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Abstract

Introduction

Extrachromosomal circular DNAs (eccDNA) vary in sizes and drive many aspects of tumour

biology, including drug resistance and oncogene amplification. However, little is known

about their landscape, role, and association with specific features of cancer in pancreatic

ductal adenocarcinoma (PDAC).

Approach

To better understand their properties in PDAC, I combine multiple sources of genomic data

with transcriptomic data from a large library of PDAC patient-derived organoids (PDOs),

including some with matched primary tumours or cell lines, and a panel of PDAC patient-

derived cell lines.

Results

Here, I report that large and amplified eccDNAs (ecDNAs) are prevalent in PDAC, revealing a

diverse landscape containing PDAC-specific oncogenes. The frequency of tumours harbouring

ecDNAswas increased when genomic instability and TP53 alterations were present, suggesting

the association of ecDNA occurrence with unstable genomes. Furthermore, integrating

experimental work, performed by collaborators at the University of Verona, and computational

analysis, ecDNAs were found to drive PDO adaptation to harsh environments.Investigation

of the complete eccDNA landscape revealed that eccDNAs predominantly originate from

regions with a high gene- and enhancer-density, active transcription, and accessible chromatin.

I identified 61 recurrent eccDNA hotspots associated with increased transcription suggesting

a direct link between transcription and eccDNA formation. Finally, as eccDNA analysis

involves the use of multiple tools, I present nf-core/circdna, an open-source workflow that

integrates the tools of eccDNA research and data processing. This workflow offers ease of

use, portability, comprehensive documentation and full reproducibility.

Conclusions

EccDNAs are an important feature of PDAC genomic. This in-depth characterisation of

multiple features of eccDNAs provides a comprehensive overview of their properties in

PDAC and a valuable resource for future research, hopefully uncovering potential avenues

for eccDNA-based precision medicine.
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“The fuel on which science runs

is ignorance.”
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Chapter 1
Introduction

Biology is the study of complicated

things that have the appearance of

having been designed with a purpose.

Richard Dawkins

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease and the most prevalent

form of pancreatic cancer. The primary curative treatment is surgical resection, but unfortu-

nately, it is often not feasible for many patients (Mizrahi et al., 2020). While targeted therapies

have improved patient survival, a significant number of PDAC patients have tumours that lack

actionable alterations, rendering personalised therapies ineffective (Pishvaian et al., 2020).

This highlights the need for a deeper understanding of PDAC at the molecular level to guide

future therapeutic strategies.

A promising area of research that has recently gained significant attention involves ex-

trachromosomal circular DNAs (ecDNAs). These genetic elements are present in almost all

cancer types and are known to contribute to oncogene amplification, cancer progression, and

drug resistance (Kim et al., 2020; Nathanson et al., 2014). However, their comprehensive

landscape, functional roles, characteristic features, and biogenesis in PDAC have not yet been

fully delineated. This thesis aims to address these critical knowledge gaps by conducting

an in-depth characterisation of ecDNAs in PDAC. The investigation seeks to establish a

foundation for understanding ecDNAs’ broader implications in PDAC, potentially guiding

future research towards novel diagnostic and therapeutic approaches.

1.1 Cancer

Cancer is defined by an uncontrolled division of abnormal cells in specific parts of the hu-

man body, which can have the characteristic to invade proximal and distant tissue forming

metastatic niches. In normal tissues, cells are under constant control mechanism to maintain
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INTRODUCTION 1.1. Cancer

homeostasis between dividing stem cells and differentiated cells. This is governed by mo-

lecular mechanisms inhibiting cell proliferation, activating cell differentiation or cell death.

Through their lifespan, cancer cells accumulate genetic and epigenetic alterations that allow it

to become abnormal and escape the normal cell regulations. This can include resistance to cell

death, increased genomic instability, defects in DNA repair, immune escape, increased cell

proliferation, or acquiring the ability to metastasise. Tumour growth and metastatic formation

in different types of cancer can lead to various health complications, significantly impacting the

health of the patient. These complications include organ failure, internal bleeding, increased

susceptibility to infections, and respiratory failure, all of which can have life-threatening

consequences (Hanahan, 2022; Bishop, 1987; Weinberg, 1996, 2013).

1.1.1 Cancer genomics

Cancer genomes are characterised by a complex landscape of genetic alterations, comprising

of both driver alterations that contribute to tumour initiation and progression, and passenger

alterations that have minimal impact on cancer growth. Depending on the type of genomic

alteration, gene activity and transcription of the affected genes can be positively or negatively

modulated. Besides single-nucleotide mutations, which are the most common form of genomic

alterations, tumours can also be affected by larger alterations such as DNA deletions, insertions,

amplifications, and translocations. While small deletions and insertions in genes can disrupt

the normal function of the encoded proteins, deletions or amplifications spanning entire genes

or contiguous regions of the genome can result in abnormal transcription and activity of the

protein products (Bishop, 1987; Vogelstein et al., 2013).

Genomic alterations arise from a combination of intrinsic and extrinsic factors. Intrinsic

factors include errors during DNA replication and repair, or spontaneuos DNA damage. Ex-

trinsic factors involve the exposure to mutagenic agents that induce DNA mutations (Modrich,

1994; Wu et al., 2016).

In some cases, individuals can inherit tumour-promotingmutations in their germline, which

are passed on from their parents. These germline mutations can predispose the indviduals to

an increased risk of developing certain types of tumours. However, it is important to note that

most alterations in cancer are somatically acquired over time (Bishop, 1987; Vogelstein et al.,

2013; Weinberg, 2013).

The consequences of genomic alterations on the cancer biology depend on the affected

genes. Protein inactivating alterations are usually found in tumour suppressor genes, such as

tumour protein 53 (TP53), cyclin dependent kinase inhibitor 2A (CDKN2A), breast-cancer

gene 1 and 2 (BRCA1/BRCA2), or retinoblastoma 1 (RB1). Inactivation is often facilitated

by protein-altering mutations, such as single-nucleotide variations, insertions, or deletions,

or the loss of gene copies. In contrast, activating alterations, such as gene amplifications

or protein-activating mutations, drive the over-activation of proto-oncogenes, transforming

them into cancer driving oncogenes. Proto-oncogenes encode proteins with roles in cell
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INTRODUCTION 1.1. Cancer

proliferation, cell survival, or both. Some of the most frequently deregulated oncogenes in

cancer are genes from the Myc family, MYC (c-Myc), MYCL (L-Myc), and MYCN (N-Myc),

the Kirsten rat sarcoma viral oncogene Homolog (KRAS), the epidermal growth factor receptor

(EGFR), and the B-cell lymphoma 2 (BCL2) (Weinberg, 1996, 2013; Vogelstein et al., 2013;

Croce, 2008).

Understanding the molecular mechanisms that drive cancer development and progression

are essential for the development of effective therapeutic approaches for individual patients.

Through world-wide efforts, thousands of cancer genomes have been analysed using next-

generation sequencing technologies. Coupled with advances in computational algorithms,

these studies have uncovered cancer-specific recurrent gene alterations, which have revealed

complex heterogeneity in the genetic makeup of tumours (Tomczak, Czerwińska & Wizner-

owicz, 2015; Aaltonen et al., 2020; Vogelstein et al., 2013; Andor et al., 2016). Interestingly,

such heterogeneity is not only observed between different cancer types, but also between

patients affected by the same disease. This heterogeneity possess significant challenges for

developing therapeutic approaches, as not all cancer can be treated equally (Bedard et al.,

2013). Adding another layer to this complexity, single-cell analyses have unraveled the

multifaceted architecture of tumours, identifying varied cell populations with unique genetic

and phenotypic profiles. This evolving understanding describes cancer not as a static disease,

but as a dynamic system that can continuously evolve (Keller & Pantel, 2019; Lawson et al.,

2018).

Tumour heterogeneity and evolution

Most tumour populations are extensively heterogeneous in their phenotypic and genotypic

architecture (Campbell et al., 2010; Andor et al., 2016). This does not only include the

genetic alterations which shape the tumour populations, but also the interplay between non-

cancerous cells. One of the main drivers of intra-tumour heterogeneity is genomic instability.

Genomic instability leads to the accumulation of mutations with either neutral, beneficial or

detrimental effect for the cancer cells. The effect of the mutation is also highly dependent

on the environmental circumstances. While specific alterations can have negative effects on

cell growth and survival at the tissue of origin, beneficiary effects can be observed in other

environments such as pre-metastatic niches (Dagogo-Jack & Shaw, 2018).

The cancer initiation process is driven by an acquisition of multiple mutations that activate

oncogenic programs and inactivate tumour suppressor genes, which decouple the cells from

their normal cell programs (Hanahan, 2022; Vogelstein et al., 2013). Affected by genomic

instability, cancer cells are not only mutated in specific genes, but contain somatic mutations

in hundreds of other regions of the genome, which don’t seem to have a large impact on

the cancer biology and fitness. During cancer progression, cancer cells become intensively

unstable and accumulate an abundance of somatic mutations and alterations, which do not

only affect local regions of the genome, but can affect whole chromosomes. Due to the
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continuous accumulation of mutations during cancer progression, single cancer cells acquire

novel driver mutations that leads to the formation of sub-populations inside the tumour. These

sub-populations have vastly diverse characteristics in terms of cell growth rates, response

to therapies, or genetic and transcriptional landscape (Caiado, Silva-Santos & Norell, 2016;

Dagogo-Jack & Shaw, 2018; Williams et al., 2023). Therefore, sub-populations inside tumour

cells might behave differently during various stress or environmental conditions making the

tumour highly adaptable.

Depending on different selective pressures, sub-populations in heterogeneous tumours can

emerge or can be extinguished. This is especially critical in therapeutic circumstances where

small sub-populations show high tolerance to a given drug or can evolve to exhibit increased

drug tolerance (Dagogo-Jack & Shaw, 2018). Studies in various cancer types identified that

sub-populations pre-exist before treatment and drive drug resistances (Jamal-Hanjani et al.,

2017; Bhang et al., 2015). Therefore, finding combinatorial approaches that target the majority

of cancer cells, but also sub-populations need to be identified to completely eradicate cancer

cells from the body.

