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“This is renaissance, your dentist now an authority on butterflies and you (in retrospect this happened 

so pleasantly, watching clouds one afternoon) connected by Twitter to the National Weather Service. 

This is revolution, breaking down barriers between expert and amateur, with new collaborations 

across class and education. Pygmy hunters and gatherers use smartphones to document deforestation 

in the Congo Basin. High school students identify fossils in soils from ancient seas in upstate New York. 

Do-it-yourself biologists make centrifuges at home. This is falling in love with the world, and this is 

science, and at the risk of sounding too much an idealist, I have come to believe they are the same 

thing”. 

(Russell 2014, p. 11)
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Abstract 

Global biodiversity conservation efforts have not been sufficient to reverse declining biodiversity 

trends. These shortcomings have led to gaps in monitoring initiatives for habitats, taxa, and regions. 

Public disconnect from nature and a lack of policy implementation to action scientific research have 

exacerbated these issues. Alternative monitoring tools, such as citizen science (CS) and remote 

sensing (RS), have the potential to increase the spatial and temporal reach of monitoring, meeting 

numerous global biodiversity targets. As such, there are calls for CS and RS to be united. Therefore, 

this thesis aimed to pair CS and RS and a provide a low cost, low intensity open science (OS) tool in 

Scotland. This tool sought to map a UK priority habitat – species-rich grasslands (SRGs), which have 

been widely reduced in area, resulting in coupled invertebrate decline and diminished ecosystem 

functioning. To increase success of monitoring attempts, an OS approach was adopted, whereby 

collaboration with stakeholders was key to enhance research impact and scientific democratisation.  

To establish an OS framework, openness in current biodiversity monitoring CS surveys was initially 

investigated, revealing that these surveys did not consistently adhere to OS practices. This research 

was vital to informing the design of the CS survey of this thesis and identifying efforts to ensure full 

openness along the scientific process. In determining OS practices, open access Sentinel-2 satellite 

imagery was acquired to create a habitat classification model, with a final accuracy of 98.6%. Other 

RS applications were explored, such as the Spectral Variation Hypothesis and grassland trait retrieval, 

to investigate open access RS data in subsequent mapping attempts of SRGs. The results found no 

significant relationship between spectral and species diversity, and grassland traits were mostly poorly 

predicted across spatial and spectral scales. The habitat prediction model was applied to satellite 

imagery across Scotland, predicting areas of SRGs. In exploring the model outputs, a CS survey, 

Ecosystem Explorers, was created with Butterfly Conservation, where participants surveyed these 

predicted areas. Data on previously surveyed SRGs was provided by collaborators such as NatureScot, 

Plantlife, and the Botanical Society of Britain and Ireland. The model predicted and citizen ground-

truthed SRG locations were compared and a poor alignment of 17.65% was found. Participant 

identification experience and habitat assessment confidence did not affect the level of agreement 

between the model predictions and ground-truthed observations. However, OS was implemented to 

combine CS and RS in a highly accessible project, with a predicted open score of 0.92/1.  

The thesis provides an example of a novel, OS biodiversity monitoring tool by combining CS and RS 

methods. The attempt to predict SRGs across Scotland utilising this instrument was unsuccessful. 

Although the cause of this poor alignment is unclear, citizen scientists appear to be equally as 

consistent as professionals in their observations, suggesting potential weaknesses in the national 

application of the model for SRG predictions. This would need further exploration and then poses the 

question of how an OS tool can be used to improve biodiversity monitoring. Throughout the thesis, 

guidance and recommendations are provided on how and where OS practices and methodologies can 

be used for future biodiversity monitoring.   
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1.1 The Global Biodiversity Crisis 

The Earth is currently experiencing what is known by many as the Anthropocene; a human-mediated 

geological era influenced by human population increases, impacting the Earth’s biodiversity and 

functioning (Ceballos et al., 2017). Anthropogenic activities include habitat destruction, pollution, 

burning fossil fuels, and overfishing. As such, a range of environmental effects have ensued, from 

ocean dead zones, human-influenced climate change, and large areas of habitat loss (Malhi, 2017).  

This biodiversity crisis has led multiple organisations and governments to create targets for mitigating 

and reversing these impacts. For example, the Convention on Biological Diversity (CBD) brought 

together 150 governments in the 1990s to develop a plan for sustainable living, resulting in the 

formation of the Aichi targets to be addressed between 2011 to 2020 (Convention on Biological 

Diversity, 2011). These 20 targets for tackling the biodiversity crisis focus on broader statements 

concerning biodiversity, including: “a) addressing the underlying causes of biodiversity loss by 

mainstreaming biodiversity across government and society; b) reducing the direct pressures on 

biodiversity and promoting sustainable use; c) improving the status of biodiversity by safeguarding 

ecosystems, species, and genetic diversity; d) enhancing the benefits to all from biodiversity and 

ecosystem services; and e) enhancing implementation through participatory planning, knowledge 

management, and capacity building” (Convention on Biological Diversity, 2020). However, it appears 

that these have yet to be met, with more recent assessments showing increasing declines across global 

biodiversity (IPBES, 2019). The IPBES (2019) assessment, which evaluates the current state of 

biodiversity, found that Aichi targets, such as awareness of biodiversity issues and how to conserve 

biodiversity, have only been partially met, whilst targets including halving habitat loss and decreasing 

habitat fragmentation (the biggest drivers of biodiversity loss) have been inadequate.  

One aspect influencing our ability to achieve (or understand progress towards) these targets is the 

pressing need to monitor these rapid changes in biodiversity. Without such monitoring, it is impossible 

to identify population trends, causes of changes, and potentials for solutions. As such, biodiversity 

monitoring is needed to prevent ongoing species loss and allow continued ecosystem functioning to 

ultimately support humankind and biodiversity alike.  

1.2 The Status of Traditional Biodiversity Monitoring  

In the past, biodiversity monitoring has been applied in various contexts to reach a multitude of aims 

(Henry et al., 2008). These aims may be to address scientific questions (such as the biological basis of 

specific phenomena) by researchers (Couvet et al., 2011; Nichols and Williams, 2006); inform 

conservation or land management decisions by ecologists, landowners, and businesses (Lindenmayer et 

al., 2012); be “curiosity-driven” by leisure groups or individuals (Pocock et al., 2015); or provide data 

for human health and well-being (from inferences of water or air quality, for example) through 

biodiversity indicator analysis (Ansari et al., 2017; Muhamedieva and Niyozmatova et al., 2023). Whilst 
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traditionally, biodiversity monitoring initiatives may have been standalone to reach individual goals, it 

is now more widely accepted that global biodiversity monitoring requires collaboration to become all 

encompassing (Anderson, 2018; Navarro et al., 2017; Perino et al., 2022).  

These various aims could have been met through a multitude of biodiversity monitoring methods, of 

which there may be overlap across these aims. Methods traditionally, and still to this day, include i) 

certain counts and density measures based on definitive numbers (of a species population, for 

example) (Gaines, 1999), ii) indices or proxies that are determined from other factors (e.g. diversity 

in sound recording from acoustic devices (Alcocer et al., 2022)), and iii) measured units or samples as 

a subset, or estimate, of biodiversity (Montes et al., 2021).  

In more recent years, biodiversity decline has drawn attention from multiple stakeholders to try 

combat the ecological crisis (Wallington et al., 2005; Kühl et al., 2020; Sterling et al., 2017). This 

engagement can be two-fold; seeing value in what nature provides for humans versus seeing value in 

nature’s individual identity (Rϋlke et al., 2020). It would be wise to increase the recognition of the 

latter, as drawing on this increases pro-environmental behaviours (Taylor et al., 2020a; Taylor et al., 

2020b). However, since the 1990s, human-orientated strategies are now adopted more readily, for 

example, with the establishment of the Earth Summit making monitoring of biodiversity law across 

nations or through the concept of ‘Nature-based Solutions’ (Boyle and Sayer, 1995; Seddon et al., 

2020). Protocols were adopted across countries to monitor biodiversity on local and regional scales, 

with strong emphasis on what biodiversity loss means for humans. Usually, biodiversity monitoring is 

governed by one overriding national organisation, split into smaller specialities each dealing with an 

independent area of biodiversity. However, this has led to duplications, imbalanced focuses, and 

unclear aims amongst departments (Camacho, 2020; Hagerman et al., 2021; Lee et al., 2005).  

Prominent drawbacks in traditional biodiversity monitoring include the time required and associated 

costs of data collection. Large numbers of cumulative researcher hours and costly equipment are 

needed to successful quantify key species and habitats in monitoring programmes, and this has not 

been feasible globally (González-Oreja et al., 2013; Kindsvater et al., 2018). Data collection issues 

largely occur due to lack of finance, infrastructure (both for data collection and communication), and 

location inaccessibility (Amano et al., 2016). As such, most monitoring programmes have focussed on 

proxies for species richness and diversity, such as the Simpson’s Diversity Index, due to their simplicity 

and applicability. However, indices and metrics in biodiversity monitoring do not provide information 

on why these states have occurred e.g., due to the potential presence of invasive species, and are not 

all encompassing, disconnected from the information they are trying to represent (Lamb et al., 2009; 

Marshall et al., 2020). Many indices and measures are also based on estimates, leading to the 

potential to misrepresent species’ population sizes because of detection error arising from the method 

employed, such as mark-and-recapture. To increase the scale of representation in monitoring 

programmes, measures are often extrapolated from small sample sites resulting in a survey error 

(Valdez et al., 2023). Many programmes also focus highly on species that are either rare or have a 
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greater role in ecosystems or society, meaning more common species are often overlooked until 

declines are much more severe (Hoye et al., 2022; Oliver et al, 2021; Yoccoz et al., 2001).  

While the overarching goals of biodiversity monitoring are similar across nations, typically varying by 

taxonomy and drivers of biodiversity loss, there are in fact large gaps in the scope of biodiversity 

monitoring due to an array of barriers; in short these include poor study design and vague outcomes, 

lack of funding and collaborative support, and spatial, temporal, and taxonomic gaps (Lindenmayer et 

al., 2012). 

1.3 Gaps and Barriers in Traditional Biodiversity Monitoring 

1.3.1 Taxonomic Bias 

One of the biggest issues facing biodiversity monitoring is the scale and number of species or habitats 

that must be incorporated. It is found in many schemes that there are biases towards specific species 

or taxonomic groups. For example, monitoring data is lacking for 46% of IUCN (International Union for 

Conservation of Nature) listed fish species, but only 0.6% of listed bird species (Amano et al., 2016). 

What is more is that only 1.7% of invertebrates (with intraclass biases seen, for example, coverage 

within Insecta is largely limited to Odonata) and 10% of plant species have been assessed (Hochkirch 

et al., 2020). When looking at other biodiversity indices, such as the Global Biodiversity Information 

Facility (GBIF), insects were found to have the lowest representation (with a high intraclass bias as 

well) due to reasons including difficult identification, lack of interest, and a high proportion of 

undiscovered species – which is an estimated 80% (Stork, 2018; Troudet et al., 2017). Perhaps 

unsurprisingly, increasing monitoring of insect taxa has been highlighted as vital for completing the 

Aichi targets and alternate methods are needed to reach this, as current practices will not manage 

this in the sought time frame (Girardello et al., 2018).  

It is difficult to identify what species should be involved in monitoring programmes, as each may have 

a vital function in an ecosystem. However, it has been suggested that indicator or priority species may 

be vital targets, as these can signify the health of an ecosystem that supports a high species richness. 

Although encompassing all species is vital, focusing on multiple species or ecosystems at once can lead 

to increasingly ambiguous aims, resulting in failed monitoring attempts (Pocock et al., 2015). 

Therefore, targeting a specific habitat or set of species of which their monitoring can benefit the 

wider ecosystem and multiple species may be the best approach. 

1.3.2 Spatial and Temporal Limitations 

In addition, monitoring may also be highly spatially or temporally heterogeneous. Geographically, 

most monitoring programmes are based in the Northern Hemisphere and reaching countries in the 

Global South is an ongoing goal (Amano et al., 2016). Many countries where biodiversity monitoring 

does not occur to a large extent, or at all, are areas where biodiversity is much higher – mainly in the 
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tropics (Collen et al., 2008; Hochkirch et al., 2020). The geographical biases apparent in global 

biodiversity monitoring consequently result in a habitat bias as well. Even in the Global North, where 

monitoring occurs much more frequently, gaps across habitats are present, with temperate forests or 

habitats that exist inside protected areas being focused on (Martin et al., 2012). When considering 

habitat monitoring, efforts must also concentrate on condition and not just extent (IPBES, 2019). 

Although geographical gaps are prominent in biodiversity monitoring, this is not to say that monitoring 

should completely focus away from areas that are currently intensely monitored and concentrate on 

data deficient regions entirely. Instead, monitoring programmes should consider how they can expand 

or be applicable in these geographical areas where data is lacking.  

Temporal gaps in monitoring also occur for multiple reasons. It has been suggested that many 

monitoring projects usually operate for up to three years, whilst at least 10 years of monitoring is 

needed to accurately assess changes in biodiversity (Stephenson, 2020). Although there are now 

established long-term monitoring schemes (such as the UK Butterfly monitoring scheme), many gaps 

still occur which follow the same spatial and taxonomic biases (Ondei et al., 2018). In a lot of areas 

baseline data is lacking (specifically for community assemblages), or inaccessible, resulting in unclear 

trends for multiple biodiversity targets across decades and since anthropogenic activities fuelled these 

changes (Hoye et al., 2022; Magurran et al., 2010). It is demonstrated that most monitoring 

programmes started after approximately 50% of the present impacts from human activities had 

already ensued (Mihoub et al., 2017).  

Geographical and temporal coverage is largely affected by cost and time restraints; however, 

language barriers and conflict may also affect monitoring (Amano and Sutherland, 2013). Long-term 

monitoring is particularly influenced by consistent funding, whereas frequent visitation rates may not 

be possible for certain natural processes or conditions. Other unforeseen circumstances may occur 

where monitoring cannot continue. For example, during the COVID-19 pandemic many in-person 

surveys had to stop operating, whilst some areas where monitoring is conducted closed access to the 

public. Conflict may also affect the long-term availability of certain monitoring schemes as it does 

largely across Africa where political instability is prevalent (Siddig, 2019). 

1.3.3 Public Understanding and Policy Implementation 

Comprehensive biodiversity monitoring also requires collaboration across stakeholder groups, from 

governmental bodies to the public. It is apparent there is a disconnect between biodiversity 

knowledge and the public. Reasons include misunderstanding of terms, such as “biodiversity”, 

disinterest in or inability to being outside, and failed media communication (Navarro-Perez and 

Tidball, 2012). This separation creates less agency for biodiversity conservation. Hooykaas et al. 

(2019) introduced the concept of species literacy, an understanding of native species as a 

representation of the term “biodiversity”. Low species identification scores were particularly 

prominent in children, with only an average of 35% of species successfully recognised (Hooykaas et al., 
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2019). It can be argued that creating a broader species-based knowledge in the public will cultivate 

the need for monitoring a greater range of taxa. 

Gaps still exist in the end use of biodiversity monitoring data with large data sets accumulating but 

not having any practical application (Ruckelshaus et al., 2020). Lack of policy implementation 

following biodiversity data collection can result from reduced accessibility due to various restrictions 

(Geijzendorffer et al., 2016). Additionally, due to the multi-field nature of policy legislation and 

conservation biology, coupling these disciplines is not straightforward (Rydén et al., 2020). The 

absence of specific ecosystem service monitoring, to evidence how ecological data merges with 

societal functioning, makes creating relevant policies difficult (Navarro et al., 2017).  

Maes et al. (2012) identified gaps in the translation of biodiversity monitoring of ecosystem services, 

such as 1) medicinal resources, 2) the importance of genetic diversity for disease prevention, 3) 

keystone species for habitat functioning, and 4) that this monitoring must look outside of only water 

and food resources and climate regulating services, to ensure unbiased policy decisions. Previously 

collected biodiversity research can be used to create actionable measures through mobilising data 

with collaborative networks and improved accessibility of archived datasets. For areas where data has 

not been collected, it appears more beneficial to identify a biodiversity conservation policy goal and 

collect data that will inform this policy (Geijzendorffer et al., 2016; Wetzel et al., 2018).  

1.4 How can Biodiversity Monitoring be Improved?  

Paucity of biodiversity monitoring data, driven by the factors above, may be addressed by making 

monitoring more efficient and encompassing of all biodiversity. For example, directed programmes 

toward conservation targets that are outlined by organisations, governments, or international bodies 

(such as the CBD) (Kühl et al., 2020). However, the biases in conservation policies need effective 

collaboration between scientists and governments to ensure these are addressed. In Europe, multiple 

conservation policies are in place (for example, Natura 2000, a network of protected areas across 

Europe, are managed under similar sustainable practices across EU member states (Evans, 2012)) but 

large overlaps of species coverage were found (mostly mammals and birds) (Henle et al., 2013). Henle 

et al. (2013) suggested that an overarching system of biodiversity targeting should be developed first, 

prioritising species or communities based legal protections, use as indicators of wider ecosystem 

health, or providers of ecosystem services, allowing monitoring to be directed to where it may have 

the greatest benefit.  

When creating policy for biodiversity monitoring, reducing gaps can also be realised through the 

creation of translatable goals or tools that can be used across taxa, habitats, and countries. A call for 

a “culture of integration” in biodiversity monitoring has been made by Kühl et al. (2020) where 

communication globally allows monitoring to be harmonised, enabling this complete capture of 

biodiversity data. This is realised through a global united monitoring network supported by active 

stakeholder engagement. Creating this network will be possible through various tools; utilising the 
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benefits of each to help address gaps resulting from limitations of certain methods (Stephenson, 

2020). What is clear is that an increase in communication and collaboration, coupled with a merging 

of disciplines, will allow bridges to be formed in the global fight against biodiversity decline. This can 

be done through the practice of Open Science.  

1.5 Tools for Improved Biodiversity Monitoring: Open Science 

Open Science (OS) is “an effort to close the gap between science and society by democratising 

scientific knowledge” (Holbrook, 2019). OS can be applied to all areas of the research process; from 

publishing under an open access agreement to including stakeholders and members of the public in 

scientific design (see Figure 1-1). In biodiversity monitoring research, OS can be instigated through 1) 

collaborative research design (engaging the public in the monitoring of their local areas, for example), 

2) the use and open publication of data management plans (DMPs), preregistrations or registered 

reports, 3) utilising free software, and 4) openly publishing raw data and monitoring results (Bowman 

and Keene, 2018). To implement the use of OS in biodiversity monitoring, its applications and benefits 

must be explored. 

 

Figure 1-1. Open Science research practices increasing in openness from left to right. Figures adapted from 

Bowman and Keene (2018) and de la Fuente (2019). 

Although the concept of OS can be traced back to the 17th century, it is really since the turn of the 

21st century that OS has had wider recognition (Gong, 2022). It appears that OS has not been 

historically implemented largely in the various biodiversity monitoring approaches. Scientific research 

publications surrounding biodiversity conservation since 2000 found that most research (>95%) did not 

adhere to the true definition of open access publishing, for example (Fuller et al., 2014). Even where 

other OS practices may be in use such as with collaborative research, the previous major issue of 

implementing OS in biodiversity monitoring initiatives seems to relate to the final sharing and 

dissemination of biodiversity information (Gaikwad and Chavan, 2006).  

Information on how private companies, businesses, and recreational groups observe OS practices in 

biodiversity monitoring is little researched. It could be assumed that in past private biodiversity 

monitoring may have only shared findings where necessary, e.g., with partners, local councils, or 

governments. This is supported by the evidence that most biodiversity information appears to come 

from few organisations, which largely have a biodiversity conservation agenda (Stephenson and 

Stengel, 2020). On the other hand, recreational biodiversity monitoring in general may be more open 

due to the nature of public engagement. However, with a greater focus on national and international 

targets for addressing biodiversity loss, and with a rise in public concern regarding the ecological 
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crisis, it is becoming more prominent and even required for monitoring bodies to, at the minimum, 

report their conclusions (Hassan et al., 2022; Smith et al., 2019). Most research on the use of OS 

across biodiversity monitoring appears to be focused on information sharing, and more 

implementation of OS practices must occur throughout the entire research process (Roche et al., 

2022).  

1.5.1 The Pros and Cons of Open Science 

Applications of OS are not without challenges. Confusion and opposing opinions shroud the movement, 

making its implementation less straightforward. When researchers considered OS to access data for 

reproducibility or papers for citing purposes, attitudes to OS were largely positive. In comparison, 

when these same researchers considered their own work being readily available this was met with 

caution (Nicholas et al., 2019). Lack of clarity in OS is not limited to who moderates OS, the use of 

variable terminology (open access, open data etc.), and what is considered OS and what is not 

(Nicholas et al., 2019). Some journals will state they are open access but only allow publishing under 

the most limiting Creative Commons license, whilst others will only enable open access for papers that 

are not yet published but only In press (MacCallum, 2007). Misunderstandings also occur as journals do 

not promote their OS policies resulting in a lack of awareness, whilst some authors state the 

requirements or software to enable OS are simply not there (Van Noorden, 2014).  

Along the research process, OS obstacles may exist. Williams et al. (2017) found that a common issue 

with DMP requests is inconsistencies in the requirements. Preregisters and registered reports are often 

thought to limit researcher freedom, be more time consuming, and risk plagiarism (Klein et al., 2018; 

Sarafoglou et al., 2022). Consequently, DMPs and preregisters were found to be amongst the lowest of 

implemented OS practices in biodiversity citizen science projects (Suter et al., 2023) (see chapter 3). 

To address these concerns, frameworks and training should be, and are being, created (Williams et 

al., 2017). The aim of OS practices is to increase transparency, not to reduce flexibility, as these 

processes allow the visualisation of errors and prove to rectify themselves in terms of increased data 

quality (Nosek et al., 2019).  

When deciding where to publish research findings it should be encouraged to use open access journals, 

such as the Public Library of Science to university publishers like UCL Press. A greater number of 

citations can be generated by open access publishing, which is evident across multiple disciplines 

(Clements, 2017; Hajjem et al., 2006). A higher number of citations can also increase the potential of 

coverage on social media platforms or newspapers. This has been demonstrated with the use of 

Twitter, whereby citations rose in ecology research because of sharing via the social media platform 

(Finch et al., 2017; Lamb et al., 2018). OS has also created new software that improves research 

practice. Software includes websites for storing, sharing, and analysing data, such as Enlighten or R 

Toolbox which investigates discrepancies in correlation which values in reports (Allen and Mehler, 

2019). Having access to raw data and code increases collaboration by combining expertise across 
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multiple fields and can also be used for educational purposes, allowing research methods to be 

understood on a practical level (Saluja and Thakur, 2020). Although there is software available for OS, 

many are still in the process of being created and understood.  

For OS to be successful, there must be existing tools facilitating the availability of research and 

standard guidelines in place to avoid confusion or the potential to take advantage of easily accessible 

data. These necessary tools for OS are mainly in the form of online repositories and databases to store 

data, social media platforms for sharing data, and free access journals to present research outcomes 

(Neylon and Wu, 2009). Universal OS practices may not apply to all stages of research and data which 

require different tools. It may be more advantageous to actively encourage OS through policies, 

institutions, and funding bodies, whilst allowing the researcher to justify where OS applies to them 

and having their work recognised through strict credit checks (Levin et al., 2016). Cultural change 

towards practicing OS is often noted as the most difficult task when trying to make OS the norm. OS 

workshops focusing on approaches to OS and why it should be practiced should be made available 

where applicable, to breed an understanding of its importance (Ignat and Ayris, 2020). Hopefully, as 

OS becomes more conventional, tools to facilitate it will develop and the practice will become more 

standardised, clarifying the process.  

1.6 Tools for Improved Biodiversity Monitoring: Citizen Science 

Another widely used tool for biodiversity monitoring is citizen science (CS). Simply put, CS is the 

involvement of “the general public in scientific research tasks” (Vohland et al., 2021). Participant 

involvement can make up different types of CS. Contributory projects involve volunteers who are 

usually only associated with data collection; collaborative projects include volunteers associated with 

data collection and other aspects of the project; and finally co-created projects have volunteer 

participation throughout the entire research process (Bonney et al., 2009). Due to CS’ nature of 

involving the public in data collection, and more recently in project design, it is at its core an OS 

approach and facilitator.  

CS is not a new concept and the rise in CS is well documented (Berti Suman and Alblas, 2023; Kosmala 

et al., 2016; McKinley et al., 2015). In traditional biodiversity monitoring, CS will have had its largest 

contribution (although not exclusively) in recreational applications, as it was predominately created 

for such purposes. CS applications have previously been evidenced in ecological small scientific 

research projects, leisure pursuits, natural history collections, and even national programmes (such as 

for water monitoring) (Miller-rushing et al., 2020). CS may have previously been utilised least in 

monitoring by private companies and businesses, as these largely would have hired internal staff or 

contracted professionals. However, where CS examples are more readily utilised within NGOs, for 

example, there is now even more scope and potential for all organisations that undertake biodiversity 

monitoring to engage with CS in some way (Anderson et al., 2020). Even without creating their own CS 

projects, businesses are being more heavily encouraged to utilise crowd-sourced data (Cappa, 2022). 
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With further use and recognition of CS, there is no doubt it will be continuously applied in biodiversity 

monitoring.  

1.6.1 Citizen Science and its Contribution to Open Science 

Research shows that CS works well to entice public participation where the interests of the public are 

considered and met from the start of the project; where communication about the project reaches 

the target audience over a variety of means (e.g., social media and local newspapers); and where 

incentive is given, for example, through recognition or competitions (Dickinson et al., 2012). Usually, 

participation in CS comes from an audience who is already partially interested in the specific research 

of a project or science in general, and this needs to be considered when designing CS projects and 

how it impacts on OS (Land-Zandstra et al., 2021; Pers. obvs., 2022). This suggests that an interest in 

science must be bred early on in life, possibly through curriculum-based learning during the school 

years, to create a larger potential source of participants, and highlights the importance of targeting 

the audience in the advertisement and design of projects (Martin, 2017). A focus when designing CS 

projects, or considering OS in general, should be how to enlist interest from members of the public 

who previously have had little interest in scientific research.   

If a goal of OS is to democratise science through an increased public understanding of science, and 

interest in governance, this is where CS as a tool seems to fall short, and increased knowledge of a 

research area has not yet presented itself in the form of social change. Evidence suggests that when 

CS projects have the intention to inform policy, it is possible that governance can be influenced by the 

results of the project, and participants are more likely to be involved in the process (Hollow et al., 

2015; Warner et al., 2019). What needs to be considered in the design of a CS project is what 

continual impact and involvement can participants have past the ending of the project, such as 

through contributing to local councils, environmental stewardship, and informing policy (Toomey and 

Domroese, 2013). 

If clear guidelines around data sharing are set out, standardised, and monitored, these should address 

any concerns around sharing CS data. Where data is open and available the combination of datasets 

has led to large collaborative studies, specifically targeted to climate change, and changing trends of 

invertebrate populations (Follet and Strezov, 2015). If CS data becomes more open, this should lead to 

increased collaboration between researchers and project designers and benefit the OS movement in 

many ways.  

1.6.2 The Importance of, and Concerns in, Citizen Science 

One main draw for CS is its potential to collect a vast amount of data over increased space and time, 

which would not be possible with a smaller team of researchers, or require large funding (Dickinson et 

al., 2010). This high participation in a project will also increase efficiency due to greater data 

collection capacity, and results can be reached quicker. CS, like OS, however, is not only for the 
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scientist. It benefits the public that is involved in the projects through increasing knowledge in a 

particular area, building unique and transferable skills, creating a community to be a part of, and 

allowing the public to have a say in informing policy (from increased engagement and awareness of 

scientific issues) (Adler et al., 2020). This has the potential for social change and impact decision 

making, as the public is more involved with an issue or area of research (Butkevičienė et al., 2021). 

The public can also benefit the research by bringing in their own local or outside knowledge through 

participatory research, much in the same way that collaboration in OS can combine the expertise of 

researchers across multiple fields (Tengö et al., 2021). CS projects may also be cost-effective due to 

the designs of the project, often using apps or websites for data collection, with participation being 

voluntary. This could mean that CS is applicable in developing countries where expensive data 

collection and equipment may not be feasible (Schröter et al., 2017).  

A large concern when considering CS as a valid form of scientific research is the competency of the 

public conducting the research (Balázs et al., 2021). Participant ability appears to vary depending on 

the required data collection methods, demographics of the observer, and previous experience, but 

can be improved with detailed protocols, personalised training, pre-sampling tests, and continuous 

practice (Dickinson et al., 2010). It may also be possible to account for any variations in data 

collection amongst participants in the analysis stages, if participation and data collection are large 

enough (Theobald et al., 2015).  

Retaining participation is also key for long term programmes, as the amount of data depends largely 

on the level of participation of the public (Schröter et al., 2017). As participants are usually unpaid, 

other forms of incentive should be considered. This can be in the way of skill-building, work 

experience, connecting with experts of that field, or some form of other recognition, for example, 

certificates for the number of hours worked/reaching data collection targets. It is also a worry in CS 

that research is based on incentive rather than being hypothesis-driven, and, as such, is not “value-

free” (Elliot and Rosenberg, 2019). This essentially means that the drive behind the research is not to 

do with truth-finding, but is agenda ridden. This may not necessarily be the case, but even if it were, 

this need not be a bad thing. The issue here is not of value, as by definition research has value, but 

rather bias. It is possible that bias can impact on CS research, either by putting effort into one area of 

research over another, or in the analysis. However, with CS forming a part of OS, bias can be reduced 

or identified due to the greater transparency of the work and, thus, higher levels of verification. 

Although CS is not a new concept, its uptake on a large scale has only increased rapidly over the 21st 

century (Kullenberg and Kasperowski, 2016). As such, there are still some limitations across CS and 

areas where improvements can be made. For example, most CS projects are established in the Global 

North (Pocock et al., 2019). CS can, and should, be expanded globally across all cultures and 

geographic areas. However, if CS is to be undertaken in developing countries, it must be ascertained 

that local populations are not taken advantage of, and projects must ensure a strict working 

relationship for the project to be successful.  
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Theobald et al. (2015) found that most of the research from CS projects are not published in peer-

reviewed journals, irrespective of the quality of the data collected. This may be due to the sensitive 

nature of CS data that is collected, for example, the location of protected species, or personal 

information that cannot be anonymised. Therefore, the research often does not reach the masses, 

contradicting a focal purpose of CS. A hindrance to the potential of CS may also largely be found in 

the attitude of traditional scientists and researchers, as the data collected may not be considered 

genuine (Theobald et al., 2015). However, with the increasing creation of CS projects, that not only 

collect valuable data, but expand the interest and knowledge of the public and create social change, 

the acceptance of CS as a valid form of scientific research will follow.  

1.6.3 Best Practices and Improvements in Citizen Science 

Although CS is growing in its applications, the practice does call for some standard conditions; 

recruitment, retention, and incentive of the participants, methods that are replicable and can be 

followed easily and individually, and data that is verified and trustworthy (Worthington et al., 2012). 

Wiggins and Crowston (2012) created a typology of CS to categorise different projects based on the 

project aims. The framework simplifies project types and identifies issues that may be faced. As there 

is likely to be an overlap between categories, and due to the nature of CS, potential problems still fall 

into common themes; issues with data whether that be from sampling bias versus volunteer 

experience, or sustainability issues either from funding or volunteer participation (Adler et al., 2020; 

Wiggins and Crowston, 2012).  

There are multiple ways that data quality can be assured in CS, and various methods can be applied to 

a project to confirm the highest data quality possible (Table 1-1). The level of expertise needed by a 

participant is likely to influence the quality of the data that is collected; if greater experience is 

required for a project, the likelihood of errors in data collection increases, for example, 

misidentifying species. Approaches to tackle this could be with highly detailed protocols available to 

participants, implementing a buddy system whereby an expert is paired with someone less 

experienced, or creating a self-confessed experience criterion that can be used for targeted training 

approaches (Crall et al., 2011). Equipment and ease of the project also contribute to the quality of 

the data, with pilot studies being useful to identify if the procedures of the project are simple enough 

to follow, especially for an unspecialised audience (Kosmala et al., 2016).  
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Table 1-1. Summary of data quality issues identified in citizen science projects, methods to address 
the issues, and examples of projects and studies that have used certain techniques. 

Issue Solutions Examples 

Lack of 
experience of 
participants 

In person training, 
Detailed protocols,  
Pilot study for methods,  
Buddy system 

UKBMS (2019) 
 
Urban air quality citizen science (Cowie et al., 2014) 

Trust of users Trust metrics CoralWatch (Hunter et al., 2013) 

Data validation Automated data entry 
forms,  
 
Validation by experts,   
Replication through 
participants, 
Statistical Analysis 

HEES in BirdTrack (Wessels et al., 2019)/Smart Filter 
in Project Feeder Watch (Bonter and Cooper, 2012) 

 
iNaturalist (Balázs et al., 2021) 
Snap Shot Serengeti (Swanson et al., 2016) 
Covariates in eBird (Johnston et al., 2020) 

 

CS requires volunteer participants to be established. When questioning participants for the reasons of 

their involvement, responses range from initial interest in the project topic or its outcomes, self-

improvement either through skill-building or networking, social aspects, such as becoming a part of a 

community, or simply wanting to help (Rotman et al., 2012). It is important to note the timing of 

motivation as well, as participant involvement is likely to decrease at certain stages of a project 

(Rotman et al., 2012). Therefore, when recruiting and retaining participants, their varied motivational 

factors must be considered when designing a project to obtain the greatest number of volunteers. 

Retainment, for example, could be an issue of method simplicity, volunteer advancement, or lack of 

project outcomes (Domroese and Johnson, 2017).  

Initial volunteer involvement in project design is important, but difficulties lie around public 

understanding of the scientific process. Most CS projects are contributory; Smith et al. (2017) found 

over 50% of 173 CS projects fell into this category. However, the public can be more involved by 

informing study design in areas including ethical considerations (e.g., consent forms), timelines of the 

projects, evaluating data collection techniques, and contemplating research outcomes. Methods for 

the inclusion of the public could involve focus groups, interviews, and questionnaires, but focus groups 

appear preferential due to gathering the most information in a reasonable timescale (Boote et al., 

2010). It has been recommended that an ongoing exchange between scientists and participants must 

exist across multiple platforms, not limited to social media engagement, social and educational 

events, constant sharing of results, feedback between all contributors, and understanding the needs 

of all volunteers (de Sherbinin et al., 2021; Druschke and Seltzer, 2012).  

Both data quality, project scope, and recruitment of participants in CS have been improved by 

technological advancements (Davies et al., 2016). With these developments CS can be practiced in 

multiple ways, including on mobile phone apps, such as iNaturalist, or web-based projects, such as 

Galaxy Zoo (Nugent, 2018; Raddick et al., 2019). The use of different platforms has expanded CS 

because it is able to reach a greater audience with varying interests. As technology has progressed, 

simplicity of digital CS platforms has improved, allowing greater participation in projects and data 
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collection where traditional CS projects are not applicable (Jones et al., 2018). The creation and use 

of autonomous sensors in CS have enabled further reach and depth of data that is collected and will 

only continue to do so as technology improves and becomes less expensive (Newman et al., 2012). 

A relatively new concept in CS is the use of RS data (satellite and aerial imagery of the Earth) for CS 

projects (Geller et al., 2017). The use of citizens in conducting Earth observations has only increased 

in the last decade, where citizens can provide in situ observations to corroborate remotely sensed 

data (Fritz et al., 2017). Remotely sensed data provides a large collection of data that can be 

analysed and used effectively across multiple disciplines to target potential research questions. One 

area, for example, is for identifying habitat and monitoring change, which is extremely relevant in 

today’s ever-changing world. Very few CS projects have used RS data in the past, with most developed 

in the past five or so years (e.g., Heritage Quest to identify archaeological objects) (Lambers et al., 

2019). Therefore, there is a gap in the potential of both CS and RS that can be targeted through the 

combination of these methods. 

1.7 Tools for Improved Biodiversity Monitoring: Remote Sensing 

Existing methods within remote sensing (RS) include the generation of “information about objects or 

areas at the Earth’s surface without being in direct contact with the object or area”, using platforms, 

such as satellites and aircraft (Aggarwal, 2004). RS can acquire data on surfaces or areas of interest at 

multiple spectral wavelengths, going beyond the natural range of human vision (0.4 – 0.7 µm) and can 

be derived from a variety of sources, actively or passively. Passive sensors detect radiation that is 

reflected or naturally emitted from the Earth’s surface, while active sensors, such as Synthetic 

Aperture Radar (SAR) produce their own source of illumination and detect the amount of radiation 

that is returned to the sensor (Campbell and Wynne, 2011). These different RS systems can capture 

data over various spectral bands, spatial resolutions, or temporal scales, each having their own 

advantages for various applications (Vali et al., 2020). Choosing the correct sensor is heavily 

dependent on the intended application.  

RS does not have a long-standing history in biodiversity applications as OS and CS do, due to its 

technological requirements. However, it has been ever increasingly employed in a variety of contexts 

over the last few decades: applications have focussed on natural resource or land use change 

monitoring, rather than specifically on biodiversity (Roy et al., 2017). Conversely to OS and CS, RS has 

larger applications in the private sector of monitoring due to the costly nature of RS devices and some 

data. This has made it less accessible for NGOs or recreational biodiversity monitoring initiatives. 

However, there has been a rise in open access RS data that is allowing this to change, which is being 

more readily seen (Turner et al., 2015). Although the use of RS techniques in scientific biodiversity 

monitoring research has risen in the last few years, there is still much greater potential for this to be 

achieved (Reddy, 2021; Reddy et al., 2021). The increase in partnerships across public-policy-private 

relations, as well as open RS software and data, will allow RS to become more prevalent in 
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biodiversity monitoring, answering the continuous calls for this application (Antonelli et al., 2023; 

Khorram et al., 2016).  

1.7.1 Remote Sensing and its Applications for Monitoring 

RS has one of its largest applications in global change research, for example, with the use of 

monitoring land-use cover (Asokan and Anitha, 2019). As technology has advanced, the application of 

RS has increased, making this an ever more critical resource for land-change monitoring. This is 

because RS can capture data over large spatial scales and incorporate areas that are otherwise 

inaccessible to humans. More frequently, RS has been applied in biodiversity conservation research 

(Petrou et al., 2015). To be able to monitor these changes in land cover and use, the land must be 

classified into habitats depending on their unique features. There are certain habitat indicators, such 

as vegetation structure and biomass, that are vital for determining these land classifications (Klemas, 

2001). These indicators are usually measured at ground level; however, it is a time-consuming process 

to collect this information across multiple landscapes (Wood et al., 2012). Therefore, RS may be used 

to capture this data at a fine resolution but across a large spatial area.  

RS has been employed largely across forest ecosystems, with other habitats, such as grasslands, more 

frequently overlooked (Ichter et al., 2014; Reinermann et al., 2020). This is due to greater difficulty 

differentiating grassland species composition due to their smaller spatial resolution (Zlinszky et al., 

2015). Grassland classification is also more challenging due to the greater intra-class heterogeneity 

within the habitat creating higher-level classifications, such as species-rich neutral versus calcareous 

grasslands. Grasslands also undergo multiple inter-annual changes from various flowering and 

senescence timings, indicating that sampling time can alter grassland classification too (Reinermann 

et al., 2020). As such, there is a large gap in knowledge for grassland classification on a global scale, 

which is problematic due to the ecosystem services that these habitats can provide (Zlinszky et al., 

2014).  

Technological advances and increased availability of RS data have shown it is possible to identify 

grassland plant communities from satellites, such as Sentinel-2 (depending on the size of the 

community), especially when creating a time-series of images, which reduces the effects of cloud 

cover (Rapinel et al., 2019). However, plant species scale and phenological status may be limiting 

factors (Thornley et al., 2022). Studies also suggest that Sentinel-2 data can accurately measure leaf 

area index (LAI) and above ground biomass (AGB), important in the identification of grassland habitats 

(Schwieder et al., 2020). It must still be evaluated whether Sentinel-2 has a high enough spatial and 

spectral resolution for all indicators of grassland habitats compared to other RS sensors. 

RS devices that can capture multiple wavelengths and have higher spatial resolutions are more 

beneficial for grassland identification, as they can classify characteristics of vegetation with greater 

accuracy. However, in certain circumstances and depending on the habitat type, satellites with a 

higher spectral resolution but lower spatial resolution, such as Landsat, outperformed satellites with a 
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higher spatial resolution but smaller spectral resolution, such as SPOT (Nagendra et al., 2013). Most 

grassland classifications have come from optical RS (Reinermann et al., 2020). It can be questioned 

why the use of SAR is not more highly used, as SAR devices are not affected by weather conditions, 

removing any hindrances from cloud cover, which is advantageous over land areas that have high 

cloud cover for most of the year (i.e. the UK) (Dusseux et al., 2014). SAR provides information at a 

single wavelength while optical or multispectral sensors can provide information at multiple 

wavelengths (Sommervald et al., 2023) (Figure 1-2). When comparing Sentinel-1 imagery (SAR) to 

Sentinel-2 imagery (optical), Sentinel-1 was less competent at differentiating between habitat 

classifications that were similar in texture. This may pose a problem for distinction between discrete 

grassland classifications. There is potential for the combination of SAR and optical imagery to provide 

high accuracy and avoid weather related issues (Dusseux et al., 2014; Meneghini, 2019).  

 

Figure 1-2. The different mechanisms of SAR (an active sensor using backscattering from microwaves to 
produce a single wavelength black and white image) versus optical (a passive sensor using reflected light 
from the sun to produce colour images from multiple wavelengths) satellite imagery. Image source: 
Sommervald et al., 2023.  

Light Detection and Ranging (LiDAR) imagery usually collects information at a single wavelength 

(across the near infrared for vegetation due to the backscatter of chlorophyll) (Dubayah and Drake, 

2000; Lewis and Hancock, 2007). LiDAR can display vegetation height at a small spatial scale and may 

be an alternative method to satellite imagery, however, it is costly and not data abundant. Some 

limitations of its use are in windy circumstances; however, vegetation height can still be inferred, 

whilst other structures may not be. Although LiDAR is expensive, its increasing use is reducing overall 

costs and enabling easier access to the data. Comparing an unoccupied aerial vehicle (UAV), a pole 

camera structure from a Structure from Motion (SfM) photogrammetry (creation of a 3D structure 

based on a series of overlain images), and a hand-held LiDAR device showed that the LiDAR device was 
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able to measure vegetation height most accurately in a grassland habitat (Obanawa et al., 2020; Ota 

et al., 2015).  

Other methods of RS include the use of airborne devices. UAVs may be a preferable tool to capture 

images on grassland species composition compared to satellite imagery or higher airborne devices (as 

they can be used below cloud cover and reach inaccessible areas such as steep slopes) (Avtar and 

Watanabe, 2020; Quaye-Ballard et al., 2020). This is truer for grasslands than for other habitats. On 

top of this, satellite imagery can have limitations including infrequent revisiting rates reducing the 

occurrence of data capture. UAVs can target this, as they can be used repetitively and take into 

consideration various seasonal differences in the appearance of certain species.  

It seems the best possible RS tool to measure all indicators of habitat classes are those with both high 

spatial and spectral resolutions. The combination of RS methods may be beneficial to utilise the 

advantages of multiple techniques. Using satellite imagery complemented by aerial/UAV imagery or 

LiDAR can also minimise the impact of weather conditions interfering with the clarity of images 

(Wachendorf et al., 2018). Finding these most advantageous combinations will allow greater overall 

accuracy of land classifications, from utilising the high accuracy of ground measurements to the high 

spatial reach of satellite imagery (Figure 1-3). 

 

Figure 1-3. Comparison of spatial reach and spatial scale across remote sensing methods (UAV and satellite 
imagery) with in situ measurements. Figure adapted from: Bandopadhyay et al., 2020 and generated in 
Canva.   

In biodiversity monitoring, RS has been suggested as a tool to cover large spatial areas and be useful 

for increasing sampling frequency (Luque et al., 2018). However, the two disciplines (RS and CS) have 

not yet combined to the extent that they can, and should be, due to lack of understanding and 

communication of needs between fields; conservation scientists are unsure of the quality of data that 
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materialises from RS techniques or if these methods are more expensive than conducting biodiversity 

surveys (Borre et al., 2011). There is a growing recognition that RS and CS can be combined to 

enhance these fields of knowledge, and a willingness to do so, but addressing the identified challenges 

will be paramount (Pettorelli et al., 2014).  

1.8 Combining Tools for Biodiversity Monitoring 

Combining biodiversity monitoring tools (such as CS, RS, and OS) can allow synergistic efforts to 

benefit each other. Both CS and RS can address concerns over specific biodiversity gaps; whilst CS can 

increase frequency of monitoring to a certain extent, the use of RS can further enhance this. These 

tools can do this, as CS can utilise high participation to collect more data, whilst RS can target 

inaccessible regions or cover areas over a larger scale. The integration of techniques can address the 

challenges of each tool as well, for example, RS imagery can take a large amount of effort and time to 

classify, whilst CS projects may be limited spatially (Chandler et al., 2017). RS data has doubled 

annually due to technological advances, which is beyond what is manageable by RS users. As a result, 

there is a lag in the assessment of this valuable data (Stephenson et al., 2017). Uniting the public with 

RS scientists to utilise improvements in technology has great potential that is currently not being 

achieved. It appears that once the uptake of RS for biodiversity monitoring (for example, with the 

integration into a CS project) occurs, this could create a snowball effect to continue expansion in this 

area and maximise the benefits both tools bring. 

A way in which the merging of these tools can be facilitated is through OS, to allow freely available RS 

data. Through collective OS tools, such as the Group on Earth Observations Biodiversity Observation 

Network and the GBIF, knowledge sharing is enabled for increased united research (Heberling et al., 

2021). As science becomes more open, the integration of methods across disciplines should allow 

greater scope for research to be undertaken, to target common goals. Cross-disciplinary approaches 

facilitated by OS can increase collaboration globally and incorporate data at an even larger scale. In 

the case of situations, such as the COVID-19 pandemic, the use of RS is even more applicable, as it will 

allow monitoring to continue whilst in-person surveying cannot occur (Sugai, 2020).  

Calls continue for there to be national to global scale biodiversity monitoring networks, that will allow 

open data from a variety of monitoring tools to be integrated and enhance biodiversity conservation 

globally (Navarro et al., 2017). Cord et al. (2017) questioned “How can Big Data from CS and social 

media together with Earth observation be used to assess and monitor ecosystem services? Which 

conceptual and technical barriers must be overcome?”. Therefore, this collaboration will be essential 

for addressing the importance of monitoring to the public and policymakers (Stephenson et al., 2017).  

The current gaps restricting the integration of these methods largely focus on the technical demands 

of RS applications and the availability of collaborative platforms, software, and educational resources, 

along with long-held perceptions attached to CS data (concerns of data quality, mistrust, and 

traditional, often closed, mindsets) (Mazumdar et al., 2017). However, it is not impossible to address 
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these gaps. Technologies, especially those that are open, are increasing with the rise in open-source 

Copernicus satellite data, or ‘Citizen Observatories’, for example, that enable discipline integration to 

occur (Grainger, 2017; Viqueira et al., 2020). Whilst integrative projects that demonstrate success 

allow preconceptions to be broken, accompanied by providing methods that foster trust (through 

training examples and data quality assurances) (Fritz et al., 2017; See et al., 2022).  

It is possible to correct the gaps in biodiversity monitoring with targeted approaches, where a clearly 

defined aim can be reached using these tools of CS, RS, and OS. For example, indicators within five of 

the UN’s Sustainable Development Goals (SGDs) had contributions from a range of CS projects, with 

the potential of its contribution to be much greater than this (Fraisl et al., 2020). RS techniques could 

also be used to achieve Aichi targets that were missed by the 2020 deadline (O’Connor et al., 2015). 

As these technologies continue to advance, they should be more heavily relied upon for integration 

into biodiversity targets. 

1.9 Aim and Objectives 

The tools of OS, CS, and RS have been analysed in their application of biodiversity monitoring to assess 

where each has its merits but also where improvements can occur, specifically through the merging of 

their uses. It has also been recognised that there is space for an instrument to be developed that 

utilises RS and CS for biodiversity monitoring as an OS approach. Therefore, this research aimed to 1) 

determine the role of OS approaches in the conservation of biodiversity, and 2) combine two 

approaches in biodiversity monitoring, RS and CS, to create an open and interdisciplinary habitat 

monitoring tool. This is with the hopes of providing a global method to benefit biodiversity 

conservation, whilst engaging multiple stakeholders to improve scientific democratisation. The thesis 

research questions may, therefore, help to address the concerns raised throughout this chapter for 

discipline merging and the importance of implementing OS.  

As such, a specific research question was designed for each subsequent thesis chapter to meet the 

overarching aims of the thesis: 

RQ1 – In which UK habitat may open science approaches and interdisciplinarity be employed to 

monitor biodiversity change? (Chapter 2) 

A priority habitat is needed to act as a target of this thesis’ research that an OS habitat monitoring 

tool can be applied to. The resulting case-study will help to address some of the gaps this chapter 

highlighted in deficiencies of biodiversity monitoring, focusing on taxonomic and habitat biases.  

RQ2 – To what extent do citizen science studies of biodiversity demonstrate the principles of open 

science? (Chapter 3) 

The research here questions if OS practices are utilised in biodiversity conservation applications, for 

example, in CS (an OS tool), and, if so, where are they employed and how can improvements be made 

throughout the research process? This will help demonstrate where OS can be utilised in the creation 
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of biodiversity monitoring tools, especially interdisciplinary ones, to foster trust, and data and 

knowledge sharing. This is specific to the CS component as the resulting combined tool was a CS 

survey that utilised RS data. This research will not only guide the creation of my own survey but may 

help future research by identifying paucities in OS implementation, hopefully addressing concerns in 

the employment of OS in the scientific process. 

RQ3 – Can a nationally relevant open-source habitat classification model be created for a priority 

habitat? (Chapter 4) 

To effectively record habitats, the model needs to accurately identify them. If these habitats can be 

predicted reliably, this may help locate specific habitat for vulnerable species to reach national 

conservation targets. Therefore, the characteristics of this habitat and requirements for vulnerable 

species needs to be outlined. This research will provide the RS outputs specific to the biodiversity 

case study (outlined in chapter 2) that would be used in the CS survey. This information could also 

further inform stakeholders for national targets of habitat mapping and conservation efforts, where 

few classification models are applied outside of a study area.  

RQ4 – Is currently available open-source remote sensing data able to accurately monitor priority 

habitats? (Chapter 5) 

This research will look at other remote sensing applications for priority habitat monitoring, 

investigating whether there are open-source RS data at the spatial and spectral scale to improve 

monitoring attempts. This information will help address the gaps and concerns of creating the 

interdisciplinary tool by analysing if open-source remote sensing software, data, and platforms can 

help reach specified biodiversity targets.  

RQ5 – Can an interdisciplinary, open science citizen science project be created, utilising remote 

sensing outputs for habitat monitoring? (Chapter 6) 

This will ultimately align CS methods and RS data in the one open access tool for habitat monitoring. 

This research will provide insights into the process of creating such a tool, identifying if the open-

source applications are available for this to occur, the technical requirements of the 

interdisciplinarity, and if knowledge gaps of cross-discipline research can be amended.   

Each chapter also includes explicit research questions or objectives that are specific to their 

respective chapter research question, outlined above. The chapters specific questions are found at 

the end of each of their introduction sections. Therefore, this research aimed to 1) combine remote 

sensing and citizen science in a biodiversity monitoring tool, in an OS approach, 2) use the tool to help 

map species-rich grasslands across the UK and identify possible locations for the vulnerable Northern 

Brown Argus Butterfly, and 3) ensure stakeholder engagement, public interaction, and open science 

methodologies throughout the research for increased scientific democratisation. This is with the hopes 

of providing a global method to benefit biodiversity conservation, whilst engaging multiple 

stakeholders to improve scientific democratisation.   
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Chapter 2. Specific Targets for Biodiversity Monitoring   
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2.1 A Case-Study for Addressing the Thesis Aims  

From the overarching aims of the thesis, I intended to create an OS biodiversity monitoring tool that 

combined CS and RS. This thesis will focus on biodiversity in the UK, not only targeting overlooked 

biodiversity components but concentrate efforts in one of the world’s most nature-depleted countries, 

where previous anthropogenic activities have devastated the natural environment. A specific 

biodiversity case-study was focused on for this aim that was both identified from the literature and 

discussed with Stakeholder and UK NGO, Butterfly Conservation. From assessment of the literature, 

grasslands are consistently mentioned as a habitat that has been overlooked in global monitoring. This 

could also explain the lack of attention invertebrates have received as well, due to their synergistic 

relationship. It is pertinent to address the lack of monitoring of invertebrates and grassland habitats, 

due to their association and lack of attention.  

