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Abstract

In an increasingly quantum world with more and more quantum technologies nearing practical use, the
importance of interacting directly with quantum data is becoming clear. Although doing so often leads to
advantages, it also presents us with some uniquely quantum challenges: for example, information about a
quantum system cannot, in general, be extracted without disturbing the state of the system. In this thesis,
we primarily focus on how performing a learning task on quantum data disturbs it, and affects one’s ability
to learn about it again in the future. In particular, we focus on the learning task of unsupervised binary
classification, and how it affects quantum data when it is performed on a subset of it. In such a binary
classification task, we are given a dataset that is made up of qubits that are each in one of two unknown
pure states, and our aim is to cluster, with optimal probability of success, the data points into two groups
based on their state. To investigate how well we can perform this task sequentially, we first consider a base
case of a three-qubit dataset, made up of qubits that are each in one of two unknown states, and investigate
how an intermediate classification on a two-qubit subset affects our ability to subsequently classify the whole
dataset. We analytically derive and plot the tradeoff between the success rates of the two classifications and
find that, although the intermediate classification does indeed affect the subsequent one in a non-trivial way,
there is a remarkably large region where the first classification does not force the second away from its optimal
probability of success. We then describe this scenario as a quantum circuit and simulate the tradeoff using
Qiskit’s AerSimulator. Following on from this, we go on to investigate whether an intermediate measurement
can leave a subsequent one unaffected in the more general setting of an n-qubit dataset, again made up of
qubits that are each in one of two unknown states. We see that numerics hint that nothing about the order
of the qubits in a (n− 1)-qubit dataset can be learnt without affecting a subsequent classification on the full
dataset. We make steps to prove that this is indeed the case and show that an immediate consequence of this
is that, for some m > 1, a non-trivial intermediate classification on n−m qubits will always negatively affect
a subsequent one on all n qubits. We conclude this line of work by deriving two bounds to how successful an
intermediate classification of n− 1 qubits can be without affecting the following n-qubit one, hypothesising
that one of these is optimal.

We then shift our focus to the field of indefinite causal order (ICO). Motivated by ICO’s connection to
non-commutivity, we explore the idea of implementing quantum key distribution (QKD) in an indefinite
causal regime. After showing that it is possible to share a key in an ICO, we find that, unlike other QKD
protocols in the literature, eavesdroppers can be detected without publicly discussing a subset of the shared
key. Indeed, we show that this is true for any individual attack in which the eavesdroppers abide by the
causal structure chosen by the sharing parties. Further, we prove the security of this protocol for a subclass
of these individual attacks. We then ask whether this “private detection” is a truly consequence of ICO and
show that there is a definite causal ordered strategy that appears to yield the same phenomenon. Although
we note that there are hints of some more subtle differences between the definite and indefinite causal cases,
we conclude that carrying out QKD in an ICO is unlikely to offer any advantage, at least when considered
in the form that we did. Finally, we close this thesis by summarising what we have found and noting some
possible directions for future study.
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Chapter 1

Introduction and summary

The interface between the classical and quantum worlds has been an endless source of intrigue since the
earliest days of quantum mechanics. That the universe at the smallest scales behaves so differently when
compared with what we’re familiar with at our everyday, classical scales, has led to countless foundational
questions about it. Ranging from whether classical physics emerges from quantum, to what resources make
the quantum world intrinsically different from the classical one [1], one line of inquiry in particular has
also received a great deal of attention from a practical viewpoint. Namely: by what processes, and to what
extent, can we, living in a classical system, interact with the information in a quantum system? The practical
significance of this question came into sharp focus thanks to a series of discoveries showing differences, and
often advantages, to working with quantum information over its classical counterpart [2–8]. Indeed, the
hints of possible quantum advantages, along with our relatively recent ability to work, experimentally, with
individual quantum systems has catalysed a quantum revolution [9]. However, there is another side to the
story: the limitations of working with quantum information. For example, unknown quantum states famously
cannot be cloned [2, 3], and it is not possible to extract information about a quantum system without inducing
disturbance [10]1. Understanding such limitations is important, not only for understanding how the world
works, but also for knowing what we can hope for from such a quantum revolution. It is in relation to
this side of the story that is the main theme of this thesis. That is, the limits of our interaction with,
and information extraction from, quantum systems. To investigate this, we focus on the field of quantum
learning, in particular, the problem of learning about unknown quantum data. One of the chief aims of this
work is to understand something about how quantum data is affected by the process of learning, and how
this affects the reusabilty of such data.

In Chapter 2 we introduce the background theory required for the understanding of this work. By
introducing the postulates of quantum mechanics, we are able to cover many of the concepts and notations
used, including that of quantum systems and states, along with quantum measurements in the form of
POVMs and, more generally, quantum instruments. We then take time to introduce the mathematical
necessities of this thesis, focusing largely on various aspects of representation theory.

In Chapter 3, we take our first steps in understanding the effects of an unsupervised quantum learning
task on a set of quantum data. To do this, we consider a simple scenario of a quantum dataset made up
of three quantum bits (qubits), where each qubit occupies one of two possible unknown states, and the
learning task we will focus on (throughout this thesis) is a binary classification. As mentioned earlier, we
are interested in how such a classification would affect the dataset. Therefore, our contribution to this
problem is to consider how an intermediate classification on a subset of the first two qubits would affect
one’s ability to subsequently classify the entire dataset. As we will see, these classifications are realised as
quantum measurements, so the non-triviality of this problem has its roots in the quantum phenomenon of
measurement disturbance. This work culminates in a full, analytical tradeoff between the success rate of the
intermediate classification, with that of the subsequent one. We end this chapter with the construction of
a quantum circuit that carries out this protocol. With this, we are able to use a simulation of a quantum
processor to recreate the tradeoff we derived.

1Which could both be desirable properties, or the contrary, depending on who you ask. For example, quantum cryptographers
might be grateful for them whereas quantum cryptanalysts might disagree [4].
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2 CHAPTER 1. INTRODUCTION AND SUMMARY

Moving on, in Chapter 4, we make steps to generalise the results of Chapter 3 to the case of an n-
qubit dataset. As we will see, in the 2 → 3-qubit case of Chapter 3, although the intermediate, two-qubit
classification has a non-trivial effect on the success rate of the subsequent three-qubit classification, there
is a notable region where, despite allowing us to learn something, the first classification does not affect
the success rate of the second one. So, in Chapter 4, we explore the generalisation of this phenomenon to
an n-qubit dataset and ask how strong an initial classification on a subset of n − 1 qubits can be without
affecting the overall success rate of a subsequent classification on the entire dataset. We find that we seem
to be limited in what we can learn about the (n−1)-qubit subset in this scenario. We make steps in showing
that, although we can deduce something about how many of each type of state there is, we are not able
to learn anything about how they are ordered without negatively impacting the classification on the entire
dataset. We show that it follows immediately from this that, if true, a classification on n −m qubits (for
m > 1) cannot even tell us anything about the numbers of each type of qubit without affecting a subsequent
n-qubit classification. Following on from this, we construct an intermediate measurement [corresponding the
(n− 1)-qubit classification] that realises an analytical, closed form lower bound to the optimal success rate
achievable in the first step that does not affect the second. Finally, we write down an algorithm to construct
a measurement that gives an improved lower bound. We hypothesise that this strategy is an optimal one.

In Chapter 5, we move away from quantum learning to look at something quite different: a study of quan-
tum key distribution in an indefinite causal setting. Indefinite causal order is, yet another, counterintuitive
quantum phenomenon. Whereas in our classical world, we are used to events happening in a well defined
order: A before B or vice versa, in quantum mechanics, these events can happen in a controlled superposition
of orders. It it this that has been coined indefinite causal order [11–13]. The other component to this part of
the thesis is quantum key distribution. In the original protocol [4], two parties, Alice and Bob, use quantum
states, and mutually unbiased bases to a share a key whilst monitoring for eavesdroppers. Motivated by the
non-commutativity of measurements in these mutually unbiased bases, we explore whether anything can be
gained by placing Alice and Bob in an indefinite causal order. We should note that although it is not related
to quantum learning, this chapter is not completely distinct from the others: a common thread is that of
sequential measurements, in this case, sequential measurements in an indefinite causal order.

We conclude with Chapter 6 where we summarise what has been covered in this thesis. Here, we also
look to the future and discuss open questions as well as possible directions for further research.



Chapter 2

Theoretical and mathematical
background

2.1 Elements of linear algebra

In this section we highlight, briefly, the main linear algebra requirements to understand this work. We
primarily follow Ref. [14], often taking definitions directly, and call on Refs. [15–17] when necessary. We
refer the reader to these references for a more complete guide. We assume the reader is familiar with
basic set theory, vector spaces, subspaces, their dimensionality and bases, as well as linear combinations
and linear independence. Unless stated otherwise, we will be taking our vector spaces to be complex1 and
finite-dimensional throughout.

2.1.1 Linear operators

We begin with linear transformations.

Definition 2.1.1. Let V,W be finite-dimensional vector spaces over a field F. A function T : V → W is a
linear transformation if, for all u,v ∈ V, α, β ∈ F ,

T (αu + βv) = αT (u) + βT (v).

We will often call T a linear transformation on V .

Another term for a linear transformation is a vector space homomorphism. It turns out that, since we are
taking our vector spaces to be finite dimensional, every linear transformation T can be represented by a
matrix, with respect to bases of the input and output spaces of T . It will often be the case that we have a
particular basis in mind, so we usually think of our linear transformations as matrices.

Definition 2.1.2. For two vector spaces V,W , if a linear transformation T : V →W is bijective, we call T
a vector space isomorphism (or just an isomorphism if the context is clear). If such an isomorphism exists
between V and W , we say V and W are isomorphic, written as V ∼= W .

Definition 2.1.3. A linear operator is a linear transformation T : V → V . We call L(V ) the set of linear
operators on V .

The linear transformations we consider will usually be linear operators, and these can be considered as d×d
matrices, where d = dimV . We define Md(C) to be the set of d× d matrices with complex entries. All the
operators (and transformations) we consider will be linear, and so we will refer to linear operators just as
operators, with linearity implicitly assumed. We will use the terms operator and matrix interchangeably.

Let’s consider some important examples and classes of operators. First, the identity operator I on a
vector space V leaves every vector v unaffected: Iv = v, ∀v ∈ V . The set of invertible operators A : V → V

1That is, a vector space over the field of the complex numbers C.

3



4 CHAPTER 2. THEORETICAL AND MATHEMATICAL BACKGROUND

is denoted by GL(V ). Alternatively, thinking in terms of d × d matrices (where d = dimV ) with elements
in the field F = R or C, we define2

GL(d,F) = {A ∈Md(F) : detA ̸= 0}, (2.1)

such that detA denotes the determinant of A.
Another class of operators are Hermitian operators. An operator H is Hermitian if

H† = H, (2.2)

where H† denotes the Hermitian conjugate or conjugate transpose. Unitary operators are another class of
useful operators. An operator U is unitary if

U†U = I = UU†. (2.3)

We will often call these unitaries, and supposing they act on some d-dimensional space V , we define the set
of unitaries as U(V ), or alternatively, U(d,F) when considering d × d matrices. An important example of
both unitary and Hermitian operators are the Pauli operators, also known as the Pauli matrices:

σx =

(
0 1
1 0

)
, (2.4a)

σy =

(
0 −i
i 0

)
, (2.4b)

σz =

(
1 0
0 −1

)
, (2.4c)

where we have written these with respect to the z-eigenbasis, which will be made clearer later. The final
class of operators we mention here make up a subset of the unitaries. Writing in terms of d× d matrices

SU(d,F) = {U ∈ U(d,F) : detU = 1}. (2.5)

Matrices in this set are called special unitary.

2.1.2 Hilbert spaces

Let us begin with inner products and inner product spaces.

Definition 2.1.4. An inner product on a complex vector space V is a map (, ) : V × V → C satisfying the
following properties:

1. For all v ∈ V ,
(v,v) ≥ 0 and (v,v) = 0 ⇐⇒ v = 0.

2. For all u,v ∈ V ,
(u,v) = (v,u)∗, (2.6)

where α∗ denotes complex the conjugation of α ∈ C.

3. For all u,v,w ∈ V, α, β ∈ C,

(αu + βv,w) = α(u,w) + β(v,w).

If two vectors u,v ∈ V have the property: (u,v) = 0, we will say they are orthogonal with respect to the
inner product (, ), or if it is unambiguous, just orthogonal. Also, if (v,v) = 1, we say v is normalised, or a
unit vector. Vectors that are orthogonal and normalised are called orthonormal.

Definition 2.1.5. A complex inner product space is a complex vector space V together with an inner product.

2Since we always take F = C, we often omit mention of it and simply write GL(d).



2.1. ELEMENTS OF LINEAR ALGEBRA 5

We will rarely refer to inner product spaces in this work, opting instead for the term Hilbert space.
A Hilbert space is an inner product space with the additional condition that it be complete under the
metric induced by the inner product. However, since finite dimensional complex inner product spaces are
automatically complete [18], they are finite dimensional Hilbert spaces. We will normally denote a Hilbert
space using H, and write its vectors as “kets”: |v⟩ ∈ H. Indeed, for the remainder of this thesis, whether
considering a Hilbert space or not, we will write our vectors in this ket notation. Further, if |u⟩, |v⟩ ∈ H, the
notation we will use for the inner product (, ) : H×H → C is

(|u⟩, |v⟩) =: ⟨u|v⟩. (2.7)

The object ⟨v| ∈ H∗, that is often called a “bra”, is the dual vector to |v⟩ ∈ H. A dual vector ⟨v| is a linear
transformation ⟨v| : H → C, and the dual space H∗ is the vector space made up of these dual vectors. For
our purposes, a vector |v⟩ and its dual ⟨v| are related via the Hermitian conjugate:

|v⟩† = ⟨v|. (2.8)

We will often write vectors |v⟩ ∈ H in terms of some orthonormal basis B = {|i⟩} for H3:

|v⟩ =
∑
i

vi|i⟩, (2.9)

where we will sometimes call vi amplitudes (due to their role in quantum states, which we will come to later).
An orthonomal basis of H is a basis B made up of orthonormal vectors. That is, ⟨i|j⟩ = δij , ∀|i⟩, |j⟩ ∈ B.
Indeed, we will often be interested in unit vectors, so in order for |v⟩ to be a unit vector in the above example,∑
i |vi|2 = 1. Further, we can access any (basis dependent) amplitude using vi = ⟨i|v⟩, from which it follows

that
(∑

i |i⟩⟨i|
)
|v⟩ = |v⟩. Since this true for any |v⟩ ∈ H, we can write the following, very useful identity:∑

i

|i⟩⟨i| = I, (2.10)

for any orthonormal basis {|i⟩} of H, where we call |a⟩⟨b| an outer product operator. We call this identity
the completeness relation4, and it allows us to write any linear transformation in a similar, outer product
form. Suppose A : H1 → H2 is a linear transformation and {|i⟩}n−1

i=0 , {|j⟩}m−1
j=0 are orthonormal bases for

H1,H2 respectively, then we can write

A =

m−1∑
i=0

n−1∑
j=0

aji|j⟩⟨i|, (2.11)

such that aji := ⟨j|A|i⟩ ∈ C.

Direct sum

If we have two vectors u = (u1, . . . , un)T ,v = (v1, . . . , vm)T , we take the direct sum of these vectors to be

u⊕ v := (u1, . . . , un, v1, . . . , vm)T . (2.12)

This gives rise to the direct product of vector spaces U, V :

U ⊕ V := {u⊕ v : u ∈ U,v ∈ V }. (2.13)

Given an m× n matrix A, and a p× q matrix B, the direct product of matrices is given by

A⊕B :=

(
A 0m×q

0p×n B

)
, (2.14)

where 0i×j denotes an i× j matrix with a zero in every entry.
We will usually deal with square matrices in this thesis (i.e. m = n, p = q). We will call matrices that

have the form given in Eq. (2.14) block diagonal. If the square matrices A and B are constant5, we will call
matrices of this form block constant.

3Since H has some finite dimension d, any set of d orthonormal unit vectors {|vi⟩}di=1 ⊂ H is an orthonomal basis.
4Distinct from the concept of completeness when defining Hilbert spaces.
5That is A = aIm, B = bIp, where Ii is the i× i identity matrix and a, b ∈ C.
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2.1.3 Equivalence relations

Equivalence relations are by no means unique to linear algebra and can be found throughout mathematics.
Nevertheless, we define them in this section.

Definition 2.1.6. Let S be a nonempty set. A relation ∼ on S is called an equivalence relation on S if it
satisfies the following three conditions:

1. Reflexivity:
a ∼ a, ∀a ∈ S.

2. Symmetry:
a ∼ b =⇒ b ∼ a, ∀a, b ∈ S.

3. Transitivity:
a ∼ b, b ∼ c =⇒ a ∼ c, ∀a, b, c ∈ S.

Further, an equivalence class of x ∈ S with respect to an equivalence relation ∼ is a subset [x] of S such that

[x] = {y ∈ S : y ∼ x}.

Sometimes the notation [x]∼ will be used to highlight the equivalence relation that the equivalence class is
defined with respect to. The set of equivalence class forms a partition of S. Meaning that [x]∩ [y] = ∅ when
x ̸∼ y, and ⋃

x∈S
[x] = S. (2.15)

2.1.4 Eigenvalues and eigenvectors

Let T ∈ L(V ) be a linear operator on a vector space V over a field F throughout.

Definition 2.1.7. A scalar λ ∈ F is an eigenvalue of T if there exists a nonzero vector |λ⟩ ∈ V such that

T |λ⟩ = λ|λ⟩.

Here, |λ⟩ is called an eigenvector of T associated with λ.

Note that it is possible for more than one eigenvector to correspond to the same eigenvalue. With that,
the set of linear combinations of eigenvectors |λi⟩ associated with λ, together with the zero vector, forms a
subspace of V , called the eigenspace of λ.

As we noted earlier, the Hermitian operators are an important class of operators in quantum mechanics.
One property of note is that their eigenvalues are real numbers. If they are non-negative, then the corre-
sponding operator is called positive semidefinite, though we will sometimes just say (somewhat inaccurately)
positive. We indicate the positive semidefiniteness of an operator A by writing A ≥ 0. Another property of
Hermitian operators is that their eigenvectors, that correspond to distinct eigenvalues, are mutually orthog-
onal6. So if the number of distinct eigenvalues of a Hermitian operator H ∈ L(V ) is the dimension of V ,
then the eigenvectors of H can used to form an orthonormal basis of V . We call such a basis an orthonormal
eigenbasis. Consider the Pauli-z operator for instance given in Eq. (2.4), acting on a two-dimensional space
C2. Its eigenvalues are distinct, and given by λ± = ±1 which means its eigenvectors should be orthogonal,
and, since there are two of them, form an orthonormal basis for H. Indeed they do:

|λ+⟩ =

(
1
0

)
(2.16a)

|λ−⟩ =

(
0
1

)
. (2.16b)

6More generally, for an arbitrary linear operator T , eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent.
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We call this basis the Pauli-z basis, or just the z-basis, and it was with respect to this basis that the Pauli
matrices in Eq. (2.4) were written. The other Pauli operators σx, σy too have their own eigenbases, that we
call the x and y-bases respectively.

Finally, we define the trace TrA of a matrix A (which takes the same value as the trace of the corre-
sponding operator) to be the sum of the elements along its main diagonal. Thinking of operators as square
matrices, if a matrix is diagonalisable (i.e. if its eigenvectors are linearly independent), the elements along
its diagonal correspond to its eigenvalues. So in these cases the trace is the sum of the eigenvalues. Actually,
this is true more generally. As will always be the case in this work, if the elements of A are complex numbers
(or any algebraically closed field), then TrA is the sum of the eigenvalues of A.

To evaluate the trace, note that if A : V → V and {|i⟩} is an orthonormal basis for V , then we can write
the trace as

TrA =
∑
i

⟨i|A|i⟩. (2.17)

The trace is independent of the basis used, meaning {|i⟩} in the above expression can be replaced with any
orthonormal basis for V . We end this section with some properties of the trace. Let A,B,C be matrices (or
operators) on the same vector space over a field F, and α be an element of F, then the following properties
hold:

Tr(αA+B) = αTrA+ TrB, (2.18a)

Tr(AB) = Tr(BA). (2.18b)

Two properties that follow from Eq. (2.18b) are

Tr(CAC−1) = TrA, (2.19a)

Tr(ABC) = Tr(BCA) = Tr(CAB) ̸= Tr(ACB), (2.19b)

the last of which we call the cyclic property of the trace.

2.2 Quantum mechanics

Quantum mechanics as an axiomatic system traces its origins back to Dirac and von Neumann [19, 20].
This laid solid, mathematical foundations to do everything from “Shut up and calculate!”7, to interpret and
understand the theory. Luckily for us, it also provides us with a natural way to introduce a lot of the relevant
background theory for this thesis. We will largely write the postulates in the form presented in Ref. [17],
deviating and reordering every so often to better suit our needs. The discussion surrounding these postulates
is based around elements of various standard texts [17, 18, 22–24], again deviating and expanding sometimes.

2.2.1 State spaces and states

The first postulate tells us how we describe isolated physical systems mathematically.

Postulate 1
Associated to any isolated physical system S is a Hilbert space HS , such that the system
is completely described by a unit vector |ψ⟩S ∈ HS . We call |ψ⟩S the state vector of the
system, or just the state of the system.

We will often omit mention of the system S in our Hilbert space and vector notation, unless the ambiguity
of the situation is too much without it, and conversely, sometimes we will attempt to improve clarity (e.g.
to make the distinction between the system label and other indices more obvious) by writing the system in
brackets, e.g. |ψ⟩(S). As mentioned earlier, we will exclusively be working with finite dimensional systems,
meaning that H need only be an inner-product space, although will usually refer to it as a Hilbert space.
For any two vectors |ψ⟩, |φ⟩ ∈ H, the inner product (·, ·) : H × H → C associated with H is defined and

7A misinterpretation of a quote attributed to N. David Mermin, who wrote it in relation to his thoughts on the Copenhagen
interpretation [21].
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written as (|ψ⟩, |φ⟩) := |ψ⟩†|φ⟩ ≡ ⟨ψ|φ⟩ ∈ C. Being a unit vector, a quantum state |ψ⟩ is required to satisfy
⟨ψ|ψ⟩ = 1.

Although we will describe the state of a system with a unit vector |ψ⟩, it should be noted that, more
accurately, states are actually equivalence classes of unit vectors that give rise to the same measurement
statistics [25]. These equivalence classes are called rays [26], and when it comes to quantum states, are
defined with respect to the following equivalence relation:

|ψ′⟩ ∼ |ψ⟩ ⇐⇒ |ψ′⟩ = eiϕ|ψ⟩, (2.20)

where |ψ⟩, |ψ′⟩ ∈ H are unit vectors and ϕ ∈ R. In other words, vectors differing by a global phase are
equivalent, since |⟨φ|ψ⟩| = |⟨φ|ψ′⟩|, for all |φ⟩ ∈ H, which will make more sense when we encounter the Born
rule. Having said all of this, in this work, we will follow the majority of the literature and describe states as
vectors, whilst keeping in mind the equivalence of state vectors differing by a global phase.

The vector space structure associated with quantum systems means that state vectors can be put into
linear combinations. That is, given two quantum states |ψ⟩, |ζ⟩ ∈ HS of a system S, the vector

|φ⟩ = α|ψ⟩ + β|ζ⟩, (2.21)

such that α, β ∈ C, is also a valid state of S, as long as ⟨φ|φ⟩ = 1. Linear combinations of vectors representing
classical systems also occur, however, unlike classical physics, quantum mechanics is postulated to be a linear
theory (as we will see later in this section), meaning quantum states evolve according to linear operators.
Therefore, we can think of these linear combinations of vectors, as the system existing in a superposition of
states. This is called the superposition principle.

The density operator

Define L(H) to be the vector space of linear operators A : H → H. We can alternatively represent the
quantum state of a system as an operator ρ ∈ L(H) (or equivalently, a matrix) satisfying the following
conditions:

ρ ≥ 0, (2.22a)

Tr ρ = 1, (2.22b)

where, to reiterate from before, an operator satisfying the first condition is called positive semidefinite, and
means that the eigenvalues of ρ are non-negative. This positive semidefinite condition implies that ρ† = ρ.
The second condition comes as an analogue to requiring ⟨ψ|ψ⟩ = 1. To see this, consider the density operator
corresponding to the state vector |ψ⟩: ρψ = |ψ⟩⟨ψ|. From this, we can see that

Tr ρψ =
∑
i

⟨i|ρψ|i⟩ =
∑
i

⟨i|ψ⟩⟨ψ|i⟩ =
∑
i

⟨ψ|i⟩⟨i|ψ⟩ = ⟨ψ|ψ⟩, (2.23)

where, in the last step, we have used the completeness of {|i⟩}.
The benefit of the density operator approach is that it provides us with a convenient way to describe

more general situations than so far described. Until now, we have considered systems that occupy a known
quantum state |ψ⟩, which we call a pure state. However, what happens if, to our knowledge, there is a chance
p that the system is in the pure state |ψ⟩, but it’s also possible (with probability 1 − p) that it is in another
state |φ⟩. This situation can be described using the density operator

ρ = p|ψ⟩⟨ψ| + (1 − p)|φ⟩⟨φ|. (2.24)

More generally, if a system is in the state ρi with probability pi ≥ 0, we can represent the state of the system
as

ρ =
∑
i

piρi. (2.25)

We require
∑
i pi = 1, to ensure all possibilities are accounted for. If ρ can be written in the form |ψ⟩⟨ψ|,

we call it a pure state, else we say ρ is a mixed state.
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The qubit

A quantum bit, or qubit is the fundamental unit of quantum information [27]. Defined in analogy to its
classical counterpart: a binary digit, or bit, a qubit is a two-level quantum system. Its associated Hilbert
space Hqubit is therefore two-dimensional, and to bring home the analogy to classical bits, which have
two possible values: 0 or 1, we define the computational basis of Hqubit as {|0⟩, |1⟩}, conventionally taking
|0⟩ (|1⟩) to be the eigenvector corresponding to the +1 (−1) eigenvalue of the z Pauli matrix σz. Due to
the superposition principle, we can quickly spot a key difference between bits and qubits. That is, whereas
bits can only take the value 0 or 1, qubits are free to be in a superposition of its basis states |0⟩ and |1⟩. In
general, we can write a pure qubit state |ψ⟩ ∈ Hqubit as

|ψ⟩ = α|0⟩ + β|1⟩, (2.26)

where α, β ∈ C, satisfying |α|2 + |β|2 = 1. Other bases that we will use frequently are the eigenbases of the
other Pauli operators. Written in relation to the computational basis, the eigenvectors of σx are,

|±⟩ :=
1√
2

(|0⟩ ± |1⟩), (2.27)

and of σy,

| ± i⟩ :=
1√
2

(|0⟩ ± i|1⟩). (2.28)

We can alternatively write these in normal C2 vector notation as follows:

|0⟩ ≃
(

1
0

)
, |1⟩ ≃

(
0
1

)
, (2.29a)

|±⟩ ≃ 1√
2

(
1
±1

)
, (2.29b)

| ± i⟩ ≃ 1√
2

(
1
±i

)
. (2.29c)

A physical example of a qubit, used throughout this work, is a spin-half particle. In this scenario, we
define the computational basis in relation to the z-component of the spin mz:

|0⟩ :=
∣∣∣s =

1

2
,mz =

1

2

〉
, (2.30a)

|1⟩ :=
∣∣∣s =

1

2
,mz = −1

2

〉
. (2.30b)

The other bases discussed earlier correspond to the x and y-components of the spin. An alternate physical
system is that of polarised light, where the computational basis can be defined as

|0⟩ := |H⟩, (2.31a)

|1⟩ := |V ⟩, (2.31b)

where |H⟩ and |V ⟩ denote horizontally and vertically polarised light, respectively. It follows that |+ /−⟩
correspond to diagonally/antidiagonally polarised light, and |+i/−i⟩ represent left/right circularly polarised
light.

For a visual way of thinking about the qubit, we can use the Bloch sphere. Any pure qubit state can be
written as

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩, (2.32)

which corresponds to a point on a 3-dimensional unit sphere, called the Bloch sphere, with polar coordinates
θ ∈ [0, π], ϕ ∈ [0, 2π). Therefore, as visualised in Fig. 2.1, we can think of a pure qubit state as a point on the
surface of the Bloch sphere. Of course, our qubit need not be in a pure state, it could be in a mixed state.
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Figure 2.1: The Bloch sphere representation of the pure qubit state |ψ⟩, given in Eq. (2.32). Note that
antipodal points are orthogonal to one another.

Mixed (strictly not pure) states correspond to points within the Bloch sphere. Generally, we can represent
any state ρ, mixed or pure, in terms of the identity and Pauli matrices8 (1, σx, σy, σz respectively):

ρ =
1

2

(
1 + a · σ

)
, (2.33)

where σ := (σx, σy, σz), and a ∈ R3 corresponds to the coordinates of a point in/on the Bloch sphere. It
follows that a must satisfy |a| ≤ 1, with the equality occurring if and only if ρ is a pure state, which justifies
that qubit states only lie on the surface of the Bloch sphere if they are pure. When this is the case, we can
write a = (sin θ cosϕ, sin θ sinϕ, cos θ) to recover ρ = |ψ⟩⟨ψ| with |ψ⟩ given in Eq. (2.32). The other extreme
case occurs when a = 0, in which case the state of the qubit is known as the maximally mixed state

ρ =
1

2
1. (2.34)

More generally, for a d-dimensional quantum system, the maximally mixed state is given by

ρ =
1

d
I, (2.35)

where I, here, is the d-dimensional identity operator. Recalling the completeness relation in Eq. (2.10), we
can interpret a system that occupies the maximally mixed state as being equally likely, as far as we can tell,
to be in any state in an orthonormal basis.

Before moving on, we should note two notational points. First, we will reserve 1 to be the identity only
on qubit spaces throughout this thesis, and secondly, we will occasionally write [ψ] := |ψ⟩⟨ψ| to describe a
pure state density operator.

2.2.2 Composite systems

The second postulate tells us how we describe composite quantum systems mathematically. That is, a
quantum system made up of multiple physical systems, e.g. two atoms.

Postulate 2
The state space HS of a composite system S = S1S2 . . . Sn, made up of n component
systems S1, S2, . . . , Sn, is given by the tensor product of the component state spaces
HS1 ,HS2 , . . . ,HSn . That is, HS = HS1 ⊗HS2 ⊗ · · · ⊗ HSn .

8Since density operators are Hermitian, and {1, σx, σy , σz} form a basis for the space of 2× 2 Hermitian matrices.
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This provides us with the setting to write down the state of a composite system. Suppose |ψi⟩Si ∈ HSi for
i ∈ {1, . . . , n}, then the state |ψ⟩S ∈ HS of the composite system S is given by

|ψ⟩S = |ψ1⟩S1 ⊗ |ψ2⟩S2 ⊗ · · · ⊗ |ψn⟩Sn . (2.36)

We will regularly use the following shorthands

|ψ1⟩S1 ⊗ |ψ2⟩S2 ⊗ · · · ⊗ |ψn⟩Sn ≡ |ψ1⟩S1 |ψ2⟩S2 · · · |ψn⟩Sn ≡ |ψ1ψ2 · · ·ψn⟩S1S2···Sn , (2.37)

often omitting mention of the systems wherever it does not confuse the matter. We can also write all of this

in the density matrix formalism. If ρ
(Si)
i ∈ L

(
HSi

)
is the state of the system Si, for i ∈ {1, . . . , n}, then the

density operator ρ(S) ∈ L
(
HS
)

of the composite system S is given by

ρ(S) = ρ
(S1)
1 ⊗ ρ

(S2)
2 ⊗ · · · ⊗ ρ(Sn)

n . (2.38)

The states of a composite system that we have considered so far are called separable, in that they can
be written as a tensor product of states of the component systems. Being a quantum system, S can be in a
superposition of states, which leads to the possibility of states that are not separable, called entangled states.
We will not go into the details of entanglement, but important examples of entangled states are known as
the Bell states, representing a bipartite system S1S2 of two qubits with state space HS1

qubit ⊗HS2

qubit:

|Φ±⟩S1S2 =
1√
2

(
|00⟩S1S2 ± |11⟩S1S2

)
, (2.39a)

|Ψ±⟩S1S2 =
1√
2

(
|01⟩S1S2 ± |10⟩S1S2

)
, (2.39b)

where we have used the computational basis of each component system, as defined previously. Note that
since these states are orthonormal and there are four of them, they form an orthonormal basis for the four-
dimensional state space HS1

qubit ⊗HS2

qubit. Likewise, in the density operator formalism, in general, ρ(S) can be
written in the form

ρ(S) =
∑

|i⟩,|j⟩∈BS

rji|j⟩⟨i| (2.40)

(as long as ρ(S) ≥ 0, Tr ρ(S) = 1), where BS is some basis for HS and rji ∈ C, meaning that the density
matrix need not take the separable form of Eq. (2.38)9. Note that this form accounts for both pure and
mixed states.

Given a composite system S = S1 . . . Sn, we can also consider the state of any combination of the
component systems using a reduced density operator. For simplicity, consider a bipartite system S1S2 in the
state ρS1S2 , then we write the state of the system S1 using the reduced density operator

ρS1 = TrS2 ρ
S1S2 =

∑
|i⟩∈BS2

⟨i|S2ρS1S2 |i⟩S2 , (2.41)

where TrS2 denotes the partial trace over system S2, and BS2 =
{
|i⟩S2

}
is some orthonormal basis for HS2 .

We could similarly find ρS2 by “tracing out” system S1. It turns out that this partial trace operation is the
unique choice to obtain the reduced density operator that correctly describes the corresponding component
system.

This reduced density operator allows us to gain some more understanding of mixed states. That is, a
mixed state of a system S can always be thought of as the reduced density operator of some pure state on
a larger space S′ ⊃ S. Take the maximally mixed state of a qubit S1 described earlier: ρ = 1/2. This can

9This feature is perhaps obscured by how we wrote down our separable density operator in Eq. (2.38): that is, in the
form of an element of L

(
HS1

)
⊗ · · · ⊗ L

(
HSn

)
, rather than L

(
HS

)
= L

(
HS1 ⊗ · · · ⊗ HSn

)
. It was okay to do this since

L
(
HS1 ⊗ · · · ⊗ HSn

)
= L

(
HS1

)
⊗ · · · ⊗ L

(
HSn

)
for finite dimensional HSi .
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be written as the reduced density operator of a two-qubit system S1S2 in a Bell state Φ+ = |Φ+⟩⟨Φ+|(S1S2),
given in Eq. (2.39). Explicitly,

TrS2 Φ+ =

1∑
m=0

⟨m|(S2)
[
|Φ+⟩⟨Φ+|(S1S2)

]
|m⟩(S2)

=
1

2

1∑
m=0

[
|0⟩(S1)⟨m|0⟩(S2) + |1⟩(S1)⟨m|1⟩(S2)

][
⟨0|(S1)⟨0|m⟩(S2) + ⟨1|(S1)⟨1|m⟩(S2)

]
=

1

2

(
|0⟩⟨0| + |1⟩⟨1|

)
=

1

2
1. (2.42)

Conversely, the idea of purification allows us to extend the state space of a mixed state in order to write it
as a pure state.

One might ask if there is any reason, or intuitive explanation as to why we should take a composite
system to have this tensor product form. One argument comes from the postulated linearity of the theory.
Each component system is, in its own right, a valid quantum system, and therefore subject to the linear
rules of quantum mechanics, meaning we require the entire composite system to have a multilinear (linear in
each component) structure. The tensor product does indeed have this feature. That being said, this is by no
means a complete justification, there are plenty of other multilinear structures out there, but it at least gives
us some intuition as to why we make the choice that we do. There has been some work into showing that
the tensor product structure is the only choice consistent with the other postulates, which would thereby
demote it from its status as a postulate [28], but we do not delve into the details of that here.

2.2.3 Evolution

The third postulate tells us how the state of a closed quantum system evolves over time.

Postulate 3
The evolution of a closed quantum system is described by a unitary transformation.

Suppose |ψ(t)⟩ is the state of a quantum system at time t, then the state at time t′ is given by

|ψ(t′)⟩ = Ut′t|ψ(t)⟩, (2.43)

for some unitary linear operator Ut′t that depends only on the two times t, t′. In density operator form, if
ρ(t) is the state of a closed quantum system at time t, then its state at time t′ is given by

ρ(t′) = Vt′tρ(t)V †
t′t, (2.44)

for some unitary linear operator Vt′t that depends only on the two times t, t′. From here on, we will not
explicitly include the time dependence.

Some useful unitaries

Let’s write down some unitary operators that are ubiquitous in this work. We will sometimes write these
down in multiple forms: matrix form, bra-ket form or in terms of other unitaries. Unless stated otherwise, the
basis that we work in is the computational basis, that is, the eigenbasis of σz, written in Eq. (2.29). We also
relate them to the quantum circuit model, which is a useful way of representing situations where sequences of
(unitary) operations are carried out, for instance, during a quantum algorithm. In the language of quantum
circuits, we call unitaries quantum gates, taking our lead from the circuit model of classical computers.
Depending on the context, we will use the following terms interchangeably: gate, unitary operator, unitary
matrix, or just unitary.

Let’s begin with some single-qubit unitaries, that is, unitary operators acting on a single qubit. Such
operators belong to the set U(2). So, let’s first write down (again) the Pauli operators in both matrix and
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bra-ket form

σx =

(
0 1
1 0

)
, σx = |0⟩⟨1| + |1⟩⟨0|, (2.45a)

σy =

(
0 −i
i 0

)
, σy = −i|0⟩⟨1| + i|1⟩⟨0|, (2.45b)

σz =

(
1 0
0 −1

)
, σz = |0⟩⟨0| − |1⟩⟨1|, (2.45c)

and as gates, shown in Fig. 2.2. In the circuit model, each line represents a qubit, and we can think of the

σx: X

σy: Y

σz: Z

Figure 2.2: The Pauli operators represented as quantum gates.

state(s) being acted on by our operators as moving along these lines from left to right. In this work, we will
usually label each of these lines with the qubits they represent. These Pauli gates are exceptions to the rule
of how we, in this work, will write single qubit unitaries as quantum gates. Normally, for some single-qubit
unitary U , Fig. 2.3 shows how we would represent it as a quantum gate.

U : U

Figure 2.3: Circuit representation of a single-qubit unitary U .

Related to the Pauli operators are the rotation operators associated with them. Given a Pauli operator
σw, for w ∈ {x, y, z}, and recalling that qubits can be thought of as points of the Bloch sphere, the rotation
operator RW (θ), for W ∈ {X,Y, Z}, rotates a qubit around the w axis of the Bloch sphere by θ. They have
the form

RW (θ) := e−iθσw/2 = cos
θ

2
1− i sin

θ

2
σw, (2.46)

or, as matrices,

RX(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, (2.47a)

RY (θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
, (2.47b)

RZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)
. (2.47c)

A similar operation to the z-rotation (equivalent up to a phase), is called the phase gate, and is defined (in
matrix form), as

P (θ) =

(
1 0
0 eiθ

)
. (2.48)

Although it is equivalent to RZ(θ), we introduce it here as we use it in our later circuits. Indeed, we use it
as a controlled operation (a concept we cover shortly), which makes it inequivalent to its controlled RZ(θ)
counterpart.
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The last single qubit unitary we will write down here is the Hadamard operator H, which changes between
the Pauli x and z-(eigen)bases. In terms of σx and σz, it can be written as

H =
1√
2

(σx + σz), (2.49)

or in matrix form, as

H =
1√
2

(
1 1
1 −1

)
. (2.50)

Indeed, we can change between any orthonormal bases using a unitary operator, but the Hadamard matrix
is particularly useful to us since the we use the Pauli x and z-bases so heavily.

We don’t have to stop at single qubit unitaries. For example, there is a class of two-qubit operations
called controlled operations. They work by taking in a state made up of a control qubit Qc and a target qubit
Qt before carrying out some unitary V ∈ U(2) on the target, conditioned on the control qubit being in the

state |1⟩Qc . We will call the operator of this situation a controlled-V operator and denote it as UQcQt

CV or
UCV for simplicity. We can write it mathematically as

UQcQt

CV = |0⟩⟨0|Qc ⊗ 1
Qt + |1⟩⟨1|Qc ⊗ V Qt , (2.51)

where we have included the systems to make it clear the role of the control and target qubits. We represent
such a controlled-V operation as a gate as shown in Fig. 2.4, where Qt and Qc indicate where the target and
control qubit states are input respectively.

Qt V

Qc

Figure 2.4: Circuit representation of a controlled-V operator UCV .

One controlled-unitary operation is important enough to receive its own name and gate symbol. Namely,
the controlled-σx, which we call the controlled-NOT or CNOT gate. Indeed, we sometimes call the σx
operation a NOT gate in analogy to the classical NOT gate that switches a bit value of 0 with a value of 1.
This is because, when working in the computational basis (the z-basis), σx|0⟩ = |1⟩ and σx|1⟩ = |0⟩. The
corresponding unitary UCNOT can be written as a matrix as follows

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.52)

and is represented as a gate in a circuit as shown in Fig. 2.5. Note that this allows for the creation of

Qt

Qc

Figure 2.5: Circuit representation of the CNOT (controlled-σx) gate.

entangled states from separable ones. Consider the circuit in Fig. 2.6, if we input a state |00⟩QcQt to this
circuit, then we get the Bell state |Φ+⟩QcQt out of it. This can be seen explicitly as follows:

|00⟩Qc,Qt
H−→ 1√

2

(
|00⟩QcQt + |10⟩QcQt

) CNOT−−−−→ 1√
2

(
|00⟩QcQt + |11⟩QcQt

)
= |Φ+⟩QcQt . (2.53)

The last explicit gate we’ll mention in this subsection is the Tofolli gate, which is a three qubit gate with
two control qubits. It is shown in Fig. 2.7. The way it acts is by performing a σx operation on the qubit Q0

only when Q1, Q2 are both in the state |1⟩.
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Qt

Qc H

Figure 2.6: Circuit representation of the CNOT (controlled-σx) gate.

Q0

Q1

Q2

Figure 2.7: Circuit representation of the Toffoli gate.

Non-unitary evolution and quantum operations

It will often be the case that the systems we work with undergo non-unitary evolution. One might wonder
why this doesn’t contradict the postulate of this section. The reason is that we are often not dealing with
a closed system, for instance, if we measure a quantum system10, some extra measurement-device-system
interacts with it in order to extract information from it. In other words, the system we are interested in is
often not isolated from others. If we were to zoom out and include everything in our system (all the other
interacting parties etc), unitary evolution would be recovered. However, this is usually unfeasible, so we
should write down the rules of how a system evolves when we ignore its (possibly interacting) surroundings.

Suppose the state ρ of a system S evolves according to some linear map, that we call a quantum opera-
tion11, E : L

(
HS
)
→ L

(
HS′)

,

ρ 7→ ρ′ = E(ρ), (2.54)

then what properties must E have? Before we figure this out, let us make what we said in the previous
paragraph slightly more precise. It was remarked that if we were to consider the entire, closed system of this
situation, the evolution of the state of this whole system would be unitary. Suppose this closed system is
the composite system SE, made up of the system we are interested in, S, along with some environment E.
Next, assume that, initially, the state of SE is ρ̃ = ρ ⊗ ρenv, where “env” stands for “environment”. This
means we are assuming that when the system S is first prepared in the state ρ, it is totally separate and
uncorrelated with the environment E12. With all of this, we can think of E as resulting from the action of
some unitary UE on the state ρ̃ of the entire, closed system SE, before tracing out (and therefore ignoring)
the environment:

E(ρ) = TrE

(
UE ρ̃ U

†
E

)
. (2.55)

So, zooming back into our quantum systems of interest, we can define quantum operations axiomatically.
Before we do so, however, we should define a completely-positive (CP) map. Take our map E : L

(
HS
)
→

L
(
HS′)

, for instance. It is positive if, for any positive operator Γ ∈ L
(
HS
)
, E(Γ) ≥ 0. It is completely-positive

if, on top of positivity, when we add any arbitrary quantum system B, the map E(S) ⊗ I(B) : L
(
HSB

)
→

L
(
HS′B′)

is also positive, where I denotes the idenity map. We can now define a quantum operation.

A quantum operation is a map E : L
(
HS
)
→ L

(
HS′)

satisfying the following three conditions:

1. For any density operator ρ ∈ L
(
HS
)
, Tr E(ρ) ∈ [0, 1].

10More on quantum measurement in the next postulate.
11Note that the input and output systems need not be the same.
12This assumption isn’t totally in keeping with the physical world. It is impossible to totally separate the state of one system

from another, there will always be some correlations. Nevertheless, it is good enough for us, as we are only aiming to gain some
intuition about the situation.
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2. It is convex-linear. That is, for any convex combination of density operators
∑
i piρi,

E
(∑

i

piρi

)
=
∑
i

piE(ρi).

3. It is completely-positive.

One particularly important class of quantum operations are called quantum channels. These are subject
to the additional constraint that they are trace-preserving, that is, Ec : L

(
HS
)
→ L

(
HS′)

is a quantum

channel, if it is a quantum operation and, for any density operator ρ ∈ L
(
HS
)
, Tr Ec(ρ) = 1. Therefore,

quantum channels are often called completely-positive trace-preserving (CPTP) maps, with the linearity of
them implicitly assumed.

An alternative, but equivalent, way of describing a quantum operation E mathematically is to use a set
of operators {Ei} called Kraus operators, named after K. Kraus who first noted this equivalence [29, 30]. As
before, let ρ be a density operator in the input space of E , then there exists a set of operators {Ei}, subject
to ∑

i

E†
iEi ≤ I, (2.56)

that allow us to write
E(ρ) =

∑
i

EiρE
†
i . (2.57)

Being a sum of positive operators, the condition in Eq. (2.56) corresponds to the first axiom of quantum
operations: Tr E(ρ) ∈ [0, 1]. If E is CPTP (i.e. a quantum channel), then this condition becomes an equality.
We will primarily use this representation of quantum operations, that we call the Kraus representation.