Genomic instability

Genomic instability is one of the hallmarks of cancer and is characterised by a high frequency of

large structural variations (SVs), increased mutational burden, and complex genome rearrange-

ments such as chromothripsis or breakage-fusion bridge (BFB) cycles (Negrini, Gorgoulis &

Halazonetis, 2010). Genomic instability is observed in nearly all cancer types and contributes

to tumour progression and acquired resistance to therapy (Negrini, Gorgoulis & Halazonetis,

2010; Nowell, 1976; Dharanipragada et al., 2023; Shoshani et al., 2021).

Genomic instability can arise from several sources, including the inactivation of genome

caretaker genes or the activation of oncogenes. Genome caretaker genes such as BRCA1/2,

XRCC7, and MSH2, are involved in DNA damage repair. When these caretaker genes

are inactivated, DNA damage accumulates. However, cancer genome landscape studies

have shown that caretaker genes are infrequently mutated in sporadic cancers. Therefore,

it has been suggested that many sporadic cancers are not affected by caretaker-inactivation-

induced genomic instability (Negrini, Gorgoulis & Halazonetis, 2010). On the other hand,

oncogene-induced genomic instability is more commonly observed in sporadic cancer due to

the high alteration frequency of oncogenes. This type of genomic instability is often caused by

oncogene-induced replication stress. Several genes, including CCND1, CCNE1, KRAS, and

MYC, have been identified to induce replication stress and DNA damage. Activation of these

genes can lead to premature cell cycle entry or increased replication origin firing, resulting in

DNA damage and the activation of the DNA damage response pathways (O’Connor, 2015;

Hills & Diffley, 2014). Tumour suppressor genes such as TP53 and CDKN2A, which are

frequently mutated in cancer, play a role in regulating these mechanisms and maintaining

genomic stability by stalling cell cycle progression or activating cell apoptosis (Negrini,
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Gorgoulis & Halazonetis, 2010; Aaltonen et al., 2020; Mijit et al., 2020).

Somatic copy number alterations

Cancer initiation and progression is driven by the acquisition of somatic driver alterations,

including somatic copy number alterations (SCNAs). Technological advances and cost

reduction enabled the large-scale identification of copy number changes in cancer samples.

Common techniques include the use of single-nucleotide polymorphism arrays or whole-

genome sequencing (WGS), which identify the full SCNA landscape. This allowed the

identification of driver events and cancer driver genes, such as tumour suppressor genes and

oncogenes, which play a role in the disease biology by altering gene dosage (Zack et al., 2013;

Beroukhim et al., 2010; Steele et al., 2022; Almal & Padh, 2012).

SCNAs are extremely common in cancer and especially in specific regions of the genome.

These regions contain tumour suppressor genes or oncogenes, which are inactivated or activ-

ated due to DNA deletion or amplification, respectively. Recurrence of gene amplifications

and deletions is dependent on the cancer type, but common SCNA are found broadly among

many cancer types (Beroukhim et al., 2010).

Amplifications of genomic regions increases gene copy number levels and can con-

sequently over-express proto-oncogenes to drive tumour malignancy. Genomic amplifications

may manifest as simple tandem duplications to complex chromosomal rearrangements. Cata-

strophic events leading to complex chromosomal rearrangements are chromothripsis or BFB

cycles. These rearrangements can give rise to focal amplifications, including homogeneously

staining regions (HSRs), and extrachromosomal circular DNAs (ecDNAs) (McClintock, 1941;

Shoshani et al., 2021; Rosswog et al., 2021).

HSRs do no exhibit the usual chromosomal pattern in G banding images and are homo-

geneously stained, thus their name. This specific type of amplification is associated with an

increased DNA content and gene amplifications (Cowell, 1982; Balaban-Malenbaum, Grove

& Gilbert, 1979; Storlazzi et al., 2010). EcDNAs are also associated with massive copy

number amplifications, which can exceed copy number levels observable on chromosomes

(Kim et al., 2020). In a study by Kim et al. (2020), ecDNAs were identified to be among one

of four amplicon classes (circular amplicons (ecDNAs), BFB amplicons, heavily-rearranged

amplicons, and linear amplicons) commonly identified in cancer and were found to exist in

almost all cancer types. Other amplicon classes are defined based on their genomic char-

acteristics (Kim et al., 2020; Deshpande et al., 2019). Linear amplicons are simple focal

somatic amplifications of proximal regions. Heavily-rearranged amplicons describe distant

heavily-rearranged regions that jointly form an amplicon. And lastly, BFB amplicons harbour

genomic signatures of a BFB (Kim et al., 2020; Deshpande et al., 2019). The analysis by Kim

et al. (2020) showed the importance of ecDNAs in cancer and was one of the cornerstone for

my investigation of the role of ecDNAs in PDAC.
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1.2 Pancreatic ductal adenocarcinoma

1.2.1 Overview and clinical presentation

Pancreatic cancer (PC) is one of the deadliest solid tumour malignancies with a 5-year survival

rate of less than around 15% (Siegel et al., 2023; “Pancreatic cancer statistics”, 2015). In the

UK, PC is the 11th most common cancer type, but the 5th most common cause of cancer-

related death (“Cancer Statistics for the UK”, 2015) (Figure 1.1). The most common form of

PC is PDAC, which contributes to around 90% of all PC cases. Due to the rise of obesity and

type 2 diabetes in the western population, the PDAC incidence rate is predicted to increase

over the next decade (Mizrahi et al., 2020; Sarantis et al., 2020; Siegel et al., 2023).

Fig. 1.1 | Pancreatic cancer statistics compared to other cancer types. Cancer Incidence: UK cancer incidence

rates of the top 15 most common cancer types (2017). 3-Year Cancer Mortality: UK 3-year cancer mortality of

the top 15 most common cancer types (2017-2019). 5-Year Survival Rate: Cancer survival rate in percent of

selected cancer types. Data from England and Wales (2010-2011). Brain & Others*: Brain, Other CNS and

Intracranial Tumours. Source: “Cancer Statistics for the UK” (2015), accessed on 1 Jun. 2023.

PDAC is usually identified at an advanced stage due to missing standardised methods for

early-detection and late onset of symptoms. The only universally applied biomarker used for

PDAC diagnosis is carbohydrate antigen 19-9 (CA19-9), which has several limitations and

lacks sensitivity and specificity for early detection (Swords et al., 2016). PDAC patients with

late-stage disease are mostly faced with a poor prognosis and treated with chemotherapeutic

agents such as Gemcitabine or FOLFIRINOX (5-fluorouracil, folinic acid, irinotecan, and

oxaliplatin) based on their fitness. In the last few years, more treatment options were tested in

clinical trials and Gemcitabine is nowadays used in combination with nanoparticle-albumin

bound paclitaxel (nab-paclitaxel). However, the overall survival and survival time only

marginally improved over the last years, despite the introduction of new treatment strategies

(Mizrahi et al., 2020).

The success of standard-of-care chemotherapy is strongly dependent on the underlying

genomics and transcriptomics of PDAC. Novel trials are now investigating the use of precision

medicine on actionable genetic alterations. Despite their success in increasing patient survival

time, only limited number of patients harbour actionable mutations, which makes them eligible

for current personalised treatment options (Springfeld et al., 2023; Aung et al., 2018; Pishvaian

et al., 2020). Therefore, novel actionable genetic alterations need to be identified to make

personalised medicine available to a broader PDAC patient population.
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1.2.2 Genomics

Large genomic sequencing studies have provided valuable insights into the genomic landscape

of PDAC, revealing recurrent mutations, copy number alterations, and SVs. These genomic

alterations contribute to the tumour initiation and progression, shape the tumour biology, and

underpin intra-tumour heterogeneity.

PDAC is defined by a core set of driver mutations, along with a diverse range of less

prevalent mutated genes. Among the recurrent mutations, activating KRAS mutations are the

most prevalent, occurring in around 90% of all PDAC cases and arising early during PDAC

development. In addition toKRAS, three other key driver genes are frequently altered in PDAC:

CDKN2A (30 - 50% of cases), TP53 (60 - 70% of cases) and SMAD4 (20 - 50% of cases).

Inactivating mutations of these drivers play crucial roles in the initiation and progression of

PDAC by deregulating the cell cycle, DNA damage response, apoptosis, or cell differentiation

(Hruban et al., 2000; Witkiewicz et al., 2015; Bardeesy & DePinho, 2002; Jones et al., 2008;

Hu et al., 2021; Biankin et al., 2012).

Beyond these four core driver genes, PDAC is defined by a long tail of low-prevalence

mutations, which affect genes such as KDM6A, MLL3, ARID1A, TGFBR2, BRCA1/2, or

PALB2. These genes also have an important role in cancer pathways like DNA damage

response, TGF-beta signalling, chromatin remodelling (Biankin et al., 2012; Jones et al., 2008;

Collisson et al., 2019).

Furthermore, the PDAC genomic landscape extends beyond simple single-nucleotide

mutations and is characterised by extensive copy number and structural alterations. These

large genomic alterations play a significant role in deregulating key pathways and contributing

to PDAC progression (Waddell et al., 2015; Notta et al., 2016).

Copy number alterations, including gene amplifications and deletions, are prevalent in

PDAC and have large impacts on gene transcription and ultimately protein levels. Among the

most highly affected genes of copy number increases are the oncogenes MYC and ERBB2

resulting in the over-expression of their respective proteins. MYC encodes for a transcription

factor, which plays a pivotal role in activating the transcription of genes involved in cell

growth, proliferation, apoptosis, or cell differentiation (Dang, 1999, 2012). In PDAC, MYC

activity is enriched in a PDAC subtype showing the worst patient outcome and is amplified

and highly expressed in PDAC metastases, revealing its involvement in disease progression

(Sodir et al., 2020; Maddipati et al., 2022; Bailey et al., 2016). Similarly, the amplification

and over-expression of ERBB2, a regulator of cell proliferation and apoptosis, is associated

with a more aggressive disease and poor patient outcome (Ménard et al., 2003; Ortega et al.,

2022). On the other side of the copy number spectrum, copy number loss is common in

tumour suppressor genes, such as TP53, CDKN2A, and SMAD4, which are also frequently

mutated.
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Genomic instability represents a common feature of PC defined by an abundance of

copy number and structural alterations or the occurrence of catastrophic genomic rearrange-

ments such as chromothripsis. Chromothripsis, a phenomenon where chromosomes undergo

shattering and rearrangement, occurs frequently in PDAC with a frequency exceeding 50%

(Notta et al., 2016; Cortés-Ciriano et al., 2020; Waddell et al., 2015). These genomic events

can result in amplifications, deletions, or knockouts of cancer driver genes leading to fast

progression along the disease continuum (Notta et al., 2016). Especially in advanced stage

disease, genomic instability in combination with polyploidisiation is common which can drive

metastases and progression (Chan-Seng-Yue et al., 2020; Notta et al., 2016). These events

are linked to be associated with disrupted TP53 activity, highlighting the importance of TP53

in the stability of PDAC tumours (Rausch et al., 2012; Notta et al., 2016).

