variables alone in 

terms of discrimination or calibration. In analysis 2, we demonstrate that the 

Naïve Bayes machine learning model was better than MLE but not elastic net 

logistic regression in terms of discrimination. However, for all models except 

MLE logistic regression there were problems with calibration. Naïve Bayes had a 

mean calibration-in-the-large of greater than zero. This was reflected in the 

distribution of its predictions which tended to underestimate risk. This would 

lead to undertreatment if the model was deployed to a clinical population. 

Radial SVM also had a calibration-in-the-large greater than zero albeit not so 

extreme as Naïve Bayes. Of all the models, the only calibration slope with a 

mean close to the ideal and low variance across cross-validation folds was MLE 

logistic regression.  

Most clinical prediction modelling studies only focus on discrimination as a 

measure of model performance. Discrimination is how well a prediction model 

can distinguish between those with an outcome and those without. A model that 

discriminates well should give higher risk estimates to patients with the outcome 

than those without (Steyerberg & Vergouwe, 2014; van Calster et al., 2019). 

Calibration is an important aspect of model performance that is often 

overlooked. It is the agreement between the observed and predicted risks. 

Specifically, a model is well calibrated if the event rate is X% among patients 

with a predicted risk of X%. For example, if we predict a 10% risk that a patient 

will relapse from a disease, the observed proportion should be 10 relapses per 

100 patients with such a prediction (Steyerberg & Vergouwe, 2014; van Calster 

et al., 2016). Calibration is a measure of how reliable a model’s predictions are. 

This is especially important in a clinical context because treatment decisions are 
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often based on whether a patient’s predicted risk meets or exceeds a specific 

threshold. For example, the National Institute for Health and Care Excellence 

(NICE) recommend the use of the QRISK algorithm for quantifying cardiovascular 

risk. A medication (a statin) is recommended for patients whose risk exceeds 10% 

(Hippisley-Cox et al., 2008; National Institute for Health and Care Excellence 

(NICE), 2016a). It is vital that the predicted risk estimates of QRISK are reliable – 

that the observed proportion of patients with the outcome at 10% is indeed 10 in 

100. Otherwise, there could result in over or undertreatment, each with its 

associated harm. Despite its clear importance for understanding the utility of a 

prediction, calibration is frequently underreported. In our recent systematic 

review of prediction models in FEP, we found that while 54% of studies reported 

discrimination only 38% reported any measure of calibration (Lee et al., 2022). 

Limited previous research has examined the calibration of machine learning 

models in comparison to logistic regression in psychiatric populations. Perlis 

compared calibration in models to predict treatment resistance in depression 

and showed that MLE logistic regression models were better calibrated than 

machine learning approaches (naïve Bayes, random forest and SVM). The author 

hypothesised that this is reflective of the fact that machine learning approaches 

train models to maximise discrimination regardless of calibration (Perlis, 2013). 

Lindheim et al compared MLE logistic regression to three machine learning 

methods (naïve Bayes, classification and regression trees and random forest) in 

an internal validation study to predict the likelihood of a bipolar diagnosis at 

screening. Logistic regression was shown to have superior discrimination and 

calibration at internal validation (Lindhiem et al., 2020). More generally, a 2019 

systematic review of 71 studies comparing the performance of clinical prediction 

models built using logistic regression (either MLE or regularised MLE) to those 

using machine learning did not find a performance benefit of machine learning in 

terms of discrimination when excluding studies at high risk of bias. Of the 71 

studies, calibration was only reported in 21% and just four studies reported the 

calibration slope and or intercept. Only three studies in the review came from 

the field of psychiatry, none of which assessed calibration (Christodoulou et al., 

2019). In our systematic review of 13 FEP prediction modelling studies, only two 

used machine learning techniques while 11 used logistic regression (either MLE 

or regularised MLE). We were unable to make any comparisons between the 
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performance of machine learning models and logistic regression as the studies 

using machine learning did not report any measure of discrimination or 

calibration performance (Lee et al., 2022). 

4.5.1 Strengths and limitations 

Our study has several strengths. The present analysis is the first time the data 

from the original Lilly trial has been used to develop prediction models. It is a 

unique dataset with longitudinal follow up in FEP and measurement of both 

clinical and biological variables. An earlier study used the data to develop a 

simple prediction rule based on PANSS symptom score change at two weeks to 

predict 12-week symptom response but did not develop a prediction model. 

Further, this study did not report any measures of discrimination or calibration 

(Stauffer et al., 2011). In terms of our methodology, we employed a robust 10 

fold 50 times repeated internal validation procedure which was nested when 

tuning hyperparameters to guard against over fitting. In addition, we used 

multiple imputation. Compared to single imputation or complete case analysis, 

multiple imputation results in less biased parameter estimates and narrows the 

uncertainty around missing values by generating several imputations. Finally, we 

considered both discrimination and calibration performance when assessing our 

prediction models. 

Our study has several limitations. The assessment of logistic calibration typically 

requires a sample size of 100 events and 100 non-events (van Calster et al., 

2016). We had a slightly smaller sample size with 86 events and 82 non-events 

with an EPV of 12. In addition, simulation studies have suggested that machine 

learning techniques including SVM, neural networks and random forest require 

substantially higher EPVs (often >200) to mitigate overfitting and optimism in 

model performance (van der Ploeg et al., 2014). Further, good calibration 

metrics using the logistic calibration framework can still be derived from models 

which are poorly calibrated if particular probability regions are miscalibrated 

(Huang et al., 2020). Flexible calibration curves (which plot the predicted 

probabilities on the x-axis against the actual observed proportions on the y-axis 

using a smoothing technique) allow assessment of probability regions for 

miscalibration, but require larger sample sizes of at least 200 events and 200 

non-events (van Calster et al., 2016). The original Lilly trial measured a limited 
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number of inflammatory biomarkers assessed and MRS was only measured at 1.5 

Tesla. Many biomarkers with a greater evidence base for disturbance in psychosis 

were not available for our current analysis. Moreover, much of the evidence for 

glutamate dysfunction in psychosis comes from more modern MRS studies at 

higher field strengths (Merritt et al., 2016). The exact coordinates of the MRS 

voxels in the three ROIs in the left hemisphere were not detailed when the Lilly 

trial data was provided for analysis. Further, variation in scanner across sites 

may impact the precision of the results. Finally, mechanisms to recalibrate 

poorly calibrated models exist including logistic recalibration where the 

intercept is updated and existing coefficients reweighted, Platt scaling, isotonic 

regression and Bayesian Binning into Quantiles but this was out with the scope of 

our current analysis (Huang et al., 2020). 

4.5.2 Conclusions 

In our prediction modelling analysis, we show that the addition of a biological 

variable does not improve the performance of a logistic regression model built 

using clinical variables in this dataset. Further, we demonstrate that machine 

learning or elastic net logistic regression did not result in improved global 

performance compared to MLE logistic regression.
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Chapter 5 Delirium and the risk of developing 
dementia: a cohort study of 12949 patients 

5.1 Overview of this chapter 

The central theme of my PhD thesis is prognosis. Prognosis is the determination 

of risk of future health outcomes in people with a given health condition. 

Prognostic research is of considerable importance. Globally, there are more 

people living with health conditions than ever before. Prognostic research seeks 

to improve the outcomes of people living with health conditions. However, there 

is a disparity between the potential and actual impact of prognostic research. In 

response, initiatives like the PROGnosis RESearch Strategy (PROGRESS) have 

established standards for higher quality prognostic research. PROGRESS centres 

on four themes: fundamental prognosis research, which investigates the course 

of health conditions in the context of their current care, prognostic factor 

research, which looks at specific factors associated with prognosis, prognostic 

model research, which is concerned with the development, validation and 

impact of models incorporating multiple prognostic factors, and, stratified 

medicine research, which focuses on the use of prognostic information to tailor 

treatments to individuals according to their predicted risk (Hemingway et al., 

2013; Hingorani et al., 2013; Riley et al., 2013; Steyerberg et al., 2013). 

In recent years, prognosis research has benefitted from the exponential growth 

in the availability of routinely collected health data. Its use is a key 

recommendation from PROGRESS. Routinely collected data is data collected 

without a specific a priori research question. Sources of routinely collect data 

include disease registries and electronic healthcare records (Benchimol et al., 

2015). It is extremely valuable for prognosis research because it allows 

pragmatic cost-effective research to be conducted in an entirely naturalistic 

clinical setting, with much larger numbers of participants. In addition, routinely 

collected data enables the researcher to circumvent any issues with selection 

bias. 

A principal aim of my PhD fellowship was to be the establishment of the 

Electronic Measures in Psychosis – Assessing Trajectory and Health-Outcomes 

(EMPATH) platform for the collection of outcome data for first episode psychosis 
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patients treated withing Esteem NHS Greater Glasgow & Clyde (GG&C) early 

intervention in psychosis service. EMPATH aims operationalise the routine 

collection of standard outcome measures within the service. Data collected 

within EMPATH will be securely deposited within NHS GG&C’s Safe Haven which 

allows research use of linked unconsented routinely collected datasets. I plan to 

use this source of routinely collected data to undertake prognosis research into 

patients with a first episode of psychosis. Unfortunately, there have been 

significant delays in developing and deploying the EMPATH platform as a 

consequence of the global coronavirus pandemic such that deployment was 

postponed until 2023. Routinely collected data will be available for prognosis 

research from 2024 which is after the end of my PhD fellowship. 

In order to establish the feasibility of using routinely collected data from NHS 

GG&C for prognosis research, in advance of accessing routinely collected data 

from EMPATH, I looked at another clinical field with unanswered prognosis 

questions: delirium and the risk of subsequent dementia. This work falls under 

the first PROGRESS theme, fundamental prognosis research, and second 

PROGRESS theme, prognostic factor research. The data for this study came from 

the West of Scotland Safe Haven (Hemingway et al., 2013). 

5.2 Introduction 

Delirium and dementia are two of the most common causes of cognitive 

impairment in the elderly population, but their interrelationship is poorly 

understood (Fong et al., 2015). Dementia is characterised by an irreversible 

progressive global cognitive decline. It is associated with huge financial and 

wider societal costs. In the UK, the annual cost of dementia is £35 billion, two-

thirds of which is borne by people with dementia and their families (Alzheimer's 

Society, 2020). Delirium is characterised by an acute and fluctuating disturbance 

in attention and awareness with associated disturbance in cognition (e.g., 

memory deficit, disorientation, language, visuospatial ability or perception), 

which cannot be explained by another neurocognitive disorder and does not 

occur in the context of a severely reduced level of arousal, such as coma. It is a 

serious and life-threatening neuropsychiatric syndrome, which is a direct 

physiological consequence of another medical condition, substance intoxication 

or withdrawal, toxins or multiple aetiologies (Slooter et al., 2020). Delirium is 
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very common in the elderly and present in up to 50% of patients over the age of 

65 admitted to hospital (Inouye et al., 2014). Delirium is a clinical diagnosis, 

which is often under-recognised and frequently overlooked. This has led to a 

number of high-profile campaigns to increase the awareness and recognition of 

delirium across the UK and the wider world (Khachaturian et al., 2020). 

Dementia is the primary risk factor for delirium and delirium is a major risk 

factor for subsequent dementia (Fong et al., 2015; Jackson et al., 2017). It is not 

yet clear if delirium is a simply a marker of brain vulnerability, whether the 

impact of delirium on dementia is derived from its precipitating cause or 

whether delirium itself leads to permanent neuronal damage. Delirium is 

preventable in 30%–40% of cases and is, therefore, an important modifiable risk 

factor for dementia (Inouye et al., 2014). 

Several clinical studies provide evidence to support the relationship between 

delirium and dementia. A 2010 meta-analysis of two studies (n=241) found that 

delirium was associated with an increased risk of dementia (RR 5.7, 95% CI 1.3 to 

24.0) (Witlox et al., 2010). A 2021 meta-analysis of six studies (n=901) showed 

that delirium was associated with increased odds of developing new dementia 

compared with patients without delirium (OR 11.9, 95% CI 7.29 to 19.6) (Pereira 

et al., 2021). The relationship has also been explored in a small population-

based cohort study of 553 individuals aged 85+, which found an increased risk of 

incident dementia following episode of delirium (OR 8.7, 95% CI 2.1 to 35) (Davis 

et al., 2012). 

However, to date, the field lacks large studies with long-term follow-up of 

delirium in subjects initially free of dementia to clearly establish outcomes 

(Fong et al., 2015; Inouye et al., 2014). 

Our study has two objectives: 

1. To estimate the cumulative incidence of dementia among those who 

experience an episode of delirium but who have not yet been diagnosed 

with dementia prior to that episode. 
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2. To model the effect of age at delirium diagnosis, sex and socioeconomic 

deprivation on the rate of occurrence of dementia among those still at 

risk (i.e., the cause-specific hazard of dementia). 

5.3 Methods 

We adhere to the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) and the Reporting of studies Conducted using 

Observational Routinely-collected health Data (RECORD) statements (Benchimol 

et al., 2015; Vandenbroucke et al., 2007). 

We undertook a retrospective cohort study of patients over the age of 65 who 

had been diagnosed with an index episode of delirium but who had not been 

diagnosed with dementia prior to their index episode of delirium. Patients from 

the National Health Service (NHS) Greater Glasgow & Clyde (GG&C) health board 

were included. Patients with a diagnosis of delirium made before 1 May 2020 

were included back as far as the records allowed. The earliest delirium diagnosis 

was 21 April 1996. Patients were followed from their first episode of delirium up 

until 1 October 2020 when the data were collected. The primary outcome event 

of interest was diagnosis of dementia. A competing event, death before 

dementia diagnosis, was observed. Patients who had not experienced either 

event before the end of the follow-up period were coded as censored. Patients 

who experienced their outcome event on the same day as their index delirium 

diagnosis were considered to have survived 0.5 days. 

West of Scotland Safe Haven at NHS GG&C created the study population from 

the database population. The diagnoses of delirium and dementia were clinical 

diagnoses based on the International Classification of Diseases 10th Revision 

(ICD-10) made by the treating clinician (see Appendix 5). Diagnoses could have 

been made in accident and emergency (A&E), as an inpatient or outpatient or on 

death. Age at delirium diagnosis, sex and Scottish Index of Multiple Deprivation 

(SIMD) 2009 quintile (lowest equals most deprived) were included as covariates. 

SIMD 2009 was based on their most recent postal address. All subjects had 

information about covariates—there were no missing data. The total number of 

relevant delirium patients in the NHS GG&C Safe Haven database determined the 

sample size. 
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As outlined above, competing risks are present as a participant is at risk of two 

mutually exclusive events. Using the Kaplan-Meier estimate of the survival 

function to estimate the incidence function in the presence of competing risks 

generally results in upward biases in the estimation of the incidence function. 

Instead, we used the cumulative incidence function (CIF), which allows for the 

estimation of the incidence of the occurrence of an event (dementia) while 

taking competing risk (death without a dementia diagnosis) into account. The 

CIF for the kth cause is defined as: CIFk(t) = Pr(T ≤ t, D = k), where D denotes 

the type of event that occurred, and T denotes the time from baseline time until 

the occurrence of the event. The function CIFk(t) denotes the probability of 

experiencing the kth event before time t and before the occurrence of a 

different type of event (Austin et al., 2016). 

We also modelled the effect of covariates (age at incident delirium, sex and 

deprivation quintile) on the cause-specific hazard function. The cause-specific 

hazard function is the instantaneous rate of occurrence of the primary event 

(dementia) in subjects who have not yet experienced either event (dementia or 

death without dementia). The exponentiated regression coefficient from the 

cause-specific hazard model represents the amount of relative change in the 

cause-specific hazard function associated with a 1-unit change in the covariate. 

The cause-specific hazard model is well suited to studying the aetiology of a 

disease (Lau et al., 2009). We fit the cause-specific hazard model by estimating 

a Cox proportional hazards model and treating subjects who experience a 

competing event as being censored at the time of occurrence of the competing 

event. Post-model assumption testing included testing the proportional hazard’s 

assumption via Schoenfeld residuals, using the difference in beta values 

(DFBETAS) to check for influential observations and assessing the functional form 

of covariates via Martingale residuals. Age had a non-linear functional form, so 

the final Cox model was refitted using a penalised cubic spline term for age. The 

results of our post-model assumption testing are available in Appendix 6. 

All analyses were performed using R, CRAN V.4.0.0 (R Core Team, 2020) (with 

the ‘survival’ (Therneau, 2020; Therneau & Grambsch, 2000), ‘cmprsk’ (Gray, 

2020), and ‘survminer’ (Kassambara et al., 2021) packages) and code is available 

in Appendix 7. 
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5.3.1 Ethics approval 

The West of Scotland Safe Haven has ethical approval (17/WS/0237) to create a 

research database using routinely collected, un-consented patient data. 

Delegated research ethics approval was granted for linkage to NHS patient data 

by the Local Privacy and Advisory Committee at NHS GG&C under approval 

(GSH/18/AM/004). 

5.4 Results 

12949 patients with a relevant index episode of delirium followed up for an 

average of 741 days (minimum=0.5 days, maximum=8855 days) were included in 

the study. 3530 (27%) of these patients had a subsequent diagnosis of dementia 

and 5788 (45%) died without a diagnosis of dementia, leaving 3631 (28%) who 

were coded as censored by the study end date. The diagnosis of dementia was 

made on death in 643 (18%) of patient who were diagnosed with dementia. This 

information is summarised in Figure 5-1. 

 
 

 
Figure 5-1 The outcomes for patients with an index episode of delirium follow-up for an 
average of 741 days (minimum = 0.5 days, maximum = 8855 days). 



98 

The diagnosis of new index episodes of delirium increased in frequency over 

time with some seasonal variation as per Figure 5-2. 

 
Figure 5-2 The monthly frequency of new index delirium diagnoses in patients who had not 
been diagnosed with dementia prior to this episode of delirium. 

Descriptive statistics for the patients in the study are reported in Table 5-1. 

Table 5-1 Descriptive statistics for all patients included in the study  

Variable Total Sample 
(n = 12949) 

Dementia 
Diagnosis 
(n= 3530) 

Death without a 
dementia 
diagnosis 
(n = 5788) 

Age at index 
episode of 
delirium 
Mean (SD) 

82.3 (7.8) 83.2 (7.0) 82.7 (8.1) 

Male Sex 
No. (%) 

5036 (39%) 1262 (36%) 2458 (42%) 

SIMD 2009 
Quintile 
No. (%) 

1st – 4976 (38%) 
2nd – 2341 (18%) 
3rd – 1986 (15%) 
4th – 1673 (13%) 
5th – 1973 (15%) 

1st – 1359 (38%) 
2nd – 595 (17%) 
3rd – 620 (18%) 
4th – 515 (15%) 
5th – 441 (12%) 

1st – 2247 (39%) 
2nd – 1050 (18%) 
3rd – 885 (15%) 
4th – 672 (12%) 
5th – 934 (16%) 

SIMD – Scottish Index of Multiple Deprivation.  

The estimated cumulative incidences of dementia and for the competing risk of 

death without a dementia diagnosis are presented in Figure 5-3. The estimated 

cumulative incidence of dementia, accounting for the competing risk of death 

without a dementia diagnosis, was 9.0% (95% CI 8.5% to 9.5%) by six months, 

13.6% (95% CI 13.0% to 14.2%) by a year, 31.0% (95% CI 30.1% to 31.9%) by five 

years, 35.5% (95% CI 34.5% to 36.5%) by 10 years, and 36.3% (95% CI 35.2% to 
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37.3%) by 20 years. The estimated cumulative incidence of the competing risk of 

death without a dementia diagnosis was 20.0% (95% CI 19.3% to 20.7%) by six 

months, 27.1% (95% CI 26.3% to 27.9%) by a year, 49.2% (95% CI 48.2% to 50.2%) 

by five years, 55.3% (95% CI 54.3% to 56.4%) by 10 years and 57.4% (95% CI 56.2% 

to 58.5%) by 20 years. 

 

 
Figure 5-3 Cumulative incidence functions for dementia (blue) and for death without 
dementia (red) in patients with an index episode of delirium by time in years with 95% CIs.  

The multivariable adjusted cause-specific hazard ratios for sex and SIMD 2009 

deprivation quintile are illustrated in Figure 5-4.  
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Figure 5-4 Multivariable adjusted cause-specific hazard ratios for dementia diagnosis in 
patients with an index episode of delirium. The cause-specific hazard ratios of the four most 
deprived SIMD 2009 quintiles are greater than the least deprived quintile (reference). There 
does not appear to be a relationship between sex and cause-specific hazard of dementia in 
patients with an index episode of delirium. SIMD – Scottish Index of Multiple Deprivation. 

The multivariable-adjusted cause-specific hazard ratios for age at delirium 

diagnosis is illustrated in Figure 5-5. 

 
Figure 5-5 Association of age at delirium diagnosis with cause-specific hazard of dementia 
in Cox model with penalised spline after multivariable adjustment with 95% confidence 
intervals (reference 79.5 years; p≤0.001). The cause-specific hazard of dementia increases 
with age of delirium diagnosis from age 65 until around age 90, when it plateaus then 
decreases. df – degrees of freedom. 
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5.5 Discussion 

To the best of our knowledge, this study represents the largest cohort (n=12949) 

followed up for the longest period of time (up to 8855 days; mean 741 days) 

within the published literature examining the new diagnosis of dementia 

following an episode of delirium. The results show that a first episode of 

delirium after the age of 65 is associated with a substantial risk of subsequently 

developing dementia (31% by 5 years). This is in line with data from smaller 

previously published studies (Davis et al., 2012; Fong et al., 2015; Witlox et al., 

2010). Our data also show that delirium is associated with substantial mortality, 

in addition to the risk of dementia. This underlines the seriousness of delirium 

and the importance of prompt diagnosis and treatment of underlying cause. Our 

research supports the concept of delirium as both an indicator of physiological 

frailty as well as a possible precipitating and accelerating factor in cognitive and 

physical decline. Within NHS GG&C, there has been a trend of increases in 

diagnosis of delirium over time. This may indicate that recent high-profile 

delirium recognition campaigns are having the desired impact including the 

Think Delirium campaign, which was introduced in NHS GG&C in 2015 

(Healthcare Improvement Scotland, 2014; Khachaturian et al., 2020). Findings 

from the Cox-regression analysis show that the multivariable-adjusted cause-

specific hazard of dementia among those diagnosed with delirium increases with 

higher levels of deprivation and also with advancing age, plateauing and 

decreasing in extremes of age. However, there does not appear to be a 

relationship with sex. 

The most frequent causes of delirium involve significant systemic inflammation. 

Inflammation is well recognised as a major precipitant of delirium (Cunningham, 

2011). There exists an extensive network of mechanisms that allow 

neuroimmune communication (Chavan et al., 2017). In recent years, the effects 

of inflammatory insult on central nervous structure and function have become 

increasingly well characterised (Cunningham, 2011). Dementia is a disorder 

which, except in rare single-gene inherited syndromes, has a complex aetiology 

involving multiple contributory interacting factors. These include ageing, 

obesity, diabetes, hypertension and smoking—the common strand to these risk 

factors is the systemic preponderance of inflammatory molecules (Yaffe et al., 

2004). Inflammation is thought to have a central mechanistic role in the 
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pathogenesis of both Alzheimer’s dementia (Kinney et al., 2018) and vascular 

dementia (Iadecola, 2013), the two most common subtypes. While acute 

inflammation is protective to the brain under most circumstances, prolonged or 

excess release of proinflammatory molecules within the vulnerable or aged brain 

may activate various downstream cellular cascades relevant to the emergence of 

dementia (Hoeijmakers et al., 2016). 

These phenomena may be relevant in the context of our findings that support 

the link between hospitalisation with delirium and subsequent dementia 

diagnosis. It remains a matter of discussion whether delirium is purely a marker 

of susceptibility to developing dementia, or unmasks/accelerates unrecognised 

dementia, or indeed, whether delirium may have direct neurotoxic effects that 

can be causal in the pathogenesis of dementia (Fong et al., 2015). Evidence from 

the Vantaa 85+ population-based study may provide evidence to support the 

latter hypothesis. Neuropathological correlates of dementia such as 

neurofibrillary tau, β-amyloid plaque burden, vascular lesions, Lewy-body 

pathology and ApoE4 allele status were not found to be positively associated 

with subjects who developed dementia following delirium, while in contrast, a 

strong association existed in those that developed dementia without a delirium 

history (Davis et al., 2012). Although the Vantaa study was not powered to be 

conclusive, it may suggest that, in some cases, dementia following delirium 

represents a different aetiological pathway to the development of dementia, 

rather than being purely a vulnerability marker/accelerant of pre-existing 

disease. 

In our multivariable analysis, the cause-specific hazard of dementia increases 

with age of delirium diagnosis from age 65 until around age 90, when it plateaus 

then decreases. This is consistent with existing evidence in the general 

population demonstrating a doubling of both the prevalence and instance of 

dementia every five to six years until the age of 90 (Qiu & Fratiglioni, 2018). 

Evidence for trends in dementia diagnosis among the oldest old is limited by 

sample size. However, two large population-based cohort studies found the 

increases in the incidence of dementia plateau or even decline beyond age 90. It 

is suggested that among the oldest old, risk factors for dementia may not be 

related to the ageing process itself but with age-associated risk factors such as 
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hypertension, hyperlipidaemia and heart disease (Hall et al., 2005; Jia et al., 

2020; Miech et al., 2002). 

We found that living in an area of deprivation is associated with an increased 

cause-specific hazard of developing dementia following an incident episode of 

delirium after adjusting for age at delirium diagnosis and sex. This supports an 

earlier finding that the hazard of dementia is increased among those living in 

areas with higher levels of deprivation in an English population cohort study of 

6220 adults over the age of 65 (Cadar et al., 2018). Unfortunately, we did not 

have information available to adjust for personal indicators of socioeconomic 

status like personal wealth, educational attainment or occupation, so we are not 

able to clearly determine whether individual factors were driving this area 

deprivation effect. However, previous research has shown that living in an area 

of higher deprivation is associated with poorer health outcomes even after 

adjusting for personal wealth, education and employment (Stafford & Marmot, 

2003). 

Our study has a number of strengths including the large sample size and long 

length of follow-up. Furthermore, by virtue of being registry based, our study is 

pragmatic and the setting is entirely naturalistic. We have properly accounted 

for the impact of competing risks by using the CIF rather than Kaplan-Meier 

estimator and we have modelled the effect of covariates on the cause-specific 

hazard of dementia in those who experience an episode of delirium. We adhere 

to gold-standard STROBE reporting guidelines. 

There were several limitations. The cohort largely consisted of patients 

diagnosed within secondary care. Only diagnoses made at death were included 

from primary care. This introduced a selection bias for more severe cases of 

delirium requiring assessment at A&E, on admission to hospital or on death. 

Equally, it is possible that our cases could have had earlier incidences of 

delirium, perhaps within primary care, which were milder and not coded and 

indexed to our data set. Similarly, the majority of dementia diagnoses were 

made within secondary care. If patients moved out of NHS GG&C after their 

index delirium diagnosis but before their outcome occurred, their outcome 

would not be known except if it was made at death. As such, it is possible that 

the proportion of patients who developed dementia was underestimated due to 
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attrition bias (patients were censored when they should not have been). 

