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Abstract

Nonlocal regularisation is frequently used to resolve the mesh-dependency issue caused by
strain softening in finite element (FE) simulations. Nonlocal methods are proposed based on
the hypothesis that the response of materials depends on the deformation field of a local
material point and a weighted average of its neighbouring points. The nonlocal regularisation
of an anisotropic critical state sand model which can capture the strain-softening and state-
dependent dilatancy response of sand is presented. The evolution of the void ratio is assumed
nonlocal in this method. The regularisation method has been implemented using the explicit

stress integration method.

A comprehensive comparison of three weighting functions (including the Gaussian
distribution (GD), Galavi and Schweiger (G&S) and over-nonlocal (ON) functions) has been
investigated in different boundary value problems (BVPs). All functions give mesh-
independent force-displacement relationships in drained and undrained plane strain
compression tests. The shear band thickness shows a slight variation when the mesh size is
smaller than the internal length. None of them can eliminate the mesh dependency of shear
band orientation. The G&S method is the most efficient in eliminating the mesh dependency,
especially in the strip footing problem. The ON method can give excessive overprediction
of volume expansion around strip footings, leading to unrealistic low reaction forces on strip
footings at large deformation. All three weight functions give mesh-independent results for

the earth pressure acting on a retaining wall.

A more in-depth investigation of the G&S method is presented. The plane strain compression
tests with rough boundary conditions under both drained and undrained conditions are
simulated. Mesh-independent predictions of force-displacement relationship curves, shear
band orientation and shear band thickness are given. After applying nonlocal regularisation,
the evolution of state variables obtained from selected elements and cross-sections reduces
the fluctuation in their changes and significantly diminishes the differences in peak values
observed across various mesh sizes in the local model. The effectiveness of reducing mesh
dependency in the nonlocal method increases when the void ratio is higher or when the

confining pressure increases.
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Chapter 1: Introduction

1.1 Background

Strain localisation refers to the phenomenon in which materials experience significant
deformation concentration in localised areas when subjected to loading (Weidner and
Biermann, 2021). This phenomenon typically occurs in certain sections or specific
locations of the materials. Strain localisation can occur in various geotechnical
engineering problems, such as failure of slopes or retaining walls, excavations, and
tunnelling (Lambe and Whitman, 1979; Terzaghi et al., 1996; Peck et al., 2008; Coduto
etal., 2018).

The strain localisation in geomaterials such as sand and clay is caused by their
mechanical behaviour at the element level and external loading conditions (Song and
Khalili, 2018; Oka and Kimoto, 2021). Strain localisation in geomaterials has been found
to be influenced by confining pressure, density, boundary conditions, sample size, fabric
anisotropy and drainage conditions (Chu et al., 1996; Desrues and Viggiani, 2004; Gao
et al., 2012). Strain localisation in geomaterials, such as soils and rocks, is significantly
influenced by confining pressure, density, and boundary conditions. Increased confining
pressure generally enhances the material's strength and ductility, delaying the onset of
strain localisation and resulting in more diffuse deformation (Wood, 2004). Conversely,
lower confining pressures reduce strength and ductility, leading to earlier and more
pronounced strain localisation (Muir Wood, 1990). Density also plays a crucial role, with
higher density materials exhibiting greater strength and stiffness, thus delaying
localisation (Vardoulakis & Sulem, 1995). Lower density materials, on the other hand,
tend to localise strain earlier due to their lower strength and stiffness (Terzaghi et al.,
1996). Boundary conditions further modulate strain localisation, where fixed boundaries
can increase stress concentrations and promote localisation along specific planes, while
flexible boundaries allow for more uniform deformation, thus delaying localisation
(Desrues & Viggiani, 2004; Vardoulakis, 1980). The interplay between these factors is
complex: high confining pressure combined with high density generally leads to more
stable, diffuse deformation, whereas low confining pressure and low density encourage

early and pronounced strain localisation (Schofield & Wroth, 1968; Vermeer & de Borst,
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1984). Understanding these interactions is crucial for predicting material behaviour
under stress and is essential for designing stable geotechnical structures

Experimental evidence indicates that localised deformation is a primarily plastic strain
(Alshibli et al., 2003; Desrues and Viggiani, 2004; Antolovich and Armstrong, 2014).
Mathematically, strain localisation is a bifurcation problem from a continuous
deformation to a discontinuous one (Borja and Aydin, 2004). Therefore, the occurrence
and development of deformation bands resulting from strain localisation are precursors

to the failure of geomaterials and geotechnical structures.

Deformation bands which describe the strain localisation in soils can be categorised
based on their kinematic properties (Aydin et al., 2006) into three main types: (i) shear

bands, (ii) compaction bands, and (iii) dilation bands.

(1) Shear bands are characterised by a dominant shear displacement gradient, often
accompanied by a reduction in porosity (compaction). In some cases, they can also
result in an increase in porosity (dilation) (Antonellini et al., 1994). Shear bands are
typically associated with compaction caused by grain sliding, grain rotation, and/or

grain fracturing (Aydin, 1978).

(2) Compaction bands refer to tabular bands where localised porosity reduction or
compaction occurs without a macroscopic shear offset (Mollema and Antonellini,

1996).

(3) Dilation bands are localized zones of deformation within geomaterials characterised
by volumetric expansion, occurring perpendicular to the maximum compressive
stress direction and significantly influencing geomaterial behaviour. Unlike shear
bands, which exhibit shear deformation, or compaction bands, which show
volumetric contraction, dilation bands involve an increase in volume within the
affected zone (Desrues & Viggiani, 2004). The formation of dilation bands can
enhance permeability by creating fluid flow pathways, impacting hydrogeology and
petroleum engineering (Alshibli & Roussel, 2006). Additionally, these bands
influence stress redistribution, potentially stabilising localised stress concentrations
but possibly leading to extensive deformation under persistent stress conditions
(Holcomb & Rudnicki, 2001). Dilation bands also alter failure mechanisms in
geomaterials, preceding or accompanying other deformation bands and contributing

to complex failure processes, essential for predicting and mitigating structural
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failures in geotechnical engineering (Vardoulakis, 1980). Recognising and
understanding dilation bands are crucial for assessing the stability and integrity of
geological and engineered structures, ensuring safety margins in design and analysis

(Vermeer & de Borst, 1984).

These bands are characterised by two discrete surfaces and are often observed in
consolidated, low-porosity brittle rock. Deformation bands can also be classified based
on the dominant deformation mechanism (Fossen et al., 2007). This classification
depends on various factors such as grain size, shape, sorting, cementation, mineralogy,
porosity of the host sediment, and the stress conditions during band formation. Following
Fossen et al. (2007), four main types can be recognised:

(1) Disaggregation bands are commonly observed in the deformation of soft sediments (e.g.,
Maltman, 1988, 1994; Fossen et al., 2011; Brandes and Tanner, 2012) and have also been
reported in deltaic gravels (Exner and Grassemann, 2010). Sometimes referred to as
microfaults or shear bands in geotechnical engineering literature (e.g., Davis and
Selvadurai, 2002), these bands accommodate slippage of soft, water-saturated, or
unconsolidated sediments along shear surfaces with minimal volumetric strain. These
thin bands are typically porosity-neutral, making them transparent to fluid flow in rocks

containing these structures.

(2) Phyllosilicate bands are common in mudrocks and shales, recognized as thin tabular
zones filled with material resembling fault gouge. These bands may impede fluid flow
and contribute to anisotropy in the host-rock permeability. They often form in grain-
supported mudrocks (i.e., clay content less than ~35-40%); in higher clay content
mudrocks, matrix-supported shearing may produce clay-smear zones, associated with
reduced frictional strength and stable, creep-like frictional stability (Sone and Zoback,

2014).

(3) Cataclastic bands are similar to cataclastic compactional shear bands. The textures within
a cataclastic deformation band show the importance of the deformation mechanism (i.e.,
grain crushing during band formation) and factors such as displacement magnitude.
Grain-size reduction, shape change (i.e., increased grain angularity), and interlocking can
lead to strain hardening of cataclastic compactional shear bands (e.g., Katsman et al.,
2004; Kaproth et al., 2010; Wong and Baud, 2012), even at shallow depths (<1 km),

eventually stopping displacement accumulation. Recognizing cataclastic deformation



Chapter 1: Introduction 4

bands is crucial as they may indicate a shift from strain-hardening banding to strain-

softening faulting in sedimentary sequences.

(4) Solution and cementation bands record the interaction between grain properties, fluid
composition, diagenesis, and pre-existing deformation bands. These secondary structures
have been studied by several researchers (e.g., Antonellini et al., 1994; Parnell et al.,
2004; Fossen et al., 2007; Exner et al., 2013). Grain dissolution and mineral precipitation
or aggregation, such as pyrite, calcite, silica, and various clays, can either strengthen or
reduce the permeability of deformation bands through secondary diagenetic alteration
(Exner et al., 2013). Notable exposures of deformation-band arrays, such as at Devils
Wall in the Harz Mountains of Germany, are examples of cementation bands formed

during or after cataclastic deformation bands (Klimczak and Schultz, 2013).

The development of strain localisation is usually accompanied by a reduction in the
overall strength of the materials, thus significantly affecting the behaviour of both the
geomaterials and geotechnical structures. The phenomenon of strain localisation in
geomaterials is of paramount importance for the study and prediction of geotechnical
engineering and geological hazards, as it directly relates to the stability and safety of
geotechnical structures. To prevent and control the adverse effects of strain localisation,
engineers need to fully consider the properties of the materials and loading conditions
and take appropriate measures during the design and construction processes. In the
analysis and design of geomaterials and geotechnical structures, a good predictive
computational model should be able to fully account for the localisation of deformation

and the formation and development of shear bands in geomaterials.

Over the past decades, numerous studies of shear banding have been focused on fluid-
saturated geomaterials. For instance, Rudnicki (2002) used a transversely isotropic
constitutive relation to observe the occurrence of compaction bands in a porous rock,
Borja and Aydin (2004) adopted the rate - independent constitutive model to analyse the
tabular bands based on shear and volumetric deformations in granular rocks, Jefferies
(1993) developed Nor-Sand critical state model to model sand by the density, or void

ratio, Oka et al. (2000) studied the development of shear bands in water - saturated clay
under quasi - static deformations, Zhang et al. (2000) conducted a dynamic strain

localisation analysis and simulated the shear banding in fully saturated and partially
saturated sand samples by elastoplastic model. In recent years, there has been significant

interest in the phenomenon of strain localisation in unsaturated soils. This interest arises
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from its relevance to practical engineering applications, such as the failure of unsaturated
soil slopes (Gens, 2010) and the production and storage of geothermal energy (Brandl,
2006). Unsaturated soils are three-phase porous media consisting of a deformable solid
skeleton, pore water, and pore air (Ng and Menzies, 2014). Strain localisation in
unsaturated soils involves the coupled solid deformation and unsaturated fluid flow
process. For example, Borja (2004) used the Cam-Clay plasticity model to simulate strain
localisation of partially saturated porous media, Oka et al. (2018) developed an elasto-
viscoplastic model for dynamic strain localisation in unsaturated soils, Wang and Song
(2020) implemented a mesoscale constitutive model to analysis the thermal unsaturated
soils. Research on dry sand has extensively explored its mechanical properties and
deformation behaviours under various conditions, revealing that it exhibits critical state
behaviour where it deforms without changes in stress or volume, an insight crucial for
predicting failure in sandy slopes and foundations (Schofield and Wroth, 1968). Studies
have demonstrated that dry sand shows peak strength followed by a reduction in residual
strength, which is important for structures involving large deformations (Lambe and
Whitman, 1979). Triaxial testing indicates that higher confining pressures enhance shear
strength and stiffness, vital for structures under high lateral pressures (Wood, 1990),
while understanding lateral earth pressure is essential for designing retaining walls and
earth dams (Terzaghi et al., 1996). Research by Tatsuoka et al. (1990) on the effect of
loading rate has shown that the strength and stiffness of dry sand can be rate-dependent,
with faster loading rates generally resulting in higher apparent strength and stiffness. This
finding is crucial for understanding the behaviour of sand in dynamic loading conditions,

such as traffic loads and seismic events.

In computational modelling, capturing strain localisation accurately is crucial for
obtaining realistic and reliable predictions of material behaviour and structural response
under various loading conditions (Sanavia et al., 2005). Advanced numerical methods,
such as the finite element method (FEM), can help simulate and analyse the phenomenon
of strain localisation and its effects on structures and materials. The FEM, as a numerical
technique, considers the material's constitutive relationship, allowing it to predict the
entire process of deformation localisation, the formation and development of
deformation bands, and ultimately the failure of materials and structures. Its results can
serve as a supplement to the design process or directly be used for design purposes. For
complex loading conditions and important structures with intricate geometric boundaries,

finite element analysis is indispensable (Zienkiewicz et al., 1999; Hughes, 2000).
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Furthermore, simulating the entire process of strain localisation using the FEM helps

understand the failure mechanism of geomaterials and geotechnical structures.

However, the response of the FEM continuum after it has reached its peak is inherently
dependent on the mesh used, as noted by Bazant and Jirasek (2002). Mathematically, this
mesh dependency is linked to the transformation of the governing partial differential
equations from elliptic to hyperbolic, which occurs when the material behaviour
transitions from hardening to softening. Previous research has also highlighted this issue
(e.g., Mtnhlhaus, 1986; Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lu et al.,
2019; Cui et al., 2023). Alsaleh et al. (2006) have pointed out that the FE simulation of
strain localisation is subject to mesh dependency due to the use of classical continuum
models that do not account for micro-structural factors, such as particle size and
associated voids. Different methods have been proposed to resolve the mesh-dependency
issue, including, the strain-gradient enhanced approaches (e.g., Aifantis, 1984; de Borst
and Mihlhaus, 1992; Dorgan and Voyiadjis, 2003), micro-polar plasticity approach (e.g.,
Muhlhaus, 1986; Alshibli et al., 2006; Tang et al., 2013), nonlocal regularisation method
(e.g., Eringen, 1972; LUet al., 2009; Galavi and Schweiger, 2010; Guo and Stolle, 2013;
Lazari et al., 2015; Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh et
al., 2021; Gao et al., 2022; Cui et al., 2023) and viscous plasticity theory (e.g., Okaetal.,
1995; Wang et al., 1997; Higo, 2004; Yin et al. 2010). An internal length scale is
introduced to the constitutive model formulation in these methods, which controls the
degree of deformation localisation and preserves the well-posedness of the governing
partial differential equations irrespective of the refinement of the mesh (de Borst et al.,
1993).

Among these methods, nonlocal regularisation is the most widely used for advanced soil
models. In the study of strain localisation, nonlocal regularisation is often favoured over
methods such as viscosity regularisation, strain-gradient enhanced approaches, and the
micro-polar continuum approach due to several key advantages. Firstly, nonlocal
regularisation methods effectively mitigate the issue of mesh dependency that often
arises in numerical simulations of strain localisation, leading to the improvement of the
credibility of numerical simulations. Secondly, compared to strain-gradient enhanced
approaches and micro-polar continuum theories, nonlocal regularisation is easier to
implement within existing finite element frameworks. This is because it does not

necessarily require significant modifications to the constitutive equations or additional
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degrees of freedom. This simplicity allows researchers to apply nonlocal regularisation
methods more quickly, reducing technical barriers to implementation. Finally, although
nonlocal regularisation introduces some computational overhead, it is often less
demanding than the highly complex formulations required by micro-polar continuum
theories or the additional gradients and higher-order terms in strain-gradient methods.
The improvement in computational efficiency makes nonlocal regularisation methods

practical for large-scale engineering projects and complex material analyses.

Nonlocal methods are proposed based on the hypothesis that the response of materials
depends on the deformation field of a local material point and a weighted average of its
neighbouring points (Mallikarachchi, 2019). All stress, strain, and state variables are
considered nonlocal variables in fully nonlocal constitutive models. However, employing
a fully nonlocal model often leads to complex constitutive equations. As a result, in most
cases, a partially nonlocal approach is preferred. In a partially nonlocal model, only
certain state variables (e.g., void ratio, plastic shear strain, or yield surface size) are
assumed to be nonlocal (Galavi and Schweiger, 2010). When selecting state variables for
the partially nonlocal approach, several key factors must be considered Firstly, the
primary consideration should be whether the state variable can influence the strain-
softening results predicted by the model. Secondly, the complexity of the model itself
must be taken into account. Some state variables in more complex models can be
challenging to treat as nonlocal due to the intricate physical processes and interactions
they involve, increasing the difficulty of their nonlocal transformation. Numerical
implementation complexity is another crucial factor. Even if a state variable has a
significant impact on strain-softening, if treating it as a nonlocal variable greatly
increases computational complexity and numerical implementation difficulty, a balanced
approach must be sought. This might involve simplifying the model or identifying
alternative variables. Numerical stability and convergence are also critical factors. The
handling of nonlocal variables must consider their impact on the numerical stability of
simulations. Some nonlocal variables might introduce additional computational
complexity and potential numerical instability, necessitating the design of appropriate

numerical algorithms to ensure stable simulations.

This approach has proven effective in regularising most soil models with strain softening.
For example, researchers like Galavi and Schweiger (2010) and Summersgill et al. (2017)

have assumed that strain softening is governed by the nonlocal plastic shear strain.
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Additionally, Lu et al. (2011) have proposed the use of a nonlocal plastic multiplier to
control the increment of plastic strain and regularise soil models exhibiting strain-

softening behaviour.
1.2 Objective

The nonlocal method has mainly been used in soil models that have simple strain-
softening rules. In studies conducted by Galavi and Schweiger (2010) and Summersgill
etal. (2017), the variable that governs strain softening is solely a function of plastic shear
strain. In such cases, the model can be readily regularised by assuming that the strain-
softening variable depends on the nonlocal plastic shear strain. However, natural sand
exhibits strain softening influenced by several variables, including void ratio, mean
effective stress, fabric anisotropy, and plastic strain. The hardening parameter in an
advanced sand model, which describes strain softening, cannot be explicitly expressed
in terms of these variables. This complexity poses challenges when applying nonlocal
regularisation to these models. Instead, the increment of the hardening parameter is
described in relation to these variables.

Mallikarachchi and Soga (2020) were among the first to propose a nonlocal
regularisation method for an advanced sand model, accounting for the influence of void
ratio and mean effective stress on soil behaviour. Specifically, they assumed that the void
ratio increment depends on the void ratio increment at both local and neighbouring
integration points. This approach effectively reduces the mesh dependency of model
predictions for drained and undrained plane strain compression tests. However, this
method has not yet been applied to practical geotechnical problems; meanwhile, the
impact of weighting functions has not been investigated. Furthermore, the integration of
this regularisation method with explicit/implicit stress integration methods has not been
addressed. Hence, this thesis builds upon the work of Mallikarachchi and Soga (2020)
by implementing an advanced sand model that considers anisotropy and fabric
characteristics within the framework of nonlocal theory.

1.3 Thesis Outline

The outline of this thesis is as follows:
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In Chapter 2, an introduction and comparison of four mainstream regularisation
methodologies were presented. Following that, a detailed exploration of the evolution
and development of fully nonlocal theory to partially nonlocal theory within the nonlocal

method is provided, along with a review of their previous applications.

In Chapter 3, an anisotropic critical state sand model used in this thesis was introduced,
and the validation of the model using experimental tests was presented.

In Chapter 4, three different weight functions: (1) Gaussian distribution (GD) function,
(2) Gands distribution function (G&S), and (3) Over-nonlocal (ON) method were
compared and introduced. Then, the nonlocal formulation of the constitutive model and

implementation in Abaqus was discussed.

In Chapter 5, a comprehensive comparison of three different weight functions was
carried out by various BVPs, including drained and undrained plane strain compression
tests, the strip footing problems on level ground and near a slope, and retaining wall

problems under both passive and active conditions.

In Chapter 6, plane strain compression tests with rough boundary under both drained and
undrained analysis are simulated. The effect of initial density and confining pressure on
the nonlocal regularisation method is discussed. Furthermore, the evolution of state
variables within the shear band under smooth boundary conditions is investigated by
cross-sections and selected elements (inside and outside the shear band). Additionally,
the effect of anisotropy on strain localisation is investigated using soil samples with
various bedding plane orientations. Finally, this chapter also investigated the nonlocal

method in three-dimensional boundary value problems.

Chapter 7 summarises the conclusions and perspectives reached in the previous chapters.
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Chapter 2: Literature review

2.1 Introduction

When a sand model with strain-softening is used in boundary value problems such as plane
strain compression problems and footing problems, the solution can become unreliable due
to the mesh-dependency. For example, the shear band thickness, shear band orientation and
stress-strain relationship are affected by mesh size. The mesh-dependency is caused by the
assumption used in standard elastoplastic models that the stress—strain relationship at an
integration point is dependent on the local stress, strain and state variables only.
Mathematically, this mesh dependency is associated with the change in the governing partial
differential equations from elliptic to hyperbolic, which happens when the material behavior

shifts from hardening to softening.

Different methods have been proposed to resolve the mesh-dependency issue, including
viscous plasticity theory (e.g., Oka et al., 1995; Wang et al., 1997; Higo, 2004; Yin et al.,
2010), strain-gradient enhanced approach (e.g., Aifantis, 1984; de Borst and Mthlhaus, 1992;
Dorgan and Voyiadjis, 2003), micro-polar plasticity approach (e.g., Mthlhaus, 1986;
Alshibli et al., 2006; Tang et al., 2013) and nonlocal regularisation method (e.g., Eringen,
1972; LUet al., 2009; Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lazari et al., 2015;
Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022;
Cui et al., 2023). The mesh-dependency issue can be addressed by incorporating the internal

length scale in the constitutive models or regularisation methods.

This Chapter mainly focuses on introducing four different regularisation methodologies,
including the viscosity regularisation method, strain-gradient enhanced approach, micro-

polar continuum approach and nonlocal method.

2.2 Viscosity regularisation method

Visco-plasticity is a theory within continuum mechanics that characterises the rate-
dependent inelastic behaviour of solids. In one-dimensional representation, the elastic
response of visco-plastic materials can be modelled using Hookean spring elements. The

rate-dependence can be represented by nonlinear dashpot elements, similar to viscoelastic
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materials, as for plasticity, which can be described by adding sliding frictional elements, as

shown in Figure 2.1.

o=f(€)

(@)

o= f(£,€)

o=f(£,€)+0,

(d)

Figure 2.1 Demonstration of visco-plastic model: (a) Spring element; (b) Dashpot; (c)
Sliding friction element; (d) Visco-plastic model
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Viscosity regularisation relies on reducing and distributing high deformation rates in the
localised region within the finite element mesh using viscosity. This utilisation of visco-
plasticity as a regularisation method is primarily linked to rate-dependent behaviour. The
rate-dependency was used to describe mesh sensitivity for localisation problems in metal
(Needleman, 1988; Shawki and Clifton, 1989), rock and concrete fracture (Sluys and de
Borst, 1991), saturated porous media (Loret and Prevost, 1991), dilatant materials and clay
(Okaetal., 2002; Yin and Hicher, 2008; Yin and Karstunen, 2011). In many cases, materials
behave differently under different strain rates. For example, metals may exhibit strain rate
sensitivity. When using visco-plasticity, the model takes into account the rate at which
deformation occurs, and this can help in reducing the mesh dependency because it considers
the local deformation rates. However, adding an artificial feature, such as internal length, to
the material behaviour is necessary when visco-plasticity does not display rate dependence
(Dias da Silva, 2004). Needleman (1988) also pointed out that even though the dimensions
of internal length in the classical visco-plastic model are unclear, rate-dependent constitutive

models inherently introduce an internal length scale into the governing equations.