Overall, understanding the genomics of PDAC is crucial to understand the biology regard-

ing treatment effectiveness. However, with regards to the actionable mutations identified,

precision medicine cannot be applied to each patient. Further exploration of the complex

genomic landscape and its functional implications is needed to uncover potential therapeutic

targets. This can inform the development of more effective treatment strategies for patients

with PDAC.

1.2.3 Transcriptomics reveals PDAC subtypes

Over the past few decades, omic technologies have identified a range of signatures that

define the PDAC biology. The most notable studies have defined PDAC subtypes from

transcriptomic data. While initial research into the PDAC transcriptome employed array-

based methodologies, current research overwhelmingly utilises the advanced capabilities of

RNA sequencing (RNA-seq) (Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016;

Chan-Seng-Yue et al., 2020; Mantione et al., 2014). Transcriptomic subtyping studies have

used gene expression profiles to define between two and five distinct subtypes. While the

number and the names of the subtypes differ between studies, the actual gene programmes that

define each subtype are highly concordant. In all studies one subtype (Basal-like, Squamous,

Quasimesenchymal, Pure Basal-like) expressed Basal-like or Squamous-like features and

is associated with significantly worse patient outcome. Additionally, another overlapping

subtype termed Classical, Pancreatic-Progenitor, or Pure-Classical, expresses endoderm

specification transcription factors such as GATA6, HNF1A, FOXA2/3, HNF4A, or PDX1.

The majority of PDAC tumours show a Classical/Pancreatic-Progenitor expression signature

which is associated with a better outcome and decreased aggressiveness compared compared

to the Basal-like subtype (Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015; Puleo

et al., 2018; Collisson et al., 2019).

Overall, defining PDAC subtypes is a prominent technique to reveal tumour groups

that may respond to specific chemotherapies (Aung et al., 2018). However, by including

other omics technologies, a more comprehensive overview about the PDAC subtypes can be
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generated. While each subtype can reveal information about drug susceptibilities, profiling of

PDAC tumours may provide individual treatment strategies.

1.3 Extrachromosomal circular DNA

1.3.1 EccDNA vs. EcDNAs - History, nomenclature, and definition

Extrachromosomal circulars DNAs were identified and described under different names

starting from the 1960s. The earliest research is dated back to 1964 when Hotta and Bassel

(1965) identified DNA circles in wheat nuclei and boar sperm. In the following year, (Cox,

Yuncken & Spriggs, 1965) identified paired extrachromosomal chromatin bodies, called

double minutes (DMs), in pediatric tumours. By preparing and visualising chromosomes

during their metaphase, DNA bodies were identified outside the chromosomes. Due to their

miniature size, their chromatin content, and their occurrence in pairs, Cox, Yuncken and

Spriggs (1965) termed these elements DMs. It was debated if those extrachromosomal DNAs

were of bacterial origin, but they could be found in multiple cells of the same patient, under

different conditions, and were absent from interphases or the cell background. Therefore, it

was concluded that these are from chromosomal origin. Later research identified that DMs are

circular structures and have a large size with more than 100 kbp, which makes them observable

in cell metaphases with a light microscope (Cox, Yuncken & Spriggs, 1965; Hahn, 1993).

Additionally, DMs do not contain centromeres but do normally replicate during the cell cycle,

leading to uneven segregation into the daughter cells (Levan & Levan, 1978; Hamkalo et al.,

1985). Overall, DMs were associated with tumour heterogeneity, gene amplification, and

drug resistance (Cowell, 1982; Barker, 1982). Rather than DMs, the large, usually amplified,

extrachromosomal circular DNAs are now named extrachromosomal circular DNA with

the abbreviation ecDNA. Common identification techniques of ecDNAs are whole-genome

sequencing (WGS), flourescence in situ hybridisation (FISH) of cell metaphases, DAPI

staining of cell metaphases, or Circle-seq (sequencing of extrachromosomal circular DNA)

(Koche et al., 2020; Cox, Yuncken & Spriggs, 1965; Henssen et al., 2019a; Kim et al., 2020;

Turner et al., 2017; Wu et al., 2019; deCarvalho et al., 2018).

On the other hand, many smaller extrachromosomal circular DNA elements were identified

which were named based on their structure and sequence. Small polydispersed circular DNA

(spcDNA) were identified by electron microscopy and describes small DNA circles with

heterogeneous size between 150 and a few thousand bp (Smith & Vinograd, 1972). SpcDNA

contain mostly repetitive sequences and occur more frequently in unstable genomes (Gaubatz

& Flores, 1990; Cohen, Regev & Lavi, 1997). Another term for small circular DNAs is

microDNA, which was established in 2012 to define small circularised DNAs that were

isolated from mouse and human cell lines (Shibata et al., 2012). Those have a similar size

distribution than spcDNA with an average size of around 200-400 bp (Paulsen et al., 2018;

Shibata et al., 2012; Dillon et al., 2015). Despite the size similarities, in comparison to
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spcDNA, microDNAs do mostly arise from non-repetitive regions and originate from all parts

of the genome (Shibata et al., 2012). However, it is unclear whether the contents and origin is

different of spcDNA and microDNAs or if these findings are dependent on the experimental

methodology used (Noer et al., 2022). Another type of smaller circles are telomeric circles,

which occur in cells with an active alternative lengthening of telomeres (ALT) pathway

(Cesare & Griffith, 2004). These circles contain repetitive telomeric nucleotide sequences and

can serve as a template for the telomere lengthening, an important step of the immortalisation

of tumour cells (Liao et al., 2020; Tomaska, McEachern & Nosek, 2004).

While different nomenclatures were defined for extrachromosomal circular DNA depend-

ing on their size, physical features, or appearance, they all can be grouped in two broad classes

(Table 1.1). One class contains the large amplified extrachromosomal circular DNAs with

specific genes and the diverse roles in cancer, and the other contains all smaller circular DNA

classes for which the role is only sparsely defined. In this thesis, I will use the term ecDNA for

large amplified circular DNAs that can be identified by either WGS, FISH, or DAPI staining

and eccDNA for the whole landscape of eccDNA which can be abundantly identified by

Circle-seq. These two groups are also mostly studied individually as their roles are vastly

different and they are also separately investigated in this thesis.

Tab. 1.1 | Difference between ecDNAs and eccDNAs. Functions that are still debated are marked with an

asterisk. Fluorescence in situ hybridisation (FISH), 4′,6-diamidino-2-phenylindole (DAPI).

Function Size Copy number Detection meth-

ods

Incidence

EcDNA

Oncogene Ampli-

fication, Elevated

Gene Expression,

Super-Enhancers,

Tumour Hetero-

geneity, Drug

Resistance

Large, usually

between 100 kbp

and a few Mbp

high WGS, Long-read

sequencing, FISH

or DAPI staining

Cancer Cells

EccDNA

Activate Im-

mune Response,

Telomere main-

tenance*, tran-

scription factor

sponging*, miRNA

and small gene

expression

small, typically ran-

ging from less than

100 bp to 10 kbp

variable, typically

low

Circle-seq, ATAC-

seq, Long-read se-

quencing, Inverse

PCR

Both Normal and

Cancer Cells

1.3.2 Structural features of ecDNA

EcDNA is double-stranded DNA with a circular structure that exist outside the chromosomes,

but inside the nucleus (Cox, Yuncken & Spriggs, 1965; Cowell, 1982; Wu et al., 2019).

EcDNAs derive from single or multiple chromosomal fragments, which can be rearranged,

before circularisation (Kim et al., 2020; Helmsauer et al., 2020; Deshpande et al., 2019). In
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most cases, the formation of ecDNA is preceded by chromosomal deletions which provide

the necessary material for their formation. Their size ranges from around 100 kbp to a few

Mbp, making them observable by light or electron microscopy (Turner et al., 2017; Cowell,

1982; Wu et al., 2019). The genomic content is similar to the chromosomal fragments they

are comprised of and their large size allows ecDNAs to bare full genes, especially oncogenes

(Vogt et al., 2004; Luebeck et al., 2023). Additionally, ecDNAs are packaged into chromatin

consisting of nucleosomes showing their large similarities to chromosomal DNA (Wu et al.,

2019). However, despite these similarities, ecDNAs are found to have no centromere, leading

to random segregation during the cell cycle (Figure 1.2) (Levan & Levan, 1978; Yi et al.,

2022).

EcDNAs are clearly visible in cell metaphases, but are also present in all stages of the

cell cycle. During the metaphase, ecDNAs are observed to be located closely around the

chromosomes, especially in proximity to their telomeres (Barker & Hsu, 1978). During

interphase, however, ecDNAs may form hubs inside the nucleus. These hubs comprise up to

100 ecDNAs and create spatial proximity of enhancers and oncogenes resulting in additional

interactions compared to diffused ecDNAs (Hung et al., 2021; Zhu et al., 2021). Zhu et al.

