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Abstract 

Nonlocal regularisation is frequently used to resolve the mesh-dependency issue caused by 

strain softening in finite element (FE) simulations. Nonlocal methods are proposed based on 

the hypothesis that the response of materials depends on the deformation field of a local 

material point and a weighted average of its neighbouring points. The nonlocal regularisation 

of an anisotropic critical state sand model which can capture the strain-softening and state-

dependent dilatancy response of sand is presented. The evolution of the void ratio is assumed 

nonlocal in this method. The regularisation method has been implemented using the explicit 

stress integration method. 

A comprehensive comparison of three weighting functions (including the Gaussian 

distribution (GD), Galavi and Schweiger (G&S) and over-nonlocal (ON) functions) has been 

investigated in different boundary value problems (BVPs). All functions give mesh-

independent force-displacement relationships in drained and undrained plane strain 

compression tests. The shear band thickness shows a slight variation when the mesh size is 

smaller than the internal length. None of them can eliminate the mesh dependency of shear 

band orientation. The G&S method is the most efficient in eliminating the mesh dependency, 

especially in the strip footing problem. The ON method can give excessive overprediction 

of volume expansion around strip footings, leading to unrealistic low reaction forces on strip 

footings at large deformation. All three weight functions give mesh-independent results for 

the earth pressure acting on a retaining wall. 

A more in-depth investigation of the G&S method is presented. The plane strain compression 

tests with rough boundary conditions under both drained and undrained conditions are 

simulated. Mesh-independent predictions of force-displacement relationship curves, shear 

band orientation and shear band thickness are given. After applying nonlocal regularisation, 

the evolution of state variables obtained from selected elements and cross-sections reduces 

the fluctuation in their changes and significantly diminishes the differences in peak values 

observed across various mesh sizes in the local model. The effectiveness of reducing mesh 

dependency in the nonlocal method increases when the void ratio is higher or when the 

confining pressure increases. 
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Chapter 1: Introduction 

1.1 Background 

Strain localisation refers to the phenomenon in which materials experience significant 

deformation concentration in localised areas when subjected to loading (Weidner and 

Biermann, 2021). This phenomenon typically occurs in certain sections or specific 

locations of the materials. Strain localisation can occur in various geotechnical 

engineering problems, such as failure of slopes or retaining walls, excavations, and 

tunnelling (Lambe and Whitman, 1979; Terzaghi et al., 1996; Peck et al., 2008; Coduto 

et al., 2018).  

The strain localisation in geomaterials such as sand and clay is caused by their 

mechanical behaviour at the element level and external loading conditions (Song and 

Khalili, 2018; Oka and Kimoto, 2021). Strain localisation in geomaterials has been found 

to be influenced by confining pressure, density, boundary conditions, sample size, fabric 

anisotropy and drainage conditions (Chu et al., 1996; Desrues and Viggiani, 2004; Gao 

et al., 2012). Strain localisation in geomaterials, such as soils and rocks, is significantly 

influenced by confining pressure, density, and boundary conditions. Increased confining 

pressure generally enhances the material's strength and ductility, delaying the onset of 

strain localisation and resulting in more diffuse deformation (Wood, 2004). Conversely, 

lower confining pressures reduce strength and ductility, leading to earlier and more 

pronounced strain localisation (Muir Wood, 1990). Density also plays a crucial role, with 

higher density materials exhibiting greater strength and stiffness, thus delaying 

localisation (Vardoulakis & Sulem, 1995). Lower density materials, on the other hand, 

tend to localise strain earlier due to their lower strength and stiffness (Terzaghi et al., 

1996). Boundary conditions further modulate strain localisation, where fixed boundaries 

can increase stress concentrations and promote localisation along specific planes, while 

flexible boundaries allow for more uniform deformation, thus delaying localisation 

(Desrues & Viggiani, 2004; Vardoulakis, 1980). The interplay between these factors is 

complex: high confining pressure combined with high density generally leads to more 

stable, diffuse deformation, whereas low confining pressure and low density encourage 

early and pronounced strain localisation (Schofield & Wroth, 1968; Vermeer & de Borst, 
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1984). Understanding these interactions is crucial for predicting material behaviour 

under stress and is essential for designing stable geotechnical structures 

Experimental evidence indicates that localised deformation is a primarily plastic strain 

(Alshibli et al., 2003; Desrues and Viggiani, 2004; Antolovich and Armstrong, 2014). 

Mathematically, strain localisation is a bifurcation problem from a continuous 

deformation to a discontinuous one (Borja and Aydin, 2004). Therefore, the occurrence 

and development of deformation bands resulting from strain localisation are precursors 

to the failure of geomaterials and geotechnical structures.  

Deformation bands which describe the strain localisation in soils can be categorised 

based on their kinematic properties (Aydin et al., 2006) into three main types: (i) shear 

bands, (ii) compaction bands, and (iii) dilation bands.  

(1) Shear bands are characterised by a dominant shear displacement gradient, often 

accompanied by a reduction in porosity (compaction). In some cases, they can also 

result in an increase in porosity (dilation) (Antonellini et al., 1994). Shear bands are 

typically associated with compaction caused by grain sliding, grain rotation, and/or 

grain fracturing (Aydin, 1978).  

(2) Compaction bands refer to tabular bands where localised porosity reduction or 

compaction occurs without a macroscopic shear offset (Mollema and Antonellini, 

1996).  

(3) Dilation bands are localized zones of deformation within geomaterials characterised 

by volumetric expansion, occurring perpendicular to the maximum compressive 

stress direction and significantly influencing geomaterial behaviour. Unlike shear 

bands, which exhibit shear deformation, or compaction bands, which show 

volumetric contraction, dilation bands involve an increase in volume within the 

affected zone (Desrues & Viggiani, 2004). The formation of dilation bands can 

enhance permeability by creating fluid flow pathways, impacting hydrogeology and 

petroleum engineering (Alshibli & Roussel, 2006). Additionally, these bands 

influence stress redistribution, potentially stabilising localised stress concentrations 

but possibly leading to extensive deformation under persistent stress conditions 

(Holcomb & Rudnicki, 2001). Dilation bands also alter failure mechanisms in 

geomaterials, preceding or accompanying other deformation bands and contributing 

to complex failure processes, essential for predicting and mitigating structural 
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failures in geotechnical engineering (Vardoulakis, 1980). Recognising and 

understanding dilation bands are crucial for assessing the stability and integrity of 

geological and engineered structures, ensuring safety margins in design and analysis 

(Vermeer & de Borst, 1984). 

These bands are characterised by two discrete surfaces and are often observed in 

consolidated, low-porosity brittle rock. Deformation bands can also be classified based 

on the dominant deformation mechanism (Fossen et al., 2007). This classification 

depends on various factors such as grain size, shape, sorting, cementation, mineralogy, 

porosity of the host sediment, and the stress conditions during band formation. Following 

Fossen et al. (2007), four main types can be recognised: 

(1) Disaggregation bands are commonly observed in the deformation of soft sediments (e.g., 

Maltman, 1988, 1994; Fossen et al., 2011; Brandes and Tanner, 2012) and have also been 

reported in deltaic gravels (Exner and Grassemann, 2010). Sometimes referred to as 

microfaults or shear bands in geotechnical engineering literature (e.g., Davis and 

Selvadurai, 2002), these bands accommodate slippage of soft, water-saturated, or 

unconsolidated sediments along shear surfaces with minimal volumetric strain. These 

thin bands are typically porosity-neutral, making them transparent to fluid flow in rocks 

containing these structures. 

(2) Phyllosilicate bands are common in mudrocks and shales, recognized as thin tabular 

zones filled with material resembling fault gouge. These bands may impede fluid flow 

and contribute to anisotropy in the host-rock permeability. They often form in grain-

supported mudrocks (i.e., clay content less than ~35-40%); in higher clay content 

mudrocks, matrix-supported shearing may produce clay-smear zones, associated with 

reduced frictional strength and stable, creep-like frictional stability (Sone and Zoback, 

2014). 

(3) Cataclastic bands are similar to cataclastic compactional shear bands. The textures within 

a cataclastic deformation band show the importance of the deformation mechanism (i.e., 

grain crushing during band formation) and factors such as displacement magnitude. 

Grain-size reduction, shape change (i.e., increased grain angularity), and interlocking can 

lead to strain hardening of cataclastic compactional shear bands (e.g., Katsman et al., 

2004; Kaproth et al., 2010; Wong and Baud, 2012), even at shallow depths (<1 km), 

eventually stopping displacement accumulation. Recognizing cataclastic deformation 
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bands is crucial as they may indicate a shift from strain-hardening banding to strain-

softening faulting in sedimentary sequences. 

(4) Solution and cementation bands record the interaction between grain properties, fluid 

composition, diagenesis, and pre-existing deformation bands. These secondary structures 

have been studied by several researchers (e.g., Antonellini et al., 1994; Parnell et al., 

2004; Fossen et al., 2007; Exner et al., 2013). Grain dissolution and mineral precipitation 

or aggregation, such as pyrite, calcite, silica, and various clays, can either strengthen or 

reduce the permeability of deformation bands through secondary diagenetic alteration 

(Exner et al., 2013). Notable exposures of deformation-band arrays, such as at Devils 

Wall in the Harz Mountains of Germany, are examples of cementation bands formed 

during or after cataclastic deformation bands (Klimczak and Schultz, 2013). 

The development of strain localisation is usually accompanied by a reduction in the 

overall strength of the materials, thus significantly affecting the behaviour of both the 

geomaterials and geotechnical structures. The phenomenon of strain localisation in 

geomaterials is of paramount importance for the study and prediction of geotechnical 

engineering and geological hazards, as it directly relates to the stability and safety of 

geotechnical structures. To prevent and control the adverse effects of strain localisation, 

engineers need to fully consider the properties of the materials and loading conditions 

and take appropriate measures during the design and construction processes. In the 

analysis and design of geomaterials and geotechnical structures, a good predictive 

computational model should be able to fully account for the localisation of deformation 

and the formation and development of shear bands in geomaterials. 

Over the past decades, numerous studies of shear banding have been focused on fluid-

saturated geomaterials. For instance, Rudnicki (2002) used a transversely isotropic 

constitutive relation to observe the occurrence of compaction bands in a porous rock, 

Borja and Aydin (2004) adopted the rate‐independent constitutive model to analyse the 

tabular bands based on shear and volumetric deformations in granular rocks, Jefferies 

(1993) developed Nor-Sand critical state model to model sand by the density, or void 

ratio, Oka et al. (2000) studied the development of shear bands in water‐saturated clay 

under quasi‐ static deformations, Zhang et al. (2000) conducted a dynamic strain 

localisation analysis and simulated the shear banding in fully saturated and partially 

saturated sand samples by elastoplastic model. In recent years, there has been significant 

interest in the phenomenon of strain localisation in unsaturated soils. This interest arises 
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from its relevance to practical engineering applications, such as the failure of unsaturated 

soil slopes (Gens, 2010) and the production and storage of geothermal energy (Brandl, 

2006). Unsaturated soils are three-phase porous media consisting of a deformable solid 

skeleton, pore water, and pore air (Ng and Menzies, 2014). Strain localisation in 

unsaturated soils involves the coupled solid deformation and unsaturated fluid flow 

process. For example, Borja (2004) used the Cam-Clay plasticity model to simulate strain 

localisation of partially saturated porous media, Oka et al. (2018) developed an elasto-

viscoplastic model for dynamic strain localisation in unsaturated soils, Wang and Song 

(2020) implemented a mesoscale constitutive model to analysis the thermal unsaturated 

soils. Research on dry sand has extensively explored its mechanical properties and 

deformation behaviours under various conditions, revealing that it exhibits critical state 

behaviour where it deforms without changes in stress or volume, an insight crucial for 

predicting failure in sandy slopes and foundations (Schofield and Wroth, 1968). Studies 

have demonstrated that dry sand shows peak strength followed by a reduction in residual 

strength, which is important for structures involving large deformations (Lambe and 

Whitman, 1979). Triaxial testing indicates that higher confining pressures enhance shear 

strength and stiffness, vital for structures under high lateral pressures (Wood, 1990), 

while understanding lateral earth pressure is essential for designing retaining walls and 

earth dams (Terzaghi et al., 1996). Research by Tatsuoka et al. (1990) on the effect of 

loading rate has shown that the strength and stiffness of dry sand can be rate-dependent, 

with faster loading rates generally resulting in higher apparent strength and stiffness. This 

finding is crucial for understanding the behaviour of sand in dynamic loading conditions, 

such as traffic loads and seismic events. 

In computational modelling, capturing strain localisation accurately is crucial for 

obtaining realistic and reliable predictions of material behaviour and structural response 

under various loading conditions (Sanavia et al., 2005). Advanced numerical methods, 

such as the finite element method (FEM), can help simulate and analyse the phenomenon 

of strain localisation and its effects on structures and materials. The FEM, as a numerical 

technique, considers the material's constitutive relationship, allowing it to predict the 

entire process of deformation localisation, the formation and development of 

deformation bands, and ultimately the failure of materials and structures. Its results can 

serve as a supplement to the design process or directly be used for design purposes. For 

complex loading conditions and important structures with intricate geometric boundaries, 

finite element analysis is indispensable (Zienkiewicz et al., 1999; Hughes, 2000). 
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Furthermore, simulating the entire process of strain localisation using the FEM helps 

understand the failure mechanism of geomaterials and geotechnical structures. 

However, the response of the FEM continuum after it has reached its peak is inherently 

dependent on the mesh used, as noted by Bažant and Jirasek (2002). Mathematically, this 

mesh dependency is linked to the transformation of the governing partial differential 

equations from elliptic to hyperbolic, which occurs when the material behaviour 

transitions from hardening to softening. Previous research has also highlighted this issue 

(e.g., Mühlhaus, 1986; Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lu et al., 

2019; Cui et al., 2023). Alsaleh et al. (2006) have pointed out that the FE simulation of 

strain localisation is subject to mesh dependency due to the use of classical continuum 

models that do not account for micro-structural factors, such as particle size and 

associated voids. Different methods have been proposed to resolve the mesh-dependency 

issue, including, the strain-gradient enhanced approaches (e.g., Aifantis, 1984; de Borst 

and Mühlhaus, 1992; Dorgan and Voyiadjis, 2003), micro-polar plasticity approach (e.g., 

Mühlhaus, 1986; Alshibli et al., 2006; Tang et al., 2013), nonlocal regularisation method 

(e.g., Eringen, 1972; Lü et al., 2009; Galavi and Schweiger, 2010; Guo and Stolle, 2013; 

Lazari et al., 2015; Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh et 

al., 2021; Gao et al., 2022; Cui et al., 2023) and viscous plasticity theory (e.g., Oka et al., 

1995; Wang et al., 1997; Higo, 2004; Yin et al. 2010). An internal length scale is 

introduced to the constitutive model formulation in these methods, which controls the 

degree of deformation localisation and preserves the well-posedness of the governing 

partial differential equations irrespective of the refinement of the mesh (de Borst et al., 

1993).  

Among these methods, nonlocal regularisation is the most widely used for advanced soil 

models. In the study of strain localisation, nonlocal regularisation is often favoured over 

methods such as viscosity regularisation, strain-gradient enhanced approaches, and the 

micro-polar continuum approach due to several key advantages. Firstly, nonlocal 

regularisation methods effectively mitigate the issue of mesh dependency that often 

arises in numerical simulations of strain localisation, leading to the improvement of the 

credibility of numerical simulations. Secondly, compared to strain-gradient enhanced 

approaches and micro-polar continuum theories, nonlocal regularisation is easier to 

implement within existing finite element frameworks. This is because it does not 

necessarily require significant modifications to the constitutive equations or additional 
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degrees of freedom. This simplicity allows researchers to apply nonlocal regularisation 

methods more quickly, reducing technical barriers to implementation. Finally, although 

nonlocal regularisation introduces some computational overhead, it is often less 

demanding than the highly complex formulations required by micro-polar continuum 

theories or the additional gradients and higher-order terms in strain-gradient methods. 

The improvement in computational efficiency makes nonlocal regularisation methods 

practical for large-scale engineering projects and complex material analyses. 

Nonlocal methods are proposed based on the hypothesis that the response of materials 

depends on the deformation field of a local material point and a weighted average of its 

neighbouring points (Mallikarachchi, 2019). All stress, strain, and state variables are 

considered nonlocal variables in fully nonlocal constitutive models. However, employing 

a fully nonlocal model often leads to complex constitutive equations. As a result, in most 

cases, a partially nonlocal approach is preferred. In a partially nonlocal model, only 

certain state variables (e.g., void ratio, plastic shear strain, or yield surface size) are 

assumed to be nonlocal (Galavi and Schweiger, 2010). When selecting state variables for 

the partially nonlocal approach, several key factors must be considered Firstly, the 

primary consideration should be whether the state variable can influence the strain-

softening results predicted by the model. Secondly, the complexity of the model itself 

must be taken into account. Some state variables in more complex models can be 

challenging to treat as nonlocal due to the intricate physical processes and interactions 

they involve, increasing the difficulty of their nonlocal transformation. Numerical 

implementation complexity is another crucial factor. Even if a state variable has a 

significant impact on strain-softening, if treating it as a nonlocal variable greatly 

increases computational complexity and numerical implementation difficulty, a balanced 

approach must be sought. This might involve simplifying the model or identifying 

alternative variables. Numerical stability and convergence are also critical factors. The 

handling of nonlocal variables must consider their impact on the numerical stability of 

simulations. Some nonlocal variables might introduce additional computational 

complexity and potential numerical instability, necessitating the design of appropriate 

numerical algorithms to ensure stable simulations. 

This approach has proven effective in regularising most soil models with strain softening. 

For example, researchers like Galavi and Schweiger (2010) and Summersgill et al. (2017) 

have assumed that strain softening is governed by the nonlocal plastic shear strain. 
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Additionally, Lu et al. (2011) have proposed the use of a nonlocal plastic multiplier to 

control the increment of plastic strain and regularise soil models exhibiting strain-

softening behaviour. 

1.2 Objective 

The nonlocal method has mainly been used in soil models that have simple strain-

softening rules. In studies conducted by Galavi and Schweiger (2010) and Summersgill 

et al. (2017), the variable that governs strain softening is solely a function of plastic shear 

strain. In such cases, the model can be readily regularised by assuming that the strain-

softening variable depends on the nonlocal plastic shear strain. However, natural sand 

exhibits strain softening influenced by several variables, including void ratio, mean 

effective stress, fabric anisotropy, and plastic strain. The hardening parameter in an 

advanced sand model, which describes strain softening, cannot be explicitly expressed 

in terms of these variables. This complexity poses challenges when applying nonlocal 

regularisation to these models. Instead, the increment of the hardening parameter is 

described in relation to these variables. 

Mallikarachchi and Soga (2020) were among the first to propose a nonlocal 

regularisation method for an advanced sand model, accounting for the influence of void 

ratio and mean effective stress on soil behaviour. Specifically, they assumed that the void 

ratio increment depends on the void ratio increment at both local and neighbouring 

integration points. This approach effectively reduces the mesh dependency of model 

predictions for drained and undrained plane strain compression tests. However, this 

method has not yet been applied to practical geotechnical problems; meanwhile, the 

impact of weighting functions has not been investigated. Furthermore, the integration of 

this regularisation method with explicit/implicit stress integration methods has not been 

addressed. Hence, this thesis builds upon the work of Mallikarachchi and Soga (2020) 

by implementing an advanced sand model that considers anisotropy and fabric 

characteristics within the framework of nonlocal theory.  

 

1.3 Thesis Outline 

The outline of this thesis is as follows: 
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In Chapter 2, an introduction and comparison of four mainstream regularisation 

methodologies were presented. Following that, a detailed exploration of the evolution 

and development of fully nonlocal theory to partially nonlocal theory within the nonlocal 

method is provided, along with a review of their previous applications. 

In Chapter 3, an anisotropic critical state sand model used in this thesis was introduced, 

and the validation of the model using experimental tests was presented. 

In Chapter 4, three different weight functions: (1) Gaussian distribution (GD) function, 

(2) GandS distribution function (G&S), and (3) Over-nonlocal (ON) method were 

compared and introduced. Then, the nonlocal formulation of the constitutive model and 

implementation in Abaqus was discussed. 

In Chapter 5, a comprehensive comparison of three different weight functions was 

carried out by various BVPs, including drained and undrained plane strain compression 

tests, the strip footing problems on level ground and near a slope, and retaining wall 

problems under both passive and active conditions. 

In Chapter 6, plane strain compression tests with rough boundary under both drained and 

undrained analysis are simulated. The effect of initial density and confining pressure on 

the nonlocal regularisation method is discussed. Furthermore, the evolution of state 

variables within the shear band under smooth boundary conditions is investigated by 

cross-sections and selected elements (inside and outside the shear band). Additionally, 

the effect of anisotropy on strain localisation is investigated using soil samples with 

various bedding plane orientations. Finally, this chapter also investigated the nonlocal 

method in three-dimensional boundary value problems. 

Chapter 7 summarises the conclusions and perspectives reached in the previous chapters. 
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Chapter 2：Literature review  

2.1 Introduction 

When a sand model with strain-softening is used in boundary value problems such as plane 

strain compression problems and footing problems, the solution can become unreliable due 

to the mesh-dependency. For example, the shear band thickness, shear band orientation and 

stress-strain relationship are affected by mesh size. The mesh-dependency is caused by the 

assumption used in standard elastoplastic models that the stress–strain relationship at an 

integration point is dependent on the local stress, strain and state variables only. 

Mathematically, this mesh dependency is associated with the change in the governing partial 

differential equations from elliptic to hyperbolic, which happens when the material behavior 

shifts from hardening to softening. 

Different methods have been proposed to resolve the mesh-dependency issue, including 

viscous plasticity theory (e.g., Oka et al., 1995; Wang et al., 1997; Higo, 2004; Yin et al., 

2010), strain-gradient enhanced approach (e.g., Aifantis, 1984; de Borst and Mühlhaus, 1992; 

Dorgan and Voyiadjis, 2003), micro-polar plasticity approach (e.g., Mühlhaus, 1986; 

Alshibli et al., 2006; Tang et al., 2013) and nonlocal regularisation method (e.g., Eringen, 

1972; Lü et al., 2009; Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lazari et al., 2015; 

Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022; 

Cui et al., 2023). The mesh-dependency issue can be addressed by incorporating the internal 

length scale in the constitutive models or regularisation methods.  

This Chapter mainly focuses on introducing four different regularisation methodologies, 

including the viscosity regularisation method, strain-gradient enhanced approach, micro-

polar continuum approach and nonlocal method.  

 

2.2 Viscosity regularisation method 

Visco-plasticity is a theory within continuum mechanics that characterises the rate-

dependent inelastic behaviour of solids. In one-dimensional representation, the elastic 

response of visco-plastic materials can be modelled using Hookean spring elements. The 

rate-dependence can be represented by nonlinear dashpot elements, similar to viscoelastic 
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materials, as for plasticity, which can be described by adding sliding frictional elements, as 

shown in Figure 2.1. 

(a) 

 (b)  

(c)  

(d) 

Figure 2.1 Demonstration of visco-plastic model: (a) Spring element; (b) Dashpot; (c) 

Sliding friction element; (d) Visco-plastic model 
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Viscosity regularisation relies on reducing and distributing high deformation rates in the 

localised region within the finite element mesh using viscosity. This utilisation of visco-

plasticity as a regularisation method is primarily linked to rate-dependent behaviour. The 

rate-dependency was used to describe mesh sensitivity for localisation problems in metal 

(Needleman, 1988; Shawki and Clifton, 1989), rock and concrete fracture (Sluys and de 

Borst, 1991), saturated porous media (Loret and Prevost, 1991), dilatant materials and clay 

(Oka et al., 2002; Yin and Hicher, 2008; Yin and Karstunen, 2011). In many cases, materials 

behave differently under different strain rates. For example, metals may exhibit strain rate 

sensitivity. When using visco-plasticity, the model takes into account the rate at which 

deformation occurs, and this can help in reducing the mesh dependency because it considers 

the local deformation rates. However, adding an artificial feature, such as internal length, to 

the material behaviour is necessary when visco-plasticity does not display rate dependence 

(Dias da Silva, 2004). Needleman (1988) also pointed out that even though the dimensions 

of internal length in the classical visco-plastic model are unclear, rate-dependent constitutive 

models inherently introduce an internal length scale into the governing equations.  

Various factors such as the shear wave speed, shear modulus, softening parameter, and 

viscosity parameter are considered influential in determining the thickness of the shear band 

(Dias da Silva, 2004). These factors can be connected to the cutoff value of the strain rate at 

the boundary of the shear band through an implicit parameter with an internal characteristic 

length scale. This length scale is defined in terms of the viscosity 휂𝑣, Young’s modulus 𝐸 

and the mass density 𝜌 as below： 

𝑙𝑐 =
𝑣

√𝐸𝜌
                                                          (2.1) 

Meanwhile, the viscosity regularisation technique does not need any additional global 

discretisation since it only requires operations at the constitutive model level, whose 

implementation in common non-linear finite element packages is well-established (Dias da 

Silva, 2004).  

Wang et al. (1997) proposed a visco-plastic model for one-dimensional element analysis. 

The strain rate distribution along the element was implicitly expressed by the internal length 

scale, and this improvement has facilitated better prediction of shear band thickness. Wang 

et al. (1997) found that the thickness of strain localisation increases when the absolute value 

of the softening parameter decreases or the viscosity parameter increase. The determination 

of the thickness of the strain localisation also depends on the minimum value between the 
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internal length scale and the imperfection size. It has been observed that when the 

imperfection size is smaller than the material length scale, it dominates the shear band 

thickness. However, if the imperfection size exceeds the material length scale, the influence 

of the imperfection diminishes, and the shear band thickness is primarily determined by the 

material length scale. In essence, the relative sizes of the imperfection and the material length 

scale dictate their respective contributions to the shear band thickness (Wang et al., 1997).  

Furthermore, visco-plasticity is commonly modelled in two dimensions using the overstress 

theory proposed by Perzyna (1963) and Duvaut and Lions (1972). These theories provide 

frameworks for capturing the complex rate-dependent behaviour and inelastic response of 

materials under two-dimensional loading conditions. In the Perzyna and Duvaut-Lions 

visco-plastic theories, an important distinction from the inviscid plasticity theory stems from 

the fact that the current stress states can be outside the yield surface and that the yield 

function may have a value larger than zero. However, when the viscosity goes to zero, the 

model proposed by Perzyna may not converge to the inviscid solution (Simo et al., 1988). 

The Duvaut-Lions model also has the limitation that it must be used in conjunction with an 

integration algorithm for the inviscid elastoplastic rate equations, in which the initial stress 

is used only to compute the trial stress since it may be outside the yield surface. Thus, Dias 

da Silva (2004) proposed an elastoplastic rheological model (Figure 2.2 and 2.3) for viscous 

regularisation that combines a Maxwell-type visco-elastic behaviour to avoid the limitations 

in Perzyna and Duvaut-Lions models. 

The mesh sensitivity results, illustrated in Figure 2.2, demonstrate varying directions and 

thicknesses of the shear bands observed in the two different meshes. However, Figure 2.3 

shows the results obtained when the viscosity is introduced employing the rheological model. 

It can be observed that the results obtained are more similar, with shear bands with the same 

directions in both meshes. 
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Figure 2.2 Shear bands in a von Mises specimen using two different meshes: computation 

with low viscosity using the rheological model (Dias da Silva, 2004) 

 

Figure 2.3 Shear bands in a von Mises specimen using two different meshes and the 

rheological model (Dias da Silva, 2004) 
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Moreover, the primary advantage of viscosity regularisation is that it does not necessitate 

additional global discretisation. Instead, it only requires supplementary operations at the 

local level within constitutive models. This makes its implementation straightforward in 

common nonlinear finite element packages. Additionally, viscosity regularisation is 

effective for both the de-cohesion failure mechanism and the slip-driven softening failure 

mechanism (Wang et al.,1997; Dias da Silva, 2004). However, there are certain 

disadvantages associated with viscosity regularisation. It needs to introduce the viscosity to 

describe material behaviour, even when the material does not exhibit rate dependence. This 

limits its applicability to transient loading conditions. Furthermore, the regularising effect of 

viscosity regularisation diminishes rapidly for slow loading rates or when approaching the 

rate-independent limit. 

 

2.3 Strain-gradient enhanced approaches 

The strain-gradient theory and nonlocal theory belong to a common theoretical category. 