Through the creation of the combined CS RS tool, and associated research, OS will be utilised where 

possible, and assessed in its success, thus reaching the first thesis aim. Specifically, the tool will be 

applied in mapping SRGs across the UK and to identify possible locations for the vulnerable Northern 

Brown Argus Butterfly, achieving the second thesis aim. As Butterfly Conservation, and other UK NGOs 

and departments, such as Plantlife and NatureScot, have specific targets for this case-study, ensuring 

stakeholder engagement and open science methodologies throughout the thesis will increase the 

capacity for public interactions and knowledge exchange.  

2.2 Species-Rich Grasslands in the UK 

Agricultural intensification in the UK has led to large declines in many natural and semi-natural 

habitats across the country (Walker et al., 2004). One of the most affected habitats is species-rich 

grasslands (SRGs), which now make up less than 1% of the UK’s land cover having been reduced by 

more than 97% since the last century (Hayhow et al., 2019; Plantlife, 2018). SRGs are defined as a 

semi-natural landscape of native ancient communities, created with few agricultural inputs and, as 

such, result in a high array of biodiversity (usually >12 species per one square metre) (NatureScot, 

2011; Rodwell, 1998). These grasslands may often be described as unimproved or, on occasion, semi-

improved in relation to their agricultural enhancement (JNCC, 2010). The UK’s remaining SRGs are 

still threatened by continued agricultural improvement, over- or under-grazing, pollution, 

afforestation, development, neglect, and climate change (UK Biodiversity Action Plan, 2008). 

Conserving SRGs is, therefore, critical to ensure no further losses are experienced. 

Grasslands are crucial carbon sinks that help mitigate factors that influence global warming and, as 

such, provide essential ecosystem services to society (O’Mara, 2012). The loss of these habitats 

entirely would also result in irreversible damage to the UK’s already vulnerable wildlife (Walton et 

al., 2019). The diversity of flora and fauna supported by SRGs emphasises the vital importance of 

these habitats. Species heavily associated with SRGs are those in the Insecta class. Many insect 
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habitats, including SRGs, are rapidly declining and, subsequently, insect population decreases have 

followed (Habel et al., 2019). For example, land use changes in grasslands in Germany have resulted 

in a 67% decline in insect biomass and a 78% decline in abundance over a 9-year period (Seibold et al., 

2019). Declines are also prominent in protected areas (75% in less than 30 years in Germany), where 

conservation of related habitats should limit this (Hallmann et al., 2017). These changes are not 

restricted spatially and have led to an estimate of 40% of insect species being at risk of extinction 

across the world (Sánchez-Bayo and Wyckhuys, 2019). 

These insect declines have gained large attention in recent years after being long overlooked, due to 

their seemingly high abundance and rapid breeding. Potentially, lack of interest in these often-

misunderstood species could have led to their disregard in monitoring, with only 0.8% of described 

species being assessed by the IUCN (Hance, 2019). However, the importance of insect species is now 

pronounced due to our increased understanding of their imperative roles in all life processes. These 

roles range from prey species to their pollination services which humans are heavily reliant on (to 

name only a few) (Scudder, 2017). Evidence suggests that insect declines are largest in grassland 

habitats and, therefore, targeting SRGs in conservation programmes has the potential to support a 

large array of species, many of which need protecting too (Sánchez-Bayo and Wyckhuys, 2019).  

Assessment of the impact of habitat loss on insect orders has revealed that the Lepidoptera has been 

found to be one of the worst affected, for example, across the UK more than 65% of butterfly species’ 

populations have declined over 43 years of surveying (Hance, 2019). These population decreases are 

associated with agricultural intensification and the fragmentation of their (largely grassland) habitats 

(Habel et al., 2019). Butterfly populations are also essential indicator species, noted for their 

sensitivity to environmental or habitat changes, such as eutrophication, water depletion, acidification 

of soils, and global warming (Fleishman and Murphy, 2009; Oostermeijer and Van Swaay, 1998). 

Changes in these populations can, therefore, be indicative of wider issues, including deteriorating 

habitat condition and predicting other species declines. For example, ‘The EU Butterfly Indicator for 

Grassland Species’ was devised using a suite of butterflies associated with grasslands, that may be 

used to determine the wider state of biodiversity linked to these habitats. Furthermore, butterflies 

are one of the largest taxa of insects that have established monitoring schemes, making monitoring of 

wider biodiversity already more feasible (Van Swaay et al., 2019). Identifying species that have this 

indicator potential of priority habitats, such as SRGs, would be hugely beneficial.  

2.2.1 Priority Species of Species-Rich Grasslands 

A species of conservation importance that is commonly associated with species-rich grasslands is the 

Northern Brown Argus butterfly, Aricia artaxerxes. In the UK, A. artaxerxes has seen a rapid reduction 

in population size and distribution since the 1970s (-57% and -56% respectively) (Fox et al., 2023). A. 

artaxerxes is now heavily restricted to the Northeast of England and East of Scotland, with some 

occurrences in Scotland’s Southwest, due largely to climate change shifting the species’ range and 
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falling habitat quality (Natural England, 2020). These worrying statistics have led the A. artaxerxes to 

be classed as UK Biodiversity Action Plan (BAP) priority species and of high conservation importance 

for the UK non-governmental organisation (NGO), Butterfly Conservation (Gallacher, 2007). If the 

species is at threat from increased climate change further restricting its range, ensuring its habitat is 

in favourable condition is fundamental through enhanced monitoring and management.  

A. artaxerxes’ distribution is greatly dependent on its larval food plant species Helianthemum 

nummularium (Common Rock-rose) which is found mostly on calcareous species-rich grasslands 

(although is able to grow on some acid and neutral grasslands too) (Figure 2-1). H. nummularium is 

currently not listed as vulnerable across the UK, especially in Scotland where it is listed as common. 

However, as calcareous grasslands have declined by 80%, further losses to these habitats could pose a 

risk to H. nummularium as well (The Wildlife Trusts, n.d.; Magnificent Meadows, n.d.). Requirements 

of calcareous SRGs for A. artaxerxes, besides the presence of H. nummularium, also include southerly 

facing slopes up to 350 m high in altitude and sward heights of ideally more than 10 cm, but at least 6 

cm, indicating a light grazing regime is most beneficial for management of this habitat (Ellis, 2003).  
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Figure 2-1. Distribution of the Northern Brown Argus Butterfly (Aricia artaxerxes) and its larval food plant 
the Common Rock-rose (Helianthemum nummularium) in Scotland since monitoring began. Records accessed 
via NBN Atlas (Appendix A-1 and Appendix A-2 respectively for citations) and displayed from a CSV to point 
locations in ArcGIS Pro (Esri Inc, 2020).  

A. artaxerxes has the potential to move onto other classifications of SRGs (including neutral and acid) 

if these outlined conditions are met. However, it must be noted that the dispersal ability of this 

species is weak, with movements usually recorded at less than 100 m (Gallacher, 2007). Exact climatic 
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requirements for A. artaxerxes are not outlined in literature. Based on its occurrence data (found in 

Northern European countries e.g., Norway and Sweden) and northward distribution shift in response to 

climate change, it can be assumed that slightly cooler temperatures are required by this species 

(Mallet et al., 2011; Thomas et al., 2006). If climate change is to continuously push these species 

northward, locating sites of SRGs that contain H. nummularium is vital, especially in Scotland where 

the larval food plant is still abundant. Not only this, but H. nummularium is a positive indicator 

species for calcareous SRGs, lying dormant in viable seed banks with the possibility of quick recovery 

in enhanced SRGs (Shellswell et al., 2016). This suggests that restoring areas of SRGs could be a 

feasible management option for increasing A. artaxerxes habitat if its larval food plant establishes 

quickly.  

2.3 Aims and Objectives 

Through this case-study, the thesis will explore the methods that will allow the two disciplines of RS 

and CS to be merged; how and where OS practices will facilitate this; and where stakeholder and 

public engagement can occur throughout. This will allow the chapter research questions in section 1.9 

to be answered. To meet these, the chapter research questions can be adapted to form case study 

specific research questions, identified to result in the creation of an OS, interdisciplinary tool: 

RQ3 -> Can a habitat classification model be created to predict species-rich grasslands in Scotland and 

locate habitat for vulnerable species?  

RQ4 -> Is currently available open-source remote sensing data able to accurately monitor species-rich 

grasslands and their vulnerable species?  

RQ5 -> Can citizen science data validate the outputs of remote sensing models to identify species-rich 

grasslands for vulnerable species protection? 

2.4 Thesis Development and Structure  

The introduction in Chapter 1 has explored literature to identify gaps in biodiversity monitoring and 

consequently determine the aims of this thesis’ research. I wanted to target shortcomings in 

biodiversity monitoring, whilst addressing the identified gaps (such as lack of discipline integration) 

that exacerbate these shortcomings to provide a novel method that could help to halt and reverse 

biodiversity loss; one of today’s biggest threats to sustainability and planet functioning. The common 

and emerging monitoring techniques of CS and RS were regularly mentioned but rarely united and I 

endeavoured to provide an example of how this could be done. To combine CS and RS in a habitat 

monitoring approach, certain research focuses have occurred. Due to the time and labour limitations 

of a PhD thesis, a specific case study needed to be the focus of the application of this novel combined 

tool. This is where the help of Butterfly Conservation was initiated.  
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Collaborating with the UK’s largest conservation charity would allow great research and conservation 

impact as well as enhance opportunities for maximum public engagement. For this relationship to be 

successful, specific goals that would meet Butterfly Conservation’s own conservation targets were 

vital. This led to the development of this Chapter 2. Initial discussions with Butterfly Conservation 

deliberated important indicator species that are current in their initiatives such as Aricia artaxerxes. 

These indicator species supported what the literature evidenced surrounding population declines of 

Lepidopteran species, and more widely the disregard of invertebrates in monitoring and conservation 

attempts. To capture a greater range of biodiversity and utilise the capacity of Lepidoptera as 

indicator species, species-rich grassland habitats were more broadly targeted, which were more 

suitable for the RS methodologies to be explored, as well as encompassing further UK conservation 

targets. This would hopefully allow the transferability of the developed novel tool explored in the 

thesis across habitats and species.  

To make the novel tool transferable at this scale, open science practices needed to be ensured in its 

development. Not only this, but open science would further promote discipline integration and public 

engagement. This led to the research associated in the third chapter, which explores the current 

practices implemented in biodiversity monitoring citizen science surveys in a systematic review, to 

explore how well they adhere to open science frameworks. This was with the aim of guiding my own 

citizen science survey and targeting improvements in the process. This chapter largely provides 

knowledge which would later be applied in the thesis through the development of my citizen science 

survey. 

Alongside the third chapter, the fourth chapter starts the exploration of what is currently known 

about the locations, classifications, and conservation practices of SRGs in Scotland. By using secondary 

data, spatial analyses were conducted to identify SRG sites to collect environmental and remote 

sensing data. Part of this secondary data was gathered from Butterfly Conservation’s own records, as 

well as data from NatureScot, who I was able to also work with on multiple occasions throughout the 

thesis, as they were aiming to create a comprehensive habitat map across Scotland, which would 

include SRGs. The environmental data collection process for this chapter was discussed with BC before 

the first field campaign, as these methods would be adapted for the subsequent CS survey. The data 

collection methods were used over two years, 2021 and 2022, where the former data was used to 

inform the classification of SRGs for creating and training a habitat classification model. The 

classification schema for identifying SRGs focused on the various known SRG types in the UK, including 

calcareous SRGs, which is the specific habitat for A. artaxerxes.  

This resulting model was applied to satellite imagery in Scotland to predict areas of SRGs, which 

would provide the inputs for the CS survey. This was with the aims of examining if the method works 

not only for broader habitats, but for the specific habitats of identified target species (in this case, in 

relation to the discussions held between Butterfly Conservation and myself). Only the data from 2021 

could be used for this as the CS survey needed to be initiated in summer 2022, whilst any further data 

could be collected. During this time, the CS survey was being developed with meetings with Butterfly 
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Conservation to finalise the participant methodology, promotion via Butterfly Conservation’s social 

media outlets and other outreach activities, and with an ethics application submitted to the graduate 

school. The project was initiated on an online platform which was disseminated with the promotion, 

and, after receiving ethical approval, the CS survey started to run from July 2022.  

Whilst the first implementation of the CS survey was running in 2022, I was out for a further three 

field campaigns that summer to continue to collect environmental and remote sensing data, utilising 

those same methodologies from chapter four. As such, the fifth chapter investigated the application 

of RS techniques to SRGs, where they have been little tested before, to assess if these applications 

may further enhance mapping of SRGs across Scotland and help identify habitat for those priority 

species, such as A. artaxerxes. Different RS sensors were used to assess the success of spatial and 

spectral scales on trait and species diversity predictions across SRGs. If successful, it was with hopes 

that this could further improve future classification mapping of SRGs or other heterogenous grassland 

sites. At the end of this data collection period, the results were analysed for chapter five to see how 

this could improve mapping attempts. The results from the CS survey were explored, which identified 

shortcomings in participant uptake. As such, further discussions with Butterfly Conservation were had 

to discuss potential reasons and solutions. This led to the adaptation of the CS survey methods that 

would make up chapter six. A more targeted implementation of the CS survey was decided upon to try 

increase participant uptake, whilst also resulting in greater stakeholder engagement. Further 

promotion, methodology adaptations, secondary data collection, and stakeholder collaboration 

occurred over the subsequent year, and in summer 2023 the CS survey ran again from May to August.  

Whilst the earlier chapters in this thesis worked more independently on developing each individual 

approach, the sixth chapter aimed to fully merge the two disciplines and examine the results from 

combination of CS and RS. The sixth chapter implemented the RS outputs into the CS survey and 

investigated the success of the approach for habitat mapping. This research utilised citizen scientists 

to see how well the habitat classification model predicted SRGs and specific priority species habitat, 

such as the calcareous SRGs for A. artaxerxes. It also investigated the confidence and experience of 

citizen scientists in biodiversity research and how this could have affected the results the CS survey. 

The collected secondary data from other stakeholders allowed further analysis into the success of 

various participants interacting the RS data. The results of the final analysis are to be openly shared, 

if not already, both with the stakeholders and the wider public online via the project platform.  

The thesis finished with a final seventh chapter that synthesises the previous chapters. The results are 

summarised, whilst the achievements and limitations of the methods tested are analysed. The wider 

applications and future considerations of the novel biodiversity monitoring tool are discussed, finishing 

with concluding remarks. The flow of information, input of data, and overlap of methods can be 

visualised in Figure 2-2, that leads to the final synthesis chapter.  
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Figure 2-2. Thesis structure development. 
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Abstract 

Citizen Science (CS), as an enabler of Open Science (OS) practices, is a low-cost and accessible 

method for data collection in biodiversity monitoring, which can empower and educate the public 

both on scientific research priorities and on environmental change. Where OS increases research 

transparency and scientific democratisation, if properly implemented, CS should do the same. Here 

we present the findings of a systematic review exploring “openness” of CS in biodiversity monitoring. 

CS projects were scored between -1 (closed) to 1 (open) on their adherence to defined OS principles: 

accessible data, code, software, publication, data management plans, and preregistrations. Openness 

scores per principle were compared to see where OS is more frequently utilised across the research 

process. The relationship between interest in CS and openness within the practice was also tested. 

Overall, CS projects had an average open score of 0.14. There was a significant difference in open 

scores between OS principles (p = <0.0001), where “open data” was the most adhered to practice 

compared to the lowest scores found in relation to preregistrations. The openness of OS principles did 

not change in CS publications throughout publication years (p = >0.05 per principle). These results 

reveal CS is not generally “open” despite being an OS approach, with implications for how the public 

can interact with the research that they play an active role in contributing to. The development of 

systematic recommendations on where and how OS can be implemented across the research process in 

citizen science projects is encouraged.  

Keywords: citizen science, open science, environmental monitoring, public, volunteer, data 
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3.1 Introduction 

3.1.1 Open Science and Research Democratisation 

The increasing efforts to democratise science and its outputs have resulted in the rapid development 

of novel research practices and resources (Mirowski, 2018; Strasser and Haklay, 2018). One 

coordinated approach by which we may improve the accessibility and transparency of research to 

readers of all backgrounds is the Open Science movement. Open Science (OS), although not a new 

term, may be hard to categorise under a single definition. However, it can be generally understood in 

its aim to increase the availability of all scientific research to general society (be that policymakers, 

laymen, or other researchers), or to develop a “transparent and accessible knowledge that is shared 

and developed through collaborative networks” (Vicente-Sáez and Martínez-Fuentes, 

2018). Proponents of OS argue that this availability leads to increased reproducibility of research, as 

the inquiring body has access to the entire research process, including data, code, methods, analysis, 

and results (Taylor et al., 2017).  

The OS movement has become ever more important with increased public interaction with research, 

both through social media and through continuous news in the online era. Research affects society via 

its potential to inform policy, influence the economy, design technology, and effect sociality. 

Research is frequently funded by public investment from the taxpayer; for example, in 2017, £9 billion 

was spent on research and development in the UK (The Royal Society, 2019). The UK government also 

increased this spending by 15% in 2021, meaning the return of investment should be even greater for 

the public (Stokstad, 2020).  However, there are numerous barriers between scientific research and 

the successful implementation of research findings (e.g., in policy) which may be addressed using OS 

practices. This has previously been demonstrated in the development of conservation policies using 

open data collected by the citizen science project ‘eBird’, turning the research into tangible 

achievements (Sullivan et al., 2017). Practicing OS has also increased wide collaboration, as seen in 

the development of the Zika, Ebola, and COVID-19 vaccines, providing novel mRNA methods which 

now shape the future of disease response (Burgelman et al., 2019; Edwin et al., 2020; Pardi et al., 

2018).   

Research’s reliance on public funding and potential societal impact underlines the importance for 

every individual, no matter their role in society, to have access to the research that shapes their lives. 

Nevertheless, research is seldom available to those it influences. Indeed, access to both publications 

and data remain stubbornly uneven across the scientific community, and research not available to the 

whole scientific community is also less likely to be available for the public (Scaria and Rangarajan, 

2016). However, the OS movement is not only economically appealing, due to the apparent return on 

investment that research may bring (e.g., in the creation of new products or industrial innovation), it 
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also fosters trust, enhanced knowledge, and awareness of what the public are contributing towards 

(Grand et al., 2012; Houghton et al., 2010; OECD, 2015).  

3.1.2 Open Science and Research Integrity 

Applications of OS also address barriers present when seeking to determine the reliability of research. 

For example, lack of reproducibility in research prevents work from being verified, replicated, and 

expanded upon (Scaria and Rangarajan, 2016). OS can improve the quality and reliability of research 

through increased opportunity for peer review, method replication, and collaboration. As this can 

increase the robustness of the methodology, published reports may be at reduced likelihood of being 

retracted. Additionally, papers which had associated open data were even less likely to be retracted 

(Lesk et al., 2019). This has also been found with research that linked preprints, with 0.03% retracted 

compared to studies without preprints with a retraction rate between 0.04-0.06% (Avissar-Whiting, 

2022). Where retractions are due to scientific misconduct, increased transparency in research should 

improve research integrity and reduce retractions overall (Marcus and Oranksy, 2014). In fact, Marcus 

and Oransky (2012) called for journals to have a transparency index; essentially a metric that 

measures processes in journal publishing, including the employment of OS practices. In addition to 

increasing the reliability of the publication base, the practice of OS has additional benefits to 

researchers; increasing the publication of null findings, increasing citations from preregistrations, 

improving researcher rights, and heightening collaboration leading to greater research efficiency 

(Clements, 2017; Franco et al., 2014; Hajjem et al., 2006; Levin et al., 2016; McKiernan et al., 2016). 

3.1.3 Open Science Approaches 

The practice of OS may be divided into five “advocacy schools”, including: a) public influence on, and 

understanding of, scientific research; b) the accessibility to both re-use raw data and retrieve 

published results; c) the architecture surrounding the storing and dissemination of research, d) the 

collaboration between different parties to increase both inputs and outputs of the research, and e) 

how to measure the research impact (Fecher and Friesike, 2014). Although, implementation of the 

aims of these OS schools will be specific to the area of the research process in question.  

Various models have been proposed to highlight OS approaches (Table 3-1). The relative newness and 

broadness of OS, however, has meant that there are no strict guidelines to follow for practising OS. 

Therefore, the application across the multiple models is often quite specific. For example, Klein et al. 

(2018) produced a framework for OS in psychological research to demonstrate how, and where, to 

open the research process, whereas Ayris et al. (2018) defined 8 pillars of OS for university practice. 

Ayris et al.’s (2018) guidelines are less specific in their instructions on where OS can be implemented 

but instead broadly examine what it means to be practising within OS. Other models, such as Bowman 

and Keene’s (2018) “onion” model and de la Fuente’s (2019) “beehive” model do highlight specific 

practices, however, are less obvious in where these fall within the research process. Common OS 
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practices do appear across the models which can be used to create a general framework to highlight 

where OS practices can be used across the research process.  

Table 3-1. Published open science practices and their applications in research. 

OS Practice Application in Source Source 

FAIR Data, Research Integrity, Next Generation Metrics, Future of 
Scholarly Communication, Citizen Science, Education and Skills, 
Rewards and Initiatives, and European Open Science Cloud 

University practice, 
research methodology 

Ayris et al., 
2018 

By author request, shared materials, shared analysis, shared data, pre-
registered reports 

Cross-disciplinary, 
research methodology 

Bowman and 
Keene, 2018 

Open notebooks, open data, open peer review, open access, open 
source, scientific social networks, citizen science, and open 
educational resources 

Cross-disciplinary de la Fuente, 
2019 

Data management plan, published pre-registers, materials (data and 
scripts) on public repository,  

Psychology research 
process 

Klein et al., 
2018 

 

OS practices at the start of the research process include the formulation of data management plans 

(DMP) and preregistrations. DMPs are of increasing importance to many journals and funding bodies 

and allow the researcher to consider how they will handle, store, and share the data collected during 

a study. Creating a DMP allows OS to be considered at the start of a project and ensure that it can be 

practiced throughout the research process. (Williams et al., 2017). The process of locating DMPs must 

be straightforward to improve efficiency and, as such, the adoption of a key sharing platform should 

be recognised. In the UK, many institutions encourage the use of DMPonline as a major sharing 

platform (Simms and Jones, 2017). Preregisters require detailing on hypotheses to be tested, methods 

for data collection, and the analysis to be undertaken. By describing how the data is going to be 

analysed it removes the possibility of changing the analysis method depending on the study findings or 

generating hypotheses after the results were found (known as HARKing) (Parker et al., 2019). 

Preregisters use online platforms for sharing, for example, the largest is the Open Science Framework 

(Kupferschmidt, 2018).  

Discoverable research outputs are the most widely practiced aspects of OS. As indicated above, open 

data enables research to be replicated and verified, as well as increasing collaboration. There are 

many platforms available to store and publish data (such as, DataONE and the Register of Research 

Data Repositories) where data can be located across several repositories (Michener, 2015). Similar 

tools can be used to publish methods and code for data analysis, but it is important to make sure that 

the analytical programs used are accessible to all, for example, with the use of open-source data 

analysis software. However, the sensitivity of data must be considered and may form a constraint on 

what data can be shared. Recognition of which has given rise to the term “as open as possible and as 

closed as necessary” (European Commission, 2016). Finally, there is the focus on open access results. 

Many journals have subscription fees, or one-off payments to allow access to a published paper. This 

reduces potential engagement with other researchers and the public (Peterson et al., 2019). Access to 

publications is the most frequently prioritised OS practice, however, it is important to have all OS 
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tools in place throughout the research process, otherwise, each area will lose significance. The entire 

research process and the outputs must be transparent to reproduce, verify, and expand upon research 

(Figure 3-1). 

 

Figure 3-1. How open science can be implemented along the research process and how citizen science can 
achieve these.  

3.1.4 Citizen Science as an Open Science Practice 

Science communication and public participation are both emphasised in the practice of OS. Citizen 

science (CS) involves the public in the scientific research process, most commonly for data collection 

and analysis purposes (Cohn, 2008), thus integrating both of these elements. The collaborative aspect 

of CS may overcome the disconnect between the scientist, the policymaker, and the public through 

collaboration during the research process (Cavalier and Kennedy, 2016). In this manner, CS both 

enables public access to research and integrates knowledge exchange, allowing contributions from the 

public (Hecker et al., 2018). This betters the efforts of OS at growing science democratisation through 

increased knowledge exchange, understanding of the scientific process, and diverse representation, 

with research that is more aligned with the public interest (Strasser and Hakley, 2018). The greatest 

benefit of CS in OS may be seen in the public advocacy school. For example, for species monitoring in 

Europe there are 18 citizen scientists for every 1 research scientist (Groom et al., 2017). It is 
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important to harness this enthusiasm from the public to generate idea creation and democratic 

governance (Storksdieck et al., 2016).  

An important contribution of CS to OS practices should be the increased availability of the data to 

potential collaborators who are not involved directly with the research. Many of the largest CS 

projects are in biodiversity monitoring (Kullenberg and Kasperowski, 2016). Indeed, such collaboration 

is essential in tackling the current biodiversity crisis (Costello et al., 2015). Both CS, and more broadly 

OS, enable new partnerships to address the gaps in global biodiversity monitoring. Firstly, OS can do 

this by developing platforms, such as the Group on Earth Observations Biodiversity Observation 

Network or Collect Earth, where common data and information is shared (Pettorelli et al., 2014). 

Secondly, CS can then combine datasets across a larger scale, for example where the Euro Bird Portal 

in Europe and the Second Southern African Bird Atlas Project in Africa pooled data across multiple 

countries to compile one large dataset (Amano et al., 2016). 

As indicated above, OS principles require that research should be reproducible and that data be 

accessible, and it may be assumed that CS adheres to these principles. However, Groom et al. (2017) 

found that CS data scored the second lowest on an open data index concerning biodiversity 

observations. Reasons for this included licensing restrictions, surrounding landowner permissions, 

concerns from data holders on data sharing, and funding disincentives (Groom et al., 2017). However, 

open CS data has the potential to provide large amounts of data which may otherwise not be 

achieved; this was seen in a water monitoring scheme in the US, where the CS data was made open, 

forming more than 50% of observations (Poisson et al., 2020). If CS data remains closed this can 

restrict further research on a topic by hindering collaboration. To overcome this issue, the reasons for 

reduced data sharing need to be addressed. For example, how can sensitive data be protected if it is 

openly available? Once these issues have been addressed the benefits of OS can be harnessed.  

3.2 Aims and Objectives 

In this chapter, I am addressing the thesis RQ2: To what extent do citizen science studies of 

biodiversity demonstrate the principles of open science? For CS to fulfil its potential as a core practice 

in OS, CS projects must adhere to the full range of OS principles. Although previous studies have 

indicated the inaccessibility of CS data, CS projects have not been assessed in all areas of the research 

process. As such, this study aims to systematically review biodiversity monitoring CS projects to 

determine whether they meet the core principles of OS. The study focuses on the research process 

from planning through to result reporting (step 2 – 5, Figure 3-1). Collaboration in step 1 was not 

included in the following analysis, due to its multi-layered nature and to simplify the scoring system 

across the principles. The specific research questions identified to meet RQ2 were: 

i) How open are environmental citizen science projects across the entire research process? 

ii) Which aspect of the research process is most open and widely adhered to? 
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iii)  Has openness in OS principles in published environmental citizen science projects changed 

over time? 

3.3 Methods 

3.3.1 Selection of Studies 

A systematic review was undertaken to identify publications arising from CS projects on biodiversity. 

The key words “CS” and “biodiversity monitoring” were used to search Web of Science. This database 

was chosen due to its common use in systematic reviews, specifically surrounding biodiversity 

conservation research, and the large number of results generated in the initial search (Boice, 2019). 

Results were initially filtered to include only journal article submissions before 2022.  

Subsequently, the results were exported to EndNote and duplicates were removed, before being 

sorted by title and abstract to exclude review papers, book entries, irrelevant studies (e.g., studies 

which did not consider CS or biodiversity monitoring), studies using secondary data or data not based 

on the authors’ own CS projects, or studies that were based on development of certain aspects of a CS 

project (for example, an app). Where it was unclear whether these criteria were met, the publication 

was carried over into the subsequent sorting stage. The methods sections of each paper were then 

reviewed and those papers which did not have enough relevant information to meet the criteria above 

were excluded. The number of papers returned at each stage of this sorting process can be seen in 

Figure 3-2.  

Due to a large level of incomplete information (especially regarding data management plans and 

preregisters), the authors of the 153 papers identified from the methods sorting were all contacted 

regarding missing information. Authors were given a month to respond to the emails before being 

excluded. Projects by authors that gave complete answers were included for analysis (Figure 3-2).  
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Figure 3-2. PRISMA diagram of the selection and exclusion process of included papers in the systematic 
review. 

3.3.2 Open Science Criteria 

The CS projects identified were assessed based on OS criteria. These included whether studies had 

associated DMPs, preregisters, available data and code, free software for analysis, and open findings 

available to everyone. Projects were assessed to see how many of the OS principles were met out of 

the six. Projects were then scored based on how open each principle was; closed was given a score of 

-1, partially open was given a score of 0.5, and fully open was given a score of 1 (Table 3-2). Where 

the OS principle was not applicable (for example, where projects used software that does not require 

code, or where simple descriptive statistics were used which did not require specific packages) these 

were left blank.  

Records identified through initial 

database search 

(n = 711) 

Records after duplicates removed 

(n = 703) 

Records after title and abstract 

screening 

(n = 291) 

Records after methods assessment for 

eligibility 

(n = 153) 

Studies included for all analysis 

(n = 42) 

 

Records screened: 

Incorrect format = 33 

No set up of environmental citizen 

science project = 312 

Use of secondary data = 64 

No information = 3 

 

 
Records screened: 

Incorrect format = 51 

Use of secondary data = 71 

Not enough information = 16 

 

Records screened: 

Inadequate information/ no reply from 

authors = 93 

Use of secondary data = 17 
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Table 3-2. Open science criteria used to rate the openness of biodiversity monitoring citizen science 
projects between -1 and 1. Each criterion was scored from -1 (closed), 0.5 (partially open), and 1 (open). 
Where information was not applicable to the project these were left blank.  

OS Criteria Closed (-1) Partially Open (0.5) Open (1) 

Data Management 
Plan 

None  Accessible by 
request/internal 

Discoverable (e.g., 
DMPonline/DMPtool)/attached 

Preregistration None Accessible by 
request/internal 

Discoverable (e.g., Open Science 
Framework)/attached 

Open Data None Accessible by 
request/internal 

Attached/online repository 

Open Code None Accessible by 
request/internal 

Attached/online repository 

Open Software Subscription software Transferable Free software 

Open Access Behind 
paywalls/subscriptions 

Partial access Open access journals/websites 
for results 

 

3.3.3 Data Analysis 

All statistical analysis was conducted in R (v3.6.3). To answer how open CS projects are across the 

entire research process, the scores for each project (n = 42) were averaged to give a value between -1 

to 1, with higher values signifying more open projects. Mean score was selected rather than total 

score, as not all categories were relevant to each paper (for example, open code), and the use of 

totals artificially penalised these studies. A final average was calculated across all projects to give an 

average “openness” score along the research process. The scores of each OS principle per project 

were used to investigate which aspect of the research process is the most open. Assumptions for 

normality could not be met and a non-parametric Kruskal Wallis test was used to evaluate whether 

any of the OS principles were more commonly applied. Ordinal logistic regression models were used to 

investigate the change in openness of OS principles in CS projects over time. Here, each principle per 

projects’ openness category was analysed across the years that the projects were published. Year was 

determined as project publication years. All significance levels were set to 0.05. The R coding script 

can be found in Appendix B-1. 

3.4 Results 

3.4.1 Average Openness Across the Research Process 

Analysis was conducted on 42 biodiversity CS projects published between 2005 and 2021 (see 

supplementary material, Appendix B-2), with an average openness score of 0.14 (minimum -0.67, 

maximum 0.9) across all projects for all OS principles combined. However, the number of papers (n = 

153) identified during the review process was initially much higher, with many papers discounted due 

to missing information. For example, only 36.6% of the original 153 papers had a data availability 

statement and/or a supplementary material section. However, this did not always detail whether 

either the full data and/or code or preregisters and/or data management plans were attached or 
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completed. The authors of these papers were contacted in the event that they should wish to provide 

further detail regarding their studies. All original 153 authors were contacted; 69 responded, however, 

only 42 projects provided complete information. The only OS practice that could be scored without 

correspondence was the openness of findings (i.e., was the paper published under an open access 

license or not). Of the original 153 papers, 152 papers had to be contacted regarding preregisters.  

3.4.2 Adherence to Open Science Principles 

There was a large variation in adherence to OS principles across projects (Table 3-3). The distribution 

of openness scores across projects, per OS principle can be seen in Figure 3-3. The most regularly 

adhered to OS principle was Open Data (69%), followed by Open Access where 64% of papers had open 

access publishing. The percentage of projects that had fully open software was 58%, whereas 35% of 

projects had fully open code, 12% had fully open DMPs, and just 7% had fully open Preregisters. 

Table 3-3. The number of citizen science projects distributed by their openness across open science 
principles. 

OS Principle Number of 
Projects per 

Principle (after NA 
removal) 

Number of Projects by Openness Score 

-1 (Closed) 0.5 (Partially 
Open) 

1 (Open) 

Open Access 42 15 (35.7%) 0 (0%) 27 (64.2%) 

Open Code 26 9 (34.6%) 8 (30.8%) 9 (34.6%) 

Open Data 42 5 (11.9%) 8 (19%) 29 (69%) 

Open DMP 41 26 (63.4%) 10 (24.4%) 5 (12.2%) 

Open Preregistration 41 27 (65.9%) 11 (26.8%) 3 (7.3%) 

Open Software 33 5 (15.2%) 9 (27.3%) 19 (57.6%) 

 

Mean openness scores for each principle across the 42 projects were calculated after removal of non-

applicable categories. The OS principle which is most frequently employed is the use of open data 

with a mean score of 0.67 (± 0.65 SD) across projects. The OS principle that is least employed is the 

use of preregisters with a mean score of -0.45 (± 0.78 SD) across projects (Figure 3-3).  
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Figure 3-3. Distribution of openness scores across biodiversity monitoring citizen science projects per open 
science principle 

The results of the Kruskal-Wallis test showed that the difference in openness scores between OS 

principles was significant (p = <0.0001, df = 5, F = 60.002). A post-hoc Dunn’s test with Bonferroni 

correction showed there was a significant difference in scores between Open DMP and Open Access 

principles (p = 0.0006), Open Preregistrations and Open Access principles (p = 0.0001), Open DMP and 

Open Data principles (p = <0.0001), Open Preregistrations and Open Data (p = <0.0001), Open 

Software and Open DMP principles (p = 0.0001), and Open Software and Open Preregistration 

principles (p = <0.0001).   

3.4.3 Changes to Adherence of Open Science Over Time 

The number of CS projects in this review that were found in publications increased from 1 project in 

2005 to 11 projects in 2021. Over this period, the average openness score did not significantly change 

in published CS surveys through publication years (z = 0.171, p = 0.864). It was also investigated 
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whether openness in CS was influenced by the rise in CS projects in publications, as a proxy for 

increased awareness of OS. The results show there is not a significant correlation in project openness 

across publication year and the number of CS projects published each year (z =-0.043, p = 0.966) 

(Figure 3-4). Furthermore, none of the OS principles present significant changes in openness with the 

rise in CS projects in publications over time. The results from the ordinal logistic regression show that 

the openness of each principle did not significantly change over time of the published CS projects: 

open access (p = 0.636), open code (p = 0.581), open data (p = 0.81), open DMP (p = 0.667), open PR 

(p = 0.437), open software (p = 0.0962).  

 

Figure 3-4. Open science principle’s yearly average open scores by the number of citizen science projects 
per year between 2005 – 2021. 

3.5 Discussion 

3.5.1 Implications of Results 

The application of OS principles in CS projects have not been widely investigated beyond the scope of 

data assessments (Borda et al., 2020; Williams et al., 2018). This makes comparisons among research 

difficult and suggests why this review is important in identifying where best practice methods are 

underutilised. OS practices are difficult to outline due to the varying nature of research questions and 

disciplines, suggesting that what is applicable to one research question may not be suitable for 

another. Subsequently, researchers may have different opinions on what is considered an OS practice 

because of the lack of consistent guidance. 

The results presented above indicate a lack of consistency in the number and extent to which OS 

principles are commonly implemented in CS research. Open access and open data were far more 

common in the research process compared to other practices, with these principles also having the 
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highest mean openness scores found in this review. Bowser et al. (2020) found even higher levels of 

discoverable data where 75% of 36 projects (across a range of scientific disciplines) made the CS raw 

data available by some means. However, the remaining lack of access to information (publications and 

data) was still noted as one of the bigger downfalls in CS projects in comparison to others, for 

example data quality measures. This is supported by Groom et al., (2017) who found that CS data 

scored the second lowest on an open data index concerning biodiversity observations. OS practices 

(specifically around open access and open data) in biodiversity conservation have long been called for 

(Fonseca and Benson, 2003; Gaikwad and Chavan, 2006; Mose et al., 2018). However, although open 

data and open access practices may score higher than other assessment criteria in reviews, they are 

by no means practiced on a large scale. Preregistrations and DMPs were used the least frequently. 

Very few studies have investigated the use of these within CS projects. One report based on CS 

projects across disciplines found that DMPs were implemented in 60% of projects (although it is 

unclear if these were publicly available) and 38% had raw open data (Schade and Tsinaraki, 2016).  

The results also show that there were no significant changes in the openness scores of OS principles in 

published CS projects across time, nor of average project openness scores as the number of CS 

projects in publications increased over time either. It was theorised that a greater number of CS 

projects in publications could contribute to the discourse around OS and in turn result in increased 

openness across projects or implementation of the OS principles along the research process. However, 

it appears that an increase in the number of CS projects is not enough to do this. It must be noted 

that there are likely more effective tools that may facilitate the use of OS along the research process, 

for example greater discussion of OS itself, however, this could not be analysed in the study here. The 

non-significant changes of openness scores in each individual principle across time also suggest that 

either there have not been improvements to facilitate open practice within these principles or that 

the awareness has not increased to the extent to allow this to occur.  

Although the findings in the other studies outlined above are not directly comparable to our results 

due to differences in study identification methods and analysis, together they do show there are still 

large gaps in the utilisation of OS principles. The drivers for these findings appear largely to be what is 

common versus what is not. Through correspondence with authors, it was noted that many researchers 

were unaware of certain OS practices, predominantly preregisters, making it impossible for them to 

be utilised. This may be the result of the lack of common practices, education, or guidelines 

surrounding the OS process. Similar issues were observed in relation to DMPs. DMPs can be made 

readily accessible by platforms, such as on DMPOnline and preregisters can be published on the OS 

Framework but less than 1% of papers in this review utilised these resources. Lack of guidance across 

scientific organisations, journals, or funders can result in fewer incentives or reduce researcher ability 

to contribute to OS. Allen and Mehler (2019) implied that this is likely to improve with time and 

greater interest and investment in OS, but this has not been assessed. Therefore, it can be suggested 

that the absence of an OS practice may not be an active choice researchers make but simply lack of 

awareness surrounding the movement.  
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Another common theme that appeared to limit the implementation of OS practices was the lack of 

funding (pers. Comms). Unfortunately, OS practices often come with associated costs, for example 

that of open access publishing. Many researchers are deterred by this if they do not have the 

resources (particularly seen in the Global South) meaning that participation in OS is not feasible or 

possible for all (Fontúrbel and Vizentin-Bugoni, 2021; Nabyonga—Orem et al., 2020). Conversely, 

access to funding, or lack thereof, could explain the relatively high proportion of studies which 

utilised open software, identified as the third most adhered to OS principle, as open software benefits 

the researcher in that it is free for them to use. This review discovered that where open data or code 

was used, these were found in public repositories, such as GBIF, iNaturalist, github, the project’s 

website (if applicable), or included in supplementary materials. Open software largely included R and 

QGIS. However, although there is software available for OS (e.g., storage, validation, and 

dissemination sites), many are still in the process of being created or are comparatively unknown. 

It must also be noted that increased research openness may lead to increased competition. OS 

processes are sometimes considered more time-consuming due to the preregistration and 

documentation procedures involved, creating concern around reduced publications or the prospect of 

being “scooped” by other authors (Allen and Mehler, 2019). However, this may be counteracted by the 

possibility of increased citations from the open-source documents. and time reduction from 

collaboration opportunities. Additionally, if copyright laws that are associated with open access 

publishing are applied to all stages of data sharing, then the possibility of researcher’s work being 

taken is minimised (Levin et al., 2016). 

Funding disincentives, time commitments, and lack of awareness imply that the widespread 

implementation of OS remains a low priority in biodiversity research, which is supported by this 

review. Previous research has indicated a rise in CS since the 20th century, with the largest application 

in ecological monitoring; attributed to many reasons including the low-cost, efficient methods it 

provides, or increased interest from the public (Kelemen-Finan et al., 2018; Kullenberg and 

Kasperowski, 2016; Toerpe, 2013). However, the increased interest in CS has not translated to a 

greater adherence to OS principles within the field. Potentially, this could also be related to a lack of 

want within the scientific field where OS is not an accepted practice. Although this result cannot be 

compared to other studies it is not what was initially expected. 

In this era of “big data”, it was hypothesised that project openness may have increased in practice, as 

CS itself can facilitate OS (Bezjak et al., 2018). Nevertheless, a number of meaningful restrictions on 

data availability remain, for example, both ethical and GDPR concerns where working with human 

participants makes the ethics around sharing data difficult (Suman and Pierce, 2018). As the projects 

are biodiversity based, there are concerns regarding the potential unintended secondary effects of 

data sharing, e.g., highlighting locations of rare and endangered species (Ganzevoort et al., 2017). 

This does not mean that all principles of OS should be disregarded and justifications for certain 

closedness in projects should be made apparent. The results here support the notion that scientific 
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research is often based on quantity not quality, where the number of publications and citations are 

seen as a measure of success (Fire and Guestrin, 2019). This is further evident from the findings that 

even retracted papers are still heavily cited and not removed if cited before a retraction occurs 

(Bolland et al., 2022). One reason for this is that the retraction status of a paper is usually unknown to 

authors (Teixeira da Silva and Bornemann-Cimenti, 2017). Methods have been proposed where journals 

use software that detects plagiarism (already utilised by some) and pairs this with retraction 

databases, such as Retraction Watch, to increase retraction clarity (Consentino and Veríssimo, 2016).  

As such, OS has the potential to increase the transparency of retractions and heighten scientific 

credibility overall. This is especially the case when meeting the expectations of OS guidelines i.e., not 

take advantage of open practices such as in the publication of preprints without any peer review, 

which was seen during the COVID-19 pandemic (Ryzmski et al., 2020). It is with hopes that OS can 

reduce the impact of “infodemics” and reduce scientific misinformation, not contribute to it (Pool et 

al., 2021).  

3.5.2 Limitations 

This review focused on patterns of openness in biodiversity monitoring CS projects. While over 150 

papers were identified in our literature review, not all the eligible studies could be included in our 

analysis due to incomplete project information/no response from authors. Additionally, due to time 

considerations, the influence of project structure on the resulting project openness and the factors 

which enable or are otherwise responsible for successful incorporation of OS principles were not 

explored. Future research may focus on these areas to target suggestions more specifically. It must 

also be noted that the purpose of this review is not to criticise the assessed projects for their 

adherence, or lack of, to OS practices, but to highlight areas for improvements that may be made in 

the field at large.    

The scope of the included projects was wide; some projects aimed to create a CS project to assess 

this method as a valid tool for biodiversity monitoring, other projects used CS projects as a secondary 

goal, primarily focusing on analysis of the ecological data collected. It would be reasonable to assume 

where the development of a CS tool for biodiversity monitoring was not a primary goal of the 

research, OS itself would not have been a main consideration. Included papers also comprised a large 

geographic area with projects based on every continent. There is the possibility that the practice of 

OS does not translate globally, especially with a lack of common guidelines, language barriers, and 

issues regarding access to OS tools (technological challenges) and funding.  

When evaluating the changes in adherence to OS over time, year was determined as the year the CS 

project was published, rather than conceptualised. It is difficult to analyse changes in OS 

implementation within a project, that may have occurred throughout the length of a project’s 

research, for projects that ran longer than a year or were not published the same year as their 

creation. It is uncertain, therefore, as to whether research decisions were made that were 
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unchangeable in the initial phases of a project or if decisions were influenced by the external 

hinderances within practicing OS itself. Project duration also varied from one day biodiversity counts 

to multi-decade and ongoing projects. It was not in the scope of this systematic review to determine 

whether project duration influenced adherence to OS practices. There is potential for projects 

(particularly ongoing ones) to move towards OS approaches. Even completed projects may still make 

previous data and code open, for example. However, this relies on a greater change in mindset and 

acceptance of new research practice as beneficial for scientific research and public engagement in 

science. Future research may look at how project duration or how time of project creation versus 

time of publication may impact the openness within CS.  

Finally, it is acknowledged that the final literature search returned 153 papers but full responses were 

only able to be gathered from 42 of these. The results are, therefore, constricted to these papers and 

further research could investigate the practice of open science across more biodiversity monitoring 

studies. Similarly, these studies are based on those that are published and may be constrained by 

policies within the academic publishing realm. Biodiversity monitoring citizen science initiatives 

outside of this context may well find further freedom to practice open science; another area for 

future exploration.  

3.5.3 The Future of Open Science 

The successful application of OS principles is dependent on the existence and visibility of appropriate 

tools in combination with standard guidelines. These necessary tools for OS are mainly in the form of 

online repositories and databases to store data, social media platforms for sharing data, and free 

access journals to present research outcomes (Neylon and Wu, 2009). Although such tools are now 

more readily available, there are still barriers which arise because of different policies across 

journals, funders, and governing parties. However, due to the vast expanse that scientific research 

covers and the variety within scientific processes flexibility is required when applying practices across 

disciplines. Universal OS practices may not apply to all stages of research and data management, 

requiring different tools. It may be more advantageous to actively encourage OS through policies, 

institutions, and funding bodies, whilst allowing the researcher to justify the use of OS in their 

research (Levin et al, 2016).  

The diversity of OS methods may be intimidating to the researcher but increasing awareness and 

uptake of such practices will make the process more commonplace, with the potential for OS courses 

to be undertaken (Toelch and Ostwald, 2018). Altering researcher cultures towards the practice of OS 

is often noted as the most difficult task when trying to make OS the norm. OS workshops focusing on 

approaches to OS and why it should be practiced should be made available where applicable to breed 

an understanding of its importance (Ignat and Ayris, 2020).  

What is clear is that the lack of widely implemented OS is frequently not the fault or choice of a 

researcher. It is more commonly a universal shortcoming, where funding and financial security provide 



Chapter 3   59 

the incentives to fulfil (or not) OS criteria within biodiversity CS and broader scientific research. 

However, the benefits of OS far outweighing financial savings. Increased collaboration as a guaranteed 

result of OS is more than likely to provide return of investment at a greater level than initial capital 

projections may predict. As we are at a crucial point in world history, with mass extinction 

threatening ecosystem functioning and human survival, it seems that investment in OS should be non-

debatable for the success of biodiversity research and the scientific process. 

3.5.4 Guidelines and Recommendations for Open Science in Citizen Science 

Projects 

The results of this study highlight areas where OS practices can be improved in CS projects. It must be 

noted that OS should not be prescriptive but suggestive, implementing practices where applicable and 

necessary. As such, OS practices that should be encouraged where applicable include: 

1) When creating a CS project, a pre-register should be made publicly available detailing the 

aims, methods, analysis, and dissemination of results intended at the start of the project. 

Where possible, the use of the Open Science Framework for publishing should be engaged if 

the target journal does not offer this service.  

2) A data management plan should be created detailing the collection, analysis, and storage of 

data using online creation tools such as DMPOnline if your organisation does not offer an 

alternative. These should be available on the project website (if applicable), as supplementary 

material, or published in the intended journal, as well as on DMPOnline. 

3) Data and, where relevant, code should be made publicly available as supplementary material 

or on repositories such as GitHub/GBIF etc. and linked within the published journal article/on 

project websites (if applicable). Nondisclosure of sensitive data (where ethics and 

anonymisation cannot be instigated) should be justified within a data statement. 

4) Where possible/applicable, projects should consider the use of open software for replicability 

for researchers, as well as useability for the public.  

5) Project results should be published under an open access license and on project websites, 

freely available to the public.  

3.6 Conclusions 

CS is considered an OS practice that is implemented most often in biodiversity monitoring. Here, CS 

can be both a result of OS and an instigator. However, previous studies show that CS projects often do 

not adhere to OS practices, hindering its potential to reach the goals of OS. The results of this review 

show that although interest in CS has increased in biodiversity monitoring over time, the openness of 

such projects has not risen with this. Although principles of OS need improvement, the areas that 

need addressing specifically appear to be around the use of preregisters and data management plans, 

which should be implemented at the start of a project. Guidelines are set out to advise projects on 
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how they can initiate more OS principles within CS projects, whilst OS is actively encouraged on a 

larger scale through instigation within organisations, institutions, and governments allowing scientific 

research to become more comprehensible, collaborative, and transparent.    
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4.1 Introduction 

4.1.1 The Importance of Species-Rich Grasslands 

Globally, grassland habitat decline has been driven by expanding agricultural land-use, largely over 

the past two centuries (Ceballos et al., 2017; Dudley et al., 2020). Within Europe and, specifically, 

the UK, species-rich grasslands (SRGs) are amongst the most threatened habitats, covering less than 

1% of the UK landscape (Pywell et al., 2002; NatureScot, 2021). This reduction is problematic due to 

the vital ecosystem services that grassland habitats provide, including as carbon storage and as 

habitat for declining invertebrate species (Zhao et al., 2020). For example, the butterfly Aricia 

artaxerxes is now listed as vulnerable from habitat loss and climate change, causing a decrease in 

abundance of 57% over a 40-year period (Fox et al., 2023). Continued SRG and global grassland decline 

will result in desertification, water eutrophication from soil erosion, and further release of carbon 

into the atmosphere, worsening societal capability for global food security and climate change 

mitigation (Yan et al., 2021).  

4.1.2 The Need to Map Species-Rich Grasslands 

There is currently an unaddressed requirement to map SRGs. Locating and mapping these habitats is 

crucial for their conservation and continuing ecosystem functioning. Despite the importance of SRGs, 

they are poorly recorded in certain areas of Europe. The European Commission implies this through 

the suggestions that SRGs can only be protected (from agricultural intensification, for example) by 

sufficiently mapping the extent of the habitat (King, 2010). Scotland, in particular, has large gaps in 

coverage of mapped species-rich grasslands and other habitats, with initiatives from NatureScot 

(including the Species on the Edge partnership with Butterfly Conservation) and the Scottish Borders 

Council habitat action plan identifying this as a key conservation goal (Scobie, 2018, Scottish Borders 

Council, n.d.).  

Where areas of SRGs have been mapped, records tend to date back to the late 20th century and early 

2000s (Dahlström et al., 2013; Divíšek and Chytrý, 2018; Michalcová et al., 2014). These areas may 

have undergone land use changes since records were collected and the purposes of the data collection 

may have differed largely from their potential use in SRG mapping. More recently, a comprehensive 

mapping of European habitats was undertaken using these vegetation records, which were 

transformed into the corresponding European Nature Information System (EUNIS) codes (Chytrý et al., 

2020). However, within the habitat maps, it is difficult to determine which type of grassland category 

is present in each plot, and overlaying the maps of broader habitat types creates confusion over which 

is the dominant habitat in certain areas.  

Scotland has little data available on the location of SRGs, with only up to 50% of all Scottish grassland 

types previously mapped (Bourne, 2020). It is estimated that there are approximately 30,000 ha of 
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SRGs in Scotland, of which only 2.6% of undesignated locations are known (Dadds and Averis, 2014). 