(2021) also identified that the transcription of ecDNA-genes is markedly increased when

hubs are formed. However, a recent study demonstrated that the ecDNA-gene expression is

mostly affected by the copy number amplification whereas hubs do not have an impact on

transcription, suggesting that more research is necessary to decipher the roles of ecDNA hubs

(Purshouse et al., 2022). Next to ecDNA-ecDNA interactions, ecDNAs are also interacting

with chromosomes. The ecDNA-chromosome contacts are associated with transcriptional

activity induced by enhancer elements on ecDNAs. EcDNA-based enhancers are mobile

inside the nucleus and have the potential to activate genome-wide gene transcription (Zhu

et al., 2021). Furthermore, ecDNAs can rewire the chromatin topology leading to transcription

activation of oncogenes due to co-occurrence with enhancer sequences on ecDNAs. On

chromosomes the normal chromatin topology did not allow enhancer-oncogene contacts,

however, by circularisation, the topology is changed mediating enhancer-oncogene contacts

and activated oncogene transcription (Morton et al., 2019).

EcDNAs are amplified circular chromatin elements that show highly elevated transcrip-

tional activity compared to other amplification classes (Kim et al., 2020). The high tran-

scriptional activity of ecDNA-residing genes is not only copy number dependent but is also

enhanced by an increased chromatin accessibility of ecDNAs compared to their chromosomal

counterparts (Wu et al., 2019). In addition, the observed amplification levels of ecDNAs also

exceed amplification levels of chromosomal origin (Kim et al., 2020).
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Fig. 1.2 | Segregation schema of chromosomal and extrachromosomal circular DNA. a, Chromosomes

are segregated evenly into the daughter cells. Each daughter cell inherits the same amount of chromosomes.

b, Three potential inheritance options are possible with two ecDNAs in the mother cell. The uneven ecDNA

inheritance can lead to ecDNA accumulation or reduction in the daughter cells.

1.3.3 Biological implications of ecDNAs in cancer

Occurrence in cancer

Pan-cancer studies identified that ecDNAs are common in almost all cancer types, albeit

with varying frequency levels. Glioblastoma, sarcoma, esophageal, cancer types showing

a highly aggressive phenotype, exhibit the highest ecDNA frequency, whereas in normal

tissue, ecDNAs are mostly absent (Kim et al., 2020; Turner et al., 2017; Cowell, 1982). In

glioblastoma more than 50% of tumours harbour ecDNAs, while cancers of the immune

system show minimal ecDNA occurrence. However, these cancer types also have general

low amplicon levels suggesting a dependency of ecDNA occurrence with large copy number

alterations. Similarly, the highest ecDNA-frequency was found in cancer types where most

tumours had at least one amplicon. Here, an amplicon is defined as an highly amplified

region with a copy number level above four. PC, comprising different pancreas cancer types,

exhibited a 12% ecDNA frequency (Kim et al., 2020).

Importantly, ecDNAs have been detected not only in primary tumours but also in various

tumour models, including cell lines, genetically-engineered mouse models, or patient-derived

xenografts (Turner et al., 2017; Koche et al., 2020; Cowell, 1982). A study by deCarvalho

et al. (2018) showed that ecDNAs are retained in xenograft mice models and neurospheres,

which originated from ecDNA-harbouring primary tumours (deCarvalho et al., 2018). These

models provide the platform for experimental ecDNA studies investigating the consequences

of ecDNA amplification and testing potential therapeutic approaches in ecDNA-harbouring

tumours.

Recent technological advances in large-scale ecDNA detection have enabled the compre-

hensive characterisation of the ecDNA landscape across various cancer types (Kim et al., 2020;

Turner et al., 2017; Koche et al., 2020; Luebeck et al., 2023). However, for low-prevalence

cancers or cancers without a high ecDNA frequency, such as PC, the characterisation remains

limited.
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Elevating oncogene transcription

Their chromosomal origin and their large size allows ecDNAs to harbour full protein-coding

genes and enhancer elements (Koche et al., 2020; Wu et al., 2019; Kim et al., 2020). From all

genes, especially oncogenes are significantly enriched on ecDNAs compared to non-oncogenes

(Luebeck et al., 2023). Notably, the oncogenes identified on ecDNAs is dependent on the

cancer type investigated (Kim et al., 2020; Koche et al., 2020; Turner et al., 2017). MYCN -

ecDNAs are common in neuroblastoma (Kohl et al., 1983; Koche et al., 2020), EGFR, CDK4,

and MYC on ecDNA are identified in glioblastoma (Zhu et al., 2021), HER2-ecDNAs are

prevalent inHER2-positive breast cancer (Vicario et al., 2015), and JUP- and ERBB2-ecDNAs

are commonly found in oesophageal cancer (Luebeck et al., 2023).

A comprehensive pan-cancer study demonstrated that ecDNA amplifications result in a

gene expression increase in comparison to different types of chromosomal amplifications

(Kim et al., 2020). The open chromatin structure of ecDNAs is considered to be one possible

reason for this increased transcription, as the chromatin shows greater accessibility than the

chromosomal origin (Wu et al., 2019). While the gene expression increase is also observed by

normalising for copy number levels, significantly higher copy number levels can be observed

on ecDNA compared to chromosomal amplicons (Kim et al., 2020; Wu et al., 2019; Luebeck

et al., 2023). It is not unusual to observe copy numbers of more than 20 on ecDNAs, which is

rare in simple amplicons of chromosomal origin (Luebeck et al., 2023; Wu et al., 2022a; Kim

et al., 2020). More complex amplicons, generated by catastrophic events such as BFB, can

also lead to these massive copy number levels. However, ecDNAs can also surpass BFB copy

number levels, making them a hallmark for massive copy number amplifications (Kim et al.,

2020).

EcDNAs mediate tumour evolution and drug resistance

Intra-tumour heterogeneity is affecting patient outcome and drug resistance (Fisher, Pusztai &

Swanton, 2013). Tumour sub-populations are defined by genomic alterations that can make

them more susceptible or resistant to given therapies (Bedard et al., 2013; Fisher, Pusztai &

Swanton, 2013). EcDNAs levels are highly variable based on uneven distribution during the

cell cycle, which can increase tumour heterogeneity and determine cell fitness for ongoing

survival (Yi et al., 2022; Turner et al., 2017). The fitness of a cell is defined by its underlying

genomics and the selection pressure arising from the constantly changing microenvironment,

environmental changes resulting from drug treatments, or environment present in metastatic

niches (Vanharanta & Massagué, 2013; Vishwakarma & Piddini, 2020; Salgia & Kulkarni,

2018).

EcDNA-dependent tumour heterogeneity originates from the creation of a pool of cancer

cells with varying degrees of ecDNA copy number levels (Turner et al., 2017). This pool of

cells is challenged by environmental factors removing cells without the required fitness. A

study by Nathanson et al. (2014) investigated the dynamic regulation ecDNAs containing
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mutant EGFR. The study found that glioblastoma cells can dynamically regulate the mutant

EGFR transcription by having mutant EGFR on an ecDNA. During treatment with the EGFR

tyrosine kinase inhibitor (TKI) erlotinib, the EGFR mutant ecDNAs copy number levels are

decreased to evade drug-induced cell death. Conversely, after withdrawal of TKI, EGFR

mutant ecDNAs re-emerge and amplify to drive tumour progression (Nathanson et al., 2014).

The earliest studies describing drug resistance mediated by ecDNA amplification date

back to the late 1970s and early 1980s. By treating various cell lines with increasing dosages

of methotrexate, amplification of the dihydrofolate reductase (DHFR) gene on ecDNA was

observed (Kaufman, Brown & Schimke, 1979; Da & Rt, 1981; Kaufman, Brown & Schimke,

1981; Beverley et al., 1984). Methotrexate is and old anti-cancer drug which inhibits DHFR,

a key enzyme for cell proliferation and growth (Huennekens, 1994). During methotrexate

treatment, DHFR-containing ecDNAs amplifications arise to substitute the DHFR inhibition

exhibited by methotrexate (Kaufman, Brown & Schimke, 1979; Da & Rt, 1981; Kaufman,

Brown & Schimke, 1981; Beverley et al., 1984). A further study revealed that most me-

thotrexate resistant cell lines harbouring DHFR-ecDNAs have partially or completely lost

their chromosomal DHFR gene, suggesting that the loss of the DHFR region preceded the

formation of the DHFR-ecDNA. This was highlighted by cells displaying intermediate states

of DHFR containing HSRs, followed by the chromosomal breakage and the generation of a

loose DHFR-containing fragment, which ultimately was used for ecDNA-generation. (Singer

et al., 2000). Interestingly, removal of methotrexate or prolonged methotrexate treatment

leads to ecDNA decrease and incorporation of the ecDNA into the genome (Haber & Schimke,

1981). The reintegration of ecDNAs was also observed by Nathanson et al. (2014) and displays

one of the mechanisms to decrease gene transcription. However, it seems that most ecDNAs

are not reintegrated but lost due to uneven segregation of ecDNAs and the accompanied cell

fitness changes (Beverley et al., 1984; Nathanson et al., 2014; Kaufman, Brown & Schimke,

1981; Da & Rt, 1981).

In a study of HER2-positive breast cancer models containing HER2-ecDNAs, it was found

that anti-HER2 treatment did not cause an ecDNA-dependent HER2 copy number decrease.

While HER2 protein levels did decrease, the HER2 ecDNA amplifications remained stable.

This suggests that decreasing ecDNA copy number levels is not a universal approach to

decrease protein levels and facilitate drug resistances (Vicario et al., 2015).

In summary, multiple studies have shown that ecDNA-dependent gene amplifications can

be a major driver of drug resistance and tumour heterogeneity. The potential for dynamically

adapting to environmental changes can impact cancer cell fitness and drug resistance high-

lighting the need for further studies investigating the underlying mechanism and the potential

for targeted therapy.
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Association with poor patient outcome

EcDNA plays a massive role in cancer and is driving tumour progression. In the pan-cancer

study by Kim et al. (2020) it was also found that patients with tumours harbouring ecDNAs

are associated with worse patient outcome in comparison to patients with tumours harbouring

other chromosomal amplifications (Kim et al., 2020). Furthermore, in a study investigating

ecDNAs in Barrett’s oesophagus, ecDNAs were significantly enriched in late-stage disease.

These findings highlight the importance of further research on ecDNAs as potential therapeutic

targets for cancer treatment, which may be applicable for patients with bad prognosis and

late-stage cancer.