Strain-gradient models can be derived from nonlocal models by expanding the kernel of the 

integral employed in the averaging procedure for the plastic strains (Liu, 2018). In the 

beginning, second and higher-order elasticity gradient theory was introduced and applied in 

the constitutive modelling to describe the effect of the microstructure on material behaviour 

(Toupin, 1962; Mindlin, 1965; Eringen, 1966). Kröner (1967) and Eringen and Edelen (1972) 

extended the implementation of strain-gradient enhanced approaches based on elasticity 

gradients theory. Then, the elasticity gradient theory was developed for plasticity by some 

researchers. The plasticity gradient theory was first used to analyse persistent slip bands 

(Aifantis, 1984) and shear bands in metals (Coleman and Hodgdon, 1985). The higher-order 

gradient theory was combined with the flow rule and the yield function by Vardoulakis and 

Aifantis (1989, 1991). The plasticity gradient theory was also implemented in water-

saturated soils, and the strain localisation exhibits a strong dependence on the strain gradient, 

which was shown by Chikazawa et al. (2001) via a gradient-dependent visco-plastic 

constitutive model.  

Both elastic and plastic strain-gradient models consist of higher-order gradient terms 

(Laplacian) in governing equations. These terms integrate a length scale and can regularise 

the strain softening. According to the governing equations, the strain-gradient theories can 

be divided into explicit and implicit strain-gradient theories. In explicit strain-gradient 
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theories, higher-order deformation gradients enter the equilibrium equations explicitly. In 

implicit strain-gradient theories, the gradient influences more implicitly from an additional 

partial differential equation.  

Based on the direct use of higher-order derivatives of the local plastic strain in the yield 

condition, the explicit gradient theory, which utilises higher-order derivatives of the local 

plastic strain in the yield condition, was developed by Aifantis (1987) for modelling strain 

localisation in metals. However, it is important to note that the explicit gradient formulations 

are only valid in the plastic domain. The implicit gradient theory was developed to address 

the numerical challenge caused by explicit gradient theory. It involves formulating a 

Helmholtz-type partial differential equation (PDE) with appropriate boundary conditions. 

This approach is applicable in both the elastic and plastic domains. By using the Helmholtz-

type PDE, the newly introduced nonstandard variable becomes connected to the local 

internal variable either throughout the entire body or, at the very least, exhibits long-range 

interactions. As a result, this preserves a significant nonlocal feature (Xue et al., 2022). de 

Borst et al. (1991, 1992, 1996) introduced implicit gradient plasticity formulations (Equation 

2.2) that imposed limitations on the yield function, specifically restricting it to second-order 

derivatives. This restriction enabled the yield function to depend not only on the hardening 

parameter itself but also on the Laplacian of the hardening parameter. The work of de Borst 

and Mühlhaus (1991), de Borst et al. (1993), Pamin (1994), and de Borst and Pamin (1996) 

further explored and developed these formulations. 

The gradient dependence is included solely in the definition of the yield function 𝑓： 

𝑓(𝜎𝑖𝑗 , 𝜅, ∇
2𝜅) = 0                                            (2.2) 

where 𝜅 is the hardening parameter and ∇2 is the second order of Laplacian. 

Gradient plasticity offers a notable advantage over nonlocal theory in that the consistency 

condition results in a partial differential equation instead of an integral differential equation. 

𝑓̇ = 𝑛𝑖𝑗
𝑇 �̇�𝑖𝑗 − ℎ

𝑝�̇� + 𝑔𝑝∇2�̇� = 0                                  (2.3) 

where 𝑛𝑖𝑗, ℎ
𝑝 and 𝑔𝑝 are given by, 

𝑛𝑖𝑗 =
𝜕𝑓

𝜕𝜎𝑖𝑗
                                                    (2.4) 
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ℎ𝑝(𝜅, ∇2𝜅) = −
�̇�

�̇�

𝜕𝑓

𝜕𝜅
                                             (2.5) 

𝑔𝑝(𝜅) =
�̇�

�̇�

𝜕𝑓

𝜕∇2𝜅
                                               (2.6) 

in which 𝑛𝑖𝑗 is the gradient to the yield function; ℎ𝑝 is the hardening modulus; �̇� is a plastic 

multiplier and 𝑔𝑝  is a gradient influence variable. For strain softening, the hardening 

modulus ℎ𝑝 is negative and the additional variable 𝑔𝑝 must be positive. When 𝑔𝑝  =  0, the 

theory reverts to the classical plastic flow theory. However, when ℎ𝑝  < 0 the tangential 

stiffness matrix 𝐷𝑒𝑝 becomes non-symmetric, leading to a tendency towards instability. The 

objective of the strain-gradient enhanced approaches is to maintain the well-posedness of 

the governing equations for materials that do not meet the material stability requirement. 

The gradient term present in Equation (2.6) can act as a stabiliser when ℎ𝑝 < 0 which ensures 

that the governing partial differential equation (Equation 2.3) maintains ellipticity even after 

the onset of strain localisation. Moreover, when addressing mesh dependency issues in finite 

element analysis, the strain-gradient theory is also implemented by introducing the concept 

of an internal length. The gradient influence variable 𝑔𝑝 can be expressed as 𝑔𝑝 = −ℎ𝑝𝑙𝑐
2 

(Pamin, 1994), and the mesh-independent result of strain-gradient theory under the biaxial 

compression test is shown in Figure 2.4. 

(a) 
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(b) 

Figure 2.4 Load-displacement diagrams for (a) Classical continuum and (b) Strain-gradient 

model (de Borst and Pamin, 1996) 

 

The nonlocal implicit gradient theory, utilising the Helmholtz-type PDE, has been 

effectively combined with various models to regularise ill-posed boundary value problems 

(BVPs) in the context of concrete and soils. These combinations include plasticity models 

(Miehe et al., 2013), damage models (Zreid and Kaliske, 2016), and a mesh-adaption 

framework (Na et al., 2019). More recently, within a thermodynamics framework (Forest, 

2009), several classes of high-order continuum approaches have been proposed. Examples 

of these include the tensorial gradient plasticity model (Poh et al., 2011), large-deformation 

gradient plasticity model (Anand et al., 2012), and non-associative pressure-dependent 

gradient plasticity model (Lü et al., 2020). Thus, the implicit gradient theory has enabled the 

natural derivation of the generalised balance equation and nonlinear constitutive relations 

between generalised stresses and strains through the additional micro-variable and the 

conjugate generalised stresses. 

Moreover, there are still some differences between explicit and implicit gradient-enhanced 

approaches. Firstly, in the implicit gradient-enhanced softening model, spatial interactions 

extend across the entire domain, similar to the nonlocal model (Peerlings et al. 2001). This 
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means that the effects of deformation at any point can influence other points throughout the 

domain. On the other hand, the explicit gradient-enhanced softening formulation is 

considered local in a mathematical sense. This means that the nonlocal strain at a particular 

point depends solely on the local strain and its gradients at that same point. In this situation, 

spatial interactions are limited to an infinitesimal neighbourhood around each point. As a 

result, the influence of deformation is confined to a localised region rather than spanning the 

entire domain. Secondly, fourth-order displacement derivatives in the equilibrium equations 

were introduced by an explicit gradient-enhanced approach. Stronger continuity 

requirements were imposed on displacements by the explicit gradient-enhanced softening 

formulation compared to the implicit gradient-enhanced softening and nonlocal approaches. 

These stronger continuity requirements can pose challenges under some specific 

circumstances, for stance, singular deformation fields or strongly localised. Meeting these 

requirements may be difficult, and it can significantly impact the predicted response of the 

material.  

 

2.4 Micro-polar continuum approach 

Cosserat brothers first proposed the Cosserat theory, also known as the micro-polar theory 

(Cosserat and Cosserat, 1909). The Cosserat theory enables us to describe the rotational and 

translational deformations of grains at the particle level by introducing three additional 

degrees of freedom of a single grain. Micro-rotations are related to micro-curvatures and 

couple stresses. A rotational degree of freedom is defined with the rotation axis orthogonal 

to the 2D plane, the micro-curvatures are spatial derivatives of the rotational degree of 

freedom, and the coupled stresses energetically conjugate to the micro-curvatures. The 

moment stresses (moment per area) are provided by the rotational degree of freedom. 

Therefore, the material may then oppose a couple stress to the development of curvature 

(Khoei et al. 2007). The introduction of the couple stress leads to a non-symmetric stress 

tensor (Ebrahimian et al. 2012). Moreover, the internal length scale relates a couple stress to 

micro-curvature. This internal length scale can be introduced to the constitutive model to 

control the shear band thickness and regularise the strain softening. 

In the beginning, the fundamental linear equations of Cosserat elasticity were derived based 

on the Cosserat theory, and the solution was obtained by Mindlinin (1965). Then, Neuber 

(1965) applied this theory to distribute the surrounding stress of a circular hole under 
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uniaxial tension. The Cosserat continuum theory became popular in geomechanics in the 

mid-1970s. The finite element method with independent rotations began with Mülhaus et al. 

(1987). The thickness of shear bands in granular materials was analysed by Cosserat 

kinematics continuum theory in a two-dimensional problem. This is a significant 

implementation of the Cosserat continuum in strain localisation. The overall rotation (𝜔𝑖𝑗) 

was used in the continuum equations of their work, which is different from the grain or the 

Cosserat rotation (𝜔𝑖𝑗
𝑐 ). Thus, non-symmetric stain and stress tensors were caused by the 

deviation in the rotation (couple stress), which differs from classical tensors.  

The classic strain tensors can be divided into an antisymmetric (spin tensor) and a symmetric 

component (stretch tensor). Due to the differences in displacement gradients, the spin tensor 

is generally related to micro-rotation (Liu, 2018). However, the classic strain tensors of 

conventional continuum mechanics only consider macro-rotation, which fails to capture the 

real kinematics, such as micro-rotation in granular materials. Thus, Cosserat theory (micro-

polar theory) is proposed by independent micro-rotations of material points, as seen in Figure 

2.5 (an element having four material points): 

 

Figure 2.5 Separation between micro-rotation and macro-rotation in 2D space and their 

effect on the kinematics (Liu, 2018) 
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In the two-dimensional Cosserat continuum, each material point possesses three degrees of 

freedom. These degrees of freedom consist of two translational degrees (𝑢𝑥, 𝑢𝑦) and one 

rotational degree ( 𝜔𝑧). This configuration aligns with the representation of rotation for 

particles with a rotational axis perpendicular to the two-dimensional plane. The displacement 

vector 𝑢 can be expressed as follows: 

𝑢 = [𝑢𝑥, 𝑢𝑦, 𝜔𝑧]
𝑇                                             (2.7) 

During deformation, the displacement of each element is displaced by (𝑢𝑥, 𝑢𝑦) while it is 

rotated by the angle 𝜔𝑧 around the z-axis.  

The corresponding strain vector is defined as: 

휀 = [휀𝑥𝑥, 휀𝑦𝑦 , 휀𝑧𝑧, 휀𝑥𝑦, 휀𝑦𝑥, 𝑘𝑥𝑧𝑙𝑐, 𝑘𝑦𝑧𝑙𝑐 ]
𝑇                          (2.8) 

where 𝑙𝑐  is defined as the internal length scale, taken into the strain tensor to make all 

components dimensionless. 𝑘𝑥𝑧 and 𝑘𝑦𝑧 are the micro curvatures. 

The 𝑘𝑥𝑧 and 𝑘𝑦𝑧 are introduced in the Cosserat continuum and are defined as:  

𝑘𝑥𝑧 =
𝜕𝜔𝑧

𝜕𝑥
, 𝑘𝑦𝑧 =

𝜕𝜔𝑧

𝜕𝑦
                                            (2.9) 

The strain components in the Cosserat continuum are defined as: 

휀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
 , 휀𝑦𝑦 =

𝜕𝑢𝑦

𝜕𝑦
                                        (2.10) 

휀𝑥𝑦 =
𝜕𝑢𝑦

𝜕𝑥
− 𝜔𝑧, 휀𝑦𝑥 =

𝜕𝑢𝑥

𝜕𝑦
+ 𝜔𝑧                               (2.11) 

The corresponding stress vector is defined as: 

𝜎 = [𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧 , 𝜎𝑥𝑦, 𝜎𝑦𝑥 , 𝜇𝑥𝑧𝑙𝑐, 𝜇𝑦𝑧𝑙𝑐 ]
𝑇                       (2.12) 

where 𝜇𝑥𝑧 and 𝜇𝑦𝑧 are the couple stress tensor. 

As Figure 2.6 shows, the stress distribution becomes unsymmetric when additional rotational 

degrees of freedom are applied to two-dimensional problems. This is caused by the existence 

of a rotational degree of freedom and couple stresses. 
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Figure 2.6 Asymmetry stress distribution in micro polar theory (Liu,2018) 

The stress and strain tensors can be decomposed into the symmetric and skew-symmetric 

parts, in which the symmetric tensors [𝜎]𝑠𝑦𝑚  and [휀]𝑠𝑦𝑚  introduce the stress and strain 

tensors in the classical continuum and the skew-symmetric tensors [𝜎]𝑠𝑘𝑤  and [휀]𝑠𝑘𝑤 

indicate the effects of couple stress and rotation in the Cosserat continuum. 

The strain tensor can be rewritten as: 

휀𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑖
− 𝑒𝑖𝑗𝑘𝜔𝑧                                          (2.13) 

where 𝑢𝑖 is the component of the displacement vector, and 𝑒𝑖𝑗𝑘 is Ricci permutation tensor 

which is defined as a completely antisymmetric tensor in three dimensions. 𝑒𝑖𝑗𝑘 = 1  if 

(𝑖, 𝑗, 𝑘) is an even permutation of (1, 2, 3), 𝑒𝑖𝑗𝑘 = −1 if (𝑖, 𝑗, 𝑘) is an odd permutation, and 

𝑒𝑖𝑗𝑘 = 0 if any index (𝑖, 𝑗, 𝑘) is repeated. In three dimensions only, the cyclic permutations 

of (1, 2, 3) are all even permutations, similarly the anticyclic permutations are all odd 

permutations. This means in three dimensions, it is sufficient to take cyclic or anticyclic 

permutations of (1, 2, 3) and easily obtain all the even or odd permutations. From Equation 

(2.13), it is clear that the strain tensor is not symmetric. The gradient of the micro-rotation 

vector is known as the micro-curvature tensor and is defined in the form of: 

𝑘𝑖𝑗 =
𝜕𝜔𝑖

𝜕𝑥𝑖
                                                        (2.14) 

while the strain tensor 휀𝑖𝑗 is work conjugate to the stress tensor 𝜎𝑖𝑗, the curvature tensor 𝑘𝑖𝑗 

is work conjugate to the couple stress tensor  𝜇𝑖𝑗.  

The constitutive equations governing an elastic Cosserat medium can be expressed as: 

https://en.wikipedia.org/wiki/Even_and_odd_permutations
https://en.wikipedia.org/wiki/Odd_permutation
https://en.wikipedia.org/wiki/Cyclic_permutation
https://en.wikipedia.org/wiki/Anticyclic_permutation
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𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙휀𝑘𝑙                                             (2.15) 

𝜇𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙𝑘𝑘𝑙                                             (2.16) 

As for the three-dimensional condition, the displacement vector 𝑢 defined as follows: 

𝑢 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , 𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇                                (2.17) 

The corresponding strain vector is defined as: 

휀 = [휀𝑥𝑥, 휀𝑦𝑦, 휀𝑧𝑧, 휀𝑥𝑦, 휀𝑦𝑥, 휀𝑦𝑧 , 휀𝑧𝑦, 휀𝑧𝑥, 휀𝑥𝑧 ,
𝑘𝑥𝑥

𝑙𝑡
,
𝑘𝑦𝑦

𝑙𝑡
,
𝑘𝑧𝑧

𝑙𝑡
,
𝑘𝑥𝑦

𝑙𝑐
,
𝑘𝑥𝑧

𝑙𝑐
,
𝑘𝑦𝑥

𝑙𝑐
,
𝑘𝑦𝑧

𝑙𝑐
,
𝑘𝑧𝑦

𝑙𝑐
,
𝑘𝑥𝑧

𝑙𝑐
 ]𝑇    

(2.18) 

where 𝑙𝑡 is the internal length related to bending couple stress. 

The corresponding stress vector is defined as: 

𝜎 =

[𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦 , 𝜎𝑦𝑥 , 𝜎𝑦𝑧, 𝜎𝑧𝑦, 𝜎𝑧𝑥 , 𝜎𝑥𝑧, 𝜇𝑥𝑥𝑙𝑡, 𝜇𝑦𝑦𝑙𝑡 , 𝜇𝑧𝑧𝑙𝑡 , 𝜇𝑥𝑦𝑙𝑐 , 𝜇𝑥𝑧𝑙𝑐 , 𝜇𝑦𝑥𝑙𝑐 , 𝜇𝑦𝑧𝑙𝑐 , 𝜇𝑧𝑥𝑙𝑐 , 𝜇𝑧𝑦𝑙𝑐  ]
𝑇     

                                                                                                                                        (2.19) 

The pioneering research of combining finite element code with Cosserat theory was done by 

de Boest (1993). The internal length was used in strain localisation at failure conditions, 

laying the foundation for the regularisation technique. After work by de Boest, the Cosserat 

continuum model was established as the regularisation approach to investigate strain 

localisation problems (Tejchman and Wu, 1993). The efficiency of the Cosserat theory as a 

regularisation technique was also investigated by Ristinmaa and Vecchi (1996). Moreover, 

higher grade micro-polar materials that exhibit an internal length scale were introduced by 

Iordache and Willam (1998). In their work, the micro-polar Cosserat continua was used to 

examine the regularisation properties of discontinuous bifurcation problems. Researchers 

have recently extended the use of the Cosseart micro-polar continuum theory as a 

regularisation approach in some two-dimensional problems to model strain localisation. 

Alsaleh and Alshibli, respectively, have enriched the theoretical research and implantation 

of the micro-polar method. The mesh-independent results of strain localisation in granular 

materials came up by their enhanced Lade’s single hardening model (Alsaleh et al., 2006; 

Alshibli et al., 2006). In addition, Liu (2018) presented a mesh-independent result of a micro-

polar model under the biaxial compression test shown in Figures 2.7-2.9. 
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The micro-polar models show mesh-independent results for load-displacement curves 

(Figure 2.7) and equivalent plastic strain distribution plots (Figures 2.8 and 2.9). In Figure 

2.7(a), the strain hardening part is insensitive to the mesh size until the peak and becomes 

mesh-dependent in the strain softening part. Coarse mesh displays more stiff behaviours in 

the softening regime than in a fine mesh. In Figure 2.7(b), the load-displacement curves of 

the other three fine meshes coincide with each other. Moreover, as illustrated in Figure 2.8, 

the shear band becomes thicker when the element size becomes coarse for the classical 

models. In contrast, for the micro-polar model shown in Figure 2.9, the shear band thickness 

is almost the same for the models with different mesh sizes. 

 

(a) 
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(b) 

Figure 2.7 Load-displacement curve for (a) Classical continuum and (b) Micro-polar model 

(Liu, 2018) 

 

 

Figure 2.8 Shear bands of four different mesh sizes using the classical model: (a) mesh 

10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 (Liu, 2018) 
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Figure 2.9 Shear bands of four different mesh sizes using the micro-polar model: (a) mesh 

10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 (Liu, 2018) 

 

In addition, Khoei et al. (2010) and Tang et al. (2013) presented a Cosserat micro-polar 

continuum model for three-dimensional problems to model strain localisation. For example, 

in a 3D tensile strip problem, the results indicate that Cosserat analyses regularise the 

localisation zone, whereas the classical solution exhibits a sudden jump at the edge of the 

localised region. (Figures 2.10-2.12). 

For a classical model in Figure 2.10, the shear band thickness of the fine mesh is much 

smaller than the one obtained from the coarse mesh, and the mesh distortion can be observed. 

Meanwhile, the maximum value of effective plastic strain for a classical solution with fine 

mesh is almost twice the coarse mesh. On the contrary, the maximum values of effective 

plastic strain obtained by the Cosserat model from Figure 2.11 (b) are similar to one obtained 

from the coarse mesh in Figure 2.11 (a). Furthermore, the variations with displacement of 

predicted reaction are plotted in Figure 2.12 for the Cosserat and classical models using 

different meshes. The mesh objectivity of the Cosserat model is obvious in this figure, 

particularly when the internal length 𝑙𝑐 = 2 and 3 mm. The decrease of 𝑙𝑐  increases the 

mesh dependency of the solution. However, these results are much better than the classical 

ones. 
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Figure 2.10 The effective plastic strain contours and deformed meshes for a strip in tensile 

using Classical theory: (a) coarse mesh; (b) fine mesh size (Khoei et al., 2010) 

 

 

 

  

(b) 

(a) 



Chapter 2：Literature review                                                                                                                    28 

 

Figure 2.11 The effective plastic strain contours and deformed meshes for a strip in tensile 

using Cosserat theory: (a) coarse mesh; (b) fine mesh size (Khoei et al., 2010) 

  

  

(a) 

(b) 
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Figure 2.12 The load-displacement curves for a strip in tension; a comparison between the 

classical and Cosserat models at various internal length parameters (Khoei et al., 2010) 

In summary, the micropolar approach considers the rotations of individual grains and the 

resulting couple stresses during shearing, even though these effects may remain negligible 

during homogeneous deformation. This consideration of grain rotations and couple stresses 

aligns with the physical behaviour observed in experiments. Therefore, the micropolar 

approach is believed to provide a more appropriate representation of shear zones in granular 

materials.  

 

2.5 Nonlocal method  

The nonlocal method is proposed based on the hypothesis that material responses should 

depend on the deformation field of a local material point and its neighbourhood points 

(Mallikarachchi, 2019). In the nonlocal approach, the softening rules of local variables 

usually depend on nonlocal variables (spatial averaging value of surrounding points) within 

a representative volume of the material (Galavi and Schweiger, 2010). The internal 
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characteristic length scale defines the representative volume's diameter and controls the 

shear band thickness and location.  

At first, the nonlocal methods were implemented in various branches of physical sciences, 

e.g., in the optimisation of slider bearings (Rayleigh, 1918), the modelling of liquid crystals 

(Oseen, 1933), radiative transfer (Chandrasekhar, 1950), and electric wave phenomena in 

the cortex (Hodgkin, 1964). Rogula (1965) proposed a nonlocal form of the constitutive law 

for elastic materials. Nonlocal elasticity was subsequently refined by Eringen and Edelen 

(1972). All these early studies, frequently motivated by homogenisation of the atomic theory 

of Bravais lattices, aimed to provide a more accurate description of phenomena occurring in 

crystals on a scale comparable to the range of interatomic forces. They showed that nonlocal 

continuum models can approximate the dispersion of short elastic waves and improve the 

description of interactions between crystal defects such as vacancies, interstitial atoms, and 

dislocations (Bažant and Jirasek, 2002).  

Subsequently, Eringen (1981, 1983) was the first to extend nonlocal theory from elasticity 

to plasticity as a way of describing the stress field at a fracture front. The nonlocal 

formulations of isotropic hardening plasticity in strain space were developed by Eringen 

(1981). After this, nonlocal theories of plasticity were formulated in stress space by Eringen 

(1983). According to the flow theory, Eringen (1983) considered only perfect von Mises 

plasticity with an associated flow rule. However, Eringen’s formulation was not meant to 

serve as a localisation limiter. The first nonlocal formulation of softening plasticity was 

proposed by Bažant and Lin (1988) and was initially introduced to describe strain 

localisation phenomena of softening materials. They successfully implemented the plasticity 

nonlocal theory in their subway project, a finite element analysis of the stability of unlined 

excavation of grouted soil.  

Recently, a great variety of nonlocal models have been introduced and developed in a 

significant number of studies (Lü et al., 2009; Galavi and Schweiger, 2010; Guo and Stolle, 

2013; Lazari et al., 2015; Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh 

et al., 2021; Gao et al., 2022; Cui et al., 2023). In these models, the selected softening 

variable varied with the adopted constitutive model. However, choosing the appropriate 

nonlocal variable can be a challenging task, as it relies on factors such as the type of material 

being modelled and the specific characteristics of the problem that need to be addressed.  
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Moreover, nonlocal methods are effective in addressing de-cohesion and slip failure 

mechanisms. Specificity, when considering the total stress-strain relationship without 

decomposing them into elastic and plastic components, nonlocal approaches prove to be 

more computationally efficient compared to strain-gradient models. However, the nonlocal 

softening approach is only efficient for weak and no discontinuity, which is related to 

softening with dilatant behaviour. Therefore, the dilatant granular particles such as dense 

sand or over-consolidated clays can be successfully modelled in the nonlocal method 

(Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Gao et al., 2022; Cui et al., 2023). 

However, it is not suitable for problems involving the development of fractures and de-

cohesion (Galavi and Schweige, 2010). 

 

2.5.1 Development of nonlocal method 

The original philosophy was introducing the nonlocal character to both stress and strain, 

which was later termed the fully nonlocal theory (Eringen and Kim, 1974; Bažant and Chang, 

1984; Bažant and Jirasek, 2002). They were too complicated to be implemented in finite 

element formulations (Bažant and Jirasek, 2002). Eringen and Kim (1974) simplified the 

theory, considering only the constitutive relationship as nonlocal while equilibrium 

equations remain unaltered. Due to excessive computational demand, later the nonlocal 

treatment was applied only to the softening parameter which drives the yield stress 

degradation. This kind of approach was termed the partially nonlocal theory (Bažant and 

Pijaudier, 1988; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022). The 

selected softening variable varied with the adopted constitutive model. 

 

(1) Fully nonlocal theory 

Generally, full nonlocal softening treats both stresses and strains as nonlocal parameters. 

The average stress and strain in point 𝑥 are defined respectively by：  

𝜎𝑖𝑗(𝑥) =
1

𝑣
∫ 𝜔(𝑥, 𝜉)
⬚

𝑣
𝜎𝑖𝑗(𝜉)𝑑𝜉                                   (2.20) 

휀�̅�𝑗(𝑥) =
1

𝑣
∫ 𝜔(𝑥, 𝜉)
⬚

𝑣
휀𝑖𝑗(𝜉)𝑑𝜉                                  (2.21) 
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where 𝜎𝑖𝑗 and 휀𝑖𝑗 are local stresses and local strains of referenced locations, respectively; 𝑥 

is the global coordinate which needs to be used to calculate nonlocal stresses 𝜎𝑖𝑗(𝑥) and 

nonlocal strains 휀�̅�𝑗(𝑥); 𝜉 is the local coordinate which is a point that refers to the locations 

of all surrounding points and 𝜔 is the weight function of the nonlocal method, the profile of 

macro and micro average strain along the representative volume with the centre point 𝑥 is 

shown in Figure 2.13. 

 

Figure 2.13 Profile of macro and micro average strain along the representative volume with 

the centre point 𝑥 (Bažant and Jirasek, 2002) 

 

The weighted volume 𝑣 can be expressed in the following: 

𝑣 = ∫ 𝜔(𝑥, 𝜉)
⬚

𝑣
𝑑𝜉                                             (2.22) 

The weighted volume is introduced to normalise the computation of the nonlocal stress and 

strain.  
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(2) Partial nonlocal theory 

Fully nonlocal models are hard to implement because of the computation cost required. To 

overcome this difficulty, nonlocal plasticity with nonlocal hardening parameters has been 

developed (Bažant and Jirasek, 2002). The nonlocal softening plasticity is to treat only the 

scalar softening variable 𝑘 as nonlocal. This method is known as partial nonlocal theory. The 

hardening parameter for these models can be expressed below: 

ℎ = ℎ0 + ℎ(�̅�)                                                  (2.23) 

�̅�(𝑥) =
1

𝑣
∫ 𝜔(𝑥, 𝜉)
⬚

𝑣
𝑘(𝜉)𝑑𝜉                                     (2.24) 

where ℎ is a hardening function, 𝑘 is the scalar softening variable. Partial nonlocal theory 

has been used to simulate the shear localisation of soils. The softening parameter, which 

drives the yield stress evolution, was treated nonlocal (Mallikarachchi, 2019).  

 

2.5.2 Previous application of the nonlocal method 

The nonlocal regularisation has been successfully used in various types of analyses, such as 

extension element tests, simple shear tests, biaxial compression tests, and for addressing 

boundary value problems like slopes, strip footing, and tunnel excavation (Lü et al., 2009; 

Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lazari et al., 2015; Summersgill et al., 

2017; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022; Cui et al., 2023).  

In the beginning, several studies applied the over-nonlocal (ON) method for nonlocal 

regularisation.  