Examples of quantum operations

Before moving on, let’s consider some examples of quantum operations to gain some intuition, and become
acquainted with the Kraus representation. First, we can describe unitary evolution in this formalism. We
saw earlier that a density operator ρ evolves as ρ 7→ UρU† for some unitary operator U . In our new language,
we can define the corresponding quantum operation as

U(ρ) = UρU†, (2.58)

from which we can see there is just one Kraus operator: U . Further, this operation is trace-preserving since
Eq. (2.56) in this scenario is U†U = I (as U is unitary).

Another example is that of Pauli channels [31]. In general, a Pauli channel P : L(Hqubit) → L(Hqubit),
maps qubit states to qubit states as follows

P(ρ) = p0ρ+ pxσxρσ
†
x + pyσyρσ

†
y + pzσzρσ

†
z, (2.59)

for any density operator ρ ∈ L(Hqubit), such that p0 + px + py + pz = 1, pi ≥ 0. So, in this case, the set
of Kraus operators is {√p01,√pxσx,√pyσy,√pzσz}, and, as the name suggests, Pauli channels are trace
preserving, since

p01
†
1 + pxσ

†
xσx + pyσ

†
yσy + pzσ

†
zσz = (p0 + px + py + pz)1 = 1. (2.60)

We can go further with this Pauli channel example and see how it can be represented as a unitary operator
on some larger state space. In doing so, we get to use some of the other ideas and techniques of this section.
For simplicity, let’s take p0 = px = 1/2 and py = pz = 0, and suppose the initial state of the system S is the
pure state ρψ = |ψ⟩⟨ψ|. Then to achieve the operation

P̃(ρψ) =
1

2
ρψ +

1

2
σxρψσ

†
x, (2.61)

we, first, extend our system to one of two qubits, with Hilbert space HS
qubit ⊗ HE

qubit and prepare the

additional system E in the state |0⟩E . Then, let’s perform the unitary represented by the circuit in Fig. 2.8.
This updates the state of the extended system as follows
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S

E H

Figure 2.8: Unitary on extended state space.

|Γi⟩SE := |ψ⟩S ⊗ |0⟩E 7→ |Γf⟩SE :=
1√
2

(
|ψ⟩S ⊗ |0⟩E + σx|ψ⟩S ⊗ |1⟩E

)
. (2.62)

Following Eq. (2.55), if we take ΓSEf := |Γf⟩⟨Γf|SE , and trace out the extra system E, we obtain the results

of the Pauli channel P̃:

TrE
(
ΓSEf

)
=

1

2
ρψ +

1

2
σxρψσ

†
x. (2.63)

2.2.4 Interlude: classical probability and information

Before continuing on with the postulates, we briefly state some ideas from classical probability and informa-
tion theory that we use in this work, following Ref. [22]. Suppose A is some event with possible outcomes
{ai}. We write the probability of ai occurring as P (ai), such that P (ai) ∈ [0, 1] and

∑
i P (ai) = 1. Now,

suppose another event B has possible outcomes {bj}, then the probability of ai and bj occurring is written
as P (ai, bj). We can recover the probability of each of these outcomes occurring separately using

P (ai) =
∑
j

P (ai, bj), (2.64a)

P (bj) =
∑
i

P (ai, bj). (2.64b)

If the events A,B are independent from one another, P (ai, bj) = P (ai)P (bj), else, they are related as follows:

P (ai, bj) = P (bj |ai)P (ai), (2.65a)

P (ai, bj) = P (ai|bj)P (bj). (2.65b)

Here, P (ai|bj) denotes a conditional probability and corresponds to the probability of obtaining the outcome
ai given that the outcome of B was bj [and similarly for P (bj |ai)]. From these two equations, we can write
down Bayes’ theorem:

P (ai|bj) =
P (bj |ai)P (ai)

P (bj)
. (2.66)

The information associated with an event A with outcomes {ai} is given by

H(A) = −
∑
i

P (ai) logP (ai), (2.67)

where we will use log ≡ log2 throughout. One situation to note is that of a two-outcome event. Suppose
an event A has possible outcomes {a0, a1} such that P (a0) = p ∈ [0, 1], and thus P (a1) = 1 − p. Then the
binary entropy is denoted by h(p):

h(p) = −p log p− (1 − p) log(1 − p). (2.68)

Lastly, again, without going into any detail, the mutual information between two events A,B with respective
outcomes {ai}, {bj} is given by

H(A : B) = H(A) +H(B) −H(A,B), (2.69)

where
H(A,B) = −

∑
i,j

P (ai, bj) logP (aj , bj) (2.70)

is the information associated with the events A and B.
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2.2.5 Measurement in quantum mechanics

The final postulate describes how information about a quantum system is extracted, via the process of
quantum measurement, and what happens to the state of the system when we do so. We deviate slightly
from Ref. [17] when writing down this postulate.

Postulate 3
A quantum measurement on a quantum system S is described by a set of quantum operations
M =

{
Mm : L

(
HS
)
→ L

(
HS′)}

, such that
∑
mMm is CPTP. Each possible outcome of

the measurement is given by the index m of the corresponding quantum operation Mm, and
the probability of obtaining a measurement outcome m, given that S was prepared in the
state ρ, is given by the (generalised) Born rule: P (m|ρ) = TrMm(ρ).

We call M a quantum instrument [12, 32], and M is a sufficiently general description of a quantum measure-
ment to, not only produce the relevant measurement statistics, but also describe how the state of the system
changes during such a measurement. That is, if a measurement (described by M) is performed and an
outcome of m obtained, then if the state of the system immediately prior to the measurement is ρ ∈ L

(
HS
)
,

it updates as follows:

ρ 7→ Mm(ρ)

TrMm(ρ)
. (2.71)

If the measurement is performed but the outcome unknown, the state of the system is updated as

ρ 7→
∑
m

Mm(ρ). (2.72)

This description of a quantum measurement can be rewritten in the Kraus representation. That is, for
each outcome m of M, the corresponding operation Mm can be decomposed as follows:

Mm(ρ) =
∑
i

M
(m)
i ρM

(m)
i

†
, (2.73)

such that the Kraus operators
{
M

(m)
i

}
satisfy

∑
i,m

M
(m)
i

†
M

(m)
i = I. (2.74)

This corresponds to the requirement that
∑
mMm be CPTP in order to ensure that the probabilities

P (m|ρ) = TrMm(ρ) sum to unity. If this wasn’t the case, there would be some other possible outcome
unaccounted for. Note that it follows that ∑

i

M
(m)
i

†
M

(m)
i ≤ I, (2.75)

which corresponds to the definition of a quantum operation, as we’d hope since Mm is one.

In the circuit picture, a measurement on some system S is represented as shown in Fig. 2.9. In this thesis

M
S

Figure 2.9: Circuit representation of a measurement M.

we will not normally need the full generality of quantum instruments, so let us consider some specific classes
of quantum measurements.
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Projective measurements and observables

In the original axiomatic formulations of quantum mechanics, this measurement postulate was formulated
in terms of observables, which are the properties of quantum systems one might hope to access information
about, for example position, momentum, spin etc. It was postulated that such observables are represented
by Hermitian operators (really self-adjoint operators, which for our finite-dimensional purposes, are the same
thing). Suppose OA is an observable of a quantum system S, such that it is represented by the Hermitian
operator A. In this framework, if someone were to measure this observable OA of S, then the possible
outcomes of this measurement correspond to the eigenvalues {λi} of A. This gives us some intuition behind
the choice of Hermitian operators to represent observables. Namely, their eigenvalues are real, which is a
quality we’d hope for in our measurement outcomes.

Now, to find out the probability of measuring an outcome λi, note that, since A is a Hermitian operator,
it has a complete13 orthonormal set of eigenvectors {|λi⟩}. The Born rule then gives us the probability of
obtaining λi when measuring a system S, initially in the state ρ:

P (λi|ρ) = ⟨λi|ρ|λi⟩ = Tr(|λi⟩⟨λi|ρ). (2.76)

Further, having measured the outcome λi, the state of the system “collapses” to the corresponding eigenstate:

ρ 7→ |λi⟩⟨λi|. (2.77)

It is from this discussion of observables, particularly in relation to the orthogonality of eigenstates of
the corresponding operator, that we define a projective measurement. In what follows, we will assume the
system we are measuring is given by S and has the associated Hilbert space H. A projective measurement
[or a projection-valued measure (PVM)] is a set of operators ΠPVM = {Pj} ⊂ L(H) satisfying

Pj ≥ 0, ∀j (2.78a)∑
j

Pj = I, (2.78b)

PjPk = δjkPj , ∀j, k. (2.78c)

Here, just as an eigenstate |λi⟩⟨λi| corresponded to a measurement outcome of λi
14, each projector Pj ,

corresponds to the outcome j of the measurement described by ΠPVM. Indeed, given a system prepared in
the state ρ, the probability of obtaining a measurement outcome j is once again given by the Born rule:

P (j|ρ) = Tr(Pjρ). (2.79)

Similarly, due to the orthogonality of the elements of ΠPVM, if we get an outcome j, the state of the system
is postulated to be updated as follows [33, 34]:

ρ 7→
PjρP

†
j

Tr(Pjρ)
, (2.80)

and, in the event that we do not know the outcome of the measurement,

ρ 7→
∑
j

PjρP
†
j . (2.81)

Projective measurements are related to the quantum instruments above in that each quantum operation
Mm is described by a single Kraus operator Pm.

The first two conditions [Eq. (2.78a,b)] in the definition of a PVM are well motivated physically. With the
help of Eq. (2.79), we can see that the requirement that projectors be positive comes from the requirement
of probabilities being positive. Further, the completness condition [Eq. (2.78b)] ensures the measurement
probabilities sum to one. Having said this, there is no clear reason as to why the third condition, Eq. (2.78c),
should be true. This leads us to our next class of quantum measurements: positive operator-valued measures
(POVMs).

13In the sense of Eq. (2.10).
14Ignoring some intricacies to do with degenerate eigenvalues.
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Positive operator-valued measures (POVMs)

A POVM is a set of operators ΠPOVM = {πi} ⊂ L(H) satisfying the following

πi ≥ 0, ∀i (2.82a)∑
i

πi = I. (2.82b)

An alternate way of expressing the positivity of an operator A ∈ L(H) is as follows:

A ≥ 0 ⇐⇒ ⟨ψ|A|ψ⟩ ≥ 0, ∀|ψ⟩ ∈ H. (2.83)

A POVM can be used to describe the measurement of a system S, such that we associate the operator (or
POVM element, as we will often call it) πi with the measurement outcome i. Similarly to the PVM case,
given a system prepared in the state ρ, the probability of obtaining an outcome i is given by

P (i|ρ) = Tr(πiρ). (2.84)

It turns out that any physical measurement can be described as a POVM, at least in terms of measurement
statistics. What is not included in the POVM formalism, however, is how the state of a system is updated
when a measurement is performed on it. In other words, a POVM doesn’t care how a measurement is
performed, it only worries about the probabilities that result from it. So, when using a POVM to describe
a measurement, one has to choose how the state updates because of it. The experimental implementation
may decide this, but there is one choice that is particularly useful in this work. That is, given a POVM {πi}
the minimally disturbing measurement is represented by the set of Kraus operators {√πi} [34]15. So, if a
measurement outcome of i is obtained when measuring a state ρ,

ρ 7→
√
πiρ

√
πi

†

Tr(πiρ)
, (2.85)

or, if the outcome is unknown,

ρ 7→
∑
i

√
πiρ

√
πi

†
. (2.86)

In this minimally disturbing scenario, we can relate the quantum operations of a quantum instrument to the
POVM elements as follows:

Mi(ρ) =
√
πiρ

√
πi

†
. (2.87)

We can go in the other direction though, that is, start with some quantum instrument M = {Mm},

described by the Kraus operators {M (m)
i }, and construct a POVM {πm}. This can be done by defining

πm :=
∑
i

M
(m)
i

†
M

(m)
i . (2.88)

From this, we can see that the POVM conditions [Eq. (2.82)] are satisfied, and πm corresponds to the same
measurement outcome as Mm.

Physically, it may not be clear how to carry out a POVM. Our intuition about measurement is often
linked to physical observables, the measuring of which corresponds to projective measurements. Indeed,
current forms of quantum computers access information from the processed quantum states via single qubit
(computational basis) projective measurements. So is there any way to carry out, physically, these more
abstract measurements in the form of POVMs? The answer, courtesy of Naimark’s dilation theorem [35,
36], turns out to be yes. This theorem also gives us the blueprint as to how to do this.

15One measure of disturbance is related to the fidelity, which is a measure of how “similar” two states are. For two states

ρ, σ, the fidelity between them is given by F (ρ, σ) =
(
Tr

√√
ρσ

√
ρ
)2

. So if a measurement is performed on a state ρ, and the
post measurement state is ρ′, then one measure of the disturbance caused by this measurement is D = 1− F (ρ, ρ′).
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Theorem 2.2.1 (Naimark [36]). For any POVM {πi} on a Hilbert space HS, there exists a Hilbert space
HA, a pure state σA ∈ L

(
HA
)
, a unitary operation U ∈ L

(
HS ⊗HA

)
, and a projective measurement {Pi}

on HA such that
πi = TrA

[
(IS ⊗ σA)U†(IS ⊗ Pi)U

]
. (2.89)

The converse statement is also true.

A proof of this theorem can be found in Ref. [36].
To gain some intuition about this, consider using this theorem to measure some system S, initially in the

state ρS ∈ L
(
HS
)
. In performing the POVM {πi}, the probability of an outcome i is given by

P (i) = Tr(ρSπi) = TrS

(
ρS TrA

[
(IS ⊗ σA)U†(IS ⊗ Pi)U

])
= TrSA

[
(ρS ⊗ IA)(IS ⊗ σA)U†(IS ⊗ Pi)U

]
= Tr

[
U(ρS ⊗ σA)U†(IS ⊗ Pi)

]
= Tr

[
(IS ⊗ Pi)U(ρS ⊗ σA)U†(IS ⊗ Pi)

]
, (2.90)

where in the last inequality, we used the fact that P 2
i = Pi. So we can think of carrying out the POVM {πi}

on a system S, initially in the state ρS , by first, extending the system to include some ancilla A, initially in
the pure state σA:

ρS → ρS ⊗ σA. (2.91)

Following this, we evolve the entire system SA according to the unitary U

ρS ⊗ σA → U(ρS ⊗ σA)U†, (2.92)

after which a projective measurement {Pi} on the ancilla system A is performed:

U(ρS ⊗ σA)U† →
∑
i

(IS ⊗ Pi)U(ρS ⊗ σA)U†(IS ⊗ Pi). (2.93)

Naimark’s theorem says that there exists a unitary U and a projective measurement {Pi} such that the
outcome j of {Pi}, corresponds to the outcome j of the POVM {πi}. Further, since the only physical
measurement is occuring on an ancilla system, the state of the system we are interested in can survive and
evolve according to the rules of quantum instruments. The choice of U and {Pi} dictate this evolution:

ρS →
∑
i

TrA

[
(IS ⊗ Pi)U(ρS ⊗ σA)U†(IS ⊗ Pi)

]
. (2.94)

POVMs will be our primary way of describing measurements in this thesis. So let’s become better
acquainted with them by considering their application to the problem of quantum state discrimination
(QSD).

2.2.6 Quantum state discrimination (QSD)

Suppose there is someone, Alice, who prepares a quantum system in one state from the set {ρi} with
probability {pi}. If she then sends it to another party, Bob, who knows the possible states, and their
respective probabilities of preparation, what measurement should Bob perform to best guess what state he
received? This is the problem of quantum state discrimination [37–39]: what measurement {πi} (usually a
POVM) should we perform to distinguish between the states {ρi}? Of course, it need not be formulated
as this game between two parties, quantum state discrimination has far reaching applications in quantum
information science, from quantum cryptography [4, 40] to quantum error correction [41].

It is usually the goal to construct a measurement {πi} that optimally discriminates between the states
{ρi}. However, different situations often call for different figures of merit when it comes to the optimality
of a measurement. Some well studied options are those of unambiguous discrimination [42–44], maximum
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confidence [37, 45, 46], or in terms of mutual information [38]. However, we will consider, perhaps the oldest
figure of merit: minimum error [47, 48].

Minimum error QSD concerns the minimisation of the probability of misidentifying any of the states.
Equivalently, the aim is to maximise the probability of correctly identifying the states. More explicitly,
suppose we aim to distinguish between the states in the set {ρi}, such that each state ρi is prepared with
probability pi (we will often call pi priors). Then, in QSD, under the minimum error figure of merit, we aim
to find a POVM {πi} that minimises

Perror =
∑
i

∑
j ̸=i

piP (j|ρi) =
∑
i

∑
j ̸=i

pi Tr(πjρi), (2.95)

or equivalently, maximises the rate of a successful classification

Psucc =
∑
i

piP (i|ρi) =
∑
i

pi Tr(πiρi). (2.96)

Note that we have described our measurement so that the POVM element πi corresponds to a measurement
outcome i, that says the system was prepared in the state ρi. This is why we take the conditional probability
P (i|ρi) to correspond to the probability of successfully identifying the prepared state to be ρi. In this work we
will call such a minimum error measurement {πi} an optimal measurement, or an optimal POVM, implicitly
assuming this is in relation to the minimum error figure of merit.

So how do we find such an optimal POVM? Unfortunately, in general there is no set method16, but
there are conditions that optimal POVMs satisfy [47, 51, 52]. Suppose we are once again presented with the
problem of distinguishing the states {ρi} with corresponding priors {pi}. Then the necessary and sufficient
conditions that the optimal measurement {πi} satisfies are given by∑

i

piρiπi − pjρj ≥ 0, ∀j, (2.97a)

πi(piρi − pjρj)πj = 0, ∀i, j. (2.97b)

This first condition can be shown to be both necessary and sufficient, whilst the second, being consequence of
the first, is necessary but not sufficient17. The details of the necessity and sufficiency of these conditions can
be found in Ref. [54]. In this work, we will usually come up with a candidate for an optimal measurement,
and use the first condition (which is both necessary and sufficient) to prove its optimality. It should be
noted that, in general, the optimal POVM is not unique. For example, and following Ref. [55], consider the
problem of discriminating between the qubit states ρ0 = |0⟩⟨0|, ρ1 = |1⟩⟨1|, ρ+ = |+⟩⟨+|, ρ− = |−⟩⟨−|, each
prepared with probability 1/4. Then {π0/1 = |0/1⟩⟨0/1|, π± = 0} and {π0/1 = 0, π± = |±⟩⟨±|} are both
optimal POVMs.

Although there is no general method for finding the optimal measurement in a quantum state discrimi-
nation problem, there are certain classes of scenarios that do allow for this [48, 56, 57]. Further, often thanks
to properties such as symmetry in the set of possible states {ρi}, there are a range of examples for which
the optimal measurement is known [47, 58–63]. Let’s briefly consider two of them.

Two pure states

Let |ψ0⟩, |ψ1⟩ be arbitrary (in general, non-orthogonal) pure states of some quantum system prepared with
probabilities p0, p1 respectively. Our task is to find the optimal POVM {π0, π1} that distinguishes between
them. To do this, define ρi = |ψi⟩⟨ψi| for i = 0, 1, and let’s consult the probability of successfully distin-
guishing them:

Psucc = p0 Tr(ρ0π0) + p1 Tr(ρ1π1). (2.98)

Using the completeness of {π0, π1}, note that π1 = I− π0, meaning we can rewrite Psucc as

Psucc = p1 + Tr
[
(p0ρ0 − p1ρ1)π0

]
. (2.99)

16At least analytically. There exist methods to do so numerically: namely, semidefinite programming [49, 50].
17Highlighted by the (generically) suboptimal POVM {πj = I, πk ̸=j = 0} satisfying Eq.(2.97b) [53].
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We can see from this that, in order to maximise the probability of success, we need to find a π0 that
maximises the trace term in Eq. (2.99). This occurs when π0 projects the operator p0ρ0 − p1ρ1 onto the
eigenspace corresponding to its largest positive eigenvalue. Unless they are equivalent (i.e. differ by some
global phase), |ψ0⟩, |ψ1⟩ span a two-dimensional space. So, without loss of generality, we can define an
orthonormal basis {|a⟩, |b⟩} such that

|ψ0⟩ =
1√
2

(√
1 + |⟨ψ0|ψ1⟩||a⟩ +

√
1 − |⟨ψ0|ψ1⟩||b⟩

)
, (2.100a)

|ψ1⟩ =
1√
2

(√
1 + |⟨ψ0|ψ1⟩||a⟩ −

√
1 − |⟨ψ0|ψ1⟩||b⟩

)
. (2.100b)

Following some algebra, we find the eigenvalues of p0ρ0 − p1ρ1 to be

λ± =
1

2

(
p0 − p1 ±

√
1 − 4p0p1|⟨ψ0|ψ1⟩|2

)
, (2.101)

with corresponding eigenvectors

|λ±⟩ =
1√
2

(|a⟩ ± |b⟩). (2.102)

Thus, the optimal success rate [found using Eq. (2.99) and the largest eigenvalue λ+] is [47]:

Psucc =
1

2

(
1 +

√
1 − 4p0p1|⟨ψ0|ψ1⟩|2

)
, (2.103)

which is achieved using

π0 = |λ+⟩⟨λ+|, (2.104a)

π1 = |λ−⟩⟨λ−|. (2.104b)

Notice that, in this case, the optimal POVM is a projective measurement, which we will sometimes call
the Holevo-Helstrom measurement, named after the founders of the conditions in Eq. (2.97) [47, 51]. Note an
important feature of quantum state discrimination: non-orthogonal quantum states cannot be distinguished
with certainty.

Trine states

Our second example illustrates how symmetry in a set of quantum states can act as a guide when constructing
our optimal measurement. Suppose we are tasked with distinguishing the following, equiprobable qubit
states:

|ψ0⟩ = |0⟩, (2.105a)

|ψ1⟩ =
1

2
(|0⟩ −

√
3|1⟩), (2.105b)

|ψ2⟩ =
1

2
(|0⟩ +

√
3|1⟩), (2.105c)

where {|0⟩, |1⟩} is the computational basis defined in Eq. (2.29). These are known as the trine states and
note that they are related to one another via the unitary RY (π/3), defined in Eq. (2.47). It turns out that
an optimal measurement shares this symmetry, and is made up of the operators

π0 =
2

3
|0⟩⟨0|, (2.106a)

π1 =
1

6
(|0⟩ −

√
3|1⟩)(⟨0| −

√
3⟨1|), (2.106b)

π2 =
1

6
(|0⟩ +

√
3|1⟩)(⟨0| +

√
3⟨1|). (2.106c)

We can see that, unlike in the case of two pure states, this optimal measurement is a POVM, but not a
projective measurement (PVM). Indeed it has been noted more generally how useful symmetry can be in
constructing an optimal measurement [58, 59]. We will make heavy use of this observation throughout this
work.
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2.2.7 Semidefinite programming

As we noted, in general, it is a non-trivial task to find an optimal POVM in a QSD problem. A tool that we
can use to aid in our efforts, both analytically and numerically is that of semidefinite programming (SDP18).
Following Ref. [50], in general, a semidefinite program is a constrained optimisation problem in a Hermitian
operator variable X. Given a Hermitian operator A, and sets of Hermitian operators {Bi}mi=1, {Cj}nj=1, an
SDP can be written as follows:

max Tr(AX)

subject to Φi(X) = Bi, i = 1, . . . ,m,

Γj(X) ≥ Cj , j = 1, . . . , n,

(2.107)

where Φi, Γj are Hermiticity preserving linear maps. That is, they are linear and satisfy Φi(X
†) = Φ†

i (X),

Γj(X
†) = Γ†

j(X) for any operator X. We call this a primal SDP, and associated with is a dual SDP
corresponding to a minimisation problem. Full details can be found in Refs. [49, 50]

On one hand, the primal and dual programs often allow for analytical values and bounds to be derived for
a given optimisation problem. But on the other, there are many efficient numerical approaches known to solve
them. Therefore, if a constrained optimisation problem can be formulated as an SDP, there are numerical
tools out there to help us find the solution. One such problem is that of quantum state discrimination.
Suppose we are tasked with finding a POVM {πi} that discriminates between the states {ρi} with priors
{pi}, whilst minimising the probability of error (or maximising the probability of success). Then we can
formulate this as an SDP as follows:

max Psucc =
∑
i

pi Tr(πiρi)

s.t.
∑
i

πi = I,

πi ≥ 0, ∀i,

(2.108)

where “s.t.” stands for “subject to”. In general, being a type of optimisation problem, SDPs are hugely
useful throughout quantum information science and beyond, but since we use them sparingly in this work,
and only for their numerical qualities, we refer the reader to the aforementioned references for more in depth
discussion.

2.3 Groups and representations

In this section we lay out, briefly, the basics of group and representation theory, before going on to discuss
an important result for our work: Schur-Weyl duality. We end by briefly introducing the Haar measure.
Unless stated otherwise, we follow the following texts [64–68].

2.3.1 Elements of group theory

We begin with the definition of a group.

Definition 2.3.1. A group is a double (G, ∗), made up of a set G together with a binary operation ∗ :
G×G→ G satisfying the following three axioms:

1. For any a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. There exists an element e ∈ G called the identity such that e ∗ a = a = a ∗ e, for all a ∈ G.

3. For any a ∈ G there exists a unique inverse element a−1 ∈ G such that a−1 ∗ a = e = a ∗ a−1.

18We take SDP as an acronym for both semidefinite programming, and semidefinite program.
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We will usually call G a group, specifying the group operation only if necessary. Also, unless the binary
operation is unclear, we will write a ∗ b as ab, often calling this the product of a and b, or a multiplied by b.
Of course, ∗ need not be multiplication in the traditional sense, it could be addition, matrix multiplication
or cycle composition, to name a few. Two elements a, b of a group G are said to commute if ab = ba.

Definition 2.3.2. Let G be a group. A subset H of G is a subgroup of G, written as H ≤ G, if it satisfies
the following:

1. H ̸= ∅.

2. a, b ∈ H =⇒ ab ∈ H.

3. a ∈ H =⇒ a−1 ∈ H.

In words, a subgroup H of G is a nonempty subset of G that is a group under the same binary operation as
G.

Definition 2.3.3. For any H ≤ G with group operation ∗, and let g ∈ G, a left coset of H in G is the set

gH := {g ∗ h : h ∈ H}.

Likewise, the right coset is Hg := {h ∗ g : h ∈ H}.

It turns out that the set of all left (or right) cosets of H in G forms a partition of G. The reason for this is
that left cosets can be thought of equivalence classes with respect to the following equivalence relation on G:

g ∼ g′ ⇐⇒ g′ ∈ gH, (2.109)

for any g, g′ ∈ G, and as we saw earlier, the set of equivalence classes forms a partition on the corresponding
set.

Definition 2.3.4. Let (G, ∗) and (H, ·) be groups. A group homomorphism is a map φ : G→ H satisfying

φ(a ∗ b) = φ(a) · φ(b),

for all a, b ∈ G. If φ is also bijective, we call it an isomorphism and say G and H are isomorphic, written
G ∼= H.

In words, a homomorphism between groups preserves the relationships between group elements.

Examples

There are two examples of groups that are particularly important in this thesis. First, the symmetric group
on n := {1, 2, . . . , n}, denoted Sn. This is the group of all possible permutations of the elements in n. We
will represent the elements of Sn as cycles which can be “multiplied” together via cycle composition19. For
more detail on the symmetric group and cycles, see Ref. [69], but for now, let’s just consider the example of
S3 to understand how it works a little better. Being a finite group, we can write S3 explicitly in terms of its
cycles:

S3 = {e, (12), (23), (13), (123), (132)}, (2.110)

where e is the identity cycle. This group permutes the elements of {1, 2, 3}. For example if σ = (12), then
σ(1) = 2, σ(2) = 1 and σ(3) = 3. We can see how the elements of S3 multiply together (or, more precisely,
compose) by consulting the multiplication table (Table 2.1). A subgroup of Sn that we’ll use in this work is
Sn−1, which we take to be the group of permutations of the set {1, 2, . . . , n− 1} ⊂ n.

The second group of importance is the special unitary group SU(d,C), defined in Eq. (2.5) such that the
group operation is matrix multiplication. In this thesis, we will exclusively use the d = 2 case: SU(2) :=
SU(2,C).

19That is, the group operation is cycle composition.
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σ e (12) (23) (13) (123) (132)
e e (12) (23) (13) (123) (132)
(12) (12) e (123) (132) (23) (13)
(23) (23) (132) e (123) (13) (12)
(13) (13) (123) (132) e (12) (23)
(123) (123) (13) (12) (23) (132) e
(132) (132) (23) (13) (12) e (123)

Table 2.1: Multiplication table of the group S3.

2.3.2 Elements of representation theory

Representation theory allows us to express group elements as linear operations.

Definition 2.3.5. A representation of a group G is a pair (D, V ), such that V is a complex vector space
and D : G→ GL(V ) is a group homomorphism.

The dimension of the representation (D, V ) is given by the dimesnion of the vector space V . As mentioned
earlier, we will often have a particular basis in mind when thinking about linear transformations, so we
will usually be considering matrix representations. In this picture, D is a group homomorphism that takes
elements of G to (invertible) matrices acting on V :

g ∈ G 7→ D(g) ∈ GL(d,C), (2.111)

where d = dimV .

Definition 2.3.6. A representation (D, V ) of a group G is called a trivial representation if D(g)|v⟩ = |v⟩
for all g ∈ G, |v⟩ ∈ V . If this is not the case, we will often call (D, V ) non-trivial.

If a trivial representation is irreducible (a concept we define later), it is one-dimensional.

Definition 2.3.7. Two representations (D, V ), (D′, V ′) of a group G are equivalent if there exists an in-
vertible operator S such that, for every g ∈ G,

D′(g) = SD(g)S−1.

If this is the case, we use the notation D(G) ≃ D′(G).

If V = V ′, then D(G) and D′(G) are related via a change of basis.

Definition 2.3.8. A representation (D, V ) of G, is a unitary representation if, for every g ∈ G, D(g) is
unitary.

All of the representations we encounter in this work will be unitary.

Let’s consider an example. Suppose our group is S3 and we hope to construct a representation (D, V )
such that our vector space V is C3. Then we can write down the elements of D(S3) as 3 × 3 matrices:

D[e] =

1 0 0
0 1 0
0 0 1

 , D[(123)] =

0 0 1
1 0 0
0 1 0

 , D[(132)] =

0 1 0
0 0 1
1 0 0

 ,

D[(12)] =

0 1 0
1 0 0
0 0 1

 , D[(23)] =

1 0 0
0 0 1
0 1 0

 , D[(13)] =

0 0 1
0 1 0
1 0 0

 .

(2.112)

The fact that this produces the multiplication table in Table 2.1 [with σ → D(σ)], confirms that this is a
(three-dimensional) representation of S3.
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Reducibility

Of particular importance are irreducible representations (irreps). We define them via the definition of
reducible representations.

Definition 2.3.9. A representation (D, V ) of a group G is called reducible if there exist representations of
G, (D1, V1), (D2, V2), where V1, V2 ̸= ∅, such that

D(g) ≃ D1(g) ⊕D2(g),

for all g ∈ G. The spaces V1, V2 ⊂ V are called invariant subspaces with respect to G.20 A representation is
called irreducible if it is not reducible.

In this work, we will reserve lowercase bold letters for irreps, using upper case bold letters otherwise.
We look to Ref. [70] to see how a reducible (matrix) representation decomposes in general. Suppose the

set Ĝ contains the labels λ of every inequivalent irrep (dλ, Vλ) of a group G. Then, for any reducible (matrix)
representation (D, V ) of G, and for any g ∈ G,

D(g) ≃
⊕
λ∈Ĝ

Imλ
⊗ dλ(g). (2.113)

where the two sides of this expression are related via some change of basis. The reason for the mλ-dimensional
identity matrix Imλ

making an appearance here is that a reducible representation can have more than one
copy of an irrep: i.e. mλ ≥ 0 copies21. We therefore call mλ the multiplicity of the irrep (dλ, Vλ). The
vector space V decomposes in a similar way, via the same change of basis as in Eq. (2.113):

V ∼=
⊕
λ∈Ĝ

Cmλ ⊗ Vλ. (2.114)

This block diagonal form hints at a useful fact about invariant subspaces. Namely that the invariant subspaces
corresponding to inequivalent irreps are orthogonal to one another. As always, we refer the reader to the
aforementioned references for proof of this.

Let’s now consider one of the most useful lemmas for this work: Schur’s Lemma.

Lemma 2.3.1 (Schur). Suppose (d, V ) is a d-dimensional irrep of a group G, and let A ∈ L(V ) be some
operator (or d× d matrix) on V . If

[A,d(g)] = 0

for all g ∈ G, then A is a constant operator (or matrix) on V : A ∝ I.

Note that we sometimes use alternate language: if A commutes with d(g) [or the whole set d(G)], then
we often say A is invariant under d(g) [or d(G)]. Here, we have used the commutator bracket on linear
operators:

[A,B] := AB −BA, (2.115)

such that A,B ∈ L(V ). There is a similar bracket, called the anticommutator bracket

{A,B} := AB +BA. (2.116)

Using Eq. (2.113), a similar statement about reducible representations can be made. Suppose (D, V ) is a
reducible representation of a group G with decomposition given in Eq. (2.113), then

[D(g), A] = 0, ∀g ∈ G =⇒ A ≃
⊕
λ∈Ĝ

Λmλ
⊗ Iλ, (2.117)

where Λmλ
is some diagonal matrix whose dimension corresponds to the multiplicity mλ of the irrep (dλ, Vλ),

and Iλ denotes the identity on the invariant subspace Vλ. In words, since A commutes with D(G), there

20We may also call them G-invariant, or just invariant.
21When mλ = 0, Imλ = 0.
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is a basis in which it can be written as the direct sum of constant matrices on each irreducible invariant
subspace.

Let’s apply Schur’s Lemma to an example. Let G be a (finite) group and (d, V ) be an irrep of it. We
can take any operator ρ ∈ L(V ) and turn it into a constant operator by doing the following:

ρ→
∑
g∈G

d(g) ρd†(g). (2.118)

Schur’s Lemma allows us to see quickly that since the right hand side commutes with d(G), it must be
constant. This mapping allows us to see instantly that the Pauli channel, described in Eq. (2.59), such that
pi = 1/4, turns any state ρ into 1/2, since it is invariant with respect to the Pauli group22, indeed an irrep
of the Pauli group.

2.3.3 Schur-Weyl duality

Schur-Weyl duality is a result linking the irreducible representations of SU(d,C) and Sn.23 In particular, we
focus on SU(2) and two-dimensional Hilbert spaces. For SU(d,C) and d-dimensional vector spaces Cd, we
refer the reader to Ref. [70], and for full generality, to Ref. [66].

Consider a composite system of n qubits in an arbitrary pure state:

|ξ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ ∈ H⊗n, (2.119)

where H is the Hilbert space associated with a single qubit. If U ∈ SU(2), let
(
Q(n),H⊗n) be a representation

of SU(2) that acts on |ξ⟩ as follows:

Q(n)(U)|ξ⟩ = U |ψ1⟩ ⊗ U |ψ2⟩ ⊗ · · · ⊗ U |ψn⟩. (2.120)

Likewise if σ ∈ Sn, let
(
P(n),H⊗n) be a representation of Sn that acts on |ξ⟩ as follows:

P(n)(σ)|ξ⟩ = |ψσ−1(1)⟩ ⊗ |ψσ−1(2)⟩ ⊗ · · · ⊗ |ψσ−1(n)⟩ (2.121)

that is, it shuffles the qubits around according to σ. For instance, if n = 3 and σ = (123), P(3)[(123)]|ψ1ψ2ψ3⟩
= |ψ3ψ1ψ2⟩. It turns out that

(
Q(n),H⊗n) and

(
P(n),H⊗n) are reducible, so let (qλ,Qλ) and (pµ,Pµ) be

the irreducible representations of SU(2) and Sn respectively. As noted in Eq. (2.113), we can write

Q(n)(U) ≃
⊕
λ

Imλ
⊗ qλ(U), (2.122a)

P(n)(σ) ≃
⊕
µ

Inµ
⊗ pµ(σ), (2.122b)

such that U ∈ SU(2), σ ∈ Sn are arbitrary, and mλ, nµ are the multiplicities of the irreps of SU(2) and Sn
respectively.

Now, letting |ψ′
i⟩ = U |ψi⟩ ∀i, since |ψi⟩ ∈ H were arbitrary,

P(n)(σ)Q(n)(U)|ξ⟩ = P(n)(σ)
(
|ψ′

1⟩ ⊗ |ψ′
2⟩ ⊗ · · · ⊗ |ψ′

n⟩
)

(2.123)

= |ψ′
σ−1(1)⟩ ⊗ |ψ′

σ−1(2)⟩ ⊗ · · · ⊗ |ψ′
σ−1(n)⟩ (2.124)

= Q(n)(U)
(
|ψσ−1(1)⟩ ⊗ |ψσ−1(2)⟩ ⊗ · · · ⊗ |ψσ−1(n)⟩

)
= Q(n)(U)P(n)(σ)|ξ⟩, (2.125)

for all U ∈ SU(2), σ ∈ Sn. So, since |ξ⟩ was arbitrary, it follows that[
Q(n)(U),P(n)(σ)

]
= 0, (2.126)

22The Pauli group is defined as {±1,±i1,±σx,±iσx,±σy ,±iσy ,±σz ,±iσz}.
23Actually, it is not just SU(d,C), it also covers the group GL(d,C) and some of its subgroups. However SU(d,C) is most

useful to us.
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for all U ∈ SU(2), σ ∈ Sn. Further, the commutant of Q(n)[SU(2)] is P(n)(Sn) and vice versa [66, 70, 71].
It follows from this that

Q(n)(U)P(n)(σ) = P(n)(σ)Q(n)(U) =
⊕
λ

qλ(U) ⊗ pλ(Sn). (2.127)

This direct sum of representations induces the following decomposition of our n-qubit Hilbert space H⊗n:

H⊗n ∼=
⊕
λ

Qλ ⊗ Pλ, (2.128)

such that the basis that realises this direct sum is called the Schur basis {|λ⟩|qλ⟩|pλ⟩} ⊂ Qλ⊗Pλ. It follows
that the irreps of SU(2) and Sn act on H⊗n as follows:

qλ′(U)
(
|λ⟩ ⊗ |qλ⟩ ⊗ |pλ⟩

)
= δλλ′ |λ⟩ ⊗

[
qλ(U)|qλ⟩

]
⊗ |pλ⟩, (2.129a)

pλ′(σ)
(
|λ⟩ ⊗ |qλ⟩ ⊗ |pλ⟩

)
= δλλ′ |λ⟩ ⊗ |qλ⟩ ⊗

[
pλ(σ)|pλ⟩

]
, (2.129b)

for any U ∈ SU(2), σ ∈ Sn.
It turns out that we can use 2-partitions λ of n to simultaneously label irreps of SU(2) and Sn. We

can write a 2-partition (or just a partition, as we’ll call it from here on) of n as λ = (λ0, λ1), such that
λ0 ≥ λ1 ≥ 0 and λ0 + λ1 = n.24 For an alternative labelling system, note that, by focusing on SU(2) [rather
than SU(d)], we are dealing with the symmetry group of a spin-half particle. This is useful because we can
think of our composite system H⊗n as a composite system of n spin-half particles. All of this motivates
that an alternate way of labelling the irreps of SU(2) and therefore (via Schur-Weyl duality) Sn is with the
use of the total spin of a quantum system. Indeed, writing our partitions of n as λk = (n− k, k), such that
k ≤ n/2, we relate these to the total spin sk via [72]

sk =
n− 2k

2
. (2.130)

So, in this notation,

H⊗n ∼=
⌊n/2⌋⊕
k=0

Qsk ⊗ Psk . (2.131)

We write the Schur basis as {|sk,msk⟩|psk⟩}, where we can think of msk as the z-component of the total
spin sk:

msk ∈ {−sk,−sk + 1, . . . , sk}. (2.132)

To make more sense of the Schur basis, let’s recall the rules of spin addition of spin-half particles: in
particular, s⊗ 1

2
∼=
(
s+ 1

2

)
⊕
(
s− 1

2

)
. Consider the cases of two, three and four spin half particles:(1

2

)⊗2 ∼= 1 ⊕ 0, (2.133a)(1

2

)⊗3 ∼= 3

2
⊕ 1

2
⊕ 1

2
, (2.133b)(1

2

)⊗4 ∼= 2 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0, (2.133c)

respectively. These relations can be calculated iteratively, for example, finding (1/2)⊗3 using (1/2)⊗2:(1

2

)⊗3

=
(1

2

)⊗2

⊗ 1

2
∼=
(
1 ⊕ 0

)
⊗ 1

2
∼=
[(

1 +
1

2

)
⊕
(

1 − 1

2

)]
⊕
(

0 +
1

2

)
∼= 3

2
⊕ 1

2
⊕ 1

2
. (2.134)

Figure 2.10 shows a visual representation of this spin addition. These rules come from the Clebsch-Gordan
decomposition of the Hilbert space of n spin-half particles, which details how H⊗n decomposes into subspaces

24Note that, if we were instead considering SU(d,C), we would consider d-partitions (λ0, · · · , λd).
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Figure 2.10: Visual representation of the addition of n spin-half particles. Nodes correspond to the total
spin sk of the invariant subspaces and vertices are labelled based on how the n node relates to the n − 1
node. Note that the number of particles n is constant vertically, while the value k, which relates to the irrep
labelling partitions λk = (n− k, k) or spin sk, is constant diagonally.

invariant under SU(2) alone. For two, three and four qubits (spin-half particles):

H⊗2 ∼= Q(2)
1 ⊕Q(2)

0 , (2.135a)

H⊗3 ∼= Q(3)
3
2

⊕Q(3)
1
2

⊕Q(3)
1
2

, (2.135b)

H⊗4 ∼= Q(4)
2 ⊕Q(4)

1 ⊕Q(4)
1 ⊕Q(4)

1 ⊕Q(4)
0 ⊕Q(4)

0 , (2.135c)

respectively, where we have included the number of qubits n as an index since Q(n)
s ̸= Q(n′)

s for n ̸= n′.
What Schur-Weyl duality says is that the spaces Qs labelled by the same s, are identical in terms of

how they are affected by qs[SU(2)], but are orthogonal and only differ by some extra, permutation degree of
freedom, sensitive to ps(Sn). Once again for the respective cases of two, three and four qubits, Schur-Weyl
duality says that

H⊗2 ∼=
[
Q(2)

1 ⊗ P(2)
1

]
⊕
[
Q(2)

0 ⊗ P(2)
0

]
, (2.136a)

H⊗3 ∼=
[
Q(3)

3
2

⊗ P(3)
3
2

]
⊕
[
Q(3)

1
2

⊗ P(3)
1
2

]
, (2.136b)

H⊗4 ∼=
[
Q(4)

2 ⊗ P(4)
2

]
⊕
[
Q(4)

1 ⊗ P(4)
1

]
⊕
[
Q(4)

0 ⊗ P(4)
0

]
. (2.136c)

By comparing this with the multiplicities of the SU(2) subspaces Q(n)
s in Eq. (2.135), we can quickly see

that the dimensions of the corresponding Sn subspaces are dimP(2)
1 = dimP(2)

0 = dimP(3)
3
2

= dimP(4)
2 =

1, dimP(3)
1
2

= dimP(4)
0 = 2, and dimP(4)

1 = 3.

By considering spin addition again, there is a natural choice of basis
{∣∣p(n)s

〉}
for Ps [72]. Consider the

visual representation of spin addition depicted in Fig. 2.10. The values of n correspond to the number of
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qubits, and the nodes are labelled by the total spin sk, and therefore correspond to the SU(2) subspaces

Q(n)
sk . The orange numbers are a way of noting which subspace arises from which. Regardless of k, if

s(n) = s(n−1) ± (1/2), then we define the orange numbers by

p̃n :=
1

2
− s(n) + s(n−1). (2.137)

Now, note that each copy of Q(n)
s is orthogonal, and each copy arises by traversing a different path in the

graph in Fig. 2.10. It follows that, since the multiplicity of Q(n)
s and therefore the dimension of P(n)

s is equal

to the number of paths by which Q(n)
s can be reached, we can define an orthogonal basis of P(n)

s as the set

of vectors labelled by the paths to Q(n)
s : ∣∣p(n)s

〉
:= |p̃1, . . . , p̃n⟩. (2.138)

We will often call the Sn component of vectors, states, spaces etc the path component due to this interpre-
tation. For example, consulting Fig. 2.10 for guidance. We can define a basis for the three-dimensional space

P(4)
1 using the vectors:

|0⟩P(4)
1

= |0, 0, 0, 1⟩, (2.139a)

|1⟩P(4)
1

= |0, 0, 1, 0⟩, (2.139b)

|2⟩P(4)
1

= |0, 1, 0, 0⟩, (2.139c)

corresponding to the top, middle and bottom paths to Q(4)
1 respectively. Note that we have included an

extra 0 at the start. This is because the one-particle spin-half space has a one-dimensional subspace P(1)
1/2

attached, whose basis we define as
{
|0⟩P(1)

1/2

}
. We will usually omit the subscripts labelling the Sn subspace

as these path vectors will always be attached to an irrep-labelling vector |sk⟩ or |λk⟩. Further, the number
of qubits will normally be clear by context.

Thinking in terms of spin has been invaluable for gaining intuition about Schur-Weyl duality. It should
be noted however that we will work, both in terms of spin sk and partitions λk. Before moving on, let’s

write down expressions for the dimension of the invariant subspaces Q(n)
sk ,P(n)

sk . First, the dimension of Q(n)
sk

(equivalently Q(n)
λk

) can be found using the fact that the dimension of the space associated with a spin-s
particle is given by d = 2s+ 1. Therefore, recalling Eq. (2.130) that relates λk with sk,

dimQ(n)
sk

≡ dimQ(n)
λk

= n− 2k + 1. (2.140)

Slightly more involved is the dimension of P(n)
sk

[
equivalently P(n)

λk

]
, which is

dimP(n)
sk

≡ dimP(n)
λk

=

(
n
k

)
n− 2k + 1

n− k + 1
. (2.141)

We refer the reader to Refs. [71, 73] for the derivation of this. We can at least be reassured by the sight

of the combinatorial factor nCk since the number of paths in Fig. 2.10 to a subspace Q(n)
λk

is related to the
number k of horizontal steps in the n-step path (including the trivial step to the initial qubit).