Reasons for this paucity of data include the cost and time requirements involved in accurately 

mapping all SRGs across the country (Scobie, 2018). NatureScot and the Cairngorms National Park are 

in the process of creating a detailed habitat map of Scotland, which should contain areas of SRGs. 

However, it is in the early stages of development and, as such, little data is readily available 

(pers.comms, 2020). The process for creating this map uses previous National Vegetation Classification 

(NVC) surveys to accurately identify specific plant communities of habitats at a more detailed level, 

and then standardising this using the hierarchical classifications in the EUNIS scheme (Gov Scot, 2018).  

While this is the most recent and detailed habitat map of Scotland that exists, there are large gaps in 

coverage where habitat designations are still to occur. 

Identifying areas of SRGs is central to their accurate monitoring and management, as well as for the 

conservation of the species dependent on the habitat. Specifically, developing an understanding of 

characteristics of SRG sites can inform research on why certain changes in species presence might be 

occurring. Because of this, methods must be explored that could provide updated maps and locations 

of SRGs. For example, an approach that could increase the breadth of this potential would be with 

remote sensing.   

4.1.3 Understanding Remote Sensing for Mapping Species-Rich Grasslands 

One method to achieve wide scale mapping of SRGs and other threatened habitats can be with the use 

of remote sensing (RS) technology, reducing labour intensity of field surveys and widening spatial 

reach. Advances in RS technology are increasing the potential of habitat classifications globally, 

specifically in relation to grasslands, which have historically been overlooked. The high intra-habitat 

heterogeneity and finer spatial resolution of grassland features have made it difficult for RS 

techniques to pick up small-scale differences between grassland classes until recently (Gholizadeh et 

al., 2019; Wachendorf et al., 2018). Determining areas of various classes of SRGs is beneficial when 

considering different habitat requirements of threatened species (Reddy, 2021). This has not been 

achieved to a great extent, with only a few studies investigating RS techniques for semi-natural 

grassland community mapping (Buck et al., 2015; Raab et al., 2018; Rapinel et al., 2019; Schuster et 

al., 2015).  

Studies on grassland RS usually focus on improved agricultural grasslands, investigating crop or forage 

quality or quantity (Reinerman et al., 2020). Only more recently has species richness of biodiverse 

grasslands been investigated (Imran et al., 2021; Muro et al., 2022; Rossi et al., 2022). The global 

scale of these studies is not far reaching, with few studies focusing on field based remote sensing 

(e.g., with spectroradiometers) and satellite remote sensing over very small spatial scales – usually 

less than a few kilometres (Gholizadeh et al., 2020 and Zhao et al., 2021). As such, there is potential 

for RS applications to be used more widely in SRG landscapes. Specifically, creating a habitat 
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classification model using RS data may allow predictions of unlocated areas of SRGs to be identified 

and feed into current mapping initiatives.  

4.1.4 Building a Habitat Classification Model for Species-Rich Grasslands 

The process of building a habitat classification model requires synergy across various aspects. These 

include a thorough understanding of environmental features of interest that can be differentiated in 

RS to be used as predictor variables, as well as correct ecological interpretation of habitat classes that 

form the classes to be determined by those predictors (Figure 4-1).  

 

Figure 4-1. Habitat classification model workflow. 

4.1.4.1 Classifying Species-Rich Grasslands (Step 1) 

RS data can be fed into classification models to create prediction maps of vital habitats. However, to 

do so, the habitat must be correctly classified. Challenges in mapping are introduced, as the term 

‘species-rich grassland’ is not one specific habitat but consists of a range of defined communities that 
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all have a dense floral diversity. However, the definition usually removes certain grasslands on coastal 

or alpine areas, which would be influenced by other climatic variables (Jefferson et al., 2019). In this 

way, it is important to highlight habitats that can be classed as SRGs to clarify the name when 

identifying, monitoring, and managing these grasslands.  

There are a range of classification schemes that help to identify specific habitats, which can be used 

to characterise SRGs (JNCC, 2019a). For example, the JNCC’s Phase 1 habitat classification scheme 

aims to identify habitats at a larger scale based on common observable characteristics (JNCC, 2010). 

The UK Biodiversity Action Plan utilises a similar broad habitat classification, which included 

associated priority habitats for protection by law (UK Biodiversity Action Plan, 2008). The NVC further 

categorises habitats more specifically based on their plant community makeup (Pigott et al., 2000). 

These classification schemes are all UK based, however, they are comparable with other schemes 

across Europe, for example the EUNIS habitat guide, which enables standardisation of habitats across 

Europe (Moss, 2014).  

There is often subjectivity when designating habitats, which can influence the final classification. 

There may also be an overlap between plant communities that can form mosaic habitats and not 

exclusively fit a single designation (Evans, 2006; Jefferson et al., 2019). Reliable classification is 

essential in mapping habitats and implementing the relevant conservation methods, and the 

coordination of schemes at national and international scales is necessary for their wider protection 

(Ichter, 2014). However, there are certain species assemblages that will constrain some habitats to be 

specific to one country or even region. It is expected that there will always be some variance in 

classifications, especially considering the conservation priorities of different nations. For example, the 

UK requested that Nardus grasslands must be determined to be species-rich in the EU Habitats 

Directive list. This is because where the grass species Nardus stricta dominates the grassland (instead 

of a mixed grass sward including N. stricta), the habitat is considered improved through over-grazing, 

resulting in a low conservation value (Evans, 2010). Where it is possible, harmonising classifications 

should occur to the greatest extent.  

Using these schemes, SRGs can be divided into specific categories based on characteristics, such as 

soil properties and climate, which influence the species diversity present on the habitats. These 

divisions include acid, neutral, and calcareous grasslands, which are determined by the pH of the soil 

(JNCC, 2010). Other broad SRG categories are marsh grasslands as outlined by the JNCC (2010), or 

fen/marsh/swamp as identified by the UK Biodiversity Action Plan (2008). In this grassland category 

there is potential for overlap across various classes in the schemes. For example, the priority habitat 

of ‘upland flushes, fens, and swamps’ as outlined by UK Biodiversity Action Plan (2008) could 

potentially be identified as bogs/mires (class E), swamps (class F) or marsh (class B) as highlighted by 

the Phase 1 habitat guide of JNCC (2010). The final classification assigned is heavily reliant on the 

dominant presence of certain species (e.g., mosses vs. grasses/herbs) and the seasonal variation in 

height of the water table (JNCC, 2010). Due to the great overlap potential with these classifications of 
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wet grasslands, SRGs of this class will be referred to as marsh grasslands throughout this thesis, as 

outlined by Jackson (2000).  

Each of these grassland divisions has a priority habitat associated with it, as defined in UK legislation, 

as well as associated NVC communities (Error! Reference source not found.) (Rodwell, 1992; UK B

iodiversity Action Plan, 2008). These classifications and descriptions were originally published at the 

end of the 20th century, with few updates occurring by the next assessments. Therefore, these figures 

are merely estimates, and there is much more to be done in terms of monitoring and managing these 

habitats across the UK (JNCC, 2019b). Together, these divisions will form the basis of SRG 

classifications throughout this thesis, which align with the EUNIS habitat codes. These codes are used 

by external organisations such as Butterfly Conservation when completing records for the UK Butterfly 

Monitoring Scheme (UK BMS), and, as such, are important for classifying habitats for associated 

species (Brereton et al., 2000). These classifications are required when determining site locations that 

will be visited to collect environmental and RS data that will feed into the model.  
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Table 4-1. Species-rich grassland designations across classification schemes and estimated extent and 
protection. (**NVC codes where overlapping communities may occur). Table adapted from Jackson (2000). 
Descriptions from UK Biodiversity Action Plan (2008); Shellswell et al. (2016); Crofts and Jefferson (1999). 

Broad UK 
Grassland 
Classification 

Associated 
Priority 
Grassland 
Classification 

Classification Codes Description Estimated 
Extent 

Protection 

BAP 
Phase 
1 

EUNIS NVC 
(species-
rich) 

Acid Grassland 
(pH <5.5) 

Lowland dry 
acid grassland 

B1 E1.7*, 
E1.73 
E1.92 

U1 – U5 
*CG2 CG7 
CG10 
CG11 
CG13* 

Nutrient poor, 
free draining 
soils; both 
species poor 
(<5/4 m2) to 
species rich 
(>25/4 m2). 

~30,000 ha in 
the UK 

Inclusion in PAs 
(extent 
unknown); 
agri-
environmental 
schemes 

Neutral 
grassland 
(pH 5.5 – 7) 

Upland hay 
meadow.  

B2 E2 
except 
2.6 

MG1 
(excluding 
a and b) 
MG2 – 
MG5, 
MG8,  
MG11 – 
MG13 
 

Dense grass 
growth; 
swards up to 
80 cm in 
height; 
moderate 
slopes up to 
400 m altitude 

<2,000 ha but 
extent 
unknown. 
Restricted to 
northern UK. 
Extent 
unknown.   

Majority in PAs 
in England, 
very little 
inclusion in 
Scotland 
(0.5%). 
Increase 
inclusion; agri-
environmental 
schemes.  

Lowland 
meadow 

Unimproved 
pastures, hay 
meadows, 
some 
recreational 
sites, roadside 
verges 

<15,000 ha in 
the UK.  

Inclusion in PAs 
(extent 
unknown); 
agri-
environmental 
schemes; 
increase 
favourable 
conditions.  

Calcareous 
grassland 
(pH >7) 

Upland 
calcareous 
grassland 

B3 E1.2, 
E1.26 
E1.72# 

CG1 – 
CG10 
*OV37* 

Lime-rich, 
shallow soils;  
Usually higher 
altitudes (250–
300m) 
High species 
richness (>60 
species/ 4 m2) 

<25,000ha in 
the UK. 
Particularly 
important 
areas for the 
habitat 
include the 
North 
Pennines and 
Cumbria in 
England and 
Breadalbane 
in Scotland 

Up to 40% 
included in 
PAs; 
Maintain and 
increase 
condition of 
current extent;  

Lowland 
calcareous 
grassland 

Lime-rich, 
shallow soils; 
flatter 
topographies; 
species-rich 
with rare 
species 

Up to 41,000 
ha in UK. 
None in 
Scotland.  

Up to 70% in 
PAs.  
Heavy 
involvement in 
agri-
environmental 
schemes.  

Marsh 
Grassland 

Purple moor 
grass and Rush 
pasture 

B5 E3.42, 
E3.511, 
E3.512 

M22 – M26 
+ M27 
*U5b U6* 
 

Acid soils; 
poor drainage; 
species-rich 

<56,000 ha in 
the UK. 
Important 
location for 
this habitat 
across Europe. 

~6.8% in PAs in 
the UK. 
Increase 
condition both 
within and 
outside of PAs. 
Inclusion in 
agri-
environmental 
schemes.  
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4.1.4.2 Environmental and Remote Sensing Features as Predictors of Species-Rich 

Grasslands (Step 2) 

There are various remote sensing features, that correspond to environmental factors, that will enable 

high level grassland classification and mapping. RS data that can capture multiple wavelengths and 

have higher spatial resolutions are more beneficial for grassland identification, as they can classify 

characteristics of vegetation with greater accuracy. For example, the yellow spectral band (575 – 585 

nm) can identify how ripe a plant is whilst the red band (610 – 700 nm) can identify chlorophyll 

content, which is important for measuring LAI and nutrient content of plants (Ali et al., 2016). The 

launch of Sentinel-2 (S2) in 2015 provides this opportunity, as more spectral data can be encapsulated 

due to its multispectral capacity, capturing data across 13 bands (ESA, 2013). The inclusion of the red-

edge bands, for example, enable greater information to be received in narrower wavelengths where 

the chlorophyll content is detected (Clevers and Gitelson, 2012). Reflection data across more 

wavelengths may be the best way at differentiating the various grassland classes, with evidence 

demonstrating spectral diversity as a possible way to show species diversity, especially with 

functionally different plant species (Fassnacht et al., 2022; Peng et al., 2019). This is known as the 

Spectral Variation Hypothesis (SVH) (Palmer et al., 2000). The use of RS in investigating the SVH has 

been further explored in chapter 5 of this thesis, to assess its potential in improving mapping attempts 

of SRGs after initial classification predictions. S2 also has a high spatial resolution of 10 m (in certain 

bands) and frequent revisitation rate (5 days), resulting in greater data capture throughout the 

grassland growing season (ESA, 2013). This allows detailed time series to be created, which aids 

grassland RS (Franke et al., 2012).  

By utilising multiple RS techniques, crossing different spectral and spatial resolutions, a variety of 

vegetation indices (VIs) may be calculated as predictor variables, which have also previously been 

shown to vary with species diversity (Chitale et al., 2019). The Normalised Difference Vegetation 

Index (NDVI) is commonly used due to its ability to discriminate between areas of vegetation and other 

surfaces. Further indices, such as EVI (Enhanced Vegetation Index) and S2REP (Sentinel-2 Red-Edge 

Position) are helpful for differentiating between multiple grassland habitats. The red edge bands’ 

sensitivity to chlorophyll may indicate healthier or more abundant grassland vegetation, whilst EVI is 

also commonly used due to its relation to species diversity (Bekkema and Eleveld, 2018; De Simone et 

al., 2021; Peng et al., 2019 Rapinel et al., 2019; Stenzel et al., 2017).  Price et al. (2002) also 

demonstrated that the Greenness Vegetation Index (GVI) may be a useful addition for discriminating 

between grassland classes.  

Selecting the most appropriate indices must be context based due to the vast range of indices 

available. For example, the Soil Adjusted Vegetation Index may be more beneficial in areas where 

bare soil is prominent, or water adjusted indices may take advantage of the short-wave infrared 

(SWIR) bands in wetter landscapes (Price et al., 2002). Having multiple VIs for the different methods 

of RS is useful to ascertain how these compare in relation to accurate habitat classification (Moon et 
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al., 2021). Once these features have been determined, this information is aligned with each habitat 

class as outlined by the classification system to be used as predictor variables.  

4.1.4.3 Creating, Training, and Applying a Model (Step 3) 

There are various methods by which a habitat classification model could be created. Classification 

types include a) “supervised”, where known features are used to calculate considerations in 

classifications, b) “unsupervised”, where ground features are unknown and classes are created from 

similar pixel properties, and c) “object-based image analysis (OBIA)”, where distinct objects are 

identified then classified (Al-Doski et al., 2013). There are advantages and disadvantages to 

classification types, including time and experience needed for supervised classification and potential 

human error in this method compared to lack of input for unsupervised classifications, resulting in 

reduced separation and correlation to the classes of interest (Enderle and Weih, 2005).  

Supervised classifications appear to be most prominent and have often provided the most accurate 

classifications (Boori et al., 2018). There are a range of classifiers in each category used for land 

cover assignment, using different algorithms created from features of the image. Examples of 

supervised classifications include 1) Maximum Likelihood Classification (MLC) which assigns the land 

cover based on the most likely habitat calculated from a function of density, 2) Random Forest (RF) 

which creates several decision trees that are randomly split into potential classes and the class that is 

most frequent is assigned, and 3) Support Vector Machine (SVM) which creates a hyperplane boundary 

splitting the data into two categories (Adankon and Cheriet, 2009; Erdanaev et al., 2022). 

When the data has been processed and prepared, each habitat class will have associated values across 

each predictor variable. Different classifiers can then be tested to find the model with the highest 

prediction accuracy. Data is then split into training data, that the model is based on, and then unseen 

test data, where the model is first applied on. Once the final model is determined, it has the 

potential to be applied across further unseen areas. However, unlike with train and test data, the 

validation of these wider predictions will not occur computationally. Validation in situ is, therefore, 

needed.   

4.1.4.4 Ground-Truthing Species-Rich Grasslands (Step 4) 

To ascertain the success of RS in predicting SRGs nationally, the locations identified from 

classification maps must be validated or ground-truthed. This tends to be a time intensive process 

that is limited by surveyor availability and associated costs. These limitations can be addressed by 

encouraging public participation in data collection with the use of citizen science. Boyd et al. (2022) 

highlight that citizen scientists can engage in Earth observation projects by verifying outputs, ground-

truthing data, adding missing information, and providing local knowledge. This potential has not been 

met yet but is continuously identified as crucial in reaching the sustainable development goals, as 

outlined in chapter 1 (Karagiannopoulou et al., 2022).   
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Due to the issues mentioned regarding the alignment of classification schemes, applicability of 

ground-truthing and classifying methods across grassland mapping studies will be difficult. For 

example, Meng et al. (2022) were able to initially classify grassland classes in Inner Mongolia from 

field-based aerial imagery as a replacement for field-based ground measurements. This would be 

incredibly difficult for the SRG classes of Scotland due to the spatial resolution and similar structural 

profile of the various classes, requiring ground-based surveys for at least one stage of the 

classification and mapping process. The success of these mapping attempts has also varied, even 

within studies, where in Canada one grassland class was able to be classified with a high success 

(98.2%), whereas a mixed grassland class had a low classification success rate of 45.85% (Badreldin et 

al., 2021). The mixed grassland was composed the two other investigated grassland classes (native and 

tame), and it can be assumed that this increase in variation within the class may lead to the blurring 

of the spectral reflectance. This would likely be problematic within the SRG classes of the UK. 

However, few studies have investigated the success of mapping SRGs here. As such, this requires 

further investigation.  

4.2 Aims and Objectives 

For this chapter, RQ3 was adapted to be case-study specific, resulting in the chapter’s overall aim: 

Can a habitat classification model be created to predict species-rich grasslands in Scotland, and locate 

habitat for vulnerable species? To enable mapping of SRGs on a larger scale using RS techniques, 

individual site locations of SRGs must be identified to gather information on habitat features. This 

information can then be used to create training datasets for a habitat classification model to locate 

and classify areas of SRG through RS, and to then identify further habitat locations for priority 

species, such as A. artaxerxes. Ensuring the high quality of the training datasets is a requirement for 

accurate classifications of different habitat types. Not only this, but in situ measurements collected at 

sample sites are needed to support RS data to calibrate the model and improve mapping accuracy 

(Pause et al., 2016). These measurements tend to focus on quality of the habitat to be remotely 

sensed, which will be appropriate for identifying grassland classes that vary in condition (Dlamini et 

al., 2016; El-Rawy et al., 2019).  

As such, the specific objectives of this chapter were to: 

i) Identify site locations to characterise Scotland’s species-rich grasslands and habitat for 

A. artaxerxes. 

ii) Define and classify species-rich grasslands across Scotland. 

iii) Create a species-rich grassland habitat prediction model and assess its accuracy. 

iv) Nationally apply the model to predict areas of species-rich grasslands and potential 

habitat for A. artaxerxes. 

The predicted locations of SRGs resulting from this chapter were then implemented in the use of a 

subsequent citizen science survey, as detailed in chapter 6. 
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4.3 Methods 

Initially, known locations of SRGs in Scotland needed to be identified. This would allow the data 

collection of both environmental and remote sensing data associated with Scottish SRGs. The 

environmental data would help to classify the various types of SRGs (e.g., calcareous, neutral, acidic 

etc.), based on the outlined classification system in section 4.1.4.1, which need to be differentiated 

for the model creation, as target species will rely on specific classes within the broader SRG habitat. 

For example, there is a large focus when choosing the sites on calcareous grasslands and the grassland 

conditions required by A. artaxerxes, as this was a target species for this thesis and the work with 

Butterfly Conservation. The environmental data could then be related to the associated RS data for 

each site (and its corresponding SRG class) to define the classes, which are needed as the output 

variables in the resulting habitat classification model. The RS data (surface reflectance values and 

vegetation indices, discussed below) and specific environmental variables (such as the topographical 

data) are then used as predictor variables in the model to ascertain each of those SRG classes.  

To be able to do this, several steps firstly needed to occur to determine these site locations, which 

incorporated a range of grassland and climatic conditions that SRGs experience across Scotland. This 

was required so the variation could be captured in the RS data and hopefully increase the possibility 

of accurate differentiation of the SRG classes. This would further support locating specific habitat for 

the target species A. artaxerxes. The data sources that are associated with helping locate SRGs in 

Scotland, and determine the sites in the following section, are largely down to what was available on 

the known locations of SRGs, as this information was very limited and largely outdated.  

After the sites were located, data had been collected, and final classifications were determined, a 

species-rich grassland classification model could be created. This model can be applied nationally to 

predict species-rich grasslands, potentially identifying calcareous grasslands within this, that is the 

specific habitat for A. Artaxerxes. The subsequent methods follow the flow of model creation outlined 

in Figure 4-1. 

4.3.1 Selection Process to Identify Sites for Characterising Species-Rich 

Grasslands 

Multiple sites were selected from across Scotland to account for multiple SRG classes and enable the 

detection of further SRGs where priority species such as A. artaxerxes may be found or could 

theoretically colonise. It was important to include SRG sites where there are areas of fluctuating 

populations of targeted at-risk species, as this can highlight appropriate indicators that will help 

identify favourable environments. There is not much data available in Scotland on sites with changing 

A. artaxerxes populations but sites could be found in Northern England (Figure 4-2). As such, possible 

sites in England were included to capture a greater range of SRG conditions for the most accurate 

habitat prediction for A. artaxerxes. To be able to determine these final sites, available secondary 

data on potential SRGs and varying climatic conditions were investigated.  
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Figure 4-2. Site locations for populations of varying Aricia artaxerxes population trends. Green circles 
indicate stable populations, red arrows indicate declining populations, and blue arrows indicate increasing 
populations (which can be seen in the zoom insert in the North West of England). Grey cells indicate 
occupied sites over the past 10 years. Map from UK BMS (accessed 2020). 

4.3.1.1 Identifying Potential Habitat Areas 

To compare existing distribution data and select sites for analysis, secondary data containing 

previously mapped or collected habitat information was located from the few sources that had 

information on previous or potential SRG sites. ArcGIS Pro (ESRI Inc, 2020) was used for data handling. 

One source was the open access Habitat Map of Scotland (HabMoS). This current map shows the 

distribution of presently classified habitats of Scotland, made up of previous NVC surveys 

supplemented with other habitat surveys, and categorised into corresponding EUNIS codes. The map 

was downloaded as a shapefile via NatureScot (previously Scottish Natural Heritage) (Appendix C-1 for 

citation). The data was sorted and extracted via its attribute table into different SRG types using the 

associated EUNIS codes that correlate to these habitats, as outlined in Error! Reference source not f
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ound.. These feature layers were merged to create one continuous layer of potential areas of SRGs 

(NS_Grasslands) that may be presently mapped by NatureScot.  

Further data was acquired on land cover use in the UK, that was accessed from Edina Digimap (see 

Appendix C-1 for citation). This land cover map was created by the UK Centre for Ecology and 

Hydrology (UK CEH) to link historical records and satellite imagery to the UK BAP broad habitat 

scheme. In this dataset, semi-natural grasslands were classed based on the combination of habitats 

that were outlined as acid, neutral, calcareous, and fens/marsh/swamps (Morton et al., 2020). This 

data was converted from raster to vector format to be able to extrapolate the specific habitat classes 

identified above. Features were selected based on the Morton et al.’s (2020) guidance, outlined to 

identify SRG habitats, and extracted (Table 4-2). These layers were merged to create one continuous 

layer of potential areas of SRG for Scotland (CEH_Grasslands) as was done with the NS_Grasslands 

above.  

The NS_Grasslands and CEH_Grasslands were then visually compared to show similarities in the 

distribution and extent of potential areas of SRG located via different methods. These two map layers 

were also merged to create one continuous extent map of potential SRG presence (Potential_SRG), to 

be incorporated with further data below for site selection.  

Table 4-2. Grassland classifications with associated feature codes (LC Identifiers). Used 
by the UK Centre for Ecology and Hydrology to seperate UK BAP broad habitats. Table 
adapted from Morton et al. (2020). 

UK CEH Aggregate Class (AC) UK BAP Broad Habitat LC Identifier (feature 
code for extraction) 

Semi-natural grassland (not 
classified by UK CEH as species-
rich as includes species-poor 
areas) 

Neutral grassland 5 

Acid grassland 6 

Calcareous grassland 7 

Fen, marsh, swamp 8 

 

Other available data on SRGs in Scotland was the database of lowland grassland sites produced by 

NatureScot. This database included specific sites of certain NVC communities that are classified as 

SRGs. A data request was set up with NatureScot to access this information as a CSV file (Appendix C-1 

for citation). To display the data, Ordnance Survey (OS) grid references for the sites were converted 

to latitude and longitude and mapped in ArcGIS Pro. A new layer of high value lowland grassland sites 

(HVLG) was created. This layer was superimposed with the other two data layers to further identify 

site locations. These three layers were used to show the difference in possible SRG capture from a 

variety of sources (Table 4-3). 
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Table 4-3. Difference in extent (in hectares) of potential species-rich grasslands between various map 
sources - UK CEH and NatureScot. Appendix C-1 for citations.   

ArcGIS Pro Layer Layer Source Date Obtained Approximate 
Habitat Area (ha) 
After Extraction 

Projection Layer Type 

CEH_Grasslands UK CEH 07/12/2020 1,216,444 British 
National Grid 

Raster converted to 
Vector 

NS_Grasslands 
 

NatureScot 07/12/2020 120,829.4 WGS 1984 Vector 

HVLG NatureScot 13/01/2021 8255.9 WGS 1984 Point 

 

4.3.1.2 Climate Data 

Available climate data was sought to compare climatic conditions across sites and ultimately include 

sites of these varying conditions and see how this may influence SRG state and, as such, A. artaxerxes 

presence. Climate data on the 30-year mean (1981-2010) annual precipitation, temperature, and wind 

for the UK at 1 km resolution were obtained via the Met Office (Appendix C-1 for citation). Datasets 

were converted from a netCDF file to a float raster. These layers were then converted to an integer 

raster and finally to polygons. Values of zero were excluded from the datasets, as these indicated 

grids that were largely over sea areas and had no information. Data to be considered for site 

inclusions were temperatures, rainfall, and wind combinations that had relative low values (5 – 7 ° C, 

<1500 mm, and <5 knots) and high values (8 – 10 ° C, >1500 mm, and >5 knots). These values were 

chosen to ensure a wide range of varying site conditions that may influence A. artaxerxes presence. 

4.3.1.3 Species Data 

Distribution data on H. nummularium was acquired to locate sites where A. artaxerxes larval food is 

found. This data was also used to identify sites where the food plant exists but A. artaxerxes has not 

been observed. For example, in the west of Scotland there is an area of H. nummularium presence 

where the distribution of A. artaxerxes does not extend to (Figure 2-1). A. artaxerxes distribution 

data was also required to relate both occurrence datasets, as well as for analysis purposes of climatic 

requirements. Distribution datasets for both species were downloaded from NBN Atlas (Appendix A-1 

for A. artaxerxes and Appendix A-2 for H. nummularium). These were input into ArcGIS Pro as point 

data.  

4.3.2 Final Site Selection 

After areas of possible SRGs were mapped, site selections from within the identified area were 

chosen, mainly in alignment with known Butterfly Conservation transect locations. A representative 

sample selection was used to ensure sites were not chosen where SRG is not present, and to include 

sites of differing SRG conditions (such as varying climates and grassland soils), to assess their influence 

on priority species distributions. Due to the large number of transect locations in Scotland, certain 
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sites were excluded to narrow down the selection that would be most relevant to locating areas of 

SRG for conserving A. artaxerxes. Butterfly surveying sites must have been found within potential 

SRGs and below 350 m altitude. Sites also must have been found in areas with average annual 

temperatures above 4° C, below 2500 mm of rainfall, and with wind speeds of less than 10 knots, as 

A. artaxerxes has not been recorded in Scotland outside of these, based on the analysis in this thesis. 

Climatic requirements of A. artaxerxes appear not to be described in literature in the wider European 

context either. 
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The distribution of A. artaxerxes across temperatures (° C) in Scotland is summarised (Table 4-4) and 

displayed (Figure 4-3).  

Table 4-4. Distribution of Aricia artaxerxes summarised by 30 year mean annual temperatures (° C) across 
Scotland. 

Temperature (° C) 1 2 3 4 5 6 7 8 9 10 

Count 0 0 1 16 50 322 1249 947 950 10 

 

 

Figure 4-3. Distribution of Aricia artaxerxes across annual 30 year (1980-2010) mean temperature in 
Scotland. Temperatures were displayed after conversion from raster grid to polygon grid. Climate data 
accessed via the MetOffice (Appendix C-1 for citation). Aricia artaxerxes distribution data was accessed 
from NBN Atlas (Appendix A-1 citation). 
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The distribution of A. artaxerxes across precipitation (mm) in Scotland is summarised (Table 4-5) and 

displayed (Figure 4-4).  

Table 4-5. Distribution of Aricia artaxerxes summarised by 30 year mean annual precipitation (mm) across 
Scotland. 

Precipitation (mm) ≤892 ≤1124 ≤1362 ≤1605 ≤1866 ≤2159 ≤2475 ≤2829 ≤3248 ≤4291 

Count 1534 1279 475 185 54 15 3 0 0 0 

 

 

Figure 4-4.  Distribution of Aricia artaxerxes across annual 30 year (1980-2010) mean precipitation (mm) in 
Scotland. Rainfall was displayed after conversion from raster grid to polygon grid. Climate data accessed via 
the MetOffice (Appendix C-1 for citation). Aricia artaxerxes distribution data was accessed from NBN Atlas 
(Appendix A-1 for citation). 
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The distribution of A. artaxerxes across wind speed (knots) in Scotland is summarised (Table 4-6) and 

displayed (Figure 4-5).  

Table 4-6. Distribution of Aricia artaxerxes summarised by 30 year mean annual wind speed (knots) across 
Scotland. 

Wind Speed (knots) 1 2 3 4 5 6 7 8 9 10 11 12 13 

Count 3 10 402 1190 1213 656 50 22 0 4 0 0 0 

 

 

Figure 4-5. Distribution of Aricia artaxerxes across annual 30 year (1980-2010) mean wind speed (knots) in 
Scotland. Wind speeds were displayed after conversion from raster grid to polygon grid. Climate data 
accessed via the MetOffice (Appendix C-1 for citation). Aricia artaxerxes distribution data was accessed 
from NBN Atlas (Appendix A-1 for citation). 
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Site locations were obtained via transect locations from the UK Butterfly Monitoring Scheme (UK BMS) 

and Butterfly Conservation as CSV files (Appendix C-1 for citation). This information was used to 

distinguish the transects that fall within the areas of the collated Potential_SRG layer. As this data 

contains specific site names and exact locations, these were used for the final site selections. Multiple 

datasets were accessed for butterfly transect locations for an initial broader range: Site locations for 

2019 (UKBMS_2019), the most recent transect information, and transects with known habitats were 

obtained (UKBMS_Habitats) (Table 4-7). Both layers were needed as they encapsulate different areas 

across Scotland. OS grid references were converted to longitude and latitude coordinates and the XY 

data was displayed as point locations. Initially, sites were excluded from UKBMS_2019 if they had not 

been surveyed within the last 5 years to incorporate the most recent data. Sites were then selected if 

they were included in the Potential_SRG layer.  

As the site location data is collected as grid references there was the possibility that the coordinates 

do not align exactly due to GPS and map calibration discrepancies. To account for this, a buffer zone 

of 100 m was created to capture sites that may be omitted. This size was chosen as the OS grids are 1 

km by 1 km. Sites outside of the buffer zone were excluded. As this layer may incorporate grassland 

that is not classified as SRG, the UKBMS_Habitats layer was further used to locate sites by filtering the 

recorded primary habitat to SRG types.  

Site selection was further supported with calibration of the site locations of high nature-value from 

the lowland grassland database (HVLG) where the transect locations did not include the greatest range 

of site conditions. Overlapping sites where H. nummularium were present were also considered. Data 

on specific A. artaxerxes site survey locations was acquired from Butterfly Conservation’s Northern 

Brown Argus in the Scottish Borders project. This dataset included sites where H. nummularium has 

been recorded but A. artaxerxes has not. This data can help determine what other factors influence 

the butterfly’s presence and potentially the condition of SRGs. This dataset also helped locate further 

sites along the Scottish borders where A. artaxerxes has a stronghold, as well as SRG sites with a 

range of pressures and management. The differences in their extent and areas of coverage can be 

visualised in Figure 4-6.  
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Figure 4-6. Difference in extent of areas where potential species-rich grasslands might be in Scotland. 
Legend: CEH Grasslands layer was extracted from the UK Centre for Ecology and Hydrology Landcover 2019 
map (light green), NS Grasslands layer was extracted from the NatureScot HabMoS map (blue), HVLG points 
were extracted from the Lowland Grassland database from NatureScot (brown) (Appendix C-1 for citation). 
The area of overlap between the three data sources is outlined in red.  
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Site selections were also considered for circumstances not included in the previous criteria. For 

example, site specific information detailing A. artaxerxes population trends are hard to come by. 

Surveying that has been undertaken for A. artaxerxes does not provide information on whether site 

populations are increasing, decreasing, or stable in Scotland. This is because some sites have not had 

long-term monitoring (at least 5 years) to establish this data. There are few site locations in Northern 

England that have recorded decreasing or increasing A. artaxerxes populations that should be 

considered in the selection process. Exact site names and locations were accessed from the UK BMS 

website.  

Table 4-7. Datasets used for site selections. See Appendix C-1 for citation. 

ArcGIS Pro 
Layers 

Data Set Layer Source Date 
Generated/Last 
Updated 

Date 
Obtained 

Projection 

UKBMS_Habitats UK BMS transect 
locations with habitat 
type 

Butterfly 
Conservation 

2020 02/02/2021 WGS 1984 

UKBMS_2019 UK BMS most recent 
(2019) transect 
locations 

UK BMS 2020 08/01/2021 British 
National Grid 

NBA_Sites Northern Brown Argus 
site locations (NBA 
Scottish Borders 
Project) 

Butterfly 
Conservation 

2021 12/01/2021 WGS 1984 

HVLG Lowland Grassland 
Database 

NatureScot 1980s-2000s 13/01/2021 WGS 1984 

 

4.3.3 Field Campaigns for Environmental Measurements to Characterise 

Species-Rich Grasslands 

Three field campaigns were conducted annually at the chosen sites, timed at the beginning (early 

May), middle (June/July), and end (late August) of the grass growing season between 2021 – 2022. 

These dates were selected to detect any temporal phenological variability in grassland species. The 

initial field campaign was delayed due to COVID-19 restrictions and a late start to the growing season 

in response to cold weather. This resulted in the first campaign being combined with a reconnaissance 

of the sites for visual assessment to ensure they were areas of SRGs using the UK BAP Phase 1 habitat 

survey method. A random sampling approach was adopted to collect in situ measurements across the 

selected sites. 

The transect methodology was used to take vegetation measurements for standardisation with 

Butterfly Conservation and butterfly recording techniques. Due to the small sizes of some of the sites, 

a 250 m transect (within the suggested minimum section split for butterfly transects) was used with 50 

x 50 cm plot measurements taken at 50 m intervals along the transect. Intervals were chosen based on 

the 5-section split for butterfly transects to be able to both represent any vegetation or soils changes 

as well as considering feasibility due to time requirements (Schwieder et al., 2020; UKBMS, 2019). Plot 

size was chosen as a standard in vegetation sampling along transects to provide enough detail (Boegh 
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et al., 2013; Yang, 2012). Transects were laid out in a zigzag formation to get a representative sample 

across the habitat and imitate butterfly flight paths (Kral, 2018; Nevis Landscape Partnership, 2015; 

Pellet et al., 2012). This shape also emulates ‘W’ shaped transects used for recording vegetation 

measurements (Byrne et al., 2018). The starting point for transects was chosen by throwing the 

quadrat at random. 

GPS locations were taken at the start of each transect and at each centre of the subsequent quadrats 

using a handheld Garmin GPSMAP 62st, accurate to 3 m. This accuracy is high enough to correspond to 

the chosen satellite’s spatial resolutions (S2’s spatial resolution of 10 m). Visual measurements that 

were collected at sites of interest for the quadrat measurements were species presence and richness 

using grass identification guides. Photos of each plot were taken as well for reference. Structural 

measurements that were recorded include biomass, measured by taking cuttings of all AGB to grazing 

level within the transect plots using handheld shears. Each sample was weighed at the end of each 

survey providing the fresh weight (bag included). Sward height was measured randomly five times 

within a quadrat using a tape measure and the tallest part of the vegetation that touches the tape 

was recorded (Ali et al., 2016; Psomas et al., 2011; Shen et al., 2008). The five measurements were 

then averaged per quadrat.  

Soil measurements included pH, moisture, texture, and bulk density. Standard soil cores were taken 

from the top 10 cm of soil where plant species influence the soil the greatest, and organic carbon 

levels are found with low levels of inorganic carbon. One soil sample was taken at random in each plot 

along transects and the fresh weight was recorded at the end of each survey session (including core 

weight). All samples were taken back to the lab for further analysis. A Stevens HydraGo soil probe was 

used in field, taking three randomly located measurements within each quadrat to measure moisture 

content and averaged from the three readings. Small separate samples of soil were also collected in 

field to measure soil texture. Texture analysis was conducted by dampening the soil and hand 

manipulating for analysis using the protocol outlined by Natural England (2008). Soil bulk density was 

also calculated as the dry weight of the soil core divided by the volume of the soil core.  

As the project works closely with the Butterfly Conservation, extra added value data was collected 

where necessary and applicable. This included, but was not limited to, crude habitat assessments and 

condition and information on food species (for example is H. nummularium present or not). Finally, 

any butterfly observations were recorded within a transect belt of 5 m either side (as is standard for 

the butterfly transects).  

4.3.4 Laboratory Processing of Environmental Measurements 

The grass biomass samples were brought back to the lab and dried at 70° C for 24 hours until a 

constant weight was reached and weighed again to give dry AGB, calculated per quadrat. 

Temperatures did not exceed 80° C to avoid combustion of the plant matter (Psomas et al., 2011).  
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Soil cores were dried in the lab at 105° C for 24 hours until a constant weight was reached. This was 

to allow moisture to be calculated by boiling the water, but not burning the soil sample and 

combusting any organic matter within the soils. Dried soil cores were ground using a mortar and pestle 

and sieved with a 1.75 mm sieve to remove any plant matter, rocks, or debris for further analysis.  

From the dried soil cores, 2 g of soil were removed to be mixed with 10 ml of distilled water and one 

drop of calcium chloride. This is the most accurate method of measuring pH and is reflective of what 

plants experience in the soil. The samples were magnetically mixed, and a pH probe (MettlerToledo 

SevenCompact pH meter) was used to measure the pH.  

Organic soil carbon concentrations were measured from burning 1 g of the dried soil at 450 ° C for 

four hours. This temperature allows the volatile organic content to be burnt from the inorganic 

matter. The burnt samples were weighed, and organic content was calculated as a percentage 

difference (Manning et al., 2015).  

4.3.5 Site Ancillary Data to Improve Species-Rich Grassland Classifications 

Other site information that was collected included soil texture, elevation, slope, and altitude (Scobie, 

2018). Elevation data was collected from the GPS waypoints for each quadrat. Ordnance Survey 5 m 

Digital Terrain Models (DTM) were downloaded for each site via Edina Digimap. Slope and aspect of 

each quadrat location were calculated in ArcGIS Pro. Extra class data (e.g., woodlands, water, 

buildings, improved grasslands) were acquired through random point extraction to improve the 

classification model and further discriminate classes. This was particularly important to help discern 

the SRG classes from improved grasslands, which may have similar spectral values when improved 

grasslands have a high chlorophyll content before being cut/mown/heavily grazed.  

4.3.6 Habitat Classification Schema to Define Species-Rich Grasslands 

Species occurrence data was used to determine the final habitat classification schema for the remote 

sensing habitat prediction model. Visual classifications were determined using field guides, such as 

those by the Field Studies Council, which are accessible to all. The classification naming convention 

was related to the Phase 1 broad habitat classifications with inputs from the EUNIS and 

NVC classification schemas. Due to time intensity, complete species frequency counts were not 

conducted and, therefore, strict NVC classification could not be performed. NVC communities were 

researched post-fieldwork and identified as potential possibilities to further confirm the broad habitat 

types.  

Environmental feature importance was used to assess how different classification schemas affect the 

final classification, and specifically how influential pH was on determining SRG class. Indicator species 

were also noted for different SRG classes on sites and suggest the possible NVC communities. Extra 

value data was also included to eliminate other habitat classifications e.g., woodland, as well as 

provide information on priority species, such as common rock-rose. Locations of these known 
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habitats/features were determined from 1 m spatial resolution aerial imagery in ArcGIS Pro. Point 

locations were created for these new background classes: artificial surface, bare soil, improved 

grassland, water, and woodland for spectral reflectance extraction after satellite imagery acquisition.  

4.3.7 Satellite Imagery Acquisition for Model Creation 

S2 atmospherically corrected surface reflectance images (Level-2A) were acquired through 

the Google Earth Engine (GEE) platform. Images were filtered by acquisition date corresponding to the 

survey month for each campaign. Images were sorted by cloud pixel percentage to determine the best 

images where the site locations were not obscured by cloud cover. Final images for each site and 

campaign were chosen based on the acquisition date closest to the survey date in relation 

to optimal cloud cover. Full avoidance of cloud cover was not always possible, and, in some cases, 

clear site views required more distant acquisition dates (Appendix C-2). Specific S2 bands (B2, B3, B4, 

B5, B6, B7, B8, B8A, B11, B12) that are associated with vegetation characteristics and typically used in 

classification analysis were selected for use in image classification and resampled to 10 m resolution. 

Subsets of images were created to focus more closely on the areas surrounding the site 

locations. Images were exported for analysis outside of GEE. The Raster package in R (v3.6.3) 

(Hijmans, 2023) was used to determine raster spectral pixel values for the quadrat locations in each 

site per campaign. Spectral reflectance data was gathered for the red, green, blue, near infrared 

(NIR), red-edge, and SWIR wavelengths. These satellite images were also used to extract the spectral 

reflectance values of the background classes, mentioned above, to enhance the classification process.  

4.3.8 Vegetation Indices Calculations for Model Creation 

Vegetation Indices (VIs) were calculated from the extracted pixel values of the remotely sensed 

images. The VIs chosen were based on previous studies using specific VIs that are related to vegetation 

characteristics (Table 4-8). Having the VIs for the different methods of remote sensing is useful to 

ascertain how these compare in relation to accurate habitat classification (Moon et al., 2021). 

Table 4-8. Vegetation Index Calculations. 

Vegetation Index Calculation Reference 

NDVI  (NIR-Red)/(NIR+Red) Imran et al., 2020 

S2REP S2REP = 705 + 35*((Red+ VNIR3)/2-VNIR)/(VNIR2-VNIR) using Sentinel-
2 Band 4 (Red), Band 5 (VNIR), Band 6 (VNIR2) and Band 7 (VNIR3). 

Li et al., 2021 

GVI (NIR−GREEN)/(NIR + GREEN) Peciña et al., 2021 
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4.3.9 Creating a Species-Rich Grassland Prediction Model and Accuracy 

Assessment 

Time series spectral reflectance values from S2 across bands 2,3,4,5,6,7,8, 8A, 11, and 12 for each 

class were input into a csv file. VIs were calculated for each class, and ancillary data was extracted to 

add to the csv file for model creation in R. The data was randomly split into train (70%) and test (30%) 

sets to train the model on the predictor variables, used to test and apply to wider satellite images 

across Scotland. Two widely used classifiers, Random Forest (RF) and Support Vector Machine (SVM), 

were tested for grassland mapping predictions. RF was chosen as a very common classifier that has a 

range of applications, whilst being easy to use and understand (Belgiu and Drăguţ, 2016). SVM was 

investigated as is often reported as having the highest classification accuracies (Yousefi et al., 2022). 

Accuracy assessments were performed using confusion matrices to assess which classification allows 

the greatest accuracy of grassland mapping. Once the model was refined, it was applied to the wider 

S2 image extents to predict areas of different grassland classes for citizen scientists to validate the 

predictions.  

4.4 Results 

4.4.1 Final Site Selection of Species-Rich Grasslands across Scotland 

A range of sites were chosen to include multiple conditions of SRGs (Table 4-9/Figure 4-7). Due to 

time and access constraints, only 16 of the finalised 26 sites were able to be visited. These 16 were 

specifically chosen to maintain geographic range, include varying climatic conditions, and incorporate 

known areas of A. artaxerxes occurrence versus areas where H. nummularium is found but A. 

artaxerxes is not.   
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Figure 4-7. Distribution of final site locations across Scotland and North-western England for in situ 
measurements, surveyed in 2021. NB: Due to the proximity of the sites Lindean Moor and Murder Moss, they 
are represented as a single circle on the map, resulting in 15 location points but 16 site names.  
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Table 4-9. Potential site locations for in situ measurements across Scotland and North Western 
England. Conditions highlighted for their selection reason. Final surveyed site locations visited in 
2021 highlighted in bold. Key: Grassland type – CG = calcareous, MG = neutral, U = acid. Climate – H = 
high, L = low, T = temperature, P = precipitation, W = Wind. Other Conditions – NBA = Northern 
Brown Argus, RR = Common Rock-rose. 

Site 
Number 

Site Name Grid Ref Grassland 
Type 

Climate Other Conditions 

1 Arnside Knott SD454786 CG LP, LW, 
HT 

Increasing NBA. 

2 Warton Crag SD494730 CG LP, LW, 
HT 

Decreasing NBA 

3 Foulden Burn NT921549 CG/MG HT, LP, 
LW 

RR present but no NBA 

4 Holyrood Park NT275733 CG LP, HT, 
HW 

High RR presence intersect 

5 Megget 
Reservoir 

NT1925 Unknown LT, HP, 
HW 

NBA stronghold 

6 Eildon Hill 
North 

NT558328 U HT, LP, 
LW 

NBA stronghold 

7 Ben Lomond - 
Ptarmigan path 

NN362001 U LT, HP, 
LW 

NBA distribution does not reach 

8 Glen Fender NN895678 MG LT, LP, 
LW 

NBA, RR presence with colder 
conditions 

9 St Abbs Head NT913687 CG HT, LP, 
HW 

NBA stronghold 

10 Havoc Meadow NS381753 MG HT, LP, 
LW 

NBA distribution does not reach 

11 Robroyston 
Park 

NS629681 M HT, LW, 
LR 

NBA distribution does not reach 

12 Lindean 
Moor/Whitlaw 
Mosses 

NT505285 M/MG HT, LP, 
LW 

High value grass intersects 

13 Muirshiel 
Country Park 

NS311631 Unknown  LT, HP, 
HW  

NBA distribution does not reach 

14 Killean Lismore NM849417 CG HT, HP, 
LW 

High RR presence no NBA 
occurrence 

15 Acreknowe NT506112 Unknown HT, LP, 
LW 

High Value grass intersect; NBA 
stronghold site; grazed 
management, threat of overgrazing, 
RR presence but no NBA recorded 

16 Earshaig NT048026 Unknown HT, HP, 
LW 

Gap in NBA distribution across 
borders 

17 Cleugh NX613867 MG/CG/U/M HT, HP, 
LW 

RR low NBA occurrence border gap 

18 Barscaigh Hill NX863576 M/MG HT, LW, 
HP 

Southwest coastal area with NBA 
presence 

19 Fallin Bing & 
Wester Moss 

NS836910 MG HT, LW, 
LP 

Area of varying climatic conditions 

20 Glensaugh 
Lower 

NO660780 U LP, HT, 
LW 

Gap in NBA distribution 

21 Auchtermuchty 
Common 

NO240131 MG HT, LP, 
LW 

Low NBA occurrence  

22 Glen 
Strathfarrer 

NH368398 U HP, HT, 
LW 

NBA or RR don’t extend 

23 Lauder Burn NT519462 Unknown HT, LP, 
LW 

NBA site unmanaged no threat, 
grassland type unknown 

24 Wurlus Burn NT34192837 
 

Unknown LP, LT, 
LW 

No threats but grazed management 

25 Lealt NG507607 MG LW, HT, 
HP 

High value grassland but no NBA or 
RR extending 

26 Grey Hill 
Grasslands 

NX181941 CG/U HT, 
HW, LR 

High value grass, RR and NBA 
presence in borders west coast 
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4.4.2 Site Conditions and Environmental Characteristics of Species-Rich 

Grasslands  

The initial environmental data showed high trait variability both within and between sites, fluctuating 

largely across the survey season (Figure 4-8). Species richness ranged from 2 to 27 species found in a 

quadrat. Average sward height of a quadrat ranged from 5.2 cm to 115.24 cm. AGB ranged from 4.4 

g/m2 to 349.8 g/m2 of a quadrat. Grass fresh weight ranged from 4 g to 441.9 g. Average soil moisture 

of a quadrat ranged from 0% to 82.37%. Average soil organic carbon content of a quadrat ranged from 

4.4% to 89.41%. Average soil pH of a quadrat ranged from 3.15 to 7.03. Finally, average soil bulk 

density of a quadrat ranged from 0.06 g/cm3 to 1.4 g/cm3.  
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Figure 4-8. Variation in grassland environmental traits across 16 species-rich grasslands in Scotland. Species 
richness (number of species), above ground biomass (g/m2), grass fresh weight (g), average sward height 
(cm), average soil moisture (%), average soil bulk density (g/cm3), average soil organic carbon content (%), 
and average soil pH. 
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4.4.3 Classification Schema for Species-Rich Grasslands 

The final broad classification schema, used throughout the thesis for the habitat classification model, 

was adapted from the UK BAP phase 1 broad habitats to include a further SRG category of coastal 

grasslands. This is because the species presence found in situ was markedly different than the other 

SRG classes, with high dominance of certain coastal species, such as Armeria maritima and Silene 

uniflora. Classification schemes exclude coastal grasslands as an SRG class, however, they are areas of 

high species richness that are utilised by grassland invertebrate species, such as A. Artaxerxes and 

have their own importance for identification. The broad habitats are previously based off their typical 

soil pH but when investigating the feature importance in the classification it was found that a) feature 

importance is altered by the classification system used, and b) pH is a low predictor of SRG type 

compared to other environmental and topographical variables. The five classes spectral profiles also 

demonstrate that a coastal SRG has a markedly different spectral profile, with lower reflectance 

values seen across the red-edge bands (Figure 4-9). 

 

Figure 4-9. Environmental feature importance for grassland class prediction. A) Europe’s EUNIS habitat 
classification, B) UK broad habitat classification. Importance of the feature in habitat class prediction is 
measured by the mean decrease in the Gini coefficient (%), where the greater the decrease, the greater the 
importance of a variable. C) Spectral signatures (reflectance %) of five grassland classes across Sentinel-2 
bands. 
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4.4.4 Model Outputs and Accuracy Assessment 

Training of RF and SVM models consisted of 10 cross-validations, repeated 3 times. Model accuracies 

were very similar between SVM and RF (Table 4-10). Although SVM slightly outperformed RF, RF was 

the final classifier chosen as it is more suitable for multi-class classifications (Alshari and Gawali, 

2022). Not only this but RF tends to be more stable and is less time consuming, which is more 

applicable for national scale mapping (Belgiu and Drăguţ, 2016; Rodriguez-Galiano et al., 2012). The 

SVM overall accuracy of 1 also suggests that the model is overfitting and there were scaling issues 

found with using the SVM method. 

Table 4-10. Random Forest and Support Vector 
Machine average classification accuracies of training 
data.  

Model Overall Accuracy Kappa 

RF 0.986 0.983 

SVM 1 1 

 

The final RF model was tuned to the highest accuracy (mtry = 2), resulting in an Out-of-Bag error of 

1.42%. Classification errors were seen in the acid, calcareous, and neutral SRG types in the training 

data. However, when the model was applied to the unseen test data, coastal grasslands were the 

worst predicted, with misclassifications seen also in neutral SRGs (Table 4-11).  

Table 4-11. Classification errors in training data (top) and balanced accuracies in testing data (bottom) per 
class in final Random Forest habitat classification model used for species-rich grassland prediction across 
Scotland.  