휀�̅�𝑗(𝑥) = (1 − m)휀𝑖𝑗(𝜉) +
m

𝑣
∫ 𝜔(𝑥, 𝜉)
⬚

𝑣
휀𝑖𝑗(𝜉)𝑑𝜉                 (2.25) 

where 𝑚 is the over-nonlocal parameter. 

Vermeer and Brinkgreve (1994) first used this method in a one-dimensional problem. An 

analysis was conducted on the deformation of a steel tension bar, specifically focusing on 

necking. The study involved applying prescribed displacements at both ends of a 100mm 

bar and introducing a 0.1%  reduction in the tensile strength of the central Gaussian 

integration point. This simulation aimed to simulate an imperfection and trigger softening in 
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the material. Various meshes with different numbers and sizes of elements were utilised to 

evaluate the mesh dependence. Two sets of values for ON method parameter 𝑚 and internal 

length ( 𝑙𝑐 ) were examined: 𝑚 = 2.0  with 𝑙𝑐 =  8.326𝑚𝑚 , and 𝑚 = 6.763  with 𝑙𝑐 =

4.0𝑚𝑚 These sets were chosen to ensure that the shear band or necking width remained 

consistent for a given local plastic strain distribution when combined with the ON method 

equations. The results demonstrate the validity of the ON method under these conditions. 

Brinkgreve (1994) expanded the study on the ON method to two-dimensional analysis. The 

Drucker-Prager (DP) model, incorporating cohesion softening, was employed to simulate 

biaxial compression tests on drained clay samples. The softening variable chosen was the 

total volumetric strain, which was averaged using the ON method formulation. By selecting 

an appropriate value for the ON method parameter 𝑚, Brinkgreve successfully obtained 

force-displacement curves and the thickness of the shear band with different mesh sizes. 

Based on their findings, Brinkgreve (1994) recommended a parameter value of 2.0 for the 

ON method. Using total strain instead of plastic strain proved to be computationally efficient 

in this case. Fig. 2.14 shows the results from this study. It is evident that the nonlocal DP 

model produced mesh-independent results. 

 

Figure 2.14 Force-displacement curves of (a) local and (b) nonlocal Drucker-Prager 

models (Vermeer and Marcher, 2000) 

 

Galavi and Schweiger (2010) proposed a new weight function (G&S function) based on the 

Gaussian distribution (GD) method. A drained sand sample with a height of 1m and a width 

of 0.5m was tested using biaxial compression tests. The nonlocal regularisation is 

implemented in two different materials, one with 𝑐′ = 0 and 𝜑′softening (friction softening) 

(a) (b) 
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and the other one with constant 𝜑′  and 𝑐′  softening (cohesion softening). The softening 

depends on the damage strain, which is a function of the plastic volumetric and shear strains. 

The damage strain is assumed nonlocal for the regularisation. 

Figure 2.15 and 2.16 demonstrates the force-displacement curves and shear strain contours 

for friction softening and cohesion softening, respectively. In the case of friction softening 

(Figure 2.15), the method reduces the mesh dependency significantly, but a slight 

discrepancy in curves near the residual state can be observed. Galavi and Schweiger (2010) 

have attributed this discrepancy to a decrease in dilation near the residual state because the 

reduction in dilation angle changes the type of problem from a weak or no discontinuity 

problem to an almost strong discontinuity problem. In cohesion softening analysis (Figure 

2.16), the dilation angle is fixed at 10°, and the difference in results is smaller. The shear 

band thickness for both friction softening and cohesion softening analyses are almost similar 

for four different mesh sizes. 

(a) 
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(b) 

Figure 2.15 Results of the nonlocal multilaminate model with friction softening: (a) force-

displacement curves and (b) contours of shear strain (Galavi and Schweiger,2010) 

 

(a) 
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(b) 

Figure 2.16 Results of the nonlocal multilaminate model with cohesion softening: (a) 

force-displacement curves and (b) contours of shear strain. (Galavi and Schweiger,2010) 

 

According to Galavi and Schweigher (2010), the nonlocal method is ineffective when the 

mobilised dilation ceases near the residual state. Thus, further research on the nonlocal 

method for the dilation of dense sand was done by Mallikarachchi and Soga (2020) based 

on the state-dependent sand model. To validate the nonlocal method, a specimen 25 cm wide 

and 50 cm high was simulated in both drained and undrained biaxial compression tests. In 

addition, the bottom boundary conditions are such that the leftmost node is pinned, and other 

nodes are roller-supported. Top or side boundaries are not restrained. In this study, the G&S 

weight function is implemented. Since the total void ratio is a function of the rate of strain 

hardening and strain softening. Hence, the void ratio is treated as a nonlocal variable and 

regularises the strain softening. 

Figure 2.17 shows the force-displacement curves predicted by the local model and nonlocal 

model. In the local model, the strain hardening part remains insensitive to the mesh size until 

reaching the peak, after which it becomes mesh-dependent in the strain softening part. 

Meanwhile, the softening rate decreases when the mesh size becomes coarse. In Figure 

2.14(b), the nonlocal method using the G&S weight function sufficiently generates mesh-
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independent force-displacement responses in the state-dependent sand model. Additionally, 

nonlocal averaging reduces the softening rate and delays the critical state (Mallikarachchi 

and Soga, 2020). 

Figure 2.18 illustrates that shear band thickness for the local model is sensitive to the mesh 

size. The thickness of the shear band becomes wider when the mesh size is coarse. However, 

employing the G&S weight function can regularise the shear band thickness, ensuring mesh 

independence. The nonlocal model predicts nearly the same shear band thickness for 

different mesh sizes. 

(a) 

(b) 

Figure 2.17 The force-displacement curves of drained dense sand were predicted with (a) 

the Local NS model and (b) the Nonlocal NS model. (Mallikarachchi and Soga, 2020) 
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Figure 2.18 Contour plots of the deviatoric strain of drained dense sand predicted by local 

NS model (upper) and nonlocal model (lower) for: (a)(d) large; (b)(e) medium; (c)(f) 

small; (g) extra-small meshes (Mallikarachchi and Soga, 2020) 

 

According to Figure 2.19(a) for the local model, there is an increase in the peak reaction 

force as the mesh becomes larger. In Figure 2.19(b), the nonlocal method utilising the G&S 

weight function demonstrates sufficient mesh-independent force-displacement responses 

under undrained conditions. The peak reaction force is almost the same for different meshes.  

Regarding the contour plots of excess pore water pressure in Figure 2.20, it is observed that 

the shear band sucks the pore fluid, leading to an increase in negative pore pressure outside 

the band and a decrease inside it. In the local model, the distribution of pore water pressure 

appears to be mesh-dependent. Notably, the model with a coarse mesh size delays the onset 

of the shear band, resulting in prolonged dilative hardening. Conversely, the nonlocal model 

exhibits higher suction compared to the local model and maintains mesh independence. 
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(a) 

 

(b) 

Figure 2.19 The force-displacement curves of undrained dense sand were predicted with 

(a) the Local NS model and (b) the Nonlocal NS model. (Mallikarachchi and Soga, 2020) 
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Figure 2.20 Contour plots of excess pore water pressure of undrained dense sand predicted 

by local NS model (upper) and nonlocal model (lower) for: (a)(d) large; (b)(e) medium; 

(c)(f) small; (g) extra-small meshes. (Mallikarachchi and Soga, 2020) 

 

Jostad and Grimstad (2011) conducted a comparison between ON and G&S nonlocal 

methods under undrained direct, simple shear tests using the NGI-ADP Soft model. The 

NGI-ADP model is implemented into the in-house finite element code BIFURC, where the 

nonlocal strain increment (total strain increment) is calculated at the start of each iteration, 

and an implicit integration scheme is adopted to determine the local plastic strain. In this 

study, a one-dimensional shear column 100 mm high consisting of 50 horizontal layers of 

soft sensitive clay. The bottom of the column is fixed. The column is deformed by applying 

a horizontal shear stress at the top. Initially, the column is subjected to uniform deformation 

to produce a material shear stress‐shear strain curve. To create a nonuniformity and initiate 

the formation of a shear band, the peak strength of the central layer is reduced by 0.1%.   

Jostad and Grimstad (2011) emphasised that the thickness of the shear band will vary with 

the nonlocal methods. As shown in Figure 2.21, the ON method (𝑚 = 1.58) predicts wider 

shear band thickness than the G&S method when internal length (𝑙𝑐 = 10 𝑚𝑚) is the same 

for both methods. Moreover, the ON method produced a very smooth strain distribution, 

whilst the G&S distribution produced a similar overall pattern with an irregular strain 

distribution (Jostad and Grimstad, 2011). 



Chapter 2：Literature review                                                                                                                    42 

 

Figure 2.21 Distribution of the shear strain increment in the post-peak softening regime 

obtained with the ON method (black curve) and G&S method (blue curve) (Jostad and 

Grimstad, 2011) 

 

The NGI-ADP Soft model and method are also implemented as a user-defined material 

model in the commercial finite element program PLAXIS (Jostad and Grimstad, 2011). This 

subroutine calculates the nonlocal strain from the plastic strain increment in the previous 

iteration. In this study, a plane strain compression test is considered. The top and bottom 

boundaries are assumed to be perfectly rough to trigger localisation without introducing an 

arbitrary perturbation. Moreover, three samples with 100 𝑚𝑚  height and 50 𝑚𝑚 width 

adopt triangular elements, and two of them are modelled by full biaxial compression named 

by medium and fine meshes, respectively. The bottom of the column is fully fixed, and a 

horizontal shear stress is applied at the top. The third model is one-quarter of the biaxial 

compression analysis using two lines of symmetry (SYM), which is used to study the effect 

of accounting for symmetry lines together with the nonlocal strain approach.  

The load-displacement curves for three different nonlocal methods are shown in Figure 2.22. 

Various mesh sizes give almost the same results when considering the same method. The 

ON method (𝑚 = 1.58) 

G&S method 
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post-peak softening rates are slightly different in the symmetric mesh. Both internal length 

and nonlocal method will affect the softening behaviour of the material. The suitable internal 

length will depend on the softening rate and the shear band thickness (Jostad and Grimstad, 

2011). According to Figure 2.23, the difference in shear band thickness is obtained for 

different nonlocal methods. The thinnest shear band was produced by the GD method, the 

G&S method had thicker shear bands with the ON results producing the thickest band. 

Moreover, when the mesh size varies, the shear band thickness of the ON and G&S methods 

remains almost the same. 

 
 

 

(a) 

ON method 

(b) 

GD method 
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Figure 2.22 Comparison of biaxial compression results for three nonlocal strain softening 

methods and three meshes (Jostad & Grimstad, 2011). 

 

(c) 

G&S method 
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Figure 2.23 Contour plots of total shear strain for the nonlocal method 

ON method GD method G&S method 
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Summersgill et al. (2014) compared three nonlocal methods under undrained biaxial 

compression tests with the Tresca yield criterion on clay. Furthermore, the nonlocal 

softening variable in this study was chosen as plastic deviatoric strain. When the GD was 

incorporated, full objectivity of mesh intendancy could not be achieved. However, the ON 

and G&S methods demonstrated more efficient outcomes, as illustrated in Figure 2.24. 

In the work conducted by Summersgill et al. (2017a), proposed in Figure 2.25, the simulation 

of biaxial compression on clay was extended using the Mohr-Coulomb yield surface under 

drained conditions. The nonlocal softening variable chosen for this analysis was the same as 

in Summersgill et al. (2014). Similar to the results shown in other papers, the nonlocal 

methods reduce mesh dependence in the analysis of drained biaxial compression tests, albeit 

not as satisfactorily as in the undrained condition (Figure 2.24). This was attributed to the 

formation of different patterns of slip surfaces. Summersgill et al. (2017a) concluded that 

the G&S method exhibits the least mesh dependence for drained and undrained simulations. 

 

 

Figure 2.24 Local and nonlocal load-displacement curves for undrained analysis 

(Summersgill et al.,2014) 

GD 
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Figure 2.25 Local and nonlocal load-displacement curves for drained analysis 

(Summersgill et al., 2017a) 

 

2.6 Summary 

Four different regularisation methodologies were introduced and compared in this Chapter, 

including the viscosity regularisation method, the strain-gradient enhanced approach, the 

micro-polar continuum approach, and the nonlocal method. Ultimately, the decision was 

made to delve deeper into the nonlocal method for further investigation within this thesis, 

and the rest of the Chapter concluded by summarising the development and prior utilisation 

of the nonlocal method. 

The strengths and weaknesses of each method were outlined, and the possibility of 

combining them was explored in the following. 

(1) The primary advantage of viscosity regularisation is that it can be done at the local 

integration point without nonlocal averaging with neighbouring integration points. 

Implementation of this method is straightforward, and the computational efficiency is high. 

However, viscosity must be introduced to describe the material behaviour, even when the 

GD 
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material does not exhibit rate dependency.  This limits its applicability to transient loading 

conditions. Furthermore, the regularising effect of viscosity regularisation diminishes 

rapidly for slow loading rates or when approaching the rate-independent limit. 

(2) The explicit or implicit gradient-enhanced approaches avoid time-consuming 

calculations in nonlocal methods by introducing higher-order gradients of strain or other 

internal variables. However, the explicit gradient-enhanced softening formulation is 

considered local in a mathematical sense. This means that the nonlocal strain at a particular 

point depends solely on the local strain and its gradients at that same point. Therefore, the 

spatial interactions are limited to an infinitesimal neighbourhood around each point. 

Moreover, stronger continuity requirements were imposed on displacements by the explicit 

gradient-enhanced softening formulation. These stronger continuity requirements can pose 

challenges under some specific circumstances, for stance, singular deformation fields (wave 

propagation), or strongly localised (localisation at crack tips) (Peerlings et al., 2001). 

Meeting these requirements may be difficult, and it can significantly impact the predicted 

response of the material.  

(3) From a physical standpoint, the micro-polar continuum approach aims to capture strain 

localisation accurately for modelling strain localisation in granular materials compared to 

the other methods. The micropolar approach considers the rotations of individual grains and 

the resulting couple stresses during shearing, even though these effects may remain 

negligible during homogeneous deformation. This consideration of grains' rotations and 

couple stresses align with the physical behaviour observed in experiments. Therefore, the 

micropolar approach is believed to provide a more appropriate representation of shear zones 

in granular materials. However, this method only becomes effective under shear loading 

conditions. Liu (2018) pointed out that the micro-polar is too weak to preserve the ellipticity 

of the boundary value problems. The rotational degrees of freedom are invalid, and the 

micro-curvatures and couple stresses remain zero when decohesion rather than frictional slip 

dominant failure mode. 

(4) In the nonlocal method, long-range interactions are considered using weighted spatial 

averages of constitutive quantities. It is based on the use of nonlocal internal variables, which 

are obtained by spatially averaging local internal variables over a finite volume. However, 

even if the nonlocal theory is considered reliable among the various regularisation 

techniques, it is essential to note that the nonlocal method primarily applies to dilatant 

granular materials, as the inclusion of mesh-independent contributions is significant during 
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the strain softening phase. Additionally, the requirement of nonlocal integration in the 

nonlocal method can lead to computational inefficiency, posing challenges in terms of 

computational resources and time. 

In summary, each regularisation method has its advantages and disadvantages. There is no 

one-size-fits-all regulation method that works perfectly in all scenarios. In cases where a 

single regularisation method may not be sufficient to deal with mesh-dependency issues, 

combining multiple regularisation approaches can be a viable solution. By combining the 

strengths of different methods, it is possible to achieve enhanced efficiency in dealing with 

the mesh-dependent issue during modelling. In general, the combination of viscosity with 

another regularisation technique has become a widely adopted approach to address the mesh-

dependency issue. The combination of viscosity regularisation with the strain-gradient 

enhanced method was first proposed by Wang et al. (1997, 1998) and was effectively 

implemented for both quasi-static and dynamic problems. The work of de Borst and Pamin. 

(1996) presented a plastic constitutive model incorporating both rate and gradient 

dependence for analysing strain localisation. Building upon this, Oka et al. (2000, 2002) 

investigate strain localisation phenomena and deformation modes in clay by a gradient-

dependent elastic-viscoplastic model. The interaction in controlling the thickness of shear 

bands has also been explored. Zhang et al. (2003, 2004) employed a one-dimensional 

example primarily from a mathematical perspective, examining the interactions between 

different length scale parameters in combination with viscosity and gradient plasticity 

models. Subsequently, a combination of viscosity regularisation with a micro-polar 

continuum approach was proposed by Tang and Li (2007). They introduced a coupled Biot-

Cosserat model that combines Biot's theory of rate-dependency and the Cosserat continuum 

theory. The objective of this model was to simulate strain localisation phenomena resulting 

from strain softening in saturated porous media while demonstrating the developed model’s 

ability to maintain the well-posedness of boundary value problems.  

Moreover, regardless of the regularisation method employed, it is generally necessary to 

incorporate at least one explicit or implicit internal length scale into the constitutive model. 

Researchers have hypothesised various relationships between characteristic internal length 

scales and microstructures, with random constants distribution, interactions or internal 

deformation. This suggests that a common understanding of the physical interpretations of 

the internal length scale has not yet been established. Therefore, further investigation into 
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the physical meanings of all internal length scales within each regularisation approach 

remains an important and urgent matter of significance. 
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Chapter 3：Constitutive model 

3.1 Introduction 

Anisotropy refers to the different mechanical properties of materials in different directions. 

From the micro perspective, the anisotropic characteristics are due to the preferred 

orientation of particles and void and/or crack (Oda et al., 1985; Duveau et al., 1998; Li and 

Dafalias, 2012; Gao et al., 2013). There has been extensive research on constitutive 

modelling of sand anisotropy. The anisotropic sand model used in this thesis is developed 

based on the anisotropic critical state theory (Li and Dafalias, 2012). The main feature of the 

anisotropic critical state theory is that sand fabric at the critical state has a unique magnitude 

and is codirectional with the loading direction. Several constitutive models have been 

developed within the framework of this theory (Li and Dafalias, 2015; Woo and Salgado, 

2015; Zhao and Gao, 2016; Yang et al., 2018; Petalas et al., 2019; Papadimitriou et al., 2019). 

The model to be used here was proposed by Gao et al. (2020). 

 

3.2 Constitutive model description 

3.2.1 Yield function 

The yield function of the model is expressed as:  

𝑓 =
𝑅

𝑔( )
− 𝐻 = 0                                             (3.1) 

where 𝑅 = √
3

2
𝑟𝑖𝑗𝑟𝑖𝑗, with 𝑟𝑖𝑗 = (𝜎𝑖𝑗 − 𝑝𝛿𝑖𝑗)/𝑝) being the stress ratio tensor, 𝜎𝑖𝑗 is the stress 

tensor, 𝑝 = 𝜎𝑖𝑖/3 is the effective mean stress, 𝛿𝑖𝑗 is the Kronecker delta (= 1 for 𝑖 = 𝑗, and 

= 0 for 𝑖 ≠ 𝑗). Furthermore, 𝐻  is the hardening parameter, and 𝑔(휃) is an interpolation 

function which describes the variation of critical state stress ratio with the Lode angle 휃 of 

𝑟𝑖𝑗 as follows (Li and Dafalias, 2004). 

𝑔(휃) =
√(1+𝑐2)2+4𝑐(1−𝑐2) sin3 −(1+𝑐2)

2(1−𝑐) sin3
                                  (3.2) 

https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0021
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0053
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0053
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0062
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0057
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0029
https://www.sciencedirect.com/science/article/pii/S0020768319304408#bib0028
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where 𝑐 = 𝑀𝑒 𝑀𝑐⁄  is a material constant, with 𝑀𝑐 and 𝑀𝑒 being the critical state stress ratio 

in triaxial compression and extension, respectively.  

The condition of consistency for the yield function can be expressed as: 

𝑑𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 +

𝜕𝑓

𝜕𝐻
𝑑𝐻 = 0                                          (3.3) 

The condition of consistency of the yield function (3.1) can also be rewritten as follows: 

𝑑𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 − 〈𝐿〉𝐾𝑝 = 0                                          (3.4) 

where 𝐿 is the loading index; 〈⬚〉 are the Macaulay brackets which make 〈𝐿〉 = 𝐿 for 𝐿 > 0 

and 〈𝐿〉 = 0 for 𝑑𝐿 ≤ 0; The plastic modulus 𝐾𝑝 is defined as below (Dafalias, 1986): 

𝐾𝑃 = −
𝜕𝑓

𝜕𝐻
𝑑𝐻 = 𝑟𝐻                                                (3.5) 

 

3.2.2 Hardening law  

The hardening law for the yield function (evolution of for 𝐻) determines how the size of 

yield surface evolves and is expressed as (Gao et al., 2020):  

𝑑𝐻 = 〈𝐿〉𝑟𝐻 = 〈𝐿〉
𝐺ℎ1𝑒

ℎ2𝐴

(1+𝑒)2√𝑝𝑝𝑎𝑅
[𝑀𝑐𝑔(휃)𝑒

−𝑛 − 𝑅]                   (3.6) 

where ℎ1 , ℎ2 , and 𝑛  are three model parameters; 𝐺  is elastic shear modulus; 𝐴  is an 

anisotropic variable; 𝑟𝐻 is a function of the stress and internal variable 𝐻; 휁 is the dilatancy 

state parameter and 𝑒 is the void ratio; The term 𝑒ℎ2𝐴 is introduced to give better prediction 

for the effect of anisotropy on the stress-strain relationship, making the plastic modulus 

smaller at smaller 𝐴 (Li and Dafalias, 2012; Papadimitriou et al., 2019). This hardening law 

can capture the strain-softening response of dense sand.  

The dilatancy state parameter 휁 was proposed by Li (2002):  

휁 = 𝜓 − 𝑒𝐴(𝐴 − 1)                                           (3.7) 

𝑒𝐴 is a model parameter which describes the effect of fabric anisotropy and loading direction 

on dilatancy and plastic hardening of sand in shear. Moreover, 𝜓 = 𝑒 − 𝑒𝑐  is a state 
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parameter defined by Been and Jefferies (1985). It is a measure of the difference between 

the current void ratio 𝑒 and the critical state void ratio 𝑒𝑐 corresponding to the current mean 

effective stress 𝑝. 

The location of the critical state line (CSL) in the 𝑒– 𝑝 space is given as below (Li and Wang, 

1998): 

𝑒𝑐 = 𝑒𝛤 − 𝜆𝑐 (
𝑝

𝑝𝑎
)
𝜉𝑐

                                              (3.8) 

where 𝑝𝑎 is atmospheric pressure for normalisation (101 kPa); 𝑒Γ (CSL location), 𝜆𝑐 (CSL 

slope), 𝜉𝑐(CSL shape) are three material constants. 

The anisotropic state variable 𝐴 is an index for the characterisation of the impact of fabric 

anisotropy on the stress-strain-strength response of sand (Li and Dafalias, 2002). The 

anisotropic variable 𝐴 is defined as: 

𝐴 = 𝑛𝑖𝑗𝐹𝑖𝑗                                                       (3.9) 

where 𝐹𝑖𝑗 is the fabric tensor characterising the anisotropy of sand. The fabric tensor used 

here is a phenomenological term that is not directly related to the fabric or particle 

characteristics of sand, such as contact normal distribution, or particle orientation (Li and 

Dafalias, 2015). For convenience, 𝐹𝑖𝑗 is normalised such that in a critical state, 𝐹 (= √𝐹𝑖𝑗𝐹𝑖𝑗) 

is unity. For an initially cross-anisotropic sand sample with the isotropic plane (deposition 

plane) being the x-y plane and deposition direction aligning with the z-axis, the initial 𝐹𝑖𝑗 

can be expressed as: 

𝐹𝑖𝑗 = (

𝐹𝑧 0 0
0 𝐹𝑥 0
0 0 𝐹𝑦

) = √
2

3
(

𝐹0 0 0
0 −𝐹0/2 0
0 0 −𝐹0/2

)                   (3.10) 

where 𝐹0 is the initial degree of anisotropy. 

The loading direction tensor 𝑛𝑖𝑗 is expressed as follows: 

𝑛𝑖𝑗 =

𝜕𝑓

𝜕𝑟𝑖𝑗
−
1

3
(
𝜕𝑓

𝜕𝑟𝑚𝑛
𝛿𝑚𝑛)𝛿𝑖𝑗

|
𝜕𝑓

𝜕𝑟𝑖𝑗
−
1

3
(
𝜕𝑓

𝜕𝑟𝑚𝑛
𝛿𝑚𝑛)𝛿𝑖𝑗|

                                             (3.11) 

with, 
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𝜕𝑓

𝜕𝑟𝑖𝑗
=

𝜕𝑓

𝜕𝑅

𝜕𝑅

𝜕𝑟𝑖𝑗
+

𝜕𝑓

𝜕𝑔( )
+

𝜕𝑔( )

𝜕 sin3
× (

𝜕 sin3

𝜕𝐽3𝐷

𝜕𝐽3𝐷

𝜕𝑟𝑖𝑗
+
𝜕 sin3

𝜕𝐽2𝐷

𝜕𝐽2𝐷

𝜕𝑟𝑖𝑗
)

⏟                            
𝜕𝑓

𝜕𝜃

𝜕𝜃

𝜕𝑟𝑖𝑗⏟                                  
𝑁𝑖𝑗

                     (3.12) 

 

3.2.3 Plastic potential function  

The plastic potential function in the 𝑟𝑖𝑗 space is expressed as (Gao et al., 2020): 

𝑔 =
𝑅

𝑔( )
− 𝐻𝑔𝑒

−𝑘ℎ(𝐴−1)
2
= 0                                    (3.13) 

where 𝑘ℎ  is a non-negative anisotropy constant. 𝐻𝑔 =
𝑅

𝑔( )𝑒−𝑘ℎ(1−𝐴)
2  should be calculated 

based on the current stress state and 𝐴.  

 

3.2.4 Flow rule and incremental of plastic relation 

The plastic potential function in Equation (3.13) is used to obtain the direction of plastic 

deviatoric strain increment 𝑑𝑒𝑖𝑗
𝑝

  

𝑑𝑒𝑖𝑗
𝑝 = 〈𝐿〉𝑚𝑖𝑗                                                (3.14) 

where 𝑚𝑖𝑗 is a unit-norm deviatoric tensor containing only the information of the direction 

of 𝑑𝑒𝑖𝑗
𝑝

 and defined as below: 

𝑚𝑖𝑗 =

𝜕𝑔

𝜕𝑟𝑖𝑗
−
1

3
(
𝜕𝑔

𝜕𝑟𝑚𝑛
𝛿𝑚𝑛)𝛿𝑖𝑗

|
𝜕𝑔

𝜕𝑟𝑖𝑗
−
1

3
(
𝜕𝑔

𝜕𝑟𝑚𝑛
𝛿𝑚𝑛)𝛿𝑖𝑗|

                                          (3.15) 

with, 

 
𝜕𝑔

𝜕𝑟𝑖𝑗
=

𝜕𝑔

𝜕𝑅

𝜕𝑅

𝜕𝑟𝑖𝑗
+

𝜕𝑔

𝜕𝑔( )

𝜕𝑔( )

𝜕 sin 3
× (

𝜕 sin 3

𝜕𝐽3𝐷

𝜕𝐽3𝐷

𝜕𝑟𝑖𝑗
+
𝜕 sin 3

𝜕𝐽2𝐷

𝜕𝐽2𝐷

𝜕𝑟𝑖𝑗
)

⏟                          
𝜕𝑔

𝜕𝑔(𝜃)
𝜕𝑔

𝜕𝜃

𝜕𝜃

𝜕𝑟𝑖𝑗⏟                                
�̃�𝑖𝑗

+
𝜕𝑔

𝜕𝐴

𝜕𝐴

𝜕𝑛𝑖𝑗

𝜕𝑛𝑖𝑗

𝜕𝑟𝑖𝑗
= 𝑁𝑖𝑗 +

𝜕𝑔

𝜕𝐴

𝜕𝐴

𝜕𝑛𝑖𝑗

𝜕𝑛𝑖𝑗

𝜕𝑟𝑖𝑗
 (3.16)  

The total plastic strain increment 𝑑휀𝑖𝑗
𝑝

 is expressed as (Zhao and Gao, 2016): 
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𝑑휀𝑖𝑗
𝑝 = 𝑑𝑒𝑖𝑗

𝑝 +
𝑑 𝑣

𝑝
𝛿𝑖𝑗

3
= 〈𝐿〉 (𝑚𝑖𝑗 +√

2

27
𝐷𝛿𝑖𝑗)

⏟          
𝑥𝑖𝑗

                       (3.17) 

in which the dilatancy relation can be expressed as: 

𝐷 =
𝑑 𝑣

𝑝

|𝑑 𝑞
𝑝
|
=

𝑑 𝑖𝑖
𝑝

√2𝑑𝑒𝑖𝑗
𝑝
𝑑𝑒
𝑖𝑗
𝑝
/3
=

𝑑1

𝑀𝐶𝑔( )
[𝑀𝐶𝑔(휃)𝑒

𝑚1 − 𝑅]                 (3.18) 

where 𝑑1 and 𝑚1 are model parameters. 

