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Abstract

Attachment is a psychological construct concerning the affectional and emotional bonds be-

tween children and their caregivers. Attachment styles can be one of two main types: Secure

attachment which describes a state where the child’s emotional needs are fulfilled, and Insecure

attachment when these needs are unfulfilled. The formation of these attachment styles during

childhood shapes the internal representation of close relationships which in turn impacts the

quality of adulthood relationships and life. Moreover, past studies found that insecure attach-

ment is linked to major issues such as heart diseases and antisocial behaviours. Early psycho-

logical interventions can mitigate the potential negative consequences of insecure attachment.

To this end, it is essential to identify insecure children as early as possible. Various attach-

ment assessment tests have been devised for infants and children which rely on observing their

behaviours when exposed to distress situations. However, these tests suffer from a major draw-

back that impedes their applicability for population large-scale screenings, which is the need for

trained professionals. One promising solution to overcome this challenge is by automating the

assessment process and therefore increasing the applicability of the assessment tests.

In this thesis, automatic attachment recognition approaches based on the Manchester Child At-

tachment Story Task (MCAST) assessment test are proposed based on three main behavioural

channels: facial expressions, paralanguage, and language. In addition, this thesis explores the

benefit of combining different modalities to enhance the recognition rate. The results show that

the attachment styles can be detected automatically with an accuracy of up to 75% by combin-

ing paralanguage and language modalities, and an F1-score of up to 68% by combining face and

language modalities. Additionally, age and gender based performance analyses are conducted

revealing that older children are more likely to express their condition through facial expressions

while younger children are more likely to express it through paralanguage and language. Gender
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based effects are observed too and it is found that female children are more likely to express their

condition through facial expressions, while male children tend to express it through language.

These findings can enhance the recognition rate because it might be useful to adopt different

modalities for different age or gender groups. It is also shown in this thesis that incorporating

a confidence measure can increase the applicability of the approaches, for instance, by setting

an acceptance level corresponding to 80% accuracy, which can be considered as human-level

performance, 77% of the predictions can be accepted using an approach based on combining all

of the three behavioural channels.
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Chapter 1

Introduction

1.1 Attachment

Attachment theory provides a framework to understand the interactions and affectional bonds be-

tween children and their caregivers. The foundations of this theory were first developed by John

Bowlby during the 1930s and later formulated in his famous trilogy Attachment and Loss [1–3]

in which he described the maternal bonds and the effects of its disruptions through loss and sep-

aration. The theory was further developed by Mary Ainsworth who advanced the understanding

of infant-mother attachment patterns and devised the Strange Situation Procedure (SSP) [4]

which became the standard assessment test for attachment patterns in infants. In general, the

theory states that the interactions with the caregivers shape the internal mental representations

(Internal Working Models, IWMs) of children about close relationships and hence will impact

their relationships throughout their adult lives.

According to the theory, there are two main attachment styles in children: Secure attachment,

which describes the psychological state in which the affectional needs of children are met, and

Insecure attachment which describes the state in which these needs are not met. Children de-

velop a particular attachment style depending on the quality of their interactions with their care-

givers. Insecure attachment has major effects on one’s quality of life as it shapes their internal

representation of e.g., friendship and professional relationships. Moreover, past studies found

that insecure attachment style is linked to various issues such as heart pathologies [5, 6] and

antisocial behaviours [7, 8]. Another study suggested that the differences in the way adults

1
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experience romantic love are rooted in the differences in their IWMs that were shaped by the

attachment style during childhood [9].

Early psychological interventions can alter the IWMs of children which therefore will be re-

flected in their adulthood life quality. For this to be achieved, it is essential to identify children

who develop insecure attachment as early as possible. Several psychometric tools have been

devised which all share the core idea of observing the behaviours of children when exposed

to distress situations. Among these, the Strange Situation Procedure (SSP) was developed to

identify attachment in infants, the Attachment Doll-play Interview (ADI) was developed for

pre-schoolers [10], and the Manchester Child Attachment Story Task (MCAST) was devised for

school-age children [11].

These tools have been used intensively for research purposes and have been proven effective in

identifying attachment-related issues, however, they suffer from a major drawback that limits

their applicability in clinical practices [12]. Administering these tools takes around 20 minutes

per child and the assessment process can take between one to two hours depending on the com-

plexity of the materials [11, 12]. Moreover, in order for a practitioner to be eligible to conduct

the assessment test, a rigorous training procedure has to be followed to meet a certain level of

agreement with experts, which can take up to two weeks of training [12]. This, as one may

expect, reduces the applicability of these tools as it limits the number of professionals who are

eligible to conduct these assessment sessions and the amount of assessment load per person is

rather limited.

Another important issue regarding the attachment condition is how prevalent it is in the general

population. Past studies showed that the percentage of school-age children with insecure attach-

ment style in the general population can be as high as 40%- 50% [13, 14]. This emphasises the

need for a large-scale screening during early childhood which is not feasible under the existing

conditions.

Given the aforementioned limitations of the existing assessment procedures, one promising so-

lution is to automate the assessment process in which the behaviours of children are analysed

automatically to predict the attachment styles. Such a solution is possible in principle, due to

the advancements in signal processing and deep learning over the past decades. In fact, these

technologies were used for similar problems such as depression detection, autism detection, and
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emotion recognition.

This thesis proposes automating the Manchester Child Attachment Story Task (MCAST) [11].

This is attempted by analysing the verbal and non-verbal behaviours of children during the

MCAST sessions in which they were introduced to several distressing scenarios and the role is

to detect patterns of variations that may be associated with attachment styles. The behavioural

channels that are explored in this research comprise the three main behavioural modalities that

humans use to manifest their inner feelings and mental states: facial expressions, paralanguage1,

and language. Moreover, motivated by the fact that these channels often complement each other

and due to the success of combining these channels to predict other mental state conditions,

multimodal approaches are proposed in which all possible combinations of these channels are

attempted.

The MCAST is a story-completion doll-playing method that aims to elicit attachment behaviours

in school-age children. It is based on introducing children to five stressful scenarios in the forms

of stories designed to be age-appropriate. After listening to these scenarios, the children are

asked to complete these stories (using dolls representing the child and the primary caregiver)

and to describe the feelings of the dolls. These stories are expected to stimulate attachment-

related behaviours in the way children complete the stories and describe the dolls’ feelings.

The proposed approaches are validated on a corpus of 104 children of age 5-9 years and the over-

all results confirm that the variations in attachment styles leave machine-detectable behavioural

cues in the aforementioned channels and it is shown that the attachment can be detected with an

accuracy of 75.6% and F1-score of 68.8%.

1.2 Thesis Statement

This thesis investigates whether the variations in attachment styles leave traces in children’s

behaviours that can be detected automatically by means of machine learning and artificial intel-

ligence approaches. This can be exploited to build an automatic assessment tool for attachment

styles in children. Specifically, this Ph.D. research investigates the feasibility of automatically

detecting the attachment styles in school-age children through unimodal and multimodal analy-

1Non-verbal aspects of speech.
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sis based on three behavioural channels: facial expressions, paralanguage, and language.

1.3 Contributions and Publications

The main contributions of this thesis can be summarised in the following points:

1. To the best of our knowledge, this is the first attempt to detect the attachment styles in

school-age children by analysing: facial expressions, paralanguage, and language using

well-established pattern recognition methodologies. The results show that the attachment

styles can be detected from these channels with an accuracy between 64.3% for the facial

expressions-based approach and 72.1% for the language-based approach and F1-score

between 54.8% and 63.9%.

2. First analysis of the effect of age and gender on attachment recognition performance.

3. First analysis of the effects of the variations in the dataset including recording length and

the amount of speech which reveals important aspects of the approaches.

4. Definition of a confidence measure in order to increase the applicability of the approaches.

Several parts of this thesis (mainly from chapters 4 and 5) are based on papers that were pre-

sented at international conferences:

1. H. Alsofyani and A. Vinciarelli, “Stacked recurrent neural networks for speech-based in-

ference of attachment condition in school age children.,” in Proceedings of Interspeech,

pp. 2491–2495, 2021.

2. H. Alsofyani and A. Vinciarelli, “Attachment recognition in school age children based on

automatic analysis of facial expressions and nonverbal vocal behaviour,” in Proceedings

of the International Conference on Multimodal Interaction, pp. 221–228, 2021.

3. H. Alsofyani and A. Vinciarelli, “Attachment recognition in school-age children: A mul-

timodal approach based on language and paralanguage analysis,” in Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8172–8176,

2022.
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4. A. Buker, H. Alsofyani, and A. Vinciarelli, “Multiple Instance Learning for Inference of

Child Attachment From Paralinguistic Aspects of Speech,” in Proceedings of Interspeech,

pp. 1045–1049, 2023.

1.4 Thesis Structure

This thesis is structured as follows, chapter 2 presents the literature review and background

information about methodologies that were adopted in the recognition approaches. Next, chapter

3 describes the MCAST assessment tool, the SAM administration system, and the dataset that

was used to evaluate the approaches along with various related statistical information. Then,

chapter 4 describes the three unimodal approaches and presents the effect of age and gender

on their performance. The chapter also provides a comparative analysis of the performance of

the three approaches. The multimodal approaches are described and the results are presented

in chapter 5 along with an analysis of the effect of age and gender. In chapter 6, analysis

studies are presented which were conducted to inspect the effects of various factors of variation

in the dataset, including recording length and amount of speech. This chapter also presents

the performance after incorporating a confidence measure that was developed to increase the

applicability of the approaches. Lastly, chapter 7 draws conclusions, describes the challenges

that were faced in conducting this research, and suggests directions for future work.



Chapter 2

Literature Review and Methodological

Background

This chapter presents the literature review and the relevant methodological background for the

later chapters. The literature review is presented in three parts to cover the research fields out-

lined in Figure 2.1: The first part reviews previous works that aim to automatically detect mental

and developmental disorders such as depression and autism, the second reviews the works con-

cerning attachment condition in particular, in which computing and technology play a key role

in conducting these studies, for example, several works aim to foster the attachment bonds be-

tween children and their caregivers while other works aim to enhance these attachment bonds

with social robots, the third reviews the works that lie in the intersection of the previous two,

i.e., those that aim at detecting the attachment style automatically. This PhD research falls in the

third part as it aims to perform such a task in school-age children.

The relevant background is covered in several sections which present the methodologies that

were adopted in the recognition approaches. In particular, the descriptions of the RNN, LSTM,

and Deep RNN are presented in sections 2.2.1-2.2.3, whereas CNNs and their applications to

NLP problems are discussed in section 2.2.4. Logistic regression is briefly discussed in section

2.2.5. Moreover, section 2.2.6 explains the most common ways to create classifier ensembles.

6



CHAPTER 2. LITERATURE REVIEW AND METHODOLOGICAL BACKGROUND 7

Figure 2.1: Literature Survey Outline. This figure shows the different categories of the litera-
ture survey. Part 1 is presented in section 2.1.1, Part 2 is presented in section 2.1.2, and finally,
Part 3 is presented in section 2.1.3, in which this PhD research is situated.

2.1 Survey of Previous Work

2.1.1 Mental States Automatic Detection

The task of automating the detection of mental and developmental conditions has drawn increas-

ing attention in the past years. The main reason is that diagnosis processes tend to be expensive

and time consuming because they require trained professionals to conduct these assessments.

The automatic detection of conditions such as depression and autism have been explored widely

in the literature, whereas other conditions such as schizophrenia and attachment are still in their

infancy. These attempts have explored several modalities e.g., facial expressions, movement,

vocality, language, brain activity, etc. In the following sections, a detailed survey of the main

works is presented. Two sections will be dedicated to depression and autism related works,

while the remaining section reviews the main works that tackle other conditions.

Depression

In the case of depression, the main explored channels are visual and vocal, while linguistics

and brain activity have been investigated in a limited number of works. Several datasets have

been developed for depression detection as part of the Audio-Visual Emotion Challenge (AVEC)

such as AVEC2013 and AVEC2014 in which the number of participants is 82 and 84, respec-

tively. Another widely adopted dataset is the DAIC-WOZ which is the benchmark dataset for

the later editions of the AVEC challenge (the number of participants in this dataset is 189).
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In these datasets, the depression severity labels are provided by self assessment questionnaires

such as the Beck Depression Inventory (BDI-II) and the Patient Health Questionnaire (PHQ).

The majority of the works listed below have adopted these datasets.

The authors in [15] used the facial spatiotemporal features and head movements, and proposed a

deep learning approach to predict the BDI-II score. In their approach, a 3D Convolutional Neural

Network (CNN) is used to learn deep features from face and head regions. These features are

then fed to a Recurrent Neural Network (RNN) to estimate the final score. They evaluated their

approach on AVEC2013 and AVEC2014 and were able to achieve 9.28 and 9.20 RMSE (Root

Mean Square Error), respectively.

Facial spatial features are also adopted in [16], where a deep CNN is built to map pixel-level

features into depression scores. In this work, the authors built a global CNN and multi-regional

CNNs where the full face images are fed to the global CNN while sub-regions of the face images

(top, centre, and bottom) are fed to the corresponding CNNs. They also evaluated the perfor-

mance on AVEC2013 and AVEC2014 and yielded 8.28 and 8.04 RMSE, respectively. One main

finding of this work is that the top-central region of the face is more discriminating than the

lower region for the purpose of depression detection.

Similarly, Facial appearance and dynamic features are adopted in [17, 18]. In [17], two separate

deep CNN models were constructed. The first one is the appearance model in which the raw

video frames are mapped to a depression score, whereas the second one is the dynamic model

in which optical flow images are used to capture the face dynamics. This approach led to 9.82

and 9.55 RMSE when evaluated in AVEC2013 and AVEC2014, respectively. Additionally, they

concluded that the dynamics of the face are as important in detecting the depression level as the

facial appearance.

A similar two-stream framework is applied in [18]. In this work, spatial features were extracted

by the Inception-Resnet network either by using the full frame image (holistic features) or mini

patches of frames (local features) while dynamics were captured using Volume Local Directional

Number (VLDN). Both spatial and dynamic features were aggregated and fed to a separate

bidirectional long short-term memory (Bi-LSTM), and the results were averaged to obtain the

final prediction. This framework was also evaluated in AVEC2013 and AVEC2014, yielding

8.93 and 8.78 RMSE, respectively. One important finding is that the inclusion of the mini
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patches’ local features has improved the performance compared to when only the global holistic

features were used.

Temporal facial features were explored in [19] in which the time series of three facial features

were extracted: eye gaze, facial landmarks, and action units. Several deep learning models were

explored in this study (CNN, LSTM, and Recurrent CNN). In addition, the authors explored

adding a self-attention layer to each one of these models. The best performance was achieved

by the CNN model coupled with the attention layer using the eye gaze features yielding an F1-

score of 0.81 when evaluated on a subset of the DIAC-WOZ dataset. Additionally, they found

that the attention layer has improved the performance for both CNN and LSTM models but not

for the RCNN.

In another work [20], the authors argued that the depression score should be regarded as an

ordinal variable in which there is no guaranteed regular relationship between features and de-

pression score, an assumption that is widely adopted in conventional regression solutions. To

handle this ordinal nature, they proposed a 2-stage Rank Regression framework, where first, the

depression scores range is partitioned, and a ranking function is defined per partition. These

ranking functions generate a score that measures the association between the features and the

corresponding partition. In the second stage, the ranking results are fed to a regression model

to predict the depression score. They evaluated their framework on AVEC2013 using different

speech features, and they were able to achieve 8.50 RMSE.

Other work proposed using an unsupervised pre-training strategy with a hierarchical attention

mechanism to tackle the problem of the limited amount of labeled materials in depression

datasets which may hinder the applicability of deep learning techniques [21]. In this work,

an autoencoder was pre-trained with a rich speech recognition dataset to learn the hierarchi-

cal attention maps1 and then a Bi-LSTM model was fine-tuned with the depression dataset and

utilising the attention weights which was learnt over the larger dataset. They evaluated their

approach in DAIC-WOZ achieving 5.51 RMSE.

Psycholinguistics and mood were explored in [22], where the authors analysed 10000 posts writ-

ten in online communities. They extracted several psycholinguistic features such as affective rat-

ings, mood tags, and topics and were able to discriminate between depressed and non-depressed

1Two levels of attention were learnt (Frame-Level and Sentence-Level).
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people with an accuracy up to 93% using only topics features and Lasso logistic regression.

Other works fused different modalities for detecting depression levels. For instance, visual and

audio channels were fused in [23–27] while in [28], these channels were further augmented

with a text descriptor. In [23], Mel Frequency Cepstral Coefficients (MFCC) were extracted and

combined with GMM-UBM (Gaussian Mixture Models-Universal Background Mode) paradigm

to construct the audio feature vectors whereas Space-Time Interest Points (STIP) and Pyramid

of Histogram of Gradients (PHOG) were adopted to construct the visual features. These features

were fused and fed to SVR2 for prediction. The performance was also evaluated on AVEC2013

achieving 10.62 RMSE. However, both audio and visual features performed better individually

than the fused ones achieving 10.17 and 10.45 RMSE, respectively.

Different types of visual and audio descriptors were chosen in [24], where Local Binary Patterns

(LBP), Edge Orientation Histogram (EOH), and Local Phase Quantisation (LPQ) were used as

visual descriptors. Using these features, Motion History Histogram (MHH) was constructed

to capture the temporal variations. Low-level descriptors (LLD) and MFCC were extracted

to form the audio features. By fusing these descriptors at the decision level and using Partial

Least Squares (PLS) regression, a performance of 10.26 RMSE was obtained. Similar work was

done in [26], where the hand-crafted facial features were instead substituted with deep ones.

These deep features were extracted using a pre-trained CNN on a larger non-depression dataset

(VGGFace and AlexNet). Next, the temporal movement was captured from these features using

Feature Dynamic History Histogram (FDHH). Better performance was achieved (7.43 RMSE)

by fusing these features with the same audio features as in [24] (10.26 RMSE), which suggests

that deep features outperform the hand-crafted ones.

A two-stage framework was suggested in [25], where first a sample is classified into one of the

depression classes then, within that class, the depression BDI score is predicted using a regres-

sion method. Several visual descriptors were extracted and integrated using the Fisher Vector

and then fused with MFCC vocal features. This framework was evaluated on AVEC2013, and

the performance was improved from 9.51 RMSE, when only a regression method is imple-

mented, to 8.29 RMSE. It is worth noting that, in this work, the authors argued that the depres-

sion detection problem should be regarded as a cost-sensitive problem in which the penalty of

2Support Vector Regression.
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misclassifying an individual to a class that is far from the actual one should be higher than mis-

classifying to a nearer class. They were able to achieve this by constraining the classifier cost

function to a weight matrix that takes into account the distance between the actual and predicted

classes.

A multimodal spatiotemporal attention framework was proposed in [27]. In this work, a spa-

tiotemporal representation was constructed from segments of audio and video input data in

which attention was used to relate both representations and highlight the frames that contributed

to the detection. Next, the authors proposed using Eigen Evolution Pooling (EEP) to sum-

marise the changes in the segment-level representations and to aggregate these summaries from

both modalities. Subsequently, a multimodal attention fusion was used to better capture the

complementary information conveyed by these different modalities and lastly, this multimodal

representation was mapped to the depression score using an SVR model. This framework was

evaluated on AVEC2013 and AVEC2014 yielding 8.16 and 7.03 RMSE respectively.

Along with the visual and audio channels, a text descriptor was constructed in [28] to estimate

the PHQ-8 score. In this work, several visual and audio features were fed to a DCNN to be

mapped to a higher representation, which then was fed to a deep network DNN to estimate the

depression score achieving 6.34 RMSE on AVEC2016 dataset. The authors also demonstrated

that the speaking segments of the interviews yielded better performance than the non-speaking

segments. Additionally, a paragraph vector was extracted from the interviews’ transcripts and

classified using SVM. The results were fused through a Random Forest with the aforementioned

DNN model to classify the dataset into Depressed/NonDepressed groups yielding an F1-score

of 0.746.

In [29], the duration and n-gram counts of six speech landmarks were investigated and vali-

dated on two different datasets. The first dataset (DAIC-WOZ ) is laboratory controlled with

28 depressed and 114 healthy participants, whereas the second one (SH2-FS) was collected in

an uncontrolled environment with 97 depressed and 470 healthy participants. Using SVM, an

accuracy of 94.3% and 72.7% was achieved in DAIC-WOZ and SH2-FS, respectively.

All previous works are based on self-reported questionnaires such as (BDI-II or PHQ-8) to

measure the depression level. One downside of using questionnaires-based labels is that these

labels can be subjective and do not always reflect the actual condition. For this reason, other
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works have adopted depression datasets with clinical diagnosis [30–34]. In [30], the authors

regarded the depression detection as a 3-classes classification problem (Remission, Mild, and

Moderate to Severe). They adopted facial dynamics (time series of coordinates of 49 facial

points), head movements (time series of 3 degrees of freedom: pitch, yaw, and roll), and vo-

calisation (switching pause and fundamental frequency) and generated deep representations of

these features using Stacked Denoising Autoencoders (SDAE). This representation was further

encoded to produce fixed-length descriptors across input videos using Improved Fisher Vector

coding (IFV) and Compact Dynamic Feature Set (DFS) which was later classified using logistic

regression achieving 78.67% accuracy on a clinical dataset of 49 participants.

Similar feature modalities were adopted in [31], where speech signals, eye activity, and head

movements were explored, and a clinically validated dataset with 60 subjects (30 depressed and

30 healthy control) was utilised. The best performance (88.3 Average Recall AR) was yielded

by fusing speech and head modalities at the feature level and classified using SVM.

Vocal prosody was explored and validated on a clinical dataset of 57 participants with Major

Depressive Disorder (MDD) in [32] through Switching Pause (SP) and Fundamental Frequency

F0 features of both participants and interviewers. Using logistic regression, the depression level

was detected with an accuracy of 69%. One of the main findings is that naive listeners can

differentiate between participants with low and moderate-to-severe scores from vocal prosody

with an accuracy up to 73%; however, moderate-to-severe depression scores are less predictable

than lower scores.

Finally, EEG3 signals were explored in [33, 34], where in [33], signals from a 3-electrode EEG

device were used to build a Case-based Reasoning (CBR) model. In this work, several clas-

sifiers were constructed first, and the best-performing one was adopted as a feature selection

method. After that, these selected features were used to create a case database from previous

depression cases. Then a similarity measure based on the Euclidean Distance was employed to

retrieve similar cases. This CBR model was evaluated in a dataset of 160 subjects and achieved

an accuracy of 91.25%. In [34], EEG signals were used to detect the depression level in which

an improved feature extraction method based on Singular Value decomposition (SVD) was pro-

posed, which led to more accurate feature extractions. These features were later classified using

3Electrical signals produced by the brain (Electroencephalogram signals).
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an SVM model and evaluated on 4 different depression datasets with clinical diagnosis achieving

accuracies between 81.9% and 88.1%.

Autism

After depression, Autism Spectrum Disorder (ASD) is the most investigated condition in terms

of the automation of the diagnosis process. Several cues have been investigated to help identify-

ing autistic individuals such as facial expressions, gaze, repetitive behaviours, and brain signals.

In addition to the detection, several related works are dedicated to evaluating the progress of

ASD training and therapy sessions automatically.

Facial expressions were explored for detection purposes in [35], to identify the facial behaviours

atypicality of High Functioning Autism (HFA) children in [36], while in [37], it was adopted as

part of therapy sessions. In [35], several facial features (facial expressions, action units, arousal,

and valance) were learnt by a CNN model. These learnt features were then projected to a lower

dimensional representation and fed to a binary classifier for prediction. The CNN model was

pre-trained with a large facial dataset and fine-tuned using an ASD dataset. This method was

evaluated on a clinically labeled dataset of 88 participants (49 ASD and 39 non-ASD), achieving

an F1-score of 0.76.

A different method was adopted in [36], where the authors investigated the differences of facial

dynamics between High Functioning Autism (HFA) and Typically Developed (TD) children.

Particularly, they measured the complexity of facial dynamics from three different aspects: the

amount of facial movements, the repetition of movements, and the correlation between facial

regions. They used the Multiple Scale Entropy and Granger Causality model to measure com-

plexity and correlation, respectively. They evaluated their method on a clinically labeled dataset

of 39 subjects, 20 are HFA while the remaining 19 are TD. Their most interesting finding is that

HFA children tend to show reduced facial complexity, especially when expressing joy, sadness,

and disgust. Moreover, they found that the highest complexity region is around the cheeks for

HFA, whereas it is around the eyes for TD.