Class Acid Artificial 
Surface 

Bare 
Soil 

Calcareous Improved Marshy Neutral Coastal Water Wood-
land 

Error 
(%) 

Acid 14      3    0.176 

Artificial 
Surface 

 95   1      0.010 

Bare Soil   83        0.000 

Calcareous  1  4       0.200 

Improved     88      0.000 

Marshy      5     0.000 

Neutral 1      37    0.026 

Coastal        5   0.000 

Water         56  0.000 

Woodland     1     98 0.010 

 

Class Acid Artificial 
Surface 

Bare 
Soil 

Calcareous Improved Marshy Neutral Coastal Water Wood-
land 

Balanced 
Accuracy 
(%) 

Acid 7          1.000 

Artificial 
Surface 

 40 1        0.997 

Bare Soil   34        0.986 

Calcareous    1       1.000 

Improved     37      1.000 

Marshy      1     1.000 

Neutral       15 1   0.997 

Coastal           0.500 

Water         24  1.000 

Woodland          42 1.000 
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The model showed that the features of most importance in the classifications were the VIs 

(specifically NDVI and GVI), whereas band importance varied a lot by season. Aspect and soil texture 

show consistently lower importance in predictions (Appendix C-3).  

4.5 Discussion  

The research in this chapter resulted in the selection of 16 SRG locations across Scotland. Selected 

sites, varied in their SRG class and abiotic conditions, and were chosen to incorporate wider SRG 

variations, as well as to include specific habitat for A. artaxerxes. The 16 sites were visited in summer 

2021 and environmental data collection occurred to confirm the SRG class of each specific site. 

Species richness varied from 2 to 27 species across the quadrats. The community sward heights ranged 

from 5.2 cm to 116.2 cm, whilst AGB ranged from 4.4 g/m2 to 349.8 g/m2. Soil moisture content in a 

quadrat varied from 0% to 86.6%. The pH of the soil in a quadrat ranged over 3.2 to 7, whilst the 

organic content varied 4.4% to 89.4%. Finally, the soil bulk density across the quadrats ranged from 

0.06 g/cm3 to 1.4 g/cm3. RS data was also collected for each site.  

This data, along with the resulting habitat classifications were used to test multiple classification 

models, resulting in a final classification model that predicted SRGs with a high accuracy of 98.6%. 

This model was then applied to subsequently acquired S2 satellite imagery to nationally predict SRGs. 

These prediction maps were used to create the outputs that are associated with the created citizen 

science survey, all of which is further discussed in chapter 6. The results and considerations here are 

in relation to the process of locating potential SRG sites and the finalised habitat classification model.  

4.5.1 Data Challenges for Locating Species-Rich Grassland Sites 

A range of climatic and environmental conditions, in relation to A. artaxerxes distribution, were 

mapped and aligned with the potential areas of SRGs across Scotland. From this, 25 potential site 

locations were identified. Due to time commitments and permissions, 16 were shortlisted as final 

potential SRG sites. Figure 4-6 illustrates a significant difference in coverage of potential areas of SRG 

from the various sources. The habitat features of HabMos are more specific to SRGs, as were mapped 

using NVC surveys, allowing different communities that correspond to certain EUNIS codes to be 

extracted at a hierarchical level. However, as the dataset is incomplete there are large gaps in 

coverage. For example, on the east coast of Scotland the occurrence of A. artaxerxes is high, 

however, there is little overlap between the potential SRG areas as identified by the data from 

NatureScot HabMoS, even though it is known that this butterfly is found largely on calcareous SRGs. 

There were certain NVC communities that were included as a broader habitat EUNIS classification in 

the extracted dataset, potentially as they had not been identified to a higher level. For example, 

there are features of the broad habitat of “Moist or wet eutrophic and mesotrophic grassland” (E3.4), 

which could contain either species-rich wet grasslands “[Juncus acutiflorus] meadows” (E4.42) or the 

“Flood swards and related communities” (E3.44), which are not a species-rich grassland classification. 
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Therefore, there is some inclusion of broader habitats that may not strictly consist of just species-rich 

grasslands, as it was not possible to extract information at a higher resolution.  

Similarly, the UK CEH land cover data set was limited to only the broad classifications. Therefore, 

more detailed communities could not be extracted to remove communities of lower species-richness. 

For example, those in acid grasslands habitat E1.7, including species-poor Nardus grasslands, or marsh 

grasslands that are truly fens or swamps. This denotes that this feature map includes areas of both 

potential SRG and otherwise semi-natural grasslands that are also species-poor. There were some 

limitations identified by the UK CEH in this dataset, for example, certain habitat features were unable 

to be identified through the satellite imagery chosen, and manual corrections were not completed due 

to time restrictions. This resulted in accuracy levels of 79.4% for habitat classifications for this data 

(Morton et al., 2020). The lowland grassland database consisted of surveys dating back between the 

1980-90s and do not include the full extent of SRGs in Scotland either (Pers.comms., 2020). It is also 

possible that these areas may now have been converted to new land uses over the past few decades. 

However, the layer was still useful to try and locate SRGs of conservation interest, for both priority 

habitats and protected species, as they have been determined as SRGs.  

It must be noted that the HabMoS and UK CEH land cover maps were not created for the purposes of 

identifying areas of SRG. The use of the UK CEH map is to address land cover changes and, as such, it 

may not be appropriate to use this map solely for the identification of some SRG sites in Scotland. 

Whilst the HabMoS map is unfinished and identifies habitats based on EUNIS classifications (of which 

SRG is not a discrete classification). In this instance, both datasets were needed with the inclusion of 

other data, such as the lowland grassland database and indicator species occurrence records, to locate 

areas of potential SRGs for in situ measurements. 

No independent layer would have been solely suitable for the identification of SRGs due to the various 

caveats with each. The combination of the layers was most beneficial to try account for any 

limitations within a layer that would impact the site selection. However, the exploration of these 

layers further highlights the need for this work to be conducted. It is necessary to create a tool that 

will be able to gain the coverage, as well as detail, of SRGs in Scotland, to map these priority habitats 

for their conservation and their associated species. 

4.5.2 Considerations of the Classification Schema 

Once the sites had been initially visited in 2021 and determined suitable for SRG characterisation, the 

classification schema was refined from the literature. The process of determining each site and 

quadrat classification was not simple. Grassland broad habitats are often determined by their soil pH, 

as outlined previously. However, other methods of classification look at species presence, which are 

then used as indicator species for a particular broad grassland classification. Findings from the field 

campaigns showed that although there was a range of soil pH on sites, most averages were indicating 

acidic soils. This, however, did not necessarily reflect the plant communities that were found on the 
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sites. Many sites had a high number of species that would usually be found on more neutral soils (e.g., 

Holcus lanatus, Dactylis glomerata, Cirsium arvense). Even species that are usually found on 

calcareous soils (e.g., H. nummularium, Galium verum, Succisa pratensis) were being found on soils 

with low pH (Nature Conservancy Council, 1990). This would suggest a different classification 

depending on whether the habitat was classified based on soil pH or plant community. 

There are several reasons as to why the soil pH may have been lower than expected. For one, the 

method of determining the soil pH involved the use of calcium chloride (a standard used in measuring 

soil pH). Calcium chloride does lower the pH but not usually enough to change the pH index. Not only 

this, but soil samples were extracted from the top layer (also a field standard) which is found to have 

a higher organic content, resulting in a lower pH. However, the pHs of the first field campaign were 

tested via three methods (strip test, in field pH probe, and lab probe analysis post soil drying) (Table 

4-12) and, although the average soil pH of field tests was slightly higher in some (but not all) cases, 

this is seen in other pH comparisons and could be due to the calcium chloride content, or the less 

standardized conditions of in-field tests. Storing samples for pH analysis also does not appear to be 

problematic (Chou et al., 2016; Pansu and Gautheyrou, 2002).  

Table 4-12. Site comparison of soil pHs measured with a 
field probe versus with a lab probe. 

Site Average Field Soil pH Average Lab Soil pH 

AC 5.61 4.82 

BL 4.11 3.66 

CL 5.00 4.77 

EH 4.87 4.54 

GD 4.64 4.63 

GF 4.86 4.88 

GH 4.93 4.29 

GL 4.61 4.66 

HM 5.82 4.88 

HR 4.90 5.15 

MM 5.04 4.46 

MP 4.75 4.84 

RP 5.50 4.54 

 

Instead, what can explain the presence of a wide range of species on acidic soils can be high 

tolerances of most species. Plant communities or individual species have been found to grow and even 

thrive on a range of soil pH; for example, H. nummularium, a calcareous loving wildflower can still 

grow on mildly acidic soils (Gallacher, n.d.; Mill, n.d.). This suggests that when a combination of 

conditions can satisfy the needs of species, they may be found where unexpected. The underlying bed 

rock and soil depth can also have a considerable influence, allowing various species to thrive in 

unassuming places. For example, calcareous upland grasslands have indicated acidic conditions where 

the lime has been leached and, as such, acidic species like common tormentil become present (The 
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Wildlife Trusts, 2021). This means that the habitat classification process may become more difficult, 

as communities do not fit neatly into boxes.  

When analysing the feature importance of SRG classification with different classification schemas 

(e.g., EUNIS versus UK BAP phase 1), this altered which features were most important in the 

classification designation. This highlights that the chosen schema will alter the final classification of a 

site, even if the species presence is the same. The results also suggest that pH is a low determinant in 

multiple classification schemas of SRGs and should not be used as the sole predictor of these classes 

where other variables had a greater importance. The classification procedure was then based on 

species presence to indicate specific broad/Phase 1 habitats with associated descriptions.  

The different methods of classification were not designed interchangeably and, as such, comparisons 

between schemes are not straightforward. This can explain why rush pastures and purple moor grass 

habitats can be associated with bogs, wet heaths, mires, and marshy grasslands depending on the 

classification system (Botanaeco, 2020). Even within classification schema, such as the Phase 1 

and NVC surveys, there is a lot of variation, with many NVC communities being found across different 

Phase 1 classifications (e.g., a calcareous NVC community such as CG10 can be associated with both 

acid and calcareous soils). The UK Habitat Classification Working Group are working towards a single 

classification system; however, its wide scale use is unknown (UKHab, 2023).   

Due to these considerations, the final classification schema that was used in the remote sensing model 

creation was altered from schemas based in literature. The nomenclature of the class names was kept 

the same (e.g., calcareous, acid, neutral) for general understanding and alignment but were adapted 

to be based purely off species presence of neutral/calcareous/acid/marshy loving species rather than 

the pH of the soil. Because of this, a 5th broad SRG type was included – coastal – based off the very 

specific coastal species presence that were not found in other SRG habitats. When out surveying, 

visual classification is the most feasible for the public to conduct due to lack of equipment needed to 

measure variables, such as soil pH, making this a more accessible method, especially if accompanied 

by trained professionals or with the help of guidebooks and handouts. Basing the classifications on 

species presence allows class determination to be simpler for participants of the citizen science 

survey ground-truthing that followed the habitat prediction modelling.  

4.5.3 Model Accuracy and Limitations 

The model shows a high classification accuracy across the classes, even between the multiple 

grassland types. It is difficult to compare the model results to published studies, as no classification 

research has been conducted specifically on this thesis’ defined grassland classes in the UK. Other 

studies that have attempted semi-natural grassland classification mapping have used varying 

classification schemas, highlighting the need for a more synergistic system. However, as some of these 

studies were also conducted in other countries, it further hinders comparison, as communities (and 

their associated descriptions) vary across nations. This raises the question of how wide-scale, global 
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mapping of grassland communities, at this breadth, could be feasible. However, it is important to 

investigate if semi-natural grassland mapping is possible and then further research the application of 

the tool in different contexts. Where semi-natural grassland mapping has occurred, initial model 

overall accuracies have been found between 71% – 91.1% (Raab et al., 2018; Rapinel et al., 2019; 

Schuster et al., 2015; Zlinsky et al., 2014). These accuracies are high but may be slightly lower than 

the accuracies reported here due to the scale of the communities measured and satellite imagery 

used. The mapping here considers multiple communities contained within the broader SRG classes, 

rather than to NVC level which is more comparable to these studies.  

It must be noted that the accuracies described in the results are based on train and test data, and 

ground-truthing to ascertain real-world accuracies were conducted for subsequent chapters (chapter 

6), utilising the designed citizen science survey as part of this thesis. There are certain limitations 

that must be considered when interpreting the model results. The model included a total of 10 habitat 

classes (five of which were SRG). It was not possible to include all defined natural habitats in the 

model training data, such as the inclusion of wetlands and moorlands, due to time restrictions of data 

collection and available habitat maps online. As the model must classify every pixel in an image it is 

likely that there are overestimates of certain classes. For example, some moorland habitats are likely 

to be included in the predicted acidic grassland areas, whilst some wetlands may be included in the 

predicted marshy grassland areas. This is due to similar spectral profiles that might be seen between 

the habitats. Some areas of SRGs may be underpredicted due to transitional habitats. Where scrub 

tends to be present on SRG sites, this could more greatly influence the spectral profile of a pixel due 

to the larger spatial scale of scrub and, therefore, classify certain pixels as woodland.  

Unfortunately, due to the distribution of SRG classes across Scotland, the number of data points for 

the SRG types included in the model could not be equal. For example, only one calcareous, one 

marshy, and one coastal SRG site were able to be visited. In comparison, there were 9 neutral SRG 

sites. However, classification models should not be fixed, and more data can be added as further 

research is conducted. This will allow models to continuously be updated with the most relevant 

information and continue to improve accuracies on habitat mapping.  

4.6 Conclusions and Next Steps 

National mapping of species-rich grasslands has been identified as an organisational and governmental 

goal in policy. This has not succeeded past local attempts. Data collation of potential and known SRG 

locations across Scotland is found in published open-source data, but updates and widening this reach 

is needed. The analysis of open-source secondary data outlined here allowed SRG sites to be located 

across Scotland for their characterisation and classification. It is evident that numerous classification 

schemes and naming conventions cause confusion in both national and international mapping 

attempts, and it is suggested future research should work across governing bodies to unite these 

techniques, as the EUNIS and UKHab schemes have started to attempt. The model created here 
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initially endeavours to discern multiple SRG classes from remote sensing, an effort that has had little 

attention in the past. The high accuracies reported suggest that there is potential for the model to 

successfully send participants of the citizen science survey to new areas of SRGs in Scotland, who will 

confirm how well the model has performed.  

In situ surveying continued for a second-year field campaign in 2022, following the methodology and 

refinement of identified sites highlighted in this chapter. This data was used to try enhancing SRG 

mapping through common techniques employed in RS science. Multiple RS devices across spatial and 

spectral resolutions were tested in their ability to retrieve and predict SRG traits and improve the 

habitat mapping through the addition of the acquired information, if successful. These results are 

found in the subsequent chapter 5. The methods associated with the extraction of ground-truthing 

locations are detailed in chapter 6 of this thesis, along with the associated results. The research here 

is one of the first to apply remote sensing to species-rich grassland classification at this scale.  
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Abstract 

Grassland mapping has been identified as a key conservation priority due to the essential ecosystem 

services provided by these habitats. Species-rich grasslands in Scotland are some of the least 

extensively mapped and most degraded habitats. Retrieval of grassland community traits from remote 

sensing is possible but has yet to be conducted widely across highly diverse species-rich grassland 

classes. We investigated whether species richness and grassland community traits (above ground 

biomass, sward height, fresh weight, and SPAD-measured chlorophyll-proxy) could be predicted across 

multiple spatial (8 cm – 10 m) and spectral (4 – 13 bands) scales using data acquired from Sentinel-2 

and Planetscope satellites, and an Unoccupied Aerial Vehicle (UAV). From the results, we suggest a set 

of recommendations for remote sensing of species-rich grasslands. In contrast to studies of single sites 

and less diverse grasslands, we found that there was no significant relationship between the spectral 

diversity metrics; standard deviation and coefficient of variation, and species diversity (species 

richness) (p = 0.211 and p = 0.141 respectively) across seven of our study sites. Grassland trait 

prediction varied largely with spatial and spectral scale and the combination of predictor variables 

used. The UAV mounted Micasense predictor variables explained the most variance in predicting all 

traits: sward height, above ground biomass, fresh weight, and SPAD-measured chlorophyll-proxy (R2 = 

0.545, R2 = 0.221, R2 = 0.235, R2 = 0.167 respectively). The results suggest that prediction estimates 

across multiple species-rich grassland classes using remote sensing may be hampered by increased 

variation and confounding factors in these highly diverse habitats. Further methodological 

advancements may be needed for wide scale cross-grassland habitat monitoring and mapping and field 

guidelines for remote sensing species-rich grasslands need to be elaborated.  

Keywords: remote sensing; species-rich grasslands; habitat mapping; spectral variation hypothesis; 

biodiversity; community traits 
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5.1 Introduction 

Grasslands provide a range of benefits, such as sequestrating carbon, forage production, providing 

habitat for pollinators and other declining species, nutrient recycling, and flood mitigation, yet they 

are some of the least protected ecosystems (<5% fall within a protected area), and almost 50% of the 

world’s grasslands are considered degraded (Carbutt et al., 2017). Species-rich grasslands (SRGs) are 

amongst the most impacted because of conversion to agriculture, with grasslands having larger 

conversion rates than those of forests (Scholtz and Twidwell, 2022). For example, in the UK, only 3% 

of initial SRGs remain intact (Plantlife, 2018). While the importance of grasslands is being increasingly 

recognised by both local small-scale monitoring and restoration initiatives e.g., the Magnificent 

Meadows project in the UK (Plantlife, 2018) and international organisations, such as the WWF’s 

‘Global Grassland & Savannah Dialogue Platform’ (Bardgett et al., 2021), greater emphasis is needed 

for policy implementation to look towards the conservation of these ecosystems, rather than solely 

rely on policies surrounding reforestation, for example, for climate change mitigation (Buisson et al., 

2021).  

New targets tend to focus on the restoration of SRG habitats by recovering sites of previously known 

grassland locations (Török et al., 2021; Wilsey, 2021). Although this is important, locating and 

assessing grasslands, among other priority habitats, must be the starting point (as outlined by the EU’s 

biodiversity Strategy, developed from the Aichi Targets) (EEA, 2016). There may be pockets of 

undisturbed grasslands that can provide resources, such as vital seed banks or refuge areas that 

organisations and conservationists are unaware of. Therefore, accurate mapping of the distribution 

and condition of global grasslands is essential to support, maintain, and increase current grassland 

ecosystems (Buisson et al., 2021). However, mapping projects vary largely by habitat type and 

country. When considering grasslands, these intricate habitats are often constricted into one general 

category of “grassland” (for example, acid, neutral and calcareous grasslands are grouped together as 

one in the Living England Project (Kilcoyne et al., 2022)) or split broadly into “acid”, “neutral”, and 

“calcareous” (such as the case in the UK CEH land cover maps (Rowland et al., 2020)) with little 

consideration between species-rich and species-poor variants, despite providing hugely different 

ecosystem services. Issues surrounding mapping of biodiverse grasslands could also be linked to the 

unclear and varying definitions and classification systems that exist for the wider habitat (Dabrowska-

Zielinska et al., 2019). 

5.1.1 Remote Sensing of Grasslands 

Various studies have shown improvements in grassland monitoring and mapping with the inclusion of 

remote sensing (RS), taking advantage of increased spatial and spectral resolution of airborne and 

spaceborne sensors (e.g., Andreatta et al., 2022; Rossi et al., 2019; Wachendorf et al., 2018; Wang et 

al., 2022). As grasslands are mosaiced and transitional by nature, and with features existing on a small 
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spatial scale, there have been previous issues of classifying and monitoring these landscapes with RS 

(Reinermann et al., 2020; Rossi et al., 2022). Although earlier studies have involved classifications on 

a broad ecosystem scale (e.g., differentiating grasslands from forests), including the Global Land 

Cover 2000 (GLC, 2003) and the MODIS global land cover (Friedl et al., 2002) datasets, more nuanced 

discrimination and classification of intra-grassland classes by RS are currently not wide-scale, despite 

continued calls to do so (Giri et al., 2005; Raab et al., 2021).  

Previously, RS of grasslands has largely used MODIS or Landsat satellites for this monitoring, but 

research has shown that both high spatial, spectral, and temporal resolution are needed for improved 

grassland observation (Andreatta et al., 2022; Gholizadeh et al., 2020; Rossi et al., 2022). The use of 

Sentinel-2 satellites has had more attention since their launch in 2015 and 2017, due to their higher 

spatial resolution (10 m), spectral resolution (13 bands) and revisit frequency (5 days). These 

applications of Sentinel-2 satellites can be seen in more recent studies assessing functional, spectral, 

and species diversity as well as productivity in grasslands (Muro et al., 2022; Rossi et al., 2020; Rossi 

et al., 2021). Although the use of Sentinel-2 satellites is predicted to increase in use, its applications 

in grasslands monitoring are still relatively low (Soubry et al., 2021). Image fusion and data 

combinations with higher spatial resolution satellites, such as PlanetScope (3 m resolution) or 

Unoccupied Aerial Vehicles (UAV) (cm level resolution) have been shown to improve accuracy in 

grassland RS applications (Andreatta et al., 2022; Muro et al., 2021). A greater culture of integration 

and OS make it possible to combine multiple datasets for a more robust and rounded method of 

grassland observation, rendering it necessary to investigate the use of various RS devices in 

applications of grassland monitoring.  

The varying phenological, functional, and diversity (collectively community) traits of grassland classes 

are often difficult to separate. Additionally, global classification systems of these habitats are not 

aligned, resulting in no one discrimination method being applicable to all (Reinermann et al., 2020). 

Sullivan et al. (2010) noted the gradient between improved (agriculturally enhanced through chemical 

inputs and heavy grazing and/or cutting) – semi-improved (previously agriculturally enhanced or 

reduced inputs and grazing/cutting) (Swallow, 2016) grasslands over a decade ago, and called for 

further classifications to be added, demonstrating how difficult the differentiation between grassland 

classes can be. Evidence shows that grassland trait retrieval is possible by optical RS, through 

modelling the relationship between traits and spectral responses (e.g., Homolová et al., 2013; 

Verrelst et al., 2015). Successfully retrieved traits include biochemical properties (such as water 

content, chlorophyll, and nutrient composition), and biophysical properties (such as leaf area or 

biomass) (Li et al., 2018; Zhao et al., 2021b; Zhang et al., 2023). Therefore, it is crucial to identify 

what grassland community traits can be accurately estimated across grassland classes from RS to use 

these variables as predictors in classification, mapping, and monitoring attempts.  
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5.1.2 Characteristics of Species-Rich Grasslands for Remote Sensing 

SRGs have high floristic diversity of >12-15 species per square meter, and are historically 

differentiated into acidic, neutral, and calcareous (and marshy) classes by their pH values (JNCC, 

2010). The characteristics of each species-rich grassland class have not been extensively defined 

beyond species presence, number of taxa (species richness), and pH level (Pers.obvs.). As determining 

the number of taxa is vital in confirming the presence of SRGs, it would be crucial to assess the 

potential of species richness to be reliably represented using RS methods.  

The Spectral Variation Hypothesis theorises that greater species diversity of a habitat leads to 

increased spectral diversity in response (Palmer et al., 2002). This has been demonstrated in a range 

of grassland conditions (monocultures, farmland, prairie) but less so for floristically diverse 

grasslands, especially those located in Europe (Polley et al., 2019; Wang et al., 2018a; Zhao et al., 

2021a). Issues with the hypothesis tend to be found at landscape level, potentially due to species 

richness of land cover types being affected by differing confounding factors, however, the metric 

seems particularly plausible in determining alpha (within community) and beta (between community) 

diversity (Schmidtlein and Fassnacht, 2017; Rocchini et al., 2021).  

The hypothesis has previously been shown to be confounded by spatial scale and proportion of bare 

soil, for example, which influence the spectral response (Gholizadeh et al., 2018; Rossi et al., 2022). 

Therefore, the inclusion of sufficient predictor variables, such as vegetation indices (VIs), which may 

account for confounding factors seems pertinent. Due to the high biological diversity found between 

and within species-rich grassland classes, spectral diversity could have the potential to differentiate 

grassland classes in future prediction mapping; specifically, for locating SRGs, or, at the very least, 

separating them from their less diverse counterparts.  

Plant functional and structural traits distinguish community and grassland productivity – a key factor 

in differing agricultural grasslands from semi-natural grasslands, such as SRGs (Hetzer et al., 2021). 

Traits, such as sward height and above ground biomass (AGB) can often indicate management 

practices. For example, one way unimproved grasslands are differentiated from improved grasslands is 

by their grazing/cutting frequency, which can be suggestive of the grassland class (Vickery et al., 

2001). Different management practices and species presence across classes will result in these traits 

varying by grassland type (Magnificent Meadows, 2019). Whilst within SRG classes, acidic and 

calcareous grasslands are often found to have shorter swards than their neutral counterparts 

(pers.comms., 2023). Chlorophyll content may also be crucial in determining SRGs. Heavy fertiliser 

applications on improved grasslands create an artificial greenness of the sward, whilst being cut more 

regularly reduces dead material, influencing the overall chlorophyll content of the habitat. 

Chlorophyll content is also vital for detecting temporal differences, a factor that is shown to limit 

grassland RS, where harvesting agricultural grasslands also alters the chlorophyll content in 

comparison to natural swards (Möckel et al., 2014; Shellswell, 2017).  
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5.1.3 Aims and Objectives 

The thesis RQ4 was adapted for this chapter, specific to the identified case-study, resulting in the 

overall research question: Is currently available open-source remote sensing data able to accurately 

monitor species-rich grasslands and their vulnerable species? 

Very little research has categorised a wide range of environmental characteristics across SRGs of 

varied type and location and therefore assessing certain predictor variables may help in their 

identification on wider scales. This research aimed to investigate the relationship between species 

diversity, spectral diversity, and the retrieval success of grassland community traits in SRGs found 

across Scotland. It is expected that this information could be utilised to improve future prediction and 

mapping attempts of SRG distributions. Assessments used Sentinel-2, Planetscope, and Micasense MX 

Red-edge Dual Camera sensors with varying spectral (8 – 13 bands) and spatial scales (8 cm – 10 m).  

As such, this chapter aimed to answer the questions: 

i) Is there a positive relationship between species diversity and spectral diversity across SRG sites in 

Scotland? 

ii) Can plant community structural and biochemical traits (SPAD-measured chlorophyll-proxy, sward 

height, fresh weight, and above ground biomass) be estimated using RS across SRG sites in Scotland? 

5.2 Methods 

5.2.1 Overall Approach 

To answer both questions, environmental and remote sensing data collection needed to occur at SRG 

sites across Scotland. This data that was collected in 2022 came from a reduced number of sites from 

the previous data collection period in 2021 (described in chapter 4). Only 11 of the original 16 sites 

were revisited in 2022, due both to time restrictions and some sites not having wholly suitable 

conditions. For example, at Glensaugh Lower it proved to be very difficult to find a grassland area to 

survey, with other sites of its classification being more representative of a SRG. Satellite imagery and 

environmental data was collected at all 11 sites, whereas UAV data was collected only where 

permissions were granted. The data was then sorted into analysis for investigating the relationship 

between spectral and species diversity and data that would be used to investigate plant community 

trait estimation. Although sperate analyses were conducted to answer each question, calculated 

spectral diversity metrics associated with the species-spectral diversity relationship were investigated 

in the trait estimation analysis to utilise the availability of a large dataset. An overview of the 

methodological approach can be seen in Figure 5-1. 
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Figure 5-1. Processing steps involved in model creation for predicting species richness and grassland 
community traits in species-rich grasslands across Scotland. 

5.2.2 Study Sites 

Over the grass growing season (May – August) in 2022, eleven SRGs were sampled three times across 

Scotland (Figure 5-2). Sites were chosen across the country to incorporate a range of SRG classes and 

variable climatic conditions that affect species presence and diversity. Open-source data (from 

Butterfly Conservation, Nature Scot, and the UK Centre of Ecology and Hydrology) on previous and 

potential SRG grassland locations were used to identify sites.  

The sites varied in their species richness and community traits, including both wet and dry, and semi-

improved versus more unimproved sites. This allowed greater representation of semi-natural 

grasslands across Scotland. Satellite data was captured across neutral, calcareous, acid, and coastal 

SRGs, whereas UAV data was only captured across seven neutral SRGs; limited by access, permissions, 

and weather (Table 5-1). The same data was also collected for these eleven sites, plus an additional 

five, over 2021, however, was not used in the analysis due to inconsistencies in site coverage.  
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Figure 5-2. Species-rich grassland sites located across Scotland that were sampled in 2022. UAV data was 
acquired at seven of the eleven sites (highlighted in red). Lindean Moor and Murder Moss sites are adjacent 
to one another and represented by a single point. 
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Table 5-1. Field sites where remote sensing, community trait, and species richness data 
was collected in 2022. UAV (highlighted in bold) data for the three campaigns across 
2022, with corresponding Sentinel-2 (S2) and Planetscope (PS) acquisition dates per site. 
See Appendix D-1 for corresponding site code names.  

Site MAY JUNE/JULY AUGUST 

Field 
Survey 

S2 PS Field 
Survey 

S2 PS Field 
Survey 

S2 PS 

AC 24/05/
22 

19/05/
22 

08/05/
22 

12/07/
22 

18/07/
22 

07/07/
22 

16/08/
22 

10/08/
22 

11/08
/22 

CL 19/05/
22 

27/05/
22 

26/05/
22 

30/06/
22 

04/07/
22 

10/07/
22 

04/08/
22 

10/08/
22 

04/08
/22 

EH 17/05/
22 

24/05/
22 

27/05/
22 

28/06/
22 

18/07/
22 

07/07/
22 

02/08/
22 

10/08/
22 

09/08
/22 

GD 17/05/
22 

14/05/
22 

22/06/
22 

28/06/
22 

18/07/
22 

07/07/
22 

02/08/
22 

10/08/
22 

10/08
/22 

GF 25/05/
22 

25/04/
22 

05/06/
22 

13/07/
22 

09/07/
22 

10/07/
22 

17/08/
22 

10/08/
22 

17/08
/22 

HM 26/05/
22 

04/06/
22 

29/05/
22 

14/07/
22 

09/07/
22 

10/07/
22 

18/08/
22 

10/08/
22 

11/08
/22 

LM 16/05/
22 

24/05/
22 

08/05/
22 

27/06/
22 

18/07/
22 

22/06/
22 

01/08/
22 

10/08/
22 

09/08
/22 

MM 16/05/
22 

24/05/
22 

08/05/
22 

27/06/
22 

18/07/
22 

22/06/
22 

01/08/
22 

10/08/
22 

09/08
/22 

MP 26/05/
22 

04/06/
22 

29/05/
22 

14/07/
22 

09/07/
22 

18/07/
22 

18/08/
22 

20/08/
22 

12/08
/22 

SA 23/05/
22 

24/05/
22 

24/05/
22 

11/07/
22 

18/07/
22 

10/07/
22 

15/08/
22 

10/08/
22 

10/08
/22 

SM 18/05/
22 

14/05/
22 

18/05/
22 

05/07/
22 

16/07/
22 

09/07/
22 

03/08/
22 

10/08/
22 

10/08
/22 

 

5.2.3 In Situ Data Collection and Lab Processing 

At each site, the transect origin point was determined using a random sampling approach, decided by 

randomly throwing a quadrat. A 250 m W transect was used (Figure 5-3a) to gain representative 

community trait variation over the habitat (Byrne et al., 2018; Milner and Sharp, 2014). The transect 

length was constrained by varying site sizes (found between <1 – 326 ha) and surveyable areas (i.e., 

areas devoid of trees, shrub, site boundaries, and water features), so 250 m was chosen to ensure a 

final consistent transect length between sites. A total of six 0.5 m2 quadrats were used along the 

transect at each 50 m section to measure the community traits and count the species richness. 

Overall, 198 quadrats were surveyed across the range of grassland classes. However, due to missing 

information, the dataset is made up of 195 quadrats (Figure 5-4).   
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Figure 5-3. A) Orthophoto of a site detailing the W transect methodology employed to survey each site. The 
W transects were made up of 5 x 50 m (total = 250 m) splits, each ending with a 0.5 m2 quadrat; b) DJI 
Matrice 300 RTK UAV platform that was used for all acquisitions with a Micasense Rededge MX 5.5 dual 
camera and DJI Zenmuse P1 sensor.  

 

Figure 5-4. Varying community and species compositions across five types of species-rich grasslands in 
Scotland. 
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Recorded variables were selected based on the community traits (above ground biomass, sward 

height, fresh weight, and SPAD-measured chlorophyll-proxy) that vary between SRG classes. At each 

subsite, species richness was determined by counting the total number of species within a quadrat 

(Rossi et al., 2022). Sward height was recorded by taking five random measurements of the tallest 

vegetation touching a tape measure before the removal of all above ground plant material in a 

quadrat to grazing level (recorded as fresh weight) for the subsequent determination of above ground 

biomass (AGB). On return to the laboratory, this material was oven dried (oven LTE OP250 40°C to 

250°C) at 70° C until a constant weight was reached. The dry weight was then calculated per area 

unit. Chlorophyll content could not be measured with a spectrophotometer due to equipment and 

time limitations. As such, a chlorophyll proxy was utilised, measured with a SPAD (Soil Plant Analysis 

Development) meter (Konica Minolta SPAD-502 Plus) on one leaf of five randomly chosen individual 

grasses, in situ within the quadrat. SPAD measurements were only taken from grass species as these 

were consistently the dominant plant groups within a quadrat. The specific leaf of each individual 

plant was chosen as the first leaf from the ground that would entirely cover the SPAD sensor. The 

SPAD meter was calibrated before each use. The five values were averaged per plot to give a SPAD-

measured chlorophyll-proxy (SMCP) value.  

5.2.4 Satellite and Unoccupied Aerial Vehicle Acquisitions 

We used sun-synchronous Sentinel-2A (orbital altitude 786 m; orbital inclination 98.62°) and 

Planetscope (orbital altitude 475 – 525 km; orbital inclination 98°) satellites. Sentinel-2A (S2) data 

was acquired due to its high spectral resolution of 13 bands and medium spatial resolution of 10 – 60 

m, as well as being open-source data. Level-2a atmospherically corrected surface reflectance imagery 

was acquired using Google Earth Engine for each site, as close as possible to survey dates (+/- 0 – 31 

days, see Table 5-1 for corresponding dates). Specific S2 bands (B2, B3, B4, B8 at 10 m resolution and 

B5, B6, B7, B8A, B11, B12 at 20 m resolution) that are associated with vegetation characteristics were 

selected for use in image classification and resampled (nearest neighbour) to the highest 10 m 

resolution. Planetscope (PS) surface reflectance data were also acquired due to its higher spatial 

resolution of 3 m; however, it has a reduced spectral resolution of eight bands. This allowed 

comparison between spectral and spatial resolution limitations. The raster package (Hijmans, 2023) in 

R (v 3.6.3) was used to extract the satellites’ reflectance values for each pixel corresponding to the 

quadrat location.  

A DJI Matrice 300 RTK UAV platform (Figure 5-3b) was used and flown at 50 m, with an 80% front and 

side overlap, to take hyperspatial (8 cm), multispectral (10 band) acquisitions with a Micasense 

Rededge MX 5.5 dual camera. The use of 7 – 10 ground control points were installed on each site for 

accurate positioning, using a Leica Viva GS08 GNSS receiver. The reflectance was calibrated in field 

using a white reflectance panel (RP06-2102083-OB) to incorporate the day’s lighting conditions. This 

sensor allows bands to be synergised with Sentinel-2 bands, as well as providing hyperspatial 
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resolution multispectral data. Pix4D Mapper (v 4.6.4) was used to create orthomosaics and surface 

reflectance images of the sites (georeferenced between 0.009 – 0.054 m). ArcGIS Pro (v 3.0.36057) 

was used to create 0.5 m2 polygons over the quadrats. The R raster package (Hijmans, 2023) was then 

used to extract the pixel reflectance values per quadrat and average them across the polygon areas 

for each of the 10 bands.   

5.2.5 Vegetation Indices 

Vegetation indices (VIs) were calculated from the spectral reflectance values, as often the ratio 

between bands can be more sensitive to variables on the ground (as seen in the positive relationship 

between the Normalised Difference Vegetation Index (NDVI) and AGB) (Meng et al., 2017; Zhang et al., 

2015). As such, several VIs were calculated: NDVI, including the red-edge NDVIs and indices, which 

represent information on chlorophyll content, such as Sentinel-2 Red-edge Position Index (S2REP); the 

Enhanced Vegetation Index (EVI); and the Greenness Vegetation Index (GVI) (Table 5-2).  

Table 5-2. Vegetation indices calculations per sensor. Band numbers listed by central wavelength (nm).  

Vegetation 
Indices 

Sentinel-2A PlanetScope Micasense MX Red-Edge 
Dual camera 

Source 

NDVI (B8(842)-
B4(665))/(B8(842)+B4(665)) 

(B8(865)-
B6(665))/(B8(865)+B6(665)) 

(B4(842)-
B3(668))/(B4(842)+B3(668)) 

Imran et al., 
2020 ; Peciña et 
al., 2021 ; Qin et 
al., 2021 

EVI 2.5(B8(842)-
B4(665))/(B8(842)+6 B4(665)-
7B2(490)+1) 

2.5(B8(865)-
B6(665))/(B8(865)+6 
B6(665)-7B2(490)+1) 

2.5(B4(842)-
B3(668))/(B4(842)+6B3(668)-
7B1(475)+1) 

Peciña et al., 
2021; Qin et al., 
2021; Zou et al., 
2022 

GVI (B8(842)-
B3(560))/(B8(842)+B3(560)) 

(B8(865)-
B4(565))/(B8(865)+B4(565))  

(B4(842)-
B2(560))/(B4(842)+B2(560))  

Peciña et al., 
2021 

S2REP 705+35((2(B7(783)+B4(665))-
(B5(705))/(B6(740)–B5(705))) 

  Li et al., 2021; 
Zou et al., 2022 

NDVIRed-Edge 

1 

(B8(842)-
B5(705))/(B8(842)+B5(705)) 

(B8(865)-
B7(705))/(B8(865)+B7(705)) 

(B4(842)-
B9(705))/(B4(842)+B9(705)) 

Li et al., 2021; 
Peciña et al., 
2021 

NDVIRed-Edge 

2 
(B8(842)-
B6(740))/(B8(842)+B6(740)) 

 (B4(842)-
B10(740))/(B4(842)+B10(740)) 

Li et al., 2021; 
Peciña et al., 
2021 

NDVIRed-Edge 

3 
(B8(842)-
B7(783))/(B8(842)+B7(783)) 

 (B4(842)-
B5(717))/(B4(842)+B5(717)) 

Li et al., 2021; 
Peciña et al., 
2021 

NDRed-Edge1 (B6(740)–B5(705))/( 
B6(740)+B5(705)) 

 (B10(740)–B9(705))/( 
B10(740)+B9(705)) 

Li et al., 2021; 
Imran et al., 2020 

NDRed-Edge2 (B7(783)–B5(705))/( 
B7(783)+B5(705)) 

 (B5(717)–B9(705))/( 
B5(717)+B9(705)) 

Li et al., 2021; 
Imran et al., 2020 

NDII (B8(842)–B11(1610))/( 
B8(842)+B11(1610))  

   Li et al., 2021 ; 
Qin et al., 2021 
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5.2.6 Analysis 

5.2.6.1 Species – Spectral Diversity Relationship 

The Micasense UAV data (n=114) was used to evaluate the relationship between spectral and species 

diversity with common spectral diversity metrics including: the standard deviation (SD) and coefficient 

of variation (CV). These metrics have often shown to have the most predictive power in diversity 

estimations (Imran et al., 2021; Peng et al., 2019; Wang et al., 2018a). Other metrics, such as Convex 

Volume of Hull is more easily influenced by outliers (Tassi et al., 2022). Clustering methods were not 

used; RaoQ is more applicable for assessing functional (abundance weighted) diversity which could not 

be measured in this study, whilst the Spectral Species approach is less suitable for cross-site studies 

(Féret and Asner, 2014; Rocchini et al., 2017; Rossi et al., 2022). 

Both SD and CV metrics were calculated by averaging individual SD and CV values across the pixels in a 

quadrat (0.5 m2). For this reason, only Micasense data was applicable for this objective as Sentinel-2 

and Planetscope pixel areas exceeded the quadrat area (10 m2  and 3 m2 versus 0.5 m2). Extrapolating 

the satellite data over an increased area was not applicable for these sites due to the mosaiced 

habitats. An NDVI soil mask (pixel values ≥ 0.4) and a NIR shade mask (pixel values ≥ 0.22) were 

applied to the UAV data (Schweiger and Laliberté, 2022). However, it was observed that most 

quadrats were fully vegetated (>99% of pixels), so soil was unlikely to be an influencing factor. Due to 

the structure and composition of the grassland species, and the avoidance of trees/shrub close to 

quadrats, shadows were also not likely to confound the reflectance values (>99% of pixels were above 

threshold). The average SD and CV of spectral reflectance values across the visible and near infrared 

wavelengths (444–842 nm) were used. CV was calculated as the standard deviation/mean reflectance 

value at a specific band, then averaged across all relevant bands per sensor, for each quadrat (as in 

Eq. 1).  

CVquadrat = Ʃ(SDwavelength/Meanwavelength)/number of bands   (1) 

Species diversity was measured as species richness, a commonly used species diversity metric (Peng et 

al., 2019). The relationships between spectral – species diversity was tested using a Pearson 

Correlation coefficient ©. The assumptions for both metrics were visualised and tested. The log 

transformation of SD was used for Spectral Diversity SD to assure the assumptions were met. The 

predictive power of spectral diversity on species and trait diversity was then estimated with the 

coefficient of determination (R2). 

5.2.6.2 Species-Rich Grassland Community Trait Retrieval 

Both satellite (S2 and PS) and UAV (Micasense MX Red-Edge dual camera) data were used to 

investigate grassland community trait estimation from RS data, to allow for a spatial resolution 

comparison. The partial least square regression model (PLS) was chosen to evaluate RS data in 
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predicting grassland community structural (AGB, sward height, and fresh weight) and functional 

(SMCP) traits. Partial least square regression is a non-parametric model which works well with highly 

colinear data, such as environmental data. This model is commonly used for trait estimation from 

spectral data and consistently outperforms other models such as principal component analysis in 

prediction analyses for this type of evaluation (Capolupo et al., 2015; Pang et al., 2020; Schweiger et 

al., 2017; Zhang et al., 2022). 

Both surface reflectance data of relevant bands in vegetation analysis (spectral range) and vegetation 

indices were used as predictor variables, as seen in previous studies (Capolupo et al., 2015; Pang et 

al., 2020; Zhao et al., 2021b). Spectral diversity metrics of the MS were also included in the MS 

models to see if this improved trait predictions, as a unique method of trait retrieval. It was not 

possible to compute spectral diversity metrics for S2 and PS data per quadrat. Although these metrics 

could have been calculated for S2 and PS data per site or class, this was not done as the data would 

average to eleven or five (respectively) data points, which was not suitable for train/test data 

partitioning. PLS models were created for S2 data (PLS-S2), PS data (PLS-PS), and for Micasense data 

(PLS-MS). For each dependent variable, the model was originally created with all predictor 

components. Each sensor had differences in the number of bands, VIs, and whether there were 

spectral metrics or not. As such, multiple combinations of the predictor components were tested in 

each model to investigate the most relevant bands and VIs for the highest prediction accuracy per 

trait estimation. For example, model iterations included the sole removal of NIR bands, the sole 

removal of RGB bands, the sole removal of SWIR bands, and the sole removal of edge bands (such as 

the red-edge bands). This is because different regions of the spectrum hold varying information on 

plant properties depending on the interaction at particular wavelengths (Ge et al., 2019). All models 

were trained and tested with a 70:30 percentage split. A 10-fold cross validation was performed on 

each model and the best tuned model was chosen as the final model per trait prediction. 

5.3 Results 

5.3.1 Site Descriptive Statistics 

SRG species numbers and community trait values varied largely across the SRG sites due to the 

heterogeneity seen both within and between classes (Figure 5-5). Species richness ranged from 3 to 21 

species found in a quadrat, across the seven neutral grassland sites. Average sward height of a quadrat 

ranged from 4.24 cm to 109.38 cm. Total amount of AGB per plot ranged from 2.16 g/m2 to 433.6 

g/m2 of a quadrat. Average SMCP ranged from 16.06 to 47.2 in a quadrat. Total grass fresh weight per 

plot ranged from 3.1 g to 517.5 g.   
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Figure 5-5. Variation in grassland community traits (species richness (number of species), above ground 
biomass (g/m2), average chlorophyll, grass fresh weight (g), average sward height (cm), and SPAD-measured 
chlorophyll proxy across 11 species-rich grassland sites in Scotland. 

 

5.3.2 Spectral-Species Diversity Relationship 

The relationship between species richness and spectral diversity was measured for seven of the 11 SRG 

sites. The Pearson’s correlation showed that there was no significant relationship between species 

diversity and spectral diversity SD (t = -0.119, df = 112, p = 0.211), and spectral diversity SD showed a 

low predictive power for species diversity (R2 = 0.0141). There was no significant relationship between 

species diversity and spectral diversity CV (t = 0.139, df = 112, p = 0.141), and spectral diversity CV 

showed a low predictive power for species diversity (R2 = 0.0192).  



Chapter 5   122 

5.3.3 Estimations of Grassland Community Functional and Structural Traits 

The PLS models showed mostly low predictive power across the remote sensing devices per trait. The 

Micasense data had the strongest predictive power for all traits: sward height (R2 = 0.545, RMSE = 

13.56 cm, removing the RGB and SWIR surface reflectance band values and spectral diversity metrics 

from the model), AGB (R2 = 0.221, RMSE = 48.26 g/m2, removing the RGB and SWIR surface reflectance 

bands from the model and the red-edge VIs), fresh weight (R2 = 0.235, RMSE = 98.74 g, removing the 

RGB and SWIR band values from the model), and SMCP (R2 = 0.167, RMSE = 5.10, removing only the 

blue band value from the model). Planetscope consistently performed poorly for trait prediction 

(Table 5-3; Figure 5-6).  

Table 5-3. Species-rich grassland community trait estimation using spectral reflectance values, 
vegetation indices, and spectral diversity (for Micasense) as predictor variables from the best 
models per trait of remote sensing sensors: Sentinel-2, Planetscope, and Micasense MX Red-edge 
dual camera. Final models for best trait estimation are in bold.   

Traits Sentinel-2 PlanetScope Micasense 

 N R2 RMSE n R2 RMSE N R2 RMSE 

Sward Height (cm) 195 0.201 19.92 195 0.150 20.98 114 0.545 13.56 

Above Ground Biomass (g/m2) 195 0.199 49.83 195 0.159 56.09 114 0.221 48.26 

Fresh Weight (g) 194 0.137 106.31 194 0.097 76.06 114 0.235 98.74 

SPAD-measured Chlorophyll-proxy 189 0.062 5.48 189 0.021 5.99 114 0.167 5.10 
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Figure 5-6. Predicted versus observed sward height (cm), above ground biomass (g/m2), fresh weight (g), 
and chlorophyll content (SPAD measured) from (A) Sentinel-2 in 10 m resolution, (B) Planetscope in 3 m 
resolution, and (C) Micasense MX Red-Edge Dual Camera in 8 cm resolution models. 
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The addition of the MS spectral diversity metrics into the PLS-MS models did slightly improve 

prediction estimates for AGB, fresh weight, and SMCP but reduced the prediction power of the model 

for sward height (Table 5-4). The final models for trait prediction are: PLS-MS for fresh weight, AGB, 

sward height, and SMCP (Table 5-5).  

Table 5-4. Partial least square regression model results for grassland trait estimation with and without 
the inclusion of spectral diversity metrics derived from a Micasense MX red-edge dual camera. 

 
Trait 

With spectral diversity 
metrics 

Without spectral diversity 
metrics 

R2 RMSE R2 RMSE 

Sward Height (cm) 0.305 16.54 0.545 13.56 

Above Ground Biomass (g/m2) 0.221 48.26 0.130 47.74 

Fresh Weight (g) 0.235 98.74 0.209 99.07 

SPAD-measured Chlorophyll-proxy 0.167 5.10 0.160 5.13 

 

Table 5-5. Final models of species-rich grassland community trait estimation with corresponding best sensor 
for prediction and the combination of final inputted predictor variables. 

 
Community Trait 

 
Final 

Sensor for 
Model 

Inputted Predictor Variables 

Spectral Bands Vegetation Indices Spectral 
Diversity 
Metric 

Sward Height (cm) Micasense 
(PLS-MS) 

NIR, Red-Edges NDVI, GVI, EVI, NDVIRE1, 
NDVIRE2, NDVIRE3, NDRE1, 
NDRE2 

None 

Above Ground Biomass 
(g/m2) 

Micasense 
(PLS-MS) 

NIR NDVI, GVI, EVI, NDVIRE1, 
NDVIRE2, NDVIRE3 

CV and SD 

Fresh Weight (g) Micasense 
(PLS-MS) 

NIR, Red-Edges NDVI, GVI, EVI, NDVIRE1, 
NDVIRE2, NDVIRE3, NDRE1, 
NDRE2 

CV and SD 

SPAD-measured 
Chlorophyll-proxy 

Micasense 
(PLS-MS) 

Blue-444, Red-650, Green-
531, Red-Edge 3, NIR, 
Green, Red 

NDVI, GVI, EVI, NDVIRE1, 
NDVIRE2, NDVIRE3 

CV and SD 

 

5.4 Discussion 

This study aimed to investigate the retrieval of species richness and other grassland community plant 

traits by RS with the intention of improving future monitoring and mapping of SRGs. It is one of few 

extensive explorations of RS data, across spectral and spatial scales, in a broad range of entirely semi-

natural SRG grassland sites in Scotland.  

5.4.1 Species-Spectral Diversity Relationship 

Our results showed that there was no significant relationship between species richness and spectral 

diversity across the seven study sites where this was investigated. Both spectral diversity metrics (CV 

and SD) were not good predictors of species richness and explained less than 2% of variation seen. This 

challenges the Spectral Variation Hypothesis. Although there has been a range of studies (Imran et al. 
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2021; Wang et al., 2018a; Zhao et al., 2021a) investigating the Spectral Variation Hypothesis, none 

have been so extensive across a range of semi-natural heterogenous grasslands, at such a fine spatial 

scale as this (Rossi et al., 2022).  

Our research aligns with many similar studies in that there is no clear relationship between spectral 

and species diversity in grasslands (e.g., Thornley et al., 2023). Conti et al. (2021) found negative 

relationships between their spectral diversity and species diversity metrics, supporting the negative 

relationship between spectral diversity SD and species richness found in our study (although this was 

not significant). Where studies have demonstrated positive relationships between spectral and species 

diversity, these are found in more homogenous, species-poor, or experimental grassland plots (e.g., 

Wang et al., 2018a; Zhao et al., 2021a). Imran et al. (2021) summarised these differences well with 

their study highlighting the reduced prediction power of spectral diversity metrics in a species-rich 

grassland versus a species-poor grassland.  

Many confounding factors could result in the low confidences found in this relationship, including 

biomass, species abundances, sward structure, bare soil presence, and spatial scale issues (Gholizadeh 

et al., 2018; Rocchini et al., 2014). However, when originally choosing modelling parameters to 

investigate the spectral variation hypothesis, biomass, sward structure, and sward height variation 

(SD) were included in a linear-mixed affect model and found to have little influence on variation 

(<5%). As such, these variables were not included as confounding factors in a linear model 

investigating the relationship between species and spectral diversity. Both spatial and spectral scale 

are known limitations in grassland RS and there is potential that even multispectral sensors, such as 

Sentinel-2 may not provide enough information across bands, as reflectance values are given as the 

value per band’s central wavelength. Consequently, for this study our spectral diversity metrics were 

calculated across 10 bands (multispectral) compared to studies, such as that by Möckel et al. (2016), 

where metrics were calculated across 245 bands (hyperspectral). As such, the reduced amount of 

surface reflectance (spectral diversity) information across wavelengths may influence the results seen 

in our study. Spatial scale may have impacted the variety of results across studies too, as it appears to 

affect parts of the spectrum differently. For example, increased spatial scale resulted in a more 

positive relationship between spectral and species diversity across the VIS region compared to a 

weaker relationship across the NIR region (Imran et al., 2021). 

A meta-analysis by Thornley et al. (2023) identified and summarised the inconsistencies found in the 

literature. At canopy level, grasslands are prone to quick responses to environmental and management 

change. Our study sites did consist of a range of management regimes: seven were lightly grazed, two 

included cutting regimes (cut one year and grazed/left the next), two were unmanaged, and one had 

the use of herbicide application. One site was accidentally trampled in the late summer.  