Two and three-qubit Schur bases

Let’s write down, explicitly, the25 Schur bases of the Hilbert spaces associated with two particularly important
systems in this work: a two and three-qubit system. First, the Schur basis (that we use) for the two-qubit
Hilbert space,

H⊗2 ∼=
[
Q(2)

1 ⊗ P(2)
1

]
⊕
[
Q(2)

0 ⊗ P(2)
0

]
, (2.142)

25We say “the”, but in general, the Schur basis in not unique. As with any multi-dimensional vector subspace, there is a
choice of bases. This choice is strictly within each invariant subspace though, else the direct-sum-form of the whole space would
be destroyed.
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is given by

Q(2)
1 ⊗ P(2)

1 : |1, 1⟩ = |00⟩,

|1, 0⟩ =
1√
2

(|01⟩ + |10⟩),

|1,−1⟩ = |11⟩,

Q(2)
0 ⊗ P(2)

0 : |0, 0⟩ =
1√
2

(|01⟩ − |10⟩),

(2.143)

where the right hand side is written in the computational basis. Recall that, in the spin picture, the second
component in the kets on the left hand side correspond to ms, the z-component of the spin s. Note the lack
of a path component |p0/1⟩. We will often omit |ps⟩ if the corresponding subspace Ps is one-dimensional.

Likewise, the Schur basis (that we will use) of the three-qubit Hilbert space,

H⊗3 ∼=
[
Q(3)

3
2

⊗ P(3)
3
2

]
⊕
[
Q(3)

1
2

⊗ P(3)
1
2

]
, (2.144)

is given by

Q(3)
3
2

⊗ P(3)
3
2

:

∣∣∣∣32 , 3

2

〉
= |000⟩,∣∣∣∣32 , 1

2

〉
=

1√
3

(|100⟩ + |010⟩ + |001⟩),∣∣∣∣32 ,−1

2

〉
=

1√
3

(|011⟩ + |101⟩ + |011⟩),∣∣∣∣32 ,−3

2

〉
= |111⟩,

Q(3)
1
2

⊗ P(3)
1
2

:

∣∣∣∣12 , 1

2

〉
|1⟩ =

1√
6

(|100⟩ + |010⟩ − 2|001⟩),∣∣∣∣12 ,−1

2

〉
|1⟩ =

1√
6

(−|011⟩ − |101⟩ + 2|110⟩),∣∣∣∣12 , 1

2

〉
|0⟩ =

1√
2

(|100⟩ − |010⟩),∣∣∣∣12 ,−1

2

〉
|0⟩ =

1√
2

(|101⟩ − |011⟩).

(2.145)

where the right hand side is written in the computational basis. Once again, due to the one-dimensionality of

P(3)
3/2, we have ignored the path component of the corresponding basis vectors. Let’s conclude this discussion

by noting how a basis state is updated when an extra spin-half particle is added to the system [72]:

|s,m⟩|p⟩ ⊗
∣∣∣∣12 ,±1

2

〉
→
√
s±m+ 1

2s+ 1

∣∣∣∣s+
1

2
,m± 1

2

〉
|p, 0⟩ ∓

√
s∓m

2s+ 1

∣∣∣∣s− 1

2
,m± 1

2

〉
|p, 1⟩. (2.146)

2.3.4 The Haar measure and integrating over SU(2)

We very briefly introduce the Haar measure so that we have the tools required to integrate over the group
SU(2). This will allow us to integrate over (multi-)qubit states, and therefore consider continuous distribu-
tions of pure states. We do not go into the basics of measure theory, referring the reader to any standard
textbook on the subject, e.g. Refs. [74, 75].

Measure theory allows us, among many other things, to integrate over more general sets than just the
real or complex numbers. In this work we will need to “sum” over every pure qubit state on the Bloch
sphere. Being a continuous set of (pure) states, we will have to somehow integrate over this set. The key to
doing this will be by integrating with respect to the Haar measure µH on SU(2). We do not delve into the
details of the Haar measure here, just stating a definition of it, taken from [76].
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Definition 2.3.10. The Haar measure µH on SU(2) is the unique probability measure satisfying∫
SU(2)

f(U)dµH(U) =

∫
SU(2)

f(UV )dµH(U) =

∫
SU(2)

f(V U)dµH(U), (2.147)

for all V ∈ SU(2) and for all integrable functions f .

Since µH is a probability measure,
∫
SU(2)

dµH(U) = 1. Note that the Haar measure is more general than

presented here, the same definition applies when we replace SU(2) with any compact group.
This concludes our discussion of the background theory. We now have the mathematical and physical

tools required to understand the bulk of this thesis.
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Chapter 3

Measurement disturbance tradeoffs in
three-qubit unsupervised quantum
classification

The contents of this chapter is largely taken directly from our published work, found in Ref. [77].

3.1 Introduction

With large data sets becoming more and more prevalent in almost all parts of the modern world, and
with hopes that quantum technologies and data will soon revolutionise many sectors, applying the ideas of
machine learning to the quantum domain has been an increasingly active line of research. This work has
taken a number of different directions [78]: firstly, using classical machine learning techniques to understand
and analyse quantum systems and phenomena [79, 80]. This is done using the classical data made up, for
instance, from the results output by measuring such quantum systems and processes. There are natural
limitations to the analysis of the quantum world using classical methods due to the fact that the classical
resources required to fully characterise quantum systems and processes scale exponentially with the number
of quantum systems. Indeed, it was this feature that prompted Feynman to suggest the need for quantum
computation in order to simulate a quantum world [81]. The second, and perhaps most heavily studied
flavour of quantum learning is that of using quantum information processing (QIP) techniques with the
hopes of reducing the resources required to perform machine learning tasks on classical data sets [82–91].
Sometimes this involves using quantum techniques to speed up or improve the performance of a particular
subroutine within a quantum algorithm, for example when using quantum annealing to aid in optimisation
[85–87]. Conversely, this sometimes involves quantum algorithms that tackle the whole machine learning
problem, for example when solving linear equations [88], performing linear regression [90] or carrying out
principle component analysis [91].

This chapter, however, concerns a third direction in quantum learning: that of learning about quantum
data by analysing it directly, rather than via the classical data output from some collection of measurements.
Although less studied than the other forms of quantum learning we have discussed, the importance of
considering it is becoming clear [71, 92–99]. Indeed, we are starting to see that there may be benefits
to manipulating and learning about quantum data directly. For example, Huang et al. [99] showed that
analysing the quantum output of an experiment directly using a quantum computer can require exponentially
fewer runs of the experiment than if the classical measurement results were to be analysed instead. But
quantum data is fundamentally different to classical data, and learning strategies are therefore subject to
different, peculiarly quantum limitations, which are not yet well explored. As an example, quantum data
famously cannot be cloned [2, 3], in stark contrast to the classical case. In addition, it is not possible to
extract information about a quantum system without causing disturbance [10]. Measurement strategies must
therefore be carefully chosen and generically (but not always) the globally optimal strategy for any learning

35
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task involves waiting until all data has been received and then performing a joint measurement over all
systems [71, 100–106].

Such considerations thus pose a problem unique to the quantum case: can we learn about a subset of data
without compromising performance on the dataset as a whole? We might expect a measurement-disturbance
type tradeoff between performance on the subset and performance on the whole dataset. In this chapter we
take the first steps towards understanding this tradeoff, studying the simplest case of unsupervised binary
classification of qubit states, with three samples. A binary classification task is one in which the aim is to
assign each sample provided to one of two possible classes, as accurately as possible. Unsupervised means
that there is no labelled training data provided, and the user or algorithm must do as well as possible by
comparing the data samples to each other. We give, analytically, the precise tradeoff between learning about
the first two samples provided and learning about all three samples. This case is simple enough to allow
analytic results, while rich enough to demonstrate the tradeoff. Surprisingly, for a range of strategies on the
first two qubits, it is possible to avoid any reduction in performance on all three.

Our work is related to the problem of sequential observers extracting information about a system [107–
110], however, so far, the literature has mostly considered the case in which sequential observers have access
to the same system. Here, in the learning scenario, we are interested in how measurements on some part
of a system (the first two subsystems in the example considered here) affect measurement on the whole. In
addition, prior work has considered the supervised learning case, in which a labelled training set is provided
and used to induce a function to label test instances. Here it is known that in the limit of many test instances,
global measurements over training and test data are not required for optimal performance, and the training
data may be measured in advance without access to the test data [100]. The unsupervised case is more
complicated, as the algorithm seeks to both learn from and classify each instance provided.

This chapter is structured as follows: in Sec. 3.2 we will begin by discussing what we mean by an unsu-
pervised binary classification of quantum data by considering examples on datasets of two and three qubits.
Next, in Sec. 3.3, we derive the main results of this chapter - the tradeoff between the two classifications.
Then, in Sec. 3.4, we construct a quantum circuit to run this protocol. We run this circuit on a Qiskit
quantum computer simulator and replicate the tradeoff derived in Sec. 3.3. Finally, we end this chapter with
a brief discussion of the results as well as possible future directions this line of research could take.

3.2 Unsupervised classification on two and three-qubit datasets

In this section, we aim to gain some intuition about the quantum learning task we are considering in this
chapter: the unsupervised classification of quantum data. We do this by considering the simplest non-trivial
examples - a binary classification on datasets with two and three qubits. The details of this section are
published in [77].

3.2.1 Optimal classification of two-qubit dataset

Let’s begin by understanding what we mean by the binary classification of a two-qubit dataset. Suppose
we have a dataset consisting of two qubits that can each be in one of two states |φ0⟩, |φ1⟩, then the aim
of a binary classification is to group, or cluster, these qubits into two classes based on their state. So, in
the case of a dataset consisting of two qubits, our first thought may be that, in order to perform a binary
classification, our aim is to distinguish between the following four states (corresponding to each possible
quantum dataset): |φ0⟩|φ0⟩, |φ0⟩|φ1⟩, |φ1⟩|φ0⟩ and |φ1⟩|φ1⟩. However, we are interested in an unsupervised
classification, so this isn’t quite right.

Being unsupervised means that we have no prior information about the state of each element in our
dataset, that is |φ0⟩ and |φ1⟩ are totally unknown (and therefore independent), equiprobable qubit states
[71]. We can deal with this lack of knowledge by writing the possible states of our quantum datasets as the
following mixed states

ρij =

∫
|φi⟩|φj⟩⟨φi|⟨φj | dφ0dφ1, (3.1)

where i = 0, j ∈ {0, 1}, and the integral is with respect to the Haar measure on SU(2), and over the entire
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Bloch sphere1. Note that, when averaging over the Bloch sphere, all information about whether each qubit
is |φ0⟩ or |φ1⟩ is lost and all that remains is information about their relative positions on the Bloch sphere.
This means that ρ00 ≡ ρ11 and ρ01 ≡ ρ10, and our aim is thus to distinguish between the states ρ00 and ρ01,
which tells us something about whether the two samples are the same or different from one another.

Alternatively, if we parameterise our qubits as was done in Eq. (2.32),

|φi⟩ = cos
θi
2
|0⟩ + eiϕi sin

θi
2
|1⟩, (3.2)

where i ∈ {0, 1}, then we can, instead integrate over θi, ϕi as follows:

ρij =
1

16π2

2π∫
0

dϕ0dϕ1

π∫
0

dθ0dθ1 sin θ0 sin θ1 |φi⟩|φj⟩⟨φi|⟨φj |. (3.3)

Here, the normalisation constant 1/(16π2) comes from us integrating over two independent Bloch spheres
(indexed by 0 and 1) each with surface area 4π. Having written this, it turns out that, especially as we
increase the size of our dataset, the previous, “non-parameterised” version of ρij is more convenient to use.

So, how do we write down, explicitly, our two-qubit states ρ00, ρ01? Let’s begin with ρ00. Using Eq. (3.1),
the fact that

∫
dφi = 1 ∀i, and the SU(2) invariance of the Haar measure, notice that, for any U ∈ SU(2),

Q(2)(U)ρ00Q
(2)†(U) = ρ00. (3.4)

To see this, we can rewrite ρ00, perhaps more rigorously, as

ρ00 =

∫
SU(2)

V ⊗2
0 |ψψ⟩⟨ψψ|V ⊗2

0

†
dµ(V0), (3.5)

where |ψ⟩ is some fixed pure qubit state, and µ is the Haar measure on SU(2). This is related to Eq. (3.1)
by noting that |φ0⟩ = V0|ψ⟩ for some V0 ∈ SU(2). The reason for performing this integral with respect to
the Haar measure on SU(2) is that this ensures the states {|φ0⟩ = V0|ψ⟩ : V0 ∈ SU(2)} are uniformly
distributed on the surface of the Bloch sphere, which is what we’re assuming. As we saw in Sec. 2.3.4, a
property of the Haar measure is that, for any integrable function f ,

∫
SU(2)

f(UV )dµ(V ) =
∫
SU(2)

f(V )dµ(V )

for any U ∈ SU(2) [76]. It follows that

Q(2)(U)ρ00Q
(2)†(U) = U⊗2

(∫
SU(2)

V ⊗2
0 |ψψ⟩⟨ψψ|V ⊗2

0

†
dµ(V0)

)
U⊗2†

=

∫
SU(2)

(UV0)⊗2|ψψ⟩⟨ψψ|(UV0)⊗2†dµ(V0)

=

∫
SU(2)

V ⊗2
0 |ψψ⟩⟨ψψ|V ⊗2

0

†
dµ(V0) = ρ00. (3.6)

So, by Schur’s Lemma, there exist bases, for example the Schur basis given in Eq. (2.143), such that

ρ00 = α1I1 ⊕ α0I0, (3.7)

where α0, α1 ≥ 0 by the positivity of quantum states and Is are the identity operators on the spaces Q(2)
s .

Recalling Eq. (2.142), note that the subscripts reference the total spin of the SU(2) invariant subspaces.

However, notice that for any qubit |φ0⟩ = cos θ02 |0⟩ + eiϕ0 sin θ0
2 |1⟩,

|φ0φ0⟩ = cos2
θ0
2
|00⟩ +

1

2
eiϕ0 sin θ0 (|01⟩ + |10⟩) + sin2 θ0

2
|11⟩. (3.8)

1This is a shorthand notation, we write this more rigorously later, in Eq. (3.5).
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So, comparing with Eq. (2.143), |φ0φ0⟩ lives entirely in Q(2)
1 ⊗P(2)

1 . This implies that α0 = 0 and therefore,
by the normalisation of ρ00,

ρ00 =
1

3
I1

=
1

3
(|1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1|) .

(3.9)

Next, for ρ01, notice that,

ρ01 =

∫
|φ0φ1⟩⟨φ0φ1|dφ0dφ1

=

∫
|φ0⟩⟨φ0| ⊗ |φ1⟩⟨φ1|dφ0dφ1

=

∫
|φ0⟩⟨φ0|dφ0 ⊗

∫
|φ1⟩⟨φ1|dφ1

=
1

4
1⊗ 1,

(3.10)

where the last equality is obtained by the invariance of
∫
|φi⟩⟨φi|dφi under Q(1)[SU(2)] (or, more physically,

due to each of the integrals describing a maximally mixed qubit) and where the 1/4 is required for normali-
sation. Therefore, ρ01 is proportional to the identity on the two-qubit Hilbert space H(2), and hence, we can
rewrite it as the identity in the Schur basis:

ρ01 =
1

4
I1 ⊕ I0

=
1

4

(
|1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1| + |0, 0⟩⟨0, 0|

)
.

(3.11)

We can therefore see that our task in an unsupervised binary classification of a two qubit dataset is to
distnguish, as best we can, between the following two states:

ρ00 =
1

3
(|1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1|) , (3.12a)

ρ01 =
1

4

(
|1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1| + |0, 0⟩⟨0, 0|

)
. (3.12b)

So, we can view a classification as a quantum state discrimination problem. That is, in order to classify
our quantum dataset, we must construct a quantum measurement that distinguishes between ρ00 and ρ01.
Note that, from here onward, we will often discuss these classification problems in the language of quantum
measurement problems (e.g. a quantum classification being a quantum measurement).

The optimal quantum measurement that distinguishes between ρ00 and ρ01 was found, by Barnett et al
[92], to be made up of the projectors onto the symmetric (s = 1) and anti-symmetric (s = 0) SU(2) invariant
subspaces respectively:

P+ = |1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1|, (3.13a)

P− = |0, 0⟩⟨0, 0|, (3.13b)

where P+ (P−) is the outcome associated with measuring the state ρ00 (ρ01). Here we use the +/− sub-
scripts rather than 00/01 respectively, anticipating the notation in the later sections of this chapter. This
measurement can be motivated by realising that ρ00 and ρ01 commute with one another, which means they
have a common set of eigenstates. So we take the optimal measurement operators P+, P− to be the (sum
of) projectors onto the eigenstates with the largest eigenvalues of ρ00, ρ01 respectively. Alternatively, it is
the Holevo-Helstrom measurement (see Sec. 2.2.6) for distinguishing between two quantum states [17]. It is
also worth noting an asymmetry in this measurement gives rise to: P (+|ρ00) = 1 but P (−|ρ01) = 1/4. In
other words, the state ρ00 is never misidentified, whereas ρ01 can be.
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Using Eq. (2.96), the maximal probability of successfully classifying two equally-likely, unknown qubits
is calculated as follows:

Psucc =
1

2
[Tr(P+ρ00) + Tr(P−ρ01)], (3.14)

where the 1/2 comes from the two states ρ00, ρ01 being equiprobable. This results in a success rate of

Psucc =
5

8
= 62.5%. (3.15)

To reiterate, what has been derived here is the average probability of success for this task. In reality, two
well defined states |φ0⟩, |φ1⟩ would make up the dataset. So we can see how the measurement {P±} fairs
with respect to the possible pure states of the dataset. Without loss of generality, we can take

|φ0⟩ = |0′⟩, (3.16a)

|φ1⟩ = cos θ|0′⟩ + eiϕ sin θ|1′⟩, (3.16b)

where {|0′⟩, |1′⟩} is some arbitrary orthonormal basis of a qubit and θ ∈ [0, π], ϕ ∈ [0, 2π). When performing
the measurement {P±}, we associate the outcome “ + ” with the data being prepared in the state |φ0φ0⟩ or
|φ1φ1⟩, and the outcome “ − ” with the data being prepared in the state |φ0φ1⟩ or |φ1φ0⟩. With that, the
probability of success, as a function of θ, ϕ can be shown to be

Psucc(θ, ϕ) =
1

4

(
⟨φ0φ0|P+|φ0φ0⟩ + ⟨φ1φ1|P+|φ1φ1⟩ + ⟨φ0φ1|P−|φ0φ1⟩ + ⟨φ1φ0|P−|φ1φ0⟩

)
=

1

2
+

1

4
sin2 θ, (3.17)

from which Eq. (3.15) can be recovered by averaging over θ (and ϕ). We can see that the success rate varies
from that of a guess Psucc(0, ϕ) = 1/2 when |φ0⟩ = |φ1⟩, to Psucc(π/2, ϕ) = 3/4 when ⟨φ0|φ1⟩ = 0. Note
that in order to achieve the maximal average success rate, we have sacrificed the measurement’s ability in
specific cases. For example, it does not perfectly distinguish the states of the dataset when ⟨φ0|φ1⟩ = 0.

3.2.2 Optimal classification of three-qubit dataset

Similarly to the two-qubit case, we begin by writing down the possible three-qubit states. In general, we
once again express these states as

ρijk =

∫
|φi⟩|φj⟩|φk⟩⟨φi|⟨φj |⟨φk| dφ0dφ1, (3.18)

where i = 0, j, k ∈ {0, 1}. Once again, it is useful for understanding the problem to write down explicitly
the possible states of our three-qubit dataset.

Similar arguments to those used to find ρ00 in the previous section tell us that we can write the following:

ρ000 = α 3
2
I 3

2
⊕ α 1

2
I 1

2
⊕ α′

1
2
I 1

2
(3.19)

due to the commutivity of ρ000 with all the elements of Q(3)[SU(2)]. Here, similarly to before, Is is the

identity operator on the space Q(3)
s . Note the presence of two copies of the Q(3)

1
2

space implied here, discussed

in more detail in Sec. 2.3.3. To find α 1
2
, α′

1
2

, notice that2 for all σ ∈ S3, and for all qubit states |φ0⟩,

P(3)(σ)|φ0⟩⊗3 = |φ0⟩⊗3. (3.20)

This implies that |φ0⟩⊗3 lives entirely within Q(3)
3
2

⊗P(3)
3
2

. If it didn’t, P(3)(σ)|φ0⟩⊗3 would have a component

in Q(3)
1
2

⊗ P(3)
1
2

, meaning that |φ0⟩⊗3 would not be acted on trivially by P(3)(S3).3 We therefore have that

2Bearing in mind how P(3)(S3) acts on H(3) as discussed in Sec. 2.3.3.
3since the irrep

(
p 1

2
,P(3)

1
2

)
is non-trivial.
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ρ000 ∈ L
(
Q(3)

3
2

⊗ P(3)
3
2

)
, meaning α 1

2
, α′

1
2

= 0 and

ρ000 =
1

4
I 3

2
, (3.21)

where, again, 1/4 is the normalisation constant.
Now, for ρ001, similarly to ρ01 in the previous subsection,

ρ001 =

∫
|φ0φ0φ1⟩⟨φ0φ0φ1|dφ0dφ1

=

∫
|φ0φ0⟩⟨φ0φ0|dφ0 ⊗

∫
|φ1⟩⟨φ1|dφ1

=
1

2
ρ00 ⊗ 1

=α (|1, 1⟩⟨1, 1| + |1, 0⟩⟨1, 0| + |1,−1⟩⟨1,−1|) ⊗
(∣∣∣∣12 , 1

2

〉〈
1

2
,

1

2

∣∣∣∣+

∣∣∣∣12 ,−1

2

〉〈
1

2
,−1

2

∣∣∣∣) , (3.22)

where α is the normalisation constant. In order to rewrite this in the Schur basis of (Q(3)
3
2

⊗P(3)
3
2

)⊗(Q(3)
1
2

⊗P(3)
1
2

),

we use Eq. (2.146), rewritten here for convenience,

|s,m⟩|p⟩ ⊗
∣∣∣∣12 ,±1

2

〉
→
√
s±m+ 1

2s+ 1

∣∣∣∣s+
1

2
,m± 1

2

〉
|p, 0⟩ ∓

√
s∓m

2s+ 1

∣∣∣∣s− 1

2
,m± 1

2

〉
|p, 1⟩. (2.146)

For our case, s = 1,m ∈ {1, 0,−1} and p has been omitted since dimP(2)
1 = 1 = dimP(2)

0 . Applying
Eq. (2.146) to Eq. (3.22), we obtain

ρ001 =
1

6

(
I 3

2
+ I 1

2
⊗ |1⟩⟨1|

)
, (3.23)

where α = 1/6 was found by again requiring Tr(ρ001) = 1.
Finally, we can find ρ010, ρ011. Noting that,

ρ011 =

∫
|φ0φ1φ1⟩⟨φ0φ1φ1|dφ0dφ1

=

∫
|φ1φ0φ0⟩⟨φ1φ0φ0|dφ0dφ1 = ρ100,

(3.24)

in order to obtain ρ010, ρ011, we just have to permute the qubits in ρ001. To do this, first notice that I 3
2

is

invariant under permutations of qubits since P(3)(S3) acts trivially on P(3)
3
2

. Therefore, the only part of ρ001

affected by permutations is I 1
2
⊗ |1⟩⟨1|.

Intuitively, we can guess the form of ρ010, ρ011 by the fact that,

· · · ρ001
(123)−−−→ ρ010

(123)−−−→ ρ011
(123)−−−→ ρ001 · · · , (3.25)

where (123) ∈ S3. Since permutations only have an effect on the path components of the states, it seems that

ρ001, ρ010, ρ011 should be evenly distributed in the two-dimensional space P(3)
1
2

. That is, since each state can

be accessed by repeated application of the permutation (123), we’d expect each state be accessible by the
repeated application of some two-dimensional transformation. In particular, since ρ001 is known, we might

guess that the remaining states could be found by rotating its P(3)
1
2

component by 2π/3. This indeed results

in the states we’re aiming for [given in Eq. (3.26)]. More concretely, we can derive ρ010 using the following
three steps:

1. Rewrite ρ001 in the computational basis [using Eq. (2.145)].

2. Permute the qubits |ψ1ψ2ψ3⟩ → |ψ2ψ3ψ1⟩ to obtain ρ010 in the computational basis.
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3. Rewrite the state in the Schur basis given in Eq. (2.145).

And similarly for ρ011. Either way, the states ρijk turn out to have the following form:

ρ000 =
1

4
I 3

2
, (3.26a)

ρ001 =
1

6
I 3

2
+

1

6
I 1

2
⊗ |1⟩⟨1|, (3.26b)

ρ010 =
1

6
I 3

2
+

1

24
I 1

2
⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (3.26c)

ρ011 =
1

6
I 3

2
+

1

24
I 1

2
⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
. (3.26d)

We can now see more clearly the states we aim to discriminate between in order to perform an unsupervised
binary classification on a three-qubit dataset.

The optimal measurement that distinguishes the four states in Eq. (3.26) is made up of the POVM
elements,

π000 = I 3
2
, (3.27a)

π001 =
2

3
I 1

2
⊗ |1⟩⟨1|, (3.27b)

π010 =
1

6
I 1

2
⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (3.27c)

π011 =
1

6
I 1

2
⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
. (3.27d)

To motivate this, notice that ρ001, ρ010, ρ011 have S3 permutation symmetry in their qubits. We can therefore
require the optimal measurement to distinguish these three states to have this same symmetry. So, all we
need to do is construct π000, π001 to optimally distinguish between ρ000, ρ001. From this, we can obtain
π010, π011 via the S3 symmetry mentioned. The construction of π000, π001 follows the same reasoning as that
of two-qubit measurement in Eq. (3.13) aside from the factor of 2/3 in π001 which is required for completeness.
Therefore, using this measurement and Eq. (2.96), the maximal probability of successfully distinguishing the
(equally likely) states in Eq. (3.26) is

Psucc =
5

12
≈ 41.7%. (3.28)

In other words, and at risk of overemphasising, this is the optimal success rate in an unsupervised binary
classification on a three-qubit dataset.

3.3 Measurement disturbance tradeoff

In this section, we consider a simple sequential learning task to take some first steps into understanding
how learning about quantum data affects how well something else can be learnt about this data at a later
stage. When considering classical data, this seems like a trivial problem: given a classical picture of a dog,
Alice may recognise that the subject of the photo is a Labrador, but in doing so, she does not affect Bob’s
chances of independently identifying that the dog is female. In other words, when Alice learns something
about some classical data, Bob also has access to the same data, whether Alice leaves it unaltered or makes
a copy before she analyses it.

In general, the same cannot be said when we instead have quantum data. For a start, it is well known
that unknown quantum states cannot be perfectly copied [2, 3]. Further, when information is extracted from
some quantum system (i.e. in some learning scenario), the system is generically disturbed in some way. This
is related to the measurement disturbance discussed in Chapter 2, since a quantum measurement must be
performed on a quantum system in order to access any information it contains. Therefore, we can see that
the problem is not so trivial in the quantum regime: although Alice may manage to determine that the
dog in a “quantum photo” is a Labrador, in doing so, she would generically alter it in some way. So, since
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she couldn’t perfectly copy the quantum photo beforehand, Bob would only be able to use some distorted
version of it to try and figure out whether the dog is male or female.

To explore this intuition in a more concrete setting, we consider the following question: how is an
unsupervised binary classification (as described in the previous section) on a dataset of three qubits affected
by an intermediate one on a subset containing the first two qubits? To investigate this question, we first gain
some intuition by considering the intermediate classification to be the optimal one (as discussed in Sec. 3.2.1).
Following this, we derive the full tradeoff between the success rate of an intermediate classification with
that of the three-qubit one. This scenario is simple enough to allow analytic results, while rich enough to
demonstrate the tradeoff. Surprisingly, for a range of strategies on the first two qubits, it is possible to
avoid any reduction in performance on all three. Once again, the contents of this section closely follow the
published work [77].

3.3.1 Optimal intermediate measurement

Suppose we have a quantum dataset containing three-qubits that can each be in one of two unknown states
|φ0⟩, |φ1⟩. As mentioned, let’s first consider what happens when we perform the optimal measurement {P±}
given in Eq. (3.13) to classify the first two qubits, followed by an optimal measurement on all three. In
particular, we consider the case in which the outcome of the two-qubit measurement is known, and the
measurement on all three is updated accordingly. After the first measurement has been performed with an
outcome k being obtained, as discussed earlier with Eq. (2.85), the two qubit states update as follows4:

ρ0ij → ρk0ij =

(√
Pk ⊗ 1

)
ρ0ij

(√
Pk ⊗ 1

)†
Tr(Pk ⊗ 1ρ0ij)

, (3.29)

where ρ0ij are the states in Eq. (3.26) and 1 denotes the identity operator on a single qubit.
Explicitly, the states are as follows:

ρ+000 =
1

4
I 3

2
, (3.30a)

ρ+001 =
1

6
I 3

2
+

1

6
I 1

2
⊗ |1⟩⟨1|, (3.30b)

ρ+01k =
2

9
I 3

2
+

1

18
I 1

2
⊗ |1⟩⟨1|, (3.30c)

ρ−000 = 0 = ρ−001, (3.30d)

ρ−01k =
1

2
I 1

2
⊗ |0⟩⟨0| (3.30e)

for k = 0, 1. For each of the first measurement outcomes P±, we can therefore find the optimal measurement
to be made up of the following projectors:

π+
000 = I 3

2
, (3.31a)

π+
001 = I 1

2⊗
1
2
, (3.31b)

π+
01k = 0, (3.31c)

π−
000 = I 3

2
, (3.31d)

π−
001 = 0, (3.31e)

π−
01k =

1

2
I 1

2⊗
1
2
, (3.31f)

where I 1
2⊗

1
2

denotes the identity on the subspace Q(3)
1
2

⊗P(3)
1
2

. These measurements can be motivated by the

fact that π±
i projects its corresponding state, ρ±i , onto the components with coefficients that are larger, or

the same as, the same components in all the other states.

4Note that this measurement {Pk} is only performed on the first two qubits of the state (dataset).
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Now, the probability of a successful second measurement is given by

P 2nd
succ =

∑
k∈{+,−}

∑
i,j∈{0,1}

P (ρ0ij)P (Pk, π
k
0ij |ρ0ij),

=
∑
k

∑
i,j

P (πk0ij |ρk0ij)P (Pk|ρ0ij)P (ρ0ij)

=
1

4

∑
k

∑
i,j

Tr

[
πk0ij

(√
Pk ⊗ 1

)
ρ0ij

(√
Pk ⊗ 1

)†]
, (3.32)

where P (ρ0ij) is the probability that the system is prepared in the state ρ0ij (this is 1/4 for all i, j),
P (Pk, π

k
0ij |ρ0ij) denotes the probability that the first measurement outcome is k and the second is 0ij given

that the state was prepared in the state ρ0ij , and P (πk0ij |ρk0ij) ≡ P (πk0ij |ρ0ij , Pk). We therefore find that the
probability of a successful second classification has been affected by an optimal first classification and has
been reduced to the following value:

P 2nd
succ =

19

48
≈ 39.6%. (3.33)

Although this is a small reduction in the success rate of the three-qubit measurement from the optimal
value of 5/12 ≈ 41.7%, it demonstrates the principle of measurement disturbance caused by the intermediate
classification.

3.3.2 Weakening the intermediate measurement

3.3.2.1 Weak two-qubit measurement

Our ultimate aim is to understand how a classification on two qubits affects our ability to perform a subse-
quent classification in general. So, instead of considering only the optimal measurement on two qubits, we
interpolate between this and the weakest possible measurement: the identity measurement. This weakened
measurement can be written as

π− = αP− + βI,
π+ = αP+ + (1 − α− β)I,

(3.34)

such that α ∈ [0, 1 − β] and β ∈ [0, 1] to ensure the positivity condition of POVMs, given in Eq. (2.82a), as
well as the convention we are adopting: we take the measurement outcome π+ (π−) to correspond to the
measurement of the state ρ00 (ρ01)5. Note also that, by construction, this POVM is complete, as required
[see Eq. (2.82b)]. To reduce future work, note that we can change between the two situations corresponding
to different measurement outcomes by performing the swaps:

α→ −α,
β → 1 − β.

(3.35)

So, once again using Eq. (2.96) with equiprobable states ρ00, ρ01, the probability of a successful two-qubit
classification using the POVM in Eq. (3.34) is given by

P 1st
succ =

1

2

(
1 +

α

4

)
, (3.36)

where the superscript is included in anticipation of the second classification introduced next.

3.3.2.2 Subsequent three-qubit classification

Now, let’s return to our quantum dataset made up of three qubits, each either |φ0⟩ or |φ1⟩. Following the
weakened intermediate measurement {π±}, the state of our dataset ρ0ij is updated as6

ρ0ij → ρ±0ij =
(
√
π± ⊗ 1)ρ0ij(

√
π± ⊗ 1)†

Tr(π± ⊗ 1ρ0ij)
. (3.37)

5That is, we require P (π+|ρ00) ≥ P (π−|ρ00) and P (π−|ρ01) ≥ P (π+|ρ01).
6Explicitly,

√
π− =

√
α+ βP− +

√
βP+ and

√
π+ =

√
1− α− βP− +

√
1− βP+.



44 CHAPTER 3. THREE-QUBIT LEARNING TRADEOFFS

Explicitly, in the case when the measurement outcome on the first two qubits is “−”, using similar techniques
as those found in Eqs. (2.146, 3.23) to find

√
π− ⊗ 1 in the Schur basis, the states ρ−0ij can be shown to be

ρ−000 =
1

4
I 3

2
, (3.38a)

ρ−001 =
1

6
I 3

2
+

1

6
I 1

2
⊗ |1⟩⟨1|, (3.38b)

ρ−010 =
4β

6(α+ 4β)
I 3

2
+

1

6(α+ 4β)
I 1

2
⊗
(√

β|1⟩ −
√

3(α+ β)|0⟩
)(√

β⟨1| −
√

3(α+ β)⟨0|
)
, (3.38c)

ρ−011 =
4β

6(α+ 4β)
I 3

2
+

1

6(α+ 4β)
I 1

2
⊗
(√

β|1⟩ +
√

3(α+ β)|0⟩
)(√

β⟨1| +
√

3(α+ β)⟨0|
)

(3.38d)

with probabilities (derived in Appendix 3.A.1)

p−000 = p−001 =
2β

α+ 8β
, (3.39a)

p−010 = p−011 =
α+ 4β

2(α+ 8β)
. (3.39b)

To find ρ+0ij , p
+
0ij , we can just perform the swaps in Eq. (3.35).

In order to achieve our aim of classifying the resulting three-qubit system, we construct a measurement
{π−

i } that distinguishes between the states {ρ−i } above (for additional detail, see Appendix 3.A.2). To
do this, first, notice that the totally symmetric components (the s = 3/2 components) of ρ−001, ρ

−
01l have

coefficients that are strictly less than those of ρ−000. Further, ρ−000 has no s = 1
2 components. This motivates

the fact that the optimal way to distinguish ρ−000 from the other states is to take

π−
000 = I 3

2
(3.40)

while keeping the remaining measurement operators in L
(
Q(3)

1
2

⊗ P(3)
1
2

)
. Next, note that in the s = 1

2

subspaces, ρ−001, ρ
−
010, ρ

−
011 have a mirror symmetric form in their path degree of freedom (spanned by |p 1

2
⟩ =

|0⟩, |1⟩) as p−010 = p−011 and the set is invariant under reflection about |0⟩. The optimal measurement to
distinguish these three states is known [63] and has the form (including π−

000 for completeness)

π−
000 = I 3

2
, (3.41a)

π−
001 = (1 − a2−)I 1

2
⊗ |1⟩⟨1|, (3.41b)

π−
010 =

1

2
I 1

2
⊗ (a−|1⟩ − |0⟩) (a−⟨1| − ⟨0|) , (3.41c)

π−
011 =

1

2
I 1

2
⊗ (a−|1⟩ + |0⟩) (a−⟨1| + ⟨0|) , (3.41d)

where a− ∈ [0, 1] to preserve positivity. A closed form analytic expression for a− in terms of the prior
probabilities and overlaps of the states is given in [63], which we use below. Once again, to obtain {π+

i }, we
just perform the swaps in Eq. (3.35). Looking back at Eq. (3.41), we can reinterpret this measurement as a
two step process: first, a projection based on total spin s which tells us something about how many of each
type of qubit the dataset has (ρ−000 versus ρ−001, ρ

−
010, ρ

−
011). The second step is to learn about the order of

the qubits in the dataset by considering the permutation, or path component L
(
P(3)
s

)
, of all the states that

share the same number of each qubit as one another.
So, how does a− relate to the parameters (α, β) of the first measurement that dictate the level of dis-

turbance between ρ−001, ρ
−
010, ρ

−
011? To figure this out, we utilise [63] which requires us to first define a prior

probability for the states ρ−001, ρ
−
010, ρ

−
011 when projected into the s = 1/2 subspace. In Appendix 3.A.2, we

write these updated priors as q−001, q
−
01i respectively. We can then directly use the results of [63] to find the

optimal value of the parameter a−. Updating the prior probabilities gives

p− =
3α+ 4β

6(α+ 2β)
(3.42)
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such that q−010 = q−011 = p−, q−001 = 1 − 2p−. The full derivation of this can be found in Appendix 3.A.2.
Using the analytical expression in [63] then gives (again more detail is given in Appendix 3.A.2):

a− =

{√
α+β
3β if α ∈ [0,min{1 − β, 2β}],

1 if α ∈ (2β, 1 − β] with 2β < 1 − β
(3.43)

such that β ∈ [0, 1] as always. Note that the conditions 2β < 1−β, β ∈ [0, 1] can be rewritten as β ∈
[
0, 13

)
.

Similarly, when the outcome of the first measurement is π+, we arrive at

a+ =

√
1 − α− β

3(1 − β)
(3.44)

for all valid α, β. To achieve our aim and observe how the success probability of the first and second
measurements compare to one another, we consider the two cases of Eq. (3.43).

Case 1: α ∈ [0,min{1 − β, 2β}], β ∈ [0, 1]

Consider the first case in Eq. (3.43), that is, when

a− =

√
α+ β

3β
, (3.45a)

a+ =

√
1 − α− β

3(1 − β)
. (3.45b)

Using Eq. (3.32) with P± → π±, in this region, it is straightforward, albeit requiring a little algebra, to show
that the probability of a successful second classification stays constant at the optimal value for distinguishing
three undisturbed qubits:

P 2nd
succ =

5

12
(3.46)

for all α ∈ [0,min{1 − β, 2β}], β ∈ [0, 1].

Case 2: α ∈ (2β, 1 − β], β ∈
[
0, 13

)
.

Considering now the second case in Eq. (3.43), let a− = 1 and a+ be as written in Eq. (3.44). Once again,
using Eq. (3.32) with P± → π±, after a little algebra, we find

P 2nd
succ =

5

12
− β

12
− α

48
+

1

24

√
3β(α+ β). (3.47)

Now, we want P 2nd
succ to be at its optimal value for each value of P 1st

succ. Since P 1st
succ has the form given in

Eq. (3.36) (linear in α alone), to do this, we hold α constant, and maximise P 2nd
succ with respect to β. This

occurs when

β = −3α

2
or β =

α

2
. (3.48)

The first option only holds when α = 0 ̸∈ (2β, 1− β]. The second option corresponds to the boundary of
the two scenarios in Eq. (3.43) - that is, when α = 2β. This tells us that for α > 2β, there are no stationary
points with respect to β, and we must therefore look to the boundaries of β: β = 0 or β = 1 − α. However,
the optimal boundary can be shown to be β = 1 − α when we notice that P 2nd

succ is monotonically increasing
with respect to β in the region α ∈ (2β, 1−β], β ∈

[
0, 13

]
. This can be shown using the fact that there are no

stationary points in this region, so it must therefore be monotonically increasing or decreasing, along with

the fact there exists a point [e.g (α, β) = (5/6, 1/6)] in this region such that
∂P 2nd

succ

∂β > 0. So, using β = 1 − α

along with Eq. (3.36), we find the optimal probability of success in this region to be

P 2nd
succ =

1

12
+
P 1st
succ

2
+

1

24

√
3(5 − 8P 1st

succ). (3.49)
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• The success rate of the first and second measurements relate to one 
another in the following way:

AIM: given three qubits that are each in one of two unknown states 𝜑! , |𝜑"⟩, 
how is a classification of these qubits affected by an intermediate classification 
on the first two.
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Background theory and setup

• Qubits can be thought of as points on the surface 
of the Bloch sphere:
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𝜃#
2
0 + 𝑒#$! sin

𝜃#
2
1 .

• We will think of qubits as spin-half 
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Background theory

Setup
• How do we describe the system of qubits that we’d like to classify?

• Qubits |𝜑#⟩ are unknown, so they are equally likely to be anywhere on the 
surface of the Bloch sphere. 

𝜌#& = ∫ |𝜑#⟩|𝜑&⟩⟨𝜑#|⟨𝜑&| 𝑑𝜑!𝑑𝜑".

𝜌#&' = ∫ |𝜑#⟩|𝜑&⟩|𝜑'⟩⟨𝜑#|⟨𝜑&| 𝜑' 𝑑𝜑!𝑑𝜑".

• For three qubits:

• So for two qubits, we write the system as the mixed state:

• Integrating, for two qubits, classification is the same as state discrimination 
of:

• For three qubits, classification is the same as state discrimination of:

𝜌!!! =
1
4
𝕀(
%
,

𝜌!!" =
1
6 𝕀(%

+
1
6 𝕀"%

⊗ |1⟩⟨1|,

𝜌!"! =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ − 3|0⟩)( 1 − 3 0 ),

𝜌!"" =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ + 3|0⟩)( 1 + 3 0 ).

Classification of first two qubits
• Optimal classification of first two qubits corresponds to the measurement:

𝜌!! =
1
3
𝕀",

𝜌!" =
1
4
𝕀" +

1
4
𝕀!.

• We want to vary the ability of the first classification. To do this, we weaken 
the above measurement:

𝜋) = 𝛼𝑃) + (1 − 𝛼 − 𝛽)𝕀,
𝜋* = 𝛼𝑃* + 𝛽𝕀.

Subsequent Classification of all three qubits
• After the classification on the first two qubits, the three qubit states are 

updated as follows:

𝜌#&' → 𝜌#&'
± =

𝜋±⊗1 𝜌#&' 𝜋±⊗1
𝑇𝑟(𝜋±⊗1𝜌#&')

• By symmetry arguments, since 𝜌!!#
± = 𝜌!!#, the measurement operator 

corresponding to an outcome of 000 remains constant:

𝜋!!!
± = 𝕀(

%
.

• The remaining states and optimal measurements vary w.r.t 𝛼, 𝛽. For 
example, if the first measurement outcome is −,

The tradeoff

• Using 𝑃,-..%/0 = ∑#,&∈ !," ∑±𝑃(𝜌!#&)(𝜋±, 𝜋!#&
± |𝜌!#&) , the success rate of the 

second classification can be found.
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• This can be plotted as follows:

Conclusion
We considered, and fully characterised a base case in the tradeoff between 
two sequential unsupervised quantum learning tasks. We found that a binary 
classification of a two-qubit subset of three unknown qubits causes a 
measurement disturbance which can degrade the performance of an optimal 
classifier on all three qubits. However, there is a large regime in which this 
performance remains unaffected.
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Figure 3.1: Plot of the tradeoff between the success rate of an intermediate binary classification on a subset
of two qubits with that of a second binary classification on the entire three-qubit dataset. The probability
of success of the first (second) measurement is denoted P 1st

succ (P 2nd
succ).

We can re-express the boundaries in P 2nd
succ in terms of P 1st

succ by noting that we’d like Eq. (3.46) to be the
success rate for as large a region as possible. This can be seen by noting that Eq. (3.47) can be rewritten as

P 2nd
succ =

5

12
− 1

48

(√
α+ β −

√
3β
)2

(3.50)

and therefore is less than or equal to the optimal value of 5/12. So, to make the region in which Eq. (3.46)
is true as large as possible, we must maximise min{2β, 1 − β}. That is, when β = 1/3 and so α ∈

[
0, 23

]
.

Therefore, using Eq. (3.36), we take P 2nd
succ to be given by Eq. (3.46) when P 1st

succ ∈
[
1
2 ,

7
12

]
, and by Eq. (3.49)

when P 1st
succ ∈

(
7
12 ,

5
8

]
.

3.3.3 Results

Summarising what we have found, the tradeoff between the first and second classification is given by

P 2nd
succ =

{
5
12 if P 1st

succ ∈
[
1
2 ,

7
12

]
,

1
12 +

P 1st
succ

2 + 1
24

√
3(5 − 8P 1st

succ) if P 1st
succ ∈

(
7
12 ,

5
8

]
.

(3.51)

A plot of this tradeoff can be seen in Fig. 3.1.
To gain some intuition for this result and plot, it is useful to consider how the three qubit states and

second measurement vary with the strength of the first measurement. First, since ρ±000, π
±
000 are left invariant

by the first measurement, no intuition is gained by considering them, so we only need look at the remaining
states and measurement operators. Noting that they only differ in their s = 1/2 path components7 - that is,

7Which agrees with our intuition from before: there are no differences in the numbers they have of each type of qubit (their

Q(3)
1/2

components). All the differences lie in the order, or permutation, of the qubits (their P(3)
1/2

components).
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• The success rate of the first and second measurements relate to one 
another in the following way:
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• Qubits can be thought of as points on the surface 
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𝜑# = cos
𝜃#
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• We will think of qubits as spin-half 
particles such that 0 ≔ 𝑠 = "
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Background theory

Setup
• How do we describe the system of qubits that we’d like to classify?

• Qubits |𝜑#⟩ are unknown, so they are equally likely to be anywhere on the 
surface of the Bloch sphere. 