In another study [37], a robot-child interaction system was introduced to evaluate the effective-

ness of ASD therapy by measuring the ability of ASD children to recognise and imitate certain

facial expressions (happiness, sadness, anger, and fear). First, a facial recognition approach
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was constructed based on the HOG4 descriptor and an SVM classifier, which was used by the

robot system to recognise children’s imitations. Then, certain expressions were performed by

the robot and the children were asked to imitate them. The performance of this system was eval-

uated on three autistic children performing 60 robot interactions, out of which, 31 interactions

were imitated and recognised by the system successfully while in 3 interactions, the system

failed at recognising the imitations.

Eye gaze was explored in [38] motivated by the fact that gaze behaviours can reveal attention

differences between ASD and TD groups. In this study, the gaze data were collected during two

web tasks: browsing and searching, in which each participant was shown six web pages with

varying visual complexity and asked to perform these tasks. The dataset consists of 15 ASD and

15 TD adults and the best accuracy was 75% for the searching task and 71% for the browsing

task.

A video-based detection approach was proposed in [39], in which the authors proposed using

spatial attentional bilinear pooling to capture the fine-grained information of video frames which

is regarded as an essential element in ASD detection. Specifically, the spatiotemporal feature

maps were extracted by a 3D-CNN model which then were pooled using Bilinear Pooling (BP)

method coupled with the attention mechanism to preserve the spatial information that is nor-

mally lost by the traditional BP method. Finally, the resulting sequences of features were fed to

an LSTM model for prediction. This approach achieved 87.2% detection accuracy on an ASD

dataset of 40 participants [40].

Other studies investigated detecting ASD behavioural risk markers such as attention in [41],

engagement and name call response in [42], gaze and viewing patterns in [43], and repetitive

behaviours in [44,45]. In [41], a method was proposed to estimate the fraction of time when ASD

and non-ASD groups are paying attention to social and non-social screen stimuli by tracking

the direction of their gaze and head position. The main finding was that there is a significant

difference between groups in the overall attention, but no difference between attention toward

social vs. non-social stimuli was detected i.e., both groups seem to engage with both stimuli in

a similar pattern.

Another method was introduced in [42], where the authors were able to detect engagement,

4Histogram of Gradients.
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name call response, and emotion (Happy vs. other) that matches expert human raters with an

ICC>0.80 (Intra-class Correlation Coefficient). They evaluated their method on a dataset of

33 participants (15 ASD and 18 TD), and in their subsequent study [46], they found that ASD

children tend to respond fewer times to name calls and take longer time to respond than TD

children.

A virtual-reality environment combined with an eye tracker was designed in [43] to detect anx-

iety in ASD individuals through their gaze and viewing behaviours. In this work, participants

were required to listen and interact with several social tasks that are chosen depending on one’s

performance on previous tasks. By evaluating this method on 16 subjects (8 ASD and 8 TD),

they found that the pupil diameter in ASD individuals is greater when they see a non-happy

face compared to when they see a happy face. Moreover, ASD individuals are found to blink

more when exposed to an angry expression compared to when exposed to a happy one while the

opposite is correct for TD individuals.

Repetitive behaviours -one of the main characteristics of ASD behaviours- were explored in [44],

where a 3D-CNN was adopted to extract spatial and temporal features from input videos and

then a pyramid architecture was built to extract temporal information at different time scales and

simultaneously predict the ASD actions and the presence of repetitive behaviours. The dataset

consists of 40 hours long of 30 videos and contains the five ASD most common behaviours

(hand flipping, head banging, spinning in a circle, toe walking, and moving fingers in front of

the eyes). This approach was able to detect the repetitive behaviours with an accuracy of 95%.

Another study [45] proposed regarding the ASD detection problem as a video anomaly detection

where a detection model can be trained on unlabelled videos containing normal behaviours

which allows for detecting the abnormal behaviours during the inference phase. In this work, a

two-stream framework was constructed where the first stream predicts the repetitive behaviours

and the second one predicts the pose, and anomaly scores were aggregated from both streams.

The dataset contains 75 videos with three ASD behaviours (arm flapping, head banging, and

spinning) where 55 videos are used for training excluding any video clips that contain an ASD

behaviour. This approach achieved 73.4% AUROC5 and it is found that the repetitive behaviours

detection module plays a significant role in the anomaly detection.

5Area Under the ROC Curve.
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A cost-effective method using EEG signals was introduced in [47], where different combinations

of signal channels and classification methods were explored. Using Correlation-based Feature

Selection and Random Forest classifier, they obtained an accuracy of 93% on a dataset of 15 par-

ticipants (10 ASD and 5 non-ASD). This performance was achieved using only 5 EEG channels,

which makes this method easier and more affordable to implement compared to similar previous

works. Another study investigated the use of fMRI6 time series with a deep learning model [48],

where the set of features were learnt by an MLP model and fed to an SVM classifier. This model

was evaluated on four different datasets with the best accuracy is 80% for 26 participants (12

ASD and 14 Control).

The similarity between brain regions to detect ASD in adults was investigated in [49]. In this

work, 7 morphological features of 358 regions of brain images were used to construct a Multi-

Feature Network (MFN) for each subject where nodes denote brain regions, and edges denote

the similarity between these regions. The properties of these MFNs were then classified using

SVM to discriminate between ASD and Control individuals, achieving an accuracy of 78.63%

on a dataset of 132 subjects (66 ASD and 66 Control). Similarly, the brain network was explored

in [50], where a network of 264 brain regions was constructed where nodes denote regions and

edges were defined by the correlation of time-series measurements of these regions. From the

network connectivity matrix, 264 eigenvalues of the Laplacian matrix were extracted, and along

with other three network features, were then fed to an LDA7 classifier. This approach was

evaluated on a dataset of 871 subjects (403 ASD and 468 Control), yielding an accuracy of

77.7%.

Other Conditions

Several attempts were done to detect other psychiatric conditions such as anxiety [51–53], Post-

Traumatic Stress Disorder (PTSD) [54], and Schizophrenia [55]. For anxiety, the authors in [51]

investigated the possibility of using audio features to detect anxiety and depression. They pro-

posed a weakly supervised model in which they segmented the audio samples into multiple

instances without labelling each segment. More specifically, they constructed audio codewords

using GMM, which then are mapped to a dense representation using an NN model. The output

vector sequences were then fed to a Bidirectional LSTM for prediction. The model was eval-

6Functional Magnetic Resonance Imaging.
7The Linear Discriminant Analysis.
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uated on a dataset of 105 subjects for anxiety and 142 for depression yielding an F1-score of

90.1% and 85.44%, respectively.

In another study [52], the influence of anxiety on heartbeats was investigated. In this study,

12 heartbeat features were collected through ECG electrodes and then classified by SVM. This

approach was evaluated in two anxiety-inducing events (public speaking with 59 participants

and thesis defence with 9 participants) where the ground truth labels were obtained from trained

audience achieving an F1-score of 0.9. Additionally, the results suggest that the complexity

of heartbeats is reduced significantly by higher levels of anxiety. In a similar anxiety-inducing

environment, another study [53] explored the relationship between EEG signals and multiple

levels of anxiety. They extracted a wide range of EEG features and retained only the ones that

contributed to accuracy improvements using the Pearson Correlation method. These retained

features were then classified using different methods where SVM gave the best results. This

approach was evaluated in a set of only 12 participants with a self-reported questionnaire as

labels and achieved 62.5% accuracy.

The influence of Depression and PTSD on vowel production was investigated in [54]. In this

work, the authors tracked the first and second formants F1 and F2 of the vowels /i/, /a/, and /u/

using the COVAREP toolbox. Next, they constructed a vowel area for each subject in F1 and F2

space and compared the subjects with respect to these areas. They found that there are significant

statistical differences between Depressed and Non-depressed individuals and between PTSD and

non-PTSD in the vowel area, using a dataset of 253 subjects along with self-reported labels.

In other work [56], an approach to detect Unipolar and Bipolar Depressive Disorders was pro-

posed using a clinical dataset with six emotion-eliciting videos. Due to the difficulty of collect-

ing and labelling a diverse clinical dataset, a method to generate emotion profiles was adopted.

To generate these profiles, the clinical dataset is adapted to another labeled dataset, and then

bottleneck features were extracted using a Denoising AutoEncoder (DAE) which was afterward

fed to an LSTM model to generate emotion profiles. These profiles were then clustered to code-

words using K-means, and then a Latent Affective Structure Model (LASM) was used to map

these codewords to a specific disorder class. They achieved an accuracy of 73.33% in a dataset

of 45 clinically diagnosed subjects.

Schizophrenia was investigated in [55] where the brain connectivity network was obtained dur-
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ing the MMN8 process (one of the promising biomarkers of schizophrenia) and fed to a Graph

Neural Network (GNN) model for classification. They were able to differentiate between first-

episode schizophrenia (40 subjects), chronic schizophrenia (40), and healthy control (40) with

an accuracy of 84.17%.

Conclusion

This section reviews the major works that aimed to detect various mental and developmental

state conditions. Various behavioural channels were explored with different channels found

more discriminant for different conditions, for instance, major advancements were achieved in

depression detection by analysing facial and vocal behaviours whereas, for autism detection,

risk markers such as repetitive behaviours seem to be the most useful channel. Moreover, the

feasibility of fusing different channels was particularly evident in depression detection. Promis-

ing performance was achieved in the works that exploited the attention mechanism [19,21,39] to

help capture the relevant information to the task at hand, indicating a useful direction for future

work in the area.

2.1.2 Computing and Technology in Attachment Research

The literature shows several groups of attachment works where computing and technology play

a key role. The majority of these researches were directed towards investigating whether an

attachment bond can be formed between users and technological devices and this is desirable

for a variety of reasons such as developing responsive social robots [57, 58], advancing the

attachment research in psychology [59], and enhancing product design and sustainability [60–

62]. Another group of works used technology to enhance the attachment bonds between children

and their caregivers [63–65]. A group of research that was introduced in [66, 67] is focusing

on modelling the attachment types and behavioural patterns with the strong attractors of the

Hopfield Neural Networks. Much earlier works explored whether there is an association between

attachment styles and various machine-detectable bio-markers such as fingertips waves [68], ear

waves [69], and heart rate variability [70].

Within the first group of works, the authors in [57] explored whether an attachment bond can

be formed between users and a social robot depending on the degree of interaction and respon-

8Mismatch negativity.
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siveness of that robot. They found that there is no increase in the attachment bond regardless

of the variations of the robot’s capabilities. In [59], the authors investigated how adults interact

with a baby robot that exhibits infant-like behaviours with varying degrees of neediness and

whether a robot can be developed to elicit an emotional response from human adults. Their

robot succeeded at eliciting positive emotions regardless of their degree of neediness, however,

the interaction with the less needy robot was found to be less enjoyable. Similarly, the authors

in [58] argued that the robots have to be realistic in appearance in order to induce caregivers’

attachment, for this reason, they developed a child robot "affetto" that has capabilities to show

different kinds of facial expressions and affect gestures. A recent study [62] investigated the

negative impacts of forming an attachment bond with a social robot and proposed several design

guidelines to help mitigate these issues.

The attachment towards mobile phones was investigated in [60] in which a definition of mobile

attachment and its design implications were presented. Several design factors were identified

in [61] to increase the attachment bond between users and devices and thus increase devices’

sustainability. In the same vein, the authors in [71] found that the novelty of the design leads to

enhanced sustainability behaviours by increasing the attachment towards technological devices.

The influence of attachment styles in Child-Computer Interaction was explored in [72] conclud-

ing that secure children are more consistent during interacting tasks compared to their insecure

counterparts which may impact the ability of the latters to operate technology devices which in

turn could pose a violation of the design principle of inclusion.

The second group of research focused on employing technology to enhance the attachment bond

between children and their caregivers. For instance, in [63], a communication interface was

developed that aims to help children invent their own interfaces to make communicating with

their distant loved ones more meaningful and entertaining. Similarly, in [64] an application

was developed that connects children in divorced households with their parents which helps

mitigate the inherent communication challenges in divorced households such as lack of proper

engagement and spontaneous contact. A storytelling application was designed in [65] to help

foster a connection and a mutual understanding between deaf children and their hearing parents

while improving their sign language. This application was specifically directed to deaf children

as they face a unique challenge of language development due to the lack of communication with
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their hearing parents.

Other research that was introduced in [66] proposed modelling the attachment types with the

strong attractors of the Hopfield neural networks. The rationale behind their decision is that

attachment types as defined by psychiatrists result from repeated patterns of interactions during

childhood, therefore, the strong attractors which represent the patterns that are stored in the net-

work multiple times can be used to model the attachment types formation. They demonstrated

with simulations that the old strong attractors can be altered when the network is exposed to a

new strong attractor. In their subsequent study [67], they introduced the concept of the tempera-

ture of the stochastic Hopfield networks thus the model is more likely to resemble the functions

of the biological brain. Their findings generally confirmed the results obtained in the previous

study despite the increased temperature in the model. Based on these findings, they introduced

the self-attachment therapeutic technique [73] where a set of protocols were defined to construct

new internal affectional bonds that help regulate emotions and foster a secure attachment with

the "inner child".

About three decades earlier, a group of research explored whether there is an association between

attachment types and several machine-detectable bio-markers. One of the earliest works in this

area [70] found that there is an association between heart rate variability and attachment. In this

study, the heart rate in infants (<13 months) was recorded using a recording electrode and it was

concluded that heart rate variability is significantly higher in insecure children. A similar finding

was reported in [74] where heart rate (HR) was recorded during the Strange Situation Procedure

SSP [75] and it was found that disorganised infants have higher HR elevations compared to

the secure and avoidant infants. Another study explores the relationship between attachment in

adults and skin conductance [76] where they measure the skin conductance score of 50 college

students during the Adult Attachment Interview AAI [77] and found an increased level of skin

conductance of subjects who employ deactivating attachment strategies when they are asked to

recall attachment-related memories such as separation and rejection.

More recent works in this area reported similar findings. For instance, in [68] the fingertip

waves were measured using a Photoplethysmography (PPG) sensor, and the Lyapunov exponent

was calculated in children aged 0-5 years old and it was found that children who have strong

attachment with their mothers have high scores in Lyapunov exponent while those who have
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moderate to low attachment have lower scores. In a similar manner, in [69] the ear pulse waves

were measured in two settings: first, when a child is standing alone (single situation) and second

when he is facing another child (pair situation). They found that children with low attachment

levels recorded high Lyapunov exponents in pair situation while secure ones recorded lower

scores.

This section shows the tremendous role that computing has played recently in advancing attach-

ment research which was tackled from many different angles. Moreover, a substantial number

of works reveal that attachment styles leave detectable biomarkers implying the feasibility of

exploring ways for the automatic detection of attachment.

2.1.3 Attachment Recognition

This section reviews the studies that were directed toward the problem of attachment recognition

which has been addressed only recently in a limited number of works. In particular, attachment

recognition was explored for infants [78, 79], for school-age children [80], and for adults [81].

The authors in [78] explored the possibility of recognising attachment in infants (5-8 months old)

through visual and audio features. In this study, 64 infants-mother participants were recorded

during the Still-Face Paradigm (SFP)9 when they were 5-8 months old then the attachment labels

were obtained through SSP when they were around two years old. Both the visual and audio

components of the recordings were fed to classification models to predict the attachment labels.

For the visual component, they employed the VGG19 model with soft attention to extract frame-

based features which then were fed to an LSTM model, whereas for the audio component, they

extracted various emotion-related features such as pitch and MFCC and fed them to an SVM

model for classification. The approach was evaluated on a testing set of 18 participants (9

Secure, 9 Insecure) achieving an accuracy of 78%, and 65% for visual and audio components

respectively.

In another work concerning attachment in infants [79], the authors explored quantifying the

movement behaviours of mothers and infants during the SSP sessions and whether it can be

used to predict the expert ratings. To this end, they employed the Kinect sensors which were at-

tached to both mother and infant to measure several behaviours such as contact duration, contact
9A paradigm used to examine the infant behaviours under stress conditions.
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initiation, and infant velocity toward the mother. They found that there are significant corre-

lations between several attachment behaviours (proximity-seeking, contact-maintenance, resis-

tance, and avoidance) and the measured movement features. Moreover, they applied a stepwise

regression model to predict the ratings from these movement features achieving a mean R2 of

0.56.

The attachment in school-age children was addressed in [80] where 105 school-age children

underwent the MCAST test in which they were asked to listen to and complete five attachment-

related stories using two dolls to represent the child and his/her mother. The test sessions were

automatically administered and recorded through the SAM system [82] (see section 3.3). Subse-

quently, the authors attempted to build a model that detects the attachment automatically through

various hand movement features i.e., the way children move the dolls while interacting with the

system. These features include hand positions, the distance between hands, hand speed, accel-

eration, 1D trajectories, and hand presence. Next, these features were mapped to the attachment

labels using a stacked LSTM model achieving an accuracy of 82.8%.

The adult attachment in terms of its two components (anxiety and avoidance) was explored

in [81] with respect to 5 different feature modalities (facial expressions, head pose, heart rate

variability, linguistics, and paralinguistics). In this work, the participants were exposed to 14

attachment-related stimuli and then asked to express their feelings during which the aforemen-

tioned features were extracted. Then, a 3-step approach was implemented where in the first

step, a score per modality per stimuli was obtained using linear regression. Subsequently, in

the second and third steps, these scores were fused to produce one score per stimuli and per

participant, respectively, using a shallow NN. This approach was trained using a dataset of 57

French-speaking participants and validated on a dataset of 19 English-speaking participants, and

the results were found to be correlating with the ground-truth labels obtained from AAQ (Adult

Attachment Questionnaire) with the correlation coefficient R= 0.79 for attachment anxiety and

0.74 for avoidance. Moreover, they found that facial expressions is the most important modality

in detecting attachment anxiety, whereas head pose and paralinguistic are crucial in detecting

attachment avoidance.

This section shows that there are few studies that aim at detecting attachment automatically.

While certain modalities such as facial expression and paralanguage have been explored for
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infants and adults leading to reasonable performances, these modalities have not been explored

for school-age children. Therefore, it is worth exploring the usefulness of building an automatic

approach for this age group based on these modalities.

2.1.4 Discussion

This review shows that there have been major efforts towards building automatic detection ap-

proaches for mental and developmental state conditions in the past decade yielding a significant

advancement in some cases. Depression, in particular, achieves a remarkable performance by

only analysing the non-verbal behaviours which leads to detection approaches that are both non-

invasive and more affordable to deploy. On the other hand, studies in attachment recognition

(for various age groups) suggest the feasibility of exploiting various behavioural channels to

detect attachment. This PhD research aims at detecting the attachment condition automatically

in school-age children (5-9 years) based on the MCAST assessment tool. This is attempted by

analysing and fusing three behavioural modalities namely, facial expressions, paralanguage, and

language.

While this seems like a promising direction to enhance attachment recognition, several chal-

lenges may be faced which are unique to the age group of the participants in this study. For

instance, various tools that were built for feature extractions are mostly trained on a set of only

adult participants and therefore it is unknown how well these tools can perform on children

datasets. This may require intensified efforts to tackle this major limitation in the existing liter-

ature.

2.2 Background

This section provides background information about the methodologies of our approaches. In

particular, Recurrent Neural Network (RNN) and its variant LSTM are described in sections

2.2.1-2.2.2. Next, Deep RNN architecture is illustrated in section 2.2.3. Then, the Convolutional

Neural Network (CNN) and its application to Natural Language Processing NLP is described in

2.2.4. Furthermore, the Logistic Regression binary classifier (LR) is described in section 2.2.5.

In the final section 2.2.6, several methods are introduced that are often used to create classifier

ensembles such as Sum-Rule and Majority Voting.



CHAPTER 2. LITERATURE REVIEW AND METHODOLOGICAL BACKGROUND 24

2.2.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are types of Artificial Neural Networks (ANNs) that were

built to detect patterns in sequential data i.e., they map a sequence (timesteps) of input vectors

X to an output vector or a sequence of output vectors Y where the output can depend on inputs

from previous (or following) time steps as opposed to ANNs where each output can depend only

on the current input. This is achieved through the recurrence connections (self-connections) of

the hidden units which feed the activations from the previous timesteps as input to the current

timestep. This augments the RNN network with the ability to learn patterns from past events

in the input sequence. Figure 2.2 shows the architecture of a simple RNN with a single hidden

layer. Each unit in the hidden layer at time step t computes a representation St that summarises

the patterns of the past timesteps. Therefore, the output at time t depends not only on the current

input, but also captures relevant information from past timesteps.

Figure 2.2: Conventional RNN Architecture. This figure shows the architecture of the conven-
tional Recurrent Neural Network with one hidden layer. The input layer feeds the input vector
of the current timestep through a set of connections which are parametrised by a set of weight
U . Additionally, each unit in the hidden layer is fed with the activations from the corresponding
unit of the previous timestep (self-connections of the hidden layer units) which is parametrised
by a different set of weight W . The hidden units apply linear combinations of these distinct two
incoming connections followed by an activation function. The activations from the hidden layer
are then fed to the output layer which is parametrised by the weights V .

The RNNs are trained in a supervised learning manner in which the network is presented with a

set of (input-output) pairs and the weights vectors (U , W , and V ) are optimised by minimising

a relevant objective function. The optimisation process of RNNs is similar to the feed-forward

networks which involves applying a series of forward and backward passes until the conver-
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gence is reached. The key difference in the RNN is that these passes involve computations from

multiple timesteps in order to learn the past dependencies. Consider an input sequence of length

T , the forward pass involves calculating the activations of the hidden units at layer h at timestep t

according to the following equation:

ht = θ(Uxt +Wht−1 +b) (2.1)

Where θ is a nonlinear activation function such as the hyperbolic tangent activation function

(tanh), xt is the input vector at timestep t, ht−1 is the activations from the hidden layer of the

previous timestep. U , W , and b are the input weight, recurrence weight, and bias vectors of the

hidden layer respectively. For a single input sequence, the equation 2.1 is repeated over the full

sequence by incrementing t starting from t=1 until t=T by feeding the recently evaluated ht−1 at

each timestep.

Depending on the task, the output can be either computed simultaneously at each timestep or,

as in most sequence classification problems, the output is computed after evaluating the full

input sequence in which the activation of the last timestep hT is passed to the output layer which

computes the output oT from:

aT =V hT + c (2.2)

oT = θ(aT ) (2.3)

Where V and c are weight and bias vector parameters. For classification problems, θ is typically

a softmax function that converts the linear combinations obtained by the output units to values

in the range [0,1] which can be interpreted as probabilities of a certain input belonging to a

certain class P(Ck|x). In multiple classification problems, the target is coded using 1 of K vector

representation where all elements of the vector are zero except the element that corresponds to

the true class (set to one). Thus, the softmax activation function assigns an output probability

value to a class k according to the following equation:
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P(Ck|x) =
eak

∑
K
j=1 ea j

(2.4)

where K is the number of the output units.

The objective function can be estimated either from one input sample, multiple samples, or

the full training set depending on the mode of learning. Many optimisation algorithms apply a

Stochastic Gradient Descent (SGD) method which estimates the error over a random subset of

the training set. This method is proven efficient as computing the error function over the entire

training set can be computationally expensive. One of the most applied optimisation algorithms

is Adam optimiser [83] which is an adaptive learning rate optimisation algorithm that adapts the

learning rate of the parameters to be proportional to their derivatives.

The backward pass involves calculating the derivatives of the error function with respect to the

weights parameters in the network in order to update these weights to minimise the overall error

in the next training step. One of the main algorithms that were derived to calculate the derivatives

efficiently is the Back-propagation Through Time (BPTT) algorithm [84] which extends over

the standard back-propagation algorithm by taking into account the influence of the previous

timesteps to the current output error function. This means that for each unit at the hidden layer,

we need to compute the gradients by recursively accumulating the gradients of the units that

follow it (either output units or next-timestep’s hidden units). In this way, all the weights are

adjusted through their influence on both output units at time t and hidden units at time t + 1.

This is implemented efficiently by applying the chain rule for partial derivatives starting from

the output layer and proceeding to the input layer. The derivative of the error function L(x,y)

with respect to wi j parameter is given by:

∂L(x,y)
∂wi j

=
T

∑
t=1

∂L(x,y)
∂at

j

∂at
j

∂wi j
(2.5)

which is evaluated over all the timesteps starting from t = T . The first term then can be evaluated

recursively for a single timestep as follows:
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∂L(x,y)
∂at

j
= θ

′(at
j)(

K

∑
k=1

δ
t
kw jk +

H

∑
h=1

δ
t+1
h w jh) (2.6)

where

δ
t
j =

∂L(x,y)
∂at

j
, (2.7)

and δ t
k is the delta terms computed over output units ak, and δ t

h is the delta terms computed over

the hidden units ah. H and K are the number of hidden units and output units, respectively.