Various factors such as the shear wave speed, shear modulus, softening parameter, and
viscosity parameter are considered influential in determining the thickness of the shear band
(Dias da Silva, 2004). These factors can be connected to the cutoff value of the strain rate at
the boundary of the shear band through an implicit parameter with an internal characteristic
length scale. This length scale is defined in terms of the viscosity n,,, Young’s modulus E

and the mass density p as below:

_ My
l.= T5 (2.1)
Meanwhile, the viscosity regularisation technique does not need any additional global
discretisation since it only requires operations at the constitutive model level, whose
implementation in common non-linear finite element packages is well-established (Dias da
Silva, 2004).

Wang et al. (1997) proposed a visco-plastic model for one-dimensional element analysis.
The strain rate distribution along the element was implicitly expressed by the internal length
scale, and this improvement has facilitated better prediction of shear band thickness. Wang
et al. (1997) found that the thickness of strain localisation increases when the absolute value
of the softening parameter decreases or the viscosity parameter increase. The determination

of the thickness of the strain localisation also depends on the minimum value between the
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internal length scale and the imperfection size. It has been observed that when the
imperfection size is smaller than the material length scale, it dominates the shear band
thickness. However, if the imperfection size exceeds the material length scale, the influence
of the imperfection diminishes, and the shear band thickness is primarily determined by the
material length scale. In essence, the relative sizes of the imperfection and the material length
scale dictate their respective contributions to the shear band thickness (Wang et al., 1997).

Furthermore, visco-plasticity is commonly modelled in two dimensions using the overstress
theory proposed by Perzyna (1963) and Duvaut and Lions (1972). These theories provide
frameworks for capturing the complex rate-dependent behaviour and inelastic response of
materials under two-dimensional loading conditions. In the Perzyna and Duvaut-Lions
visco-plastic theories, an important distinction from the inviscid plasticity theory stems from
the fact that the current stress states can be outside the yield surface and that the yield
function may have a value larger than zero. However, when the viscosity goes to zero, the
model proposed by Perzyna may not converge to the inviscid solution (Simo et al., 1988).
The Duvaut-Lions model also has the limitation that it must be used in conjunction with an
integration algorithm for the inviscid elastoplastic rate equations, in which the initial stress
is used only to compute the trial stress since it may be outside the yield surface. Thus, Dias
da Silva (2004) proposed an elastoplastic rheological model (Figure 2.2 and 2.3) for viscous
regularisation that combines a Maxwell-type visco-elastic behaviour to avoid the limitations

in Perzyna and Duvaut-Lions models.

The mesh sensitivity results, illustrated in Figure 2.2, demonstrate varying directions and
thicknesses of the shear bands observed in the two different meshes. However, Figure 2.3
shows the results obtained when the viscosity is introduced employing the rheological model.
It can be observed that the results obtained are more similar, with shear bands with the same

directions in both meshes.
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Figure 2.2 Shear bands in a von Mises specimen using two different meshes: computation

with low viscosity using the rheological model (Dias da Silva, 2004)

t=T2s t = 144s t="T2s t = 144s

Figure 2.3 Shear bands in a von Mises specimen using two different meshes and the
rheological model (Dias da Silva, 2004)
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Moreover, the primary advantage of viscosity regularisation is that it does not necessitate
additional global discretisation. Instead, it only requires supplementary operations at the
local level within constitutive models. This makes its implementation straightforward in
common nonlinear finite element packages. Additionally, viscosity regularisation is
effective for both the de-cohesion failure mechanism and the slip-driven softening failure
mechanism (Wang et al.,1997; Dias da Silva, 2004). However, there are certain
disadvantages associated with viscosity regularisation. It needs to introduce the viscosity to
describe material behaviour, even when the material does not exhibit rate dependence. This
limits its applicability to transient loading conditions. Furthermore, the regularising effect of
viscosity regularisation diminishes rapidly for slow loading rates or when approaching the

rate-independent limit.

2.3 Strain-gradient enhanced approaches

The strain-gradient theory and nonlocal theory belong to a common theoretical category.
Strain-gradient models can be derived from nonlocal models by expanding the kernel of the
integral employed in the averaging procedure for the plastic strains (Liu, 2018). In the
beginning, second and higher-order elasticity gradient theory was introduced and applied in
the constitutive modelling to describe the effect of the microstructure on material behaviour
(Toupin, 1962; Mindlin, 1965; Eringen, 1966). Kr&ner (1967) and Eringen and Edelen (1972)
extended the implementation of strain-gradient enhanced approaches based on elasticity
gradients theory. Then, the elasticity gradient theory was developed for plasticity by some
researchers. The plasticity gradient theory was first used to analyse persistent slip bands
(Aifantis, 1984) and shear bands in metals (Coleman and Hodgdon, 1985). The higher-order
gradient theory was combined with the flow rule and the yield function by Vardoulakis and
Aifantis (1989, 1991). The plasticity gradient theory was also implemented in water-
saturated soils, and the strain localisation exhibits a strong dependence on the strain gradient,
which was shown by Chikazawa et al. (2001) via a gradient-dependent visco-plastic

constitutive model.

Both elastic and plastic strain-gradient models consist of higher-order gradient terms
(Laplacian) in governing equations. These terms integrate a length scale and can regularise
the strain softening. According to the governing equations, the strain-gradient theories can

be divided into explicit and implicit strain-gradient theories. In explicit strain-gradient
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theories, higher-order deformation gradients enter the equilibrium equations explicitly. In
implicit strain-gradient theories, the gradient influences more implicitly from an additional

partial differential equation.

Based on the direct use of higher-order derivatives of the local plastic strain in the yield
condition, the explicit gradient theory, which utilises higher-order derivatives of the local
plastic strain in the yield condition, was developed by Aifantis (1987) for modelling strain
localisation in metals. However, it is important to note that the explicit gradient formulations
are only valid in the plastic domain. The implicit gradient theory was developed to address
the numerical challenge caused by explicit gradient theory. It involves formulating a
Helmholtz-type partial differential equation (PDE) with appropriate boundary conditions.
This approach is applicable in both the elastic and plastic domains. By using the Helmholtz-
type PDE, the newly introduced nonstandard variable becomes connected to the local
internal variable either throughout the entire body or, at the very least, exhibits long-range
interactions. As a result, this preserves a significant nonlocal feature (Xue et al., 2022). de
Borstetal. (1991, 1992, 1996) introduced implicit gradient plasticity formulations (Equation
2.2) that imposed limitations on the yield function, specifically restricting it to second-order
derivatives. This restriction enabled the yield function to depend not only on the hardening
parameter itself but also on the Laplacian of the hardening parameter. The work of de Borst
and Mthlhaus (1991), de Borst et al. (1993), Pamin (1994), and de Borst and Pamin (1996)

further explored and developed these formulations.

The gradient dependence is included solely in the definition of the yield function f:
f(oij, K, V%K) =0 (2.2)

where k is the hardening parameter and V? is the second order of Laplacian.

Gradient plasticity offers a notable advantage over nonlocal theory in that the consistency
condition results in a partial differential equation instead of an integral differential equation.

f=nlio;;—hPA+ gPViA=0 (2.3)

where n;;, h? and gP are given by,

a

aO'l']'
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hP (i, V2K) = — 3L (2.5)
kK 0
g7 (k) =520 (2.6)

in which n;; is the gradient to the yield function; h? is the hardening modulus; Ais a plastic
multiplier and g? is a gradient influence variable. For strain softening, the hardening

modulus AP is negative and the additional variable gP must be positive. When g? = 0, the
theory reverts to the classical plastic flow theory. However, when h? < O the tangential
stiffness matrix DP becomes non-symmetric, leading to a tendency towards instability. The
objective of the strain-gradient enhanced approaches is to maintain the well-posedness of
the governing equations for materials that do not meet the material stability requirement.
The gradient term present in Equation (2.6) can act as a stabiliser when h? <0 which ensures
that the governing partial differential equation (Equation 2.3) maintains ellipticity even after
the onset of strain localisation. Moreover, when addressing mesh dependency issues in finite
element analysis, the strain-gradient theory is also implemented by introducing the concept
of an internal length. The gradient influence variable g can be expressed as g? = —hP[?

(Pamin, 1994), and the mesh-independent result of strain-gradient theory under the biaxial

compression test is shown in Figure 2.4.
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Figure 2.4 Load-displacement diagrams for (a) Classical continuum and (b) Strain-gradient
model (de Borst and Pamin, 1996)

The nonlocal implicit gradient theory, utilising the Helmholtz-type PDE, has been
effectively combined with various models to regularise ill-posed boundary value problems
(BVPs) in the context of concrete and soils. These combinations include plasticity models
(Miehe et al., 2013), damage models (Zreid and Kaliske, 2016), and a mesh-adaption
framework (Na et al., 2019). More recently, within a thermodynamics framework (Forest,
2009), several classes of high-order continuum approaches have been proposed. Examples
of these include the tensorial gradient plasticity model (Poh et al., 2011), large-deformation
gradient plasticity model (Anand et al., 2012), and non-associative pressure-dependent
gradient plasticity model (LUet al., 2020). Thus, the implicit gradient theory has enabled the
natural derivation of the generalised balance equation and nonlinear constitutive relations
between generalised stresses and strains through the additional micro-variable and the

conjugate generalised stresses.

Moreover, there are still some differences between explicit and implicit gradient-enhanced
approaches. Firstly, in the implicit gradient-enhanced softening model, spatial interactions

extend across the entire domain, similar to the nonlocal model (Peerlings et al. 2001). This
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means that the effects of deformation at any point can influence other points throughout the
domain. On the other hand, the explicit gradient-enhanced softening formulation is
considered local in a mathematical sense. This means that the nonlocal strain at a particular
point depends solely on the local strain and its gradients at that same point. In this situation,
spatial interactions are limited to an infinitesimal neighbourhood around each point. As a
result, the influence of deformation is confined to a localised region rather than spanning the
entire domain. Secondly, fourth-order displacement derivatives in the equilibrium equations
were introduced by an explicit gradient-enhanced approach. Stronger continuity
requirements were imposed on displacements by the explicit gradient-enhanced softening
formulation compared to the implicit gradient-enhanced softening and nonlocal approaches.
These stronger continuity requirements can pose challenges under some specific
circumstances, for stance, singular deformation fields or strongly localised. Meeting these
requirements may be difficult, and it can significantly impact the predicted response of the

material.

2.4 Micro-polar continuum approach

Cosserat brothers first proposed the Cosserat theory, also known as the micro-polar theory
(Cosserat and Cosserat, 1909). The Cosserat theory enables us to describe the rotational and
translational deformations of grains at the particle level by introducing three additional
degrees of freedom of a single grain. Micro-rotations are related to micro-curvatures and
couple stresses. A rotational degree of freedom is defined with the rotation axis orthogonal
to the 2D plane, the micro-curvatures are spatial derivatives of the rotational degree of
freedom, and the coupled stresses energetically conjugate to the micro-curvatures. The
moment stresses (moment per area) are provided by the rotational degree of freedom.
Therefore, the material may then oppose a couple stress to the development of curvature
(Khoei et al. 2007). The introduction of the couple stress leads to a non-symmetric stress
tensor (Ebrahimian et al. 2012). Moreover, the internal length scale relates a couple stress to
micro-curvature. This internal length scale can be introduced to the constitutive model to

control the shear band thickness and regularise the strain softening.

In the beginning, the fundamental linear equations of Cosserat elasticity were derived based
on the Cosserat theory, and the solution was obtained by Mindlinin (1965). Then, Neuber

(1965) applied this theory to distribute the surrounding stress of a circular hole under
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uniaxial tension. The Cosserat continuum theory became popular in geomechanics in the
mid-1970s. The finite element method with independent rotations began with MUhaus et al.
(1987). The thickness of shear bands in granular materials was analysed by Cosserat
kinematics continuum theory in a two-dimensional problem. This is a significant
implementation of the Cosserat continuum in strain localisation. The overall rotation (w;;)
was used in the continuum equations of their work, which is different from the grain or the

Cosserat rotation (wf;). Thus, non-symmetric stain and stress tensors were caused by the

deviation in the rotation (couple stress), which differs from classical tensors.

The classic strain tensors can be divided into an antisymmetric (spin tensor) and a symmetric
component (stretch tensor). Due to the differences in displacement gradients, the spin tensor
is generally related to micro-rotation (Liu, 2018). However, the classic strain tensors of
conventional continuum mechanics only consider macro-rotation, which fails to capture the
real kinematics, such as micro-rotation in granular materials. Thus, Cosserat theory (micro-
polar theory) is proposed by independent micro-rotations of material points, as seen in Figure
2.5 (an element having four material points):

A -
y . <~ (Dc
Cosserat Point SN
|
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N 0.5(£,-¢,,)
o, >
X
Z

Figure 2.5 Separation between micro-rotation and macro-rotation in 2D space and their
effect on the kinematics (Liu, 2018)
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In the two-dimensional Cosserat continuum, each material point possesses three degrees of

freedom. These degrees of freedom consist of two translational degrees (u,, u,) and one

rotational degree ( w,). This configuration aligns with the representation of rotation for
particles with a rotational axis perpendicular to the two-dimensional plane. The displacement

vector u can be expressed as follows:
— T
U = [Uy, Uy, W] (2.7)

During deformation, the displacement of each element is displaced by (u,, u,) while it is

rotated by the angle w, around the z-axis.
The corresponding strain vector is defined as:
€= [Exx) Eyyr €225 Exyr Eyxr kyzlec, kyz lc ]T (2.8)

where [, is defined as the internal length scale, taken into the strain tensor to make all

components dimensionless. k., and k,,, are the micro curvatures.

The k,, and k,,, are introduced in the Cosserat continuum and are defined as:

dwy wy
kxz = “ax kyz = ay (29)

The strain components in the Cosserat continuum are defined as:

Err = 2% gy, = ‘% (2.10)
Exy = % — Wy, Eyyx = 66—1;" + w, (2.11)

The corresponding stress vector is defined as:
0 = [Oxx, Oyyr 022, Onys Oy Mzl tyzle 17 (2.12)

where ., and u,, are the couple stress tensor.

As Figure 2.6 shows, the stress distribution becomes unsymmetric when additional rotational
degrees of freedom are applied to two-dimensional problems. This is caused by the existence
of a rotational degree of freedom and couple stresses.
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Figure 2.6 Asymmetry stress distribution in micro polar theory (Liu,2018)

The stress and strain tensors can be decomposed into the symmetric and skew-symmetric

parts, in which the symmetric tensors [o]s,., and [€]s,, introduce the stress and strain

tensors in the classical continuum and the skew-symmetric tensors [o]sk, and [€]skw

indicate the effects of couple stress and rotation in the Cosserat continuum.

The strain tensor can be rewritten as:

6ui
€ij = 5 Eijk®z (2.13)

where u; is the component of the displacement vector, and e, is Ricci permutation tensor
which is defined as a completely antisymmetric tensor in three dimensions. e;j, = 1 if
(i,j, k) is an even permutation of (1, 2, 3), e;;, = —1if (i, ], k) is an odd permutation, and
e;jx = 0 if any index (i, j, k) is repeated. In three dimensions only, the cyclic permutations
of (1, 2, 3) are all even permutations, similarly the anticyclic permutations are all odd
permutations. This means in three dimensions, it is sufficient to take cyclic or anticyclic
permutations of (1, 2, 3) and easily obtain all the even or odd permutations. From Equation
(2.13), it is clear that the strain tensor is not symmetric. The gradient of the micro-rotation

vector is known as the micro-curvature tensor and is defined in the form of:

dw;
kij = a—(:i (2.14)

while the strain tensor &;; is work conjugate to the stress tensor o;;, the curvature tensor k;;

is work conjugate to the couple stress tensor p;;.

The constitutive equations governing an elastic Cosserat medium can be expressed as:


https://en.wikipedia.org/wiki/Even_and_odd_permutations
https://en.wikipedia.org/wiki/Odd_permutation
https://en.wikipedia.org/wiki/Cyclic_permutation
https://en.wikipedia.org/wiki/Anticyclic_permutation
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0ij = Eijri€r (2.15)
Hij = MijiiKi (2.16)
As for the three-dimensional condition, the displacement vector u defined as follows:
U = [Uy, Uy, Uy, Wy, Wy, 0,]" (2.17)
The corresponding strain vector is defined as:

k k k k k k k k k
€ = [Exxr Eyyr €220 Exyr Eyr Evzr Egyr Egr Exzy —, 2,22, X =2 Y2 0F A T
xx) €yyr €zz) €xyr Cyxr Cyz» Czyr €zxr €xz0 T I I 1 I I I I 1
t t t c c c c c c

where [, is the internal length related to bending couple stress.
The corresponding stress vector is defined as:

o=

T
(O 0yy, 022 Oxys Oyxs Oyz, Ozy, Ozx, Oxz, Haxlts :uyylt' Hzzle, Hxy le) Mzle) .uyxlcv Hyz le, tzxle, .uzylc ]

(2.19)

The pioneering research of combining finite element code with Cosserat theory was done by
de Boest (1993). The internal length was used in strain localisation at failure conditions,
laying the foundation for the regularisation technique. After work by de Boest, the Cosserat
continuum model was established as the regularisation approach to investigate strain
localisation problems (Tejchman and Wu, 1993). The efficiency of the Cosserat theory as a
regularisation technique was also investigated by Ristinmaa and Vecchi (1996). Moreover,
higher grade micro-polar materials that exhibit an internal length scale were introduced by
lordache and Willam (1998). In their work, the micro-polar Cosserat continua was used to
examine the regularisation properties of discontinuous bifurcation problems. Researchers
have recently extended the use of the Cosseart micro-polar continuum theory as a
regularisation approach in some two-dimensional problems to model strain localisation.
Alsaleh and Alshibli, respectively, have enriched the theoretical research and implantation
of the micro-polar method. The mesh-independent results of strain localisation in granular
materials came up by their enhanced Lade’s single hardening model (Alsaleh et al., 2006;
Alshibli et al., 2006). In addition, Liu (2018) presented a mesh-independent result of a micro-
polar model under the biaxial compression test shown in Figures 2.7-2.9.
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The micro-polar models show mesh-independent results for load-displacement curves
(Figure 2.7) and equivalent plastic strain distribution plots (Figures 2.8 and 2.9). In Figure
2.7(a), the strain hardening part is insensitive to the mesh size until the peak and becomes
mesh-dependent in the strain softening part. Coarse mesh displays more stiff behaviours in
the softening regime than in a fine mesh. In Figure 2.7(b), the load-displacement curves of
the other three fine meshes coincide with each other. Moreover, as illustrated in Figure 2.8,
the shear band becomes thicker when the element size becomes coarse for the classical
models. In contrast, for the micro-polar model shown in Figure 2.9, the shear band thickness

is almost the same for the models with different mesh sizes.
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Figure 2.7 Load-displacement curve for (a) Classical continuum and (b) Micro-polar model
(Liu, 2018)

(@ (b) (© (d)

Figure 2.8 Shear bands of four different mesh sizes using the classical model: (a) mesh
10>0; (b) mesh 15>30; (c) mesh 20>40; (d) mesh 30>60 (Liu, 2018)
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Figure 2.9 Shear bands of four different mesh sizes using the micro-polar model: (a) mesh
10>0; (b) mesh 15>30; (c) mesh 20>40; (d) mesh 30>60 (Liu, 2018)

In addition, Khoei et al. (2010) and Tang et al. (2013) presented a Cosserat micro-polar
continuum model for three-dimensional problems to model strain localisation. For example,
in a 3D tensile strip problem, the results indicate that Cosserat analyses regularise the
localisation zone, whereas the classical solution exhibits a sudden jump at the edge of the
localised region. (Figures 2.10-2.12).

For a classical model in Figure 2.10, the shear band thickness of the fine mesh is much
smaller than the one obtained from the coarse mesh, and the mesh distortion can be observed.
Meanwhile, the maximum value of effective plastic strain for a classical solution with fine
mesh is almost twice the coarse mesh. On the contrary, the maximum values of effective
plastic strain obtained by the Cosserat model from Figure 2.11 (b) are similar to one obtained
from the coarse mesh in Figure 2.11 (a). Furthermore, the variations with displacement of
predicted reaction are plotted in Figure 2.12 for the Cosserat and classical models using
different meshes. The mesh objectivity of the Cosserat model is obvious in this figure,
particularly when the internal length [, = 2 and 3 mm. The decrease of [, increases the
mesh dependency of the solution. However, these results are much better than the classical

ones.
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)

b

(

Figure 2.10 The effective plastic strain contours and deformed meshes for a strip in tensile

using Classical theory: (a) coarse mesh; (b) fine mesh size (Khoei et al., 2010)
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(b)

Figure 2.11 The effective plastic strain contours and deformed meshes for a strip in tensile

using Cosserat theory: (a) coarse mesh; (b) fine mesh size (Khoei et al., 2010)
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Figure 2.12 The load-displacement curves for a strip in tension; a comparison between the

classical and Cosserat models at various internal length parameters (Khoei et al., 2010)

In summary, the micropolar approach considers the rotations of individual grains and the

resulting couple stresses during shearing, even though these effects may remain negligible

during homogeneous deformation. This consideration of grain rotations and couple stresses

aligns with the physical behaviour observed in experiments. Therefore, the micropolar

approach is believed to provide a more appropriate representation of shear zones in granular

materials.

2.5 Nonlocal method

The nonlocal method is proposed based on the hypothesis that material responses should

depend on the deformation field of a local material point and its neighbourhood points

(Mallikarachchi, 2019). In the nonlocal approach, the softening rules of local variables

usually depend on nonlocal variables (spatial averaging value of surrounding points) within

a representative volume of the material (Galavi and Schweiger, 2010). The internal
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characteristic length scale defines the representative volume's diameter and controls the

shear band thickness and location.

At first, the nonlocal methods were implemented in various branches of physical sciences,
e.g., in the optimisation of slider bearings (Rayleigh, 1918), the modelling of liquid crystals
(Oseen, 1933), radiative transfer (Chandrasekhar, 1950), and electric wave phenomena in
the cortex (Hodgkin, 1964). Rogula (1965) proposed a nonlocal form of the constitutive law
for elastic materials. Nonlocal elasticity was subsequently refined by Eringen and Edelen
(1972). All these early studies, frequently motivated by homogenisation of the atomic theory
of Bravais lattices, aimed to provide a more accurate description of phenomena occurring in
crystals on a scale comparable to the range of interatomic forces. They showed that nonlocal
continuum models can approximate the dispersion of short elastic waves and improve the
description of interactions between crystal defects such as vacancies, interstitial atoms, and

dislocations (Bazant and Jirasek, 2002).

Subsequently, Eringen (1981, 1983) was the first to extend nonlocal theory from elasticity
to plasticity as a way of describing the stress field at a fracture front. The nonlocal
formulations of isotropic hardening plasticity in strain space were developed by Eringen
(1981). After this, nonlocal theories of plasticity were formulated in stress space by Eringen
(1983). According to the flow theory, Eringen (1983) considered only perfect von Mises
plasticity with an associated flow rule. However, Eringen’s formulation was not meant to
serve as a localisation limiter. The first nonlocal formulation of softening plasticity was
proposed by Bazant and Lin (1988) and was initially introduced to describe strain
localisation phenomena of softening materials. They successfully implemented the plasticity
nonlocal theory in their subway project, a finite element analysis of the stability of unlined

excavation of grouted soil.

Recently, a great variety of nonlocal models have been introduced and developed in a
significant number of studies (LUet al., 2009; Galavi and Schweiger, 2010; Guo and Stolle,
2013; Lazari et al., 2015; Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Singh
et al., 2021; Gao et al., 2022; Cui et al., 2023). In these models, the selected softening
variable varied with the adopted constitutive model. However, choosing the appropriate
nonlocal variable can be a challenging task, as it relies on factors such as the type of material

being modelled and the specific characteristics of the problem that need to be addressed.
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Moreover, nonlocal methods are effective in addressing de-cohesion and slip failure
mechanisms. Specificity, when considering the total stress-strain relationship without
decomposing them into elastic and plastic components, nonlocal approaches prove to be
more computationally efficient compared to strain-gradient models. However, the nonlocal
softening approach is only efficient for weak and no discontinuity, which is related to
softening with dilatant behaviour. Therefore, the dilatant granular particles such as dense
sand or over-consolidated clays can be successfully modelled in the nonlocal method
(Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Gao et al., 2022; Cui et al., 2023).
However, it is not suitable for problems involving the development of fractures and de-
cohesion (Galavi and Schweige, 2010).