𝜌#& = ∫ |𝜑#⟩|𝜑&⟩⟨𝜑#|⟨𝜑&| 𝑑𝜑!𝑑𝜑".

𝜌#&' = ∫ |𝜑#⟩|𝜑&⟩|𝜑'⟩⟨𝜑#|⟨𝜑&| 𝜑' 𝑑𝜑!𝑑𝜑".

• For three qubits:

• So for two qubits, we write the system as the mixed state:

• Integrating, for two qubits, classification is the same as state discrimination 
of:

• For three qubits, classification is the same as state discrimination of:

𝜌!!! =
1
4
𝕀(
%
,

𝜌!!" =
1
6 𝕀(%

+
1
6 𝕀"%

⊗ |1⟩⟨1|,

𝜌!"! =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ − 3|0⟩)( 1 − 3 0 ),

𝜌!"" =
1
6
𝕀(
%
+
1
24
𝕀"
%
⊗ (|1⟩ + 3|0⟩)( 1 + 3 0 ).

Classification of first two qubits
• Optimal classification of first two qubits corresponds to the measurement:

𝜌!! =
1
3
𝕀",

𝜌!" =
1
4
𝕀" +

1
4
𝕀!.

• We want to vary the ability of the first classification. To do this, we weaken 
the above measurement:

𝜋) = 𝛼𝑃) + (1 − 𝛼 − 𝛽)𝕀,
𝜋* = 𝛼𝑃* + 𝛽𝕀.

Subsequent Classification of all three qubits
• After the classification on the first two qubits, the three qubit states are 

updated as follows:

𝜌#&' → 𝜌#&'
± =

𝜋±⊗1 𝜌#&' 𝜋±⊗1
𝑇𝑟(𝜋±⊗1𝜌#&')

• By symmetry arguments, since 𝜌!!#
± = 𝜌!!#, the measurement operator 

corresponding to an outcome of 000 remains constant:

𝜋!!!
± = 𝕀(

%
.

• The remaining states and optimal measurements vary w.r.t 𝛼, 𝛽. For 
example, if the first measurement outcome is −,

The tradeoff

• Using 𝑃,-..%/0 = ∑#,&∈ !," ∑±𝑃(𝜌!#&)(𝜋±, 𝜋!#&
± |𝜌!#&) , the success rate of the 

second classification can be found.
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Conclusion
We considered, and fully characterised a base case in the tradeoff between 
two sequential unsupervised quantum learning tasks. We found that a binary 
classification of a two-qubit subset of three unknown qubits causes a 
measurement disturbance which can degrade the performance of an optimal 
classifier on all three qubits. However, there is a large regime in which this 
performance remains unaffected.
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(d)(c)
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Figure 3.2: Plots showing the effect that a measurement on the first two qubits of a system, with outcome π−
(for various values of α, β), has on the three-qubit states and measurement operators {ρ−001, ρ−010, ρ−011} and
{π−

001, π
−
010, π

−
011} respectively. Note that the states and measurement operators vary with the strength of

the two-qubit measurement until α = 2
3 , β = 1

3 [Fig. 3.2(c)], after which, while the states continue to change,
the measurement operators stay constant. Fig. 3.2(c) corresponds to the boundary between the constant
and variable regions in Fig. 3.1. Further, Fig. 3.2(a) corresponds to the case in which no measurement is
performed on the first two qubits and Fig. 3.2(d) to when the optimal measurement is performed on the first
two qubits.

their components when restricted to the subspace P(3)
1/2. We do this in Fig. 3.2 which shows how the states

ρ−001, ρ
−
010, ρ

−
011 and measurement operators π−

001, π
−
010, π

−
011 compare to one another for various values of α, β.

Note the mirror symmetry of the states and measurement operators in their |0⟩ components throughout, as
discussed earlier when constructing the optimal measurement of the three-qubit states. Further, notice that
the adjustment of the second measurement appears to compensate for the disturbance caused by the first
measurement in the region α ∈ [0,min{1 − β, 2β}], β ∈ [0, 1]. This allows for the success rate of the second
classification to remain at its optimal value and therefore corresponds to the constant region in Fig. 3.1.
When α ∈ (2β, 1 − β], however, a− = 1 and the second measurement, in some sense, “gives up” trying to
compensate for the disturbance caused by the first measurement. This is why we start to see the success rate
of the second classification drop off beyond P 1st

succ = 7/12. Indeed, it is purely due to the “ − ” outcome that
this drop off occurs. This is due to the fact a+ is given by Eq. (3.44) across the entire range of α, β, meaning
the second measurement {π+

i } compensates for the first measurement’s disturbance throughout (when the
outcome is “ + ”).

Let’s note some points of interest. Firstly, when we require the second measurement to be optimal, the
best first measurement occurs when α = 2

3 and β = 1−α = 1
3 . Here, the intermediate measurement is made
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up from

π+ =
2

3
I1, (3.52a)

π− =
1

3
I1 + I0. (3.52b)

and results in

P 1st
succ =

7

12
≈ 58.3%, (3.53a)

P 2nd
succ =

5

12
≈ 41.7%. (3.53b)

So the success rate of the first measurement, under the requirement that P 2nd
succ is optimal, ranges from 1

2 to
7
12 . It is worth reiterating that the transition from optimal to sub-optimal second-measurement success rate
occurs at the boundary of the two cases in Eq. (3.51) or Eq. (3.43). That is, given a first outcome of π−,
when the second measurement stops varying with respect to α, β as can be seen in Fig. 3.2.

The next point to consider is when we optimise P 1st
succ. Here α = 1 and β = 1 − α = 0 which means that

P 1st
succ =

5

8
= 62.5%, (3.54a)

P 2nd
succ =

19

48
≈ 39.6%, (3.54b)

as was found in Sections 3.2.1 and 3.3.1. This limited success rate of the second measurement can perhaps
be expected due to the fact the ρ−010, ρ

−
011 are parallel to one another as can be seen in Fig. 3.2(d).

3.4 Three-qubit disturbance as a quantum circuit

In this section we show how the protocol of the previous sections can be carried out on a quantum computer,
by expressing it as quantum circuit. But before we do this, let’s go over the preliminaries required to
understand the approach we take.

3.4.1 POVM as a sequence of two-outcome measurements

It turns out that we can perform our POVMs of interest as a sequence of two-outcome measurements
[111, 112]. Let’s see how this works for one of the three qubit measurements we aim to perform in our
quantum circuit. Namely, {π−

000, π
−
001, π

−
010, π

−
011} to distinguish the states {ρ−000, ρ−001, ρ−010, ρ−011}, discussed

in Sec. 3.3.2.2:

π−
000 = I 3

2
, (3.55a)

π−
001 =

2β − α

3β
I 1

2
⊗ |1⟩⟨1|, (3.55b)

π−
010 =

1

2
I 1

2
⊗
(√

α+ β

3β
|1⟩ − |0⟩

)(√
α+ β

3β
⟨1| − ⟨0|

)
, (3.55c)

π−
011 =

1

2
I 1

2
⊗
(√

α+ β

3β
|1⟩ + |0⟩

)(√
α+ β

3β
⟨1| + ⟨0|

)
, (3.55d)

where α ∈ [0,min{1−β, 2β}], β ∈ [0, 1]. Define {Mijk} to be the set of measurement operators corresponding
to the POVM {π−

ijk}:

π−
ijk = Mijk

†Mijk. (3.56)

We will be taking Mijk =
√
π−
ijk.
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Step 1: 000 vs. 000

Suppose we are performing the measurement {π−
ijk} on some state ρ1. In this first step, our aim is to perform

a measurement8 {N000, N000} that distinguishes ρ000 from the other possible states ρ001, ρ010, ρ011. That is,
the two outcomes of this first step are O(1) = 000 and O(1) = 000, where 000 means “not 000”, and O(j)

denotes the outcome of the jth step. Explicitly, and taking into account Eq. (3.55) with Mijk =
√
π−
ijk,

N000 = M000 = I 3
2
, (3.57a)

N000 =
√
I− |N000|2 = I 1

2⊗
1
2
, (3.57b)

where |Nijk|2 := N†
ijkNijk and I is the identity on the entire Hilbert space. We denote the corresponding

POVM to this measurement {π000, π000}, such that π000 = N†
000N000, π000 = N†

000
N000.

If we find O(1) = 000, we have obtained a valid outcome so we can stop here. If, however O(1) = 001,
the conclusion we must draw is that ρ1 is not the state ρ000. Therefore, to figure out which state ρ1 is, we
must carry on to Step 2.

Step 2: 001 vs. 001

Note, at this stage of the protocol, an outcome of O(1) = 000 meant that we should restrict our attention to
L(Q1/2 ⊗P1/2), which we do from here on. The aim of this step is to perform a measurement {N001, N001}
that distinguishes ρ001 from ρ010, ρ011. To write down this measurement we should note that we are receiving
an updated state ρ2 from Step 1:

ρ2 ∝ N000ρ1N
†
000
, (3.58)

meaning that the effects of the Step 1 measurement must be taken into account in {N001, N001}. We write
these operators as follows:

N001 = M001N
−1
000
, (3.59a)

N001 =
√
I 1

2⊗
1
2
− |N001|2, (3.59b)

where N−1
ijk denotes the Moore-Penrose inverse of Nijk [111]. Using Eq. (3.55), M001 =

√
π−
001 and N000 =

I 1
2⊗

1
2

= N−1
000

, we can write these explicitly as

W001N001 =

√
2β − α

3β
I 1

2
⊗ |1⟩⟨1|, (3.60a)

W001N001 = I 1
2
⊗
(√

α+ β

3β
|1⟩⟨1| + |0⟩⟨0|

)
, (3.60b)

where Wijk are the unitaries arising from from the non-uniqueness of the square root
√
π−
ijk. As before, if

O(2) = 001, we conclude that ρ1 was prepared in the state ρ001, but if O(2) = 001, we progress to the third
and final step.

Step 3: 010 vs. 011

If we have made it to this stage, we have found that O(1) ̸= 000, O(2) ̸= 001, so we must conclude that the
state ρ1 is either ρ010 or ρ011. So, similarly to the other steps, our task is to write down a measurement
{N010, N011} that distinguishes between these final two options. Just as we saw in Step 2, the state received
at this step is

ρ3 ∝ N001ρ2N
†
001

∝ N001N000ρ1N
†
000
N†

001
= N001ρ1N

†
001
, (3.61)

8That is, N000, N000 are measurement operators, not POVM elements.
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where the last equality comes from N000 = I 1
2⊗

1
2
. Therefore, {N010, N011} must, in some sense, include the

reversal of N001. That is,

N010 = M010N
−1
001
, (3.62a)

N011 = M011N
−1
001
, (3.62b)

where

M01k =
√
π−
01k =

√
6β

α+ 4β
W01kπ

−
01k. (3.63)

Here, W01k ∈ L(Q1/2 ⊗P1/2) are unitaries that arise in the square root of π−
01k. Explicitly, N01k are defined

as follows:

W010N010 =
1√

2(α+ 4β)
I 1

2
⊗
(√

α+ β|1⟩ −
√

3β|0⟩
)(

⟨1| − ⟨0|
)
, (3.64a)

W010N011 =
1√

2(α+ 4β)
I 1

2
⊗
(√

α+ β|1⟩ +
√

3β|0⟩
)(

⟨1| + ⟨0|
)
. (3.64b)

These operators give us access to final two possible measurement outcomes O(3) = 010, 011, thus completing
this implementation of {π−

ijk}.
To make it clearer what measurement is actually being performed at this step, it is useful to consult the

corresponding POVM {N†
010N010, N

†
011N011}:

N†
010N010 = I 1

2
⊗ |−⟩⟨−|, (3.65a)

N†
011N011 = I 1

2
⊗ |+⟩⟨+|. (3.65b)

Thus, it is really just a Pauli-x measurement in the path component.

Why decompose a POVM in this way?

The reason for decomposing our POVMs in this way is that, as we will see later, we can conveniently express
the above two-outcome measurements as quantum circuits. Indeed, any two-outcome qubit measurement
{N0, N1} can be decomposed into parts that can be carried out on a quantum computer using rotation
RX , RY , RZ and controlled-P gates [112]. Explicitly for this qubit case, note first that, being a measurement,

N†
0N0 +N†

1N1 = 1, (3.66)

which means [N†
0N0, N

†
1N1] = 0, and thus, there exists some unitary V that simultaneously diagonalises

N†
i Ni for i = 0, 1. So, using the singular value decomposition, we can write (for i = 0, 1)

Ni = UiDiV
†, (3.67)

where Ui are unitaries, and Di are diagonal measurement operators. Since there are two possible outcomes
0, 1, Ni can be expressed in terms of some two-dimensional basis, and thus, Di can be written as

D0 =
√
p|u⟩⟨u| +

√
1 − q|v⟩⟨v|, (3.68a)

D1 =
√

1 − p|u⟩⟨u| +
√
q|v⟩⟨v|, (3.68b)

for some p, q ∈ [0, 1], and |u⟩, |v⟩ satisfying ⟨u|v⟩ = δuv. All three elements of this decomposition Ui, {Di}, V
are (relatively) easily represented as quantum circuits, making it a natural route to take in writing our
sequential classification protocol as a quantum circuit. Let’s write down Ui, {Di}, V for each step of the
measurement described above.

Step 1 - The measurement in this step doesn’t actually correspond to the qubit measurement situation
described in Eqs. (3.66 - 3.68). However, since it is already a projective measurement, we will see that we
can perform this on a quantum computer.
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U(ϕ, ϵ)
{0,1}

|x⟩X P (π) RX
(
−π

2

)
P (2ϕ) RX

(
π
2

)
RY

(
ϕ+ ϵ− π

2

)
|ψ⟩S RZ (−ϕ) D0,1|ψ⟩S

Figure 3.3: Circuit that performs the generalised two-outcome measurement {D0, D1} on the state |ψ⟩. We
take the unitary performed within the purple box to be called U(ϕ, ϵ).

Step 2 - Again, this measurement {N001, N001} isn’t on a qubit. However, since π−
001, π

−
010, π

−
011 share the

same L(Q1/2) projection I1/2, we can think of this as as a three-outcome measurement on the qubit space
L(P1/2). So, although we also include the projection I1/2 for completeness, the techniques of Eqs. (3.67,3.68)
apply here. Indeed, the L(P1/2) components of N001, N001 are already in the diagonal form we’d like to have
in D001, D001, meaning that we can take D001 = N001, D001 = N001, and U001 = I 1

2⊗
1
2

= U001 = V2.

Step 3 - Finally, we saw that the POVM corresponding to {N010, N011} was effectively just the Pauli-x
measurement on the path degree of freedom. This makes the following decomposition unsurprising. Namely,
that {N010, N011} can be diagonalised to

D010 = I 1
2
⊗ |1⟩⟨1|, (3.69a)

D011 = I 1
2
⊗ |0⟩⟨0|, (3.69b)

using V3 = I 1
2
⊗H, where H is the Hadamard matrix [Eq. (2.50)], and some unitaries U01k, defined via

U010I 1
2
⊗ |1⟩ =

1√
(α+ 4β)

I 1
2
⊗
(√

α+ β|1⟩ −
√

3β|0⟩
)
, (3.70a)

U011I 1
2
⊗ |0⟩ =

1√
(α+ 4β)

I 1
2
⊗
(√

α+ β|1⟩ +
√

3β|0⟩
)
. (3.70b)

3.4.2 Generalised quantum measurement as a quantum circuit

In the gate model of quantum computers, quantum information is accessed using projective measurements
onto basis kets |bi⟩ of each qubit (or qudit). This is done by first performing a unitary operation to change
the basis of the qubits to be measured into the basis of the measurement apparatus {|bi⟩}. Following this, the
projective measurement {|bi⟩⟨bi|} can be performed. However, generalised, non-orthogonal measurements (or
POVMs) are often of interest which leads to the question of how we can do this if our measurement apparatus
only allows for projective measurements. The answer comes from the Naimark (or Neumark) extension [17,
22, 111] discussed in Sec. 2.2.5, which says that using an extra ancilliary system X, any POVM acting on a
system S can be thought of as a unitary transformation of the composite system SX followed by a projective
measurement on X.

We also saw in Sec. 3.4.1 that our measurements of interest can be decomposed into a series of two-outcome
measurements, expressible as a combination of unitary operations and diagonal measurement operators
{D0, D1}, as described in Eqs. (3.67, 3.68). Such a “diagonal measurement” can then be carried out using
the quantum circuit presented in Fig. 3.3. In this circuit diagram, deviating briefly from our normal labelling
convention, |x⟩X is the state (initially |0⟩) of the ancilla qubit X required by the Naimark extension to

perform the POVM {D†
0D0, D

†
1D1} on the state |ψ⟩S of the system S. Taking

ϕ =
1

2

[
sin−1(2p− 1) + sin−1(2q − 1)

]
, (3.71a)

ϵ =
1

2

[
sin−1(2p− 1) − sin−1(2q − 1)

]
, (3.71b)
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{π000, π000}

A

{π+, π−}

c0

B
{π−

001, π
−
010, π

−
011} {π+

001, π
+
010, π

+
011}

c2

Q0

U
(0)
CG

U
(1)
CG

c3

Q1

Q2 c1

Figure 3.4: Circuit diagram outlining how we implement the sequential three-qubit classification of Sec. 3.3
as a quantum circuit. The arrows output from each measurement indicate which qubit(s) holds the corre-
sponding measurement outcome(s). If a qubit is not used after an operation, we terminate its corresponding
line at said operation.

and denoting the circuit in Fig. 3.3 (before the measurement) by U(ϕ, ϵ), we can observe that the projective
measurement {|0⟩⟨0|X , |1⟩⟨1|X} on X with outcomes 0, 1 forces the following operations on S:

⟨0|XU(ϕ, ϵ)|0⟩X =

√
1 + sin(ϕ+ ϵ)

2
|0⟩⟨0|S +

√
1 − sin(ϕ− ϵ)

2
|1⟩⟨1|S ≡ D0, (3.72a)

⟨1|XU(ϕ, ϵ)|1⟩X =

√
1 − sin(ϕ+ ϵ)

2
|0⟩⟨0|S +

√
1 + sin(ϕ− ϵ)

2
|1⟩⟨1|S ≡ D1 (3.72b)

respectively.

3.4.3 Circuit setup and first measurement

We are now equipped to understand the quantum circuit we constructed to perform the sequential classi-
fication of Sec. 3.3. Let’s begin by setting up our quantum circuit. In order to perform this scenario using
a quantum circuit, aside from the three qubits we are classifying, denoted Q0, Q1, Q2, we use two ancilla
qubits A,B. All of these qubits are initially prepared in the state |0⟩. The general outline of how we carry
out this protocol as a quantum circuit can be found in Fig. 3.4. Let’s go through and see how each part
works.

The first thing to do in our circuit is perform the POVM {π±} on the first two qubits Q0Q1. Recall that,
to do this, we use the POVM given in Eq. (3.34), which can be rewritten as

π+ = (1 − β)P+ + (1 − α− β)P−, (3.73a)

π− = βP+ + (α+ β)P−, (3.73b)

such that α ∈ [0, 1 − β] and β ∈ [0, 1]. Noting that these are written in the two-qubit Schur basis given in

Eq. (2.143), we must first convert the state of Q0Q1 into the Schur basis of
(
Q(2)

1 ⊗ P(2)
1

)
⊕
(
Q(2)

0 ⊗ P(2)
0

)
.

Given that there’s a trivial path degree of freedom when considering two qubits, the quantum Schur-Weyl

transform (QSWT) in this case corresponds to the Clebsch-Gordon transform U
(0)
CG of two spin-half particles9

[72]. This can be done using the circuit depicted in Fig. 3.5. Concentrating on Q0Q1, this does the following
to the basis states given in Eq. (2.143):

s = 1


|00⟩ → |00⟩ ,

1√
2
(|01⟩ + |10⟩) → |01⟩ ,

|11⟩ → |10⟩ ,

s = 0
{

1√
2
(|01⟩ − |10⟩) → |11⟩ .

(3.74)

9We include the superscript in U
(0)
CG as we require the use of a second Clebsch-Gordon transform U

(1)
CG when we consider the

three-qubit QSWT later.



3.4. THREE-QUBIT DISTURBANCE AS A QUANTUM CIRCUIT 53

≡ =

Q0 2-qubit
QSWT U

(0)
CG

H

Q1

Q2

Figure 3.5: Circuit diagram of a two-qubit quantum Schur-Weyl transform (QSWT). This is equivalent the

Clebsch-Gordon transform U
(0)
CG on two spin-half particles.

Now, note that the first measurement, given in Eq. (3.73), really only has two degrees of freedom: one in

the s = 1 space, Q(2)
1 ⊗P(2)

1 and one in the s = 0 space, Q(2)
0 ⊗P(2)

0 . We can transfer the information about
the spin onto an ancilla qubit B, initially in the state |0⟩, using a Toffoli gate controlled on Q0Q1. Given
our two qubit states [Eq. (3.12)], which can be rewritten as

ρ00 =
1

3
I1, (3.75a)

ρ01 =
1

4
I1 +

1

4
I0, (3.75b)

this does the following:

|0⟩⟨0|(B) ⊗ ρ
(Q0Q1)
00 = |0⟩⟨0| ⊗ 1

3
I1 → 1

3
|0⟩⟨0| ⊗ I1, (3.76a)

|0⟩⟨0|(B) ⊗ ρ
(Q0Q1)
01 = |0⟩⟨0| ⊗ 1

4
(I1 + I0) → 1

4
|0⟩⟨0| ⊗ I1 +

1

4
|1⟩⟨1| ⊗ I0, (3.76b)

where ρi and Is are encoded on Q0Q1 and the remaining component is encoded in B as indicated by the
superscripts on the left hand side. The thing to notice from this is that B is in the state |1⟩ only when the

state of Q0Q1 is in Q(2)
0 ⊗P(2)

0 . So, performing the PVM {P+, P−} on Q0Q1 is equivalent to performing the
PVM {|0⟩⟨0|, |1⟩⟨1|} on B, such that an outcome of + (−) on Q0Q1 corresponds to an outcome of 0 (1) on
B. Therefore, instead of performing the POVM {π±}, written in Eq. (3.73), on Q0Q1, we can perform the
POVM, with elements

π̃+ = (1 − β) |0⟩⟨0| + (1 − α− β) |1⟩⟨1| , (3.77a)

π̃− = β |0⟩⟨0| + (α+ β) |1⟩⟨1| , (3.77b)

on B and then transfer the post measurement state information back to Q0Q1 using another Toffoli gate.
Relating to the work of [112], and Eq. (3.68), since π̃± are diagonal, we can see directly that

D0/1 =
√
π̃+/− (3.78)

if p = 1−β, q = α+β, |u⟩ = |0⟩, |v⟩ = |1⟩. So, in order to perform this first measurement, we use the circuit
given in Fig. 3.3 with

ϕ = ϕ1 :=
1

2

[
sin−1(1 − 2β) + sin−1(2α+ 2β − 1)

]
, (3.79a)

ϵ = ϵ1 :=
1

2

[
sin−1(1 − 2β) − sin−1(2α+ 2β − 1)

]
(3.79b)

and X = A,S = B. The subscripts in ϕ1, ϵ1, indicate that this is the first measurement. So, following on
from Eq. (3.76), applying the Toffoli gate and U(ϕ1, ϵ1) on ABQ0Q1, our states would be updated as follows:

|00⟩⟨00|(AB) ⊗ ρ
(Q0Q1)
00 →1

3

[
|0⟩⟨0| ⊗

(√
π̃+ |0⟩⟨0|

√
π̃+

†)
+ |1⟩⟨1| ⊗

(√
π̃− |0⟩⟨0|

√
π̃−

†)]⊗ I1, (3.80a)

|00⟩⟨00|(AB) ⊗ ρ
(Q0Q1)
01 →1

4

[
|0⟩⟨0| ⊗

(√
π̃+ |0⟩⟨0|

√
π̃+

†)
+ |1⟩⟨1| ⊗

(√
π̃− |0⟩⟨0|

√
π̃−

†) ]⊗ I1

+
1

4

[
|0⟩⟨0| ⊗

(√
π̃+ |1⟩⟨1|

√
π̃+

†)
+ |1⟩⟨1| ⊗

(√
π̃− |1⟩⟨1|

√
π̃−

†) ]⊗ I0. (3.80b)
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If we then reapply the same Toffoli gate controlled on Q0Q1 with target B, noting that we’ve rearranged
the qubits in order to write the states down more succinctly, we end up with

|00⟩⟨00|(BA) ⊗ ρ
(Q0Q1)
00 →1

3
|0⟩⟨0| ⊗

[
|0⟩⟨0| ⊗

(√
π+ I1

√
π+

†
)

+ |1⟩⟨1| ⊗
(√

π− I1
√
π−

†
)]
, (3.81a)

|00⟩⟨00|(BA) ⊗ ρ
(Q0Q1)
01 →1

4
|0⟩⟨0| ⊗

[
|0⟩⟨0| ⊗

(√
π+ I1

√
π+

† +
√
π+ I0

√
π+

†
)

+ |1⟩⟨1| ⊗
(√

π− I1
√
π−

† +
√
π− I0

√
π−

†
)]
. (3.81b)

From here, it is clear to see that if we measure A in the z-basis10, an outcome of 0 (1) corresponds to a
measurement outcome of + (−) on Q0Q1. Notice also that B is guaranteed to return to its initial state of
|0⟩, meaning we are free to use it in our later steps.

All together, the circuit used to perform the first measurement and update our three-qubit states in the
way given in Eq. (2.85) is given in Fig. 3.6. The arrow exiting U(ϕ1, ϵ1) indicates the qubit that contains the
{π±} measurement outcome. Note that until A is measured, the system is left in a mixture of the two possible
outcomes: 0 or 1, as written explicitly in Eq. (3.81). The approach taken here waits until the end of the whole
protocol to measure A and, instead, uses it as a control qubit to dictate whether the second measurement
will be {π+

ijk} or {π−
ijk} (corresponding to A being in the state |0⟩ or |1⟩ respectively). Alternatively, one

could measure A earlier and perform the subsequent measurement based on the classical measurement result.
This would save quantum resources, but the platform we used to simulate this circuit (Qiskit) was, at the
time, less amenable to this latter approach of classical conditioning. When A is eventually measured, the
outcome will be mapped onto the classical bit c0 with c0 = 0 corresponding to a measurement outcome11 of
O1 = + and c0 = 1 to O1 = −.

{π+, π−}

.

A
U(ϕ1, ϵ1)

B

Q0

U
(0)
CG

Q1

Q2

Figure 3.6: Circuit diagram corresponding to the intermediate measurement
{
π
(Q0Q1)
+ , π

(Q0Q1)
−

}
given in

Eq. (3.73). The operation U
(0)
CG indicates the two-qubit QSWT used to put the state in the Schur basis, and

the blue box corresponds to the measurement {π±}. The arrow output from U(ϕ1, ϵ1) indicates the qubit
that the measurement result is contained within.

3.4.4 Second measurement

Due to the piece-wise nature of the second measurement {π−
ijk}, different circuits are required for the two

regions. We discuss these separately in the two following subsections: first, the region corresponding to the
constant portion of the tradeoff in Fig. 3.1 which we call Region I. We then go onto discuss the variable
region, which we call Region II, of this tradeoff.

10The assumed single qubit basis of measurement in a quantum circuit.
11We will denote the ith measurement outcome as Oi. If there are multiple steps within a measurement, the outcome of the

jth step of the ith measurement will be denoted O(j)
i .
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3.4.4.1 Region I

We begin by discussing the, more complicated, constant region in Eq. (3.51). That is, when α ∈ [0,min{1 −
β, 2β}], β ∈ [0, 1]. Here, using a− =

√
(α+ β)/3β and Eq. (3.41),

π−
000 = I 3

2
, (3.82a)

π−
001 =

2β − α

3β
I 1

2
⊗ |1⟩⟨1|, (3.82b)

π−
010 =

1

2
I 1

2
⊗
(√

α+ β

3β
|1⟩ − |0⟩

)(√
α+ β

3β
⟨1| − ⟨0|

)
, (3.82c)

π−
011 =

1

2
I 1

2
⊗
(√

α+ β

3β
|1⟩ + |0⟩

)(√
α+ β

3β
⟨1| + ⟨0|

)
, (3.82d)

and {π+
ijk} can be found using the swaps in Eq. (3.35)12.

Now that we are considering the three-qubit measurement, we now require our states ρ±ijk to be in the
three-qubit Schur basis given in Eq. (2.145). As is discussed in more detail, and more generally in Ref. [72],
the three-qubit QSWT can expressed as a quantum circuit using sequential Clebsch-Gordon transforms

U
(0)
CG, U

(1)
CG. In this picture, step one corresponds to putting the state of Q0Q1 in the two-qubit Schur basis

using U
(0)
CG, after which U

(1)
CG adds the extra “spin-half particle” Q2 thereby putting the state of the whole

system Q0Q1Q2 in the Schur basis. This is depicted in Fig. 3.7.

≡

Q0

3-qubit
QSWT

U
(0)
CG

U
(1)
CG

Q1

Q2

Figure 3.7: Schematic of how a three-qubit QSWT can be performed as a quantum circuit using sequential
Clebsch-Gordon transforms. More detail can be found in Ref. [72].

More explicitly, we use a slightly adapted version of the circuit used in [113] to perform the three-qubit
QSWT, as shown in Fig. 3.8.

U
(1)
CG

U
(0)
CG

Q0 H P (π) P (π)

Q1 P (π)

Q2 U1 U2 P (π) P (π)

Figure 3.8: Circuit implementation of a three-qubit quantum Schur-Weyl transform.

12Recall that {π+
ijk} has this form for all α, β.
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Here,

U1 =
1√
3

(
1

√
2

−
√

2 1

)
= RY

(
−2 cos−1

√
1

3

)
, (3.83a)

U2 =
1√
3

(√
2 1

1 −
√

2

)
= ZRY

(
−2 cos−1

√
2

3

)
. (3.83b)

Note that, by this stage in our protocol, the state of Q0Q1 is already in the two-qubit Schur basis. Therefore,

we need not carry out U
(0)
CG as this has already been done. Note also that the gates in the purple box in

Fig. 3.8 do not feature in [113] but are included here in order for the Schur basis to match the one chosen in
Eq. (2.145).

The above circuit maps the basis states in Eq. (2.145) as follows:

Q(3)
3
2

⊗ P(3)
3
2

:

∣∣∣∣32 , 3

2

〉
→ |000⟩(Q0Q1Q2),∣∣∣∣32 , 1

2

〉
→ −|110⟩,∣∣∣∣32 ,−1

2

〉
→ |100⟩,∣∣∣∣32 ,−3

2

〉
→ |010⟩,

Q(3)
1
2

⊗ P(3)
1
2

:

∣∣∣∣12 , 1

2

〉
|1⟩ → |111⟩,∣∣∣∣12 ,−1

2

〉
|1⟩ → −|101⟩,∣∣∣∣12 , 1

2

〉
|0⟩ → −|011⟩,∣∣∣∣12 ,−1

2

〉
|0⟩ → −|001⟩,

(3.84)

where, as indicated in the first line, these three-qubit states are encoded on the qubits Q0, Q1, Q2. Note that

the subspaces Q(3)
3
2

⊗P(3)
3
2

and Q(3)
1
2

⊗P(3)
1
2

can be distinguished based on the state of Q2. So we can interpret

Q2 as the “total spin” qubit, where |0⟩Q2 := |s = 3/2⟩ and |1⟩Q2 := |s = 1/2⟩. Further, notice that the basis

vectors of Q(3)
1
2

⊗ P(3)
1
2

are mapped to states of the form |q0, q1, q2⟩(Q0Q1Q2) = |p,m, s⟩ where p denotes the

path (permutation) degree of freedom and |0⟩ := |m = −1/2⟩, |1⟩ := |m = 1/2⟩ denotes the z-component of
the spin. Let’s now follow the three-step protocol of Sec. 3.4.1 to carry out {π±

ijk}.

Step 1: 000 vs. 000

The form of {π±
ijk} hints that we can use Q2 to differentiate π±

000 from the other POVM elements since π±
000

only have s = 3/2 components, whereas π±
001, π

±
010, π

±
011 only have s = 1/2 components. Making this explicit,

notice, after going through the three-qubit QSWT circuit, the form of π±
000:

π±
000 = I 3

2
=

∣∣∣∣32 , 3

2

〉〈
3

2
,

3

2

∣∣∣∣+

∣∣∣∣32 , 1

2

〉〈
3

2
,

1

2

∣∣∣∣+

∣∣∣∣32 ,−1

2

〉〈
3

2
,−1

2

∣∣∣∣+

∣∣∣∣32 ,−3

2

〉〈
3

2
,−3

2

∣∣∣∣
→ I(Q0Q1) ⊗ |0⟩⟨0|(Q2) , (3.85)

where I(Q0Q1) denotes the identity operator on the first two qubits. This tells us that the action of I3/2
on Q0Q1Q2 is equivalent to the action of |0⟩⟨0| on Q2 whilst leaving Q0Q1 invariant. Further, since π±

000 is
the same regardless of the outcome of the first measurement (unlike the other three-qubit POVM elements)
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we can distinguish a measurement outcome of 000 from the others without having to condition it on the
outcome of the first measurement. So, at this stage, if we were to measure Q2 in the {|0⟩, |1⟩} basis and
obtain an outcome of 0, this would correspond to a three-qubit measurement outcome of 000, and, as we
mentioned before, we can therefore stop, or ignore any outcomes that follow. However, as we saw earlier, if
the outcome is 1, we can only conclude that the measurement outcome is not 000. So, more work is required
to find out whether we’ve measured the system to be (initially prepared) in the state ρ001, ρ010 or ρ011. In
the remainder of the protocol, we will be working in the s = 1/2 subspace, meaning that Q2 has no use in
the steps to come, so we are free to measure it. We map this measurement outcome to the classical bit c1
such that c1 = 0 corresponds to an outcome of O(1)

2 = 000 and c1 = 1 to an outcome of O(1)
2 ̸= 000.

Let’s now move on to the measurements {π±
000, π

±
010, π

±
011}. Ideally, we’d want one of these to be performed

only if O(1)
2 ̸= 000, however, we can reduce the number of qubits and multi-qubit gates by always carrying

out one of these measurements, whilst only taking note of the results when c1 = 1 (i.e. when O(1)
2 ̸= 000). We

do, however, have to take into account the result of the first measurement {π±}, which we do by controlling
{π±

000, π
±
010, π

±
011} on the qubit A, as shown in Fig. 3.4. Note that in this figure, {π+

001, π
+
010, π

+
011} only occurs

when |a⟩ = |0⟩ and {π−
001, π

−
010, π

−
011} when A is in the state |1⟩ as we’d hope. Our task is further simplified

when we notice that π±
001, π

±
010, π

±
011 live entirely in L

(
Q(3)

1/2 ⊗ P(3)
1/2

)
and differ only in their path degree of

freedom. Therefore, according to Eq. (3.84), we only require the Q0 component ρ±ijk for this part of the
measurement. From here on, we will only consider, in full detail, the case in which O1 = −. The O1 = +
case can be found by performing the swaps in Eq. (3.35).

As mentioned, we only need to focus on the path component, encoded in Q0, so our aim is to perform
the POVM made up of the elements

π̃−
001 =

2β − α

3β
|1⟩⟨1|(Q0), (3.86a)

π̃−
010 =

1

2

(√
α+ β

3β
|1⟩ − |0⟩

)(√
α+ β

3β
⟨1| − ⟨0|

)
, (3.86b)

π̃−
010 =

1

2

(√
α+ β

3β
|1⟩ + |0⟩

)(√
α+ β

3β
⟨1| + ⟨0|

)
. (3.86c)

Step 2: 001 vs. 001

Following the notation of the previous subsections, we first distinguish between O(2)
2 = 001 and O(2)

2 = 001
(which means O2 ̸= 001), using the measurement operators

N001 = M001 =

√
2β − α

3β
|1⟩⟨1|, (3.87a)

N001 =

√
1−

∣∣N001

∣∣2 =

√
α+ β

3β
|1⟩⟨1| + |0⟩0|, (3.87b)

similarly to as we saw in Sec. 3.4.1 albeit with Ni,Mi belonging to different spaces. This can be done using
the circuit in Fig. 3.3 with X = B,S = Q0, and U(ϕ−2 , ϵ

−
2 ) such that

ϕ−2 = −1

2

[
π

2
− sin−1

(
2α− β

3β

)]
, (3.88a)

ϵ−2 = −1

2

[
π

2
+ sin−1

(
2α− β

3β

)]
, (3.88b)

where the superscripts indicate that this corresponds to the case O1 = −. To access the measurement result,

we can measure the qubit B and map the result onto c2, with c2 = 0 corresponding to O(2)
2 = 001, and

c2 = 1 corresponding to O(2)
2 ̸= 001.
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001 vs. 001

010 vs. 011
A

B

U
(
ϕ−2 , ϵ

−
2

)
Q0 H

Figure 3.9: Circuit representation of the two step process used to perform the POVM {π−
001, π

−
010, π

−
011}.

Note the control on the qubit A which is required to ensure that this POVM is carried out only if the first
measurement resulted in O1 = −.

Taking stock so far, if c1 = 0, and therefore O(1)
2 = 000, we ignore c2, for we already obtained a valid

measurement result in Step 1. If, however c1 = 1, meaning O(1)
2 ̸= 000, we must take into account the

measured value of B: c2 = 0 for O(2)
2 = 001, and c2 = 1 for O(2)

2 ̸= 001. Just as we did in Step 1, if c2 = 0,
we can ignore everything that follows, but if c2 = 1, we require Step 3 to finish our measurement. Once
again, this is taken into account by controlling the measurement in Step 3 on B.

Step 3: 010 vs. 011

In this step, our task is to perform a measurement {N010, N011} on it, with the final two possible outcomes:

O(3)
2 = 010 and O(3)

2 = 011. As we noted in Sec. 3.4.1, and since we’re performing this measurement purely
on the path degree of freedom (contained in Q0), the POVM corresponding to {N010, N011} is just the Pauli-x
measurement on Q0. Therefore, we can take

N010 = |−⟩⟨−|, (3.89a)

N011 = |+⟩⟨+|. (3.89b)

So, in order to perform {N010, N011} we just need to apply a Hadamard gate, controlled13 on B, to Q0 and
then measure Q0 in the computational basis. Steps 2 and 3 are shown in Fig. 3.9. When we come to measure

Q0 to determine O(3)
2 , we map the measurement result onto c3, taking14 c3 = 1 to mean O(3)

2 = 010 and

c3 = 0 to mean O(3)
2 = 011. This is because HN010H

† = |1⟩⟨1| and HN011H
† = |0⟩⟨0|.

This concludes the circuit describing the sequential classification for Region I. Table 3.1 summarises how
to interpret the values of the classical bits used, and what they correspond to in terms of the first and second
measurement results. Note that we call the final outcome of the second measurement O2.

3.4.4.2 Region II

Let us now move onto the variable region of Fig. 3.1 - that is, when α ∈ (2β, 1−β] with β ∈ [0, 1]. We should
first notice that nothing changes for {π+

ijk}, so, when O1 = +, and therefore the A component of the state is

|0⟩, the circuit runs as described in the previous section. But when O1 = − and A is in the state |1⟩, {π−
ijk}

13Controlled on B since we only perform this part of the measurement when O(2)
2 ̸= 001.

14Of course, that is unless c2 = 0 and/or c1 = 0, in which case we ignore the result stored in c3.
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c0 (+ vs. −) O1 c1 (000 vs. 000) c2 (001 vs. 001) c3 (011 vs. 010) O2

0 + 0 0 0 000
1

1 0
1

1 0 0 001
1

1 0 011
1 010

1 − 0 0 0 000
1

1 0
1

1 0 0 001
1

1 0 011
1 010

Table 3.1: Table summarising the classical bits, what measurement they describe, and what measurement
outcomes O1,O2 their values correspond to. Where multiple adjacent entries in the same column share the
same value, for readability, we only include one representative - for instance, the far left column represents
eight 0s in the top box, and eight 1s in the bottom one.

has the form:

π−
000 = I 3

2
, (3.90a)

π−
001 = 0, (3.90b)

π−
010 =

1

2
I 1

2
⊗ (|1⟩ − |0⟩)(⟨1| − ⟨0|), (3.90c)

π−
011 =

1

2
I 1

2
⊗ (|1⟩ + |0⟩)(⟨1| + ⟨0|). (3.90d)

This follows from Eq. (3.41) and Eq. (3.43).
We can see that, as before, π−

000 can be distinguished from the others by measuring Q2. However,
distinguishing π−

001, π
−
010, π

−
011 is much simpler here than before. Since π−

001 = 0, the operators we are
discriminating between are π−

010, π
−
011. As we saw in Region I, this corresponds to a Pauli-x measurement on

the path qubit Q0, the result of which is stored in c3
15. It follows that when c3 = 1 (c3 = 0), we take this

to correspond to a measurement outcome of 010 (011).

3.4.4.3 Simulated results

These two circuits where simulated in Qiskit. The results, were plotted in Fig. 3.10 along with the analytical
tradeoff [Eq. (3.51), Fig. 3.1].

In order to simulate these results, the states ρijk had to somehow be input into the circuit. Since Qiskit
operates under the paradigm of inputting pure states into quantum circuits, and since

ρijk =

∫
|φiφjφk⟩⟨φiφjφk| dφ0dφ1, (3.91)

our first worrying thought might be that we require a large number pure states to approximate ρijk. Thank-
fully, however, there is a set of just six pure states, due to how they are distributed on the Bloch sphere,

15Note that this time, one less classical bit is required since a measurement outcome corresponding to π−
001 is never registered.

So that we don’t have to rename the classical bits corresponding to {π+
ijk} outcomes, we just ignore c2 as it will be left unchanged

with a value of 0.
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Figure 3.10: Plot of the simulated results of the quantum circuit describing the two-measurement protocol
discussed in Sec. 3.3. The blue curve shows the analytical tradeoff given by Eq. (3.51) and the orange points
show how the simulated success rates of the two measurements (as a quantum circuit) relate to one another
for varying α, β. These simulations were carried out using the AerSimulator in Qiskit.

that can construct each ρijk exactly:

T = {|0⟩, |1⟩, |+⟩, |−⟩, |i⟩, | − i⟩}, (3.92)

that is, the eigenstates of the Pauli operators σx, σy, σz. This is true because T is what’s known as a quantum
1-design, 2-design and 3-design [114]. That is,

ρ0 =

∫
|φ0⟩⟨φ0| dφ0 =

1

6

∑
|vi⟩∈T

|vi⟩⟨vi|, (3.93a)

ρ00 =

∫
|φ0φ0⟩⟨φ0φ0| dφ0 =

1

6

∑
|vi⟩∈T

|vivi⟩⟨vivi|, (3.93b)

ρ000 =

∫
|φ0φ0φ0⟩⟨φ0φ0φ0| dφ0 =

1

6

∑
|vi⟩∈T

|vivivi⟩⟨vivivi| (3.93c)

respectively. Using these relations, the fact that ρ0···0 = ρ1···1, and that ρ001, ρ010, ρ011 are related by a
permutation symmetry, every ρijk can be constructed using only the pure states in T .

So, in order to simulate our tradeoff, we allowed |φ0⟩, |φ1⟩ to be the states in T , and for each choice, we
input |φ0φ0φ0⟩, |φ0φ0φ1⟩, |φ0φ1φ0⟩, |φ0φ1φ1⟩ into the circuit 8192 times to approximate the measurement
statistics of each of these states. Once this had been done for every element of T , we averaged over the
results. We did this using the AerSimulator in Qiskit for different choices of α, β, corresponding to different
success probabilities of the first and second measurements. These different α, β correspond to the different
orange points in Fig. 3.10.

3.5 Discussion

To summarise, we considered a base case in the tradeoff between two sequential unsupervised quantum
learning tasks. In particular, we looked at the situation in which there was initially a dataset of three
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qubits that could each be in one of two unknown quantum states. Once a binary classification of varying
success rate, corresponding to a quantum measurement of varying strength, had been performed on a subset
of two of these qubits, the optimal classification on all three qubits was then performed. We found that,
although a binary classification of two unknown qubits causes measurement disturbance which can degrade
the performance of an optimal classifier on all three qubits, there is a large regime in which the performance
remains unaffected. In this regime, the final measurement may be adjusted to fully mitigate the disturbance
caused by the first measurement. That is, the success rate of the first classification can range from that of
a guess, P 1st

succ = 1/2 to P 1st
succ = 7/12 without causing the success rate of the second classification to deviate

from its optimal value of P 2nd
succ = 5/12. When P 1st

succ is further improved, however, P 2nd
succ decreases non-linearly

to a success rate of 19/48 as P 1st
succ increases to its optimal value of 5/8. We also demonstrated this tradeoff

through a circuit implementation in Qiskit, executed using the AerSimulator.

The contents of this chapter provides an indication that sequential unsupervised classifications of quantum
data can be performed. Further, depending on the strength of an earlier classification, a later classification’s
ability need not be compromised. Having said this, this work also highlights that there are non-trivial
tradeoffs between sequential unsupervised quantum learning tasks which, although small in this base case,
may be more considerable in more complicated scenarios. Here we have considered the simplest possible
example of a quantum learning task in which a measurement disturbance tradeoff exists between performance
on a subset of the data provided and performance on the whole dataset. We have fully characterized this
tradeoff. This is a peculiarly quantum effect due to fundamental features of quantum mechanics, which is
not present in classical machine learning.

This is just the first step in exploring this tradeoff in learning tasks, and more work is required to fully
understand the limitations imposed by quantum mechanics on sequential learning. For example the next
natural step would be to consider starting with n unknown qubits of two types and, following a classification
of them, adding 1 or more extra qubits to be subsequently classified - we take steps in this direction in
the following chapter. Further, one could look at the case in which there are a larger number of options of
qubit (or d-dimensional qudit) to choose between. Another path to take could be the supervised analogue
of the content of this chapter, with labelled qubits being given as a training set used to classify future ones.
In addition, there are a range of learning paradigms, including partially or fully supervised learning, and
reinforcement learning, in which similar effects may be explored.