The standard RNN has been proven effective in a wide range of applications that require se-

quential processing such as speech recognition and text generation. However, its effective-

ness is largely determined by the length of the temporal dependencies present in the input se-

quences. When these dependencies span over a short timestep sequence, it can be captured

effectively through the standard RNN. However, as these dependencies get longer (more than

5-10 timesteps [85]), the learning capabilities deteriorate considerably.

This problem essentially arises from having to propagate the derivatives of the error function

over a large number of timesteps and it has been known in the literature as vanishing and ex-

ploding gradients [86]. When the gradients are too small the weight parameters are adjusted by

small quantities which slow the learning process of the network. Conversely, when the gradients

are too large the update causes the weight parameters to oscillate rapidly and make it harder to

converge to the optimal parameters. A number of solutions have been proposed to tackle this

problem and the most notable solution is LSTM [87] which is considered to be the most effec-

tive solution to the problem (under appropriate parameterisation) [88] and it will be described

more in-depth in the next section.

Various other variants of the conventional RNN architecture have been proposed to tackle var-

ious types of problems e.g Bidirectional RNN [89] which allows to learn dependencies from

future input timesteps as well the past timesteps which are proven effective in contexts such as

machine translations. Another variant is Echo State Network (ESN) [90] which is proposed to

tackle the vanishing and exploding gradients by reducing the number of trainable connections.
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2.2.2 Long Short Term Memory (LSTM)

As mentioned above, the LSTM architecture was proposed to tackle the main limitation of the

standard RNN which is known as the vanishing and exploding gradients problem, and therefore

to enhance the network’s ability to capture dependencies that span over longer sequences. The

proposed architecture of LSTM is based on constraining the gradient flow to a constant value

so it neither vanishes nor explodes which is achieved through the unit’s self-connections and by

further introducing the input and output multiplicative gate units to control the content of the

network. Figure 2.3 shows the architecture of one unit (memory cell) of an LSTM network.

Figure 2.3: The Architecture of an LSTM Memory Cell. This figure shows the architecture
of one memory cell of an LSTM network. Each unit receives input and recurrent connections
shown in solid and dashed black arrows. The dark blue circle represents the memory cell where
the summation of the incoming inputs from other cells is calculated. The activations in g and
h can be either sigmoid or tanh functions. The green circles indicate the multiplicative gates
where each gate takes the input and the recurrent connections. The activations in these gates are
usually the sigmoid function. The green dashed connections show the peephole through which
each gate can inspect the content of the cell at the current timestep. The incoming input to the
cell is controlled by the input gate and similarly, the output is controlled by the output gate. The
forget gate controls the content of the cell.
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In this architecture, the hidden layer consists of a set of memory cells and the main difference

between an ordinary summation unit and a memory cell is the multiplicative gates (input, out-

put, and forget gates). The role of the input gate unit is to protect the content of a memory cell

from irrelevant input rather than updating the hidden representation at each timestep as in the

conventional RNN, thus allowing it to store content for a longer period of time. Similarly, the

output gate prevents perturbing the network output with the irrelevant contents of the memory

cell. An additional forget gate was proposed by [85] in which the network is augmented with the

ability to learn to reset (forget) the content of the memory cells once it becomes irrelevant. The

significance of the forget gate was shown in [91] where the authors found that the forget gate

along with the output activation function are the most essential parts of the LSTM architecture

and removing them from a memory cell affects the performance significantly. In [92], ”peep-

hole” connections were introduced into memory cells which are weighted connections between

the gates and the cells that allow these various multiplicative gates to inspect the content of the

cell (even when the output gate is closed) instead of basing their decisions only on the cell output

of the previous timestep.

According to [85, 87], LSTM architecture has the ability to capture patterns with dependencies

that span over 1000 timesteps which is a tremendous improvement over the standard RNN ar-

chitecture. However, this architecture can only mitigate the vanishing gradients problem [93]

and therefore LSTM network may still suffer from the exploding gradients [86] although the

exploding problem rarely occurs in practice [88].

2.2.3 Deep Recurrent Neural Networks

Deep learning models are developed to capture more complex functions compared to traditional

shallow machine learning algorithms by having multiple layers of linear and nonlinear units that

can learn higher-level representations. Deep models have successfully achieved state-of-the-art

performances in many classification and clustering problems.

The same motivation of having the ability to learn more complex functions to learn higher-level

representations is extended to the RNNs. However, the concept of depth is ambiguous in the

case of RNNs because these models are already deep when unfolded in time i.e., hidden layer

from the previous timestep feed to the hidden layer of the current timestep through the recurrent
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connections. Few attempts have been found in the literature [94, 95] that proposed a deep RNN

architecture. In [95], the authors explored several architectures of constructing deeper RNNs

by adding extra computational units in various transition connections and they found that these

deeper architectures achieve better performances in major sequence classification problems.

One of their proposed architectures is based on stacking multiple levels of recurrent layers where

each level operates on (takes as input) the hidden representation at the lower level of layers which

encourages the top levels to operate at different timescales. Figure 2.4 depicts the architecture

of the stacked RNN with two LSTM hidden layers unfolded in time. The core concept is that

the top level of layers z takes the hidden representation of lower-level layers h as input to learn

higher-level representations.

Figure 2.4: Stacked LSTM. This figure shows the structure of the 2-stacked LSTM for classifi-
cation problems. Boxes correspond to hidden layers and circles denote input and output layers.
The sequence of T input vectors (X) is fed to the first row of hidden layers h where each layer
learns a representation ht that depends on the current input xt and the previous activation ht−1.
Each layer in the second row z learns a higher level representation zt that depends on the lower
representation ht and the previous activation zt−1. The output layer y takes as input the final hid-
den representation hidden layer zT which summarises the full sequences and applies the softmax
activation function for prediction.

2.2.4 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) have yielded remarkable breakthroughs over the past

years in the fields of computer vision and natural language processing [96–98]. Inspired by
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the biological vision systems, the core process of the CNN is the convolution operation which

is a mathematical operation that refers to combining two functions to produce another output

function. More specifically, CNN convolves a set of learnable weights (called filters or kernels)

with local patches of the input data in order to extract meaningful patterns for the task at hand.

Depending on the shape of the data and the underlying task, filters in CNN can take various

dimensional shapes for example, in image processing tasks, filters often take 2-Dimensional

shapes whereas in time series signals filters can have 1-Dimensional shapes.

The appealing property of using the convolution operation is that these learnable weights are

shared across the full input representation meaning that instead of assigning a separate weight for

each input element as in conventional feedforward networks, CNN used the same set of weights

across the input data. This reduces the computational complexity considerably depending on the

size of filters relative to the input data size. The shared weights also allow to detect the similar

patterns over the full input for example, in image processing one filter can detect edges over the

full input image.

By training an adequate number of filters over the same input, a wide range of patterns can be

detected which enhances the learning capabilities considerably compared to traditional feature

extraction methods. These capabilities can be further enhanced by adding several layers of

convolving filters that detect higher levels of representations.

CNN in NLP

Recently, several studies proposed applying the CNN architecture for text modelling in various

NLP problems such as text classification [99, 100], sentence modelling [101], and other auto-

matic text-based tasks [102]. In [99], the authors showed that one layer of convolution on top

of pre-trained word embeddings word2vec has achieved a remarkable performance on various

sentence classification tasks compared to conventional methods. Additionally, a very deep CNN

was proposed in [100] in which the best performance was achieved with a deep model of 29

convolutional layers and a max pooling layer, improving over the state-of-the-art on several text

classification tasks.

One of the key elements in text modelling is the choice of word representation methods which

can have a significant effect on the overall performance and the complexity of the approach. Sev-
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eral word representation methods have been proposed in the literature such as Bag-Of-Words,

One-Hot encoding, and word embeddings. Word embeddings have the property of project-

ing words’ high-dimensional sparse representation into a dense fixed-length representation with

lower dimensions. Additionally, embeddings can capture the semantics of words by projecting

words with similar meanings closer to each other in the new space which makes them feature

extractors in themselves [99].

There are two main ways to learn these embedding representations: they can be learned jointly

from scratch over the dataset of the specific task where in this case, an embedding layer is

cascaded on top of the classification model and trained in an end-to-end manner. Instead, pre-

trained embeddings can be used which are trained over a rich text dataset and it can be also

fine-tuned with the task dataset. The most commonly used pre-trained word embeddings are

word2vec [103], and glove [104]. Learning the embeddings from scratch for a specific task can

have the advantage of better capturing the semantics that are specific to the dataset.

Another significant advantage of using word embeddings is that it produces an image-like rep-

resentation which makes it possible to be processed by a CNN model. The standard architecture

of such a model is depicted in Figure 2.5. The input embeddings of size n ∗m are convolved

with k filters. The size of the filter matrices in NLP is usually set to have the same width as the

embeddings m whereas the height r is set as a hyper-parameter. This makes filters move in one

direction hence, it captures word relationships, as each word is represented in one row in the in-

put embeddings. Moreover, filters can also have varying sizes which enables capturing multiple

types of features. Each convolution operation results in a real-valued scalar and the full pass of

one filter over the input representation results in a feature map vector of size (n− r+1)10.

By convolving an adequate number of filters, rich information can be extracted which often

can be high dimensional. Therefore, pooling methods can downsample the feature maps while

preserving the most salient features such as max pooling and average pooling. Higher-level

representation can be further learned using an additional dense layer and a softmax layer is used

in classification problems to assign a probability value to each class.

10For valid padding and a Stride=1.
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Figure 2.5: CNN Standard Architecture for NLP Problems. This figure shows the architec-
ture of the standard one-layer CNN for text classification problems. The input text is represented
by n∗m embeddings where n represents the number of tokens in the input text and m represents
the dimensions of the embedding representation. Then, the embedding is convolved with k filters
in which the size of the filters is set to r ∗m where r is the filter size and it is set as a hyperpa-
rameter and m is the size of the embeddings. Thus, the filters are moving in one direction hence
it is called 1-Dimensional CNN. Convolving all k filters results in a set of k vectors called fea-
ture maps. Feature maps can often be high dimensional which can be reduced using a pooling
strategy followed by a dropout to enhance the generalisation. A dense layer is applied to learn a
higher-level representation which then can be classified with a softmax layer.

2.2.5 Logistic Regression (LR)

Logistic regression (LR) is a probabilistic machine learning model widely used for classification

problems. Its output can be interpreted as estimating the probability of a given input x belonging

to one of the classes, for example, a binary logistic regression model estimates the quantity

p(y = 1|x) which is given by:

p(y = 1|x) = 1
1+ exp(−wTx+b)

(2.8)

where x is the input vector, w and b are weight and bias vectors, respectively. The quantity

σ(a) = 1
1+exp(a) is a sigmoid function that serves as a squashing function that converts a real

value input a to a value bounded between 0 and 1. The parameters w and b are estimated by

optimising an objective function corresponding to maximising the negative log-likelihood (over

the N data points) which gives rise to the cross entropy loss function given by:

L(y, ŷ) =− log p(y|x) =−
N

∑
n=1
{yn log ŷn +(1− yn) log(1− ŷn)} (2.9)
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where ŷn = σ(−wT xn+b) and yn is the true labels. This function can be optimised with an itera-

tive method based on Newton-Raphson optimisation techniques such as the L-BFGS11 method.

A regularisation term such as L1 and L2 norms can be added to the above loss in order to

improve the generalisation of the LR model and a hyper-parameter λ has to be predefined to

specify the strength of the regularisation effect. Thus, the L2-norm regularised loss function is

given by:

L(y, ŷ) =− log p(y|x) =−
N

∑
n=1
{yn log ŷn +(1− yn) log(1− ŷn)}+

λ

2
||w||2 (2.10)

2.2.6 Ensemble Learning

Ensemble learning in classification problems aims at combining decisions made by multiple

classifiers trained individually over a pattern X to enhance the performance of the individual

classifiers. These multiple classifiers can be obtained by training on different representations

of the same input pattern X, using different classification methods or weights of the same X

representations, or trained over different training sets [105]. Ensemble methods are only ex-

pected to lead to better performance than its individual members if those members perform well

individually and if they are diverse or statistically independent meaning that they make different

mistakes over different input samples [106, 107]. This is possible because in this case different

classifiers may offer complementary information about the same pattern which in turn lead to

better identification rate. If the members are not diverse it means that it is very likely that they

will agree on the same mistakes which in turn results in an ensemble with similar performance as

the members. Several methods have been suggested in the literature to ensure that the ensemble

of classifiers is as diverse as possible such as bagging and boosting [107].

Given multiple classifiers, various methods have been proposed to create classifier ensemble

such as Product Rule, Sum Rule, Mean Rule, and Majority Voting which are examples of non-

trainable combiners. According to [107], the simplest method which is based on aggregating the

votes made by the ensemble members (i.e., Majority Voting) can lead to performance higher than

the recognition rate of an individual classifier. Moreover, they proved that, under the statistical

independence assumption, increasing the members of the ensemble can decrease the empirical

11Limited-memory (Broyden–Fletcher–Goldfarb–Shanno algorithm).
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mean squared error MSE.

Kittler et al. [108] showed that using the above combining methods can be viewed as building a

single compound classifier F(X) in which its class posterior probability can be jointly estimated

from applying the above methods to the estimations made by individual members f (x1).... f (xR).

Under various assumptions and approximations, they were able to derive these combining rules

and further, they constructed a framework to derive other possible combining rules. Moreover,

they showed experimentally that Sum Rule outperforms other rules, although it was developed

under the most restrictive assumption (see below), due to its resilience to the estimation error of

the class posterior probability.

In the following, a formal brief description of the three most commonly used combining rules

is presented: given an input pattern X , the goal is to assign X to one of m possible classes

(y1...ym). Number of classifiers R aim to assign X to target class by representing X using a

different representation xi i.e., each individual classifier f (xi) estimates the jth class posterior

probability over its own input representation p(y j|xi). Thus, the ensemble function F(X) is

modelling posterior probability given by p(yk|x1...,xR).

Product Rule

By assuming that different representations of X are conditionally statistically independent, the

product rule estimates the posterior probability by multiplying the posterior probability ”sup-

port” made by individual classifiers f (xi) and assigns the input pattern to the class with the

highest support. More formally, the product rule assigns a pattern X to a class yk if

R

∏
i=1

p(yk|xi) = maxm
j=1

R

∏
i=1

p(y j|xi) (2.11)

It can be observed that this rule is sensitive to near zero values [109] as it is sufficient for one

classifier to assign zero to the true class for the ensemble to make the wrong decision therefore,

this can lead to poor performance in practice compared to other rules.
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Sum Rule (SR)

Sum Rule is one of the most widely used classifiers combiners along with majority voting rule

(discussed below). It estimates the joint posterior of the ensemble by summing the support to

each class made at each individual classifier i.e., it assigns a pattern X to class yk if

R

∑
i=1

p(yk|xi) = maxm
j=1

R

∑
i=1

p(y j|xi) (2.12)

According to [108], SR is derived under the assumption that the posterior probability deviates

from the prior only by a small fraction meaning that P(yk|xi) = P(yk)(1+ δki). While this is a

very strong assumption, it can be readily satisfied especially in domains where the datasets are

highly noisy and ambiguous.

Majority Voting (MV)

This method aims at combining the decisions made at each classifier rather than the posterior

probabilities where each component of the ensemble votes for a particular class and the ensem-

ble decision is made by choosing the class with the highest number of votes. More formally,

MV estimates the joint posterior probability of the ensemble by approximating the component

posterior probability to produce a binary values according to the following formula:

∆i j =

1 if p(y j|xi) = maxm
k=1 p(yk|xi),

0 otherwise
(2.13)

Subsequently, MV assigns X to class yk if:

R

∑
i=1

∆ik = maxm
j=1

R

∑
i=1

∆i j (2.14)



Chapter 3

Attachment Assessment and Data

3.1 Overview

This chapter describes the attachment assessment tool and the dataset that was adopted for the

experiments. The assessment tool is based on the Manchester Child Attachment Story Task

(MCAST) [11], the standard attachment assessment tool for school age children which is based

on a vignette-completion and doll-playing method. This tool has been previously automatically

administered through the School Attachment Monitor (SAM) [82] in which the MCAST is fully

administered and recorded automatically prior to the assessment process. In 87% of the cases,

the system was capable of administrating the interview sessions and capturing recordings that

were informative enough for human assessors to be able to rate these recordings in terms of

the attachment styles. This constitutes a major element of the automation process where the

workload of the administration process is reduced considerably.

Several attachment assessment tools have been proposed previously in the literature such as

Strange Situation procedure (SSP) for infants [4], Attachment Doll-Play Interview [10], separation-

reunion story completion task [110] for preschoolers (3-6 years old), and Adult Attachment In-

terview (AAI) [77] for adults. The common element between such tools that were developed for

pre-schoolers is that they are all based on introducing children to stressful doll-play scenarios

to elicit various attachment-related behaviours. MCAST complements these previous tools with

the aim to develop an attachment assessment tool in young school-age children (5-9 years old)

by relying on similar vignette-completion and doll-playing methodologies which are believed to

37
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be the most appropriate eliciting tools for this age group.

The rest of this chapter is organised as follows: first, a description of the MCAST is presented

in section 3.2, then, in section 3.3, SAM system will be described. Next, the description of the

participants is presented in section 3.4. Lastly, section 3.5 describes the recordings and presents

statistical information about the dataset.

3.2 Manchester Child Attachment Story Task (MCAST)

The MCAST [11] is designed to assess the attachment styles in school-age children (5-9 years

old) and is based on a vignette-completion and doll-playing method. Children are introduced

to a playing doll house and provided with two dolls and asked to choose one doll to represent

the child and the other to represent the primary caregiver (typically the mother). Then, they are

asked to listen to five different scenarios in which the child is faced with varying degrees of

stressful situations while the caregiver is close but not proximate. These scenarios are chosen

to be age appropriate and are expected to elicit attachment-related behaviours. This allows the

children to exhibit proximity-seeking behaviours through the way they complete the story, play

with dolls, and describe their feelings.

The five scenarios are as follows:

1. Breakfast (BF): the mother wakes the child up in the morning while she is preparing

breakfast.

2. Nightmare (NM): the child awakes at night alone after having a nightmare and she calls

her mother for comfort.

3. Tummy-ache (TA): the child was sitting at home watching TV and felt abdominal pain

and asked the mother for assistance.

4. Hopscotch (HS): the child was playing outside when she fell and hurt her knee.

5. Shopping Mall (SM): the child finds herself lost at a shopping mall and tries to establish

contact with her mother again.

The first story (BF) is intended to act as an introduction to the task where no distress or conflict is
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being conveyed. However, it might still induce attachment related behaviours [11]. The remain-

ing stories are chosen so they convey different distress situations which may invoke different

attachment related behaviour to allow for a fine grain analysis of the IWMs.

Each scenario consisted of two consecutive phases, in the first phase (induction phase), the

interviewer describes the scenario while amplifying the intensity of the distress situation to the

point where the child is clearly engaged with the story. In the second phase (completion phase),

the interviewer asks the child to complete the story using the dolls. After completing the story,

the interviewer asks the child to describe how the child and the mother feels: ‘Can you tell me

how the child/parent doll is feeling now?’. This allows one to provide more clarification about

intentions and feelings behind the story completions. The interview takes between 20 to 30

minutes to administer and between one to two hours to assess depending on the complexity of

the materials.

This instrument was validated on a sample of 53 participants achieving an inter-rater agree-

ment at distinguishing between secure vs insecure of 94%. Several behaviours were found more

predictive than others such as proximity seeking, degree of assuagement, engagement in the in-

terview, and narrative coherence [11]. Moreover, the MCAST shows concurrent validity against

other well-validated attachment tools such as AAI [111]

3.3 School Attachment Monitor (SAM)

Attempts to automate the MCAST administration process have been made through Comput-

erised MCAST (CMCAST) [112], and School Attachment Monitor (SAM) [12, 82]. This elim-

inates the need for trained professionals to conduct these interviews and therefore reduces the

workload of health practitioners considerably as it typically takes between 20 to 30 minutes per

child to conduct these assessment interviews. Figure 3.1 shows the setup of the SAM system.

As shown in the figure, the system consists of five main elements: a computer screen, a button

to signal the end of each stage of the interview, two dolls to represent the child and the caregiver,

and a toy house with the main furniture in which children act out the story completions. The

setup is also equipped with a camera to record the upper body of children while interacting with

the system. The interview session is conducted in the following consecutive steps:
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1. The participant watches a video on the screen where an actor shows the vignette and asks

the participant to complete the story using dolls;

2. The participant completes the story using the dolls and presses the button to signal the end

of the story;

3. Pressing the button in the previous step activates another video where the actor asks the

participant to describe how the child doll feels;

4. The participant starts explaining how the child of the story feels and presses the button to

signal the end of the task;

5. A video is activated where the actor asks the participant to describe how the caregiver doll

of the story feels;

6. The participant explains how the caregiver doll feels and presses the button to signal the

end of the task;

7. The system starts again at step 1 for the next vignette until all five vignettes have been

presented to the participant.

This system was validated on a dataset of 120 participants to administer the MCAST [80], where

each child was rated as secure, insecure, or non-assessable1 by a pool of 4 trained assessors and

in the case of disagreement between assessors, consensus has been reached through discussions.

The results show that the attachment style is identified in 104 out of 120 meaning that SAM was

able to administer MCAST with a success rate of 86.7%. In other words, the system succeeded

at administering the MCAST by collecting enough materials for the assessors to be able to rate

the recordings in 104 out of 120 cases.

3.4 Participants

The total number of participants in the experiments is 104 whose assessment interviews were

successfully administered through SAM. The age range of the participants is 5-9 years and

they were recruited from primary schools in Glasgow [80]. Table 3.1 shows the distribution of

1Corresponding to the cases in which the recorded materials did not provide enough information for the assess-
ment.
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Figure 3.1: Setup of SAM System. The figure shows the setup of the SAM system. Element 1:
a computer screen where the actor presents the story stems and guides the children through the
system’s various stages. Element 2: a button that participants are instructed to press to signal
the end of each stage. Element 3, 4: two dolls to represent the child and the caregiver. Element
5: a toy house with main furniture. In the back, a camera is set to capture the upper body of the
participants while interacting with the system.

participants across school levels, gender groups, and attachment styles. According to χ2 test,

the attachment distribution in the participants is within a statistical fluctuation with respect to

the attachment distribution in the general population [13, 14]. The attachment labels were made

by a pool of four trained assessors in which each participant was assessed independently by two

random members from the pool. In the case where there is an agreement between the assessors,

the decision is accepted, otherwise, all the members in the pool discuss the case to reach a

consensual decision.

As shown in the table, there are more children from levels P2 and P3 which account for two-

thirds of total number of participants. In addition, the fraction of insecure children in levels P1

and P2 is higher than other levels. Regarding gender distribution, the percentage of female and
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Level P1 (5-6) P2 (6-7) P3 (7-8) P4 (8-9) Total

Female 9 22 15 11 57
Male 10 18 14 5 47

Secure 9 22 18 10 59
Insecure 10 18 11 6 45

Total 19 40 29 16 104

Table 3.1: Participants Distribution. Participants distribution across school levels. The num-
bers between parentheses indicate the age range of the corresponding school level. For each
level, gender and attachment styles distributions are also provided.

male participants is 55% and 45%, respectively, with the biggest variations appears in level P4.

According to χ2 test, such a distribution is the same as in the general population.

3.5 Data

The data is comprised of video recordings that were collected using SAM system. The total

length of the recordings is 18 hours, 30 minutes, and 34 seconds with the average length being

640.7±273.5 seconds. The video length varies across participants as shown in Figure 3.2. The

average video length for the secure group is 650.2± 232.7 whereas it is 628.3± 316.2 in the

insecure group and according to two-tailed t-test, there is no statistically significant difference

in video length between the attachment groups. The video resolution is 1920 x 1080 pixels, the

frame rate is 30 frames per second, and the sampling rate of the audio stream is 44100 Hz.

The average length of the recordings that corresponds to each story is shown in Table 3.2. As

shown in the table, The induction phase varies between stories with SM having the longest

induction phase. Moreover, in the completion phase, the BF is longer, on average, than other

stories to a statistically significant extent (p < 0.05) whereas there are no significant differences

among other stories. A possible reason for this difference is that BF is the first story in the

interview and therefore it might take longer for children to familiarise themselves with how to

interact with the system.