1.3.4 EcDNA maintenance, targeting, and elimination

EcDNAs are replicated during the cell cycle, like normal chromosomes, which maintains

the information of the ecDNA-containing genes (Yi et al., 2022). However, the uneven

segregation of ecDNAs during cell division can facilitate accumulation or depletion of genetic

information in specific daughter cells, which can lead to cell fitness changes and high intra-

tumour heterogeneity (Yi et al., 2022). EcDNAs carry an abundance of cancer driver genes

important for tumour progression or drug resistance (Kim et al., 2020; Luebeck et al., 2023).

Therefore, cells are required to maintain or enrich ecDNA levels to progress in the disease

continuum or resist ongoing drug treatment.

As previously described, ecDNAs are rapidly amplified when under positive selection pres-

sure originating from environmental changes or drug treatment. In contrast, when removing

selection pressure ecDNAs and the ecDNA-containing genes levels are decreased (Kaufman,

Brown & Schimke, 1981; Schimke et al., 1981; Carroll et al., 1987; Carroll et al., 1988). In a

study by Von Hoff et al. (1991) several cell lines containing ecDNAs were analysed. It has

been noted that using hydroxyurea, a common anti-cancer drug, on all cell lines, decreased the

number of ecDNAs in a concentration-dependent fashion. Higher concentrations of hydroxy-

urea lead to a greater copy number reduction of ecDNAs and their incorporated genes. On

the contrary, chromosomal gene copy numbers were not affected by hydroxyurea (Von Hoff

et al., 1991). In a follow-up study by Von Hoff et al. (1992) it was observed that a decrease of

ecDNA levels by hydroxyurea can also affect tumourigenesis by reducing MYC-ecDNA copy

number levels. This effect is, again, not observed when using hydroxyurea on cell lines with

chromosomal MYC amplifications. It was also reported that the ecDNA copy number loss is

associated with the entrapment of ecDNAs within micronuclei (Von Hoff et al., 1992).

Micronuclei are formed by encapsulation of whole chromosomes, chromosomal fragments,

or ecDNAs. Micronuclei mostly form through chromosome breakage or mis-segregation

of chromosomes, but can also form by encapsulating damaged ecDNAs (Norppa & Falck,

2003; Shimizu, Misaka & Utani, 2007; Schoenlein et al., 2003; Oobatake & Shimizu, 2020).

The entrapment of ecDNAs in micronuclei can ultimately lead to ecDNA loss, ecDNA

rearrangement, or reintegration into the chromosome (Oobatake & Shimizu, 2020; Shoshani
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et al., 2021).

The effect of ecDNA loss is also observed by other cancer therapies. Radiation therapy

can significantly decrease the ecDNA and ecDNA-gene copy number levels, which is also

associated with micronuclei formation. In a study by Yu et al. (2013) gemcitabine, a cell-death

inducing chemotherapeutic drug commonly used in many cancer types, including PC, was used

to assess its capabilities to reduce ecDNA copy number levels in comparison to hydroxyurea.

While it was found that both can decrease the ecDNA levels, gemcitabine was much more

potent and a lower dose was required compared to hydroxyurea (Yu et al., 2013).

Evidently, some anti-cancer therapies have the potential to decrease ecDNA copy number

levels to decrease tumour progression and increase drug susceptibility. However, the full

mechanism of micronuclei encapsulation and ecDNA loss is still not fully understood. EcD-

NAs also have the potential to reintegrate into the genome, leading to genomic rearrangements

and HSRs. Such reintegration events can be observed with high frequency when DNA damage

is induced by Poly (ADP-ribose) polymerase (PARP) inhibition (Shoshani et al., 2021).

With regards to their ecDNA dependency, decreasing ecDNA levels and simultaneous

reversal of oncogene or drug resistance gene copy number amplifications can inhibit tumour

progression and could potentially be interesting for patient therapy. However, the complete

mechanism of the dynamic regulation of ecDNA copies has yet to be fully uncovered.

1.3.5 The biogenesis of ecDNAs

The origin of ecDNA is heavily discussed and it appears that multiple forms of DNA damage

with subsequent DNA repair contribute to the biogenesis. In the following section, the main

types will be discussed, including their roles in cancer (Figure 1.3).

Chromothripsis

Chromothripsis is a complex shattering of chromosome parts or complete chromosomes,

which leads to massive chromosomal rearrangements by religation (Leibowitz, Zhang &

Pellman, 2015). During the process, shattered chromosomal fragments can also be religated to

form an ecDNA (Zhang et al., 2015). This creation is usually accompanied by the loss of the

original region on the chromosomes and can form complex ecDNAs comprised of fragments

from multiple chromosomes (Stephens et al., 2011; Rausch et al., 2012; Francis et al., 2014).

This distinguishes the ecDNAs generated by chromothripsis to ecDNAs originated from more

simple DNA damaging events in which the original genomic regions are in close proximity

(Storlazzi et al., 2010). Chromothripsis-dependent ecDNA generation can occur through the

enclosure of missegregated chromosomes in micronuclei. In a study by Zhang et al. (2015)

out of 9 daughter cells derived from cells with ruptured micronuclei, one daughter cell showed

evidence for multiple ecDNAs after segregation. Chromothripsis is a common event in cancer

and is strikingly associated with 36% of all ecDNAs, suggesting that chromothripsis can
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be an ecDNA initiating event for at least 1/3 of all ecDNAs. It is also significantly more

abundant in ecDNAs (circular amplicons) than chromosomal amplicons highlighting the effect

of ecDNA-based copy number amplification arising from chromothripsis (Cortés-Ciriano

et al., 2020; Kim et al., 2020). Chromothripsis can also succeed a BFB cycle event. Shoshani

et al. (2021) demonstrated that multiple BFB cycles generated a HSR, which shattered by a

chromothriptic event and was rearranged to an ecDNA (Shoshani et al., 2021).

Breakage-fusion bridge cycle

BFB cycle is, similar to chromothripsis, a catastrophic genomic event leading to severe

genomic rearrangements and copy number alterations. A BFB cycle is initiated by the

telomere loss of a chromosome. Subsequent to the telomere loss, the open chromatid ends

can fuse during the cell cycle to form a dicentric chromosome. During anaphase, the dicentric

chromosome is pulled by the spindle to the opposite poles of the cell, creating chromatin

bridges. Subsequent breakage of the chromatin bridges can lead to either cell death or create

gene amplifications (Lo et al., 2002; Murnane & Sabatier, 2004; Guérin & Marcand, 2022).

This process can be repeated multiple times creating severe amplifications of genes close

to the telomere breakage site, which are exhibited by either HSRs or ecDNAs (Cowell &

Miller, 1983). As previously described, BFB cycles followed by chromothripsis can give rise

to complex ecDNAs (Shoshani et al., 2021). However, it still needs to be clarified if BFB

cycles can give rise to ecDNAs solely from chromosomal deletions during the chromatin

bridge breakage without a succeeding chromothriptis event (Hahn, 1993; Noer et al., 2022).

Episome model

The episome model describes the continuous enlargement of smaller circular DNAs, called epi-

somes, to form large ecDNAs. Limited evidence is available for the initial episome formation.

One method involves bidirectional replication which leads to the looping out of double-

stranded DNA and the formation of an episome (Schimke et al., 1986; Carroll et al., 1988).

(Carroll et al., 1987) suggested that episomes are replicating ecDNA precursors containing a

replication origin and chromosomal genes. The episome formation is accompanied by the loss

of the chromosomal region. Subsequently, the episome can gradually enlarge and become an

ecDNA (Carroll et al., 1987; Carroll et al., 1988). While the episome model was originally

described in hamster cells, ecDNAs, specificallyMYC- andMYCN -ecDNAs, generated by

episome enlargement were also detected in human acute myeloid leukaemia, small cell lung

carcinoma, and neuroblastoma cancer cells (Storlazzi et al., 2006; Storlazzi et al., 2010).

Simple DNA damage

The episome model described the successive enlargement of small circular DNAs to ecDNAs.

This process is initiated by the deletion, release, and circularisation of a chromosomal fragment

(Carroll et al., 1988). A deletion of a chromosomal fragment can be facilitated by simple DNA

damage, such as two double-strand breaks flanking the region. In theory, when two breakpoints
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are present, the genetic material between them can be head-to-tail repaired, resulting in the

formation of an ecDNA. Notably, in an experimental setting, induction of chromosomal

deletions via CRISPR-Cas technology has shown to give rise to ecDNAs exceeding 200 kbp

in size (Møller et al., 2018b). However, not all ecDNA chromosomal origins are deleted prior

ecDNA formation. In a study analysing glioma tumours, EGFR-ecDNAs were formed from

simple DNA damaging events without the loss of the chromosomal loci (Vogt et al., 2004).

This suggests that following post-replicative chromosomal deletions, homology-directed

repair (HDR) can repair the deletions using the intact sister chromatid. Additionally, most of

the ecDNAs were also formed from a single chromosomal fragment, which was also observed

in many ecDNAs in pan-cancer WGS studies (Vogt et al., 2004; Turner et al., 2017; Kim

et al., 2020). Nevertheless, further clarification is still needed to identify if the episome model

is required for further enlargement to achieve large ecDNA sizes or if simple DNA damage

can instantaneously give rise to ecDNAs.

Replication fork stalling and template switching

Replication fork stalling and template switching (FoSTeS) was termed by (Lee, Carvalho &

Lupski, 2007) and is a DNA replication mechanism that can create complex SVs, including

deletions and rearrangements, in the human genome. During DNA replication the replication

machinery can stall caused by DNA lesions and switch to an adjacent DNA template by

microhomology, leading to the formation of a single-stranded DNA fragment. This mechanism

is thought to be involved in the formation of some ecDNAs in glioblastoma tumours (Yang

et al., 2013). A further study by Watanabe et al. (2017) has shown that FoSTeS can lead to

the rearrangements of ecDNAs (Watanabe et al., 2017).

Genome instability

Cancer is frequently characterised by genomic instability, a hallmark common in many cancer

types (Negrini, Gorgoulis & Halazonetis, 2010). The emergence of ecDNA in cancer is

becoming increasingly popular and understanding the underlying mechanism of ecDNA

formation is becoming crucial to identify cancer with higher likelihood of ecDNA biogenesis.