2.5.1 Development of nonlocal method

The original philosophy was introducing the nonlocal character to both stress and strain,
which was later termed the fully nonlocal theory (Eringen and Kim, 1974; Bazant and Chang,
1984; Bazant and Jirasek, 2002). They were too complicated to be implemented in finite
element formulations (Bazant and Jirasek, 2002). Eringen and Kim (1974) simplified the
theory, considering only the constitutive relationship as nonlocal while equilibrium
equations remain unaltered. Due to excessive computational demand, later the nonlocal
treatment was applied only to the softening parameter which drives the yield stress
degradation. This kind of approach was termed the partially nonlocal theory (Bazant and
Pijaudier, 1988; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022). The

selected softening variable varied with the adopted constitutive model.

(1) Fully nonlocal theory

Generally, full nonlocal softening treats both stresses and strains as nonlocal parameters.

The average stress and strain in point x are defined respectively by:

Gy(x) =2 [ w(x,§) 0y (§)dé (2.20)

£(0) == [ w(x, &) £;(§)dé (2.21)
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where o;; and ¢;; are local stresses and local strains of referenced locations, respectively; x
is the global coordinate which needs to be used to calculate nonlocal stresses 4;;(x) and
nonlocal strains &;;(x); ¢ is the local coordinate which is a point that refers to the locations

of all surrounding points and w is the weight function of the nonlocal method, the profile of
macro and micro average strain along the representative volume with the centre point x is

shown in Figure 2.13.

X

Figure 2.13 Profile of macro and micro average strain along the representative volume with

the centre point x (Bazant and Jirasek, 2002)

The weighted volume v can be expressed in the following:

v= [, 0 d (2.22)

The weighted volume is introduced to normalise the computation of the nonlocal stress and

strain.
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(2) Partial nonlocal theory

Fully nonlocal models are hard to implement because of the computation cost required. To
overcome this difficulty, nonlocal plasticity with nonlocal hardening parameters has been
developed (Bazant and Jirasek, 2002). The nonlocal softening plasticity is to treat only the
scalar softening variable k as nonlocal. This method is known as partial nonlocal theory. The

hardening parameter for these models can be expressed below:

h = hy + h(k) (2.23)

k() == [ 0, §) k()dé (2.24)

where h is a hardening function, k is the scalar softening variable. Partial nonlocal theory
has been used to simulate the shear localisation of soils. The softening parameter, which

drives the yield stress evolution, was treated nonlocal (Mallikarachchi, 2019).

2.5.2 Previous application of the nonlocal method

The nonlocal regularisation has been successfully used in various types of analyses, such as
extension element tests, simple shear tests, biaxial compression tests, and for addressing
boundary value problems like slopes, strip footing, and tunnel excavation (LUet al., 2009;
Galavi and Schweiger, 2010; Guo and Stolle, 2013; Lazari et al., 2015; Summersgill et al.,
2017; Mallikarachchi and Soga, 2020; Singh et al., 2021; Gao et al., 2022; Cui et al., 2023).

In the beginning, several studies applied the over-nonlocal (ON) method for nonlocal

regularisation.

800 = (1 — m)g;;(9) + = [ w(x, ) &;(§)dé (2.25)
where m is the over-nonlocal parameter.

Vermeer and Brinkgreve (1994) first used this method in a one-dimensional problem. An
analysis was conducted on the deformation of a steel tension bar, specifically focusing on
necking. The study involved applying prescribed displacements at both ends of a 100mm
bar and introducing a 0.1% reduction in the tensile strength of the central Gaussian

integration point. This simulation aimed to simulate an imperfection and trigger softening in
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the material. Various meshes with different numbers and sizes of elements were utilised to
evaluate the mesh dependence. Two sets of values for ON method parameter m and internal
length (I.) were examined: m = 2.0 with [, = 8.326mm, and m = 6.763 with [, =
4.0mm These sets were chosen to ensure that the shear band or necking width remained
consistent for a given local plastic strain distribution when combined with the ON method

equations. The results demonstrate the validity of the ON method under these conditions.

Brinkgreve (1994) expanded the study on the ON method to two-dimensional analysis. The
Drucker-Prager (DP) model, incorporating cohesion softening, was employed to simulate
biaxial compression tests on drained clay samples. The softening variable chosen was the
total volumetric strain, which was averaged using the ON method formulation. By selecting
an appropriate value for the ON method parameter m, Brinkgreve successfully obtained
force-displacement curves and the thickness of the shear band with different mesh sizes.
Based on their findings, Brinkgreve (1994) recommended a parameter value of 2.0 for the
ON method. Using total strain instead of plastic strain proved to be computationally efficient
in this case. Fig. 2.14 shows the results from this study. It is evident that the nonlocal DP

model produced mesh-independent results.

Foree [kMN/m]

Force [kM/m]

an | =54 eglements 1 ag -
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Figure 2.14 Force-displacement curves of (a) local and (b) nonlocal Drucker-Prager

models (Vermeer and Marcher, 2000)

Galavi and Schweiger (2010) proposed a new weight function (G&S function) based on the
Gaussian distribution (GD) method. A drained sand sample with a height of 1m and a width
of 0.5m was tested using biaxial compression tests. The nonlocal regularisation is

implemented in two different materials, one with ¢’ = 0 and ¢'softening (friction softening)
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and the other one with constant ¢’ and ¢’ softening (cohesion softening). The softening
depends on the damage strain, which is a function of the plastic volumetric and shear strains.

The damage strain is assumed nonlocal for the regularisation.

Figure 2.15 and 2.16 demonstrates the force-displacement curves and shear strain contours
for friction softening and cohesion softening, respectively. In the case of friction softening
(Figure 2.15), the method reduces the mesh dependency significantly, but a slight
discrepancy in curves near the residual state can be observed. Galavi and Schweiger (2010)
have attributed this discrepancy to a decrease in dilation near the residual state because the
reduction in dilation angle changes the type of problem from a weak or no discontinuity
problem to an almost strong discontinuity problem. In cohesion softening analysis (Figure
2.16), the dilation angle is fixed at 10 ° , and the difference in results is smaller. The shear
band thickness for both friction softening and cohesion softening analyses are almost similar

for four different mesh sizes.
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Figure 2.16 Results of the nonlocal multilaminate model with cohesion softening: (a)
force-displacement curves and (b) contours of shear strain. (Galavi and Schweiger,2010)

According to Galavi and Schweigher (2010), the nonlocal method is ineffective when the
mobilised dilation ceases near the residual state. Thus, further research on the nonlocal
method for the dilation of dense sand was done by Mallikarachchi and Soga (2020) based
on the state-dependent sand model. To validate the nonlocal method, a specimen 25 cm wide
and 50 cm high was simulated in both drained and undrained biaxial compression tests. In
addition, the bottom boundary conditions are such that the leftmost node is pinned, and other
nodes are roller-supported. Top or side boundaries are not restrained. In this study, the G&S
weight function is implemented. Since the total void ratio is a function of the rate of strain
hardening and strain softening. Hence, the void ratio is treated as a nonlocal variable and

regularises the strain softening.

Figure 2.17 shows the force-displacement curves predicted by the local model and nonlocal
model. In the local model, the strain hardening part remains insensitive to the mesh size until
reaching the peak, after which it becomes mesh-dependent in the strain softening part.
Meanwhile, the softening rate decreases when the mesh size becomes coarse. In Figure

2.14(b), the nonlocal method using the G&S weight function sufficiently generates mesh-
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independent force-displacement responses in the state-dependent sand model. Additionally,
nonlocal averaging reduces the softening rate and delays the critical state (Mallikarachchi
and Soga, 2020).

Figure 2.18 illustrates that shear band thickness for the local model is sensitive to the mesh
size. The thickness of the shear band becomes wider when the mesh size is coarse. However,
employing the G&S weight function can regularise the shear band thickness, ensuring mesh

independence. The nonlocal model predicts nearly the same shear band thickness for
different mesh sizes.
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Figure 2.17 The force-displacement curves of drained dense sand were predicted with (a)

the Local NS model and (b) the Nonlocal NS model. (Mallikarachchi and Soga, 2020)
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Figure 2.18 Contour plots of the deviatoric strain of drained dense sand predicted by local
NS model (upper) and nonlocal model (lower) for: (a)(d) large; (b)(e) medium; (c)(f)
small; (g) extra-small meshes (Mallikarachchi and Soga, 2020)

According to Figure 2.19(a) for the local model, there is an increase in the peak reaction
force as the mesh becomes larger. In Figure 2.19(b), the nonlocal method utilising the G&S
weight function demonstrates sufficient mesh-independent force-displacement responses

under undrained conditions. The peak reaction force is almost the same for different meshes.

Regarding the contour plots of excess pore water pressure in Figure 2.20, it is observed that
the shear band sucks the pore fluid, leading to an increase in negative pore pressure outside
the band and a decrease inside it. In the local model, the distribution of pore water pressure
appears to be mesh-dependent. Notably, the model with a coarse mesh size delays the onset
of the shear band, resulting in prolonged dilative hardening. Conversely, the nonlocal model

exhibits higher suction compared to the local model and maintains mesh independence.
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Figure 2.19 The force-displacement curves of undrained dense sand were predicted with
(@) the Local NS model and (b) the Nonlocal NS model. (Mallikarachchi and Soga, 2020)
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Figure 2.20 Contour plots of excess pore water pressure of undrained dense sand predicted
by local NS model (upper) and nonlocal model (lower) for: (a)(d) large; (b)(e) medium;
(c)(F) small; (g) extra-small meshes. (Mallikarachchi and Soga, 2020)

Jostad and Grimstad (2011) conducted a comparison between ON and G&S nonlocal
methods under undrained direct, simple shear tests using the NGI-ADP Soft model. The
NGI-ADP model is implemented into the in-house finite element code BIFURC, where the
nonlocal strain increment (total strain increment) is calculated at the start of each iteration,
and an implicit integration scheme is adopted to determine the local plastic strain. In this
study, a one-dimensional shear column 100 mm high consisting of 50 horizontal layers of
soft sensitive clay. The bottom of the column is fixed. The column is deformed by applying
a horizontal shear stress at the top. Initially, the column is subjected to uniform deformation

to produce a material shear stress - shear strain curve. To create a nonuniformity and initiate

the formation of a shear band, the peak strength of the central layer is reduced by 0.1%.

Jostad and Grimstad (2011) emphasised that the thickness of the shear band will vary with
the nonlocal methods. As shown in Figure 2.21, the ON method (m = 1.58) predicts wider
shear band thickness than the G&S method when internal length (I, = 10 mm) is the same
for both methods. Moreover, the ON method produced a very smooth strain distribution,
whilst the G&S distribution produced a similar overall pattern with an irregular strain
distribution (Jostad and Grimstad, 2011).
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Figure 2.21 Distribution of the shear strain increment in the post-peak softening regime
obtained with the ON method (black curve) and G&S method (blue curve) (Jostad and
Grimstad, 2011)

The NGI-ADP Soft model and method are also implemented as a user-defined material
model in the commercial finite element program PLAXIS (Jostad and Grimstad, 2011). This
subroutine calculates the nonlocal strain from the plastic strain increment in the previous
iteration. In this study, a plane strain compression test is considered. The top and bottom
boundaries are assumed to be perfectly rough to trigger localisation without introducing an
arbitrary perturbation. Moreover, three samples with 100 mm height and 50 mm width
adopt triangular elements, and two of them are modelled by full biaxial compression named
by medium and fine meshes, respectively. The bottom of the column is fully fixed, and a
horizontal shear stress is applied at the top. The third model is one-quarter of the biaxial
compression analysis using two lines of symmetry (SYM), which is used to study the effect

of accounting for symmetry lines together with the nonlocal strain approach.

The load-displacement curves for three different nonlocal methods are shown in Figure 2.22.

Various mesh sizes give almost the same results when considering the same method. The
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post-peak softening rates are slightly different in the symmetric mesh. Both internal length
and nonlocal method will affect the softening behaviour of the material. The suitable internal
length will depend on the softening rate and the shear band thickness (Jostad and Grimstad,
2011). According to Figure 2.23, the difference in shear band thickness is obtained for
different nonlocal methods. The thinnest shear band was produced by the GD method, the
G&S method had thicker shear bands with the ON results producing the thickest band.
Moreover, when the mesh size varies, the shear band thickness of the ON and G&S methods

remains almost the same.
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Figure 2.22 Comparison of biaxial compression results for three nonlocal strain softening
methods and three meshes (Jostad & Grimstad, 2011).



Chapter 2: Literature review

ON method GD method G&S method

MEDIUM

FINE

SYM.

Figure 2.23 Contour plots of total shear strain for the nonlocal method

45



Chapter 2: Literature review 46

Summersgill et al. (2014) compared three nonlocal methods under undrained biaxial
compression tests with the Tresca yield criterion on clay. Furthermore, the nonlocal
softening variable in this study was chosen as plastic deviatoric strain. When the GD was
incorporated, full objectivity of mesh intendancy could not be achieved. However, the ON

and G&S methods demonstrated more efficient outcomes, as illustrated in Figure 2.24.

In the work conducted by Summersgill et al. (2017a), proposed in Figure 2.25, the simulation
of biaxial compression on clay was extended using the Mohr-Coulomb yield surface under
drained conditions. The nonlocal softening variable chosen for this analysis was the same as
in Summersgill et al. (2014). Similar to the results shown in other papers, the nonlocal
methods reduce mesh dependence in the analysis of drained biaxial compression tests, albeit
not as satisfactorily as in the undrained condition (Figure 2.24). This was attributed to the
formation of different patterns of slip surfaces. Summersgill et al. (2017a) concluded that

the G&S method exhibits the least mesh dependence for drained and undrained simulations.
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Figure 2.25 Local and nonlocal load-displacement curves for drained analysis
(Summersgill et al., 2017a)

2.6 Summary

Four different regularisation methodologies were introduced and compared in this Chapter,
including the viscosity regularisation method, the strain-gradient enhanced approach, the
micro-polar continuum approach, and the nonlocal method. Ultimately, the decision was
made to delve deeper into the nonlocal method for further investigation within this thesis,
and the rest of the Chapter concluded by summarising the development and prior utilisation

of the nonlocal method.

The strengths and weaknesses of each method were outlined, and the possibility of

combining them was explored in the following.

(1) The primary advantage of viscosity regularisation is that it can be done at the local
integration point without nonlocal averaging with neighbouring integration points.
Implementation of this method is straightforward, and the computational efficiency is high.

However, viscosity must be introduced to describe the material behaviour, even when the
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material does not exhibit rate dependency. This limits its applicability to transient loading
conditions. Furthermore, the regularising effect of viscosity regularisation diminishes

rapidly for slow loading rates or when approaching the rate-independent limit.

(2) The explicit or implicit gradient-enhanced approaches avoid time-consuming
calculations in nonlocal methods by introducing higher-order gradients of strain or other
internal variables. However, the explicit gradient-enhanced softening formulation is
considered local in a mathematical sense. This means that the nonlocal strain at a particular
point depends solely on the local strain and its gradients at that same point. Therefore, the
spatial interactions are limited to an infinitesimal neighbourhood around each point.
Moreover, stronger continuity requirements were imposed on displacements by the explicit
gradient-enhanced softening formulation. These stronger continuity requirements can pose
challenges under some specific circumstances, for stance, singular deformation fields (wave
propagation), or strongly localised (localisation at crack tips) (Peerlings et al., 2001).
Meeting these requirements may be difficult, and it can significantly impact the predicted

response of the material.

(3) From a physical standpoint, the micro-polar continuum approach aims to capture strain
localisation accurately for modelling strain localisation in granular materials compared to
the other methods. The micropolar approach considers the rotations of individual grains and
the resulting couple stresses during shearing, even though these effects may remain
negligible during homogeneous deformation. This consideration of grains' rotations and
couple stresses align with the physical behaviour observed in experiments. Therefore, the
micropolar approach is believed to provide a more appropriate representation of shear zones
in granular materials. However, this method only becomes effective under shear loading
conditions. Liu (2018) pointed out that the micro-polar is too weak to preserve the ellipticity
of the boundary value problems. The rotational degrees of freedom are invalid, and the
micro-curvatures and couple stresses remain zero when decohesion rather than frictional slip

dominant failure mode.

(4) In the nonlocal method, long-range interactions are considered using weighted spatial
averages of constitutive quantities. It is based on the use of nonlocal internal variables, which
are obtained by spatially averaging local internal variables over a finite volume. However,
even if the nonlocal theory is considered reliable among the various regularisation
techniques, it is essential to note that the nonlocal method primarily applies to dilatant

granular materials, as the inclusion of mesh-independent contributions is significant during
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the strain softening phase. Additionally, the requirement of nonlocal integration in the
nonlocal method can lead to computational inefficiency, posing challenges in terms of

computational resources and time.

In summary, each regularisation method has its advantages and disadvantages. There is no
one-size-fits-all regulation method that works perfectly in all scenarios. In cases where a
single regularisation method may not be sufficient to deal with mesh-dependency issues,
combining multiple regularisation approaches can be a viable solution. By combining the
strengths of different methods, it is possible to achieve enhanced efficiency in dealing with
the mesh-dependent issue during modelling. In general, the combination of viscosity with
another regularisation technique has become a widely adopted approach to address the mesh-
dependency issue. The combination of viscosity regularisation with the strain-gradient
enhanced method was first proposed by Wang et al. (1997, 1998) and was effectively
implemented for both quasi-static and dynamic problems. The work of de Borst and Pamin.
(1996) presented a plastic constitutive model incorporating both rate and gradient
dependence for analysing strain localisation. Building upon this, Oka et al. (2000, 2002)
investigate strain localisation phenomena and deformation modes in clay by a gradient-
dependent elastic-viscoplastic model. The interaction in controlling the thickness of shear
bands has also been explored. Zhang et al. (2003, 2004) employed a one-dimensional
example primarily from a mathematical perspective, examining the interactions between
different length scale parameters in combination with viscosity and gradient plasticity
models. Subsequently, a combination of viscosity regularisation with a micro-polar
continuum approach was proposed by Tang and Li (2007). They introduced a coupled Biot-
Cosserat model that combines Biot's theory of rate-dependency and the Cosserat continuum
theory. The objective of this model was to simulate strain localisation phenomena resulting
from strain softening in saturated porous media while demonstrating the developed model’s

ability to maintain the well-posedness of boundary value problems.

Moreover, regardless of the regularisation method employed, it is generally necessary to
incorporate at least one explicit or implicit internal length scale into the constitutive model.
Researchers have hypothesised various relationships between characteristic internal length
scales and microstructures, with random constants distribution, interactions or internal
deformation. This suggests that a common understanding of the physical interpretations of

the internal length scale has not yet been established. Therefore, further investigation into
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the physical meanings of all internal length scales within each regularisation approach

remains an important and urgent matter of significance.
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Chapter 3: Constitutive model

3.1 Introduction

Anisotropy refers to the different mechanical properties of materials in different directions.
From the micro perspective, the anisotropic characteristics are due to the preferred
orientation of particles and void and/or crack (Oda et al., 1985; Duveau et al., 1998; Li and
Dafalias, 2012; Gao et al., 2013). There has been extensive research on constitutive
modelling of sand anisotropy. The anisotropic sand model used in this thesis is developed
based on the anisotropic critical state theory (Li and Dafalias, 2012). The main feature of the
anisotropic critical state theory is that sand fabric at the critical state has a unique magnitude
and is codirectional with the loading direction. Several constitutive models have been
developed within the framework of this theory (Li and Dafalias, 2015; Woo and Salgado,
2015; Zhao and Gao, 2016; Yang et al., 2018; Petalas et al., 2019; Papadimitriou et al., 2019).
The model to be used here was proposed by Gao et al. (2020).

3.2 Constitutive model description

3.2.1 Yield function

The yield function of the model is expressed as:

f=-g—H=0 (3.1)

where R = Erijrij, with r;; = (0;; — pd;;) /p) being the stress ratio tensor, o;; is the stress
tensor, p = oy;/3 is the effective mean stress, §;; is the Kronecker delta (= 1 for i = j, and
= 0 for i # j). Furthermore, H is the hardening parameter, and g(@) is an interpolation

function which describes the variation of critical state stress ratio with the Lode angle 8 of
r;; as follows (Li and Dafalias, 2004).

J(1+c2)2+4c(1—c?) sin 360 —(1+c?)
2(1-c)sin 30

g@@) = (3.2)
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where ¢ = M, /M, is a material constant, with M, and M, being the critical state stress ratio

in triaxial compression and extension, respectively.

The condition of consistency for the yield function can be expressed as:

df =L doj;+Lan =0 (3.3)

aO'l']'
The condition of consistency of the yield function (3.1) can also be rewritten as follows:

df =L doy; — (LYK, = 0 (3.4)

aai]-

Kp=-2LdH =1, (3.5)

3.2.2 Hardening law

The hardening law for the yield function (evolution of for H) determines how the size of

yield surface evolves and is expressed as (Gao et al., 2020):

Ghleth

AH = = oy Tover

[M.g(0)e™™ — R] (3.6)
where h,, h,, and n are three model parameters; G is elastic shear modulus; A is an
anisotropic variable; r; is a function of the stress and internal variable H; ¢ is the dilatancy
state parameter and e is the void ratio; The term e"24 is introduced to give better prediction
for the effect of anisotropy on the stress-strain relationship, making the plastic modulus
smaller at smaller A (Li and Dafalias, 2012; Papadimitriou et al., 2019). This hardening law

can capture the strain-softening response of dense sand.
The dilatancy state parameter ¢ was proposed by Li (2002):

(=1 —es(A-1) 3.7)

e, 1s a model parameter which describes the effect of fabric anisotropy and loading direction

on dilatancy and plastic hardening of sand in shear. Moreover, ¥ = e —e, is a State
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parameter defined by Been and Jefferies (1985). It is a measure of the difference between
the current void ratio e and the critical state void ratio e, corresponding to the current mean

effective stress p.

The location of the critical state line (CSL) in the e- p space is given as below (Li and Wang,
1998):

e, =er— A, (pﬁ)f (3.8)

where p, is atmospheric pressure for normalisation (101 kPa); er (CSL location), A, (CSL

slope), &.(CSL shape) are three material constants.

The anisotropic state variable A is an index for the characterisation of the impact of fabric
anisotropy on the stress-strain-strength response of sand (Li and Dafalias, 2002). The

anisotropic variable A is defined as:

where F;; is the fabric tensor characterising the anisotropy of sand. The fabric tensor used
here is a phenomenological term that is not directly related to the fabric or particle
characteristics of sand, such as contact normal distribution, or particle orientation (Li and
Dafalias, 2015). For convenience, F;; is normalised such that in a critical state, F (=

is unity. For an initially cross-anisotropic sand sample with the isotropic plane (deposition
plane) being the x-y plane and deposition direction aligning with the z-axis, the initial F;;

can be expressed as:

0 F, 0 0
0= \E < 0 —F/2 0 ) (3.10)

where F, is the initial degree of anisotropy.