 

3.2.5 Fabric evolution 

In this model, fabric evolution with plastic deformation is considered (Li and Li, 2009; Guo 

and Zhao, 2013; Zhao and Guo, 2013). It is assumed that 𝐹𝑖𝑗 becomes codirectional with the 

loading direction and reaches a magnitude of 1 at the critical state. Though fabric evolution 

is affected by both volumetric and shear strains, a simplified evolution law expressed in 

terms of the plastic shear strain is used. 

𝑑𝐹𝑖𝑗 = 〈𝐿〉𝑘𝑓(𝑛𝑖𝑗 − 𝐹𝑖𝑗)                                     (3.19) 

where, 𝑑𝐹𝑖𝑗  is the increment of 𝐹𝑖𝑗 , 𝑘𝑓 is a model parameter describing the rate of fabric 

evolution with plastic strain increment.  

 

3.2.6 Elastic moduli and incremental of elastic relation 

The following empirical pressure-sensitive elastic moduli (elastic shear modulus 𝐺  and 

elastic bulk modulus 𝐾) are employed for this model (Li and Dafalias, 2004; Gao et al., 2014) 

𝐺 = 𝐺0
(2.97−𝑒)2

1+𝑒
√𝑝𝑝𝑎                                         (3.20) 

where 𝐺0 is a material constant.  

According to elasticity theory, the elastic bulk modulus 𝐾 is related to 𝐺 and Poisson’s ratio 

𝜈 which can be expressed as below: 
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𝐾 = 𝐺
2(1+𝜈)

3(1−2𝜈)
                                                 (3.21) 

Thus, the elastic deviatoric strain increment 𝑑𝑒𝑖𝑗
𝑒  and elastic volumetric strain increment 𝑑휀𝑣

𝑒 

can be expressed as below: 

𝑑𝑒𝑖𝑗
𝑒 =

𝑑𝑠𝑖𝑗

2𝐺
 and 𝑑휀𝑣

𝑒 =
𝑑𝑝

𝐾
                                       (3.22) 

and elastic stiffness tensor 𝐸𝑖𝑗𝑘𝑙 is defined based on elastic moduli.  

𝐸𝑖𝑗𝑘𝑙 = 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + (𝐾 −
2𝐺

3
) 𝛿𝑖𝑗𝛿𝑘𝑙                    (3.23) 

The elastic stress-strain relationship for general stress condition is expressed as: 

𝑑𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙𝑑휀𝑘𝑙
𝑒                                                     (3.24) 

 

3.2.7 The elastoplastic stiffness tensor 

Based on the additive decomposition of the total strain increment, one has: 

𝑑휀𝑖𝑗 = 𝑑휀𝑖𝑗
𝑒 + 𝑑휀𝑖𝑗

𝑝
                                             (3.25) 

Substituting Equation (3.17) into (3.4), and combing with (3.24) and (3.25), then the 

condition of consistency of the yield function can now be written as: 

𝑑𝑓 = (
𝜕𝑓

𝜕𝜎𝑖𝑗
)𝐸𝑖𝑗𝑘𝑙(𝑑휀𝑘𝑙 − 〈𝐿〉𝑥𝑘𝑙) − 〈𝐿〉𝐾𝑝 = 0                      (3.26) 

Thus, the loading index can also be expressed in terms of the total strain increment as: 

𝐿 =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝐸𝑖𝑗𝑘𝑙

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑥𝑎𝑏𝐸𝑖𝑗𝑎𝑏+𝐾𝑝⏟        
𝛱𝑘𝑙

𝑑휀𝑘𝑙                                                (3.27) 

Combining Equation (3.24), (3.25), and (3.27), the constitutive equation can be obtained as 

below: 

𝑑𝜎𝑖𝑗 = Λ𝑖𝑗𝑘𝑙𝑑휀𝑘𝑙                                               (3.28) 
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with the elastoplastic stiffness tensor, 

Λ𝑖𝑗𝑘𝑙 = 𝐸𝑖𝑗𝑘𝑙 − ℎ(𝐿)(𝐸𝑖𝑗𝑚𝑛𝑥𝑚𝑛)Π𝑘𝑙                            (3.29) 

where ℎ(𝐿) is the Heaviside step function, with ℎ(𝐿 > 0) = 1and ℎ(𝐿 ≤ 0) = 0.  

 

3.2.8 Partial derivatives used in the constitutive relation 

The 
𝜕𝑓

𝜕𝑟𝑖𝑗
 used in Equation (3.11) can be obtained according to the chain rule for partial 

derivatives based on Equation (3.1) 

𝜕𝑓

𝜕𝑟𝑖𝑗
=
𝜕𝑓

𝜕𝑅

𝜕𝑅

𝜕𝑟𝑖𝑗
+

𝜕𝑓

𝜕𝑔(휃)
+
𝜕𝑔(휃)

𝜕 sin 3휃
× (

𝜕 sin 3휃

𝜕𝐽3𝐷

𝜕𝐽3𝐷
𝜕𝑟𝑖𝑗

+
𝜕 sin 3휃

𝜕𝐽2𝐷

𝜕𝐽2𝐷
𝜕𝑟𝑖𝑗

) 

=
3𝑟𝑖𝑗

2𝑅𝑔(휃)
−

𝑅

𝑔2(휃)

𝜕𝑔(휃)

𝜕 sin 3휃
× (

𝜕 sin 3휃

𝜕𝐽3𝐷

𝜕𝐽3𝐷
𝜕𝑟𝑖𝑗

+
𝜕 sin 3휃

𝜕𝐽2𝐷

𝜕𝐽2𝐷
𝜕𝑟𝑖𝑗

) 

=
3𝑟𝑖𝑗𝑅𝑔( )

2𝑅2𝑔2( )
+
9𝑅 sin3 𝑟𝑖𝑗𝜕𝑔( )

2𝑅2𝑔2( )𝜕 sin3
+

27𝜕𝑔( )𝑟𝑖𝑚𝑟𝑗𝑚

2𝑅2𝑔2( )𝜕 sin3
                  (3.30) 

 

𝑁𝑖𝑗 =
3

2𝑅2𝑔2( )
{[𝑅𝑔(휃) + 3𝑅 sin 3휃

𝜕𝑔( )

𝜕 sin3
] 𝑟𝑖𝑗 + 9

𝜕𝑔( )

𝜕 sin3
𝑟𝑖𝑚𝑟𝑗𝑚}  (3.31) 

where, 

𝑔(휃) =
√(1 + 𝑐2)2 + 4𝑐(1 − 𝑐2) sin 3 휃 − (1 + 𝑐2)

2(1 − 𝑐) sin 3 휃
 

(3.32) 

𝜕𝑔( )

𝜕 sin3
=

𝑐(1+𝑐)

sin3 √(1+𝑐2)2+4𝑐(1−𝑐2) sin 3
−

𝑔( )

sin3
   (3.33) 

The 
𝜕𝑔

𝜕𝑟𝑖𝑗
 used in Equation (3.15) can be expressed as: 
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𝜕𝑔

𝜕𝑟𝑖𝑗
=
𝜕𝑔

𝜕𝑅

𝜕𝑅

𝜕𝑟𝑖𝑗
+

𝜕𝑔

𝜕𝑔(휃)

𝜕𝑔(휃)

𝜕 sin3휃
× (

𝜕 sin 3휃

𝜕𝐽3𝐷

𝜕𝐽3𝐷
𝜕𝑟𝑖𝑗

+
𝜕 sin 3휃

𝜕𝐽2𝐷

𝜕𝐽2𝐷
𝜕𝑟𝑖𝑗

)
⏟                                

𝜕𝑔
𝜕𝑔( )

𝜕𝑔
𝜕

𝜕
𝜕𝑟𝑖𝑗⏟                                      

�̃�𝑖𝑗

+
𝜕𝑔

𝜕𝐴

𝜕𝐴

𝜕𝑛𝑖𝑗

𝜕𝑛𝑖𝑗

𝜕𝑟𝑖𝑗

= �̃�𝑖𝑗 +
𝜕𝑔

𝜕𝐴

𝜕𝐴

𝜕𝑛𝑖𝑗

𝜕𝑛𝑖𝑗

𝜕𝑟𝑖𝑗
 

where, 

𝜕𝑔

𝜕𝐴
= 2𝑘ℎ𝐻𝑔(𝐴 − 1)𝑒

−𝑘ℎ(1−𝐴)
2
                                     (3.34) 

𝜕𝐴

𝜕𝑛𝑖𝑗
= 𝐹𝑖𝑗                                                    (3.35) 

𝜕𝑛𝑖𝑗

𝜕𝑟𝑘𝑙
=
3(1 +

3sin 3휃
𝑔(휃)

𝜕𝑔(휃)
𝜕 sin 3휃

)

4𝑅𝑔(휃)
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) +

27
𝜕𝑔(휃)
𝜕 sin 3휃

(𝑟𝑖𝑘𝛿𝑗𝑙 + 𝑟𝑖𝑙𝛿𝑗𝑘 + 𝑟𝑙𝑗𝛿𝑖𝑘 + 𝑟𝑘𝑗𝛿𝑖𝑙)

4𝑅2𝑔2(휃)

+

9 (−1 + 9
sin 3휃
𝑔(휃)

)(
2 sin 3휃 (

𝜕𝑔(휃)
𝜕 sin 3휃

)
2

𝑔(휃)
−
𝜕𝑔(휃)
𝜕 sin 3휃

− sin 3휃
𝜕2𝑔(휃)
𝜕(sin 3휃)2

)

4𝑅3𝑔(휃)
𝑟𝑖𝑗𝑟𝑘𝑙

+
81

4𝑅4𝑔2(휃)

(

 
6 sin 3휃 (

𝜕𝑔(휃)
𝜕 sin 3휃

)
2

𝑔(휃)
− 2

𝜕𝑔(휃)

𝜕 sin 3휃
− 3 sin 3휃

𝜕2𝑔(휃)

𝜕(sin 3휃)2

)

 (𝑟𝑖𝑗𝑟𝑘𝑃𝑟𝑝𝑙 + 𝑟𝑖𝑝𝑟𝑝𝑗𝑟𝑘𝑙)

+
729

4𝑅5𝑔3(휃)
(2 (

𝜕𝑔(휃)

𝜕 sin 3휃
)

2

− 𝑔(휃)
𝜕2𝑔(휃)

𝜕(sin 3휃)2
) 𝑟𝑘𝑝𝑟𝑝𝑙𝑟𝑖𝑞𝑟𝑞𝑗

−
81

2𝑅3𝑔2(휃)

(

 
2 (

𝜕𝑔(휃)
𝜕 sin 3휃

)
2

𝑔(휃)
−

𝜕2𝑔(휃)

𝜕(sin 3휃)2

)

 𝛿𝑖𝑗𝑟𝑘𝑝𝑟𝑝𝑙

−
27 sin 3휃

2𝑅2𝑔2(휃)

(

 
2 (

𝜕𝑔(휃)
𝜕 sin 3휃

)
2

𝑔(휃)
−

𝜕2𝑔(휃)

𝜕(sin 3휃)2

)

 𝛿𝑖𝑗𝑟𝑘𝑙 

(3.36) 

with, 

𝜕2𝑔(휃)

𝜕(sin3휃)2
=

2

(sin3휃)2
{𝑔(휃) −

𝑐(1 + 𝑐)[(1 + 𝑐2)2 − 5𝑐(1 − 𝑐2)(1 − 𝑐2) sin 3휃]

√[(1 + 𝑐2)2 + 4𝑐(1 − 𝑐2) sin 3휃]3
} 

(3.37) 

The expression for 
𝜕𝑓

𝜕𝜎𝑖𝑗
 used in Equation (3.3) expressed as below: 
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𝜕𝑓

𝜕𝜎𝑖𝑗
=

𝜕𝑓

𝜕𝑟𝑘𝑙

𝜕𝑟𝑘𝑙

𝜕𝜎𝑖𝑗
                                                     (3.38) 

where,  

𝜕𝑟𝑘𝑙

𝜕𝜎𝑖𝑗
=
𝛿𝑘𝑖𝛿𝑙𝑗

𝑝
−

𝜎𝑘𝑙

3𝑝2
𝛿𝑖𝑗                                              (3.39) 

The expression for 
𝜕𝑓

𝜕𝐻
 in Equation (3.3) is: 

𝜕𝑓

𝜕𝐻
= −𝑒−𝑘ℎ(1−𝐴)

2
                                               (3.40) 

 

3.3 Model validation 

The 17 material constants in Table 3.1 will be used in the proposed anisotropic sand model 

for Toyoura sand. The critical parameters 𝑀𝑐 and 𝑐 are determined based on the required 

state stress ratio in triaxial compression and extension. The parameter 𝑒Γ  (Location of 

CSL), 𝜆𝑐 (Slope of CSL) and 𝜉(Shape of CSL) can be directly calculated from critical state 

line in 𝑒 − 𝑝 plane. The elasticity parameters 𝐺0 and 𝜈 are determined using the stress-strain 

relationship at the very beginning of the triaxial tests. The remaining parameters are hardly 

obtained and can be determined by a trial-and-error approach to fit the different tests from 

the empirical range. The detailed model parameter determination can be found in previous 

studies (Zhao and Gao, 2016; Gao et al., 2020; Gao et al., 2021). The mean particle size for 

Toyoura sand is 0.2 mm. The minimum void ratio 𝑒𝑚𝑖𝑛 and maximum void ratio 𝑒𝑚𝑎𝑥 are 

determined to be 𝑒𝑚𝑖𝑛 = 0.6 and 𝑒𝑚𝑎𝑥 = 0.98 respectively.  
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Table 3.1 Summary of Anisotropic Model Parameters for Toyoura sand 

Critical state Elasticity Dilatancy Hardening Fabric anisotropy 

𝑀𝑐=1.25 

𝑐=0.75 

𝑒𝛤=0.934 

𝜆𝑐=0.019 

𝜉𝑐=0.7 

𝐺0=125  

𝐺s = 2.97 

𝜈=0.1  

𝑑1=0.5 

𝑚1=3.5 

ℎ1=0.45 

ℎ2=0.5 

𝑛=2.0 

𝑒𝐴=0.075 

𝑘𝑓=0.5 

𝐹0=0.4 

𝑘ℎ = 0.03 

 

3.3.1 Results of anisotropic sand model 

The test data of Toyoura sand reported in Oda et al. (1978) and Tatsuoka et al. (1986) are 

used to benchmark the anisotropic model simulation of drained plane strain compression test 

from different initial void ratios 𝑒0 = 0.66, 0.70, 0.80  and confining pressures 𝜎3 =

5, 50, 200, 400 kPa, in which the orientation of the deposition plane 0 (horizontal) and 90 

(vertical) are considered ( Figures 3.1 and 3.2). Moreover, the test data of drained triaxial 

compression tests only with horizontal bedding obtained in Fukushima and Tatsuoka (1984) 

are compared with the prediction results of the anisotropic model under various loading 

conditions shown in Figure 3.3. 

 

(a) (b) 
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(c) (d) 

Figure 3.1 Comparison between the anisotropic model prediction and drained plane strain 

compression test data on Toyoura sand: (a)(b) 𝜎3 = 50 kPa; and (c)(d) 𝜎3 = 200 kPa  

(Oda et al., 1978) 

 

(a) (b) 

(c) (d) 

Figure 3.2 Comparison between the anisotropic model prediction and plane strain test data 

on Toyoura sand: (a)(b) 𝜎3 = 5 kPa; (c)(d) 𝜎3 = 400 kPa (Tatsuoka et al., 1986) 
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(a) (b) 

(c) (d) 

Figure 3.3 Comparison between the anisotropic model prediction and drained triaxial 

compression test data on Toyoura sand: (a)(b) dense sand; (c)(d) medium dense sand  

(Fukushima and Tatsuoka, 1984) 

The dots and solid lines represent test data and the model simulations on Toyoura sand, 

respectively. According to the 𝑞 − 휀a curves of both plane strain compression and triaxial 

compression test, the peak value of deviatoric stress 𝑞 is increased with increasing confining 

pressure 𝜎3 and decreasing initial void ratio, and the model gives a better prediction of the 

peak deviator stress when the confining pressure is lower. From the 휀𝑣 − 휀a plots, the sand 

dilatancy is increased with decreasing initial void ratio and decreased with higher confining 

pressures. Moreover, the results showed that when the (normal to the) deposition plane and 

the major principal stress direction are aligned (e.g., vertical compression and horizontal 

deposition plane), the response becomes more dilative, thus increasing the strength of the 

sand. According to Figure 3.1(b), when 휀𝑎 is around 5%, the shear band maintains a constant 

volume at the critical state in tests, whereas in modelling, 휀𝑣 still decreases. It is assumed 

that uniform deformation and the critical state are reached at much larger strains. The model 

gives good predictions on the peak deviatoric stress and strain-hardening part but does not 

capture the strain-softening part well. 
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Chapter 4: Implementation of nonlocal 

regularisation method 

4.1 Introduction 

The weight function is the most important component of a nonlocal regularisation method. 

The Gaussian distribution (GD) function has been used in many early studies (Eringen, 1972; 

Bažant et al., 1984). The variable at the current stress point contributes most to the nonlocal 

one. Therefore, the nonlocal variable is concentrated at the local point and cannot spread to 

surrounding points. Galavi and Schweiger (2010) proposed a new weight function (G&S) in 

which the local variable does not affect the nonlocal one. Moreover, Vermeer and 

Brinkgreve (1994) have proposed the over-nonlocal method (ON), which uses a linear 

combination of the local and the nonlocal variables. A nonlocal parameter 𝑚 was introduced 

to control the proportion of local and nonlocal variables in weight functions.  

According to the physical consequences of the weighting functions, the weighting functions 

determine the extent and shape of the influence zone, introduce an internal characteristic 

length scale 𝑙𝑐, and affect smoothness (e.g., Gaussian function lead to smooth nonlocal fields, 

which help in avoiding numerical instabilities), continuity (discontinuous or sharply varying 

weighting functions can introduce artifacts or non-physical jumps in the solution), and 

anisotropy (in anisotropic materials or problems with directional features, the weighting 

function can be designed to reflect the directional dependency) of the problems. Applicable 

scenarios include strain localisation and fracture mechanics. In strain localisation 

appropriate weighting functions is used to prevent mesh dependency and to capture the 

physical width of localisation zones such as shear bands. In fracture mechanics weighting 

functions help in distributing the effects of damage or strain over a finite region, thus 

avoiding singularities and ensuring a more realistic representation of crack propagation 

(Bazant and Jirasek, 2002).To avoid unphysical results, the 𝑙𝑐 should be calibrated based on 

physical considerations and experimental data, boundary effects should be smoothly handled, 

the symmetry and consistency of the weighting functions should be maintained, and the 

numerical implementation should accurately represent the weighting functions. This ensures 

that nonlocal regularisation produces physically consistent and realistic simulation results 

(Peerlings et al., 1996). 
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Some studies have compared three weighting functions in simple BVPs like plane strain 

compression. It is found that the G&S gives better regularisation results than the GD one 

(Galavi and Schweiger, 2010; Guo and Stolle, 2013; Summersgill et al., 2017; 

Mallikarachchi and Soga, 2020; Gao et al., 2022). However, the performance of these 

functions in real-world BVPs has not been evaluated.  

This Chapter mainly focuses on nonlocal regularisation. Three different weight functions 

are introduced and compared first. Then, the nonlocal formulations used in the critical state 

model and the implementation in ABAQUS are presented. Finally, the determination of 

internal length is discussed. 

 

4.2 Weight functions 

There are three nonlocal methods designed to address mesh dependency. The weight 

function is typically represented by the Gaussian distribution function (GD) (Eringen, 1972; 

Bažant et al., 1984). However, Galavi and Schweiger (2010) introduced a modified weight 

function known as the G&S weight function, which offers several advantages over the 

Gaussian distribution function. Additionally, Vermeer and Brinkgreve (1994) proposed the 

over-nonlocal (ON) method, aiming to overcome the limitations of the Gaussian distribution. 

This method utilises a linear combination of local and nonlocal variables.  

Moreover, it needs to be noticed that the selection of weight functions should obey the law 

that it will not alter a uniform field of strain. Thus, the area under the curve for the 

distribution function is equal to 1, as shown in Equation (4.1):  

∫ 𝜔(𝑥, 𝜉)𝑑 𝜉 = 1
+∞

−∞
                                           (4.1) 

where ω is the weight function; 𝑥 is the global coordinate for the current integration point 

(IP); 𝜉 is the local coordinate of all surrounding IPs. 

 

4.4.1 Gaussian distribution (GD) function 

The Gaussian weight function is expressed as:  
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𝜔𝑖 =
1

√𝜋𝑙𝑐
exp (−

𝑟𝑖
2

𝑙𝑐
2)                                               (4.2) 

where 𝜔𝑖 represents the weight function of IP 𝑖, 𝑟𝑖 is the distance between the current IP and 

the 𝑖 − th IP used for calculating the averaged value. 𝑙𝑐  is a nonlocal parameter termed 

internal length, which depends on the mean size of soil particles (Galavi and Schweiger, 

2010). Figure 4.1 shows the physical significance of internal length 𝑙𝑐 in a 2D problem. The 

integration point 𝑋IP is coloured in red, and its neighbours are coloured in blue. To reduce 

the computational time, at the first step of the computation, each IP can be computed at the 

first step and store the coordinates of its neighbours within the effective influence area. Then, 

the weights for each neighbour and the sum of weights for each IP can be computed and 

stored. 

 

Figure 4.1. Schematic diagram showing the neighbouring integration point of 𝑋IP 

 

In two-dimensional cases of Gaussian distribution, the contribution of the weight function 

to the calculated nonlocal variable for different internal lengths 𝑙𝑐 is shown in Figure 4.2. It 

is evident that the GD function shows the highest contribution to the calculated nonlocal 

variable at the centre and diminishes along the distance. As mentioned by Vermeer and 

Brinkgreve (1994), the nonlocal variable is concentrated at the local point. It cannot spread 

 

 

 

 

 

 

 

 

𝑙𝑐 

𝑋𝑝 
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to surrounding points, which has a negative effect on the nonlocal method. When 𝑙𝑐 <  1, 

the contribution to the calculated nonlocal variable is nearly double to the case that 𝑙𝑐 ≥  1. 

In addition, the GD method has an unbounded integration area, which means that the 

nonlocal interaction theoretically takes place at an arbitrary long distance (Jirásek and 

Rolshoven, 2003). 

 

Figure 4.2 The Gaussian distribution function in 1D condition 

 

If strain is chosen as the nonlocal variable for the GD method, then it coincides with the 

greatest contribution of strain to the nonlocal equation (Jostad and Grimstad, 2011). The 

increase in nonlocal strain can lead to a loss in material strength, which further increases the 

strain of the material. Thus, with the accumulation of calculation steps, a significant value 

for strain relative to the neighbouring points will have increased dominance for the nonlocal 

calculations at the centre point, causing the largest strain softening (Galavi and Schweiger, 

2010). Therefore, the issue of mesh dependence in finite element analysis is not completely 
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solved (Brinkgreve, 1994; Galavi and Schweiger, 2010; Summersgill et al., 2017a, 2014, 

2017b). Researchers have found that this issue could be tackled by changing the weight 

function (G&S weight function) or the averaging procedure itself.  

 

4.4.2 G&S distribution (G&S) function  

According to the hypothesis, the deformation at a point is more influenced by the response 

in the neighbourhood rather than the concentrated deformation at the point itself. Galavi and 

Schweiger (2010) have proposed the following weight function: 

𝑤𝑖 =
𝑟𝑖

𝑙𝑐
2 exp (−

𝑟𝑖
2

𝑙𝑐
2)                                                    (4.3) 

As shown in Figure 4.3, the contribution of the G&S weight function to the calculated 

nonlocal variable is zero in the centre point and efficiently spreads from the concentrated 

local point to a more extensive zone. This is utterly different to the Gaussian weight function 

with the maximum value at the centre. In addition, the G&S weight function shows two same 

peaks with a distance of 0.707𝑙𝑐 from the centre (Galavi and Schweiger, 2010). 
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Figure 4.3 The Galavi and Schweiger (2010) distribution function in 1D condition 

 

4.4.3 Over-nonlocal (ON) function 

Moreover, another method to overcome the shortage of the GD method is proposed by 

Vermeer and Brinkgreve (1994), which is a linear combination of the local and the nonlocal 

variables. This method is different from the G&S weight function, which changes the 

averaging variable in the neighbourhood without changing the weight function. A nonlocal 

parameter 𝑚 was applied to change the nonlocal averaging formulation. This method was 

called the over-nonlocal method. The ON formulation is expressed as below: 

�̅�(𝑥) = (1 − 𝑚)𝜛(𝑥) +
𝑚

𝑉
∫ 𝜔(𝑥, 𝜉)
⬚

𝑉
𝜛(𝜉)𝑑𝜉                     (4.4) 

where  �̅�(𝑥) is the nonlocal variable and 𝜛(𝑥)  is the local variable. The parameter 𝑚 

provides the relative contribution from local and nonlocal parts. When 𝑚 < 1 in Equation 
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(4.4), the nonlocal variable produces less effect than the local one. On the contrary, the 

contribution of the local variable will be negative when 𝑚 > 1. Existing research has shown 

that 𝑚 > 1  should be used to achieve the best regularisation results (Vermeer and 

Brinkgreve, 1994; Lü et al., 2009; Xue et al., 2022). However, the exact value is dependent 

on the model and has to be determined via trial and error. The ON method (𝑚 =  1.5) 

distribution crosses the distance from the calculation point and is plotted in Figure 4.4. 

 

 

Figure 4.4 The Over-nonlocal method (𝑚 =  1.5) distribution function in 1D condition 

 

The value of 𝑚 plays an important role in the ON method and affects the thickness of the 

shear band (Brinkgreve, 1994). The influence of parameter 𝑚 on shear band thickness is 

provided by Lü et al. (2009). The shear band thickness increases with the parameter, and the 

slope decreases. For example, in a one-dimensional problem, whether inside the bar or at the 

boundary, the distribution of the plastic strain (shear band thickness) increases with an 

increase in 𝑚 . However, this result is only based on a simple problem. More complex 
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boundary value problems need to be considered. Moreover, the boundary conditions may 

have an impact on the outcome when the value of the parameter is low (Jostad and Grimstad, 

2011).  

The comparison of the Local model, GD method, G&S method, and ON method is plotted 

in Figure 4.5. The internal length is equal to one for all distributions.  

 

 

Figure 4.5 The comparison of three different functions with the same internal length 

 

4.3 Nonlocal formulation of the constitutive model in this 

study 

The strain-softening of the critical state model presented in the previous Chapter is mainly 

affected by 𝑒, 𝐹ij and 𝐻. It is inconvenient to use nonlocal 𝐹𝑖𝑗 and 𝐻 in the hardening law. 

There are several reasons for this. First, the evolution of 𝐹𝑖𝑗 and 𝐻 is dependent on the plastic 
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shear strain increment, but their full form cannot be expressed explicitly in terms of the total 

plastic shear strain. It is therefore impossible to use the nonlocal plastic shear strain to get 

the nonlocal 𝐹𝑖𝑗  and 𝐻. Secondly, the plastic shear strain increment has to be calculated 

before the averaging calculation is carried out if the increment of 𝐹𝑖𝑗  and 𝐻  is assumed 

nonlocal. Since the original model is complex, it has to be implemented using some 

advanced stress integration methods such as the explicit or implicit methods (Zhao et al., 

2005; Gao and Zhao, 2013). In these stress integration methods, the plastic strain increment 

can only be obtained at the end of each step when the stress and state variables are already 

updated. This means that the nonlocal increment of 𝐹𝑖𝑗 and 𝐻 has to be calculated at the end 

of each step. If the nonlocal increment of 𝐻 is used without changing the previous stress 

integration (e.g., the stress increment), the condition of consistency for the yield function 

cannot always be satisfied. The evolution of 𝐹𝑖𝑗 is dependent on the loading direction 𝑛𝑖𝑗 

which can change during the stress integration. It is thus inappropriate to simply take the 

average of 𝑑𝐹𝑖𝑗 at the end of the step. However, the evolution of 𝑒 is dependent on the total 

volumetric strain only, and therefore, it is convenient to make it nonlocal.  