Recent studies describe that ecDNAs are common in many cancer types, especially cancers

with an increasingly unstable genome (Kim et al., 2020; Turner et al., 2017). Chromothripsis,

one of the main mechanisms involved in ecDNA formation and a feature of genomic instability,

is highly common in samples containing ecDNAs. In a recent study of Barrett’s oesophagus,

TP53 mutations were found to be significantly more frequent in tumours containing ecDNAs

compared to tumours without (Luebeck et al., 2023). TP53 inactivation has also been linked

to chromothripsis and the formation of ecDNAs (Negrini, Gorgoulis & Halazonetis, 2010;

Rausch et al., 2012; Shoshani et al., 2021). Moreover whole-genome doubling, another feature

of genomic instability, was commonly observed in ecDNA-positive tumours (Luebeck et al.,

2023; Dewhurst et al., 2014).

Replication stress is debated to be also considered one of cancer hallmarks due to its
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common occurrence and its implications in genomic instability and tumour progression

(Macheret & Halazonetis, 2015). Replication stress can be induced by over-expression of

oncogenes driving DNA replication and cell cycle progression (Macheret & Halazonetis,

2015). In a study by Tang et al. (2005), ecDNA formation was identified following the

over-expression of SERTAD1, a driver of cell cycle progression and DNA repair inhibition.

The observed ecDNA formation is likely the result of the genomic instability induced by

SERTAD1 (Sugimoto et al., 1999; Tang et al., 2005; You et al., 2017).

A normal activity of SIRT1 is required to prevent DNA damage induced by replication

stress. By using the replication stress inducer aphodicolin, Utani et al. (2017) observed a

significant increase of genomic instability and occurrence of ecDNAs in cells with inactive

SIRT1, revealing the importance of replication stress and compromised DNA repair in ecDNA

formation (Utani et al., 2017).

Overall, the emergence of ecDNAs is associated with genomic instability and replication

stress, and understanding the underlying mechanism can potentially help in identify cancers

with increased likelihood of ecDNA amplifications to assist in treatment decisions.

1.3.6 EccDNAs - Molecular characteristics and biogenesis

Size

EccDNAs exist in various sizes ranging from a few hundred base pairs to up to a few Mb.

While large eccDNAs, called ecDNAs, are considered to have major roles in cancer, they

only represent a tiny fraction of the full eccDNA landscape (Møller et al., 2015; Wang et al.,

2021; Koche et al., 2020). Most eccDNAs are small with a length of less than a 1,000 bp.

Recent Circle-seq studies, characterised the eccDNA landscape in various organisms and a

median eccDNA size of around 200 - 1500 bp was identified depending on the organism and

cells analysed (Wang et al., 2021; Møller et al., 2018a; Shibata et al., 2012). These small

eccDNAs can originate from all parts of the genome and are abundantly found in cancer and

normal cells (Møller et al., 2015; Møller et al., 2018a; Shibata et al., 2012).

Origin and formation patterns

EcDNAs are described to contain and amplify oncogenes to drive cancer progression (Kim

et al., 2020; Turner et al., 2017; Luebeck et al., 2023). However, the origin of eccDNAs, in

general, is more diverse and eccDNAs can originate from all parts of the genome (Møller

et al., 2015; Wang et al., 2021; Møller et al., 2020). Studies investigating the broad eccDNA

landscape use the power of Circle-seq, the sequencing of eccDNA-enriched DNA isolates.

In these studies it has been identified that eccDNAs form across the whole genome, but it

has also been noted that eccDNAs are preferentially formed from specific genomic regions

(hotspots), genomic elements, or gene elements (Møller et al., 2015; Møller et al., 2018a;

Shibata et al., 2012). EccDNAs commonly arise from genic regions and are enriched in
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Fig. 1.3 | EcDNA formation mechanisms. a, chromothripsis shattering of whole or parts of chromosomes

generates chromosomal fragments resulting in massive rearrangements and can form ecDNAs. b, Breakage-

fusion bridge (BFB) cycle is initiated by telomere loss leading to rearrangements of telomere adjacent regions.

The cycle of replication, fusion, and breakage can be repeated multiple times, creating opportunities for the

formation of an ecDNA by circularisation of chromosomal fragments. c, The episome model describes the

episome formation by looping out of a replication bubble followed by the successive enlargement of the episome

to form an ecDNA. d, Simple DNA damage with two double-strand breaks can create a free chromosomal

fragment that can be head-to-tail religated to generate an ecDNA. Due to the timing of the DNA damage, different

DNA repair mechanisms are employed to repair the open chromosome ends. Pre-replicative damage can be

repaired by non-homologous end-joining (NHEJ), which may result in the loss of the chromosomal region. On

the other hand, post-replicative chromosomal damage will be completely repaired by homology directed repair

(HDR) due to the existence of a sister chromatid. e, Replication fork stalling and template switching is discussed

(Wu et al., 2022a) to also lead to ecDNA formation. During the process, a single-stranded DNA fragment is

generated which can circularise by religation and become double-stranded DNA through replication.

specific genic elements like the 5’ untranslated region (5’UTR) or exons (Shibata et al., 2012).

A majority of eccDNAs also contain repeat elements, including long- and short-interspersed

nuclear elements (LINEs and SINEs) (Møller et al., 2018a; Møller et al., 2015). Furthermore,

eccDNAs contain an increased GC content compared to non-eccDNA flanking regions and

are associated with an enrichment of CpG islands (Shibata et al., 2012).

Møller et al. (2018a) also identified the association between gene richness and eccDNA
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formation and the association with transcription. Gene-rich chromosomes formmore eccDNAs

than gene-poor chromosomes and eccDNAs are commonly identified from highly transcribed

genes (Møller et al., 2018a).

These Circle-seq studies have shown that eccDNAs are not random, but originate from

specific hotspots. However, a study by Wang et al. (2021) did not find such patterns. Wang

et al. (2021) used long-read sequencing technology in conjunction with the Circle-seq protocol

and identified 1.6 million single- and multi-fragment eccDNAs. These eccDNAs were found

to map across the whole genome without any noticeable pattern or region of eccDNA hotspots.

Furthermore, it was noted that inducing apoptosis enhances eccDNA formation suggesting

that eccDNAs are apoptotic products formed after apoptosis-induced DNA breakdown (Wang

et al., 2021).

Taking together, Circle-seq studies defined the eccDNA landscape and potentially identi-

fied hotspots of preferential eccDNA formation. However, the origin and the mechanism is not

yet completely understood. It is also unclear whether the cell type or the tissue of origin affect

the eccDNA hotspots. Interestingly, Koche et al. (2020) reported that neuroblastoma samples

have an abundance of eccDNA around the MYCN locus, which is one of the oncogenes

recurrently located on ecDNAs and driving neuroblastoma progression. This suggests that

hotspots for ecDNA and eccDNA origin might overlap and could be cancer type specific

(Koche et al., 2020; Huang & Weiss, 2013).

1.3.7 Function of small non-amplified eccDNAs

While the roles of ecDNAs in cancer are broadly established, the role of smaller non-amplified

eccDNAs is not yet fully understood and needs to be further investigated. EccDNA research in

cancer cells is also underrepresented andmost studies use yeast, plant, or non-cancerous human

or mouse cells (Wang et al., 2021; Gaubatz & Flores, 1990; Noer et al., 2022). However,

these findings might be also applicable for their roles in cancer.

Most eccDNAs do not contain whole protein-coding genes, in contrast to ecDNAs, due

to their small sizes. However, they can contain gene elements, such as exons, or small

micro RNAs (miRNAs) (Koche et al., 2020). In a study by Paulsen et al. (2019), artificially

synthesised eccDNAs containing gene parts were used to study eccDNA-based transcription

of partial genes without promoter sequences. It has been reported that transcription occurs on

eccDNA in vitro and in vivo, in contrast to linear DNA, even if the gene is not fully contained.

The transcription of partial genes can produce miRNAs or small interfering RNAs (siRNAs)

that regulate gene expression (Paulsen et al., 2019). Furthermore, eccDNAs can contain

enhancer sequences to activate gene transcription. The mobility of eccDNAs in the nucleus

allows eccDNA-bound enhancers to activate gene transcription genome-wide without any

spatial restrictions. This was identified for ecDNAs, but could also be applicable to smaller

eccDNAs (Zhu et al., 2021).
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Telomere maintenance is important for the long-term cell division of cells. In cancer,

stable telomere maintenance be facilitated by expression of telomerase, which is usually

active in stem cells to prevent senescence (Shay & Wright, 2011). If telomerase activity is

low, cancer cells can also use the alternative lengthening of telomeres (ALT) pathway to

maintain the telomere. This mechanism is dependent on the presence of extrachromosomal

DNA containing repetitive telomere sequences that are used as template to lengthen the

chromosomal telomeres. This extrachromosomal DNA can be linear or circular (eccDNAs)

(Cesare & Reddel, 2010; Huang et al., 2017).

EccDNAs may also play a role in activating the innate immune system. Wang et al. (2021)

identified that eccDNAs are apoptotic products which stimulate the innate immune system in

a more potent fashion in contrast to comparable linear DNA. EccDNAs can be found in the

medium of apoptotic cells and activates proteins of the innate immune pathway (Wang et al.,

2021). These results opened a potential new way of improving patient treatment by activating

cancer cell apoptosis, resulting in eccDNA formation, and ultimately activating the innate

immune system to activate cancer cell killing.

1.3.8 EccDNA research in pancreatic cancer

PC is a complex disease commonly characterised by genomic instability and chromosome

abnormalities (Notta et al., 2016; Campbell et al., 2010; Griffin et al., 1995). By cytogenetic

investigation of cell metaphase images, Griffin et al. (1995) described the existence of ecDNAs

in 8 of 62 primary pancreatic adenocarcinoma tumours (Griffin et al., 1995). This revealed

that ecDNAs are also a common feature (12.9% of cases) in PC. Kim et al. (2020) identified

similar occurrence rate by investigating amplicon classes in cancers of the pancreas (Kim

et al., 2020).

A further study by (Notta et al., 2016) identified ecDNAs in the primary tumour and

the matching metastasis of a PC patient. The ecDNA identified harbouredMYC, which was

massively amplified in the primary tumour and the metastasis suggesting its role in disease

continuum (Notta et al., 2016; Maddipati et al., 2022).