Appendix 3.A Derivation of updated states and measurements

3.A.1 Updated prior probabilities

Assuming the outcome of the measurement on the first two qubits is −, the probabilities of the disturbed
states ρ−000, ρ

−
001, ρ

−
010, ρ

−
011 occurring are given by p−000, p

−
001, p

−
010, p

−
011 respectively, such that

p−0ij := P (ρ0ij |π− ⊗ 1). (3.94)

Using Bayes’ theorem, this can be written as

p−0ij =
P (π− ⊗ 1|ρ0ij)P (ρ0ij)

P (π− ⊗ 1)

=
P (π−|ρ0i)
4P (π−)

, (3.95)

where the second equality is obtained using the fact that P (ρ0ij) = 1/4, and that the third qubit is acted
on only by the identity and therefore does not change any of the probabilities.

So, by noting that

P (π−|ρ00) = Tr(π−ρ00) = β, (3.96a)

P (π−|ρ01) = Tr(π−ρ01) =
1

4
(α+ 4β), (3.96b)
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and therefore,

P (π−) = P (π−|ρ00)P (ρ00) + P (π−|ρ01)P (ρ01)

=
1

8
(α+ 8β), (3.97)

we find that

p−000 = p−001 =
2β

α+ 8β
, (3.98a)

p−010 = p−011 =
α+ 4β

2(α+ 8β)
. (3.98b)

3.A.2 Second measurement

Again, assuming the outcome of the first classification was −, recall that distinguishing ρ−000 from the
other states is done optimally by letting π−

000 be the projector onto the s = 3/2 space. This leads to the

measurement that best distinguishes ρ−001, ρ
−
010, ρ

−
011 being entirely contained in the s = 1/2 space L(Q(3)

1
2

⊗
P(3)

1
2

). Further, since the L(Q(3)
1
2

) component of each of ρ−001, ρ
−
010, ρ

−
011 is the identity, all the information

about how they differ is contained in L(P(3)
1
2

). So we can rephrase this as a state discrimination problem of

the following states:

|ψ−
001⟩ =

N−
001√
6
|1⟩, (3.99a)

|ψ−
010⟩ =

N−
010√

6(α+ 4β)

(√
β|1⟩ −

√
3(α+ β)|0⟩

)
, (3.99b)

|ψ−
011⟩ =

N−
011√

6(α+ 4β)

(√
β|1⟩ +

√
3(α+ β)|0⟩

)
, (3.99c)

where N−
0ij are normalisation constants required so that we can think of this as a mirror symmetric state

discrimination problem. Explicitly,

N−
001 =

√
6, (3.100a)

N−
010 =

√
6(α+ 4β)

4β + 3α
= N−

011. (3.100b)

Now, in [63], the states to be discriminated are written as

|ψ1⟩ = |1⟩, (3.101a)

|ψ2⟩ = cos θ|1⟩ − sin θ|0⟩, (3.101b)

|ψ3⟩ = cos θ|1⟩ + sin θ|0⟩, (3.101c)

such that |ψ2,3⟩ happen with probability p2,3 = p and |ψ1⟩ with probability p1 = 1 − 2p. So, we can let

cos θ =

√
β

4β + 3α
, (3.102a)

sin θ =

√
3(α+ β)

4β + 3α
, (3.102b)

and q−010, q
−
011 = p−, q−001 = 1 − 2p− where

q−0ij = P (ρ0ij |π−, s = 1/2) (3.103)
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is the probability of being in the state |ψ−
0ij⟩, and we have added (with respect to [63]) a superscript to p to

distinguish the two outcomes of the intermediate measurement.
So, using Eq. (3.103), we can find p− = q−01j . Using Bayes’ theorem, we find that

p− =
P
(
π− ⊗ 1, s = 1

2

∣∣∣ρ01j)P (ρ01j)

P
(
π− ⊗ 1, s = 1

2

) . (3.104)

Note that requiring s = 1/2 is equivalent to projecting the state ρ01j onto the s = 1/2 space L(Q(3)
1
2

⊗P(3)
1
2

).

Denoting this projector by P 1
2
,

P

(
π− ⊗ 1, s =

1

2

∣∣∣ρ01j)= P
(
π− ⊗ 1, P 1

2

∣∣∣ρ01j)= Tr
[
P 1

2

(√
π− ⊗ 1

)
ρ01j
(√
π− ⊗ 1

)†
P †

1
2

]
. (3.105)

The denominator can be found using

P

(
π− ⊗ 1, s =

1

2

)
=
∑
ij

P (π− ⊗ 1, P 1
2
|ρ0ij)P (ρ0ij), (3.106)

from which it follows that

p− =
3α+ 4β

6(α+ 2β)
. (3.107)

Now, according to [63], if

p ≥ 1

2 + cos θ(cos θ + sin θ)
, (3.108)

a = 1. Else,

a =
p cos θ sin θ

1 − p(2 + cos2 θ)
. (3.109)

Substituting p− for p, a− for a and our expressions for sin θ, cos θ given in Eq. (3.102), this can be restated
in the following way: if

α ≥ 2β, (3.110)

a− = 1. Else,

a− =

√
α+ β

3β
. (3.111)

When coupled with the constraints on α, β given in Eq. (3.34), we obtain

a− =

{√
α+β
3β if α ∈ [0,min{1 − β, 2β}],

1 if α ∈ (2β, 1 − β] with 2β < 1 − β
(3.112)

such that β ∈ [0, 1].
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Chapter 4

Measurement disturbance tradeoffs in
n-qubit unsupervised classification

In this chapter, we aim to generalise some of the findings of the previous chapter to n qubits. To do this, we
first learn how to perform an unsupervised binary classification on n qubits. We do this by re-deriving some
of the work by Sent́ıs et al [71]. In doing so, we’ll establish the notation used throughout this chapter. After
this, given a set of n qubits, we will look into how an initial classification on a subset of n− 1 qubits affects
one’s ability to classify the full dataset. In particular, we investigate how successful we can be in our initial
classification without affecting the optimality of a subsequent one. We find that, in the initial classification,
we can learn something about the numbers of each of the states, |φ0⟩, |φ1⟩, without affecting the second
classification. Indeed, as we will see, there are hints that nothing about their order can be deduced, although
it is possible that this is due to the symmetric form of the optimal measurement on n undisturbed qubits
that we use. We find that a consequence of this is that no non-trivial measurement on the first n−m qubits
(for m > 1) can be performed without affecting the success rate of a subsequent classification of the whole
n-qubit dataset. We derive an analytical expression for a lower bound on the success rate achievable in
this initial classification. Following this, we hypothesise a construction algorithm of the measurement that
realises the upper bound - at least under the constraint that the n-qubit measurement shares the symmetries
of the dataset. Before we do all of this, let’s first summarise the notation used throughout this chapter.

4.1 Notation

This section is included purely to summarise the notation used over the course of this chapter. Any explana-
tion, if necessary, of such notation occurs when it is first encountered. When classifying n qubits, our states
and representations are labelled using, partitions or total spin:

νk = (n− k, k), (4.1a)

sνk =
n− 2k

2
. (4.1b)

When considering n− 1 qubits, we will use

µj = (n− 1 − j, j), (4.2a)

sµj
=
n− 1 − 2j

2
. (4.2b)

Since partitions are defined using non-negative integers, it will be implicitly assumed throughout that the
subscripts of the partitions are integers - e.g. in the above, j, k ∈ Z. Although it will be made clear as we
go, when labeling states, measurement operators and so on, we will reserve σ, σ′, σ̃ etc. for elements of Sn,
whereas τ, τ ′, τ̃ etc. will be used as elements of Sn−1. Finally, measurement operators on n qubits will be
written using π, for example πνk,σ. Conversely, measurement on n − 1 qubits will be written using ξ, for
example, ξµj ,τ . We summarise the notation in Table 4.1.
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n− 1 qubits n qubits
Partition µj νk
Spin sµj

sνk
Permutation cycle τ σ
Permutation equivalence class [τ ]µj

[σ]νk
Set of equivalence classes Cµj

Cνk
Set of states R(n−1) R(n)

POVM elements ξµj ,τ πνk,σ
POVM Ξ(n−1) Π(n)

Hilbert space H(n−1) Hn

Reducible SU(2) representation
(
Q(n−1),H(n−1)

) (
Q(n),H(n)

)
Irreducible SU(2) representations (qµj

,Qµj
) (qνk ,Qνk)

Reducible symmetric group representation
(
P(n−1),H(n−1)

) (
P(n),H(n)

)
Irreducible symmetric group representations (pµj ,Pµj ) (pνk ,Pνk)

Table 4.1: Summary of the notation used throughout this chapter.

4.2 Unsupervised binary classification of n qubits

In this section, we re-derive a special case1 of the work by Sent́ıs et al [71] and write down the optimal success
rate in classifying n qubits that are each in one of two unknown states |φ0⟩, |φ1⟩. As in the previous section,
this corresponds to a quantum state discrimination problem where the states to distinguish represent each
possible quantum dataset. With that, our first task is to write down these states.

4.2.1 The states

As mentioned, suppose we have n qubits that are one of two unknown pure states |φ0⟩, |φ1⟩. Define the
partition of n:

νk = (n− k, k), (4.3)

such that k ∈ Z subject to 0 ≤ k ≤ n/2, or in other words, k ∈ {0, . . . , ⌊n/2⌋}. By Schur-Weyl duality, each
νk simultaneously labels an irrep of SU(2) and Sn: (qνk ,Qνk) and (pνk ,Pνk) respectively2. It turns out that
these partitions can also be used to label how many of each state |φi⟩ we have, where k tells us how many
|φ1⟩ states there are. We therefore define the following states

ρνk := ρ0n−k1k , (4.4)

where bi means i copies of b in a row, e.g. ρ0312 := ρ00011. It turns out that we can also label our irreps and
states using the total spin by imagining our qubits as spin-half particles. We do this using [115]

νk 7→ sνk =
n− 2k

2
. (4.5)

The corresponding z-component of the spin follows the normal rules

mνk ∈ {−sνk ,−sνk + 1, . . . , sνk}. (4.6)

This alternate labelling comes in particularly useful when we consider the sequential learning task later in
this chapter.

Let’s write down these states more quantitatively. First, we reiterate that the pure states |φi⟩ are
completely unknown to us and can therefore be located at any point on the surface of the Bloch sphere with
equal likelihood. Therefore, similarly to in the two and three-qubit cases considered previously, we write

ρνk =

∫ (
|φ0⟩⊗n−k|φ1⟩⊗k

) (
⟨φ0|⊗n−k⟨φ1|⊗k

)
dφ0dφ1, (4.7)

1A special case in that Sent́ıs et al took |φ0⟩, |φ1⟩ to be d-dimensional qudit states, whereas we only consider them as qubit
states.

2Recall that a representation of a group G is a homomorphism R together with a vector space V such that R : G → End(V).
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which, since |φi⟩ are totally independent of one another, can be rewritten as3,

ρνk =

[∫ (
|φ0⟩⟨φ0|

)⊗n−k
dφ0

]
⊗
[∫ (

|φ1⟩⟨φ1|
)⊗k

dφ1

]
= ρ0n−k ⊗ ρ1k . (4.8)

Next, notice that P(i)(σ)|φb⟩⊗i = |φb⟩⊗i for all σ ∈ Sn, |φb⟩ ∈ H(1), for example, permuting the qubits in
the state |φ0⟩|φ0⟩|φ0⟩ does not change the state of the system. This means that |φb⟩⊗i ∈ Q(i) ⊗ P(i) and
therefore ρbi ∈ L(Q(i) ⊗P(i)), where (i) := (i, 0) is the partition labelling the totally symmetric Schur-Weyl
subspace of i qubits.

Now, for all U ∈ SU(2),

Q(i)(U)ρbiQ
(i)†(U) = ρbi . (4.9)

To see this, as was done before, we can rewrite ρbi , perhaps more rigorously, as∫
SU(2)

V ⊗i
b |0⟩⟨0|V ⊗i

b

†
dµ(Vb), (4.10)

where |0⟩ is some fixed pure state, and µ is the Haar measure on SU(2). This is related to Eq. (4.7) by noting
that |φb⟩ = Vb|0⟩ for some Vb ∈ SU(2). The reason for performing this integral with respect to the Haar
measure on SU(2) is that this ensures the states {|φb⟩ = Vb|0⟩ | Vb ∈ SU(2)} are uniformly distributed on the
surface of the Bloch sphere, which is what we’re assuming. As we saw in Sec. 2.3.4, a property of the Haar
measure is that, for any integrable function f ,

∫
SU(2)

f(UV )dµ(V ) =
∫
SU(2)

f(V )dµ(V ) for any U ∈ SU(2)

[76]. It follows that

Q(i)(U)ρbiQ
(i)†(U) = U⊗i

(∫
SU(2)

V ⊗i
b |0⟩⟨0|V ⊗i

b

†
dµ(Vb)

)
U⊗i†

=

∫
SU(2)

(UVb)
⊗i|0⟩⟨0|(UVb)⊗i

†
dµ(Vb)

=

∫
SU(2)

V ⊗i
b |0⟩⟨0|V ⊗i

b

†
dµ(Vb) = ρbi . (4.11)

Using Schur’s Lemma, this, together with the fact that ρbi ∈ L(Q(i) ⊗ P(i)), means that

ρνk =
1

d(n−k)d(k)
I(n−k) ⊗ I(k), (4.12)

where d(i) := dim
[
Q(i,0) ⊗ P(i,0)

]
ensures ρνk is normalised, and I(i) is the identity operator on Q(i) ⊗

P(i). Notice that only the dimension of the SU(2) subspace contributes, that is, d(i) := dim
[
Q(i,0)] since

dim
[
P(i,0)

]
= 1.

We can go further by recalling our alternate labelling [Eq. (4.5)], and noting that the dimension of a spin
s subspace is 2s+ 1, which means that d(i) = i+ 1, and thus,

ρνk =
1

(n− k + 1)(k + 1)
I(n−k) ⊗ I(k). (4.13)

By recalling how the Hilbert space of a composite system of two particles with spins s1, s2 decomposes:

Qs1 ⊗Qs2
∼= Qs1+s2 ⊕Qs1+s2−1 ⊕ · · · ⊕ Q|s1−s2|, (4.14)

we can see that, using Eq. (4.5),

Q(n−k) ⊗Q(k)
∼= Q(n,0) ⊕Q(n−1,1) ⊕ · · · ⊕ Q(n−k,k)

=

k⊕
i=0

Qνi . (4.15)

3With the slight abuse of notation that is changing the order of the vector spaces to pair up each vector space with its
corresponding dual space.
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Therefore, by noting again that dim[P(i)] = 1, we can rewrite ρνk in the Schur basis as follows,

ρνk =
1

(n− k + 1)(k + 1)

k⊕
i=0

IQνi
⊗ Ωνi , (4.16)

where, Ωνi ∈ L(Pνi) are pure states that we don’t need to know explicitly, and IQνi
denotes the identity on

the SU(2) invariant subspace Qνi .
Next, in order to find all the possible states, all we need to do is permute the 0s and 1s in ρνk . To do

this, we use elements from P(Sn), where we’re taking P(Sn) := P(n)(Sn) in this section. Notice, however,
that some repetition occurs. For example, in the n = 3 case,

ρ010 = P[(23)]ρ001P
†[(23)] = P[(132)]ρ001P

†[(132)]. (4.17)

To remedy this, we define the following equivalence relation.

Definition 4.2.1. For σ, σ′ ∈ Sn,

σ ∼νk σ′ ⇐⇒ P(σ)ρνkP
†(σ) = P(σ′)ρνkP

†(σ′). (4.18)

It can be shown that this is indeed an equivalence relation and therefore partitions Sn into equivalence classes
[σ]νi . So, if we define

Cνk = {[σ]νk : σ ∈ Sn} (4.19)

to be the set of equivalence classes with respect to ∼νk , we can write down our states

ρνk,σ := P(σ)ρνkP
†(σ), (4.20)

such that σ is a representative of the equivalence class [σ]νk ∈ Cνk . More explicitly,

ρνk,σ =
1

(n− k + 1)(k + 1)

k⊕
i=0

IQνi
⊗ Ωνi,σ, (4.21)

where Ωνi,σ := pνi(σ)Ωνip
†
νi(σ). So the set of all possible n-qubit states is

R(n) =

⌊n/2⌋⋃
k=0

{ρνk,σ : [σ]νk ∈ Cνk}, (4.22)

where the condition [σ]νk ∈ Cνk is taken to mean that there is one state ρνk,σ for each equivalence class
[σ]νk ∈ Cνk .

4.2.2 The measurement

An optimal measurement to distinguish the states in R(n) is given by

Π(n) =

⌊n/2⌋⋃
k=0

{
πνk,σ =

dPνk

|Cνk |
IQνk

⊗ Ωνk,σ : [σ]νk ∈ Cνk

}
, (4.23)

where dPνi
:= dim[Pνk ], and |Cνk | denotes the cardinality of Cνk and therefore the number of states with

n − k zeros and k ones. We originally hypothesised the form of this POVM via symmetry considerations,
in that it shares the symmetries of the possible states in R(n). We go on now to show that it is indeed an
optimal POVM.

Let’s first confirm that it is a valid POVM. That is, that it satisfies the conditions in Eq. (2.82). Since
Ωνk,σ is a pure state, and dPνk

, |Cνk | > 0, it is clear that πνk,σ ≥ 0 ∀k ≤ n/2 and [σ]νk ∈ Cνk . For the
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completeness condition, first note that

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

πνk,σ = I

⇐⇒
∑

[σ]νk∈Cνk

πνk,σ = Iνk , ∀k ≤ n/2

⇐⇒
∑

[σ]νk∈Cνk

πνk,σ ∝ Iνk and Tr

 ∑
[σ]νk∈Cνk

πνk,σ

 = dνk , ∀k ≤ n/2. (4.24)

Let k ≤ n/2 be arbitrary. We can see that, since πνk,σ ∈ L(Qνk ⊗Pνk) and pνk(σ′)
(∑

[σ]νk
πνk,σ

)
p†
νk

(σ′) =∑
[σ]νk

πνk,σ, by Schur’s lemma, it follows that
∑

[σ]νk
πνk,σ ∝ Iνk . Also, since πνk,σ = pνk(σ)πνkp

†
νk

(σ),

by the cyclic nature of the trace along with the unitarity of pνk(σ), it follows that Tr
(∑

[σ]νk
πνk,σ

)
=∑

[σ]νk
Tr(πνk) = |Cνk |Tr

[
(dPνk

/|Cνk |)IQνk
⊗Ωνk

]
= dQνk

dPνk
= dνk . So completeness is satisfied and Π(n)

is therefore a POVM.

To prove the optimality of this POVM with respect to the minimum error figure of merit, we show that
Π(n) satisfies the necessary condition in Eq. (2.97):

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

pνk,σρνk,σπνk,σ − pνj ,σ′ρνj ,σ′ ≥ 0, ∀j, σ′. (4.25)

Since pνk,σ = 21−n is fixed for all k, σ, and using our explicit states and POVM elements in Eq. (4.16),
Eq. (4.23) respectively, after some algebra, one can see that we have to show

Γ̃ :=

j⊕
k=0

IQνk
⊗
[

1

(n− k + 1)(k + 1)
IPνk

− 1

(n− j + 1)(j + 1)
Ωνk,σ′

]

+

⌊n/2⌋⊕
k=j+1

1

(n− k + 1)(k + 1)
IQνk

⊗ IPνk
≥ 0. (4.26)

To see that this is indeed the case, notice that

1

(n− k + 1)(k + 1)
≥ 0, ∀k, (4.27a)

1

(n− k + 1)(k + 1)
− 1

(n− j + 1)(j + 1)
≥ 0, ∀k ≤ j. (4.27b)

From this, it follows that, for any vector |χ⟩ ∈ H(n), ⟨χ|Γ̃|χ⟩ ≥ 0, as required. We have thus shown that
Π(n) is a measurement that optimally distinguishes between the states in R(n).

The POVM Π(n) can be thought of as a measurement with two steps. To understand this, suppose a state
ρ is measured and an outcome corresponding the POVM element πνk,σ is found. Looking back to Eq. (4.23),
we can think of this event as first projecting ρ onto the partition labelled subspace L(Qνk ⊗Pνk). This can
be thought of as measuring ρ to be the state of the dataset with n−k zeros and k ones4. So at this stage, our
best guess is that ρ ∈ {ρνk,σ′ : [σ′]νk ∈ Cνk}. The second step then corresponds to measuring the order of the
states in the dataset, or in other words, it aims to distinguish between the states in {ρνk,σ′ : [σ′]νk ∈ Cνk}. In
this example, we would conclude that [σ′]νk = [σ]νk . To summarise this situation, a measurement outcome
corresponding to πνk,σ tells us (with minimal probability of error) that, first, ρ has n− k zeros and k ones,
and second, that these zeros and ones are jumbled up using some σ ∈ [σ]νk .

4Recall that νk = (n− k, k) labels the states with n− k zeros and k ones.
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n Poptimal(n) Pguess(n)
1 1 = 100% 1 = 100%
2 5/8 = 62.5% 1/2 = 50.0%
3 5/12 ≈ 41.7% 1/4 = 25.0%
4 169/576 ≈ 29.3% 1/8 = 12.5%

Table 4.2: Some examples of how this optimal unsupervised classification of quantum bits, with success rate
Poptimal(n), compares to a guess, with success rate Pguess(n) = 21−n.

4.2.3 Probability of success

We can now write down the probability of optimally (with respect to the minimum error figure of merit)
distinguishing the n-qubit states in R(n). If each combination is equiprobable, p = 1/2n−1, since the first
state can, without loss of generality, be chosen to be |φ0⟩. Using Eq. (2.96), the optimal probability of success
is found as follows

Poptimal(n) =
1

2n−1

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

Tr(πνk,σρνk,σ)

=
1

2n−1

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

Tr(πνkρνk)

=
1

2n−1

⌊n/2⌋∑
k=0

(
n
k

)
(n− 2k + 1)2

(n− k + 1)2(k + 1)
. (4.28)

Here, in the last step, we used Tr(Iνk ⊗ Ωνk) = dQνk
= n− 2k + 1, as well as Eq. (2.141) for dPνk

.
To get some sense of this result, the probability of success for various values of n are noted in Table 4.2

and plotted in Fig. 4.1. As mentioned at the beginning of this section, the results derived here correspond
to a special case of those found in Ref. [71], where the derived the optimal success rate of an unsupervised
binary classification of n, d-dimensional qudits is found. This turns out to be

P doptimal(n) =
1

2n−1

⌊n/2⌋∑
k=0

(
n
k

)
(d− 1)(n− 2k + 1)2

(n− k + 1)2(d+ k − 1)
. (4.29)

4.3 Intermediate classifications on four qubits

Before we launch into the general world of n qubits, to get an idea of what we might expect to see later on,
let’s consider, numerically, some intermediate measurements on a four-qubit dataset, with possible states
{ρ0klm : k, l,m ∈ {0, 1}}. First, let’s see what happens when we follow the approach taken in the 2 → 3
qubit case and weaken the optimal measurement on three qubits {π0ij}, given by Eq. (3.27), onto the identity
I ∈ L

[
H(3)

]
. That is, let our intermediate measurement have the POVM elements

ξ000 = απ000 + β0I, (4.30a)

ξ001 = απ001 + β1I, (4.30b)

ξ010 = απ010 + β1I, (4.30c)

ξ011 = απ011 + β1I, (4.30d)

such that α, βi are constrained so that {ξ0ij} is a valid POVM5. Following the general road map of the
previous chapter, we can perform this first measurement on the first three qubits of the dataset, which

5Note that we have preserved the symmetries of the corresponding states with this measurement. Since we are not concerned
with full generality at this stage, we have included this extra constraint, to reduce the complexity of the calculation.
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Figure 4.1: Plot showing how the success rate Psucc of an unsupervised binary classification on an n-qubit
dataset varies with n. The orange circles correspond to the optimal success rate Poptimal whereas the blue
squares correspond to the success rate of a guess Pguess(n) = 21−n.

updates the states {ρ0klm} as follows

ρ0klm → ρ0ij0klm =

(√
ξ0ij ⊗ 1

)
ρ0klm

(√
ξ0ij ⊗ 1

)†
Tr
(
ξ0ijρ0klm

) , (4.31)

and then see how if affects our ability to subsequently classify all four qubits. For each choice of α, βi,
after the first measurement, we can write the second measurement as an SDP whose aim is to maximise the
probability of a successful classification on all four qubits:

max P 2nd
succ =

∑
i,j,k,l,m

Tr
(
π̃0ij
0klmρ

0ij
0klm

)
s.t.

∑
k,l,m

π̃0ij
0klm = I, ∀k,

π̃0ij
0klm ≥ 0,

(4.32)

where
{
π̃0ij
0klm

}
k,l,m

corresponds to the POVM, distinguishing the disturbed states
{
ρ0ij0klm

}
k,l,m

, that we are

maximising over. We do this numerically and plot the tradeoff between the two success rates, as shown in
Fig. 4.2. Notice that there appears6 to be no constant region in this tradeoff, and the only point at which the
second classification achieves its optimal value is when the the first measurement is the identity, and α = 0.
This means that the intermediate measurement we have chosen here never allows for an optimal subsequent
one (at least when α > 0).

What if our intermediate classification was exactly the one we considered in Eq. (3.34)? We saw earlier
that this allowed for the second classification on three qubits to remain at its optimal value even when the
intermediate measurement became nontrivial, so one might expect, when applied to a four-qubit classification,
a similar phenomenon should arise. It turns out that this is not the case. As shown in Fig. 4.3, as soon as
the measurement {π±} develops a nontrivial component (α > 0), it leads to a deviation in the success rate
P 2nd
succ(4) in classifying the full four-qubit dataset from its optimal value.

6Of course, this is not proven here, it is just a hint.
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Figure 4.2: The tradeoff between the success rate P 1st
succ(3) of an intermediate measurement on a three-qubit

subset, given by Eq. (4.30), and the success rate P 2nd
succ(4) of a subsequent classification of the full four-qubit

dataset. The different lines arise due to the fact that multiple values of α, βi give the same success rate,
either in the first or second step.
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Figure 4.3: The tradeoff between the success rate P 1st
succ(2) of an intermediate measurement on a two-qubit

subset, given by Eq. (3.34), and the success rate P 2nd
succ(4) of a subsequent classification of the full four-qubit

dataset. The different lines arise due to the fact that multiple values of α, β give the same success rate,
either in the first or second step.
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Is there any common theme between the two cases we’ve considered here? One thing we can notice is
that, when thinking of these intermediate classifications as measurements on the first three qubits, they tell
us something about the order of the states in three-qubit subset. As we will see, this is a key observation
when we generalise to n qubits.

4.4 What can we learn from an intermediate classification?

In Section 3.3, when given a quantum dataset consisting of three qubits, we saw how classifying a subset
of two qubits affected our ability to classify the entire dataset. Interestingly, it was found that the first
classification could be remarkably strong without affecting the success rate of the second. This naturally
led us to ask the question of whether this feature generalises to an n − 1 → n-qubit situation. That is, we
wanted to investigate how successful an initial classification on n − 1 qubits could be without affecting the
success rate of a classification on the full n-qubit dataset. In this section, we ask the question: “what can
we learn from an intermediate classification?”, and we get the impression that nothing about the order of
the first n− 1 qubits in the dataset can be deduced without affecting the overall optimal success rate of the
second classification on n qubits7. Before making steps to show this in full generality, we first set up the
problem in Sec. 4.4.1 and then return to the 2 → 3-qubit scenario in Sec. 4.4.2 in order to motivate and gain
some intuition about the approach taken in the n− 1 → n-qubit case.

4.4.1 Problem setup

Let’s set up the problem in the form that we use to derive our results. First of all, we should make clear
that we will be taking n > 2. This is because, when n = 2, the intermediate measurements on n− 1 = 1 is
trivial. With that, let

Ξ(n−1) = {ξµj ,τ : [τ ]µj
∈ Cµj

, 0 ≤ j ≤ (n− 1)/2} (4.33)

be our intermediate measurement on the first n−1 qubits of the n-qubit dataset we considered in the Sec. 4.2.
Here, µj = (n − 1 − j, j) are the partitions labelling the (n − 1)-qubit states, measurement operators and
irreps; and Cµj

are the sets of equivalence classes defined analogously to their n qubit counterparts Cνk in

Def. 4.2.1 and Eq. (4.19). The purpose of Ξ(n−1) is to distinguish between the states in

R(n−1) = {ρµj ,τ : [τ ]µj
∈ Cµj

, 0 ≤ j ≤ (n− 1)/2}, (4.34)

where, similarly to the n-qubit case,

ρµj ,τ =
1

(n− j)(j + 1)

j⊕
i=0

IQµi
⊗ Ωµi,τ . (4.35)

To understand this notation, we define irreducible representations of SU(2) and Sn−1 on n − 1 qubits as
(qµj

,Qµj
) and (pµj

,Pµj
) respectively. So, analogously to the n-qubit case in Eq. (4.16), IQµi

is the identity

operator on Qµi
and Ωµi,τ = pµi

(τ)Ωµi
p†
µi

(τ) ∈ L(Pµi
) are pure states.

Returning to the n-qubit picture, we first perform the measurement

Ξ(n) := {ξµj ,τ ⊗ 1 : [τ ]µj
∈ Cµj

, 0 ≤ j ≤ (n− 1)/2} (4.36)

on an n-qubit quantum dataset prepared in some state in R(n), given in Eq. (4.22). Following this, supposing
a measurement outcome of (µj , τ) is found, a second measurement {πµj ,τ

νk,σ}k,σ is performed to try and
distinguish the (now disturbed) states {ρµj ,τ

νk,σ}k,σ, such that

ρµj ,τ
νk,σ

:=

(√
ξµj ,τ ⊗ 1

)
ρνk,σ

(√
ξµj ,τ ⊗ 1

)†
Tr
[
(ξµj ,τ ⊗ 1)ρνk,σ

] . (4.37)

7Assuming the optimal POVM, given in Eq. (4.23), is unique - at least in its elements’ Pνk components.
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The success rate of the second measurement is given by

P 2nd
succ =

⌊(n−1)/2)⌋∑
j=0

∑
[τ ]µj

∈Cµj

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

P (ρµj ,τ
νk,σ

) Tr(πµj ,τ
νk,σ

ρµj ,τ
νk,σ

)

=
1

2n−1

∑
j

∑
[τ ]µj

∑
k

∑
[σ]νk

Tr

[
πµj ,τ
νk,σ

(√
ξµj ,τ ⊗ 1

)
ρνk,σ

(√
ξµj ,τ ⊗ 1

)†]
, (4.38)

which, using the cyclical property of the trace, can be rewritten as

P 2nd
succ =

1

2n−1

∑
j

∑
[τ ]µj

∑
k

∑
[σ]νk

Tr

[(√
ξµj ,τ ⊗ 1

)†
πµj ,τ
νk,σ

(√
ξµj ,τ ⊗ 1

)
ρνk,σ

]
. (4.39)

Note that since {πµj ,τ
νk,σ}k,σ is a POVM for every j, τ , it follows that{

πνk,σ :=
∑
j

∑
[τ ]µj

(√
ξµj ,τ

†
⊗ 1

)
πµj ,τ
νk,σ

(√
ξµj ,τ ⊗ 1

)}
k,σ

, (4.40)

is also one. Therefore, P 2nd
succ takes its optimal value, given by Eq. (4.28), if and only if {πνk,σ} make up an

optimal POVM classifying the n-qubit dataset.
Now, defining the Kraus operators

Aµj ,τ
νk,σ

:=
√
π
µj ,τ
νk,σ

(√
ξµj ,τ ⊗ 1

)
, (4.41)

it follows that
πνk,σ =

∑
j

∑
[τ ]µj

Aµj ,τ
νk,σ

†Aµj ,τ
νk,σ

. (4.42)

Further, Eq. (4.41) implies that∑
k

∑
[σ]νk

Aµj ,τ
νk,σ

†Aµj ,τ
νk,σ

=
∑
k

∑
[σ]νk

(√
ξµj ,τ ⊗ 1

)†
πµj ,τ
νk,σ

(√
ξµj ,τ ⊗ 1

)
. (4.43)

So, by requiring the completeness of {πµj ,τ
νk,σ}k,σ, this leads to

ξµk,τ ⊗ 1 =
∑
k

∑
[σ]νj

Aµj ,τ
νk,σ

†Aµj ,τ
νk,σ

. (4.44)

We can therefore note the aim of our approach: To find positive operators B
µj ,τ
νk,σ := A

µj ,τ
νk,σ

†
A
µj ,τ
νk,σ that

maximise

P 1st
succ =

1

2n−2

∑
j

∑
[τ ]µj

Tr(ξµj ,τρµj ,τ ), (4.45)

whilst satisfying

ξµj ,τ ⊗ 1 =

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

Bµj ,τ
νk,σ

, (4.46a)

πνk,σ =

⌊(n−1)/2⌋∑
j=0

∑
[τ ]µj

∈Cµj

Bµj ,τ
νk,σ

, (4.46b)

for some fixed POVM Π = {πνk,σ}, that optimally classifies the undisturbed n-qubit dataset. To make the
results that we derive completely general, we would allow Π to be any optimal POVM on the n-qubits, but
we leave this to future work.
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4.4.1.1 Aside: a more general problem

Notice that this formulation allows us to, at least numerically, solve a more general problem. Suppose we have
some non-degenerate optimal measurement {πk} that distinguishes the states in R = {ρk} with probability
P general
succ =

∑
k pk Tr(πkρk), such that pi is the probability of the state ρi being prepared. Then, what is the

best intermediate measurement {ξj}, to distinguish the states R′ = {ρj} ⊆ R, that we can perform without
affecting P general

succ ? It is likely that this problem can be solved efficiently because we can formulate it as a
semidefinite programme (SDP) [49, 50].

To do this, first note that we’re allowing R′ to be a subset of R, meaning that we do not necessarily
distinguish all the states in R during our first classification. To account for this, suppose we do not wish to
distinguish the states {ρj1 , . . . , ρjm | m < |R|}, let us define ρ̃j :=

∑m
i=1 pjiρji . Then our aim is really for

our first measurement {ξj} to distinguish the states {ρ̃j}. Indeed, the goal is to maximise Pintermediate =∑
j Tr(ξj ρ̃j) subject to the conditions

ξj =
∑
k

Bjk, (4.47a)

πk =
∑
j

Bjk, (4.47b)

where Bjk ≥ 0. This can be rewritten as the primal problem of an SDP as follows.

max
∑
j,k

Tr(Bjkρ̃j)

s.t.
∑
j

Bjk = πk, ∀k,

Bjk ≥ 0.

(4.48)

SDPs can often be solved efficiently numerically [50], so this could be a practical way of investigating this
problem. It would also be interesting to see if, similarly to how the Holevo conditions for minimum error
quantum state discrimination can be found analytically using SDP methods [50], conditions could be derived
for this problem. However, we leave this to future work.

4.4.2 Returning to three qubits

Let’s now return to the 2 → 3-qubit situation and derive the POVM that best classifies the first two qubits
without affecting the subsequent, overall success rate in classifying the full three-qubit dataset. Indeed, let
us do so using our new, partition based notation so that we can go on to generalise these results with some
intuition. First, let σ̃ = (123) ∈ S3, so that we can write the four possible three-qubit states representing our
entire quantum dataset using the partition notation (with the old notation also included for comparison):

ρν0 =
1

4
IQν0

⊗ Ων0 ∼ ρ000 =
1

4
I 3

2
, (4.49a)

ρν1 =
1

6

(
IQν0

⊗ Ων0

)
⊕
(
IQν1

⊗ Ων1

)
∼ ρ001 =

1

6
I 3

2
+

1

6
I 1

2
⊗ |1⟩⟨1|, (4.49b)

ρν1,σ̃ =
1

6

(
IQν0

⊗ Ων0

)
⊕
(
IQν1

⊗ Ων1,σ̃

)
∼ ρ010 =

1

6
I 3

2
+

1

24
I 1

2
⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (4.49c)

ρν1,σ̃2 =
1

6

(
IQν0

⊗ Ων0

)
⊕
(
IQν1

⊗ Ων1,σ̃2

)
∼ ρ011 =

1

6
I 3

2
+

1

24
I 1

2
⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
. (4.49d)

Note that since (pν0 ,Pν0) is the trivial irrep of S3, Ων0,σ = Ων0,σ2 = Ων0 , ∀σ ∈ S3.

Now, suppose we perform an intermediate measurement {ξµj ,τ ≡ ξµj
} that distinguishes the two-qubit
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states8

ρµ0
=

1

3
IQµ0

⊗ Ωµ0
∼ ρ00 =

1

3
I1, (4.50a)

ρµ1
=

1

4

(
IQµ0

⊗ Ωµ0

)
⊕
(
IQµ1

⊗ Ωµ1

)
∼ ρ01 =

1

4
I1 ⊕ I0, (4.50b)

where ξµ0 ∼ ξ00, ξµ1 ∼ ξ01. As we have discussed before, we can think of this as the measurement {ξµj ⊗1}
on the three-qubit states in Eq. (4.49). Tailoring the message of the previous subsection to this scenario, our
aim is to find positive operators B

µj
νk,σ that maximise

P 1st
succ =

1

2
Tr(ξµ0ρµ0 + ξµ1ρµ1) ∼ P 1st

succ =
1

2
Tr(ξ00ρ00 + ξ01ρ01), (4.51)

whilst satisfying

ξµj
⊗ 1 =

1∑
k=0

∑
[σ]νk

Bµj
νk,σ

∼ ξ0u ⊗ 1 = B0u
000 +B0u

001 +B0u
010 +B0u

011, (4.52a)

πνk,σ =

1∑
j=0

Bµj
νk,σ

∼ π0vw = B00
0vw +B01

0vw, (4.52b)

for all j, k ∈ {0, 1}, [σ]νk ∈ Cνk , u, v, w ∈ {0, 1}.
Let’s now deduce more about the form of the intermediate measurement. First of all, as it will be shown

explicitly in Sec. 4.4.3, we can take

ξµj =
(
IQµ0

⊗ Θ(µj)
µ0

)
⊕
(
IQµ1

⊗ Θ(µj)
µ1

)
∼ ξ0u =

(
θ
(0u)
1 I1

)
⊕
(
θ
(0u)
0 I0

)
, (4.53)

where j, u ∈ {0, 1}, Θ
(µj)
µi ∈ L(Pµi) are positive operators, θ

(0u)
sµi

≥ 0 can be taken to be real numbers9, such
that the subscript sµi

denotes the total spin of the corresponding two-qubit subspace labelled by µi. Further,
in order to ensure the completeness of {ξµj

} ∼ {ξ0u}, we require

1∑
j=0

Θ(µj)
µi

= IPµi
∼ θ(00)sµi

+ θ(01)sµi
= 1, (4.54)

for all i ∈ {0, 1}. In words, ξµj
can take this form because the probabilities associated with the first and

second measurements require the outcomes of the first measurement to be invariant under SU(2), a feature
coming from the commutativity of ρµj

with Q(2)[SU(2)]. Now, let’s think back to spin addition which says
that Qs ⊗ Q 1

2

∼= Qs+ 1
2
⊕ Qs− 1

2
. We can rewrite this in partition notation as Qµi

⊗ Q(1,0)
∼= Qνi ⊕ Qνi+1

which, along with Ref. [72], motivates the following10:

ξµj
⊗ 1 =

1⊕
k=0

IQνk
⊗
([

Θ(µj)
µk

⊗ |0⟩⟨0|
]
⊕
[
Θ(µj)
µk−1

⊗ |1⟩⟨1|
])

∼ ξ0u ⊗ 1 =
(
θ
(0u)
1 I 3

2

)
⊕
(
I 1

2
⊗
[
θ
(0u)
1 |1⟩⟨1| + θ

(0u)
0 |0⟩⟨0|

])
, (4.55)

written in the Schur basis. Here, if µk−1 is undefined, like when k = 0, we take Θ
(µj)
µk−1 = 0.

Next, we look at Eq. (4.52b) to find out something about the positive operators B
µj
νk,σ. It is at this point

that we fix a specific form of the optimal POVM on three undisturbed qubits. Namely, Π(3) = {πνk,σ}
8The independence of τ ∈ S2 comes from the two-qubit states being invariant under permutation of qubits.
9Since Θ

(µj)
µ0 ,Θ

(µj)
µ1 are both one-dimensional. Indeed, Θ

(µj)
µi

can also be taken to be positive real numbers, however, we
have written them in the full tensor product form to make the generalisation clearer when we come to it.

10Again, more detail will be provided in Sec 4.4.3.
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given by Eq. (3.27) or, more generally, Eq. (4.23). Writing this measurement in partition notation (using
σ̃ = (123) ∈ S3 again),

πν0 = IQν0
⊗ Ων0 ∼ π000 = I 3

2
, (4.56a)

πν1 =
2

3
IQν1

⊗ Ων1 ∼ π001 =
2

3
I 1

2
⊗ |1⟩⟨1|, (4.56b)

πν1,σ̃ =
2

3
IQν1

⊗ Ων1,σ̃ ∼ π010 =
1

6
I 1

2
⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (4.56c)

πν1,σ̃2 =
2

3
IQν1

⊗ Ων1,σ̃2 ∼ π011 =
1

6
I 1

2
⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
. (4.56d)

Since Ωνk,σ are pure states, this means that B
µj
νk,σ have the form

Bµj
ν0 = Dµj

ν0 ⊗ Ων0 ∼ B0u
000 = D0u

000, (4.57a)

Bµj
ν1 = Dµj

ν1 ⊗ Ων1 ∼ B0u
001 = D0u

001 ⊗ |1⟩⟨1|, (4.57b)

B
µj

ν1,σ̃
= D

µj

ν1,σ̃
⊗ Ων1,σ̃ ∼ B0u

010 =
1

4
D0u

010 ⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
, (4.57c)

B
µj

ν1,σ̃2 = D
µj

ν1,σ̃2 ⊗ Ων1,σ̃2 ∼ B0u
011 =

1

4
D0u

011 ⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
, (4.57d)

such that D
µj
νk,σ ∈ L(Qνk) are positive operators (likewise, D0u

0vw ≥ 0).
To finish off the derivation of the optimal success rate we can achieve in this first classification, we

follow two paths. Along the first, we use our old notation along with a slightly more brute force, but
explicit approach. Along the second path, we move over to our new notation and use a moderately sized
sledgehammer to crack the same nut. We will see that this latter approach will be more useful in generalising
to n qubits.

4.4.2.1 Optimal value using old notation

Let us first see how we can obtain the upper bound of P 1st
succ in our old notation. To do this, let’s compare

ξ0u ⊗ 1 = D0u
000 +D0u

001 ⊗ |1⟩⟨1|

+
1

4
D0u

010 ⊗
(
|1⟩ −

√
3|0⟩

)(
⟨1| −

√
3⟨0|

)
+

1

4
D0u

011 ⊗
(
|1⟩ +

√
3|0⟩

)(
⟨1| +

√
3⟨0|

)
(4.58)

with Eq. (4.55). Since I 3
2
, D0u

000 ∈ L(Q 3
2
) and I 1

2
, D0u

001, D
0u
010, D

0u
011 ∈ L(Q 1

2
), it follows that

θ
(0u)
1 I 3

2
= D0u

000, (4.59a)

θ
(0u)
1 I 1

2
= D0u

001 +
1

4
D0u

010 +
1

4
D0u

011, (4.59b)

θ
(0u)
0 I 1

2
=

3

4

(
D0u

010 +D0u
011

)
, (4.59c)

0 =

√
3

4

(
D0u

010 −D0u
011

)
, (4.59d)

where Eq. (4.59b) comes from the |1⟩⟨1| component of Eq. (4.58); Eq. (4.59c) from the |0⟩⟨0| component; and
Eq. (4.59d) from the |0⟩⟨1| or |1⟩⟨0| component. This system of equations can be simplified to

D0u
000 = θ

(0u)
1 I 3

2
, (4.60a)

D0u
001 =

[
θ
(0u)
1 − 1

3
θ
(0u)
0

]
I 1

2
, (4.60b)

D0u
010 = D0u

011 =
2

3
θ
(0u)
0 I 1

2
. (4.60c)
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Now, using Eq. (4.51), Eq. (4.53) and Eq. (4.54), we find that

P 1st
succ =

1

2
+

1

8
θ
(00)
1 − 1

8
θ
(00)
0 . (4.61)

Our task is to maximise this quantity. Being planar, we look to the extreme values of θ
(00)
1 , θ

(00)
0 to do so -

namely, the maximum of θ
(00)
1 and the minimum of θ

(00)
0 . Looking back to Eq. (4.54), along with Eq. (4.60),

note that, requiring positivity of D0u
0vw means that

θ
(00)
1 ,

[
1 − θ

(00)
1

]
≥ 0, (4.62a)[

3θ
(00)
1 − θ

(00)
0

]
,
[
2 + θ

(00)
0 − 3θ

(00)
1

]
≥ 0, (4.62b)

θ
(00)
0 ,

[
1 − θ

(00)
0

]
≥ 0. (4.62c)

This implies that θ
(00)
1 ≤

(
θ
(00)
0 + 2

)
/3 and thus,

P 1st
succ ≤

7

12
− 1

12
θ
(00)
0 . (4.63)

So, since θ
(00)
0 ≥ 0, we finally have that

P 1st
succ ≤

7

12
, (4.64)

with 7/12 occurring when θ
(00)
0 = 0 and θ

(00)
1 = 2/3, and thus

ξ00 =
2

3
I1, (4.65a)

ξ01 =

[
1

3
I1
]
⊕ I0. (4.65b)

4.4.2.2 Optimal value using new notation

Let’s now derive this upper bound using the new partition notation. We first note that Ων1 = Ωµ0 ⊗ |1⟩⟨1|,
which means that Ων1,σ = pν1(σ)(Ωµ0 ⊗ |1⟩⟨1|)p†

ν1(σ). Once again taking σ̃ = (123), we can therefore write

ξµj
⊗ 1 = Bµj

ν0 +Bµj
ν1 +B

µj

ν1,σ̃
+B

µj

ν1,σ̃2

= Dµj
ν0 ⊗ Ων0 +Dµj

ν1 ⊗
(
Ωµ0

⊗ |1⟩⟨1|
)

+D
µj

ν1,σ̃
⊗ pν1(σ̃)

(
Ωµ0 ⊗ |1⟩⟨1|

)
p†
ν1(σ̃) +D

µj

ν1,σ̃2 ⊗ pν1(σ̃2)
(
Ωµ0 ⊗ |1⟩⟨1|

)
p†
ν1(σ̃2),

(4.66)

which must agree with Eq. (4.55).
We can see immediately that the first term D

µj
ν0 ⊗ Ων0 ∈ L(Qν0 ⊗ Pν0) has the correct block diagonal

form11 of Eq. (4.55), so let’s focus on the remaining, L(Qν0 ⊗ Pν0) terms. These can be rewritten as:

Bµj
ν1 +B

µj

ν1,σ̃
+B

µj

ν1,σ̃2 =
∑

[τ∈S2]ν1

Dµj
ν1,τ ⊗ pν1(τ)

(
Ωµ0

⊗ |1⟩⟨1|
)
p†
ν1(τ)

+
∑

[σ∈S3\S2]ν1

Dµj
ν1,σ ⊗ pν1(σ)

(
Ωµ0

⊗ |1⟩⟨1|
)
p†
ν1(σ), (4.67)

where [σ ∈ X]ν1 := {σ′ ∈ X ⊂ S3 | σ′ ∼ν1 σ}, such that ∼ν1 is the equivalence relation on three-qubit states
defined in Def. 4.2.112. Next, we can see that the first sum in the above expression is in the block diagonal
form we are looking for, since∑

[τ∈S2]ν1

Dµj
ν1,τ ⊗ pν1(τ)

(
Ωµ0

⊗ |1⟩⟨1|
)
p†
ν1(τ) = Dµj

ν1 ⊗
(
Ωµ0

⊗ |1⟩⟨1|
)
. (4.68)

11By block diagonal, we mean a matrix that is made of square matrices along its diagonal. If these square matrices are
constant, we will call the whole matrix block constant.