Phenological stage is also key in grassland monitoring and may have influenced the results, as we 

measured across a season (Figure 5-7). Thornley et al. (2022) found that phenological diversity 

(defined as the number of phenological stages in a plot) confounded the spectral variation hypothesis, 
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suggesting that the timing of data collection be crucial in determining whether a relationship between 

spectral and species diversity can be seen. Species type (e.g., graminoids, forbs, legumes, and 

bryophytes) will also affect the spectral response of a grassland community, as well as shorter 

responses to extreme weather events (drought/flooding), and diseases (Fassnacht et al., 2022).  

 

Figure 5-7. Phenological differences at one site at a) May, the start of surveying, b) end of June, the peak 
of the survey season, and c) August, the end of surveying season, including new growth, increased flowering 
(circled in red), green-up, then dye-off (yellowing) of vegetation. Images captured with a Zenmuse P1 
camera flown at 50 m.   

The relative abundance of each species may also confound the species – spectral diversity 

relationship. Indices that account for species abundance and evenness (Simpson’s diversity and 

Shannon’s diversity) have shown positive relationships with spectral diversity (Wang et al., 2018b). 

Potentially the impact of species abundance is high in heterogenous grasslands, therefore, the 

dominance of certain species may interfere with the interpretation of the species-spectral diversity 

relationship. 

Other spectral diversity metrics could be tested to see how these influence the results of the diversity 

estimates, for example clustering techniques, such as the Spectral Species approach. These were not 

tested here as are less widely applied to the Spectral Variation Hypothesis (only 6/20 studies used a 

“complex” clustering approach in the meta-analysis by Thornley et al. (2023)) and assume that one 

pixel is one species. We did not think this suitable for our analysis where one pixel, even at 8 cm, was 

likely made up of more than one species due to sizes of certain herb species and of species 

overlapping (Rocchini et al., 2022). However, if the approaches can bypass the issues of cross-site 

comparisons this could be more appropriate for the handling of outliers that would be seen in these 

heterogenous grasslands.  

5.4.2 Grassland Community Trait Estimation 

We found low R2 values (all but one <0.5) from the PLS models for trait estimation, inconsistent with 

recent studies (Qin et al., 2021; Zhang et al., 2018; Zhao et al., 2021b). AGB has often been well 

predicted by VIs, however, the data collected in these studies comes largely from homogenous 

agricultural or experimental grasslands to assess productivity or grazing intensity (Jiménez-Jiménez et 
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al., 2022; Jin et al., 2014; Zhang et al., 2018; Qin et al., 2021). Evidence also suggests that in more 

complex vegetation types, with diverse structural and functional traits, the retrieval accuracy (a 

representation of the similarity between the actual and predicted trait values) of certain properties, 

such as LAI, and both fresh and dry biomass was reduced (e.g., Imran et al., 2020; Moeckel et al., 

2017; Lussem et al., 2019). It appears that the application of predictive models where they have been 

successful (high R2 value over 0.5) may not be suitable across various grassland types. This may 

explain the range in model performances that are seen across studies, including our own low R2 

values, with large variation both within and across sites (Grüner et al., 2019).  

Most quadrats had a high proportion of flowering plants, which has previously been shown to 

negatively affect predictive power of statistical models in the retrieval of plant traits (Schiefer et al., 

2021). Zhang et al. (2022) found that model prediction for structural properties, such as dry biomass 

and plant height was similarly low (explaining less than 45% variance) in natural heterogenous 

grasslands, however, achieved high R2 values for estimating chlorophyll content. Unlike in our study, 

the SMCP was most poorly predicted with all models explaining less than 20% of the variation. This 

could be explained by the number of heterogenous study sites, or the methodology associated with 

measuring chlorophyll. Spectrophotometers are known chlorophyll extractors in the lab. A SPAD meter 

measures the amount of light transmitted by certain wavelengths and is proportional to the amount of 

chlorophyll within a leaf (Süß et al., 2015). As such, it is instead a proxy of chlorophyl content.  

However, Ludwig et al. (2022) demonstrated that after calibration the relationship between SPAD 

values and actual chlorophyll content was not strong in a semi-natural grassland, and SPAD 

measurements were poor predictors of total leaf chlorophyll content (all models R2 = <0.5). Therefore, 

the use of a SPAD meter for plant communities, rather than for specific species, in heterogenous 

grasslands may not be applicable, although further research may be required.   

The results were further explored to investigate whether specific sites had a greater influence on low 

R2 values for trait prediction and why that might be, with the previous data collected over 2021. The 

data showed little consistency in the variation between sites or traits (Appendix D-2). There was some 

suggestive evidence that with increasing variation in a trait (i.e., greater range in trait values), the 

lower the predictive power of the model, however, the relationship was only significant for sward 

height (p = 0.0368), although all traits showed a negative trend. The predicted versus observed plots 

(Figure 5-6) also showed that few sites seemed to have extreme values in the structural traits and 

were far from the regression line, suggesting again that these extremes may reduce the models’ 

predictive power. These identified sites tended to have more dominant tall growing grasses e.g., 

Deschampsia cespitosa, and potentially this influenced the model results. Siefert et al. (2015) 

demonstrated this, showing that intraspecific variation can influence 25% of variation within 

community level traits. Further exploration of the data also indicated that even within site variation 

may result in poor trait prediction, with certain sites having higher R2 values one year, with low values 

the next. For example, the PLS-S2 model predicted AGB well for Eildon Hill in 2022 (R2 = 0.925) but 
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predicted AGB poorly in 2021 (R2 = 0.490). When combining data from both years, the model 

predictive power was reduced further (R2 = 0.168) (Figure 5-8).   

 

Figure 5-8. Predicted versus observed above ground biomass (g/m2) at Eildon Hill from Sentinel-2 in 10 m 
resolution surface reflectance values and vegetation indices from a) 2021 and 2022 combined, b) 2021, and 
c) 2022. 

Grasslands are varied by nature, showing quick responses to changes in conditions, climate, and 

management. This indicates that one-year trait prediction may be quite feasible, but another year a 

confounding factor has a greater influence on trait prediction which is reflected in the grassland 

community response, as explained by Thornley et al. (2023), and that collecting data across seasons 

invites even further variation into the data. Further research, plus personal observation, suggests that 

other topographical variables are important in influencing grassland characteristics e.g., elevation, 

slope, and aspect (Yin et al., 2019). It could be that predictive models for grassland community 

structural traits are best estimated with the inclusion of both spectral and topographical data. This 

knowledge could instead dictate what the data best be used for; potentially broad scale mapping may 

be limited from RS data but the difference in R2 values per year at a specific site may be useful for 

monitoring purposes and assessing annual change.  

The Micasense performed the best out of the three sensors, suggesting that trait prediction is spatially 

limited in species-rich grassland RS. This is supported in literature where Wang et al. (2018a) suggest 

the maximum pixel size for capturing the Spectral Variation Hypothesis is 10 cm, whilst Capolupo et 

al. (2015) note that the resolution should reflect the size of the desired trait to be estimated. For 

some traits PLS-S2 models only performed slightly worse than the PLS-MS models, particularly for AGB 

and fresh weight (Table 5-3). The differences seen here in the R2 values between the sensor responses 

could be due to the variation seen on canopy versus leaf level. Due to the pixel size of Sentinel-2 and 

Planetscope, this data is extrapolated to canopy level, with the traits being measured as such e.g., 

AGB and fresh weight were recorded for the whole quadrat as a canopy level trait. However, due to 

the pixel size of the Micasense camera, this is more likely to be capturing leaf, and therefore species, 

level data. This could explain why the differences in the R2 values are much larger for SMCP and sward 
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height – which, although was averaged across canopy, the data was collected from individual plants – 

compared to AGB and fresh weight. The results from the models may also suggest that spatial 

resolution is a greater limiting factor where spectral resolution is not: Planetscope consistently 

performed the worst, despite having a higher spatial resolution than Sentinel-2 but has an inferior 

spectral resolution.  

5.4.3 Limitations 

Certain measurements were not considered in this study (e.g., species abundance) due, primarily, to 

time requirements. Unfortunately, due to the nature of some sites and access permissions, there was 

a difference in the number of sites that RS data could be collected at: Sentinel-2 and Planetscope 

imagery could be acquired for all sites, whereas UAV data could only be collected at seven sites. 

Scotland is also a country with highly changeable weather conditions; from May to August 2022 

temperatures ranged from averages of 6.9 – 18.1 °C, whilst total rainfall varied from 80.6 – 121 mm 

(Met Office Climate Information Centre, 2023). Consequently, retrieval of satellite imagery (also 

limited by revisitation times) on the same day as in situ sampling was not always possible. Images that 

were cloud free over the site quadrats were acquired as close as possible to the field dates (Table 

5-1). Similarly, poor weather conditions meant that the Micasense could not fly for some field dates.  

Due to the reasons listed above, it is possible that these investigations in another subset of SRG sites 

might result in different findings. Further control variables may be needed to take into consideration, 

such as the specific timing of data collection (potentially limited to one survey at each site, rather 

than across a season), as well as matching management conditions as close as is possible. However, 

this reflects the nature of SRGs across Scotland and highlights the issues with up scaling these RS 

approaches nationally. Altering methods such as using a spectrophotometer for exact chlorophyll 

concentrations may be better represented in surface reflectance values, whereas measuring sward 

height and biomass with plate metres, for example, could be tested. This would allow comparisons to 

see if methodological changes help to improve results. It would be beneficial to explore these 

methods in more SRGs, as there was some evidence of success when focusing on specific sites. More 

complete field methodology recommendations are needed.  

5.5 Conclusions  

Species-rich grasslands are under mapped in Scotland but are listed as a priority habitat in 

conservation targets. RS data can be used to model and predict grassland community traits and 

species richness that vary between SRG classes. This information may have the potential to be utilised 

in improving mapping attempts on a wider scale. 

This study explored RS applications in 11 species-rich grasslands in Scotland, across spatial and 

spectral scales. We investigated the Spectral Variation Hypothesis by modelling the relationship 

between species and spectral diversity. We also looked at trait retrieval of grassland community above 
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ground biomass, grass fresh weight, sward height, and SPAD-measured chlorophyll-proxy across the 

various SRG types with predictive modelling. These common methods were integrated by utilising 

spectral diversity as a predictor variable in trait retrieval, an area that has had little exploration.   

The results from this study lean toward greater questioning of the ability of prediction estimates from 

RS for supporting mapping of semi-natural SRGs. Although most of the R2 values are low, there is still 

some variation explained by the RS data, especially for the structural trait estimation, that holds 

important information to be used (particularly when considering which predictor variables to input). It 

could simply be that there are too many considerations from these diverse and dynamic grassland 

habitats to accurately apply previous theories and common modelling approaches for SRGs. It appears 

that spectral variation in SRGs is not majorly linked to species counts but may more likely be 

representative of the species type, dominance, and environmental variance that is experienced 

regularly in these habitats.  

Further data on potential confounding fixed and random factors needs to be considered in future 

prediction estimations in SRGs. This study does not wish to discount previous findings or theories 

surrounding the retrieval of grassland parameters from remotely sensed data, however, suggests that 

RS data alone may not yet be enough to predict certain plant community traits in SRGs with high 

accuracy, requiring inputs of additional data. We highlight that RS of SRGs is entirely community and 

site context dependent and potentially that will be a hinderance to progress in this area. When 

inclusive of multiple natural and semi-natural grassland classes, predicting diversity and community 

traits on a wide scale may fall short unless all possible dynamics are considered. It may be that initial 

in situ wide scale assessments per grassland community are needed before eventual groupings and 

consequent inferences for predicting and then mapping a broad range of grassland habitats by RS can 

occur. 

5.5.1 Future Recommendations 

It is still uncertain whether the retrieval and prediction of certain grassland parameters (both species 

diversity and community traits) can be used to aid the mapping of SRGs more widely. Time, labour, 

and financial costs will restrict the amount of data that can be collected. However, a set of ideal 

recommendations for RS of diverse grasslands can be derived.  

The collection of further data should include species abundance, species functional group, number of 

flowering plants, and plant phenological stage to be considered as fixed effects (Fassnacht et al., 

2022; Schiefer et al., 2021; Thornley et al. 2022; Wang et al., 2018b). Data collection should make 

note of management practices, presence of disease, and weather conditions, specifically any unusual 

events as random effects (Thornley et al., 2023; pers.obvs.). Temporal variation can be reduced by 

collecting data during one phenological stage, aligning any mapping attempts to this stage (Thornley 

et al., 2022). The sensor and spatial resolution should be considered per trait estimation. Higher 

spatial resolution (cm scale) RS devices, such as UAVs should be used for species measured traits e.g., 
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chlorophyll content, whereas lower spatial resolution (m scale) devices, such as certain satellites may 

be more applicable to measure canopy-level traits, such as above ground biomass (pers.obvs.). Where 

possible, influencing environmental determinants e.g., topographical variables should be included (Yin 

et al., 2019).  

These RS approaches were investigated to see whether retrieval and prediction of species diversity 

and community traits is possible across SRG classes. This was in attempt to assist future mapping of 

SRG classes which vary in their species and trait composition. What could be further explored is the 

use of clustering models here instead. Rather than use clustering models as an attempt to determine 

absolute number of species, for example, they appear more applicable to mapping biodiversity 

components especially regarding abundance and functional diversity estimations. This information 

may further inform SRG class prediction attempts. Future research can also look further into the 

integration of spectral diversity metrics in grassland community trait retrieval as some improvements 

in predictions were shown with this inclusion in this study. 
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Abstract 

As a society we continuously miss global targets that will help us address the ecological crisis. 

Collaboration is required to provide an integrative approach for improving biodiversity monitoring to 

address this crisis. Proposals have been made to combine two of the largest applications in nature and 

landcover monitoring, citizen science (CS) and remote sensing (RS), both of which can be used to 

improve spatial reach of monitoring initiatives. CS can reduce financial constraints and increase 

knowledge exchange, whilst RS can help access isolated regions and improve the temporal scale of 

monitoring. However, few studies explore the combination of CS and RS due to data quality concerns 

and discipline-specific knowledge. This chapter aimed to address this gap by combining CS and RS in a 

novel biodiversity monitoring tool. A citizen science survey, Ecosystem Explorers, was co-created with 

Butterfly Conservation to help locate species-rich grasslands (SRGs) in Scotland; a habitat that has 

seen large declines over the last 60 years. This interdisciplinary project was planned to engage 

stakeholders in biodiversity monitoring attempts utilising open science practices and facilitating the 

combination of CS and RS. Participants were recruited to confirm areas of SRGs that had been 

predicted by a habitat classification model, applied to Sentinel-2 satellite imagery. Data was also 

provided by NatureScot, Plantlife, and the Botanical Society of Britain and Ireland on recently 

confirmed SRG locations. Model predicted SRG locations were cross-referenced with citizen ground-

truthed SRG locations and the level of agreement was analysed. RS data was successfully utilised in a 

CS project initiating interdisciplinary methods, whilst collaboration and stakeholder engagement 

resulted in the creation of an interdisciplinary tool. Through implementing open science practices, the 

finished project is predicted to have a high open score of 0.92. There was a low overall agreement 

between the model predicted and citizen ground-truthed SRG locations (17.65%). The difference in 

the number of model predicted and citizen ground-truthed SRG locations was significantly different to 

the theoretical expected equal split of model predicted and citizen ground-truthed SRG locations (p = 

0.0003). The level of agreement between the model predicted and citizen ground-truthed SRG 

locations was significantly different across SRG classes: acid, calcareous, marshy, and neutral (p = 

0.017). However, the level of agreement between the model predicted and citizen ground-truthed 

SRG locations was not significantly different across data providers, participant experience, or 

participant confidence level (p = 0.114, p = 0.706, p = 0.900 respectively). The results suggest there 

are difficulties in using the current combined tool for wide-scale mapping of species-rich grasslands in 

Scotland due to the high disagreement between the model predictions and citizen scientists. However, 

the methodology derives an open science approach that could be further enhanced to improve global 

biodiversity monitoring, that is context specific. The results support the involvement of stakeholder 

and community engagement in biodiversity conservation research.   
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6.1 Introduction 

6.1.1 Global Biodiversity Monitoring 

The biodiversity crisis, defined by Rahbek (2012) as the “rapid loss of species and … degradation of 

ecosystems”, is recognised as a global issue and threat to sustainable living (De Prins, 2022; Purnomo 

et al., 2020; Singh, 2002; Steffen, 2003; Western, 1992). This awareness has led to the creation of the 

UN Millenium Development Goals, followed by the SDGs and Aichi Targets (Brooks et al., 2015; Sachs, 

2012) as well as local, national, and international initiatives to mitigate and/or reverse the damage 

caused by human activities. A major requirement in meeting targets designed to halt or reverse 

biodiversity loss is comprehensive environmental monitoring. This monitoring enables researchers to 

identify changes in species’ populations and environmental functioning, the potential causes of these 

changes, and the solutions to halt and reverse them. However, environmental monitoring is limited by 

a variety of challenges, such as funding limitations, researcher availability, and site accessibility, 

which reduce the capacity for complete monitoring (Anderson, 2018). This has led to large spatial, 

temporal, and taxa-specific gaps in coverage (Xu et al., 2021). These excluded species, habitats, 

regions, and minority groups in society often experience the effects of the ecological crisis most 

greatly. For example, the tropics, where monitoring programmes are not nearly as abundant as in the 

Global North, have the highest rates of biodiversity loss and the communities found here are much 

more dependent on biodiversity resources for their livelihood (Roe et al., 2019).  

Globally, grassland habitats are often overlooked in terms of monitoring, management, and 

conservation; this may prove problematic, due to their carbon sequestration capacity and role as a 

potential climate change mitigator (Bardgett et al., 2021; Carbutt et al., 2017), as well as their 

importance as key habitats for a range of species. Grassland degradation has directly contributed to 

the current decline in insect populations, as well as climate change, impacting the ecosystem services 

they provide (including pollination, nutrient cycling, and pest control) (Wilson and Fox, 2021). 

Species-rich grasslands (SRGs) in the UK make up less than 1% of the UK landscape and their loss is 

coupled with declines in dependent insect species, such as that of the Northern Brown Argus butterfly, 

Aricia artaxerxes, whose population has more than halved in the last 50 years (Natural England, 2020). 

Without consistent monitoring and management these fragile ecosystems and associated species will 

continue towards their extinction.  

Issues facing environmental monitoring include the need for an increase in data collation capacity, 

multiple stakeholder engagement, and cross-discipline approaches (Kühl et al., 2020). As indicated in 

Chapter 2, a potential approach to meeting this challenge is the application of the principles of the OS 

movement, which facilitates increased collaboration in environmental monitoring and creating a more 

accessible scientific community and research process (Hecker et al., 2018). An OS tool that has 

increased in its use over the last two centuries is the use of Citizen Science – the generally accepted 
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definition of which is the participation of untrained volunteers in scientific research, largely for data 

collection (Haklay, 2021).  

6.1.2 Citizen Science in Environmental Monitoring  

Citizen science (CS) has some of its largest applications in environmental monitoring, where 

volunteers can increase the amount of data collected as well as the number of habitats and species 

covered (de Sherbinin et al., 2021). CS projects provide environmental scientists with a low-cost 

method that can increase the spatial and temporal scale of data collection, whilst also engaging the 

public and stakeholders with the potential for policy implementation (Fritz et al., 2019). There are 

previous concerns in CS projects regarding participants’ knowledge of biodiversity and monitoring. 

However, these concerns are being addressed with the implementation of simple methods, volunteer 

training, and continued feedback in projects. This has been shown to improve accuracy amongst data 

collectors with projects finding high agreement between researchers and volunteers (Kosmala et al., 

2016).  

In fact, CS has the potential to contribute to approximately 33% of the current SDGs, with its largest 

and potential contributions in 1) habitat restoration initiatives (SDG 15), 2) making cities sustainable 

(SDG 11), 3) promoting human wellbeing (SDG 3), and 4) water monitoring and sanitation initiatives 

(SDG 6) (Fraisl et al., 2020). Fritz et al. (2019) outlined the ways in which citizen science can 

contribute to the SDGs through a combination of greater temporal and spatial reach, multi-

dimensionality across SDGs and providing richer/detailed data, and data management for accessibility 

(Figure 6-1).   
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Figure 6-1. The potential contribution of citizen science to the Sustainable Development Goals. Source: 
Fritz et al. (2019). 

There is an opportunity for CS projects to increase the impact on biodiversity conservation outside of 

increased data collection, particularly in relation to participant understanding. Participant awareness 

and knowledge of the project’s target species or habitat may be improved by taking part in a project. 

For example, Greving et al. (2022) found that, in an urban bat ecology CS project, participation 

resulted in a greater understanding of urban bat ecology. As such, CS participation could influence 

conservation efforts (for insects in particular, which are often ignored due to dislike and 

unfamiliarity). This could be because increased awareness and ownership may result in both 

engagement with public campaigning and changes to potentially harmful behaviours (Saunders et al., 

2020). Furthermore, CS may change environmental policy and lead to increased protection, or just 

greater acceptance, of overlooked species (Adler et al., 2020).   
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6.1.3 Remote Sensing in Citizen Science 

Although recognition of the role of CS as a robust scientific method continues to increase, areas for 

improvement remain, including refining data integration and modelling approaches, reducing observer 

bias, and widening scientific communication of research outputs and results (Johnston et al., 2022). 

One area that is frequently highlighted for increased integration with CS is the use of remote sensing 

(RS) technologies (defined as observing the Earth with the use of satellites or drones) in surveys (Lee 

et al., 2020). For example, CS projects have the potential to address multiple Essential Biodiversity 

Variables (EBVs), such as monitoring changes in species population trends, genetic diversity, and 

ecosystem functioning, however, most typically focus on just one target (e.g., species-based projects) 

(Turak et al., 2017; Wetzel et al., 2018). The use of RS in CS could address this concern by being 

applicable to wider scale ecosystem-based monitoring (for example, observing grasslands and 

associated species), therefore, targeting multiple EBVs at once.   

Open source RS imagery, although increasingly accessible, is a resource that has not been fully utilised 

in CS. This is largely due to misconceptions in Earth observation about the validity of CS data, as well 

as concerns regarding the transferability of Earth observation to biodiversity monitoring (Schulte to 

Bühne and Pettorelli, 2018). However, the potential for combining RS data in a CS project is 

increasingly being explored, with projects starting to demonstrate success. These include the syncing 

of tree phenological timings in situ with near-surface RS imagery (Kosmala et al., 2016), and the 

identification of archaeological artefacts within RS LiDAR imagery (Lambers et al., 2019). 

There are multiple ways in which citizen scientists and RS can interact, including: ground-truthing 

models, confirming RS outputs, providing local knowledge, or filling information gaps (Boyd et al., 

2022). An example of this is seen in the project by Domingo-Marimon et al. (2020) where phenological 

maps produced from satellite data were provided to members of the public to consolidate the 

outputs. The scale of environmental monitoring can be extended even further through the 

combination of methods. This combination will allow inaccessible regions to be reached and cover 

larger areas at a quicker rate than even the use of many citizens can achieve, further maximising the 

potential of each method (Stephenson, 2020). However, as Stephenson (2019) addresses, the RS 

technology used must be appropriate for the monitoring design in question rather than the other way 

around.  

The impact of combining CS and RS can be further explored with the potential for project interaction, 

which can be achieved more easily with the practice of OS (Lee et al., 2020). For example, if a CS 

project, that is not defined by the use of RS, is collecting data that includes habitat identification (as 

an example), this could feed into RS projects that are looking at land cover changes, in spite of this 

not being a primary aim of the CS project. This can largely benefit the provision of reference datasets 

for RS products (See et al., 2022). It does appear that the current combination of CS and RS is heavily 

focused on the validation and calibration of RS data (See et al., 2016). However, these projects may 
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be further improved by exploring the increase in co-design of CS and RS projects, with local 

communities and stakeholders helping to inform project direction too. 

The outcomes of well-designed combined CS and RS need to be two-fold. In addition to the use of 

citizen scientists in RS projects increasing the spatial reach and data collection capacity, projects 

must also ensure advantages of participation for the citizen scientists. With RS having large 

applications in Earth observation and, increasingly, in biodiversity monitoring, interaction with RS 

products provides the opportunity for the public to engage with the pressures the Earth is 

experiencing and feel like an active contributor to the resolution of these. There are psychological 

barriers that are experienced by the public regarding the ecological crisis and climate change; 

research shows that these are difficult concepts for people to grasp, as it is not an immediate, 

tangible, and personal threat that they face in their day to day lives (Gifford, 2011; Scannell and 

Gifford, 2013). There is also evidence that behavioural change comes from self-persuasion i.e., for 

any action to occur an individual must make their own choice (De Meyer et al., 2020). This may be 

more likely to occur through their direct experiences and from learning by others’ examples (which CS 

would provide the opportunity for), rather than being told what they should or should not do. 

Involvement in CS and RS may be a way to improve Eco-pedagogy – the establishment of ecological 

consciousness from direct involvement or “confrontation” leading to action (Dunkley, 2018). If this 

engagement is followed by pro-environmental behavioural change, it has the potential to benefit both 

the planet, through action, and people, through improved wellbeing and resulting future sustainability 

(Zawadzki et al., 2020).  

Combining RS and CS methodologies has great potential, with advantages ranging from increased 

spatial reach and validation of RS projects, to heightened participant scientific democratisation and 

biodiversity awareness. However, this combination is still underexplored and is not without 

challenges. These challenges have broadly been identified as 1) quality assurance and trust of CS data, 

2) complex RS data and lack of easy-access technology, and 3) the value provided by the participants 

and how to support them (Mazumdar et al., 2017). Hopefully, these challenges will be resolved with 

the rising union of CS and RS, especially where project efforts outline how they will address them.  

6.1.4 Maximising “Openness” in Citizen Science: Collaboration in Design  

Collaboration and co-creation are becoming increasingly important in the development of CS projects 

(Tan et al., 2022). This interactive process ensures that CS projects are designed to target the needs 

of society and gaps in scientific research that are identified by the parties who will be most affected 

by the project. This collaboration can also address concerns of knowledge gaps in interdisciplinary 

approaches, such as those seen when combining Earth science with conservation science, for example 

(Gunnell et al., 2021). It also enables projects to become widely cross-disciplinary in their 

applications and achieve greater impact amongst science and society through this approach (Senabre 

Hidalgo et al., 2021). This level of public and stakeholder engagement also ensures feedback to assess 
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the success of the project. To ensure project targets are suitably identified and reached, 

communication via multiple stakeholders is a necessity in project creation.  

While CS projects are set up with multiple goals at their respective cores, these are often not 

reached. For example, Theobald et al. (2015) found that, although 376 projects had an aim to 

contribute to scientific knowledge, just 47 of the biodiversity CS projects were published in a peer-

reviewed journal. To ensure the goals of these CS projects are realised, intentional fit-for-purpose 

design is required by creating a workflow that targets each aim (Parrish et al., 2018). Golumbic et al. 

(2020) cross-analysed five highly successful CS projects and found attaining their goals was associated 

with i) a user-friendly platform, ii) simple tasks with relevant training, iii) recruiting existing 

interested participants and those in need, iv) active communication with other participants and 

researchers, and v) transparency and availability of results. The likelihood of success when creating a 

CS project can be associated with these findings as well as through following the 10 principles of CS, 

which highlights the need for communication, transparency, mutually beneficial goals to participants 

and researchers, and high quality data for scientific advancement (Table 6-1) (Robinson et al., 2018; 

Vohland et al., 2021). 

Table 6-1. The 10 principles of Citizen Science. Source: ECSA, 2015.  

Citizen Science Principles 

1. Citizen science projects actively involve citizens 
in scientific endeavour that generates new 
knowledge or understanding. Citizens may act as 
contributors, collaborators or as project leaders 
and have a meaningful role in the project. 

6. Citizen science is considered a research approach like 
any other, with limitations and biases that should be 
considered and controlled for. However, unlike 
traditional research approaches, citizen science provides 
opportunity for greater public engagement and 
democratisation of science. 

2. Citizen science projects have a genuine science 
outcome. For example, answering a research 
question or informing conservation action, 
management decisions or environmental policy. 

7. Citizen science project data and metadata are made 
publicly available, and, where possible, results are 
published in an open-access format. Data sharing may 
occur during or after the project unless there are 
security or privacy concerns that prevent this. 

3. Both the professional scientists and the citizen 
scientists benefit from taking part. Benefits may 
include the publication of research outputs, 
learning opportunities, personal enjoyment, social 
benefits, satisfaction through contributing to 
scientific evidence, for example, to address local, 
national, and international issues, and through 
that, the potential to influence policy. 

8. Citizen scientists are acknowledged in project results 
and publications. 

4. Citizen scientists may, if they wish, participate 
in multiple stages of the scientific process. This 
may include developing the research question, 
designing the method, gathering and analysing 
data, and communicating the results. 

9. Citizen science programmes are evaluated for their 
scientific output, data quality, participant experience 
and wider societal or policy impact 

5. Citizen scientists receive feedback from the 
project. For example, how their data are being 
used and what the research, policy or societal 
outcomes are. 

10. The leaders of citizen science projects take into 
consideration legal and ethical issues surrounding 
copyright, intellectual property, data-sharing 
agreements, confidentiality, attribution, and the 
environmental impact of any activities. 

 



Chapter 6   145 

6.2 Aims and Objectives 

The research in this chapter ultimately brings together the various approaches that have been 

undertaken in the previous chapters to address the initial thesis aims. Ultimately, two main aims are 

being addressed here, the thesis RQ5: Can an interdisciplinary, open science citizen science project be 

created, utilising remote sensing outputs for habitat monitoring?; and the case study specific question: 

Can citizen science data validate the outputs of remote sensing models to identify species-rich 

grasslands for vulnerable species protection? 

The specific research questions asked were: 

i.) Where can open science practices be implemented in the creation of the combined tool? 

ii.) How can remote sensing data be utilised in a citizen science survey to create an 

interdisciplinary tool?  

iii.) Can the tool accurately locate species-rich grasslands and target species habitat? 

iv.) Does participant knowledge and experience affect the success of predicting species-rich 

grasslands? 

6.3 Methods 

The methods throughout this chapter follow the creation and initiation of the CS survey, Ecosystem 

Explorers, with Butterfly Conservation, that invited members of the public to help map SRGs across 

Scotland (section 6.3.1). The RS model outputs from chapter 4, of predicted locations of SRGs, were 

then utilised in the resulting CS survey, allowing discipline integration to occur and the combined tool 

to be created (section 6.3.2). This allowed the exploration of how the thesis research questions were 

met, with the methods for this evaluation outlined. Following on from this, the specific accuracy of 

the tool for mapping SRGs and locating A. artaxerxes habitat was then tested utilising the data 

collected by citizen scientists and other stakeholders and participants, addressing the case-study 

specific research aims. Further introduction of other sources of data (from NGOs and participants 

outside of the CS survey), discussed below, was necessary due to lower-than-expected participation 

rates in the Ecosystem Explorers survey, as well as for providing further information on participant 

skills (section 6.3.2 and 6.3.3). From this, analysis could investigate the specific requirements for 

success of combining RS and CS and for mapping SRGs on a wide scale (6.3.4).  

6.3.1 Developing the Citizen Science Project 

6.3.1.1 Co-Creation 

To ensure that the data generated would be of use to multiple stakeholders, and that local expert 

knowledge ascertained which priority conservation areas to pursue, the CS survey was co-designed in 

partnership with NGO Butterfly Conservation. This iterative approach aimed to ensure that the data 
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generated by the project addressed biodiversity gaps and targets beyond those specific to this thesis, 

in addition to providing access to a pool of available volunteers willing to participate in the surveys.  

Meetings were held with members of Butterfly Conservation at three points throughout the project: an 

initial meeting in 2020 was set up to highlight specific vulnerable species in the project such as A. 

artaxerxes. Various survey protocols were co-designed with adaptations on Butterfly Conservation’s 

current transect, butterfly, and egg surveying methodologies to ensure consistency. A follow-up 

meeting was held before the initial survey season in 2021 to discuss extra data that could be collected 

regarding site condition and the presence of priority species. A third meeting after the first survey 

season was held to outline the aims of the CS survey and ensure sufficient data capture that would 

meet the needs of this thesis and Butterfly Conservation’s targets. Informal communication has been 

used to provide updates, refine objectives, allow promotion of the project, and disseminate results. 

The resulting CS survey was called ‘Ecosystem Explorers’. 

6.3.1.2 Identifying Suitable Species-Rich Grassland Classifications and Indicators 

The SRGs that were investigated are described as acid, neutral, calcareous, and seasonally 

wet/marshy grasslands, as used when describing habitats in Butterfly Conservation’s transect surveys 

(see chapter 3 for greater descriptions). A final class (coastal grasslands) was also included, not 

defined in classification schemas but found to be relevant due to the different species presence found 

in situ. These classes are defined by their abiotic factors (such as soil pH, moisture, and nutrient 

content) arising to different species occurrences, ultimately determining the habitat class.  

Most habitat classifications are performed using visual assessment, for example, Phase 1 and NVC 

surveys, and the CS survey incorporated this methodology. Key indicator species were chosen per 

habitat class based on field guides and literature (from the Field Studies Council Guides, the 

Magnificent Meadows project, and the Species Recovery Trust, see Appendix E-1) that outline these 

class descriptions for determining the grassland types of the survey. For example, Wild Thyme that is 

associated with calcareous grasslands or Common Tormentil associated with acidic grasslands (Table 

6-2). These key indicator species were used as guides to help participants determine habitat class and 

found in an accessible and downloadable PDF document (see Appendix E-2). It is important to note 

that many indicator species will be present in multiple grassland classes due to the transitional and 

graduating nature of grassland habitats. The specific indicator species were chosen for each class as 

are most often found in their associated grassland type and in conjunction with the other indicators in 

that class. The aim was to determine the class as best as possible based on the composition of key 

indicator species found, and at what frequencies, using own judgement and justification.  
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Table 6-2. Key indicator species used to visually determine grassland habitat classes in a citizen science 
survey. This list is not exhaustive, but species were used as a baseline for determining species-rich 
grasslands along with a list of resources available. Indicator species adapted from the Field Studies Council 
guides, the Magnificent Meadows project, and the Species Recovery Trust.   

Grassland 
Class 

Key Indicator Species 

 Graminoids Herbs Lepidoptera 

Acid Deschampsia flexuosa, 
Nardus stricta, Festuca 
ovina, Muhlenbergia 
rigens, Agrostis capillaris 

Galium saxatile, Potentilla 
erecta, Lathyrus linifolius, 
Rumex acetosella,  

Coenonympha pamphilus, 
Maniola jurtina, Lycaena 
phlaeas 

Neutral Dactylis glomerata, Holcus 
lanatus, Cynosurus 
cristatus, Anthoxanthum 
odoratum, Arrhenatherum 
elatius 

Centaurea nigra, Lathyrus 
pratensis, Ranunculus acris, 
Cirsium arvense, Rhinanthus 
minor, Plantago lanceolata  

Maniola jurtina, Polyommatus 
icarus, Aphantopus hyperantus, 
Odezia atrata, Coenonympha 
pamphilus 

Calcareous Brizia media, Sesleria 
caerulea, Helictotrichon 
pratense 

Helianthemum nummularium, 
Thymus polytrichus, Galium 
verum, Sanguisorba minor, 
Linum catharticum 

Aricia Artaxerxes, Zygaena 
filipendulae, Cupido minimus, 
Melanargia galathea, Pyrgus 
malvae 

Marshy Molinia caerulea, Juncus 
sp., Carex sp.  

Caltha palustris, Cirsium 
palustre, Filipendula ulmaria, 
Angelica sylvestris, Valeriana 
dioica, Achillea ptarmica, 
Carum verticillatum 

 Euphydryas aurinia 

Coastal Festuca ovina/rubra, 
Ammophila sp., Poa 
pratensis 

Armeria maritima, Silene 
uniflora, Lotus corniculatus, 
Thymus polytrichus 

Lycaena phlaeas, Cupido 
minimus 

 

6.3.1.3 Identifying Key Food Plants and Butterfly Species 

In line with Butterfly Conservation’s goals, the survey included butterfly transect and egg surveys, 

particularly for the key butterfly species (Northern Brown Argus, A. artaxerxes), and report the 

presence of any key food plants (in the case of A. Artaxerxes, the caterpillar food plant, H. 

nummularium).  

6.3.2 The Survey: Ground-Truthing Predicted Species-Rich Grasslands using 

Citizen Science Methods 

6.3.2.1 Using Classification Maps for Directed Surveying 

A species-rich grassland classification model was created by integrating previously collected remote 

sensing and environmental data from 2021 (outlined in chapter 3). Spectral data was collected from 

satellites, including Sentinel-2 (S2) and PlanetScope, as well as data from Unoccupied Aerial Vehicles 

(UAVs). Environmental variables were collected as predictors of habitat classification, which included 

AGB, sward height, soil pH, soil moisture, soil bulk density, soil texture, and species richness. The 

classification model was created in R (methodology outlined in chapter 3) and applied to the S2 

satellite imagery to further predict areas of different grassland classes (neutral, acid, calcareous, 

marshy, and coastal grasslands) across Scotland.  
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Classification maps were produced from the model, predicting areas of SRGs. Initial maps were 

provided to participants as 5 km2 regions, georeferenced by OS 5 km2 grids and location names of 

features in the area, such as water bodies, towns, and hills. Aerial images (at 25 cm spatial resolution) 

of the corresponding area were also provided to further help participants. An example of this is seen 

in Figure 6-2. Random points were generated (due to the large spatial scale covered by the model 

outputs) across the classification maps in ArcGIS Pro, to provide a greater number of survey locations 

of potential SRGs intended for the public. Both classification maps and the coordinates of potential 

locations of identified grassland habitats were used as the outputs to inform the CS survey. 

Participants could choose a survey location by either using the coordinates from the list provided or 

decide on their own location by using the maps instead. 

 

Figure 6-2. Habitat prediction map output from remote sensing data, supplied to participants of the 
Ecosystem Explorers citizen science survey, for ground-truthing predictions of species-rich grasslands.  

The model outputs were used to guide the participants to the identified locations where they were 

able to confirm or deny the presence of the model predicted grassland class. Data was supplied by 

participants who had been directed by the classification maps or location points to a predicted area of 

SRG. Participants conducted the surveys outlined by the methodology below and the initial GPS 

location provided (pixel) was used for comparison with the classification map.  

6.3.2.2 The Habitat and Species Presence Assessments 

Whilst at the sites, citizen scientists were given a data collection sheet (see Appendix E-3) to fill out, 

including information on site conditions, management plans, prior survey experience and species 

identification knowledge, habitat classification, and presence of key plant and butterfly species. To 

ensure consistency from the various data collection sources and methods, the data was standardised 

by requiring specific information from participants and providers, summarised as data that was critical 

for analysis and data that provided extra value-added information but did not necessarily help confirm 

the model outputs and abilities of participants (Table 6-3). 
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Table 6-3. Type of data needed for analysis of habitat prediction model success and effect of 
participant ability versus data that provided extra value-added information. 

Critical for analysis Extra value-added  

Site location point Species presence and abundance 

Observed species-rich grassland class Site and weather conditions 

Participant experience level Observed lepidopteran species (excluding 
Aricia artaxerxes) 

Participant confidence level Species richness and sward height 

Rock-rose presence Participant age range 

Aricia artaxerxes egg or adult sightings  

 

On site, participants conducted transect surveys. Transects were randomly located on the site but 

could vary in length due to site constraints. However, transects were no longer than 1 km. 

Participants observed the habitat whilst walking the transect and recording any butterfly species 

within 5 m either side of the transect. This was to align with Butterfly Conservation’s Butterfly 

Transect Guides. Along the transect, three quadrat surveys (the length of an A4 piece of paper 

squared) were carried out at the beginning, middle, and end of the transect. This allowed participants 

to not require any field equipment, increasing the accessibility of the project. The participants 

recorded species richness, sward height, and where possible listed the species present, with the help 

of ID guides and apps (see Appendix E-1 and Appendix E-2), in the three quadrats. Participants were 

also asked to take any pictures of the sites. No destructive measurements were to be taken due to 

permissions needed, lack of experience, and time requirements. The observations on site and species 

presence were used for the participants to determine the habitat or grassland class. Whilst conducting 

the transects, participants were asked to note the presence of any H. nummularium. If H. 

nummularium was found, a A. artaxerxes egg survey was to be conducted by recording the presence 

and GPS location of any eggs located. Presence and count of any adult A. artaxerxes was also to be 

noted whilst participants were out surveying (see Appendix E-3).  

Data was collected through multiple means to give participants options suited to them. For example, 

printable survey forms were available on the web platform that participants could take into the field 

and then transcribe later, on the web platform. The other option was for participants to access the 

project in field through the citsci app and enter data virtually whilst out surveying, to reduce issues 

with printing and save time transcribing. Other participants provided data via email or handed data 

collection sheets to me at Ecosystem Explorers survey days. The data on the web platform was 

exported to an excel sheet and collated with externally provided data (see section 5.3.3) for analysis. 

6.3.2.3  Participant Information 

Little demographic data of participants was collected due to ethical restraints. However, participants 

were asked to record their age range, their previous plant identification and biodiversity surveying 

experience, and their confidence in their habitat classification assessment (Appendix E-3). 

Participants noted their previous identification and surveying experience as either 

‘None/Moderate/Advanced’. They also rated their confidence in their habitat classification 
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assessment using a Likert scale between 1 – 5, ranging from ‘no confidence’ to ‘very confident’ 

respectively. This was both for quality assurance of the data and providing insights into the people 

who choose to participate in biodiversity monitoring surveys. This way, it was possible to assess what 

age groups are more likely to participate, and if certain age groups have greater knowledge, 

experience, and confidence in biodiversity assessments. This is important in a time where increased 

use of tech devices has a negative impact on nature connectedness at crucial life stages (e.g., 

teenage years), whilst access to botanical courses has decreased in formal education (Price et al., 

2022; Stroud et al., 2022). These factors have led to a decline in plant literacy and will have severe 

consequences for biodiversity conservation as well as people’s enjoyment of nature (Barrable et al., 

2021; Thomas et al., 2022).  

6.3.2.4 The Citizen Science Platform and Data Collation 

An online web platform (https://www.citsci.org/projects/ecosystem-explorers) was designed for the 

survey using the project builder function on citsci.org. This is a commonly used site to develop and 

promote CS projects that operates under an OS approach, where project development and 

participation is free, and data is available under an open creative commons license (Lyn et al., 2018; 

Wang et al., 2015). This platform was chosen over Zooniverse (the largest CS platform) or other 

project builders, for example, due to the range of functionality it provides. Most project builders are 

new in development, and, as such, the platform was selected based on its applicability to the project 

designed here (Liu et al., 2021). For example, Zooniverse is based on data collection through 

participants classifying images. This was not suitable for this project as the satellite images were 

classified by the model; it was the outputs of said model that required ground-truthing. Citsci.org 

provided functions to create online data entry forms, present and map the location of data entries 

(highly applicable to the aims of this survey), upload resources (e.g., guides, hard copy survey forms, 

model outputs), have discussion forums, and tabs to present analysis and results. Ctisci.org also has a 

mobile phone app that participants could access in field to view the project’s page.  

6.3.2.5  Volunteer Recruitment and Training 

Participants were recruited through collaboration with Butterfly Conservation and other connections. 

Information regarding the project and how to get involved was disseminated via organisational news 

outlets (newsletters/email communication/social media posts) (see Appendix E-4). The project 

website was also promoted on social media platforms, such as twitter and Instagram. The project was 

further promoted during outreach events, such as at the Glasgow Science Festival (and its Science on 

the Sofa) and Pint of Science (Appendix E-5). There was an attempt to instigate the project, both the 

CS survey and the RS aspects, into school curriculums (to benefit both environmental and educational 

goals). However, time restraints and the pandemic limited this plan to initial discussions. This is 

further discussed in chapter 6.  

https://www.citsci.org/projects/ecosystem-explorers


Chapter 6   151 

Butterfly Conservation volunteers typically have substantial experience with data collection and 

butterfly transects, for which they may receive training from Butterfly Conservation staff and other 

volunteers. Information is also available on the project platform online regarding identifying species, 

how to set up and conduct transects, and access to Butterfly Conservation’s own training events (see 

Appendix E-6). The project platform had further ID guides available for both plant and butterfly 

species, guides on how to conduct the transects (handouts), apps that can be used whilst out 

surveying, and contact details of researchers and online forums to discuss any issues raised. Survey 

events were also set up on Eventbrite (2023) where I was available for outlining the methodology and 

helping with identification (see Appendix E-7).  

6.3.2.6 Project Pilot and Method Refinement 

The project was made live towards the end of July 2022 following ethical approval by the University of 

Glasgow, College of Social Sciences Ethics committee. The initialisation of the project finished in 

September 2022 when grass die out was occurring. During the 2022 season, a group was taken out with 

the me, on the Isle of Harris, to test the survey methods and to gain feedback. The in-field survey was 

successful, and these methods were left as designed. During the 2022 season, secondary data on 

previous sites of SRGs were provided by members of the public. These were then cross-referenced 

with thematic maps derived from remote sensing images. Issues of GPS accuracies and out-dated 

survey dates were brought to my attention. This determined that previously collected location data on 

SRGs could only be used if the sites were confirmed as an SRG type by the citizen scientist or data 

provider since 2021. Any GPS locations given had to be taken within a core habitat, or where this was 

not possible, details of the surrounding habitats had to be listed.  

The project was reinstated for the beginning of the 2023 survey season (May-July) to increase data 

capture. Targeted project promotion occurred for the 2023 season, due to an initial low response in 

2022, which involved museum talks, group invites, networking via known contacts, and further social 

media promotion. These were spread across Scotland to enlist people from as many areas as possible. 

I was available at these survey days to help explain the methodology and with plant identifications. 

For four survey days, I chose predicted areas from model predicted locations to survey due to 

accessibility requirements and ability to park, for example. Where survey days had been set up with 

organisations (Plantlife and The Conservation Volunteers), sites were often chosen by the organisation 

in areas they usually work in. 

6.3.3 Sources of Additional Data 

Previously confirmed areas of SRGs were supplied by a range of organisations including NatureScot 

(2023), the Botanical Society of Britain and Ireland (Miles, 2023), Plantlife (2022), and by individuals. 

To ensure these were up to date, only areas that were confirmed after 2020 were included for 

analysis. This data was provided either as polygon areas or point locations from specific coordinates. 

Where polygons were provided (such as from NatureScot) the data was filtered by date (post 2020) 
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and SRG coverage. Only polygons with an SRG coverage of 100% could be included, as exact locations 

of SRGs within the polygons could not be provided. A negative 10 m (one pixel edge length) buffer was 

created against the polygon boundaries to remove edge effects from influencing surface reflectance of 

boundary habitats (see Figure 6-3 for model classification issues of small habitat patches). Random 

points were then generated within the buffer zone to identify single pixels within an SRG site. Raster 

values of the model predicted classification maps were extracted for each point within the buffer SRG 

zones to compare to the recorded SRG type.  

 

Figure 6-3. Issues of habitat edge effects from Sentinel-2’s pixel size seen in some species-rich grassland 
sites.  

6.3.4 Data Extraction and Analysis 

6.3.4.1 Evaluating the Achievement of Open Science and Interdisciplinarity  

In accordance with the aims and underlying principles of this thesis, the creation, implementation and 

reporting of this CS survey was evaluated for their apparent success and adherence to OS practices. 

Although there are few widely used approaches to achieve this, an evaluation framework, such as that 

by Kieslinger et al. (2017) may help projects assess their success of reaching project outcomes (for 

example, scientific, learning, or social). This framework is specific to CS surveys but could be adapted 

for this purpose of reflecting on the success of the interdisciplinary CS survey here and the associated 

thesis aims. In addition, my own framework for the determination of “openness” in biodiversity 

monitoring CS surveys, created in chapter 3, can be also utilised for this assessment (Suter et al., 

2023). As such, an evaluation table was adapted from both Kieslinger et al. (2017) and Suter et al. 

(2023) to investigate the strengths and weaknesses of the research here, questioning whether the 

engagement, interdisciplinarity, and open science outcomes were achieved (Table 6-4). Scientific 

goals were not discussed or evaluated in this framework (Table 6-4), as these are individually 

discussed in the analysis of each separate chapter (i.e. through answering each chapter’s research 

questions), including this one: by investigating the success of mapping SRGs using the tool, and the 

effects participation had on this. The R code is found in Appendix E-8. 
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Table 6-4. Evaluation framework used in assessing the citizen science and research process of the thesis.  

Outcome Focus Process of Evaluation Actors/Objects of Evaluation 

Open Science Quantitative scoring system based on OS practices 

implemented (Chapter 3). 

Research design, 

implementation, data, and 

softwares 

Interdisciplinarity Qualitative observations – how and where were the 

disciplines combined.  

Research design, 

implementation, and data 

products 

Stakeholder 

Engagement 

Quantitative descriptive statistics – number of 

stakeholders engaged, individual and repeat 

participation, outreach events. 

Qualitative and demographic information.  

Participants and stakeholders 

 

6.3.4.2 Evaluating the Success of Mapping Species-Rich Grasslands and A. artaxerxes 

habitat 

As the data was categorical (SRG type), the SRG classes needed to be coded to values that matched 

the raster values associated with the SRG predictions of the classification maps. The habitat classes 

and their coded raster values can be seen in Table 6-5. The citizen ground-truthed SRG types were 

coded, and their locations points were used to extract the raster values (and corresponding SRG type) 

from the model predicted habitat classification maps. These values were used to investigate the SRG 

class agreement between citizens’ ground-truthed field observations versus the model predicted 

locations. 

Table 6-5. Habitat class included in a habitat classification model to 
predict species-rich grasslands, and their associated raster values. 

Habitat Class Associated 
Raster Value 

Acid SRG 1 

Artificial Surface 2 

Bare Soil 3 

Calcareous SRG 4 

Improved Grassland 5 

Neutral SRG 6 

Marshy SRG 7 

Coastal SRG 8 

Water 9 

Woodland 10 

 

A defined scale was used to test the level of agreement between the model predicted and citizen 

ground-truthed SRG locations. The agreement level was determined for an exact location (that has 

both a model predicted pixel and a corresponding citizen recorded GPS point), rather than the total 

number of model predictions and citizen observations regardless of location. Full agreement was 
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defined as a value of 1, which was given if the model predicted SRG class and the citizen observed 

SRG class matched exactly e.g., the model predicted a neutral SRG location and the citizen ground-

truthed observation also found that location to be a neutral SRG. Partial agreement was defined as a 

value of 0.5, which was given if either the model-predicted SRG class or the citizen ground-truthed 

SRG class was one type of SRG class, whilst the other was a different SRG class e.g., model predicted 

acid SRG, but field observed calcareous SRG. No agreement was defined as a value of 0, which was 

given if one of the data sets (either the model prediction or the citizen ground-truth) suggested an 

SRG and the other did not e.g., model predicted marshy SRG but citizen ground-truthed woodland.  

Chi squared goodness-of-fit tests (X2) were used to investigate the agreement between RS data and CS 

data. If the model predicted total number of SRG locations and specific SRG classes well, there would 

be an equal number of model-predicted versus ground-truthed SRGs. Categorical variables were coded 

to compute the X2 values. An initial binary association investigated the total number of model-

predicted versus citizen ground-truthed SRGs. For this analysis, model-predicted SRG locations were 

coded to 1 and citizen ground-truthed SRG locations were coded to 2 to count the frequencies. Binary 

analyses for number of model-predicted versus citizen ground-truthed SRG locations were also done by 

SRG class. Each SRG class kept their original raster class number as seen in the model outputs (Table 

6-5). For the binary analyses, 2x2 contingency tables were used whereby the group levels were the 

model-predicted and ground-truthing results and the expected values were calculated based on an 

equal split of the total number of recorded data points per class (both model and ground truthing 

frequencies) (Table 6-6).  

Table 6-6. Set-up of Chi-square test for goodness-of-fit between the 
frequency of model-predicted versus citizen ground-truthed species-
rich grassland classes. 