Furthermore, in those whose dementia diagnosis was made on death, it is 

possible that this dementia diagnosis was made in primary care at an earlier 

time point patient and, thus, dementia survival was overestimated. In addition, 

our cohort is drawn from all medical records over a specific timeframe rather 

than being set up as a prospective cohort study. We rely on clinicians accurately 

and reliably coding the diagnosis of delirium at the point of clinical care being 

administered rather than trained research assistants. While we believe the 

system of diagnostic coding to be robust within NHS GG&C, it is likely that some 

cases of dementia or delirium may be missed or inaccurately diagnosed or 

coded. For example, there is a clear trend of increasing diagnosis of delirium 

over time within NHS GG&C. This is unlikely to represent a true increase in the 

underlying rates of delirium but rather represent an increase in the recognition 

and coding of delirium, perhaps driven by a number of high-profile delirium 

recognition campaigns, leading to a general increase in awareness of the 

condition (Khachaturian et al., 2020). Moreover, our multivariable model lacks 

several important covariates like medical comorbidities, lifestyle factors like 

diet and smoking or genetics which have been clearly identified as important risk 

factors for dementia (National Institute for Health and Care Excellence (NICE), 

2021a). Finally, when we designed our study, we set it up as a cohort study of 

patients with an incident episode of delirium to determine the risk of dementia, 

not as a case–control study, with patient with delirium and matched controls 

without delirium. As such, we were unable to determine the net effect of 

delirium itself on dementia diagnosis. Future work should consider a case–control 

design to answer this important question. 

In conclusion, our study reinforces the link between delirium and future 

dementia within a unique and well-powered data set. It has key clinical 

implications. We have shown that delirium in over 65s carries a 31% risk of 

developing dementia and an even greater risk of death in the five years 

postdiagnosis. This highlights the importance of recognising delirium and 

preventing it where possible. Future research is required to determine whether 

the recognition and early treatment of delirium could reduce the risk of 

subsequent dementia or death. Moreover, at present, there is no consensus 

about follow-up and monitoring of cognitive function after an episode of 
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delirium in the elderly. Our findings seem to support closer follow-up of delirium 

and proactive screening for dementia, but this has implications for service 

provision, particularly as the population ages. Indeed, it may be that those who 

experience an episode of delirium represent an ‘at risk’ group who could be 

candidates for future novel targeted therapies for dementia prevention and 

early-stage treatment. Finally, important questions about the pathophysiology of 

delirium remain to be answered. It is unclear whether delirium is a marker or an 

accelerant of irreversible cognitive decline. The field lacks strong data on the 

mechanistic relationship between delirium and dementia and indeed the 

cellular/molecular landscape in delirium and dementia. This is best generated 

through a combination of neuroimaging approaches, quality animal research and 

human biomarker studies (Inouye et al., 2014). 
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Chapter 6 Discussion 

6.1 Thesis overview 

6.1.1 Thesis primary aim 

The primary aim of this thesis was to conduct prognostic model research in first 

episode psychosis. From this broad aim, I sought to answer four questions: 

1. Is prediction of individual patient outcome possible in first episode 

psychosis using clinical variables? 

2. Does prediction model performance remain robust at external validation? 

3. Does prediction model performance improve with the addition of 

biologically relevant disease markers as predictors? 

4. Does prediction model performance improve with the application of 

advanced machine learning classifiers compared to logistic regression? 

Chapter 2 explored these four questions in the context of a systematic review of 

prognostic prediction models developed for predicting poor outcome in first 

episode psychosis. This systematic review provided evidence that prediction of 

individual patient outcome is possible in first episode psychosis. Thirteen eligible 

studies were identified reporting 31 prognostic prediction models. However, just 

four studies reported external validation with discrimination performance 

ranging from a c-statistic of 0.556 to 0.876. Calibration and clinical utility were 

reported in two of those studies, both of which were acceptable. The majority 

of the 13 studies developed models using logistic regression with only two 

studies considering machine learning techniques, both employing support vector 

machines. The majority of the 13 studies used solely clinical variables with only 

one study utilising biological variables including genetic and environmental 

factors. No comparison was possible between the performance of logistic 

regression and machine learning studies because neither machine learning study 

reported any measures of discrimination, calibration or clinical utility. Similarly, 

no comparison was made between the study employing biologically relevant 

disease markers and the others employing solely clinical variables because the 
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biomarker study did not report discrimination, calibration or measures of clinical 

utility. Indeed, across the majority of studies considered in the systematic 

review, methodological limitations were a common theme with only two studies 

found to have a low risk of bias according to the PROBAST tool. PROBAST defines 

risk of bias to occur when “shortcomings in study design, conduct or analysis 

lead to systematically distorted estimates of a model’s predictive performance” 

(Wolff et al., 2019). The common methodological limitations identified included 

a lack of appropriate validation (e.g. only apparent validation considered), 

issues with handling of missing data (e.g. by complete case analysis only) and 

the lack of reporting of calibration, discrimination and measures of clinical 

utility. Altogether, this review showed that the potential for prediction of 

individual patient outcomes in first episode psychosis has not yet been fully 

realised. 

Chapter 3 sought to address questions one and two while employing 

methodological best practice and avoiding the pitfalls identified in Chapter 2 

which had led to high risk of bias in the majority of studies. Specifically, a 

prognostic prediction model was developed and validated using logistic 

regression and clinical variables which was able to predict robustly individual 

patient outcome (symptomatic nonremission) in first episode psychosis. The 

model was developed in 673 patients with first episode psychosis recruited 

between 2005 and 2010 from 14 early intervention services in NHS England and 

externally validated in 191 patients recruited between 2006 and 2009 from a 

further 11 early intervention services in the NHS England. The model showed fair 

discrimination with a c-statistic of 0.73 (0.64–0.81) and calibration with an 

intercept of -0.014 (-0.34, 0.31) and slope 0.85 (0.42, 1.27). The model also 

demonstrated clinical utility across the range of probability thresholds chosen by 

clinicians. Once this first episode psychosis nonremission prediction model has 

been prospectively validated, it could facilitate the early identification of 

patients at high risk of nonremission and prioritise the timely delivery of 

effective phase-specific treatments like clozapine for treatment resistance. 

Chapter 4 addressed questions three and four by internal validation in a cohort 

of 168 first episode psychosis patients from the Lilly F1D-MC-HGDH trial - a 

double-blind, multicentre, randomised controlled trial of Olanzapine versus 

Haloperidol treatment. To date the majority of first episode psychosis prediction 
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models have been developed using logistic regression and include only clinical 

variables. The potential for biological disease markers to improve model 

performance in FEP has not been adequately explored. Further, there is a 

growing interest in applying machine learning methods which promise to capture 

better nonlinearity and model complex interactions in medical data. The 

discrimination (c-statistic) and calibration (calibration-in-the-large and 

calibration slope) performance of a logistic regression first episode non-

remission risk prediction model built using solely clinical variables was compared 

to models built with the addition of peripheral inflammatory or magnetic 

resonance spectroscopy glutamate biomarkers. The performance of prediction 

models derived by maximum likelihood estimation and elastic net logistic 

regression was then compared to models built using machine learning including 

naïve Bayes, random forest, linear and radial support vector machines. When 

comparing a logistic regression model with clinical variables to models with the 

addition of a biological variable, there was no significant effect of model type 

on the c-statistic (F(5, 14.6) = 0.184; p = 0.9640),  calibration-in-the-large (F(5, 

176512.09) = 0.021; p = 0.9998), or calibration slope (F(5, 114.8) = 0.206; p = 

0.9594). Comparing logistic regression models to machine learning models 

showed a significant effect of model type on the c-statistic (F(5, 398.66) = 

7.225; p = <0.0001) and calibration-in-the-large (F(5, 5.87) = 56.356; p = 

<0.0001) but not calibration slope (F(5, 218.1) = 1.139; p = 0.3405). In post-hoc 

tests, Naïve Bayes showed superior discrimination performance compared to 

maximum likelihood estimation but not elastic net logistic regression. All models 

except maximum likelihood estimation logistic regression demonstrated 

problems with calibration. Taken together these results show that, in this 

dataset, for the prediction of first episode psychosis the addition of a biological 

variable does not improve the performance of a logistic regression model built 

using clinical variables. Further, machine learning or elastic net logistic 

regression did not result in improved global performance compared to maximum 

likelihood estimation logistic regression. 

6.1.2 Thesis secondary aim 

The secondary aim for this thesis was to answer a final question: 
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5. Can routinely collected electronic healthcare record data could be used 

for prognostic research in the National Health Service in Greater Glasgow 

and Clyde? 

The coronavirus pandemic delayed collection of routine data in first episode 

psychosis in NHS GG&C such that it was not possible to use these data for my 

thesis. In Chapter 5 I took the opportunity to examine this question in a more 

common psychiatric presentation, delirium, in the hope that information from 

this would inform future prospective studies in first episode psychosis. Delirium 

is an important risk factor for subsequent dementia. However, the field lacks 

large studies with long-term follow-up of delirium in subjects initially free of 

dementia to clearly establish clinical trajectories. I undertook a retrospective 

cohort study of all patients over the age of 65 diagnosed with an episode of 

delirium who were initially dementia free at onset of delirium within NHS GG&C 

between 1996 and 2020 using the Safe Haven database (NHS Greater Glasgow & 

Clyde, 2023). The cumulative incidence of dementia was estimated accounting 

for the competing risk of death without a dementia diagnosis. The effects of age 

at delirium diagnosis, sex and socioeconomic deprivation on the cause-specific 

hazard of dementia were modelled via Cox regression. 12949 patients with an 

incident episode of delirium were included and followed up for an average of 

741 days. The estimated cumulative incidence of dementia was 31% by 5 years. 

The estimated cumulative incidence of the competing risk of death without 

dementia was 49.2% by 5 years. The cause-specific hazard of dementia was 

increased with higher levels of deprivation and also with advancing age from 65, 

plateauing and decreasing from age 90. There did not appear to be a 

relationship with sex. This study reinforced the link between delirium and future 

dementia in a large cohort of patients. It highlights the importance of early 

recognition of delirium and prevention where possible. Finally, this study 

demonstrated the feasibility of using routinely collected electronic health record 

data from NHS GG&C via the Safe Haven database for prognostic research. This 

will inform future prospective prognostic modelling studies into first episode 

psychosis using Safe Haven. 
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6.2 Strengths and limitations 

6.2.1 Methodological considerations 

The strengths and limitations have been reviewed in each chapter but the 

salient points bear repeating. A key strength of this thesis is the inclusion of the 

first systematic review of prediction modelling studies in first episode psychosis. 

This review presented a thorough critique of the prediction model literature 

with particular attention given to their study characteristics, methodologies and 

model performance metrics. The systematic review found evidence for the 

prediction of individual patient outcome in first episode psychosis, with four of 

the thirteen studies including external validation. However, the review was 

limited by the poor reporting of discrimination and calibration measures across 

the included studies such that it was often difficult to make comparisons 

between prediction models. Many studies presented solely classification metrics 

such as accuracy. The problem with solely reporting classification metrics is that 

they vary both across models and across different probability thresholds for the 

same model. This had a detrimental effect on the review’s ability to properly 

address my third and fourth research questions. Specifically, no comparison 

between the single study employing biologically relevant disease markers as 

predictors and those using solely clinical solely clinical variables was possible nor 

was a comparison between the studies employing machine learning methods and 

those using regression techniques. Another limitation was the fact that many of 

the studies and models considered different outcomes in first episode psychosis 

(six different outcomes considered across the 13 included studies). Direct 

comparisons between the performance of models built to predict different 

outcomes is not possible. Additionally, every study developed new prediction 

models rather than attempting to validate or update an existing model. If 

researchers only create new prediction models, this discards historical data and 

previous research efforts (Jenkins et al., 2021). Perhaps due to the focus on only 

building new models, no study took an existing prediction model close to clinical 

practice – there were no assessments of a model’s clinical impact and no model 

in the systematic review was deployed clinically. 

Building on this systematic review, an important strength of chapters 3 and 4 

was the use of gold standard methodological practices improving on 
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methodological limitations identified in chapter 2. Specific methodological 

improvements in chapters 3 and 4 include the handling of missing data. Unlike 

the majority of studies identified in chapter 2, missing data in chapters 3 and 4 

was handled by multiple imputation using all available data including auxiliary 

variables. This increases the statistical power and reduces bias. A further 

methodological improvement common to both chapters 3 and 4 was the use of 

expert knowledge for variable selection with consideration given to using an 

appropriate number of events per predictor variable for the sample size. A 

methodological strength of chapter 3 was the external validation of the 

prediction model in a similar population derived from an independent study. As 

outlined above this answered a key question for my thesis – that prediction 

model performance would remain robust at external validation. However, this 

thesis would have been further strengthened if questions three and four, the 

assessment of biological variables and the consideration of machine learning 

methods, had also been tested at external validation in chapter 4 rather than 

only at internal validation. Another weakness of chapter 4 was the relatively 

modest sample size, but this was mitigated by performing robust internal 

validation by ten-fold cross-validation repeated 50 times. 

6.2.2 Cohort selection 

An additional strength of chapter 3 was the use of representative samples of 

first episode psychosis patients drawn from early intervention services in 

England for both the development and validation cohorts. This improved 

generalisability of the findings to first episode psychosis patients in early 

intervention services. However, there were limitations. While the development 

and validation cohorts were drawn from naturalistic studies, there was still 

potential for selection bias to be introduced as participants who did not present 

to services, who declined consent or who dropped out were excluded from the 

analysis. Reassuringly, for the development cohort in chapter 3, there was little 

evidence of differences between those who consented and those who declined 

consent, but no such data was available for the validation cohort (Birchwood et 

al., 2014). In contrast, the population for chapter 4 was derived from a 

randomised controlled trial.  This randomised controlled trial population 

differed to participants in chapter 3. Namely, the participants were not drawn 

from early intervention services. Further, the majority were recruited from the 
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United States which has a very different healthcare model to the NHS as well as 

a different sociodemographic and ethnic composition to the UK. Moreover, 

stringent trial conditions were not representative of routine clinical practice. 

This impacted the generalisability of the findings. 

There were further limitations resulting from the patient populations used for 

chapters 3 and 4. The participants in chapters 3 were recruited and followed 

more than a decade ago and, in the case of chapter 4, more than two decades 

ago. First episode psychosis healthcare and the wider geopolitical climate have 

changed considerably in recent years such that the relevance of prediction 

models developed to current clinical practice using this historical data may be 

limited. Specifically, calibration drift has been identified as a key concern when 

attempting to deploy prediction models in ever changing clinical environments 

where differences arise over time between the population on which a model was 

developed and the population on which it is intended to be applied (Davis et al., 

2020). As these prediction models were developed on historical data, calibration 

issues may be present from the outset if the models are to be applied to new 

patients. This may necessitate updating the models using new patient data 

before considering trialling their application to clinical practice. Indeed, one of 

the key aims of my planned PhD fellowship was to operationalise the collection 

of routine clinical information for patients with first episode psychosis in NHS 

GG&C. The goal was to prospectively validate my existing prediction models on 

new patients as they entered the service using real world clinical data derived 

from an NHS early intervention service. Unfortunately, implementation of data 

collection was severely delayed as a consequence of the global coronavirus 

pandemic such that this was not possible during my PhD timeline. As mitigation, 

I sought to answer my first four thesis aims using existing first episode psychosis 

datasets, rather than using new data.  

Additional limitations resulting from the dataset used for chapter 4 of my thesis 

included the limited number of biologically relevant disease markers available to 

test as predictors. It is possible that the usefulness of these biological variables 

for prediction was curtailed by the lack of a mechanistic link to the 

pathophysiology of psychosis thereby limiting their effect size. Many biomarkers 

with a greater evidence base for disturbance in psychosis were not available, 

including proinflammatory cytokines and chemokines, which numerous 



113 

systematic reviews and meta-analyses have identified as potential biomarkers in 

psychosis (Cakici et al., 2020; Goldsmith et al., 2016; Miller et al., 2011; 

Upthegrove et al., 2014). Further, much of the evidence for glutamate 

dysfunction in psychosis comes from more modern magnetic resonance 

spectroscopy studies conducted at higher field strengths than 1.5 Telsa (Merritt 

et al., 2016; Merritt et al., 2021).  

6.2.3 Routinely collected data 

Chapter 5 had a number of strengths including the large sample size and long 

length of follow-up. Further, by virtue of being registry based using routinely 

collected clinical data from NHS GG&C, the study was entirely naturalistic and 

pragmatic. Insights drawn from naturalistic studies are often more generalisable 

to real-world practice as they do not have the same strict inclusion/exclusion 

criteria and highly controlled study settings as randomised controlled trials 

(Cook & Thigpen, 2019). However, there are disadvantages of using registry 

data. Whereas the prognostic factors and outcomes in chapters 3 and 4 were 

collected using standardised instruments by trained researchers, for chapter 5, 

the integrity of the data used relies on clinicians accurately and reliably coding 

the delirium and dementia diagnoses. Further, unlike a planned prospective 

study, the covariates included in the model were only those available in the 

dataset. As such, chapter 5 lacked several important covariates such as medical 

comorbidities, lifestyle factors (e.g. diet and smoking) and genetics which have 

been identified as important risk factors for dementia (National Institute for 

Health and Care Excellence (NICE), 2021a). Further, patients included in the 

study were primarily drawn from those treated within secondary care. This 

would likely have resulted in a selection bias for more severe delirium and 

dementia diagnoses. Finally, continuity of my thesis would have been improved 

if the routinely collected data for first episode psychosis had been available 

rather than changing the focus to delirium and dementia for chapter 5.  

6.3 Future directions 

A key aim of my original PhD fellowship was to be the establishment of the 

Electronic Measures in Psychosis – Assessing Trajectory and Health-Outcomes 

(EMPATH) platform for the collection of outcome data for first episode psychosis 
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patients treated within the Esteem NHS GG&C early intervention in psychosis 

service. There were significant delays in developing and deploying the EMPATH 

platform as a consequence of the global coronavirus pandemic such that 

deployment was postponed until 2023. Routinely collected data should be 

available for prognosis research from 2024. Building on the lessons learned from 

Chapter 5, I plan to use routinely collected clinical data gathered by EMPATH for 

future prognostic research into first episode psychosis. For example, data-

linkage with EMPATH could allow the testing of additional routinely collected 

inflammatory biological disease markers (from patients’ baseline clinical bloods) 

as predictor variables in larger sample sizes.  

Secondly, the prognostic prediction models developed in this thesis are 

developed to use static baseline information to predict a fixed future end-point. 

As such, they are only relevant to patients at entry to early intervention 

services. The same model should not be used to make subsequent predictions in 

the same patients followed up over time. Indeed, the vast majority of clinical 

prediction models developed and all those recommended by NICE and SIGN for 

clinical practice use predictors at baseline to predict a fixed future end point. 

However, this does not reflect reality – real-world clinical problems are not 

stationary. Rather, predictions should be able to be updated at later timepoints 

in a patient’s journey in response to the natural evolution of their illness and 

any changes in management. Future work should focus on dynamic prediction 

models as a solution. Dynamic prediction models are updated over time as more 

information is collected. Past predictions can be combined with new information 

at future time points and longitudinal risk factors can be incorporated as time-

dependent predictors. Dynamic prediction has demonstrated greater accuracy 

compared to static models (Bone et al., 2021). Dynamic modelling solutions 

include iterative logistic regression, joint modelling and Bayesian methods for 

continuous updating (Bone et al., 2021; Jenkins et al., 2018; Yuen et al., 2018; 

Yuen et al., 2020). Yet, despite clear benefits, currently dynamic modelling is 

rarely applied to clinical problems (Jenkins et al., 2018). 

Finally, the ultimate goal of prognostic model research is to enable the targeting 

of treatments according to individual patient risk. Expensive or higher risk 

treatment may be reserved for those at higher risk. This the basis of stratified 

medicine (Hingorani et al., 2013; Steyerberg et al., 2013). The aim for the 
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model is not to replace clinicians but to help inform a shared approach to 

decision making (Steyerberg et al., 2013). Successful examples of prognostic 

models integrated into clinical practice include the PREDICT tool which is 

recommended to guide adjuvant therapy in individuals with invasive breast 

cancer (National Institute for Health and Care Excellence (NICE), 2018; Wishart 

et al., 2010), and, the QRISK tool which is recommended to guide lipid lowering 

treatment based on an individual’s cardiovascular risk (Hippisley-Cox et al., 

2017; National Institute for Health and Care Excellence (NICE), 2016a). Recent 

systematic review has shown that no model within the field of psychiatry has 

reached this point (Meehan et al., 2022). 

Chapter 3 of this thesis described the development and external validation of a 

first episode psychosis nonremission risk prediction model. Development and 

external validation are the first and second key steps required to take a 

prognostic prediction model to clinical practice, as outlined in the PROGRESS 

framework (Steyerberg et al., 2013). However, good model performance, even 

on external validation, will not translate to clinical utility if clinicians are unable 

to safely apply a model into clinical practice. Moreover, premature 

implementation of a model into clinical practice may even be harmful if it leads 

to people who might otherwise benefit from treatment being denied access 

(Hingorani et al., 2013). The third and final step required to take a model to 

clinical practice is assessment of a prediction model’s clinical impact. 

The gold standard for a clinical impact study is a comparative design ideally via 

a pragmatic cluster-based randomised controlled trial, whereby, one healthcare 

group is randomised to carry out usual care while the other group is given access 

to individualised predictions from a prognostic model to guide treatment (Moons 

et al., 2009). This helps to establish, by the accurate identification of individuals 

who will have poor outcomes, whether we can meaningful intervene to improve 

their prognosis. 

However, prior to a full-scale clinical impact study, I plan to conduct a 

feasibility study. A feasibility study is a recommended first step to establish how 

best to integrate a prognostic model into clinical practice and to identify what 

its measurable impacts may be, including on health outcomes and the cost-

effectiveness of care (de Hond et al., 2022). The study will help determine the 
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practicality and acceptability of delivering Chapter 3’s first episode psychosis 

nonremission risk prediction model in a clinical setting, and identify any barriers 

to implementation or any unintended negative effects. The model was 

developed using retrospective data. The planned feasibility study will also allow 

prospective validation of the model in a new cohort of first episode psychosis 

patients in a real-world clinical setting. 

To facilitate this feasibility study, I have had Chapter 3’s first episode psychosis 

nonremission risk prediction model developed into a password protected user-

friendly web-app (Figure 6-1). The web-app securely and pseudo-anonymously 

saves the entered patient predictor data and their calculated outcome 

probability, linking them to the clinician user of the web-app. 

    
Figure 6-1 First episode psychosis nonremission risk prediction model web-app  
screenshots on mobile for planned feasibility study.  

In order for a psychiatry model to reach the point of deployment to clinical 

practice, like the QRISK tool in cardiovascular disease, its clinical impact must 

be established. As part of this process, a clinical intervention based on the 

model needs to be recommended and a probability threshold above which it 

should be applied. The fundamental purpose of clinical prediction models is to 

improve patient outcomes. The implicit assumption of the model is that 

providing enough forewarning should allow the patient to modify and improve 

their outcome. Given this based on a model’s predictions, interventions should 

be recommended (Lenert et al., 2019). In addition, clinicians are required to 
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decide a probability threshold above which they would offer this intervene. The 

probability threshold is chosen based on the benefits and harms of the proposed 

intervention in order to optimise the balance between false positives and false 

negatives. For example, in the case of a model predicting cancer, the clinician 

would choose a lower probability threshold (more false positives, less false 

negatives) to offer a non-invasive screening test and a higher probability 

threshold (less false positives, more false negatives) to suggest an invasive and 

potentially harmful biopsy (Vickers & Elkin, 2006). In weighing the benefits and 

harms of the proposed intervention it is essential to consider the views of the 

patient. However, most models never get to the point of clinical use and so 

neither the proposed intervention nor the probability threshold above which the 

clinician would apply it are specified. QRISK is a rare example of a model with a 

specified intervention (statin treatment) and a proposed probability threshold 

for this intervention based on its harms and benefits (greater than or equal to 

10% risk of developing a heart attack or stroke over the next 10 years) (National 

Institute for Health and Care Excellence (NICE), 2016a). 

In chapter 3, an intervention was proposed for the first episode psychosis 

nonremission risk prediction model, namely, “enhanced monitoring” over routine 

care leading to early identification and intervention for treatment resistance, 

substance misuse, or nonconcordance. Based on discussion with NHS early-

intervention specialists (eight NHS Consultant Psychiatrists), a probability 

threshold of 40%-60% for “enhanced monitoring” was suggested. Future work is 

required with clinicians, patients and policy-makers to reach a consensus 

decision about an intervention that is achievable and realistic together with an 

appropriate probability threshold to apply it. This will form an integral part of a 

planned clinical impact study. Thereafter, the first episode psychosis 

nonremission risk prediction model can be applied to clinical practice. This will 

allow clinicians to provide treatment to patients who need it most, facilitating 

timely intervention, and enable efficient and effective clinical care.  

6.4 Conclusions 

This thesis provided an overview of the prediction modelling field in first episode 

psychosis highlighting the importance of methodological rigour. It outlined the 

development and external validation of a first episode psychosis nonremission 
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risk prediction model in two large naturalistic cohorts of patients. The model 

could allow clinicians to intervene earlier to change trajectories and improve 

prognosis in first episode psychosis but first requires prospective validation and 

its clinical impact established in a future trial. There was an exploration of the 

potential for biological disease markers and machine learning classifiers to 

augment model performance in first episode psychosis. The potential was not 

borne out in this analysis but further external validation studies in larger sample 

sizes with additional biomarkers are necessary. Finally, it has proven feasible to 

use routinely collected clinical data for prognostic research in NHS GG&C in 

delirium. With the establishment of the EMPATH platform, I look forward to 

future prognostic work in first episode psychosis as routinely collected clinical 

data is deposited. Altogether, this thesis made several contributions to the 

growing body of clinical prognostic research in first episode psychosis and 

delirium. In particular, considerable progress has been made towards the 

deployment of a useable and informative clinical prediction model which will 

improve care for people with first episode psychosis. 
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Appendix 1 Search strategy for Chapter 2 

PsycINFO Search:  
 
Psychosis Terms: 
 
1.Acute Psychosis/ or Psychosis/ 
2.first episode psychosis.m_titl. 
3.psychosis.m_titl. 
 
4. 1 or 2 or 3 
 
Outcomes Terms: 
 
5.Treatment Outcomes/ or Health Outcomes/ or Psychotherapeutic Outcomes/ 
or Psychosocial Outcomes/ or Symptom Remission/ 
6.“recovery (disorders)”/ or relapse prevention/ 
7.treatment resistant disorders/ 
8.“quality of life”/ or “health related quality of life”/ or “quality of work life”/ 
9.vocational rehabilitation/ 
10.relapse prevention.m_titl. 
11.(outcome* or remission or recovery).m_titl. 
12.“treatment resis*.”.m_titl. 
13.quality of life.m_titl. 
14.social recovery.m_titl. 
15.vocational recovery.m_titl. 
 
16. 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 
 
Prediction Terms: 
 
17.exp Prognosis/ or exp Models/ or exp Algorithms/ or exp Prediction/ or exp 
Risk Factors/ 
18.(predict* or prognos* or model*).m_titl. 
19.“risk predict*”.m_titl. 
 
20. 17 or 18 or 19 
 
21. 4 and 16 and 20 
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EMBASE Search:  
 
Psychosis Terms: 
 
1.*acute psychosis/ or *psychosis/ 
2.psychosis.m_titl. 
 
3. 1 or 2 
 
Outcomes Terms: 
 
4.*treatment outcome/ 
5.*outcomes research/ 
6.*remission/ 
7.*“quality of life”/ 
8.*relapse/ 
9.*vocational rehabilitation/ 
10.relapse prevention.m_titl. 
11.(outcome* or remission or recovery).m_titl. 
12.“treatment resis*”.m_titl. 
13.quality of life.m_titl. 
14.social recovery.m_titl. 
15.vocational recovery.m_titl. 
 
16. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 
 
Prediction Terms: 
 
17.*prognosis/ 
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18.*computer model/ or *psychological model/ or *anatomic model/ or 
*individual based population model/ or *mathematical model/ or *statistical 
model/ 
19.*algorithm/ 
20.*algorithm/ or *classification algorithm/ or *coding algorithm/ 
21.*prediction/ 
22.*computer prediction/ or *“prediction and forecasting”/ 
23.*risk factor/ 
24.(predict* or prognos* or model*)m_titl. 
25.“risk predict*”.m_titl. 
 
26. 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 
 
27. 3 and 16 and 26 
 

 
 
CINAHL Plus Search:  
 
Psychosis Terms: 
 
S1 (MH “Psychotic Disorders”) 
S2 TI psychosis 
 
S3 S1 or S2 
 
Outcomes Terms: 
 
S4 (MH “Outcomes (Health Care)”) OR (MH “Treatment Outcomes”) OR (MH 

“Outcomes Research”) 
S5 (MH “Recovery”) 
S6 (MH “Quality of Life”) OR (MH “Psychological Well-Being”) 
S7 (MH “Rehabilitation, Vocational”) OR (MH “Rehabilitation, Psychosocial”) 
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S8 TI relapse prevention 
S9 TI (outcome* OR remission OR recovery) 
S10 TI treatment resis* 
S11 TI quality of life 
S12 TI social recovery 
S13 TI vocational recovery 
 
S14 S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 
 
Prediction Terms: 
 
S15 (MH “Prognosis”) 
S16 (MH “Models, Psychological”) OR (MH “Models, Anatomic”) OR (MH 

“Models, Statistical”) 
S17 (MH “Algorithms”) 
S18 (MH “Predictive Research”) 
S19 (MH “Risk Factors”) 
S20 TI risk predict* 
S21 TI (predict* OR prognos* OR model*) 
 
S22 S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 
 
S23 S3 AND S14 AND S22 
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Web of Science – Core Collection Search:  
 
Psychosis Terms: 
 
#1  TS=Psychosis 
 
Outcome Terms: 
 
#2  TI=(outcome* OR recovery OR remission OR “quality of life” OR treatment 
resis*) 
 
Prediction Terms: 
 
#3  TI=(predict* OR prognos* OR model*) 
 
#4 #3 AND #2 AND #1 
 

 
 
PubMed Search:  
 
Psychosis Terms 
 
#1 psychosis[Title/Abstract] 
 
Outcome Terms 
 
#2 ((((((((((((“outcome assessment, health care”[MeSH Major Topic]) OR 
“treatment outcome”[MeSH Major Topic]) OR “quality of life”[MeSH Major 
Topic]) OR “mental health recovery”[MeSH Major Topic]) OR “rehabilitation, 
vocational”[MeSH Major Topic]) OR relapse prevention[Title]) OR treatment 
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resis*[Title]) OR outcome*[Title]) OR remission[Title]) OR recovery[Title]) OR 
“quality of life”[Title]) OR social recovery[Title]) OR vocational recovery[Title] 
 
Prediction Terms 
 
#3 (((((((((“prognosis”[MeSH Major Topic]) OR “forecasting”[MeSH Major Topic]) 
OR “algorithms”[MeSH Major Topic]) OR “models, psychological”[MeSH Major 
Topic]) OR “models, statistical”[MeSH Major Topic]) OR “risk factors”[MeSH 
Major Topic]) OR predict*[Title]) OR prognos*[Title]) OR model*[Title]) OR risk 
predict*[Title] 
 
#4  
 
((psychosis[Title/Abstract]) AND (((((((((((((“outcome assessment, health 
care”[MeSH Major Topic]) OR “treatment outcome”[MeSH Major Topic]) OR 
“quality of life”[MeSH Major Topic]) OR “mental health recovery”[MeSH Major 
Topic]) OR “rehabilitation, vocational”[MeSH Major Topic]) OR relapse 
prevention[Title]) OR treatment resis*[Title]) OR outcome*[Title]) OR 
remission[Title]) OR recovery[Title]) OR “quality of life”[Title]) OR social 
recovery[Title]) OR vocational recovery[Title])) AND ((((((((((“prognosis”[MeSH 
Major Topic]) OR “forecasting”[MeSH Major Topic]) OR “algorithms”[MeSH Major 
Topic]) OR “models, psychological”[MeSH Major Topic]) OR “models, 
statistical”[MeSH Major Topic]) OR “risk factors”[MeSH Major Topic]) OR 
predict*[Title]) OR prognos*[Title]) OR model*[Title]) OR risk predict*[Title]) 
 

 
 
Google Scholar Search: 
 
Allintitle: psychosis AND (predict OR prognos OR model) 
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Appendix 2 R code for Chapter 3 
library(doParallel) 
library(mice) 
library(readr) 
library(caret) 
library(CalibrationCurves) 
library(pmsampsize) 
library(pROC) 
library(gtools) 
library(dcurves) 
library(psfmi) 
library(dplyr) 
 
#enable multicore (windows) which roughly halfs time for analysis runs 
cl <- makeCluster(detectCores(), type = 'PSOCK') 
registerDoParallel(cl) 
 
options(max.print = 1000000) 
 
#don't use scientific notation (revert back with options(scipen=0) 
options(scipen = 999) 
options(digits = 4) 
 
#sample size with 14 expert chosen predictors 
pmsampsize( 
  type = "b", 
  rsquared = 0.25, 
  parameters = 14, 
  shrinkage = 0.9, 
  prevalence = 0.5 
) 
 
#Load study data 
#EDEN 
eden = read_csv("eden_all.csv") 
eden$Study = NULL 
eden = csv_to_factor(eden) 
# 
tempData <- mice(eden,m=10,seed=987) 
 
# 10-fold CV repeated 5 times 
control <- trainControl( 
  method = "repeatedcv", 
  number = 10, 
  repeats = 5, 
  classProbs=TRUE,  
  summaryFunction=twoClassSummary, 
  savePredictions = T) 
 
finalModels = list() 
crossValModels = list() 
for (i in seq(1:tempData$m)) 
{ 
  #Get imputed data 
  eden_imp = complete(tempData,i) 
  #just take the columns we are using except outcome as standardising first 
  eden_imp_exp = eden_imp[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120)] 
  #standardise the columns before building model 
  preProcValues = preProcess(eden_imp_exp, method = c("center", "scale")) 
  eden_imp_exp_stand = predict(preProcValues, eden_imp_exp) 
  #Add factor outcome back in 
  eden_imp_exp_stand$M12_PANSS_Period_Rem = eden$M12_PANSS_Period_Rem 
  #Remove rows with missing outcomes 
  eden_imp_exp_stand_MID = eden_imp_exp_stand[complete.cases(eden_imp_exp_stand), ] 
  #need to return design matrix to reestimate intercept 
  finalModels[[i]] = glm(M12_PANSS_Period_Rem ~ ., data = eden_imp_exp_stand_MID, family = "binomial", x = T) 
  crossValModels[[i]] = train(M12_PANSS_Period_Rem ~ ., data = eden_imp_exp_stand_MID, method = "glm", metric = 
"ROC", trControl=control, na.action=na.pass) 
} 
 
#Export data 
#write_csv(finalModels[[1]]$data, "dev_eden_1.csv", na = "") 
#change number between 1 to 10 for all imputed datasets 
 
#Export data for standardising 
#eden_imp = complete(tempData,1) 
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#just take the columns we are using including outcome 
#eden_imp_exp = eden_imp[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120,126)] 
 
 
#Get AUCs means and SEs across folds for each MI dataset 
internalMeanROCValues = list() 
internalMeanROCSEs = list() 
for (i in seq(1:tempData$m)) 
{ 
  #hacky way to get ROCs for train objects - ignore GLM2 just there because can't use resamples for just one train object 
  miResamps = resamples(list(GLM=crossValModels[[i]], GLM2 = crossValModels[[1]])) 
  internalMeanROCValues[[i]] = mean(miResamps$values[,2]) 
  internalMeanROCSEs[[i]] = sqrt(var(miResamps$values[,2]))/sqrt(length(miResamps$values[,2])) 
} 
#Correctly pooled C-statistic and 95% CI using Rubin's Rules with logit transformation 
pool_auc(internalMeanROCValues, internalMeanROCSEs, nimp = 10, log_auc = T) 
 
#Alternative way to above calculating own ROCs 
internalMeanROCValuesAlt = list() 
internalMeanROCSEsAlt = list() 
#and to calculate mean calibration ints and slopes per fold across MI 
internalMeanCalIntValues = list() 
internalMeanCalIntSEs = list() 
internalMeanCalSlopeValues = list() 
internalMeanCalSlopeSEs = list() 
 
for (i in seq(1:tempData$m)) 
{ 
  rocs = crossValModels[[i]]$pred %>% 
    group_by(Resample) %>% 
    summarise(aucs = as.vector(roc( 
      predictor = No, 
      response = obs, 
      ci = T, 
      levels = c("No", "Yes"), 
      direction = ">" 
    )$auc)) 
  internalMeanROCValuesAlt[[i]] = mean(rocs$aucs) 
  internalMeanROCSEsAlt[[i]] = sqrt(var(rocs$aucs))/sqrt(length(rocs$aucs)) 
   
  curves = crossValModels[[i]]$pred %>% 
    group_by(Resample) %>% 
    summarise(ints = as.vector( 
      val.prob.ci.3(p=No, y=as.character(obs)=="No", g=5, pl=T, logistic.cal = T, lty.log=9, 
                    col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, smooth = "rcs")$stats[["Intercept"]] 
    ), 
              slopes = as.vector( 
                val.prob.ci.3(p=No, y=as.character(obs)=="No", g=5, pl=T, logistic.cal = T, lty.log=9, 
                              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, smooth = "rcs")$stats[["Slope"]] 
              )) 
   
  internalMeanCalIntValues[[i]] = mean(curves$ints) 
  internalMeanCalIntSEs[[i]] = sqrt(var(curves$ints))/sqrt(length(curves$ints)) 
  internalMeanCalSlopeValues[[i]] = mean(curves$slopes) 
  internalMeanCalSlopeSEs[[i]] = sqrt(var(curves$slopes))/sqrt(length(curves$slopes)) 
} 
#Correctly pooled C-statistic and 95% CI using Rubin's Rules with logit transformation 
pool_auc(internalMeanROCValuesAlt, internalMeanROCSEsAlt, nimp = 10, log_auc = T) 
#Correctly pooled internal Calibration intercept and SE - should be zero for internal validation 
rubin.rules(unlist(internalMeanCalIntValues), unlist(internalMeanCalIntSEs)) 
pool_auc_2(est_auc = internalMeanCalIntValues, est_se = internalMeanCalIntSEs, nimp = 10, log_auc = F) 
#Correctly pooled internal Calibration slope and SE 
rubin.rules(unlist(internalMeanCalSlopeValues), unlist(internalMeanCalSlopeSEs)) 
pool_auc_2(est_auc = internalMeanCalSlopeValues, est_se = internalMeanCalSlopeSEs, nimp = 10, log_auc = F) 
 
#pool AUCs using Rubin's Rules (concatenated predictions) 
internalROCs = list() 
internalROCsValues = list() 
internalROCsSEs = list() 
for(i in seq(1:tempData$m)) 
{ 
  internalROCs[[i]] = roc( 
    predictor = crossValModels[[i]]$pred$No, 
    response = crossValModels[[i]]$pred$obs, 
    ci = T, 
    levels = c("No", "Yes"), 
    direction = ">" 
  ) 
  internalROCsValues[[i]] = internalROCs[[i]]$auc 
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  internalROCsSEs[[i]] = (internalROCs[[i]]$auc - internalROCs[[i]]$ci[1])/1.96 
} 
#Correctly pooled C-statistic and 95% CI using Rubin's Rules with logit transformation 
pool_auc(internalROCsValues, internalROCsSEs, nimp = 10, log_auc = T) 
 
#Individual permutation tests for each multiple imputation dataset 
psPermInternal = list() 
set.seed(987) 
for(i in seq(1:tempData$m)) 
{ 
  #permutation p value 
  auc_null = NULL 
  for(j in seq (1:10001)) 
  { 
    perm = permute(crossValModels[[i]]$pred$obs) 
    auc_null = c(auc_null, roc(predictor = crossValModels[[i]]$pred$No, response = perm, levels=c("No", "Yes"), 
direction=">")$auc) 
  } 
  psPermInternal[[i]] = (1+sum(auc_null >= internalROCsValues[[i]]))/10001 
} 
psPermInternal 
 
internalCalIntValues = list() 
internalCalIntSEs = list() 
internalCalSlopeValues = list() 
internalCalSlopeSEs = list() 
for(i in seq(1:tempData$m)) 
{ 
  internalCal = val.prob.ci.3(p=crossValModels[[i]]$pred$No, y=as.character(crossValModels[[i]]$pred$obs)=="No", g=5, 
logistic.cal = T, lty.log=9, 
                              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, smooth = "rcs") 
   
  internalCalIntValues[[i]] = internalCal$stats[["Intercept"]] 
  internalCalIntSEs[[i]] = (internalCal$stats[["Intercept"]] - internalCal$cl.interc[1])/1.96 
  internalCalSlopeValues[[i]] = internalCal$stats[["Slope"]] 
  internalCalSlopeSEs[[i]] = (internalCal$stats[["Slope"]] - internalCal$cl.slope[[1]])/1.96 
} 
 
#Correctly pooled internal Calibration intercept and SE - should be zero for internal validation 
rubin.rules(unlist(internalCalIntValues), unlist(internalCalIntSEs)) 
pool_auc_2(est_auc = internalCalIntValues, est_se = internalCalIntSEs, nimp = 10, log_auc = F) 
#Correctly pooled internal Calibration slope and SE 
rubin.rules(unlist(internalCalSlopeValues), unlist(internalCalSlopeSEs)) 
pool_auc_2(est_auc = internalCalSlopeValues, est_se = internalCalSlopeSEs, nimp = 10, log_auc = F) 
 
 
#combined data  
internalPreds = NULL 
internalOutcomes = NULL 
for(i in seq(1:tempData$m)) 
{ 
  internalPreds = c(internalPreds,crossValModels[[i]]$pred$No) 
  internalOutcomes = c(internalOutcomes, as.character(crossValModels[[i]]$pred$obs)) 
} 
 
#calibration plot 
#increase memory allocated to R 
memory.limit(size=56000) 
intval_cal = val.prob.ci.2(p=internalPreds, y=internalOutcomes=="No", g=10, logistic.cal = T, lty.log=9, 
              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, dostats = T, smooth = "rcs") 
#shrinkage factor = 0.8381 
shrinkage = intval_cal["Slope"] 
 
#Pool results to get predictor estimates based on Rubin's rule (coefficients reversed as using to predict non-remission) 
View(-summary(pool(finalModels), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)]) 
View(exp(-summary(pool(finalModels), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
#With shrinkage applied (N.B. intercept still to be re-estimated) 
View(-summary(pool(finalModels), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)]*shrinkage) 
View(exp(-summary(pool(finalModels), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)]*shrinkage)) 
 
#for each imputed dataset recalculate intercept with pooled shrunk final coefficients 
#then average the intercepts to get final intercept 
shrunk_coefs = summary(pool(finalModels))[[2]]*shrinkage 
models = list() 
#alternatively using rms package as per Steyerberg - see commented code 
#library(rms) 
intercepts = NULL 
for(i in seq(1:tempData$m)) 
{ 
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  shrunk_LP = finalModels[[i]]$x[,2:15] %*% shrunk_coefs[2:15] 
  models[[i]] = glm(finalModels[[i]]$y ~ offset(shrunk_LP), family = "binomial") 
  #intercepts = c(intercepts, lrm.fit(y = finalModels[[i]]$y, offset= finalModels[[i]]$x[,2:15] %*% 
shrunk_coefs[2:15])$coef[1]) 
} 
#pooled recalculated intercept 
recalc_intercept = summary(pool(models))[[2]] 
#mean(intercepts) 
 
#Get a GLM model 
finalModel = finalModels[[1]] 
#replace coefficients with pooled ones shrunk coefs 
finalModel$coefficients = shrunk_coefs 
#replace intercept with pooled recalculated intercept 
finalModel$coefficients[1] = recalc_intercept 
 
############################################################ 
#Additional code for alternative internal validation via Harrell's bootstrap method 
#and heuristic Van Houwelingen's shrinkage factor 
 
finalModelsAlt = list() 
vanH = list() 
 
apparentROC = list() 
apparentSlopeModel = list() 
boot_results = list() 
 
for (i in seq(1:tempData$m)) 
{ 
  #Get imputed data 
  eden_imp = complete(tempData,i) 
  #just take the columns we are using except outcome as standardising first 
  eden_imp_exp = eden_imp[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120)] 
  #standardise the columns before building model 
  preProcValues = preProcess(eden_imp_exp, method = c("center", "scale")) 
  eden_imp_exp_stand = predict(preProcValues, eden_imp_exp) 
  #Add factor outcome back in 
  eden_imp_exp_stand$M12_PANSS_Period_Rem = eden$M12_PANSS_Period_Rem 
  #Remove rows with missing outcomes 
  eden_imp_exp_stand_MID = eden_imp_exp_stand[complete.cases(eden_imp_exp_stand), ] 
  #need to return design matrix to reestimate intercept  
  finalModelsAlt[[i]] = glm(M12_PANSS_Period_Rem ~ ., data = eden_imp_exp_stand_MID, family = "binomial", x = T, y = T) 
  #Get apparent auc 
  pred_prob = predict(finalModelsAlt[[i]],type="response") 
  apparentROC[[i]] = roc(eden_imp_exp_stand_MID$M12_PANSS_Period_Rem~pred_prob,ci=TRUE,levels = c("No", 
"Yes"),direction = "<") 
  #Get calibration slope models 
  pred_LP = predict(finalModelsAlt[[i]],type="link") 
  apparentSlopeModel[[i]] = glm(eden_imp_exp_stand_MID$M12_PANSS_Period_Rem ~ 
pred_LP,family="binomial",x=TRUE,y=TRUE) 
   
  # Calculate heuristic shrinkage 
   
  # Obtain chi2 
  null_model <- glm(M12_PANSS_Period_Rem~1, data = eden_imp_exp_stand_MID, family="binomial") 
  chisq <- anova(null_model,finalModelsAlt[[i]],test="Chisq") 
  chi2 <- chisq$Deviance[2] 
  # display degrees of freedom (df) 
  df_log <- chisq$Df[2] 
  # Combining these elements we can obtain the heuristic   
  # shrinkage of Van Houwelingen which is given by (chi2 - df)/chi2  
  # where df = 10 for the predictors here 
  vanH[[i]] <- (chi2 - df_log)/chi2 
   
  #Do the whole process with bootstrapping to compare with cross validation 
  boot_results[[i]] = manual_boot(eden_imp_exp_stand_MID,500) 
   
} 
 
#mean heuristic shrinkage across MI 
mean(unlist(vanH)) 
 
#bootstrap values 
bootROCValues = list() 
bootSlopeValues = list() 
for (i in seq(1:tempData$m)) 
{ 
  bootROCValues[[i]] = apparentROC[[i]]$auc - (mean(boot_results[[i]]$app_c_stat)-mean(boot_results[[i]]$test_c_stat)) # 
c-stat 
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  bootSlopeValues[[i]] = apparentSlopeModel[[i]]$coef[2]- (mean(boot_results[[i]]$app_c_slope)-
mean(boot_results[[i]]$test_c_slope)) # c-slope 
} 
 
#Get the mean bootstrapped values across the multiple imputations 
#mean c-statistic 
mean(unlist(bootROCValues)) 
#mean calibration slope 
mean(unlist(bootSlopeValues)) 
 
############################################################ 
#Load study data 
#standardising outlook test data on itself 
#outlook 
outlook = read_csv("outlook_all.csv") 
outlook$Study = NULL 
#remove correlated variables - identified as problem in MICE 
outlook$PCT_Average_Rank_2007 = NULL 
outlook$PCT_Employment_Scale_2007 = NULL 
outlook$PCT_Extent_2007 = NULL 
outlook$PCT_Local_Concentration_2007 = NULL 
outlook$PCT_Income_Scale_2007 = NULL 
outlook = csv_to_factor(outlook) 
 
tempData2 <- mice(outlook,m=10,seed=987) 
 
Results = list() 
Obs = list() 
DUP = list() 
for (i in seq(1:tempData2$m)) 
{ 
  #Get imputed data 
  outlook_imp = complete(tempData2,i) 
  #just take the columns we are using except outcome as standardising first 
  outlook_imp_exp = outlook_imp[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120)] 
  #standardise the columns before building model 
  preProcValues = preProcess(outlook_imp_exp, method = c("center", "scale")) 
  outlook_imp_exp_stand = predict(preProcValues, outlook_imp_exp) 
  #Add factor outcome back in 
  outlook_imp_exp_stand$M12_PANSS_Period_Rem = outlook$M12_PANSS_Period_Rem 
  #Remove rows with missing outcomes 
  outlook_imp_exp_stand_MID = outlook_imp_exp_stand[complete.cases(outlook_imp_exp_stand), ] 
  Results[[i]] = predict(finalModel, outlook_imp_exp_stand_MID, type = "response", na.action = na.pass) 
  #Predicting No 
  Results[[i]] = 1-Results[[i]] 
  Obs[[i]] =  outlook_imp_exp_stand_MID$M12_PANSS_Period_Rem 
  DUP[[i]] = outlook_imp_exp_stand_MID$ADJ_DUP 
} 
 
#pool AUCs using Rubin's Rules 
externalROCs = list() 
externalROCsValues = list() 
externalROCsSEs= list() 
for(i in seq(1:tempData2$m)) 
{ 
  externalROCs[[i]] = roc( 
    predictor = Results[[i]], 
    response = Obs[[i]], 
    ci = T, 
    levels = c("No", "Yes"), 
    direction = ">" 
  ) 
  externalROCsValues[[i]] = externalROCs[[i]]$auc 
  externalROCsSEs[[i]] = (externalROCs[[i]]$auc - externalROCs[[i]]$ci[1])/1.96 
} 
#Correctly pooled C-statistic and 95% CI using Rubin's Rules with logit transformation 
pool_auc(externalROCsValues, externalROCsSEs, nimp = 10, log_auc = T) 
 
#Individual permutation tests for each multiple imputation dataset 
psPermExternal = list() 
set.seed(987) 
for(i in seq(1:tempData2$m)) 
{ 
  #permutation p value 
  auc_null = NULL 
  for(j in seq (1:10001)) 
  { 
    perm = permute(Obs[[i]]) 
    auc_null = c(auc_null, roc(predictor = Results[[i]], response = perm, levels=c("No", "Yes"), direction=">")$auc) 
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  } 
  psPermExternal[[i]] = (1+sum(auc_null >= externalROCsValues[[i]]))/10001 
} 
psPermExternal 
 
externalCalIntValues = list() 
externalCalIntSEs = list() 
externalCalSlopeValues = list() 
externalCalSlopeSEs = list() 
for(i in seq(1:tempData2$m)) 
{ 
  externalCal = val.prob.ci.3(p=Results[[i]], y=Obs[[i]]=="No", g=5, logistic.cal = T, lty.log=9, 
                              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5) 
   
  externalCalIntValues[[i]] = externalCal$stats[["Intercept"]] 
  externalCalIntSEs[[i]] = (externalCal$stats[["Intercept"]] - externalCal$cl.interc[1])/1.96 
  externalCalSlopeValues[[i]] = externalCal$stats[["Slope"]] 
  externalCalSlopeSEs[[i]] = (externalCal$stats[["Slope"]] - externalCal$cl.slope[[1]])/1.96 
} 
 
#Correctly pooled Calibration intercept and SE 
rubin.rules(unlist(externalCalIntValues), unlist(externalCalIntSEs)) 
pool_auc_2(est_auc = externalCalIntValues, est_se = externalCalIntSEs, nimp = 10, log_auc = F) 
 
#Correctly pooled Calibration slope and SE 
rubin.rules(unlist(externalCalSlopeValues), unlist(externalCalSlopeSEs)) 
pool_auc_2(est_auc = externalCalSlopeValues, est_se = externalCalSlopeSEs, nimp = 10, log_auc = F) 
 
#calibration plot - ignore confidence intervals, use above via Rubin's rules instead 
#first imputed dataset - don't display stats 
pdf("figure2_correct.pdf", width = 7, height = 7) 
val.prob.ci.2(p=Results[[1]], y=Obs[[1]]=="No", g=5, logistic.cal = T, lty.log=9, 
              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, statloc = F) 
dev.off() 
 
#combined data  
#no confidence intervals for dca so combining data just gives average 
externalPreds = NULL 
externalOutcomes = NULL 
externalDUP = NULL 
for(i in seq(1:tempData2$m)) 
{ 
  externalPreds = c(externalPreds,Results[[i]]) 
  externalOutcomes = c(externalOutcomes, as.character(Obs[[i]])) 
  externalDUP = c(externalDUP, DUP[[i]]) 
} 
 
#dca 
dca_ext = NULL 
dca_ext$M12_PANSS_Period_Rem = as.integer(externalOutcomes=="No") 
dca_ext$Model = externalPreds 
dca_ext$DUP = externalDUP 
#get data across all thresholds 
dca_ext_calc = dca(M12_PANSS_Period_Rem ~ Model + DUP, data = as.data.frame(dca_ext), as_probability =  "DUP", 
                   thresholds = seq(0.3, 0.77, by = 0.01)) 
pdf("figure3.pdf", width = 7, height = 7) 
dca_ext_calc %>%    
  plot(smooth = TRUE) 
dev.off() 
 
#Write dca to csv 
write_csv(dca_ext_calc$dca,"dca.csv") 
 
############################################################ 
#standardising test data using EDEN training values 
 
#get preprocessing rules for standardisation using first imputed EDEN dataset 
eden_imp2 = complete(tempData,1) 
#just take the columns we are using except outcome as standardising first 
eden_imp_exp2 = eden_imp2[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120)] 
#standardise the columns before building model 
preProcValuesEDEN = preProcess(eden_imp_exp2, method = c("center", "scale")) 
 
Results2 = list() 
Obs2 = list() 
DUP2 = list() 
for (i in seq(1:tempData2$m)) 
{ 
  #Get imputed data 
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  outlook_imp2 = complete(tempData2,i) 
  #just take the columns we are using except outcome as standardising first 
  outlook_imp_exp2 = outlook_imp2[,c(2,15,18,25,49,53,54,55,63,72,100,111,112,120)] 
   
  #standardise using preprocessing rules from EDEN first imputed dataset 
  outlook_imp_exp_stand2 = predict(preProcValuesEDEN, outlook_imp_exp2) 
  #Add factor outcome back in 
  outlook_imp_exp_stand2$M12_PANSS_Period_Rem = outlook$M12_PANSS_Period_Rem 
  #Remove rows with missing outcomes 
  outlook_imp_exp_stand_MID2 = outlook_imp_exp_stand2[complete.cases(outlook_imp_exp_stand2), ] 
  Results2[[i]] = predict(finalModel, outlook_imp_exp_stand_MID2, type = "response", na.action = na.pass) 
  #Predicting No 
  Results2[[i]] = 1-Results2[[i]] 
  Obs2[[i]] =  outlook_imp_exp_stand_MID2$M12_PANSS_Period_Rem 
  DUP2[[i]] = outlook_imp_exp_stand_MID2$ADJ_DUP 
} 
 