12To make Eq. (4.67) clear, the first sum has one term since S2 = {e, (12)} and [e]ν1 ≡ [(12)]ν1 , whereas the second sum has
two terms since S3\S2 = {(123), (132), (13), (23)} and [(123)]ν1 ≡ [(23)]ν1 ̸≡ [(132)]ν1 ≡ [(13)]ν1 .
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For the remaining sum, recalling the derivation of Eq. (4.60), we found that in order to achieve the block
diagonal form (that is, with no cross terms: |0⟩⟨1| or |1⟩⟨0|), we required D0u

010 = D0u
011. This corresponds,

here, to requiring D
µj
ν1,σ = D

µj

ν1,σ′ , ∀σ, σ′ ∈ S3\S2. The question we will have to answer later is whether this
is also the case in the more general setting. That is, in order for the sum over [σ ∈ Sn\Sn−1]νk , to be block
diagonal, does D

µj
νk,σ = D

µj

νk,σ′ have to be true ∀σ, σ′ ∈ Sn\Sn−1?

So, equating the two forms of ξµj
⊗ 1, given in Eq. (4.55) and Eq. (4.66), so far we have

(
IQν0

⊗
[
Θ(µj)
µ0

⊗ |0⟩⟨0|
])

⊕
(
IQν1

⊗
[
(Θ(µj)

µ1
⊗ |0⟩⟨0|) ⊕ (Θ(µj)

µ0
⊗ |1⟩⟨1|)

])
=
(
Dµj
ν0 ⊗ Ων0

)
⊕
(
Dµj
ν1 ⊗

[
Ωµ0

⊗ |1⟩⟨1|
]

+D
µj

ν1,σ̃
⊗

∑
[σ∈S3\S2]ν1

pν1(σ)
[
Ωµ0

⊗ |1⟩⟨1|
]
p†
ν1(σ)

)
. (4.69)

Now, since Pν0 ,Pµ0 are both one-dimensional, we can write Ων0 = IPν0
and Θ

(µj)
µ0 = θ

(µj)
µ0 IPµ0

such that

θ
(µj)
µ0 ≥ 0. Further, since Pν0 = Pµ0 ⊗ {|0⟩}, it follows that Ων0 = IPµ0

⊗ |0⟩⟨0|. We can therefore deduce
that

Dµj
ν0 = θ(µj)

µ0
IQν0

. (4.70)

Next, notice that

2

3

∑
[σ]ν1

pν1(σ)
(
Ωµ0

⊗ |1⟩⟨1|
)
p†
ν1(σ) = IPν1

=
(
IPµ1

⊗ |0⟩⟨0|
)
⊕
(
IPµ0

⊗ |1⟩⟨1|
)
, (4.71)

which follows from Schur’s lemma, and the 2/3 coefficient can be confirmed by taking the trace of both sides.
Recalling that Ωµ0 = IPµ0

, it follows that

2

3

∑
[σ∈S3\S2]ν1

pν1(σ)
(
Ωµ0

⊗ |1⟩⟨1|
)
p†
ν1(σ) =

(
IPµ1

⊗ |0⟩⟨0|
)
⊕
(1

3
IPµ0

⊗ |1⟩⟨1|
)
. (4.72)

We can see explicitly at this stage, that every Pµi
component of ξµj

is proportional to IPµi
. This means

nothing about the order of the first two qubits can be deduced in the first classification without affecting the
overall success rate of the second classification13. Using the above expression, along with the L(Qν1 ⊗ Pν1)
terms in Eq. (4.69), we have that

IQν1
⊗
[
(Θ(µj)

µ1
⊗ |0⟩⟨0|) ⊕ (Θ(µj)

µ0
⊗ |1⟩⟨1|)

]
= Dµj

ν1 ⊗ (IPµ0
⊗ |1⟩⟨1|) +

3

2
D
µj

ν1,σ̃
⊗
[(

IPµ1
⊗ |0⟩⟨0|

)
⊕
(1

3
IPµ0

⊗ |1⟩⟨1|
)]

(4.73)

which implies

IQν1
⊗ Θ(µj)

µ1
=

3

2
D
µj

ν1,σ̃
⊗ IPµ1

, (4.74a)

IQν1
⊗ Θ(µj)

µ0
=
(
Dµj
ν1 +

1

2
D
µj

ν1,σ̃

)
⊗ IPµ0

. (4.74b)

Taking the partial trace over the Pµ1
subspace in Eq. (4.74a) tells us that D

µj

ν1,σ̃
= 2

3 Tr
[
Θ

(µj)
µ1

]
IQν1

. Substi-
tuting this back into the same equation and taking the partial trace over the Qν1 subspace this time, tells

us that Θ
(µj)
µ1 = Tr

[
Θ

(µj)
µ1

]
IPµ1

. So defining θ
(µj)
µ1 = Tr

[
Θ

(µj)
µ1

]
≥ 0, it follows that14 Θ

(µj)
µ1 = θ

(µj)
µ1 IPµ1

and

thus D
µj

ν1,σ̃
= 2

3θ
(µj)
µ1 IQν1

.

13This, however, is a trivial observation in this scenario, since the two qubit datasets are invariant under a change of order.
14The fact that Θ

(µj)
µ1 has this form may seem like a trivial result since dimPµ1 = 1, but this working is included to help us

understand what happens when dimPµi ̸= 1, as is generically the case when n− 1 > 2.
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So combining everything we’ve found, and substituting D
µj

ν1,σ̃
= 2

3θ
(µj)
µ1 IQν1

into Eq. (4.74b), we finally
have

Dµj
ν0 = θ(µj)

µ0
IQν0

, (4.75a)

Dµj
ν1 =

[
θ(µj)
µ0

− 1

3
θ(µj)
µ1

]
IQν1

, (4.75b)

D
µj

ν1,σ̃
= D

µj

ν1,σ̃2 =
2

3
θ(µj)
µ1

IQν1
. (4.75c)

Notice that this is exactly what we found in Eq. (4.60) when using our old notation. So the final upper
bound P 1st

succ = 7/12, and corresponding intermediate measurement

ξµ0 =
2

3
Iµ0 , (4.76a)

ξµ1
=

[
1

3
Iµ0

]
⊕ Iµ1

, (4.76b)

are found in exactly the same way from here on, using θ
(0j)
1 → θ

(µj)
µ0 , θ

(0j)
0 → θ

(µj)
µ1 .

4.4.3 Qubit order cannot be deduced in an intermediate classification

In the previous subsection, we saw that requiring the overall final measurement to be the optimal one on
three qubits, given by Eq. (3.27) [Eq. (4.23) more generally], constrained our intermediate measurement. We
found that the best intermediate measurement that achieves this only told us something about the number
of each type of state and nothing about their order. This is an obvious realisation for a classification on
two qubits, as the possible states of the system are invariant under permutations of the qubits. However,
as we noted in Sec. 4.3 when considering intermediate measurements on a four-qubit dataset, it seems that
this phenomenon is true as we generalise to larger quantum datasets. Here, we make steps towards showing
that this is the case more generally. That is, in order for our overall classification on n qubits to be given
by the optimal measurement found in Eq. (4.23), an intermediate measurement on the first n − 1 qubits
cannot reveal anything about their order. For easy access, we summarise what we show in this subsection
as a theorem.

Theorem 4.4.1. Suppose the optimal binary classification on an undisturbed n-qubit dataset is given by the
POVM in Eq. (4.23) (rewritten here):

Π(n) =

⌊n/2⌋⋃
k=0

{
πνk,σ =

dPνk

|Cνk |
IQνk

⊗ Ωνk,σ : [σ]νk ∈ Cνk

}
, (4.23)

and suppose Conjecture 4.A.1 holds. Then, in order for a subesquent classification on the full n-qubit dataset
to achieve it’s optimal success rate, an intermediate measurement {ξµj ,τ} on the first n− 1 qubits must have
the form

ξµj ,τ =

⌊n−1
2 ⌋⊕
i=0

θ(µj)
µi

Iµi , (4.77)

where 0 ≤ θ
(µj)
µi ∈ R and Iµi

is the identity operator on Qµi
⊗ Pµi

. In other words, nothing about the order
of the first n− 1 qubits in the dataset can be deduced without negatively impacting a subsequent classification
of the full dataset.

Before we show this, let’s recap some of things we have found so far. Suppose the optimal measurement
on our undisturbed dataset of n qubits is given by Π(n) = {πνk,σ}, written explicitly in Eq. (4.23), and let
{ξµj ,τ} be our intermediate measurement on the first n− 1 qubits of the dataset. We saw that in order for
the overall success rate of the second classification to remain at its optimal value, the conditions found in
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Eq. (4.46), rewritten here for convenience, should be satisfied:

ξµj ,τ ⊗ 1 =

⌊n/2⌋∑
k=0

∑
[σ]νk∈Cνk

Bµj ,τ
νk,σ

, (4.78a)

πνk,σ =

⌊(n−1)/2⌋∑
j=0

∑
[τ ]µj

∈Cµj

Bµj ,τ
νk,σ

. (4.78b)

Let’s now steps towards deducing the required form of {ξµj ,τ}, with the aim of showing that nothing about
the order of the first n− 1 qubits can be learnt using this intermediate measurement.

4.4.3.1 Intermediate classification can be taken to be SU(2) invariant

We begin by showing that we are free to let each ξµj ,τ commute with Q(n−1)[SU(2)]. We achieve this via
the following lemma.

Lemma 4.4.1. The measurement statistics of, and disturbance caused by the POVM {ξµj ,τ} are the same
regardless of whether the operators ξµj ,τ have an SU(2) dependence or not.

Proof. Suppose for now that ξµj ,τ does have some SU(2) dependence. That is, there is some U ∈ SU(2) such
that

ξUµj ,τ := Q(n−1)(U)ξµj ,τQ
(n−1)†(U). (4.79)

The SU(2) invariance of ρµj ,τ means that

P
(
ξUµj ,τ |ρµj′ ,τ

′
)

= Tr
(
ξUµj ,τρµj′ ,τ

′
)

= Tr
[
Q(n−1)(U)ξµj ,τQ

(n−1)†(U)ρµj′ ,τ
′

]
= Tr

[
ξµj ,τQ

(n−1)(U−1)ρµj′ ,τ
′Q(n−1)†(U−1)

]
= Tr(ξµj ,τρµj′ ,τ

′) = P (ξµj ,τ |ρµj′ ,τ
′), (4.80)

for all j, j′, τ, τ ′, from which it follows that the measurement statistics do not have an SU(2) dependence.
To see that ξUµj ,τ (minimally) disturbs the measured state in the same way as ξµj ,τ , note that ξUµj ,τ =

Q(n−1)(U)
√
ξµj ,τ

†√
ξµj ,τQ

(n−1)†(U) meaning that
√
ξUµj ,τ =

√
ξµj ,τQ

(n−1)†(U). Thus,(√
ξUµj ,τ ⊗ 1

)
ρνk,σ

(√
ξUµj ,τ ⊗ 1

)†
=
(√

ξµj ,τ ⊗ 1

)
ρνk,σ

(√
ξµj ,τ ⊗ 1

)†
. (4.81)

Due to the property of the disturbance proven here, it follows that the success rate of the second clas-
sification, given in Eq. (4.38), is the same regardless of whether the intermediate measurement is invariant
under SU(2) or not. Therefore, for every applicable j, τ , we are free to allow

Q(n−1)(U)ξµj ,τQ
(n−1)†(U) = ξµj ,τ , ∀U ∈ SU(2), (4.82)

which, by Schur’s Lemma, means we can write

ξµj ,τ =

⌊n−1
2 ⌋⊕
i=0

IQµi
⊗ Θ(µj ,τ)

µi
, (4.83)

such that 0 ≤ Θ
(νj ,τ)
µi ∈ L(Pµi) and

∑
j,[τ ]νj

Θ
(µj ,τ)
µi = IPµi

, ∀i.
Before we move on, in order to be able to impose the conditions in Eq. (4.78), note that

ξµj ,τ ⊗ 1 =

⌊n−1
2 ⌋⊕
i=0

(
IQνi

⊗
[
Θ(µj ,τ)
µi

⊗ |0⟩⟨0|
])

⊕
(
IQνi+1

⊗
[
Θ(µj ,τ)
µi

⊗ |1⟩⟨1|
])
,

=

⌊n
2 ⌋⊕
i=0

IQνi
⊗
([

Θ(µj ,τ)
µi

⊗ |0⟩⟨0|
]
⊕
[
Θ(µj ,τ)
µi−1

⊗ |1⟩⟨1|
])
, (4.84)
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where, if µi or µi−1 doesn’t exist, we take Θ
(µj ,τ)
µi = 0 or Θ

(µj ,τ)
µi−1 = 0 respectively15.

4.4.3.2 Intermediate classification is Sn invariant

Now, let’s move on and make steps to show that nothing about the order of the first n − 1 qubits can
be deduced in the intermediate classification. First, let’s fix {πνk,σ} to be given by the optimal POVM in
Eq. (4.23), so that

πνk,σ =
dPνk

|Cνk |
IQνk

⊗ Ωνk,σ, (4.85)

for every k ≤ n/2, [σ]νk ∈ Cνk . Thinking back to Eq. (4.78), since πνk,σ ∈ L(Qνk ⊗Pνk) and Ωνk,σ is a pure
state, it follows that B

µj ,τ
νk,σ ∈ L(Qνk ⊗ Pνk) and

Bµj ,τ
νk,σ

= Dµj ,τ
νk,σ

⊗ Ωνk,σ, (4.86)

such that 0 ≤ D
µj ,τ
νk,σ ∈ L(Qνk) and

∑
j,[τ ]µj

D
µj ,τ
νk,σ =

dPνk

|Cνk
| IQνk

. Using all of this, along with Eq. (4.78a) and

the orthogonality of the subspaces L(Qνk ⊗ Pνk), it follows that

IQνk
⊗
([

Θ(µj ,τ)
µk

⊗ |0⟩⟨0|
]
⊕
[
Θ(µj ,τ)
µk−1

⊗ |1⟩⟨1|
])

=
∑
[σ]νk

Dµj ,τ
νk,σ

⊗ Ωνk,σ (4.87)

for all k ≤ n/2. Let’s consider a lemma.

Lemma 4.4.2. Let

IQνk
⊗
([

Θ(µj ,τ)
µk

⊗ |0⟩⟨0|
]
⊕
[
Θ(µj ,τ)
µk−1

⊗ |1⟩⟨1|
])

=
∑
[σ]νk

Dµj ,τ
νk,σ

⊗ Ωνk,σ, (4.88)

then, if Conjecture 4.A.1 holds, Θ
(µj ,τ)
µk = θ

(µj ,τ)
µk IPµk

, for all 0 ≤ k < n/2 such that θ
(µj ,τ)
µi := Tr

[
Θ

(µj ,τ)
µi

]
/dPµi

are positive real numbers.

Proof. We prove this by induction, but before we do, note that, except for when k = 0, where Ων0,σ ≡
Ωµ0

⊗ |0⟩⟨0| ≡ IPµ0
⊗ |0⟩⟨0|, we have that Ωνk = Ωµk−1

⊗ |1⟩⟨1| [72]. Now, let us first consider k = 0. Here,
Eq. (4.88) is

IQν0
⊗
[
Θ(µj ,τ)
µ0

⊗ |0⟩⟨0|
]

=
∑
[σ]νk

Dµj ,τ
ν0,σ ⊗ Ων0,σ ≡ Dµj ,τ

ν0,σ ⊗
[
IPµ0

⊗ |0⟩⟨0|
]
. (4.89)

By tracing out the Pν0 component, and defining θ
(µj ,τ)
µ0 = Tr

[
Θ

(µj ,τ)
µ0

]
/dPµ0

, it follows that D
µj ,τ
ν0,σ =

θ
(µj ,τ)
µ0 IQν0

, and thus, Θ
(µj ,τ)
µ0 = θ

(µj ,τ)
µ0 IPµ0

.
Now assume the lemma is true for arbitrary k = i− 1 > 0. That is, assume

Θ(µj ,τ)
µi−1

= θ(µj ,τ)
µi−1

IPµi−1
. (4.90)

Therefore, when k = i, Eq. (4.88) is

IQνi
⊗
([

Θ(µj ,τ)
µi

⊗ |0⟩⟨0|
]
⊕
[
θ(µj ,τ)
µi−1

IPµi−1
⊗ |1⟩⟨1|

])
=
∑
[σ]νi

Dµj ,τ
νi,σ ⊗ Ωνi,σ. (4.91)

Note that the right hand side of this can be rewritten as∑
[σ]νi

Dµj ,τ
νi,σ ⊗ Ωνi,σ =

∑
[σ∈Sn−1]νi

Dµj ,τ
νi,σ ⊗

[
pνi(σ)

(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ)

]
+

∑
[σ∈Sn\Sn−1]νi

Dµj ,τ
νi,σ ⊗

[
pνi(σ)

(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ)

]
, (4.92)

15For example, when i = 0, µi−1 doesn’t exist and we take Θ
(µj ,τ)
µ−1

= 0. Likewise, for even n, where νn/2 exists but µn/2

does not, we take Θ
(µj ,τ)
µn/2

= 0.
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where [σ ∈ X]νi := {σ′ ∈ Sn | σ′ ∼νi σ, σ ∈ X ⊂ Sn} such that ∼νi is the equivalence relation on n-qubit
states defined in Def. 4.2.1. Noting that [σ ∈ Sn−1]νi only permute the first n − 1 qubits non-trivially, we
can see that the first term on the right hand side is of the correct, block diagonal form of Eq. (4.88):∑

[σ∈Sn−1]νi

Dµj ,τ
νi,σ ⊗

[
pνi(σ)

(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ)

]
= IQνi

⊗
([

Θ(µj ,τ)
µi−1

− Θ̃(µj ,τ)
µi−1

]
⊗ |1⟩⟨1|

)
, (4.93)

where Θ̃
(µj ,τ)
µi−1 is some positive operator satisfying Θ

(µj ,τ)
µi−1 ≥ Θ̃

(µj ,τ)
µi−1 ≥ 0. The reason as to why the Qνi

component should be proportional to IQνi
comes from the fact that the [σ ∈ Sn\Sn−1]νi sum in Eq. (4.91)

must have a Qνi component proportional to IQνi
. This is on account of this sum containing all of the

L
(
Pµi ⊗ {|0⟩}

)
terms.

The last question we have to answer is what set of matrices {Dµj ,τ
νi,σ }[σ∈Sn\Sn−1]νi

allow

Y
µj ,τ
νi,σ̃

:=
∑

[σ∈Sn\Sn−1]νi

Dµj ,τ
νi,σ ⊗

[
pνi(σ)

(
Ωµi−1 ⊗ |1⟩⟨1|

)
p†
νi(σ)

]
= IQνi

⊗
([

Θ(µj ,τ)
µi

⊗ |0⟩⟨0|
]
⊕
[
Θ̃(µj ,τ)
µi−1

⊗ |1⟩⟨1|
])

(4.94)

to be true? We conjecture that the elements in {Dµj ,τ
νi,σ }[σ∈Sn\Sn−1]νi

must all be equal16. Let’s write the

representative of this set as D
µj ,τ
νi,σ̃

, where σ̃ = (12 · · ·n) ∈ Sn\Sn−1. With this in mind, we can rewrite Y
µj ,τ
νi,σ̃

as

Y
µj ,τ
νi,σ̃

= D
µj ,τ
νi,σ̃

⊗
[ ∑

[σ∈Sn\Sn−1]νi

pνi(σ)
(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ)

]
, (4.95)

from which we can see that Y
µj ,τ
νi,σ̃

commutes with P(n−1)(Sn−1)⊗1. It therefore follows, via Schur’s lemma,
that

Y
µj ,τ
νi,σ̃

= D
µj ,τ
νi,σ̃

⊗
([
aIPµi

⊗ |0⟩⟨0|
]
⊕
[
bIPµi−1

⊗ |1⟩⟨1|
])
, (4.96)

where a, b are some positive real numbers.
Although not necessary for this argument, the explicit values of a and b will be used later on, so we derive

them here. To do so, note that

dPνi

|Cνi |
∑
[σ]νi

pνi(σ)
(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ) = IPνi

≡
(
IPµi

⊗ |0⟩⟨0|
)
⊕
(
IPµi−1

⊗ |1⟩⟨1|
)
, (4.97)

as was deduced in Sec. 4.2.2. Using Schur’s lemma, note also that

dPνi

|Cνi |
∑

[σ∈Sn−1]νi

pνi(σ)
(
Ωµi−1

⊗ |1⟩⟨1|
)
p†
νi(σ) = ci

(
IPµi−1

⊗ |1⟩⟨1|
)
, (4.98)

since the left hand side is invariant under Sn−1. To find ci, first note that, when i = 0, Ωµi−1
= 0 and

IPµi−1
= 0, so we define c0 = 0. Next, we can see that the left hand side has

(
n− 1
i− 1

)
= (n−1)!

(n−i)!(i−1)! terms in

the sum. This can be understood be recalling that the state ρµi−1
has i− 1 ones which have n− 1 positions

to choose between. The fact that there is an nth qubit means that each of these choices is distinct17.

16We rewrite this conjecture in Appendix 4.A to allow for easy access to this open problem.
17This differs slightly from how we count permutations when considering the full dataset. For example, suppose we have a

situation in which we’re looking at the first four qubits of a dataset, two of which are labelled by ones. If these qubits constitute

the full dataset, permuting the first four qubits results in 1
2

(
4
2

)
= 3 states overall: ρ0011 = ρ1100, ρ0101 = ρ1010, ρ1001 =

ρ0110. However, if they are part of a five qubit dataset, permuting the first four qubits results in

(
4
2

)
= 6 states overall:

ρ0011b, ρ1100b, ρ0101b, ρ1010b, ρ1001b, ρ0110b, where b ∈ {0, 1}.
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This is because pνi(σ) only acts on the first n − 1 qubits for [σ ∈ Sn−1]νi and therefore, pνi(σ) ≡
[pµi−1(σ)⊗|1⟩⟨1|]⊕ [pµi(σ)⊗|0⟩⟨0|] for [σ ∈ Sn−1]νi . So, with this in mind, we can take the trace to deduce
that

ci =

0, i = 0,
dPνi

|Cνi
|dPµi−1

(n−1)!
(n−i)!(i−1)! , i > 0.

(4.99)

Using this and rearranging Eq. (4.97), we can rewrite Y
µj ,τ
νi more concretely as

Y
µj ,τ
νi,σ̃

= D
µj ,τ
νi,σ̃

⊗
[( |Cνi |

dPνi

IPµi
⊗ |0⟩⟨0|

)
⊕
([ |Cνi |

dPνi

− (n− 1)!

dPµi−1
(n− i)!(i− 1)!

]
IPµi−1

⊗ |1⟩⟨1|
)]

, (4.100)

where, as discussed for similar operators, IPµi−1
= 0 when i = 0.

So, substituting what we have found back into Eq. (4.91), and focusing on the IQνi
⊗
[
Θ

(µj ,τ)
µi ⊗ |0⟩⟨0|

]
component, we see that

IQνi
⊗
[
Θ(µj ,τ)
µi

⊗ |0⟩⟨0|
]

= D
µj ,τ
νi,σ̃

⊗
[ |Cνi |
dPνi

IPµi
⊗ |0⟩⟨0|

]
. (4.101)

Similarly to as we did in the k = 0 case, tracing out the Pνi component, and defining dPµi
θ
(µj ,τ)
µi =

Tr
[
Θ

(µj ,τ)
µi

]
results in

D
µj ,τ
νi,σ̃

=
dPνi

|Cνi |
θ(µj ,τ)
µi

IQνi
, (4.102)

and therefore

Θ(µj ,τ)
µi

= θ(µj ,τ)
µi

IPµi
, (4.103)

as required. This concludes our argument (pending a proof of Conjecture 4.A.1).

If true, what we have deduced from this working is that

ξµj ,τ =

⌊n−1
2 ⌋⊕
i=0

θ(µj ,τ)
µi

Iµi , (4.104)

where Iµi is the identity on L(Qµi ⊗ Pµi) and θ
(µj ,τ)
µi ≥ 0. This means that ξµj ,τ are invariant under Sn−1

and thus, cannot tell us anything about the order of the qubits in the quantum dataset, only something
about how many of each type there are. Further, since P (ξµj ,τ |ρµj′ ,τ

′) = P (ξµj ,τ |ρµj′ ,τ
′′), ∀τ ′, τ ′′, we are

free to weight θ
(µj ,τ)
µi so that, for each choice of i, j, they are equal:

ξµj ,τ =

⌊n−1
2 ⌋⊕
i=0

θ(µj)
µi

Iµi . (4.105)

Intermediate classification on n−m qubits

Can we say anything about what one can learn in an intermediate classification on the first n −m qubits
(such that m > 1) of an n-qubit dataset? Lemma 4.4.2 implies that neither the order nor the number of each
type of state can be deduced if we want to preserve the optimal success rate of the final n-qubit classification.
To see this, consider the example of n = 4, with possible states

R(4) = {ρ0000, ρ0001, ρ0010, ρ0100, ρ0111, ρ0011, ρ0101, ρ0110}. (4.106)

Let

Ξ(2) = {ξ00, ξ01} (4.107)
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be a POVM that distinguishes R(2) = {ρ00, ρ01} with a higher success rate than a guess. Zooming out to
the full data set, ξ00 is associated with the states ρ0000, ρ0001, ρ0010, ρ0011, whereas ξ01 is associated with
ρ0100, ρ0111, ρ0101, ρ0110. Now, we can think of Ξ(2) instead as a three-qubit measurement

Ξ(3) = {ξ00 ⊗ 1, ξ01 ⊗ 1}. (4.108)

But notice that this measurement distinguishes ρ0010 from ρ0100, ρ0111, and ρ0011 from ρ0101, ρ0110, or in
other words, it distinguishes ρ001 from ρ010, ρ011. Thus, Ξ(3) says something about the order of the first
three qubits, which isn’t allowed according to Lemma 4.4.2.

More generally, let m > 1 and λk = (n−m− k, k) be a partition of n−m. Suppose we have a POVM

Ξ(n−m) = {ξλk,τ | 0 ≤ k ≤ (n−m)/2, [τ ]λk
∈ Cλk

}, (4.109)

with elements satisfying ξλk,τ = ξλk
∀k ≤ (n−m)/2, τ ∈ Sn−m, that distinguishes the states in the set

R(n−m) = {ρλk,τ | 0 ≤ k ≤ (n−m)/2, [τ ]λk
∈ Cλk

} (4.110)

non-trivially. Then, although
Tr
[
ξλk,τρλj ,τ ′

]
= Tr

[
ξλk

ρλj ,τ

]
(4.111)

for all j, k, τ, τ ′, and thus tells us nothing about the order of the first n − m qubits, since Ξ(n−m) is a
non-trivial measurement, there must exist some k, j′, satisfying k ̸= j′, such that

Tr
[
ξλk

ρλk

]
̸= Tr

[
ξλk

ρλj′

]
. (4.112)

Assuming k < j′ for the remainder of this discussion (since an analogous argument holds for j′ < k), it
follows that there exists some j, satisfying k ≤ j ≤ j′ − 1, such that

Tr
[
ξλk

ρλj

]
̸= Tr

[
ξλk

ρλj+1

]
. (4.113)

Now, we can think of Ξ(n−m) as an (n− 1)-qubit measurement:

Ξ(n−1) =
{
ξ̃λk,τ = ξλk,τ ⊗ 1

⊗m−1 | ξλk,τ ∈ Ξ(n−m)
}
. (4.114)

Let’s consider the (n − 1)-qubit state ρµm+j whose first n −m − j − 1 qubits are all labelled by zero, and
whose last m + j qubits are labelled by ones18. Defining the 2-cycle τ̃ :=

(
[n − 1][n −m − j − 1]

)
∈ Sn−1,

which swaps the (n − 1)th qubit with the (n −m − j − 1)th qubit. Since the (n − 1)th qubit of ρµm+1
is

labelled by a one, whereas the (n−m− j − 1)th qubit of this state is labelled by a zero, it follows that

Tr
[
ξλk

ρλj

]
= Tr

[
ξ̃µm+k

ρµm+j

]
, (4.115a)

Tr
[
ξλk

ρλj+1

]
= Tr

[
ξ̃µm+k

ρµm+j ,τ̃

]
. (4.115b)

Therefore, by Eq. (4.113),
Tr
[
ξ̃µm+k

ρµm+j

]
̸= Tr

[
ξ̃µm+k

ρµm+j ,τ̃

]
, (4.116)

which, by Lemma 4.4.2 is not allowed as this would mean something about the order of the first n−1 qubits
can be learned. So, Lemma 4.4.2 implies that a non-trivial intermediate measurement on the first n − m
qubits (for m > 1) will always impact one’s ability subsequently classify the whole n-qubit dataset.

4.5 Constructing an intermediate measurement

Let us now go a little further and deduce the constraints that the θ
(µj)
µi of Eq. (4.105) are subject to so that

Eq. (4.78) is valid. Using what we’ve found so far,

IQνk
⊗
([
θ(µj)
µk

IPµk
⊗ |0⟩⟨0|

]
⊕
[
θ(µj)
µk−1

IPµk−1
⊗ |1⟩⟨1|

])
=

∑
[σ∈Sn−1]νk

Dµj ,τ
νk,σ

⊗ Ωνk,σ

+ θ(µj)
µk

IQνk
⊗
[(

IPµk
⊗ |0⟩⟨0|

)
⊕
([

1 −
dPνk

|Cνk |
(n− 1)!

dPµk−1
(n− k)!(k − 1)!

]
IPµk−1

⊗ |1⟩⟨1|
)]

, (4.117)

18We are using the same definition of µi as before: µi = (n− 1− i, i).
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which means that∑
[σ∈Sn−1]νk

Dµj ,τ
νk,σ

⊗Ωνk,σ =

(
θ(µj)
µk−1

−
[
1−

dPνk

|Cνk |
(n− 1)!

dPµk−1
(n− k)!(k − 1)!

]
θ(µj)
µk

)
IQνk

⊗
(
IPµk−1

⊗|1⟩⟨1|
)
. (4.118)

We conjecture19 that for this to be true, D
µj ,τ
νk,σ = D

µj ,τ
νk,σ′ , ∀σ, σ′ ∈ Sn−1. Tracing out over Pνk then gives us

an expression for D
µj ,τ
νk,σ , which, since IPµk−1

= 0 when k = 0, has separate expressions for k = 0 and k > 0.

Including what we found earlier with regards to D
µj ,τ
νk,σ̃

for completeness, we have that

Dµj ,τ
νk,σ

=

0, k = 0,(
dPµk−1

(n−k)!(k−1)!

(n−1)!

[
θ
(µj)
µk−1 − θ

(µj)
µk

]
+

dPνk

|Cµk
|θ

(µj)
µk

)
IQµk

, k > 0,
(4.119a)

D
µj ,τ
νk,σ̃

=
dPνk

|Cνk |
θ(µj)
µk

IQνk
. (4.119b)

Now, recall that when we introduced D
µj ,τ
νk,σ in Eq. (4.86), we noted the following were required:

Dµj ,τ
νk,σ

≥ 0, (4.120a)∑
j

∑
[τ ]µj

Dµj ,τ
νk,σ

=
dPνk

|Cνk |
IQνk

, (4.120b)

for all k ≤ n/2. This second condition implies that D
µj ,τ
νk,σ ≤ dPνk

|Cνk
| IQνk

, which means that θ
(µj)
µk ≤ 1 (unless

σ ∈ Sn−1, k = 0, in which case D
µj ,τ
µk,σ = 0, ∀j, τ .). Note, however, that the condition θ

(µj)
νk ≤ 1 is superseded

by the requirement that
∑
j

∑
[τ ]µj

θ
(µj)
µk = 1 for all k, which means that θ

(µj)
µk ≤ 1/|Cµj

|.
Let’s summarise what we have found. The final form of the intermediate measurement is

ξµj ,τ =

⌊n−1
2 ⌋⊕

k=0

θ(µj)
µk

Iµk
, (4.121)

subject to
∑
j |Cµj | θ

(µj)
µk = 1, θ

(µj)
µk ≥ 0, ∀ 0 ≤ j, k < n/2. And the bounds that the θ

(µj)
µk reside within are

dictated by

0 ≤
dPµk−1

(n− k)!(k − 1)!

(n− 1)!

[
θ(µj)
µk−1

− θ(µj)
µk

]
+
dPνk

|Cνk |
θ(µj)
µk

≤
dPνk

|Cνk |
, ∀ 0 < k <

n

2
, (4.122a)

0 ≤ θ(µj)
µk

≤ 1

|Cµj
| , ∀ 0 ≤ k <

n

2
, (4.122b)

for any 0 ≤ j ≤ n/2. Finally, to complete this discussion, due to the non-existence of µk when k < 0 or
k ≥ n/2, we should reiterate that, for all j,

θ(µj)
µk

= 0, ∀ k < 0 or k ≥ n

2
. (4.123)

4.5.1 A lower bound

Let’s now derive an analytical lower bound P 1st
lower for the optimal success rate P 1st

succ of the first classification.
To do this, we constrain {ξµj ,τ} to be made of operators of the form

ξµj ,τ = αjIµj
+ βjI, (4.124)

19Rewritten as Conjecture 4.A.2 in Appendix 4.A for convenience.
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for all [τ ]µj ∈ Cµj , where Iµj = IQµj
⊗ IPµj

as always, and I is the identity on the entire (n−1)-qubit Hilbert

space H(n−1). In order for this to be a valid POVM, positivity and completeness are required: for positivity,
αj + βj , βj ≥ 0. And for completeness, after some algebra, we obtain the following conditions:

αj =
1

|Cµj
|

(
1 −

⌊n−1
2 ⌋∑
i=0

|Cµi
|βi
)

(4.125a)

αj′ =
|Cµj

|
|Cµj′ |

αj , (4.125b)

where the second follows from the first.
Now, using ρµj ,τ given in Eq. (4.35), along with the fact that Tr

[
ξµj ,τρµj ,τ

]
= Tr

[
ξµj

ρµj

]
, ∀τ , after

some algebra,

P 1st
lower =

1

2n−2

⌊n−1
2 ⌋∑
j=0

∑
[τ ]µj

∈Cµj

Tr
[
ξµj ,τρµj ,τ

]
= 22−n

∑
j

∑
[τ ]µj

[
βj |Cµj

| + αj |Cµj
| n− 2j

(n− j)(j + 1)

]
. (4.126)

Looking back to the conditions in Eq. (4.125), note that
∑
j βj |Cµj

| = 1−α0|Cµ0
|, and α0|Cµ0

| = αj |Cµj
|, ∀j.

Therefore, using |Cµ0
| = 1, we have that

P 1st
lower = 22−n

(
1 − α0

[
1 −

⌊n−1
2 ⌋∑
j=0

n− 2j

(n− j)(j + 1)

])
. (4.127)

Since the sum in the above expression is greater than 1 for n > 2 (an assumption on n made at the start
of Sec. 4.4.1), and because P 1st

lower is linear with respect to α0, we can see that maximising P 1st
lower is done by

maximising α0. To do this, we look to our bounds: Eq. (4.122).
First, note that ξµj ,τ in Eq. (4.124) relate to the general operators in Eq. (4.121) [Eq. (4.105)] via the

following:

θ(µj)
µi=j

= αj + βj , (4.128a)

θ(µj)
µi̸=j

= βj . (4.128b)

In particular, since we are interested in maximising α0, we focus on θ
(µ0)
µi . Recalling that our conditions

Eq. (4.122a,b), tailored to this situation, depend on both θ
(µ0)
µk and θ

(µ0)
µk−1 means that we must look at the

k = 0, 1 cases. If we were to consider k ≥ 2 (if such ks exist), θ
(µ0)
µk = θ

(µ0)
µk−1 = β0 meaning that Eq. (4.122a)

is superseded by Eq. (4.122b), and thus, no extra constraints on α0 are found. First, for k = 0, note that
Eq. (4.122a) does not apply (for reasons stemming from µk−1 not existing here), and so all we find in this
case comes from Eq. (4.122b): 0 ≤ α0 + β0 ≤ 1/|Cµ0 |. Second, when k = 1, we find that

0 ≤ α0

dPµ0
(n− 1)!(1 − 1)!

(n− 1)!
+ β0

dPν1

|Cν1 |
≤
dPν1

|Cν1 |
, (4.129)

and finally, due to the positivity of ξµ0,τ , we saw earlier that β0 ≥ 0.
All together, we have found that

0 ≤ α0 + β0 ≤ 1

|Cµ0
| , (4.130a)

0 ≤ α0dPµ0
+ β0

dPν1

|Cν1 |
≤
dPν1

|Cν1 |
, (4.130b)

0 ≤ β0. (4.130c)
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n− 1 P 1st
lower P 1st

optimal P 1st
guess

2 58.33% 62.5% 50%
3 31.25% 41.67% 25%
4 17.36% 29.34% 12.5%

Table 4.3: Success rates of an intermediate measurement on an (n − 1)-qubit dataset corresponding to
the lower bound P 1st

lower derived in Eq. (4.133). Also included is the success rate P 1st
optimal of the optimal

measurement on n− 1 qubits, as well as that of a guess P 1st
guess, again on n− 1 qubits.

So, to make α0 as large as possible, we should first minimise β0, letting β0 = 0. With that, in order to satisfy
all of the above conditions,

α0 ≤ min

{
dPν1

|Cν1 |
, 1

}
, (4.131)

where we have used dPµ0
= 1. Noting that |Cν1 | =

(
n
1

)
= n when n > 2, and using Eq. (2.141) for the

dimension dPν1
, it follows that

dPν1

|Cν1
| = n−1

n which is less than 1. We therefore have that

α0 ≤ n− 1

n
, (4.132)

and thus, the best value of P 1st
lower, achievable with the form of intermediate measurement given in Eq. (4.124)

is

P 1st
lower = 22−n

(
1 − n− 1

n

[
1 −

⌊n−1
2 ⌋∑
j=0

n− 2j

(n− j)(j + 1)

])
. (4.133)

In Table 4.3 and Figure 4.4 we provide some examples to see how this strategy compares to that of a guess
as well the corresponding optimal strategy.

4.5.2 An algorithm for an improved intermediate measurement

The previous subsection proved that an intermediate measurement could be constructed that would, on the
one hand, provide us with more information about an (n− 1)-qubit subset than a blind guess, whilst, on the
other hand, allow for a subsequent, optimal classification on the entire n-qubit dataset to be achieved. But,
in order to do so, we restricted the vast majority of the POVM elements’ [Eq. (4.124)] degrees of freedom.
This prompts the question that is the subject of this subsection: can we do better?

It turns out that we can. Having said, this, the method used does not allow us to write down a closed
form analytic equation for the success rate for arbitrary n. Equation (4.122a) hints at why this is the case:
namely, the weights of adjacent invariant subspaces are related, recursively, to one another. It therefore

seems that there is no closed form relating θ
(µj)
µk , θ

(µj′ )
µk′ for arbitrary k, k′, j, j′. We can, however, write down

an algorithm to construct, what we hypothesise, is the optimal intermediate measurement that preserves the
optimal n-qubit POVM.

The construction algorithm we propose is motivated by an optimal measurement that distinguishes
datasets purely based on the number of each data type, and not their order. Such an optimal measurement
can be described with the POVM elements

ξ̂µj ,τ =
1

|Cµj |
Iµj , (4.134)

which, when compared to Eq. (4.105) corresponds to maximising θ
(µj)
µj and minimising θ

(µj)
µk ̸=j

20. Note that,
although these operators are oblivious to the order of the qubits in the dataset, due to how the problem has

20This minimisation, when considering {ξ̂µj ,τ} as a standalone measurement, corresponds to putting θ
(µj)
µk ̸=j

= 0, since the

only lower bound for θ
(µj)
µi

corresponds to the positivity of ξ̂µj ,τ : θ
(µj)
µi

≥ 0, ∀i, j.
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Figure 4.4: Plot showing how the success rate Psucc of an unsupervised binary classification on an the first
n − 1 qubits of an n-qubit dataset varies with n. The orange circles correspond to the optimal success
rate P 1st

optimal on these first n − 1 qubits, the green stars to the success rate P 1st
lower of our “lower bound”

measurement, and the blue squares correspond to the success rate of a guess P 1st
guess(n− 1) = 22−n.

been formulated (i.e. requiring a measurement outcome for each possible dataset), following their optimal
strategy for figuring out how many zeros and ones there are, they make a random guess with regards to
the order of these zeros and ones. Now, we have the added task of ensuring that our measurement on
n − 1 qubits doesn’t stop us from doing the best we can in classifying n qubits. As we saw, this meant
that the coefficients of our (n − 1)-qubit measurement should be related to one another via Eq. (4.122).
So, our strategy for constructing our intermediate measurement can be summarised by the following goal:

maximising θ
(µj)
µj and minimising θ

(µj)
µk ̸=j , whilst satisfying Eq. (4.122).

Recall the form of the states that we are distinguishing between using Ξ(n−1) = {ξµj ,τ}, rewritten here
for convenience:

ρµj ,τ =
1

(n− j)(j + 1)

j⊕
i=0

IQµi
⊗ Ωµi,τ . (4.135)

The first thing to notice when constructing Ξ(n−1) is that ρµj ,τ does not have any Qµi ⊗ Pµi components
when i > j. Therefore, there is no reason for ξµj ,τ to have these components either. So we can update the

elements of Ξ(n−1) to

ξµj ,τ =

j⊕
i=0

θ(µj)
µi

Iµi
. (4.136)

Let’s now see how we maximise θ
(µj)
µj .

Defining N = ⌊(n − 1)/2⌋ for convenience and readability, notice that the only element that has a

QµN
⊗ PµN

component is ξµN ,τ . This means that θ
(µN )
µN can take it’s maximum possible value of 1/|CµN

|.
Now, like mentioned, we want to minimise contributions to ξµN ,τ from all the other subspaces Qµi<N

⊗Pµi<N
.

The limit to how low we can go is dictated by Eq. (4.122a) which, when rearranged says that

θ(µj)
µi−1

≥
(

1 −
dPνi

|Cνi |
(n− 1)!

dPµi−1
(n− i)!(i− 1)!

)
θ(µj)
µi

. (4.137)
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n− 1 P 1st
improved P 1st

lower P 1st
optimal P 1st

guess

2 58.3% 58.3% 62.5% 50%
3 31.25% 31.25% 41.67% 25%
4 17.41% 17.36% 29.34% 12.5%

Table 4.4: Intermediate classification success rates for various values of n − 1, corresponding to the lower
bound P 1st

lower derived in Eq. (4.133), an improved bound P 1st
improved found via Algorithm 1. The optimal and

guess success rates, P 1st
optimal, P

1st
guess respectively, are also included for comparison.

Using |Cνi | =

(
n
i

)
(because i < n/2), along with Eq. (2.141) we take the value of θ

(µj)
µi−1 to be

θ(µj)
µi−1

=
θ
(µj)
µi

n− 2i+ 2
. (4.138)

After this, the smallest allowed value for θ
(µj)
µi−2 can be found in the same way, and so on. For fixed j, we can

therefore write down the smallest θ
(µj)
µi for any i < j as follows:

θ(µj)
µi<j

= θ(µj)
µj

j−i∏
l=1

1

n− 2(j − l)
. (4.139)

We therefore have access to every θ
(µN )
µi that makes up ξµN ,τ . This allows us to find ξµN−1,τ . To do this,

first recall that θ
(µN )
µN−1 = 0. Next, to find the largest possible θ

(µN−1)
µN−1 , we put θ

(µj)
µN−1 = 0, ∀j < N − 1, and

use the completeness of Ξ(n−1):
N∑
j=0

|Cµj
|θ(µj)
µi

= 1, ∀0 ≤ i ≤ N, (4.140)

to find

θ(µN−1)
µN−1

=
1

|CµN−1
|

(
1 −

∑
j ̸=N−1

|Cµj |θ(µj)
µN−1

)

=
1

|CµN−1
|

(
1 −

∑
j>N−1

|Cµj
|θ(µj)
µN−1

)

=
1

|CµN−1
|

(
1 − |CµN

|θ(µN )
µN−1

)
=

1

|CµN−1
|
n− 2N + 1

n− 2N + 2
, (4.141)

where θ
(µN )
µN−1 was found using Eq. (4.138) or Eq. (4.139). From here, the other components of ξµN−1,τ are

found using Eq. (4.139), after which the process is repeated to find ξµN−2,τ and beyond.