Data Set Actual Observed 
Number 

Theoretical Expected 
Number 

Model SRG 67 91.5 

Ground-truthed SRG 116 91.5 

 

Chi-squared tests for independence (or Fisher’s Exact test where more than 20% of the cells had 

values less than five) were used to explore whether there was an association with the agreement level 

between model predicted versus citizen ground-truthed SRG locations based on 1) SRG class, 2) data 

provider (e.g., which organisation the data was submitted by), 3) participant experience, and 4) 

participant confidence (Table 6-7). If there were differences in the level of agreement between data 

providers, participant experience and confidence were used to further explore these differences.  
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Table 6-7. Set-up of Chi-square test for independence between the frequency across 
agreement levels between model-predicted versus citizen ground-truthed species-rich 
grassland classes by plant identification experience (none, moderate, advanced).  

Agreement between model predicted 
and citizen observed SRG type 

Plant Identification Experience 

None Moderate Advanced 

No Agreement (0) 2 7 37 

Partial Agreement (0.5) 0 3 29 

Full Agreement (1) 1 3 17 

 

It was not possible to assess the model success of discovery of A. artaxerxes habitat from the citizen 

science survey. No data on A. artaxerxes sightings or H. nummularium observations were submitted. 

There was also no citizen ground-truthed coastal SRG location data points submitted and, as such, this 

SRG class was not included in the analysis. Analysis was conducted in R (v 3.6.3) and ArcGIS Pro (v 

3.0.3). Descriptive statistics were used to explore volunteer uptake, demographics, and habitat 

coverage. 

6.4 Results 

6.4.1 Evaluating Adherence to Open Science Practices, Interdisciplinarity, 

and Stakeholder Engagement 

The use of OS practices within the CS survey was assessed using the scoring system created in chapter 

3 (Table 6-8). Currently, the project has an open preregistration, data is openly available on the 

project platform, the open software R has been used, however, the licensed but transferable software 

ArcGIS was also utilised. The project is not finalised and is still in the process of being published, thus 

scoring of the data management plan, code, and access is not yet possible. However, with the planned 

open science practices outlined in Table 6-8, the final average openness score for Ecosystem Explorers 

is predicted to be 0.92.  
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Table 6-8. Scoring of Open Practices within the Ecosystem Explorers citizen science survey. 

Preregistration Data 

Management 

Plan 

Data Code Software Access 

Open and 

available  

(1) 

Open and to 

be published 

with thesis and 

any associated 

publications 

(1) 

CS observations 

are openly 

available on the 

project platform. 

Subsequent 

publications to 

have linked data 

either via the 

publisher or UoG 

Enlighten 

(1)   

Subsequent 

publications to 

have open code, 

published either 

on a repository 

such as Github or 

as supplementary 

materials linked to 

the published 

papers and the 

thesis (to be 

accessible on 

Enlighten)(1) 

All analysis was 

conducted with 

R, an open 

software.  

Some data 

extraction was 

conducted with 

ArcGIS Pro, a 

licensed 

software, with 

transferable 

use to the open 

software QGIS  

(0.5) 

Publications 

are/will be open 

access (see 

chapter 3 

associated 

paper), and the 

CS results will be 

available on the 

project’s open 

platform 

(1) 

 

The RS outputs developed in previous chapters were effectively used both to design and inform the 

deployment of a CS survey for biodiversity monitoring, and to be evaluated by said survey. RS data 

was used in chapter 4 to create outputs (maps, location points, predictions) that were fed into the CS 

survey. On the project platform, 16 habitat prediction maps and 1033 predicted GPS points were 

available to participants. Participants were able to view habitat prediction maps and locations for 

their surveying decision making. Individual maps or locations were also provided to participants who 

directly requested specific areas to be mapped.  

The project itself was able to engage stakeholders across government, NGOs, and local councils and 

networks. This collaborative work was conducted with: Butterfly Conservation, NatureScot, Plantlife, 

the Botanical Society of Britain and Ireland, the Glasgow and Clyde Green Network, The Conservation 

Volunteers, and the Perth and Kinross Countryside Trust. Outreach events were conducted at the 

Glasgow Science Festival (2021), The University of Glasgow Climate Action Day (2021) the Tayside 

Recorders’ Day (2022), and Pint of Science (2023), along with associated newsletter and social media 

contributions. Individually, 14 participants were signed up to the project platform. Furthermore, 31 

individuals (including representatives from related organisations) were involved in eight planned 

survey days, with a maximum of 10 on one day. Three individual participants completed more than 

one survey. Little demographic data outside participant numbers and age group were collected. The 

implications surrounding this are further found in the discussion.  
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6.4.2 Organisational, Spatial, and Demographic Reach of Submitted Survey 

Locations  

There were 119 location points available for analysis after data cleaning to remove those sites with 

edge effects, sites that were neither model-predicted or ground-truth observed SRGs, or sites where 

no cloud free acquisitions could be obtained. The citizen science platform itself received 26 of these, 

reduced to 20 after data cleaning, from 14 individuals who signed up to the project platform. On 

organised survey days, participants split into groups rather than conducting individual transects due to 

participant preferences and the limitations of only having myself representing Ecosystem Explorers. 

NatureScot data consisted of 76 final location points (Scobie, 2023), Plantlife data consisted of 20 

final data points (Jones, 2023), the BSBI consisted of three final data points (Miles, 2023). 

The ground-truthed data covered a range of locations across Scotland (Figure 6-4). Most areas 

surveyed were in the Cairngorms National Park. Data is largely missing from the west coast, the 

highlands, and the coastal margins of the Borders, and Dumfries and Galloway.  
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Figure 6-4. Ground-truthed survey locations across Scotland by organisation: Ecosystem Explorers (circle), 
Nature Scot (square), Plantlife (triangle), and BSBI (pentagon); and by level of agreement with the model 
predicted SRG class: full agreement (green), partial agreement (blue), and no agreement (red).  

 

The participants ranged in age from under 18 to over 64. Where participants were under 18, they were 

surveying with consenting parents. Participant experience also ranged from no previous identification 

knowledge to advanced knowledge, and confidence in their data ranged from 1 (no confidence) to 5 

(very confident) (Figure 6-5). 
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Figure 6-5. Number of participants in Ecosystem Explorers citizen science survey by A) age group, B) plant 
identification experience, and C) grassland classification confidence. 
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6.4.3 Total Agreement between Model Predicted, and Participant Observed 

Species-rich Grasslands, and Agreement by Species-rich Grassland Class 

The data analysed the agreement between SRG locations that were ground-truthed in field by 

participants and predicted by the model. This included the model predicting SRGs where none were 

found and the model predicting other classes where SRGs were found. Of the 119 analysed locations, 

there was a 17.65% full agreement between model-predicted and citizen ground-truthed SRG 

locations. There was a 36.13% partial agreement, where the model predicted one type of SRG class 

but the citizens ground-truthed a different SRG class. There was no agreement with 46.22% of 

locations, however (Figure 6-6).  

Of the 119 analysed locations, 67 of these were predicted as an SRG type by the model. Of these 67, 

95.52% of these were confirmed as one type of SRG class, with 31.34% of these confirmed as the 

correct SRG class. Only 4.57% of these 67 were predicted an SRG where there were none. However, 

116 of the 119 sites were confirmed SRGs by participants. The model misclassified 44.83% of these 

sites (not including the sites with partial agreement, as these were still classified as one SRG class), 

ruling them out as SRGs where their presence was confirmed. This suggests the model is 

underestimating areas of SRGs. 

The null hypothesis states that there is no difference between theoretical expected versus citizen and 

model observed number of SRG locations between total model-predicted and citizen ground-truthed 

SRG locations. The results from the X2 test for goodness-of-fit showed that there was a significant 

difference between the citizen and model observed versus theoretical expected values (X2 = 13.12, df 

= 1, p = 0.0003), and that the distribution of data is not occurring randomly. This means that there is 

poor alignment between the model predicted and the citizen ground-truthed SRG locations.  

The apparent efficacy of the model in predicting SRG classes (acid, calcareous, marshy, neutral, and 

coastal), was highly variable. There was a 3.5%, 0%, 11.54%, 21.3% full agreement between model 

predicted and citizen ground-truthed acid, calcareous, marshy, and neutral SRGs, respectively (Figure 

6-6). 

The null hypothesis states there is no difference in the proportion of agreement between model 

predicted and citizen ground-truthed SRGs by SRG class. The results from the Fisher’s exact test found 

a significant difference of agreement across the SRG classes (p = 0.017). Therefore, the null 

hypothesis is rejected, indicating that different SRG classes are predicted or citizen ground-truthed 

with variable success (Figure 6-6).  
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Figure 6-6. Agreement level between the number of model predicted and field observed SRG locations by 
SRG class (percentages provided in labels).  

Of the analysed data, there were four locations that were predicted as acid SRG but 25 recorded field 

locations. There was one predicted calcareous SRG location but 24 recorded field locations. The 

model predicted three marshy SRG locations but there were 27 field locations. Finally, there were 59 

predicted neutral SRG locations but only 38 recorded field locations. To further assess if there was a 

specific SRG class that was influencing the level of agreement between the model predictions and the 

citizens’ ground-truthing, the X2 goodness-of-fit tests were conducted. The X2 for goodness-of-fit tests 

showed that there were significant differences between the model and citizen observed versus 

theoretical expected number of SRG locations, per each SRG class (Table 6-9). This suggests that the 

model predictions and citizens’ ground-truthing are poorly aligned, per each SRG class.  
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Table 6-9. Results of the chi-squared goodness-of-fit tests investigating if the number of model predicted 
and citizen ground-truthed SRG locations differed from the theoretical expected numbers (if there was a 
high agreement between the model and the ground-truthing) by SRG class. 

Class Results 

X2 p 

Acid 15.21 <0.0001 

Calcareous 21.16 <0.0001 

Marshy 18.24 <0.0001 

Neutral 4.55 0.033 

 

6.4.4 Agreement by Participant Group and Subsequent Effects of Experience 

and Confidence 

Of the 76 locations submitted by NatureScot, there was a 22.36% full agreement between model 

predicted and citizen ground-truthed classifications. Of the 20 locations submitted through Ecosystem 

Explorers, there was a 20% full agreement between model predicted and citizen ground-truthed 

classifications. Of the 20 locations submitted by Plantlife and the three locations submitted by a BSBI 

member, there was a 0% full agreement between model predicted and citizen ground-truthed 

classifications.  

The null hypothesis states that there is no difference between the participant groups as to whether 

their field observations fully agreed, partially agreed, or disagreed with the model predictions. The 

results of the Fisher’s exact test show that there was no significant difference between the four 

participant groups (p = 0.114). Therefore, the null hypothesis is accepted (Figure 6-7). 
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Figure 6-7. Agreement between the number of model predicted and field observed SRG locations by data 
provider group: Ecosystem Explorers, NatureScot, Plantlife, and BSBI) (percentages provided in labels).  

Of the 119 final data points, 99 were used for the assessment of participant experience and 

confidence. This was the result of 20 surveys where the data provider could not assess experience and 

confidence. Most data were submitted by people with advanced experience and high confidence 

(83.84%). There was a range of participant experience and confidence from participants of Ecosystem 

Explorers. As there were no location points that had full agreement from advanced surveyors within 

Ecosystem Explorers, experienced surveyors are not thought to be skewing the data. Data from 

NatureScot was collected by professionals, hence the high number of advanced experience and high 
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confidence. This data is still considered participatory citizen science or crowd sourcing through the 

process of data sharing.   

The null hypothesis states that participant experience level would not affect whether the citizen 

ground-truthed locations fully agreed, partially agreed, or disagreed with the model predictions. The 

results of the Fisher’s exact test on experience level show that there is no significant difference in 

participant plant identification experience level on the agreement level between citizen ground-

truthed observations and model predictions of SRG locations (p = 0.706) (Figure 6-8). 

 

Figure 6-8. Agreement level between number of model predicted and participant field observed SRG 
locations by plant identification experience level (percentages provided in labels). 
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The null hypothesis states that participant confidence level would not affect whether the citizen 

ground-truthed observations fully agreed, partially agreed, or disagreed with the model predictions. 

The results of the Fisher’s exact test on confidence level show that there is no significant difference 

in confidence level on the agreement level between citizen ground-truthed observations and model 

predictions of SRG locations (p = 0.900) (Figure 6-9).  

 

Figure 6-9. Agreement level between the number of model predicted and participant field observed SRG 
locations by habitat assessment confidence level (percentages provided in labels). 
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6.5 Discussion 

The research enabled the creation of a habitat monitoring tool, Ecosystem Explorers, combining RS 

and CS methodologies. OS practices were able to be implemented throughout the research process, 

resulting in a predicted openness score of 0.92 when the project is finalised. Multiple stakeholders 

were engaged (from 7 organisations) throughout the research, forming important collaborations. 

Furthermore, 45 individuals participated in either solo or group surveys. New outputs for SRG mapping 

in Scotland were created from both RS SRG habitat prediction maps and citizen scientist observations, 

overall uniting the two disciplines.  

The study found that there was a low agreement between model predicted and citizen ground-truthed 

SRG locations, which differed across SRG class but not by source of the ground-truthed data. 

Participant experience and confidence was also not found to have affected the level of agreement. 

Ecosystem Explorers is one of few projects that utilises RS data in a CS survey for biodiversity 

conservation. To our knowledge, no other studies utilise satellite imagery habitat predictions in a CS 

survey for mapping SRGs. As such, comparisons to previously published literature are difficult, 

especially as each CS survey works within unique contexts. 

6.5.1 Utilising Open Science and Combining Citizen Science and Remote 

Sensing  

The research here shows that it is possible to use OS practices in the creation of an interdisciplinary 

habitat monitoring tool, and perhaps facilitates this process. Certainly, through data sharing 

agreements collaborations become much more likely. This allowed further uptake of the tool and 

made reaching the scientific objectives of the research more feasible. Through these collaborative 

and OS efforts, other outcomes, not explicitly outlined along this research process, also become 

apparent and possible. For example, free survey days allowed participants access to learning and 

knowledge that they may not have otherwise engaged in. As such, it is likely that social outcomes 

were also achieved. However, this is not something that was analysed or taken into consideration 

throughout this thesis due to time constraints and researcher availability.  

Few other RS CS projects exist within a biodiversity monitoring context, but where they do, they have 

also shown it is possible to utilise RS in CS surveys or vice versa. For example, Domingo-Marimon et al. 

(2022) and Purdy et al. (2023) successfully used S2 data and AVHRR/MODIS data (respectively) in CS 

projects to investigate tree phenology timings. The methodologies associated with these studies and 

ours, demonstrate the different ways in which RS and CS data can be combined: accessing previously 

collected CS data and acquiring RS data that aligns to the CS data collection period, or sending out 

volunteers to confirm the outputs generated by RS. Our study here essentially used both techniques; 

matching RS predictions to ground-truthed observations, submitted by participants that had previously 

surveyed SRGs versus ground-truthed observations collected by participants that had been directed to 

survey locations by the RS predictions. 
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Potentially, to further the engagement of citizens and their understanding of RS, there may be space 

for citizens to actively interact with RS products. For habitat monitoring, they may do this through 

creating their own classification maps for areas to survey or providing wider data on other habitats in 

the creation of their own prediction model, based on their local knowledge. This, however, would 

require greater training and resources related to the workflows associated with acquiring, processing, 

and analysing RS data.  

6.5.2 Participation 

Although a range of stakeholders and participants were enlisted in the project, there was unexpected 

low participation in the surveys, especially in its initial stages in 2022. There are several possible 

reasons for this. In the first season of the survey, participants were given large autonomy over where 

they could survey i.e., the decision was largely down to themselves. After communication with 

members of the public this was found to be too overwhelming for participants, which could be related 

to low confidence in themselves or difficulties interpreting the online maps and locations. When the 

survey ran in 2023, there was a targeted approach, specifically going to organisations and setting up 

defined survey days where I was available to provide training for surveying methodologies, help 

participants find a location they could access, and educate members on species identification. Other 

reasons could be related to the COVID-19 pandemic, as 2022 was the first year many people were 

going abroad again, CS saturation where there is too much choice of involvement, and difficulties 

associated with the methodologies and habitat knowledge.  

It was noted that there is a preference amongst CS participants for biodiversity surveys that focus on 

individuals or groups of species rather than habitats (pers.comms., 2022). This vital information is 

important when setting up the design and goals of CS surveys, as ecosystem-based conservation clearly 

needs greater encouragement and involvement. Although there was a fauna surveying proponent to 

Ecosystem Explorers’ methods, this did not seem to entice participants enough. It appears that there 

is no quantitative data on the number of species-based versus ecosystem/habitat-based CS surveys. CS 

surveys that monitor habitats/ecosystems do exist, however, these seem to be in largely aquatic 

environments (Huddart et al., 2016; Schläppy et al., 2017; Shuker et al., 2017). Plant focused CS 

surveys tend to focus on groups (such as invasives), or specific species distribution or health data, and, 

as such, do not look at the entire habitat (Brown et al., 2020; Dimson et al., 2023; Marcenò et al., 

2021). This provides further evidence for the need of greater education surrounding ecosystems and 

the importance of these to provide habitat for the specific species that people may prefer to survey.  

Not everyone who submitted data provided information on participant age, as it was not always 

possible to collect this retrospectively (i.e., from data that was provided by previously surveyed 

locations). Of age data that was submitted, it was found that most surveyors were between 18-24. 

There was a decline in surveyors after the age of 44, with only a slight increase after 64, despite 

Scotland having an ageing population (Scottish Government, 2021). Although a range of ages 
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participated in the survey, it would be a target to get more people of middle-age and pensionable-age 

into CS. It was noted that participants were mostly not from ethnic minority groups. This demographic 

data was not specifically collected and aligns with Scotland’s mostly white population (96% in 2011) 

(Scotland Census, 2011), but is noted as an area for much needed improvement. CS itself often fails to 

reach people of lower socio-economic status and ethnic minority groups, even in the Global North 

(Blake et al, 2020; Haklay, 2015; Mac Domhnaill et al, 2020). This further supports the need for 

projects, such as this, to be implemented into school curriculums. Due to the ecology of SRGs, they 

are usually found in natural areas away from built up urban spaces, especially for the context of this 

thesis. With most national parks only accessible from towns or city centres via car or public transport, 

this disadvantages ethnic minority groups the most, which were found to make up only 1% of national 

park visitors in the UK between 2005-2007 (Natural England, N.D.). Although a range of organisations 

were contacted to create survey days, the demographics of their own volunteers defined who was 

involved in the surveys. This can be amended by targeting specific organisations that engage ethnic 

minority groups, for example, the Black Environment Network (2023). Survey days can also be held in 

parks and recreation areas in cities to further this access to people with limited public transport. 

Equality in biodiversity monitoring is not only essential for representative sampling of data, but all 

people no matter their background, race, or socio-economic status should have access to these 

projects to increase scientific literacy and democratisation (Blake et al., 2020).  

6.5.3 Model Success 

For the model to be successful, we would expect an equal number of model-predicted versus ground-

truthed observed locations per SRG class and for the total number of SRG locations. The results 

suggest this is not the case. It is difficult to compare the success of habitat classification models based 

on S2 data in biodiverse grasslands such as the ones explored here. However, Merrington et al. (2021) 

found similar difficulties in a Scottish landscape with using S2 for high accuracy landcover 

classifications, even on train and test data. Similarly, work that is undergoing in Scotland using RS 

data to map SRGs is being done in the Cairngorms National Park in collaboration with NatureScot. 

However, these methods use aerial rather than satellite imagery because of spatial issues associated 

with satellites (pers.comms., 2023). S2 data was suitable to assess the phenological timings in the CS 

project by Domingo-Marimon et al. (2022), however, this was associated with tree species which are 

more equivalent to the spatial resolution of the RS sensor.  

Earlier research in this thesis (chapter 3) showed high overall accuracies associated with mapping 

SRGs, similar to those reported in other studies mapping grassland vegetation (Pesaresi et al., 2022; 

Rapinel et al., 2019; Tarantino et al., 2021). However, these studies did not look at the wide-scale 

applications of their models across unseen areas to further predict and map SRGs outside of the study 

sites. Le Dez et al. (2021) also noted the difficulties S2 experiences with picking up small habitat 

patches, which would be relevant to certain SRG areas across Scotland. It seems that although these 

models can accurately map an area associated with test and train data, the wider applications of 
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these models may experience spatial limitations when considering the high variation associated with 

the SRG grassland classes used to train the model.  

Although it could not be analysed, it is also assumed the model would not have been able to identify 

specific locations of A. artaxerxes habitat as the model predictions did not match well with the 

ground-truthed observations for calcareous grasslands. NBN Atlas occurrence data was considered for 

use in this analysis (which still complies as CS data). However, through investigating the submitted 

records, 14 observations were found across Scotland between 2021 and 2023 but abundances were not 

recorded. This would make it difficult to assess the actual model performance if an observation only 

consisted of one individual, for example, which are found on a centimetre scale and would not 

influence the spectral profile. Not only this, but there were also no observed SRG classes associated 

with the submissions, which would make the comparison between the model predicted classes not 

possible.    

It would appear the 10 m pixels of S2 are too large to create an accurate habitat classification model 

for SRGs in reality. For example, when looking at small strips of SRGs or areas on habitat edges or 

boundaries, the habitat or land cover that makes up the greatest proportion of that pixel is going to 

determine the final classification based on the greatest influencing surface reflectance. Although this 

was accounted for in the methods, what could not be accounted for was the overlapping and mosaiced 

habitats of SRGs. It was observed in situ that different SRG classes can change from one half square 

metre quadrat to the next. It is also possible to find specific grassland communities of one class in the 

broader habitat of another grassland class. Therefore, capturing this variation at 10 m is nearly 

impossible. Highest accuracies are better guaranteed with both hyperspatial and multispectral data 

sets, such as that of the WorldView-2 satellite, that matches the spatial resolution of the habitats to 

be mapped (Merrington et al., 2021). This makes providing an open access tool for grassland mapping 

particularly difficult when predictions rely on greater spatial resolution data to accurately map the 

quick successions of SRG communities. Open access satellite data is not available at the spatial 

resolution needed to do this.  

The results also suggest that participant experience and confidence is unlikely to have affected the 

success of the model. This is also demonstrated by the results suggesting that the source of data did 

not influence the success either. This supports other studies that CS can provide high quality 

observations for the purposes of biodiversity monitoring, especially when adequate guides and training 

is made available (Jäckel et al., 2021; Leocadio et al., 2021; van der Velde et al., 2017). It was noted 

that most people who participated in the survey did have some previous experience in plant 

identification. This could suggest that people who have a prior interest to botanical surveying or 

biodiversity conservation are more likely to participate in biodiversity CS surveys. As such, if the goals 

of the CS survey are to increase participant knowledge and engagement in biodiversity this may be an 

area that needs to be addressed. Unfortunately, the study here did not look at participant knowledge 

before and after participation in the survey, due to time restraints. However, it would be interesting 
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to see the effects of participation on “bioliteracy”, interest in biodiversity, and behaviour change 

resulting from participation, which could be an area for future research.  

6.5.4 Limitations 

Primarily the project utilised OS, however, there are still areas for improvement. For example, in the 

open scoring process, the use of open software was given a score of 0.5. The closed version of the GIS 

software ArcGIS was used for some data extraction, as opposed to the freely available QGIS. This was 

largely due to familiarity with the software platform and time restraints. A score of 0.5 is given as the 

applications used in ArcGIS are entirely transferable to QGIS and any associated instructions are freely 

available to apply to QGIS. It would still be encouraged to use open softwares where possible.  

Time restrictions and low researcher numbers will have impacted participation levels (on top of 

reasons previously discussed), ultimately reducing stakeholder engagement. At survey days, having 

only me to work between surveying groups meant that fewer data points could be collected at these 

events, as participants had to be grouped together. Future efforts would target noticed pitfalls in 

stakeholder engagement and incorporate strategies and assessments to engage excluded societal 

groups for even greater scientific democracy. These limitations were largely unavoidable within the 

requirements of a PhD thesis. A longer running project, with greater researcher availability would 

serve to address these limitations.   

The model was limited to the number of habitat/land cover classes that we could supervise it with. 

Due to time and labour restrictions, information could only be provided on collected SRG data and 

easily identified background classes from aerial imagery. Only 10 classes (five SRGs and five 

background classes were included in the model). There are many more habitat classes that could be 

assigned. The model, however, must assign each pixel in the image a classification from one of the 10 

classes in the model. This means there is likely to be overestimation of the model classes where they 

have been assigned to areas of excluded classes. The most common model misclassification was that 

of improved grasslands (25.8% of classifications). This would suggest that the model is struggling to 

differentiate the unique features found within the various grassland classes, rather than from separate 

habitats altogether. From investigations it seems that sand is often classified as an artificial surface, 

shrubs (gorse and heather, for example) and hedgerows appear to be classified as woodland. Other 

excluded habitats include wetlands, which could have been classified as either marshy or water, 

moorland is likely to have been classified as acidic grassland, unimproved species-poor grassland could 

have been classified as improved grassland or one of the SRG classes. There is also a skew of SRG 

coverage in favour of neutral SRGs due to their dominance across Scotland, whilst calcareous 

grasslands are the rarest form in Scotland, and, as such, limited training data could be collected for 

this, and some of the other, SRG classes.  

Bias was introduced to the CS methodology through the targeted survey approach in 2023, where 

survey locations were not able to be randomly chosen. This could not be avoided due to the need to 
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find surveyable locations that were close to cities, had available parking or public transport, and were 

a model predicted SRG type to gain a representative sample. However, this is often the case in CS 

surveys where a specific species or habitat is needed to be monitored, and, as such, these areas are 

pinpointed. It was also not of interest to determine how well the model performed in general (e.g., 

classifying background classes). Only 4 of the 119 final locations were chosen by me.  

6.5.5 Future Considerations 

What we have learnt from this study is that RS outputs can be used in a CS survey to widen spatial 

reach of habitat mapping and biodiversity monitoring. However, the specific open habitat 

classification model was not successful at directing participants, and wider conservation organisations 

such as Butterfly Conservation to new areas of SRGs with high accuracy. This is somewhat surprising, 

given the high model accuracy (98.6%) found in chapter 3. Although some unidentified SRG locations 

may be located through this method, particularly neutral classes, it appears participants would more 

likely be led to areas of another habitat or unimproved/rough grassland that is not necessarily species-

rich. This makes providing an OS framework where CS and RS can be combined in the context of SRGs 

near impossible. It may be that the use of open access S2 data is more applicable for predicting 

habitats with features of a larger spatial scale e.g., ancient woodlands, or even peatlands which are 

less diverse and less easily confounded by spectral similarities, being more distinct from other 

habitats. In the context of SRGs, higher spatial resolution data would be needed, which is more likely 

to come with associated costs.  

This is problematic in a time where OS is of greater recognition and requirement for fulfilling targets, 

such as the SDGs. Needing access to closed RS data seems counterproductive to reversing the effects 

of biodiversity loss and climate change and makes it difficult for an open global biodiversity 

monitoring approach to be applicable across habitats, species, and regions if an OS tool does not work 

in all biodiversity contexts. We move for a call towards even further openness regarding RS and Earth 

observation data of all spectral and spatial resolutions, as there is high potential for conservation 

targets to be achieved through integration, collaboration, and scientific democratisation; the 

feasibility of which is just not currently in place.  

6.5.6 A Methodology for Combining Remote Sensing and Citizen Science for 

Habitat Mapping 

Although the specific S2 model did not perform well when extrapolated at a larger spatial scale 

(compared to the model’s initial success) at predicting areas of SRGs, we propose a methodology that 

combines RS and CS for future biodiversity mapping and monitoring resulting from this research and 

the research throughout this thesis (Figure 6-10): 

1) Identify priority “biodiversity mapping unit” and invite collaborators and stakeholders: 

governments and organisations with policy and goals surrounding the biodiversity mapping unit; 
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members of the public where the conservation of the biodiversity mapping unit directly affects 

them.  

2) Set up a collaborative or co-created citizen science survey with identified collaborators and 

stakeholders, holding meetings to determine the goals of the citizen science survey e.g., 

habitat mapping, biodiversity monitoring, public awareness of biodiversity loss, policy 

implementation.  

3) Identify where remote sensing can be used in the survey and that data are fit-for-purpose 

surrounding the biodiversity mapping unit (considering spatial and spectral scale and choice of 

sensor). Where applicable this should be open source. However, where this is not possible, 

identify what data can be shared and how the research can be made as open as possible (open 

access software, code, results).  

4) Identify how the public can participate in the citizen science survey and interact with the 

remote sensing data to successfully predict the biodiversity mapping unit e.g., ground-truthing 

model results (as seen here), providing location data on other habitat classes to inform the 

model training, collecting environmental data for creating habitat classification schemes.  

5) Provide educational resources to stakeholders and participants e.g., identification guides and 

resources for the biodiversity mapping unit. However, if possible, also promote participant 

interaction with tangible remote sensing data e.g., visualisations of the satellite imagery; 

working with mapping software (free courses with QGIS) to map or identify their own locations; 

providing workflows of how maps are created.  

6) Allow and promote continuous feedback and constant communication with stakeholders and 

participants for transparency and increased trustworthiness, whilst hopefully initiating higher 

success of the citizen science survey through updates and adaptations of methodologies – 

nothing should be fixed but a flexible approach should be adopted to the continued input of 

new information.  
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Figure 6-10. Workflow for designing a methodology that combines remote sensing and citizen science for 
future biodiversity mapping and monitoring.  

 

6.6 Conclusion  

Two commonly used approaches in biodiversity monitoring and land cover mapping are citizen science 

and remote sensing. However, the two approaches often never meet, to the disadvantage of 

biodiversity conservation. Both approaches can increase data collection capacity and widen spatial 

reach of monitoring and mapping attempts and together target the drawbacks of each tool. As such, 

this research aimed to combine citizen science and remote sensing in a tool for priority habitat 

mapping, specifically regarding species-rich grasslands, a degraded habitat, in an open science 

approach.  

An accessible biodiversity monitoring tool was achieved through implementing open science practices 

and helped to cross discipline boundaries. Remote sensing outputs were able to be utilised in a citizen 
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science survey that the public could interact with. The results show that there was a poor alignment 

between the open-source remote sensing data compared to citizens’ ground-truthing for SRG mapping, 

either by overall locations or by SRG class. Participant experience and confidence, as well as where 

the data was sourced from did not affect how much the predicted model locations agreed with the 

citizen ground-truthed locations and, as such, the success of the model classifications. The results 

highlight the need for increased open access to high resolution remote sensing data to create an open 

access tool that utilises both remote sensing and citizen science for habitat mapping in all contexts. 

Although the specific remote sensing data was not preferable for predicting SRGs to send participants 

to survey, a methodology is designed for the ways in which these tools can be merged for mapping 

other priority habitats and biodiversity units.  
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7.1 Background  

7.1.1 Anthropogenic Influences and Priorities 

We live in an era that is defined by climate change and habitat loss, driven by anthropogenic activities 

that threaten the future of the planet (Leadley et al., 2022). Awareness of these issues is not new, 

with global warming linked to fossil fuel use as early as the 19th century (Rathi, 2016). Early evidence 

of the onset and advancement of the biodiversity crisis includes: the impact of early hominid species’ 

migration affecting the evolution of size in mammals, the effects of 17th century fishing and 

deforestation, and the 19th century effects of agriculture and rapid human population increase 

(Garthwaite, 2018; Weston, 2022). Despite both rising public concern, which has only grown since the 

1980s, and a mounting body of evidence, globally we have been unsuccessful in responding to these 

problems, as seen in the continuous average decline in biodiversity (van Goethem and van Zanden, 

2021).  

Focuses on capitalism continue to exacerbate these problems. For example, economic growth has 

been embedded in policy priorities in the UK, since the 1980s. However, alternative viewpoints and 

models exist, for example, the Eco-Marxist movement states the only way to reduce further ecological 

destruction is to move away from the current capitalist system (Beer, 2022). However, due to a rise in 

greenwashing, new models such as Ecological Modernisation are unlikely to adequately address and 

halt the ecological crisis. Such is the case with carbon markets and credits, where carbon offsetting is 

bought and traded for by members in the Global North, with continued exploitation of natural areas 

and people in the Global South (Croeser, 2021). Of course, society is faced with continued population 

increase, demanding greater food production and shelter. However, we must move away from a 

system that continues to rely on fossil fuels and implement actual green infrastructure, which is 

separated from profit gain. 

What further worsens societal capability to adequately address the ecological crisis, is lack of 

ownership, denial, and disconnect from nature. The human/nature divide is not a new concept, and 

environmental educators and philosophers have linked this to the environmental issues we continue to 

face (Barry, 2009). Beery et al. (2023) outlined the elements of this disconnect, which has been 

worsened through removal of nature interaction and subsequent loss of knowledge, increasingly 

sedentary lifestyles, tech-focused, and urbanisation, as well as nature phobias and altering 

perspectives on what is natural and what is not (to name a few). These are exacerbated even more 

subtly in the depiction of nature in pop culture, for example (Prévot-Julliard et al., 2015). On top of 

this, within the SDGs, adequate education of environmental issues and sustainability is not outlined 

within the relevant educational SDG4 (Walid and Luetz, 2018). This would suggest that being 

environmentally literate and biodiversity aware is not viewed as a key aspect of future sustainability. 

This intensifies the problem of effectively communicating the ecological crisis. This communication is 
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hampered by a futuristic narrative surrounding the consequences of the crisis, lack of reward for 

action, and removed personalisation of the issues (Moser, 2010).  

7.1.2 Environmental Ethics and Resource Use 

There is contention as to whether society should base nature’s value on the services it provides for us, 

rather than as an entity that has the right to exist outside of our own requirements. What is more, the 

value of these ecosystem services is largely linked to whether they are profitable or not, whilst some 

services (such as cultural) are difficult to measure, and, as such, put value on. For example, whilst 

provisioning services (e.g., food production) are increasing, other services, such as regulating (air 

quality) are worsening (Lant et al., 2008). Our overuse of environmental resources associated with key 

services results in a case of Hardin’s “Tragedy of the Commons” – whereby our assumption that 

certain ecosystem services are provided for free, results in the exploitation of these services (Stein, 

2022). The general assumption that we will have continuous access to these ecosystem services will 

result in their unregulated and unsustainable use. However, the best way to express the gravity of the 

situation, and drive action towards the conservation of the planet, may be to focus the narrative on 

what the loss of these services means for humanity. 

For action to occur, companies need to see the biodiversity crisis as a “business crisis”, governments 

need to see it as a “political crisis”, individuals need to see it as a “livelihood crisis”, because it is all 

these things and an insurmountable amount more. As governments and businesses are driven by profit, 

it needs to become economically viable to operate pro-environmentally. Research is showing that 

individuals do consider a company’s environmental stance and actions (Albrecht et al., 2023). 

However, if individuals believe they have no power, they are unlikely to engage with pro-

environmental behaviours, or action against governments and organisations. Yet, evidence suggests 

that governments and organisations do respond to public demand (Schaffer et al., 2022; Zhou et al., 

2021). Therefore, it is undeniable that this must be a collaborative effort, and no one sector will be 

able to address the challenges alone.  

Potentially, once the urgency has been grasped, we can design a new relationship with nature, 

eliminating the human-nature divide, and forming a holistic relationship, one removed from 

egocentricity. This follows Leopold’s (1949) concept of “Land Ethic”, where community is created 

between both humanity and the environment. Considerate interaction and use of natural resources 

will create a positive feedback loop, whereby the land can continue to support humanity (Leopold, 

2004). This view is further supported by the idea of Deep Ecology, and that harmonious living may only 

occur through a shift in society’s perspective on the natural world, and uptake of ecocentrism (Naess, 

1973; Taylor et al., 2020).  
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7.1.3 A Call for Implementing Change 

We need to improve our techniques in mitigating and reversing the trends we are seeing across nature 

and the climate. Environmental monitoring is one of the first steps towards this, by providing critical 

baseline data, identifying priorities for targeted aims, assessing conservation success, and addressing 

consequent shortcomings. However, these efforts are driven by scientists and activists, not by 

governments, organisations, and the wider public. Without a collaborative effort and foresighted 

mindset, we will not be successful in reversing the damage that we knowingly continue to cause. 

Scientific research will continue to evidence our impacts, suggest solutions, and call for action, but 

this information needs transforming into daily efforts and governmental initiatives, and this must be 

included in all future scientific research objectives.  

7.2 Development of the Thesis and Summary of Results 

Through exploring the gaps in environmental monitoring, the literature highlighted; 1) lack of 

inclusion of certain habitats (global grasslands) and species (invertebrates), 2) biases in monitoring 

distribution (focuses on the Global North), and 3) deficiencies in science-into-action from the 

separation between researchers, policy makers, and the public. Methods for improved biodiversity 

monitoring were explored to address these gaps, specifically looking at citizen science (CS) and 

remote sensing (RS) (common and/or advancing tools in environmental monitoring) to widen spatial 

reach and address the highlighted gaps by working under an open science (OS) framework. These gaps 

allowed specific targets for environmental monitoring to be identified within the UK, addressing 

priority habitats and species whilst providing a framework for a methodology that can be applied more 

globally. It was a key aim of the thesis to enlist stakeholders and members of the public with the 

research to widen its impact for science, policy, and society. Collaboration with Butterfly 

Conservation was sought, as their conservation objectives are aligned to some of the highlighted 

biodiversity monitoring gaps. Initial discussions with Butterfly Conservation further defined the habitat 

(species-rich grasslands) and invertebrate (Northern Brown Argus Butterfly) targets, which aligned 

with the gaps identified from the literature review.  

As a result, the thesis aims were then set out to; 1) determine the role of OS approaches in the 

conservation of biodiversity, and 2) combine two approaches in biodiversity monitoring, RS and CS, to 

create an open and interdisciplinary habitat monitoring tool. This was with the hopes of improving 

“bioliteracy”, awareness of biodiversity issues in the UK, and conservation agency through the 

implementation of OS, help map a priority habitat for vulnerable species within the UK, and create a 

tool framework that could be used globally for biodiversity monitoring.  

To be able to create this monitoring tool, a case-study focus was needed for the initial application of 

the research. Species-rich grasslands and A. ataxerxes were chosen as the thesis focus, as an 
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underrepresented habitat in monitoring initiatives, with many associated vulnerable species, thus 

addressing RQ1. The thesis emphasised public engagement with biodiversity conservation, and, as 

such, it was paramount to work under an OS framework. It was, therefore, important to implement OS 

practices in the design of the tool, especially with CS being both an enabler and facilitator of OS. 

However, it was unclear how current biodiversity monitoring CS surveys adhered to these OS practices 

and could be embedded into the design of the surveys. As such, a systematic review was conducted to 

investigate if current biodiversity monitoring CS surveys adhere to OS practices, for greater scientific 

and societal impact. This research addressed RQ2 “To what extent do citizen science studies of 

biodiversity demonstrate the principles of open science?”, guiding the creation of my own survey and 

future research. This exploration was the first of its kind to analyse a broader range of OS practices 

(not just the openness of data) in biodiversity monitoring CS surveys, especially when considering the 

use of data management plans and preregistrations. The research found that biodiversity monitoring 

CS surveys did not adhere well to OS practices, and the increase in the use of these surveys did not 

promote openness within the tool. The review highlights the associated issues with current surveys 

and provides guidance for new surveys to follow, to further the impact of these programmes for 

improved biodiversity monitoring attempts. Following on from this research, the recommendations 

listed were used in my own CS survey design and analysis of its openness (Table 7-1).  

Table 7-1. Identified open science practices from chapter 2 and how these were implemented in the citizen 
science survey Ecosystem Explorers’ research.  

Identified Recommendations Implementation in the ‘Ecosystem Explorers’ Survey 

Provide an open data 

management plan 

A data management plan was written and will be openly available with the 

publication of this thesis on The University of Glasgow`s Enlighten 

repository (http://eprints.gla.ac.uk/).  

Create an open preregistration  A preregistration was created and published on the Open Science 

Framework (Suter et al., 2023). 

Use open softwares and data Open Sentinel-2 satellite imagery was accessed via Google Earth Engine. R 

was used to extract reflectance values and create a habitat prediction 

model (both of which were used to create the outputs for the survey). 

Ensure subsequent data and 

code is open 

The data and code associated with this research will be published as 

supplementary materials alongside an open access journal publication. 

Results must be open and 

accessible 

The data collected from participants is found on the project platform 

(https://www.citsci.org/projects/ecosystem-explorers). Ethical 

requirements meant that only members of the project can access the data, 

however, anyone can sign up to become a member and view the data. 

Results of the CS survey will be published in an open access journal. 

It was important to utilise advancements in RS to aid in the mapping and monitoring of the identified 

conservation targets of the research. This required detailed environmental and RS data collection of 

known SRG characteristics. Secondary data (on habitat coverage, climate, and species distributions) 

were explored to locate potential sites of SRGs to collect environmental data that would characterise 

http://eprints.gla.ac.uk/
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SRG classes. This data exploration and spatial analysis guided the field surveying methodology to 

locate survey sites, leading to the creation of a RS model that would predict areas of SRGs across 

Scotland. Previous classification schemes were synthesised and adapted to create my own 

classification schema, further informed by the environmental and RS data that were collected at the 

survey sites. This research addressed the thesis and case-study specific RQ3, “Can a habitat 

classification model be created to predict species-rich grasslands in Scotland and locate habitat for 

vulnerable species?”, surveying known species-rich grassland sites in Scotland to collect 

environmental and RS data to classify these habitats and create a SRG habitat prediction model to be 

applied to satellite imagery nationally. As a result, five SRG classes were decided on due to differing 

species composition, which was reflected in the spectral profiles. A SRG habitat classification model 

was created with 98.6% accuracy on test data. This model was applied to wider satellite imagery 

across Scotland to predict possible locations of SRGs. The accuracy of extrapolating the model to a 

greater spatial reach across Scotland was assessed in chapter 6. 

Due to the scale, structural, and spectral similarities of the various SRG classes, the possibility of 

other RS techniques were researched. Common applications of retrieving and predicting grassland 

traits were investigated specifically for these SRGs, to consider if these would further help habitat 

classification models in their predictions of these habitats, through their differentiation. Prediction 

estimates of species diversity (richness) and community traits (including structural and biochemical) 

were investigated through common modelling techniques using spectral diversity, surface reflectance 

values, and vegetation indices. This investigation addressed the thesis and case-study specific RQ4 “Is 

currently available open-source remote sensing data able to accurately monitor species-rich grasslands 

and their vulnerable species”, by exploring RS applications, including the relationship between species 

diversity and spectral diversity, and the retrieval success of grassland community traits in species-rich 

grasslands across Scotland, to see if these could help future mapping of the habitats. The results 

found that RS components were largely poor predictors of the environmental features in SRG 

environments, both within and across sites. High variation within and between classes causes too 

many confounding influences that are difficult to account for. Recommendations were suggested for 

RS in these environments; however, this information may be better used in monitoring of fully 

assessed sites, rather than assisting future mapping attempts. It was not possible to use these 

applications to aid the habitat mapping of this thesis, but it is with hopes that this research provided 

new knowledge to the field of RS, especially in the context of grassland conservation.  

Utilising the survey design initially designed with Butterfly Conservation and the outputs of the RS 

habitat mapping model applied to satellite imagery covering the whole of Scotland, I devised a linked 

CS survey, Ecosystem Explorers. Continuous discussions with Butterfly Conservation throughout the 

research process enabled me to refine my earlier methods into the CS survey. Through the 

combination of CS and RS, it was determined that, for the purposes of this thesis, the public would be 

engaged to help confirm the outputs of the habitat classification model predictions. The survey was 
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implemented over two summer seasons and data was supplied either from confirmed areas of SRGs 

within the last two years, or from exploring predicted areas, both of which were compared to 

predicted classifications. This part of the research addressed the thesis and case-study specific RQ5 

“Can citizen science data validate the outputs of remote sensing models to identify species-rich 

grasslands for vulnerable species protection?”. This involved the alignment of CS and RS data in one 

open access tool to identify areas of SRGs for priority species protection, using the CS data to validate 

the outputs of RS models, and assess the involvement of citizens in generating information on species-

rich grassland mapping. OS was able to be employed largely throughout the research process and 

combine RS outputs in a CS survey. The resulting project is predicted to be highly open, and 

showcases how RS and CS can be combined in an interdisciplinary approach. Although RS data could be 

utilised in a CS survey for habitat mapping, the habitat classification model did not appear to 

successfully predict areas of SRGs on a large scale, due to poor alignment with the citizen ground-

truthed data. It was found that participants’ plant identification experience and confidence did not 

impact the results of the CS survey and are valuable contributors to biodiversity conservation efforts. 

This was also not influenced by who provided the data (e.g., novice citizen scientists or veteran 

surveyors).  

This research highlighted the need for increased open-source RS data to provide a global biodiversity 

observation network across all contexts. It demonstrates that working in an OS framework is not 

always possible for specific habitats and this may hamper progress in biodiversity conservation. 

However, the tool was able to successfully engage with stakeholders through continuous collaboration 

with Butterfly Conservation and brought in further partnerships with other NGOs (such as Plantlife, 

The Conservation Volunteers, and the Botanical Society of Britain and Ireland) during the 

implementation of the CS survey. Although many stakeholder groups were able to be enlisted in the 

survey, there is still large room for improvement in biodiversity conservation engagement, specifically 

surrounding ecosystem-based research. This was emphasised by the individual participant numbers. 

Nevertheless, from interactions in the field with participants, there is enthusiasm that can be 

harnessed, and this is where research should focus.  

Overall, the research in this thesis was able to provide a methodology that combines CS and RS in a 

novel technique for habitat mapping (Figure 7-1). However, it identifies the downfalls of limited open 

access data. This tool has wider biodiversity applications, and it is likely that the poor extrapolated 

accuracy of a Sentinel-2 based SRG habitat prediction model would not deter future projects or 

researchers from investigating similar methodologies in other contexts, specifically for biodiversity 

conservation.  
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Figure 7-1. Process of designing the thesis elements and chapters. 

7.3 Research Limitations 

To work in an OS framework, S2 satellite data was chosen as a freely accessible data source for 

satellite imagery. Although it has enhanced benefits over other multispectral satellites, the spatial 

resolution of 10 m is too large for accurate predictions of Scottish SRGs. Due to the nature of the 

habitat, a much finer spatial resolution would be needed to capture the intra-class communities and 

avoid other/edge habitat interference. However, this could not be open source. Planetscope data 

(which has a higher spatial resolution of 3 m compared to Sentinel-2’s 10 m), was acquired and a 

model could be created and compared to assess the extrapolated accuracy of predictions across 

Scotland. However, time restraints would not allow for this but would be an area for future research. 

This may be an issue related to SRGs. It would be relevant to investigate whether the tool could work 

in an OS approach for mapping other priority habitats, further discussed below.  

Due to the available data online and time constraints for field work, the model was trained with 10 

habitat classes (five SRGs and five background). In actuality, there are many more habitats defined 

across Scotland, and in the UK, than this; including, but not limited to, wetlands and heathlands, 

which could not be identified from aerial imagery like some of the other background classes (such as 

water and woodland). This means that there are likely overestimations of SRG predictions where 

heathlands may be classed as acid grassland, or wetlands may be classed as marshy grasslands, as 

each pixel must be classified in the image. The model would benefit from further training data on 

other habitat classes.  

The CS survey is also limited to how many participants provided data to the project. Although 

attempts were made to increase involvement through a variety of means over the two summers, 

uptake was surprisingly low throughout. The number of participants also limited the spatial reach of 

the project; the habitat classification model predicted SRGs on a far greater spatial scale than the 

number of participants were able to cover in their ground-truthing. This low participation also meant 
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that very little data on A. artaxerxes habitat was able to be collected. H. nummularium and 

subsequent A. artaxerxes egg surveys could not be conducted to provide further information to 

Butterfly Conservation. The project would need to run for much longer than the two summers that it 

was able to, to capture this information. These limitations could have been impacted by Scotland’s 

small population size (5.4 million as of 2022) (Scotland Census, 2022). Potentially, if the tool had been 

instigated elsewhere (for example, to the whole of the UK), the CS survey may have gathered greater 

attention. This small population may also mean chance encounters between people and nature (for 

example, butterflies) is less likely, and the interest in surveys such as these may not exist widely 

throughout the country.    

7.4 Wider Implications 

This thesis has aimed to create an open, interdisciplinary tool for biodiversity monitoring in a time of 

ecological crisis. The combination of RS and CS has been called upon in recent years but has not yet 

achieved its apparent potential, especially in a biodiversity conservation perspective.  

7.4.1 Addressing Species-Rich Grassland Protection in the UK 

This novel tool was used in the context of SRGs, an under-mapped and -monitored habitat in Scotland. 

These habitats need identification and protection to continue to support pollinators and store carbon. 

The tool has been instigated across Scotland but is applicable to map SRGs across the UK through the 

input of higher spatial resolution RS data and model refinement: with the addition of further excluded 

habitat classes (e.g., peatlands, shrub, moorlands). Any further refined outputs and results from the 

research could help inform other government projects that include the mapping of SRGs, such as the 

Habitat Map of Scotland (Hester and Scholtens, 2019), the Living England Habitat Map (Natural 

England, 2022), and Living Wales (Planque et al., 2022). Furthermore, if the RS model can be 

improved for SRGs, then the tool can go beyond mapping SRGs and enable the monitoring of short 

term (interannual-decadal) change at smaller spatial scales too. It was evident in the research 

conducted in chapter 4 that the success of trait retrieval varied per site each year (see Appendix D-2). 

This suggests that something has changed on site from one year to the next 

(weather/management/disease) and that it may be worth exploring.  

The loss of SRGs over the last 60 years has led to conservation efforts to prevent and reverse their 

decline. For example, through their inclusion in protected areas and in agri-environmental schemes in 

the UK, where subsidies are provided to encourage farmers to manage their land in a biodiversity 

friendly manner. This enables specific grazing regimes (usually with cattle) to be employed on the 

habitat, which is vital to keep threats, such as bracken and scrub encroachment minimal but ensures 

no over-grazing, allowing seed set and flowering of essential flora (Hall, 2010). As much of the habitat 

is lost, protection of the remaining area, as well as restoration and creation, are essential. This has 
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resulted in calls from environmental organisations of increased legal protection, as well as the 

restoration or creation of 12,000 ha of SRGs in the UK by 2043 (Plantlife, 2018). Such restoration 

efforts can be highly effective; where SRGs have previously been restored floral and insect diversity 

has improved comparative to ancient SRG sites (Auestad et al., 2016; Dicks, 2002; Forup and 

Memmott, 2005). Similarly, inclusion or creation of SRGs in agri-environmental schemes has the 

potential to benefit insect numbers greater than that of field margins, hedgerows, or even some 

ancient SRGs, depending on the time of year (Lye et al., 2009).  

It is apparent that SRG protection and restoration can benefit these habitats and aid declining 

associated invertebrate populations, but this is not always the case. Analysis of SRG sites in agri-

environmental schemes between 2006 to 2014 showed that only 23% of sites had improved in their 

condition, with 11% declining (Peel, 2017). Results have varied in their successes due to soil fertility, 

location, restoration and management methods, and landowner experience and incentive 

(Warwickshire County Council, 2018). It is suggested that improvements can be made with site specific 

management and increased contact between experts and landowners (Peel, 2017). On an individual 

scale, it is evident of variation in site and study outcome, however, what is apparent is that these 

methods are not being done on a large or fast enough scale to be widely beneficial to the UK or even 

European landscape. Monitoring is essential to assess the effectiveness of these methods and the 

current extent and condition of SRGs. Therefore, under-monitoring of SRGs and associated species 

must be addressed to preserve these essential ecosystem components.  

The methodologies associated with Ecosystem Explorers could be applied throughout Europe with the 

addition of extra grassland classes, such as those outlined in EUNIS, and further synthesis between 

classification schemes. The tool could assist in mapping other priority habitats (such as peatlands 

within the UK) both nationally and globally, as it has shown how the public can interact with RS data 

and how organisations are able to utilise the results to reach their own targets. It would be necessary 

to adapt the inputted RS data to the targeted habitat. As it was discussed in chapter 5, the spatial and 

spectral scale of the RS sensor will be dictated by the habitat features. For example, mapping 

peatland vegetation has included the use of hyperspatial, multispectral, and Synthetic Aperture Radar 

sensors (Bourgeau-Chavez et al., 2017; Chimner et al., 2019; Frick et al., 2011). Gamon et al. (2020) 

specifically highlight that any global biodiversity monitoring (or in this case mapping) tool, must be 

“scale-aware”, and there is no one-size-fits all, further supporting a flexible approach to any use of RS 

data for this purpose.  