#pool AUCs using Rubin's Rules 
externalROCs2 = list() 
externalROCsValues2 = list() 
externalROCsSEs2= list() 
for(i in seq(1:tempData2$m)) 
{ 
  externalROCs2[[i]] = roc( 
    predictor = Results[[i]], 
    response = Obs[[i]], 
    ci = T, 
    levels = c("No", "Yes"), 
    direction = ">" 
  ) 
  externalROCsValues2[[i]] = externalROCs2[[i]]$auc 
  externalROCsSEs2[[i]] = (externalROCs2[[i]]$auc - externalROCs2[[i]]$ci[1])/1.96 
} 
#Correctly pooled C-statistic and 95% CI using Rubin's Rules with logit transformation 
pool_auc(externalROCsValues2, externalROCsSEs2, nimp = 10, log_auc = T) 
 
#Individual permutation tests for each multiple imputation dataset 
psPermExternal2 = list() 
set.seed(987) 
for(i in seq(1:tempData2$m)) 
{ 
  #permutation p value 
  auc_null = NULL 
  for(j in seq (1:10001)) 
  { 
    perm = permute(Obs2[[i]]) 
    auc_null = c(auc_null, roc(predictor = Results2[[i]], response = perm, levels=c("No", "Yes"), direction=">")$auc) 
  } 
  psPermExternal2[[i]] = (1+sum(auc_null >= externalROCsValues2[[i]]))/10001 
} 
psPermExternal2 
 
externalCalIntValues2 = list() 
externalCalIntSEs2 = list() 
externalCalSlopeValues2 = list() 
externalCalSlopeSEs2 = list() 
for(i in seq(1:tempData2$m)) 
{ 
  externalCal2 = val.prob.ci.3(p=Results2[[i]], y=Obs2[[i]]=="No", g=5, logistic.cal = T, lty.log=9, 
                              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5) 
   
  externalCalIntValues2[[i]] = externalCal2$stats[["Intercept"]] 
  externalCalIntSEs2[[i]] = (externalCal2$stats[["Intercept"]] - externalCal2$cl.interc[1])/1.96 
  externalCalSlopeValues2[[i]] = externalCal2$stats[["Slope"]] 
  externalCalSlopeSEs2[[i]] = (externalCal2$stats[["Slope"]] - externalCal2$cl.slope[[1]])/1.96 
} 
 
#Correctly pooled Calibration intercept and SE 
rubin.rules(unlist(externalCalIntValues2), unlist(externalCalIntSEs2)) 
pool_auc_2(est_auc = externalCalIntValues2, est_se = externalCalIntSEs2, nimp = 10, log_auc = F) 
 
#Correctly pooled Calibration slope and SE 
rubin.rules(unlist(externalCalSlopeValues2), unlist(externalCalSlopeSEs2)) 
pool_auc_2(est_auc = externalCalSlopeValues2, est_se = externalCalSlopeSEs2, nimp = 10, log_auc = F) 
 
#calibration plot - ignore confidence intervals, use above via Rubin's rules instead 
#first imputed dataset - don't display stats 
pdf("figure2_correct2.pdf", width = 7, height = 7) 
val.prob.ci.2(p=Results2[[1]], y=Obs2[[1]]=="No", g=5, logistic.cal = T, lty.log=9, 
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              col.log="red", lwd.log=1.5, col.ideal="blue", lwd.ideal=0.5, statloc = F) 
dev.off() 
 
#combined data  
#no confidence intervals for dca so combining data just gives average 
externalPreds2 = NULL 
externalOutcomes2 = NULL 
externalDUP2 = NULL 
for(i in seq(1:tempData2$m)) 
{ 
  externalPreds2 = c(externalPreds2,Results2[[i]]) 
  externalOutcomes2 = c(externalOutcomes2, as.character(Obs2[[i]])) 
  externalDUP2 = c(externalDUP2, DUP2[[i]]) 
} 
 
#dca 
dca_ext2 = NULL 
dca_ext2$M12_PANSS_Period_Rem = as.integer(externalOutcomes2=="No") 
dca_ext2$Model = externalPreds2 
dca_ext2$DUP = externalDUP2 
#get data across all thresholds 
dca_ext_calc2 = dca(M12_PANSS_Period_Rem ~ Model + DUP, data = as.data.frame(dca_ext2), as_probability =  "DUP", 
                   thresholds = seq(0.3, 0.77, by = 0.01)) 
pdf("figure3_2.pdf", width = 7, height = 7) 
dca_ext_calc2 %>%    
  plot(smooth = TRUE) 
dev.off() 
 
#Write dca2 to csv 
write_csv(dca_ext_calc2$dca,"dca2.csv") 
 
#dca first imputed dataset 
dca_ext2_1 = NULL 
dca_ext2_1$M12_PANSS_Period_Rem = as.integer(Obs2[[1]]=="No") 
dca_ext2_1$Model = Results2[[1]] 
dca_ext2_1$DUP = DUP2[[1]] 
 
dca_ext_calc2_1 = dca(M12_PANSS_Period_Rem ~ Model + DUP, data = as.data.frame(dca_ext2_1), as_probability =  
"DUP", 
                    thresholds = seq(0.3, 0.77, by = 0.01)) 
 
pdf("figure3_2_1.pdf", width = 7, height = 7) 
dca_ext_calc2_1 %>%    
  plot(smooth = TRUE) 
dev.off() 
 
#Write dca2 to csv 
write_csv(dca_ext_calc2_1$dca,"dca2_1.csv") 
 
####################################################################### 
#Demographic comparisons 
####################################################################### 
#summary statistics 
#Age 
eden_final_demographics = eden[complete.cases(eden[ , "M12_PANSS_Period_Rem"]),] 
outlook_final_demographics = outlook[complete.cases(outlook[ , "M12_PANSS_Period_Rem"]),] 
 
summary(eden$Age_Entry) 
mean(eden$Age_Entry, na.rm = T) 
sd(eden$Age_Entry, na.rm = T) 
 
summary(eden_final_demographics$Age_Entry) 
mean(eden_final_demographics$Age_Entry, na.rm = T) 
sd(eden_final_demographics$Age_Entry, na.rm = T) 
 
summary(outlook$Age_Entry) 
mean(outlook$Age_Entry, na.rm = T) 
sd(outlook$Age_Entry, na.rm = T) 
 
summary(outlook_final_demographics$Age_Entry) 
mean(outlook_final_demographics$Age_Entry, na.rm = T) 
sd(outlook_final_demographics$Age_Entry, na.rm = T) 
 
summary(aov(y~group, data = data.frame(group=factor(rep(1:4, 
c(1027,673,399,191))),y=c(eden$Age_Entry,eden_final_demographics$Age_Entry, 
                                                                                       outlook$Age_Entry,outlook_final_demographics$Age_Entry)))) 
 
#Sex 
summary(eden$Sex) 
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summary(eden_final_demographics$Sex) 
summary(outlook$Sex) 
summary(outlook_final_demographics$Sex) 
 
chisq.test(as.table(rbind(c(318,709),c(210,463),c(153,246),c(73,118))), correct = F) 
 
#EET 
summary(eden$BL_EET) 
summary(eden_final_demographics$BL_EET) 
summary(outlook$BL_EET) 
summary(outlook_final_demographics$BL_EET) 
 
chisq.test(as.table(rbind(c(589,284),c(383,190),c(225,174),c(106,85))), correct = F) 
 
#Qualification 
summary(as.factor(eden$Qualification_Level_Ordinal)) 
summary(as.factor(eden_final_demographics$Qualification_Level_Ordinal)) 
summary(as.factor(outlook$Qualification_Level_Ordinal)) 
summary(as.factor(outlook_final_demographics$Qualification_Level_Ordinal)) 
 
chisq.test(as.table(rbind(c(245,399,262,98),c(156,255,173,74),c(89,130,92,69),c(40,67,46,35))), correct = F) 
 
#DUP 
summary(eden$ADJ_DUP) 
mean(eden$ADJ_DUP, na.rm = T) 
sd(eden$ADJ_DUP, na.rm = T) 
 
summary(eden_final_demographics$ADJ_DUP) 
mean(eden_final_demographics$ADJ_DUP, na.rm = T) 
sd(eden_final_demographics$ADJ_DUP, na.rm = T) 
 
summary(outlook$ADJ_DUP) 
mean(outlook$ADJ_DUP, na.rm = T) 
sd(outlook$ADJ_DUP, na.rm = T) 
 
summary(outlook_final_demographics$ADJ_DUP) 
mean(outlook_final_demographics$ADJ_DUP, na.rm = T) 
sd(outlook_final_demographics$ADJ_DUP, na.rm = T) 
 
summary(aov(y~group, data = data.frame(group=factor(rep(1:4, c(1027,673,399,191))),y=c(eden$ADJ_DUP, 
                                                                                       eden_final_demographics$ADJ_DUP, 
                                                                                       outlook$ADJ_DUP, 
                                                                                       outlook_final_demographics$ADJ_DUP)))) 
 
#Deprivation 
summary(eden$PCT_Average_Scrore_2007) 
mean(eden$PCT_Average_Scrore_2007, na.rm = T) 
sd(eden$PCT_Average_Scrore_2007, na.rm = T) 
 
summary(eden_final_demographics$PCT_Average_Scrore_2007) 
mean(eden_final_demographics$PCT_Average_Scrore_2007, na.rm = T) 
sd(eden_final_demographics$PCT_Average_Scrore_2007, na.rm = T) 
 
summary(outlook$PCT_Average_Scrore_2007) 
mean(outlook$PCT_Average_Scrore_2007, na.rm = T) 
sd(outlook$PCT_Average_Scrore_2007, na.rm = T) 
 
summary(outlook_final_demographics$PCT_Average_Scrore_2007) 
mean(outlook_final_demographics$PCT_Average_Scrore_2007, na.rm = T) 
sd(outlook_final_demographics$PCT_Average_Scrore_2007, na.rm = T) 
 
summary(aov(y~group, data = data.frame(group=factor(rep(1:4, 
c(1027,673,399,191))),y=c(eden$PCT_Average_Scrore_2007, 
                                                                                       eden_final_demographics$PCT_Average_Scrore_2007, 
                                                                                       outlook$PCT_Average_Scrore_2007, 
                                                                                       outlook_final_demographics$PCT_Average_Scrore_2007)))) 
 
#PANSS Totals 
eden$BL_PANSS_Total = rowSums(eden[,53:82]) 
outlook$BL_PANSS_Total = rowSums(outlook[,53:82]) 
eden_final_demographics$BL_PANSS_Total = rowSums(eden_final_demographics[,53:82]) 
outlook_final_demographics$BL_PANSS_Total = rowSums(outlook_final_demographics[,53:82]) 
 
summary(eden$BL_PANSS_Total) 
mean(eden$BL_PANSS_Total, na.rm = T) 
sd(eden$BL_PANSS_Total, na.rm = T) 
 
summary(eden_final_demographics$BL_PANSS_Total) 
mean(eden_final_demographics$BL_PANSS_Total, na.rm = T) 
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sd(eden_final_demographics$BL_PANSS_Total, na.rm = T) 
 
summary(outlook$BL_PANSS_Total) 
mean(outlook$BL_PANSS_Total, na.rm = T) 
sd(outlook$BL_PANSS_Total, na.rm = T) 
 
summary(outlook_final_demographics$BL_PANSS_Total) 
mean(outlook_final_demographics$BL_PANSS_Total, na.rm = T) 
sd(outlook_final_demographics$BL_PANSS_Total, na.rm = T) 
 
summary(aov(y~group, data = data.frame(group=factor(rep(1:4, c(1027,673,399,191))),y=c(eden$BL_PANSS_Total, 
                                                                                       eden_final_demographics$BL_PANSS_Total, 
                                                                                       outlook$BL_PANSS_Total, 
                                                                                       outlook_final_demographics$BL_PANSS_Total)))) 
 
#My custom functions 
##################################################################################### 
 
#change char cols to factor 
csv_to_factor <- function(imported_csv) 
{ 
  cols_char_csv = colnames(imported_csv[, sapply(imported_csv, class) == 'character']) 
  for (i in seq(1:length(cols_char_csv))) 
  { 
    imported_csv[[cols_char_csv[i]]] = as.factor(imported_csv[[cols_char_csv[i]]]) 
  } 
  return(imported_csv) 
} 
 
#Calibration Curves function also returning confidence intervals around intercept, slope and c-statistic 
#Only confirmed to work with default options 
val.prob.ci.3 <- function(p, y, logit, group, weights = rep(1, length(y)), normwt = F, pl = T, 
                          smooth = c("loess","rcs",F), CL.smooth="fill",CL.BT=F,lty.smooth=1,col.smooth="black",lwd.smooth=1, 
                          nr.knots=5,logistic.cal = F,lty.log=1,col.log="black",lwd.log=1, xlab = "Predicted probability", ylab = 
                            "Observed proportion", xlim = c(-0.02, 1),ylim = c(-0.15,1), m, g, cuts, emax.lim = c(0, 1), 
                          legendloc =  c(0.50 , 0.27), statloc = c(0,.85),dostats=T,cl.level=0.95,method.ci="pepe",roundstats=2, 
                          riskdist = "predicted", cex=0.75,cex.leg = 0.75, connect.group = 
                            F, connect.smooth = T, g.group = 4, evaluate = 100, nmin = 0, d0lab="0", d1lab="1", cex.d01=0.7, 
                          dist.label=0.04, line.bins=-.05, dist.label2=.03, cutoff, las=1, length.seg=1, 
                          y.intersp=1,lty.ideal=1,col.ideal="red",lwd.ideal=1,...) 
{ 
  if(smooth[1]==F){smooth <- "F"} 
  smooth <- match.arg(smooth) 
  if(!missing(p)) 
    if(any(!(p>=0 | p<=1))){stop("Probabilities can not be > 1 or < 0.")} 
  if(missing(p)) 
    p <- 1/(1 + exp( - logit)) 
  else logit <- log(p/(1 - p)) 
  if(!all(y%in%0:1)){stop("The vector with the binary outcome can only contain the values 0 and 1.")} 
  if(length(p) != length(y)) 
    stop("lengths of p or logit and y do not agree") 
  names(p) <- names(y) <- names(logit) <- NULL 
  if(!missing(group)) { 
    if(length(group) == 1 && is.logical(group) && group) 
      group <- rep("", length(y)) 
    if(!is.factor(group)) 
      group <- if(is.logical(group) || is.character(group)) 
        as.factor(group) else cut2(group, g = 
                                     g.group) 
    names(group) <- NULL 
    nma <- !(is.na(p + y + weights) | is.na(group)) 
    ng <- length(levels(group)) 
  } 
  else { 
    nma <- !is.na(p + y + weights) 
    ng <- 0 
  } 
  logit <- logit[nma] 
  y <- y[nma] 
  p <- p[nma] 
  if(ng > 0) { 
    group <- group[nma] 
    weights <- weights[nma] 
    return(val.probg(p, y, group, evaluate, weights, normwt, nmin) 
    ) 
  } 
   
  # Sort vector with probabilities 
  y     <- y[order(p)] 
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  logit <- logit[order(p)] 
  p     <- p[order(p)] 
   
   
  if(length(p)>5000 & smooth=="loess"){warning("Number of observations > 5000, RCS is recommended.",immediate. = T)} 
  if(length(p)>1000 & CL.BT==T){warning("Number of observations is > 1000, this could take a while...",immediate. = T)} 
   
   
  if(length(unique(p)) == 1) { 
    #22Sep94 
    P <- mean(y) 
    Intc <- log(P/(1 - P)) 
    n <- length(y) 
    D <- -1/n 
    L01 <- -2 * sum(y * logit - log(1 + exp(logit)), na.rm = T) 
    L.cal <- -2 * sum(y * Intc - log(1 + exp(Intc)), na.rm = T) 
    U.chisq <- L01 - L.cal 
    U.p <- 1 - pchisq(U.chisq, 1) 
    U <- (U.chisq - 1)/n 
    Q <- D - U 
     
    stats <- c(0, 0.5, 0, D, 0, 1, U, U.chisq, U.p, Q, mean((y - p[ 
      1])^2), Intc, 0, rep(abs(p[1] - P), 2)) 
    names(stats) <- c("Dxy", "C (ROC)", "R2", "D", "D:Chi-sq", 
                      "D:p", "U", "U:Chi-sq", "U:p", "Q", "Brier", 
                      "Intercept", "Slope", "Emax", "Eavg", "ECI") 
    return(stats) 
  } 
  i <- !is.infinite(logit) 
  nm <- sum(!i) 
  if(nm > 0) 
    warning(paste(nm, "observations deleted from logistic calibration due to probs. of 0 or 1")) 
  i.2 <- i 
  f.or <- lrm(y[i]~logit[i]) 
  f <- lrm.fit(logit[i], y[i]) 
  cl.slope <- confint(f,level=cl.level)[2,] 
  f2 <- lrm.fit(offset=logit[i], y=y[i]) 
  if(f2$fail){ 
    warning("The lrm function did not converge when computing the calibration intercept!",immediate.=T) 
    f2 <- list() 
    f2$coef <- NA 
    cl.interc <- rep(NA,2) 
  }else{ 
    cl.interc <- confint(f2,level=cl.level) 
  } 
  stats <- f$stats 
  cl.auc <- CalibrationCurves:::ci.auc(y,p,cl.level,method.ci) 
   
  n <- stats["Obs"] 
  predprob <- seq(emax.lim[1], emax.lim[2], by = 0.0005) 
  lt <- f$coef[1] + f$coef[2] * log(predprob/(1 - predprob)) 
  calp <- 1/(1 + exp( - lt)) 
  emax <- max(abs(predprob - calp)) 
  if (pl) { 
    plot(0.5, 0.5, xlim = xlim, ylim = ylim, type = "n", xlab = xlab, 
         ylab = ylab, las=las,...) 
    clip(0,1,0,1) 
    abline(0, 1, lty = lty.ideal,col=col.ideal,lwd=lwd.ideal) 
    do.call("clip", as.list(par()$usr)) 
     
     
    lt <- lty.ideal 
    lw.d <- lwd.ideal 
    all.col <- col.ideal 
    leg <- "Ideal" 
    marks <- -1 
    if (logistic.cal) { 
      lt <- c(lt, lty.log) 
      lw.d <- c(lw.d,lwd.log) 
      all.col <- c(all.col,col.log) 
      leg <- c(leg, "Logistic calibration") 
      marks <- c(marks, -1) 
    } 
    if(smooth!="F"){all.col <- c(all.col,col.smooth)} 
    if (smooth=="loess") { 
      #Sm <- lowess(p,y,iter=0) 
      Sm <- loess(y~p,degree=2) 
      Sm <- data.frame(Sm$x,Sm$fitted); Sm.01 <- Sm 
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      if (connect.smooth==T & CL.smooth!="fill") { 
        clip(0,1,0,1) 
        lines(Sm, lty = lty.smooth,lwd=lwd.smooth,col=col.smooth) 
        do.call("clip", as.list(par()$usr)) 
        lt <- c(lt, lty.smooth) 
        lw.d <- c(lw.d,lwd.smooth) 
        marks <- c(marks, -1) 
      }else if(connect.smooth==F & CL.smooth!="fill"){ 
        clip(0,1,0,1) 
        points(Sm,col=col.smooth) 
        do.call("clip", as.list(par()$usr)) 
        lt <- c(lt, 0) 
        lw.d <- c(lw.d,1) 
        marks <- c(marks, 1) 
      } 
      if(CL.smooth==T | CL.smooth=="fill"){ 
        to.pred <- seq(min(p),max(p),length=200) 
        if(CL.BT==T){ 
          cat("Bootstrap samples are being generated.\n\n\n") 
           
          replicate(2000,CalibrationCurves:::BT.samples(y,p,to.pred)) -> res.BT 
          apply(res.BT,1,quantile,c(0.025,0.975)) -> CL.BT 
          colnames(CL.BT) <- to.pred 
           
          if(CL.smooth=="fill"){ 
            clip(0,1,0,1) 
            polygon(x = c(to.pred, rev(to.pred)), y = c(CL.BT[2,], 
                                                        rev(CL.BT[1,])), 
                    col = rgb(177, 177, 177, 177, maxColorValue = 255), border = NA) 
            if (connect.smooth==T) { 
              lines(Sm, lty = lty.smooth,lwd=lwd.smooth,col=col.smooth) 
              lt <- c(lt, lty.smooth) 
              lw.d <- c(lw.d,lwd.smooth) 
              marks <- c(marks, -1) 
            }else if(connect.smooth==F){ 
              points(Sm,col=col.smooth) 
              lt <- c(lt, 0) 
              lw.d <- c(lw.d,1) 
              marks <- c(marks, 1) 
            } 
            do.call("clip", as.list(par()$usr)) 
            leg <- c(leg, "Flexible calibration (Loess)") 
          }else{ 
             
            clip(0,1,0,1) 
            
lines(to.pred,CL.BT[1,],lty=2,lwd=1,col=col.smooth);clip(0,1,0,1);lines(to.pred,CL.BT[2,],lty=2,lwd=1,col=col.smooth) 
            do.call("clip", as.list(par()$usr)) 
            leg <- c(leg,"Flexible calibration (Loess)","CL flexible") 
            lt <- c(lt,2) 
            lw.d <- c(lw.d,1) 
            all.col <- c(all.col,col.smooth) 
            marks <- c(marks,-1) 
          } 
           
        }else{ 
          Sm.0 <- loess(y~p,degree=2) 
          predict(Sm.0,type="fitted",se=T) -> cl.loess 
          clip(0,1,0,1) 
          if(CL.smooth=="fill"){ 
            polygon(x = c(Sm.0$x, rev(Sm.0$x)), y = c(cl.loess$fit+cl.loess$se.fit*1.96, 
                                                      rev(cl.loess$fit-cl.loess$se.fit*1.96)), 
                    col = rgb(177, 177, 177, 177, maxColorValue = 255), border = NA) 
            if (connect.smooth==T) { 
              lines(Sm, lty = lty.smooth,lwd=lwd.smooth,col=col.smooth) 
              lt <- c(lt, lty.smooth) 
              lw.d <- c(lw.d,lwd.smooth) 
              marks <- c(marks, -1) 
            }else if(connect.smooth==F){ 
              points(Sm,col=col.smooth) 
              lt <- c(lt, 0) 
              lw.d <- c(lw.d,1) 
              marks <- c(marks, 1) 
            } 
            do.call("clip", as.list(par()$usr)) 
            leg <- c(leg, "Flexible calibration (Loess)") 
          }else{ 
            lines(Sm.0$x,cl.loess$fit+cl.loess$se.fit*1.96,lty=2,lwd=1,col=col.smooth) 
            lines(Sm.0$x,cl.loess$fit-cl.loess$se.fit*1.96,lty=2,lwd=1,col=col.smooth) 
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            do.call("clip", as.list(par()$usr)) 
            leg <- c(leg,"Flexible calibration (Loess)","CL flexible") 
            lt <- c(lt,2) 
            lw.d <- c(lw.d,1) 
            all.col <- c(all.col,col.smooth) 
            marks <- c(marks,-1) 
          } 
           
        } 
         
      }else{ 
        leg <- c(leg, "Flexible calibration (Loess)")} 
      cal.smooth <- approx(Sm.01, xout = p)$y 
      eavg <- mean(abs(p - cal.smooth)) 
      ECI <- mean((p-cal.smooth)^2)*100 
    } 
    if(smooth=="rcs"){ 
      par(lwd=lwd.smooth,bty="n",col=col.smooth) 
      if(!is.numeric(nr.knots)){stop("Nr.knots must be numeric.")} 
      if(nr.knots==5){ 
        tryCatch(CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=5,show="prob", statloc = "none" 
                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))),lty=lty.smooth),error=function(e){ 
                                 warning("The number of knots led to estimation problems, nk will be set to 4.",immediate. = T) 
                                 tryCatch(CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=4,show="prob", statloc = "none" 
                                                        ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))),lty=lty.smooth) 
                                          ,error=function(e){ 
                                            warning("Nk 4 also led to estimation problems, nk will be set to 3.",immediate.=T) 
                                            CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = "none" 
                                                          ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))) 
                                                          ,lty=lty.smooth) 
                                          }) 
                               }) 
      }else if(nr.knots==4){ 
        tryCatch(CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=4,show="prob", statloc = "none" 
                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))),lty=lty.smooth),error=function(e){ 
                                 warning("The number of knots led to estimation problems, nk will be set to 3.",immediate.=T) 
                                 CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = "none" 
                                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))),lty=lty.smooth) 
                               }) 
      }else if(nr.knots==3){ 
        tryCatch(CalibrationCurves:::rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = "none" 
                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p))),lty=lty.smooth), 
                 error=function(e){ 
                   stop("Nk = 3 led to estimation problems.") 
                 }) 
      }else{stop(paste("Number of knots = ",nr.knots,sep="", ", only 5 >= nk >=3 is allowed."))} 
       
      par(lwd=1,bty="o",col="black") 
      leg <- c(leg,"Flexible calibration (RCS)","CL flexible") 
      lt <- c(lt,lty.smooth,2) 
      lw.d <- c(lw.d,rep(lwd.smooth,2)) 
      all.col <- c(all.col,col.smooth) 
      marks <- c(marks,-1,-1) 
    } 
    if(!missing(m) | !missing(g) | !missing(cuts)) { 
      if(!missing(m)) 
        q <- cut2(p, m = m, levels.mean = T, digits = 7) 
      else if(!missing(g)) 
        q <- cut2(p, g = g, levels.mean = T, digits = 7) 
      else if(!missing(cuts)) 
        q <- cut2(p, cuts = cuts, levels.mean = T, digits = 7) 
      means <- as.single(levels(q)) 
      prop <- tapply(y, q, function(x)mean(x, na.rm = T)) 
      points(means, prop, pch = 2, cex=1) 
      #18.11.02: CI triangles 
      ng <-tapply(y, q, length) 
      og <-tapply(y, q, sum) 
      ob <-og/ng 
      se.ob <-sqrt(ob*(1-ob)/ng) 
      g  <- length(as.single(levels(q))) 
       
      for (i in 1:g) lines(c(means[i], means[i]), c(prop[i],min(1,prop[i]+1.96*se.ob[i])), type="l") 
      for (i in 1:g) lines(c(means[i], means[i]), c(prop[i],max(0,prop[i]-1.96*se.ob[i])), type="l") 
       
      if(connect.group) { 
        lines(means, prop) 
        lt <- c(lt, 1) 
        lw.d <- c(lw.d,1) 
      } 
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      else { 
        lt <- c(lt, 0) 
        lw.d <- c(lw.d, 0) 
      } 
      leg <- c(leg, "Grouped observations") 
      all.col <- c(all.col, col.smooth) 
      marks <- c(marks, 2) 
    } 
  } 
  lr <- stats["Model L.R."] 
  p.lr <- stats["P"] 
  D <- (lr - 1)/n 
  L01 <- -2 * sum(y * logit - logb(1 + exp(logit)), na.rm = TRUE) 
  U.chisq <- L01 - f$deviance[2] 
  p.U <- 1 - pchisq(U.chisq, 2) 
  U <- (U.chisq - 2)/n 
  Q <- D - U 
  Dxy <- stats["Dxy"] 
  C <- stats["C"] 
  R2 <- stats["R2"] 
  B <- sum((p - y)^2)/n 
  # ES 15dec08 add Brier scaled 
  Bmax  <- mean(y) * (1-mean(y))^2 + (1-mean(y)) * mean(y)^2 
  Bscaled <- 1 - B/Bmax 
  stats <- c(Dxy, C, R2, D, lr, p.lr, U, U.chisq, p.U, Q, B, 
             f2$coef[1], f$coef[2], emax, Bscaled) 
  names(stats) <- c("Dxy", "C (ROC)", "R2", "D", "D:Chi-sq", 
                    "D:p", "U", "U:Chi-sq", "U:p", "Q", "Brier", "Intercept", 
                    "Slope", "Emax", "Brier scaled") 
  if(smooth=="loess") 
    stats <- c(stats, c(Eavg = eavg),c(ECI = ECI)) 
   