The loading direction tensor n;; is expressed as follows:

of 1 of .
6ri]- 3(67"mn mn)6l]

i_l( of Smn)aij

arij 5 6rmn

ng; = (3.11)

with,
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af _ Of OR af 8g(9) x (25in36 9Jsp | 95in36 0Jap (3.12)
orij OROr;  0g(e) = dsin30 dJsp Oryj dJ2p Oryj :

of 06

aea‘l"ij

Nij

3.2.3 Plastic potential function

The plastic potential function in the r;; space is expressed as (Gao et al., 2020):

R _ —kp(4-1)? _
9=55 Hge 0 (3.13)
where kj, is a non-negative anisotropy constant. H, = m should be calculated

based on the current stress state and A.

3.2.4 Flow rule and incremental of plastic relation

The plastic potential function in Equation (3.13) is used to obtain the direction of plastic

deviatoric strain increment deipj
def; = (Lym; (3.14)

where m;; is a unit-norm deviatoric tensor containing only the information of the direction

of de5 and defined as below:

b9 _1( dg ) -
aTij 3(aTmn6mn 5”

m;; = 3.15
Y a_g_l( 99 ¢ )5.. ( )
a’”ij 3\0rmn 7Y
with,
dg _ dg OR dg ag(®) dsin300jzp , dsin363d],p dg 0A On;j =~ dg 9A Onj (3 16)
0rij - OR ari]- dg(0) 0sin36 dJ3p arl-]- dJ2p ari]— 0A ani]— ari]— -y 0A 6nl-j 6rl-j :

dg dg 06
ag(e)aearl-j

&=

ij

The total plastic strain increment deipj is expressed as (Zhao and Gao, 2016):
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Ps..
dgipj = delp] + dg”TSU = (L) <mij + \/2?_7D6U> (317)

xl-j

in which the dilatancy relation can be expressed as:

D
D dgg _ dej; dq

= v —
jaca]  [zaclaetyys  Mco(®

where d; and m, are model parameters.

[Mcg(6)e™$ — R] (3.18)

3.2.5 Fabric evolution

In this model, fabric evolution with plastic deformation is considered (Li and Li, 2009; Guo
and Zhao, 2013; Zhao and Guo, 2013). It is assumed that F;; becomes codirectional with the

loading direction and reaches a magnitude of 1 at the critical state. Though fabric evolution
is affected by both volumetric and shear strains, a simplified evolution law expressed in

terms of the plastic shear strain is used.
dF;; = (LYks(n;; — Fyj) (3.19)

where, dFj; is the increment of F;;, k; is a model parameter describing the rate of fabric

evolution with plastic strain increment.

3.2.6 Elastic moduli and incremental of elastic relation

The following empirical pressure-sensitive elastic moduli (elastic shear modulus G and

elastic bulk modulus K) are employed for this model (Li and Dafalias, 2004; Gao et al., 2014)

(2.97—-e)2
G = Go——/ppa (3.20)

1+e

where G, is a material constant.

According to elasticity theory, the elastic bulk modulus K is related to G and Poisson’s ratio

v which can be expressed as below:
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2(1+v)
3(1-2v)

(3.21)

Thus, the elastic deviatoric strain increment de;; and elastic volumetric strain increment dey

can be expressed as below:

def; =~ and deg = L (3.22)

and elastic stiffness tensor E; j, is defined based on elastic moduli.
2G
Eijkl = G(diijl + 6i16jk) + (K - ?) 6ij6kl (323)
The elastic stress-strain relationship for general stress condition is expressed as:

do—ij = Eijkldglil (324)

3.2.7 The elastoplastic stiffness tensor

Based on the additive decomposition of the total strain increment, one has:
de;j = def; + def; (3.25)

Substituting Equation (3.17) into (3.4), and combing with (3.24) and (3.25), then the
condition of consistency of the yield function can now be written as:

a
af = (3L ) Bypa(ders = L) = (LK, = 0 (326)
Thus, the loading index can also be expressed in terms of the total strain increment as:

W];,Eijkl
L = af]—dgkl (327)
30, XabEijap+Kp
O'ij
N— e’
Mgy

Combining Equation (3.24), (3.25), and (3.27), the constitutive equation can be obtained as

below:

dojj = Ajrudeg (3.28)
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with the elastoplastic stiffness tensor,
Aijrr = Eijia — h(L) (EijmnXmn) i (3.29)

where h(L) is the Heaviside step function, with h(L > 0) = 1and h(L < 0) = 0.

3.2.8 Partial derivatives used in the constitutive relation

af
6rij

The

used in Equation (3.11) can be obtained according to the chain rule for partial

derivatives based on Equation (3.1)

Of _9f 0R __of  09(6) (9sin300)sp 0sin300)sp
ari- B OR arij ag(H) d sin 36 6]30 aT'ij 6]2D arij

_ 31 R 0g(6) 65in366]3D+asin306]2D
" 2Rg(#) g2(8)dsin30 0Jsp Ory 0/2p 01y

__3rjjRg(8) = 9Rsin367;;09(6) 270g(O)TimT jm
" 2R2g2(9) = 2R2g2(H)dsin36 = 2R2g2(6)d sin 30

(3.30)

_ 3 . ORI ag6) . .
Nij - 2R2g%(0) {[Rg(@) +3Rsin30 d sin 39] Tij +9 0sin 36 T‘lmT)m} (3'31)

where,

JA +¢2)2+4c(1—c?)sin36 — (1 +c?)
2(1—c¢)sin36

g() =

(3.32)

dg(0) _ c(1+c) 96
dsin36  sin36,/(1+c2)2+4c(1—c?)sin30 sin36

(3.33)

The aarg” used in Equation (3.15) can be expressed as:
ij
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dg 0g OR dg 0dg(0) dsin3600J3p +asin39 d/2p 6g 0A on
aT'ij B OR aTij ag(e) dsin 360 6]3D a')"ij 6]2D 6rij 6A anU aT'
dg dg 00
99(0)0607;
=N ag 0A ony;
N on;; 67"
where,
a _ Y
2= 2k Hy (A — 1)e k=4 (3.34)
0A
Wii = Fj; (3.35)
3sin36 dg(6) 9a(0
% _ 3 (1 + g(@) aSin 30) (6 6 + 6 6 ) + aégll'(l 3)9 (rik(sjl + Til6jk + rlj6ik + rkjéﬁ)
OMa 4Rg(6) et 4R2g2(6)
- 29(0) \?
9(_1+9sin30> 2sin 36 (a sin36) 0g(0) _ . 4, 0%9(6)
©® (0 ~osin30  S39 50530y
4R3g(8) TijTkt
2
6Sln30 9 1n30) -2 99(6) — 3sin 36 aZ \( in 1 )
4R4g Q) g(6) dsin 36 a(s / kpTpt T TipTpj T
239(9) _()329() .
4R5g (9 dsin 36 d(sin 30)2 TkpTpiTiaTaj
a9(9)
651n39 9%g(6) P
2R3g 0 g(@)  a(sin3@)z | U kpP!
0 (9
27sin 36 asm39 0%g(0)
T 2R%g (9)( g(0)  a(sin30)z | ik
(3.36)
with,
2%g(0) { ) c(1+)[(1+¢?)?=5c(1—c?)(1—-c?)sin 39]}
d(sin36)?  (sin36)? |/ I+ c2)2 1 4c(1 — c2)sin 363

The expression for

(3.37)

used in Equation (3.3) expressed as below:
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ai_fj - %l% (3.38)
where,
%"Jl - @—;’—z’;aﬁ (3.39)
The expression for g—l’; in Equation (3.3) is:
9 _ _ p—kn(1-4)? (3.40)

0H

3.3 Model validation

The 17 material constants in Table 3.1 will be used in the proposed anisotropic sand model
for Toyoura sand. The critical parameters M, and c are determined based on the required
state stress ratio in triaxial compression and extension. The parameter er (Location of
CSL), A, (Slope of CSL) and &(Shape of CSL) can be directly calculated from critical state
line in e — p plane. The elasticity parameters G, and v are determined using the stress-strain
relationship at the very beginning of the triaxial tests. The remaining parameters are hardly
obtained and can be determined by a trial-and-error approach to fit the different tests from
the empirical range. The detailed model parameter determination can be found in previous
studies (Zhao and Gao, 2016; Gao et al., 2020; Gao et al., 2021). The mean particle size for
Toyoura sand is 0.2 mm. The minimum void ratio e,,;;, and maximum void ratio e, are

determined to be e,,;, = 0.6 and e, 4, = 0.98 respectively.
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Table 3.1 Summary of Anisotropic Model Parameters for Toyoura sand

Critical state Elasticity | Dilatancy | Hardening | Fabric anisotropy
M =1.25
e,=0.075
¢=0.75 Gy=125 h,=0.45
d,=0.5 ks=0.5
er=0.934 Gs = 2.97 h,=0.5
m;=3.5 Fy=0.4
1.=0.019 v=0.1 n=2.0
k, = 0.03
£.=0.7

3.3.1 Results of anisotropic sand model

The test data of Toyoura sand reported in Oda et al. (1978) and Tatsuoka et al. (1986) are
used to benchmark the anisotropic model simulation of drained plane strain compression test
from different initial void ratios e, = 0.66,0.70,0.80 and confining pressures o3 =
5,50,200,400 kPa, in which the orientation of the deposition plane 0 (horizontal) and 90
(vertical) are considered ( Figures 3.1 and 3.2). Moreover, the test data of drained triaxial
compression tests only with horizontal bedding obtained in Fukushima and Tatsuoka (1984)
are compared with the prediction results of the anisotropic model under various loading

conditions shown in Figure 3.3.
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Figure 3.1 Comparison between the anisotropic model prediction and drained plane strain
compression test data on Toyoura sand: (a)(b) g; = 50 kPa; and (c)(d) o5 = 200 kPa
(Oda et al., 1978)
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Figure 3.2 Comparison between the anisotropic model prediction and plane strain test data
on Toyoura sand: (a)(b) o3 = 5 kPa; (c)(d) o3 = 400 kPa (Tatsuoka et al., 1986)
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Figure 3.3 Comparison between the anisotropic model prediction and drained triaxial
compression test data on Toyoura sand: (a)(b) dense sand; (c)(d) medium dense sand
(Fukushima and Tatsuoka, 1984)

The dots and solid lines represent test data and the model simulations on Toyoura sand,
respectively. According to the g — &, curves of both plane strain compression and triaxial
compression test, the peak value of deviatoric stress g is increased with increasing confining
pressure o, and decreasing initial void ratio, and the model gives a better prediction of the
peak deviator stress when the confining pressure is lower. From the g, — &, plots, the sand
dilatancy is increased with decreasing initial void ratio and decreased with higher confining
pressures. Moreover, the results showed that when the (normal to the) deposition plane and
the major principal stress direction are aligned (e.g., vertical compression and horizontal
deposition plane), the response becomes more dilative, thus increasing the strength of the
sand. According to Figure 3.1(b), when &, is around 5%, the shear band maintains a constant
volume at the critical state in tests, whereas in modelling, ¢, still decreases. It is assumed
that uniform deformation and the critical state are reached at much larger strains. The model
gives good predictions on the peak deviatoric stress and strain-hardening part but does not

capture the strain-softening part well.
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Chapter 4: Implementation of nonlocal

regularisation method

4.1 Introduction

The weight function is the most important component of a nonlocal regularisation method.
The Gaussian distribution (GD) function has been used in many early studies (Eringen, 1972;
Bazant et al., 1984). The variable at the current stress point contributes most to the nonlocal
one. Therefore, the nonlocal variable is concentrated at the local point and cannot spread to
surrounding points. Galavi and Schweiger (2010) proposed a new weight function (G&S) in
which the local variable does not affect the nonlocal one. Moreover, Vermeer and
Brinkgreve (1994) have proposed the over-nonlocal method (ON), which uses a linear
combination of the local and the nonlocal variables. A nonlocal parameter m was introduced

to control the proportion of local and nonlocal variables in weight functions.

According to the physical consequences of the weighting functions, the weighting functions
determine the extent and shape of the influence zone, introduce an internal characteristic
length scale [, and affect smoothness (e.g., Gaussian function lead to smooth nonlocal fields,
which help in avoiding numerical instabilities), continuity (discontinuous or sharply varying
weighting functions can introduce artifacts or non-physical jumps in the solution), and
anisotropy (in anisotropic materials or problems with directional features, the weighting
function can be designed to reflect the directional dependency) of the problems. Applicable
scenarios include strain localisation and fracture mechanics. In strain localisation
appropriate weighting functions is used to prevent mesh dependency and to capture the
physical width of localisation zones such as shear bands. In fracture mechanics weighting
functions help in distributing the effects of damage or strain over a finite region, thus
avoiding singularities and ensuring a more realistic representation of crack propagation
(Bazant and Jirasek, 2002).To avoid unphysical results, the /. should be calibrated based on
physical considerations and experimental data, boundary effects should be smoothly handled,
the symmetry and consistency of the weighting functions should be maintained, and the
numerical implementation should accurately represent the weighting functions. This ensures

that nonlocal regularisation produces physically consistent and realistic simulation results

(Peerlings et al., 1996).
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Some studies have compared three weighting functions in simple BVPs like plane strain
compression. It is found that the G&S gives better regularisation results than the GD one
(Galavi and Schweiger, 2010; Guo and Stolle, 2013; Summersgill et al., 2017;
Mallikarachchi and Soga, 2020; Gao et al., 2022). However, the performance of these
functions in real-world BVPs has not been evaluated.

This Chapter mainly focuses on nonlocal regularisation. Three different weight functions
are introduced and compared first. Then, the nonlocal formulations used in the critical state
model and the implementation in ABAQUS are presented. Finally, the determination of

internal length is discussed.

4.2 Weight functions

There are three nonlocal methods designed to address mesh dependency. The weight
function is typically represented by the Gaussian distribution function (GD) (Eringen, 1972;
Bazant et al., 1984). However, Galavi and Schweiger (2010) introduced a modified weight
function known as the G&S weight function, which offers several advantages over the
Gaussian distribution function. Additionally, Vermeer and Brinkgreve (1994) proposed the
over-nonlocal (ON) method, aiming to overcome the limitations of the Gaussian distribution.

This method utilises a linear combination of local and nonlocal variables.

Moreover, it needs to be noticed that the selection of weight functions should obey the law
that it will not alter a uniform field of strain. Thus, the area under the curve for the

distribution function is equal to 1, as shown in Equation (4.1):

[P0 ddé=1 4.1)

where w is the weight function; x is the global coordinate for the current integration point

(IP); & is the local coordinate of all surrounding IPs.

4.4.1 Gaussian distribution (GD) function

The Gaussian weight function is expressed as:
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w; = \/;lc exp (— 1%22) (4.2)

where w; represents the weight function of IP i, r; is the distance between the current IP and
the i — th IP used for calculating the averaged value. [, is a nonlocal parameter termed
internal length, which depends on the mean size of soil particles (Galavi and Schweiger,
2010). Figure 4.1 shows the physical significance of internal length [, in a 2D problem. The
integration point X'F is coloured in red, and its neighbours are coloured in blue. To reduce
the computational time, at the first step of the computation, each IP can be computed at the
first step and store the coordinates of its neighbours within the effective influence area. Then,
the weights for each neighbour and the sum of weights for each IP can be computed and

stored.

X
X

X
X
X
X
X

X X | X X
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Figure 4.1. Schematic diagram showing the neighbouring integration point of X'?

In two-dimensional cases of Gaussian distribution, the contribution of the weight function
to the calculated nonlocal variable for different internal lengths [ is shown in Figure 4.2. It
is evident that the GD function shows the highest contribution to the calculated nonlocal
variable at the centre and diminishes along the distance. As mentioned by Vermeer and

Brinkgreve (1994), the nonlocal variable is concentrated at the local point. It cannot spread
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to surrounding points, which has a negative effect on the nonlocal method. When [, < 1,
the contribution to the calculated nonlocal variable is nearly double to the case that [, > 1.
In addition, the GD method has an unbounded integration area, which means that the
nonlocal interaction theoretically takes place at an arbitrary long distance (Jir&ek and
Rolshoven, 2003).
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Figure 4.2 The Gaussian distribution function in 1D condition

If strain is chosen as the nonlocal variable for the GD method, then it coincides with the
greatest contribution of strain to the nonlocal equation (Jostad and Grimstad, 2011). The
increase in nonlocal strain can lead to a loss in material strength, which further increases the
strain of the material. Thus, with the accumulation of calculation steps, a significant value
for strain relative to the neighbouring points will have increased dominance for the nonlocal
calculations at the centre point, causing the largest strain softening (Galavi and Schweiger,

2010). Therefore, the issue of mesh dependence in finite element analysis is not completely
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solved (Brinkgreve, 1994; Galavi and Schweiger, 2010; Summersgill et al., 2017a, 2014,
2017b). Researchers have found that this issue could be tackled by changing the weight

function (G&S weight function) or the averaging procedure itself.

4.4.2 G&S distribution (G&S) function

According to the hypothesis, the deformation at a point is more influenced by the response
in the neighbourhood rather than the concentrated deformation at the point itself. Galavi and

Schweiger (2010) have proposed the following weight function:

T

. 2
w; = :—g‘exp (—é (4.3)

As shown in Figure 4.3, the contribution of the G&S weight function to the calculated
nonlocal variable is zero in the centre point and efficiently spreads from the concentrated
local point to a more extensive zone. This is utterly different to the Gaussian weight function
with the maximum value at the centre. In addition, the G&S weight function shows two same

peaks with a distance of 0.7071. from the centre (Galavi and Schweiger, 2010).
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G&S function
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Figure 4.3 The Galavi and Schweiger (2010) distribution function in 1D condition

4.4.3 Over-nonlocal (ON) function

Moreover, another method to overcome the shortage of the GD method is proposed by
Vermeer and Brinkgreve (1994), which is a linear combination of the local and the nonlocal
variables. This method is different from the G&S weight function, which changes the
averaging variable in the neighbourhood without changing the weight function. A nonlocal
parameter m was applied to change the nonlocal averaging formulation. This method was

called the over-nonlocal method. The ON formulation is expressed as below:

() = 1 -mw() + 7 [ 0(x, §) w(§)dé (4.4)

where @(x)is the nonlocal variable and @w(x) is the local variable. The parameter m

provides the relative contribution from local and nonlocal parts. When m < 1 in Equation



Chapter 4: Implementation of nonlocal regularisation method 69

(4.4), the nonlocal variable produces less effect than the local one. On the contrary, the
contribution of the local variable will be negative when m > 1. Existing research has shown
that m > 1 should be used to achieve the best regularisation results (Vermeer and
Brinkgreve, 1994; L Get al., 2009; Xue et al., 2022). However, the exact value is dependent
on the model and has to be determined via trial and error. The ON method (m = 1.5)

distribution crosses the distance from the calculation point and is plotted in Figure 4.4.
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Figure 4.4 The Over-nonlocal method (m = 1.5) distribution function in 1D condition

The value of m plays an important role in the ON method and affects the thickness of the
shear band (Brinkgreve, 1994). The influence of parameter m on shear band thickness is
provided by LUet al. (2009). The shear band thickness increases with the parameter, and the
slope decreases. For example, in a one-dimensional problem, whether inside the bar or at the
boundary, the distribution of the plastic strain (shear band thickness) increases with an

increase in m. However, this result is only based on a simple problem. More complex
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boundary value problems need to be considered. Moreover, the boundary conditions may
have an impact on the outcome when the value of the parameter is low (Jostad and Grimstad,
2011).

The comparison of the Local model, GD method, G&S method, and ON method is plotted

in Figure 4.5. The internal length is equal to one for all distributions.
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Figure 4.5 The comparison of three different functions with the same internal length

4.3 Nonlocal formulation of the constitutive model in this
study

The strain-softening of the critical state model presented in the previous Chapter is mainly

affected by e, Fj; and H. It is inconvenient to use nonlocal F;; and H in the hardening law.

There are several reasons for this. First, the evolution of F;; and H is dependent on the plastic
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shear strain increment, but their full form cannot be expressed explicitly in terms of the total
plastic shear strain. It is therefore impossible to use the nonlocal plastic shear strain to get
the nonlocal F;; and H. Secondly, the plastic shear strain increment has to be calculated
before the averaging calculation is carried out if the increment of F;; and H is assumed
nonlocal. Since the original model is complex, it has to be implemented using some
advanced stress integration methods such as the explicit or implicit methods (Zhao et al.,
2005; Gao and Zhao, 2013). In these stress integration methods, the plastic strain increment
can only be obtained at the end of each step when the stress and state variables are already
updated. This means that the nonlocal increment of F;; and H has to be calculated at the end
of each step. If the nonlocal increment of H is used without changing the previous stress
integration (e.g., the stress increment), the condition of consistency for the yield function
cannot always be satisfied. The evolution of F;; is dependent on the loading direction n;;
which can change during the stress integration. It is thus inappropriate to simply take the
average of dF;; at the end of the step. However, the evolution of e is dependent on the total

volumetric strain only, and therefore, it is convenient to make it nonlocal.

Following Mallikarachchi and Soga (2020), the increment of void ratio de is assumed to be

nonlocal as below:
de = (1 +e)de,, (4.5)

where positive de is associated with volume contraction and de,,,, is the nonlocal volumetric
strain increment.
_ Thoawividey;
deyn, = S, (4.6)
where N is the number of IPs within the averaging area, w; , v; and de,; represent the
weight function, volume and local volumetric strain increment of integration point i. Note

that Equations (4.5) and (4.6) can be used for the Gaussian and G&S functions. When the

over-nonlocal method is used, the void ratio increment is expressed as:

N
M Y=g WiVidey;

N
Y=1WiVi

de=(1+¢e)|(1—m)de, + 4.7)

where de,,; is the total local volumetric strain increment for that step.
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4.4 Implementation of the nonlocal method

The nonlocal methods can be directly applied in Abaqus by the user-defined material
subroutine (UMAT) to analyse the strain localisation in soil. It is worth noting that nonlocal
methods are implemented in finite element codes at the constitutive model level without
changing equilibrium equations. The model has been implemented using the explicit stress

integration method with automatic sub-stepping (Zhao et al., 2005; Gao and Zhao, 2013).

The increment of averaging nonlocal variable (void ratio) is calculated at each sub-increment
for all the IPs since the total strain increment is divided into several calculation steps.
However, this will raise the computational efficiency issue. Thus, a scaling variable 7, is
applied in the nonlocal regularisation method, which is defined below:

r, = Lon (4.8)

o dgvl

where de¢,, is the nonlocal volumetric strain increment for each IP is calculated at the start
of each increment. And de,,; is the total local volumetric strain increment for each increment.

At the end of each sub-increment, the void ratio is updated as below:
de® = (1 +e)de;m, (4.9)

where de;,; is the local volumetric strain increment to obtain the nonlocal void ratio

increment de* for the sub-increment.
For Over-nonlocal method then can be expressed as:
de® = (1 + e)[(1 —m)de;; + mde;n,] (4.10)

Moreover, two user subroutines, UMAT (user-defined materials) and USDFLD (user-

defined field variables) are needed for implementing the nonlocal method in Abaqus.

The UMAT is called by the main finite element program at each IP, and it is only able to
access information (stress, strain, state variables, etc) at the current IP (Mallikarachchi,
2019). However, in the nonlocal method, the information is accessed from IPs in the
neighbourhood of the current IP. Thus, a common block array (ENCD) is provided to store
information at each IPs and information is updated after each time step. A common block
array is a three-dimensional array in which the first and second dimensions are element and

IP identifiers, respectively. The third identifier can be chosen as IP coordinates and softening
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parameters. Further, IP coordinates are used to calculate the relative distance to surrounding
IPs (Mallikarachchi, 2019; Gao et al., 2021; Gao et al., 2022).