7.4.2 Global Implementation and Targeting Excluded Groups 

The research in this thesis has provided an OS framework to guide projects, not limited to CS, in 

complying with OS practices, increasing their transparency and replicability. It also demonstrates how 

to involve organisations, governmental workers, and the public in scientific research to utilise their 

specialised knowledge and engage their interest in important biodiversity concerns, which could 
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hopefully be applied to other conservation targets. It was identified in chapter 1 that many CS 

programmes and biodiversity monitoring programmes are not found in the Global South. When 

addressing the gaps highlighted in the literature review, the research in this thesis was not able to 

target all monitoring gaps but it was with hopes that the derived tool could be instigated in the Global 

South, for example.  

It is known that CS projects have struggled to engage all demographics (biases are seen in ethnicities, 

gender, and socio-economic class) in the past; so much so that even the term “CS” is under contention 

(Liebenberg et al., 2021; Pateman et al., 2021a). The lower costs associated with CS for biodiversity 

monitoring are important to take advantage of in developing countries and enlist the help from 

traditionally excluded demographic groups. The use of technology may allow people to participate 

with reduced mobility or by removing spatial barriers, and to contribute from home via computers or 

in their local region via their phones. RS data from certain satellites (such as Sentinel-2) is freely 

available, meaning that this data can be acquired in areas where more costly data cannot be applied. 

The limitations here would be access to computers to make use of this data, known as “digital 

exclusion” (Pateman et al., 2021b). In areas where this is not possible, participatory research may be 

vital to ensure equality and inclusion in biodiversity monitoring (Davis et al., 2020).  

 

However, there are still issues with global collaboration; Heberling et al. (2020) found that 8% of 

biodiversity studies in the Global South did not have proportional representation of locals at author 

level. Although this relationship was found to be improving, it is with hopes that OS tools, such as 

Ecosystem Explorers can address this with greater involvement of local populations. Gaining 

perspectives and knowledge of local people in the Global South through interviews and focus groups 

will integrate information on data that needs to be collected (Danielsen et al., 2018), which can then 

be realised through RS targeting. Where language or literacy barriers exist, the use of pictures or 

translators to display information in another form may be possible as has occurred in UCL’s The 

Extreme CS research group, whilst hard copy data collection methods are still viable with pen and 

paper (Paleco et al., 2021; Stevens et al., 2014). 

 

The possibility when pursuing inequality in biodiversity monitoring is to specifically direct these 

methods at excluded groups (Haklay, 2015). It was with hopes that the methodology for participating 

in Ecosystem Explorers was as accessible as possible, requiring little to no equipment, whilst survey 

days were offered around Scotland to reach local groups who could not travel far. The survey days 

also involved training aspects of plant identification and surveying methods to encourage people from 

all backgrounds no matter their employment or educational status. This allowed members of the 

public including children and those in routine manual and service jobs to access training that is usually 

costly (pers.obvs.). It is observed in chapter 5 that all demographics were not reached, and, in the 

future, it would be a specific objective to address this issue through the discussed methods above.  
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7.4.3 As an Educational Tool 

If there is increased pressure from the public that has been bred from knowledge on biodiversity 

issues, there may be more of an inclination to meet the biodiversity targets that are constantly set 

and rarely achieved (Harlin et al., 2018). Increasing biodiversity awareness needs to be implemented 

across all stages of life, especially in younger children, as this will hopefully breed a respect and 

interest that will continue over the years. Kelemen-Finan et al. (2018) found that primary aged 

children reached their learning targets more readily than older school students where CS was part of 

their education. This further supports the need to increase scientific literacy at a young age. As 

discussed in chapter 1, CS projects can increase knowledge, such as species identification, but this 

rarely translates into behavioural changes outside of the project. Evidence suggests that practical and 

research project-based education is important to create this behavioural change, so developing a CS 

project which provides more than just the possibility of data collection could be a way to manage this 

(Saunders et al., 2018). For example, providing agency within projects should allow participants to 

take home what they have learnt and include these actions in their everyday life (Kılınç, 2010; Yli-

Panula et al., 2018).  

 

It has been noted that one of the most difficult challenges of integrating RS in CS and biodiversity are 

the knowledge gaps. Open access projects, such as Ecosystem Explorers, may facilitate the integration 

and understanding across the disciplines through public participation and interaction with RS outputs 

in the survey, as well as access to open data and code for replicability in schools, for example. 

Programmes, such as SatSchool (2022) now allow accessible training in RS, and this should further 

support incorporation of RS data into ecology research. Issues around the training would largely be 

linked to lack of uniformity across RS approaches but free tools, such as GIS.lab, allows the 

comparison of approaches across software packages by running simultaneously (Rocchini et al., 2017).  

It was an initial aim of this thesis to integrate the mapping tool, or Ecosystem Explorers, into schools 

to address curriculum targets in Biology, Geography, and IT. However, while meetings were held with 

the local authority and associated STEM education groups, time limitations, and the COVID-19 

pandemic, meant this was not developed to the planned extent. By implementing the tool into 

curriculums there is wide potential to 1) increase engagement with active scientific research, 2) 

expand knowledge on ecological RS, mapping and geospatial analysis, and species identification, and 

3) potentially enhance external environmental interaction and conservation proactivity.  For example, 

the CS survey ClimateWatch was used in a university curriculum, which resulted in greater 

environmental engagement and improved scientific precision (Mitchell et al., 2017). Implementation 

in schools has benefits, not only for biodiversity conservation, but on an educational and personal 

level too. Engaging with outdoor, nature-based, or CS activities has been shown to improve learning 

and development through heightened cognition, physical health through increased activity and 

movement, and mental wellbeing from elevated mood of pupils (Booth et al., 2020; Harvey et al., 
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2020; The Newport Biodiversity in Schools Project, 2011). This implementation will, therefore, be 

mutually beneficial for educational and environmental progress (Figure 7-2).  

 

Figure 7-2. Educational and Environmental goals that can be reached through the implementation of 
biodiversity citizen science and remote sensing programmes in schools. 

The tool could be implemented in the curriculum through 1) promotion to schools or the educational 

estate to gain interest, 2) initial discussions with participating schools, 3) the development of 

activities across year groups per targeted subject, with teacher training events for success, 4) 

implementation of activities, 5) feedback and evaluation of activities, and 6) assessment of students’ 

increased literacy of the subject and subsequent behavioural change (Figure 7-3).  
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Figure 7-3. The process of implementing projects, such as Ecosystem Explorers, into schools and the 
curriculum. 

The initial outlines of project activities and how they achieve curriculum targets for schools can be 

found in Appendix F-1. Future research of the tool’s implementation in curriculums is vital for 

addressing the concerns of the loss of, not only science literacy, but specifically plant literacy that is 

being seen (Shah and Martinez, 2016; Stroud et al., 2022).  

7.5 Future Research 

It is widely accepted that RS of SRGs is challenging, however, with continuing advancements in RS 

technology, this is predicted to improve in the future. Specifically, higher spatial resolution data (such 

as the data from Planetscope or through exploration of WorldView-2 data) is more likely capable of 

capturing data at species level and could be used in the classification model to improve the accuracy 

of the habitat predictions. In addition, a hierarchical scheme could be used to predict higher 

classifications of SRG grasslands, for example, NVC communities within the broader classes defined in 

this thesis. The Micasense data may more effectively pick up differences between these communities 

and it would be useful to see how RS data across spatial and spectral scales predict multi-level 

grassland classifications.  

The issue with using 10 m spatial resolution satellite imagery highly affected the potential to target 

Butterfly Conservation’s priority species’ (A. artaxerxes) food plant, H. nummularium. RS data has 

previously been used to create spectral profiles of specific species for agriculture, invasive, and wild 

plant species (Khderry and Yones, 2021; Iqbal et al., 2021). Future research could create a spectral 

profile for H. nummularium, both in situ and individually grown (which would provide comparisons) 

and investigate the retrieval of this information by upscaling it to predicted areas of SRGs. Research 
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could explore if RS methods can more accurately identify the species in the broader habitats with 

defined spectral signatures of food plants for priority species protection. 

The method is also one example of how RS data can be used in CS surveys, but it is not limited to only 

this input (of ground-truthing). To target one of the limitations outlined, data on other background 

habitats could be provided for by members of the public, rather than relying on further field work or 

secondary data. It would be unique to investigate the accuracy of reference/train data supplied for by 

members of the public. Furthermore, research could further explore how to continue the increase of 

scientific democratisation, and if this process has had any consequence on plant literacy and 

conservation agency of its participants. Similarly, the development of OS educational resources and a 

common framework for practicing OS could be investigated. The success of this could be evaluated 

through exploring the uptake of practices and how this has affected scientific practice and research 

impact. This is crucial for continued progress in this area, and the implementation of OS practices in 

research and CS in early education should be pursued. Not only this, but surveying of the participants 

understanding of RS data, and the interaction with it, can assess how successful the integration of 

disciplines was for increased public understanding and for further enhancing biodiversity conservation.  

7.6 Summary and Concluding Remarks 

The research in this thesis aimed to target highlighted gaps in biodiversity monitoring by using tools 

that have applications in ecology observations (CS) and land cover assessment (RS), under an OS 

framework. The research was directed at species and habitat biases by focusing on SRGs and 

associated invertebrate species. The research also contributed to the limited applications of 

combining CS and RS in a cross-disciplinary approach, to bridge knowledge gaps and increase data 

collection capacity for biodiversity conservation. OS practices were in place throughout, such as the 

use of open software and open data, whilst any outputs from this thesis were made, or will be made 

when applicable, open as well (through open access publications, a preregistration, and associated 

openly published data and code).   

The research emphasises that the openness of research within biodiversity monitoring is not at the 

appropriate level for the chosen methodologies. It also stresses how limited open access data may 

reduce the success of RS applications in the context of SRGs, and further improvements in the 

technologies are needed for these habitats. It must be noted that there is potential for RS to enhance 

biodiversity monitoring and habitat mapping, however, models are just that – models. The research 

highlights that RS data, or any technological assistance, should not be in replacement of having in situ 

verification and should be more of an accompaniment. It also provides evidence that citizen scientists 

can provide ground-truthing data of comparable value to that of professional surveyors. The 

continuation of human involvement in biodiversity monitoring not only assures high quality data, but 

also keeps humans interacting with nature – to let them increase their bio literacy, see the changes 
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(both positive and negative), and increase agency for biodiversity conservation; both for the planet’s 

benefit and our own.  
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Appendices 

Appendix A 

Appendix A-1. Citation for Northern Brown Argus occurrence data downloaded from NBN Atlas  

Citation: NBN Atlas occurrence download at https://nbnatlas.org accessed on Wed Dec 02 15:47:24 
UTC 2020 

Records provided by Derbyshire Biological Records Centre, accessed through NBN Atlas website. 

Records provided by Derbyshire Wildlife Trust, accessed through NBN Atlas website. 

Records provided by ERIC NE Combined dataset to 2017, accessed through NBN Atlas website. 

Records provided by Wildwatch North Pennines AONB project records for Cumbria, accessed through 
NBN Atlas website. 

Records provided by Natural Resources Wales, accessed through NBN Atlas website. 

Natural Resources Wales. (2020). Welsh Invertebrate Database (WID). Occurrence dataset accessed 
through the NBNAtlas 

Records provided by North East Scotland Biological Records Centre, accessed through NBN Atlas 
website. 

Natural England. (2020). Invertebrate Site Register - England (1738-2005). Occurrence dataset on the 
NBN Atlas 

Casual records for Scottish Wildlife Trust reserves - Verified data (2020) 

Records provided by Fife Nature Records Centre, accessed through NBN Atlas website. 

Records provided by Argyll Biological Records Centre, accessed through NBN Atlas website. 

Records provided by The Wildlife Information Centre, accessed through NBN Atlas website. 

Records provided by Buglife, accessed through NBN Atlas website. 

Records provided by Scottish Wildlife Trust, accessed through NBN Atlas website. 

Argyll Biological Records Centre (2020). Argyll Biological Records Dataset 

Records provided by Natural England, accessed through NBN Atlas website. 

Contains UK Butterfly Monitoring Scheme (UKBMS) data Â© copyright and database right Butterfly 
Conservation, the Centre for Ecology & Hydrology, British Trust for Ornithology, and the Joint Nature 
Conservation Committee 

Records provided by Caledonian Conservation, accessed through NBN Atlas website. 

Records provided by Highland Biological Recording Group, accessed through NBN Atlas website. 

Lothian Wildlife Information Centre surveys (Invertebrates - general), TWIC (2020) 

Records provided by Environmental Records Information Centre North East, accessed through NBN 
Atlas website. 

Records provided by UK Butterfly Monitoring Scheme, accessed through NBN Atlas website. 

Records provided by National Trust, accessed through NBN Atlas website. 

Records provided by National Trust for Scotland, accessed through NBN Atlas website. 

Records provided by Butterfly Conservation, accessed through NBN Atlas website. 

Records provided by SER Species-based Surveys, accessed through NBN Atlas website. 

Records provided by National Trust Species Records, accessed through NBN Atlas website. 

Records provided by Tullie House Museum Natural History Collections, accessed through NBN Atlas 
website. 

Records provided by Cumbria Biodiversity Data Centre, accessed through NBN Atlas website. 

Records provided by Fife Nature Records Centre combined dataset, accessed through NBN Atlas 
website. 

National Trust for Scotland Species Records, NTS (2019) 

Records provided by Lancashire Environment Record Network, accessed through NBN Atlas website. 

Survey and monitoring records for Scottish Wildlife Trust reserves from reserve convenors and Trust 
volunteers - Verified data, SWT (2020) 

Commissioned surveys and staff surveys and reports for Scottish Wildlife Trust reserves - Verified 
data, SWT (2020) 
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TWIC Biodiversity Field Trip Data (1995-present), TWIC (2019) 

Highland Biological Recording Group (2020). HBRG Insects Dataset. Occurrence dataset accessed 
through the NBN Atlas 

Records provided by Derbyshire Casual LEPIDOPTERA records - Casual records collated by Derby 
Museum., accessed through NBN Atlas website. 

Butterfly distribution data from the Butterflies for the New Millennium recording scheme, courtesy 
of Butterfly Conservation and the Biological Records Centre. 

Records provided by Staffordshire Wildlife Trust Nature Reserves Inventory, accessed through NBN 
Atlas website. 

Records provided by NE Scotland butterfly and moth records 1800-2010, accessed through NBN Atlas 
website. 

Records provided by Lepidoptera Records up to April 2010, accessed through NBN Atlas website. 

Records provided by LERN Records, accessed through NBN Atlas website. 

Invertebrate records from sites that are mainly across Scotland, Buglife (2020) 

Natural England iRecord Surveys (2020) 

Records provided by Staffordshire Ecological Record, accessed through NBN Atlas website. 

Contains UK Butterfly Monitoring Scheme (UKBMS) data Â© copyright and database right Butterfly 
Conservation, the Centre for Ecology & Hydrology, British Trust for Ornithology, and the Joint Nature 
Conservation Committee. 

Caledonian Conservation Ltd 

 

  



Appendices   201 

 

Appendix A-2. Citation for Common Rock-rose occurrence data downloaded from NBN Atlas. 

Citation: NBN Atlas occurrence download at https://nbnatlas.org accessed on Fri Dec 11 11:51:59 
UTC 2020. 

Records provided by National Trust for Scotland, accessed through NBN Atlas website. 

Records provided by Botanical Society of Britain & Ireland, accessed through NBN Atlas website. 

TWIC General Records (2015 - present), TWIC (2020) 

Natalie Harmsworth's Records (2010-2019), TWIC (2019) 

National Trust for Scotland Species Records, NTS (2019) 

Records provided by Fife Nature Records Centre, accessed through NBN Atlas website. 

Survey and monitoring records for Scottish Wildlife Trust reserves from reserve convenors and Trust 
volunteers - Verified data, SWT (2020) 

Commissioned surveys and staff surveys and reports for Scottish Wildlife Trust reserves - Verified 
data, SWT (2020) 

Records provided by St Andrews BioBlitz 2014, accessed through NBN Atlas website. 

TWIC Biodiversity Field Trip Data (1995-present), TWIC (2019) 

Records provided by Argyll Biological Records Centre, accessed through NBN Atlas website. 

Records provided by The Wildlife Information Centre, accessed through NBN Atlas website. 

Records provided by St Andrews BioBlitz 2016, accessed through NBN Atlas website. 

Records provided by John Muir Trust, accessed through NBN Atlas website. 

Records provided by Scottish Wildlife Trust, accessed through NBN Atlas website. 

Argyll Biological Records Centre (2020). Argyll Biological Records Dataset 

TWIC Site Surveys (2010 - present) (2020) 

Records provided by NatureScot, accessed through NBN Atlas website. 

SNH (2020). Grassland Surveys of Fife, 1972-1990 

SNH (2020). Grassland Surveys in North-East Scotland, 1989 

Botanical Society of Britain and Ireland. [2020.] Vascular plant records verified via iRecord. 

Records provided by Scottish SNH-funded BSBI records, accessed through NBN Atlas website. 

Records provided by Plants and Bryophytes recorded on Schiehallion 25-30 June 2000, accessed 
through NBN Atlas website. 

Records provided by St Andrews BioBlitz 2015, accessed through NBN Atlas website. 

Records provided by Other BSBI Scottish data up to 2015, accessed through NBN Atlas website. 

Records provided by City of Edinburgh Natural Heritage Service - Historical Records, accessed 
through NBN Atlas website. 
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Appendix B – Chapter 2 Supplementary Materials 

Appendix B-1 – R Code 

##Load Packages 

```{r} 

library("tidyverse") 

library("ggplot2") 

library("lme4") 

library("ordinal") 

library("MASS") 

``` 

##Load Data 

```{r} 

df <- read.csv(".csv") 

``` 

##Is there a significant difference in openness scores across principles? 

```{r} 

kruskal.test(Score ~ Principle, data = df) 

``` 

##Which principles significantly differ from each other? 

```{r} 

dunnTest(Score ~ Principle, 

         data=df, 

         method="bonferroni") 

``` 

##Investigating change in adherence to CS over time 

##Mutate score to factor 

```{r} 

df <- df %>% 

  mutate(score = factor(score)) 

``` 

##Rescale variables 

```{r} 

df$year <- scale(df$year, center = TRUE, scale = TRUE) 

``` 

##Ordinal Regression model for change in average openness in publications over time 

```{r} 

ordinalmodel <- clm(openness_scores ~ publication_year, data = df, link = "logit") 
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summary(ordinalmodel) 

``` 

##Ordinal Regression model for change in openness scores per principle in publications over time 

```{r} 

ordinalmodel <- clm(openness_within_principle ~ publication_year, data = df, link = "logit") 

summary(ordinalmodel) 

``` 
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Appendix B-2. The 153 studies identified after the methods sorting. The final 42 studies utilised for all 
analysis are highlighted in green. 

Authors Article Title Publication 
Year 

Becker, CD; Agreda, A; Astudillo, E; 
Costantino, M; Torres, P 

Community-based monitoring of fog capture and 
biodiversity at Loma Alta, Ecuador enhance social 
capital and institutional cooperation 

2005 

Pieterson, E. Corrie; Addison, Lindsay 
M.; Agobian, Jorge N.; Brooks-Solveson, 
Brenda; Cassani, John; Everham, Edwin 
M., III 

Five years of the Southwest Florida Frog Monitoring 
Network: Changes in frog communities as an 
indicator of landscape change 

2006 

Goffredo, Stefano; Pensa, Francesco; 
Neri, Patrizia; Orlandi, Antonio; 
Gagliardi, Maria Scola; Velardi, Angela; 
Piccinetti, Corrado; Zaccanti, 
Francesco 

Unite research with what citizens do for fun: 
recreational monitoring'' of marine biodiversity 

2010 

Stafford, Richard; Hart, Adam G.; 
Collins, Laura; Kirkhope, Claire L.; 
Williams, Rachel L.; Rees, Samuel G.; 
Lloyd, Jane R.; Goodenough, Anne E. 

Eu-Social Science: The Role of Internet Social 
Networks in the Collection of Bee Biodiversity Data 

2010 

Suzuki, Takao; Sasaki, Miki Civil procedure for researching benthic invertebrate 
animals inhabiting tidal flats in eastern Japan 

2010 

Arvanitidis, Christos; Faulwetter, 
Sarah; Chatzigeorgiou, Georgios; 
Penev, Lyubomir; Banki, Olaf; Dailianis, 
Thanos; Pafilis, Evangelos; Kouratoras, 
Michail; Chatzinikolaou, Eva; Fanini, 
Lucia; Vasileiadou, Aikaterini; Pavloudi, 
Christina; Vavilis, Panagiotis; Koulouri, 
Panayota; Dounas, Costas sara bois 

Engaging the broader community in biodiversity 
research: the concept of the COMBER pilot project 
for divers in ViBRANT 

2011 

Bramanti, Lorenzo; Vielmini, Ilaria; 
Rossi, Sergio; Stolfa, Stefano; 
Santangelo, Giovanni 

Involvement of recreational scuba divers in 
emblematic species monitoring: The case of 
Mediterranean red coral (Corallium rubrum) 

2011 

Davies, L.; Bell, J. N. B.; Bone, J.; 
Head, M.; Hill, L.; Howard, C.; Hobbs, 
S. J.; Jones, D. T.; Power, S. A.; Rose, 
N.; Ryder, C.; Seed, L.; Stevens, G.; 
Toumi, R.; Voulvoulis, N.; White, P. C. 
L. 

Open Air Laboratories (OPAL): A community-driven 
research programme 

2011 

De Angelo, Carlos; Paviolo, Agustin; 
Rode, Daniela; Cullen, Laury, Jr.; Sana, 
Denis; Abreu, Kaue Cachuba; da Silva, 
Marina Xavier; Bertrand, Anne-Sophie; 
Haag, Taiana; Lima, Fernando; Rinaldi, 
Alcides Ricieri; Fernandez, Sixto; 
Ramirez, Fredy; Velazquez, Myriam; 
Corio, Cristian; Hasson, Esteban; Di 
Bitetti, Mario S. 

Participatory networks for large-scale monitoring of 
large carnivores: pumas and jaguars of the Upper 
Parana Atlantic Forest 

2011 

Kremen, C.; Ullmann, K. S.; Thorp, R. 
W. 

Evaluating the Quality of Citizen-Scientist Data on 
Pollinator Communities 

2011 

Belt, Jami J.; Krausman, Paul R. Evaluating Population Estimates of Mountain Goats 
Based on Citizen Science 

2012 

Cox, T. E.; Philippoff, J.; Baumgartner, 
E.; Smith, C. M. 

Expert variability provides perspective on the 
strengths and weaknesses of citizen-driven 
intertidal monitoring program 

2012 

Deguines, Nicolas; Julliard, Romain; de 
Flores, Mathieu; Fontaine, Colin 

The Whereabouts of Flower Visitors: Contrasting 
Land-Use Preferences Revealed by a Country-Wide 
Survey Based on Citizen Science 

2012 

Gollan, John; de Bruyn, Lisa Lobry; 
Reid, Nick; Wilkie, Lance 

Can Volunteers Collect Data that are Comparable to 
Professional Scientists? A Study of Variables Used in 
Monitoring the Outcomes of Ecosystem 
Rehabilitation 

2012 
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Tonachella, Nicolo; Nastasi, Aurora; 
Kaufman, Gregory; Maldini, Daniela; 
Rankin, Robert William 

Predicting trends in humpback whale (Megaptera 
novaeangliae) abundance using citizen science 

2012 

Slade, Eleanor M.; Merckx, Thomas; 
Riutta, Terhi; Bebber, Daniel P.; 
Redhead, David; Riordan, Philip; 
Macdonald, David W. 

Life-history traits and landscape characteristics 
predict macro-moth responses to forest 
fragmentation 

2013 

Bodilis, P.; Louisy, P.; Draman, M.; 
Arceo, H. O.; Francour, P. 

Can Citizen Science Survey Non-indigenous Fish 
Species in the Eastern Mediterranean Sea? 

2014 

Buesching, Christina D.; Newman, 
Chris; Macdonald, David W. 

How dear are deer volunteers: the efficiency of 
monitoring deer using teams of volunteers to 
conduct pellet group counts 

2014 

Bulleri, Fabio; Benedetti-Cecchi, 
Lisandro 

Chasing fish and catching data: recreational 
spearfishing videos as a tool for assessing the 
structure of fish assemblages on shallow rocky reefs 

2014 

Casanovas, Paula; Lynch, Heather J.; 
Fagan, William F. 

Using citizen science to estimate lichen diversity 2014 

Graham, Jason R.; Tan, Qin; Jones, 
Linda C.; Ellis, James D. 

Native Buzz: Citizen scientists creating nesting 
habitat for solitary bees and wasps 

2014 

Weinstein, Anna; Trocki, Linda; 
Levalley, Ron; Doster, Robert H.; 
Distler, Trish; Krieger, Katherine 

A FIRST POPULATION ASSESSMENT OF BLACK 
OYSTERCATCHER HAEMATOPUS BACHMANI IN 
CALIFORNIA 

2014 

Arévalo, J.Edgardo; Méndez, Yoryineth; 
Roberts, Mia; Alvarado, Geiner; Vargas, 
Sergio 

Monitoring species of mammals using track 
collection by rangers in the Tilarán mountain range, 
Costa Rica 

2015 

Barlow, K. E.; Briggs, P. A.; Haysom, K. 
A.; Hutson, A. M.; Lechiara, N. L.; 
Racey, P. A.; Walsh, A. L.; Langton, S. 
D. 

Citizen science reveals trends in bat populations: 
The National Bat Monitoring Programme in Great 
Britain 

2015 

Biggs, Jeremy; Ewald, Naomi; 
Valentini, Alice; Gaboriaud, Coline; 
Dejean, Tony; Griffiths, Richard A.; 
Foster, Jim; Wilkinson, John W.; Arnell, 
Andy; Brotherton, Peter; Williams, 
Penny; Dunn, Francesca 

Using eDNA to develop a national citizen science-
based monitoring programme for the great crested 
newt (Triturus cristatus) 

2015 

Bosch, Stefan; Lachmann, Lars Population trends of abundant garden birds in 
Baden-Wurttemberg 2005-2014: Results of the first 
10 years of the citizen-science project 'Hour of the 
Garden Birds'. 

2015 

Branchini, Simone; Pensa, Francesco; 
Neri, Patrizia; Tonucci, Bianca Maria; 
Mattielli, Lisa; Collavo, Anna; 
Sillingardi, Maria Elena; Piccinetti, 
Corrado; Zaccanti, Francesco; 
Goffredo, Stefano 

Using a citizen science program to monitor coral 
reef biodiversity through space and time 

2015 

Buldrini, Fabrizio; Simoncelli, 
Antinisca; Accordi, Stefania; Pezzi, 
Giovanna; Dallai, Daniele 

Ten years of citizen science data collection of 
wetland plants in an urban protected area 

2015 

Cartwright, Lyndsay A.; Cvetkovic, 
Maja; Graham, Spencer; Tozer, 
Douglas; Chow-Fraser, Patricia 

URBAN: Development of a Citizen Science 
Biomonitoring Program Based in Hamilton, Ontario, 
Canada 

2015 

Hawthorne, T. L.; Elmore, V.; Strong, 
A.; Bennett-Martin, P.; Finnie, J.; 
Parkman, J.; Harris, T.; Singh, J.; 
Edwards, L.; Reed, J. 

Mapping non-native invasive species and 
accessibility in an urban forest: A case study of 
participatory mapping and citizen science in 
Atlanta, Georgia 

2015 

Kirkendale, L.; Slack-Smith, S.; 
Fromont, J.; Teufel, D.; Short, P.; 
Richards, Z.; Hosie, A.; Bryce, M.; 
Read, S.; Gomez, O. 

RESULTS OF THE FIRST INTERTIDAL CITIZEN SCIENCE 
PROJECT IN WA: PORT HEDLAND COMMUNITY REEF 
SURVEY MARCH APRIL 2014 

2015 

Wilson, John-James; Jisming-See, Shi-
Wei; Brandon-Mong, Guo-Jie; Lim, Aik-
Hean; Lim, Voon-Ching; Lee, Ping-Shin; 

Citizen Science: The First Peninsular Malaysia 
Butterfly Count 

2015 
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Sing, Kong-Wah 

Abe, Jonathan; Alop-Mabuti, Aleena; 
Burger, Peyton; Button, Jackson; 
Ellsberry, Madeline; Hitzeman, 
Jaycinth; Morgenstern, David; Nunies, 
Kasey; Strother, Mara; Darling-Munson, 
Jared; Chan, Yvonne L.; Cassady, 
Robert; Vasconcellos, Sarah Maile K.; 
Iseman, Michael D.; Chan, Edward D.; 
Honda, Jennifer R. 

Comparing the temporal colonization and microbial 
diversity of showerhead biofilms in Hawai'i and 
Colorado 

2016 

Crucitti, Pierangelo; Brocchieri, 
Davide; Bubbico, Francesco; Tringali, 
Luca; Vigliotti, Francesco 

The employment of Citizen Science the study of 
biodiversity in a case from the Campagna Romana 
(Latium) 

2016 

Dolrenry, Stephanie; Hazzah, Leela; 
Frank, Laurence G. 

Conservation and monitoring of a persecuted 
African lion population by Maasai warriors 

2016 

Flower, Emily; Jones, Darryl; Bernede, 
Lilia 

Can Citizen Science Assist in Determining Koala 
(Phascolarctos cinereus) Presence in a Declining 
Population? 

2016 

Gerovasileiou, Vasilis; Dailianis, 
Thanos; Panteri, Emmanouela; 
Michalakis, Nikitas; Gatti, Giulia; Sini, 
Maria; Dimitriadis, Charalampos; 
Issaris, Yiannis; Salomidi, Maria; 
Filiopoulou, Irene; Dogan, Alper; 
d'Avray, Laure Thierry de Ville; David, 
Romain; Cinar, Melih Ertan; 
Koutsoubas, Drosos; Feral, Jean-Pierre; 
Arvanitidis, Christos 

CIGESMED for divers: Establishing a citizen science 
initiative for the mapping and monitoring of 
coralligenous assemblages in the Mediterranean Sea 

2016 

Hardwick, Bess; Kaartinen, Riikka; 
Koponen, Martti; Roslin, Tomas 

A rapid assessment of a poorly known insect group 2016 

Katani, Josiah Z.; Mustalahti, Irmeli; 
Mukama, Kusaga; Zahabu, Eliakimu 

Participatory forest carbon assessment in south-
eastern Tanzania: experiences, costs and 
implications for REDD plus initiatives 

2016 

Ladin, Zachary S.; Higgins, Conor D.; 
Schmit, John Paul; Sanders, Geoffrey; 
Johnson, Mark J.; Weed, Aaron S.; 
Marshall, Matthew R.; Campbell, J. 
Patrick; Comiskey, James A.; Shriver, 
W. Gregory 

Using regional bird community dynamics to evaluate 
ecological integrity within national parks 

2016 

Mahard, Tyler J.; Litvaitis, John A.; 
Tate, Patrick; Reed, Gregory C.; 
Broman, Derek J. A. 

An Evaluation of Hunter Surveys to Monitor Relative 
Abundance of Bobcats 

2016 

Roelfsema, Chris; Thurstan, Ruth; 
Beger, Maria; Dudgeon, Christine; 
Loder, Jennifer; Kovacs, Eva; Gallo, 
Michele; Flower, Jason; Cabrera, K-le 
Gomez; Ortiz, Juan; Lea, Alexandra; 
Kleine, Diana 

A Citizen Science Approach: A Detailed Ecological 
Assessment of Subtropical Reefs at Point Lookout, 
Australia 

2016 

Campanaro, Alessandro; Hardersen, 
Sonke; De Zan, Lara Redolfi; Antonini, 
Gloria; Bardiani, Marco; Maura, 
Michela; Maurizi, Emanuela; Mosconi, 
Fabio; Zauli, Agnese; Bologna, Marco 
Alberto; Roversi, Pio Federico; 
Peverieri, Giuseppino Sabbatini; Mason, 
Franco 

Analyses of occurrence data of protected insect 
species collected by citizens in Italy 

2017 

Davis, Adrian; Major, Richard E.; 
Taylor, Charlotte E.; Martin, John M. 

Novel tracking and reporting methods for studying 
large birds in urban landscapes 

2017 

Ens, E. J.; Bentley-Toon, S.; Campion, 
F.; Campion, S.; Kelly, J.; Towler, G. 

Rapid appraisal links feral buffalo with kunkod 
(Melaleuca spp.) decline in freshwater billabongs of 
tropical northern Australia 

2017 

Ganey, Joseph L.; Iniguez, Jose M.; Developing a Monitoring Program for Bird 2017 
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Sanderlin, Jamie S.; Block, William M. Populations in the Chiricahua Mountains, Arizona, 
Using Citizen Observers: Initial Stages. 

Kallimanis, A. S.; Panitsa, M.; 
Dimopoulos, P. 

Quality of non-expert citizen science data collected 
for habitat type conservation status assessment in 
Natura 2000 protected areas 

2017 

Kays, Roland; Parsons, Arielle W.; 
Baker, Megan C.; Kalies, Elizabeth L.; 
Forrester, Tavis; Costello, Robert; 
Rota, Christopher T.; Millspaugh, 
Joshua J.; McShea, William J. 

Does hunting or hiking affect wildlife communities 
in protected areas? 

2017 

Long, Seh-Ling; Azmi, Nazirul A. USING PHOTOGRAPHIC IDENTIFICATION TO MONITOR 
SEA TURTLE POPULATIONS AT PERHENTIAN ISLANDS 
MARINE PARK IN MALAYSIA 

2017 

Matabos, Marjolaine; Hoeberechts, 
Maia; Doya, Carol; Aguzzi, Jacopo; 
Nephin, Jessica; Reimchen, Thomas E.; 
Leaver, Steve; Marx, Roswitha M.; Albu, 
Alexandra Branzan; Fier, Ryan; 
Fernandez-Arcaya, Ulla; Juniper, S. Kim 

Expert, Crowd, Students or Algorithm: who holds 
the key to deep-sea imagery 'big data' processing? 

2017 

Mendez, Marcos; de Jaime, Chabier; 
Alcantara, Manuel A. 

Habitat description and interannual variation in 
abundance and phenology of the endangered beetle 
Lucanus cervus L. (Coleoptera) using citizen science 
monitoring 

2017 

Newson, Stuart E.; Evans, Hazel E.; 
Gillings, Simon; Jarrett, David; Raynor, 
Robert; Wilson, Mark W. 

Large-scale citizen science improves assessment of 
risk posed by wind farms to bats in southern 
Scotland 

2017 

Shupe, Scott M. High resolution stream water quality assessment in 
the Vancouver, British Columbia region: a citizen 
science study 

2017 

Suzuki-Ohno, Yukari; Yokoyama, Jun; 
Nakashizuka, Tohru; Kawata, Masakado 

Utilization of photographs taken by citizens for 
estimating bumblebee distributions 

2017 

Austen, Gail E.; Bindemann, Markus; 
Griffiths, Richard A.; Roberts, David L. 

Species identification by conservation practitioners 
using online images: accuracy and agreement 
between experts 

2018 

Barrows, A. P. W.; Cathey, S. E.; 
Petersen, C. W. 

Marine environment microfiber contamination: 
Global patterns and the diversity of microparticle 
origins 

2018 

Campbell, Heather; Engelbrecht, Ian The Baboon Spider Atlas - using citizen science and 
the fear factor' to map baboon spider (Araneae: 
Theraphosidae) diversity and distributions in 
Southern Africa 

2018 

Eritja, Roger; Rubido-Bara, Marga; 
Delacour-Estrella, Sarah; Bengoa, 
Mikel; Ruiz-Arrondo, Ignacio 

Citizen science and biodiversity: first record of 
Aedes (Fredwardsius) vittatus (Bigot, 1861) 
(Diptera, Culicidae) in Galicia, by the means of the 
Mosquito Alert platform 

2018 

Farhadinia, Mohammad S.; Moll, 
Remington J.; Montgomery, Robert A.; 
Ashrafi, Sohrab; Johnson, Paul J.; 
Hunter, Luke T. B.; Macdonald, David 
W. 

Citizen science data facilitate monitoring of rare 
large carnivores in remote montane landscapes 

2018 

Jones, Fiona M.; Allen, Campbell; 
Arteta, Carlos; Arthur, Joan; Black, 
Caitlin; Emmerson, Louise M.; Freeman, 
Robin; Hines, Greg; Lintott, Chris J.; 
Machackova, Zuzana; Miller, Grant; 
Simpson, Rob; Southwell, Colin; Torsey, 
Holly R.; Zisserman, Andrew; Hart, Tom 

Time-lapse imagery and volunteer classifications 
from the Zooniverse Penguin Watch project 

2018 

Killion, Alexander K.; Roloff, Gary J.; 
Mayhew, Sarah; Campa, Henry, III; 
Winterstein, Scott 

Implementing and Evaluating a Citizen-Science 
Program to Support Wildlife Management: MI-MAST 

2018 

Kortmann, Mareike; Heurich, Marco; 
Latifi, Hooman; Roesner, Sascha; Seidl, 

Forest structure following natural disturbances and 
early succession provides habitat for two avian 

2018 
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Rupert; Mueller, Joeg; Thorn, Simon flagship species, capercaillie (Tetrao urogallus) and 
hazel grouse (Tetrastes bonasia) 

Marizzi, Christine; Florio, Antonia; Lee, 
Melissa; Khalfan, Mohammed; Ghiban, 
Cornel; Nash, Bruce; Dorey, Jenna; 
McKenzie, Sean; Mazza, Christine; 
Cellini, Fabiana; Baria, Carlo; Bepat, 
Ron; Cosentino, Lena; Dvorak, 
Alexander; Gacevic, Amina; Guzman-
Moumtzis, Cristina; Heller, Francesca; 
Holt, Nicholas Alexander; Horenstein, 
Jeffrey; Joralemon, Vincent; Kaur, 
Manveer; Kaur, Tanveer; Khan, Armani; 
Kuppan, Jessica; Laverty, Scott; Lock, 
Camila; Pena, Marianne; Petrychyn, 
Ilona; Puthenkalam, Indu; Ram, Daval; 
Ramos, Arlene; Scoca, Noelle; Sin, 
Rachel; Gonzalez, Izabel; Thakur, 
Akansha; Usmanov, Husan; Han, Karen; 
Wu, Andy; Zhu, Tiger; Micklos, David 
Andrew 

DNA barcoding Brooklyn (New York): A first 
assessment of biodiversity in Marine Park by citizen 
scientists 

2018 

Martay, B.; Pearce-Higgins, J. W. Using data from schools to model variation in soil 
invertebrates across the UK: The importance of 
weather, climate, season and habitat 

2018 

Martay, Blaise; Pearce-Higgins, James 
W.; Harris, Sarah J.; Gillings, Simon 

Monitoring landscape-scale environmental changes 
with citizen scientists: Twenty years of land use 
change in Great Britain 

2018 

Micaroni, Valerio; Strano, Francesca; Di 
Franco, Davide; Langeneck, Joachim; 
Gravili, Cinzia; Bertolino, Marco; Costa, 
Gabriele; Rindi, Fabio; Froglia, Carlo; 
Crocetta, Fabio; Giangrande, Adriana; 
Nicoletti, Luisa; Medagli, Pietro; 
Zuccarello, Vincenzo; Arzeni, Stefano; 
Bo, Marzia; Betti, Federico; 
Mastrototaro, Francesco; Lattanzi, 
Loretta; Piraino, Stefano; Boero, 
Ferdinando 

Project Biodiversity MARE Tricase: biodiversity 
research, monitoring and promotion at MARE 
Outpost (Apulia, Italy) 

2018 

Rykken, Jessica J.; Farrell, Brian D. Exploring the Microwilderness of Boston Harbor 
Islands National Recreation Area: Terrestrial 
Invertebrate All Taxa Biodiversity Inventory 

2018 

Singh, Priyanka; Saran, Sameer; Kumar, 
Dheeraj; Padalia, Hitendra; Srivastava, 
Ashutosh; Kumar, A. Senthil 

Species Mapping Using Citizen Science Approach 
Through IBIN Portal: Use Case in Foothills of 
Himalaya 

2018 

Thornhill, Ian; Chautard, Alice; 
Loiselle, Steven 

Monitoring Biological and Chemical Trends in 
Temperate Still Waters Using Citizen Science 

2018 

Baker, D. J.; Clarke, R. H.; McGeoch, 
M. A. 

The power to detect regional declines in common 
bird populations using continental monitoring data 

2019 

Begona Garcia, Maria; Luis Silva, Jose; 
Tejero, Pablo; Pardo, Iker; Gomez, 
Daniel 

Tracking the long-term dynamics of plant diversity 
in Northeast Spain with a network of volunteers and 
rangers 

2019 

Beirne, Christopher; Meier, Amelia C.; 
Mbele, Alex Ebang; Menie, Guillaume 
Menie; Froese, Graden; Okouyi, Joseph; 
Poulsen, John R. 

Participatory monitoring reveals village-centered 
gradients of mammalian defaunation in central 
Africa 

2019 

Corazza, Carla; Baraldi, Nicola; 
Aldrovandi, Stefano; Mazzotti, Stefano 

Biodiversity for everyone: the citizen science 
projects of the Museum of Natural History of 
Ferrara between research and collections. 

2019 

de Juana, Fernando; Monasterio, Yeray; 
Escobes, Ruth; Luis Albala, Jose; 
Belamendia, Gorka; de Olano, Ibon; 
Sebastian, Jose; Webster, Brian 

The Macroheterocera (Lepidoptera) of the Salburua 
wetlands (Vitoria-Gasteiz, Araba/Alava, Spain): a 
citizen science project 

2019 
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Drummond, Faline M.; Armstrong, Doug 
P. 

Use of distance sampling to measure long-term 
changes in bird densities in a fenced wildlife 
sanctuary 

2019 

Franca, Juliana Silva; Solar, Ricardo; 
Hughes, Robert M.; Callisto, Marcos 

Student monitoring of the ecological quality of 
neotropical urban streams 

2019 

Giovos, Ioannis; Kleitou, Periklis; 
Poursanidis, Dimitris; Batjakas, Ioannis; 
Bernardi, Giacomo; Crocetta, Fabio; 
Doumpas, Nikolaos; Kalogirou, 
Stefanos; Kampouris, Thodoros E.; 
Keramidas, Ioannis; Langeneck, 
Joachim; Maximiadi, Mary; Mitsou, 
Eleni; Stoilas, Vasileios-Orestis; 
Tiralongo, Francesco; Romanidis-
Kyriakidis, Georgios; Xentidis, Nicholas-
Jason; Zenetos, Argyro; Katsanevakis, 
Stelios 

Citizen-science for monitoring marine invasions and 
stimulating public engagement: a case project from 
the eastern Mediterranean 

2019 

Giovos, Ioannis; Stoilas, Vasilis-Orestis; 
Al-Mabruk, Sara A. A.; Doumpas, 
Nikolaos; Marakis, Philippos; Maximiadi, 
Mary; Moutopoulos, Dimitrios; Kleitou, 
Periklis; Keramidas, Ioannis; Tiralongo, 
Francesco; de Maddalena, Alessandro 

Integrating local ecological knowledge, citizen 
science and long-term historical data for 
endangered species conservation: Additional 
records of angel sharks (Chondrichthyes: 
Squatinidae) in the Mediterranean Sea 

2019 

He, Yurong; Parrish, Julia K.; Rowe, 
Shawn; Jones, Timothy 

Evolving interest and sense of self in an 
environmental citizen science program 

2019 

Hisasue, Y.; Hisamatsu, S.; Murakami, 
H. 

Exotic ant species found by monitoring surveys for 
suspected red imported fire ants, including 
submissions by citizens to the Biodiversity Center, 
Ehime Prefectural Institute of Public Health and 
Environmental Science during 2017. 

2019 

Mason, Lisa; Arathi, H. S. Assessing the efficacy of citizen scientists 
monitoring native bees in urban areas 

2019 

Matear, Liam; Robbins, James R.; Hale, 
Michelle; Potts, Jonathan 

Cetacean biodiversity in the Bay of Biscay: 
Suggestions for environmental protection derived 
from citizen science data 

2019 

Perez-Belmont, Patricia; Alvarado, 
Jannice; Vazquez-Salvador, Nallely; 
Rodriguez, Erika; Valiente, Elsa; Diaz, 
Julio 

Water quality monitoring in the Xochimilco peri-
urban wetland: experiences engaging in citizen 
science 

2019 

Pescott, Oliver L.; Walker, Kevin J.; 
Harris, Felicity; New, Hayley; 
Cheffings, Christine M.; Newton, Niki; 
Jitlal, Mark; Redhead, John; Smart, 
Simon M.; Roy, David B. 

The design, launch and assessment of a new 
volunteer-based plant monitoring scheme for the 
United Kingdom 

2019 

Puan, Chong Leong; Yeong, Kok Loong; 
Ong, Kang Woei; Fauzi, Muhd Izzat 
Ahmad; Yahya, Muhammad Syafiq; 
Khoo, Swee Seng 

Influence of landscape matrix on urban bird 
abundance: evidence from Malaysian citizen science 
data 

2019 

Qian, Haiyuan; Yu, Jianping; Shen, 
Xiaoli; Ding, Ping; Li, Sheng 

Diversity and composition of birds in the 
Qianjiangyuan National Park pilot 

2019 

Rafiq, Kasim; Bryce, Caleb M.; Rich, 
Lindsey N.; Coco, Carli; Miller, David A. 
W.; Meloro, Carlo; Wich, Serge A.; 
McNutt, John W.; Hayward, Matthew 
W. 

Tourist photographs as a scalable framework for 
wildlife monitoring in protected areas 

2019 

Robinne, Francois-Nicolas; Gallagher, 
Louise; Brethaut, Christian; Schlaepfer, 
Martin A. 

A novel tool for measuring the penetration of the 
ecosystem service concept into public policy 

2019 
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Schade, Sven; Kotsev, Alexander; 
Cardoso, Ana Cristina; Tsiamis, 
Konstantinos; Gervasini, Eugenio; 
Spinelli, Fabiano; Mitton, Irena; 
Sgnaolin, Roberto 

Aliens in Europe. An open approach to involve more 
people in invasive species detection 

2019 

Schuttler, Stephanie G.; Sears, Rebecca 
S.; Orendain, Isabel; Khot, Rahul; 
Rubenstein, Daniel; Rubenstein, Nancy; 
Dunn, Robert R.; Baird, Elizabeth; 
Kandros, Kimberly; O'Brien, Timothy; 
Kays, Roland 

Citizen Science in Schools: Students Collect 
Valuable Mammal Data for Science, Conservation, 
and Community Engagement 

2019 

Smale, Dan A.; Epstein, Graham; Parry, 
Mark; Attrill, Martin J. 

Spatiotemporal variability in the structure of 
seagrass meadows and associated macrofaunal 
assemblages in southwest England (UK): Using 
citizen science to benchmark ecological pattern 

2019 

Sumner, Seirian; Bevan, Peggy; Hart, 
Adam G.; Isaac, Nicholas J. B. 

Mapping species distributions in 2 weeks using 
citizen science 

2019 

Yardi, Kranti D.; Bharucha, Erach; 
Girade, Swapnil 

Post-restoration monitoring of water quality and 
avifaunal diversity of Pashan Lake, Pune, India using 
a citizen science approach 

2019 

Appenfeller, Logan R.; Lloyd, Sarah; 
Szendrei, Zsofia 

Citizen science improves our understanding of the 
impact of soil management on wild pollinator 
abundance in agroecosystems 

2020 

Blake, Charlie; Rhanor, Allison K. The impact of channelization on macroinvertebrate 
bioindicators in small order Illinois streams: insights 
from long-term citizen science research 

2020 

Bonnet-Lebrun, A-S; Karamanlidis, A. 
A.; de Gabriel Hernando, M.; Renner, I; 
Gimenez, O. 

Identifying priority conservation areas for a 
recovering brown bear population in Greece using 
citizen science data 

2020 

Castracani, Cristina; Spotti, Fiorenza 
Augusta; Schifani, Enrico; Giannetti, 
Daniele; Ghizzoni, Martina; Grasso, 
Donato Antonio; Mori, Alessandra 

Public Engagement Provides First Insights on Po 
Plain Ant Communities and Reveals the Ubiquity of 
the Cryptic Species Tetramorium immigrans 
(Hymenoptera, Formicidae) 

2020 

Deguines, Nicolas; Prince, Karine; 
Prevot, Anne-Caroline; Fontaine, Benoit 

Assessing the emergence of pro-biodiversity 
practices in citizen scientists of a backyard 
butterfly survey 

2020 

Ebihaha, Kengo; Yasukawa, Masaki; 
Nagai, Mihoko; Kitsuregawa, Masaru; 
Washitani, Izumi 

Feasibility of citizen science monitoring of 
mutualistic networks between butterflies and plants 
in Tokyo, Japan. 

2020 

Edgar, Graham J.; Cooper, Antonia; 
Baker, Susan C.; Barker, William; 
Barrett, Neville S.; Becerro, Mikel A.; 
Bates, Amanda E.; Brock, Danny; 
Ceccarelli, Daniela M.; Clausius, Ella; 
Davey, Marlene; Davis, Tom R.; Day, 
Paul B.; Green, Andrew; Griffiths, 
Samuel R.; Hicks, Jamie; Hinojosa, Ivan 
A.; Jones, Ben K.; Kininmonth, Stuart; 
Larkin, Meryl F.; Lazzari, Natali; 
Lefcheck, Jonathan S.; Ling, Scott D.; 
Mooney, Peter; Oh, Elizabeth; Perez-
Matus, Alejandro; Pocklington, 
Jacqueline B.; Riera, Rodrigo; Sanabria-
Fernandez, Jose A.; Seroussi, Yanir; 
Shaw, Ian; Shields, Derek; Shields, Joe; 
Smith, Margo; Soler, German A.; Stuart-
Smith, Jemina; Turnbull, John; Stuart-
Smith, Rick D. 

Reef Life Survey: Establishing the ecological basis 
for conservation of shallow marine life 

2020 

Gardiner, Tim; Didham, Raphael K. Glowing, glowing, gone? Monitoring long-term 
trends in glow-worm numbers in south-east England 

2020 

Gili, Fabrizio; Newson, Stuart E.; 
Gillings, Simon; Chamberlain, Dan E.; 
Border, Jennifier A. 

Bats in urbanising landscapes: habitat selection and 
recommendations for a sustainable future 

2020 
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Gizzi, Francesca; Jimenez, Jesus; 
Schaefer, Susanne; Castro, Nuno; 
Costa, Sonia; Lourenco, Silvia; Jose, 
Ricardo; Canning-Clode, Joao; 
Monteiro, Joao 

Before and after a disease outbreak: Tracking a 
keystone species recovery from a mass mortality 
event 

2020 

Lanner, Julia; Huchler, Katharina; 
Pachinger, Baerbel; Sedivy, Claudio; 
Meimberg, Harald 

Dispersal patterns of an introduced wild bee, 
Megachile sculpturalis Smith, 1853 (Hymenoptera: 
Megachilidae) in European alpine countries 

2020 

Monterastelli, Elisa; Poloni, Riccardo The Insetti.A.MO project: an insect population 
census in Modena city (Italy) 

2020 

Nunes, Miguel Simoes; Falconer, 
Kristie; Jelic, Dusan; Martin, Thomas 
Edward; Kucinic, Mladen; Jocque, 
Merlijn 

The value of eco-volunteer projects for biodiversity 
conservation: butterfly monitoring in Krka National 
Park (Croatia) with an updated checklist 

2020 

Platenberg, Renata J.; Raymore, 
Martha; Primack, Avram; Troutman, 
Kelcie 

Monitoring Vocalizing Species by Engaging 
Community Volunteers Using Cell Phones 

2020 

Rameli, Nurul I. A. Mohd; Lappan, 
Susan; Bartlett, Thad Q.; Ahmad, Siti 
K.; Ruppert, Nadine 

Are social media reports useful for assessing small 
ape occurrence? A pilot study from Peninsular 
Malaysia 

2020 

Schneiderhan-Opel, Jennifer; Bogner, 
Franz X. 