  # Cut off definition 
  if(!missing(cutoff)) { 
    arrows(x0=cutoff,y0=.1,x1=cutoff,y1=-0.025,length=.15) 
  } 
  if(pl) { 
    if(min(p)>plogis(-7) | max(p)<plogis(7)){ 
       
      lrm(y[i.2]~qlogis(p[i.2]))-> lrm.fit.1 
      if(logistic.cal)  lines(p[i.2],plogis(lrm.fit.1$linear.predictors),lwd=lwd.log,lty=lty.log,col=col.log) 
       
    }else{logit <- seq(-7, 7, length = 200) 
    prob <- 1/(1 + exp( - logit)) 
    pred.prob <- f$coef[1] + f$coef[2] * logit 
    pred.prob <- 1/(1 + exp( - pred.prob)) 
    if(logistic.cal) lines(prob, pred.prob, lty=lty.log,lwd=lwd.log,col=col.log) 
    } 
    # pc <- rep(" ", length(lt)) 
    # pc[lt==0] <- "." 
    lp <- legendloc 
    if (!is.logical(lp)) { 
      if (!is.list(lp)) 
        lp <- list(x = lp[1], y = lp[2]) 
      legend(lp, leg, lty = lt, pch = marks, cex = cex.leg, bty = "n",lwd=lw.d, 
             col=all.col,y.intersp = y.intersp) 
    } 
    if(!is.logical(statloc)) { 
      if(dostats[1]==T){ 
        stats.2 <- paste('Calibration\n', 
                         '...intercept: ' 
                         , sprintf(paste("%.",roundstats,"f",sep=""), stats["Intercept"]), " (", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.interc[1])," to ", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.interc[2]),")",'\n', 
                         '...slope: ' 
                         , sprintf(paste("%.",roundstats,"f",sep=""), stats["Slope"]), " (", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.slope[1])," to ", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.slope[2]),")",'\n', 
                         'Discrimination\n', 
                         '...c-statistic: ' 
                         , sprintf(paste("%.",roundstats,"f",sep=""), stats["C (ROC)"]), " (", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.auc[2])," to ", 
                         sprintf(paste("%.",roundstats,"f",sep=""),cl.auc[3]),")" 
                         , sep = '') 
        text(statloc[1], statloc[2],stats.2,pos=4,cex=cex) 
         
      }else{ 
        dostats <- dostats 
        leg <- format(names(stats)[dostats]) #constant length 
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        leg <- paste(leg, ":", format(stats[dostats], digits=roundstats), sep = 
                       "") 
        if(!is.list(statloc)) 
          statloc <- list(x = statloc[1], y = statloc[2]) 
        text(statloc, paste(format(names(stats[dostats])), 
                            collapse = "\n"), adj = 0, cex = cex) 
        text(statloc$x + (xlim[2]-xlim[1])/3 , statloc$y, paste( 
          format(round(stats[dostats], digits=roundstats)), collapse = 
            "\n"), adj = 1, cex = cex) 
      } 
    } 
    if(is.character(riskdist)) { 
      if(riskdist == "calibrated") { 
        x <- f$coef[1] + f$coef[2] * log(p/(1 - p)) 
        x <- 1/(1 + exp( - x)) 
        x[p == 0] <- 0 
        x[p == 1] <- 1 
      } 
      else x <- p 
      bins <- seq(0, min(1,max(xlim)), length = 101) 
      x <- x[x >= 0 & x <= 1] 
      #08.04.01,yvon: distribution of predicted prob according to outcome 
      f0 <-table(cut(x[y==0],bins)) 
      f1 <-table(cut(x[y==1],bins)) 
      j0 <-f0 > 0 
      j1 <-f1 > 0 
      bins0 <-(bins[-101])[j0] 
      bins1 <-(bins[-101])[j1] 
      f0 <-f0[j0] 
      f1 <-f1[j1] 
      maxf <-max(f0,f1) 
      f0 <-(0.1*f0)/maxf 
      f1 <-(0.1*f1)/maxf 
       
      segments(bins1,line.bins,bins1,length.seg*f1+line.bins) 
      segments(bins0,line.bins,bins0,length.seg*-f0+line.bins) 
      lines(c(min(bins0,bins1)-0.01,max(bins0,bins1)+0.01),c(line.bins,line.bins)) 
      text(max(bins0,bins1)+dist.label,line.bins+dist.label2,d1lab,cex=cex.d01) 
      text(max(bins0,bins1)+dist.label,line.bins-dist.label2,d0lab,cex=cex.d01) 
       
    } 
  } 
  if(dostats==T){ 
    cat(paste("\n\n A ",cl.level*100, 
              "% confidence interval is given for the calibration intercept, calibration slope and c-statistic. \n\n", 
              sep=""))} 
   
  stats_ci <- list("stats" = stats, "cl.interc" = cl.interc, "cl.slope" = cl.slope, "cl.auc" = cl.auc) 
  return(stats_ci) 
} 
 
#function to calculate rubin's rules 
#https://bookdown.org/mwheymans/bookmi/rubins-rules.html 
rubin.rules <- function(means, SEs) 
{ 
  n = length(SEs) 
  rubin_mean = mean(means) 
  variance_within = (sum(SEs^2))/n 
  variance_between = (sum((means-rubin_mean)^2))/(n-1) 
  variance_total = variance_within + variance_between + variance_between/n 
  rubin_se = sqrt(variance_total) 
   
  rubins = list("rubin_mean" = rubin_mean, "rubin_se" = rubin_se) 
  return(rubins) 
} 
 
#amended pool_auc() function https://rdrr.io/cran/psfmi/src/R/pool_auc.R 
#comment out code that binds result between 0 and 1 so can use to pool other performance metrics 
#like citl and slope 
pool_auc_2 <- function(est_auc,  
                     est_se,  
                     nimp = 5,  
                     log_auc=TRUE) 
{ 
   
  RR_se <- function(est, se, nimp){ 
    m <- nimp 
    w_auc <- 
      mean(se^2) # within variance 
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    b_auc <- 
      var(est) # between variance 
    tv_auc <- 
      w_auc + (1 + (1/m)) * b_auc # total variance 
    se_total <- 
      sqrt(tv_auc) 
    r <- (1 + 1 / m) * (b_auc / w_auc) 
    v <- (m - 1) * (1 + (1/r))^2 
    t <- qt(0.975, v) 
    res <- c(se_total, t) 
    return(res) 
  } 
   
  est_auc <- 
    unlist(est_auc) 
  est_auc_se <- 
    unlist(est_se) 
  if(length(est_auc) != nimp) 
    stop("Include c-statistic value for each imputed dataset") 
   
  if(log_auc){ 
    est_auc_log <- 
      log(est_auc/(1-est_auc)) 
    est_auc_se_log <- 
      est_auc_se / (est_auc * (1-est_auc)) 
     
    se_total <- 
      RR_se(est_auc_log, est_auc_se_log, nimp=nimp) # pooled se 
     
    # Backtransform 
    inv.auc <- exp(mean(est_auc_log)) / 
      (1 + exp(mean(est_auc_log))) 
    inv.auc.u <- exp(mean(est_auc_log) + (se_total[2]*se_total[1])) / 
      (1 + exp(mean(est_auc_log) + (se_total[2]*se_total[1]))) 
    inv.auc.l <- exp(mean(est_auc_log) - (se_total[2]*se_total[1])) / 
      (1 + exp(mean(est_auc_log) - (se_total[2]*se_total[1]))) 
    auc_res <- round(matrix(c(inv.auc.l, inv.auc, inv.auc.u), 
                            1, 3, byrow = T), 4) 
    dimnames(auc_res) <- list(c("C-statistic (logit)"), 
                              c("95% Low", "C-statistic", "95% Up")) 
  } else { 
    mean_auc <- 
      mean(est_auc) 
    se_total <- 
      RR_se(est_auc, est_auc_se, nimp=nimp) 
    auc_u <- 
      mean(est_auc) + (se_total[2]*se_total[1]) 
    #if(auc_u > 1) auc_u <- 1.00 
    auc_l <- mean(est_auc) - (se_total[2]*se_total[1]) 
    #if(auc_l < 0) auc_l <- 0.00 
    auc_res <- 
      round(matrix(c(auc_l, mean_auc, auc_u), 
                   1, 3, byrow = T), 4) 
    dimnames(auc_res) <- 
      list(c("C-statistic"), c("95% Low", "C-statistic", "95% Up")) 
  } 
  return(auc_res) 
} 
 
## To get bootstrapped answers for c-statistic & c-slope (CITL 0 for internal validation) 
manual_boot <- function(data,samples){ 
  results <- matrix(nrow = samples,ncol = 6) 
  set.seed(987) 
  for (i in 1:samples) { 
    samp_index <- sample(1:nrow(data), nrow(data), rep=TRUE) # create a sampling index vector 
     
    bs_samp <- data[samp_index,] # index the original dataset using the sampling vector to give the bs sample 
    model <- glm(M12_PANSS_Period_Rem ~ .,family=binomial, data=bs_samp)  # Fit model to the bootstrap sample 
    pr_bs <- predict(model,type="response") # predict probabilities from the bootstrap model in the bs sample 
    lp_bs <- predict(model) # predict lp from the bootstrap model in the bs sample 
     
    pr_test <- predict(model,type="response",newdata = data) # predict probabilities from the bootstrap model in the 
original sample 
    lp_test <- predict(model, newdata = data) # predict lp from the bootstrap model in the original sample 
     
    # calculate the apparent performance of the bootstrap model in the bs sample 
    app_cstat_model <- roc(M12_PANSS_Period_Rem~pr_bs, data=bs_samp, levels = c("No", "Yes"), direction = "<") 
    results[i,1] <- app_cstat_model$auc 
    app_cslope_model <- glm(M12_PANSS_Period_Rem ~ lp_bs,family=binomial(link='logit'), data=bs_samp) 
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    results[i,2] <- summary(app_cslope_model)$coefficients[2,1] 
     
    # calculate the test performance of the bootstrap model in the original sample 
    test_cstat_model <- roc(M12_PANSS_Period_Rem~pr_test, data=data, levels = c("No", "Yes"), direction = "<") 
    results[i,3] <- test_cstat_model$auc 
    test_cslope_model <- glm(M12_PANSS_Period_Rem ~ lp_test,family=binomial, data=data) 
    results[i,4] <- summary(test_cslope_model)$coefficients[2,1] 
     
    print(i) 
  } 
  results2 <- as.data.frame(results) 
  colnames(results2) <- c("app_c_stat","app_c_slope","test_c_stat","test_c_slope") 
  return(results2) 
} 
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Appendix 3 Note on internal validation method for 
Chapter 3 

The internal validation was performed by applying k fold repeated cross 

validation. To calculate performance metrics (principally the c-statistic) from 

cross-validation two methods have been described in the literature. In the first 

method, the performance metric is calculated separately in each left out fold, 

repeated across k folds, then averaged. In the second method, the probabilities 

are calculated in each left out fold, repeated across k folds, concatenated into a 

long vector and a single performance metric calculated. This debate is 

addressed by Zou et al (Zou et al., 2012) in their text (here ROC is receiver 

operating characteristic curve and AUC is area under the curve, ROC AUC is 

equivalent to the c-statistic for binary outcomes): 

“the machine learning community often uses other strategies to 
calculate the cross-validated AUC. For example, Bradley pointed out 
that some averaged AUCs from ROC curves correspond to each 
partition and others aggregated the outputs of all folds first, 
producing one ROC and calculating its AUC”  

In my original analysis for Chapter 3, the second of the two cross validation 

methods I described above was used which resulted in the c-statistic of 0.74 

(0.72, 0.76) and calibration slope of 0.84 (0.76, 0.92). As a sensitivity analysis, 

the internal validation was repeated using the first cross validation method 

described above. This resulted in an identical c-statistic of 0.74 (0.72, 0.76) but 

a higher calibration slope of 0.94 (0.82, 1.05). As a further sensitivity analysis, 

the internal validation was repeated using Harrell’s bootstrap-based optimism-

corrected method (Harrell et al., 1996). This again resulted in an identical c-

statistic of 0.74 but a different calibration slope of 0.88. The heuristic shrinkage 

factor of Van Houwelingen (van Houwelingen & Le Cessie, 1990) was calculated 

as a final comparison which was 0.90. 

It was the original cross-validation calibration slope (0.84) which was applied as 

a shrinkage factor before the model was tested at external validation. This 

resulted in an external validation calibration slope of 0.85 (0.42, 1.27). As such, 

an even lower value for the shrinkage factor would have been required to give 

an external validation calibration slope near the ideal (unity). If the higher 
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cross-validation calibration slope from the sensitivity analysis was used (0.94), 

this would have produced an even worse external validation slope further from 

unity. 

Following discussions with my supervisors, for Chapter 4’s internal validation 

analysis it was the first of the two cross-validation methods I described above 

that I used. This change was influenced by the recommendations in a paper by 

Forman and Scholz (Forman & Scholz, 2010) which I read after I had completed 

the analysis for Chapter 3 but before I had started the analysis for Chapter 4. 

However, this paper only comments on the effect of the cross-validation method 

on the c-statistic, not the estimation of the calibration slope. 
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Appendix 4 R code for Chaper 4 
################################################## 
#Baseline comparisons code 
# 
# 
# 
################################################## 
 
library(readr) 
library(pastecs) 
library(ggpubr) 
library(car) 
library(gmodels) 
library(WRS2) 
library(Hmisc) 
library(psych) 
library(sjstats) 
library(pwr) 
library(ppcor) 
library(coin) 
library(rstatix) 
library(boot) 
library(effectsize) 
library(compute.es) 
 
options(max.print=1000000) 
 
#don't use scientific notation (revert back with options(scipen=0) 
options(scipen=999) 
options(digits = 4) 
 
glx_df = read_csv("glx_df.csv") 
summary(as.factor(glx_df$PATIENT), maxsum = 9999) 
glx_df$GENDER = as.factor(glx_df$GENDER) 
glx_df$THERAPY = as.factor(glx_df$THERAPY) 
glx_df$SMOKER = as.factor(glx_df$SMOKER) 
glx_df$M3_Remission = as.factor(glx_df$M3_Remission) 
glx_df$PATIENT = NULL 
str(glx_df) 
View(glx_df) 
 
#Sign does not contain much info - just report absolute value 
#p665 discovering statistics using R 
#N = total sample size 
rFromWilcox<-function(wilcoxModel, N){ 
  z<- qnorm(wilcoxModel$p.value/2) 
  r<- z/ sqrt(N) 
  cat(wilcoxModel$data.name, "Effect Size, r = ", abs(r)) 
} 
 
#################################################### 
#Demographic Comparisons by 3 month remission status 
Rem_data = subset(glx_df, glx_df$M3_Remission == "Yes") 
NRem_data = subset(glx_df, glx_df$M3_Remission == "No") 
 
#therapy chi-squared test 
by(glx_df$THERAPY, glx_df$M3_Remission, summary) 
CrossTable(x=glx_df$THERAPY, y=glx_df$M3_Remission, chisq = T, expected = T, fisher = T, format = "SPSS") 
 
#Age by Remision Mann-Whitney U Test 
by(glx_df$AGE, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$AGE, glx_df$M3_Remission, summary) 
by(glx_df$AGE, glx_df$M3_Remission, length) 
plot(AGE ~ M3_Remission, data = glx_df) 
leveneTest(AGE ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$AGE) 
hist(Rem_data$AGE) 
ggqqplot(NRem_data$AGE) 
hist(NRem_data$AGE) 
wilcox_test = wilcox.test(AGE ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test,N=168) 
set.seed(987) 
wilcox_eff = wilcox_effsize(AGE ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 



145 

wilcox_eff$conf.high 
 
#GENDER chi-squared test 
by(glx_df$GENDER, glx_df$M3_Remission, summary) 
CrossTable(x=glx_df$GENDER, y=glx_df$M3_Remission, chisq = T, expected = T, fisher = T, format = "SPSS") 
 
#SMOKER chi-squared test 
by(glx_df$SMOKER, glx_df$M3_Remission, summary) 
CrossTable(x=glx_df$SMOKER, y=glx_df$M3_Remission, chisq = T, expected = T, fisher = T, format = "SPSS") 
 
#M0_FF_Positive t-test 
by(glx_df$M0_FF_Pos, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Pos, glx_df$M3_Remission, summary) 
plot(M0_FF_Pos ~ M3_Remission, data = glx_df) 
leveneTest(M0_FF_Pos ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$M0_FF_Pos) 
hist(Rem_data$M0_FF_Pos) 
ggqqplot(NRem_data$M0_FF_Pos) 
hist(NRem_data$M0_FF_Pos) 
t_test = t.test(M0_FF_Pos ~ M3_Remission, data = glx_df, alternative = "two.sided",paired = FALSE, var.equal = TRUE) 
t_test 
set.seed(987) 
cohen = cohens_d(M0_FF_Pos ~ M3_Remission, data = glx_df, paired = FALSE, var.equal = TRUE, ci = TRUE) 
cohen$effsize 
cohen$conf.low 
cohen$conf.high 
 
#M0_FF_Neg Mann-Whitney U Test 
by(glx_df$M0_FF_Neg, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Neg, glx_df$M3_Remission, summary) 
by(glx_df$M0_FF_Neg, glx_df$M3_Remission, length) 
plot(M0_FF_Neg ~ M3_Remission, data = glx_df) 
leveneTest(M0_FF_Neg ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$M0_FF_Neg) 
hist(Rem_data$M0_FF_Neg) 
ggqqplot(NRem_data$M0_FF_Neg) 
hist(NRem_data$M0_FF_Neg) 
wilcox_test = wilcox.test(M0_FF_Neg ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test,N=168) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Neg ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE, ci = 
TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Dis Mann-Whitney U Test 
by(glx_df$M0_FF_Dis, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Dis, glx_df$M3_Remission, summary) 
by(glx_df$M0_FF_Dis, glx_df$M3_Remission, length) 
plot(M0_FF_Dis ~ M3_Remission, data = glx_df) 
leveneTest(M0_FF_Dis ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$M0_FF_Dis) 
hist(Rem_data$M0_FF_Dis) 
ggqqplot(NRem_data$M0_FF_Dis) 
hist(NRem_data$M0_FF_Dis) 
wilcox_test = wilcox.test(M0_FF_Dis ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test,N=168) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Dis ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE, ci = 
TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Exc Mann-Whitney U Test 
by(glx_df$M0_FF_Exc, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Exc, glx_df$M3_Remission, summary) 
by(glx_df$M0_FF_Exc, glx_df$M3_Remission, length) 
plot(M0_FF_Exc ~ M3_Remission, data = glx_df) 
leveneTest(M0_FF_Exc ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$M0_FF_Exc) 
hist(Rem_data$M0_FF_Exc) 
ggqqplot(NRem_data$M0_FF_Exc) 
hist(NRem_data$M0_FF_Exc) 
wilcox_test = wilcox.test(M0_FF_Exc ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test  
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rFromWilcox(wilcox_test,N=168) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Exc ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE, ci = 
TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Emo Mann-Whitney U Test 
by(glx_df$M0_FF_Emo, glx_df$M3_Remission, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Emo, glx_df$M3_Remission, summary) 
by(glx_df$M0_FF_Emo, glx_df$M3_Remission, length) 
plot(M0_FF_Emo ~ M3_Remission, data = glx_df) 
leveneTest(M0_FF_Emo ~ M3_Remission, data = glx_df) 
ggqqplot(Rem_data$M0_FF_Emo) 
hist(Rem_data$M0_FF_Emo) 
ggqqplot(NRem_data$M0_FF_Emo) 
hist(NRem_data$M0_FF_Emo) 
wilcox_test = wilcox.test(M0_FF_Emo ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test  
rFromWilcox(wilcox_test,N=168) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Emo ~ M3_Remission, data = glx_df, alternative = "two.sided", paired = FALSE, ci = 
TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#################################################### 
 
#################################################### 
#Demographic Comparisons by Olanzapine Vs Haloperidol 
Olz_data = subset(glx_df, glx_df$THERAPY == "Olz") 
Hal_data = subset(glx_df, glx_df$THERAPY == "Hal") 
 
#remission chi-squared test 
by(glx_df$M3_Remission, glx_df$THERAPY, summary) 
CrossTable(x=glx_df$M3_Remission, y=glx_df$THERAPY, chisq = T, expected = T, fisher = T, format = "SPSS") 
 
#Age by Therapy Mann-Whitney U Test 
by(glx_df$AGE, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$AGE, glx_df$THERAPY, summary) 
by(glx_df$AGE, glx_df$THERAPY, length) 
plot(AGE ~ THERAPY, data = glx_df) 
leveneTest(AGE ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$AGE) 
hist(Olz_data$AGE) 
ggqqplot(Hal_data$AGE) 
hist(Hal_data$AGE) 
wilcox_test = wilcox.test(AGE ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test,N=263) 
set.seed(987) 
wilcox_eff = wilcox_effsize(AGE ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#GENDER chi-squared test 
by(glx_df$GENDER, glx_df$THERAPY, summary) 
CrossTable(x=glx_df$GENDER, y=glx_df$THERAPY, chisq = T, expected = T, fisher = T, format = "SPSS") 
 
#SMOKER chi-squared test 
by(glx_df$SMOKER, glx_df$THERAPY, summary) 
CrossTable(x=glx_df$SMOKER, y=glx_df$THERAPY, chisq = T, expected = T,fisher = T, format = "SPSS") 
 
#M0_FF_Positive Mann-Whitney U Test 
by(glx_df$M0_FF_Pos, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Pos, glx_df$THERAPY, summary) 
by(glx_df$M0_FF_Pos, glx_df$THERAPY, length) 
plot(M0_FF_Pos ~ THERAPY, data = glx_df) 
leveneTest(M0_FF_Pos ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$M0_FF_Pos) 
hist(Olz_data$M0_FF_Pos) 
ggqqplot(Hal_data$M0_FF_Pos) 
hist(Hal_data$M0_FF_Pos) 
wilcox_test = wilcox.test(M0_FF_Pos ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test, N=262) 
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set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Pos ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Neg welch t-test 
by(glx_df$M0_FF_Neg, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Neg, glx_df$THERAPY, summary) 
by(glx_df$M0_FF_Neg, glx_df$THERAPY, length) 
plot(M0_FF_Neg ~ THERAPY, data = glx_df) 
leveneTest(M0_FF_Neg ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$M0_FF_Neg) 
hist(Olz_data$M0_FF_Neg) 
ggqqplot(Hal_data$M0_FF_Neg) 
hist(Hal_data$M0_FF_Neg) 
t_test = t.test(M0_FF_Neg ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, var.equal = FALSE) 
t_test 
set.seed(987) 
cohen = cohens_d(M0_FF_Neg ~ THERAPY, data = glx_df, paired = FALSE, var.equal = FALSE, ci = TRUE) 
cohen$effsize 
cohen$conf.low 
cohen$conf.high 
 
#M0_FF_Dis Mann-Whitney U Test 
by(glx_df$M0_FF_Dis, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Dis, glx_df$THERAPY, summary) 
by(glx_df$M0_FF_Dis, glx_df$THERAPY, length) 
plot(M0_FF_Dis ~ THERAPY, data = glx_df) 
leveneTest(M0_FF_Dis ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$M0_FF_Dis) 
hist(Olz_data$M0_FF_Dis) 
ggqqplot(Hal_data$M0_FF_Dis) 
hist(Hal_data$M0_FF_Dis) 
wilcox_test = wilcox.test(M0_FF_Dis ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test, N=262) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Dis ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Exc Mann-Whitney U Test 
by(glx_df$M0_FF_Exc, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Exc, glx_df$THERAPY, summary) 
by(glx_df$M0_FF_Exc, glx_df$THERAPY, length) 
plot(M0_FF_Exc ~ THERAPY, data = glx_df) 
leveneTest(M0_FF_Exc ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$M0_FF_Exc) 
hist(Olz_data$M0_FF_Exc) 
ggqqplot(Hal_data$M0_FF_Exc) 
hist(Hal_data$M0_FF_Exc) 
wilcox_test = wilcox.test(M0_FF_Exc ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test, N=262) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Exc ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
wilcox_eff$conf.high 
 
#M0_FF_Emo Mann-Whitney U Test 
by(glx_df$M0_FF_Emo, glx_df$THERAPY, stat.desc, basic = FALSE, norm = TRUE) 
by(glx_df$M0_FF_Emo, glx_df$THERAPY, summary) 
by(glx_df$M0_FF_Emo, glx_df$THERAPY, length) 
plot(M0_FF_Emo ~ THERAPY, data = glx_df) 
leveneTest(M0_FF_Emo ~ THERAPY, data = glx_df) 
ggqqplot(Olz_data$M0_FF_Emo) 
hist(Olz_data$M0_FF_Emo) 
ggqqplot(Hal_data$M0_FF_Emo) 
hist(Hal_data$M0_FF_Emo) 
wilcox_test = wilcox.test(M0_FF_Emo ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE) 
wilcox_test 
rFromWilcox(wilcox_test, N=262) 
set.seed(987) 
wilcox_eff = wilcox_effsize(M0_FF_Emo ~ THERAPY, data = glx_df, alternative = "two.sided", paired = FALSE, ci = TRUE) 
wilcox_eff$effsize 
wilcox_eff$conf.low 
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wilcox_eff$conf.high 
 
################################################## 
#Main analysis code 
# 
# 
# 
################################################## 
 
#for multiple imputation 
library(mice) 
#for Riley sample size calculation 
library(pmsampsize) 
#for importing csv 
library(readr) 
#for standardisation, creating folds and ML 
library(caret) 
#parallel processing for caret 
library(doParallel) 
#for ROC curves 
library(pROC) 
#for converting probability to  LP (log-odds) 
library(stats) 
#for pool auc function which does rubin's rules with logit transforms for auc as per Steyerberg p150 
#also editted the function to use it pool other performance metrics 
library(psfmi) 
#elastic net 
library(glmnet) 
library(Matrix) 
#linear svm 
library(e1071) 
#naive bayes 
library(naivebayes) 
#random forest 
library(party) 
#radial SVM 
library(kernlab) 
#Levene's test before anova 
library(car) 
#qqplots 
library(ggpubr) 
#Games Howell Post-hoc Tests 
library(rstatix) 
#Welch's ANOVA effect size 
library(statsExpressions) 
#combine F across multiple imputations 
library(miceadds) 
 
#don't use scientific notation (revert back with options(scipen=0) 
options(scipen = 999) 
options(digits = 4) 
 
#My custom functions 
##################################################################################### 
#change char cols to factor 
csv_to_factor <- function(imported_csv) 
{ 
  cols_char_csv = colnames(imported_csv[, sapply(imported_csv, class) == 'character']) 
  for (i in seq(1:length(cols_char_csv))) 
  { 
    imported_csv[[cols_char_csv[i]]] = as.factor(imported_csv[[cols_char_csv[i]]]) 
  } 
  return(imported_csv) 
} 
 
#amended pool_auc() function https://rdrr.io/cran/psfmi/src/R/pool_auc.R 
#comment out code that binds result between 0 and 1 so can use to pool other performance metrics 
#like citl and slope 
pool_auc_2 <- function(est_auc,  
                       est_se,  
                       nimp = 5) 
{ 
   
  RR_se <- function(est, se, nimp){ 
    m <- nimp 
    w_auc <- 
      mean(se^2) # within variance 
    b_auc <- 
      var(est) # between variance 