Next to these two studies, only limited evidence of the role of ecDNAs and the abundance

is available for PC. Despite its common occurrence (> 10% of PC cases), ecDNAs are mostly

investigated in other cancer types, which show higher ecDNA occurrence rates and have

ecDNA-positive model system (Koche et al., 2020; Turner et al., 2017; Kim et al., 2020).

PC is a highly lethal disease which is usually treated with standard-of-care chemotherapy,

which prolongs the life of patient marginally. Targeted therapy, which increases survival time

compared to standard-of-care therapy, is available only to a quarter of patients harbouring

actionable mutations (Kamisawa et al., 2016; Pishvaian et al., 2018; Pishvaian et al., 2020).

Identifying susceptibilities of ecDNA-positive pancreatic tumours might make targeted therapy

available to more patients. However, as mentioned earlier, the ecDNA research is limited in
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PC and a complete characterisation of ecDNAs in PC is necessary to identify the potential use

in clinical settings.

1.3.9 Techniques for the identification and analysis of eccDNAs

Cytogenetic methods

EcDNAs are large extrachromosomal elements already visible by light microscopy (Cox,

Yuncken & Spriggs, 1965). However, during most parts of the cell cycle, ecDNAs are

intermingled with the chromatids and are not easily distinguishable from chromosomal regions

(deCarvalho et al., 2018). Therefore, cells need to be imaged in the metaphase to determine

the extrachromosomal nature of ecDNAs and their specific genomic content. To enrich

for metaphase cells, cells are usually prepared with a cell cycle inhibitor, such as colcemid,

arresting the cells in the metaphase (Cox, Yuncken& Spriggs, 1965). These metaphase spreads

are usually stained using DAPI (4′,6-diamidino-2-phenylindole), a blue fluorescent DNA-

binding molecule, to distinguish between DNA and contaminations or artefacts. However,

DAPI staining is not sufficient to identify the ecDNA content (Turner et al., 2017; deCarvalho

et al., 2018). To determine the genomic content of ecDNAs, the cell metaphase spreads can

be combined with fluorescence in-situ hybridisation (FISH) probes, which bind to specific

genes or chromosomal regions. FISH is one of the main techniques to identify a gene on an

ecDNA and quantify the ecDNA and gene copy number levels (Rayeroux & Campbell, 2009;

Wu et al., 2019).

In combination with computational methods, ecDNA detection can be automated to

facilitate high-throughput ecDNA identification and quantification. EcSeg, a deep learning

algorithm trained on DAPI and FISH metaphase spreads, is able to identify and quantify

ecDNAs and gene amplifications on ecDNAs (Rajkumar et al., 2019). Similarly, ECdetect can

quantify ecDNAs from DAPI stained metaphases (Turner et al., 2017). Despite the promises,

the output quality is highly dependent on the input dataset for both datasets, which could lead

to error-prone quantification and false-positives or false-negatives (Rajkumar et al., 2019;

Turner et al., 2017).

Sequencing approaches

Different sequencing approaches have been used to study ecDNAs. While sequencing tech-

nologies have revolutionised many areas of cancer research, the ecDNA field required the

development of new computational methodologies for accurate identification. In 2017, Turner

et al. (2017) presented ’AmpliconArchitect’, which uses WGS data and identifies ecDNAs by

detecting amplicon segments that form a head-to-tail fusion (Figure 1.5a) (Turner et al., 2017;

Deshpande et al., 2019). This head-to-tail structure is characteristic for ecDNAs based on

their circular structure, but can also be generated by tandem duplications. However, by invest-

igating only amplified regions, ecDNAs can be accurately determined with high frequency.

Additionally, the investigation of amplicon regions allows the use of low-coverage WGS data,
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of around 1-10x, which significantly reduces the cost-per-genome (Kim et al., 2020; Turner

et al., 2017; Deshpande et al., 2019). With the development of AmpliconArchitect, ecDNAs

were detected in many cancer types and widened the field for new ecDNA research (Kim

et al., 2020; Luebeck et al., 2023; Wu et al., 2019; Zhu et al., 2021; Hung et al., 2021).

By combining the power of AmpliconArchitect’s ecDNA detection using WGS data with

optical mapping data of long DNA fragments (< 150 kb), AmpliconReconstructor is able

to resolve the full ecDNA structure (Luebeck et al., 2020). By using WGS data alone, the

complete ecDNA structure can only be partially resolved and AmpliconArchitect outputs

many potential structures, which could co-exist or could be fused to generate a larger ecDNA

(Deshpande et al., 2019; Kim et al., 2020; Luebeck et al., 2020).

All computational tools analysing sequencing data to identify ecDNAs are based on

SV identification generated by head-to-tail fusions. These head-to-tail fusions, which are

generated through ecDNA formation, are found across the whole genome making whole-

exome sequencing (WES) impracticable for ecDNA identification (Kim et al., 2020). A

high ecDNA detection accuracy can then be achieved by using WGS data and investigating

only amplified regions (Turner et al., 2017; Deshpande et al., 2019). However, multiple

software were developed that call ecDNAs based on simple identification of head-to-tail

fusions without the need of copy number information. This can lead to falsely classifying

ecDNAs due to its structural similarities to tandem duplications (Figure 1.5b) (Kumar et al.,

2020; Møller, 2020). Therefore, it is advised to use sequencing data that is enriched with reads

originating from eccDNAs. By using an plasmid-safe exonuclease, linear (chromosomal)

DNA will be removed and circular DNA (eccDNA, ecDNA, mitochondrial DNA) will be

retained. Subsequent circular DNA amplification, using rolling-circle-amplification, achieves

high enrichment of eccDNAs which can then be subjected to sequencing (Figure 1.4). This

established method is named Circle-seq (Møller, 2020; Koche et al., 2020; Møller et al.,

2015). By integrating Circle-seq data with WGS data, Koche et al. (2020) identified that

Circle-seq achieves high accuracy in determining the eccDNA and ecDNA landscape (Koche

et al., 2020). However, eccDNA enrichment can also be incorporated into other sequencing

methods such as ATAC-seq (Kumar et al., 2020).

Fig. 1.4 | Circle-seq procedure. Circle-seq describes an eccDNA-specific sequencing method. During the

procedure, extracted DNA will be treated with plasmid-safe exonuclease to remove linear DNA. Subsequent

rolling-circular amplification amplified the remaining eccDNAs which are used for sequencing.

The analysis of Circle-seq data can be performed using various software which identify

the head-to-tail fusions (eccDNA junctions) (Figure 1.5b). Three of the most prominent
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tools are ’Circle_finder’ (Kumar et al., 2020), ’Circle-Map’ (Prada-Luengo et al., 2019), or

’CIRCexplorer2’ (Zhang et al., 2016). By only identifying a putative head-to-tail fusion which

can be generated by eccDNA formation, they are ideally used to identify single-fragment

eccDNAs. Single-fragment eccDNAs are eccDNAs that were generated from a sole loose

fragment that is circularised by fusing the start and the end sequence. If an eccDNA originated

from multiple fragments, the eccDNA junction does reveal the accurate eccDNA content and

therefore other methods need to be employed.

Multi-fragment eccDNAs are eccDNAs that are generated from more than one chro-

mosomal fragment, which are joined together through multiple DNA repair events. To my

knowledge, no method or software has been established that can identify these easily. In theory,

a similar algorithm to the AmpliconArchitect algorithm could be employed that uses regions

of Circle-seq read coverage and joins them by identifying region-spanning SVs. However,

an adaptation still needs to be developed. One way of identifying multi-fragment eccDNAs

could be the use of software that de novo assembles sequencing reads to identify the full

sequence of an eccDNA (Figure 1.5c). This method is usually performed to identify novel

genomes for which no reference genome is available (Paszkiewicz & Studholme, 2010). Due

to the circular structure of eccDNAs, only de novo assembled circular sequences should be

considered whereas linear sequences need to be removed. Hence, de novo assembly software

developed for bacterial genomes, which share the circular characteristic, can be used for

identifying eccDNAs, specifically eccDNAs originating from multiple fragments. For short-

read sequencing data, this can be performed by ’Unicycler’ (Wick et al., 2017). However,

validation of using this method for eccDNA detection still needs to be performed.

De novo assembly using short-read sequencing data is sub-optimal due to the high coverage

necessary to achieve the full assembly of an eccDNA. If a conjoining read is missing, the

full sequence can not be assembled resulting in eccDNA detection failure. Therefore, recent

studies use long-read sequencing data from Nanopore or PacBio technologies to identify the

correct eccDNA structure (Koche et al., 2020; Wang et al., 2021; Chitwood et al., 2023).

Long-read sequencing is still markedly more expensive than short-read sequencing, but a

shift towards long-read sequencing is expected to become the gold-standard for the eccDNA

landscape identification as it mitigates some of the challenges of short-read sequencing (De

Maio et al., 2019; Amarasinghe et al., 2020).

With the introduction of analysis tools the identification of ecDNAs and eccDNAs from

sequencing data became accessible for a broader range of researchers. Currently, several

state-of-the art tools exist that can accurately detect ecDNAs and eccDNAs from various

sequencing datasets (Møller, 2020; Kim et al., 2020; Prada-Luengo et al., 2019; Zhang et al.,

2016; Kumar et al., 2020). However, these tools often require distinct input data formats

and rely on specific software dependencies to generate their respective outputs. Additionally,

with the rise of big data, it is becoming essential to parallelise software processes to increase

efficiency and reduce computational time. Unfortunately, most existing software in the circular
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Fig. 1.5 | EcDNA & EccDNA Identification with short-read sequencing data. a, The ecDNA structure

is delineated by identifying amplified regions, from copy number (CN) calls, and structural variations (SVs)

connecting the regions to each other. This generates a breakpoint graph of the region arrangement. A breakpoint

graph creating a circular amplicon could be originating from an underlying ecDNA. This method was developed

by Deshpande et al. (2019). b, Single-fragment eccDNAs can be identified from Circle-seq data by identifying

a putative eccDNA junction which originated from a head-to-tail fusion. c, The potential identification multi-

fragment eccDNA can be facilitated by de novo assembly of eccDNAs with subsequent reference genome

mapping to identify the eccDNA origin.