Following Mallikarachchi and Soga (2020), the increment of void ratio 𝑑𝑒 is assumed to be 

nonlocal as below: 

𝑑𝑒 = (1 + 𝑒)𝑑휀𝑣𝑛                                                 (4.5) 

where positive 𝑑𝑒 is associated with volume contraction and 𝑑휀𝑣𝑛 is the nonlocal volumetric 

strain increment.  

𝑑휀𝑣𝑛 =
∑ 𝑤𝑖𝑣𝑖𝑑 𝑣𝑖
𝑁
𝑘=1

∑ 𝑤𝑖𝑣𝑖
𝑁
𝑘=1

                                               (4.6) 

where 𝑁 is the number of IPs within the averaging area, 𝑤𝑖  , 𝑣𝑖  and 𝑑휀𝑣𝑖  represent the 

weight function, volume and local volumetric strain increment of integration point 𝑖. Note 

that Equations (4.5) and (4.6) can be used for the Gaussian and G&S functions. When the 

over-nonlocal method is used, the void ratio increment is expressed as: 

𝑑𝑒 = (1 + 𝑒) [(1 − 𝑚)𝑑휀𝑣𝑙 +
𝑚∑ 𝑤𝑖𝑣𝑖𝑑 𝑣𝑖

𝑁
𝑘=1

∑ 𝑤𝑖𝑣𝑖
𝑁
𝑘=1

]               (4.7) 

where 𝑑휀𝑣𝑙 is the total local volumetric strain increment for that step. 
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4.4 Implementation of the nonlocal method 

The nonlocal methods can be directly applied in Abaqus by the user-defined material 

subroutine (UMAT) to analyse the strain localisation in soil. It is worth noting that nonlocal 

methods are implemented in finite element codes at the constitutive model level without 

changing equilibrium equations. The model has been implemented using the explicit stress 

integration method with automatic sub-stepping (Zhao et al., 2005; Gao and Zhao, 2013). 

The increment of averaging nonlocal variable (void ratio) is calculated at each sub-increment 

for all the IPs since the total strain increment is divided into several calculation steps. 

However, this will raise the computational efficiency issue. Thus, a scaling variable 𝑟𝑣 is 

applied in the nonlocal regularisation method, which is defined below: 

𝑟𝑣 =
𝑑 𝑣𝑛

𝑑 𝑣𝑙
                                                      (4.8) 

where 𝑑휀𝑣𝑛 is the nonlocal volumetric strain increment for each IP is calculated at the start 

of each increment. And 𝑑휀𝑣𝑙 is the total local volumetric strain increment for each increment. 

At the end of each sub-increment, the void ratio is updated as below: 

𝑑𝑒𝑠 = (1 + 𝑒)𝑑휀𝑣𝑙
𝑠 𝑟𝑣                                           (4.9) 

where 𝑑휀𝑣𝑙
𝑠  is the local volumetric strain increment to obtain the nonlocal void ratio 

increment 𝑑𝑒𝑠 for the sub-increment. 

For Over-nonlocal method then can be expressed as: 

𝑑𝑒𝑠 = (1 + 𝑒)[(1 − 𝑚)𝑑휀𝑣𝑙
𝑠 +𝑚𝑑휀𝑣𝑙

𝑠 𝑟𝑣]                      (4.10) 

Moreover, two user subroutines, UMAT (user-defined materials) and USDFLD (user-

defined field variables) are needed for implementing the nonlocal method in Abaqus.  

The UMAT is called by the main finite element program at each IP, and it is only able to 

access information (stress, strain, state variables, etc) at the current IP (Mallikarachchi, 

2019). However, in the nonlocal method, the information is accessed from IPs in the 

neighbourhood of the current IP. Thus, a common block array (ENCD) is provided to store 

information at each IPs and information is updated after each time step. A common block 

array is a three-dimensional array in which the first and second dimensions are element and 

IP identifiers, respectively. The third identifier can be chosen as IP coordinates and softening 
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parameters. Further, IP coordinates are used to calculate the relative distance to surrounding 

IPs (Mallikarachchi, 2019; Gao et al., 2021; Gao et al., 2022). 

The nonlocal averaging is carried out at the beginning of each increment in the UMAT. First, 

the local volumetric strain increment 𝑑휀𝑣𝑙  for each IP is calculated. The nonlocal strain 

increment 𝑑휀𝑣𝑛  and scaling variable 𝑟𝑣  are then computed using Equations (4.5) – (4.8). 

However, this process required lots of computing time. Thus, the IPs within the radius of 

four times the characteristic length are considered in the weight function to reduce the 

computational time because 𝑤𝑖 becomes negligible when 𝑟𝑖 > 4𝑙. A common block array 

ENCD (NEL, NIP, 4) is used in UMAT to return the coordination [ENCD (NEL, NIP, 1–3)] 

and 𝑑휀𝑣𝑙  [ENCD (NEL, NIP, 4)] of each IP (Mallikarachchi and Soga, 2020). The 

components of ENCD are obtained in the UMAT for each IP, which can then be used for the 

UMAT of the other IPs. The remaining part of the UMAT is the same as that for a local 

model, except that the void ratio is updated using Equations 4.9 and 4.10 at the end of each 

sub-increment.  

The subroutine USDFLD is used to get the volume of each IP (IVOL) using the utility routine 

GETVRM. This variable IVOL is then returned as a common block array VOLINT (NEL, 

NIP, 1), where NEL is the total number of elements in a problem, and NIP is the number of 

IPs in each element. Specifically, the volume of each IP (NPT in Abaqus) of the associated 

element (NOEL in Abaqus) is obtained and then stored as a component VOLINT (NOEL, 

NPT, 1) in the USDFLD.  The flowchart of implementation of the regularisation method in 

Abaqus is show in Figure 4.6. 

 

Figure 4.6 The flowchart of implementation of the regularisation method in Abaqus  
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4.5 The determination of internal length 𝒍𝒄  in nonlocal 

method 

𝑙𝑐 is an important parameter for nonlocal regularisation models, as it is used for the weight 

functions. The size of the internal length determines how many IPs can be involved in 

nonlocal regularising, averaging the local variables of the local integration point and 

neighbouring variables at the neighbouring IPs. As mentioned by Gao et al. (2021), 𝑙𝑐 should 

be equal to or larger than the maximum mesh size to make sure that sufficient IPs are 

involved. Bigger 𝑙𝑐 means that the stress–strain relationship of the current integration point 

is affected by that of IPs further away. In this way, the deformation region will remain above 

the resolution level of the material model. A wider shear band and a slower rate of strain-

softening will be predicted as 𝑙𝑐 increases. (Mallikarachchi, 2019) 

Experimental evidence shows that the shear band thickness 𝑡𝑠 is about 10 - 20𝑑50for most 

sand, where 𝑑50 is the mean particle size. For the Toyoura sand used here, 𝑑50 ≈ 0.2 𝑚𝑚 

and 𝑡𝑠 ≈ 2 − 4 𝑚𝑚. The predicted 𝑡𝑠  is very close to 𝑙𝑐  when the Galavi and Schweiger 

weight function is used, which will be shown in the subsequent sections. Therefore, 𝑙𝑐 ≈

2 − 4 𝑚𝑚 has to be used if realistic prediction of 𝑡𝑠 is required.  

But the maximum mesh size must always be smaller than 𝑙𝑐. While it is feasible to use very 

small 𝑙𝑐  to simulate the response of small soil samples, it is impractical to use 𝑙𝑐 ≈ 2 −

4 𝑚𝑚 in most real boundary value problems. There are two significant reasons. First, small 

mesh size causes numerical convenience issues for advanced soil models, which give a 

highly nonlinear stress-strain relationship. Secondly, the computational time will 

significantly increase when a small mesh size is used for a nonlocal model. Therefore, proper 

𝑙𝑐 is typically chosen based on the size of the solution domain, which can guarantee mesh-

independent results but not realistic shear band thickness. 

 

4.6 Summary 

Three different nonlocal models were developed based on the weight functions, including 

GD, G&S and ON functions. Among them, the GD function shows the highest contribution 

to the calculated nonlocal variable at the centre. The leading nonlocal variable is 

concentrated at the local point and cannot spread to surrounding points, negatively affecting 
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the nonlocal method. Improvement was made by the G&S and ON functions. The nonlocal 

variable is no longer concentrated at the local point and is replaced with two same peaks 

near the local point. In addition, the ON function needs to find a proper nonlocal parameter, 

𝑚 which has a significant impact on this method.  

In this thesis, the strain-softening of the critical state sand model is mainly affected by the 

void ratio. Therefore, the increment of the void ratio can be assumed to be a nonlocal variable. 

However, it only treats the void ratio as nonlocal, which makes it unable to eliminate the 

mesh dependency.  
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Chapter 5：Evaluation of three weight 

functions for nonlocal regularisation  

5.1 Introduction 

Some studies have been done on the comparison of three weight functions in simple BVPs 

like plane strain compression. It is found that the G&S function gives better regularisation 

results than the GD or the ON function (Galavi and Schweiger, 2010; Guo and Stolle, 2013; 

Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Gao et al., 2022). However, the 

performance of these functions in real-world BVPs has not been evaluated. The main aim of 

this Chapter is to carry out a comprehensive comparison of these functions in various BVPs, 

including drained and undrained plane strain compression, the response of strip footings on 

level ground and near a slope and a retaining wall (passive and active conditions).  

 

5.2. Plane strain compression tests 

The samples used in this section are 60 mm wide and 120 mm high, as shown in Figure 5.1. 

The boundary condition is also shown in Figure 5.1. A confining pressure of 𝑝0 = 200 kPa 

is applied on the two vertical sides. Vertical displacement is applied on the top side, with the 

horizontal displacement unconstrained. The bottom side is pinned at the left and free to move 

to the right. A square ‘weak’ area (12mm×12mm) with inclined bedding plane orientation 

(𝛼 = 45° ) is implemented, which is used to trigger a shear band in the plane strain 

compression test. For the remaining part of this specimen, the bedding plane orientation is 

horizontal and 𝛼 = 0°. The initial void ratio of the sample is 𝑒0 = 0.65 (relative density 

𝐷𝑟 = 85.6%), and the initial degree of anisotropy is 𝐹0 = 0.4. All simulations in this study 

have used 8-noded plane strain quadratic elements with reduced integration (CPE8R). Note 

that all the simulations to be presented below use this element. The thickness of the soil is 

assumed to be 1m in processing the results. 

Moreover, in undrained plane strain compression, the permeability of soil is set very small 

and water flow at all boundaries is closed. Transient consolidation analysis is selected for all 

simulations. The rest of the conditions are the same as the drained case. 
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Figure 5.1 The boundary conditions and bedding plan orientation for the plane strain 

compression simulations 

 

5.2.1 Selection of internal length for simulation 

The internal length 𝑙𝑐 is an important parameter for nonlocal regularisation models. The size 

of the internal length determines how many integration points can be involved in nonlocal 

regularisation. 𝑙𝑐 should be equal to or larger than the maximum mesh size to make sure that 

sufficient integration points are involved. Bigger 𝑙𝑐  means that the stress and strain 

relationship of the current integration point is affected by that of integration points further 

away. Figure 5.2 illustrates the effect of 𝑙𝑐 on the vertical reaction force and displacement 

curves simulated by the different weight functions. In these models, the mesh size of 0.004 

m was selected under drained conditions. The 𝑙𝑐 does not affect the solutions before the peak 

reaction force. Higher peak vertical reaction force and a slower rate of strain-softening were 

obtained by increasing 𝑙𝑐 during post-peak. Furthermore, the GD and ON functions predict 

a slower rate of the strain-softening curve than the GD function. The internal length 

‘weak’ area 

α 
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determines the range within which the integration points are considered in the nonlocal 

averaging. When it is bigger, more integration points are accounted for in the weight 

functions of each integration point. This means that the local load is artificially distributed 

to more neighbouring integration points, leading to a lower rate of strain softening. In the 

simulations for plane strain compression below, 𝑙𝑐 = 0.012 𝑚  is used. It should be 

mentioned that 𝑙𝑐 also has an influence on the shear band thickness, which will be shown in 

subsequent sections. The real shear band thickness of sand is about 10-20𝑑50, where 𝑑50 is 

the mean particle size (Galavi and Schweiger, 2010). If the real shear band thickness were 

to be matched in FE modelling, a very small mesh size has to be used because the shear band 

thickness is related to 𝑙𝑐 . This would cause issues like excessive computation time and 

numerical divergence. Therefore, proper 𝑙𝑐  is typically chosen based on the size of the 

solution domain, which can guarantee mesh-independent results but not realistic shear band 

thickness.  

 

(a) (b) 

(c) 

Figure 5.2 The effect of internal length on the force-displacement relationship in drained 

plane strain compression test: (a) GD function; (b) G&S function; (c) ON function 



Chapter 5：Evaluation of three weight functions for nonlocal regularisation                        79 

5.2.2 Investigation of parameter 𝒎  for the Over-nonlocal 

Method  

The over-nonlocal parameter 𝑚 provides the relative contribution from local and nonlocal 

parts. According to the previous Chapter, the parameter 𝑚 affects the contribution of the 

nonlocal variable along the calculation point and the thickness of the shear band (Brinkgreve, 

1994; Lü et al., 2009; Summersgill et al., 2017). Thus, the selection of the value of 𝑚 plays 

an important role in the ON method. In this section, biaxial compression tests for brained 

and undrained conditions were set to evaluate the influence of parameter 𝑚  on force-

displacement response and strain distribution over the cross-section. 

The load-displacement responses for 𝑚 =1.0, 1.2, 1.5 and 2.0 are shown in Figures 5.3 and 

5.4 under drained and undrained conditions, respectively. The results show that 𝑚 =1.5 and 

2.0 is unstable, but the response for 𝑚 = 1.0 and 1.2 is stable. Under the drained condition, 

when 𝑚 = 1.5 , the degree of softening decreases as the mesh size decreases. This 

phenomenon becomes more pronounced when 𝑚 = 2.0. Under the undrained condition, as 

𝑚 increases, the force-displacement curve becomes increasingly unstable. In fact, when 

𝑚 = 1.0, which is equivalent to the Gaussian distribution function. Compared to when 𝑚 = 

1.0, the use of the over-nonlocal method shows more effective alleviation of mesh 

dependency when 𝑚 = 1.2. 

 

(a) (b) 
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(c) (d) 

Figure 5.3 The influence of parameter 𝑚 of ON function on the force-displacement 

relationship for drained plane strain compression: (a) 𝑚 = 1.0; (b) 𝑚 = 1.2; (c) 𝑚 = 1.5; 

(d) 𝑚 = 2.0 

 

(a) (b) 

(c) (d) 

Figure 5.4 The influence of parameter 𝑚 of ON function on force-displacement 

relationship for undrained plane strain compression: (a) 𝑚 = 1.0; (b) 𝑚 = 1.2; (c) 𝑚 =

1.5; (d) 𝑚 = 2.0 
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The strain distribution over cross sections at displacement 7% are plotted in Figure 5.5 and 

Figure 5.6 for drained and undrained conditions, respectively. Regardless of the drained or 

undrained condition, the shear band thickness increases with an increase in parameter 𝑚, 

while the maximum strain within the shear band decreases. The parameter 𝑚 controls the 

distribution of nonlocal strain and influences its magnitude. The summary of the influence 

of the parameter 𝑚 on the shear band for a fine mesh size (0.004 m) is depicted in Table 5.1. 

 

(a) (b) 

(c) (d) 

Figure 5.5 The influence of parameter 𝑚 of ON function on the cross-section profiles 

based on the shear strain under the drained condition: (a) 𝑚 = 1.0; (b) 𝑚 = 1.2; (c) 𝑚 =

1.5; (d) 𝑚 = 2.0 
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(a) (b) 

 (c) (d) 

Figure 5.6 The influence of parameter 𝑚 of ON function on cross-section profiles based on 

the shear strain under the undrained condition: (a) 𝑚 = 1.0; (b) 𝑚 = 1.2; (c) 𝑚 = 1.5; (d) 

𝑚 = 2.0 
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Table 5.1 The summary of the influence of parameter 𝒎 on the shear band 

 Value of parameter 𝑚 
Shear band 

thicknesses (m) 

Maximum strain 

within the shear 

band 

Drained 

condition 

1.0 0.015 0.9% 

1.2 0.02 0.6% 

1.5 0.025 0.45% 

2.0 0.045 0.2% 

Undrained 

condition 

1.0 0.012 0.55% 

1.2 0.015 0.5% 

1.5 0.019 0.3% 

2.0 0.025 0.25% 

 

In summary, a premature softening and wider shear band thickness was previously observed 

in both drained and undrained conditions when 𝑚 increased. A higher 𝑚  indicates that the 

ON method could produce erroneous results under some conditions. Contrary to the results 

of Summersgill et al. (2017), the sudden decrease in reaction load appears when the 

parameter 𝑚 increases is not caused by excessive local strain, but rather wider shear band 

thickness. Moreover, to utilise the ON method effectively, it is essential to closely monitor 

the results for any signs of sudden excessive softening. This requirement for careful 

monitoring reduces the advantages of using the ON method compared to other nonlocal 

methods (GD and G&S methods. It should be mentioned that 𝑚 = 1.2 is chosen for the ON 

method through trial and error. Smaller 𝑚 gives mesh-dependent solutions, but higher 𝑚 

causes numerical divergence in the simulations. In the strip footing problem to be discussed 

in the subsequent Chapter, higher 𝑚 is found to give a steep reduction of reaction force 

acting on the footing after peak, which is not consistent with the experimental observations 

in centrifuge tests. 
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5.2.3 Drained plane strain compression tests 

Figure 5.7 shows the force-displacement curves predicted by the local and three nonlocal 

models. Compared with local and nonlocal models, the strain hardening part is insensitive 

to the mesh size until the peak and becomes mesh-dependent in the strain softening part. In 

the local model, a finer mesh size results in earlier and faster softening, consistent with 

previous findings (Conte et al., 2010; Schädlich, 2012). Moreover, similar to Mohr-Coulomb 

(MC) models, forces at the critical state exhibit mesh dependence issues. When a larger mesh 

is employed, the critical state strength increases. In nonlocal models, the study examines the 

effectiveness of three nonlocal methods in regularising the post-localisation response of the 

model using a 𝑙𝑐 of 0.012 m, as depicted in Figures 5.7(b)-(d). Figure 5.7(b) shows that the 

GD method does not fully eliminate mesh dependency for the given characteristic length. In 

contrast, both GS and ON methods adequately produce force-displacement responses 

independent of the mesh, as demonstrated in Figures 5.7(c)-(d). The main reason is that the 

local variable significantly influences the results when the GD function is used. Moreover, 

the critical state strengths obtained are nearly unaffected by changes in the mesh size. Across 

all nonlocal methods, the softening rate is reduced, leading to a delay in reaching the critical 

state. 

 

(a) (b) 
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(c) (d) 

Figure 5.7 Comparison of the local and nonlocal models on the force-displacement 

relationship for drained plane strain compression: (a) Local model; (b) GD function; (c) 

G&S function; (d) ON function 

 

Shear strain contours at the strain softening for the local and three different nonlocal models 

at displacement 𝑠/𝐻 = 9% are shown in Figures 5.8-5.11, where SDV11 represents the total 

shear strain. Figure 5.8 exhibits that the thickness of the shear strain zone predicted by the 

local model is sensitive to the mesh size. On the contrary, contour plots of total shear strain 

from GS and ON nonlocal methods in Figure 5.10 and Figure 5.11 provide almost similar 

shear strain zone irrespective of the mesh size during the strain softening period. 

 

 

Figure 5.8 Shear strain contour for the Local model at 𝑠/𝐻 = 9% for different mesh sizes: 

(a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 m 

 

(a) (b) (c) (d) (e) 
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Figure 5.9 Shear strain contour for the GD function in plane strain compression at 𝑠/𝐻 =

9% for different mesh sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 

m 

 

 

Figure 5.10 Shear strain contour for the G&S function in plane strain compression at 

𝑠/𝐻 = 9% for different mesh sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 

0.012 m 

 

 

Figure 5.11 Shear strain contour for the ON function in plane strain compression at 𝑠/𝐻 =

9% for different mesh sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 

m 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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The orientation of the shear band in plane strain is sensitive to the boundary condition and 

the size of material particles. In FE simulation, the angle of the shear band is determined by 

factors such as mesh alignment, shape, the type of element used, and the number of nodes. 

The positions of nodes directly influence both the thickness and the orientation in which the 

shear band develops. The orientation of the shear band (𝛽) is directly measured from shear 

strain contours, as shown in Figure 5.12.  

 

Figure 5.12 Shear strain contour for measuring the shear band orientation 

 

According to Figure 5.13, the predicted angle of the shear band decreases as the mesh size 

increases. The orientations of shear bands from the local model are mesh-dependent. The 

difference in angle between the finest mesh and the coarsest mesh is 16.98%. All the 

nonlocal functions reduce but cannot eliminate the mesh dependency of shear band 

orientation. This could be partly nonlocal because only one variable (void ratio) is 

regularised within the constitutive level that affects the strain softening, which is assumed 

nonlocal. In this circumstance, the direction of nodal degrees of freedom is hardly affected. 

(Mallikarachchi, 2019). The differences between the various nonlocal methods are minor. 

For finer mesh, the ON method displays a higher shear band orientation compared to other 

Shear band 

orientation 𝛽 

(˚) 
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nonlocal models. For example, when the mesh size is 3mm, the angle for the ON method is 

50° and 49° for GD and GS. On the contrary, three nonlocal models have the same angle 

at coarse mesh (12mm). The mesh dependency could be further reduced if more state 

variables in the hardening law are assumed nonlocal. However, this would significantly 

reduce the computation efficiency. 

 

 

Figure 5.13 Comparison of shear band orientation for drained plane strain compression test  

 

Moreover, the determination of shear band orientation is also affected by the type and size 

of weak elements used to trigger strain localisation. While the same element type is applied 

to all mesh sizes, the finer meshes exhibit more flexibility during the strain softening than 

the larger meshes. As a result, they display greater inclination angles due to mobilised 

dilation. In contrast, with coarser meshes, the shear band angle is primarily determined by 

square weak elements (Mallikarachchi, 2019). 

The measurement of shear band thickness primarily involves two methods. In Method A, 

the shear band is directly measured by a cross-section in the shear strain contour plot, this 

cross-section is perpendicular to the shear band. This method is simple and convenient, but 

because the endpoints of the cross-section are taken at the nodes of the elements, achieving 
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a cross-section that is completely perpendicular to the shear band in simulation results can 

be challenging, leading to slight errors. On the other hand, in Method B, a path is selected in 

the shear strain plot that traverses the entire soil specimen horizontally. The length where 

this path coincides with the shear band is denoted as normalised shear band thickness (𝑙). 

The thickness of the shear band is then calculated by the shear band orientation. Although 

this method is more complicated, it provides accurate results. It is important to note that 

calculating the shear band thickness using Method B requires prior computation of the shear 

band orientation. For the method A, the thickness of the shear band is directly measured 

based on the shear strain distribution from a cross-section at 𝑠/𝐻 = 7% is shown in Figure 

5.14. 

 

 

Figure 5.14 Cross-section contour based on the shear strain under the drained condition 

with a mesh size of (a) 0.004 m and (b) 0.006 m for the local model 

 

Figure 5.15 shows the determination of shear band thickness for different models. In Figure 

5.15(a) 𝑡𝑠1 and 𝑡𝑠2 represents shear band thickness for mesh size of 0.004 m and 0.006 m, 

respectively. The thickness measured from the coarse mesh is wider than the fine mesh. The 

difference in thickness between different mesh sizes is reduced after nonlocal regularisation 

but cannot be eliminated because only one state variable (void ratio) is treated in this model 

(a) 0.004 m 
(b) 0.006 m 
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and is known as partial nonlocal. Moreover, the ON model exhibits smaller shear strain in 

the shear band for fine mesh size than other models. As described in Figure 5.15(d), the shear 

strain for coarse mesh (0.006 m) is greater than fine mesh (0.004 m) for the over-nonlocal 

model, which is significantly different from the other models. 

 

Figure 5.15 Comparison of cross-section profiles based on the shear strain: (a) Local 

model; (b) GD function; (c) GS function; (d) ON function  

 

According to the previous discussion, the thickness of the shear band is determined by shear 

strain cross-section profiles. However, other state variables, such as void ratio, anisotropy 

variable 𝐴, and degree of anisotropy 𝐹, can also be extracted and recorded to represent the 

shear band. A path crossing through the centre of soil samples (Method B) is selected to 

further analyse the influence of local and nonlocal models on the shear band thickness shown 

in Figure 5.16. The shear band thickness based on various state variables can be calculated 

by the shear band orientation 𝛽 a normalised shear band thickness 𝑙 (𝑡𝑠 = 𝑙 ∙ 𝑠𝑖𝑛 𝛽). 

(a) (b) 

𝑡𝑠2 

𝑡𝑠1 

(c) (d) 
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Figure 5.16 The selection of path of shear band thickness by total shear strain 

 

As illustrated in Figure 5.17, the mesh size (ℎ = 0.006 𝑚) and vertical displacement (𝑠/𝐻 =

7%) are the same for different state variables, ensuring a proper comparison of the impact 

of related state variables on the shear band between local and nonlocal models. In all 

simulations, variables reach their peak values at the centre of the normalised shear band 𝑙, 

with shear strain showing the most noticeable variation because of the largest deformation 

gradients. In addition, excessive strain localisation is primarily caused by significant 

rearrangements and rotations of particles, resulting in dilation inside the shear band. 

Furthermore, in all simulation results, the normalised shear band thickness 𝑙  (𝑡𝑠 ) in the 

nonlocal model is greater than that in the local model. Additionally, between these two 

models, the void ratio exhibits the maximum difference, while the difference in shear strain 

is minimal. Among different state variables, the gradient and the change of shear strain are 

the most noticeable in the shear band. Therefore, when determining the shear band thickness, 

similar to the Method A, the shear strain contour plot should serve as the benchmark. 

A comparison between Method A and Method B is presented in Table 5.2, revealing no 

significant difference between these two methods.  

(b) G&S function 

Path 

𝑙 along the path 

Shear band 

orientation 𝛽(˚) 

𝑡𝑠 = 𝑙 ∙ 𝑠𝑖𝑛 𝛽 

(a) Local model 
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Figure 5.17 Calculation of Shear band thickness by different variables under smooth 

boundary  

𝑙 = 23 𝑚𝑚 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

𝑙 = 25 𝑚𝑚 

𝑙 = 24 𝑚𝑚 𝑙 = 55 𝑚𝑚 

𝑙 = 25 𝑚𝑚 
𝑙 = 45 𝑚𝑚 

𝑙 = 23 𝑚𝑚 𝑙 = 30 𝑚𝑚 
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Table 5.2 Comparison of 𝒕𝒔 from two different methods 

 Method A (Cross-section) Method B (Path) 

Local model 𝑡𝑠 = 17 𝑚𝑚 

𝑡𝑠 = 𝑙 ∙ 𝑠𝑖𝑛 𝛽

= 23 × 𝑠𝑖𝑛 48

= 17.08 𝑚𝑚 

G&S method 𝑡𝑠 = 17 mm 

𝑡𝑠 = 𝑙 ∙ 𝑠𝑖𝑛 𝛽

= 25 × 𝑠𝑖𝑛 47

= 18.28 𝑚𝑚 

 

The effect of mesh size on shear band thickness is shown in Figure 5.18(a). The shear band 

thickness simulated by the local model increases significantly with the mesh size. The 

nonlocal models give a slight variation of shear band thickness when the mesh size ℎ < 𝑙𝑐. 

All nonlocal models provide the same shear band thickness as that of the local model when 

size ℎ = 𝑙𝑐. The shear band thickness predicted by the nonlocal models increases with 𝑙𝑐 

(Figure 5.18b), and the ON model predicts wider shear bands. 