The nonlocal averaging is carried out at the beginning of each increment in the UMAT. First,
the local volumetric strain increment de,,; for each IP is calculated. The nonlocal strain
increment de,,,, and scaling variable 7, are then computed using Equations (4.5) — (4.8).
However, this process required lots of computing time. Thus, the IPs within the radius of
four times the characteristic length are considered in the weight function to reduce the
computational time because w; becomes negligible when r; > 41. A common block array
ENCD (NEL, NIP, 4) is used in UMAT to return the coordination [ENCD (NEL, NIP, 1-3)]
and de,; [ENCD (NEL, NIP, 4)] of each IP (Mallikarachchi and Soga, 2020). The
components of ENCD are obtained in the UMAT for each IP, which can then be used for the
UMAT of the other IPs. The remaining part of the UMAT is the same as that for a local
model, except that the void ratio is updated using Equations 4.9 and 4.10 at the end of each

sub-increment.

The subroutine USDFLD is used to get the volume of each IP (IVVOL) using the utility routine
GETVRM. This variable IVOL is then returned as a common block array VOLINT (NEL,
NIP, 1), where NEL is the total number of elements in a problem, and NIP is the number of
IPs in each element. Specifically, the volume of each IP (NPT in Abaqus) of the associated
element (NOEL in Abaqus) is obtained and then stored as a component VOLINT (NOEL,
NPT, 1) in the USDFLD. The flowchart of implementation of the regularisation method in
Abagqus is show in Figure 4.6.

UMAT USDFLD

"l'h‘e local ?ifﬂiﬂ Coordination (x, Y, 7) The volume of each integration
increment: de,, H point using GETVRM (IVOL)

A common block array ENCD A common block array ENCD i
i N VOLINT (NOEL, NPT, 1
‘ (NOEL, NPT, 4) w ‘ (NOEL, NPT, 1-3) ’ ‘ ( ) J

Weight function
nonlocal volumetric strain increment: de,,,,

scaling variable:

Figure 4.6 The flowchart of implementation of the regularisation method in Abaqus
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4.5 The determination of internal length I, in nonlocal

method

L. is an important parameter for nonlocal regularisation models, as it is used for the weight
functions. The size of the internal length determines how many IPs can be involved in
nonlocal regularising, averaging the local variables of the local integration point and
neighbouring variables at the neighbouring IPs. As mentioned by Gao et al. (2021), [ should
be equal to or larger than the maximum mesh size to make sure that sufficient IPs are
involved. Bigger [, means that the stress—strain relationship of the current integration point
is affected by that of IPs further away. In this way, the deformation region will remain above
the resolution level of the material model. A wider shear band and a slower rate of strain-

softening will be predicted as [, increases. (Mallikarachchi, 2019)

Experimental evidence shows that the shear band thickness t, is about 10 - 20ds,for most
sand, where d;, is the mean particle size. For the Toyoura sand used here, ds, = 0.2 mm
and t; = 2 — 4 mm. The predicted t, is very close to [, when the Galavi and Schweiger
weight function is used, which will be shown in the subsequent sections. Therefore, [, =

2 — 4 mm has to be used if realistic prediction of t; is required.

But the maximum mesh size must always be smaller than [.. While it is feasible to use very
small [, to simulate the response of small soil samples, it is impractical to use [, =~ 2 —
4 mm in most real boundary value problems. There are two significant reasons. First, small
mesh size causes numerical convenience issues for advanced soil models, which give a
highly nonlinear stress-strain relationship. Secondly, the computational time will
significantly increase when a small mesh size is used for a nonlocal model. Therefore, proper
[, is typically chosen based on the size of the solution domain, which can guarantee mesh-

independent results but not realistic shear band thickness.

4.6 Summary

Three different nonlocal models were developed based on the weight functions, including
GD, G&S and ON functions. Among them, the GD function shows the highest contribution
to the calculated nonlocal variable at the centre. The leading nonlocal variable is

concentrated at the local point and cannot spread to surrounding points, negatively affecting
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the nonlocal method. Improvement was made by the G&S and ON functions. The nonlocal
variable is no longer concentrated at the local point and is replaced with two same peaks
near the local point. In addition, the ON function needs to find a proper nonlocal parameter,

m which has a significant impact on this method.

In this thesis, the strain-softening of the critical state sand model is mainly affected by the
void ratio. Therefore, the increment of the void ratio can be assumed to be a nonlocal variable.
However, it only treats the void ratio as nonlocal, which makes it unable to eliminate the

mesh dependency.
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Chapter 5: Evaluation of three weight

functions for nonlocal regularisation

5.1 Introduction

Some studies have been done on the comparison of three weight functions in simple BVPs
like plane strain compression. It is found that the G&S function gives better regularisation
results than the GD or the ON function (Galavi and Schweiger, 2010; Guo and Stolle, 2013;
Summersgill et al., 2017; Mallikarachchi and Soga, 2020; Gao et al., 2022). However, the
performance of these functions in real-world BVPs has not been evaluated. The main aim of
this Chapter is to carry out a comprehensive comparison of these functions in various BVPs,
including drained and undrained plane strain compression, the response of strip footings on

level ground and near a slope and a retaining wall (passive and active conditions).

5.2. Plane strain compression tests

The samples used in this section are 60 mm wide and 120 mm high, as shown in Figure 5.1.
The boundary condition is also shown in Figure 5.1. A confining pressure of p, = 200 kPa
is applied on the two vertical sides. Vertical displacement is applied on the top side, with the
horizontal displacement unconstrained. The bottom side is pinned at the left and free to move
to the right. A square ‘weak’ area (12mmx12mm) with inclined bedding plane orientation
(a = 45°) is implemented, which is used to trigger a shear band in the plane strain
compression test. For the remaining part of this specimen, the bedding plane orientation is
horizontal and @ = 0°. The initial void ratio of the sample is e, = 0.65 (relative density
D, = 85.6%), and the initial degree of anisotropy is F, = 0.4. All simulations in this study
have used 8-noded plane strain quadratic elements with reduced integration (CPE8R). Note
that all the simulations to be presented below use this element. The thickness of the soil is

assumed to be 1m in processing the results.

Moreover, in undrained plane strain compression, the permeability of soil is set very small
and water flow at all boundaries is closed. Transient consolidation analysis is selected for all

simulations. The rest of the conditions are the same as the drained case.
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Vertical displacements

‘weak’ area

p,=200kPa Po=200kPa

Figure 5.1 The boundary conditions and bedding plan orientation for the plane strain

compression simulations

5.2.1 Selection of internal length for simulation

The internal length [, is an important parameter for nonlocal regularisation models. The size
of the internal length determines how many integration points can be involved in nonlocal
regularisation. [ should be equal to or larger than the maximum mesh size to make sure that
sufficient integration points are involved. Bigger [, means that the stress and strain
relationship of the current integration point is affected by that of integration points further
away. Figure 5.2 illustrates the effect of [, on the vertical reaction force and displacement
curves simulated by the different weight functions. In these models, the mesh size of 0.004
m was selected under drained conditions. The [ does not affect the solutions before the peak
reaction force. Higher peak vertical reaction force and a slower rate of strain-softening were
obtained by increasing [. during post-peak. Furthermore, the GD and ON functions predict

a slower rate of the strain-softening curve than the GD function. The internal length
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determines the range within which the integration points are considered in the nonlocal
averaging. When it is bigger, more integration points are accounted for in the weight
functions of each integration point. This means that the local load is artificially distributed
to more neighbouring integration points, leading to a lower rate of strain softening. In the
simulations for plane strain compression below, [, = 0.012m is used. It should be
mentioned that [, also has an influence on the shear band thickness, which will be shown in
subsequent sections. The real shear band thickness of sand is about 10-20ds,, where ds, is
the mean particle size (Galavi and Schweiger, 2010). If the real shear band thickness were
to be matched in FE modelling, a very small mesh size has to be used because the shear band
thickness is related to [.. This would cause issues like excessive computation time and
numerical divergence. Therefore, proper [, is typically chosen based on the size of the

solution domain, which can guarantee mesh-independent results but not realistic shear band

thickness.
Df i G&S function
100 © unchoi_ 1 =0.004 m 5100 —=—1.20.004 m
~80} +—1,=0.006 m 801} ——1=0.006 m

1.=0.012 m

1.=0.012 m

60+

401 [/

20 75 D,=85.6%; p,=200 kPa; Drained
[ Mesh size: 0.004m (450 elements)

(())00 002 004 006 008 010
Normalized vertical displacement s/H

20/ D=85.6%; p,=200 kPa; Drained
- Mesh size: 0. 004m (450 elements)

0
0.00 002 004 006 008 010
Normalized vertical displacement s/H ()

Vertical reaction force R (kN
3
Vertical reaction force R (kN

(b)

ON function (m=1.2)

o
o

~

z | —+—1.20.004 m
m> 80} — |c=0.006 m
3 i S 1=0.012 m
= 60 L

Kel

= |

S 40t

0

3 1)

= 20}/ D=85.6%; p,=200 kPa; Drained

8 [ Mesh size: 0.004m (450 elements)

=

o

>

§00 002 004 006 008 0.0
Normalized vertical displacement s/H (c)

Figure 5.2 The effect of internal length on the force-displacement relationship in drained

plane strain compression test: (a) GD function; (b) G&S function; (c) ON function
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5.2.2 Investigation of parameter m for the Over-nonlocal
Method

The over-nonlocal parameter m provides the relative contribution from local and nonlocal
parts. According to the previous Chapter, the parameter m affects the contribution of the
nonlocal variable along the calculation point and the thickness of the shear band (Brinkgreve,
1994; LUet al., 2009; Summersgill et al., 2017). Thus, the selection of the value of m plays
an important role in the ON method. In this section, biaxial compression tests for brained
and undrained conditions were set to evaluate the influence of parameter m on force-

displacement response and strain distribution over the cross-section.

The load-displacement responses for m =1.0, 1.2, 1.5 and 2.0 are shown in Figures 5.3 and
5.4 under drained and undrained conditions, respectively. The results show that m =1.5 and
2.0 is unstable, but the response for m = 1.0 and 1.2 is stable. Under the drained condition,
when m = 1.5, the degree of softening decreases as the mesh size decreases. This
phenomenon becomes more pronounced when m = 2.0. Under the undrained condition, as
m increases, the force-displacement curve becomes increasingly unstable. In fact, when
m = 1.0, which is equivalent to the Gaussian distribution function. Compared to when m =
1.0, the use of the over-nonlocal method shows more effective alleviation of mesh

dependency when m = 1.2.
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relationship for undrained plane strain compression: (a) m = 1.0; (b) m = 1.2; (¢) m =
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The strain distribution over cross sections at displacement 7% are plotted in Figure 5.5 and
Figure 5.6 for drained and undrained conditions, respectively. Regardless of the drained or
undrained condition, the shear band thickness increases with an increase in parameter m,
while the maximum strain within the shear band decreases. The parameter m controls the
distribution of nonlocal strain and influences its magnitude. The summary of the influence

of the parameter m on the shear band for a fine mesh size (0.004 m) is depicted in Table 5.1.
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Figure 5.5 The influence of parameter m of ON function on the cross-section profiles
based on the shear strain under the drained condition: (a) m = 1.0; (b) m = 1.2; (c) m =
1.5; (dym = 2.0
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Figure 5.6 The influence of parameter m of ON function on cross-section profiles based on

the shear strain under the undrained condition: (a) m = 1.0; (b) m = 1.2; (c) m = 1.5; (d)
m=2.0
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Table 5.1 The summary of the influence of parameter m on the shear band

Shear band Maximum strain
Value of parameter m ] within the shear
thicknesses (m) b
and
1.0 0.015 0.9%
Drained 1.2 0.02 0.6%
condition 15 0.025 0.45%
2.0 0.045 0.2%
1.0 0.012 0.55%
Undrained 1.2 0.015 0.5%
condition 15 0.019 0.3%
2.0 0.025 0.25%

In summary, a premature softening and wider shear band thickness was previously observed
in both drained and undrained conditions when m increased. A higher m indicates that the
ON method could produce erroneous results under some conditions. Contrary to the results
of Summersgill et al. (2017), the sudden decrease in reaction load appears when the
parameter m increases is not caused by excessive local strain, but rather wider shear band
thickness. Moreover, to utilise the ON method effectively, it is essential to closely monitor
the results for any signs of sudden excessive softening. This requirement for careful
monitoring reduces the advantages of using the ON method compared to other nonlocal
methods (GD and G&S methods. It should be mentioned that m = 1.2 is chosen for the ON
method through trial and error. Smaller m gives mesh-dependent solutions, but higher m
causes numerical divergence in the simulations. In the strip footing problem to be discussed
in the subsequent Chapter, higher m is found to give a steep reduction of reaction force
acting on the footing after peak, which is not consistent with the experimental observations

in centrifuge tests.
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5.2.3 Drained plane strain compression tests

Figure 5.7 shows the force-displacement curves predicted by the local and three nonlocal
models. Compared with local and nonlocal models, the strain hardening part is insensitive
to the mesh size until the peak and becomes mesh-dependent in the strain softening part. In
the local model, a finer mesh size results in earlier and faster softening, consistent with
previous findings (Conte et al., 2010; Schallich, 2012). Moreover, similar to Mohr-Coulomb
(MC) models, forces at the critical state exhibit mesh dependence issues. When a larger mesh
is employed, the critical state strength increases. In nonlocal models, the study examines the
effectiveness of three nonlocal methods in regularising the post-localisation response of the
model using a [, of 0.012 m, as depicted in Figures 5.7(b)-(d). Figure 5.7(b) shows that the
GD method does not fully eliminate mesh dependency for the given characteristic length. In
contrast, both GS and ON methods adequately produce force-displacement responses
independent of the mesh, as demonstrated in Figures 5.7(c)-(d). The main reason is that the
local variable significantly influences the results when the GD function is used. Moreover,
the critical state strengths obtained are nearly unaffected by changes in the mesh size. Across
all nonlocal methods, the softening rate is reduced, leading to a delay in reaching the critical
state.
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Figure 5.7 Comparison of the local and nonlocal models on the force-displacement
relationship for drained plane strain compression: (a) Local model; (b) GD function; (c)
G&S function; (d) ON function

Shear strain contours at the strain softening for the local and three different nonlocal models
atdisplacement s/H = 9% are shown in Figures 5.8-5.11, where SDV11 represents the total
shear strain. Figure 5.8 exhibits that the thickness of the shear strain zone predicted by the
local model is sensitive to the mesh size. On the contrary, contour plots of total shear strain
from GS and ON nonlocal methods in Figure 5.10 and Figure 5.11 provide almost similar

shear strain zone irrespective of the mesh size during the strain softening period.
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Figure 5.8 Shear strain contour for the Local model at s/H = 9% for different mesh sizes:
(a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 m
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Figure 5.9 Shear strain contour for the GD function in plane strain compression at s/H =
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Figure 5.10 Shear strain contour for the G&S function in plane strain compression at
s/H = 9% for different mesh sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e)
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Figure 5.11 Shear strain contour for the ON function in plane strain compression at s/H =
9% for different mesh sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012
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The orientation of the shear band in plane strain is sensitive to the boundary condition and
the size of material particles. In FE simulation, the angle of the shear band is determined by
factors such as mesh alignment, shape, the type of element used, and the number of nodes.
The positions of nodes directly influence both the thickness and the orientation in which the
shear band develops. The orientation of the shear band (f) is directly measured from shear

strain contours, as shown in Figure 5.12.

SDV11
(Avg: 75%)

Shear band

Figure 5.12 Shear strain contour for measuring the shear band orientation

According to Figure 5.13, the predicted angle of the shear band decreases as the mesh size
increases. The orientations of shear bands from the local model are mesh-dependent. The
difference in angle between the finest mesh and the coarsest mesh is 16.98%. All the
nonlocal functions reduce but cannot eliminate the mesh dependency of shear band
orientation. This could be partly nonlocal because only one variable (void ratio) is
regularised within the constitutive level that affects the strain softening, which is assumed
nonlocal. In this circumstance, the direction of nodal degrees of freedom is hardly affected.
(Mallikarachchi, 2019). The differences between the various nonlocal methods are minor.

For finer mesh, the ON method displays a higher shear band orientation compared to other
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nonlocal models. For example, when the mesh size is 3mm, the angle for the ON method is
50° and 49° for GD and GS. On the contrary, three nonlocal models have the same angle
at coarse mesh (12mm). The mesh dependency could be further reduced if more state
variables in the hardening law are assumed nonlocal. However, this would significantly

reduce the computation efficiency.
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Figure 5.13 Comparison of shear band orientation for drained plane strain compression test

Moreover, the determination of shear band orientation is also affected by the type and size
of weak elements used to trigger strain localisation. While the same element type is applied
to all mesh sizes, the finer meshes exhibit more flexibility during the strain softening than
the larger meshes. As a result, they display greater inclination angles due to mobilised
dilation. In contrast, with coarser meshes, the shear band angle is primarily determined by

square weak elements (Mallikarachchi, 2019).

The measurement of shear band thickness primarily involves two methods. In Method A,
the shear band is directly measured by a cross-section in the shear strain contour plot, this
cross-section is perpendicular to the shear band. This method is simple and convenient, but

because the endpoints of the cross-section are taken at the nodes of the elements, achieving
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a cross-section that is completely perpendicular to the shear band in simulation results can
be challenging, leading to slight errors. On the other hand, in Method B, a path is selected in
the shear strain plot that traverses the entire soil specimen horizontally. The length where
this path coincides with the shear band is denoted as normalised shear band thickness ().
The thickness of the shear band is then calculated by the shear band orientation. Although
this method is more complicated, it provides accurate results. It is important to note that
calculating the shear band thickness using Method B requires prior computation of the shear
band orientation. For the method A, the thickness of the shear band is directly measured
based on the shear strain distribution from a cross-section at s/H = 7% is shown in Figure
5.14.
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Figure 5.14 Cross-section contour based on the shear strain under the drained condition
with a mesh size of (a) 0.004 m and (b) 0.006 m for the local model

Figure 5.15 shows the determination of shear band thickness for different models. In Figure
5.15(a) ty, and t,, represents shear band thickness for mesh size of 0.004 m and 0.006 m,
respectively. The thickness measured from the coarse mesh is wider than the fine mesh. The
difference in thickness between different mesh sizes is reduced after nonlocal regularisation

but cannot be eliminated because only one state variable (void ratio) is treated in this model



Chapter 5: Evaluation of three weight functions for nonlocal regularisation 90

and is known as partial nonlocal. Moreover, the ON model exhibits smaller shear strain in
the shear band for fine mesh size than other models. As described in Figure 5.15(d), the shear
strain for coarse mesh (0.006 m) is greater than fine mesh (0.004 m) for the over-nonlocal

model, which is significantly different from the other models.
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Figure 5.15 Comparison of cross-section profiles based on the shear strain: (a) Local
model; (b) GD function; (c) GS function; (d) ON function

According to the previous discussion, the thickness of the shear band is determined by shear
strain cross-section profiles. However, other state variables, such as void ratio, anisotropy
variable A, and degree of anisotropy F, can also be extracted and recorded to represent the
shear band. A path crossing through the centre of soil samples (Method B) is selected to
further analyse the influence of local and nonlocal models on the shear band thickness shown
in Figure 5.16. The shear band thickness based on various state variables can be calculated

by the shear band orientation £ a normalised shear band thickness [ (t; =l - sin ).



Chapter 5: Evaluation of three weight functions for nonlocal regularisation 91

SDV11
(Avg: 75%)

SDV11
(Avg: 75%)

2.038 2.038
N 1.852 1.852
) 1499 1479
R Shear band 11;29:73 1?93
N orientation () 0:921 ‘ 0921
0.734 | 0.734
0.548 - 0.548

0.362

4 0.175

- - =001l o
-0.197

(@) Local model (b) G&S function

Figure 5.16 The selection of path of shear band thickness by total shear strain

As illustrated in Figure 5.17, the mesh size (h = 0.006 m) and vertical displacement (s/H =
7%) are the same for different state variables, ensuring a proper comparison of the impact
of related state variables on the shear band between local and nonlocal models. In all
simulations, variables reach their peak values at the centre of the normalised shear band [,
with shear strain showing the most noticeable variation because of the largest deformation
gradients. In addition, excessive strain localisation is primarily caused by significant
rearrangements and rotations of particles, resulting in dilation inside the shear band.
Furthermore, in all simulation results, the normalised shear band thickness [ (t) in the
nonlocal model is greater than that in the local model. Additionally, between these two
models, the void ratio exhibits the maximum difference, while the difference in shear strain
is minimal. Among different state variables, the gradient and the change of shear strain are
the most noticeable in the shear band. Therefore, when determining the shear band thickness,

similar to the Method A, the shear strain contour plot should serve as the benchmark.

A comparison between Method A and Method B is presented in Table 5.2, revealing no

significant difference between these two methods.
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Table 5.2 Comparison of t, from two different methods

Method A (Cross-section) Method B (Path)

tg=1-sinf
Local model ty =17 mm = 23 X sin48
=17.08 mm

tg=1-sinp
G&S method ty =17 mm = 25 X sin 47
= 18.28 mm

The effect of mesh size on shear band thickness is shown in Figure 5.18(a). The shear band
thickness simulated by the local model increases significantly with the mesh size. The
nonlocal models give a slight variation of shear band thickness when the mesh size h < [..
All nonlocal models provide the same shear band thickness as that of the local model when
size h = [.. The shear band thickness predicted by the nonlocal models increases with [,

(Figure 5.18b), and the ON model predicts wider shear bands.

It should be noted that in Figure 5.18(a), even after nonlocal regularisation, the thickness of
the large mesh is significantly higher. Ortiz et al. (1987) emphasised that iso-parametric
elements have inherent limitations in representing strain localisation. When using iso-
parametric interpolation, elements attempt to adjust to the deformation field by averaging
deformations on both sides of the discontinuity, as depicted in Figure 5.19. As a result, true
discontinuous interfaces are spread across several elements, causing the minimum shear
band thickness to exceed the width of a single element. Finer meshes enable element
boundaries to follow shear band directions, which larger iso-parametric elements cannot
accurately resolve. Triangular elements, on the other hand, are found to be more effective in
representing these localisations. The shear band boundaries are hard to model by continuum

methods, making particle methods more suitable for capturing this transition.
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Figure 5.19 Iso-parametric elements in a strain discontinuity (Ortiz et al., 1987)

Furthermore, both Marcher (2003) and Galavi & Schweigher (2010) have argued that using
a large value for [, leads to a much larger and unrealistic shear band thickness, even when
an appropriate mesh size is chosen. This discrepancy arises because the selected [. does not
match the physical length of the sand being studied. To effectively apply the nonlocal
method, the mesh size would need to be smaller, which is practically challenging to achieve
to match the actual shear band thickness. Therefore, it becomes necessary to scale the load-
displacement response to align with real soil behaviour. A method of softening scaling is
implemented to obtain a realistic shear band thickness in addressing this issue (Which will
discuss in The Chapter 6).

5.2.4 Undrained plane strain compression tests

Figure 5.20 shows the relationship between vertical displacement and reaction force for
different models. In the local model, vertical reaction force increases with mesh size and is
sensitive to the mesh size, and it is evident that the nonlocal models give mesh-independent

results.
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Figure 5.20 Comparison of the force-displacement relationship for undrained plane strain
compression test: (a) Local model; (b) GD function; (c) G&S function; (d) ON function

The shear band orientation in undrained plane strain compression increases when the mesh
is refined for all models. The mesh dependency can be reduced but not eliminated by the
nonlocal treatment (Figure 5.21). It is worth noting that the nonlocal models give the same
shear band orientation as the local model when the mesh size is more significant than 0.009
m. The nonlocal models also provide a more significant variation of shear band orientation
in undrained tests than in drained ones. The main reason is that there is a smaller change in
the void ratio in an undrained test, which makes the nonlocal regularisation using the void

ratio less effective.
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Figure 5.21 Shear band orientation predicted by different models in undrained plane strain

compression tests

According to Figure 5.22, the value of the shear strain in the shear band under the undrained
case is smaller than in the drained case. For example, under drained condition, when the
mesh size is 0.004 m, the maximum value of the shear strain in the shear band for the ON
model is around 0.65 and 0.85 for other models. In contrast, under undrained condition, the

shear strain is 0.6 for other models and 0.5 for the ON model.