149 

    tv_auc <- 
      w_auc + (1 + (1/m)) * b_auc # total variance 
    se_total <- 
      sqrt(tv_auc) 
    r <- (1 + 1 / m) * (b_auc / w_auc) 
    v <- (m - 1) * (1 + (1/r))^2 
    t <- qt(0.975, v) 
    res <- c(se_total, t) 
    return(res) 
  } 
   
  est_auc <- 
    unlist(est_auc) 
  est_auc_se <- 
    unlist(est_se) 
  if(length(est_auc) != nimp) 
    stop("Include value for each imputed dataset") 
   
  mean_auc <- 
    mean(est_auc) 
  se_total <- 
    RR_se(est_auc, est_auc_se, nimp=nimp) 
  auc_u <- 
    mean(est_auc) + (se_total[2]*se_total[1]) 
  #if(auc_u > 1) auc_u <- 1.00 
  auc_l <- mean(est_auc) - (se_total[2]*se_total[1]) 
  #if(auc_l < 0) auc_l <- 0.00 
  auc_res <- 
    round(matrix(c(auc_l, mean_auc, auc_u), 
                 1, 3, byrow = T), 4) 
  dimnames(auc_res) <- 
    list(c("Metric"), c("95% Low", "Estimate", "95% Up")) 
   
  return(auc_res) 
} 
 
data <- read_csv("final_logistic_df.csv" ) 
data <- csv_to_factor(data) 
 
#sample size with 7 expert chosen predictors 
#pmsampsize( 
#  type = "b", 
#  cstatistic = 0.8, 
#  parameters = 7, 
#  shrinkage = 0.9, 
#  prevalence = 0.51 
#) 
 
#Sample size not large enough for development - put in limitation 
#aiming for c-stat 0.74 like sbo model, 7 expert parameters and prevalence 0.51 
#need sample size  of 385 with 197 events - epp 28.05 
 
#https://pubmed.ncbi.nlm.nih.gov/30596876/ 
#PROBAST suggests an EPV of at least 10 
#Events 86  
#Try model with 7 clinical variables - 7 largest absolute regression coefficients from sbo study 
#Compare to model with addition of MRS variable and model with addition blood variable 
#MRS variable to use based on analysis - frontal GLX 
#Blood variable to use based on literature - Neutrophil/Lymphocyte ratio 
#https://academic.oup.com/schizophreniabulletin/advance-article/doi/10.1093/schbul/sbac089/6649676?login=false 
 
#Data Prep and Imputation 
 
#Top clinical variables from sbo model: 
#DUP (not present), P3, PAS Highest, P2, N4, GAF Sx (CGI-S), male sex, Deprivation (not present), G6, Past Drug Use, 
Insight, P1, Age, GAF Dis 
 
#Get final dataset of 12 expert predictors, bloods and mrs and outcome for imputation including using auxillary variables 
data_final <- data[,c(3:10,12,16:18,20,22:28,31,33,35,39)] 
 
#impute using auxillary variables and outcome, 5 imputations 
tempData <- mice(data_final,m=5,seed=5) 
 
##################################################### 
#Logistic regression code 1/6 
 
#Clinical Variables only 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
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internal_val_aucs_mean_clin <- list() 
internal_val_aucs_SE_clin <- list() 
internal_val_citl_mean_clin <- list() 
internal_val_citl_SE_clin <- list() 
internal_val_slope_mean_clin <- list() 
internal_val_slope_SE_clin <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin <- list() 
#list to store observations 
internal_val_obs_clin <- list() 
#list to store fold 
internal_val_fold_clin <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin <- list() 
internal_val_citl_clin <- list() 
internal_val_slope_clin <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                 "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                 "PAS_Highest")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
      roc( 
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        predictor = prob_test, 
        response = testCV$Non_Remission_12, 
        ci = F, 
        levels = c("N", "Y"), 
        direction = "<" 
      )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                 summary(glm(Non_Remission_12 ~ lp_test,  
                             data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
       
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin[[i]] <- cv_aucs 
  internal_val_citl_clin[[i]] <- cv_citl 
  internal_val_slope_clin[[i]] <- cv_slope 
} 
 
pdf("supp_figure1A.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin[[1]], main = "Original Model", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
pdf("supp_figure2A.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin[[1]], main = "MLE Logistic Regression", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin, 
  est_se = internal_val_aucs_SE_clin, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin, internal_val_citl_SE_clin, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin, internal_val_slope_SE_clin, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
##################################################### 
#Logistic regression code 2/6 
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#Clinical Variables + NLR 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_mean_clin_nlr <- list() 
internal_val_aucs_SE_clin_nlr <- list() 
internal_val_citl_mean_clin_nlr <- list() 
internal_val_citl_SE_clin_nlr <- list() 
internal_val_slope_mean_clin_nlr <- list() 
internal_val_slope_SE_clin_nlr <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin_nlr <- list() 
#list to store observations 
internal_val_obs_clin_nlr <- list() 
#list to store fold 
internal_val_fold_clin_nlr <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin_nlr <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin_nlr <- list() 
internal_val_citl_clin_nlr <- list() 
internal_val_slope_clin_nlr <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest","NLR")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin_nlr[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 



153 

     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin_nlr[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin_nlr[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin_nlr[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin_nlr[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin_nlr[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin_nlr[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin_nlr[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin_nlr[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin_nlr[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin_nlr[[i]] <- cv_aucs 
  internal_val_citl_clin_nlr[[i]] <- cv_citl 
  internal_val_slope_clin_nlr[[i]] <- cv_slope 
} 
 
pdf("supp_figure1F.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin_nlr[[1]], main = "Original Model + NLR", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin_nlr, 
  est_se = internal_val_aucs_SE_clin_nlr, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin_nlr, internal_val_citl_SE_clin_nlr, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin_nlr, internal_val_slope_SE_clin_nlr, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin_nlr), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin_nlr), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
##################################################### 
#Logistic regression code 3/6 
 
#Clinical Variables + MLR 
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#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_mean_clin_mlr <- list() 
internal_val_aucs_SE_clin_mlr <- list() 
internal_val_citl_mean_clin_mlr <- list() 
internal_val_citl_SE_clin_mlr <- list() 
internal_val_slope_mean_clin_mlr <- list() 
internal_val_slope_SE_clin_mlr <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin_mlr <- list() 
#list to store observations 
internal_val_obs_clin_mlr <- list() 
#list to store fold 
internal_val_fold_clin_mlr <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin_mlr <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin_mlr <- list() 
internal_val_citl_clin_mlr <- list() 
internal_val_slope_clin_mlr <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest","MLR")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin_mlr[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
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    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin_mlr[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin_mlr[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin_mlr[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin_mlr[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin_mlr[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin_mlr[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin_mlr[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin_mlr[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin_mlr[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin_mlr[[i]] <- cv_aucs 
  internal_val_citl_clin_mlr[[i]] <- cv_citl 
  internal_val_slope_clin_mlr[[i]] <- cv_slope 
} 
 
pdf("supp_figure1E.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin_mlr[[1]], main = "Original Model + MLR", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin_mlr, 
  est_se = internal_val_aucs_SE_clin_mlr, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin_mlr, internal_val_citl_SE_clin_mlr, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin_mlr, internal_val_slope_SE_clin_mlr, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin_mlr), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin_mlr), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
##################################################### 
#Logistic regression code 4/6 
 
#Clinical Variables + BGGLNCR 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
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internal_val_aucs_mean_clin_bgglncr <- list() 
internal_val_aucs_SE_clin_bgglncr <- list() 
internal_val_citl_mean_clin_bgglncr <- list() 
internal_val_citl_SE_clin_bgglncr <- list() 
internal_val_slope_mean_clin_bgglncr <- list() 
internal_val_slope_SE_clin_bgglncr <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin_bgglncr <- list() 
#list to store observations 
internal_val_obs_clin_bgglncr <- list() 
#list to store fold 
internal_val_fold_clin_bgglncr <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin_bgglncr <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin_bgglncr <- list() 
internal_val_citl_clin_bgglncr <- list() 
internal_val_slope_clin_bgglncr <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest","BGGLNCR")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin_bgglncr[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
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                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin_bgglncr[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin_bgglncr[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin_bgglncr[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin_bgglncr[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin_bgglncr[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin_bgglncr[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin_bgglncr[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin_bgglncr[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin_bgglncr[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin_bgglncr[[i]] <- cv_aucs 
  internal_val_citl_clin_bgglncr[[i]] <- cv_citl 
  internal_val_slope_clin_bgglncr[[i]] <- cv_slope 
} 
 
pdf("supp_figure1B.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin_bgglncr[[1]], main = "Original Model + Basal Ganglia GLX/Cr", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin_bgglncr, 
  est_se = internal_val_aucs_SE_clin_bgglncr, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin_bgglncr, internal_val_citl_SE_clin_bgglncr, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin_bgglncr, internal_val_slope_SE_clin_bgglncr, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin_bgglncr), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin_bgglncr), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
##################################################### 
#Logistic regression code 5/6 
 
#Clinical Variables + FCGLNCR 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_mean_clin_fcglncr <- list() 
internal_val_aucs_SE_clin_fcglncr <- list() 
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internal_val_citl_mean_clin_fcglncr <- list() 
internal_val_citl_SE_clin_fcglncr <- list() 
internal_val_slope_mean_clin_fcglncr <- list() 
internal_val_slope_SE_clin_fcglncr <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin_fcglncr <- list() 
#list to store observations 
internal_val_obs_clin_fcglncr <- list() 
#list to store fold 
internal_val_fold_clin_fcglncr <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin_fcglncr <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin_fcglncr <- list() 
internal_val_citl_clin_fcglncr <- list() 
internal_val_slope_clin_fcglncr <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest","FCGLNCR")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin_fcglncr[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
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                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin_fcglncr[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin_fcglncr[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin_fcglncr[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin_fcglncr[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin_fcglncr[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin_fcglncr[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin_fcglncr[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin_fcglncr[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin_fcglncr[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin_fcglncr[[i]] <- cv_aucs 
  internal_val_citl_clin_fcglncr[[i]] <- cv_citl 
  internal_val_slope_clin_fcglncr[[i]] <- cv_slope 
} 
 
pdf("supp_figure1C.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin_fcglncr[[1]], main = "Original Model + Frontal GLX/Cr", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin_fcglncr, 
  est_se = internal_val_aucs_SE_clin_fcglncr, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin_fcglncr, internal_val_citl_SE_clin_fcglncr, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin_fcglncr, internal_val_slope_SE_clin_fcglncr, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin_fcglncr), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin_fcglncr), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
##################################################### 
#Logistic regression code 6/6 
 
#Clinical Variables + HCGLNCR 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_mean_clin_hcglncr <- list() 
internal_val_aucs_SE_clin_hcglncr <- list() 
internal_val_citl_mean_clin_hcglncr <- list() 
internal_val_citl_SE_clin_hcglncr <- list() 
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internal_val_slope_mean_clin_hcglncr <- list() 
internal_val_slope_SE_clin_hcglncr <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_clin_hcglncr <- list() 
#list to store observations 
internal_val_obs_clin_hcglncr <- list() 
#list to store fold 
internal_val_fold_clin_hcglncr <- list() 
 
#Store model fit on entire dataset for each MI 
finalModels_clin_hcglncr <- list() 
 
#lists to store concatenated aucs, citl and slopes across all folds and multiple imputation 
internal_val_aucs_clin_hcglncr <- list() 
internal_val_citl_clin_hcglncr <- list() 
internal_val_slope_clin_hcglncr <- list() 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #TODO change this to test new variables versus old 
  #Add NLR, MLR, BGGLNCR, FCGLNCR, HCGLNCR 
  lilly_imp_final <- lilly_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest","HCGLNCR")]  
  #standardise the columns before building model 
  preProcValues <- preProcess(lilly_imp_final, method = c("center", "scale")) 
  lilly_imp_final_stand <- predict(preProcValues, lilly_imp_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_final_stand_MID <- lilly_imp_final_stand[complete.cases(lilly_imp_final_stand), ] 
   
  finalModels_clin_hcglncr[[i]] <- glm(Non_Remission_12 ~ ., data = lilly_imp_final_stand_MID, family = "binomial") 
   
  set.seed(987) 
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_final_stand_MID[-folds[[j]], ] 
     
    model <- glm(Non_Remission_12 ~ ., data = trainCV, family = "binomial") 
     
    prob_test <- predict.glm(model, testCV, type = "response") 
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
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                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_mean_clin_hcglncr[[i]] <- mean(cv_aucs) 
  internal_val_aucs_SE_clin_hcglncr[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_mean_clin_hcglncr[[i]] <- mean(cv_citl) 
  internal_val_citl_SE_clin_hcglncr[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_mean_clin_hcglncr[[i]] <- mean(cv_slope) 
  internal_val_slope_SE_clin_hcglncr[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
  #store concatenated probs for each MI 
  internal_val_prob_clin_hcglncr[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_clin_hcglncr[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_clin_hcglncr[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_clin_hcglncr[[i]] <- cv_aucs 
  internal_val_citl_clin_hcglncr[[i]] <- cv_citl 
  internal_val_slope_clin_hcglncr[[i]] <- cv_slope 
} 
 
pdf("supp_figure1D.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_clin_hcglncr[[1]], main = "Original Model + Hippocampus GLX/Cr", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#auc 
pool_auc( 
  est_auc = internal_val_aucs_mean_clin_hcglncr, 
  est_se = internal_val_aucs_SE_clin_hcglncr, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_mean_clin_hcglncr, internal_val_citl_SE_clin_hcglncr, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_mean_clin_hcglncr, internal_val_slope_SE_clin_hcglncr, 
           nimp = tempData$m) 
 
#final model 
#Pool results to get predictor estimates based on Rubin's rule 
#summary(pool(finalModels_clin_hcglncr), conf.int = T, exponentiate = F, conf.level = 0.95) 
#View(exp(summary(pool(finalModels_clin_hcglncr), conf.int = T, exponentiate = F, conf.level = 0.95)[,c(2,7,8)])) 
 
#################################################### 
#Multiple imputations ANOVA combine F statistics using miceadds::micombine.F 
#Dataset 1 to 5 
logistic_df_mi1 <- data.frame(Group = 
rep(c("clin","clin_nlr","clin_mlr","clin_bgglncr","clin_fcglncr","clin_hcglncr"),each=500), 
                              AUCs = c(internal_val_aucs_clin[[1]], internal_val_aucs_clin_nlr[[1]], internal_val_aucs_clin_mlr[[1]],  
                                       internal_val_aucs_clin_bgglncr[[1]], internal_val_aucs_clin_fcglncr[[1]], 
internal_val_aucs_clin_hcglncr[[1]]), 
                              CITLs = c(internal_val_citl_clin[[1]], internal_val_citl_clin_nlr[[1]], internal_val_citl_clin_mlr[[1]],  
                                        internal_val_citl_clin_bgglncr[[1]], internal_val_citl_clin_fcglncr[[1]], 
internal_val_citl_clin_hcglncr[[1]]), 
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                              SLOPEs = c(internal_val_slope_clin[[1]], internal_val_slope_clin_nlr[[1]], 
internal_val_slope_clin_mlr[[1]],  
                                         internal_val_slope_clin_bgglncr[[1]], internal_val_slope_clin_fcglncr[[1]], 
internal_val_slope_clin_hcglncr[[1]])) 
logistic_df_mi1$Group <- as.factor(logistic_df_mi1$Group) 
 
logistic_df_mi2 <- data.frame(Group = 
rep(c("clin","clin_nlr","clin_mlr","clin_bgglncr","clin_fcglncr","clin_hcglncr"),each=500), 
                              AUCs = c(internal_val_aucs_clin[[2]], internal_val_aucs_clin_nlr[[2]], internal_val_aucs_clin_mlr[[2]],  
                                       internal_val_aucs_clin_bgglncr[[2]], internal_val_aucs_clin_fcglncr[[2]], 
internal_val_aucs_clin_hcglncr[[2]]), 
                              CITLs = c(internal_val_citl_clin[[2]], internal_val_citl_clin_nlr[[2]], internal_val_citl_clin_mlr[[2]],  
                                        internal_val_citl_clin_bgglncr[[2]], internal_val_citl_clin_fcglncr[[2]], 
internal_val_citl_clin_hcglncr[[2]]), 
                              SLOPEs = c(internal_val_slope_clin[[2]], internal_val_slope_clin_nlr[[2]], 
internal_val_slope_clin_mlr[[2]],  
                                         internal_val_slope_clin_bgglncr[[2]], internal_val_slope_clin_fcglncr[[2]], 
internal_val_slope_clin_hcglncr[[2]])) 
logistic_df_mi2$Group <- as.factor(logistic_df_mi2$Group) 
 
logistic_df_mi3 <- data.frame(Group = 
rep(c("clin","clin_nlr","clin_mlr","clin_bgglncr","clin_fcglncr","clin_hcglncr"),each=500), 
                              AUCs = c(internal_val_aucs_clin[[3]], internal_val_aucs_clin_nlr[[3]], internal_val_aucs_clin_mlr[[3]],  
                                       internal_val_aucs_clin_bgglncr[[3]], internal_val_aucs_clin_fcglncr[[3]], 
internal_val_aucs_clin_hcglncr[[3]]), 
                              CITLs = c(internal_val_citl_clin[[3]], internal_val_citl_clin_nlr[[3]], internal_val_citl_clin_mlr[[3]],  
                                        internal_val_citl_clin_bgglncr[[3]], internal_val_citl_clin_fcglncr[[3]], 
internal_val_citl_clin_hcglncr[[3]]), 
                              SLOPEs = c(internal_val_slope_clin[[3]], internal_val_slope_clin_nlr[[3]], 
internal_val_slope_clin_mlr[[3]],  
                                         internal_val_slope_clin_bgglncr[[3]], internal_val_slope_clin_fcglncr[[3]], 
internal_val_slope_clin_hcglncr[[3]])) 
logistic_df_mi3$Group <- as.factor(logistic_df_mi3$Group) 
 
 
logistic_df_mi4 <- data.frame(Group = 
rep(c("clin","clin_nlr","clin_mlr","clin_bgglncr","clin_fcglncr","clin_hcglncr"),each=500), 
                              AUCs = c(internal_val_aucs_clin[[4]], internal_val_aucs_clin_nlr[[4]], internal_val_aucs_clin_mlr[[4]],  
                                       internal_val_aucs_clin_bgglncr[[4]], internal_val_aucs_clin_fcglncr[[4]], 
internal_val_aucs_clin_hcglncr[[4]]), 
                              CITLs = c(internal_val_citl_clin[[4]], internal_val_citl_clin_nlr[[4]], internal_val_citl_clin_mlr[[4]],  
                                        internal_val_citl_clin_bgglncr[[4]], internal_val_citl_clin_fcglncr[[4]], 
internal_val_citl_clin_hcglncr[[4]]), 
                              SLOPEs = c(internal_val_slope_clin[[4]], internal_val_slope_clin_nlr[[4]], 
internal_val_slope_clin_mlr[[4]],  
                                         internal_val_slope_clin_bgglncr[[4]], internal_val_slope_clin_fcglncr[[4]], 
internal_val_slope_clin_hcglncr[[4]])) 
logistic_df_mi4$Group <- as.factor(logistic_df_mi4$Group) 
 
 
logistic_df_mi5 <- data.frame(Group = 
rep(c("clin","clin_nlr","clin_mlr","clin_bgglncr","clin_fcglncr","clin_hcglncr"),each=500), 
                              AUCs = c(internal_val_aucs_clin[[5]], internal_val_aucs_clin_nlr[[5]], internal_val_aucs_clin_mlr[[5]],  
                                       internal_val_aucs_clin_bgglncr[[5]], internal_val_aucs_clin_fcglncr[[5]], 
internal_val_aucs_clin_hcglncr[[5]]), 
                              CITLs = c(internal_val_citl_clin[[5]], internal_val_citl_clin_nlr[[5]], internal_val_citl_clin_mlr[[5]],  
                                        internal_val_citl_clin_bgglncr[[5]], internal_val_citl_clin_fcglncr[[5]], 
internal_val_citl_clin_hcglncr[[5]]), 
                              SLOPEs = c(internal_val_slope_clin[[5]], internal_val_slope_clin_nlr[[5]], 
internal_val_slope_clin_mlr[[5]],  
                                         internal_val_slope_clin_bgglncr[[5]], internal_val_slope_clin_fcglncr[[5]], 
internal_val_slope_clin_hcglncr[[5]])) 
logistic_df_mi5$Group <- as.factor(logistic_df_mi5$Group) 
 
 
#AUCs 
leveneTest(AUCs~Group, data = logistic_df_mi1) #homogeneous 
ggqqplot(logistic_df_mi1$AUCs) 
 
#ANOVA assume equal variances Imputation 1 
df1 <- logistic_df_mi1 
#Use logit transformation for AUC as per Steyerberg 
df1$AUCs <- qlogis(df1$AUCs) 
oneway.test(AUCs~Group, data = df1, var.equal = TRUE) 
#F = 1.4, num df = 5, denom df = 2994, p-value = 0.2 
 
#ANOVA assume equal variances Imputation 2 
df2 <- logistic_df_mi2 
#Use logit transformation for AUC as per Steyerberg 
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df2$AUCs <- qlogis(df2$AUCs) 
oneway.test(AUCs~Group, data = df2, var.equal = TRUE) 
#F = 1.5, num df = 5, denom df = 2994, p-value = 0.2 
 
#ANOVA assume equal variances Imputation 3 
df3 <- logistic_df_mi3 
#Use logit transformation for AUC as per Steyerberg 
df3$AUCs <- qlogis(df3$AUCs) 
oneway.test(AUCs~Group, data = df3, var.equal = TRUE) 
#F = 0.31, num df = 5, denom df = 2994, p-value = 0.9 
 
#ANOVA assume equal variances Imputation 4 
df4 <- logistic_df_mi4 
#Use logit transformation for AUC as per Steyerberg 
df4$AUCs <- qlogis(df4$AUCs) 
oneway.test(AUCs~Group, data = df4, var.equal = TRUE) 
#F = 1.1, num df = 5, denom df = 2994, p-value = 0.4 
 
#ANOVA assume equal variances Imputation 5 
df5 <- logistic_df_mi5 
#Use logit transformation for AUC as per Steyerberg 
df5$AUCs <- qlogis(df5$AUCs) 
oneway.test(AUCs~Group, data = df5, var.equal = TRUE) 
#F = 0.63, num df = 5, denom df = 2994, p-value = 0.7 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(1.4,1.5,0.31,1.1,0.63), 
            df1 = 5) 
#AUCs 
#F(5, 14.6)=0.184     p=0.9640 
 
#CITLs 
leveneTest(CITLs~Group, data = logistic_df_mi1) #homogeneous 
ggqqplot(logistic_df_mi1$CITLs) 
 
#ANOVA assume equal variances Imputation 1 
oneway.test(CITLs~Group, data = logistic_df_mi1, var.equal = TRUE) 
#F = 0.02, num df = 5, denom df = 2994, p-value = 1 
 
#ANOVA assume equal variances Imputation 2 
oneway.test(CITLs~Group, data = logistic_df_mi2, var.equal = TRUE) 
#F = 0.028, num df = 5, denom df = 2994, p-value = 1 
 
#ANOVA assume equal variances Imputation 3 
oneway.test(CITLs~Group, data = logistic_df_mi3, var.equal = TRUE) 
#F = 0.025, num df = 5, denom df = 2994, p-value = 1 
 
#ANOVA assume equal variances Imputation 4 
oneway.test(CITLs~Group, data = logistic_df_mi4, var.equal = TRUE) 
#F = 0.035, num df = 5, denom df = 2994, p-value = 0.9 
 
#ANOVA assume equal variances Imputation 5 
oneway.test(CITLs~Group, data = logistic_df_mi5, var.equal = TRUE) 
#F = 0.017, num df = 5, denom df = 2994, p-value = 1 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(0.02, 0.028, 0.025, 0.035, 0.017), 
            df1 = 5) 
#CITLs 
#F(5, 176512.09)=0.021     p=0.99983 
 
#SLOPEs 
leveneTest(SLOPEs~Group, data = logistic_df_mi1) #homogeneous 
ggqqplot(logistic_df_mi1$SLOPEs) 
 
#ANOVA assume equal variances Imputation 1 
oneway.test(SLOPEs~Group, data = logistic_df_mi1, var.equal = TRUE) 
#F = 0.39, num df = 5, denom df = 2994, p-value = 0.9 
 
#ANOVA assume equal variances Imputation 2 
oneway.test(SLOPEs~Group, data = logistic_df_mi2, var.equal = TRUE) 
#F = 0.37, num df = 5, denom df = 2994, p-value = 0.9 
 
#ANOVA assume equal variances Imputation 3 
oneway.test(SLOPEs~Group, data = logistic_df_mi3, var.equal = TRUE) 
#F = 0.3, num df = 5, denom df = 2994, p-value = 0.9 
 
#ANOVA assume equal variances Imputation 4 
oneway.test(SLOPEs~Group, data = logistic_df_mi4, var.equal = TRUE) 
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#F = 0.8, num df = 5, denom df = 2994, p-value = 0.5 
 
#ANOVA assume equal variances Imputation 5 
oneway.test(SLOPEs~Group, data = logistic_df_mi5, var.equal = TRUE) 
#F = 0.28, num df = 5, denom df = 2994, p-value = 0.9 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(0.39, 0.37, 0.3, 0.8, 0.28), 
            df1 = 5) 
#Slopes 
#F(5, 114.8)=0.206     p=0.95941 
 
##################################################### 
#Machine Learning code 
#Use 7 clinical variables and compare to performance of ml methods with logistic regression 
 
#enable multicore which roughly halfs time for caret analysis runs 
cl <- makeCluster(detectCores(), type='PSOCK') 
registerDoParallel(cl) 
 
#train control object for caret train method. Controls how we do parameter tuning 
# 10-fold CV repeated 5 times 
control <- trainControl(method="repeatedcv", number=10, repeats=5, classProbs=TRUE,  
                       summaryFunction=twoClassSummary, selectionFunction = "best") 
 
##################################################### 
#ML 1/5 - Elastic net 
 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_ml_mean_en <- list() 
internal_val_aucs_ml_SE_en <- list() 
internal_val_citl_ml_mean_en <- list() 
internal_val_citl_ml_SE_en <- list() 
internal_val_slope_ml_mean_en <- list() 
internal_val_slope_ml_SE_en <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_ml_en <- list() 
#list to store observations 
internal_val_obs_ml_en <- list() 
#list to store fold 
internal_val_fold_ml_en <- list() 
 
#Store model fit on entire dataset for each MI 
finalModelsMl_en <- list() 
 
internal_val_aucs_ml_en <- NULL 
internal_val_citl_ml_en <- NULL 
internal_val_slope_ml_en <- NULL 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_ml_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #Use 7 expert chosen variables 
  lilly_imp_ml_final <- lilly_ml_imp[,c("CGISEV","GENDER", 
                                  "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                  "PAS_Highest")]  
  #standardise the columns before building model 
  preProcMlValues <- preProcess(lilly_imp_ml_final, method = c("center", "scale")) 
  lilly_imp_ml_final_stand <- predict(preProcMlValues, lilly_imp_ml_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_ml_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_ml_final_stand_MID <- lilly_imp_ml_final_stand[complete.cases(lilly_imp_ml_final_stand), ] 
   
  set.seed(987) 
   
  #caret train call to get model fitted on entire MI dataset 
  #ML methods to try 
  #logistic regression: glm (to check same results as above) 
  #logistic regression:glmnet 
  #naive bayes: naive_bayes 
  #random forest: cforest 
  #linear SVM: svmLinear2 
  #radial SVM: svmRadial 
   
  finalModelsMl_en[[i]] <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
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                           data = lilly_imp_ml_final_stand_MID, #data 
                           method ="glmnet", #TODO try different ML methods here 
                           metric="ROC", #performance metric - ROC for classification problems 
                           tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                           trControl = control) #Our tuning method rules 
   