It should be noted that in Figure 5.18(a), even after nonlocal regularisation, the thickness of 

the large mesh is significantly higher. Ortiz et al. (1987) emphasised that iso-parametric 

elements have inherent limitations in representing strain localisation. When using iso-

parametric interpolation, elements attempt to adjust to the deformation field by averaging 

deformations on both sides of the discontinuity, as depicted in Figure 5.19. As a result, true 

discontinuous interfaces are spread across several elements, causing the minimum shear 

band thickness to exceed the width of a single element. Finer meshes enable element 

boundaries to follow shear band directions, which larger iso-parametric elements cannot 

accurately resolve. Triangular elements, on the other hand, are found to be more effective in 

representing these localisations. The shear band boundaries are hard to model by continuum 

methods, making particle methods more suitable for capturing this transition. 
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(a) 

 

(b) 

Figure 5.18 Comparison of the effect of (a) Mesh size and (b) Internal length on the shear 

band thickness in plane strain compression 
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Figure 5.19 Iso-parametric elements in a strain discontinuity (Ortiz et al., 1987) 

 

Furthermore, both Marcher (2003) and Galavi & Schweigher (2010) have argued that using 

a large value for 𝑙𝑐 leads to a much larger and unrealistic shear band thickness, even when 

an appropriate mesh size is chosen. This discrepancy arises because the selected 𝑙𝑐 does not 

match the physical length of the sand being studied. To effectively apply the nonlocal 

method, the mesh size would need to be smaller, which is practically challenging to achieve 

to match the actual shear band thickness. Therefore, it becomes necessary to scale the load-

displacement response to align with real soil behaviour. A method of softening scaling is 

implemented to obtain a realistic shear band thickness in addressing this issue (Which will 

discuss in The Chapter 6). 

 

5.2.4 Undrained plane strain compression tests 

Figure 5.20 shows the relationship between vertical displacement and reaction force for 

different models. In the local model, vertical reaction force increases with mesh size and is 

sensitive to the mesh size, and it is evident that the nonlocal models give mesh-independent 

results. 
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(a) (b) 

(c) (d) 

Figure 5.20 Comparison of the force-displacement relationship for undrained plane strain 

compression test: (a) Local model; (b) GD function; (c) G&S function; (d) ON function 

 

The shear band orientation in undrained plane strain compression increases when the mesh 

is refined for all models. The mesh dependency can be reduced but not eliminated by the 

nonlocal treatment (Figure 5.21). It is worth noting that the nonlocal models give the same 

shear band orientation as the local model when the mesh size is more significant than 0.009 

m. The nonlocal models also provide a more significant variation of shear band orientation 

in undrained tests than in drained ones. The main reason is that there is a smaller change in 

the void ratio in an undrained test, which makes the nonlocal regularisation using the void 

ratio less effective.  

 



Chapter 5：Evaluation of three weight functions for nonlocal regularisation                        97 

 

Figure 5.21 Shear band orientation predicted by different models in undrained plane strain 

compression tests 

 

According to Figure 5.22, the value of the shear strain in the shear band under the undrained 

case is smaller than in the drained case. For example, under drained condition, when the 

mesh size is 0.004 m, the maximum value of the shear strain in the shear band for the ON 

model is around 0.65 and 0.85 for other models. In contrast, under undrained condition, the 

shear strain is 0.6 for other models and 0.5 for the ON model. 

The shear band thickness predicted by the models is shown in Figure 5.23. Similar to the 

drained case, the nonlocal models give a slight variation of shear band thickness when the 

mesh size is smaller than the internal length. But the shear band thickness predicted by the 

nonlocal models at ℎ = 𝑙𝑐 is more significant than that of the local model. Moreover, it is 

found that the drainage condition has little influence on the shear band thickness at different 

internal lengths (Figure 5.23b). 
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(a) (b) 

(c) (d) 

Figure 5.22 Cross-section profiles based on the shear strain after peak state: (a) Local 

model; (b) Gaussian distribution model; (c) G&S distribution model; (d) Over-nonlocal 

model 

(a) 
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(b) 

Figure 5.23 Comparison of the effect of (a) Mesh size and (b) Internal length on the shear 

band thickness under undrained condition 

 

5.2.5 Comparison of three weight functions in dynamic 

liquefaction 

Liquefaction is a phenomenon involving a significant reduction in effective stress caused by 

excess pore water pressures. The sudden and significant loss of shear strength is 

accompanied by excessive plastic strains (Yamamuro and Lade, 1997). The criteria for 

liquefaction failure can be divided into two main groups depending on the type of loading: 

static liquefaction and cyclic mobility (Kramer, 1996; NRC, 1985).  

It is also meaningful to testify the validation of nonlocal regularisation during static 

liquefaction. During static liquefaction, rapid monotonic shearing generates significant 

excess pore water pressures in a nearly or fully saturated soil due to the contractive tendency 

and undrained softening behaviour (Yamamuro and Lade, 1997; Chu et al., 2003; Take and 

Beddoe, 2014; Gens, 2019). Based on the response of sand with different densities under 

monotonic undrained loading, static liquefaction can be classified into three types: static 

liquefaction, limited liquefaction, and non-flow behaviour. The behaviour of static 
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liquefaction and limited liquefaction under static loading indicates a strain-softening type of 

undrained response (Vaid and Sivathayalan, 2000).  

According to past studies, the very loose sand was liquefied under low confining pressures 

of 100 kPa or less, which refers to ‘complete static liquefaction’ (Ishihara, 1993; Riemer et 

al., 1990; Yamamuro and Lade, 1997). However, when the initial confining pressure 

increased after 100 Kpa, the specimens exhibited stable behaviour with less liquefaction 

susceptibility, which became ‘Limited liquefaction’ (Sabbar et al., 2017). Thus, the 

simulation of loose sand (𝐷𝑟 = 34.2%) with two different initial confining pressure (𝑝0 =

200, 50 𝑘𝑃𝑎) is considered. 

As illustrated in Figures 5.24 and 5.25, mesh sensitivity issues still exist, and the random 

distribution of mesh size was obtained, which usually occurs at the post-bifurcation point 

when failure modes transfer into a localised mode (Wan et al., 2012). Figure 5.24 shows the 

force and displacement relationship for loose sand in undrained plane strain compression. 

Though the vertical reaction force decreases after the peak, the mesh size has little influence 

on the results when the original model is used (Figure 5.24a). The nonlocal models give 

similar results (Figure 5.24c and d). The reason is that the stress ratio of soil elements keeps 

increasing, though the deviator stress decreases. This is a strain-hardening response based 

on the model, as increasing stress ratio means increasing hardening parameter 𝐻. In coupled 

dynamic loading (e.g., earthquake), the soil response will be a combination of that in Figure 

5.20 and Figure 5.24, wherein the nonlocal regularisation method is found to work. 

Therefore, it is expected that the nonlocal regularisation technique also works for coupled 

analysis in earthquakes. 

(a) (b) 
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(c) (d) 

Figure 5.24 Comparison of the local and nonlocal models on the force-displacement 

relationship for limited liquefaction with high confining pressure: (a) Local model; (b) 

GD function; (c) G&S function; (d) ON function 

 

(a) (b) 

(c) (d) 

Figure 5.25 Comparison of the local and nonlocal models on the force-displacement 

relationship for limited liquefaction with low confining pressure: (a) Local model; (b) GD 

function; (c) G&S function; (d) ON function 
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5.3 Strip footing problem 

5.3.1 Strip footing on level sand ground 

The dimension of the strip footing problem is shown in Figure 5.26. The footing with 

𝐵 =0.9m is deformed by applying a uniform vertical deformation. The horizontal 

displacement is fixed to simulate rough footings. Constant vertical pressure (1 kPa) is 

applied on the top surface to avoid soil collapse with zero mean effective stress. The initial 

lateral earth pressure coefficient 𝐾0 = 0.4 (Okochi and Tatsuoka 1984), and the effective 

weight of Toyoura sand is 𝛾′ = 16kN/m3 as there is no water in the sand. Two sides of the 

sample are horizontally fixed, while both horizontal and vertical movement is restricted for 

the bottom boundary. Details can be found in Gao et al. (2020). Since the vertical load and 

vertical settlement relationship is mainly affected by the rectangle area beneath the footing, 

hence, the mesh size far away from the footing is setting a fixed value (0.6m) for all models. 

The bedding plane orientation is horizontal and 𝛼 = 0°. The relative density 𝐷𝑟 = 85.6%, 

and the initial degree of anisotropy is 𝐹0 = 0.4.  

 

 

Figure 5.26 The boundary conditions of the strip footing problem 

 

𝐵 = 0.9m 

𝛂 

𝑥 

𝑦 

 
Mesh to 0.6m 

Mesh to 0.6m Mesh to 0.6m 

1 kPa surcharge  1 kPa surcharge  
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Figure 5.27 shows the prediction of local and nonlocal models with 𝑙𝑐 = 0.8 𝑚. It is evident 

that the local model prediction is highly mesh-dependent. The G&S function gives the least 

mesh-dependent results. The strain softening predicted by the GD and G&S functions is in 

good agreement with the centrifuge test data (Kimura et al., 1985). However, the ON model 

gives a steep reduction of 𝑄  after the peak, which does not match the experimental 

observations. There are two reasons for this. First, this method gives excessive volume 

expansion of sand under the strip footing (Figure 5.28). The location of the elements in 

Figure 5.28 is shown in Figure 5.29. The GD and GS models give similar predictions of void 

ratio evolution, while the void ratio increase predicted by the ON model is about 90% higher. 

A higher void ratio causes lower strength and failure of some elements, which leads to a fast 

reduction of 𝑄. Secondly, the ON method assumes that the local variable makes a negative 

contribution to the local one, which may not be realistic. In these cases, such an assumption 

causes failure or lower shear strength of more sand elements. Moreover, it is found that a 

bigger 𝑚 value gives an even steeper strain softening curve for the ON function. Therefore, 

the ON function should not be used for this problem. 

(a) (b) 

(c) (d) 

Figure 5.27 The comparison of the strip footing response on the sand with horizontal 

bedding plane: (a) Local model; (b) GD function; (c) G&S function; and (d) ON function 
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(a) (b) 

(c) (d) 

Figure 5.28 Comparison of void ratio evolution for elements under the strip footing: (a) 

Local model; (b) GD function; (c) G&S function; (d) ON function  

 

Figure 5.29 Location of elements under the strip footing 

Element A Element C 

Element D 
Element B 



Chapter 5：Evaluation of three weight functions for nonlocal regularisation                        105 

5.3.2 Strip footing near a sand slope 

This problem is based on the simulations in Gao et al. (2021). The strip footing (𝐵 = 1.2𝑚) 

and the slope angle 𝛽 varies between 25° and 30° to explore its influence on nonlocal 

methods. The distance between the footing and slope crest is 𝜆𝐵, with 𝜆 varying between 

0.5 and 1.5. The confining pressure is 5 kPa to ensure the simulations can continue after 

reaching the bearing capacity. Since the ground surface is not level, a constant 𝐾0 cannot be 

applied. Therefore, the gravity loading method is used to generate the initial stress state (Gao 

et al., 2021). First, gravity is applied on the same soil body by assuming that the soil is elastic 

with a Poisson's ratio of 𝜈 = 0.286, making 𝐾0 = 0.4 for a flat ground surface (Gao et al., 

2021). After that, the stress state is extracted and imported into the model as the initial stress, 

which is used for the subsequent modelling. The slope dimension and boundary conditions 

are shown in Figure 5.30 

 

  

Figure 5.30 The boundary conditions of the strip footing near a slope 

 

Figure 5.31 shows the prediction of local and nonlocal models with 𝑙𝑐 = 0.4 𝑚. In these 

simulations, the slope angle is 30° and 𝜆 = 0.5. The local model gives different peak 

bearing capacities and 𝑠 − 𝑄 curves after the peak as the mesh size changes (Figure 5.31a). 

Nonlocal regularisation reduces the mesh-dependent of 𝑠 − 𝑄 curves (Figure 5.31c and d). 

The rate of strain softening is also reduced due to the nonlocal averaging of void ratio 
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increment. To further reduce the mesh sensitivity, more nonlocal variables could be used, 

but this may increase the complexity of the model formulations and its implementation. 

Figure 5.32 shows the contour of shear strain distribution in the soil after the state for the 

G&S function. A clear slip surface can be seen, which is independent of the mesh size. 

 

(a) (b) 

(c) (d) 

Figure 5.31 The comparison of the strip footing response near a slope with a horizontal 

bedding plane: (a) Local model; (b) GD function; (c) G&S function; (d) ON function 
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Figure 5.32 Shear strain distribution in the soil predicted by the G&S model at 𝑠/𝐵 = 0.12 

with different mesh sizes: (a) 0.20 m; (b) 0.25 m; (c) 0.30 m 

 

The effect of slope angle 𝛽 and crest distance 𝜆 on nonlocal three weight functions is shown 

in Figure 5.33 and Figure 5.34. Figure 5.33 displays the predictions of the 𝑠 − 𝑄 relationship 

for local and nonlocal models with different slope angle 𝛽. When the distance (𝜆) between 

the slope crest and footing is same, the vertical load 𝑄 increases with a decreased slope angle. 

Thus, the bearing capacity can be improved by reducing the slope angle, and the mesh-

sensitive issue cannot be affected by 𝛽. However, in nonlocal models, the model with a 
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Slip Surface 
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higher slope angle predicts more consistent results for different mesh sizes than the lower 

slope angle model. 

As portrayed in Figure 5.34, in the local model, when the slope angle 𝛽 is kept unchanged, 

the higher vertical load 𝑄 is predicted by the smaller 𝜆 model. Thus, it is expected that the 

overprediction is caused when the footing is closer to the edge of the slope crest, where soil 

may be more easily mobilised due to less lateral support. Moreover, in nonlocal models, the 

slope model with 𝜆 = 1.0𝐵 reduces more difference in peak vertical load between different 

mesh sizes than the case that 𝜆 = 0.5𝐵. It should be noted that when the mesh size is very 

small, the simulations were stopped. Although fine mesh elements can improve the accuracy 

of the solution, they also lead to numerical instability during the solving process which called 

numerical divergence. 

(a) (b) 

(c) (d) 

Figure 5.33 The effect of 𝛽 on local and nonlocal model for strip footings near a sand slope 
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(a) (b) 

(c) (d) 

Figure 5.34 The effect of local and nonlocal models for strip footings near a sand slope 

Regardless of whether a local or nonlocal model is employed, using excessively small mesh 

sizes beneath the footing is inadvisable. Extremely small mesh sizes tend to result in 

numerical divergence issues. As demonstrated in Figure 5.35, when a mesh size of 0.1m is 

applied to the strip footing on a slope problem (𝛽 = 30°, 𝜆 = 1.0𝐵), the simulation cannot 

completely converge, even during strain hardening. However, the result obtained from the 

nonlocal model is smoother compared to the local model due to the averaging effect of the 

nonlocal method. As the mesh is refined, the vertical settlement of the nonlocal method 

converges to a more stable value. Thus, the nonlocal theory without strain-softening can 

achieve and improve the convergence. 
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(a) (b) 

Figure 5.35 Convergence achieved using nonlocal theory without strain-softening 

 

5.4 Response of retaining wall for level sand ground 

Figure 5.36 shows a soil domain measuring 10 m in length and 4.5 m in depth, with a rigid 

retaining wall positioned on the right side of the backfill soil. The wall has a height of ℎ𝑤 =

4 𝑚 and is assumed to have an ideally smooth surface that prevents the transmission of shear 

stresses at the interface with the soil. The retaining wall can undergo passive and active 

horizontal translation, with passive movement towards the backfill and active movement 

away from it. The bottom, left-side, and right-side boundaries are fully fixed. In all 

simulations, the bedding plane orientation is horizontal (𝛼 = 0°), and the gravity is applied 

to the backfill soil while the top surface of the backfill soil is subjected to a uniformly 

distributed surcharge of 1 kPa. The same soil conditions as in Figure 5.26 are used. 𝑙𝑐 =

0.8 𝑚 is applied for all simulations. The lateral earth pressure is expressed as 𝜎ℎ and the wall 

displacement 𝑢 is normalised by the height of the wall ℎ𝑤. 
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Figure 5.36 The boundary conditions of the retaining wall problem 

 

Figure 5.37 shows the evolution of 𝜎ℎ for the active condition. The local model gives mesh-

dependent 𝜎ℎ − 𝑢/ℎ𝑤 curves. The G&S and ON functions are more efficient in reducing the 

mesh-dependency than the GD function 𝜎ℎ reaches the smallest value at 𝑢/ℎ𝑤 ≈ 0.015 and 

then increases with 𝑢/ℎ𝑤. This is caused by the strain-softening of sand. Similar results have 

been proposed by Nübel and Huang (2004), Widulinski et al. (2011) and Guo and Zhao 

(2015). For the passive condition, the nonlocal models give similar results (Figure 5.38). 

 

(a) (b) 

u 

P A 

u 

Translation 
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(c) (d) 

Figure 5.37 The comparison of the retaining wall response on the sand under active failure 

condition: (a) Local model; (b) GD function; (c) G&S function; (d) ON function 

 

(a) (b) 

(c) (d) 

Figure 5.38 Comparison of the retaining wall response on the sand under passive failure 

condition: (a) Local model; (b) GD function; (c) G&S function; (d) ON function 
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Figure 5.39 shows the strain localisation pattern predicted by the local model. The shear 

band orientation in the backfill is directly measured from shear strain contours at 𝑢/ℎ𝑤 =

5%  (Figure 5.40). The angle of the shear band under active earth condition is more 

significant than that under passive one. The angle of the shear band under active earth 

pressure decreases with increasing mesh size, while that under passive earth pressure 

increases. For both cases, the angle range of the local model (62° − 66°) is larger than that 

of the nonlocal models (31° − 36°). The nonlocal functions reduce the range of measured 

angle, which means they reduce mesh dependency, especially for the G&S function, which 

is almost constant under active earth pressure. Moreover, under passive earth pressure, the 

angle measured from the G&S function is slightly larger than that of the GD and ON 

functions. 

 

 
 

 

Figure 5.39 Shear band predicted by the G&S model after the retaining wall at 𝑢/ℎ𝑤 =

0.05: (a) active condition and (b) passive condition 

Shear band orientation (˚) 

(a) 

Shear band orientation (˚) 

(b) 
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(a) 

 

(b) 

Figure 5.40 Comparison of shear band orientation for retaining wall: (a) Active failure 

condition (b) Passive failure condition 
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Figure 5.41 shows the 𝜎ℎ − 𝑢/ℎ𝑤  curves for the retaining wall under rough boundary 

conditions. In both local and nonlocal models, the rough boundary conditions applied to the 

retaining wall imposes more constraints than in the smooth boundary conditions, leading to 

the prediction of lower 𝜎ℎ under active and higher 𝜎ℎ under passive failure condition. The 

rough boundary conditions allow no relative movement between the wall and the sand 

immediately, causing overprediction of the bearing capacity of the retaining wall. Moreover, 

the nonlocal predicts lower 𝜎ℎ in active failure mode and higher 𝜎ℎ in passive failure mode 

than the local model, while the nonlocal can reduce the mesh dependency issue in post-peak 

but is unable to reduce the difference in peak value. 

The shear zone pattern for a nonlocal model under rough boundary conditions is 

demonstrated in Figure 5.42. The retaining wall under rough boundary produces more slip 

lines than in smooth boundary conditions, and the apparent post-peak drop of lateral pressure 

in each case is accompanied with the occurrence of a well-developed shear band in the 

backfill soil. Guo and Zhao (2016) proposed that the shear band angle of the smooth wall 

case results in a very close value to the theoretical angle, whereas the rough wall case yields 

a significantly higher inclination angle for the slip line. This difference in behaviour may be 

attributed to the boundary condition and the limited domain width. 

 

(a) (b) 
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(c) (d) 

Figure 5.41 The effect of rough boundary on local and nonlocal models for retaining wall 

response under active and passive failure conditions 

 

 

 

Figure 5.42 Shear band predicted by the G&S model after the retaining wall at 𝑢/ℎ𝑤 =

0.05 under rough boundary conditions: (a) active condition and (b) passive condition 

Shear band orientation (˚) 

(a) 

Shear band orientation (˚) 

(b) 
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5.5 Summary 

The performance of three different weight functions for nonlocal regularisation, including 

the GD, G&S, and ON functions, has been evaluated. An anisotropic sand model accounting 

for the evolution of anisotropy is used. The increment of void ratio is assumed nonlocal, 

which significantly influences strain softening. Different BVPs have been simulated, 

including drained and undrained plane strain compression, the response of strip footings 

(level ground and slope) and a retaining wall (passive and active conditions). The main 

conclusions are: 

(a) All the nonlocal methods are effective in reducing the mesh dependency of the force-

displacement relationship in plane strain compression. The GD method gives less 

satisfactory results because the local value contributes most to the nonlocal variable. The 

nonlocal regularisation can reduce the mesh dependency of shear band thickness when 

the mesh size is smaller than the internal length. It is challenging to get mesh-

independent shear band orientation in either drained or undrained condition. This could 

be due to the fact that only the void ratio increment is assumed nonlocal. More mesh-

independent results could be obtained if more state variables that affect strain softening 

are assumed to be nonlocal. 

(b) Nonlocal regularisation can effectively reduce the mesh dependency of the force-

displacement curves for strip footings. The ON method gives excessive overprediction 

of volume expansion for soil elements around the footings on level ground, leading to an 

unrealistically steep reduction of the reaction force after the peak.  

(c) All three nonlocal functions give mesh-independent results for the active and passive 

earth pressures on the retaining wall. The shear band orientation predicted by the three 

functions shows a slight variation in the mesh size. 

The G&S method is thus a better option for nonlocal regularisation of sand models. It does 

not require extra parameters and assumes that the local variable does not contribute to the 

nonlocal one. The GD function gives more mesh-dependent results than the G&S function. 

The additional parameter 𝑚  for the ON method can be determined using plane strain 

compression and used for the other BVPs. However, the assumption that the local variable 

can make a negative contribution to the nonlocal one may not be realistic. For instance, this 
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assumption can cause a steep reduction of the reaction force on a strip footing on level sand 

ground.  
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Chapter 6：Strain localisation in plane 

strain compression 

6.1 Introduction 

In the previous Chapter, a comparison of three different nonlocal methods demonstrated that 

the G&S method is the most effective in mitigating mesh dependency issues. Therefore, in 

Chapter 6, there will be a more in-depth discussion and analysis of the G&S method. 

In this Chapter, plane strain compression tests with rough boundary under both drained and 

undrained conditions are simulated. The efficiency of the G&S method is justified through 

force-displacement relationship curves and shear strain contours. The effect of initial density 

and confining pressure on the nonlocal regularisation method is discussed. The evolution of 

state variables within the shear band under smooth boundary conditions is examined by 

cross-sections and selected elements inside and outside the shear band. These state variables 

include void ratio 𝑒, anisotropic variable 𝐴, degree of anisotropy 𝐹 and shear strain. The 

effect of anisotropy on strain localisation is investigated using soil samples with various 

bedding plane orientations (α=15°, α=30°, and α=45°). Finally, the performance of the 

nonlocal method under 3D loading conditions is presented.  

 

6.2 Drained plane strain compression with rough 

boundary 

6.2.1 Boundary condition 

In the simulation of the plane strain compression test, five mesh sizes were chosen, as shown 

in Figure 6.1, to test the impact of the nonlocal method on mesh dependency. Detailed 

information, such as mesh size, total elements, total nodes, and degrees of freedom, can be 

found in Table 6.1. 

In this Chapter, both smooth and rough boundary conditions are considered. The smooth 

boundary conditions is detailed in Section 5.2. For the rough boundary conditions, both the 

horizontal and vertical displacements are fixed at the bottom end, and the top end does not 
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deform in the horizontal direction (Figure 6.2). In the simulations for plane strain 

compression with both smooth and rough boundary conditions in this chapter, 𝑙𝑐 = 0.012 𝑚 

is used for all simulations. 

 

Figure 6.1 The mesh size used in plane strain compression modelling: (a) 0.003 m; (b) 

0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 m 

 

Table 6.1 Mesh size information for plane strain compression modelling 

Mesh Size (m) Total Elements Total Nodes Degrees of Freedom 

0.003 800 2521 7563 

0.004 450 1441 4323 

0.006 200 661 1983 

0.009 91 314 942 

0.012 50 181 543 

             

(a) (b) (c) (d) (e) 
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Figure 6.2 The boundary condition and bedding plan orientation for the plane strain 

compression simulations with rough boundary 

 

6.2.2 Force-displacement relationship 

Figure 6.3 shows that the nonlocal method can reduce the mesh dependency under rough 

boundary conditions. In the local model, the peak value of the reaction force of the coarse 

mesh is higher and delayed than the other fine mesh models. This conclusion agrees with 

findings from other studies (Summersgill, 2017; Liu, 2018; Mallikarachchi, 2019). However, 

Liu (2018) demonstrated that the specimen exhibits stiffer behaviour in the softening regime 

of a coarse mesh, which is in contrast to the results presented here. When comparing the 

rough boundary conditions to the smooth boundary condition (in Figure 5.7), it is observed 

that the peak value is reached earlier under the rough boundary conditions. For instance, for 

the models with the same mesh size of 0.003 m, under the smooth boundary condition, the 

peak occurs at 𝑠/𝐻 = 2.5%, whereas under the rough boundary conditions, the peak occurs 

‘weak’ area 

p0=200kPa 

α 

p0=200kPa  

Vertical displacements 

Y 

x 
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at 𝑠/𝐻 = 2.0%. As for nonlocal models, it is consistently observed that the peak value under 

rough boundary conditions is slightly higher than that under smooth boundary conditions. 

 

(a) (b) 

Figure 6.3 Comparison of the local and nonlocal models on the force-displacement 

relationship for drained plane strain compression: (a) Local model, (b) G&S function 

 

6.2.3 Shear strain contours  

Shear strain contours at the strain softening phase for the local and the nonlocal model at 

displacement 𝑠/𝐻 = 9% is shown in Figures 6.4-6.5, where SDV11 represents the total 

shear strain. As illustrated in Figures 6.4-6.5, under rough boundary conditions, the shear 

band transitions from a single shear band observed under smooth boundary conditions to a 

cross shear band. In the local model, the thickness of the shear bands significantly enlarged 

with increasing mesh size. Conversely, after nonlocal regularisation, the issue of mesh 

dependency is improved. This improvement is consistent with the results observed under 

smooth boundary conditions. 
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Figure 6.4 Shear strain contour for the Local model at 𝑠/𝐻 = 9% for different mesh sizes: 

(a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m;(e) 0.012 m 

 

 

Figure 6.5 Shear strain contour for the G&S function at 𝑠/𝐻 = 9% for different mesh 

sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m;(e) 0.012 m 

 

6.2.4 Evolution of shear band 

The evolution of the shear band for the Local model and the G&S function at different 𝑠/𝐻 

values (1%, 3%, 5%, and 9%) is shown in Figures 6.6-6.7. At the start of loading, there's not 

much difference between the Local model and the G&S function; both trigger strain 

localisation through a weak area of the same position and size. However, as the shear band 

evolves, the Local model first produces one shear band, followed by another. In contrast, the 

G&S function produces two shear bands simultaneously. 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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Figure 6.6 Evolution of the shear band for the Local model at different 𝑠/𝐻: (a) 1%; (b) 

3%; (c) 5%; (d) 9% 

 

 

Figure 6.7 Evolution of the shear band for the G&S function at different 𝑠/𝐻: (a) 1%; (b) 

3%; (c) 5%; (d) 9% 

 

6.2.5 Orientation of shear band  

For simplification, a horizontal path through the specimen centre was chosen as the reference 

direction for all simulations, and the orientation of the cross-shear band (𝛽) is directly 

measured from shear strain contours, as shown in Figure 6.8.  

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 6.8 Shear strain contour for measuring the shear band orientation under rough 

boundary 

 

As shown in Figure 6.9, the shear band orientation decreases with increasing mesh size, with 

the results being more pronounced in the local model than in the nonlocal models. This 

suggests that nonlocal regularisation can effectively reduce the dependency of shear band 

orientation on mesh size. The mesh dependency issue in the nonlocal model is not entirely 

resolved. 

Shear band  

orientation 𝛽(˚) 
Path 



Chapter 6：Strain localisation in plane strain compression                                              126 

 

Figure 6.9 Comparison of shear band orientation for drained plane strain compression test 

under rough boundary 

 

6.2.6 Thickness of shear band 

The shear band thickness can be calculated from the shear band orientation: 𝑡𝑠 =
1

2
𝑙 ∙ sin 𝛽. 

In this way, the shear band thickness of different simulations can easily be compared. 

Table 6.2 and Figure 6.10 show that the 𝑡𝑠  increases with mesh size under the rough 

boundary conditions. The differences between the maximum and minimum shear band 

thickness for the Local model and G&S function are 7.72 mm and 4.57 mm, respectively. 