The shear band thickness predicted by the models is shown in Figure 5.23. Similar to the
drained case, the nonlocal models give a slight variation of shear band thickness when the
mesh size is smaller than the internal length. But the shear band thickness predicted by the
nonlocal models at h = [, is more significant than that of the local model. Moreover, it is
found that the drainage condition has little influence on the shear band thickness at different

internal lengths (Figure 5.23b).
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Figure 5.23 Comparison of the effect of (a) Mesh size and (b) Internal length on the shear

band thickness under undrained condition

5.2.5 Comparison of three weight functions in dynamic

liquefaction

Liquefaction is a phenomenon involving a significant reduction in effective stress caused by
excess pore water pressures. The sudden and significant loss of shear strength is
accompanied by excessive plastic strains (Yamamuro and Lade, 1997). The criteria for
liquefaction failure can be divided into two main groups depending on the type of loading:
static liquefaction and cyclic mobility (Kramer, 1996; NRC, 1985).

It is also meaningful to testify the validation of nonlocal regularisation during static
liquefaction. During static liquefaction, rapid monotonic shearing generates significant
excess pore water pressures in a nearly or fully saturated soil due to the contractive tendency
and undrained softening behaviour (Yamamuro and Lade, 1997; Chu et al., 2003; Take and
Beddoe, 2014; Gens, 2019). Based on the response of sand with different densities under
monotonic undrained loading, static liquefaction can be classified into three types: static

liquefaction, limited liquefaction, and non-flow behaviour. The behaviour of static
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liquefaction and limited liquefaction under static loading indicates a strain-softening type of
undrained response (Vaid and Sivathayalan, 2000).

According to past studies, the very loose sand was liquefied under low confining pressures
of 100 kPa or less, which refers to ‘complete static liquefaction’ (Ishihara, 1993; Riemer et
al., 1990; Yamamuro and Lade, 1997). However, when the initial confining pressure
increased after 100 Kpa, the specimens exhibited stable behaviour with less liquefaction
susceptibility, which became ‘Limited liquefaction’ (Sabbar et al., 2017). Thus, the
simulation of loose sand (D, = 34.2%) with two different initial confining pressure (p, =
200,50 kPa) is considered.

As illustrated in Figures 5.24 and 5.25, mesh sensitivity issues still exist, and the random
distribution of mesh size was obtained, which usually occurs at the post-bifurcation point
when failure modes transfer into a localised mode (Wan et al., 2012). Figure 5.24 shows the
force and displacement relationship for loose sand in undrained plane strain compression.
Though the vertical reaction force decreases after the peak, the mesh size has little influence
on the results when the original model is used (Figure 5.24a). The nonlocal models give
similar results (Figure 5.24c and d). The reason is that the stress ratio of soil elements keeps
increasing, though the deviator stress decreases. This is a strain-hardening response based
on the model, as increasing stress ratio means increasing hardening parameter H. In coupled
dynamic loading (e.g., earthquake), the soil response will be a combination of that in Figure
5.20 and Figure 5.24, wherein the nonlocal regularisation method is found to work.
Therefore, it is expected that the nonlocal regularisation technique also works for coupled
analysis in earthquakes.
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5.3 Strip footing problem

5.3.1 Strip footing on level sand ground

The dimension of the strip footing problem is shown in Figure 5.26. The footing with
B =0.9m is deformed by applying a uniform vertical deformation. The horizontal
displacement is fixed to simulate rough footings. Constant vertical pressure (1 kPa) is
applied on the top surface to avoid soil collapse with zero mean effective stress. The initial
lateral earth pressure coefficient K, = 0.4 (Okochi and Tatsuoka 1984), and the effective
weight of Toyoura sand is ¥’ = 16kN/m? as there is no water in the sand. Two sides of the
sample are horizontally fixed, while both horizontal and vertical movement is restricted for
the bottom boundary. Details can be found in Gao et al. (2020). Since the vertical load and
vertical settlement relationship is mainly affected by the rectangle area beneath the footing,
hence, the mesh size far away from the footing is setting a fixed value (0.6m) for all models.
The bedding plane orientation is horizontal and @ = 0°. The relative density D, = 85.6%,

and the initial degree of anisotropy is F, = 0.4.

1 kPa surcharge B = 0.9m 1 kPa surcharge

Figure 5.26 The boundary conditions of the strip footing problem
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Figure 5.27 shows the prediction of local and nonlocal models with [, = 0.8 m. It is evident
that the local model prediction is highly mesh-dependent. The G&S function gives the least
mesh-dependent results. The strain softening predicted by the GD and G&S functions is in
good agreement with the centrifuge test data (Kimura et al., 1985). However, the ON model
gives a steep reduction of Q after the peak, which does not match the experimental
observations. There are two reasons for this. First, this method gives excessive volume
expansion of sand under the strip footing (Figure 5.28). The location of the elements in
Figure 5.28 is shown in Figure 5.29. The GD and GS models give similar predictions of void
ratio evolution, while the void ratio increase predicted by the ON model is about 90% higher.
A higher void ratio causes lower strength and failure of some elements, which leads to a fast
reduction of Q. Secondly, the ON method assumes that the local variable makes a negative
contribution to the local one, which may not be realistic. In these cases, such an assumption
causes failure or lower shear strength of more sand elements. Moreover, it is found that a
bigger m value gives an even steeper strain softening curve for the ON function. Therefore,
the ON function should not be used for this problem.
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5.3.2 Strip footing near a sand slope

This problem is based on the simulations in Gao et al. (2021). The strip footing (B = 1.2m)
and the slope angle S varies between 25° and 30° to explore its influence on nonlocal
methods. The distance between the footing and slope crest is AB, with A varying between
0.5 and 1.5. The confining pressure is 5 kPa to ensure the simulations can continue after
reaching the bearing capacity. Since the ground surface is not level, a constant K, cannot be
applied. Therefore, the gravity loading method is used to generate the initial stress state (Gao
etal., 2021). First, gravity is applied on the same soil body by assuming that the soil is elastic
with a Poisson's ratio of v = 0.286, making K, = 0.4 for a flat ground surface (Gao et al.,
2021). After that, the stress state is extracted and imported into the model as the initial stress,
which is used for the subsequent modelling. The slope dimension and boundary conditions

are shown in Figure 5.30

B =1.2m 5 kPa surcharge

5 kPa surcharge

21m

Figure 5.30 The boundary conditions of the strip footing near a slope

Figure 5.31 shows the prediction of local and nonlocal models with [, = 0.4 m. In these
simulations, the slope angle is 30° and A = 0.5. The local model gives different peak
bearing capacities and s — Q curves after the peak as the mesh size changes (Figure 5.31a).
Nonlocal regularisation reduces the mesh-dependent of s — Q curves (Figure 5.31c and d).

The rate of strain softening is also reduced due to the nonlocal averaging of void ratio
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increment. To further reduce the mesh sensitivity, more nonlocal variables could be used,

but this may increase the complexity of the model formulations and its implementation.

Figure 5.32 shows the contour of shear strain distribution in the soil after the state for the

G&S function. A clear slip surface can be seen, which is independent of the mesh size.
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The effect of slope angle g and crest distance A on nonlocal three weight functions is shown
in Figure 5.33 and Figure 5.34. Figure 5.33 displays the predictions of the s — Q relationship
for local and nonlocal models with different slope angle 8. When the distance (1) between
the slope crest and footing is same, the vertical load Q increases with a decreased slope angle.
Thus, the bearing capacity can be improved by reducing the slope angle, and the mesh-

sensitive issue cannot be affected by . However, in nonlocal models, the model with a
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higher slope angle predicts more consistent results for different mesh sizes than the lower

slope angle model.

As portrayed in Figure 5.34, in the local model, when the slope angle £ is kept unchanged,
the higher vertical load Q is predicted by the smaller A model. Thus, it is expected that the
overprediction is caused when the footing is closer to the edge of the slope crest, where soil
may be more easily mobilised due to less lateral support. Moreover, in nonlocal models, the
slope model with A = 1.0B reduces more difference in peak vertical load between different
mesh sizes than the case that A = 0.5B. It should be noted that when the mesh size is very
small, the simulations were stopped. Although fine mesh elements can improve the accuracy
of'the solution, they also lead to numerical instability during the solving process which called

numerical divergence.
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Figure 5.33 The effect of £ on local and nonlocal model for strip footings near a sand slope
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Figure 5.34 The effect of local and nonlocal models for strip footings near a sand slope

Regardless of whether a local or nonlocal model is employed, using excessively small mesh
sizes beneath the footing is inadvisable. Extremely small mesh sizes tend to result in
numerical divergence issues. As demonstrated in Figure 5.35, when a mesh size of 0.1m is
applied to the strip footing on a slope problem (8 = 30° , A = 1.0B), the simulation cannot
completely converge, even during strain hardening. However, the result obtained from the
nonlocal model is smoother compared to the local model due to the averaging effect of the
nonlocal method. As the mesh is refined, the vertical settlement of the nonlocal method
converges to a more stable value. Thus, the nonlocal theory without strain-softening can

achieve and improve the convergence.
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Figure 5.35 Convergence achieved using nonlocal theory without strain-softening

5.4 Response of retaining wall for level sand ground

Figure 5.36 shows a soil domain measuring 10 m in length and 4.5 m in depth, with a rigid
retaining wall positioned on the right side of the backfill soil. The wall has a height of h,, =
4 m and is assumed to have an ideally smooth surface that prevents the transmission of shear
stresses at the interface with the soil. The retaining wall can undergo passive and active
horizontal translation, with passive movement towards the backfill and active movement
away from it. The bottom, left-side, and right-side boundaries are fully fixed. In all
simulations, the bedding plane orientation is horizontal (o = 0°), and the gravity is applied
to the backfill soil while the top surface of the backfill soil is subjected to a uniformly
distributed surcharge of 1 kPa. The same soil conditions as in Figure 5.26 are used. [, =
0.8 m is applied for all simulations. The lateral earth pressure is expressed as o, and the wall

displacement u is normalised by the height of the wall h,,,.
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Figure 5.36 The boundary conditions of the retaining wall problem

Figure 5.37 shows the evolution of g;, for the active condition. The local model gives mesh-
dependent o, — u/h,, curves. The G&S and ON functions are more efficient in reducing the
mesh-dependency than the GD function g}, reaches the smallest value at u/h,, = 0.015 and
then increases with u/h,,. This is caused by the strain-softening of sand. Similar results have
been proposed by Nibel and Huang (2004), Widulinski et al. (2011) and Guo and Zhao
(2015). For the passive condition, the nonlocal models give similar results (Figure 5.38).
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Figure 5.37 The comparison of the retaining wall response on the sand under active failure
condition: (a) Local model; (b) GD function; (c) G&S function; (d) ON function
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Figure 5.38 Comparison of the retaining wall response on the sand under passive failure
condition: (a) Local model; (b) GD function; (c) G&S function; (d) ON function
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Figure 5.39 shows the strain localisation pattern predicted by the local model. The shear
band orientation in the backfill is directly measured from shear strain contours at u/h,, =
5% (Figure 5.40). The angle of the shear band under active earth condition is more
significant than that under passive one. The angle of the shear band under active earth
pressure decreases with increasing mesh size, while that under passive earth pressure
increases. For both cases, the angle range of the local model (62° — 66°) is larger than that
of the nonlocal models (31° — 36°). The nonlocal functions reduce the range of measured
angle, which means they reduce mesh dependency, especially for the G&S function, which
is almost constant under active earth pressure. Moreover, under passive earth pressure, the
angle measured from the G&S function is slightly larger than that of the GD and ON

functions.
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Figure 5.39 Shear band predicted by the G&S model after the retaining wall at u/h,, =

0.05: (a) active condition and (b) passive condition
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Figure 5.41 shows the o, — u/h,, curves for the retaining wall under rough boundary
conditions. In both local and nonlocal models, the rough boundary conditions applied to the
retaining wall imposes more constraints than in the smooth boundary conditions, leading to
the prediction of lower g, under active and higher o3, under passive failure condition. The
rough boundary conditions allow no relative movement between the wall and the sand
immediately, causing overprediction of the bearing capacity of the retaining wall. Moreover,
the nonlocal predicts lower oy, in active failure mode and higher oy, in passive failure mode
than the local model, while the nonlocal can reduce the mesh dependency issue in post-peak
but is unable to reduce the difference in peak value.

The shear zone pattern for a nonlocal model under rough boundary conditions is
demonstrated in Figure 5.42. The retaining wall under rough boundary produces more slip
lines than in smooth boundary conditions, and the apparent post-peak drop of lateral pressure
in each case is accompanied with the occurrence of a well-developed shear band in the
backfill soil. Guo and Zhao (2016) proposed that the shear band angle of the smooth wall
case results in a very close value to the theoretical angle, whereas the rough wall case yields
a significantly higher inclination angle for the slip line. This difference in behaviour may be

attributed to the boundary condition and the limited domain width.
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Figure 5.41 The effect of rough boundary on local and nonlocal models for retaining wall

response under active and passive failure conditions
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Figure 5.42 Shear band predicted by the G&S model after the retaining wall at u/h,, =

0.05 under rough boundary conditions: (a) active condition and (b) passive condition
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5.5 Summary

The performance of three different weight functions for nonlocal regularisation, including
the GD, G&S, and ON functions, has been evaluated. An anisotropic sand model accounting
for the evolution of anisotropy is used. The increment of void ratio is assumed nonlocal,
which significantly influences strain softening. Different BVPs have been simulated,
including drained and undrained plane strain compression, the response of strip footings
(level ground and slope) and a retaining wall (passive and active conditions). The main

conclusions are:

(@) All the nonlocal methods are effective in reducing the mesh dependency of the force-
displacement relationship in plane strain compression. The GD method gives less
satisfactory results because the local value contributes most to the nonlocal variable. The
nonlocal regularisation can reduce the mesh dependency of shear band thickness when
the mesh size is smaller than the internal length. It is challenging to get mesh-
independent shear band orientation in either drained or undrained condition. This could
be due to the fact that only the void ratio increment is assumed nonlocal. More mesh-
independent results could be obtained if more state variables that affect strain softening

are assumed to be nonlocal.

(b) Nonlocal regularisation can effectively reduce the mesh dependency of the force-
displacement curves for strip footings. The ON method gives excessive overprediction
of volume expansion for soil elements around the footings on level ground, leading to an

unrealistically steep reduction of the reaction force after the peak.

(c) All three nonlocal functions give mesh-independent results for the active and passive
earth pressures on the retaining wall. The shear band orientation predicted by the three

functions shows a slight variation in the mesh size.

The G&S method is thus a better option for nonlocal regularisation of sand models. It does
not require extra parameters and assumes that the local variable does not contribute to the
nonlocal one. The GD function gives more mesh-dependent results than the G&S function.
The additional parameter m for the ON method can be determined using plane strain
compression and used for the other BVPs. However, the assumption that the local variable

can make a negative contribution to the nonlocal one may not be realistic. For instance, this
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assumption can cause a steep reduction of the reaction force on a strip footing on level sand

ground.
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Chapter 6: Strain localisation in plane

strain compression

6.1 Introduction

In the previous Chapter, a comparison of three different nonlocal methods demonstrated that
the G&S method is the most effective in mitigating mesh dependency issues. Therefore, in

Chapter 6, there will be a more in-depth discussion and analysis of the G&S method.

In this Chapter, plane strain compression tests with rough boundary under both drained and
undrained conditions are simulated. The efficiency of the G&S method is justified through
force-displacement relationship curves and shear strain contours. The effect of initial density
and confining pressure on the nonlocal regularisation method is discussed. The evolution of
state variables within the shear band under smooth boundary conditions is examined by
cross-sections and selected elements inside and outside the shear band. These state variables
include void ratio e, anisotropic variable A, degree of anisotropy F and shear strain. The
effect of anisotropy on strain localisation is investigated using soil samples with various
bedding plane orientations (0=15°, a=30°, and 0=45°). Finally, the performance of the

nonlocal method under 3D loading conditions is presented.

6.2 Drained plane strain compression with rough

boundary

6.2.1 Boundary condition

In the simulation of the plane strain compression test, five mesh sizes were chosen, as shown
in Figure 6.1, to test the impact of the nonlocal method on mesh dependency. Detailed
information, such as mesh size, total elements, total nodes, and degrees of freedom, can be
found in Table 6.1.

In this Chapter, both smooth and rough boundary conditions are considered. The smooth
boundary conditions is detailed in Section 5.2. For the rough boundary conditions, both the

horizontal and vertical displacements are fixed at the bottom end, and the top end does not
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deform in the horizontal direction (Figure 6.2). In the simulations for plane strain

compression with both smooth and rough boundary conditions in this chapter, [, = 0.012 m

is used for all simulations.

(©)

(@)

(b)

(d) ()

Figure 6.1 The mesh size used in plane strain compression modelling: (a) 0.003 m; (b)

0.004 m; (c) 0.006 m; (d) 0.009 m; (e) 0.012 m

Table 6.1 Mesh size information for plane strain compression modelling

Mesh Size (m) Total Elements Total Nodes Degrees of Freedom
0.003 800 2521 7563
0.004 450 1441 4323
0.006 200 661 1983
0.009 91 314 942
0.012 50 181 543
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Figure 6.2 The boundary condition and bedding plan orientation for the plane strain

compression simulations with rough boundary

6.2.2 Force-displacement relationship

Figure 6.3 shows that the nonlocal method can reduce the mesh dependency under rough
boundary conditions. In the local model, the peak value of the reaction force of the coarse
mesh is higher and delayed than the other fine mesh models. This conclusion agrees with
findings from other studies (Summersgill, 2017; Liu, 2018; Mallikarachchi, 2019). However,
Liu (2018) demonstrated that the specimen exhibits stiffer behaviour in the softening regime
of a coarse mesh, which is in contrast to the results presented here. When comparing the
rough boundary conditions to the smooth boundary condition (in Figure 5.7), it is observed
that the peak value is reached earlier under the rough boundary conditions. For instance, for
the models with the same mesh size of 0.003 m, under the smooth boundary condition, the

peak occurs at s/H = 2.5%, whereas under the rough boundary conditions, the peak occurs
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at s/H = 2.0%. As for nonlocal models, it is consistently observed that the peak value under

rough boundary conditions is slightly higher than that under smooth boundary conditions.
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Figure 6.3 Comparison of the local and nonlocal models on the force-displacement

relationship for drained plane strain compression: (a) Local model, (b) G&S function

6.2.3 Shear strain contours

Shear strain contours at the strain softening phase for the local and the nonlocal model at
displacement s/H = 9% is shown in Figures 6.4-6.5, where SDV11 represents the total
shear strain. As illustrated in Figures 6.4-6.5, under rough boundary conditions, the shear
band transitions from a single shear band observed under smooth boundary conditions to a
cross shear band. In the local model, the thickness of the shear bands significantly enlarged
with increasing mesh size. Conversely, after nonlocal regularisation, the issue of mesh
dependency is improved. This improvement is consistent with the results observed under
smooth boundary conditions.
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Figure 6.4 Shear strain contour for the Local model at s/H = 9% for different mesh sizes:
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Figure 6.5 Shear strain contour for the G&S function at s/H = 9% for different mesh
sizes: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m;(e) 0.012 m
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6.2.4 Evolution of shear band

The evolution of the shear band for the Local model and the G&S function at different s/H
values (1%, 3%, 5%, and 9%) is shown in Figures 6.6-6.7. At the start of loading, there's not
much difference between the Local model and the G&S function; both trigger strain
localisation through a weak area of the same position and size. However, as the shear band
evolves, the Local model first produces one shear band, followed by another. In contrast, the

G&S function produces two shear bands simultaneously.
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Figure 6.6 Evolution of the shear band for the Local model at different s/H: (a) 1%); (b)
3%; (c) 5%; (d) 9%
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Figure 6.7 Evolution of the shear band for the G&S function at different s/H: (a) 1%; (b)
3%; (c) 5%; (d) 9%

6.2.5 Orientation of shear band

For simplification, a horizontal path through the specimen centre was chosen as the reference
direction for all simulations, and the orientation of the cross-shear band (g8) is directly

measured from shear strain contours, as shown in Figure 6.8.
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Figure 6.8 Shear strain contour for measuring the shear band orientation under rough

boundary

As shown in Figure 6.9, the shear band orientation decreases with increasing mesh size, with
the results being more pronounced in the local model than in the nonlocal models. This
suggests that nonlocal regularisation can effectively reduce the dependency of shear band
orientation on mesh size. The mesh dependency issue in the nonlocal model is not entirely

resolved.
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Figure 6.9 Comparison of shear band orientation for drained plane strain compression test

under rough boundary

6.2.6 Thickness of shear band

The shear band thickness can be calculated from the shear band orientation: t, = %l - sin 3.

In this way, the shear band thickness of different simulations can easily be compared.

Table 6.2 and Figure 6.10 show that the t, increases with mesh size under the rough
boundary conditions. The differences between the maximum and minimum shear band
thickness for the Local model and G&S function are 7.72 mm and 4.57 mm, respectively.
From this, it can be concluded that a nonlocal model can mitigate the issue of mesh
dependency. The nonlocal model predicts a thicker shear band compared to the local model.
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Figure 6.10 Calculation of shear band thickness by total shear strain under rough boundary

Table 6.2 Calculation of shear band thickness under the rough boundary conditions

Model | Mesh size (mm) | Shear band orientation S(° ) | I (mm) | tg = %l - sin B(mm)
0.003 50 26 9.96
0.004 49 34.5 13.02
Local
0.006 48 36 13.38
model
0.009 47 38.5 14.08
0.012 45 50 17.68
0.003 50 385 14.75
Gs 0.004 49 40.5 15.28
0.006 49 45 16.98
model
0.009 49 50.5 19.06
0.012 48 52 19.32
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Figure 6.11 Comparison of the effect of mesh size on the shear band thickness under rough

boundary

According to Figure 6.12, under rough boundary conditions, the shear band thickness (t;)
for the nonlocal method is more significant than the local model. This is consistent with the
results under smooth boundary conditions. However, when the mesh size (h = 0.006 m)
and vertical displacement (s/H = 10%) are the same, the t, for all models are greater than

those under smooth boundary conditions.
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6.2.7 Undrained plane strain compression with rough

boundary

In undrained plane strain compression, the permeability of soil is set very small and water
flow at all boundaries is closed. Transient consolidation analysis is selected for all
simulations. The rest of the conditions are the same as the drained case. As shown in Figure
6.13, the nonlocal method is also applicable in undrained plane strain compression under

rough boundary conditions.

Local model G&S function
= 3501 Mesh size (m) = 3501 Mesh size (m)
X 300 ——0.003 x 300 | ——0.003
« ——0.004 v —_—0004 e s
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Normalized vertical displacement s/H (a) Normalized vertical displacement s/H (b)

Figure 6.13 Comparison of the local and nonlocal models on the force-displacement

relationship for undrained plane strain compression: (a) Local model; (b) G&S function

6.3 Evolution of the shear band

6.3.1 Evolution of state variables along the cross-section

The variation of state variables across the shear band can be analysed by examining cross-
sectional profiles. These cross-sections are perpendicular to the shear band and are chosen
for both fine mesh (h = 0.004 m) and coarse mesh (h = 0.006 m). In Figures 6.14-6.21,
the variation of void ratio e, anisotropic variable A, degree of anisotropy F and shear strain
along the cross-section is discussed. Profiles from both local and G&S methods are presented.
Four stages of deformation (vertical displacement at s/H = 2.5%, 4%, 7% and 10%) are
depicted to provide insight into the growth of the shear band. A noticeable difference is

observed between the pre-peak homogeneous deformation (s/H = 2.5%) and the post-
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localised deformation (s/H = 10%). This section only discusses the smooth boundary.