For the language-based classification approach, the interviews were automatically transcribed

using the online transcription tool sonix2 resulting in a total number of words in the dataset

2https://sonix.ai
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Figure 3.2: Recording Length Distribution. The figure shows the length of the full recordings
for all participants in the dataset in seconds. For clarity, two samples whose lengths are above
1500 are truncated and the corresponding lengths are 1942 secs and 1822 secs .

Story BF NM TA HS SM

Induction Phase 24 33 36 36 78
Completion Phase 113.0±78.3 84.6±73.6 75.3±58.2 80.4±66.4 80.5±78.5

Total Length 137.0±78.3 117.6±73.6 111.3±58.2 116.3±66.4 158.5±78.5
Amount of Words 115.6±124 79.3±111.1 69.3±78.8 79.1±94.2 84.5±143.6

Table 3.2: Average Recording Length and Amount of Words per Story. This table shows the
average recording length measured in seconds and the amount of words per story. The length of
each one of the two phases is also provided.

of 43,725, where the average number of words per participant is 420.4± 443.2. The average

number of words per secure and insecure group is 474.8±392.3 and 349.1±488.7, respectively.

According to t-test, there is no statistically significant difference between attachment groups

concerning the amount of words. Additionally, the number of words per each story is shown in

Table 3.2, according to t-test, The amount of words is higher in BF compared to the three lowest

stories (NM, TA, and HS) to a statistically significant difference (p < 0.05).

3.6 Chapter Summary

This chapter described the MCAST assessment tool along with the automatic administration

system SAM that was adopted to collect the dataset of this research. A description of the par-

ticipants and distribution information is also provided. The dataset is also described along with

various statistical information in terms of the recording lengths and the amount of words.



Chapter 4

Unimodal Approaches

4.1 Overview

This chapter presents the three unimodal approaches used in the experiments. For each approach,

the methodology is described and the results are presented. These approaches are based on

three different behavioural channels, namely: facial expressions, paralanguage, and language.

These behavioural channels are considered to be the main channels that people use to express

their emotions and inner states and therefore it is worthwhile exploring what these channels can

convey about the attachment in children. Most of the results in this chapter (and the next chapter)

were previously presented and published in major venues relevant to this work [113–115].

The following three sections will be dedicated to describe each approach individually. Each

approach addresses a classification problem where the video recordings are mapped to one of

the two attachment classes (negative class: secure attachment, and positive class: insecure at-

tachment). The key steps in each approach are extracting a relevant set of features and building

a classification model that can learn patterns from these extracted features. Moreover, the effect

of gender and age variations in the performance are also presented which can provide insights

on how children with different attachment styles manifest their condition.

The section that follows provides comparisons between these three approaches concerning over-

all performance, performance obtained at each MCAST story, and performance for specific age

and gender groups. Various conclusions have been drawn from these comparisons which can

44



CHAPTER 4. UNIMODAL APPROACHES 45

provide insights and suggestions on how to improve the attachment recognition. For instance,

one approach was found to work better for children from lower age groups while a different one

works better for children from greater age groups indicating the possibility of adopting different

approaches for different age groups.

To assess the effectiveness of the approaches i.e., whether the approaches are capturing attachment-

relevant cues, the results were compared to the random guess classifier which assigns samples

to class c according to a priori probability p(c), such a classifier would have an accuracy that

can be computed from ∑c∈c0,c1 p(c)2 (for binary classifications). Due to the imbalance between

attachment groups in our dataset (and in the general population), additional performance metrics

are also reported in the results to account for this imbalance i.e., to provide a better idea of how

the approaches perform at individual classes. These metrics include precision, recall, and F1-

score with their random guess performance can also be derived from classes prior probabilities

p(c). More specifically, the number of true positive TP and true negative TN predictions of the

random guess classifier can be derived from:

T P = n× p(c1)
2

T N = n× p(c0)
2

where n is the total number of samples in the dataset, p(c1) and p(c0) are the prior probabilities

of the positive class and negative class, respectively. Accordingly, the number of false negatives

FN and false positive FP predictions can be calculated from:

FN = P−T P

FP = N−T N

where P and N is the number of positive and negative samples in the dataset. This allows to

calculate the three above metrics of the random guess classifier from:

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F1−Score = 2× Precision×Recall
Precision+Recall
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4.2 Facial Expressions Based Approach

The first unimodal approach is based on analysing facial expressions and how are they related

to differences in attachment styles. Facial expressions have been long explored due to their

relevancy to affective and emotional states and how they can reveal various emotions. One of the

earliest and most prominent works that investigated facial expressions and their association with

emotions was written by Charles Darwin and was first published in 1872 (‘The Expression of the

Emotions in Man and Animals’). In this book, Darwin explored facial expressions in humans and

how some emotions have universal facial expressions and also suggested that facial expressions

of emotions are evident in some animals [116]. This is one of the main works that influences the

modern-day research in facial recognition that was pioneered by Paul Ekman and his colleagues

since the 1970s. One of the most important Ekman’s works was the development of a coding

system to represent facial expressions, the Facial Action Coding System (FACS) [117]. This

system provides a universal comprehensive coding for facial expressions and it is applied in

most facial expressions research. Another coding system for facial expressions is the Facial

Animation Parameters (FAPs) [118, 119].

Since the coding systems are made available, the literature shows that emotions, psychologi-

cal, and affective disorders can be detected from facial expressions [120]. For this reason, in

this study, we attempt to implement an approach that uses FACS to detect attachment styles in

children.

4.2.1 Facial Action Coding System (FACS)

A brief description of FACS will be provided below as it is the core element of our facial expres-

sion approach. Ekman and Friesen proposed describing facial expressions by the corresponding

facial muscle movements that cause these expressions. They studied every facial muscle move-

ment and noted the visible associated effects, which they called Action Units (AU). Accordingly,

they identified all possible AUs and assigned them a unique code such as AU3 and AU12. Table

4.1 shows examples of AUs along with their corresponding movement muscles [121]. Moreover,

given this coding, the basic emotions can be also described with one or more AUs, for exam-

ple, happiness expression can be mainly characterised by two action units AU12 (Lip Corner

Puller), and AU25 (Lips part) whereas anger expression can be characterised by three muscle
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movements, AU4 (Brow Lowerer), AU7 (Lid Tightener), and AU24 (Lip Pressor) [122].

Action Unit Description Muscles Example Image

AU1 Inner brow raiser Frontalis, pars medialis

AU4 Brow Lowerer Depressor Glabellae,
Depressor Supercilli,
Currugator

AU7 Lid Tightener Orbicularis oculi, pars
palpebralis

AU23 Lip Tightener Orbicularis oris

Table 4.1: Examples of Facial Action Units. The table shows examples of facial action units
along with their facial muscles. Example images were taken from [123].

In about two decades after the development of the FACS, the efforts have been directed towards

automating the facial Action Units Detection (for a survey, see [124] ). In this respect, the Open-

face toolkit is one of the most popular publicly available toolkits for facial behaviour analysis

which can detect the intensity and the presence of various action units [125, 126]. For intensity

detection, a real value in the range [0, 5] is assigned to the AU to reflect the intensity of the

muscle movement, whereas in presence detection, a binary value is used to indicate the pres-

ence or absence of a certain AU. Its implementation relies on appearance features based on HoG

descriptors and geometry features based on the landmark locations [127].

4.2.2 Approach

Figure 4.1 depicts the overall architecture of the facial expressions-based approach. The ap-

proach consists of three main steps: 1) features extraction, 2) attachment recognition, and 3)

aggregation. The first two steps are applied to the segment of the video recordings that corre-

sponds to a single story, this yields five predictions per participant which are then aggregated to

make the final prediction (participant-level prediction). This means that a separate classification

model is trained over the material that corresponds to one story. This decision is made based
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on the rationale of having multiple different stressful scenarios in the MCAST assessment tool

which suggests that having different attachment-related scenarios can invoke attachment-related

behaviours to different extents. Thus, training a separate classification model on the material

that corresponds to one story can capture different behavioural cues that are related to the spe-

cific scenario rather than learning general behaviours which might be harder to detect. This in

turn can create an ensemble of classifiers that is expected to lead to a better performance.

Figure 4.1: Architecture of the Facial Expressions-based Approach. This figure shows the
overall architecture of the facial expressions approach. The features are extracted from video
segments corresponding to a single story s. Each video frame results in one AUs vector. A
summary vector is derived where the ith element corresponds to the ith AU by calculating the
fraction of frames with AU values that are greater than θi. LR refers to the Logistic Regression
classification model which results in story-level predictions. The above steps are repeated for all
stories hence the five boxes in the figure. This results in five predictions per participant which
then are aggregated using aggregation methods to give the final participant-level prediction PF .

Features Extraction

In the first step, facial action units (AUs) were extracted from each video frame using the Open-

face toolkit [126, 127]. In this study, we extracted the intensity values of 17 AUs comprising

the set of all AUs that can be recognised with Openface which are listed in Table 4.2. In the ex-

traction step, this set of AUs is assigned real values in the range [0, 5] to reflect the intensity of

the muscle movements where 0 indicates no movement, 1 indicates a movement with minimum

intensity, and 5 indicates a movement with the highest intensity. This results in a sequence of

feature vectors where each vector encodes one video frame.

After extracting these AUs, a threshold value (θ ) per AU can be estimated from the training

set. This θ value corresponds to the intensity value that discriminates between the highest 5%
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AU Description Face Area

AU1 Inner Brow Raiser

Eyes Area

AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU5 Upper Lid Raiser
AU6 Cheek Raiser
AU7 Lid Tightener
AU45 Blink
AU9 Nose Wrinkler Nose Area
AU10 Upper Lip Raiser

Mouth Area

AU12 Lip Corner Puller
AU14 Dimpler
AU15 Lip Corner Depressor
AU17 Chin Raiser
AU20 Lip stretcher
AU23 Lip Tightener
AU25 Lips part
AU26 Jaw Drop

Table 4.2: List of Action Units. The table lists the description of the 17 facial Action Units
(AUs) that were extracted by OpenFace with their corresponding face area. Each AU is pre-
sented with the corresponding muscle movement description as defined in [121].

intensity values and the lower values. Therefore, having this θ value, it is possible to obtain the

fraction of frames f in a given video recording in which a certain AU is above the corresponding

θ . In other words, this process obtains the fraction of frames where a corresponding AU is being

the furthest from the neutral expression meaning that each recording is being represented by how

often the AUs are being displayed.

This decision is motivated by the fact that the extracted feature vectors mostly correspond to

neutral expressions. This means that the sequence-based approaches might not be well suited to

capture any related information. Therefore, representing the input videos by taking into account

only the video frames in which an expression is being displayed can be more informative (sep-

arable) for our classification task. Thus, at the end of the extraction step, each video recording

that corresponds to one story is converted to a feature vector of dimension D=17 where the ith

element corresponds to the fraction of frames fi in which the intensity of the ith AU is above its

corresponding threshold θi.
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Attachment Recognition

The next step is attachment recognition, where the the above resultant summary features vectors

are fed to a Logistic Regression classifier which maps these vectors to the attachment types

according to equation 2.8:

p(y = 1|x) = 1
1+ exp(−wTx+b)

where x is the feature vector corresponding to one input sample, w is the weight vector, and

b is the bias parameter. The above formula produces a value between 0 and 1 that can be

interpreted as a probability value. The training involves minimising the loss function to find the

optimal parameters w and b which corresponds to maximising the cross entropy function which

is given by equation 2.9. This loss is also penalised using an L2-norm regularisation λ

2 ||w||
2

in order to enhance the generalisation where λ specifies the regularisation strength (equation

2.10). Optimising this error function is implemented using the L-BFGS which is a second-order

optimisation algorithm belonging to the class of Quasi-Newton iterative methods.

The above two steps result into five predictions per participant that have to be aggregated. This

brings us to the final step of our approach.

Aggregation

In this step, the predictions that were made in the previous stages are aggregated to make a deci-

sion at the participant level, meaning that participants are assigned to one of the two attachment

classes (Secure and Insecure). In this study, two aggregation methods were applied: Majority

Voting (MV), and Sum Rule (SR) (see section 2.2.6). MV aggregates the decision labels that

were made at the story level in which the participants are assigned to the class where the majority

of their stories are assigned to.

In the second aggregation method, the posterior probabilities that were estimated by the LR

model at each story are summed and the participants are assigned to the class with the highest

value. One advantage of SR over MV is that predictions with higher probability can have more

influence on the aggregation results. The choice of this late fusion scheme instead of an early fu-

sion for stories aggregation lends itself naturally to the way the assessment process is conducted



CHAPTER 4. UNIMODAL APPROACHES 51

in the manual mode. Specifically, according to [11], each story is assessed and rated individually

and the full interview is rated based on the predominant classification across all stories.

The above classification model has led to a significant improvement in the performance com-

pared to other various models including: a Deep RNN model with frame-based AUs features,

an SVM model to classify either the vector of AUs or each AU separately, and an SVM model

with a summary vector as the one illustrated above.

4.2.3 Experiments and Results

Experimental Design

The experiments were implemented with the k-fold protocol where k=10, in which participants

were randomly assigned to one of the k disjoint groups, with k-1 folds were used as a training set

and the remaining fold was used as a testing set. The results from each fold-based iteration were

combined to compute the total classification results. This is to overcome the limited number

of samples in the dataset. Moreover, the samples in each fold were assigned using a stratified

method to maintain the class distribution across different folds. This is to tackle the class imbal-

ance in the dataset to ensure that no class is being underrepresented in any fold. Additionally,

each experiment was repeated R = 10 times and the final results are presented in terms of aver-

ages and standard deviations over these R repetitions. This is to account for the randomisation

involved in the initialisation of the LR parameters and the generation of the k folds.

An L2 regularisation was implemented in the LR model to reduce the generalisation error for

the unseen data. In this respect, a hyper-parameter C (inverse of the regularisation strength) has

to be set to determine the strength of the regularisation effect. In this study, C was optimised

by a nested cross-validation scheme and grid search method, meaning that the model with the

best C value on a validation set is selected for the final predictions. The number of folds of

the nested cross-validation were set to k=10, where k-1 folds were used as training set and

the remaining fold as a validation set. The grid search was set over the following discrete set

C ∈ {0.05,0.1,0.5,0.75,1,5,10}.
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Evaluation Metrics

The results in all experiments are presented in terms of four performance metrics common in

classification problems: Accuracy, Precision, Recall, and F1-score, where each metric provides

a different perspective on how well an approach performs. In Accuracy, the performance is as-

sessed as the fraction of correctly predicted cases among all cases. In clinical applications, the

rate of identifying positive cases (in this study, children who have insecure attachment style) is

of significant importance because this is when the recognition approaches provide information

about who needs treatment, this is where Precision, Recall, and F1-score can give a better es-

timate on how a system performs. In particular, precision provides a measure of how well the

approach correctly identified the positive cases among all positively identified cases, whereas

recall measures how well the approach identifies positive cases among all positive cases in the

test set. F1-score combines these two measures in one metric using the harmonic mean.

The following equations define these metrics in terms of the predicted cases: TP, TN, FP, and

FN denoting true positives, true negatives, false positives, and false negatives respectively.

Accuracy =
T P+T N

T P+T N +FP+FN

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F1−Score = 2× Precision×Recall
Precision+Recall

(4.1)

Statistical Significance Tests

The statistical significance of the results were examined by utilising the t-test and the signifi-

cance level is reported in three different p-values (p < 0.05, p < 0.01, and p < 0.001). T-test

assumes that the samples follow a normal distribution and the variances of these samples are

homogeneous. In our experiments, the comparisons were made between the averages of 10

repetitions of each experiment and according to Central Limit Theorem (CLT), the averages of

large enough samples 1 tends to approximately follow a normal distribution. Moreover, a nor-

mality test was conducted for the performance results obtained from these repetitions, and the

1The sample size should be at least 30, the larger the sample size the closer the sample averages to a normal
distribution.
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corresponding p-values are reported in Table A.1 (see Appendix A for more details). In addi-

tion, no major differences in the variances are noted between different samples and thus these

assumptions are not violated.

Results

Table 4.3 presents the results of the facial expressions-based approach in terms of the above four

performance metrics along with the random guess baseline. As the table shows, all experiments

perform better than the baseline to a statistically significant extent in all metrics (p < 0.001,

single-tailed t-test), except for the recall in the HS story. The best performance is achieved by

majority vote (MV) with accuracy of 64.3% and F1-score of 56.1% and this improvement is

statistically significant with respect to any individual story for accuracy, precision (p < 0.01),

and F1-score (p < 0.05). This suggests that models that were trained over different individual

stories are diverse, i.e., they tend to make different mistakes over different samples, an essential

property for multimodal combination to improve over their unimodal components [106] (see

section 2.2.6).

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast (BF) 59.4±1.2 52.9±1.4 51.9±2.5 52.3±1.6
Nightmare (NM) 61.9±2.3 56.5±2.9 52.2±3.2 54.3±3.0
Tummyache (TA) 61.4±2.2 55.9±2.9 49.8±2.5 52.6±2.4
Hopscotch (HS) 57.4±2.0 50.2±2.7 44.3±3.1 47.0±2.3
Shop. Mall (SM) 58.9±2.1 51.9±2.5 50.1±4.4 51.1±3.4

All (MV) 64.3±1.4 60.1±2.3 52.7±2.1 56.1±1.3
All (SR) 64.0±1.9 60.2±2.9 50.4±2.4 54.8±2.1

Random 51.0 43.0 43.0 43.0

Table 4.3: Facial Expressions Approach Performance. This table presents the performance
results of the facial expressions-based approach. The results are presented in terms of averages
and standard deviations over R repetitions. (All) stands for the participant-level predictions.

Both aggregation methods (MV and SR) improve over the best individual stories in accuracy and

precision (NM and TA) (p < 0.01). However, in recall, both methods fail to outperform the best

stories (NM and BF) meaning that the different classifiers are not making different mistakes in

identifying the positive cases. Additionally, in F1-score, only MV method performs better than

the best story (NM) (p < 0.05). This finding suggests that insecure children are less likely to
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change their behaviours in response to different attachment scenarios, at least when it comes to

using facial expressions.

Another important finding is that the approach achieves its worst performance in recall, mean-

ing that it is generally harder to identify insecure children. One possible reason for the low

recall performance is that the dataset has fewer insecure children (45 insecure compared to 59

secure) and therefore fewer materials for the training process to capture behaviour cues relevant

to insecure attachment.

It is also shown in the table that the performance varies between different stories, where the

best-performing stories are NM and TA which both achieve accuracies higher to a statistically

significant extent than other stories. In F1-score, all stories perform better than HS (p < 0.01).

This suggests that different stories are more likely to induce attachment-related behaviours to

different extents which is the motivation behind having multiple stories in MCAST.

Effects of Age and Gender Variations

In this section, the effect of age and gender variations on the performance of the face-based ap-

proach is discussed. Table 4.4 presents the performance with respect to each school level as each

level is associated with a specific age range as shown in Table 3.1. These results are obtained per

each level after aggregating the predictions from all stories using the SR aggregation method.

The SR method is used instead of MV (although MV performs better in this approach) to ensure

that the results are compatible across all unimodal approaches for later comparisons.

Level Accuracy(%) Precision(%) Recall(%) F1-Score(%)

P1 (5-6) 53.7±4.8 60.1±8.7 37.0±6.7 45.5±6.5
P2 (6-7) 56.5±3.8 51.9±4.4 45.0±6.7 48.1±5.2
P3 (7-8) 76.6±1.5 71.6±3.3 63.6±0.0 67.3±1.4
P4 (8-9) 72.5±5.3 63.8±8.1 65.0±5.3 64.1±5.4

Table 4.4: Age-Based Performance of the Facial Expressions Approach. This table presents
the performance of the facial expression-based approach with respect to each school level. Each
level is shown with the associated age range between parentheses. The results are shown in
terms of averages and standard deviations over the R repetitions.

The most important finding in this table is that the performance in accuracy, recall, and F1-score

is significantly higher for older children (7-9 years) compared to their younger counterparts (5-
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7 years) (p < 0.001, t-test). This suggests that older children are more likely to express their

attachment condition through facial expressions compared to younger children. One plausible

explanation is that according to [128], facial expressions for this age group are still developing

in which the ability to recognise and produce facial expressions improves between the age of

3 to 10 years. Therefore, older children may be more capable of producing facial expressions

that reflect their inner emotional state. However, the distribution of attachment styles in each

age group is not balanced; there are fewer children in levels P1 and P4 with even fewer insecure

children in level P4, so this finding could likely result from having more negative cases2 in

older age groups, therefore, this finding is worth further investigation with a more age-balanced

sample.

In precision, the pattern is slightly different than what is observed in the other metrics, where

level P2 is significantly lower than all groups (p < 0.01) whereas level P3 is higher than other

groups (p < 0.01). High precision indicates less false positives meaning that the positive pre-

dictions can be trusted to better extent for P3 compared to other groups.

The other factor that may interplay with performance is the gender variations, for this reason,

Table 4.5 shows the performance with respect to each gender group. As shown in the table, in all

metrics, the performance is higher for female participants compared to their male counterparts

to a statistically significant extent (p < 0.001). In fact, the performance with regard to the

male participants hardly improves over the random guessing for recall metric, meaning that

it is unlikely to identify insecure male children in this approach. This suggests that female

children are more likely to express their condition through facial expressions. This finding is

consistent with previous studies which found that females are more facially expressive than

males [129, 130] and as such our approach is more likely to capture relevant cues to attachment

styles for female participants.

Group Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Female 70.0±1.3 73.3±3.3 54.2±2.8 62.2±1.6
Male 56.8±4.1 46.8±5.2 45.3±4.4 45.9±4.1

Table 4.5: Gender-Based Performance of the Facial Expressions Approach.

2For which the approach has better identification rate.
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4.3 Paralanguage Based Approach

The second unimodal approach is based on analysing the nonverbal aspects of speech such as

pitch, intonations, and loudness which are also referred to as paralanguage. In other words,

paralanguage refers to how something is said instead of what is being said. These aspects can

convey information about the internal state of individuals such as their current emotions, for

example, it can be easily distinguishable to human ears between happy or angry individuals

only by hearing their voices. Moreover, past studies have shown that these aspects of speech

carry important cues about a wide range of emotional and psychological traits [120, 131]. For

these reasons, this study attempts to detect the differences in attachment styles in children by

analysing the paralanguage aspects of speech signals.

The proposed recognition approach is based on extracting various paralanguage features from

the recordings of the MCAST interviews. The set of features used in the experiments is chosen

due to its relevance to capturing emotional and psychological traits. These features are typically

extracted from a short analysis window that lasts for 20-40 ms which results into sequences of

vectors. This requires applying a classification model suitable for the sequential nature of the

data to capture temporal information. For this reason, we proposed using a stacked RNN model

to learn relevant representations that can be mapped to attachment styles (see section 2.2.3). As

in the case of the previous approach, the classification model is trained over the segments of

recordings that correspond to each one of the five stories and therefore aggregation methods are

applied to make the final predictions. In the following, a brief description of the speech features

is provided.

4.3.1 Speech Based Features

Features extraction consists of converting digital speech signals into a form that is suitable for

processing. The core concept of signal processing is the Fourier Transform (FT) which is based

on the fact that every signal can be decomposed into a set of sinusoids scaled and shifted appro-

priately. This transforms the signal from time domain3 representation to the frequency domain

which reveals aspects of the signal that were not visible in the time domain representation.

Moreover, the FT decomposition allows for visualising the speech signals both in time and fre-

3Where signals are shown as a function of time.
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quency through a spectrogram. Figure 4.2 shows an example of an audio raw signal and its

corresponding spectrogram representation.

Figure 4.2: Spectrograms. The top pane shows the amplitude of an audio signal excerpt in the
time domain while the lower pane shows the same excerpt in both time and frequency domains.
Brighter regions indicate higher amplitude.

Various speech features, which are also known as low-level descriptors (LLDs) can be extracted

from the time domain (temporal features) such as Root Mean Square Energy (RMSE) and Zero

Crossing Rate (ZCR), whereas others can be extracted from the frequency domain (spectral

features) such as fundamental frequency F0 and Mel-Frequency Cepstral Coefficients (MFCC).

These features are often extracted over short-time analysis windows using a windowing function

such as rectangular, Hamming, or Hann window where the Hamming window is often used for

frequency domain features and the rectangular window is used for time domain features.

The LLDs used in the experiments are:

• Root Mean Square Energy (RMSE): it accounts for loudness and magnitude of the signal;

• Zero Crossing Rate (ZCR): it accounts for the smoothness of the signal, it provides infor-

mation about the frequency distribution and it is computed as the number of zero crossings
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per time unit;

• Mel Frequency Cepstral Coefficients (MFCC) (1-12): A set of coefficients extracted from

Mel-Scale Frequency Spectrogram4. In speech recognition, the coefficients 0-12 are often

used [132], in which coefficient 0 accounts for the signal energy while coefficients 1-12

for the phonetic content of speech;

• Fundamental Frequency (F0): it accounts for the frequency of the highest energy and it

contributes to defining how the voice sounds;

• Voicing Probability: it accounts for the presence of silences.