From this, it can be concluded that a nonlocal model can mitigate the issue of mesh 

dependency. The nonlocal model predicts a thicker shear band compared to the local model.  
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Figure 6.10 Calculation of shear band thickness by total shear strain under rough boundary 

 

Table 6.2 Calculation of shear band thickness under the rough boundary conditions 

Model Mesh size (mm) Shear band orientation 𝛽(°) 𝑙 (mm) 𝑡𝑠 =
1

2
𝑙 ∙ sin 𝛽(mm) 

Local 

model 

0.003 50 26 9.96 

0.004 49 34.5 13.02 

0.006 48 36 13.38 

0.009 47 38.5 14.08 

0.012 45 50 17.68 

GS 

model 

0.003 50 38.5 14.75 

0.004 49 40.5 15.28 

0.006 49 45 16.98 

0.009 49 50.5 19.06 

0.012 48 52 19.32 

 

Shear band orientation 𝛽(˚) 

𝑡𝑠 =
1

2
𝑙 ∙ sin 𝛽 

𝑙 along the path 

Path 

(a) (b) 
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Figure 6.11 Comparison of the effect of mesh size on the shear band thickness under rough 

boundary 

 

According to Figure 6.12, under rough boundary conditions, the shear band thickness (𝑡𝑠) 

for the nonlocal method is more significant than the local model. This is consistent with the 

results under smooth boundary conditions. However, when the mesh size (ℎ = 0.006 𝑚) 

and vertical displacement (𝑠/𝐻 = 10%) are the same, the 𝑡𝑠 for all models are greater than 

those under smooth boundary conditions. 
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Figure 6.12 Calculation of Shear band thickness by different variables under rough 

boundary conditions at 𝑠/𝐻 = 10% 

𝑙 = 36 𝑚𝑚 
  

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

𝑙 = 45 𝑚𝑚 
  

𝑙 = 36 𝑚𝑚 
  

𝑙 = 51 𝑚𝑚 

𝑙 = 40 𝑚𝑚 
  

𝑙 = 44 𝑚𝑚 
  

𝑙 = 33 𝑚𝑚 
  

𝑙 = 38 𝑚𝑚 
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6.2.7 Undrained plane strain compression with rough 

boundary 

In undrained plane strain compression, the permeability of soil is set very small and water 

flow at all boundaries is closed. Transient consolidation analysis is selected for all 

simulations. The rest of the conditions are the same as the drained case. As shown in Figure 

6.13, the nonlocal method is also applicable in undrained plane strain compression under 

rough boundary conditions. 

 

(a) (b) 

Figure 6.13 Comparison of the local and nonlocal models on the force-displacement 

relationship for undrained plane strain compression: (a) Local model; (b) G&S function 

 

6.3 Evolution of the shear band 

6.3.1 Evolution of state variables along the cross-section  

The variation of state variables across the shear band can be analysed by examining cross-

sectional profiles. These cross-sections are perpendicular to the shear band and are chosen 

for both fine mesh (ℎ = 0.004 𝑚) and coarse mesh (ℎ = 0.006 𝑚). In Figures 6.14-6.21, 

the variation of void ratio 𝑒, anisotropic variable 𝐴, degree of anisotropy 𝐹 and shear strain 

along the cross-section is discussed. Profiles from both local and G&S methods are presented. 

Four stages of deformation (vertical displacement at 𝑠/𝐻 = 2.5%, 4%, 7% and 10%) are 

depicted to provide insight into the growth of the shear band. A noticeable difference is 

observed between the pre-peak homogeneous deformation (𝑠/𝐻 = 2.5%) and the post-
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localised deformation (𝑠/𝐻 = 10%). This section only discusses the smooth boundary. 

Details regarding rough boundary conditions can be found in Appendix A. 

 

(1) Void ratio 𝑒 

As demonstrated in Figure 6.14, the width of the concentration of 𝑒 for the local model is 

smaller than the nonlocal model. In the local model, the width of the concentration of 𝑒 

increases with mesh size, and the mesh dependency issue disappears after nonlocal 

regularisation.  

The cross-sectional profiles shown in Figure 6.15, the width of the concentration and the 

peak value of 𝑒 at 𝑠/𝐻 = 2.5% are smaller than others. The width becomes constant when 

𝑠/𝐻 > 2.5%. When the shear band reaches a particular stage, the width no longer changes, 

but the peak value of 𝑒 continues to increase. This observation of the evolution of the shear 

band for different mesh sizes is consistent with the results from micro-polar models (Bardet 

and Proubet, 1992) and gradient flow theories (Han and Drescher, 1993).  

Under rough boundary conditions (see Appendix A), the results from the G&S function 

indicate a significantly larger width of concentrated volumetric expansion compared to the 

local model, approximately 2.0 times larger (Figure A-2). However, under the same mesh 

size for smooth boundary conditions, the width of 𝑒 concentration predicted by the nonlocal 

model is only about 1.25 times that of the local model. 
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Figure 6.14 Contours of the void ratio 𝑒 from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) (b) 

(c) 
(d) 
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(a) (b)

(c) (d) 

Figure 6.15 Cross-sectional profiles of the void ratio 𝑒 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

(2) Anisotropic variable 𝐴 

Figures 6.16 and 6.17 show the evolution of the anisotropic variable 𝐴. The anisotropy 

variable 𝐴 inside the shear band increases as the shear band develops, whereas it decreases 

at the shear band boundary with the progression of the shear band. After nonlocal 

regularisation, not only does the fluctuation in the change of 𝐴  decrease, but the mesh 

dependency issue observed in the width of concentration of 𝐴 is also addressed. 

In the local model, similar to the smooth boundary condition, the value of 𝐴 is negative at 

the shear band boundary under rough boundary conditions (Figure A-4a). When the mesh 

size ℎ = 0.006 𝑚, the minimum value is -0.75 for rough boundary conditions, significantly 

smaller than the -0.1 observed under smooth boundary conditions. This is mainly due to the 
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overlapping influence of multiple surrounding cross-shear bands. Under rough boundary 

conditions, the maximum 𝐴 (0.55) is noticeably smaller than that under smooth boundary 

conditions (0.7). 

 

Figure 6.16 Contours of the anisotropy variable 𝐴 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

 (a)  (b) 

(a) (b) 

(c) (d) 
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 (c)  (d) 

Figure 6.17 Cross-sectional profiles of the anisotropy variable 𝐴 from local and nonlocal 

models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S 

function (0.006 m) 

 

(3) Degree of anisotropy 𝐹  

In the local model (Figure 6.19a and b), the maximum 𝐹 inside the shear band of fine mesh 

is larger than that in the coarse mesh at vertical displacements 𝑠/𝐻 = 4%  and 7%. 

Conversely, when 𝑠/𝐻 = 10%, the peak value of 𝐹 in the coarse mesh is larger than that in 

the fine mesh. However, the 𝐹 at 𝑠/𝐻 = 10% for coarse mesh size is smaller than that for 

fine mesh size in rough boundary (Appendix A). This is opposite to the observations made 

in the smooth boundary condition. Moreover, in the local model, the width of concentration 

of 𝐹 for coarse mesh size is more significant than that for fine mesh size. In contrast, in the 

nonlocal model, the width tends to be consistent across different mesh sizes. 
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Figure 6.18 Contours of the degree of anisotropy 𝐹 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

(a) (b) 

(a) (b) 

(c) (d) 
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(c) (d) 

Figure 6.19 Cross-sectional profiles of the degree of anisotropy 𝐹 from local and nonlocal 

models: (a) local (0.004 m), (b) local (0.006 m), (c) G&S function (0.004 m), (d) G&S 

function (0.006 m) 

 

(4) Shear strain 

The cross-section contours of shear strain for local and nonlocal models are compared in 

Figure 6.20. The local model exhibits that 𝑡𝑠 predicted by the local model is sensitive to the 

mesh size. On the contrary, contours of shear strain from the nonlocal model portray almost 

similar shear band thickness. Four vertical displacements for each mesh are portrayed to get 

an insight into the growth of the band in Figure 6.21. The cross-section profiles illustrate 

that the shear strain increased when the shear band developed. The maximum shear strain 

obtained by the nonlocal model is greater than that of the local model.  
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Figure 6.20 Contours of the shear strain from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) (b) 

(a) (b) 

(c) (d) 
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(c) (d) 

Figure 6.21 Cross-sectional profiles of the shear strain from local and nonlocal models: (a) 

local (0.004 m), (b) local (0.006 m), (c) G&S function (0.004 m), (d) G&S function 

(0.006 m) 

 

6.3.2 Evolution of state variables in elements inside and 

outside the shear bands 

To better compare the effect of local and nonlocal models on the development of the shear 

band, the evolution of the state variables inside and outside the shear band is presented in 

this section. 

Results for simulations with different mesh sizes are presented (Figure 6.22). The mesh size 

of the first simulation is 0.004 m (with element A inside the shear band and element B 

outside), while the mesh size of the second simulation is 0.006 m (with element C inside the 

shear band and element D outside). 
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Figure 6.22 Location of the selected elements for the single shear band: (a) Fine mesh, (b) 

Coarse mesh  

 

(1) Evolution of void ratio 𝑒 

Within the shear band, the volume expansion gradually increases with loading. When the 

element is outside the shear band, the 𝑒 remains constant after reaching its peak. Thus, the 

maximum 𝑒 within the shear band is significantly greater than those outside (Figure 6.23). 

Indeed, existing research has shown that there is much smaller plastic deformation and less 

volume expansion outside the shear band (Gao and Zhao, 2013; Mallikarachchi and Soga, 

2020). Moreover, when elements are inside the shear band, the local model with a fine mesh 

exhibits a significant gradient and higher 𝑒 than coarse mesh. In contrast, the 𝑒 of the fine 

mesh is smaller than that of the coarse mesh when the elements are outside the shear band. 

However, under rough boundary conditions (Appendix B), the 𝑒 for fine mesh size is larger 

than that in coarse mesh both inside and outside the shear band. 

Both the local and nonlocal models predict volume expansion in dense soil. Since the 

evolution of 𝑒  is assumed to depend on the volumetric strain increment of local and 

neighbouring integration points in the nonlocal model, the increase in 𝑒 in the nonlocal 

model becomes smaller than that predicted by the local model inside the shear band. The 

 (1)  (2) 

Element A 

Element B 

Element C 

Element D 

(a) (b) 
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local model predictions exhibit mesh-dependent issues, and the difference between two 

different meshes is reduced by the nonlocal model (Figure 6.23b and d). 

 

(a) (b) 

(c) (d) 

Figure 6.23 The local evolution of the void ratio 𝑒 for the elements inside and outside the 

shear band under smooth boundary condition  

 

(2) Local fabric evolution 

As depicted in Figure 6.24, both inside and outside the shear band, the local models show a 

larger difference between different mesh sizes than nonlocal models. However, it can be 

inferred that even though nonlocal treatment alleviates the mesh size dependency issue of 

the evolution 𝐹 outside the shear band (Figure 6.24d), the mesh dependency inside the shear 

band by the nonlocal method remains unresolved. 

The degree of anisotropy 𝐹 inside the shear band is more significant than that outside the 

shear band. This is because shear strain concentration is higher within the shear band, and 
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more significant fabric evolution is induced by plastic shear strain. Additionally, when the 

elements are outside the shear band (Figures 6.24c and d), the degree of anisotropy 𝐹 for the 

nonlocal model is greater than that for the local model. 

Moreover, there is a decrease after the initial values, followed by an increase. The initial 

decrease during the loading stage occurs because the initial fabric and the loading direction 

are non-coaxial, and the fabric needs to rotate towards the loading direction with plastic 

shear strain (Gao et al., 2013). However, there is no decrease observed within the shear band 

for the nonlocal models with both fine and coarse mesh sizes under smooth boundary 

conditions, which is significantly different from the behaviour under rough boundary 

conditions where a drop occurs in both mesh sizes (Appendix B).  

 

(a) (b) 

(c) (d) 

Figure 6.24 The local evolution of the fabric for the elements inside and outside the shear 

band under smooth boundary condition  
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(3) Local evolution of 𝐴 

At the initial state, the evolution of the anisotropic variable 𝐴 inside the shear band decreases 

slowly compared to outside the shear band. As the shear band develops, the anisotropic 

variable 𝐴 inside the shear band gradually increases, whereas the value outside the shear 

band decreases. Whether it is increasing or decreasing, the gradient of the anisotropic 

variable 𝐴 of the local model is greater than that of the nonlocal model, and it tends to be 

stable at the critical state outside the shear band. 

Moreover, in the local model, the anisotropic variable 𝐴  has different initial values for 

models with various mesh sizes inside the shear band (Figure 6.25a). The initial value for 

the fine mesh size is greater than that for the coarse mesh size. In contrast, in the nonlocal 

model, the initial values for models with different mesh sizes are all set to 0.1. Both the local 

and nonlocal models gradually decrease during the initial stages and reach their lowest points 

at around 𝑠/𝐻 = 2%, and then followed by a gradual increase. 

The evolution processes of different mesh sizes for the local model are distinct. This 

variation occurs due to the effect of evolution on plastic hardening and plastic shear strain 

increments. However, the differences between different mesh sizes essentially disappear 

after nonlocal regularisation. 

 

(a) (b) 
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(c) (d) 

Figure 6.25 The local evolution of the anisotropic variable 𝐴 for the elements inside and 

outside the shear band under smooth boundary condition  

 

6.3.3 Evolution of state variables along the cross-section 

under undrained condition 

(1) Magnitude of displacement 

The evolution of displacement gradients within the shear band is shown in Figure 6.24. 

During the loading process, there is sliding along the shear band above the shear band until 

no significant change in static displacement occurs. Vermeer and Marcher (2000) and Galavi 

and Schweiger (2010) also used velocity and displacement profiles to estimate the shear 

zone. 

Regarding contours and cross-sectional profiles (Figure 6.27), the magnitude of 

displacement within the shear band increases with the development of the shear band. 

However, for different mesh sizes, the peak value of the magnitude of displacement does not 

vary significantly. In the local model, the width of displacement gradient for fine mesh size 

(Figure 6.27a) is significantly smaller than that for coarse mesh size (Figure 6.27b) and the 

results in the nonlocal model (Figure 6.27c and d). The displacement gradients in Figures 

6.27 (c) and (d) are flatter than their local counterparts in Figures 6.27 (a) and (b). Nonlocal 

regularisation reduces the difference in width of displacement gradient and maximum 

displacement between large and small mesh sizes. 
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Figure 6.26 Contours of the magnitude of the displacement from local and nonlocal models: 

(a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

(a) (b) 

(a) (b) 

(c) (d) 
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(c) (d) 

Figure 6.27 Cross-sectional profiles of the magnitude of the displacement from local and 

nonlocal models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); 

(d) G&S function (0.006 m) 

 

(2) Void ratio 𝑒 

Figure 6.28 compares the cross-sectional contours of the 𝑒 for the local and nonlocal models 

under undrained conditions. The local model shows that the width of 𝑒  concentration 

predicted by the local model is sensitive to the mesh size. Conversely, the contours of the 𝑒 

from the nonlocal model depict almost similar widths. The maximum void ratio under the 

undrained condition is smaller than the drained condition (Figure 6.29). For example, when 

the mesh size (ℎ = 0.004 𝑚) and vertical displacement (𝑠/𝐻 = 7%) are the same, the peak 

value of the 𝑒 under drained conditions is around 0.85, whereas under undrained conditions, 

the 𝑒 noticeably decreases, with a peak value of 0.71. The primary reason for this is the direct 

influence of pore water pressure, which hinders the development of the shear band. 

Furthermore, the concentration of volumetric expansion inside the shear band under rough 

boundary conditions is larger than that under smooth boundary conditions in the local model. 

Interestingly, this result is reversed in the nonlocal model. 



Chapter 6：Strain localisation in plane strain compression                                              147 

 

Figure 6.28 Contours of the void ratio 𝑒 from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) (b) 

(a) (b) 

(c) (d) 



Chapter 6：Strain localisation in plane strain compression                                              148 

(c) (d) 

Figure 6.29 Cross-sectional profiles of void ratio 𝑒 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

6.4 Effect of Initial Density and Confining Pressure 

6.4.1 Effect of Initial Density 𝑫𝒓 

The initial density has a significant impact on strain localisation (Gao and Zhao, 2013; Liu, 

2018; Mallikarachchi, 2019; Li and Gao, 2024). The influence of initial density on the 

nonlocal method under both smooth and rough boundary conditions is shown in Figure 6.28. 

Three different void ratios 𝑒 =  0.65 (𝐷𝑟 = 85.6%), 𝑒 =  0.70 (𝐷𝑟 = 73.6%) and 𝑒 =

 0.75 (𝐷𝑟 = 60.5%) for Toyoura sand under different mesh sizes are considered. 

Figure 6.30 illustrates that the peak value of the 𝑅𝑣 decreases as the 𝑒 becomes higher for 

both local and nonlocal methods. In contrast, the stiffness of sand increases for a lower 𝑒 

and finer mesh size.  

In the local model, the mesh-dependency issue is obvious during the strain softening. 

Conversely, in the nonlocal model, there is a noticeable improvement in the mesh-

dependency issue. However, the nonlocal method cannot eliminate the mesh-dependency 

issue completely. In nonlocal predictions, the difference between fine and coarse mesh sizes 

under rough boundary conditions is larger than the result under smooth boundary conditions. 

Meanwhile, the ability of the nonlocal method to reduce the mesh-dependency issue is 

influenced by the initial density. As shown in Figure 6.30 (b) and (d), when 𝑒 = 0.75, the 
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consistency among models with different mesh sizes is notably better than in models with 

other two initial densities. The effectiveness of the nonlocal method becomes more 

pronounced with a higher 𝑒. 

 

(a) (b) 

(c) (d) 

Figure 6.30 The influence of initial density on the nonlocal methods based on the load-

displacement curve 

 

According to the local model (Figure 6.31a and c), when 𝑒 = 0.65, the shear band thickness 

of the coarse mesh is nearly double that of the fine mesh, and 𝑡𝑠 increases with the 𝑒 (Figure 

6.33). The difference in shear band thickness between the coarse and fine mesh sizes 

decreases as the 𝑒 becomes higher. In contrast, the shea band orientation 𝛽 decreases with 

𝑒.When 𝑒 = 0.65 and ℎ = 0.004 𝑚 (Figure 6.31a), the shear strain inside the shear band is 

significantly greater than the shear strain in other predictions, and the differences between 

coarse and fine mesh sizes decrease as the 𝑒 increases. For instance, under rough boundary 
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conditions (Figure 6.31c), the peak shear strain in the fine mesh size is more than three times 

that in the coarse mesh size when 𝑒 = 0.65. When 𝑒 = 0.7, the peak shear strain in the fine 

mesh size is approximately twice that in the coarse mesh size. At 𝑒 = 0.75, the peak shear 

strain in the fine mesh size is almost equivalent to that in the coarse mesh size. 

As for the nonlocal model (Figure 6.31b and d), the difference in 𝑡𝑠 for different void ratios 

is smaller than in the local model. Meanwhile, the 𝑡𝑠 of the nonlocal model is wider than that 

of the local model. In addition, the differences in shear strain within the shear band between 

the different mesh sizes are smaller than those in the local model, and these differences 

increase as the 𝑒 becomes lower. Thus, the 𝑒 has a significant impact on the nonlocal method. 

 

(a) (b) 

(c) (d) 

Figure 6.31 The influence of initial density on the nonlocal method based on the cross-

section 
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Figure 6.32 The relationship between void ratio (𝑒) and shear band orientation 𝛽 

 

 

Figure 6.33 The relationship between void ratio (𝑒) and shear band thickness 𝑡𝑠 

 



Chapter 6：Strain localisation in plane strain compression                                              152 

6.4.2 Effect of Confining Pressure 𝒑𝟎 

The influence of confining pressure on the load-displacement curve of the nonlocal model 

is shown in Figure 6.34. The different confining pressures (𝑝0  =  100 kPa, 𝑝0  =  150 kPa 

and 𝑝0  =  200 kPa) under both smooth and rough boundary conditions were considered. 

Figure 6.34 shows that the confining pressure significantly affects the load-displacement 

curves. The vertical reaction force 𝑅𝑣 and stiffness increases with confining pressure. This 

is similar to the findings of Han and Drescher (1993), Alshibli and Sture (2000), and Desrues 

and Viggiani (2004). A more mesh-independent result of the nonlocal method can be 

attained when the confining pressure becomes lower. 

 

(a) (b) 

(c) (d) 

Figure 6.34 The influence of confining pressure on the nonlocal methods based on the 

load-displacement curve 
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Figure 6.35 shows that the confining pressure 𝑝0 significantly affects the shear strain inside 

the shear band. The shear strain decreases with an increase in 𝑝0. However, the reduction in 

shear strain for fine mesh size under smooth boundary conditions (Figure 6.35a) is more 

obvious than in rough boundary conditions (Figure 6.35c). Moreover, the shear strain inside 

the shear band varies significantly between different mesh sizes, especially in the local 

model. The shear strain for small mesh sizes is much greater than that for corresponding 

large mesh sizes under the same 𝑝0 . The differences between different mesh sizes are 

noticeably improved after being processed by the nonlocal method but do not eliminate them.  

In addition, both 𝛽 and 𝑡𝑠 are decreased with 𝑝0 (Figures 6.36 and 6.37). The difference in 

𝑡𝑠 between the local and nonlocal models is also shown in Figure 6.35. The 𝑡𝑠 significantly 

differs from fine and coarse mesh for the local model. When the 𝑝0 is constant, the 𝑡𝑠 of 

models with small mesh sizes is smaller than that of models with large mesh sizes. Similar 

to the influence of initial density, the mesh-dependency issues of 𝛽 and 𝑡𝑠 in the nonlocal 

method, obtained from cross-sections, are significantly improved.  

(a) (b) 

(c) (d) 

Figure 6.35 The influence of initial density on the nonlocal method based on the cross-

section 
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Figure 6.36 The relationship between confining pressure 𝑝0 and shear band orientation 𝛽 

 

 

Figure 6.37 The relationship between confining pressure 𝑝0 and shear band thickness 𝑡𝑠 
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6.5 Scaling of nonlocal method 

The above biaxial compression results illustrate the validity of the nonlocal method as a 

regularisation technique. However, for geotechnical engineering applications, the shear band 

thickness is minimal compared to the dimension of geometry. The practical mesh size 

utilised in simulations is several orders of magnitude larger than the physical shear band 

thickness. 

The physical shear band thickness of sand (𝑡𝑠
𝑠𝑎𝑛𝑑) is found to be 10−20𝑑50 (Muhlhaus and 

Vardoulakis, 1987). For Toyoura sand used in this thesis, 𝑑50 ≈ 0.0002 𝑚 and 𝑡𝑠
𝑠𝑎𝑛𝑑 ≈

0.002 − 0.004 𝑚. The numerical shear band thickness is determined by mesh properties 

such as size, shape, number of nodes and the internal length scale 𝑙𝑐  (and over-nonlocal 

parameter 𝑚) used in nonlocal methods. Empirical correlations between numerical band 

thickness and the internal length scale 𝑙𝑐  are found in some research (Brinkgreve, 1994; 

Galavi and Schweiger, 2010; Vermeer and Marcher, 2000; Mallikarachchi and Soga, 2020). 

Galavi and Schweiger (2010) reported that the numerical shear band thickness is the same 

as 𝑙𝑐. Mallikarachchi and Soga (2020) suggested that the numerical shear band thickness 

during softening can be approximately correlated as twice the 𝑙𝑐, whereas it is 2.2 times at 

the critical state. In this thesis, the numerical shear band thickness (𝑡𝑠
𝑛𝑢𝑚) is approximated 

as 2𝑙 𝑐 = 0.024 𝑚. 

However, using the physical shear band thickness of sand in the FEM simulations can be a 

challenge. It is practically impossible to refine the mesh to comply with the real shear band 

thickness. First, small mesh size causes numerical convenience issues for advanced soil 

models which give a highly nonlinear stress–strain relationship. Secondly, the computational 

time will be significantly increased when a small mesh size is used for a nonlocal model 

(Gao et al., 2020). 

Therefore, it is necessary to obtain a physically realistic force-displacement response by 

scaling the nonlocal method in some cases. Some studies have combined nonlocal 

regularisation with softening scaling to obtain physically realistic force-displacement curves 

(Brinkgreve, 1994; Vermeer and Marcher, 2000; Galavi and Schweiger, 2010; 

Mallikarachchi and Soga, 2020). Initially, Brinkgreve (1994) proposed to employ the 

softening scaling along with the nonlocal regularisation by Equation 6.1. 

 



Chapter 6：Strain localisation in plane strain compression                                              156 

ℎ𝑛𝑢𝑚 = ℎ𝑠𝑎𝑛𝑑
𝑡𝑠
𝑛𝑢𝑚

𝑡𝑠
𝑠𝑎𝑛𝑑                                               (6.1) 

where, ℎ𝑛𝑢𝑚 is the numerical softening stiffness; ℎ𝑠𝑎𝑛𝑑  is the physical softening stiffness, 

𝑡𝑠
𝑠𝑎𝑛𝑑  is the physical shear band thickness of sand and 𝑡𝑠

𝑛𝑢𝑚 is the numerical shear band 

thickness. The scaling factor is defined as the ratio between the numerical shear band 

thickness 𝑡𝑠
𝑛𝑢𝑚 to physical band thickness 𝑡𝑠

𝑠𝑎𝑛𝑑. The rate of softening is dependent on the 

softening modulus and shear band thickness. The physical softening stiffness ℎ𝑠𝑎𝑛𝑑  

multiplied by this scaling factor bestows a realistic post-peak softening in the load-

displacement response. 

However, Mallikarachchi and Soga (2020) indicated that the application of Equation 6.1 is 

not suitable for the Nor-sand model since the softening modulus is not constant. The 

softening stiffness in the Nor-sand model is governed by the state parameter and, hence, the 

volumetric strain. Therefore, they used Equation 6.2 to scale the softening rate. Similarly, in 

this thesis, Equation 6.2 is also applicable. The scaling factor of softening stiffness is 

calculated to be 
𝑡𝑠𝑏,𝑛𝑢𝑚

𝑡𝑠𝑏,𝑠𝑎𝑛𝑑
= 8 when 𝑙𝑐 = 0.012 m. 

𝑒 = 𝑒 − (1 + 𝑒)𝑑휀𝑣𝑛
𝑡𝑠
𝑛𝑢𝑚

𝑡𝑠
𝑠𝑎𝑛𝑑                                          (6.2) 

According to Figure 6.38, in the anisotropic fabric model used in this thesis, the scaling 

reduces the 𝑅𝑝𝑣 in the load-displacement curve. It is opposite to the results predicted by the 

nonlocal NS model (Mallikarachchi and Soga, 2020) and the nonlocal HS model (Vermeer 

and Marcher, 2000). Moreover, as illustrated in Figure 6.38 (b), the difference becomes 

larger at the residual stage. This is because the volumetric regularisation is ineffective at the 

critical state. Additionally, the gradient of strain-softening for scaling result is larger than 

the simulation without scaling.  
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(a) (b) 

Figure 6.38 Load-displacement curve of G&S weight function (a) Without scaling (b) 

Scaling by 8 

 

It is important to note that scaling is a mathematical artefact and not an inherent characteristic 

of the nonlocal method. It can be employed with other regularisation techniques or even 

without regularisation. For example, Pietruszczak and Mroz (1981) first used this simple 

strategy to produce reasonably objective load–displacement curves without any 

regularisation. It should be acknowledged that the nonlocal averaging and scaling do not 

create a realistic shear band thickness or its direction (Mallikarachchi, 2019). 

 

6.6 Effect of anisotropy on strain localisation 

The impact of anisotropy on strain localisation is being studied through a plane strain 

compression test conducted under drained conditions with smooth boundaries. Three 

different bedding plane orientations (𝛼 = 15°; 𝛼 = 30°; 𝛼 = 45°) are being considered 

and compared within both local and nonlocal models. Additionally, the influence of negative 

bedding plane orientations is also examined. 

 

6.6.1 Force-displacement relationship  

Figure 6.39 depicts the force-displacement relationship of the local model with various 

bedding plane orientations. The mesh dependency issue of the local model is not affected by 

the bedding plane orientation. However, the peak vertical reaction force decreases as the 
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bedding plane orientation increases. Conversely, the vertical displacement corresponding to 

the peak value increases with the increase in bedding plane orientation. Furthermore, when 

the bedding plane orientations are significant (𝛼 = 45°), models with small mesh sizes 

struggle to converge. 

For the nonlocal model (Figure 6.40), only the peak vertical reaction force decreases as the 

bedding plane orientation increases. Simultaneously, for models with different bedding 

plane orientations, the vertical displacement corresponding to the peak value remains 

constant at 𝑠/𝐻 = 2.8%. 