Details regarding rough boundary conditions can be found in Appendix A.

(1) Void ratio e

As demonstrated in Figure 6.14, the width of the concentration of e for the local model is
smaller than the nonlocal model. In the local model, the width of the concentration of e
increases with mesh size, and the mesh dependency issue disappears after nonlocal

regularisation.

The cross-sectional profiles shown in Figure 6.15, the width of the concentration and the
peak value of e at s/H = 2.5% are smaller than others. The width becomes constant when
s/H > 2.5%. When the shear band reaches a particular stage, the width no longer changes,
but the peak value of e continues to increase. This observation of the evolution of the shear
band for different mesh sizes is consistent with the results from micro-polar models (Bardet
and Proubet, 1992) and gradient flow theories (Han and Drescher, 1993).

Under rough boundary conditions (see Appendix A), the results from the G&S function
indicate a significantly larger width of concentrated volumetric expansion compared to the
local model, approximately 2.0 times larger (Figure A-2). However, under the same mesh
size for smooth boundary conditions, the width of e concentration predicted by the nonlocal

model is only about 1.25 times that of the local model.
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Figure 6.14 Contours of the void ratio e from local and nonlocal models: (a) Local (0.004
m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m)
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Figure 6.15 Cross-sectional profiles of the void ratio e from local and nonlocal models: (a)
Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function
(0.006 m)

(2) Anisotropic variable A

Figures 6.16 and 6.17 show the evolution of the anisotropic variable A. The anisotropy
variable A inside the shear band increases as the shear band develops, whereas it decreases
at the shear band boundary with the progression of the shear band. After nonlocal
regularisation, not only does the fluctuation in the change of A decrease, but the mesh

dependency issue observed in the width of concentration of A is also addressed.

In the local model, similar to the smooth boundary condition, the value of A is negative at
the shear band boundary under rough boundary conditions (Figure A-4a). When the mesh
size h = 0.006 m, the minimum value is -0.75 for rough boundary conditions, significantly

smaller than the -0.1 observed under smooth boundary conditions. This is mainly due to the
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overlapping influence of multiple surrounding cross-shear bands. Under rough boundary

conditions, the maximum A (0.55) is noticeably smaller than that under smooth boundary
conditions (0.7).

(©)

i

(b)

(d)

Figure 6.16 Contours of the anisotropy variable A from local and nonlocal models: (a)
Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function
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Figure 6.17 Cross-sectional profiles of the anisotropy variable A from local and nonlocal
models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S
function (0.006 m)

(3) Degree of anisotropy F

In the local model (Figure 6.19a and b), the maximum F inside the shear band of fine mesh
is larger than that in the coarse mesh at vertical displacements s/H = 4% and 7%.
Conversely, when s/H = 10%, the peak value of F in the coarse mesh is larger than that in
the fine mesh. However, the F at s/H = 10% for coarse mesh size is smaller than that for
fine mesh size in rough boundary (Appendix A). This is opposite to the observations made
in the smooth boundary condition. Moreover, in the local model, the width of concentration
of F for coarse mesh size is more significant than that for fine mesh size. In contrast, in the

nonlocal model, the width tends to be consistent across different mesh sizes.
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Figure 6.18 Contours of the degree of anisotropy F from local and nonlocal models: (a)
Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function
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Figure 6.19 Cross-sectional profiles of the degree of anisotropy F from local and nonlocal
models: (a) local (0.004 m), (b) local (0.006 m), (c) G&S function (0.004 m), (d) G&S
function (0.006 m)

(4) Shear strain

The cross-section contours of shear strain for local and nonlocal models are compared in
Figure 6.20. The local model exhibits that t, predicted by the local model is sensitive to the
mesh size. On the contrary, contours of shear strain from the nonlocal model portray almost
similar shear band thickness. Four vertical displacements for each mesh are portrayed to get
an insight into the growth of the band in Figure 6.21. The cross-section profiles illustrate
that the shear strain increased when the shear band developed. The maximum shear strain

obtained by the nonlocal model is greater than that of the local model.
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Figure 6.20 Contours of the shear strain from local and nonlocal models: (a) Local (0.004

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m)
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Figure 6.21 Cross-sectional profiles of the shear strain from local and nonlocal models: (a)
local (0.004 m), (b) local (0.006 m), (c) G&S function (0.004 m), (d) G&S function
(0.006 m)

6.3.2 Evolution of state variables in elements inside and

outside the shear bands

To better compare the effect of local and nonlocal models on the development of the shear
band, the evolution of the state variables inside and outside the shear band is presented in

this section.

Results for simulations with different mesh sizes are presented (Figure 6.22). The mesh size
of the first simulation is 0.004 m (with element A inside the shear band and element B
outside), while the mesh size of the second simulation is 0.006 m (with element C inside the

shear band and element D outside).
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Figure 6.22 Location of the selected elements for the single shear band: (a) Fine mesh, (b)

Coarse mesh

(1) Evolution of void ratio e

Within the shear band, the volume expansion gradually increases with loading. When the
element is outside the shear band, the e remains constant after reaching its peak. Thus, the
maximum e within the shear band is significantly greater than those outside (Figure 6.23).
Indeed, existing research has shown that there is much smaller plastic deformation and less
volume expansion outside the shear band (Gao and Zhao, 2013; Mallikarachchi and Soga,
2020). Moreover, when elements are inside the shear band, the local model with a fine mesh
exhibits a significant gradient and higher e than coarse mesh. In contrast, the e of the fine
mesh is smaller than that of the coarse mesh when the elements are outside the shear band.
However, under rough boundary conditions (Appendix B), the e for fine mesh size is larger
than that in coarse mesh both inside and outside the shear band.

Both the local and nonlocal models predict volume expansion in dense soil. Since the
evolution of e is assumed to depend on the volumetric strain increment of local and
neighbouring integration points in the nonlocal model, the increase in e in the nonlocal

model becomes smaller than that predicted by the local model inside the shear band. The
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local model predictions exhibit mesh-dependent issues, and the difference between two

different meshes is reduced by the nonlocal model (Figure 6.23b and d).
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Figure 6.23 The local evolution of the void ratio e for the elements inside and outside the

shear band under smooth boundary condition

(2) Local fabric evolution

As depicted in Figure 6.24, both inside and outside the shear band, the local models show a
larger difference between different mesh sizes than nonlocal models. However, it can be
inferred that even though nonlocal treatment alleviates the mesh size dependency issue of
the evolution F outside the shear band (Figure 6.24d), the mesh dependency inside the shear

band by the nonlocal method remains unresolved.

The degree of anisotropy F inside the shear band is more significant than that outside the

shear band. This is because shear strain concentration is higher within the shear band, and
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more significant fabric evolution is induced by plastic shear strain. Additionally, when the
elements are outside the shear band (Figures 6.24c and d), the degree of anisotropy F for the

nonlocal model is greater than that for the local model.

Moreover, there is a decrease after the initial values, followed by an increase. The initial
decrease during the loading stage occurs because the initial fabric and the loading direction
are non-coaxial, and the fabric needs to rotate towards the loading direction with plastic
shear strain (Gao et al., 2013). However, there is no decrease observed within the shear band
for the nonlocal models with both fine and coarse mesh sizes under smooth boundary
conditions, which is significantly different from the behaviour under rough boundary

conditions where a drop occurs in both mesh sizes (Appendix B).
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Figure 6.24 The local evolution of the fabric for the elements inside and outside the shear

band under smooth boundary condition
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(3) Local evolution of A

At the initial state, the evolution of the anisotropic variable A inside the shear band decreases
slowly compared to outside the shear band. As the shear band develops, the anisotropic
variable A inside the shear band gradually increases, whereas the value outside the shear
band decreases. Whether it is increasing or decreasing, the gradient of the anisotropic
variable A of the local model is greater than that of the nonlocal model, and it tends to be

stable at the critical state outside the shear band.

Moreover, in the local model, the anisotropic variable A has different initial values for
models with various mesh sizes inside the shear band (Figure 6.25a). The initial value for
the fine mesh size is greater than that for the coarse mesh size. In contrast, in the nonlocal
model, the initial values for models with different mesh sizes are all set to 0.1. Both the local
and nonlocal models gradually decrease during the initial stages and reach their lowest points

ataround s/H = 2%, and then followed by a gradual increase.

The evolution processes of different mesh sizes for the local model are distinct. This
variation occurs due to the effect of evolution on plastic hardening and plastic shear strain
increments. However, the differences between different mesh sizes essentially disappear

after nonlocal regularisation.
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Figure 6.25 The local evolution of the anisotropic variable A for the elements inside and

outside the shear band under smooth boundary condition

6.3.3 Evolution of state variables along the cross-section

under undrained condition
(1) Magnitude of displacement

The evolution of displacement gradients within the shear band is shown in Figure 6.24.
During the loading process, there is sliding along the shear band above the shear band until
no significant change in static displacement occurs. Vermeer and Marcher (2000) and Galavi
and Schweiger (2010) also used velocity and displacement profiles to estimate the shear
zone.

Regarding contours and cross-sectional profiles (Figure 6.27), the magnitude of
displacement within the shear band increases with the development of the shear band.
However, for different mesh sizes, the peak value of the magnitude of displacement does not
vary significantly. In the local model, the width of displacement gradient for fine mesh size
(Figure 6.27a) is significantly smaller than that for coarse mesh size (Figure 6.27b) and the
results in the nonlocal model (Figure 6.27c and d). The displacement gradients in Figures
6.27 (c) and (d) are flatter than their local counterparts in Figures 6.27 (a) and (b). Nonlocal
regularisation reduces the difference in width of displacement gradient and maximum

displacement between large and small mesh sizes.
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Figure 6.26 Contours of the magnitude of the displacement from local and nonlocal models:

(a) Local (0.004 m); (b) Local (0.006 m); (¢) G&S function (0.004 m); (d) G&S function
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Figure 6.27 Cross-sectional profiles of the magnitude of the displacement from local and
nonlocal models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m);
(d) G&S function (0.006 m)

(2) Void ratio e

Figure 6.28 compares the cross-sectional contours of the e for the local and nonlocal models
under undrained conditions. The local model shows that the width of e concentration
predicted by the local model is sensitive to the mesh size. Conversely, the contours of the e
from the nonlocal model depict almost similar widths. The maximum void ratio under the
undrained condition is smaller than the drained condition (Figure 6.29). For example, when
the mesh size (h = 0.004 m) and vertical displacement (s/H = 7%) are the same, the peak
value of the e under drained conditions is around 0.85, whereas under undrained conditions,
the e noticeably decreases, with a peak value of 0.71. The primary reason for this is the direct
influence of pore water pressure, which hinders the development of the shear band.
Furthermore, the concentration of volumetric expansion inside the shear band under rough
boundary conditions is larger than that under smooth boundary conditions in the local model.

Interestingly, this result is reversed in the nonlocal model.
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Figure 6.28 Contours of the void ratio e from local and nonlocal models: (a) Local (0.004

Void ratio

m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m)

0.75

o
N
=)

o
o)}
a

0.6 L 4
8.01 0.02 003 0.04 0.05 0.06 0.7
Distance across shear band (m) @)

Local model
[—— s/H=0.025
——s/H=0.04
——s/H=0.07
——s/H=0.1
———— P S

Mesh size: 4 mm; D =85.6%; Undrained

p,=200 kPa; Smooth boundary

Void ratio

0.75

o
N
o

o
o)}
o

0.60

Local model

—s/H=0.025
——s/H=0.04
—s/H=0.07
= s/H=0.1

Mesh size: 6 mm; D =85.6%; Undrained
p,=200 kPa; Smooth boundary

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Distance across shear band (m) (b)



Chapter 6: Strain localisation in plane strain compression

G&S function
0.75 —— g/H=0.025
s/H=0.04
s/H=0.07
s/H=0.1
©0.70+
—
©
| &
R
(% A
> 0.65 — =
Mesh size: 4 mm; D =85.6%; Undrained
p,=200 kPa; Smooth boundary
O 60 1 1 1 1

001 002 003 004 005 006 007

148

G&S function
0.75 [ —— g/H=0.025
s/H=0.04
s/H=0.07
—— s/H=0.1
©00.70+
-+
©
| =
S
Mesh size: 6 mm; D =85.6%; Undrained
p,=200 kPa; Smooth boundary
O 60 1 1 L 1

“0.01 0.02 0.03 0.04 0.05 0.06 0.07
Distance across shear band (

Distance across shear band (m m
! ™ () ) (@)
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6.4 Effect of Initial Density and Confining Pressure

6.4.1 Effect of Initial Density D,

The initial density has a significant impact on strain localisation (Gao and Zhao, 2013; Liu,
2018; Mallikarachchi, 2019; Li and Gao, 2024). The influence of initial density on the
nonlocal method under both smooth and rough boundary conditions is shown in Figure 6.28.
Three different void ratios e = 0.65 (D, = 85.6%), e = 0.70 (D, = 73.6%) and e =

0.75 (D, = 60.5%) for Toyoura sand under different mesh sizes are considered.

Figure 6.30 illustrates that the peak value of the R,, decreases as the e becomes higher for
both local and nonlocal methods. In contrast, the stiffness of sand increases for a lower e

and finer mesh size.

In the local model, the mesh-dependency issue is obvious during the strain softening.
Conversely, in the nonlocal model, there is a noticeable improvement in the mesh-
dependency issue. However, the nonlocal method cannot eliminate the mesh-dependency
issue completely. In nonlocal predictions, the difference between fine and coarse mesh sizes
under rough boundary conditions is larger than the result under smooth boundary conditions.
Meanwhile, the ability of the nonlocal method to reduce the mesh-dependency issue is

influenced by the initial density. As shown in Figure 6.30 (b) and (d), when e = 0.75, the
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consistency among models with different mesh sizes is notably better than in models with
other two initial densities. The effectiveness of the nonlocal method becomes more

pronounced with a higher e.

Local model ~ G&S function
Z100r ——0.004 (=0.65) Z100- ——0.004 (e=0.65)
- = 0.012 (e=0.65) — — 0.012 (e=0.65)
——0.004 (e=0.70) ——0.004 (=0.70)
80+ - — 0.012 (=0.70) 80+ - = 0,012 (e=0.70)
0.004 (€=0.75) 0.004 (€=0.75)
0.012 (e=0.75) 0.012 (=0.75)

D
o
o2}
o

B e s .

N
o
N
o

p,=200 kPa; Smooth boundary

800 002 004 006 008 0.0

p,=200 kPa; Smooth boundary

800 0.02 004 006 008 010

Vertical reaction force R (k
NN
o
|

Vertical reaction force R (k
N
o

Normalized vertical displacement s/H @) Normalized vertical displacement s/H (b)

~ G&S function

Z 100+ Lol mOdio‘om (e=0.65) Z 100 ——0.004 (e=0.65)

~ g o RO ~ 0,004 (e-070)

> —{), e=0. > — U, e=0.

% 80+ - = 0.012 (e=0.70) % 80+ - = 0.012 (e=0.70)

o 0.004 (e=0.75) 3] = o.g?; (efg.;s)

S 60l 0.012 (e=0.75) S 60l = :o: :(e_-_. 5)

C : =

S I /) N T 0 [

S 40+ S 40

o /74 o

§ 20/ Tg 20

'E p,=200 kPa; Rough boundary ‘-E P,=200 kPa; Rough boundary

> 8.00 0.02 0.04 0.06 0.08 0.10 = 8.00 0.02 0.04 0.06 0.08 0.10

Normalized vertical displacement s/H © Normalized vertical displacement s/H d)

Figure 6.30 The influence of initial density on the nonlocal methods based on the load-

displacement curve

According to the local model (Figure 6.31a and c¢), when e = 0.65, the shear band thickness
of the coarse mesh is nearly double that of the fine mesh, and t, increases with the e (Figure
6.33). The difference in shear band thickness between the coarse and fine mesh sizes
decreases as the e becomes higher. In contrast, the shea band orientation 8 decreases with
e.When e = 0.65 and h = 0.004 m (Figure 6.31a), the shear strain inside the shear band is
significantly greater than the shear strain in other predictions, and the differences between

coarse and fine mesh sizes decrease as the e increases. For instance, under rough boundary
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conditions (Figure 6.31c), the peak shear strain in the fine mesh size is more than three times
that in the coarse mesh size when e = 0.65. When e = 0.7, the peak shear strain in the fine
mesh size is approximately twice that in the coarse mesh size. At e = 0.75, the peak shear

strain in the fine mesh size is almost equivalent to that in the coarse mesh size.

As for the nonlocal model (Figure 6.31b and d), the difference in t, for different void ratios
is smaller than in the local model. Meanwhile, the t, of the nonlocal model is wider than that
of the local model. In addition, the differences in shear strain within the shear band between
the different mesh sizes are smaller than those in the local model, and these differences

increase as the e becomes lower. Thus, the e has a significant impact on the nonlocal method.
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Figure 6.31 The influence of initial density on the nonlocal method based on the cross-

section
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6.4.2 Effect of Confining Pressure p,

The influence of confining pressure on the load-displacement curve of the nonlocal model
Is shown in Figure 6.34. The different confining pressures (p, = 100 kPa, p, = 150 kPa

and p, = 200 kPa) under both smooth and rough boundary conditions were considered.

Figure 6.34 shows that the confining pressure significantly affects the load-displacement
curves. The vertical reaction force R,, and stiffness increases with confining pressure. This
is similar to the findings of Han and Drescher (1993), Alshibli and Sture (2000), and Desrues
and Viggiani (2004). A more mesh-independent result of the nonlocal method can be

attained when the confining pressure becomes lower.
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Figure 6.34 The influence of confining pressure on the nonlocal methods based on the

load-displacement curve
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Figure 6.35 shows that the confining pressure p, significantly affects the shear strain inside
the shear band. The shear strain decreases with an increase in p,. However, the reduction in
shear strain for fine mesh size under smooth boundary conditions (Figure 6.35a) is more
obvious than in rough boundary conditions (Figure 6.35c). Moreover, the shear strain inside
the shear band varies significantly between different mesh sizes, especially in the local
model. The shear strain for small mesh sizes is much greater than that for corresponding
large mesh sizes under the same p,. The differences between different mesh sizes are

noticeably improved after being processed by the nonlocal method but do not eliminate them.

In addition, both 8 and t, are decreased with p, (Figures 6.36 and 6.37). The difference in
t between the local and nonlocal models is also shown in Figure 6.35. The t; significantly
differs from fine and coarse mesh for the local model. When the p, is constant, the t, of
models with small mesh sizes is smaller than that of models with large mesh sizes. Similar
to the influence of initial density, the mesh-dependency issues of 8 and t, in the nonlocal

method, obtained from cross-sections, are significantly improved.
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Figure 6.35 The influence of initial density on the nonlocal method based on the cross-

section
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6.5 Scaling of nonlocal method

The above biaxial compression results illustrate the validity of the nonlocal method as a
regularisation technique. However, for geotechnical engineering applications, the shear band
thickness is minimal compared to the dimension of geometry. The practical mesh size
utilised in simulations is several orders of magnitude larger than the physical shear band

thickness.

The physical shear band thickness of sand (£54™%) is found to be 10—20ds, (Muhlhaus and
Vardoulakis, 1987). For Toyoura sand used in this thesis, ds, ~ 0.0002 m and t%*¢ ~
0.002 — 0.004 m. The numerical shear band thickness is determined by mesh properties
such as size, shape, number of nodes and the internal length scale . (and over-nonlocal
parameter m) used in nonlocal methods. Empirical correlations between numerical band
thickness and the internal length scale [, are found in some research (Brinkgreve, 1994;
Galavi and Schweiger, 2010; Vermeer and Marcher, 2000; Mallikarachchi and Soga, 2020).
Galavi and Schweiger (2010) reported that the numerical shear band thickness is the same
as [.. Mallikarachchi and Soga (2020) suggested that the numerical shear band thickness
during softening can be approximately correlated as twice the [, whereas it is 2.2 times at
the critical state. In this thesis, the numerical shear band thickness (t*™) is approximated
as 2l . =0.024 m.

However, using the physical shear band thickness of sand in the FEM simulations can be a
challenge. It is practically impossible to refine the mesh to comply with the real shear band
thickness. First, small mesh size causes numerical convenience issues for advanced soil
models which give a highly nonlinear stress—strain relationship. Secondly, the computational
time will be significantly increased when a small mesh size is used for a nonlocal model
(Gao et al., 2020).

Therefore, it is necessary to obtain a physically realistic force-displacement response by
scaling the nonlocal method in some cases. Some studies have combined nonlocal
regularisation with softening scaling to obtain physically realistic force-displacement curves
(Brinkgreve, 1994; Vermeer and Marcher, 2000; Galavi and Schweiger, 2010;
Mallikarachchi and Soga, 2020). Initially, Brinkgreve (1994) proposed to employ the
softening scaling along with the nonlocal regularisation by Equation 6.1.
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pum — psand ga% 6.1)
where, h™™ is the numerical softening stiffness; h5#"¢ is the physical softening stiffness,
tsand js the physical shear band thickness of sand and t7“™ is the numerical shear band
thickness. The scaling factor is defined as the ratio between the numerical shear band
thickness t7™ to physical band thickness "¢, The rate of softening is dependent on the
softening modulus and shear band thickness. The physical softening stiffness hsand
multiplied by this scaling factor bestows a realistic post-peak softening in the load-

displacement response.

However, Mallikarachchi and Soga (2020) indicated that the application of Equation 6.1 is
not suitable for the Nor-sand model since the softening modulus is not constant. The
softening stiffness in the Nor-sand model is governed by the state parameter and, hence, the
volumetric strain. Therefore, they used Equation 6.2 to scale the softening rate. Similarly, in

this thesis, Equation 6.2 is also applicable. The scaling factor of softening stiffness is

sb,num

calculated to be z

sb,sand

8when [, = 0.012 m.

tglum

e=e—(1+ e)devnw (6.2)
According to Figure 6.38, in the anisotropic fabric model used in this thesis, the scaling
reduces the Ry, in the load-displacement curve. It is opposite to the results predicted by the
nonlocal NS model (Mallikarachchi and Soga, 2020) and the nonlocal HS model (Vermeer
and Marcher, 2000). Moreover, as illustrated in Figure 6.38 (b), the difference becomes
larger at the residual stage. This is because the volumetric regularisation is ineffective at the
critical state. Additionally, the gradient of strain-softening for scaling result is larger than

the simulation without scaling.
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It is important to note that scaling is a mathematical artefact and not an inherent characteristic
of the nonlocal method. It can be employed with other regularisation techniques or even
without regularisation. For example, Pietruszczak and Mroz (1981) first used this simple
strategy to produce reasonably objective load—displacement curves without any
regularisation. It should be acknowledged that the nonlocal averaging and scaling do not

create a realistic shear band thickness or its direction (Mallikarachchi, 2019).

6.6 Effect of anisotropy on strain localisation

The impact of anisotropy on strain localisation is being studied through a plane strain
compression test conducted under drained conditions with smooth boundaries. Three
different bedding plane orientations (¢ = 15° ; @ = 30 ° ; a« = 45 ° ) are being considered
and compared within both local and nonlocal models. Additionally, the influence of negative

bedding plane orientations is also examined.

6.6.1 Force-displacement relationship

Figure 6.39 depicts the force-displacement relationship of the local model with various
bedding plane orientations. The mesh dependency issue of the local model is not affected by

the bedding plane orientation. However, the peak vertical reaction force decreases as the
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bedding plane orientation increases. Conversely, the vertical displacement corresponding to
the peak value increases with the increase in bedding plane orientation. Furthermore, when
the bedding plane orientations are significant (a« = 45° ), models with small mesh sizes

struggle to converge.