Algorithm 1 summarises the steps taken to construct Ξ(n−1), and Fig. 4.5 presents a visual representation
of the method used. Table 4.4 compares the success rates P 1st

guess, P
1st
lower, P

1st
improved, where P 1st

improved denotes the
success rate of the first classification when the intermediate measurement is constructed using Algorithm 1.
Note that the first instance in which Algorithm 1 outperforms Eq. (4.133) occurs when n = 5. Now, to gain
some more intuition for how the algorithm works, let us consider some examples.

Example: 2 → 3 qubits

In this scenario, n = 3 and therefore, N = 1. Here, Ξ(2) is made up of the following operators:

ξµ0
=
[
θ(µ0)
µ0

Iµ0

]
⊕
[
θ(µ0)
µ1

Iµ1

]
, (4.144a)

ξµ1
=
[
θ(µ1)
µ0

Iµ0

]
⊕
[
θ(µ1)
µ1

Iµ1

]
. (4.144b)
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Algorithm 1 Construction of an intermediate measurement Ξ(n−1).

1: let: θ
(µj)
µi = 0, ∀i > j.

2: let:

θ(µN )
µN

=
1

|CµN
| , (4.142a)

θ(µN )
µj

= θ(µN )
µN

N−j∏
l=1

[
n− 2(N − l)

]−1
, ∀j < N. (4.142b)

3: for i ∈ {1, . . . , N}:

4: find θ
(µN−i)
µN−i , θ

(µN−i)
µj , ∀0 ≤ j < N − i, such that

θ(µN−i)
µN−i

=
1

|CµN−i
|

(
1 −

∑
l>N−i

|Cµl
|θ(µl)
µN−i

)
, (4.143a)

θ(µN−i)
µj

= θ(µN−i)
µN−i

N−i−j∏
l=1

[
n− 2(N − i− l)

]−1
. (4.143b)

As per Step 1 of Algorithm 1, we set θ
(µ0)
µ1 = 0. Step 2 then tells us that θ

(µ1)
µ1 = 1/|Cµ1 | = 1, and therefore

θ(µ1)
µ0

= θ(µ1)
µ1

1∏
l=1

[
3 − 2(1 − l)

]−1
,

=
1

3
. (4.145)

Finally, Steps 3 & 4 result in

θ(µ0)
µ0

=
1

|Cµ0
|
[
1 − |Cµ1

|θ(µ1)
µ0

]
,

=
2

3
. (4.146)

The intermediate POVM Ξ(2) is therefore made up of the following

ξµ0
=

2

3
Iµ0

, (4.147a)

ξµ1
=

[
1

3
Iµ0

]
⊕ Iµ1

, (4.147b)

which is exactly what we found in Eq. (3.52)21 and Eq. (4.76). It also coincides with the success rate derived
in Sec. (4.5.1).

Example: 4 → 5 qubits

Let’s now consider the case of n = 5, which is the first instance of this algorithm performing better than the
results found in Sec. 4.5.1. Here, we have N = 2, |Cµ0

| = 1, |Cµ1
| = 4, |Cµ2

| = 3.

Step 1:

θ(µ1)
µ0

= θ(µ2)
µ0

= 0,

θ(µ2)
µ1

= 0.

21Albeit with different notation.
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Figure 4.5: Schematic of Algorithm 1. The blue arrows, going from right to left, indicate that the weights of
each component in ξµj ,τ can be related, recursively, by Eq. (4.138). The orange arrows, going from bottom

to top, along with the orange boxes, depict how the coefficients θ
(µj)
µj are found: using Eq. (4.143a) (written

in a slightly different, but equivalent, form in this figure). With that, the weighted sum in this expression is
represented by the orange boxes.
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Step 2:

θ(µ2)
µ2

=
1

|Cµ2 |
=

1

3
,

=⇒ θ(µ2)
µ1

= θ(µ2)
µ2

1∏
l=1

[
5 − 2(2 − l)

]−1
=

1

9
,

and θ(µ2)
µ0

= θ(µ2)
µ2

2∏
l=1

[
5 − 2(2 − l)

]−1
=

1

45
.

Steps 3 & 4 (i = 1):

θ(µ1)
µ1

=
1

|Cµ1
|

[
1 − |Cµ2

|θ(µ2)
µ1

]
=

1

6
,

=⇒ θ(µ0)
µ1

= θ(µ1)
µ1

1∏
l=1

[
5 − 2(2 − 1 − l)

]−1
=

1

30
.

Steps 3 & 4 (i = 2):

θ(µ0)
µ0

=
1

|Cµ0 |

[
1 − |Cµ1

|θ(µ1)
µ0

− |Cµ2
|θ(µ2)
µ0

]
=

4

5
.

Putting this all together, our measurement Ξ(4) is made up of the following

ξµ0
=

4

5
Iµ0

, (4.148a)

ξµ1,τ =
1

30
Iµ0 ⊕

1

6
Iµ1 , (4.148b)

ξµ2,τ =
1

45
Iµ0 ⊕

1

9
Iµ1 ⊕

1

3
Iµ2 , (4.148c)

which, after a little algebra, and using Eq. (4.45), results in

P 1st
improved =

47

270
≈ 17.41% > 17.36% ≈ P 1st

lower. (4.149)

4.6 Discussion

Intuitively, the unsupervised classification of quantum data is, at least to me, not a trivial problem. Unlike
their classical counterpart, since completely unknown, there is a continuum of possible states for each datum
to occupy (e.g. for qubits, any point on the Bloch sphere). Therefore, considering each data point individually
tells us nothing, either about them, or the structure of the dataset as a whole. Remarkably, as we saw in
Sec. 4.2, and as was noted in Refs. [71, 92], despite our complete ignorance of the state of each individual
datum, when considering the quantum dataset as a whole, information about its structure could be learnt:
namely, the number of each type of quantum state, as well as their order. However, free lunches being
non-existent, we saw how the act of learning about a dataset induced disturbance in the quantum state
representing it. This led us to ask the question: how well can we classify an (n − 1)-qubit subset of an
n-qubit dataset, without affecting a subsequent, overall classification on the entire dataset?

Interestingly, we found picked up on some hints that suggested that, in order to preserve the second
classification, we couldn’t learn anything about the order of the states in the (n − 1)-qubit subset. It
appeared that all this first (or intermediate) classification could therefore tell us was something about how
many of each type of state there were (being a binary classification, this meant how many zeroes and ones
there were). We made steps to prove this result, but did not manage to prove Conjecture 4.A.1. We saw that,
if true, a consequence of this is that no non-trivial classification can be performed on the first n−m qubits
(for m > 1) without affecting one’s ability to subsequently classify the entire n-qubit dataset. It would be
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interesting to see how this property generalises: given a fixed measurement Π which shares its symmetries
with a set of quantum states R, does an intermediate measurement on R with a different goal have to be
ignorant with regards to these symmetries if we don’t want to affect the success rate of Π? We leave this
question for future work. Other than this general observation, in this chapter, we saw that constraining our
intermediate measurement allowed for us to write down a closed form, analytical expression for the success
rate of the (n− 1)-qubit classification: P 1st

lower. Corresponding to a constrained measurement, we were forced
to view this only as a lower bound to the optimal value. Indeed, it was confirmed that this was a lower
bound when we constructed an intermediate measurement whose success rate would first beat P 1st

lower when
n = 5. In order to do so, we wrote down an algorithm to construct such a measurement, and hypothesised
that the resulting measurement is the best one can do in this scenario. A proof that this is true is absent
from this thesis, so we can only take this construction to correspond to an improved lower bound of the
success rate. We donate the proof (or disproof) to future works.

Appendix 4.A Unproven result

We note here, for convenience, a result that needs to be proven to complete the proof of Lemma 4.4.2. This
would allow us to be sure that, when classifying n−1 qubits, nothing can be learnt about their order without
affecting a subsequent classification on the entire n-qubit dataset.

Conjecture 4.A.1. The expression∑
[σ∈Sn\Sn−1]νk

Dµj ,τ
νk,σ

⊗
[
pνk(σ)

(
Ωµk−1

⊗ |1⟩⟨1|
)
p†
νk

(σ)
]

= IQνk
⊗
([

Θ(µj ,τ)
µk

⊗ |0⟩⟨0|
]
⊕
[
Θ̃(µj ,τ)
µk−1

⊗ |1⟩⟨1|
])

(4.150)

holds only if D
µj ,τ
νk,σ = D

µj ,τ
νk,σ′ , ∀σ, σ′ ∈ Sn\Sn−1.

Further, the following conjecture is used to derive bounds that allow us to explicitly construct intermediate
measurements.

Conjecture 4.A.2. The expression∑
[σ∈Sn−1]νk

Dµj ,τ
νk,σ

⊗Ωνk,σ =

(
θ(µj)
µk−1

−
[
1−

dPνk

|Cνk |
(n− 1)!

dPµk−1
(n− k)!(k − 1)!

]
θ(µj)
µk

)
IQνk

⊗
(
IPµk−1

⊗|1⟩⟨1|
)
. (4.151)

holds only if D
µj ,τ
νk,σ = D

µj ,τ
νk,σ′ ∝ IQνk

, ∀σ, σ′ ∈ Sn−1.

These conjectures appear to be related to the question of whether {Ωνk,σ}[σ]νk is a set of linearly independent

operators. To see this, suppose {Ωνk,σ}[σ]νk are linearly independent. Then there exists a set of operators

{Eνk,σ}[σ]νk such that Tr(Eνi,σ′Ωνi,σ) = δσ′σ, ∀σ, σ′, from which the above conjectures follow. This is one
possible direction we could explore these conjectures via. But we leave this for future work.



Chapter 5

Indefinite causal key distribution

The contents of this chapter are published as a preprint [116].

5.1 Introduction

In our everyday, classical world, we are used to events occurring in a well defined order: A happens before
B or vice versa. Remarkably, it appears that, in the quantum world, events can happen in a (controlled)
superposition of orders [11–13]. This phenomenon has been termed indefinite causal order (ICO) and, aside
from the foundational interest in this topic, a number of applications have been proposed that often show an
advantage, or interesting difference, when compared to their definite causal counterparts [11, 117–124]. Such
differences usually present themselves in situations where the relevant operations are incompatible (that is,
when such operations do not commute with one another). This has allowed for far reaching proposals: from
increasing the capacity of noisy channels [120–122] to violating fundamental quantum metrological limits
[119]. Motivated by this relation to non-commuting operations, we explore here whether it can aid in another
such application, this time in the well established field of quantum key distribution (QKD).

QKD is concerned with the scenario in which two parties, conventionally named Alice and Bob, would
like to share a private key (a string of 0s and 1s) in such a way that they are confident an eavesdropping third
party, called Eve, has not been listening in. There have been a number of protocols proposed [4, 125–132],
the first of which being by Charles Bennett and Giles Brassard in 1984 (BB84) [4]. The security of these
protocols comes from the fact that Eve can be detected. This is possible because, when Eve is present, due
to the quantum phenomenon of measurement disturbance, a non-zero probability of error in Bob’s key, with
respect to Alice’s, is induced. So, if one could somehow detect these errors induced by Eve, it could be
concluded that an eavesdropper had been listening in. The way that these errors are normally detected is
by having Alice and Bob publicly compare a subset of their respective raw keys. Now public information,
this subset is subsequently discarded regardless of whether they conclude Eve is there or not.

To our knowledge, this public comparison is a feature of all QKD protocols so far proposed1. In this
chapter, we consider how one might adapt the simplest QKD scheme: the BB84 protocol, to an indefinite
regime. In doing so, we find that we can determine whether eavesdroppers are there or not without having
to publicly compare a subset of the distributed key. We also provide some understanding of the security of
such a protocol by proving that it is secure against a class of individual attacks. It is natural to ask whether
this “private” detection is a consequence of ICO or if it is allowed by other features of quantum mechanics.
Indeed, we find a protocol that occurs in a well defined order which allows for this same phenomenon. To do
this, however, an extra instance of Alice’s operation seems to be required, a property consistent with other
discussions of indefinite versus definite causal orderings [11]. As we will see, although there is the potential
for some more subtle differences between the two main schemes of this chapter, we ultimately conclude that
ICO may not offer an advantage to QKD.

1There has been work in error correction and privacy amplification without publicly declaring any of the key (that is, the
publicly shared information is put through various hash functions) [133]. However, being based on classical post-processing
techniques, this is different from what we find here.

95
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In Sec. 5.2 we briefly discuss the general background theory of the two topics of importance in this
chapter: indefinite causal order and quantum key distribution. In Sec. 5.3.1, we describe how a key can be
distributed between Alice and Bob in an indefinite causal order when no eavesdropper is present. In Sec. 5.3.2
we introduce a single eavesdropper to gain some intuition of their effects. One eavesdropper location being
insufficient to prove the security of this protocol, in Sec. 5.4, a second and final eavesdropper is introduced, and
we gain some intuition about the security of this protocol by considering a class of individual attacks by the
eavesdroppers. Following this, in Sec. 5.5 we briefly discuss whether this phenomenon is truly a consequence
of indefinite causal order, and whether there are any alternate differences between the definite and indefinite
cases. Finally, in Sec. 5.6, the findings are summarised along with a discussion of the implementability and
practicality of this ICO QKD protocol.

5.2 Background theory

5.2.1 Indefinite causal order

Suppose two parties, Alice and Bob, hope to act on some state ρ sequentially with the respective operations
A,B (or more generally, sets of operations, i.e. instruments) defined using the Kraus operators {Ai}, {Bj},
respectively. Normally, at least from a classical perspective, this happens, as depicted in Fig. 5.1, in a definite
order: either Alice before Bob,

ρ→
∑
i

Ai ρA
†
i →

∑
i,j

BjAi ρA
†
iB

†
j , (5.1)

or Bob before Alice,

ρ→
∑
j

Bj ρB
†
j →

∑
i,j

AiBj ρB
†
jA

†
i . (5.2)

In quantum mechanics, however, the order in which Alice and Bob act on ρ can be indefinite - a phenomenon
known as indefinite causal order (ICO). Take the quantum switch for example2, where an extra, control qubit
in the state ω dictates the order in which Alice and Bob act on ρ. Much like a classical switch, if we turn
it on and set ω = |1⟩⟨1|, then Alice acts before Bob. Conversely, if we switch it off and let ω = |0⟩⟨0|, then
Bob would go before Alice. However, since ω is a quantum state, it can be in a superposition of |0⟩ and |1⟩,
meaning that Alice and Bob can act on ρ in a controlled superposition of orders.

Let us write this down mathematically. As mentioned, if the control qubit is in the state ω = |1⟩⟨1|,
then Alice acts on the target qubit using A before Bob acts on it with B, and if ω = |0⟩⟨0|, then B occurs
before A. Following the notation of Ref. [122], we can therefore write the quantum switch as the following
operation

ρ→ Sω(A,B)(ρ) =
∑
i,j

Sij (ρ⊗ ω)S†
ij , (5.3)

where the Kraus operators {Sij} are defined as

Sij = AiBj ⊗ |0⟩⟨0| +BjAi ⊗ |1⟩⟨1| (5.4)

This is depicted in Fig. 5.1(c).

5.2.2 Quantum key distribution

Aside from being in an indefinite causal order with one another, Alice and Bob also like sharing private keys
with each other to use for various cryptographic tasks. In quantum communications, this is often done (for
example in original implementation: BB84) by having Alice prepare qubits in states that correspond to the
0s and 1s of the private key and sending them to Bob to be measured. Indeed, in BB84, Alice and Bob
respectively prepare and measure, independently and randomly, in one of two mutually unbiased bases. In
this work, we will use the Pauli x and z-bases: {|0⟩, |1⟩} and {|+⟩, |−⟩} respectively. If Alice (Bob) prepared

2This is just one example of indefinite causal order, but by far the most understood, and it is what we use throughout this
chapter. For more general discussions, see e.g. Ref. [134].
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BOBALICE𝜌

BOB ALICE𝜌 𝜔

𝜌
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(b)

(c)

Figure 5.1: Quantum mechanics allows for more freedom in the ordering of events: (a) Alice can act on
a state ρ before Bob, (b) Bob before Alice, or (c) in a superposition of both orders, controlled on some
quantum state ω.

(measured) the qubit to be in the state |0⟩ or |+⟩, she (he) will have a corresponding key bit of 0. Likewise,
if |1⟩, |−⟩ the corresponding key bit will be 1. Once Bob has measured the qubit Alice sent him, the two
parties publicly discuss which bases they chose. If they chose different bases, there is only a 50% chance of
them agreeing on the key bit value, so they discard the corresponding key bit. If, however, they chose the
same basis, when no eavesdroppers are present, Bob’s measurement result is guaranteed to correspond to the
state prepared by Alice, assuming noiseless and lossless transmission, as we will do throughout. Therefore,
Alice and Bob can use the corresponding ordered set of key bit values as their shared key.

To make this protocol secure, notice that when an eavesdropper, Eve, intercepts the transmission from
Alice to Bob and tries to learn the key bit value being shared, she disturbs the quantum state being sent with
non-zero probability. This means that, even if Alice and Bob agree on the basis chosen, there is a non-zero
probability that they disagree on the state of the qubit, which implies that there is a chance of an error in
Bob’s key with respect to Alice’s. To detect these errors, Alice and Bob take a subset of their sifted keys
and compare them publicly. Since it has to be done publicly, this subset must subsequently be discarded,
regardless of whether errors, and therefore Eve, were detected or not. Let us now see how this protocol can
be adapted to an indefinite causal ordered setting.

5.3 Quantum key distribution in an indefinite causal order

5.3.1 Indefinite causal key distribution with no eavesdroppers

In BB84, Alice would prepare the qubits to be sent to Bob in a certain state. When considering an indefinite
causal ordered scheme, Alice is simultaneously sending and receiving the qubit from Bob, so having one
party prepare the state makes little sense. To avoid this, both Alice and Bob measure the qubit being used,
which, because of how states are updated following projective measurements, allows them to both be the
preparer and measurer of the shared qubit. This method has similarities to how the key is generated in
protocols like E91 [125]. Taking this approach, the key would be made up of the results of a projective
measurement on some qubit in the state ρ, but only when Alice and Bob agree they had performed the same
projective measurement. This is because, once one party performs this measurement, ρ collapses to the
measurement operator corresponding to the measurement outcome obtained. Due to the projective nature
of the measurement, a subsequent measurement performed by the other party in the same basis necessarily
results in the same measurement outcome (assuming noiseless and lossless channels).

Thinking of the key generation in this way, we can consider a scheme in which a key is distributed in an
indefinite causal order. Here, we send a state ρ to two parties, Alice and Bob, in a controlled superposition
of two orders: Alice before Bob and Bob before Alice. As shown in Fig. 5.2, this superposition is controlled
by the two-level state ω: if ω = |0⟩⟨0|, ρ travels around the loop in one direction, if ω = |1⟩⟨1|, ρ travels
around the loop in the opposite direction, and if ω = |φ⟩⟨φ| is in some superposition of |0⟩ and |1⟩, ρ travels
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BOB

ALICE

𝜔

𝜌

ALICE’S LAB

Figure 5.2: Indefinite causal key distribution with no eavesdroppers. A key is shared between Alice and Bob
by sending a state ρ to them in a superposition of orders controlled by the state ω. Alice and Bob perform
projective measurements randomly in either the Pauli x or z-basis. After discarding cases in which Alice
and Bob measured in different bases, they are left with identical keys. Regardless of the initial state ω of
the control qubit, ω never changes when there are no eavesdroppers, a phenomenon we see not to be true
when an eavesdropper is introduced.

around the loop in a superposition of both directions3. Alice and Bob then both make a random choice to
measure either in the Pauli z-basis: {|0⟩, |1⟩}, or x-basis: {|+⟩, |−⟩}. We can therefore think of Alice and
Bob as acting on the state by each putting it through separate copies of the quantum channel A, defined by
the Kraus operators

A0 =
1√
2
|0⟩⟨0|, (5.5a)

A1 =
1√
2
|1⟩⟨1|, (5.5b)

A+ =
1√
2
|+⟩⟨+|, (5.5c)

A− =
1√
2
|−⟩⟨−|, (5.5d)

where the factors of 1/
√

2 arise because we are assuming Alice and Bob are both equally likely to measure in
the x or z-basis4. For convenience, define the set containing the Kraus operator indices by I := {0, 1,+,−}.
It should be made clear that Alice and Bob are not just putting ρ through some quantum channel, they
are indeed performing the stated measurements. They could, for example, store their measurement results
in a four dimensional ancillary register R (available only in their respective laboratories) initially in the
state |m0⟩R. The corresponding Kraus operators that would achieve this would have the form A′

i = |i⟩⟨i| ⊗
|mi⟩R⟨m0|R/

√
2, where |mi⟩ encode the four possible measurement outcomes i ∈ I in orthogonal states:

⟨mi|mj⟩ = δij . Having said this, since these ancillary systems factor out, we can take Ai to have the form
given in Eq. (5.5).

Following their measurements, Alice and Bob then publicly discuss the basis they chose for each measure-
ment and only keep the measurement outcomes in which they measured ρ in the same basis. Assuming no
errors occur between Alice and Bob’s measurements, their keys, made up of the measurement outcomes they

3Note that Fig. 5.2 is purely a schematic and we are assuming that Alice and Bob’s channels do not depend on the direction
the state is traversing the loop.

4This is not always the case, often, one basis is taken to be heavily biased over the other [135].
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kept, should be identical. In what follows, similarly to what we discussed earlier, a measurement outcome
of 0 and + will correspond to a 0 in the key. Likewise, 1 and − correspond to a 1 in the key.

Let’s see in more detail out what happens to the state ρ when it is put through the setup in Fig. 5.2.
Following [122], the channel that ρ goes through, is given by

Sω(A,A)(ρ) =
∑
i,j∈I

Sijρ⊗ ωS†
ij , (5.6)

where
Sij = AiAj ⊗ |0⟩⟨0| +AjAi ⊗ |1⟩⟨1|. (5.7)

After some algebra and index relabelling, it can be shown that Eq. (5.6) can be rewritten as follows:

Sω(A,A)(ρ) =
1

4

∑
i,j∈I

(
{Ai, Aj}ρ{Ai, Aj}† ⊗ ω + [Ai, Aj ]ρ[Ai, Aj ]

† ⊗ σzωσz
)

(5.8)

where σz is the z Pauli operator.
Now, recall that, after public discussion, Alice and Bob only keep the cases in which they performed a

measurement in the same basis. Therefore, following this discussion, the state becomes

Sω(A,A)(ρ) → 1

2

∑
S∈B

∑
i,j∈S

(
{Ai, Aj}ρ{Ai, Aj}† ⊗ ω + [Ai, Aj ]ρ[Ai, Aj ]

† ⊗ σzωσz
)
, (5.9)

where the prefactor is found by requiring normalisation, B = {{0, 1}, {+,−}}, and S labels the elements of
B. Noting the form of Ak given in Eq. (5.5), the terms in these sums have the following properties

{Ai, Aj} =
√

2Aiδij ,

[Ai, Aj ] = 0,
(5.10)

for all i, j from the same basis, where δij is the Kronecker delta. This confirms that Alice and Bob must
agree on their measurement outcomes. Overall, we have that

Sω(A,A)(ρ) →
∑
i∈I

AiρA
†
i ⊗ ω. (5.11)

So, when there are no eavesdroppers present, the control state ω stays in its original state and this situation
is ultimately no different from that when the causal order is definite. Let us introduce an eavesdropper to
see what changes.

5.3.2 Introducing an eavesdropper

Notice that, unlike in BB84, there are two places an eavesdropper can reside (see Fig. 5.4). Having said
this, to gain some intuition as to how eavesdroppers change things, let us first consider introducing just a
single eavesdropper, Eve, between Alice and Bob as shown in Fig. 5.3. For simplicity5, denote the channel
corresponding to Eve’s measurement by E , defined by the Kraus operators {Ei}. As before, allowing a state
ρ to be acted on by Alice, Eve and Bob in an indefinite causal order controlled by ω, the channel ρ passes
through is given by

Sω(A, E ,A)(ρ) =
∑
i,j,k

Sijkρ⊗ ωS†
ijk, (5.12)

where

Sijk :=AiEjAk ⊗ |0⟩⟨0| +AkEjAi ⊗ |1⟩⟨1|

=
1

2
{Ai, Ej , Ak} ⊗ 1 +

1

2
[Ak, Ej , Ai] ⊗ σz (5.13)

5More generally, Eve has access to a quantum instrument. This is discussed in more detail in Appendix 5.A
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Figure 5.3: Indefinite causal key distribution with a single eavesdropper, Eve, between Alice and Bob.

such that

{Ai, Ej , Ak} := AiEjAk +AkEjAi, (5.14a)

[Ai, Ej , Ak] := AiEjAk −AkEjAi. (5.14b)

Note that Ej is always in the middle since Eve is in between Alice and Bob. After some algebra, and
following the basis comparison,

Sω(A, E ,A)(ρ) → 1

2

∑
j

∑
S∈B

∑
i,k∈S

(
{Ai, Ej , Ak}ρ{Ai, Ej , Ak}† ⊗ ω + [Ai, Ej , Ak]ρ[Ai, Ej , Ak]† ⊗ σzωσz

)
.

(5.15)
From this, we can see that, as before, the ω terms survive. But more interestingly, notice that the σzωσz

terms can survive too. For example, suppose Alice and Bob measure in the z-basis and Eve measures in the
x-basis, then it is possible for Alice to obtain an outcome of 0, and Bob an outcome of 1. This combination
allows for [A0, E±, A1] ̸= 0.

We may therefore hypothesise that if Eve attempts to extract information about the state when in
between Alice and Bob, she induces a nonzero σzωσz term. So, if we were to let ω = |+⟩⟨+| (and therefore
σzωσz = |−⟩⟨−|), if someone were to perform the measurement {|+⟩⟨+|, |−⟩⟨−|} on the control state ω, and
obtain an outcome of −, they could conclude that there was an eavesdropper in between Alice and Bob.
To reiterate, since Alice can keep and measure the control qubit, this would mean that no subset of the
distributed key need be publicly compared and then discarded to determine the presence of Eve. Let us now
gain some understanding about how robust this hypothesis is.

5.4 Security against individual attacks

Let’s see what happens when two eavesdroppers, Eve and Yves, are introduced. There being more than
one eavesdropper allows for cooperative strategies. In this work, we consider individual attacks, where
eavesdroppers work together, but on each distributed state separately [131]. The most general of these
individual attacks allow for the eavesdroppers to utilise both quantum and classical correlations between
their operations. However, being more involved mathematically, we leave this scenario, which we will often
call the “correlated case”, for Appendix 5.A. Our protocol is summarised in Protocol 5.1.

In this section, we consider a subclass of these individual eavesdropping strategies where Eve and Yves’s
ancilliary systems (that they use to aid in their attack) are separable, and we prove the security of the
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1. Alice prepares the state ρ = 1/2 to be distributed along with a control qubit state ω = |+⟩⟨+|
that remains in her lab.

2. The state ρ is distributed to Alice and Bob’s measuring devices in an indefinite causal order,
controlled on ω.

3. Alice and Bob measure ρ in either the x or z-basis, chosen randomly with probability 1/2. Mea-
surement outcomes 0,+ correspond to a key bit 0, and outcomes 1,− correspond to a key bit of
1.

4. Alice and Bob compare the bases they chose and only keep the cases in which they agree.

5. For each state ρ distributed, Alice measures the corresponding control qubit state ω in the x-basis.
If an outcome + is obtained, carry on. If an outcome − is found, Alice concludes eavesdroppers
are present after which, she either aborts the key distribution, or she and Bob go ahead with
privacy amplification and error correction (not discussed in this work).

Protocol 5.1: Summary of the proposed indefinite causal key distribution protocol.

protocol against them. Investigation into the full security proof of this protocol is beyond the scope of this
work. This being said, the attacks considered in this section provide us with some useful understanding
about the security of this protocol. The methods used follow closely those used in [129] where the authors
consider a two-way deterministic quantum communications protocol in which quantum states are sent back
and forth between Alice and Bob. Although they are working in a definite causal order, in this protocol, the
eavesdropper has access to the state at two different points, which is why the same techniques used can be
applied to our protocol.

5.4.1 Problem setup

In the scenario we consider, we assume that Alice and Bob would like their shared key to contain, on average,
equal numbers of 0s and 1s. Therefore, we can make a natural choice for the initial state of the distributed
qubit: ρ = (1/2)

∑
ψ |ψ⟩⟨ψ| = 1/2, where {|ψ⟩} is some complete basis of the distributed qubit’s Hilbert

space. Now, if Alice is in the lab in which the state ρ is created and where ω resides, there are two places
eavesdroppers, who we call Eve and Yves, can be located. This setup is shown in Fig. 5.4. Note that we are
requiring Eve and Yves to adhere to the causal structure chosen by Alice and Bob. This is an assumption
we make throughout. In addition to the state ρ being sent between Alice and Bob, Eve and Yves also have
access to independent ancilliary quantum systems E, Y (respectively) initially in the states ε := |ε⟩⟨ε| and

η := |η⟩⟨η| respectively. Eve and Yves perform the respective unitaries U
(SE)
E =: UE , U

(SY )
Y =: UY on

the joint space of the distributed state ρ, living in the space labelled by S, and their respective ancillae
ε, η living in the spaces labelled by E, Y respectfully. Following this, the eavesdroppers perform some joint
measurement on the ancillae to try and gain some information about Alice and Bob’s shared key. Note that
Eve and Yves do, therefore, cooperate in this scenario, although not in the most general way possible.

For k ∈ {0, 1,+,−}, the eavesdroppers’ unitaries are performed most generally as follows [129]:

U
(SE)
E |k⟩(S)|ε⟩(E) = |k⟩|εkk⟩ + |k̄⟩|εkk̄⟩, (5.16a)

U
(SY )
Y |k⟩(S)|η⟩(Y ) = |k⟩|ηkk⟩ + |k̄⟩|ηkk̄⟩, (5.16b)

where |εmn⟩ and |ηmn⟩ are, in general, unnormalised and non-orthogonal, and k̄ is taken to mean “not k”.
Note that we, from now on, will drop the superscripts unless it is unclear which space is which. Note also,
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Figure 5.4: Indefinite causal quantum key distribution with two eavesdroppers Eve and Yves.

that6

|ε±±⟩ =
1

2
(|ε00⟩ ± |ε01⟩ ± |ε10⟩ + |ε11⟩), (5.17a)

|ε±∓⟩ =
1

2
(|ε00⟩ ∓ |ε01⟩ ± |ε10⟩ − |ε11⟩), (5.17b)

and

|η±±⟩ =
1

2
(|η00⟩ ± |η01⟩ ± |η10⟩ + |η11⟩), (5.18a)

|η±∓⟩ =
1

2
(|η00⟩ ∓ |η01⟩ ± |η10⟩ − |η11⟩). (5.18b)

When k ∈ {0, 1}, we define ⟨εkk|εkk⟩ = F , ⟨εkk̄|εkk̄⟩ = D and ⟨ηkk|ηkk⟩ = F ′, ⟨ηkk̄|ηkk̄⟩ = D′, which can
all be taken to be positive real numbers. These values relate to the probability that Eve and Yves leave the
distributed state unaffected or not. In order to ensure unitarity,

F +D = 1 = F ′ +D′, (5.19a)

⟨ε00|ε10⟩ + ⟨ε01|ε11⟩ = 0 = ⟨η00|η10⟩ + ⟨η01|η11⟩. (5.19b)

This allows us, without loss of generality [129], to set ⟨εkk|εkk̄⟩ = ⟨εkk|εk̄k⟩ = 0 = ⟨ηkk|ηkk̄⟩ = ⟨ηkk|ηk̄k⟩,∀k ∈
{0, 1}. Also, |εkl⟩, |εk̄l̄⟩ are generally non-orthogonal (likewise for |ηkl⟩). So, we take

⟨ε00|ε11⟩ = F cosx, (5.20a)

⟨ε01|ε10⟩ = D cos y, (5.20b)

⟨η00|η11⟩ = F ′ cosx′, (5.20c)

⟨η01|η10⟩ = D′ cos y′, (5.20d)

where x, y, x′, y′ ∈ [0, π/2]. We can think of x, y (x′, y′) as dictating the distinguishability between Eve’s
(Yves’s) possible ancilla states.

6To see this explicitly, we perform UE |±⟩|ε⟩ = UE(|0⟩|ε⟩± |1⟩|ε⟩)/
√
2 using Eq. (5.16a). This results in (|0⟩|ε00⟩+ |1⟩|ε01⟩±

|1⟩|ε11⟩ ± |0⟩|ε10⟩)/
√
2 =

[
|0⟩(|ε00⟩ ± |ε10⟩) + |1⟩(|ε01⟩ ± |ε11⟩)

]
/
√
2, which can be rewritten (ignoring the global phase ±1) as[

|±⟩(|ε00⟩ ± |ε01⟩ ± |ε10⟩+ |ε11⟩) + |∓⟩(|ε00⟩ ∓ |ε01⟩ ± |ε10⟩+ |ε11⟩)
]
/2. The form of |ε±±⟩ and |ε±∓⟩ follow from this.
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Similarly to in the previous section, following the basis comparison step, the state of the entire system is
updated as follows:

ρ⊗ ε⊗ η ⊗ ω → ρkeep =
1

2

∑
S∈B

∑
j,k∈S

(
{UY , Aj , UE , Ak}ρ⊗ ε⊗ η{UY , Aj , UE , Ak}† ⊗ ω

+ [UY , Aj , UE , Ak]ρ⊗ ε⊗ η[UY , Aj , UE , Ak]† ⊗ σzωσz

+ {UY , Aj , UE , Ak}ρ⊗ ε⊗ η[UY , Aj , UE , Ak]† ⊗ ωσz

+ [UY , Aj , UE , Ak]ρ⊗ ε⊗ η{UY , Aj , UE , Ak}† ⊗ σzω
)
, (5.21)

where

{UY , Aj , UE , Ak} := UYAjUEAk +AkUEAjUY , (5.22a)

[UY , Aj , UE , Ak] := UYAjUEAk −AkUEAjUY . (5.22b)

Denoting Eve and Yves’s joint strategy using Z, we are now equipped to calculate the following:

1. Minimum probability of detection: d.

2. Eavesdroppers and Alice’s [Bob’s] mutual information: H(Z : A) [H(Z : B)].

3. Alice and Bob’s mutual information: H(A : B).

5.4.2 Minimum probability of detection

Let us first calculate the eavesdropper detection probability. Recall that, in this protocol, this corresponds
to measuring the control qubit to be in the state |−⟩⟨−| given that it was initially prepared in the state
|+⟩⟨+|. Therefore, using ρ = 1/2 = (1/2)

∑
ψ |ψ⟩⟨ψ|, the probability of detection is given by

Pdetect =
1

4

∑
ψ

∑
S∈B

∑
j,k∈S

⟨ψεη|[UY , Aj , UE , Ak]†[UY , Aj , UE , Ak]|ψεη⟩, (5.23)

where |ψεη⟩ := |ψ⟩(S) ⊗ |ε⟩(E) ⊗ |η⟩(Y ). Now, noting that,

UYAjUEAk|ψεη⟩ =
1

2
δψk
(
δjk|εkk⟩ + δjk̄|εkk̄⟩

)(
|j⟩|ηjj⟩ + |j̄⟩|ηjj̄⟩

)
, (5.24a)

AkUEAjUY |ψεη⟩ =
1

2
|k⟩
(
δkj |εjj⟩ + δkj̄ |εjj̄⟩

)(
δjψ|ηψψ⟩ + δjψ̄|ηψψ̄⟩

)
, (5.24b)

where, in the first equation, the order of the qubits was changed for convenience, we can calculate Pdetect to
be

Pdetect =
1

2
− 1

8

[
FF ′(3 + cosx cosx′)

+DD′(1 + 3 cos y cos y′)

+ FD′(cosx+ cos y′)

+DF ′(cos y + cosx′)
]
.

(5.25)

Recalling that D = 1 − F and D′ = 1 − F ′, and minimising Pdetect over F, F ′, we find there are two7

possibilities when minimising the probability of detection d := Pmin
detect. Note that we can take this approach

since D,F,D′, F ′ can be chosen independently of x, x′, y, y′.

Option 1: F = 0 = F ′. Here,

d =
3

8
(1 − cos y cos y′). (5.26)

7There are actually 4 possibilities, but the two options not written explicitly: F = 0 = D′ and F = 1 = D′, result in larger
detection probabilities than the F = 1 = F ′ case.
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Option 2: F = 1 = F ′. Here,

d =
1

8
(1 − cosx cosx′). (5.27)

Since there are values of x, y, x′, y′ such that each option is smaller, we must consider both options when
calculating the various mutual information values.

5.4.3 Eavesdroppers - Alice/Bob mutual information

It turns out that H(Z : A) = H(Z : B). So, in what follows, we only look at H(Z : A) explicitly. With the
setup we’re considering, after Eve and Yves have both carried out their unitaries, they perform some joint
measurement on both of their ancillae that best distinguishes between a 0 and a 1 in Alice’s key. In order to do
this, they should utilise all public information, which means waiting for Alice to reveal her basis choice before
choosing which joint measurement to perform on their ancillae. Therefore, in order to find the maximum
mutual information (subject to a minimal probability of detection), two optimal measurements must be
constructed: one to distinguish {ΨAZ

0 ,ΨAZ
1 }, and one to distinguish {ΨAZ

+ ,ΨAZ
− } which are the possible

states of the eavesdroppers’ ancillae when the z and x-bases were chosen by Alice and Bob, respectively.
For both cases, the states to be distinguished are found using

ΨAZ
l =

1

N TrS,C
(
ρkeep

∣∣
k=l

)
, (5.28)

where N is a normalisation constant, and S,C indicate that the trace is being carried out over the distributed
and control qubit respectively. Further, ρkeep|k=l denotes the terms in ρkeep [Eq. (5.21)] in which Alice’s
measurement outcome is l. Let’s consider the two options we found in the previous subsection.

Option 1: F = 0 = F ′.

In this case, when l ∈ {0, 1},

ΨAZ
l =

1

2
(ε01 ⊗ η10 + ε10 ⊗ η01), (5.29)

and when l ∈ {+,−},

ΨAZ
l =

1

4
(ε10 + ε01) ⊗ (η10 + η01). (5.30)

Note that ΨAZ
0 = ΨAZ

1 and ΨAZ
+ = ΨAZ

− which implies Eve and Yves’s best strategy is to just guess.
Therefore, the mutual information between the eavesdroppers and Alice is H(Z : A) = 0 when F = 0 = F ′.

Option 2: F = 1 = F ′.

In this case, when l ∈ {0, 1},
ΨAZ
l = εll ⊗ ηll, (5.31)

and, when l ∈ {+,−},

ΨAZ
l =

1

4

(
ε00 + ε11

)
⊗
(
η00 + η11

)
. (5.32)

This means that, although ΨAZ
+ = ΨAZ

− as in the previous case (and therefore no information can be gained
here), unlike in Option 1, ΨAZ

0 ̸= ΨAZ
1 in general, and information about Alice’s key can thus be accessed.

Now, like mentioned earlier, in order to maximise the mutual information between Alice and the eaves-
droppers, we must find the optimal measurement that distinguishes {ΨAZ

0 ,ΨAZ
1 }. As we saw in Sec. 2.2.6,

we can do this by noticing that these states can be written as ΨAZ
l = |ΨAZ

l ⟩⟨ΨAZ
l |, such that

|ΨAZ
l ⟩ =

1√
2

(√
1 + |⟨ΨAZ

0 |ΨAZ
1 ⟩||a⟩ + (−1)l

√
1 − |⟨ΨAZ

0 |ΨAZ
1 ⟩||b⟩

)
, (5.33)

where |a⟩, |b⟩ are some orthonormal vectors in Eve and Yves’s shared ancilla space. In our case, |⟨ΨAZ
0 |ΨAZ

1 ⟩|
= cosx cosx′. The optimal measurement to distinguish these states is known to be made up of the following
operators [37]:

πl =
1

2
(|a⟩ + (−1)l|b⟩)(⟨a| + (−1)l⟨b|). (5.34)
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To calculate the mutual information in the z-basis case, we use

H0/1(Z : A) = −
∑

i∈{0,1}

P (zi) logP (zi)

−
∑

j∈{0,1}

P (aj) logP (aj)

+
∑

i,j∈{0,1}

P (zi, aj) logP (zi, aj), (5.35)

where the subscript 0/1 is used to highlight that this is the mutual information only in the z-basis case.
Here, the outcome zi corresponds to Eve and Yves performing their joint optimal measurement {πk}, with
outcome k = i, and aj corresponds to Alice measuring j, or equivalently (and perhaps more usefully for the
calculation), aj can be thought of as the preparation of the state ΨAZ

j . After some algebra, it turns out that

H0/1(Z : A) = 1 − h
[(

1 +
√

1 − cos2 x cos2 x′
)
/2
]
, (5.36)

where h(q) = −q log(q) − (1 − q) log(1 − q) is the binary entropy function [17]. Using Eq. (5.27), this can be
rewritten in terms of the minimum detection probability as

H0/1(Z : A) = 1 − h
[(

1 + 4
√
d[1 − 4d]

)
/2
]
, (5.37)

such that 0 ≤ d ≤ 1/8.

5.4.4 Alice - Bob mutual information

The calculation of the mutual information between Alice and Bob, H(A : B), is less involved than that of
H(Z : A) since Alice and Bob’s measurements are fixed. The key thing to note is that the probabilities
required for the calculations are found using

P (al, bm) = Tr
(
ρkeep

∣∣
k=l,j=m

)
, (5.38)

where, similarly to before, ρkeep
∣∣
k=l,j=m

is made up from the k = l, j = m terms in Eq. (5.21).

Carrying out all the algebra, we find that, when Alice and Bob measure in the z-basis, the mutual
information between them is

H0/1(A : B) = 1, (5.39)

which makes sense since the unitaries being performed by Eve and Yves cause no disturbance in the dis-
tributed qubit when Alice and Bob are measuring it in the z-basis. When Alice and Bob measure in the
x-basis however,

H±(A : B) = 1 − h
[
(1 + cosx)/2

]
. (5.40)

Intuitively, this can be understood when we realise that any errors between Alice and Bob’s keys are induced
purely by Eve’s intervention and not Yves’s (this is discussed slightly more in the following subsection). We
may therefore expect to see a cosx dependence but not a cosx′ one.

This second point does, however, mean we cannot directly determine H±(A : B) [and therefore H(A : B)]
using the probability of detection d. However, we can use d to put some bounds on H±(A : B). To do this,
we look at how Eve and Yves maximise H0/1(Z : A) [and therefore H(Z : A)] for any given value of d.
Plotting H0/1(Z : A) with respect to x, x′, it can be seen that this maximisation occurs along either the
x = 0 or x′ = 0 axis. This results in

H±(A : B)|x=0 = 1, (5.41a)

H±(A : B)|x′=0 = 1 − h(4d), (5.41b)
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Figure 5.5: When eavesdroppers Eve and Yves carry out individual (not fully correlated) attacks, the mutual
information, H(Z : A), they share with Alice (or Bob) compares to the mutual information between Alice
and Bob H(A : B) as plotted. In (a), this is shown for the case in which Alice and Bob measure in the
x-basis, and in (b), Alice and Bob measure in the z-basis.

where, as before, 0 ≤ d ≤ 1/8. Thus, if Eve and Yves are aiming to minimise the probability of being
detected,

H0/1(A : B) = 1, (5.42a)

H±(A : B) ∈ [1 − h(4d), 1]. (5.42b)

It is interesting to note that, since H(Z : A)|x=0 and H(Z : A)|x′=0 take the same range of values, the
eavesdroppers can choose whether or not they want to induce errors in Alice and Bob’s shared key whilst
extracting information about it8. This effectively corresponds to how much impact they allow Eve to have.

In Fig. 5.5, we plot these various different mutual information functions with respect to the minimum
detection probability d. Notice the difference between the x and z-basis cases in these plots. This is purely
an artifact of how the eavesdroppers’ measurements were set up in a basis dependent way. By an appropriate
redefinition of these measurements, we could flip these results and have the eavesdroppers learn something
about the x cases but not the z ones, or some combination of both. These plots make it clear that in
both cases of Alice and Bob’s basis choice, the mutual information between the eavesdroppers and Alice (or
Bob) is less than or equal to the mutual information shared by Alice and Bob. Therefore, the normal post
processing protocols can be undertaken to obtain a secure key between Alice and Bob, at least in the class
of attacks considered here [131].

5.4.5 Example

Let us consider a simple example to gain some intuition as to how this protocol differs from its definite causal
counterpart. Before we do so, let us write down the probability of error Perror between Alice and Bob’s keys
in the case of F, F ′ = 1. Using Perror = Tr

(
ρkeep

∣∣
j=k̄

)
, it can be shown that

Perror =
1

4
(1 − cosx). (5.43)

Note once again that the errors are caused purely by Eve and not Yves. Similarly to in the previous
subsection, we can use the maximisation of H(Z : A) to put bounds on Perror. Recall that to do this, we let
either x = 0 or x′ = 0, from which it follows that

Perror ∈ [0, 2d]. (5.44)

So, let’s consider the case in which Eve performs the measurement {|0⟩⟨0|, |1⟩⟨1|}. This corresponds to
x = π/2. Using Eq. (5.27) and Eq. (5.43), we can see that Perror = 1/4, but d = 1/8. This differs from the

8Note that here, we have ignored the subscripts in the mutual entropy notation since H(Z : A) = H0/1(Z : A).
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Figure 5.6: Two way QKD protocol in a definite causal order that realises private detection. The bases V,W
are independently and randomly chosen between the x and z-bases.

analogous case in BB84 where the error rate of 1/4 is used as the detection probability. This is because the
effects of the eavesdroppers are not solely contained in the terms used to calculate Pdetect (that is, the σzωσz
terms). Some of them lie in the ω, ωσz and σzω terms. It is possible that a different measurement on the
control qubit could result in better odds. However, we do not attempt to optimise this measurement here.