 

(a) (b) 

(c) 

Figure 6.39 Force-displacement relationship of the local model with various bedding plane 

orientations: (a) 𝛼 = 15° ; (b) 𝛼 = 30° ; (c) 𝛼 = 45° 
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(a) (b) 

(c) 

Figure 6.40 Force-displacement relationship of the nonlocal model with various bedding 

plane orientations: (a) 𝛼 = 15° ; (b) 𝛼 = 30° ; (c) 𝛼 = 45° 

 

6.6.2 Evolution of the shear band from selected elements 

According to Figure 6.41, two elements have been chosen to explore the influence of 

different bedding plane orientations on the development of the anisotropic variable 𝐴 and 

the degree of anisotropy 𝐹. Both elements are situated within the shear band, where Element 

A represents the fine mesh (0.004 m) and Element C represents the coarse mesh (0.006 m). 
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Figure 6.41 Location of the selected elements for the single shear band: (a) Fine mesh, (b) 

Coarse mesh  

 

(1) Anisotropic variable 𝐴 

The initial value of the Anisotropic variable 𝐴 decreases with an increase in bedding plane 

orientation (Figure 6.42), aligning with the findings of Gao et al. (2021). However, in the 

local model with a mesh size of 0.006 m (Figure 6.42c), models with different bedding plane 

orientations exhibit the same initial value of 𝐴 . This indicates a pronounced mesh 

dependency in the local model, where simulation outcomes become more reliable as the 

mesh size decreases. In contrast, the nonlocal model mitigates the mesh dependency issue 

and provides more reliable results, particularly with larger mesh sizes. Moreover, in the local 

model, when 𝛼 = 45°, the value of 𝐴 gradually surpasses that of other models as the loading 

progresses, which contradicts the observed facts. 

 (1)  (2) 

Element A Element C 

(a) (b) 
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Figure 6.42 The local evolution of Anisotropic variable 𝐴 for the elements inside the shear 

band with various bedding plane orientations 

 

(2) Local fabric evolution 𝐹 

In the local model (Figures 6.43a and c), when the bedding plane orientation is set to 45 

degrees, the slope of 𝐹  is greater than in models with other bedding plane orientations. 

Conversely, in the nonlocal model (Figures 6.43b and d), the 𝐹 increases as 𝛼 decreases, 

akin to the findings in Gao et al. (2021). 

Moreover, the local model demonstrates a mesh dependency issue. In the local model with 

fine mesh size (Figure 6.43a), when 𝛼 = 45° , the 𝐹  decreases first and then increases. 

However, when 𝛼 = 15° and 30°, the 𝐹 first increases slowly, and then the gradient of the 

increase becomes larger. In the local model with coarse mesh size (Figure 6.43c), the 𝐹 for 

three different bedding plane orientations all gradually decreases first and then increases. On 

the contrary, after nonlocal regularisation, whether it is the result of a fine mesh size (Figure 

6.43b) or a coarse mesh size (Figure 6.43d), when 𝛼 = 45°, the 𝐹 first decreases slowly and 

(a) 

(c) 

(b) 

(d) 
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then increases. When 𝛼 = 15° and 30°, in both cases, there is a slow increase followed by a 

rapid increase in the 𝐹. 

 

Figure 6.43 The local evolution of fabric for the elements inside the shear band with 

various bedding plane orientations 

 

6.6.3 Effect of negative bedding plane orientation 

The simulations conducted previously utilised positive 𝛼 (major principal stress direction 

tilting right to the vertical). However, real bedding plane orientations can also be negative 

𝛼. The outcomes with negative 𝛼 may be different when the bedding plane is not vertical. 

To illustrate this, Figure 6.44 presents further simulations depicting the force-displacement 

relationship of both local and nonlocal models with a negative bedding plane orientation of 

𝛼 = −30°. The initial slope of the force-displacement curve remains similar for both positive 

and negative 𝛼 cases. However, there's a slower decrease of 𝑅𝑣 with 𝑠/𝐻 after reaching the 

peak 𝑅𝑣 in the case of negative 𝛼 (as observed in Figure 6.39c and Figure 6.44a). 

(a) 

(c) 

(b) 

(d) 
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Figure 6.45 illustrates that the value of the peak reaction force 𝑅𝑝𝑣 increases with the mesh 

size. In the local model, the 𝑅p𝑣 for negative bedding plane orientation is greater than the 

𝑅𝑝𝑣 for positive bedding plane orientation. Conversely, in the nonlocal model, the situation 

is reversed. Moreover, when the mesh size remains constant, the disparity between the 𝑅𝑝𝑣 

for positive and negative bedding plane orientations in the nonlocal model is significantly 

smaller than in the local model. Furthermore, these differences gradually diminish with an 

increase in mesh size. 

 

(a) (b) 

Figure 6.44 Comparison of the local and nonlocal models on the force-displacement 

relationship with negative bedding plane orientation: (a) Local model; (b) G&S function 
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Figure 6.45 Comparison of the local and nonlocal models on the peak reaction force 𝑅𝑝𝑣 

with positive and negative bedding plane orientations 

 

6.7 Extension of the nonlocal model from 2D to 3D 

The aforementioned research based on the nonlocal method focuses chiefly on two-

dimensional problems. However, most actual engineering structures belong to the three-

dimensional domain. Extension of the current two-dimensional nonlocal model to make it 

three-dimensional is needed. An advanced constitutive model for sand with the notion of a 

critical state has never been generalised from 2D to 3D by the nonlocal method. To validate 

the correctness of the 3D nonlocal method, a series of test simulations, including biaxial 

drained and undrained tests for dense sand, are considered. 

 

6.7.1 Nonlocal regulisation of 3D biaxial drained test 

The dimension of the sample used in the 3D study is the same as the 2D plane strain problem, 

which is 60 mm wide and 120 mm high with a thickness of 0.01 m. The rough boundary 

conditions is only considered in the study because, under smooth boundary conditions, the 



Chapter 6：Strain localisation in plane strain compression                                              165 

shear bands are less likely to form, making it challenging to justify the improvement of the 

nonlocal method in addressing mesh dependency issues related to shear band thickness. The 

bottom side is constrained in X, Y, and Z directions, and the other sides are only fixed in the 

Z direction. A confining pressure of 𝑝0 = 200kPa is applied on the two vertical sides, and 

the vertical displacement is applied on the top side. Furthermore, the bedding plane 

orientation is horizontal and 𝛼 = 0° . The initial void ratio of the sample is 𝑒0 = 0.65 

(relative density 𝐷𝑟 = 85.6% ), and the initial degree of anisotropy is 𝐹0 = 0.4 . All 

simulations in this study have used 8-noded plane strain liner elements with 8 integration 

points (C3D8). 

The shear strain contours at the strain softening for the local and nonlocal model (G&S 

distribution weight function) at displacement 𝑠/𝐻 = 9% were shown in Figures 6.46-6.47, 

where SDV11 represents the total shear strain. The shear band can be distinguished by the 

concentrated plastic deformation. Figure 6.46 shows that the width of the shear strain zone 

predicted by the local model is sensitive to the mesh size. On the contrary, contour plots of 

total shear strain from G&S nonlocal methods in Figure 6.47 portray almost similar shear 

strain zones irrespective of the mesh size during the strain softening period. 

 

(a) (b) (c) (d) 

Figure 6.46 Shear strain contour for the local model under drained condition at 𝑠/𝐻 = 9% 

for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 
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(a) (b) (c) (d) 

Figure 6.47 Shear strain contour for the nonlocal model under drained condition at 𝑠/𝐻 =

9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 

 

Figure 6.48 shows the force-displacement curves predicted by the local model and nonlocal 

model for drained dense sand with different mesh sizes. The strain-hardening part of the 

global force–displacement relationships for both local and nonlocal models is insensitive to 

the mesh size until the peak and becomes mesh-dependent in the strain-softening part. In the 

local model, a finer mesh size results in earlier and faster softening, which has the same 

results in 2D. On the contrary, the nonlocal method adequately produces force-displacement 

responses that are independent of the mesh, reducing the softening rate and difference in 

peak vertical reaction force. It facilitates the convergence of extra-small mesh by providing 

a positive-definite global stiffness matrix. 

 

(a) (b) 

Figure 6.48 Comparison of the local and nonlocal models on the force-displacement 

relationship for 3D drained biaxial compression test under drained condition 
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Numerous experimental evidence indicates that when a shear band occurs, significant 

volumetric expansion will concentrate inside the shear band while the volumetric change is 

generally very small outside (see, e.g., Oda et al., 1982; Desrues et al., 1996). According to 

Figures 6.49 and 6.50, the nonlocal model predicts a wider shear band than the local model 

and the mesh dependency of shear band thickness is reduced by nonlocal regularisation. 

Moreover, since the evolution of 𝑒 is assumed to depend on the volumetric strain increment 

of local and neighbouring integration points in the nonlocal model, the 𝑒 inside the shear 

band is smaller than that predicted by the local model.  

 

(a) (b) (c) (d) 

Figure 6.49 Void ratio 𝑒 contour for the local model under drained condition at 𝑠/𝐻 = 9% 

for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 

 

(a) (b) (c) (d) 

Figure 6.50 Void ratio e contour for the nonlocal model under drained condition at 𝑠/𝐻 =

9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 
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6.7.2 Nonlocal regularisation of 3D biaxial undrained test 

In the 3D biaxial undrained test, the permeability of soil is set very small and water flow at 

all boundaries is closed. Transient consolidation analysis is selected for all simulations. The 

rest of the conditions are the same as the drained case. 

The smaller shear band thickness observed under undrained conditions compared to the 

drained conditions is primarily attributed to the pore water pressure inhibiting the 

development of the shear band. Additionally, the shear strain within the shear band is also 

smaller under undrained conditions compared to the shear strain under drained conditions. 

 

(a) (b) (c) (d) 

Figure 6.51 Shear strain contour for the local model under undrained condition at 𝑠/𝐻 =

9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m;(e) 0.012 m 

 

(a) (b) (c) (d) 

Figure 6.52 Shear strain contour for the nonlocal model under undrained condition at 

𝑠/𝐻 = 9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 
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Figure 6.53 illustrates the correlation between vertical displacement and reaction force for 

various models under undrained conditions. In the strain-hardening region, there is no issue 

of mesh dependency. However, during the strain-softening region, the mesh sensitivity of 

force–displacement curves disappear after the nonlocal regularisation is applied. 

 

(a) (b) 

Figure 6.53 Comparison of the local and nonlocal models on the force-displacement 

relationship for 3D undrained biaxial compression test under undrained condition 

 

In Figure 6.542 and Figure 6.55, the 𝑒  contours for the local and nonlocal models are 

compared. The results from the local model indicate that the predicted shear band thickness 

is sensitive to the mesh size. In contrast, the 𝑒 contours from the nonlocal model display 

nearly consistent shear band thickness, and the shear band is wider compared to the shear 

band in the local model. Furthermore, the 𝑒 within the shear band under undrained analysis 

is lower than the 𝑒 under drained analysis. 

 

(a) (b) (c) (d) 
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Figure 6.54 Void ratio 𝑒 contour for the local model under undrained condition at 𝑠/𝐻 =

9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 

 

(a) (b) (c) (d) 

Figure 6.55 Void ratio 𝑒 contour for the nonlocal model under drained condition at 𝑠/𝐻 =

9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m 

 

6.8 Summary 

The Chapter shows the validation of the nonlocal method in both drained and undrained 

plane strain compression tests under rough boundary conditions. Moreover, the evolution of 

state variables, the effect of initial density and confining pressure, and the effect of 

anisotropy on strain localisation of both local and nonlocal models under smooth boundary 

conditions were further compared. 

(1) The force-displacement curves demonstrate that the nonlocal method can alleviate mesh 

dependency for both smooth and rough boundary conditions. The peak value of reaction 

force is reached at a lower vertical displacement under the rough boundary conditions. 

(2) Similar to the smooth boundary condition, in the rough boundary conditions, the shear 

band orientation decreases with increasing mesh size, while the shear band thickness 

increases with mesh size. Notably, the local models exhibit a significant disparity in shear 

band orientation and thickness between coarse and fine meshes. In contrast, the nonlocal 

model, employing the G&S function, shows only minor variations. 

(3) According to the evolution of state variables along the cross-section, the local model also 

exhibits a mesh-dependent width of state variables concentration. In contrast, the 
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nonlocal model displays only slight variations in the width of state variables 

concentration for different mesh sizes. For both smooth and rough boundary conditions, 

the results obtained from the G&S function indicate a significantly larger shear band 

thickness compared to the local model.  

(4) After nonlocal regularisation, for the evolution of state variables in selected elements 

both inside and outside the shear band, not only does the fluctuation in the change of the 

state variables decrease, but the differences in peak values of the state variables between 

various mesh sizes observed in the local model are also significantly reduced. The values 

of the state variables within the shear band are significantly greater than those outside, 

primarily due to shear strain concentration. Regarding the impact of confining pressure 

and initial density on the nonlocal method, the effectiveness of reducing mesh 

dependency in the nonlocal method increases when the 𝑒 is higher or when the confining 

pressure increases. 

(5) The nonlocal method is unaffected by various positive bedding plane orientations. 

However, when considering negative bedding plane orientations, it does have an impact 

on the nonlocal method. In the local model, the peak reaction force for negative bedding 

plane orientation is greater than that for positive bedding plane orientation. Conversely, 

in the nonlocal model, the situation is reversed. 
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Chapter 7: Conclusions 

Nonlocal regularisation is commonly employed to address the problem of mesh dependency 

arising from strain softening in finite element analysis. Nonlocal methods are developed 

based on the hypothesis that material response is influenced by both the deformation field 

of a local material point and a weighted average of its neighbouring points. This approach 

has primarily found application in soil models with simple strain-softening rules. In such 

cases, the models can be readily regularised by assuming that the strain-softening variable 

depends on the nonlocal plastic shear strain. However, sand exhibits strain softening 

influenced by several variables. Hence, the nonlocal regularisation of an anisotropic critical 

state sand model is presented in this thesis, and the void ratio in this model is assumed 

nonlocal. 

The research presented in the thesis can be divided into four major parts.  

In the first part (Chapter 3), the introduction and derivation of the anisotropic sand 

constitutive model used in this thesis were presented. Anisotropy refers to the different 

mechanical properties of materials in different directions. From the micro perspective, the 

anisotropic characteristics are due to the preferred orientation of particles and void and/or 

crack (Oda et al., 1985; Duveau et al., 1998; Li and Dafalias, 2012; Gao et al., 2013). The 

anisotropic sand model used in this thesis is developed based on the anisotropic critical state 

theory (Li and Dafalias, 2012). The main feature of the anisotropic critical state theory is 

that sand fabric at the critical state has a unique magnitude and is codirectional with the 

loading direction. The model to be used here was proposed by Gao et al. (2020). 

In the second part (Chapter 4), three different nonlocal models were developed based on 

different weight functions: Gaussian (GD), Galavi and Schweiger (G&S), and over-nonlocal 

(ON) functions. The distributions of these weight functions were outlined. The GD function 

exhibited the highest contribution to the computed nonlocal variable at the centre. However, 

it led to the nonlocal variable being concentrated predominantly at the local point, hindering 

its spread to surrounding points and thereby reducing the effectiveness of the nonlocal 

method. The G&S and ON functions represented an improvement, dispersing the nonlocal 

variable away from the local point and forming two similar peaks near it. The ON function 

required the determination of an appropriate nonlocal parameter 𝑚 , which significantly 

influenced this method.  
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In the third part (Chapter 5), a comprehensive comparison of three different weight functions 

was carried out by various BVPs, including drained and undrained plane strain compression 

tests, the strip footings problems on level ground and near a slope, and retaining wall 

problems under both passive and active conditions. The load-displacement curves, shear 

band thicknesses and shear band orientations predicted by different nonlocal models were 

compared, respectively.  

In the final part of the work (Chapter 6), a more in-depth discussion and analysis of the G&S 

method were presented, since a comparison of three different nonlocal methods 

demonstrated that the G&S method is the most effective in mitigating mesh dependency 

issues. In this Chapter, plane strain compression tests with rough boundary conditions under 

both drained and undrained analysis are simulated. The efficiency of the G&S method is 

justified through force-displacement relationship curves and shear strain contours (shear 

band orientation and thickness). The effect of initial density and confining pressure on the 

nonlocal regularisation method is also discussed. Furthermore, the evolution of state 

variables within the shear band under smooth boundary conditions is investigated by cross-

sections and selected elements (inside and outside the shear band). These state variables 

include void ratio 𝑒, anisotropic variable 𝐴, degree of anisotropy 𝐹 and shear strain. The 

effect of anisotropy on strain localisation is investigated using soil samples with various 

bedding plane orientations (α=15°, α=30°, and α=45°). Finally, the performance of the 

nonlocal method under 3D loading conditions is presented.  

The main conclusions of this thesis are summarised below. 

 

7.1 Comparison of three weight functions in BVPs 

In biaxial compression tests, the local and three diffident nonlocal models were compared 

under both drained and undrained conditions.  

(1) The force-displacement curves show that G&S and ON functions display more 

insensitive results than GD under drained conditions. This is because the local value 

contributes most to the nonlocal variable for the GD method. As for the undrained case, 

there is no distinct difference between different nonlocal models. 

(2) The orientation of shear bands increases with mesh size under both drained and 
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undrained conditions. The difference in shear band orientation due to mesh size is smaller 

under undrained conditions than drained conditions for both local and nonlocal analyses. 

Nonlocal methods help circumvent mesh dependency. Moreover, the G&S and ON 

functions demonstrate more consistent results than the GD function under both drained 

and undrained conditions. 

(3) Based on the contour plots and the cross-section profiles, the local model exhibits mesh-

dependent shear band thickness. In contrast, nonlocal models utilising the G&S and ON 

functions demonstrate slight variations in shear band thickness among different mesh 

sizes. Additionally, the maximum shear strain within the shear band is lower for the 

undrained case than the drained case in both local and nonlocal models. 

(4) The regularisation techniques only work when the mesh size ℎ < 𝑙𝑐 . The shear band 

thickness simulated by the local model significantly increases with mesh size, and the 

shear band thickness predicted by G&S and ON functions is more stable with mesh size 

than GD function. Furthermore, the shear band predicted by the nonlocal models 

increases with 𝑙𝑐.  

Three nonlocal models were also compared and implemented in real-world boundary value 

problems (BVPs) under drained conditions. These problems included strip footing problems 

on the ground sand level and near a slope, as well as retaining wall problems considering 

active and passive failure conditions respectively. Nonlocal models display consistent results 

than the local model in all simulations. 

(1) The G&S function predicts better results in the problem of strip footing on level sand 

ground. However, the ON model gives a speedy reduction of 𝑄 after reaching the peak, 

which does not match the experimental observations. This is caused by the excessive 

volume expansion predicted by this model. It is found that a bigger 𝑚 value gives an 

even steeper strain-softening curve for the ON function. Therefore, the ON function is 

unsuitable for this problem, even though it works well in the plane strain compression 

tests. 

(2) In the results of the strip footing on the slope, as the mesh size becomes finer, the peak 

value of bearing capacity decreases. Nonlocal regularisation effectively mitigates the 

mesh-dependent issue and decreases the ratio of strain softening. Nonetheless, the 

nonlocal functions still indicate a minor variation in the mesh size. 
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(3) In the retaining wall problems, nonlocal models alleviate the mesh sensitivity, resulting 

in a consistent 𝜎ℎ − 𝑢/ℎ𝑤 curves. The nonlocal regularisation delays the peak state in 

the passive failure condition case. The angle of the shear band decreases with increasing 

mesh size under active earth pressure, whereas it increases under passive earth pressure. 

The nonlocal methods reduce the disparity between the largest and smallest measured 

angles obtained from contour plots, particularly with the G&S function, where the angle 

remains nearly constant under active earth pressure. Additionally, under passive earth 

pressure, the angle measured from the G&S function is slightly larger than that from the 

GD and ON functions.  

 

7.2 Strain localisation in plane strain compression 

The nonlocal method with G&S weight function was simulated by both drained and 

undrained plane strain compression tests under rough boundary conditions. Moreover, the 

evolution of state variables, the effect of initial density and confining pressure, and the effect 

of anisotropy on strain localisation of both local and nonlocal models under smooth 

boundary conditions were further investigated. 

(1) Under rough boundary conditions, the nonlocal method demonstrates mesh-independent 

force-displacement curves, and the peak value is reached earlier compared to smooth 

boundary conditions. Minor variations were observed in both shear band orientation and 

thickness between coarse and fine meshes. The shear band orientation decreases with 

increasing mesh size, while the shear band thickness increases with mesh size. 

(2) The local model also demonstrates a mesh-dependent width of state variable 

concentration in cross-sections. In contrast, the nonlocal model shows only slight 

variations in the width of state variable concentration for different mesh sizes. For both 

smooth and rough boundary conditions, the results obtained from the G&S function 

indicate a significantly larger shear band thickness compared to the local model. 

(3) Not only does the fluctuation in the change of the state variables decrease, but also the 

differences in peak values of the state variables between various mesh sizes observed in 

the local model are significantly reduced after nonlocal regularisation. The values of the 

state variables within the shear band are significantly greater than those outside, 

primarily due to shear strain concentration. Regarding the impact of confining pressure 
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and initial density on the nonlocal method, the effectiveness of reducing mesh 

dependency in the nonlocal method increases when the void ratio is higher or when the 

confining pressure increases. 

Regarding the impact of anisotropy on the nonlocal method, the results indicate that the 

nonlocal method remains unaffected by various positive bedding plane orientations. 

However, negative bedding plane orientations do have an impact on the nonlocal method. In 

the local model, the peak reaction force for negative bedding plane orientation is greater than 

that for positive bedding plane orientation. Conversely, in the nonlocal model, the situation 

is reversed. 

 

7.3  Future work 

(1) Treat More State Variables as Nonlocal 

The strain softening of the anisotropic sand model used in this research is affected by the 

stress state, void ratio, and fabric tensor. The void ratio increment is only affected by the 

volumetric strain increment, making it convenient to assume the void ratio increment is 

nonlocal(Mallikarachchi and Soga, 2020; Gao et al., 2021). Other state variables remain 

local due to the difficulty in implementing nonlocal regularisation. When not all state 

variables affecting strain softening are nonlocal, it negatively impacts the effectiveness of 

nonlocal regularisation (Li and Gao, 2024). For example, there is still a slight variation in 

the nonlocal predictions of shear band thickness and shear band orientation with different 

mesh sizes, regardless of which nonlocal function is employed. All the nonlocal functions 

can reduce but not eliminate the mesh dependency (Summersgill et al., 2017). Thus, future 

work will mainly focus on trying to make more state variables nonlocal. 

(2) Comparison and Combination of Nonlocal Method with Other Regularisation 

Methodologies 

In the literature review, four regularisation methodologies were introduced: the viscosity 

regularisation method, the strain-gradient enhanced approach, the micro-polar continuum 

approach, and the nonlocal method. Each of these methodologies has its own advantages and 

disadvantages. Therefore, in future work, each regularisation method will be thoroughly 

compared in practical cases. For example, the micro-polar continuum approach will be 
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combined with the critical sand model from this research and compared with the nonlocal 

critical sand model. Additionally, the nonlocal method will be combined with other 

regularisation methodologies, as there is no single regularisation method that is perfectly 

effective in all scenarios. In cases where a single regularisation method may not suffice to 

address mesh-dependency issues, combining multiple regularisation approaches can be a 

viable solution. To date, some combinations of regularisation methods have already been 

applied. For instance, the combination of viscosity regularisation with the strain-gradient 

enhanced method (Wang et al., 1998; de Borst and Pamin, 1996; Oka et al., 2002; Zhang et 

al., 2004). Subsequently, Tang and Li (2007) proposed a combination of viscosity 

regularisation with the micro-polar continuum approach. However, there is currently no 

study on the combination of the nonlocal method with other regularisation methods, so this 

will also be part of future plans. 

(3) Implementation of Explicit, Dynamic Analysis Method with Nonlocal Method 

In this research, when simulating boundary value problems, calculations often halt due to 

convergence issues. This is primarily because the Standard, General – implicit algorithm is 

used for analysis in step options of Abaqus. The Standard, General – implicit algorithm uses 

the Newton method for iteration, which incurs a high cost for each time increment but allows 

for larger time increments (Hughes, 2012). Convergence can be an issue in this case. It can 

be efficient for linear and some nonlinear problems. More materials, elements, and 

procedures are available in the standard method. In future work, attempting to combine the 

explicit, dynamic analysis method in Abaqus with the nonlocal method. This approach 

eliminates the need to consider convergence issues. The Explicit, Dynamic – explicit 

algorithm uses a direct iterative method, which incurs a small cost for each time increment 

but requires relatively small increments. Abaqus pre-determines the time increment based 

on wave propagation speed and the minimum mesh size. This method can be efficient for 

highly nonlinear and contact problems. For quasi-static problems, it is important to properly 

adjust model parameters such as density and total time to achieve good computation 

efficiency (Abaqus Documentation, 2016; Wang and Yang, 2017). 

(4) Implementation of Nonlocal Method under Cyclic Loading 

In this research, only monotonic loading is considered for all simulations (where the load 

continuously increases or decreases throughout the process without reversing). However, 

cyclic loading is also common in many practical engineering applications (Gao et al. 2023). 

For instance, in the context of bridge engineering, structures often face cyclic loading due to 
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traffic loads, wind forces, and thermal variations (Smith et al. 2017; Johnson et al. 2018). 

Similarly, buildings experience cyclic loading from environmental factors like wind and 

seismic activities (Lee and Kim 2020; Zhang et al. 2021). While the nonlocal method has 

demonstrated its effectiveness under monotonic loading conditions, its application under 

cyclic loading still requires further exploration. 
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Appendix A: Evolution of state variable 

along the cross-section under rough 

boundary 

(1) Void ratio 𝑒 

 

Figure A-1 Contours of the void ratio 𝑒 from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) 

(c) 

(b) 

(d) 
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 (a)  (b) 

 (c)  (d) 

Figure A-2 Cross-sectional profiles of the void ratio 𝑒 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

(2) Anisotropic variable 𝐴 

 

(a) (b) 
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Figure A-3 Contours of the anisotropic variable 𝐴 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

 

(a) (b) 

(c) (d) 

(c) (d) 
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Figure A-4 Cross-sectional profiles of the anisotropic variable 𝐴 from local and nonlocal 

models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S 

function (0.006 m) 

 

(3) Degree of anisotropy 𝐹 

 

Figure A-5 Contours of the degree of anisotropy 𝐹 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 

(a) 

(c) 

(b) 

(d) 
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(a) (b) 

(c) (d) 

Figure A-6 Cross-sectional profiles of the degree of anisotropy 𝐹 from local and nonlocal 

models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S 

function (0.006 m) 

 

(4) Shear strain 
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Figure A-7 Contours of the shear strain from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) (b) 

(a) 

(c) 

(b) 

(d) 
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(c) (d) 

Figure A-8 Cross-sectional profiles of the shear strain from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m)
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Appendix B: Evolution of the shear band 

from selected elements under rough 

boundary 

 

Figure B-1 Location of the selected elements for the cross shear band: (a) Fine mesh; (b) 

Coarse mesh 

 

(1) Evolution of void ratio 

(a) (b) 

Element A 

Element B 

Element C 

Element D 

(a) (b) 
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(c) (d) 

Figure B-2 The local evolution of the void ratio for the elements inside and outside the 

shear band under rough boundary conditions  

 

(2) Local fabric evolution 

(a) (b) 

(c) (d) 

Figure B-3 The local evolution of the fabric for the elements inside and outside the shear 

band under rough boundary conditions 
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(3) Local evolution of 𝐴 

 

(a) (b) 

(c) (d) 

Figure B-4 The local evolution of the anisotropic variable 𝐴 for the elements inside and 

outside the shear band under rough boundary conditions
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Appendix C: Evolution of state variable 

along the cross-section under 

undrained condition with rough 

boundary 

(1) Magnitude of displacement 

 

Figure C-1 Contours of magnitude of the displacement from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006m) 

 

(a) 

(c) 

(b) 

(d) 
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(a) (b) 

(c) (d) 

Figure C-2 Cross-sectional profiles of the magnitude of displacement from local and 

nonlocal models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); 

(d) G&S function (0.006 m) 

 

(2) Void ratio 
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Figure C-3 Contours of the void ratio 𝑒 from local and nonlocal models: (a) Local (0.004 

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m) 

 

(a) (b) 

(a) (b) 

(c) (d) 
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(c) (d) 

Figure C-4 Cross-sectional profiles of the void ratio 𝑒 from local and nonlocal models: (a) 

Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function 

(0.006 m) 
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