For the nonlocal model (Figure 6.40), only the peak vertical reaction force decreases as the
bedding plane orientation increases. Simultaneously, for models with different bedding
plane orientations, the vertical displacement corresponding to the peak value remains
constant at s/H = 2.8%.
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Figure 6.40 Force-displacement relationship of the nonlocal model with various bedding

plane orientations: (a) « = 15° ; (b) a =30° ;(c) @ = 45°

6.6.2 Evolution of the shear band from selected elements

According to Figure 6.41, two elements have been chosen to explore the influence of

different bedding plane orientations on the development of the anisotropic variable A and

the degree of anisotropy F. Both elements are situated within the shear band, where Element

A represents the fine mesh (0.004 m) and Element C represents the coarse mesh (0.006 m).
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Figure 6.41 Location of the selected elements for the single shear band: (a) Fine mesh, (b)

Coarse mesh

(1) Anisotropic variable A

The initial value of the Anisotropic variable A decreases with an increase in bedding plane
orientation (Figure 6.42), aligning with the findings of Gao et al. (2021). However, in the
local model with a mesh size of 0.006 m (Figure 6.42c), models with different bedding plane
orientations exhibit the same initial value of A. This indicates a pronounced mesh
dependency in the local model, where simulation outcomes become more reliable as the
mesh size decreases. In contrast, the nonlocal model mitigates the mesh dependency issue
and provides more reliable results, particularly with larger mesh sizes. Moreover, in the local
model, when a = 45°, the value of A gradually surpasses that of other models as the loading

progresses, which contradicts the observed facts.
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Figure 6.42 The local evolution of Anisotropic variable A for the elements inside the shear

band with various bedding plane orientations

(2) Local fabric evolution F

In the local model (Figures 6.43a and c), when the bedding plane orientation is set to 45
degrees, the slope of F is greater than in models with other bedding plane orientations.
Conversely, in the nonlocal model (Figures 6.43b and d), the F increases as a decreases,
akin to the findings in Gao et al. (2021).

Moreover, the local model demonstrates a mesh dependency issue. In the local model with
fine mesh size (Figure 6.43a), when a = 45°, the F decreases first and then increases.
However, when a = 15° and 30< the F first increases slowly, and then the gradient of the
increase becomes larger. In the local model with coarse mesh size (Figure 6.43c), the F for
three different bedding plane orientations all gradually decreases first and then increases. On
the contrary, after nonlocal regularisation, whether it is the result of a fine mesh size (Figure

6.43b) or a coarse mesh size (Figure 6.43d), when a = 45°, the F first decreases slowly and
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then increases. When a = 15° and 30< in both cases, there is a slow increase followed by a

rapid increase in the F.
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Figure 6.43 The local evolution of fabric for the elements inside the shear band with

various bedding plane orientations

6.6.3 Effect of negative bedding plane orientation

The simulations conducted previously utilised positive a (major principal stress direction
tilting right to the vertical). However, real bedding plane orientations can also be negative
a. The outcomes with negative « may be different when the bedding plane is not vertical.
To illustrate this, Figure 6.44 presents further simulations depicting the force-displacement
relationship of both local and nonlocal models with a negative bedding plane orientation of
a =-30°. The initial slope of the force-displacement curve remains similar for both positive
and negative a cases. However, there's a slower decrease of R, with s/H after reaching the

peak R, in the case of negative a (as observed in Figure 6.39c and Figure 6.44a).
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Figure 6.45 illustrates that the value of the peak reaction force R,,, increases with the mesh

size. In the local model, the Ry, for negative bedding plane orientation is greater than the

R,,, for positive bedding plane orientation. Conversely, in the nonlocal model, the situation

is reversed. Moreover, when the mesh size remains constant, the disparity between the Ry,

for positive and negative bedding plane orientations in the nonlocal model is significantly

smaller than in the local model. Furthermore, these differences gradually diminish with an

increase in mesh size.
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Figure 6.44 Comparison of the local and nonlocal models on the force-displacement

relationship with negative bedding plane orientation: (a) Local model; (b) G&S function
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6.7 Extension of the nonlocal model from 2D to 3D

The aforementioned research based on the nonlocal method focuses chiefly on two-
dimensional problems. However, most actual engineering structures belong to the three-
dimensional domain. Extension of the current two-dimensional nonlocal model to make it
three-dimensional is needed. An advanced constitutive model for sand with the notion of a
critical state has never been generalised from 2D to 3D by the nonlocal method. To validate
the correctness of the 3D nonlocal method, a series of test simulations, including biaxial

drained and undrained tests for dense sand, are considered.

6.7.1 Nonlocal regulisation of 3D biaxial drained test

The dimension of the sample used in the 3D study is the same as the 2D plane strain problem,
which is 60 mm wide and 120 mm high with a thickness of 0.01 m. The rough boundary
conditions is only considered in the study because, under smooth boundary conditions, the
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shear bands are less likely to form, making it challenging to justify the improvement of the
nonlocal method in addressing mesh dependency issues related to shear band thickness. The
bottom side is constrained in X, Y, and Z directions, and the other sides are only fixed in the
Z direction. A confining pressure of p, = 200kPa is applied on the two vertical sides, and
the vertical displacement is applied on the top side. Furthermore, the bedding plane
orientation is horizontal and @ = 0°. The initial void ratio of the sample is e, = 0.65
(relative density D, = 85.6% ), and the initial degree of anisotropy is F, = 0.4. All
simulations in this study have used 8-noded plane strain liner elements with 8 integration
points (C3D8).

The shear strain contours at the strain softening for the local and nonlocal model (G&S
distribution weight function) at displacement s/H = 9% were shown in Figures 6.46-6.47,
where SDV11 represents the total shear strain. The shear band can be distinguished by the
concentrated plastic deformation. Figure 6.46 shows that the width of the shear strain zone
predicted by the local model is sensitive to the mesh size. On the contrary, contour plots of
total shear strain from G&S nonlocal methods in Figure 6.47 portray almost similar shear

strain zones irrespective of the mesh size during the strain softening period.

SDV11 SDV11 SDVi1 SDvi1
(Avg: 75%)

>
<
a
i
a
2

o=
TTS 2

SZRRRABRRERAB

SRB/BBIREEHY
SZRYRABIREEHR

ocoooooo000~
) -
coooocoo000
coocoo0o00000:
OO0
SoNRANR N
SIRRIBBRRR

(b) (©) (d)

Figure 6.46 Shear strain contour for the local model under drained condition at s/H = 9%
for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m
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Figure 6.47 Shear strain contour for the nonlocal model under drained condition at s/H =
9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m

Figure 6.48 shows the force-displacement curves predicted by the local model and nonlocal
model for drained dense sand with different mesh sizes. The strain-hardening part of the
global force—displacement relationships for both local and nonlocal models is insensitive to
the mesh size until the peak and becomes mesh-dependent in the strain-softening part. In the
local model, a finer mesh size results in earlier and faster softening, which has the same
results in 2D. On the contrary, the nonlocal method adequately produces force-displacement
responses that are independent of the mesh, reducing the softening rate and difference in
peak vertical reaction force. It facilitates the convergence of extra-small mesh by providing

a positive-definite global stiffness matrix.
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Figure 6.48 Comparison of the local and nonlocal models on the force-displacement

relationship for 3D drained biaxial compression test under drained condition
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Numerous experimental evidence indicates that when a shear band occurs, significant
volumetric expansion will concentrate inside the shear band while the volumetric change is
generally very small outside (see, e.g., Oda et al., 1982; Desrues et al., 1996). According to
Figures 6.49 and 6.50, the nonlocal model predicts a wider shear band than the local model
and the mesh dependency of shear band thickness is reduced by nonlocal regularisation.
Moreover, since the evolution of e is assumed to depend on the volumetric strain increment
of local and neighbouring integration points in the nonlocal model, the e inside the shear

band is smaller than that predicted by the local model.
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Figure 6.49 Void ratio e contour for the local model under drained condition at s/H = 9%
for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m
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Figure 6.50 Void ratio e contour for the nonlocal model under drained condition at s/H =
9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m
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6.7.2 Nonlocal regularisation of 3D biaxial undrained test

In the 3D biaxial undrained test, the permeability of soil is set very small and water flow at
all boundaries is closed. Transient consolidation analysis is selected for all simulations. The

rest of the conditions are the same as the drained case.

The smaller shear band thickness observed under undrained conditions compared to the
drained conditions is primarily attributed to the pore water pressure inhibiting the
development of the shear band. Additionally, the shear strain within the shear band is also

smaller under undrained conditions compared to the shear strain under drained conditions.
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Figure 6.51 Shear strain contour for the local model under undrained condition at s/H =
9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m;(e) 0.012 m
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Figure 6.52 Shear strain contour for the nonlocal model under undrained condition at
s/H = 9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m
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Figure 6.53 illustrates the correlation between vertical displacement and reaction force for
various models under undrained conditions. In the strain-hardening region, there is no issue
of mesh dependency. However, during the strain-softening region, the mesh sensitivity of

force—displacement curves disappear after the nonlocal regularisation is applied.
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Figure 6.53 Comparison of the local and nonlocal models on the force-displacement

relationship for 3D undrained biaxial compression test under undrained condition

In Figure 6.542 and Figure 6.55, the e contours for the local and nonlocal models are
compared. The results from the local model indicate that the predicted shear band thickness
is sensitive to the mesh size. In contrast, the e contours from the nonlocal model display
nearly consistent shear band thickness, and the shear band is wider compared to the shear
band in the local model. Furthermore, the e within the shear band under undrained analysis

is lower than the e under drained analysis.
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Figure 6.54 Void ratio e contour for the local model under undrained condition at s/H =
9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m
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Figure 6.55 Void ratio e contour for the nonlocal model under drained condition at s/H =
9% for different mesh size: (a) 0.003 m; (b) 0.004 m; (c) 0.006 m; (d) 0.009 m

6.8 Summary

The Chapter shows the validation of the nonlocal method in both drained and undrained
plane strain compression tests under rough boundary conditions. Moreover, the evolution of
state variables, the effect of initial density and confining pressure, and the effect of
anisotropy on strain localisation of both local and nonlocal models under smooth boundary

conditions were further compared.

(1) The force-displacement curves demonstrate that the nonlocal method can alleviate mesh
dependency for both smooth and rough boundary conditions. The peak value of reaction

force is reached at a lower vertical displacement under the rough boundary conditions.

(2) Similar to the smooth boundary condition, in the rough boundary conditions, the shear
band orientation decreases with increasing mesh size, while the shear band thickness
increases with mesh size. Notably, the local models exhibit a significant disparity in shear
band orientation and thickness between coarse and fine meshes. In contrast, the nonlocal

model, employing the G&S function, shows only minor variations.

(3) According to the evolution of state variables along the cross-section, the local model also

exhibits a mesh-dependent width of state variables concentration. In contrast, the
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nonlocal model displays only slight variations in the width of state variables
concentration for different mesh sizes. For both smooth and rough boundary conditions,
the results obtained from the G&S function indicate a significantly larger shear band

thickness compared to the local model.

(4) After nonlocal regularisation, for the evolution of state variables in selected elements
both inside and outside the shear band, not only does the fluctuation in the change of the
state variables decrease, but the differences in peak values of the state variables between
various mesh sizes observed in the local model are also significantly reduced. The values
of the state variables within the shear band are significantly greater than those outside,
primarily due to shear strain concentration. Regarding the impact of confining pressure
and initial density on the nonlocal method, the effectiveness of reducing mesh
dependency in the nonlocal method increases when the e is higher or when the confining

pressure increases.

(5) The nonlocal method is unaffected by various positive bedding plane orientations.
However, when considering negative bedding plane orientations, it does have an impact
on the nonlocal method. In the local model, the peak reaction force for negative bedding
plane orientation is greater than that for positive bedding plane orientation. Conversely,

in the nonlocal model, the situation is reversed.
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Chapter 7: Conclusions

Nonlocal regularisation is commonly employed to address the problem of mesh dependency
arising from strain softening in finite element analysis. Nonlocal methods are developed
based on the hypothesis that material response is influenced by both the deformation field
of a local material point and a weighted average of its neighbouring points. This approach
has primarily found application in soil models with simple strain-softening rules. In such
cases, the models can be readily regularised by assuming that the strain-softening variable
depends on the nonlocal plastic shear strain. However, sand exhibits strain softening
influenced by several variables. Hence, the nonlocal regularisation of an anisotropic critical
state sand model is presented in this thesis, and the void ratio in this model is assumed

nonlocal.
The research presented in the thesis can be divided into four major parts.

In the first part (Chapter 3), the introduction and derivation of the anisotropic sand
constitutive model used in this thesis were presented. Anisotropy refers to the different
mechanical properties of materials in different directions. From the micro perspective, the
anisotropic characteristics are due to the preferred orientation of particles and void and/or
crack (Oda et al., 1985; Duveau et al., 1998; Li and Dafalias, 2012; Gao et al., 2013). The
anisotropic sand model used in this thesis is developed based on the anisotropic critical state
theory (Li and Dafalias, 2012). The main feature of the anisotropic critical state theory is
that sand fabric at the critical state has a unique magnitude and is codirectional with the

loading direction. The model to be used here was proposed by Gao et al. (2020).

In the second part (Chapter 4), three different nonlocal models were developed based on
different weight functions: Gaussian (GD), Galavi and Schweiger (G&S), and over-nonlocal
(ON) functions. The distributions of these weight functions were outlined. The GD function
exhibited the highest contribution to the computed nonlocal variable at the centre. However,
it led to the nonlocal variable being concentrated predominantly at the local point, hindering
its spread to surrounding points and thereby reducing the effectiveness of the nonlocal
method. The G&S and ON functions represented an improvement, dispersing the nonlocal
variable away from the local point and forming two similar peaks near it. The ON function
required the determination of an appropriate nonlocal parameter m, which significantly

influenced this method.
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In the third part (Chapter 5), a comprehensive comparison of three different weight functions
was carried out by various BVPs, including drained and undrained plane strain compression
tests, the strip footings problems on level ground and near a slope, and retaining wall
problems under both passive and active conditions. The load-displacement curves, shear
band thicknesses and shear band orientations predicted by different nonlocal models were

compared, respectively.

In the final part of the work (Chapter 6), a more in-depth discussion and analysis of the G&S
method were presented, since a comparison of three different nonlocal methods
demonstrated that the G&S method is the most effective in mitigating mesh dependency
issues. In this Chapter, plane strain compression tests with rough boundary conditions under
both drained and undrained analysis are simulated. The efficiency of the G&S method is
justified through force-displacement relationship curves and shear strain contours (shear
band orientation and thickness). The effect of initial density and confining pressure on the
nonlocal regularisation method is also discussed. Furthermore, the evolution of state
variables within the shear band under smooth boundary conditions is investigated by cross-
sections and selected elements (inside and outside the shear band). These state variables
include void ratio e, anisotropic variable A, degree of anisotropy F and shear strain. The
effect of anisotropy on strain localisation is investigated using soil samples with various
bedding plane orientations (a=15°, 0=30°, and 0=45°). Finally, the performance of the

nonlocal method under 3D loading conditions is presented.

The main conclusions of this thesis are summarised below.

7.1 Comparison of three weight functions in BVPs

In biaxial compression tests, the local and three diffident nonlocal models were compared
under both drained and undrained conditions.

(1) The force-displacement curves show that G&S and ON functions display more
insensitive results than GD under drained conditions. This is because the local value
contributes most to the nonlocal variable for the GD method. As for the undrained case,

there is no distinct difference between different nonlocal models.

(2) The orientation of shear bands increases with mesh size under both drained and
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undrained conditions. The difference in shear band orientation due to mesh size is smaller
under undrained conditions than drained conditions for both local and nonlocal analyses.
Nonlocal methods help circumvent mesh dependency. Moreover, the G&S and ON
functions demonstrate more consistent results than the GD function under both drained

and undrained conditions.

(3) Based on the contour plots and the cross-section profiles, the local model exhibits mesh-
dependent shear band thickness. In contrast, nonlocal models utilising the G&S and ON
functions demonstrate slight variations in shear band thickness among different mesh
sizes. Additionally, the maximum shear strain within the shear band is lower for the

undrained case than the drained case in both local and nonlocal models.

(4) The regularisation techniques only work when the mesh size h < [.. The shear band
thickness simulated by the local model significantly increases with mesh size, and the
shear band thickness predicted by G&S and ON functions is more stable with mesh size
than GD function. Furthermore, the shear band predicted by the nonlocal models

increases with /.

Three nonlocal models were also compared and implemented in real-world boundary value
problems (BVPs) under drained conditions. These problems included strip footing problems
on the ground sand level and near a slope, as well as retaining wall problems considering
active and passive failure conditions respectively. Nonlocal models display consistent results

than the local model in all simulations.

(1) The G&S function predicts better results in the problem of strip footing on level sand
ground. However, the ON model gives a speedy reduction of Q after reaching the peak,
which does not match the experimental observations. This is caused by the excessive
volume expansion predicted by this model. It is found that a bigger m value gives an
even steeper strain-softening curve for the ON function. Therefore, the ON function is
unsuitable for this problem, even though it works well in the plane strain compression

tests.

(2) In the results of the strip footing on the slope, as the mesh size becomes finer, the peak
value of bearing capacity decreases. Nonlocal regularisation effectively mitigates the
mesh-dependent issue and decreases the ratio of strain softening. Nonetheless, the

nonlocal functions still indicate a minor variation in the mesh size.
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(3) In the retaining wall problems, nonlocal models alleviate the mesh sensitivity, resulting

in a consistent o, — u/h,, curves. The nonlocal regularisation delays the peak state in
the passive failure condition case. The angle of the shear band decreases with increasing
mesh size under active earth pressure, whereas it increases under passive earth pressure.
The nonlocal methods reduce the disparity between the largest and smallest measured
angles obtained from contour plots, particularly with the G&S function, where the angle
remains nearly constant under active earth pressure. Additionally, under passive earth
pressure, the angle measured from the G&S function is slightly larger than that from the

GD and ON functions.

7.2 Strain localisation in plane strain compression

The nonlocal method with G&S weight function was simulated by both drained and

undrained plane strain compression tests under rough boundary conditions. Moreover, the

evolution of state variables, the effect of initial density and confining pressure, and the effect

of anisotropy on strain localisation of both local and nonlocal models under smooth

boundary conditions were further investigated.

1)

@)

3)

Under rough boundary conditions, the nonlocal method demonstrates mesh-independent
force-displacement curves, and the peak value is reached earlier compared to smooth
boundary conditions. Minor variations were observed in both shear band orientation and
thickness between coarse and fine meshes. The shear band orientation decreases with

increasing mesh size, while the shear band thickness increases with mesh size.

The local model also demonstrates a mesh-dependent width of state variable
concentration in cross-sections. In contrast, the nonlocal model shows only slight
variations in the width of state variable concentration for different mesh sizes. For both
smooth and rough boundary conditions, the results obtained from the G&S function

indicate a significantly larger shear band thickness compared to the local model.

Not only does the fluctuation in the change of the state variables decrease, but also the
differences in peak values of the state variables between various mesh sizes observed in
the local model are significantly reduced after nonlocal regularisation. The values of the
state variables within the shear band are significantly greater than those outside,

primarily due to shear strain concentration. Regarding the impact of confining pressure
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and initial density on the nonlocal method, the effectiveness of reducing mesh
dependency in the nonlocal method increases when the void ratio is higher or when the

confining pressure increases.

Regarding the impact of anisotropy on the nonlocal method, the results indicate that the
nonlocal method remains unaffected by various positive bedding plane orientations.
However, negative bedding plane orientations do have an impact on the nonlocal method. In
the local model, the peak reaction force for negative bedding plane orientation is greater than
that for positive bedding plane orientation. Conversely, in the nonlocal model, the situation

is reversed.

7.3 Future work

(1) Treat More State Variables as Nonlocal

The strain softening of the anisotropic sand model used in this research is affected by the
stress state, void ratio, and fabric tensor. The void ratio increment is only affected by the
volumetric strain increment, making it convenient to assume the void ratio increment is
nonlocal(Mallikarachchi and Soga, 2020; Gao et al., 2021). Other state variables remain
local due to the difficulty in implementing nonlocal regularisation. When not all state
variables affecting strain softening are nonlocal, it negatively impacts the effectiveness of
nonlocal regularisation (Li and Gao, 2024). For example, there is still a slight variation in
the nonlocal predictions of shear band thickness and shear band orientation with different
mesh sizes, regardless of which nonlocal function is employed. All the nonlocal functions
can reduce but not eliminate the mesh dependency (Summersgill et al., 2017). Thus, future

work will mainly focus on trying to make more state variables nonlocal.

(2) Comparison and Combination of Nonlocal Method with Other Regularisation

Methodologies

In the literature review, four regularisation methodologies were introduced: the viscosity
regularisation method, the strain-gradient enhanced approach, the micro-polar continuum
approach, and the nonlocal method. Each of these methodologies has its own advantages and
disadvantages. Therefore, in future work, each regularisation method will be thoroughly

compared in practical cases. For example, the micro-polar continuum approach will be
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combined with the critical sand model from this research and compared with the nonlocal
critical sand model. Additionally, the nonlocal method will be combined with other
regularisation methodologies, as there is no single regularisation method that is perfectly
effective in all scenarios. In cases where a single regularisation method may not suffice to
address mesh-dependency issues, combining multiple regularisation approaches can be a
viable solution. To date, some combinations of regularisation methods have already been
applied. For instance, the combination of viscosity regularisation with the strain-gradient
enhanced method (Wang et al., 1998; de Borst and Pamin, 1996; Oka et al., 2002; Zhang et
al., 2004). Subsequently, Tang and Li (2007) proposed a combination of viscosity
regularisation with the micro-polar continuum approach. However, there is currently no
study on the combination of the nonlocal method with other regularisation methods, so this

will also be part of future plans.
(3) Implementation of Explicit, Dynamic Analysis Method with Nonlocal Method

In this research, when simulating boundary value problems, calculations often halt due to
convergence issues. This is primarily because the Standard, General — implicit algorithm is
used for analysis in step options of Abaqus. The Standard, General — implicit algorithm uses
the Newton method for iteration, which incurs a high cost for each time increment but allows
for larger time increments (Hughes, 2012). Convergence can be an issue in this case. It can
be efficient for linear and some nonlinear problems. More materials, elements, and
procedures are available in the standard method. In future work, attempting to combine the
explicit, dynamic analysis method in Abaqus with the nonlocal method. This approach
eliminates the need to consider convergence issues. The Explicit, Dynamic — explicit
algorithm uses a direct iterative method, which incurs a small cost for each time increment
but requires relatively small increments. Abaqus pre-determines the time increment based
on wave propagation speed and the minimum mesh size. This method can be efficient for
highly nonlinear and contact problems. For quasi-static problems, it is important to properly
adjust model parameters such as density and total time to achieve good computation

efficiency (Abagus Documentation, 2016; Wang and Yang, 2017).

(4) Implementation of Nonlocal Method under Cyclic Loading

In this research, only monotonic loading is considered for all simulations (where the load
continuously increases or decreases throughout the process without reversing). However,
cyclic loading is also common in many practical engineering applications (Gao et al. 2023).
For instance, in the context of bridge engineering, structures often face cyclic loading due to
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traffic loads, wind forces, and thermal variations (Smith et al. 2017; Johnson et al. 2018).
Similarly, buildings experience cyclic loading from environmental factors like wind and
seismic activities (Lee and Kim 2020; Zhang et al. 2021). While the nonlocal method has
demonstrated its effectiveness under monotonic loading conditions, its application under

cyclic loading still requires further exploration.
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m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function (0.006 m)
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Figure A-4 Cross-sectional profiles of the anisotropic variable A from local and nonlocal
models: (a) Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S
function (0.006 m)
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Figure A-5 Contours of the degree of anisotropy F from local and nonlocal models: (a)
Local (0.004 m); (b) Local (0.006 m); (c) G&S function (0.004 m); (d) G&S function
(0.006 m)
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shear band under rough boundary conditions
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