It is interesting to note that the location of the eavesdroppers dictates the errors induced between Alice
and Bob’s key. For example, if only Yves is present, there will be no errors found (despite being detected
using our methods). If, however, Eve is present, regardless of whether Yves is there or not, the probability
of error between Alice and Bob’s key is 1/4, similarly to what is observed in BB84. This phenomenon is
true beyond this example: if only Eve is present, every detection event implies an error between Alice and
Bob’s corresponding key bit, since [Ak, UE , Ak] = 0 ∀k. If, however, only Yves is present, there are never any
errors induced, since [UY , Ak, Ak̄] = 0 ∀k. This means that, if the location of the eavesdropper(s) is (are)
unknown, whether or not errors occur is unknown. These ideas were hinted at in the previous subsection
where we saw that the eavesdroppers had the ability to affect how much mutual information Alice and Bob
shared.

5.4.6 Correlated individual attacks and beyond

As noted before, the strategies considered until now have not allowed Eve and Yves’s operations to be
correlated prior to the measurement of their ancillae. It turns out that the presence of eavesdroppers,
performing individual attacks, can be privately detected regardless of the correlations shared between them.
More precisely, for eavesdroppers working in the indefinite causal structure we have been considering, it can
be shown that if the probability of detection9 is zero for any (individual) eavesdropping strategy, then the
eavesdroppers gain no useful information about the distributed key. This result is proved in Appendix 5.A.
To clarify: when undetected, Eve and Yves can learn something about the key, but nothing useful. In
Appendix 5.A, we show that they can learn something about which basis was chosen (which is already
publicly known) as well as whether errors have occurred between Alice and Bob’s keys. It follows from this
that, similarly to in the previous subsection, Eve and Yves can choose to induce errors in Alice and Bob’s
key without being detected. But the fact remains that the information the eavesdroppers have access to has
no use when it comes to learning about Alice and Bob’s key.

5.5 Private detection in a definite causal order

In this section, we consider whether this same phenomena of private detection could be achieved without the
help of indefinite causal order. Indeed, we provide here evidence that it is possible, albeit with the help of
an extra measurement on Alice’s part. We outline two possibilities.

9Again, taken to be the probability of measuring the control system to be in the state |−⟩⟨−|.
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5.5.1 Definite causal ordered protocol: option one

Suppose, as depicted in Fig. 5.6, Alice prepares a state ρ in a basis V that is either the x or z-basis (with
corresponding key bits as before), then sends ρ to Bob, who measures in the basis W which, again, is chosen
randomly between the x and z-bases. Following this, Bob returns the updated state back to Alice who
measures it in the same basis that she prepared the state in: V. As they did in the other sections of this
chapter, Alice and Bob then compare which bases they chose, and only use the cases in which they agree
for their shared key. Now, by counting how often she measures a different state from the one she prepared,
a scenario that we call an error, Alice can monitor for eavesdroppers. This is possible since she knows two
things when there are no eavesdroppers:

1. When V = W, the probability of error P same
error is zero.10

2. When V ̸= W, the probability of error P diff
error is 1/2.11

Let’s consider an example showing how an eavesdropper’s intervention affects at least one of these probabil-
ities.

Suppose an eavesdropper, Eve, attempts to keep P same
error at its expected value of zero. As depicted in

Fig. 5.7, she can do this by sending out a probe state σ to Bob, whilst returning Alice’s qubit state ρ back
to her, unaffected12. In this scheme, Eve can access as much information as she wants about Bob’s key
without affecting P same

error . However, this strategy would also result in P diff
error = 0 ̸= 1/2, thereby allowing Alice

to detect Eve. This is, of course, an extreme case: Eve could attempt to find out which measurement Bob
performed and induce errors using some operation E on ρ to increase P diff

error. For instance, Eve could prepare
and measure her probe state σ in the same basis, say {|±⟩⟨±|}. If Eve does this, and measures something
different to what she prepared when she receives it back from Bob, she can conclude with certainty that
Bob measured in the z-basis. When this happens, she could act on Alice’s state ρ with σz (i.e. taking E in
Fig. 5.7 to be the Pauli-z unitary channel), inducing an error if ρ ∈ {|±⟩⟨±|}, whilst leaving ρ unaltered if
ρ ∈ {|0/1⟩⟨0/1|}. Although this leaves P same

error at its expected value, the probability P diff
error is only 1/4 in this

case, and not the required 1/2. Of course, more general correlations between Eve’s probe state σ, and how
she acts on Alice’s state ρ are possible. That being said, we found no strategy that allowed for Eve to extract
information whilst leaving both P same

error and P diff
error unaltered. We leave the full analysis of this scenario for

future work.
So, are there any differences between the definite and indefinite causal cases? Perhaps a slight difference

lies in how often we can use a key bit, whilst simultaneously monitoring for eavesdroppers. Until now in the
ICO case, we have not been utilising the fact that the target qubit (initially in the state ρ) ends up back in
Alice’s lab and can therefore be remeasured. To describe this situation, as shown in Fig. 5.8, let Alice’s lab
be made up of three quantum cryptographers: Alice 1, Alice 2 and Alice 3. Now, suppose Alice 1 prepares
a state ρ in one basis (either x or z as always) V = {|i⟩}, Alice 2 performs an intermediate measurement
(when in an indefinite causal order) in the corresponding mutually unbiased basis V ′ := {H|i⟩ | |i⟩ ∈ V},
and Alice 3 measures the returned state in the original basis V. Once finished, the Alices compare bases
with Bob who measures independently and randomly in the basis W, which is, once again, either the x or z
basis. Focusing on how Alice 2 and Bob’s bases relate to one another, there are three possibilities to note:

1. Bob and Alice 2 agree on their bases: W = V ′. This happens with probability p1 = 1/2.

2. Bob and Alice 2 disagree on their bases: W ̸= V ′, and Alice 3’s outcome agrees with the state Alice 1
prepared. This happens with probability p2 = 1/4.

3. Bob and Alice 2 disagree on their bases: W ≠ V ′, and Alice 3’s outcome disagrees with the state Alice
1 prepared. This happens with probability p3 = 1/4.

The probabilities stated follow from Eq. (5.8).

10For example, suppose Alice prepares the state |−⟩⟨−| and Bob measures it in the basis {|±⟩⟨±|}. Since ⟨+|−⟩ = 0, Bob is
guaranteed to obtain an outcome of −, and therefore send the state |−⟩⟨−| back to Alice. So, when Alice goes to measure this
state in the basis she prepared it in: {|±⟩⟨±|}, she will always obtain a result of −. In other words, she will never register an
error.

11For example, suppose Alice prepares the state |0⟩⟨0| and Bob measures in the basis: {|±⟩⟨±|}. Then the state Alice receives
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Figure 5.7: Eavesdropping strategy allowing for Alice’s state to be returned to her unaffected whilst letting
Eve learn something about Bob’s key. If the probability P same

error is left unaltered at its expected value of zero,
we found no strategy that allowed the probability P diff

error to remain at its expected value of 1/2.

Suppose there are no eavesdroppers. In the first of these possibilities, when W = V ′, it can be shown,
again via Eq. (5.8), that Bob’s measurement result must agree with that of Alice 2, and the control qubit
is guaranteed to be in the state |+⟩⟨+|. Considering the second possibility, when W ̸= V ′, since Alice 3’s
measurement outcome agrees with the state Alice 1 prepared, it follows that Bob must agree with Alice 1
and 3. To understand this, suppose, for example, Alice 1 prepares the state ρ = |k⟩⟨k| and Alice 3 measures
k for some |k⟩ ∈ V. The fact that W ≠ V ′ means Bob also measured in V. When we restrict Eq. (5.8) to this
scenario, and apply Alice 3’s measurement operator |k⟩⟨k|, we find that the only option is for Bob to have
also obtained an outcome of k. Similar analysis applied to the third possibility above tells us that we cannot
deduce anything about Bob’s measurement outcome when Alice 1 and Alice 3 disagree. Having said this,
in both the second and third cases, eavesdroppers can still be monitored for by taking note of how often we
measure the control qubit to be + or −: when there are no eavesdroppers, we’d expect the probability of
measuring a + to be 3/4, whereas the probability of a − should be 1/4. Any deviation from these indicates
the presence of an eavesdropper (again, asssuming noiseless and lossless transmission). The probabilities
quoted for the ± outcomes can, once again, be found using Eq. (5.8). So overall, whilst simultaneously
watching for eavesdroppers, p1 + p2 = 3/4 of the qubits that Alice’s lab sends can be used in the key, in the
ideal case.

Comparing this with the aforementioned definite causal case, Alice can only monitor for eavesdroppers
when she prepares and measures in the same basis. Therefore, whenever her and Bob’s basis choice does
not coincide, they must discard that case. So overall, whilst simultaneously watching for eavesdroppers, 1/2
of the qubits that Alice sends can be used, in the ideal case, which is less than the indefinite causal case.
This argument is perhaps not surprising: in comparison to the definite causal case, the indefinite one uses
an extra qubit and an extra measurement, along with the coherence required for causal orders to be in the
controlled superposition. An alternate avenue to explore in terms of differences arising by using ICO, is to
consider, in more depth, the security of such a protocol. Intuitively, one might expect there to be some
difference due to the coherence that eavesdroppers must preserve in order to go undetected. This, however,
is beyond the scope of this thesis.

5.5.2 Definite causal ordered protocol: option two

Another direction to consider what happens when we use the circuit depicted in Fig. 5.9 (once again relaxing
the earlier requirement that Alice acts once on the system), where Alice and Bob’s operations (A,B respec-
tively) are the same choice of x and z measurements as always. In this scenario, the target qubit T would
be sent to Bob and then back to Alice, while the control qubit C stays in Alice’s lab. The Kraus operators
describing the evolution through this circuit are given by

Sjj′k = BkAj ⊗ |0⟩⟨0| +Aj′Bk ⊗ |1⟩⟨1|, (5.45)

from Bob is 1/2, meaning that when Alice measures this in her original basis {|0/1⟩⟨0/1|}, the probability she measures the
state to be different to the one she prepared is ⟨1|1|1⟩/2 = 1/2.

12In Fig. 5.7 this would correspond to setting the operation E equal to the identity I.
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Figure 5.8: Adapted indefinite causal key distribution protocol that takes into account Alice’s ability to
remeasure ρ when it is returned to her lab. To simplify discussions, we split Alice’s lab into three parts, run
by three people: Alice 1, Alice 2 and Alice 3. The bases V,V ′,W can each be either the x or z-basis, such
that V,W are randomly and independently chosen, but V,V ′ are mutually unbiased.
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Figure 5.9: Possible implementation of ICKD in a definite causal order. Here, T labels the target qubit, sent
to Bob and then back to Alice, and C the control, that lives in Alice’s lab throughout.
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where {Aj} ({Bk}) are the Kraus operators of Alice’s (Bob’s) measurement operation A, (B). Since we only
keep the cases in which Alice and Bob work in the same basis, the only terms that ultimately survive are
those in which j = k = j′. Therefore, when there are no eavesdroppers, this situation is just as we found in
the ICO case in that the control qubit C (if initially prepared in the state |+⟩) would never be measured to
be |−⟩ at the end of the protocol.

Without going into full detail here, there is a difference (with respect to the ICO case) when an eaves-
dropper is introduced. For example, consider the situation, depicted in Fig. 5.10, of a single eavesdropper
being introduced. The Kraus operators describing this situation are given by

Sii′jk = AiEjBk ⊗ |0⟩⟨0| + EjBkAi′ ⊗ |1⟩⟨1|, (5.46)

where Eve’s operation E is described by the Kraus operators {Ej}. This cannot be written in a similar way
to Eq. (5.13):

Sii′jk =
1

2
(AiEjBk + EjBkAi′) ⊗ 1 +

1

2
(AiEjBk − EjBkAi′) ⊗ σz

̸= 1

2
(AiEjBk +BkEjAi′) ⊗ 1 +

1

2
(AiEjBk −BkEjAi′) ⊗ σz, (5.47)

perhaps indicating the possibility of different eavesdropping scenarios and security analyses. We leave this
for future work.

5.6 Conclusion and discussion

In this chapter we explored the idea of performing the QKD protocol BB84 in an indefinite causal regime.
We defined a protocol that achieves this by performing projective measurements in an indefinite causal order.
In doing so, we found that, with the use of indefinite causal order, it is possible to detect eavesdroppers
during a QKD task without publicly comparing any subset of a shared private key between the two parties
involved, Alice and Bob. We found that this could be achieved using a second system that acts as the control
in inducing the indefinite causal ordering. In contrast to one-way QKD protocols, but similarly to two-way
protocols, there are two locations eavesdroppers can reside, allowing for cooperative attacks. These have
both been considered and the security against a class of individual attacks by the eavesdroppers was proved.
Further, it was shown (in Appendix 5.A) that, when working in the indefinite causal structure chosen by
the sharing parties, correlated eavesdroppers cannot extract any useful information about the key without
inducing a non-zero detection probability, at least when they act on each distributed state individually.
Having said this, and contrary to the past literature we are aware of, we tow possible ways of privately
detecting eavesdroppers using a two-way protocol in a definite causal order. To do this, an extra instance
of Alice’s operation was required, a property consistent with other discussions of indefinite versus definite
causal orderings [11]. We noted a possible difference between the definite and indefinite cases which may
merit further study, but did not, in this work, find a benefit to applying ICO to QKD, at least in they way
considered here.

Finally, we note that the ICO protocol would be challenging to realise experimentally due to the re-
quirement to preserve coherence between the two causal orderings over the distance of communication. This
could however have benefits in that eavesdroppers have to be very careful not to deduce the causal order of
how the key bit is distributed in order to maintain the coherence of causal orderings. We conclude with a
brief discussion of the practical limitations on this protocol. One difficulty lies in that ρ must go through
(projective) measurement apparatuses and carry on around the loop while simultaneously doing the same

T A E B A

C

Figure 5.10: Possible implementation of ICKD in a definite causal order with a single eavesdropper.
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Figure 5.11: Indefinite causal quantum key distribution with fully correlated eavesdroppers Eve and Yves.

in the opposite direction along the same loop. However, the results of this protocol could be simulated
using linearly polarised light, a Sagnac interferometer and some polarising filters. The Sagnac interferometer
creates the indefinite causal order13 and the polarising filters can be orientated in various different ways to
correspond to each of Alice and Bob’s measurement outcomes. More details are included in Appendix 5.B.

When it comes to practicality, consider using a Sagnac interferometer or something similar to create an
indefinite causal ordering of operations. In order for the ICO to be legitimate, the coherence length of the
light used must be considerably larger than the path length of the interferometer [13], perhaps indicating
a limit to how practical such a protocol would be. Another limitation becomes apparent when we notice
that two qubits are required to distribute one key bit securely, compared to BB84’s one qubit. Perhaps this
second, control state could find a secondary use beyond determining the presence of eavesdroppers, but we
leave this consideration for future work. Finally, we note that the effects of noise and loss on this protocol
have not been considered here. Indeed, being similar in nature to two-way protocols, they are likely to have
a substantial impact (in comparison to one-way protocols). Having said this, there is evidence that noise
behaves counter-intuitively in the indefinite causal regime, with noise being reduced in certain scenarios
[122]. Analysing the affects of noise and loss is vital for understanding the practicality of this protocol, but
is beyond the scope of this work.

Appendix 5.A Fully correlated eavesdroppers

Let us consider the situation in which our eavesdroppers Eve and Yves can work together with the help of
both classical and quantum correlations to perform individual attacks. In order to do this, it is convenient
to use the process matrix formalism [134]. To utilise this technique, we reinterpret the Hilbert space HX

(where X ∈ {A,B,E, Y }) of the system passing through the labs of Alice, Bob, Eve and Yves as two
spaces HXI ,HXO which correspond to the Hilbert spaces of the system incoming to and outgoing from
the lab X respectively. We can then employ the Choi-Jamio lkowski (CJ) isomorphism which details a
correspondence between completely positive (CP) maps X : L(HXI ) → L(HXO ) and positive semi-definite
operators MX ∈ L(HXI )⊗L(HXO ), where L(HX) denotes the space of linear operators on HX . Explicitly,

MX = (I ⊗ X )(|1⟩⟩XIX
′
I ⟨⟨1|XIX

′
I ) (5.48)

where |1⟩⟩AB =
∑
j |jj⟩AB with j ∈ {0, 1} for our purposes, and the primed superscript X ′

I indicates that

the space HX′
I is a copy of HXI . The channel X can be recovered using

X (ρ) = TrXI

[
(ρT ⊗ 1)MX

]
(5.49)

13Provided the coherence length of the light used is large enough.
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for some state ρ, where the superscript T denotes the transpose with respect to the {|0⟩, |1⟩} basis. Since we
require each lab to obey quantum mechanics locally, to keep things as general as possible, one might expect
that the CP maps we consider make up quantum instruments.

As discussed in Sec. 2.2.5, a quantum instrument is the most general description of a quantum measure-
ment. Following [12], they are a sets of CP trace-non-increasing maps {MX

i } such that each i corresponds to

some measurement outcome. Writing MX
i in the Kraus representation, with Kraus operators {E(i)

j }j , if we

were to measure some state σ and obtain the outcome i, the state would update to MX
i (σ) =

∑
j E

(i)
j σE

(i)†
j ,

such that
∑
j E

(i)†
j E

(i)
j ≤ 1 and

∑
i,j E

(i)†
j E

(i)
j = 1. In what follows, however, it turns out that we only

require quantum instruments such that each measurement outcome corresponds to a channel described by a
single Kraus operator. In other words, in the above notation, for each i, there is a single j.

For our situation, (depicted in Fig. 5.11) we have the labs of Alice, Bob, Eve and Yves. Further to this,
and following [134, 136], we think of there being another lab C that takes in the target and control states
at the end of the process. That is, we think of this space as being composed from a target component and
control component respectively: HCt ⊗HCc . Analogously to [134, 136], we use the process matrix to encode
the causal structure of the setup shown in Fig. 5.11. If we input a pure state ρ = |ψ⟩⟨ψ| with control state
ω = |+⟩⟨+|, the process matrix we use is W = |w⟩⟨w| where

|w⟩ =
1√
2

(
|ψ⟩YI |1⟩⟩YOBI |1⟩⟩BOEI |1⟩⟩EOAI |1⟩⟩AOCt |0⟩Cc + |ψ⟩AI |1⟩⟩AOEI |1⟩⟩EOBI |1⟩⟩BOYI |1⟩⟩YOCt |1⟩Cc

)
.

(5.50)
Intuitively, the CJ isomorphism says that one can think of the temporal evolution of a state through a channel
from L(HXI ) to L(HXO ) as a spatial teleportation of the state between the same two spaces. Therefore, we
can intuitively think of the process matrix as providing the route by which |ψ⟩ is teleported to HCt .

Let us now write down the positive semidefinite operators that describe each lab’s channel. For Alice
and Bob, being independent, these are given by

MX = (I ⊗ X )(|1⟩⟩XIX
′
I ⟨⟨1|XIX

′
I )

=
∑
i,j,k

(|i⟩⟨j|)XI ⊗ (Xk|i⟩⟨j|X†
k)XO , (5.51)

where X ∈ {A,B} and Xk ∈ {Ak, Bk} are the Kraus operators defining the channel X ∈ {A,B}. Remember
that Alice and Bob’s channels are the same, we just give them different labels here to make the setup clearer.
Contrarily to Alice and Bob, Eve and Yves don’t necessarily act independently from one another. As shown
in Fig. 5.11, we can think of Eve and Yves as belonging to some “superlab” (with CJ operator, channel
and Kraus operators denoted using MZ ,Z, Zk respectively) which acts on the space L(HYI ) ⊗ L(HYO ) ⊗
L(HEI ) ⊗ L(HEO ) using

MZ = (IYIEI ⊗ZY ′
IE

′
I )(|1⟩⟩YIY

′
I ⟨⟨1|YIY

′
I ⊗ |1⟩⟩EIE

′
I ⟨⟨1|EIE

′
I ) (5.52)

=
∑

i,j,k,l,m

(|ik⟩⟨jl|)YIEI ⊗ (Zm|ik⟩⟨jl|Z†
m)YOEO . (5.53)

It turns out that this quantum instrument is of a more general form that what is physically possible.
To see this, consider the most general physical scenario in which Yves and Eve share a, possibly entangled,
ancilliary quantum state τPY PE ∈ L(HPY ⊗HPE ) that encodes the correlations between their locally carried
out quantum instruments. Here PY (PE) labels the part of the ancilliary space contained in Yves’s (Eve’s) lab.
Then each eavesdropper is allowed to carry out a quantum instrument {MX

i } on the space L(HXI )⊗L(HPX ).
Now, by the Stinespring dilation theorem, any quantum instrument on some system S can be represented
as a joint unitary on S together with some ancilliary system P followed by a projective measurement on P.
Therefore, instead of considering {MX

i }, we can consider some unitary map UXIPX : L(HXI ) ⊗ L(HPX ) →
L(HXO ) ⊗ L(HPX ), where, since HPX is arbitrary, we have absorbed the extra degrees of freedom required
for the Stinespring dilation into it.

We can now see how this scenario relates to the “superlab” formulation by observing how some quantum
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state σ, passing through Eve and Yves’s labs, evolves:

Z̃(σYIEI ) = TrPY PE

[
UYIPY ◦ VEIPE (σYIEI ⊗ τPY PE )

]
= TrPY PE

[
UYIPY V EIPE (σYIEI ⊗ τPY PE )UYIPY

†
V EIPE

†]
.

(5.54)

Here, Yves’s effects are described by the map and corresponding (unitary) Kraus operator UYIPY , UYIPY

respectively and Eve’s by VEIPE , V EIPE . Also, note that we have written Z̃ to distinguish this physical
scenario from the “superlab” scenario described by Z. Now, using the operator-Schmidt decomposition [137,
138], we can write

UYIPY =
∑
i

αiG
YI
i ⊗HPY

i , (5.55a)

V EIPE =
∑
j

βiQ
EI
j ⊗RPE

j , (5.55b)

where αi, βj ≥ 0 and GYI
i , H

PY
i , QEI

j , RPE
j are operators whose specific properties aren’t required for this

argument. Finally, noting that, given a large enough ancilliary space, τPY PE = |τ⟩⟨τ |, Eq. (5.54) can be
rewritten as

Z̃(σYIEI ) =
∑
n

(∑
i,j

αiβj⟨n|
[
HPY
i ⊗RPE

j

]
|τ⟩
[
GYI
i ⊗QEI

j

])
σYIEI

×
(∑
i′,j′

αi′βj′⟨n|
[
HPY

i′ ⊗RPE

j′

]
|τ⟩
[
GYI

i′ ⊗QEI

j′

])†

=
∑
n

Znσ
YIEIZ†

n

(5.56)

where {|n⟩} ⊂ HPY ⊗ HPE is some complete basis used for the partial trace. It follows that any physical
situation described by correlated instruments, can described by this “superlab” formulation.

Let us now return to using the more general, less physical eavesdropping channel Z. At this point,
using similar logic to Eq. (5.49) and [134], we can find out what ρ⊗ ω becomes when put through the setup
illustrated in Fig. 5.11:

ρ⊗ ω → TrYIYOBIBOEIEOAIAO

[
(MZ ⊗MA ⊗MB ⊗ ICtCc)TW

]
basis−−−−−−−→

comparison
2
∑
S∈B

∑
i

∑
j,k∈S

⟨⟨Z∗
i |⟨⟨A∗

j |⟨⟨B∗
k |(|w⟩⟨w|)|Z∗

i ⟩⟩|A∗
j ⟩⟩|B∗

k⟩⟩, (5.57)

where,

|X∗
l ⟩⟩ = (1⊗X∗

l )|1⟩⟩XIXO =
∑

m∈{0,1}

|m⟩XIX∗
l |m⟩XO ,

|Z∗
i ⟩⟩ = (I⊗ Z∗

i )|1⟩⟩YIYO |1⟩⟩EIEO =
∑

m,n∈{0,1}

|mn⟩YIEIZ∗
i |mn⟩YOEO ,

(5.58)

for X ∈ {A,B}, X∗ indicates the complex conjugate of X, and the factor of 2 comes from requiring
normalisation. Using these, ω = |+⟩⟨+|, and Eq. (5.50) for W , we can see, explicitly, that

ρ⊗ ω →
∑
S∈B

∑
i

∑
j,k∈S

|fijk⟩⟨fijk|CtCc , (5.59)

where,

|fijk⟩CtCc =
∑

n∈{0,1}

[
(⟨n| ⊗ 1)(Bk ⊗Aj)Zi|ψ⟩|n⟩Ct |0⟩Cc + (1⊗ ⟨n|)Zi(Bk ⊗Aj)|n⟩Ct |ψ⟩|1⟩Cc

]
. (5.60)
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We can quickly check our sanity by considering the case when Eve and Yves are not present. That is,
when Zi ∝ 1⊗ 1, ∀i. Here, it turns out that

|fijk⟩CtCc ∝ 1√
2

(
AjBk|ψ⟩Ct |0⟩Cc +BkAj |ψ⟩Ct |1⟩Cc

)
(5.61)

which is what we’d expect from a quantum switch with two operations [13].
Recall that earlier, we found that when no eavesdroppers are present, measuring the state of the control

qubit Cc at the end in the {|±⟩} basis would always result in +. In other words, the probability of measuring
−, denoted P (−Cc) is zero. The question now is, if a correlated Eve and Yves are present, what form must
Zi have if P (−Cc) = 0? And further, with this form of Zi, can Eve and Yves extract information about the
key being shared between Alice and Bob?

Theorem 5.A.1. For any input state |ψ⟩, P (−Cc) = 0 if and only if

Zi =

3∑
µ=0

rµi σµ ⊗ σµ, (5.62)

where rµi ∈ C ∀µ, i and (σ0, σ1, σ2, σ3) = (1, σx, σy, σz).

Proof. First, assume that P (−Cc) = 0, this means that∑
S∈B

∑
i

∑
j,k∈S

∑
m∈{0,1}

∣∣(⟨m|Ct⟨−|Cc)|fijk⟩CtCc
∣∣2 = 0 (5.63)

which implies that (⟨m|Ct⟨−|Cc)|fijk⟩CtCc = 0 ∀j, k ∈ S, S ∈ B,m ∈ {0, 1} and ∀i. Using Eq. (5.60), it
follows that ∑

n∈{0,1}

(⟨n|⟨m|(Bk ⊗Aj)Zi|ψ⟩|n⟩ − ⟨m|⟨n|Zi(Bk ⊗Aj)|n⟩|ψ⟩) = 0, (5.64)

∀j, k ∈ S, S ∈ B,m ∈ {0, 1} and ∀i. Suppose we have an arbitrary, pure input state |ψ⟩ = α|0⟩+β|1⟩, where
α, β ∈ C subject to |α|2 + |β|2 = 1. If we show the theorem to be true for this case, it follows that it is true
for any mixed state ρ =

∑
ψ pψ|ψ⟩⟨ψ| by the linearity of the theory. In order to achieve this, we first of all

take |ψ⟩ ≠ |0⟩, |1⟩, that is, α, β ̸= 0.
Note that Eq. (5.64) must hold for both j, k ∈ {0, 1} and j, k ∈ {+,−}. Let us first see what we can find

out about Zi when we take j ∈ {0, 1}. In this case, Eq. (5.64) has the following form:

δjm (α⟨km|Zi|0k⟩ + β⟨km|Zi|1k⟩) = (αδj0 + βδj1)⟨mk|Zi|kj⟩. (5.65)

When j ̸= m, we can quickly see that ⟨00|Zi|01⟩, ⟨01|Zi|11⟩, ⟨10|Zi|00⟩, ⟨11|Zi|10⟩ = 0. Next, when m = j,
Zi is constrained by

α⟨km|Zi|0k⟩ + β⟨km|Zi|1k⟩ = (αδm0 + βδm1)⟨mk|Zi|km⟩. (5.66)

When (k,m) = (0, 0), (1, 1) we find that ⟨00|Zi|10⟩, ⟨11|Zi|01⟩ = 0 respectively. And, defining ei =
⟨10|Zi|01⟩, di = ⟨01|Zi|10⟩, when (k,m) = (0, 1), it turns out that ⟨01|Zi|00⟩ = β

α (ei − di), and when
(k,m) = (1, 0), ⟨10|Zi|11⟩ = α

β (ei − di). Here we can see why we have not allowed α = 0 or β = 0.
Taking stock so far, Zi has the form

Zi =


ai 0 0 bi

β
α (ei − di) ci di 0

0 ei fi
α
β (ei − di)

gi 0 0 hi

 , (5.67)

where all entries can be complex numbers. This can be simplified further by summing Eq. (5.64) over j and
k. This results in ∑

n∈{0,1}

⟨nm|Zi|ψn⟩ =
∑

n∈{0,1}

⟨mn|Zi|nψ⟩, (5.68)
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which implies ∑
n∈{0,1}

α (⟨nm|Zi|0n⟩ − ⟨mn|Zi|n0⟩) =
∑

n∈{0,1}

β (⟨mn|Zi|n1⟩ − ⟨nm|Zi|1n⟩) , (5.69)

which must be true for all m ∈ {0, 1}. Choosing m = 0 and using Eq. (5.67), we find that di = ei. So, we
therefore have

Zi =


ai 0 0 bi
0 ci di 0
0 di fi 0
gi 0 0 hi

 . (5.70)

To finish the derivation, we use the fact that Eq. (5.64) must also hold for j, k ∈ {+,−}. Using the
Hadamard matrix H = (σx + σz)/

√
2 = H† to relate the x and z-bases, we replace Bk ⊗ Aj in Eq. (5.64)

with (H ⊗H)(Bk ⊗Aj)(H ⊗H), and after some rearranging, we find that∑
n∈{0,1}

[δk0 + (−1)nδk1]⟨kj|(H ⊗H)Zi|ψn⟩

=
1

2

(α+ β)δj0 + (α− β)δj1
δj0 + (−1)mδj1

∑
n∈{0,1}

[δk0 + (−1)nδk1]⟨mn|Zi(H ⊗H)|kj⟩. (5.71)

Straight away, we can see that the RHS has a dependence on m but the LHS does not. So we can equate
the m = 0 and m = 1 cases of the RHS. Doing this, the four cases that come from k, j ∈ {0, 1} result in

ai = hi,

gi = bi + ci − fi.
(5.72)

Updating Zi and looking at Eq. (5.71) when (j, k,m) = (0, 0, 0) results in ci = fi and bi = gi. Therefore we
have

Zi =


ai 0 0 bi
0 ci di 0
0 di ci 0
bi 0 0 ai

 (5.73)

which can be rewritten as

Zi =
1

2

[
(ai + ci)1⊗ 1 + (di + bi)σx ⊗ σx + (di − bi)σy ⊗ σy + (ai − ci)σz ⊗ σz

]
. (5.74)

Further, since the mapping 
r0i = ai + ci,

r1i = di + bi,

r2i = di − bi,

r3i = ai − ci

(5.75)

is invertible and linear, ai, bi, ci, di ∈ C being independent from one another implies that rµi ∈ C are
independent from one another. Therefore,

Zi =

3∑
µ=0

rµi σµ ⊗ σµ. (5.76)

At this stage, one might notice that we didn’t consider all the combinations of j, k in Eq. (5.71). It turns out
that these give us no further constraints on Zi. To confirm this, we just need to prove the reverse implication
of the if and only if statement. If it turns out that we missed some constraints on Zi, P (−Cc) would be
nonzero in general when using Eq. (5.76) for Zi.
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Figure 5.12: The results derived in this work can be simulated using polarised light to share a key between
Alice and Bob, and a Sagnac interferometer to induce the indefinite causal order. Within the interferometer,
polarising filters are orientated to correspond to all the valid measurement outcomes Alice and Bob obtain
during the protocol.

So, suppose that Zi is given by Eq. (5.76). Substituting this into (⟨m|Ct⟨−|Cc)|fijk⟩CtCc and carrying
out the sum over n results in

(⟨m|Ct⟨−|Cc)|fijk⟩CtCc =

3∑
µ=0

rµi ⟨m|[Aj , σµBkσµ]|ψ⟩ = 0 (5.77)

for all j, k ∈ S, S ∈ B,m ∈ {0, 1} and ∀i since [Aj , σµBkσµ] = 0 ∀j, k, µ.
Finally, for the cases in which |ψ⟩ ∈ {|0⟩, |1⟩}, notice that what we have shown so far holds for |ψ⟩ ∈

{|+⟩, |−⟩}. Now, the process matrix defined using Eq. (5.50) can equivalently be be formulated in the x-basis,
and Alice and Bob’s measurements are invariant under this basis change. So, after converting everything to
the x-basis, what was the situation in which |ψ⟩ = |+ /−⟩ becomes that of when |ψ⟩ = |0/1⟩. Thus, since Zi
has the same form when it is changed from the z-basis to the x-basis, the result also holds for this case.

It is difficult to have any intuition about what Eve and Yves’s measurement would look like physically.
A little can be gained, however, by considering what happens when only one of the coefficients is nonzero for
each i. In this scenario, if one of Eve or Yves performs σi, then the other eavesdropper must do the same.

As discussed earlier, an ancilliary quantum state shared between Eve and Yves is likely necessary to
understand what is happening here physically with regards to the correlations between the eavesdroppers’
measurements. Either way, and to reiterate, since the approach taken here considers no physical constraints
on the correlations between Eve and Yves, operations with physical correlations should exist as a subset of
the ones we have derived here.

So, can Eve and Yves gain any information about Alice and Bob’s shared key using Eq. (5.76)? To answer
this, we calculate P (Zi, Aj , Bk) = ⟨fijk|fijk⟩ for j, k ∈ {0, 1} and j, k ∈ {+,−}. These are given by:

P (Zi, Aj , Bk) =

{
|⟨j|ψ⟩|2

2

(
|r0i + r3i |2δjk + |r1i + r2i |2δjk̄

)
, j, k ∈ {0, 1}

|⟨j|ψ⟩|2
2

(
|r0i + r1i |2δjk + |r2i + r3i |2δjk̄

)
, j, k ∈ {+,−},

(5.78)
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where k̄ denotes “not k”. At first glance, it appears that Eve and Yves have access to some information
about Alice and Bob’s key. However, note first that distinguishing between the two cases of j, k ∈ {0, 1} and
j, k ∈ {+,−} is of no use as Alice and Bob publicly discuss which basis they measured in after they have
done so. Secondly, although Eve and Yves could alter rµi however they like, the only information they could
gain is about whether each bit of Alice and Bob’s key agree or not. Therefore, they can still do no better
than a guess to determine the key. This intuitive argument is backed up by a calculation of the mutual
information between the eavesdroppers and either Alice or Bob. In both cases, this turns out to be zero.

Finally, it should be noted this protocol has a weakness if we allow the eavesdroppers to act outwith
the causal structure chose by Alice and Bob. Namely, Eve and Yves could perform an attack described
in Sec. 5.5. That is, if the eavesdroppers return Alice’s qubit unaffected, and in an indefinite causal order,
whilst, independently sending out a probe state to Bob, they can learn about Bob’s key bit, without inducing
any “− ” measurement results in the control mode. Having said this, it seems as though this eavesdropping
strategy can be detected by monitoring ω in the cases when Alice and Bob disagree on their basis choice.
The analysis of this idea is beyond the scope of this thesis.

Appendix 5.B Experimental simulation

Figure 5.12 shows a possible experimental setup to simulate some of the results derived. The idea is to
use photon polarisation (in the horizontal, vertical basis, with |H⟩ =: |0⟩, |V ⟩ =: |1⟩) as the target state ρ,
initially in the state |ψ⟩⟨ψ|, that is acted on by Alice, Bob, Eve and Yves. As is mentioned in the main text,
if we wanted Alice and Bob to have approximately equal numbers of 0s and 1s, we can take our input state
to be 1/2. This can be achieved by taking it to be |i⟩ half of the time and | − i⟩ the remainder of the time.
These correspond to left and right circularly polarised light respectively: |ψ⟩ = | ± i⟩ = (|H⟩ ± i|V ⟩)/

√
2.

The control state ω is taken to be the path degree of freedom induced by a beamsplitter. Using a 50/50
beamsplitter corresponds to taking ω = |+⟩⟨+| with |0⟩ corresponding to reflection and |1⟩ to transmission.

Recall that Alice and Bob perform projective measurements in either the x or z-basis. This is difficult to
do non-destructively and even more difficult to do while keeping the photon continuing around the Sagnac
interferometer in its original superposition of paths. Having said this, it is possible to simulate projective
measurements using polarisers. This means we can obtain the statistics that the measurements of Alice,
Bob, Eve and Yves would have produced.

Explicitly, when Alice and Bob measure in the z-basis, we use polarisers orientated at 0 and π/2 which
correspond to measurement outcomes of 0 and 1 respectively. Likewise, when measuring in the x-basis,
polarisers being orientated at ±π/4 correspond to measurement outcomes of ± respectively. The probability
of Alice and Bob measuring i, j can be taken to be the ratio of the total intensity Iexit(i, j) of light exiting
the interferometer to that of it entering Ienter:

P (Ai, Bj) =
Iexit(i, j)

Ienter
. (5.79)

Here, the dependence of Iexit(i, j) on i, j highlights that the interferometer is setup with Alice and Bob’s
polarisers being orientated correspondingly to the measurement outcomes i, j respectively. Since Alice and
Bob only keep measurement results when they have publicly confirmed that they measured in the same basis,
there are eight permutations when ignoring Eve and Yves. These are given in the Table 5.1.

The key feature of this protocol involves the measurement of the control state in the ± basis. Noticing
that, after going through the main part of the Sagnac interferometer, the path that the light exits the
50/50 beamsplitter along, is controlled by the path qubit in the x-basis. That is, the |+⟩ component is
transmitted through the beamsplitter, whereas the |−⟩ component is reflected. Therefore, placing a detector
in the reflected arm corresponds to the − outcome and, after a partially reflecting mirror, a detector in the
transmitted arm corresponds to the + outcome. The probability of measuring the eavesdroppers comes from
the probability of measuring the control qubit state to be −. Therefore, for each run of the experiment (each
permutation of polariser angles), the ratio of the intensity in the − arm to the total intensity exiting the
interferometer is what is required. As a sanity check, this should always be zero when Eve and Yves are
not present. As mentioned before, in order to exploit the features of indefinite causal order, the coherence
length of the light used should be significantly longer than the path length of the interferometer. A laser
can be used to achieve this.
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Table 5.1: Table detailing the eight polariser orientations that correspond to the possible measurement
outcomes that Alice and Bob can obtain when they measure in the same basis.

Alice polariser orientation Bob polariser orientation
0 0
0 π

2
π
2 0
π
2

π
2

π
4

π
4

π
4 −π

4
−π

4
π
4

−π
4 −π

4
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Chapter 6

Conclusion and outlook

There are hints that the field of machine learning may benefit from a collaboration with the quantum
world. Many predict (or at least hope) that once we have a fully functioning quantum computer, we will
be swimming in computational speedups and new found ways to probe and manipulate the quantum world
directly. Whether true or not, there is another, equally interesting, side to the story: that of what the
quantum world allows us to do with its data. In this thesis, we have been concerned with this latter point,
and have explored limitations imposed by uniquely quantum phenomena. More specifically, we focused on
the impact measurement disturbance has on the unsupervised learning of quantum data. Indeed, restricting
our attention to the task of binary classification, the main question we asked in this work was: how does the
classification of a subset of quantum data affect our ability to subsequently classify the whole dataset? We
saw that, since a quantum classification could be thought of as a quantum measurement, the phenomenon
of measurement disturbance makes this question less than trivial.

After reviewing the background theory relevant to this thesis in Chapter 2, in Chapter 3 we took our
first steps towards understanding this sequential classification scenario by considering the base case of a
three-qubit dataset. Here, our dataset consisted of three qubits that could each be in one of two unknown
states. Our task was to, first, perform a binary classification on the first two qubits of the dataset and,
second, classify the entire three-qubit dataset optimally. As mentioned, this protocol is closely related to
sequential measurement [107–110] due to how these classifications can be thought of as quantum measure-
ments. We found that this first classification on two-qubits impacted the ability of the second classification
on three qubits in a non-trivial fashion. The relationship between their success rates was derived analytically
[Eq. (3.51)] and plotted in Fig. 3.1. An interesting feature of this result was that, although the first classifi-
cation did ultimately negatively impact the success rate of the second one, for a remarkably large range of
strengths, the first classification did not force the second to deviate from its optimal probability of success.
This realisation motivated the work carried out in Chapter 4. We concluded Chapter 3 by describing this
sequential classification as a quantum circuit. Implementing this circuit using Qiskit’s AerSimulater, we
demonstrated the tradeoff of Eq. (3.51), plotting our results in Fig. 3.10.

Motivated by the realisation that an intermediate classification on a two-qubit subset need not affect
the success rate of a classification on the entire three-qubit dataset, in Chapter 4, we set out to investigate
whether the same could be said about a more general scenario. In particular, we set our sights on an n-qubit
dataset that, once again, was made up of qubits that could each be in one of two unknown states. After
reviewing the work of Sent́ıs et al. [71] to understand how to perform an optimal classification on such
a quantum dataset, we asked the question: what, and how much, can be learnt in a classification on the
first n− 1 qubits of the dataset without affecting the optimality of a subsequent classification on the entire
n-qubit dataset? Before doing so, we noted some numerical results, found using semidefinite programming
techniques, that seemed to suggest that nothing about the order of the first n − 1 qubits could be found
without affecting the n-qubit classification. It appeared that all could be learned was something about how
many of each type of qubit there was. Equipped with the hint of this surprising feature, we made steps to
prove that this is true for an n − 1 → n qubit sequential binary classification. We fell short in two places:
first, in proving Conjecture 4.A.1, and second, in that we did not attempt to prove the uniqueness of the
optimal measurement we used for the undisturbed n-qubit classification. This second point just means that
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our hypothesis is constrained to a fixed n-qubit measurement that shares the symmetries of the possible
states of the dataset. Having said this, it would be more interesting to know if this measurement is unique or
not. Aside from proving these two missing points, another intriguing future line of research would be to see
how this hypothesised property generalises: given a fixed measurement Π which shares its symmetries with
a set of quantum states R, does an intermediate measurement on R with a different goal have to be ignorant
with regards to these symmetries if we don’t want to affect the success rate of Π? Also in this chapter, we
proved an interesting consequence of the hypothesis that nothing about the order of the first n − 1 qubits
can be learnt. Namely, that for m > 1, a measurement on the first n−m qubits can’t even tell us anything
about the number of each type of qubit without affecting the subsequent classification. This hints that the
disruption induced when learning about a subset of a quantum dataset is, in general, considerable. This
realisation is surprising when compared to the 2 → 3-qubit case considered in Chapter 3 which allowed for
a remarkable amount to be learnt during the two-qubit classification. Aside from the general discussions
about which properties of the dataset could be learnt during an intermediate (n− 1)-qubit classification, we
derived a closed form, analytical lower bound [Eq. (4.133)] for the optimal success rate one could achieve in
such an (n− 1)-qubit classification without affecting the subsequent n-qubit one. Further, we hypothesised
an algorithm to construct the measurement that realises this optimal value. We leave the determination of
whether this is indeed the optimal method to future work.

In Chapter 5 we changed tack and turned our attention to the indefinite causal regime. Motivated by the
connections between ICO and non-commutativity, we investigated how the original formulation of quantum
key distribution, BB84 [4] (whose security is based on non-commuting observables), could be carried out in
an indefinite causal order. We recalled that in BB84, two parties, Alice and Bob, share a key using quantum
states belonging to two mutually unbiased bases. They can ensure they have securely shared a cryptographic
key by monitoring for errors that, if listening in, an eavesdropping third party would necessarily induce. We
highlighted that in order for these errors to be detected, Alice and Bob would have to publicly compare,
and subsequently discard, a subset of their private key. Indeed, we noted that this public comparison is
usually a feature of QKD, but we saw that if Alice and Bob shared their key in an indefinite causal order,
which we showed to be possible using projective measurements, then they can detect eavesdroppers without
performing this public comparison. We proved this protocol to be secure against the class of individual
attacks considered in Ref. [129], and showed that, regardless of whether these eavesdroppers were correlated
or not, if they extracted any useful information about the shared key, a non-zero probability of being detected
would be induced. In deriving these results, we did, however, implicitly assume that the eavesdroppers had
to adhere to the causal structure chosen by Alice and Bob. Further, we found a two-way QKD protocol that
seemed to allow for a similar form of private detection. Despite noting that some more subtle differences
between definite and indefinite causal QKD protocols may exist, we ultimately concluded that carrying out
QKD in an ICO is unlikely to offer any advantage, at least in the way we considered.

As mentioned, the work we have explored on sequential quantum classifications offers many avenues
to future work. Other than the points mentioned, there are many other ways our investigations could be
generalised: for example, to d-dimensional qudits, to situations in which we have access to multiple copies
of the quantum dataset, or perhaps by extending the learning task beyond binary classification, to allow for
three or more possible states. Of particular interest to me would be to look more generally into how the
symmetry of the states and measurements puts limitations on intermediate measurements. On the indefinite
causal key distribution (ICKD) side of things, despite our null result, it would still be interesting to see
more generally how the security of such a protocol compares to its definite causal counterpart. Looking
into this ICKD idea allowed us to consider quantum measurement in an indefinite causal order, which is a
line of research that is largely unexplored. It would be interesting to see whether this can find application
somewhere else in quantum information science.
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[110] L. Leppäjärvi and M. Sedlák. “Postprocessing of quantum instruments”. Phys. Rev. A 103 (2021).

[111] E. Andersson and D. K. L. Oi. “Binary search trees for generalized measurements”. Phys. Rev. A 77
(2008).

[112] J. Dressel, T. A. Brun, and A. N. Korotkov. “Implementing generalized measurements with super-
conducting qubits”. Phys. Rev. A 90 (2014).

[113] L. A. Rozema et al. “Quantum Data Compression of a Qubit Ensemble”. Phys. Rev. Lett. 113 (2014).

[114] A. Ambainis and J. Emerson. “Quantum t-designs: t-wise independence in the quantum world”.
Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07). IEEE. 2007.

[115] D. Bacon, I. L. Chuang, and A. W. Harrow. “The quantum Schur transform: I. efficient qudit circuits”.
arXiv preprint quant-ph/0601001 (2005).

[116] H. Spencer-Wood. “Indefinite causal key distribution”. arXiv preprint arXiv:2303.03893 (2023).
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