Other features can be derived from the above LLDs such as delta regression coefficients which

are calculated by finding the local slope over 50-100 ms of the signal, and it measures how the

features change over time which, in some cases, makes it easier for a classifier to detect patterns

compared to the direct LLD features [133].

OpenSMILE

OpenSMILE [134, 135] is an open-source software for extracting speech features. It was the

official toolkit for feature extractions for the INTERSPEECH 2009 Emotion Challenge [136].

Various types of LLDs are supported along with several statistical functions. Its incremental

processing allows for efficient implementation as each feature extractor can be used as an input

to other feature extractors thus ensuring that no feature has to be computed twice.

4.3.2 Approach

Figure 4.3 depicts the overall architecture of the paralanguage-based approach. As shown in the

figure, the approach consists of three main steps: 1) features extraction, in which the raw audio

signals are converted into sequences of feature vectors, 2) attachment recognition, in which a

classification model maps these sequences into one of the attachment classes, and finally 3) the

aggregation, in which the predictions that were made at story level are aggregated to make the

final prediction (participant-level predictions).

4A spectrogram representation with frequency scales corresponds to the human auditory system.
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Figure 4.3: Architecture of the Paralanguage-Based Approach. This figure shows the overall
architecture of the paralanguage approach. A set of speech features are extracted from the audio
signals corresponding to a single story s. This results in a sequence of feature vectors. These
vectors are fed a stacked LSTM classification model followed by a softmax layer to predict the
attachment labels. This process is repeated for all five stories resulting in five predictions which
then are aggregated to make the final participant-level prediction PP.

Features Extraction

In the first step, various speech-based features were extracted from the raw audio signals using

the OpenSMILE toolkit. The set of features adopted in this work covers the main aspects of non-

verbal behaviours in speech and it was the baseline for the emotion recognition challenge [136]

and since has been shown to be effective in speech-based recognition domains. Specifically, 16

basic features along with their delta regression coefficients were extracted. The basic features are

Root mean square of the energy (1 feature), Mel Frequency Cepstral Coefficients (12 features),

Zero Crossing Rate (1 feature), Voicing probability (1 feature), and Fundamental frequency (1

feature).

This results in a set of 32 features which are extracted over 33 ms non-overlapping analysis

windows using the hamming windowing function (an analysis window corresponds to one video

frame). Moreover, the feature values were smoothed by averaging over every three consecutive

windows. More formally, the extraction step converts the raw audio recordings into a sequence

of T vectors of dimension D = 32, X = (x1,x2, ......,xT) where T is the number of analysis

windows per recording.
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Attachment Recognition

The next step is attachment recognition where a classification model is trained to map these

extracted set of features to the attachment labels. In this case, as the features set denotes se-

quences, an approach based on a Long Short Term Memory (LSTM) network appears to be

suitable for the task for its ability to capture dependencies across sequences while having an

enhanced memory capability to allow for processing longer sequences compared to the conven-

tional RNNs (see section 2.2.1). Moreover, a deeper architecture is employed where two LSTM

layers are stacked as shown in Figure 2.4, and following the architecture proposed in [95]. This

architecture proposed feeding the hidden states of the base layers to the top layers which allows

for capturing higher level representations. The output of the last time step at the top layers is fed

to the softmax layer which assigns a probability value corresponding to the attachment labels.

As shown in section 3.5, the average length of the recordings per each story in the data set is be-

tween 111 and 158 seconds which results in very long feature sequences5 and therefore, (despite

having an enhanced memorisation capability which allows for capturing temporal dependencies

that span over 1000 time steps [85]), training an LSTM model on very long sequences can give

rise to vanishing and exploding gradients problem [86]. To tackle this problem, the feature

sequences are segmented into non-overlapping segments in which each segment contains L vec-

tors and then each segment is treated as a separate training example labeled by the same label

assigned to the full recording. To classify new input during the test phase, the full sequence is

assigned to the class where the majority of its segments are assigned to i.e., the full sequence is

assigned to the class ĉ that satisfies the following: ĉ = argmaxc∈{c1,c2} f (c), where f (c) is the

fraction of segments in a given sequence that are assigned to class c.

Aggregation

As each story is expected to elicit attachment-related behaviours to different extents, the above

two steps (feature extraction and attachment recognition) are repeated for each one of the five

stories stems as depicted in Figure 4.3, this results in five predictions per a participant which

then are aggregated using two aggregation methods MV and SR (as in the facial expression

approach). In the case of SR, the posterior probability has to be estimated at the full sequence

which has multiple segments, each associated with a prediction (with a corresponding estimation

5Correspondingly, the average sequence length is between 3600 and 5200 vectors per recording.
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of the posterior probability at segment level). One way to estimate the posterior probability for

the full sequence is by calculating the fraction of the segments assigned to the predicted class.

4.3.3 Experiments and Results

Experimental Design

The experiments were performed according to a k-fold protocol (k = 10) in which the partici-

pants were assigned randomly to one of the k folds, meaning that all materials that belong to

the same participant are assigned to the same fold, thus ensuring that the same participant never

appears in both training and testing sets. This is to ensure that the approach recognises the at-

tachment styles, not the participant’s identity. Moreover, the folds are stratified so the percentage

of classes was maintained across all folds as in the initial full dataset. As such, k−1 folds were

used for training, while the remaining fold is used for testing.

To account for the randomisation involved in the experiments (initialisation of the RNNs and

assigning participants to the folds), each experiment was repeated R = 10 times and the results

are presented in terms of averages and standard deviations over these repetitions. Moreover, the

performance is reported by four different evaluation metrics (see section 4.2.3).

Other hyper-parameters were set to values that were considered to be standard in the literature. In

particular, the dimension of the hidden states was set to D = 70, the learning rate to α=1e−3, and

the number of training epochs to E=50. The training was performed with the mini-batch strategy

with B = 512 and the risk of overfitting was reduced by applying the L2-norm regularisation

(the λ parameter was set to 1e−2). The length of the audio segment was set to L=128 which

corresponds to 4.2 seconds of the recording which is considered to be short enough to alleviate

the vanishing and exploding problem and long enough to allow to capture relevant cues.

Results

The results are shown in Table 4.6 in terms of four performance metrics. As shown in the

table, in all experiments, the improvements over the random baseline are always statistically

significant for accuracy, precision, and F1-score (p < 0.01, t-test) meaning that the approach is

capturing paralanguage-related cues that correlate with attachment styles. The best performance

is achieved by aggregating classifiers of all stories using the SR method with accuracy and F1-
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score of 69.3% and 60.2%, respectively.

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast (BF) 64.4±3.0 60.9±4.5 48.4±4.1 53.9±3.8
Nightmare (NM) 59.7±2.7 54.4±4.0 44.0±6.9 48.4±4.8
Tummyache (TA) 62.9±2.6 59.1±4.5 46.4±4.9 51.8±3.9
Hopscotch (HS) 64.8±3.2 62.2±5.1 46.1±8.8 52.4±6.5
Shop. Mall (SM) 64.8±3.5 61.0±5.2 48.6±7.1 53.9±5.8

All (MV) 66.5±2.6 65.1±3.6 48.9±5.7 55.7±4.4
All (SR) 69.3±1.7 68.8±3.4 53.8±4.3 60.2±2.7

Random 51.0 43.0 43.0 43.0

Table 4.6: Paralanguage Approach Performance. This table shows the performance of the
paralanguage approach. The results are shown in terms of averages and standard deviations over
10 repetitions.

However, in Recall, the improvements over the baseline are statistically significant only in 3 out

of 5 stories and the aggregation of all stories (p < 0.05). Whereas in two stories (NM and HS),

the classifiers do not improve over the baseline, meaning that these two stories are less likely

to elicit attachment behaviours compared to other stories. Interestingly, while NM achieves low

performance across all metrics, HS has the best accuracy and precision score, this means that

the HS story has the biggest variations in terms of recognising cases from different classes i.e.,

it seems that HS performs relatively well at recognising negative cases and performs poorly

in recognising positive cases. In general, recall has the lowest performance compared to other

metrics both at the story level and the aggregation methods. One possible reason is that there

are less positive cases (insecure children) in the dataset and thus the approach is less likely to

capture related cues.

Another important aspect of the results is that different stories achieve varying performances

which also vary across different metrics. For instance, the difference between the highest per-

forming story in accuracy (64.8% for HS and SM) and the lowest one (59.7% for NM) is sta-

tistically significant (p < 0.001) while in F1-score the highest performing story (53.9 % for BF

and 53.9% for SM) is higher than (48.4% for NM). This confirms the fact that different stories

are more likely to elicit detectable attachment-related behaviours than others.

Aggregating the predictions from all stories improves the performance over the best individual

one to different extents. In the case of the MV method, the improvement is not significant in
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any metric suggesting that the classifiers that are trained over individual stories are not diverse,

i.e., they do not tend to make different mistakes over different children [106]. On the other

hand, the SR method has improved over the best-performing story and MV significantly in all

metrics (p < 0.05). In the SR method, the posterior probabilities are estimated by the fraction

of segments assigned to a certain class and therefore the improvements over the MV method

suggest that when the classifier assigns segments to the right class, it tends to do it to a greater

extent. In other words, the fraction f (c) of segments assigned to class c tends to be higher when

c is the right class.

Effects of Age and Gender Variations

In this section, the effect of age and gender on the paralanguage approach is discussed. Table

4.7 shows the performance in each age group. As the table shows, different patterns are noted

for different metrics. In particular, the accuracy is higher in levels P2 and P3 compared to

the remaining levels to a statistically significant extent (p < 0.05). In precision, P2 achieves

higher performance than the other groups (p < 0.01) while P4 achieves the lowest performance

(p < 0.01). In recall, P1 achieves the best performance compared to other groups (p < 0.01),

while P3 has the lowest performance (p < 0.01). In F1-score, both P1 and P2 perform better

than P3 and P4 to a statistically significant extent (p < 0.001).

Level Accuracy(%) Precision(%) Recall(%) F1-Score(%)

P1 66.8±4.3 70.8±3.9 63.0±9.5 66.3±6.6
P2 71.5±2.9 75.8±4.2 53.9±5.3 62.9±4.6
P3 70.7±2.4 67.1±6.4 45.5±6.1 53.9±4.7
P4 64.4±7.2 54.3±10.6 53.3±7.0 53.1±5.9

Table 4.7: Age-Based Performance of the Paralanguage Approach. This table presents the
performance of the paralanguage-based approach with respect to each age group. The perfor-
mance is presented in terms of averages and standard deviations over 10 repetitions.

In general, as shown in F1-score, the approach seems to perform better for younger groups (P1

and P2), however, the behaviour of the approach is different over these groups, as it seems that

the approach is identifying positive cases in P1 to better extent while it identifies the negative

cases better in P2. Additionally, the overall high performance in P2 and P3 likely results from

the higher number of samples in both groups (40 and 29 respectively) compared to the remaining

groups as shown in Table 3.1, while the low recall performance in P3 could be a result of the low
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positive cases in this group. This implies that the approach achieves higher performance with a

higher amount of training materials.

The performance with respect to the gender groups is shown in Table 4.8. As shown in the table,

the performance is higher for male participants compared to female counterparts in accuracy

(p < 0.01), and precision (p < 0.05). Conversely, in recall and F1-score, the performance is

higher for female participants compared to male counterparts (p < 0.01). This suggests that the

paralanguage approach performs better at identifying secure male children whereas it performs

better at identifying insecure female children.

Gender Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Female 67.5±2.1 67.3±4.2 56.9±6.0 61.4±3.3
Male 71.5±3.2 71.3±5.1 49.5±6.2 58.3±5.3

Table 4.8: Gender-Based Performance of the Paralanguage Approach. This table presents
the performance of the paralanguage-based approach for each gender group.

4.4 Language Based Approach

This section presents an approach to detect the attachment styles based on the linguistic contents

of the MCAST interviews by applying Natural Language Processing (NLP) methodologies. The

linguistic contents can reveal rich information about an individual’s inner feelings and mental

states. In this respect, past studies show that emotions can be detected from text [137] and

therefore this was extensively used in areas such as sentiment analysis, mental states detection,

and emotion recognition. Moreover, a previous study found that some linguistic features are

strong predictors of attachment styles in adults [81]. Another study concluded that the linguistic

coherence is one of the main predictors for attachment styles in children as assessed by human

raters [11]. These reasons motivated the decision to apply a language-based approach which

exploited the advancements in NLP methodologies.

In this study, an approach based on word embeddings representation and 1D-CNN classification

model (see section 2.2.4) is proposed and in the next sections the approach and the results will

be presented.
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4.4.1 Approach

The architecture of the language-based approach is depicted in Figure 4.4. The audio recordings

are first transcribed automatically using the online transcription tool Sonix6. Then, the approach

is implemented in three consecutive steps: preprocessing, attachment recognition, and aggrega-

tion. In the first step, the transcripts are preprocessed to eliminate any non-word symbols such as

punctuations, numbers, and other symbols. In addition, all words are converted to lowercase to

ensure that the same words are mapped to the same representation. Moreover, the English stop-

words are removed using the Natural Language Toolkit (NLTK)7, a publicly available package

for text processing.

Then, the resultant list of words is lemmatised meaning that all word’s morphological variants

are converted to their root word. This is to ensure that these word variants are all mapped to the

same word representation. The segment of the text that corresponds to the story induction phase

is removed because the focus is on the text that the participants uttered. Moreover, this phase

is identical in all samples so it does not carry any relevant cues for our classification problem.

Next, the resulting terms are tokenised and the word vocabulary is constructed, in which every

word is assigned a unique integer index. Finally, all token vectors are zero-padded to a common

length L (sequences that are longer than L are truncated). In summary, the preprocessing step

converts the raw text transcripts to token vectors of length L in which each element corresponds

to a numerical word index from the vocabulary, a suitable form for further processing.

The resulting token vectors are fed to a deep learning classification model which consists of

three main parts (Embedding layer, 1D-CNN/Max-pool/Dropout/Dense, and a Softmax layer).

In the embedding layer, each token is mapped to an embedding vector of a fixed length di-

mension M, thus the input vectors are represented with a matrix of dimensions L×M. These

matrices are then passed to a 1-D convolutional neural network model (1D-CNN) in which K

filters are convolved with the embeddings to extract relevant features from words’ n-grams (see

section 2.2.4). This is followed by a max-pooling layer that aims at preserving the most salient

features resulting from the convolution step. Next, to enhance the generalisation of the approach

a dropout layer is applied followed by a dense layer to learn higher-level representation, and

finally, a softmax layer is used to map these representations to one of the attachment labels.

6https://sonix.ai
7https://www.nltk.org
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Figure 4.4: Architecture of the Language-Based Approach. This figure shows the overall
architecture of the language-based approach. The transcript that corresponds to storys is first
preprocessed to obtain a list of tokens (word indices) which is then padded to a length L. Then,
this tokens vector is fed to the classification model in which the tokens are first mapped to word
embeddings and then fed to a CNN model which is composed of a 1D-CNN layer followed
by maxpooling, dropout, and dense layer. Finally, a softmax layer is applied to classify the
learned representations to the attachment labels. The above process is repeated over the five
stories resulting in five predictions per participant which then are aggregated to make the final
prediction PL.

As depicted in the figure, the above steps are repeated over the transcripts that correspond to

each story individually. As a result, there are five predictions for each participant which are

aggregated using both MV and SR aggregation methods to make the final prediction (participant-

level prediction) PL.

4.4.2 Experiments and Results

Experimental Design

The experiments were implemented in a k-fold protocol with k = 10 by assigning children ran-

domly to the folds where k− 1 folds were used for training and the remaining one is used for

testing. All text sequences were padded to the same length L = 100 and sequences that are

longer than L were truncated, where L is chosen empirically in which, approximately, 95% of

the samples’ tokens are shorter than L. The word embeddings dimension was set to D = 300

and the number of filters in the convolution layer was set to F = 64. Three different filter sizes

were explored (3, 5, and 7) with 5 giving the best performance, and the dropout rate was set to

p = 0.2. As in the previous approach, the training was performed with a mini-batch strategy

to limit the computational issues with each mini-batch including ten input sequences, and the
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number of the training epochs was set to T = 20. All experiments were performed R = 10 times

and, at every repetition, the layers’ weights were initialised randomly. All performance metrics

are presented in terms of averages and standard deviations over the R repetitions.

Results

Table 4.9 presents the performance of the language-based approach obtained over every story

and over their aggregations through MV and SR. According to the t-test, all experiments per-

form, to a statistically significant extent, better than the random classifier (p < 0.01) in all met-

rics except for recall in TA story. The best result is achieved by the SR aggregation method in

accuracy and precision achieving 72.1% and 72.6% respectively, however, the difference with

respect to the best-performing stories is not significant (71.2% for accuracy, and 70.6% for pre-

cision). Whereas in recall, the BF story outperforms both individual stories and the aggregation

methods to a significant extent (p < 0.05). For F1-score, BF and SR achieve comparable per-

formances and both outperform other experiments significantly (p < 0.05).

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast (BF) 71.2±2.0 69.3±3.1 59.5±2.2 64.0±2.2
Nightmare (NM) 65.1±2.9 62.3±4.6 49.3±4.2 55.0±4.0
Tummyache (TA) 64.4±2.3 62.7±4.1 43.4±2.5 51.3±2.9
Hopscotch (HS) 70.8±2.0 70.6±2.8 54.1±3.7 61.2±3.0
Shop. Mall (SM) 69.5±1.9 66.7±2.8 57.3±3.0 61.6±2.5

All (MV) 69.3±1.9 69.7±3.1 51.6±2.7 59.2±2.7
All (SR) 72.1±1.7 72.6±2.6 57.1±2.3 63.9±2.3

Random 51.0 43.0 43.0 43.0

Table 4.9: Language Approach Performance. This table shows the performance of the
language-based approach. As in the other approaches each experiment was repeated R times
and the results are presented in terms of averages and standard deviations.

Both aggregation methods did not improve over the best performing story in any metric. In

fact, except for precision, the difference between the best performing story (BF) and the MV

aggregation is significant (p < 0.05) suggesting that in this approach, the classifiers that are

trained over different stories are not diverse and hence does not lead to better performance.

Moreover, SR performs significantly higher than MV in all metrics (p < 0.05), however, it still

fails to outperform the best performing story in any metric. The improvement of SR over MV
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suggests that the approach tends to be more confident (by assigning higher posterior probability)

when making the right decision.

As in the previous approaches, recall achieves the lowest performance among all metrics mean-

ing that it is harder to identify insecure children in this approach too. Moreover, the performance

varies across individual stories in this approach too, where in accuracy, the difference between

the highest performing story (71.2% for BF) compared to the three least performing stories

(69.5% for SM, 65.1% for NM, and 64.4% for TA) is statistically significant (p < 0.05). This re-

sult confirms that some stories are more likely to elicit detectable attachment-related behaviours

compared to other stories.

Effects of Age and Gender Variations

In this section, the effect of age and gender variations on the language approach is discussed.

Table 4.10 shows the performance of the language approach with respect to age variations. As

the table shows, the performance is significantly higher for P1 and P2 compared to P3 and P4

(p< 0.001, for recall and F1-score) and (p< 0.05, for precision). In accuracy, a slightly different

pattern is noted, where the best performance was achieved in P2 which is significantly higher

than P1 and P3 (p < 0.01). These findings seem to suggest that younger children are more likely

to express their attachment condition through language compared to their older counterparts.

Moreover, the improved accuracies for older children (P3 and P4) compared to other metrics

suggests that the approach is identifying negative cases (secure children) to better extents. In

other words, it seems that the approach is more likely to misclassify older insecure children.

One possible reason is the limited number of insecure children in older groups (only 38% of all

insecure participants belong to these groups) which may provide limited training materials to

capture any relevant cues.

Level Accuracy(%) Precision(%) Recall(%) F1-Score(%)

P1 70.5±3.7 80.4±6.9 59.0±3.2 67.9±3.2
P2 74.3±2.4 74.8±2.3 64.4±4.7 69.2±3.5
P3 69.7±2.2 63.2±2.9 47.3±5.7 54.0±4.8
P4 73.1±3.0 70.5±7.2 50.0±0 58.4±2.6

Table 4.10: Age-Based Performance of the Language Approach. This table presents the
performance of the language approach in each age group in terms of averages and standard
deviations over R repetitions.
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The performance with respect to gender variations is presented in Table 4.11. As the table

shows, the performance for male participants is significantly higher than for females in all met-

rics (p < 0.05, for precision) and (p < 0.001, for other metrics). The biggest difference between

groups appears in recall suggesting that insecure male children are more likely to express their

condition through language compared to females, however, this may be an effect of the age vari-

ations observed above as there are more male participants in younger groups and thus further

investigation is needed to confirm this effect. The relatively high precision for female partic-

ipants (71.5%) compared to recall indicates that the approach is making fewer false positive

errors i.e., for female participants, the positive predictions can be trusted to a greater extent

compared to negative predictions.

Gender Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Female 68.4±1.4 71.5±2.1 51.2±2.6 59.6±2.2
Male 76.6±2.5 73.9±3.5 65.3±3.7 69.3±3.3

Table 4.11: Gender-Based Performance of the Language Approach. This table presents the
performance of the language approach for each gender group in terms of averages and standard
deviations over R repetitions.

4.5 Performance Comparisons

In this section, a comparative discussion of the performance of the above three unimodal ap-

proaches is provided. This includes comparisons of these approaches in terms of overall perfor-

mance, performance at the story level, and performance with respect to age and gender varia-

tions. The primary goal of this section is to highlight the similarities and differences between

approaches which may provide useful insights on how to better exploit these relationships across

different approaches.

4.5.1 Overall Performance

Figure 4.5 presents the overall performance of the unimodal approaches after aggregating all

stories using MV and SR aggregation methods with respect to all four evaluation metrics. The

figures show that the language approach outperforms other approaches in almost every case to

a statistically significant extent (p < 0.05) (the only exception is in MV for recall). In addition,
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the paralanguage approach outperforms the facial expressions approach in the SR method in all

metrics (p < 0.05), whereas in MV, it only improves over facial expressions in accuracy and

precision (p < 0.05). Facial expressions, in contrast, only improves over paralanguage in the

MV method for recall (p < 0.05).

(a) MV (b) SR

Figure 4.5: Overall Performance of Unimodal Approaches. The figures show the perfor-
mance of the three approaches at the participant level obtained by the aggregation methods,
where (a) presents the results obtained with MV, and (b) presents the results obtained with SR.

The figure also shows that in both paralanguage and language-based approaches, the SR method

improves over the MV method to significant extents. However, the SR never improved over MV

in the facial expressions approach, in fact, the performance in the recall is higher in MV than

SR and this improvement is statistically significant (p < 0.05). The improvement of SR implies

that the approach tends to assign a higher posterior probability to a certain class c when c is the

true class i.e., the approach tends to be more confident when making the right decisions. Hence,

it seems that both paralanguage and language approaches are more confident while this is not

the case for the facial expression approach (the lower performance in SR-recall suggests that the

approach tends to assign higher posterior probability to the wrong class).

Another aspect of this figure is that the paralanguage approach has higher standard deviations

(error bars) compared to other approaches, which is especially apparent in the recall, suggesting

that the approach is more sensitive to weight initialisations.
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4.5.2 Story-Level Performance

This section provides a discussion on how individual stories perform across all approaches and

with respect to the various metrics. This may help provide a better understanding of what types

of scenarios are more likely to elicit attachment cues for each behavioural channel and whether

different stories are more likely to elicit cues from different attachment classes. Figure 4.6 shows

the performance obtained over individual stories in all approaches. The most apparent finding in

these charts is that the language approach achieves statistically significant improvements com-

pared to other approaches (p < 0.01) in at least 3 out of 5 stories (BF, HS, and SM) in all

metrics, in fact in precision, the language approach improves over other approaches in all stories

(p < 0.05). The only case where other approaches outperform the language approach signifi-

cantly is in the recall metric in which facial expressions outperforms the language in two stories

(NM, and TA) (p < 0.05, p < 0.001) respectively. This suggests that the language approach is

capturing more relevant attachment cues, especially in three stories (BF, HS, and SM).