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_ml_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_ml_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_ml_final_stand_MID[-folds[[j]], ] 
     
    #Caret train object 
    #ML methods to try 
    #logistic regression: glm (to check same results as above) 
    #logistic regression:glmnet 
    #naive bayes: naive_bayes 
    #random forest: cforest 
    #linear SVM: svmLinear2 
    #radial SVM: svmRadial 
 
    model <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                   data = trainCV, #data 
                   method ="glmnet", #TODO try different ML methods here 
                   metric="ROC", #performance metric - ROC for classification problems 
                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                   trControl = control) #Our tuning method rules 
     
    #Caret train predict - get probabilities 
    #for caret predict.train object - have to specify level to get raw probabilities 
    prob_test <- predict.train(model, testCV, type = "prob")$Y 
     
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
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  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_ml_mean_en[[i]] <- mean(cv_aucs) 
  internal_val_aucs_ml_SE_en[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_ml_mean_en[[i]] <- mean(cv_citl) 
  internal_val_citl_ml_SE_en[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_ml_mean_en[[i]] <- mean(cv_slope) 
  internal_val_slope_ml_SE_en[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
   
  #store concatenated probs for each MI 
  internal_val_prob_ml_en[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_ml_en[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_ml_en[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_ml_en[[i]] <- cv_aucs 
  internal_val_citl_ml_en[[i]] <- cv_citl 
  internal_val_slope_ml_en[[i]] <- cv_slope 
} 
 
pdf("supp_figure2B.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_ml_en[[1]], main = "Elastic Net Logistic Regression", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#AUC 
pool_auc( 
  est_auc = internal_val_aucs_ml_mean_en, 
  est_se = internal_val_aucs_ml_SE_en, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_ml_mean_en, internal_val_citl_ml_SE_en, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_ml_mean_en, internal_val_slope_ml_SE_en, 
           nimp = tempData$m) 
 
#look at final model training 
finalModelsMl_en[[1]] 
#glmnet training grid alpha 0.1,0.325,0.55,0.775,1 by lambda 0.0007209, 0.0033461, 0.0155311, 0.0720888 
 
 
##################################################### 
#ML 2/5 - Naive Bayes 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_ml_mean_nb <- list() 
internal_val_aucs_ml_SE_nb <- list() 
internal_val_citl_ml_mean_nb <- list() 
internal_val_citl_ml_SE_nb <- list() 
internal_val_slope_ml_mean_nb <- list() 
internal_val_slope_ml_SE_nb <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_ml_nb <- list() 
#list to store observations 
internal_val_obs_ml_nb <- list() 
#list to store fold 
internal_val_fold_ml_nb <- list() 
 
#Store model fit on entire dataset for each MI 
finalModelsMl_nb <- list() 
 
internal_val_aucs_ml_nb <- NULL 
internal_val_citl_ml_nb <- NULL 
internal_val_slope_ml_nb <- NULL 
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for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_ml_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #Use 7 expert chosen variables 
  lilly_imp_ml_final <- lilly_ml_imp[,c("CGISEV","GENDER", 
                                        "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                        "PAS_Highest")]  
  #standardise the columns before building model 
  preProcMlValues <- preProcess(lilly_imp_ml_final, method = c("center", "scale")) 
  lilly_imp_ml_final_stand <- predict(preProcMlValues, lilly_imp_ml_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_ml_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_ml_final_stand_MID <- lilly_imp_ml_final_stand[complete.cases(lilly_imp_ml_final_stand), ] 
   
  set.seed(987) 
   
  #caret train call to get model fitted on entire MI dataset 
  #ML methods to try 
  #logistic regression: glm (to check same results as above) 
  #logistic regression:glmnet 
  #naive bayes: naive_bayes 
  #random forest: cforest 
  #linear SVM: svmLinear2 
  #radial SVM: svmRadial 
   
  finalModelsMl_nb[[i]] <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                                 data = lilly_imp_ml_final_stand_MID, #data 
                                 method ="naive_bayes", #TODO try different ML methods here 
                                 metric="ROC", #performance metric - ROC for classification problems 
                                 tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                                 trControl = control) #Our tuning method rules 
   
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_ml_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_ml_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_ml_final_stand_MID[-folds[[j]], ] 
     
    #Caret train object 
    #ML methods to try 
    #logistic regression: glm (to check same results as above) 
    #logistic regression:glmnet 
    #naive bayes: naive_bayes 
    #random forest: cforest 
    #linear SVM: svmLinear2 
    #radial SVM: svmRadial 
     
    model <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                   data = trainCV, #data 
                   method ="naive_bayes", #TODO try different ML methods here 
                   metric="ROC", #performance metric - ROC for classification problems 
                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                   trControl = control) #Our tuning method rules 
     
    #Caret train predict - get probabilities 
    #for caret predict.train object - have to specify level to get raw probabilities 
    prob_test <- predict.train(model, testCV, type = "prob")$Y 
     
    #store concatenated probs, obs and fold across internal validations 
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    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
   
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_ml_mean_nb[[i]] <- mean(cv_aucs) 
  internal_val_aucs_ml_SE_nb[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_ml_mean_nb[[i]] <- mean(cv_citl) 
  internal_val_citl_ml_SE_nb[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_ml_mean_nb[[i]] <- mean(cv_slope) 
  internal_val_slope_ml_SE_nb[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
   
  #store concatenated probs for each MI 
  internal_val_prob_ml_nb[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_ml_nb[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_ml_nb[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_ml_nb[[i]] <- cv_aucs 
  internal_val_citl_ml_nb[[i]] <- cv_citl 
  internal_val_slope_ml_nb[[i]] <- cv_slope 
} 
 
pdf("supp_figure2C.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_ml_nb[[1]], main = "Naïve Bayes", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#AUC 
pool_auc( 
  est_auc = internal_val_aucs_ml_mean_nb, 
  est_se = internal_val_aucs_ml_SE_nb, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_ml_mean_nb, internal_val_citl_ml_SE_nb, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_ml_mean_nb, internal_val_slope_ml_SE_nb, 
           nimp = tempData$m) 
 
#look at final model training 
finalModelsMl_nb[[1]] 
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#naive_bayes: laplace 0, adjust 1, usekernal TRUE, FALSE 
 
##################################################### 
#ML 3/5 - random forest 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_ml_mean_rf <- list() 
internal_val_aucs_ml_SE_rf <- list() 
internal_val_citl_ml_mean_rf <- list() 
internal_val_citl_ml_SE_rf <- list() 
internal_val_slope_ml_mean_rf <- list() 
internal_val_slope_ml_SE_rf <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_ml_rf <- list() 
#list to store observations 
internal_val_obs_ml_rf <- list() 
#list to store fold 
internal_val_fold_ml_rf <- list() 
 
#Store model fit on entire dataset for each MI 
finalModelsMl_rf <- list() 
 
internal_val_aucs_ml_rf <- NULL 
internal_val_citl_ml_rf <- NULL 
internal_val_slope_ml_rf <- NULL 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_ml_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #Use 7 expert chosen variables 
  lilly_imp_ml_final <- lilly_ml_imp[,c("CGISEV","GENDER", 
                                        "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                        "PAS_Highest")]  
  #standardise the columns before building model 
  preProcMlValues <- preProcess(lilly_imp_ml_final, method = c("center", "scale")) 
  lilly_imp_ml_final_stand <- predict(preProcMlValues, lilly_imp_ml_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_ml_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_ml_final_stand_MID <- lilly_imp_ml_final_stand[complete.cases(lilly_imp_ml_final_stand), ] 
   
  set.seed(987) 
   
  #caret train call to get model fitted on entire MI dataset 
  #ML methods to try 
  #logistic regression: glm (to check same results as above) 
  #logistic regression:glmnet 
  #naive bayes: naive_bayes 
  #random forest: cforest 
  #linear SVM: svmLinear2 
  #radial SVM: svmRadial 
   
  finalModelsMl_rf[[i]] <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                                 data = lilly_imp_ml_final_stand_MID, #data 
                                 method ="cforest", #TODO try different ML methods here 
                                 metric="ROC", #performance metric - ROC for classification problems 
                                 tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                                 trControl = control) #Our tuning method rules 
   
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_ml_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
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  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_ml_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_ml_final_stand_MID[-folds[[j]], ] 
     
    #Caret train object 
    #ML methods to try 
    #logistic regression: glm (to check same results as above) 
    #logistic regression:glmnet 
    #naive bayes: naive_bayes 
    #random forest: cforest 
    #linear SVM: svmLinear2 
    #radial SVM: svmRadial 
     
    model <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                   data = trainCV, #data 
                   method ="cforest", #TODO try different ML methods here 
                   metric="ROC", #performance metric - ROC for classification problems 
                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                   trControl = control) #Our tuning method rules 
     
    #Caret train predict - get probabilities 
    #for caret predict.train object - have to specify level to get raw probabilities 
    prob_test <- predict.train(model, testCV, type = "prob")$Y 
     
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
   
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_ml_mean_rf[[i]] <- mean(cv_aucs) 
  internal_val_aucs_ml_SE_rf[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_ml_mean_rf[[i]] <- mean(cv_citl) 
  internal_val_citl_ml_SE_rf[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_ml_mean_rf[[i]] <- mean(cv_slope) 
  internal_val_slope_ml_SE_rf[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
   
  #store concatenated probs for each MI 
  internal_val_prob_ml_rf[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_ml_rf[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_ml_rf[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_ml_rf[[i]] <- cv_aucs 
  internal_val_citl_ml_rf[[i]] <- cv_citl 
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  internal_val_slope_ml_rf[[i]] <- cv_slope 
} 
 
pdf("supp_figure2D.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_ml_rf[[1]], main = "Random Forest", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#AUC 
pool_auc( 
  est_auc = internal_val_aucs_ml_mean_rf, 
  est_se = internal_val_aucs_ml_SE_rf, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_ml_mean_rf, internal_val_citl_ml_SE_rf, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_ml_mean_rf, internal_val_slope_ml_SE_rf, 
           nimp = tempData$m) 
 
#look at final model training 
finalModelsMl_rf[[1]] 
#cforest mtry 2,3,4,5,7 
 
##################################################### 
#ML 4/5 - linear SVM 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_ml_mean_lsvm <- list() 
internal_val_aucs_ml_SE_lsvm <- list() 
internal_val_citl_ml_mean_lsvm <- list() 
internal_val_citl_ml_SE_lsvm <- list() 
internal_val_slope_ml_mean_lsvm <- list() 
internal_val_slope_ml_SE_lsvm <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_ml_lsvm <- list() 
#list to store observations 
internal_val_obs_ml_lsvm <- list() 
#list to store fold 
internal_val_fold_ml_lsvm <- list() 
 
#Store model fit on entire dataset for each MI 
finalModelsMl_lsvm <- list() 
 
internal_val_aucs_ml_lsvm <- NULL 
internal_val_citl_ml_lsvm <- NULL 
internal_val_slope_ml_lsvm <- NULL 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_ml_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #Use 7 expert chosen variables 
  lilly_imp_ml_final <- lilly_ml_imp[,c("CGISEV","GENDER", 
                                        "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                        "PAS_Highest")]  
  #standardise the columns before building model 
  preProcMlValues <- preProcess(lilly_imp_ml_final, method = c("center", "scale")) 
  lilly_imp_ml_final_stand <- predict(preProcMlValues, lilly_imp_ml_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_ml_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_ml_final_stand_MID <- lilly_imp_ml_final_stand[complete.cases(lilly_imp_ml_final_stand), ] 
   
  set.seed(987) 
   
  #caret train call to get model fitted on entire MI dataset 
  #ML methods to try 
  #logistic regression: glm (to check same results as above) 
  #logistic regression:glmnet 
  #naive bayes: naive_bayes 
  #random forest: cforest 
  #linear SVM: svmLinear2 
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  #radial SVM: svmRadial 
   
  finalModelsMl_lsvm[[i]] <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                                   data = lilly_imp_ml_final_stand_MID, #data 
                                   method ="svmLinear2", #TODO try different ML methods here 
                                   metric="ROC", #performance metric - ROC for classification problems 
                                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                                   trControl = control) #Our tuning method rules 
   
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_ml_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_ml_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_ml_final_stand_MID[-folds[[j]], ] 
     
    #Caret train object 
    #ML methods to try 
    #logistic regression: glm (to check same results as above) 
    #logistic regression:glmnet 
    #naive bayes: naive_bayes 
    #random forest: cforest 
    #linear SVM: svmLinear2 
    #radial SVM: svmRadial 
     
    model <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                   data = trainCV, #data 
                   method ="svmLinear2", #TODO try different ML methods here 
                   metric="ROC", #performance metric - ROC for classification problems 
                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                   trControl = control) #Our tuning method rules 
     
    #Caret train predict - get probabilities 
    #for caret predict.train object - have to specify level to get raw probabilities 
    prob_test <- predict.train(model, testCV, type = "prob")$Y 
     
    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
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                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
   
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_ml_mean_lsvm[[i]] <- mean(cv_aucs) 
  internal_val_aucs_ml_SE_lsvm[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_ml_mean_lsvm[[i]] <- mean(cv_citl) 
  internal_val_citl_ml_SE_lsvm[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_ml_mean_lsvm[[i]] <- mean(cv_slope) 
  internal_val_slope_ml_SE_lsvm[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
   
  #store concatenated probs for each MI 
  internal_val_prob_ml_lsvm[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_ml_lsvm[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_ml_lsvm[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_ml_lsvm[[i]] <- cv_aucs 
  internal_val_citl_ml_lsvm[[i]] <- cv_citl 
  internal_val_slope_ml_lsvm[[i]] <- cv_slope 
} 
 
pdf("supp_figure2E.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_ml_lsvm[[1]], main = "Linear SVM", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#AUC 
pool_auc( 
  est_auc = internal_val_aucs_ml_mean_lsvm, 
  est_se = internal_val_aucs_ml_SE_lsvm, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_ml_mean_lsvm, internal_val_citl_ml_SE_lsvm, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_ml_mean_lsvm, internal_val_slope_ml_SE_lsvm, 
           nimp = tempData$m) 
 
#look at final model training 
finalModelsMl_lsvm[[1]] 
#svmLinear2 cost 0.25, 0.5, 1, 2, 4 
 
##################################################### 
#ML 5/5 - radial SVM 
 
#lists to store internal validated mean & SE aucs, CITL (intercept with LP as offset term), and calibration slopes 
internal_val_aucs_ml_mean_rsvm <- list() 
internal_val_aucs_ml_SE_rsvm <- list() 
internal_val_citl_ml_mean_rsvm <- list() 
internal_val_citl_ml_SE_rsvm <- list() 
internal_val_slope_ml_mean_rsvm <- list() 
internal_val_slope_ml_SE_rsvm <- list() 
 
#list to store concatenated predictions for each MI to look at their distribution 
internal_val_prob_ml_rsvm <- list() 
#list to store observations 
internal_val_obs_ml_rsvm <- list() 
#list to store fold 
internal_val_fold_ml_rsvm <- list() 
 
#Store model fit on entire dataset for each MI 
finalModelsMl_rsvm <- list() 
 
internal_val_aucs_ml_rsvm <- NULL 
internal_val_citl_ml_rsvm <- NULL 
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internal_val_slope_ml_rsvm <- NULL 
 
for (i in seq(1:tempData$m)){ 
  #Get imputed data 
  lilly_ml_imp <- complete(tempData,i) 
  #just take the columns we are testing except outcome as standardising first 
  #Use 7 expert chosen variables 
  lilly_imp_ml_final <- lilly_ml_imp[,c("CGISEV","GENDER", 
                                        "PANSS_P2","PANSS_P3","PANSS_N4","PANSS_G6", 
                                        "PAS_Highest")]  
  #standardise the columns before building model 
  preProcMlValues <- preProcess(lilly_imp_ml_final, method = c("center", "scale")) 
  lilly_imp_ml_final_stand <- predict(preProcMlValues, lilly_imp_ml_final) 
  #Add factor outcome back in before imputed 
  lilly_imp_ml_final_stand$Non_Remission_12 <- data$Non_Remission_12 
  #Remove rows with missing outcomes 
  lilly_imp_ml_final_stand_MID <- lilly_imp_ml_final_stand[complete.cases(lilly_imp_ml_final_stand), ] 
   
  set.seed(987) 
   
  #caret train call to get model fitted on entire MI dataset 
  #ML methods to try 
  #logistic regression: glm (to check same results as above) 
  #logistic regression:glmnet 
  #naive bayes: naive_bayes 
  #random forest: cforest 
  #linear SVM: svmLinear2 
  #radial SVM: svmRadial 
   
  finalModelsMl_rsvm[[i]] <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                                   data = lilly_imp_ml_final_stand_MID, #data 
                                   method ="svmRadial", #TODO try different ML methods here 
                                   metric="ROC", #performance metric - ROC for classification problems 
                                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                                   trControl = control) #Our tuning method rules 
   
  #10 fold CV repeated 50 times as per Frank Harrell "For 10-fold cv it is best to do 50 repeats" 
  #https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation 
  folds <- 
    createMultiFolds(y = lilly_imp_ml_final_stand_MID$Non_Remission_12, 
                     #returns training data indices 
                     k = 10, 
                     times = 50) #TO TEST QUICKER REDUCE THIS NUMBER, e.g. to 1 
   
  #vector to store per fold AUCs, CITL and calibration slope 
  cv_aucs <- NULL 
  cv_citl <- NULL 
  cv_slope <- NULL 
   
  #vector to store per fold probs, obs and folds 
  cv_prob <- NULL 
  cv_obs <- NULL 
  cv_fold <- NULL 
   
  for (j in seq(1:length(folds)))  { 
    print(paste("Imputed dataset",i, "fold",j)) 
     
    trainCV <- lilly_imp_ml_final_stand_MID[folds[[j]], ] 
    testCV <- lilly_imp_ml_final_stand_MID[-folds[[j]], ] 
     
    #Caret train object 
    #ML methods to try 
    #logistic regression: glm (to check same results as above) 
    #logistic regression:glmnet 
    #naive bayes: naive_bayes 
    #random forest: cforest 
    #linear SVM: svmLinear2 
    #radial SVM: svmRadial 
     
    model <- train(Non_Remission_12 ~ ., #Outcome against all predictors 
                   data = trainCV, #data 
                   method ="svmRadial", #TODO try different ML methods here 
                   metric="ROC", #performance metric - ROC for classification problems 
                   tuneLength = 5, #size of default tune grid #caret::getModelInfo("glmnet") 
                   trControl = control) #Our tuning method rules 
     
    #Caret train predict - get probabilities 
    #for caret predict.train object - have to specify level to get raw probabilities 
    prob_test <- predict.train(model, testCV, type = "prob")$Y 
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    #store concatenated probs, obs and fold across internal validations 
    cv_prob <- c(cv_prob, prob_test) 
    cv_obs <- c(cv_obs, paste(testCV$Non_Remission_12)) 
    cv_fold <- c(cv_fold, rep(paste("fold",j),length(prob_test))) 
     
    lp_test <- qlogis(prob_test) 
     
    #Calculate AUC for test fold 
    cv_aucs <- c(cv_aucs, 
                 roc( 
                   predictor = prob_test, 
                   response = testCV$Non_Remission_12, 
                   ci = F, 
                   levels = c("N", "Y"), 
                   direction = "<" 
                 )$auc 
    ) 
     
    #LP as offset for citl 
    cv_citl <- c(cv_citl,  
                 summary(glm(Non_Remission_12 ~ offset(lp_test),  
                             data = testCV, family=binomial(link='logit')))$coefficients[1,1]) 
     
    # 
    cv_slope <- c(cv_slope, 
                  summary(glm(Non_Remission_12 ~ lp_test,  
                              data = testCV, family=binomial(link='logit')))$coefficients[2,1]) 
     
  } 
   
  #store internal validated aucs for each imputed dataset 
  internal_val_aucs_ml_mean_rsvm[[i]] <- mean(cv_aucs) 
  internal_val_aucs_ml_SE_rsvm[[i]] <- sqrt(var(cv_aucs)) / sqrt(length(cv_aucs)) 
   
  #store internal validated citl for each imputed dataset 
  internal_val_citl_ml_mean_rsvm[[i]] <- mean(cv_citl) 
  internal_val_citl_ml_SE_rsvm[[i]] <- sqrt(var(cv_citl)) / sqrt(length(cv_citl)) 
   
  #store internal validated calibration slope for each imputed dataset 
  internal_val_slope_ml_mean_rsvm[[i]] <- mean(cv_slope) 
  internal_val_slope_ml_SE_rsvm[[i]] <- sqrt(var(cv_slope)) / sqrt(length(cv_slope)) 
   
   
  #store concatenated probs for each MI 
  internal_val_prob_ml_rsvm[[i]] <- cv_prob 
  #store concatenated obs for each MI 
  internal_val_obs_ml_rsvm[[i]] <- cv_obs 
  #store folds 
  internal_val_fold_ml_rsvm[[i]] <- cv_fold 
   
  #Store concatenated aucs, citl and slopes across all folds and multiple imputation 
  internal_val_aucs_ml_rsvm[[i]] <- cv_aucs 
  internal_val_citl_ml_rsvm[[i]] <- cv_citl 
  internal_val_slope_ml_rsvm[[i]] <- cv_slope 
} 
 
pdf("supp_figure2F.pdf") 
#look at distribution of probabilities for each imputed dataset 
hist(internal_val_prob_ml_rsvm[[1]], main = "Radial SVM", xlab="Predicted Probability", 
     xlim=c(0,1)) 
dev.off() 
 
#AUC 
pool_auc( 
  est_auc = internal_val_aucs_ml_mean_rsvm, 
  est_se = internal_val_aucs_ml_SE_rsvm, 
  nimp = tempData$m, 
  log_auc = T 
) 
 
#CITL - should be zero for internal validation 
pool_auc_2(internal_val_citl_ml_mean_rsvm, internal_val_citl_ml_SE_rsvm, 
           nimp = tempData$m) 
 
#Calibration slope 
pool_auc_2(internal_val_slope_ml_mean_rsvm, internal_val_slope_ml_SE_rsvm, 
           nimp = tempData$m) 
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#look at final model training 
finalModelsMl_rsvm[[1]] 
#svmRadial sigma 0.1173, cost 0.25, 0.5, 1, 2, 4 
 
##################################################### 
# 
##Multiple imputations ANOVA combine F statistics using miceadds::micombine.F 
#Dataset 1 to 5 
classifiers_df_mi1 <- data.frame(Group = rep(c("glm","glmnet","nb","rf","svml","svmr"),each=500), 
                                 AUCs = c(internal_val_aucs_clin[[1]], internal_val_aucs_ml_en[[1]], internal_val_aucs_ml_nb[[1]],  
                                          internal_val_aucs_ml_rf[[1]], internal_val_aucs_ml_lsvm[[1]], 
internal_val_aucs_ml_rsvm[[1]]), 
                                 CITLs = c(internal_val_citl_clin[[1]], internal_val_citl_ml_en[[1]], internal_val_citl_ml_nb[[1]],  
                                           internal_val_citl_ml_rf[[1]], internal_val_citl_ml_lsvm[[1]], internal_val_citl_ml_rsvm[[1]]), 
                                 SLOPEs = c(internal_val_slope_clin[[1]], internal_val_slope_ml_en[[1]], 
internal_val_slope_ml_nb[[1]],  
                                            internal_val_slope_ml_rf[[1]], internal_val_slope_ml_lsvm[[1]], 
internal_val_slope_ml_rsvm[[1]])) 
 
classifiers_df_mi1$Group <- as.factor(classifiers_df_mi1$Group) 
 
classifiers_df_mi2 <- data.frame(Group = rep(c("glm","glmnet","nb","rf","svml","svmr"),each=500), 
                                 AUCs = c(internal_val_aucs_clin[[2]], internal_val_aucs_ml_en[[2]], internal_val_aucs_ml_nb[[2]],  
                                          internal_val_aucs_ml_rf[[2]], internal_val_aucs_ml_lsvm[[2]], 
internal_val_aucs_ml_rsvm[[2]]), 
                                 CITLs = c(internal_val_citl_clin[[2]], internal_val_citl_ml_en[[2]], internal_val_citl_ml_nb[[2]],  
                                           internal_val_citl_ml_rf[[2]], internal_val_citl_ml_lsvm[[2]], internal_val_citl_ml_rsvm[[2]]), 
                                 SLOPEs = c(internal_val_slope_clin[[2]], internal_val_slope_ml_en[[2]], 
internal_val_slope_ml_nb[[2]],  
                                            internal_val_slope_ml_rf[[2]], internal_val_slope_ml_lsvm[[2]], 
internal_val_slope_ml_rsvm[[2]])) 
 
classifiers_df_mi2$Group <- as.factor(classifiers_df_mi2$Group) 
 
classifiers_df_mi3 <- data.frame(Group = rep(c("glm","glmnet","nb","rf","svml","svmr"),each=500), 
                                 AUCs = c(internal_val_aucs_clin[[3]], internal_val_aucs_ml_en[[3]], internal_val_aucs_ml_nb[[3]],  
                                          internal_val_aucs_ml_rf[[3]], internal_val_aucs_ml_lsvm[[3]], 
internal_val_aucs_ml_rsvm[[3]]), 
                                 CITLs = c(internal_val_citl_clin[[3]], internal_val_citl_ml_en[[3]], internal_val_citl_ml_nb[[3]],  
                                           internal_val_citl_ml_rf[[3]], internal_val_citl_ml_lsvm[[3]], internal_val_citl_ml_rsvm[[3]]), 
                                 SLOPEs = c(internal_val_slope_clin[[3]], internal_val_slope_ml_en[[3]], 
internal_val_slope_ml_nb[[3]],  
                                            internal_val_slope_ml_rf[[3]], internal_val_slope_ml_lsvm[[3]], 
internal_val_slope_ml_rsvm[[3]])) 
 
classifiers_df_mi3$Group <- as.factor(classifiers_df_mi3$Group) 
 
classifiers_df_mi4 <- data.frame(Group = rep(c("glm","glmnet","nb","rf","svml","svmr"),each=500), 
                                 AUCs = c(internal_val_aucs_clin[[4]], internal_val_aucs_ml_en[[4]], internal_val_aucs_ml_nb[[4]],  
                                          internal_val_aucs_ml_rf[[4]], internal_val_aucs_ml_lsvm[[4]], 
internal_val_aucs_ml_rsvm[[4]]), 
                                 CITLs = c(internal_val_citl_clin[[4]], internal_val_citl_ml_en[[4]], internal_val_citl_ml_nb[[4]],  
                                           internal_val_citl_ml_rf[[4]], internal_val_citl_ml_lsvm[[4]], internal_val_citl_ml_rsvm[[4]]), 
                                 SLOPEs = c(internal_val_slope_clin[[4]], internal_val_slope_ml_en[[4]], 
internal_val_slope_ml_nb[[4]],  
                                            internal_val_slope_ml_rf[[4]], internal_val_slope_ml_lsvm[[4]], 
internal_val_slope_ml_rsvm[[4]])) 
 
classifiers_df_mi4$Group <- as.factor(classifiers_df_mi4$Group) 
 
classifiers_df_mi5 <- data.frame(Group = rep(c("glm","glmnet","nb","rf","svml","svmr"),each=500), 
                                 AUCs = c(internal_val_aucs_clin[[5]], internal_val_aucs_ml_en[[5]], internal_val_aucs_ml_nb[[5]],  
                                          internal_val_aucs_ml_rf[[5]], internal_val_aucs_ml_lsvm[[5]], 
internal_val_aucs_ml_rsvm[[5]]), 
                                 CITLs = c(internal_val_citl_clin[[5]], internal_val_citl_ml_en[[5]], internal_val_citl_ml_nb[[5]],  
                                           internal_val_citl_ml_rf[[5]], internal_val_citl_ml_lsvm[[5]], internal_val_citl_ml_rsvm[[5]]), 
                                 SLOPEs = c(internal_val_slope_clin[[5]], internal_val_slope_ml_en[[5]], 
internal_val_slope_ml_nb[[5]],  
                                            internal_val_slope_ml_rf[[5]], internal_val_slope_ml_lsvm[[5]], 
internal_val_slope_ml_rsvm[[5]])) 
 
classifiers_df_mi5$Group <- as.factor(classifiers_df_mi5$Group) 
 