How fascination for biology is associated with 
students' learning in a biodiversity citizen science 
project 

2020 

Shah, Md Nur Ahad; Khan, Md Kawsar OdoBD: An online database for the dragonflies and 
damselflies of Bangladesh 

2020 

Shang Xiaotong; Luo Chunping; Li Bin; 
Zheng Yong; Zhou Zhiqiang; Zhang Li; Li 
Sheng 

Diversity and Fauna Composition of Birds in the 
Wanglang National Nature Reserve, Sichuan. 

2020 

Sheard, Julie K.; Sanders, Nathan J.; 
Gundlach, Carsten; Schar, Sami; 
Larsen, Rasmus Stenbak 

Monitoring the influx of new species through citizen 
science: the first introduced ant in Denmark 

2020 

Stenhouse, Alan; Roetman, Philip; 
Lewis, Megan; Koh, Lian Pin 

Koala Counter: Recording Citizen Scientists' search 
paths to Improve Data Quality 

2020 

Tiralongo, Francesco; Crocetta, Fabio; 
Riginella, Emilio; Lillo, Antonio Oscar; 
Tondo, Elena; Macali, Armando; 
Mancini, Emanuele; Russo, Fabio; Coco, 
Salvatore; Paolillo, Giuseppe; Azzurro, 
Ernesto 

Snapshot of rare, exotic and overlooked fish species 
in the Italian seas: A citizen science survey 

2020 

Uhrin, Amy V.; Lippiatt, Sherry; 
Herring, Carlie E.; Dettloff, Kyle; 
Bimrose, Kate; Butler-Minor, Chris 

Temporal Trends and Potential Drivers of Stranded 
Marine Debris on Beaches Within Two US National 
Marine Sanctuaries Using Citizen Science Data 

2020 

Werenkraut, Victoria; Baudino, 
Florencia; Roy, Helen E. 

Citizen science reveals the distribution of the 
invasive harlequin ladybird (Harmonia 
axyridisPallas) in Argentina 

2020 

Wotton, S. R.; Eaton, M. A.; Sheehan, 
D.; Munyekenye, F. Barasa; Burfield, I. 
J.; Butchart, S. H. M.; Moleofi, K.; 
Nalwanga-Wabwire, D.; Ndang'ang'a, P. 
K.; Pomeroy, D.; Senyatso, K. J.; 
Gregory, R. D. 

Developing biodiversity indicators for African birds 2020 

Ahmad, Abrar; Gary, Demi; Rodiansyah; 
Sinta; Srifitria; Putra, Wahyu; Sagita, 
Novia; Adirahmanta, Sadtata Noor; 
Miller, Adam E. 

Leveraging local knowledge to estimate wildlife 
densities in bornean tropical rainforests 

2021 

Alther, Roman; Bongni, Nicole; Borko, 
Spela; Fiser, Cene; Altermatt, Florian 

Citizen science approach reveals groundwater fauna 
in Switzerland and a new species of Niphargus 
(Amphipoda, Niphargidae) 

2021 

Anton, Victor; Germishuys, Jannes; 
Bergstrom, Per; Lindegarth, Mats; Obst, 
Matthias 

An open-source, citizen science and machine 
learning approach to analyse subsea movies 

2021 

Arbelaez-Cortes, Enrique; Sanchez- EXPERIENCES OF SURVEYING URBAN BIRDS DURING 2021 
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Sarria, Camilo E.; Ocampo, David; 
Estela, Felipe A.; Garcia-Arroyo, 
Michelle; MacGregor-Fors, Ian 

THE ANTHROPAUSE IN COLOMBIA 

Aura, Christopher Mulanda; Nyamweya, 
Chrisphine S.; Owiti, Horace; Odoli, 
Cyprian; Musa, Safina; Njiru, James M.; 
Nyakeya, Kobingi; Masese, Frank O. 

Citizen Science for Bio-indication: Development of a 
Community-Based Index of Ecosystem Integrity for 
Assessing the Status of Afrotropical Riverine 
Ecosystems 

2021 

Balciauskas, Linas; Balciauskiene, 
Laima; Litvaitis, John A.; Tijusas, 
Eugenijus 

Adaptive monitoring: using citizen scientists to 
track wolf populations when winter-track counts 
become unreliable 

2021 

Biddle, Rebecca; Solis-Ponce, Ivette; 
Jones, Martin; Marsden, Stuart; Pilgrim, 
Mark; Devenish, Christian 

The value of local community knowledge in species 
distribution modelling for a threatened Neotropical 
parrot 

2021 

Encarnacao, Joao; Baptista, Vania; 
Teodosio, Maria Alexandra; Morais, 
Pedro 

Low-Cost Citizen Science Effectively Monitors the 
Rapid Expansion of a Marine Invasive Species 

2021 

Flaminio, Simone; Ranalli, Rosa; 
Zavatta, Laura; Galloni, Marta; 
Bortolotti, Laura 

Beewatching: A Project for Monitoring Bees through 
Photos 

2021 

Gadsden, Gabriel, I; Malhotra, Rumaan; 
Schell, Justin; Carey, Tiffany; Harris, 
Nyeema C. 

Michigan ZoomIN: Validating Crowd-Sourcing to 
Identify Mammals from Camera Surveys 

2021 

Garcia, Maria B.; Silva, Jose L.; Tejero, 
Pablo; Pardo, Iker 

Detecting early-warning signals of concern in plant 
populations with a Citizen Science network. Are 
threatened and other priority species for 
conservation performing worse? 

2021 

Gutierrez-Munoz, Paula; Walters, Alice 
E. M.; Dolman, Sarah J.; Pierce, 
Graham J. 

Patterns and Trends in Cetacean Occurrence 
Revealed by Shorewatch, a Land-Based Citizen 
Science Program in Scotland (United Kingdom) 

2021 

Kalaentzis, Konstantinos; Kazilas, 
Christos; Demetriou, Jakovos; 
Koutsoukos, Evangelos; Avtzis, 
Dimitrios N.; Georgiadis, Christos 

Alientoma, a Dynamic Database for Alien Insects in 
Greece and Its Use by Citizen Scientists in Mapping 
Alien Species 

2021 

Kasten, Paula; Jenkins, Stuart R.; 
Christofoletti, Ronaldo A. 

Participatory Monitoring-A Citizen Science Approach 
for Coastal Environments 

2021 

Kirchhoff, Casey; Callaghan, Corey T.; 
Keith, David A.; Indiarto, Dony; 
Taseski, Guy; Ooi, Mark Kj; Le Breton, 
Tom D.; Mesaglio, Thomas; Kingsford, 
Richard T.; Cornwell, William K. 

Rapidly mapping fire effects on biodiversity at a 
large-scale using citizen science 

2021 

Lee, Tracy S.; Kahal, Nicole L.; Kinas, 
Holly L.; Randall, Lea A.; Baker, Tyne 
M.; Carney, Vanessa A.; Kendell, Kris; 
Sanderson, Ken; Duke, Danah 

Advancing Amphibian Conservation through Citizen 
Science in Urban Municipalities 

2021 

Lin, Meixi; Simons, Ariel Levi; Harrigan, 
Ryan J.; Curd, Emily E.; Schneider, 
Fabian D.; Ruiz-Ramos, Dannise V.; 
Gold, Zack; Osborne, Melisa G.; Shirazi, 
Sabrina; Schweizer, Teia M.; Moore, 
Tiara N.; Fox, Emma A.; Turba, Rachel; 
Garcia-Vedrenne, Ana E.; Helman, 
Sarah K.; Rutledge, Kelsi; Mejia, Maura 
Palacios; Marwayana, Onny; Munguia 
Ramos, Miroslava N.; Wetzer, Regina; 
Pentcheff, N. Dean; McTavish, Emily 
Jane; Dawson, Michael N.; Shapiro, 
Beth; Wayne, Robert K.; Meyer, Rachel 
S. 

Landscape analyses using eDNA metabarcoding and 
Earth observation predict community biodiversity in 
California 

2021 

Machado, Augusto A.; Bertoncini, Athila 
A.; Santos, Luciano N.; Creed, Joel C.; 
Masi, Bruno P. 

Participatory monitoring of marine biological 
invaders: a novel program to include citizen 
scientists 

2021 

Mangelli, Tarcio S.; Zapelini, Cleverson; Voluntary scuba diving as a method for monitoring 2021 
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da Rocha, Wesley Duarte; Schiavetti, 
Alexandre 

invasive exotic marine species 

Mesaglio, Thomas; Soh, Aaron; 
Kurniawidjaja, Steven; Sexton, Chuck 

'First Known Photographs of Living Specimens': the 
power of iNaturalist for recording rare tropical 
butterflies 

2021 

Meschini, Marta; Machado Toffolo, 
Mariana; Marchini, Chiara; Caroselli, 
Erik; Prada, Fiorella; Mancuso, Arianna; 
Franzellitti, Silvia; Locci, Laura; Davoli, 
Marco; Trittoni, Michele; Nanetti, 
Enrico; Tittarelli, Mara; Bentivogli, 
Riccardo; Branchini, Simone; Neri, 
Patrizia; Goffredo, Stefano 

Reliability of Data Collected by Volunteers: A Nine-
Year Citizen Science Study in the Red Sea 

2021 

Meyer, Rachel S.; Ramos, Miroslava 
Munguia; Lin, Meixi; Schweizer, Teia 
M.; Gold, Zachary; Ramos, Dannise 
Ruiz; Shirazi, Sabrina; Kandlikar, 
Gaurav; Kwan, Wai-Yin; Curd, Emily E.; 
Freise, Amanda; Parker, Jordan 
Moberg; Sexton, Jason P.; Wetzer, 
Regina; Pentcheff, N. Dean; Wall, 
Adam R.; Pipes, Lenore; Garcia-
Vedrenne, Ana; Mejia, Maura Palacios; 
Moore, Tiara; Orland, Chloe; Ballare, 
Kimberly M.; Worth, Anna; Beraut, Eric; 
Aronson, Emma L.; Nielsen, Rasmus; 
Lewin, Harris A.; Barber, Paul H.; Wall, 
Jeff; Kraft, Nathan; Shapiro, Beth; 
Wayne, Robert K. 

The CALeDNA program: Citizen scientists and 
researchers inventory California's biodiversity 

2021 

Moller, Anders Pape; Czeszczewik, 
Dorota; Erritzoe, Johannes; Flensted-
Jensen, Einar; Laursen, Karsten; Liang, 
Wei; Walankiewicz, Wieslaw 

Citizen Science for Quantification of Insect 
Abundance on Windshields of Cars Across Two 
Continents 

2021 

Moro, Arrigo; Beaurepaire, Alexis; 
Dall'Olio, Raffaele; Rogenstein, Steve; 
Blacquiere, Tjeerd; Dahle, Bjorn; de 
Miranda, Joachim R.; Dietemann, 
Vincent; Locke, Barbara; Licon Luna, 
Rosa Maria; Le Conte, Yves; Neumann, 
Peter 

Using Citizen Science to Scout Honey Bee Colonies 
That Naturally Survive Varroa destructor 
Infestations 

2021 

Pellicioli, Luca; Cimberio, Patrizia Citizen science project on Alpine ibex, Capra ibex, 
in the Orobie Alps. 

2021 

Rodhouse, Thomas J.; Rose, Sara; 
Hawkins, Trent; Rodriguez, Rogelio M. 

Audible bats provide opportunities for citizen 
scientists 

2021 

Rowe, Helen, I; Gruber, Daniel; 
Fastiggi, Mary 

Where to start? A new citizen science, remote 
sensing approach to map recreational disturbance 
and other degraded areas for restoration planning 

2021 

Sanden, Taru; Wawra, Anna; Berthold, 
Helene; Miloczki, Julia; Schweinzer, 
Agnes; Gschmeidler, Brigitte; Spiegel, 
Heide; Debeljak, Marko; Trajanov, 
Aneta 

TeaTime4Schools: Using Data Mining Techniques to 
Model Litter Decomposition in Austrian Urban School 
Soils 

2021 

Squires, Thomas M.; Yuda, Pramana; 
Akbar, Panji Gusti; Collar, Nigel J.; 
Devenish, Christian; Taufiqurrahman, 
Imam; Wibowo, Waskito Kukuh; 
Winarni, Nurul L.; Yanuar, Ahmad; 
Marsden, Stuart J. 

Citizen science rapidly delivers extensive 
distribution data for birds in a key tropical 
biodiversity area 

2021 

Stenhouse, Alan; Perry, Tahlia; 
Grutzner, Frank; Lewis, Megan; Koh, 
Lian Pin 

EchidnaCSI - Improving monitoring of a cryptic 
species at continental scale using Citizen Science 

2021 

Sun, Catherine C.; Hurst, Jeremy E.; 
Fuller, Angela K. 

Citizen Science Data Collection for Integrated 
Wildlife Population Analyses 

2021 
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Thomaes, Arno; Barbalat, Sylvie; 
Bardiani, Marco; Bower, Laura; 
Campanaro, Alessandro; Fanega 
Sleziak, Natalia; Goncalo Soutinho, 
Joao; Govaert, Sanne; Harvey, 
Deborah; Hawes, Colin; Kadej, Marcin; 
Mendez, Marcos; Meriguet, Bruno; Rink, 
Markus; Rossi De Gasperis, Sarah; 
Ruyts, Sanne; Jelaska, Lucija Seric; 
Smit, John; Smolis, Adrian; Snegin, 
Eduard; Tagliani, Arianna; Vrezec, Al 

The European Stag Beetle (Lucanus cervus) 
Monitoring Network: International Citizen Science 
Cooperation Reveals Regional Differences in 
Phenology and Temperature Response 

2021 

Townsend, Philip A.; Clare, John D. J.; 
Liu, Nanfeng; Stenglein, Jennifer L.; 
Anhalt-Depies, Christine; Van Deelen, 
Timothy R.; Gilbert, Neil A.; Singh, 
Aditya; Martin, Karl J.; Zuckerberg, 
Benjamin webster 

Snapshot Wisconsin: networking community 
scientists and remote sensing to improve ecological 
monitoring and management 

2021 

Yang, Jun; Xing, Danqi; Luo, Xiangyu Assessing the performance of a citizen science 
project for monitoring urban woody plant species 
diversity in China 

2021 
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Appendix B-3. RAW data for openness scores per principle: -1 (closed), 0.5 (partially open), 1 (open). Blanks 
are found where the principle was not applicable (NA). 

Openness Scores Per Principle 

DMP Preregistration Data Code Software Access 

0.5 1 1  1 -1 

-1 -1 1 1  1 

-1 -1 -1 -1 1 -1 

-1 0.5 1 0.5 -1 -1 

-1 -1 1 -1 -1 -1 

-1 -1 -1 -1 1 -1 

1 -1 1 
  

1 

-1 0.5 0.5 
 

0.5 1 

1 -1 1 
  

1 

0.5 1 0.5 
  

1 

1 
 

1 0.5 0.5 1 

-1 -1 0.5 
 

-1 1 

0.5 -1 1 -1 1 1 

0.5 0.5 0.5 
  

1 

0.5 -1 1 1 1 1 

-1 -1 0.5 
  

-1 

-1 0.5 1 
 

0.5 1 

0.5 -1 1 1 1 1 

0.5 -1 0.5 0.5 1 1 
 

0.5 1 1 1 1 

-1 1 1 1 0.5 -1 

0.5 -1 1 1 1 1 

-1 -1 1 0.5 1 -1 

0.5 0.5 1 
 

-1 1 

-1 -1 1 1 1 -1 

-1 -1 0.5 0.5 1 -1 

-1 0.5 1 
  

-1 

-1 -1 1 
 

1 1 

1 0.5 1 
  

1 

-1 -1 1 1 0.5 1 

0.5 -1 1 -1 1 1 

-1 0.5 -1 -1 0.5 1 

1 -1 1 1 1 1 

-1 -1 -1 -1 -1 -1 

-1 -1 0.5 0.5 0.5 1 

-1 -1 1 -1 1 1 

-1 -1 1 
  

-1 

-1 0.5 1 
 

0.5 1 

-1 -1 -1 
 

0.5 -1 

-1 0.5 1 0.5 1 1 

-1 -1 1 0.5 1 1 

-1 -1 1 -1 1 -1 
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Appendix B-4. Data for the number of citizen science projects per year and associated average annual 
openness score. 

Year Number of 
Projects 

Average Annual Open 
Score 

2005 1 0.5 

2010 1 0.2 

2011 1 -0.67 

2012 1 -0.17 

2015 3 -0.39 

2016 4 0.55 

2017 6 0.18 

2018 2 0.5 

2019 4 0.35 

2020 8 0.22 

2021 11 -0.05 
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Appendix C 

Appendix C-1. Data sources for spatial analysis of grassland distribution 

Data Source Citation 

Light Gray Canvas 
Base Map 

ArcGIS Pro Esri, DeLorme, HERE, MapmyIndia 

UK CEH Land Cover 
Map 

EDINA 
Digimap 

Land Cover map of Great Britain., 2019. [TIFF geospatial data], Scale 
1:250000, Tiles: GB, Updated: 30 June 2020, CEH, Using: EDINA 
Environment Digimap Service, <https://digimap.edina.ac.uk>, 
Downloaded: 2020-12-07 15:18:08.866) 
 

HabMoS Map NatureScot/
Scottish 
Natural 
Heritage 

Contains SNH information licensed under the Open Government Licence 
v3.0. 

HadUK-Grid Gridded 
Climate Observations 
on a 1km grid over 
the UK, v1.0.2.1 
(1862-2019).  

Met Office 
via CEDA 

Met Office; Hollis, D.; McCarthy, M.; Kendon, M.; Legg, T.; Simpson, I. 
(2020): HadUK-Grid Gridded Climate Observations on a 1km grid over the 
UK, v1.0.2.1 (1862-2019). Centre for Environmental Data Analysis, 21 
October 2020. 
doi:10.5285/89908dfcb97b4a28976df806b4818639. http://dx.doi.org/10.
5285/89908dfcb97b4a28976df806b4818639 

GIS_SNH_OWNER.LAN
DSCAPE_MAP 

NatureScot/
Scottish 
Natural 
Heritage 

Available under the Open Government Licence 
(http://www.nationalarchives.gov.uk/doc/open-government-licence) 

 

Lowland Grasslands 
Database 

Scottish 
Natural 
Heritage 

 

UK BMS 2019 Site 
Locations 

UK Butterfly 
Monitoring 
Scheme 

Botham, M.; Brereton, T.; Harris, S.; Harrower, C.; Middlebrook, I.; 
Randle, Z.; Roy, D.B. (2020). United Kingdom Butterfly Monitoring 
Scheme: site location data 2019. NERC Environmental Information Data 
Centre. (Dataset). https://doi.org/10.5285/8a41e1c8-3018-44f1-8d0a-
c1b1ad957fc9 

UK BMS 2019 Site 
Locations with 
Habitat Type 

UK Butterfly 
Monitoring 
Scheme/ 
Butterfly 
Conservatio
n 

Botham, M.; Brereton, T.; Harris, S.; Harrower, C.; Middlebrook, I.; 
Randle, Z.; Roy, D.B. (2020). United Kingdom Butterfly Monitoring 
Scheme: site location data 2019. NERC Environmental Information Data 
Centre. (Dataset). https://doi.org/10.5285/8a41e1c8-3018-44f1-8d0a-
c1b1ad957fc9 

Northern Brown Argus 
Site Locations 

Butterfly 
Conservatio
n 

Butterfly Conservation Scottish Borders NBA survey dataset, 2021.  

 

  

http://dx.doi.org/10.5285/89908dfcb97b4a28976df806b4818639
http://dx.doi.org/10.5285/89908dfcb97b4a28976df806b4818639
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Appendix C-2. Sentinel-2 acquisition dates compared to in situ data survey dates across the three 2021 field 
campaigns. 

Site C1 C2 C3 
 

Survey Sentinel-2 Survey Sentinel-2 Survey Sentinel-2 

AC 25/05/2021 29/05/2021 23/07/2021 01/07/2021 20/08/2021 25/08/2021 

BL 28/05/2021 30/05/2021 20/07/2021 21/07/2021 17/08/2021 25/08/2021 

CL 13/05/2021 07/05/2021 09/07/2021 14/07/2021 01/09/2021 28/08/2021 

EH 12/05/2021 19/05/2021 05/07/2021 01/07/2021 24/08/2021 25/08/2021 

GD 24/05/2021 02/05/2021 07/07/2021 01/07/2021 24/08/2021 10/08/2021 

GF 27/05/2021 05/05/2021 21/07/2021 26/07/2021 18/08/2021 18/08/2021 

GH 19/05/2021 27/05/2021 08/07/2021 06/07/2021 31/08/2021 28/08/2021 

GL 26/05/2021 29/05/2021 22/07/2021 01/07/2021 19/08/2021 27/08/2021 

HM 29/05/2021 27/05/2021 20/07/2021 21/07/2021 17/08/2021 25/08/2021 

HR 25/05/2021 02/05/2021 23/07/2021 01/07/2021 20/08/2021 27/08/2021 

LM 07/05/2021 
+18/05/2021 

24/05/2021 02/07/2021 01/07/2021 23/08/2021 25/08/2021 

MM 12/05/2021 
+18/05/2021 

19/05/2021 02/07/2021 01/07/2021 23/08/2021 25/08/2021 

MP 29/05/2021 07/05/2021 19/07/2021 21/07/2021 16/08/2021 25/08/2021 

RP 14/05/2021 27/05/2021 19/07/2021 19/07/2021 16/08/2021 25/08/2021 

SA 24/05/2021 22/05/2021 24/07/2021 23/07/2021 21/08/2021 01/09/2021 

SM 11/05/2021 02/05/2021 06/07/2021 01/07/2021 26/08/2021 25/08/2021 
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Appendix C-3. Feature importance of the predictor variables used in the Random Forest classification model 
of species-rich grasslands. Features are numbered by season: 1 = early season (May), 2 = mid-season 
(June/July), 3 = end of season (August). 
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Appendix D – Chapter 4 Supplementary Materials 1 

Appendix D-1. Study site names with their corresponding codes. 

Site Name Site Code 

Auchtermuchty Common AC 

Cleugh CL 

Eildon Hill EH 

Greenlaw Dean GD 

Glen Fender GF 

Havoc Meadow HM 

Lindean Moor LM 

Murder Moss MM 

Muirsheil Park MP 

St Abb’s SA 

Smardale Gill SM 
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Appendix D-2. Investigation of predictive power of Sentinel-2 data across the 11 study sites, plus an 
additional five sites surveyed in 2021, across 2021, 2022, and both years combined. 

Site Year n S2 
   

AGB (g/m2) Sward Height (cm) SPAD-measured 
chlorophyll-proxy    

R2 RMSE R2 RMSE R2 RMSE 

AC 2021 18 0.289 27.35 0.299 15.77 
  

AC 2022 18 0.282 38.67 0.406 12.62 0.185 10.52 

AC both 36 0.117 41.91 0.503 9.07 
  

BL  2021 18 0.655 18.72 0.706 8.00 
  

CL 2021 18 0.832 14.92 0.823 12.19 
  

CL 2022 18 0.929 23.37 0.924 6.65 0.027 6.62 

CL both 36 0.318 37.93 0.741 8.38 
  

EH 2021 18 0.490 48.00 0.586 26.67 
  

EH 2022 18 0.925 28.49 0.622 14.97 0.655 5.98 

EH both 36 0.168 37.94 0.051 21.83 
  

GF 2021 18 0.094 130.18 0.290 34.83 
  

GF 2022 18 0.284 34.02 0.022 27.89 0.789 31.06 

GF both 36 0.156 41.03 0.013 39.80 
  

GL 2021 18 0.137 49.81 0.568 13.82 
  

GD 2021 17 0.402 37.73 0.879 7.62 
  

GD 2022 18 0.0001 36.67 0.399 12.99 0.242 3.14 

GD both 35 0.347 36.32 0.390 14.30 
  

GH 2021 18 0.429 25.03 0.380 20.13 
  

HM 2021 23 0.669 45.61 0.261 18.61 
  

HM 2022 18 0.226 140.08 0.883 9.24 0.922 7.60 

HM both 41 0.057 77.24 0.205 26.14 
  

HP 2021 18 0.549 42.49 0.280 21.42 
  

LM 2021 18 0.938 19.38 0.357 9.35 
  

LM 2022 18 0.856 16.19 0.776 11.80 0.304 7.01 

LM both 36 0.118 32.92 0.878 10.11 
  

MP 2021 18 0.219 30.82 0.110 28.22 
  

MP 2022 15 0.676 32.56 0.901 19.34 
  

MP both 33 0.313 34.98 0.224 23.15 
  

MM 2021 17 0.606 30.32 0.396 24.05 
  

MM 2022 18 0.745 69.50 0.863 12.45 0.699 7.06 

MM both 35 0.500 31.77 0.465 11.31 
  

RP 2021 18 0.682 40.45 0.922 10.96 
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 SM 2021 17 0.326 19.83 0.121 21.36 
  

SM 2022 18 0.962 17.36 0.195 21.02 0.441 5.13 

SM both 35 0.581 16.00 0.693 8.66 
  

SA 2021 18 0.005 26.59 0.886 3.93 
  

SA 2022 18 0.448 18.41 0.848 4.82 0.710 5.03 

SA both 36 0.111 23.58 0.102 6.59 
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Appendix E 

Appendix E-1. Online resources found on the citizen science survey platform. 

Identification Guides and Help 
Here you will find resources that will help with your Identification skills. These range from online PDF 
guides or keys to free apps or guides to buy for in field. Everything here is optional and only to 
enhance your ID skills or help whilst out surveying. Below are the recommended resources with further 
suggestions at the end if you can’t get enough!  
 
Grasslands 

• http://www.magnificentmeadows.org.uk/assets/pdfs/Meadow_ID_Leaflet.pdf 

• https://www.speciesrecoverytrust.org.uk/resources 

• https://www.wildlifetrusts.org/habitats/grassland 
 
Plants 

• https://www.npms.org.uk/sites/default/files/PDF/NPMS%20ID%20GUIDE_WEB_0.pdf 

• https://www.discoverthewild.co.uk/resources 

• https://gobotany.nativeplanttrust.org/simple/non-monocots/ 
 
Butterflies and Moths 

• https://butterfly-conservation.org/butterflies/identify-a-butterfly 

• https://www.wildlifetrusts.org/wildlife/identify-british-butterflies 

• https://www.discoverthewild.co.uk/_files/ugd/562348_a3c49ceed9934331bf796426c143552d.p
df 

• https://www.discoverthewild.co.uk/_files/ugd/562348_98be87b913894f4fada3025e1b3c9306.p
df 

Apps (freely available on Android and Iphone): 

• PlantNet 

• iRecord Butterflies 

• iNaturalist 
Field Guides to Purchase 

• https://www.field-studies-council.org/product-
category/publications/?fwp_publication_type=fold-out-
guide&fwp_natural_history_courses=botany%2Cbutterflies-and-moths%2Cgrasses-sedges-and-
rushes%2Chabitat-surveying 

• https://www.nhbs.com/a-field-guide-to-grasses-sedges-and-rushes-
book?bkfno=228946&ca_id=1495&adlocale=uk&gclid=EAIaIQobChMIzIjtmc-
T9wIVAuDtCh26RwlNEAQYAiABEgKOKfD_BwE 

Further Help: 

• https://www.woodlandtrust.org.uk/trees-woods-and-wildlife/habitats/grassland/ 

• http://www.brerc.eclipse.co.uk/files/brerc_grass_key.pdf 
 

• https://www.google.co.uk/shopping/product/1?q=grasses+field+guide&prds=epd:11757374092
611632455,eto:11757374092611632455_0,pid:11757374092611632455&sa=X&ved=0ahUKEwjXpY
Cnz5P3AhWREMAKHaavCREQ9pwGCAU 

• https://www.amazon.co.uk/Wild-Flower-Key-Revised-
identify/dp/0723251754/ref=asc_df_0723251754/?tag=googshopuk-
21&linkCode=df0&hvadid=310872601819&hvpos=&hvnetw=g&hvrand=15841409056965496743&h
vpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1006605&hvtargid=pla-
350354445358&psc=1&th=1&psc=1 
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Appendix E-2. Excerpt of grassland classification key indicator guide on the online platform for helping 
participants determine the grassland classification. 
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Appendix E-3. Grassland classification data entry form. 
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Appendix E-4. Volunteer recruitment poster call out. 

Ecosystem Explorers: Call for Volunteers! 

Discover the hidden world of insects and their homes in all the green spaces around you!   
The UK’s species-rich grasslands (those home to a variety of plant species) have been reduced 
by more than 97% over the past century, threatening the vital services that these habitats 
provide us (from carbon storage to pollination). The loss of these grasslands threatens 
associated wildlife, including many butterfly and moth species, and we must monitor and 
manage these vulnerable habitats and species to avoid their permanent loss.   
Ecosystem Explorers is a novel citizen science survey that aims to combine satellite imagery with 
environmental observations to save our species-rich grasslands and its associated butterflies and 
moths…but we need your help!  

We are asking participants to get exploring over the summer 
season and conduct butterfly and habitat transects to 
identify unrecorded areas of species-rich grasslands across 
Scotland. We are also interested in finding the locations of 
key species: in particular, common rock-rose for the 
conservation of the vulnerable Northern Brown Argus. During 
your survey you will:  

. 

1. Walk a transect and record the general grassland
habitat and any observed butterflies.

2. Conduct three small quadrat surveys to record the floral diversity across the habitat.

3. Look for common rock-rose and Northern Brown Argus eggs on your site.

If you would like to learn more about the survey and how to get involved, please email the lead 
researcher Samantha Suter at   You can also follow the project’s updates and learn how to get 
involved on the survey web platform: 

https://citsci.org/projects/ecosystem-explorers. 

To join the project, you will need to sign up to the 
platform (with a pseudonym if you would like to stay 
anonymised). More information will be provided on the 
online platform in the coming weeks with detailed video 
tutorials and instructions for participating!  
Thank you and we look forward to having you involved 
and contributing to the conservation of the UK’s 
butterflies and moths!  

-

https://citsci.org/projects/ecosystem-explorers
https://citsci.org/projects/ecosystem-explorers
https://citsci.org/projects/ecosystem-explorers
https://citsci.org/projects/ecosystem-explorers
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Appendix E-5. Example of outreach activities designed for increased public engagement with the citizen 
science survey, Ecosystem Explorers. 
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Appendix E-6. Instructions for participating in Ecosystem Explorers, found on the online platform. 

Ecosystem Explorers Guidelines 
Hello and welcome to Ecosystem Explorers – a citizen science survey designed for locating 
species-rich grasslands across Scotland.  
Here, we are using imagery from satellites to try locating species-rich grasslands…but we need 
your help! 
We are asking you to tell us whether our satellite data has accurately mapped different classes 
of species-rich grasslands as well as help us confirm specific indicators for species-rich grassland 
identification. This is so we can conserve these vital habitats for priority species protection, such 
as the vulnerable Northern Brown Argus Butterfly. 
Please follow the instructions below and watch the Instructions Video to help… 
 Getting Started: 

1) Firstly, find the ‘Grassland Survey Locations’ document. This is where you will find the 
maps that have been generated from the habitat classification model. The maps 
demonstrate the areas of grassland classes that have been determined from our model. 
However, we need to know if these maps are correct! 

2) Using the map outputs, decide on a location you wish to survey. The map outputs will 
have sections of the Ordinance Survey that corresponds to the map output, as a 
georeference. There are also locations identified within the maps to help you locate the 
sites.  

3) If you don’t want to use the maps, there are a list of survey locations under the “data” 
tab > “locations”. Here, you can find a list of coordinate locations across the country 
which can be used to guide your surveying locations! 

4) Once a location has been decided, go out and survey! Using the other documents online 
print off hard copies of the survey form (‘Grassland Classification Field Survey Form’) to 
fill this out whilst you’re on site. If you’d rather, you can download the CitSci.org app 
and follow the Ecosystem Explorers page to enter data online whilst you’re in field! 

5) Use the ‘Grassland Classification Key Indicator’ and ‘ID guides and Resources’ documents 
to help you whilst you’re surveying. You can familiarise yourself beforehand or you can 
print these off as a reference.  

Conducting the Surveys: 
1) When arrived on site, first fill in the location (OS grid reference and if possible, latitude 

and longitude from your phone), the weather conditions, and any first impressions of the 
site on the ‘Grassland Classification Field Survey Form’.  

2) Select a suitable random location for your transect to start. Walk a 1 km transect, noting 
the grassland classes you see (using the ‘Grassland Classification Key Indicators’ for 
help).  

3) Whilst conducting the first walk, record any butterfly species within 5 m of either side of 
the transect. Record these on the survey form.  

4) Once you have walked the first 1 km length of your transect, reverse this to conduct your 
quadrat surveys, taking a survey at the beginning (0 m), middle (500 m), and end (1 km) 
of your transect.  

5) Place you’re quadrat (use the length of an A4 piece of paper) at the associated section of 
your transect.  

6) Within each quadrat record 4 randomly selected grass heights, measuring from the 
ground to the tip of the highest vegetation touching the ruler. Measure in cms.  

7) Still in the quadrat, count the number of species you can see (this is known as species 
richness).  

8) Finally, list any species that you can accurately identify in each quadrat. Common names 
are acceptable, and lower lever classifications e.g. oat grass vs false oat grass.  

9) Conduct Egg surveys using the ‘Northern Brown Argus Survey Guidance’ document to 
help. 

10) Take any pictures of sites for reference e.g. wider habitat, specific plant and butterfly 
species, eggs seen. 

Entering the data: 
1) Once you have filled in the survey forms, this data must be entered online if you did not 

do it on the app.  
2) Go to the data entry forms tab.  
3) Enter data online from your associated survey sheet e.g. Grassland Data entry Form 

online = Grassland Classification Field Survey Form.  
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Appendix E-7. Excerpt of Ecosystem Explorers survey event on Eventbrite (2023) and associated survey 
dates. 

Date Location 

13th June 2023 Menstrie Glen 

22nd June 2023 Fallin Bing 

8th July 2023 Green Knowes Wind Farm 

9th July 2023 Hill of Tillymorgan 

17th July 2023 Kincraig, Cairngorms 

18th July 2023 Dunnet Head 

20th July 2023 Keoldale headland 

4th August 2023 Campsie Fells 
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Appendix E-8 – R code 

##Chi-squared goodness of fit tests 

```{r} 

total <- c(X,Y) ##where X = number of model predicted SRG pixels and Y = number of corresponding citizen 

observed SRG locations 

model <- chisq.test(total, p = c(1/2, 1/2)) ## 1/2 = the theoretical split through the assumption that the model 

predictions and the citizen observations should align for each specific site/pixel 

summary(model) 

``` 

##Chi squared test for independence/fisher's exact tests 

(Using the example of the assessing the agreement level between the model predictions and the citizen 

observations by participant group, the rows are defined by the grouping factor whilst the columns are defined as 

the numbers across the agreement levels (X, Y, Z)) 

```{r} 

data <- data.frame( 

  “Ecosystem Explorers” = c(X,Y,Z), 

  « Nature Scot » = c(X,Y,Z), 

  « Plantlife » = c(X,Y,Z), 

  « BSBI » = c(X,Y,Z), 

   

  row.names = c(“no match”, “partial match”, “full match”), 

  stringsAsFactors = FALSE 

) 

colnames(data) <- c(“Ecosystem Explorers”, “Nature Scot”, “Plantlife”, “BSBI”) 

data 

test <- fisher.test(data) 

summary(test) 

``` 
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Appendix F 

Appendix F-1. Documentation for project implementation into schools and how it reaches curriculum 
targets in Biography, Geography, and IT.   

Project Overview 
Rising human population has led to increased destructive activities from higher demands for 
resources, such as food. These activities have instigated a global environmental crisis. For 
example, the UK underwent large agricultural industrialisation in the later half of the 20th 
century. This intensification led to the loss of several natural and semi-natural habitats, so much 
so that now over 70% of the UK land cover is made up of agricultural land. As a result, this has 
caused widespread native species decline in much of the UK’s flora and fauna. A habitat found in 
the UK that has been reduced by more than 97% is that of species-rich grasslands, which now 
make up approximately 1% of the UK land cover. This is a semi-natural habitat with a high floral 
species diversity which provides ecosystems services such as carbon sequestration, as well as 
vital habitat for many priority species. One such species is the Northern Brown Argus butterfly, 
which has seen population declines of nearly 60% and is now protected under UK legislation. To 
try halt and reverse any damaging impacts on future habitats and species in the UK, habitat 
extent and species population trends must be monitored to ensure accurate management and 
conservation. However, species-rich grasslands in the UK are not mapped extensively, making it 
difficult to target conservation efforts to these habitats and their species. As well as this, 
ensuring the correct monitoring and management is time and labour intensive. Therefore, a tool 
must be designed to enable sufficient monitoring of this habitat to ensure its protection and help 
reduce the negative impacts on the Northern Brown Argus. This project aims to bring citizens 
together to identify areas of species-rich grassland from satellite imagery, so conservation can 
be targeted to these locations and help the Northern Brown Argus and other priority species. 
Hopefully, it will also provide a framework for an approach that can be directed towards other 
declining habitats and species. To enable this, the project will be working openly, meaning that 
the entire process will be available to other researchers, the public, organisations, and 
governments. This is done by using OS practices, databases, and software.  
Project in Curriculum 
This project can be instigated into the national curriculum for Scotland as its interdisciplinary 
approach can target multiple subject areas (such as biology, geography/environmental science, 
technology, and citizenship). The project would raise awareness about a current biodiversity 
issue in Scotland because of human action, the importance of conservation and how to close gaps 
in knowledge, how to use various methods and technologies to tackle a topical issue, and how to 
work openly and reproducibly to increase validity and trustworthiness in research.    

S3 Curriculum Targets    
Project Process 

1) The habitat of concern must be classified and sites suitable for in situ field 
measurements to support satellite imagery must be located. This is to increase 
identification accuracy. These initial sites must be where the Northern Brown Argus is 
found, and as such the appropriate habitat conditions must be met. These include 
having the presence of their larval food plant, the common-rock rose on south-facing 
slopes of altitudes less than 350 m. Precise climatic conditions are unknown. Locating 
these sites is conducted using ArcGIS pro. Open access data can be found for the 
distribution of Northern Brown Argus, Common Rock Rose, elevation data, and habitat 
classes found in Scotland. Overlaying these features will narrow results for site 
selection. It is also important to find areas where the Northern Brown Argus is not found 
but its habitat requirements appear to be suitable. It can then be investigated in the 
field as to why the butterfly is not present.  

In this section of the project, multiple areas of the curriculum can be targeted. Specifically, 
Social Sciences and Technologies would be addressed largely here. In Social Sciences, codes SOC 
3-10a, and SOC 3-14a will be reached by using GIS to “investigate climate, physical features 
[such as elevation], and living things [rock rose and Northern Brown Argus] of a natural 
environment [species-rich grassland] different from [the students’] own and explain their 
interrelationship” by searching for sites where these features intersect. This will “use a range of 
maps and geographic information systems to gather, interpret, and present conclusions”. It will 
combine with Technologies codes TCH 3-01a and TCH 3-02a, as the use of software such as GIS 
and open data platforms (such as NBA Atlas) will “use the features of a range of digital 
technologies, integrated software and online resources to determine the most appropriate to 
solve problems” as the students will use “digital technologies to search, access and retrieve 
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information”. Retrieving data from open data repositories will also give students an “awareness 
of plagiarism”.  
 

2) Satellite imagery must be obtained. Certain satellites are now under open licenses and 
accessing imagery is free, such as Landsat and Sentinel data. These images must be pre-
processed and combined with in situ field measurements. Coding programmes that are 
also freely available such as R or Python can be used to process these images. A library 
of images will be collated to use for identification of species-rich grasslands.  

This will target the codes highlighted above as it further uses various software, resources, and 
geographic information systems to investigate the environmental features by another technique.  
 

3) A citizen science platform will be developed on a website such as citsci.org. Here, 
participants can access information about the purpose of the project, how they can 
help, how to identify species-rich grasslands from satellite imagery that is supplied on 
the platforms, and further information such as results, community forums, and in 
person events.  

This will address the code in Social Science SOC3-08a, as students will help “identify possible 
consequences of an environmental issue [species-rich grassland loss] and make informed 
suggestions about ways to manage the impact” from locating sites of conservation importance. 
Technology codes TCH 3-07a and TCH 3-15a are met through using various software and 
websites students will be able to evaluate the “costs and benefits of using technologies to 
reduce the impact of our activities on the environment” and “select appropriate development 
tools to design, build, evaluate and refine computing solutions based on requirements” of an 
issue by experiencing the variety of online resources.  
 

4) After the imagery is analysed by participants, the accuracy of habitat identifications 
must be assessed. This is done through ground truthing where surveyors will go to 
identified areas of species-rich grasslands and confirm whether or not the identification 
was correct through standard surveying techniques such as phase 1 habitats.  

Through the process of the project, students should learn about various biological systems 
which can target the code in Sciences SCN 3-01a. Students could “identify living things from 
different habitats to compare their biodiversity and can suggest reasons for their 
distribution” from information that is available on the citizen science project platform, 
where biological resources and keys will be available related to the project. Ground truthing 
will also include surveying and sampling techniques of biodiversity in the located habitats to 
reach this outcome in the curriculum.  
5) The information from the project will be disseminated via various social media 

platforms to raise awareness and increase participation. Outputs from the research 
process will be openly available on appropriate platforms.   

Having an awareness of the different OS systems will tackle specifically the technology codes 
mentioned above to evaluate various digital sources for a variety of purposes.  

S4 Curriculum Targets 
Project Process 

6) The habitat of concern must be classified and sites suitable for in situ field 
measurements to support satellite imagery must be located. This is to increase 
identification accuracy. These initial sites must be where the Northern Brown Argus is 
found, and as such the appropriate habitat conditions must be met. These include 
having the presence of their larval food plant, the common-rock rose on south-facing 
slopes of altitudes less than 350 m. Precise climatic conditions are unknown. Locating 
these sites is conducted using ArcGIS pro. Open access data can be found for the 
distribution of Northern Brown Argus, Common Rock Rose, elevation data, and habitat 
classes found in Scotland. Overlaying these features will narrow results for site 
selection. It is also important to find areas where the Northern Brown Argus is not found 
but its habitat requirements appear to be suitable. It can then be investigated in the 
field as to why the butterfly is not present.  

In this section of the project, multiple areas of the curriculum can be targeted. Specifically, 
Social Sciences and Technologies would be addressed largely here. In Social Sciences, codes SOC 
4-14a will be reached by using “geographical information systems [ArcGIS] to identify patterns of 
human activity and physical processes”. It will combine with Technologies codes TCH 4-01a and 
TCH 4-02a, as the use of software such as GIS and open data platforms (such as NBA Atlas) will 
“use digital technologies to access, select relevant information and solve real world problems” as 
the students will use “digital technologies to process and manage information responsibly and 
can reference 



Appendices   234 

sources accordingly2. Retrieving data from open data repositories will also give students insight 
into how to “reference sources accordingly”.  
 
 

7) Satellite imagery must be obtained. Certain satellites are now under open licenses and 
accessing imagery is free, such as Landsat and Sentinel data. These images must be pre-
processed and combined with in situ field measurements. Coding programmes that are 
also freely available such as R or Python can be used to process these images. A library 
of images will be collated to use for identification of species-rich grasslands.  

This will target the codes highlighted above as it further uses various software, resources, and 
geographic information systems to investigate the environmental features by another technique.  
 

8) A citizen science platform will be developed on a website such as citsci.org. Here, 
participants can access information about the purpose of the project, how they can 
help, how to identify species-rich grasslands from satellite imagery that is supplied on 
the platforms, and further information such as results, community forums, and in 
person events.  

This will address the code in Social Science SOC4-08a and SOC 4-10a, as students will help 
address “the sustainability of key natural resources and analyse the possible implications for 
human activity” from locating sites of conservation importance and associated ecosystem 
services. Students will “develop [their] understanding of the interaction between humans and 
the environment by describing and assessing the impact of human activity on an area” through 
learning about the importance of this project in participation. Technology code TCH 4-15a are 
met through using various software and websites students will be able to evaluate the “costs and 
benefits of using technologies to reduce the impact of our activities on the environment” and 
“select appropriate development tools to design, build, evaluate and refine computing solutions 
to process and present information whilst making reasoned arguments to justify my decisions” of 
an issue by experiencing the variety of online resources.  
 

9) After the imagery is analysed by participants, the accuracy of habitat identifications 
must be assessed. This is done through ground truthing where surveyors will go to 
identified areas of species-rich grasslands and confirm whether or not the identification 
was correct through standard surveying techniques such as phase 1 habitats.  

Through the process of the project, students should learn about various biological systems 
which can target the code in Sciences SCN 4-01a. Students should “understand how animal 
and plant species depend on each other and how living things are adapted for survival.” from 
information that is available on the citizen science project platform and seeing how certain 
factors (such as larval food presence) influences other factors (such as butterfly occurrence), 
where biological resources and keys will be available related to the project.  
10) The information from the project will be disseminated via various social media 

platforms to raise awareness and increase participation. Outputs from the research 
process will be openly available on appropriate platforms.   

Having an awareness of the different OS systems will tackle specifically the technology codes 
mentioned above to evaluate various digital sources for a variety of purposes.  

Highers Curriculum Targets 
Project Process 

11) The habitat of concern must be classified and sites suitable for in situ field 
measurements to support satellite imagery must be located. This is to increase 
identification accuracy. These initial sites must be where the Northern Brown Argus is 
found, and as such the appropriate habitat conditions must be met. These include 
having the presence of their larval food plant, the common-rock rose on south-facing 
slopes of altitudes less than 350 m. Precise climatic conditions are unknown. Locating 
these sites is conducted using ArcGIS pro. Open access data can be found for the 
distribution of Northern Brown Argus, Common Rock Rose, elevation data, and habitat 
classes found in Scotland. Overlaying these features will narrow results for site 
selection. It is also important to find areas where the Northern Brown Argus is not found 
but its habitat requirements appear to be suitable. It can then be investigated in the 
field as to why the butterfly is not present.  

12) Satellite imagery must be obtained. Certain satellites are now under open licenses and 
accessing imagery is free, such as Landsat and Sentinel data. These images must be pre-
processed and combined with in situ field measurements. Coding programmes that are 
also freely available such as R or Python can be used to process these images. A library 
of images will be collated to use for identification of species-rich grasslands.  
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13) A citizen science platform will be developed on a website such as citsci.org. Here, 
participants can access information about the purpose of the project, how they can 
help, how to identify species-rich grasslands from satellite imagery that is supplied on 
the platforms, and further information such as results, community forums, and in 
person events.  

14) After the imagery is analysed by participants, the accuracy of habitat identifications 
must be assessed. This is done through ground truthing where surveyors will go to 
identified areas of species-rich grasslands and confirm whether or not the identification 
was correct through standard surveying techniques such as phase 1 habitats.  

15) The information from the project will be disseminated via various social media 
platforms to raise awareness and increase participation. Outputs from the research 
process will be openly available on appropriate platforms.   

Meeting the Curriculum 
Areas of Higher Geography, Biology, and potentially Computing Science can be met through the 
various project steps outlined above. In this section of the project, knowledge on areas of the 
course specification for both Higher Biology and Geography can be met. For Higher Biology 
“components of biodiversity” and “threats to biodiversity” will be specifically targeted. Mapping 
species-rich grasslands through remote sensing and identifying sites through ArcGIS will show how 
the habitat has been reduced to small fragmentations to show how “habitat loss…impact[s] on 
species richness”. Identifying sites where the Northern Brown Argus populations have decreased, 
increased, and are stable will demonstrate how species richness varies so that fragmentation 
“may result in a decrease in biodiversity” (Higher Biology). Information on identification keys 
will further knowledge on species richness and ground truthing will demonstrate variance in this 
and diversity by assessing habitats in situ after identification through the citizen science survey. 
Higher Geography will be targeted through “global issues…to demonstrate the interaction of 
physical and human factors”. Obtaining data from various sources (data repositories) and 
interpreting and analysing data in multiple software e.g. ArcGIS/ the citizen science platform) 
and using these to identify site locations in ArcGIS will be relevant for “researching and 
evaluating a wide range of information collected from a range of sources about complex 
geographical issues” as well as for “using a wide range of mapping skills and techniques in 
geographical contexts which may be familiar or unfamiliar”. This will target “information 
handling” as well as “citizenship” aspects (Higher Geography). Higher Computing Science may 
be targeted through web design.   
Suggested Projects/Activities 
Higher Biology – develop their own citizen science project around a protected 
species/habitat/assemblage. Create species richness/diversity surveys. 
Higher Geography – mapping projects. Target another declining habitat through remote 
sensing/GIS. 

Advanced Highers Curriculum Targets 
Project Process 

16) The habitat of concern must be classified and sites suitable for in situ field 
measurements to support satellite imagery must be located. This is to increase 
identification accuracy. These initial sites must be where the Northern Brown Argus is 
found, and as such the appropriate habitat conditions must be met. These include 
having the presence of their larval food plant, the common-rock rose on south-facing 
slopes of altitudes less than 350 m. Precise climatic conditions are unknown. Locating 
these sites is conducted using ArcGIS pro. Open access data can be found for the 
distribution of Northern Brown Argus, Common Rock Rose, elevation data, and habitat 
classes found in Scotland. Overlaying these features will narrow results for site 
selection. It is also important to find areas where the Northern Brown Argus is not found 
but its habitat requirements appear to be suitable. It can then be investigated in the 
field as to why the butterfly is not present.  

17) Satellite imagery must be obtained. Certain satellites are now under open licenses and 
accessing imagery is free, such as Landsat and Sentinel data. These images must be pre-
processed and combined with in situ field measurements. Coding programmes that are 
also freely available such as R or Python can be used to process these images. A library 
of images will be collated to use for identification of species-rich grasslands.  

18) A citizen science platform will be developed on a website such as citsci.org. Here, 
participants can access information about the purpose of the project, how they can 
help, how to identify species-rich grasslands from satellite imagery that is supplied on 
the platforms, and further information such as results, community forums, and in 
person events.  

19) After the imagery is analysed by participants, the accuracy of habitat identifications 
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must be assessed. This is done through ground truthing where surveyors will go to 
identified areas of species-rich grasslands and confirm whether or not the identification 
was correct through standard surveying techniques such as phase 1 habitats.  

20) The information from the project will be disseminated via various social media 
platforms to raise awareness and increase participation. Outputs from the research 
process will be openly available on appropriate platforms.   

Meeting the Curriculum 
Areas of Higher Geography, Biology, and potentially Computing Science can be met through the 
various project steps outlined above. In this section of the project, knowledge on areas of the 
course specification for both Advanced Higher Biology and Geography can be met. For Advanced 
Higher Biology “organisms and evolution” will be specifically targeted. This will be through the 
variety of sampling techniques that are incorporated into the project. When taking in situ field 
measurements at the start of the project and when completing ground truthing after the citizen 
science survey, this will include information on “sampling wild organisms” and  “vulnerable 
species and habitats, which are protected by legislation”. Identification keys will be available as 
part of the citizen science platform to target “Identification and taxonomy Identification of a 
sample…using classification guides, biological keys”. As Northern Brown Argus is an indicator 
species of species-rich grasslands “monitoring populations, presence, absence or abundance of 
indicator species can give information of environmental qualities” in this case site condition. The 
platform of the citizen science project and advertisement of the project and dissemination of 
results will target “Scientific literature and communication [to explain] the importance of 
publication of methods, data, analysis and conclusions in scientific reports”, whilst the open 
nature of the project will promote various practices in the research process. Advanced Higher 
Geography will be targeted through the various mapping systems, obtaining data from multiple 
sources (data repositories) and interpreting and analysing data in software e.g. ArcGIS/ the 
citizen science platform to “demonstrate mapping skills techniques through their ability to use 
evidence from maps and other supplementary items”. The citizen science survey will show 
students methods to “interpret and use information from supplementary items such as maps or 
map-based diagrams”. Certain parts of the project such as in situ measurements will 
demonstrate various techniques such as “Vegetation sampling…to determine the amount and 
variety of vegetation in a prescribed area, for example: vegetation amount — a quadrat, 
randomly thrown, and number of species per square”. Advanced Higher Computing Science may 
be targeted through web design/coding? 
Suggested Projects/Activities 
Advanced Higher Biology – develop their own citizen science project around a protected 
species/habitat/assemblage. Create species richness/diversity surveys. 
Advanced Higher Geography – mapping projects. Target another declining habitat through remote 
sensing/GIS. In situ habitat measurements, vegetation sampling techniques, soil, slope analysis.  
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