When taking into account the two remaining approaches, paralanguage and facial expressions

only, different patterns are noted across different metrics. For instance, in accuracy and preci-

sion, paralanguage outperforms facial expression in 3 and 4 stories respectively (BF, HS, and

SM) plus TA in precision (p < 0.01). However, in recall, facial expressions outperforms par-

alanguage in three stories (BF, NM, and TA) (p < 0.05) while in the remaining two stories both

approaches achieve similar performances. In F1-score, facial expressions achieves higher per-

formance in NM (p < 0.01) while paralanguage achieves better performance in HS (p < 0.05),

other stories achieve similar performance in both approaches. This contrasting pattern of perfor-

mance implies that these two approaches tend to make different types of mistakes over different

stories, for instance, paralanguage seems to make more false negative predictions over NM

(lower recall) compared to facial expressions, while it makes lower false positive errors over HS

(higher precision). This may constitute a source of diversity on the classifiers from these two

approaches.

A major finding that emerges from the figures is that the individual stories that perform better

than others are similar in language and paralanguage (BF, HS, and SM) this especially appears

in accuracy and precision, however, by looking into the face approach, a different finding is

noted where the best-performing stories are (NM and TA) i.e., the worst performing stories in
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 4.6: Story-Level Performance in All Approaches. The figures show the performance of
individual stories in all approaches with respect to each one of the four evaluation metrics where
each subfigure presents one metric. The legend of subfigure (a) is shared across all subfigures.

paralanguage and language approach is the best performing in facial expressions approach. As

both former approaches rely on speech data for recognition (what they say and how they say

it), possible reason for low performance is that children are less interested in interacting with

NM and TA stories verbally8, while they may still show significant facial expression behaviours

during both induction and completion phases.

Another interesting observation is that in all stories except TA, there are statistically significant

differences between the performance of certain approaches in all metrics meaning that the ap-

proaches are capturing different attachment cues over different stories. However, this is not the

case in the TA story as it seems that all approaches achieve comparable performance in accuracy

in F1-score.
8This is where both paralanguage and language achieve their lowest performances.
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4.5.3 Age-Based Performance

This section compares the performance in each age group in all approaches with respect to

different metrics. As discussed above, The age of the children that participated in this study

ranges from 5 to 9 years old, and hence it covers a wide range of cognitive developmental

stages. This difference may have an influence on the performance of our approaches as children

may show different capabilities and understandings in the way they respond and interact with

the system.

Figure 4.7 shows the performance of all approaches with respect to each age group. As the figure

shows, there are, almost in every case, statistically significant differences between different

approaches for certain groups and metrics. The most prominent result of this figure is that in

levels P1 and P2 (younger children, 5-7 years old), both paralanguage and language perform

better than facial expressions in all metrics (p < 0.01). Additionally, facial expressions exhibit

a sharp decrease in recall for those groups, suggesting that younger children are more likely

to express their condition through language and paralanguage. In contrast, in levels P3 and P4

(older children, 7-9 years old), the facial expressions approach performs significantly better than

other approaches for recall and F1-score (p < 0.01).

The results above suggest that younger children are more likely to express their condition

through speech (what they say and how they say it), while older children are more likely to

express it through facial expressions. One possible explanation is that older children may feel

too old for the doll-playing task and therefore may be less likely to interact verbally during

the sessions, however, they may still show significant facial behaviours. On the other hand, as

discussed earlier, younger children may not be developed enough to show meaningful facial

expressions (related to emotions) compared to their older counterparts [128].

For older groups (P3 and P4), the improvements of the facial expressions approach over other

approaches are more pronounced in the case of recall (compared to other metrics), suggesting

that facial expressions approach is more likely to identify the positive cases of these groups. On

the other hand, paralanguage and language are more likely to identify negative cases of these

groups as indicated by the higher accuracy and lower recall.
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(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 4.7: Age-Based Performance in All Approaches. This figure shows the performance
of different age groups in all 3 approaches with respect to the 4 evaluation metrics. The legend
of the first subfigure is shared across all subfigures.

4.5.4 Gender-Based Performance

This section provides a comparative discussion about the effects of gender variations on the

performance of the approaches. Figure 4.8 shows the performance of all approaches with respect

to each gender group. As the figure shows, there are more variations in the performance among

different approaches for male children compared to female counterparts. For instance, for male

children, both paralanguage and language outperform facial expressions in accuracy, precision,

and F1-score (p < 0.001), and language outperforms other approaches in recall (p < 0.001). On

the other hand, for female children, there are less variations among different approaches where

the biggest variation is in precision between facial expressions and paralanguage (p < 0.01).

Interestingly, for female children, the facial expressions approach is the best or comparable to

the best-performing approach in all metrics whereas it is the worst-performing approach for male

children in all metrics. This result suggests that female children are more likely to express their
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attachment condition through facial expressions while male tends to express it more through

language.

By taking into account only the recall metric, the best approach for male participants (language)

is significantly better than the best approach for females (paralanguage) (p < 0.001) meaning

that insecure male children can be identified to a better extent compared to their female peers.

(a) Accuracy (b) Precision

(c) Recall (d) F1-score

Figure 4.8: Gender-Based Performance in All Approaches. The figure shows the performance
of different gender groups in all 3 approaches with respect to the 4 evaluation metrics. The
legend of the first subfigure is shared across all subfigures.

4.6 Chapter Summary

This chapter presented several automatic approaches to detect attachment styles in school-

age children while undergoing the MCAST assessment test. These approaches are based on

analysing the main behavioural channels that convey information about the inner feelings and

mental states. These channels are facial expressions, paralanguage, and language. The ap-
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proaches are validated on a dataset of 104 children and the results show that it is possible to

detect attachment in children with an accuracy and F1-score of 72.1%, and 63.9% respectively,

which confirms that attachment styles leave machine-detectable behavioural cues.

The results also show that some stories are more likely to elicit attachment cues depending on

the different approaches. This confirms the motivation behind having multiple story stems in the

MCAST. Interestingly, while the breakfast story (BF) initially aimed to serve as an introduction

to the task in which children familiarise themselves with the interviews and was not expected

to elicit any attachment behaviour, our results show that, in many cases, BF outperforms other

stories in different metrics which mostly appears in the language approach. As no distress

scenario is being conveyed in this story, this result suggests the validity of designing non-distress

scenarios for attachment detection [11].

Various conclusions were drawn regarding the effect of age and gender variations. For instance,

the results suggest that younger children are more likely to show their attachment through par-

alanguage and language while older children are more likely to express it through facial ex-

pressions. Moreover, insecure male children can be identified to a better extent compared to

insecure female children. These findings imply that it might be worthwhile assigning differ-

ent approaches for different age, or gender groups. Finally, the differences in the performance

over different stories and with different metrics imply that the approaches are capturing different

patterns. In other words, it is likely that different modalities carry complementary information

which motivates conducting multimodal experiments. This will be the focus of the next chapter.



Chapter 5

Multimodal Approaches

5.1 Overview

This chapter focuses on multimodal approaches that are based on combining the three unimodal

approaches described in the previous chapter. Four different approaches were attempted com-

prising all possible combinations of the three unimodal approaches namely, facial expressions,

paralanguage, and language. The chapter starts by presenting the overall multimodal approach

and the results. Then, it describes each approach individually by looking into how individual

stories perform and how this performance changes with respect to the unimodal components.

The last few sections deal with the effect of age and gender variations on the performance.

The main motivation behind employing a multimodal approach is that humans often express

their internal states through a combination of behavioural channels, for example, uttering the

same words with different intonations or facial expressions can convey a different message to

the listeners. Therefore, in the areas that deal with emotional and mental state recognition,

better recognition rate is often achieved by building an approach that takes into account the be-

havioural cues emitted from multiple behavioural sources. In addition, previous studies showed

that multimodal combinations have led to better performances compared to their unimodal com-

ponents [138,139]. Moreover, it is shown mathematically in [107] that a simple majority voting

scheme is guaranteed to improve over the individual components given that these components

are statistically independent. Furthermore, the results in chapter 4 indicate that different uni-

modal approaches are capturing different patterns over different stories (see section 4.5.2), im-

77
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plying that classifiers from each approach are diverse and the combination may lead to better

performance.

5.2 Approach

The proposed multimodal approach combines the unimodal predictions using the Sum Rule (SR)

method (see section 2.2.6) i.e., in the same way multiple predictions made at the story level were

combined within the unimodal approaches to make the final participant-level prediction. Specif-

ically, each unimodal approach resulted in five predictions per participant, and a late fusion

scheme was implemented by combining the predictions from multiple modalities and assigning

the participant to the class according to the SR method.

The reason for applying the SR method instead of a simple majority voting MV is due to the

improved results of SR over MV that were observed in the previous chapter especially in par-

alanguage and language approaches so it is reasonable to base the combinations on the best

results achieved at the unimodal levels. Moreover, the MV method can harm the performance

when there is an even number of predictions (which is the case in most of our multimodal com-

binations which have 10 predictions per participant) because it can not break the ties in the case

of an equal number of votes. In addition, using a method that takes into account the estimate

of posterior probabilities produced by the recognition models may lead to better performance in

some cases if the corresponding models are likely to assign a higher posterior probability to the

true class (which seems to be the case in paralanguage and language, as the results of chapter 4

seem to indicate).

All possible multimodal combinations are attempted in this study. This creates four different

multimodal approaches, namely: Face-Paralanguage (FP), Paralanguage-Language (PL), Face-

Language (FL), and All modalities (FPL). Therefore, 10 to 15 predictions per participant were

combined (depending on the number of modalities involved in the combinations). Figure 5.1

depicts the overall architecture of the multimodal approaches.
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Figure 5.1: Multimodal approaches Architecture. This figure shows the overall architecture
of the multimodal approaches. F, P, and L boxes stand for face, paralanguage, and language
approaches, respectively. The vertical bold lines merge the multiple incoming paths into one
path i.e., the first SR box has 10 incoming paths while the last one has 15 incoming paths. The
SR takes the posterior probabilities made by each unimodal component and assigns the input
sample to the class with the highest result according to equation 2.12.

5.3 Results

This section presents the results for each multimodal approach starting by presenting the overall

results and subsequently presenting a detailed description of the performance of each multi-

modal approach where a story-level performance is discussed along with its unimodal compo-

nents to inspect the effect of multimodal combinations at the story-level.

5.3.1 Overall Performance

Table 5.1 presents the overall results of each multimodal approach as well as the overall re-

sults of the unimodal approaches for the sake of clarity of discussions. Each experiment is

presented in terms of four evaluation metrics to provide more accurate measures at class level

given the imbalance of classes in the dataset. As shown in the table, the best overall perfor-

mance was achieved through the combination of paralanguage and language modalities (PL),

and the face and language modalities (FL), where the former yields 75.6% and 79.7% in ac-
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curacy and precision, and the latter yields 75.4%, 62.7% and 68.8% in accuracy, recall, and

F1-score, respectively. Interestingly, both approaches achieve comparable performance in terms

of accuracy but differ significantly in other metrics, in particular, PL performs better than FL in

precision (p < 0.01), whereas FL performs better than PL in recall (p < 0.001), and F1-score

(p< 0.05). Both approaches use the language component indicating the importance of including

this modality.

Approach Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Face (F) 64.0 ± 1.9 60.2±2.9 50.4±2.4 54.8±2.1
Paralanguage (P) 69.3 ± 1.7 68.8 ± 3.4 53.8 ± 4.3 60.2 ± 2.7

Language (L) 72.1 ± 1.7 72.6 ± 2.6 57.1 ± 2.3 63.9 ± 2.3

Multimodal1 (FP) 72.2 ± 0.8 71.8 ± 1.1 58.9 ± 2.4 64.7 ± 1.5
Multimodal2 (PL) 75.6 ± 1.0 79.7 ± 3.5 58.7 ± 2.1 67.5 ± 1.0
Multimodal3 (FL) 75.4 ± 0.9 76.3 ± 2.1 62.7 ± 2.3 68.8 ± 1.3

Multimodal4 (FPL) 74.7 ± 1.4 77.8 ± 2.5 58.2 ± 1.8 66.6 ± 1.9

Table 5.1: Overall Performance of the Multimodal Approaches. Entries in bold indicate the
best approaches in each one of the four metrics.

The combination of all three unimodal approaches (FPL) does not improve over the best multi-

modal approach in any metric, in fact, the difference with respect to the FL approach is statis-

tically significant (p < 0.01) in recall and F1-score. However, in accuracy and precision, FPL

achieves comparable performance to both PL and FL. Additionally, FPL achieves better perfor-

mance compared to FP in three metrics (p < 0.05) and similar performance in recall suggesting

that combining the language modality contributed to the performance of (FPL) by better iden-

tifying the negative cases (secure children). On the other hand, combining the third modality

has not improved over PL and FL, in fact, adding paralanguage to FL harms the performance in

recall and F1-score meaning that it leads to more false negative errors. A possible explanation

of this effect on FL is that both language and paralanguage are detecting similar patterns over

positive cases, so the contribution of the face is outweighed by the paralanguage. Moreover, FPL

improves over the best unimodal component (the language approach) to a statistically significant

extent (p < 0.01) in three metrics (all except recall).

Another interesting finding that emerges from the table above is that all of the four multimodal

approaches have improved over their unimodal components to a statistically significant extent

in accuracy, precision (p < 0.01), and F1-score (p < 0.05) suggesting that all unimodal compo-



CHAPTER 5. MULTIMODAL APPROACHES 81

nents tend to convey complementary information, a condition necessary for modalities to mutu-

ally improve over each other. However, in recall, only FP and FL have improved over their best

unimodal component (p< 0.01), meaning that in these two approaches there are complementary

patterns that were captured over positive cases as opposed to the other approaches.

A possible explanation of why FL performs best in recall and F1-score is as shown in chapter 4,

that face approach seems to capture different patterns compared to other modalities which can

be seen from the performance of individual stories in recall (see figure 4.6) in which (in most

cases) the highest performing stories in the face approach are the lowest performing in both

paralanguage and language. Moreover, the language approach is generally the best-performing

approach in most stories therefore, combining the best-performing modality with the one that

captures the significant amount of complementary patterns can be the main reason for yielding

the best performance.

5.3.2 Performance of FP Approach

The results of the multimodal combination of face and paralanguage approaches (FP) are pre-

sented in Table 5.2. As in the case of the unimodal approaches, the results for each story and

their combination are shown in four performance metrics. The performance of the individual

stories is made by aggregating the predictions made at the respective stories from each modality

(using SR). For example, the performance of Breakfast is made by combining the predictions

made at Breakfast in Face and Paralanguage unimodal approaches. Therefore, the story-level re-

sults are based on combining two classifiers whereas the overall results are based on combining

10 classifiers.

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast(BF) 66.7±2.5 62.8±3.8 56.0±3.4 59.1±2.6
Nightmare(NM) 65.9±3.4 62.3±4.0 52.7±7.3 57.0±5.9
Tummyache(TA) 64.8±2.3 61.1±3.0 50.9±4.7 55.3±3.7
Hopscotch(HS) 63.4±2.0 59.9±3.8 44.1±3.4 50.7±2.7
Shop. Mall(SM) 62.0±2.5 57.5±3.6 42.0±5.1 48.5±4.5

All (SR) 72.2±0.8 71.8±1.1 58.9±2.4 64.7±1.5

Random 51.0 43.0 43.0 43.0

Table 5.2: FP Overall Performance. This table presents the performance of the multimodal
approach (FP), both at story-level and at participant-level.
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As shown in the table, all experiments perform better than the random baseline to a statisti-

cally significant extent in all metrics (p < 0.001), except in recall for two stories (HS and SM).

Moreover, different stories vary in their performance, in particular, BF performs better than the

three lowest-performing stories (TA, HS, and SM) in three metrics. On the other hand, in preci-

sion, all stories achieve comparable performance except for SM. The combination of all stories

from both modalities has improved the performance over the best-performing story in all metrics

(p < 0.001 for accuracy, precision, and F1-score, p < 0.05 for recall) suggesting that different

stories from both channels are conveying complementary information. It is worth noting that the

improvement in recall is more pronounced in Table 5.1 compared to the present table, suggest-

ing that the improvement in recall is mostly obtained by combining different modalities, rather

than by having different stories.

Another way to look at how the multimodal combination behaves is to inspect the story-level

performance along with its respective unimodal components. Figure 5.2 presents the perfor-

mance of each story from both the unimodal components and its multimodal combination. It is

important to note that the combination at story-level is based on two classifiers only (one from

each modality) and therefore their contribution to enhance the performance could be less notice-

able than in the case of participant-level performance. On the other hand, the participant-level

combination is based on 10 classifiers, and therefore the improvement can be more observed.

However, the results still give useful indications of which stories benefit more from the multi-

modal combination.

The most apparent aspect that emerges from the figure is that in three stories (BF, NM, and

TA), the multimodal combination has improved over the unimodal components at least in two

metrics (p < 0.05). This is important because it confirms that combining these behavioural

channels has contributed to the overall performance i.e., the improvement is not only a result of

having multiple attachment scenarios1. In recall, the only story that improves over its respective

unimodal component is BF. Moreover, NM improved significantly in precision compared to

other stories and in any other metrics. Both HS and SM never improved over their individual

unimodal-based classifier, in fact, the performance of SM dropped significantly in recall and F1-

score (that drop might result from the wrong classifier being more confident in its prediction).

These results suggest that this multimodal combination behaves differently at different stories

1Which is already confirmed in the previous chapter.



CHAPTER 5. MULTIMODAL APPROACHES 83

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.2: FP story-level performance. Story level performance of the FP multimodal ap-
proach along with its unimodal components (Face and Paralanguage). Each subgraph presents
the performance with respect to one metric. The legend is shared across all subgraphs.

which is likely to be the result of the fact that different stories elicit different attachment-related

patterns.

5.3.3 Performance of PL Approach

Table 5.3 presents the results of the combination of paralanguage and language-based approaches

(PL) at story-level and their combination (participant-level). As shown in the table, all exper-

iments perform better than the random guessing classifier in all metrics. The best-performing

stories are HS in accuracy and precision, and BF in recall and F1-score, both performing signif-

icantly higher than the lowest three stories (p < 0.05). The combination of all classifiers has led

to a significant improvement over stories in all metrics (p < 0.01) except recall which performs

as well as the BF story. Additionally, TA and NM are the worst-performing stories in recall

(p < 0.05) compared to the remaining stories.
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Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast 71.5±2.0 70.4±2.8 58.1±2.7 63.7±2.5
Nightmare 68.8±2.2 69.5±4.2 50.2±4.7 58.2±3.6

Tummyache 68.3±2.3 68.6±4.2 49.3±4.2 57.3±3.4
Hopscotch 72.7±1.7 74.8±3.8 54.8±3.9 63.1±2.5
Shop. Mall 69.3±2.0 67.3±2.5 54.8±3.9 60.4±3.2

All (SR) 75.6±1.0 79.7±3.5 58.7±2.1 67.5±1.0

Random 51.0 43.0 43.0 43.0

Table 5.3: PL Overall Performance. This table presents the performance of the multimodal
approach (PL), both at story-level and at participant-level.

Figure 5.3 shows how the individual stories perform compared to their respective stories in uni-

modal components i.e., how the multimodal combination behaves at story-level. Each subfigure

presents the performance with respect to one of the performance metrics. As the figure shows,

two stories (NM and TA) have improved over their unimodal components in three metrics (all

except recall) (p < 0.05), while HS has improved in two metrics (p < 0.05). Moreover, in recall,

none of the stories have improved over the components suggesting that the approaches are cap-

turing the same patterns over positive cases in all stories. The remaining stories (BF and SM)

have never improved in any metrics.

5.3.4 Performance of FL Approach

Table 5.4 presents the results of the FL multimodal approach which is based on combining face

and language unimodal components. As shown in the table, all experiments perform better than

the random guess classifier, and the combination of all stories (participant-level) has led to better

performance in three metrics (p< 0.05), where in recall the aggregation does not outperform the

best individual story (BF). Moreover, there are variations in the performance of individual stories

where BF is the best-performing story in all metrics compared to other stories (p < 0.01) except

in precision. For precision, both BF and HS outperform other stories to a significant extent

(p < 0.05). Furthermore, NM story is among the worst-performing stories in all metrics. TA

and HS show opposite performances, in which TA achieves better recall whereas HS achieves

better precision and both have comparable performances in accuracy and F1-score, suggesting

that these two stories tend to make different types of mistakes, in other words, TA identifies

positive cases to a better extent whereas HS identifies negative cases to a better extent. As in
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(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.3: PL story-level performance. Story level performance of the PL multimodal ap-
proach along with its unimodal components (Paralanguage and Language). Each subgraph
presents the performance with respect to one metric. The legend is shared across all subgraphs.

the FP approach, Table 5.1 suggests that the improvement in recall of the FL approach seems to

result from having different modalities rather than having different stories.

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast 72.8±2.1 70.0±2.8 64.4±2.7 67.1±2.5
Nightmare 65.9±3.3 64.0±5.7 49.1±2.9 55.5±3.4

Tummyache 67.6±1.6 63.6±1.7 57.7±4.0 60.5±2.8
Hopscotch 69.1±2.8 69.2±4.4 50.0±4.4 58.0±4.2
Shop. Mall 67.3±2.9 63.6±3.5 54.3±5.1 58.6±4.3

All (SR) 75.4±0.9 76.3±2.1 62.7±2.3 68.8±1.3

Random 51.0 43.0 43.0 43.0

Table 5.4: FL Overall Performance. This table presents the performance of the multimodal
approach (FL), both at story-level and at participant-level.

Figure 5.4 shows how individual stories perform compared to their respective stories in the uni-
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modal components across all metrics. As the figure shows, the patterns at the story level are

slightly different from what was observed in the above two multimodal approaches. In particu-

lar, two stories (BF and TA) have improved in all metrics except precision (p < 0.05), whereas

the remaining three stories have not improved in any metric, in fact, the difference between the

language component and FL is statistically significant for (HS and SM) in at least two metrics

(p < 0.05). In precision, none of the stories outperforms the best unimodal (language) suggest-

ing that the FL combination performs better at identifying positive cases (insecure children).

Interestingly, the biggest improvement was achieved in TA, especially in recall, although the

language component performs only at random level. In recall, BF and TA perform better than

the unimodal and these two stories could be the main reason for the overall performance of the

FL approach (best multimodal approach in recall and F1-score).

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.4: FL story-level performance. Story level performance of the FL multimodal ap-
proach along with its unimodal components (Face and Language). Each subgraph presents the
performance with respect to one metric. The legend is shared across all subgraphs.
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5.3.5 Performance of FPL Approach

Lastly, Table 5.5 presents the results of the FPL approach which is based on combining all of

the three modalities. As the table shows, there are variations in the performance across different

stories where BF is the best-performing story in three metrics (all except precision) (p < 0.05).

Combining all the stories improved the performance in accuracy and precision (p < 0.001),

however, in recall and F1-score, the combination has not improved over the BF story. In fact,

the performance in BF is significantly higher than the combination in recall (p < 0.01). These

findings suggest that combining the three modalities improves the precision to a greater extent

i.e., it makes fewer false positive errors.

Story Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Breakfast 72.4±1.2 70.8±2.0 61.2±2.5 65.6±1.6
Nightmare 68.8±1.8 69.0±3.4 50.7±2.7 58.4±2.4

Tummyache 69.5±2.9 68.4±4.1 54.5±5.0 60.6±4.1
Hopscotch 70.8±1.5 72.7±2.2 50.7±3.7 59.6±2.8
Shop. Mall 69.9±3.1 67.7±3.7 56.4±6.4 61.4±5.0

All (SR) 74.7±1.4 77.8±2.5 58.2±1.8 66.6±1.9

Random 51.0 43.0 43.0 43.0

Table 5.5: FPL Overall Performance. This table presents the performance of the multimodal
approach (FPL), both at story-level and at participant-level.

Figure 5.5 shows how individual stories perform compared to the respective unimodal compo-

nents. As the figure shows, TA story has improved in all metrics (p < 0.01), whereas (BF and

NM) have improved in at least two metrics (p < 0.05). Moreover, HS improves in precision

(p < 0.05) however in recall it drops significantly compared to the language component. Again,

SM has never improved in any metric over the best unimodal component (language). The most

significant improvement is yielded by TA although the performance has not exceeded other sto-

ries such as (BF and HS). These results seem to suggest that the approaches are capturing the

most complementary information over TA story. However, the relatively poor performance at

unimodal components over this story has led to overall less or similar performance compared to

other stories.
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(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.5: FPL story-level performance. Story level performance of the FPL multimodal
approach along with its unimodal components (Face, Paralanguage, and Language). Each sub-
graph presents the performance with respect to one metric. The legend is shared across all
subgraphs.