#AUCs 
leveneTest(AUCs~Group, data = classifiers_df_mi1) #homogeneous 
ggqqplot(classifiers_df_mi1$AUCs) 
 
#ANOVA assume equal variances Imputation 1 
df <- classifiers_df_mi1 
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#Use logit transformation for AUC as per Steyerberg but take away a constant as includes 1  
#(logit 1 is infinity) 
df$AUCs <- df$AUCs - 0.0001 
df$AUCs <- qlogis(df$AUCs) 
oneway.test(AUCs~Group, data = df, var.equal = TRUE) 
#F = 7.1, num df = 5, denom df = 2994, p-value = 0.000001 
 
#Tukey HSD Post-hoc Tests use median p-rule to combine 
tukey_hsd(df, AUCs~Group) 
 
#ANOVA assume equal variances Imputation 2 
df <- classifiers_df_mi2 
#Use logit transformation for AUC as per Steyerberg but take away a constant as includes 1  
#(logit 1 is infinity) 
df$AUCs <- df$AUCs - 0.0001 
df$AUCs <- qlogis(df$AUCs) 
oneway.test(AUCs~Group, data = df, var.equal = TRUE) 
#F = 7.9, num df = 5, denom df = 2994, p-value = 0.0000002 
 
#Tukey HSD Post-hoc Tests use median p-rule to combine 
tukey_hsd(df, AUCs~Group) 
 
#ANOVA assume equal variances Imputation 3 
df <- classifiers_df_mi3 
#Use logit transformation for AUC as per Steyerberg but take away a constant as includes 1  
#(logit 1 is infinity) 
df$AUCs <- df$AUCs - 0.0001 
df$AUCs <- qlogis(df$AUCs) 
oneway.test(AUCs~Group, data = df, var.equal = TRUE) 
#F = 8.3, num df = 5, denom df = 2994, p-value = 0.00000009 
 
#Tukey HSD Post-hoc Tests use median p-rule to combine 
tukey_hsd(df, AUCs~Group) 
 
#ANOVA assume equal variances Imputation 4 
df <- classifiers_df_mi4 
#Use logit transformation for AUC as per Steyerberg but take away a constant as includes 1  
#(logit 1 is infinity) 
df$AUCs <- df$AUCs - 0.0001 
df$AUCs <- qlogis(df$AUCs) 
oneway.test(AUCs~Group, data = df, var.equal = TRUE) 
#F = 7.3, num df = 5, denom df = 2994, p-value = 0.0000009 
 
#Tukey HSD Post-hoc Tests use median p-rule to combine 
tukey_hsd(df, AUCs~Group) 
 
#ANOVA assume equal variances Imputation 5 
df <- classifiers_df_mi5 
#Use logit transformation for AUC as per Steyerberg but take away a constant as includes 1  
#(logit 1 is infinity) 
df$AUCs <- df$AUCs - 0.0001 
df$AUCs <- qlogis(df$AUCs) 
oneway.test(AUCs~Group, data = df, var.equal = TRUE) 
#F = 8.4, num df = 5, denom df = 2994, p-value = 0.00000007 
 
#Tukey HSD Post-hoc Tests use median p-rule to combine 
tukey_hsd(df, AUCs~Group) 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(7.1,7.9,8.3,7.3,8.4), 
            df1 = 5) 
#AUCs 
#F(5, 398.66)=7.225     p=0 
 
#CITLs 
leveneTest(CITLs~Group, data = classifiers_df_mi1) #heterogeneous 
ggqqplot(classifiers_df_mi1$CITLs) 
 
#ANOVA assume equal variances Imputation 1 
oneway.test(CITLs~Group, data = classifiers_df_mi1, var.equal = FALSE) 
#F = 104, num df = 5, denom df = 1382, p-value <0.0000000000000002 
 
#Games Howell Post-hoc Tests 
games_howell_test(CITLs~Group, data = classifiers_df_mi1, detailed = TRUE) 
#just get p-values without scientific notation 
games_howell_test(CITLs~Group, data = classifiers_df_mi1, detailed = TRUE)$p.adj 
 
#ANOVA assume equal variances Imputation 2 
oneway.test(CITLs~Group, data = classifiers_df_mi2, var.equal = FALSE) 
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#F = 118, num df = 5, denom df = 1381, p-value <0.0000000000000002 
 
#Games Howell Post-hoc Tests 
games_howell_test(CITLs~Group, data = classifiers_df_mi2, detailed = TRUE) 
#just get p-values without scientific notation 
games_howell_test(CITLs~Group, data = classifiers_df_mi2, detailed = TRUE)$p.adj 
 
#ANOVA assume equal variances Imputation 3 
oneway.test(CITLs~Group, data = classifiers_df_mi3, var.equal = FALSE) 
#F = 125, num df = 5, denom df = 1383, p-value <0.0000000000000002 
 
#Games Howell Post-hoc Tests 
games_howell_test(CITLs~Group, data = classifiers_df_mi3, detailed = TRUE) 
#just get p-values without scientific notation 
games_howell_test(CITLs~Group, data = classifiers_df_mi3, detailed = TRUE)$p.adj 
 
#ANOVA assume equal variances Imputation 4 
oneway.test(CITLs~Group, data = classifiers_df_mi4, var.equal = FALSE) 
#F = 111, num df = 5, denom df = 1383, p-value <0.0000000000000002 
 
#Games Howell Post-hoc Tests 
games_howell_test(CITLs~Group, data = classifiers_df_mi4, detailed = TRUE) 
#just get p-values without scientific notation 
games_howell_test(CITLs~Group, data = classifiers_df_mi4, detailed = TRUE)$p.adj 
 
#ANOVA assume equal variances Imputation 5 
oneway.test(CITLs~Group, data = classifiers_df_mi5, var.equal = FALSE) 
#F = 124, num df = 5, denom df = 1383, p-value <0.0000000000000002 
 
#Games Howell Post-hoc Tests 
games_howell_test(CITLs~Group, data = classifiers_df_mi5, detailed = TRUE) 
#just get p-values without scientific notation 
games_howell_test(CITLs~Group, data = classifiers_df_mi5, detailed = TRUE)$p.adj 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(104,118,125,111,124), 
            df1 = 5) 
#CITLs 
#F(5, 5.87)=56.356     p=0.00007 
 
#SLOPEs 
leveneTest(SLOPEs~Group, data = classifiers_df_mi1) #homogeneous 
ggqqplot(classifiers_df_mi1$SLOPEs) 
 
#ANOVA assume equal variances Imputation 1 
oneway.test(SLOPEs~Group, data = classifiers_df_mi1, var.equal = TRUE) 
#F = 1.9, num df = 5, denom df = 2994, p-value = 0.09 
 
#ANOVA assume equal variances Imputation 2 
oneway.test(SLOPEs~Group, data = classifiers_df_mi2, var.equal = TRUE) 
#F = 1.3, num df = 5, denom df = 2994, p-value = 0.2 
 
#ANOVA assume equal variances Imputation 3 
oneway.test(SLOPEs~Group, data = classifiers_df_mi3, var.equal = TRUE) 
#F = 1.3, num df = 5, denom df = 2994, p-value = 0.3 
 
#ANOVA assume equal variances Imputation 4 
oneway.test(SLOPEs~Group, data = classifiers_df_mi4, var.equal = TRUE) 
#F = 1.1, num df = 5, denom df = 2994, p-value = 0.4 
 
#ANOVA assume equal variances Imputation 5 
oneway.test(SLOPEs~Group, data = classifiers_df_mi5, var.equal = TRUE) 
#F = 1.3, num df = 5, denom df = 2994, p-value = 0.3 
 
#Combine F across multiple imputations 
micombine.F(Fvalues = c(1.9,1.3,1.3,1.1,1.3), 
            df1 = 5) 
#CITLs 
#F(5, 218.1)=1.139     p=0.3405 
 
 
#Plots 
df <- read_csv("df_1.csv") 
pdf("figure1A.pdf") 
ggplot(df, aes(x = Model, y = `c-statistic`)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = 
High95CI), width =0.2)+ 
  theme_bw() + scale_y_continuous(minor_breaks = seq(0, 20, 1)) + 
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) 
dev.off() 
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df <- read_csv("df_2.csv") 
pdf("figure1B.pdf") 
ggplot(df, aes(x = Model, y = CITL)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = High95CI), 
width =0.2)+ 
  theme_bw() + scale_y_continuous(minor_breaks = seq(0, 20, 1)) + 
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) 
dev.off() 
 
df <- read_csv("df_3.csv") 
pdf("figure1C.pdf") 
ggplot(df, aes(x = Model, y = `Calibration Slope`)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = 
High95CI), width =0.2)+ 
  theme_bw() + scale_y_continuous(minor_breaks = seq(0, 20, 1)) + 
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) 
dev.off() 
 
df <- read_csv("df_4.csv") 
pdf("figure2A.pdf") 
ggplot(df, aes(x = Model, y = `c-statistic`)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = 
High95CI), width =0.2)+ 
  theme_bw() +  
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) + 
  geom_bracket( 
    xmin = c("GLM", "GLMnet","GLMnet", "Naive Bayes","Naive Bayes"), 
    xmax = c("Naive Bayes", "SVM (Linear)","SVM (Radial)", "SVM (Linear)", "SVM (Radial)"), 
    y.position = c(0.72,0.73,0.735,0.725,0.74), label = c("**", "*","**", "****", "****"), 
    tip.length = 0.01 
  ) 
dev.off() 
 
df <- read_csv("df_5.csv") 
pdf("figure2B.pdf") 
ggplot(df, aes(x = Model, y = CITL)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = High95CI), 
width =0.2)+ 
  theme_bw() +  
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) + 
  geom_bracket( 
    xmin = c("GLM","GLM","GLMnet","GLMnet","Naive Bayes","Naive Bayes","Naive Bayes","Random Forest","SVM (Linear)"), 
    xmax = c("Naive Bayes","SVM (Radial)","Naive Bayes","SVM (Radial)","Random Forest","SVM (Linear)","SVM (Radial)","SVM 
(Radial)","SVM (Radial)"), 
    y.position = c(0.65,0.85,0.55,0.80,0.60,0.70,0.75,0.65,0.55), label = 
c("****","***","****","****","****","****","****","****","****"), 
    tip.length = 0.01 
  ) 
dev.off() 
 
 
df <- read_csv("df_6.csv") 
pdf("figure2C.pdf",7,10) 
ggplot(df, aes(x = Model, y = `Calibration Slope`)) + geom_point(size = 2) + geom_errorbar(aes(ymin = Low95CI, ymax = 
High95CI), width =0.2)+ 
  theme_bw() + scale_y_continuous(minor_breaks = seq(0, 20, 1)) + 
  theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1)) 
dev.off() 
 
 
#library(gplots) 
#plotmeans(AUCs~Group, data = classifiers_df_mi1, connect = FALSE) 
#plot(AUCs~Group, data = classifiers_df_mi1, notch=TRUE) 
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Appendix 5 ICD-10 codes for Chapter 5 

Delirium Coding 

F05 Delirium not induced by alcohol and other psychoactive substances 

 

Dementia Coding 

F00 Dementia in Alzheimer’s disease 

F01 Vascular Dementia 

F02 Dementia in other diseases classified elsewhere 

F03 Unspecified dementia 

F1073 Residual & Late-onset Psychotic Dementia Due to Use of Alcohol 

F1173 Residual & Late-onset Psychotic Dementia Due to Use of Opioids 

F1273 Residual & Late-onset Psychotic Dementia Due to Use of Cannabinoids 

F1373 Residual & Late-onset Psychotic Dementia Due to Use of 

Sedatives/Hypnotics 

F1473 Residual & Late-onset Psychotic Dementia Due to Use of Cocaine 

F1573 Residual & Late-onset Psychotic Dementia Due to Use of Other Stimulants 

Including Caffeine 

F1673 Residual & Late-onset Psychotic Dementia Due to Use of Hallucinogens 

F1773 Residual & Late-onset Psychotic Dementia Due to Use of Tobacco 

F1873 Residual & Late-onset Psychotic Dementia Due to Use of Volatile Solvents 
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F1973 Residual & Late-onset Psychotic Dementia Due to Use of Multiple 

Drugs/Psychoactive Substances 
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Appendix 6 Post-model assumption testing for 
Chapter 5 

Figure 1 - The proportional hazard assumption is supported by a non-significant 
relationship between residuals and time for each of the covariates and the global test. The 
plots of the Schoenfeld residuals are independent of time. 
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Figure 2 - The above index plots show that comparing the magnitudes of the largest 
DFBETA values to the regression coefficients suggests that none of the observations are 
influential individually according to the cut off proposed by Belsley, Kuh and Welch (values 
larger than 2/sqrt(n) are considered highly influential, in our case values larger than 0.018). 
(Belsey et al., 1980) 
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Figure 3 – We assessed for nonlinearity by plotting Martingale residuals of the null cox 
proportional hazards model against the continuous covariate, age (nonlinearity is not a 
concern for categorical variables). The fitted line suggests that age has a non-linear 
functional form, so the final Cox model was refitted using a penalised cubic spline term for 
age. 
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Appendix 7 R code for Chapter 5 
library(cmprsk) 
library(survminer) 
library(readr) 
library(ggplot2) 
library(scales) 
library(dotwhisker) 
library(survival) 
 
#working directory 
setwd("S:/Sam/Analysis_3/") 
 
options(scipen=999) 
 
data = read_csv("final_ggc_65.csv") 
data = data[which(data$TIME_DEMENTIA_DEATH>0),] 
data$DELIRIUM_DATE = as.Date(data$DELIRIUM_DATE, format = "%d/%m/%Y") 
data$DELIRIUM_YEAR = format(data$DELIRIUM_DATE, "%Y") 
data$DEMENTIA_ON_DEATH = as.factor(data$DEMENTIA_ON_DEATH) 
data$DEC = data$AGE_DELIRIUM/10 
data$SIMD_2009_QUINTILE = as.factor(data$SIMD_2009_QUINTILE) 
data$SIMD_2009_QUINTILE = relevel(data$SIMD_2009_QUINTILE, ref = 5) 
 
# TIME_DEMENTIA_DEATH denotes the survival time to the occurrence of the first event 
# STATUS_DEMENTIA_DEATH is the event type indicator: 
# 1: Dementia diagnosis 
# 2: Death before dementia diagnosis 
# 0: Censored observation: alive at end of follow-up 
 
# Demographics 
summary(as.factor(data$STATUS_DEMENTIA_DEATH)) 
summary(as.factor(data$DELIRIUM_YEAR)) 
summary(as.factor(data$SIMD_2009_QUINTILE)) 
summary(as.factor(data$SEX_MALE)) 
summary(data$AGE_DELIRIUM) 
sd(data$AGE_DELIRIUM) 
 
by(data$SIMD_2009_QUINTILE,as.factor(data$STATUS_DEMENTIA_DEATH), summary) 
by(as.factor(data$SEX_MALE),as.factor(data$STATUS_DEMENTIA_DEATH), summary) 
by(data$AGE_DELIRIUM,as.factor(data$STATUS_DEMENTIA_DEATH), summary) 
by(data$AGE_DELIRIUM,as.factor(data$STATUS_DEMENTIA_DEATH), sd) 
by(data$DEMENTIA_ON_DEATH, as.factor(data$STATUS_DEMENTIA_DEATH), summary) 
 
#Stacked bar chart of outcomes 
Outcome = c(rep("Censored",2), rep("Dementia diagnosis",2), rep("Death without dementia",2)) 
dem_on_death = rep(c("No","Dementia diagnosed on death"),3) 
Patients = c(3631,0,2887,643,5788,0) 
graph_data = data.frame(Outcome, dem_on_death, Patients) 
pdf("outcomes.pdf", 10, 7) 
ggplot(graph_data, aes(fill=dem_on_death, y=Patients, x=Outcome)) + 
  geom_bar(position="stack", stat = "identity", alpha = 0.5) +  
  annotate("text", x=c(3,3), y =c(3250, 1000), label = c("On death","Before death"), color = "white", size = 6, 
fontface="bold")+ 
  theme_bw()+theme(legend.position = "none", text = element_text(size=20), axis.title.x = element_blank())+ 
  scale_y_continuous(minor_breaks = seq(0,6000,500), breaks = seq(0,6000,1000))+ 
  scale_fill_manual(values = c("red","blue"))+ 
  ggtitle("Outcomes for patients with an index episode of delirium") 
dev.off() 
 
#hist(data$DELIRIUM_DATE, breaks = "months", freq = TRUE) 
#grid() 
 
#Count by year and month 
new = data.frame(table(format(data$DELIRIUM_DATE, "%Y-%m"))) 
#Append a day 
new$Var1 = paste0(new$Var1, "-1") 
#TUrn back into a date 
new$Var1 = as.Date(new$Var1, format = "%Y-%m-%d") 
pdf("delirium.pdf",10,5) 
#plot using scale_x_date with 6 month breaks 
ggplot(data = new, aes(x=Var1, y=Freq)) + geom_bar(stat="identity", colour ="grey20", fill = "white", size = 0.25)+ 
  scale_x_date(labels = date_format("%b %Y"), breaks = date_breaks("12 months"))+theme_bw()+ 
  theme(axis.text.x = element_text(angle = 90, vjust =0.5, hjust=1))+xlab("Date")+ylab("Monthly Frequency of Delirium")+ 
  scale_y_continuous(minor_breaks = seq(0,225,5), breaks = seq(0,225,50)) 
dev.off() 
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summary(data$TIME_DEMENTIA_DEATH) 
 
# Figure 1: Plot cumulative incidence functions for dementia and death without dementia 
ci_fit = cuminc(ftime = data$TIME_DEMENTIA_DEATH/365.25, 
                fstatus = data$STATUS_DEMENTIA_DEATH, 
                cencode = 0) 
ci_fit 
 
#cumulative incidence 6 months 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >0.5)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >0.5)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >0.5)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >0.5)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >0.5)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >0.5)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >0.5)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >0.5)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >0.5)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >0.5)][1]) 
#cumulative incidence 1 year 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >1)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >1)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >1)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >1)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >1)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >1)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >1)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >1)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >1)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >1)][1]) 
#cumulative incidence 5 years 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >5)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >5)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >5)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >5)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >5)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >5)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >5)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >5)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >5)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >5)][1]) 
#cumulative incidence 10 years 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >10)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >10)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >10)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >10)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >10)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >10)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >10)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >10)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >10)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >10)][1]) 
#cumulative incidence 15 years 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >15)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >15)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >15)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >15)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >15)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >15)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >15)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >15)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >15)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >15)][1]) 
#cumulative incidence 20 years 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >20)][1] #Dementia 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >20)][1]-1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >20)][1]) 
ci_fit$`1 1`$est[which(ci_fit$`1 1`$time >20)][1]+1.96*sqrt(ci_fit$`1 1`$var[which(ci_fit$`1 1`$time >20)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >20)][1] #Death without dementia 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >20)][1]-1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >20)][1]) 
ci_fit$`1 2`$est[which(ci_fit$`1 2`$time >20)][1]+1.96*sqrt(ci_fit$`1 2`$var[which(ci_fit$`1 2`$time >20)][1]) 
 
pdf("CIF.pdf", 15, 10) 
ggcompetingrisks(ci_fit, multiple_panels = F, conf.int = TRUE) + theme_bw()+ 
  guides(linetype = FALSE) + scale_y_continuous(minor_breaks = seq(0,1,0.05),breaks = seq(0,1,0.1))+ 
  scale_x_continuous(minor_breaks = seq(0,25,1), breaks = seq(0,25,5)) +xlab("Time (years)")+ 
  scale_color_manual(labels=c("Dementia","Death without dementia"), values = c("blue","red"))+ 
  scale_fill_manual(labels=c("Dementia","Death without dementia"), values = c("blue","red"))+ 
  theme(text = element_text(size = 20)) + labs(fill = "Outcome", colour ="Outcome") 
dev.off() 
 
# confidence intervals are 1.96+/- sqrt variance from cuminc function of cmprsk package as per Frank Harrell 
# discourse.datamethods.org/t/95-ci-around-cumulative-incidence-estimate/3948 
 
#Cause specific hazard model for dementia treats death before dementia as censored 
# 
#time in years 
res.cox.dem = coxph(Surv(TIME_DEMENTIA_DEATH/365.25, STATUS_DEMENTIA) ~ AGE_DELIRIUM + SEX_MALE + 
SIMD_2009_QUINTILE, data = data) 
summary(res.cox.dem) 
 
#sthda.com/english/wiki/cox-model-assumptions 
#test proportional-hazards assumption 
test.ph = cox.zph(res.cox.dem) 
test.ph 
ggcoxzph(test.ph) 
 
#influential observations 
ggcoxdiagnostics(res.cox.dem, type = "dfbeta", linear.predictions = FALSE, ggtheme = theme_bw()) 
#values larger than 2/sqrt(n) are considered highly influential = 0.018 
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ggcoxdiagnostics(res.cox.dem, type = "deviance", linear.predictions = FALSE, ggtheme = theme_bw()) 
#deviance residuals should be roughtly symetrically distributed around zero with a standard deviation of 1 
 
ggcoxfunctional(Surv(TIME_DEMENTIA_DEATH/365.25, STATUS_DEMENTIA) ~ AGE_DELIRIUM, data = data, ylim = c(-1,1)) 
#Is the functional form of age linear. Assess using martingale's residuals from null model 
 
#95%CI for loess fit 
smoothSEcurve = function(yy, xx){ 
  # use after a call to "plot" 
  # fit a lowess curve and 95% confidence interval curve 
  # make list of x values 
  xx.list = min(xx) + ((0:100)/100)*(max(xx) - min(xx)) 
  # Then fit loess function through the points (xx, yy) 
  #  at the listed values 
  yy.xx = predict(loess(yy ~ xx), se=T, 
                  newdata=data.frame(xx=xx.list)) 
  lines(yy.xx$fit ~ xx.list, lwd=2) 
  lines(yy.xx$fit - 
          qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2) 
  lines(yy.xx$fit + 
          qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2) 
} 
 
#SAME AS ABOVE ggcoxfunctional 
res.cox.dem.0 = coxph(Surv(TIME_DEMENTIA_DEATH/365.25, STATUS_DEMENTIA) ~ 1, data = data) 
rr.0 = residuals(res.cox.dem.0, type = "martingale") 
plot(rr.0 ~ AGE_DELIRIUM, data=data) 
smoothSEcurve(rr.0, data$AGE_DELIRIUM) 
#Is the functional form of age linear. Assess using martingale's residuals from null model 
 
rr.final = residuals(res.cox.dem, type = "martingale") 
plot(rr.final~ AGE_DELIRIUM, data = data) 
smoothSEcurve(rr.final, data$AGE_DELIRIUM) 
#Is the functional form of age linear. Assess using martingale's residuals from fully adjusted model including age as 
covariate 
 
#Age does not have a linear functional form so remodel using a penalised spline term for age 
#See https://stats.stackexchange.com/questions/362510 for interpretation of above martingale's residuals plots 
 
#add spline setting df = 0 then the AIC = (loglik -df) is used to choose an "optimal" degrees of freedom 
res.cox.dem.spline = coxph(Surv(TIME_DEMENTIA_DEATH/365.25, STATUS_DEMENTIA) ~ pspline(AGE_DELIRIUM, df=0) + 
SEX_MALE + SIMD_2009_QUINTILE, data = data) 
summary(res.cox.dem.spline) 
 
#without age to do likelihood ratio test 
res.cox.dem.noage = coxph(Surv(TIME_DEMENTIA_DEATH/365.25, STATUS_DEMENTIA) ~ SEX_MALE + 
SIMD_2009_QUINTILE, data = data) 
#p value for age term 
#according to Robertson 
anova(res.cox.dem.spline, res.cox.dem.noage) 
#according to stack exchange https://stats.stackexchange.com/questions/197179 
anova(res.cox.dem.spline, res.cox.dem) 
 
#Plot the age term on a log-hazard scale 
termplot(res.cox.dem.spline, se=T, terms = 1, ylabs = "Log hazard") 
 
pdf("age_spline.pdf",10,7) 
#Plot the age term on a hazard scale 
predicted = predict(res.cox.dem.spline, type = "terms", se.fit = TRUE, terms = 1) 
plot(data$AGE_DELIRIUM, exp(predicted$fit), type ="n", ylim = c(0,2), ylab = "Hazard ratio (df = 5.3)", xlab = "Age at 
delirium diagnosis") 
lines(smooth.spline(data$AGE_DELIRIUM, exp(predicted$fit)), col = "red", lty = 1) 
lines(smooth.spline(data$AGE_DELIRIUM, exp(predicted$fit + 1.96 * predicted$se.fit)), col = "orange", lty = 2) 
lines(smooth.spline(data$AGE_DELIRIUM, exp(predicted$fit - 1.96 * predicted$se.fit)), col = "orange", lty = 2) 
abline(h=1, lty=2) 
boxplot(add=T, data$AGE_DELIRIUM, horizontal = T, at = 0, boxwex = 0.1) 
dev.off() 
 
#forest plot 
#set up data 
term = c("Male", "Female", "SIMD2009 Quintile 1", "SIMD2009 Quintile 2", "SIMD2009 Quintile 3", "SIMD2009 Quintile 4", 
"SIMD2009 Quintile 5") 
estimate = c(1.057, 1, 1.386, 1.190, 1.454, 1.465,1) 
conf.low = c(0.9858, 1, 1.2439, 1.0518, 1.2870, 1.2903, 1) 
conf.high = c(1.134, 1, 1.544, 1.346, 1.643, 1.664, 1) 
plot_data = data.frame(term, estimate, conf.low, conf.high) 
 
pdf("forest.pdf", 10, 5) 
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#forest plot 
dwplot(plot_data, vline = geom_vline(xintercept = 1, colour = "grey60", linetype = 2), 
       dot_args = list(color = "#F8766D"), # color for the dot 
       whisker_args = list(color = "Grey47") #color for the whisker 
       ) + 
  ggtitle("Multivariable Adjusted Hazard Ratios for Dementia") + 
  theme_bw() + 
  xlim(0.75, 1.75) + 
  theme(plot.margin = unit(c(0,5,1,1), "cm")) + 
  xlab("Hazard Ratio (95% CI)") + 
  geom_text(x = 1.82, 
            y = 7, label ="1.06 (0.99, 1.13); p = 0.12", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 6, label ="Reference", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 5, label ="1.39 (1.24, 1.54); p = <0.001", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 4, label ="1.19 (1.05, 1.35); p = 0.006", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 3, label ="1.45 (1.29, 1.64); p = <0.001", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 2, label ="1.47 (1.29, 1.66); p = <0.001", 
            hjust = 0, 
            size = 3) + 
  geom_text(x = 1.82, 
            y = 1, label ="Reference", 
            hjust = 0, 
            size = 3) + 
  coord_cartesian(clip = "off") 
dev.off() 
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