5.4 Multimodal Approaches Comparative Analysis

Following the same way as in the previous chapter, this section is dedicated to comparing the per-

formance of the different multimodal approaches with respect to three different aspects: story-

level, age-based, and gender-based performance. Certain variations in the behaviours of the

approaches are expected because of how these aspects vary in the unimodal approaches. More-

over, another source of variation is expected to result from the multimodal combinations.

5.4.1 Story-Level Performance

The first set of comparisons is performed between the performance of each story in various mul-

timodal approaches. These comparisons are carried out with respect to each evaluation metric.

Figure 5.6 shows the performance of each story and each subfigure shows the performance with
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respect to one metric. As shown in the figure, in all cases there are significant variations among

certain approaches in different stories.

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.6: Story-level Performance in Multimodal Approaches. This figure shows the per-
formance of individual stories for all multimodal approaches. Each subfigure corresponds to
one metric. The legend is shared across all subfigures.

Firstly, the FP approach is generally the worst performing approach especially regarding three

stories (BF, HS, and SM) highlighting the importance of including the language approach in

these stories. For the remaining stories, FP remains one of the worst performing approaches in

all metrics. The only case where this approach is among the best performing ones is in NM

in both recall and F1-score. This is not surprising considering the overall low performance

achieved in this approach as shown in section 5.3.2.

PL approach (best overall performance in precision) is among the best performing approaches

in all stories for accuracy and precision. For other metrics, PL is among the best performing

approaches in three stories (NM, HS, and SM). Interestingly, PL is always the best performing

approach in (HS) which significantly outperforms other approaches in three metrics (p < 0.05)
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(all except F1-score). One advantage of this approach is its relatively higher precision indicating

that one can trust its positive predictions to a better extent.

FL (best overall performance in recall and F1-score) is among the best performing approaches in

fewer cases compared to PL. Where in accuracy and precision, FL is among the best performing

only in (BF). In recall, FL outperforms other approaches in one story (BF) (p < 0.01), whereas

in (TA) it achieves slightly better performance compared to other approaches. As shown in the

previous section, this result also suggests that these two stories are the biggest contributors to

the overall higher recall of the FL approach. The relatively lower precision, suggests that this

approach tends to make more false positive errors, however, in medical diagnosis systems these

errors are less risky than the opposite type of errors.

The last approach FPL is among the best approaches in all but a few cases, in particular, in (HS)

this approach performs less than PL in all metrics suggesting that combining face component

harms the performance of this story. Additionally, the approach performs worse than FL in (BF)

for recall and F1-score. Interestingly, the approach always outperforms FL and FP in accuracy

and precision, indicating that combining paralanguage and language improves the ability to

identify the negative cases (secure children), on the other hand, (in some cases) the approach

outperforms PL in recall and F1-score, suggesting that combining face improves the ability to

identify the positives cases (insecure children).

5.4.2 Performance with Age Variations

The age variations among participants are also expected to affect the performance of the multi-

modal approaches due to the effects that were observed in the unimodal approaches and another

source of variation may emerge from the combination. To verify this effect, the performance in

all metrics of each approach is presented in Figure 5.7 where each subfigure shows the perfor-

mance with respect to one metric.

The figure shows that in most cases, there are statistically significant differences between certain

approaches in certain age groups meaning that the approaches do not perform equally well in

all groups. For instance, in accuracy, FL performs best for P1, PL performs best for P2, and

FP performs best for P3 (p < 0.01), and all approaches achieve similar performances for P4.

Combining all modalities in FPL has never outperform any approach at any age group. Precision
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(a) Accuracy (b) Precision

(c) Recall (d) F1-Score

Figure 5.7: Age-Based Performance in Multimodal Approaches. Performance across differ-
ent age groups in multimodal approaches. Each subfigure presents one metric. The legend is
shared across all subfigures.

shows the same pattern as in accuracy for levels P1 and P2. For P3, FPL works better than other

approaches (p< 0.05). For the first three levels, the best precision is above 85% meaning that, by

using different combinations, the positive predictions can be trusted to a better extent compared

to the negative predictions.

In recall, P1 shows less variation between approaches compared to other levels where FL and

FPL outperform other approaches (p < 0.05). This is not the case for other levels where a higher

degree of variation is noted. In P2, the FL approach performs better than other approaches (p <

0.05). The most interesting finding is that in P3 and P4, FP performs significantly higher than

other approaches despite the overall low performance. This is interesting, as for those levels the

face approach achieved higher recall compared to other groups (see figure 4.7) and by combining

paralanguage, the identification rate of positive cases has increased significantly indicating the

substantial amount of complementary patterns detected by these unimodal components over



CHAPTER 5. MULTIMODAL APPROACHES 92

these groups. Finally, the performance in F1-score shows approximately a similar pattern as in

the accuracy in the sense that for each level, the best performing approach is the same in both

accuracy and F1-score.

In general, it seems that for younger children it is best to utilise the language approach whereas

for older children it is best to utilise facial expressions. Moreover, the best approach for younger

groups P1 and P2 corresponds to the one that achieves the best precision while for P3 the best

approach corresponds to the approach with the best recall. The figures also show higher standard

deviations in P4 in all metrics which is attributed to the lower number of participants belonging

to this group (P4 accounts for 15% of the participants) with even lower positive cases.

Another way to examine the effect of age variations is to inspect how each multimodal approach

performs compared to its unimodal components (for brevity, this is only shown for one metric,

F1-score) which is presented in Figure 5.8. As shown in the figure, in FP, only level P3 improves

over the components (p < 0.001) while in PL, both P3 and P4 improve over the components

(p < 0.001, p < 0.05). FL only improves for level P1 (p < 0.05) while FPL does not outperform

the best component in any levels.

In addition, both PL and FL did not lead the performance to degrade at any level. This is in

contrast to FP, where it performs worse than paralanguage for level P2, and FPL which performs

worse than face in level P3 (p < 0.05). Thus, given the observation that was discussed in sec-

tion 4.5.3 which suggests that older children tend to express their attachment condition more

through facial expressions while younger one tends to do it through speech2, it seems that the

FL is the ideal multimodal approach to account for age variations because it performs as well as

the best unimodal approach in each age level (language for younger children and face for older

ones). This can be seen by the less spread of the green bars in subfigure (c) compared to the

other subfigures.

5.4.3 Performance with Gender Variations

This section presents the effect of gender-based variations in the multimodal approaches. Figure

5.9 presents the results for all approaches and with respect to each metric. As the figure shows,

there are significant variations in how the approaches perform in both gender groups. For in-

2Corresponding to both paralanguage and language.
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(a) FP (b) PL

(c) FL (d) FPL

Figure 5.8: Age-Based Performance of Multimodal Approach and Unimodal Components.
Performance across different age groups measured in F1-score. Each subfigure presents one
multimodal approach along with its unimodal components.

stance, in accuracy, FL performs better than any other approach for female children (p < 0.05).

Whereas for male children, PL approach performs significantly better than any other approach

(p < 0.01).

An interesting finding appears in precision where it seems that all approaches perform better

for females than for males (the difference is more apparent in FL) meaning that all approaches

tend to make fewer false positive errors for female children and thus positive predictions can be

trusted for female children compared to their male counterparts.

Recall shows lower performance in all approaches for both gender groups. Both FP and FL

perform better for females compared to males whereas it is the opposite for PL. FPL achieves

similar performances but significantly lower than the best approach. Subsequently, F1-score

shows approximately the same pattern of variations as what was observed in accuracy in which
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(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 5.9: Gender-Based Performance in Multimodal Approaches. The legend is shared
across all subfigures.

FL works best for females whereas PL works best for male children. In general, it seems that (in

all metrics) the FL approach works best for female children (or comparable to the best) which

leads to an F1-score of 72.1%, while PL works best for males which leads to an F1-score of

68.5%.

Figure 5.10 presents the gender based performance of each multimodal combination along with

their unimodal components (for brevity, this is only shown for F1-score). This is to get a clearer

idea of whether gender variations are associated with the amount of complementary patterns

detected by different unimodal components. The most interesting finding of the figure is that the

combinations for female children always improve over their unimodal components (p < 0.001).

Whereas for male children, the combination performs as well as the best unimodal component

in FP and PL while it performs worse than the best component (language) in FL and FPL (p <

0.001). The results suggest that the approaches are capturing enough complementary patterns
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for female children while this is not the case for males. Moreover, in three approaches (all except

PL), the overall performance is higher for female children than males (p < 0.001) which might

resulted from the relatively poor performance of the face approach for male children.

(a) FP (b) PL

(c) FL (d) FPL

Figure 5.10: Gender-Based Performance of Multimodal Approaches and Unimodal Com-
ponents. Performance across different gender groups measured in F1-score. Each subfigure
presents one multimodal approach along with its unimodal components.

5.5 Discussion

The primary motivation for conducting the multimodal experiments is to exploit the comple-

mentary information that might have been captured with the unimodal approaches as these were

found to perform differently over different stories and with different metrics. The results in

Table 5.1 show that the multimodal combinations have led to significant improvements in most

cases which confirms that different modalities are capturing different patterns regarding the at-

tachment styles. Various conclusions were drawn from the results regarding what is the most

beneficial modality and which attachment group is more identifiable by our approaches. These
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findings can help inform a decision on what type of approaches are more appropriate depending

on the circumstances.

It is also shown that the combinations have led to improvements in some stories but not in others.

In particular, one important finding is that the approaches achieve lower performance in recall,

however, it is shown that BF and TA have led to better recall after the multimodal combinations.

As such, it might be worthwhile investigating (from a psychological point of view) why these

stories work better for positive cases which may lead to suggesting other scenarios that might

induce similar types of distress to be able to identify the positive cases to a better extent (by

aggregating multiple classifiers that achieve good recall). The results also show that the SM story

has never improved over the components and in some cases it performed significantly worse than

the best component. This can result when one of the modalities tends to assign higher posterior

probabilities to wrong predictions (more confident at wrong predictions). Thus, it might be

useful to eliminate such a story as its inclusion probably harms the overall performance.

The results also show considerable variations among age and gender groups. It might be useful

to adopt different approaches for different groups, for instance, it might be reasonable to adopt

the FP approach for older children or for female groups. However, these conclusions need

further confirmations (due to possible biasing from having lower positive cases in older groups).

5.6 Chapter Summary

This chapter presented multimodal approaches for attachment recognition based on a late fusion

scheme. The results show that combining the three approaches have always led to better perfor-

mance meaning that each unimodal approach is extracting complementary cues that enhance the

multimodal predictions. The best performance was achieved by combining paralanguage and

language (PL) yielding an accuracy of 75.6% whereas the best F1-score was achieved by com-

bining face and language (FL) yielding 68.8%. Also, this chapter analyses how stories perform

in different approaches and several conclusions have been drawn from this analysis. The effect

of age and gender is also explored where it has been shown that the multimodal combinations

behave differently with respect to these two factors.



Chapter 6

Performance Analysis

6.1 Overview

This chapter presents an in-depth analysis to gain better insights into the performance of our

recognition approaches. The analysis was conducted from two different points of view. First, an

analysis study has been conducted to gain insights on how different aspects of dataset variations

affect the performance which is described in section 6.2, and second, a study has been made

to investigate the effect of incorporating a confidence measure to increase the applicability of

our approaches and it is described in section 6.3. Both analysis studies were conducted for all

unimodal and multimodal approaches that were experimented in this thesis.

6.2 Effects of Dataset Variations

A closer inspection of the dataset recordings revealed that there are significant variations among

participants with respect to two major aspects: length of recording, and amount of speech. The

expectation was that these aspects may have an effect on the performance and, for this reason,

several analyses were conducted to gain better insights on how and to what degree this occurs.

The analysis was conducted by examining the change in the performance after varying only the

aspect under examination. The following sections present the results with respect to each aspect

and draw some conclusions.

97
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6.2.1 Length of Recordings

As shown in Figure 3.2, the length of the recordings in the dataset varies considerably among

participants which intuitively leads to expect that this may have an influence on the performance.

The expectation was that the longer the recorded materials are, the more likely for classification

approaches to detect cues that are related to the attachment types, meaning that longer recordings

are expected to be classified correctly. To verify this relationship, the participants were sorted in

a descending order depending on the full recording length (where all five stories are combined),

then they were segmented into four disjoint groups in which the first group (Group 1) contains

participants with the longest recordings and the last group (Group 4) contains participants with

the shortest ones. This results in a number of 26 participants in each group and the distribution

of each attachment class per group is shown in Table 6.1. As the table shows, there are more

secure participants in Group 1 than insecure ones, while in the remaining groups, the number

from each attachment class is approximately equivalent.

Group 1 Group 2 Group 3 Group 4

Secure 18 14 13 14
Insecure 8 12 13 12

Random Accuracy 52.6 50.5 50.0 50.5

Average Length 993.7 ± 329.7 616.1 ± 23.6 538.3 ± 22.8 414.8 ± 66.1

Table 6.1: Participants Distribution with respect to the Variations of Recordings Lengths.
The table also provides the random guess accuracy and the average recording length measured
in seconds for each group.

The performance with respect to each approach was obtained over each group separately in terms

of accuracy and confusion matrices. Then, the performance was compared between groups to

examine whether there are consistent patterns with respect to the length. The accuracy provides

a general overview of how the performance changes while confusion matrices give a deeper look

into the level of classes given that the dataset is imbalanced and that, as shown in previous chap-

ters, the approaches perform differently for different classes. The following section provides the

results for the unimodal approaches and the section after deals with the multimodal approaches.
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Unimodal Approaches

Figure 6.1 and Table 6.2 present the performance in accuracy and the corresponding confusion

matrices for each group in each unimodal approach. As shown in the figure, for the face ap-

proach, the performance is better for Group 1 (longest recordings) compared to the remaining

groups whereas the worst performing group is Group 2 which hardly recognises more than half

of the cases. The remaining two groups (Group 3 and Group 4) exhibit gradually decreased

performance compared to the first group meaning that apart from Group 2, the performance

gradually decreased from Group 1 (longest recordings) to Group 4 (shortest recordings) which

suggests that face approach seems to achieve better performance over the longer recordings.

The corresponding confusion matrices in Table 6.2 show that in all groups, the face approach

approximately achieves similar performance in identifying the positive cases (I, insecure) as it

approximately recognises half of the cases in each group. For the negative class (S, secure), the

approach identifies most cases in all groups except in Group 2 where more negative cases are

confused. This suggests that in face approach, the variations in recording length do not have an

effect on the ability to identify the positive cases whereas there is a slight effect on identifying

the negative cases as shown in Group 2.

An interesting pattern appears in the paralanguage approach as shown in Figure 6.1 as the overall

accuracy is approximately similar for the first three groups but it gets significantly better for

Group 4 (shortest recordings). By inspecting the corresponding confusion matrices in Table

6.2, in Group 1, the approach assigns most cases to the negative class (S, secure) confusing

most of the positive cases, whereas for the lower groups, the approach gets better at identifying

the positive cases while maintaining good performance at identifying the negative cases (except

for Group 2). In Group 4, the approach identifies both classes to better extents compared to

any other group achieving the least amount of confusions, and therefore the approach achieves

its best overall performance over the shortest recordings. This suggests that the approach is

associating long recordings to the secure class as can be seen from Group 1. Thus, the length

has an effect on the performance in a way that is against the initial expectation in which the

approach is achieving the best performance on the shortest recording besides associating long

recordings with the secure class.

A different pattern appears in the language approach in Figure 6.1 where the overall accuracy
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(a) Face (b) Paralanguage

(c) Language

Figure 6.1: The figures show the performance in accuracy depending on the length of record-
ings in unimodal approaches.

varies considerably between groups as the highest performances are achieved in Group 2 and

Group 4 while the worst performance is in Group 3. The corresponding confusion matrices in

Table 6.2 show that in Group 1, the approach assigns most cases to the negative class whereas for

the shorter groups, the approach identifies more positive cases, however unlike the paralanguage,

this approach confuses more negative cases in the lower groups. In Group 4, the approach

identifies almost all positive cases while making the biggest confusion for the negative cases.

This suggests that the approach tends to assign long recordings to the secure class and short

recordings to the insecure class. Moreover, in the middle groups (Group 2 and Group 3), the

approach achieves better performance in the longer group for both classes meaning that unless

the recording is excessively long or short, the language approach achieves better performance

over the longer recordings. The source of this effect may arise from the variations in the amount

of words i.e., longer recordings are more likely to contain a higher amount of words.
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Gr. Face Paralanguage Language

1

2

3

4

Table 6.2: This table shows the confusion matrices of the 4 groups that were segmented based
on the recordings length in the unimodal approaches. The numbers denote the averages of
10 repetitions hence it appears in fractions. S: Secure, I: Insecure.

Overall, the results show that there is an effect of the variations of recording length on the

performance of our unimodal approaches, especially in paralanguage and language approaches.

In particular, both approaches tend to associate longer recordings to the secure class whereas

language tends to associate shorter recordings to the insecure class. For face approach, it seems

that the length has a slight effect on the ability to identify the secure cases.

Multimodal Approaches

The effect of the recording’s length is also analysed for the multimodal approaches and the re-

sults are shown in terms of the overall accuracy (see Figure 6.2) and in terms of the correspond-
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ing confusion matrices in Table 6.3. Generally, there is more homogeneity in the performance

across groups compared to what was observed in the unimodal approaches meaning that length

has less effect on these approaches which could be due to the ability of different approaches to

provide complementary information to compensate for this effect, for example, while the lan-

guage approach achieves its worst performance on Group 3, the three multimodal approaches

that involve the language component show a significant improvement for this group. Another

major finding is that in three approaches (all except FP), the performance in Group 4 is better

than other groups, whereas other groups achieve similar performances, especially in FL and

FPL. Moreover, a clear pattern appears in FPL where the performance gradually gets better as

one goes from Group 1 to Group 4 (i.e., as the recordings get shorter).

(a) FP (b) PL

(c) FL (d) FPL

Figure 6.2: The figures show the performance in accuracy depending on the length of record-
ings in multimodal approaches.

In the FP approach, the overall accuracies are approximately similar in all groups except in

Group 2 which achieves slightly lower performance. The confusion matrices in Table 6.3 show

that the approach is performing approximately similarly in identifying the negative cases (S,
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Gr. FP PL FL FPL

1

2

3

4

Table 6.3: This table shows the confusion matrices of the 4 groups that were segmented based
on the recording length in the multimodal approaches. The numbers denote the averages of
10 repetitions hence it appears in fractions. S: Secure, I: Insecure.

secure) in all groups except in Group 2, wherein the approach confuses more negative cases.

Regarding the positive case (I, insecure), the approach achieves its best performance in Group 2

and this performance is slightly degraded for lower groups (Group 3 and Group 4). For Group 1,

the approach performs poorly in identifying the positive cases. This suggests that the approach

can identify most of the negative cases of all groups whereas it is hard to identify the positive

cases of Group 1 (long recordings).

In the PL approach, the overall performance in Figure 6.2 is higher for Group 2 and Group 4. By

inspecting the confusion matrices in Table 6.3, the approach is able to identify the negative cases
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similarly well in all groups. However, for positive cases, the approach misclassifies almost all

cases over Group 1 and it gets better at identifying these cases for lower groups. Accordingly,

in Group 4, the approach achieves high performance in identifying both classes. The result

suggests that the length does not have an effect on the ability to recognise negative cases but

it has a considerable effect on identifying the positive cases as it seems that the approach is

associating the long recordings to the negative class which is not surprising giving that both

components (paralanguage and language) are showing this similar effect.

In FL and FPL approaches, as shown in figure 6.2, the overall performance is approximately

similar for the first three groups whereas it gets better at Group 4. The confusion matrices

show a somewhat similar pattern to the previous approach (PL), as the approaches identified the

negative cases in all groups with a high performance (middle groups show a slight decrease in

performance compared to PL). For positive cases, the approach confuses most cases in Group 1

and gets better at identifying those cases in lower groups where the least amount of confusion is

achieved in Group 4. This suggests that the approaches are also associating the long recordings

with the negative class.

Overall, it seems that in all approaches, significant confusion appears in Group 1 of the longest

recordings (except FP) resulting from assigning more positive cases to the negative class. This

suggests that the effect of associating long recordings to secure class is still present in the mul-

timodal approaches. Another finding is that PL approach has the least amount of confusion at

Group 4 compared to other approaches, suggesting that the unimodal components have captured

a significant amount of complementary information over the shortest recordings.

6.2.2 Amount of Speech

Another main observation about the dataset is that some participants were actively engaged

in completing the stories and describing how the child/mother doll feels while others remained

mostly silent and hardly spoke throughout the session. As in the previous section, this intuitively

leads one to expect that the amount of speech in the recordings may have an effect on the

performance i.e., the more the child speaks the more likely to be classified correctly because the

approaches are more likely to capture cues related to the attachment types.

To analyse this effect, the amount of speech was first measured from each recording by utilising
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the Pyannote library [140], an open source tool for speaker diarization which detects the regions

of speech activity in the audio signals, and by accumulating the length of all speech regions, the

total amount of speech per a recording is obtained. The part of the recordings that corresponds

to the story’s induction phase was excluded because we are interested in the amount of speech

uttered by participants during the session, however, this should not make any difference as this

part is exactly similar for all participants. As in the previous section, the participants were sorted

in a descending order with respect to the amount of speech and then segmented into 4 disjoint

groups where Group 1 contains the participants with the highest amount of speech and Group 4

contains the participants with the least amount. Subsequently, the performance was evaluated

for each group in terms of accuracy and confusion matrices.

The Pyannote library performs a speech activity detection task using pre-trained neural models

which reach the state-of-the-art performance on several datasets. This library takes the audio

files as inputs and returns a list of segments each specifying the beginning and the end times-

tamps of a detected speech region.

The distribution of the participants with respect to the total amount of speech is shown in Table

6.4. As the table shows, The first three groups have more secure children with Group 1 having

the biggest difference between classes. In Group 4, there are more insecure children compared

to other groups. Moreover, the table shows the average length of speech regions for each group.

Group 1 Group 2 Group 3 Group 4
Secure 19 16 16 8

Insecure 7 10 10 18
Random Accuracy 53.1 51.6 51.6 47.4
Amount of Speech 410±211.4 182.0±17.9 124.6±17.2 76.3±17.5

Table 6.4: Participants Distribution with respect to the Variations of Amount of Speech.
The table also provides the random guess accuracy and the average amount of speech measured
in seconds for each group.

Unimodal Approaches

Figure 6.3 and Table 6.5 present the performance in terms of overall accuracy and confusion

matrices in all unimodal approaches with respect to each one of the segmented groups. The
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overall accuracy shows that there are variations in the performance between different groups

in all approaches and the pattern of variations is different among the approaches. In the face

approach, the best accuracy was achieved in Group 1 and Group 3 and the lowest was achieved

in Group 2 and Group 4. The confusion matrices show that the approach identified most negative

cases in Group 1 whereas it confused a higher number of negative cases in the lower groups

(relative to the overall number of negative cases in the respective group). For positive cases, the

approach confuses almost half of the cases in each group except in Group 3, where it identifies

the positive cases to a better extent. This result suggests that the approach is more likely to

identify the secure children with a high amount of speech whereas it seems there is little effect

on the ability to identify the positive cases as shown in Group 3.

(a) Face (b) Paralanguage

(c) Language

Figure 6.3: The figures show the performance in accuracy depending on the amount of speech
in unimodal approaches.

In the paralanguage approach, the accuracy is higher in Group 3 and Group 4 compared to

the higher groups suggesting that the paralanguage approach is achieving better performance

at the lower amount of speech. The corresponding confusion matrices show that the approach
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Gr. Face Paralanguage Language

1

2

3

4

Table 6.5: This table shows the confusion matrices of the 4 groups that were segmented based
on the amount of speech in the unimodal approaches. The numbers denote the averages of
10 repetitions hence it appears in fractions. S: Secure, I: Insecure.

assigns most cases in Group 1 and Group 2 to the negative class. For lower groups, the approach

performs better at identifying the positive cases leading to the least amount of confusion in

Group 3 compared to other groups. This result suggests that the approach associates high amount

of speech to the secure class as shown in the higher two groups (only 19% is correctly classified

in the positive cases whereas it is 82% for the negative cases). On the other hand, for the lower

two groups, the approach performs better for both classes in which it correctly classifies 75% of

the positive cases and 81% of the negatives.

The language approach shows less variation in the overall performance among groups compared
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to other approaches suggesting that the variations in the amount of speech have less impact on

this approach. The best accuracy was achieved in Group 4, while both Group 1 and Group 3

achieved lower accuracy. The confusion matrices show that the approach assigned almost all

cases of Group 1 to the negative class whereas in Group 2 the approach gets slightly better at

identifying the positive cases. In Group 3, the approach identified more than half of the positive

cases while confusing more negative cases compared to higher groups. In the lowest group,

Group 4, almost all positives are identified while more than half of the negatives are confused.

The result suggests that the approach is associating the high amount of speech to the secure class

whereas it is associating the low amount to the insecure class.

Overall these results confirm that the variation in the amount of speech has an effect on the per-

formance, however, the nature of this effect is against what we expected it to be. In particular,

both paralanguage and language associate the high amount of speech to the secure class. More-

over, paralanguage achieves higher performance for both classes at low amount of speech. In

addition, language approach associates the low amount of speech to the insecure class. On the

other hand, face approach is more likely to identify secure children with high amount of speech.

Multimodal approaches

This section presents the results of the effects of the amount of speech with respect to the various

multimodal approaches. The expectation is that there is an effect of the amount of speech on

various multimodal approaches as there was an effect on the unimodal components and another

effect may arise as a result of the combination. Figure 6.4 and Table 6.6 show the performance

in accuracy and confusion matrices for each multimodal approach. Overall, the variation seems

less pronounced than what was observed in the unimodal approaches, and in three approaches,

the best performance was achieved at the lowest amount of speech (Group 4).

In the case of the FP approach, the best performance was achieved in Group 1 whereas the

worst performance was achieved in Group 2. The remaining groups show a gradual decrease

compared to Group 1. The corresponding confusion matrices show that the approach identifies

most negative cases at Group 1 whereas for lower groups the approach confuses more negative

cases. For positive cases, the approach confuses more than half of the cases in Group 1 and gets

better at identifying these cases in lower groups. This suggests that this approach also associates

the high amount of speech to the negative class and it better identifies the positive cases at the
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(a) FP (b) PL

(c) FL (d) FPL

Figure 6.4: The figures show the performance in accuracy depending on the amount of speech
in multimodal approaches.

lower amount of speech.

For the remaining approaches, the overall accuracy is higher for Group 4, with PL showing a

gradual increase in the performance from Group 1 to Group 4. In confusion matrices, these three

approaches exhibit similar patterns. In particular, almost all cases of Group 1 were assigned to

the negative class, and at lower groups, the approaches identified positive cases to better extents

while confusing more negative cases. In Group 4, all approaches achieve the least amount of

confusion suggesting that these approaches achieve their best performance at the lower amount

of speech. The results suggest that these approaches too tend to associate a high amount of

speech with negative class and achieve their best performances over the least amount of speech.

Overall, the results suggested that the multimodal approaches (except FP) achieve their best

performance at low amounts of speech. On the other hand, all approaches perform poorly at

identifying insecure cases at high amounts of speech. Another interesting finding is that the
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Gr. FP PL FL FPL

1

2

3

4

Table 6.6: This table shows the confusion matrices of the 4 groups that were segmented based
on the Amount of Speech in the multimodal approaches. The numbers denote the averages
of 10 repetitions hence it appears in fractions. S: Secure, I: Insecure.

effect of associating the low amount of speech to insecure class which appears in the language

approach is mitigated in the multimodal approaches.

6.2.3 Discussion

The above analysis factors (recordings’ length and amount of speech) can be considered as signs

of the level of engagement during the assessment sessions. The results suggest that most of our

approaches tend to associate higher engagement groups with the secure class whereas language

approach associates the lowest engagement group with the insecure class. As mentioned above,
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the intuitive expectation was that a higher amount of these factors could yield better perfor-

mance, however, the results suggested otherwise. While the results seem counterintuitive, it

is in fact consistent with the MCAST [11] which, based on human ratings, concluded that the

level of engagement is one of the strong predictors of the attachment types i.e., the higher level

of engagement is associated with secure attachment. This means, although undesirable, that it

is a reasonable effect that the approaches capture these factors as predictors of the attachment

types. However, the absence of other cues that were easily recognised by human raters could be

the reason for this undesirable effect. Therefore, investigating other behavioural cues that may

serve as better signs of the level of engagement may attenuate this effect i.e., by providing bet-

ter discrimination ability between attachment types at high levels of the above analysis factors.

Other possible behavioural cues include: head pose, eye gaze, and hand movements as explored

in [80].

6.3 Incorporating a Confidence Measure

This section investigates the feasibility of incorporating a confidence measure into the predic-

tions of our recognition approaches. A confidence measure provides the ability to quantify the

amount of certainty in the predictions. Incorporating such a measure can increase the usefulness

and applicability of the approaches because this way one can set a criterion for accepting or

rejecting the system decisions based on the level of its confidence. For example, in health diag-

nosis systems, health practitioners can utilise this information to aid their decision on whether

they can rely on the system diagnosis or if a further manual assessment is needed. In order for

such a measure to be useful, confidence estimates should correlate with the correctness of the

predictions, i.e., the approaches should possess the property of assigning high confidence when

making the correct predictions.

Confidence measures have been explored widely in the literature especially in the field of safety-

critical systems when making wrong predictions can be risky, such as autonomous driving and

health diagnosis systems. Ranges of confidence measures have been explored in the literature.

The most commonly used confidence measure is based on the posterior probabilities that are

attributed to input examples by several probabilistic classifiers. Other studies proposed other

approaches to estimate the confidence, for instance in [141], the authors introduced the true
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class probability (TCP) in which the confidence score is learned via an auxiliary neural network

model given the input data and the true labels from the primary classification network. For

multi-class classification problems, a measure that takes into account the distance between the

estimated probabilities of the predicted and the remaining classes is proposed in [142], meaning

that if the distance is higher, the classifier should be more confident in its decision. Moreover,

a trust score is derived in [143], where a set of labelled data is reduced to a high-density set per

class. Then, for a testing example, the trust score is estimated by taking the ratio of the distance

between the test example and nearest class1 to the distance from the predicted class.

In this study, a confidence measure based on the entropy of the predictions is utilised. In par-

ticular, our recognition approaches estimate the posterior probabilities of a given test sample to

belong to one of the classes and the entropy measures the amount of certainty on this prediction.

For face approach, these probabilities are estimated by the logistic regression model. In par-

alanguage approach, the posterior probability is estimated as the fraction of recording segments

assigned to the predicted class. In language approach, the posterior is estimated by the softmax

function as a final layer of the CNN model. The multimodal approaches estimated the poste-

rior by applying the SR method on the probabilities that were estimated by various unimodal

components.

Having a certainty value associated with each prediction, a threshold value θ can be estimated

beforehand to mark a certainty level over the test set, above this θ , predictions are guaranteed

to reach a performance level K that is considered to be sufficiently acceptable depending on

the problem. In other words, predictions that are made with a certainty value that is higher

than θ can be accepted whereas predictions with lower values should be rejected. Therefore,

by choosing a suitable K, this θ value can be used as a decision criterion during inference to

only accept predictions that are made with a level of confidence that is higher than θ . Ideally, K

should be chosen so that the amount of accepted wrong predictions is minimal while the amount

of rejected predictions is reasonable to be handled manually.

1Which is different than the predicted class.
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6.3.1 Confidence with Entropy

In information theory, Shannon entropy or entropy H(X) is a measure of the amount of informa-

tion contained in a random variable X. The amount of information corresponds to the amount

of uncertainty in the possible outcomes of X, meaning that, if an outcome is almost certain to

occur among other possible outcomes, then the amount of information that is conveyed by X is

minimal whereas if the outcomes are uncertain or equally likely to occur, then the amount of

information that is conveyed by this variable will be maximal i.e., observing the value that X

takes is uninformative if its occurrence is certain. Initially, entropy was developed in commu-

nication theory to measure the minimum number of bits to encode a message generated by a

message source and it can be computed from equation 6.1 where pi denotes the probability of

the occurrence of ith outcome and n is the number of possible outcomes.

H =
−∑

n
i=1 pi log2 pi

log2(n)
(6.1)

For binary classification problems (such as the one studied in this research), probabilistic clas-

sification models estimate the probability of an input sample belonging to one of the classes

as p(x) and thus the probability of belonging to the other class will be 1− p(x). In this case,

entropy can also be used to measure the amount of uncertainty a classification model has in its

predictions where the above equation can be rewritten as in equation 6.2. If an input sample is

assigned to a class C1 with high probability p(x), and therefore 1− p(x) will be low, the quantity

H will be low, and thus 1−H will be high reflecting the high certainty of the model in this pre-

diction. This relationship between p(x) (probability of assigning x to C1) and certainty (1−H)

is plotted in Figure 6.5.

H =−(p(x) log2 p(x))+(1− p(x) log2 1− p(x)) (6.2)

6.3.2 Approach

To examine whether the use of this confidence measure can increase the usefulness of the recog-

nition approaches, the certainty level (1−H) was calculated at each prediction, by taking the

posterior probabilities that the approaches assigned to each attachment class using equation 6.2.
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Figure 6.5: Certainty (1−H) as a Function of p(x). The plot shows the relationship between
p(x) and certainty in the case of binary classification problems. When p(x) is near zero or one,
the certainty will be near its maximum value because the model is certain about assigning x to
either class. Whereas, when p(x) is around 0.5, the certainty level will be at its lowest value
because the model is assigning almost equivalent probabilities to each one of the classes.

Our approaches involve aggregating multiple predictions (5 predictions for the Unimodal ap-

proaches and 10 to 15 for the Multimodal approaches) using SR method to make the participant-

level prediction, therefore this can results in values that are greater than 1. In order for the aggre-

gated values to be re-expressed as a valid probability value, the ratio of the aggregated posterior

probabilities of one class to the sum of the aggregated posterior probabilities of both classes is

calculated. More formally, the probability of assigning the input sample x to the negative class,

p(y0|x) can be computed from:

p(y0|x) =
∑

R
i=1 p(y0|xi)

∑
1
j=0 ∑

R
i=1 p(y j|xi)

(6.3)

where p(y j|xi) is the ith story-level posterior probability corresponding to class j and R is the

number of predictions per approach.

Next, each participant was assigned a confidence rank by sorting the participants in a descending

order depending on the calculated (1−H) i.e., the participant with the highest certainty will be

in the first rank, and the participant with the least certainty will be in the last rank. Subsequently,

the performance in accuracy is evaluated as a function of the certainty rank, meaning that the
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accuracy at rank 10 is evaluated over the top 10 ranked participants. As mentioned above, for this

confidence measure to be useful, the approaches should have the tendency to correctly classify

the high-ranked participants. This allows one to decide on a θ value above which the approaches

can have an acceptable performance and the decisions of the system can be trusted.

6.3.3 Results

Figure 6.6 presents the performance measured in accuracy and plotted as a function of the confi-

dence rank in all of our unimodal approaches. As shown in the figures, the downward curve that

especially appears in the Face and Language approaches suggests that the approaches generally

yield better performance for the highest-ranked participants, meaning that these approaches gen-

erally tend to be more confident when making the right decision. In paralanguage, however, this

tendency is much less apparent, as the performance of the highest-ranked participants is slightly

higher than the overall performance (69.3% for paralanguage, as shown by the last point of the

curve) meaning that the confidence measure that was estimated in paralanguage approach is not

correlated with the correctness of the predictions and this possibly results from the way that the

posterior probabilities are estimated in this approach (the fraction of the recording segments that

are assigned to the predicted class).

Another major finding is that both paralanguage and language show a very low performance at

the highest-ranked examples while the face approach shows 100% and 90% accuracies for the

highest 4 and 12 participants respectively. This implies that the face approach, despite achieving

the lowest overall performance, has the highest tendency to be more confident when making the

right decision. On the other hand, the language approach achieves an accuracy above 90% for

the top 20 participants, however, it also misclassifies one participant with very high confidence

(the highest ranked participant in most repetitions of language approach experiments) which

suggests that the confidence measure that is estimated in the language approach might not be

correlated with the correctness at least for some special cases (this participant belongs to the

insecure class and corresponds to the highest amount of speech in the dataset).

The main goal of incorporating a confidence measure is to decide on a confidence level such that

predictions above this level are accepted otherwise the predictions will be rejected or reported

to be handled manually. For instance, by setting the K level to be equal to 80% (shown by the
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(a) Face (F) (b) Paralanguage (P)

(c) Language (L)

Figure 6.6: Confidence Measure in Unimodal Approaches. The figures plot the performance
in accuracy as a function of confidence rank. The performance is presented in terms of averages
and standard errors over 10 repetitions. The dashed line marks the 80% accuracy. Each subfigure
presents the performance of one individual unimodal approach.

magenta dashed line in the figures), only the top 12 ranked participants in the face approach

can be accepted while more than 90 participants will be rejected, this means that 85% of the

decisions will be discarded as being uncertain. As discussed above, the paralanguage approach

does not seem to correlate confidence with correctness as indicated by the flatness of the curve

and the highest standard errors for the highest-ranked participants therefore, incorporating a

confidence measure does not seem to enhance the practicality of the approach. Moreover, the

performance hardly exceeds our K level and in this case, no predictions will be accepted. For the

language approach, the top 64% ranked participants are classified with an accuracy of 80%, this

is useful because if we consider this K level, less than half of the predictions will be reported for

manual assessment i.e., the assessment workload can be reduced significantly.

The same procedure was repeated over the four multimodal approaches and the results are pre-
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sented in Figure 6.7. Each approach is shown along with the curves that correspond to the

unimodal components. For visibility, The curves that correspond to the multimodal approaches

are shown in magenta in each subgraph. In general, as in the case of unimodal approaches, the

curves are higher at high-ranked participants compared to lower ranks meaning that approaches

are more confident when making the right decision which is not surprising given that two uni-

modal components possess this property to varying degrees.

(a) FP (b) PL

(c) FL (d) FPL

Figure 6.7: Confidence Measure in Multimodal Approaches. The figures show the perfor-
mance in accuracy as a function of the confidence rank over the multimodal approaches. Each
subgraph presents one multimodal approach along with its unimodal components. The perfor-
mance is presented in terms of averages and standard errors over 10 repetitions. The black
dashed line marks the 80% accuracy.

One interesting finding that emerges from the figures is how different unimodal components

contribute to enhance the usefulness of incorporating the confidence measure. This is espe-

cially noted in the FL and FPL approaches (two bottom graphs). For example, the FL and FPL

approaches mitigated the issue that appears in the language approach which always misclassi-

fies a participant with very high confidence (the two approaches assign lower confidence when
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predicting this participant).

By considering our K performance level, it is shown that there are no major improvements

yielded in the three first approaches FP, PL, and FL as they do not enhance the performances

of their best component, in particular, FP only accepts around 16% of predictions whereas it is

around 50% in PL approach and 64% for FL. On the other hand, FPL has improved remarkably

over the components i.e., a higher number of predictions can be accepted in this approach. In

particular, more than 77% of the predictions can be accepted for the FPL approach given our K

acceptance level.

6.3.4 Discussion

The results show that the incorporation of a simple confidence measure as the one proposed

above, has a significant enhancement on the usefulness of our approaches. The best overall per-

formance of the approaches over the full dataset was 75% achieved by PL and FL approaches.

Our confidence measure gives us a better idea of the predictions that are more likely to be mis-

classified and thus may require a further manual assessment. It is shown above that by consid-

ering a θ level that corresponds to the performance level of 80% accuracy, major enhancement

can be achieved, in particular, the FPL approach can accept 77% of the predictions and the

remaining 23% will be referred for manual assessment.

Ideally, the K performance level should be set to 100% accuracy, thus, in inference, one can

be almost certain that a recognition approach only accepts the correct predictions. On the other

hand, our K level (80%) has a major significance in this recognition problem. According to

[12], human assessors of the SSP task are required to follow a rigorous training process until

an agreement of 80% performance is reached. This suggests that if an automatic assessment

approach can perform at an accuracy of 80%, it can be regarded to reach human-level accuracy

and therefore one can conclude that FPL performs at human-level accuracy on 77% of the cases.

In other words, the approach will reject less than a quarter of the predictions which reduces the

workload of health practitioners considerably i.e. the manual assessment is now only required

for less than a quarter of the cases.

The equivalent rating accuracy K is not known for the MCAST tool, possibly because it has

not yet been clinically applicable, and therefore our K level may be underestimated i.e., human-
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level performance could be higher than K for MCAST. However, there is still vast room for

improvement in the recognition process itself and in estimating a confidence measure that better

correlates with the correctness which may allow to increase this K level, i.e., one can be more

certain that the approach accepts only the correct predictions.

6.4 Chapter Summary

This chapter analysed the performance of our recognition approaches from two broad view-

points. First, it investigates the effects of two aspects of variations found in the dataset: record-

ings’ length and amount of speech. The results suggest that most of our approaches tend to

associate a high amount of these aspects to the secure attachment class meaning that a consid-

erable amount of misclassifications comes from failing to detect insecure children of the high

amount of these aspects. The second analysis viewpoint addresses the usefulness of incorpo-

rating a confidence measure to allow for setting a criterion to accept or reject predictions. The

results show that an approach that is based on fusing all three behavioural modalities is capable

of performing comparably to trained human assessors in 77% of the predictions. This suggests

that the workload of the assessment process can be reduced significantly.
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Conclusion

7.1 Overview

This thesis aimed at detecting the attachment styles automatically in school age children to limit

time and costs needed to identify insecure children. The thesis attempts to detect the two main

categories of attachment styles (secure and insecure), by analysing the three main behavioural

channels: facial expressions, paralanguage, and language. Moreover, an attempt was made

to fuse these modalities using a late fusion scheme in order to exploit the complementarity

information that might be learned by different modalities. Overall, the results show that it is

possible to identify the main categories of attachment styles in children with an accuracy of 75%

by fusing either face and language modalities, or paralanguage and language. This performance

corresponds to an F1-score of 68.8% which is achieved by fusing face and language modalities.

The effect of gender and age variation on the performance was explored and valuable con-

clusions were drawn regarding these two factors. Additionally, two major aspects of the dataset

were analysed to explore whether there is an association between these aspects and the outcomes

of the approaches. These aspects are, recordings length and the amount of speech. Finally, in-

corporating a confidence measure was suggested for the various approaches in an attempt to

increase the usefulness of the work. The main outcomes of this research are summarised in

section 7.3.

120
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7.2 Thesis Statement Revisited

The thesis statement asserts that the differences in attachment styles in school age children

leave detectable traces in their behaviours which then can be detected automatically by means

of pattern recognition methodologies. Our results show that, using the three main behavioural

channels, it is possible to capture attachment differences in children. In particular, it is shown

that recognition approaches based on facial expressions, paralanguage and language can detect

attachment with performance that is significantly higher than chance i.e., the approaches were

able to capture relevant patterns.

7.3 Main Outcomes

The following points summarise the main outcomes of this PhD research:

• An attempt was made to detect the two main attachment styles by analysing the three

main behavioural channels. Promising performance was achieved in all explored chan-

nels, meaning that attachment styles leave machine-detectable traces. The best result was

achieved by means of the language channel with an accuracy of 72.1% and F1-score of

63.9%.

• Multimodal approaches were developed by fusing the above unimodal approaches using

a late fusion scheme which leads to significant improvements in the recognition perfor-

mances. The best result was achieved with accuracy of 75.6% and F1-score of 68.8% by

fusing paralanguage and language (PL), and face and language (FL). These experiments

confirm that all unimodal approaches are capturing complementary information.

• The age based performance analysis revealed that there are consistent differences between

younger children (of age 5-7 years) and older children (of age 7-9 years). In particular, the

results suggest that older children are more likely to express their attachment conditions

through facial expressions while younger children are likely to express it better through

language and paralanguage.

• Similarly, the gender based performance analysis revealed that there are differences among

gender groups. Two important differences were noted: firstly, the results suggest that
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female children are more likely to express their attachment condition through facial ex-

pressions while male tend to express it more through language. Secondly: multimodal

approaches outperform unimodal components for female children while this is not the

case for male children, suggesting that unimodal approaches are capturing complemen-

tary information only for female children.

• Analysis of the effects of variation on the dataset with respect to two aspects: recording

length and amount of speech. This analysis reveals important findings, in particular, the

results show that most of the approaches tend to associate the higher amounts of these

factors to the secure class whereas some approaches tend to associate lower amounts to

insecure class. In other words, it seems that the approaches are capturing these variations

as predictors of attachment styles.

• Incorporating a confidence measure has increased the applicability of the approaches. In

particular, the results show that the confidence measure tends to be higher for correct

classifications. This adds a valuable enhancement to the performance as it allows one to

set a criterion to accept predictions only when the approach is confident. Our results show

that an approach based on fusing all modalities can accept 77% of the predictions while

performing comparably to a trained human assessor.

7.4 Limitations and Challenges

Several challenges have been encountered while conducting this research, overcoming these

challenges may help improve the recognition performance which can be summarised in the

following points:

• An attempt to learn a joint representation of the paralanguage and language has lead to a

major difficulty. In paralanguage approach we had to process the recordings in segments

of around 4.2 seconds long to handle the vanishing and exploding gradients problem. As

such, it was essential to align these segments with the corresponding transcripts, unfor-

tunately, it was hard to obtain these segments for the transcripts as the transcription tool

provides timestamps only when the speaker changes or when the speech were interrupted

by long pauses. This made the task harder to implement for all modalities although it
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might be straightforward to implement for face and paralanguage approaches1. Learning

a joint representation may help exploit the mutual information to a better extent compared

to the late fusion scheme.

• One issue about the facial expressions features AUs, is that openface was trained on a

corpus where the minimum age of the participants was 18 years. Therefore, it is unknown

how well is this tool at extracting facial AUs from children faces. This could be one

of the main reasons behind the poor performance of the facial expressions approach and

therefore it is worth investigating other possible ways or tools to extract AUs of children’s

faces.

7.5 Future Work

Possible directions for future work are:

• Learning joint representations of the various modalities may outperform the late fusion

schemes. Given the above limitation it might be worth exploring methods to handle the

vanishing gradients problem while allowing for learning a fixed length representation of

the full recording i.e., without resorting to the segmentation process as adopted in this

research. This can be further augmented with an attention mechanism to enhance the

ability of capturing complementary information.

• It is worth exploring whether extracting deep features on facial expression approach can

outperform the hand crafted feature that were extracted by openface, it may needs to be

coupled with a mechanism to deal with the limited number of training data such as transfer

learning that allows to train the deep model first on a richer training dataset.

• The results suggest that there might be other behavioural cues which can help discrimi-

nate between attachment types to a better extent. In particular, the results of section 6.2

suggests that it is worth exploring whether other behavioural cues that can be considered

as signs of the level of engagement can improve the recognition performance. Some ex-

amples of such cues are eye gaze, head pose, and hand movements.

1This is because we have set the frame size of extracting the speech features to be equivalent to one video frame.
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7.6 Closing Remarks

The goal of this thesis was to automate the attachment assessment process and to allow for large-

scale population screenings to aid health practitioners such that they can direct their efforts to

areas where human intelligence is unequalled, such as the treatment process. The results showed

that our recognition approaches were able to correctly predict more than 77% of the cases with

a performance comparable to a trained human assessor, providing a tremendous enhancement

over the existing manual tools. Given that this work is one of the first attempts to address this

problem, these results are promising, and potential improvements have been identified which

may lead to better performance.



Appendix A

Normality Tests

Normality tests were conducted to ensure that the distribution of a given sample does not deviate

significantly from the normal distribution, thus ensuring that the normality assumption of the t-

test is not violated. In this respect, the Shapiro-Wilk statistical test was performed in which the

null hypothesis states that the sample does not deviate significantly from the normal distribution

and therefore, a p-value less than the significance level α indicates that the null hypothesis

should be rejected.

Table A.1 shows the p-values of all approaches for both story-level and aggregation based on the

accuracy results. Given that there are multiple hypothesis tests, the significance level is adjusted

to account for type 1 errors according to Benferroni correction, thus α = 0.05/45 ≈ 0.001. As

shown in the table, the null hypothesis cannot be rejected in any case.

Face Paralanguage Language FP PL FL FPL

Breakfast (BF) 0.12 0.18 0.32 0.33 0.39 0.18 0.11
Nightmare (NM) 0.27 0.51 0.26 0.94 0.17 0.18 0.37
Tummyache (TA) 0.11 0.91 0.81 0.70 0.52 0.02 0.43
Hopscotch (HS) 0.13 0.03 0.68 0.34 0.29 0.76 0.44
Shop. Mall (SM) 0.28 0.81 0.07 0.69 0.09 0.55 0.50

All (MV) 0.49 0.24 059 - - - -
All (SR) 0.68 0.87 0.02 0.03 0.09 0.24 0.14

Table A.1: P-values of the Shapiro-Wilk Normality Test. This table corresponds to the results
that were obtained in accuracy for each approach.
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