DNA field is not optimised for large datasets and typically runs samples individually.

In conclusion, to tackle those challenges, new workflows need to be developed that

efficiently manage software dependencies and enable process parallelisation. By organising

and streamlining the analysis pipeline, these workflows will enable the efficient analysis of

large-scale datasets and increase user accessibility for researchers of all backgrounds.
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1.4 Aims & objectives

Within this introduction several knowledge gaps about eccDNAs have been identified, spe-

cifically regarding PDAC. PDAC is under-represented in eccDNA studies and it has become

evident that eccDNAs can have cancer-specific contents or roles. Therefore, the first aim of

this thesis is to identify the ecDNA/eccDNA landscape in PDAC and characterise their origin,

their association with characteristic features of PDAC, and their potential roles in the disease.

This can help in identifying potential therapeutic opportunities and enhance our understanding

of the complex genomics of PDAC. To achieve this aim several objectives were defined that

will be pursued and described throughout this thesis.

• Determine the prevalence of ecDNAs in PDAC: This objective aims to identify the

prevalence rate of ecDNAs in PDAC to determine how common they are. Addition-

ally, integrative analysis aims to reveal patient subgroups with a higher likelihood of

containing ecDNA-positive PDAC tumours. This will provide insight into the clinical

relevance of ecDNAs in PDAC.

• Characterise the landscape of ecDNAs in PDAC: This objective is to determine the

location, size, and occurrence of genomic feature on ecDNAs, including the presence

of PDAC-specific cancer drivers.

• Investigate the potential roles of ecDNAs in PDAC: This objective is to analyse the

ecDNA landscape and integrate it with relevant biological and clinical data to identify

the potential roles in PDAC. This will include the correlation of ecDNA information

with gene expression data and copy number data to verify established roles of ecDNAs

in other cancer types. Furthermore, integration with clinical data will provide insights

into the association between ecDNA presence and clinical outcomes or disease stage.

Lastly, using sequencing data generated from organoids under stress conditions will

explore the roles of ecDNAs as an adaptation mechanism.

• Determine the usability of PDACmodel systems in ecDNA research: This objective

is to utilise sequencing data from PDAC patient-derived organoids (PDOs), PDO-

derived cell lines, and matching primary tissue to characterise ecDNAs in different

PDAC samples. This includes the comprehensive comparison of the ecDNA landscape

in matching samples to assess if model systems are usable for ecDNA research in

PDAC.

• Characterise the landscape of eccDNAs in PDAC: This objective is to assess the

general landscape of eccDNAs in PDAC by characterising multiple PDAC models on

their eccDNA occurrence and identifying putative roles of eccDNAs.

• Determine the characteristics of eccDNAs in PDAC: This objective aims to evaluate

specific characteristics of eccDNAs and compare it to previous literature about other

cancer types. This includes examining the association with different PDAC features

and eccDNA biogenesis, identifying hotspots of eccDNA abundance, and determining

if eccDNAs are retained to play a role in the tumour biology.
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My second aim is to make eccDNA research accessible to a wider proportion of the scientific

community and increase reproducibility, transparency, and efficiency. To achieve this, a

comprehensive workflow will be developed that includes a range of ecDNA/eccDNA software

tools to generate ecDNA/eccDNA information from short-read sequencing datasets. To

accomplish these aims, several objectives have been determined and will be chased throughout

this thesis:

• Create a dynamic and scalable workflow of several software packages used in the

ecDNA/eccDNA field: This objective is to utilise the workflow manager Nextflow

(Di Tommaso et al., 2017) to write a workflow concatenating relevant software tools to

identify ecDNA/eccDNA.

• Enable customisation and flexibility in the pipeline: This objective aims to include

options to adjust for the user’s needs. This will involve the inclusion of user-definable

parameters inside the pipeline which can be separately specified.

• Include control measurements to ensure the correct configuration and deployment

of the workflow: This objective is to verify that the all parameters, input files, and

output options are correctly defined. Additionally, the workflow aims to have several

quality control tools in place to check data quality.

• Verify the workflows performance on real sequencing datasets: This objective is

to ensure that the workflow was correctly developed and verifies the usability of all

ecDNA/eccDNA tools.

• Enable rigorous testing and peer reviewing of the workflow: This objective is to

allow continuous development and assess the quality of the workflow. This will include

making the workflow available for open review and requiring stringent testing and

reviewing by independent individuals.

• Provide documentation and a user-friendly interface: This objective aims to increase

usability by a wider audience. This will include providing sufficient documentation for

all stages of the pipeline, such as input data, temporary, and output data, but also on

how to effectively run the data on individual computational resources.

• Validate the accuracy of tools not defined for eccDNA analysis: This objective aims

to verify software tools which are currently not published to be used for ecDNA/eccDNA

data analysis. This will include validating the computational results by laboratory

techniques.
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Chapter 2
Methods

Experiments are the only means of

knowledge at our disposal. The rest is

poetry, imagination.

Max Planck

2.1 nf-core/circdna

nf-core/circdna is a Nextflow pipeline written with the nf-core (https://nf-co.re/) template.

The pipeline is described in Results Chapter 3. The pipeline requires Nextflow version >=

’22.10.1’. Table 2.1 describes the version of each software used in the pipeline.

Tab. 2.1 | Software and their respective versions used in the nf-core/circdna pipeline.

Software Version Reference

Programming Language

NEXTFLOW 22.10.1 Di Tommaso et al. (2017)

Quality Control

FASTQC 0.11.9 Andrews et al. (2010)

MULTIQC 1.12 Ewels et al. (2016)

Read & Adapter Trimming

TRIM GALORE 0.6.7 Krueger (2015)

CUTADAPT 4.1 Martin (2011)

Mapping & Processing

BWA 0.7.17-r1188 Li (2013)

SAMTOOLS 1.15.1 Danecek et al. (2021)

Continued on next page
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Software Version Reference

PICARD 2.26.10 http://broadinstitute.github.io/picard/

Extrachromosomal circular DNA calling

CIRCLE-MAP 1.1.4 Prada-Luengo et al. (2019)

CIRCEXPLORER2 2.3.8 Zhang et al. (2016)

CIRCLE_FINDER commit: 3eb333d Kumar et al. (2017)

UNICYCLER 0.5.0 Wick et al. (2017)

SEQTK 1.3 Li (2012)

MINIMAP2 2.21 Li (2018)

CNVKIT 0.9.9 Talevich et al. (2016)

AMPLICONARCHITECT 1.3_r1 Deshpande et al. (2019)

AMPLICONCLASSIFIER 0.4.5 Luebeck et al. (2023)

2.2 Cell culture methods

All cell tissue handling procedure that require aseptic techniques were conducted under sterile

conditions within class II biological safety cabinets. Prior to use, all work surfaces and

equipment were sterilised using 70% ethanol.

2.2.1 Cell culture

The Kinghorn Cancer Centre (TKCC) patient-derived cell lines (PDCLs) were cultured in

their respective media and conditions described in Hardie et al. (2017). PaCaDD137 was

cultured in the media formulated by Rückert et al. (2012). Mayo-4636 was cultured in the

Mayo Media detailed in Table 2.5. The media components for all PDCLs are detailed in

Methods Table 2.5. The cells were grown at 37°C and 5% CO2. Cell lines containing low

oxygen (LO) specification (e.g. TKCC-15-LO) were grown under low oxygen conditions

at 37°C with 5% O2 an% CO2 (Table 2.2). Cells were split every 3-5 days with a 1:3/1:4

ratio. The PDCLs were a kind gift from Holly Brunton, Irati Ricón Santoyo, and Carlotta

Cattolico, Cancer Research UK Beatson Institute. All PDCL cultures were originally seeded

with around 500,000 cells.

2.2.2 Cell harvest

The cells were harvested at approximately 80% confluency through trypsinisation. In detail,

the cell media was aspirated and cells were washed with warm (37°C) PBS (Sigma-Aldrich)

piror trypsinisation. Trypsinisation was performed using 3-10 mL warm (37°C) 1x Trypsin

(Gibco™) for 3-10 minutes at 37°C. Complete cell detachement was confirmed using a light

microscope, and the cell count was determined. The detached cells were diluted 1:3 with their

respective media and centrifuged at 400 relative centrifugal force (RCF) for 5 minutes. The

supernatant was removed, and the cell pellets were resuspended into PBS and transferred into

one to three 2 mL Eppendorf tubes, aiming for a total cell count ranging from 1 to 10 millions
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cells per tube. Subsequently, the cell suspensions were centrifuged at 400 RCF for 5 minutes,

and the supernatant was aspirated. The final cell pellets were stored at -80°C until further use.

2.3 Human specimens and clinical data

PDAC tissue samples were acquired from the General and Pancreatic Surgery Unit of the

University of Verona. Prior to the tissue acquisition, patients provided written informed

consent. The collection of fresh tissues for patient-derived organoids (PDOs) were performed

by the Vincenzo Corbo Lab, Department of Engineering for Innovation Medicine, University

of Verona, Verona, Italy, under a study that received approval from the Integrated University

Hospital Trust (AOUI) Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria

Integrata): approval number 1911 (Prot. n 61413, Prog 1911 on 19/09/2018). Formalin-fixed

and paraffin-embedded tissues were also collected from the ARC-NET Biobank in accordance

with protocol number 1885 approved by the AOUI Ethics Committee.

2.4 PDO establishment and culture

The following procedure was performed by the Vincenzo Corbo Lab, Department of Engin-

eering for Innovation Medicine, University of Verona, Verona, Italy. PDAC PDOs were

established using procedures previously published by Boj et al. (2015) (Boj et al., 2015). Prior

to establishment, pathologists examined the specimens used to generate PDOs to verify the

existence of neoplastic cells. To propagate organoids, confluent organoids were removed

fromMatrigel®, dissociated into small clusters by pipetting and resuspended in an appropriate

volume of fresh Matrigel®. All organoid models were acquired as part of the Human Cancer

Model Initiative (HCMI) (https://ocg.cancer.gov/programs/HCMI) and are available for access

from the American Type Culture Collection (ATCC). The corresponding IDs and clinical data

are listed in the (Extended Data Table 1). Organoid cultures were passaged once a week with

a splitting ratio of 1:3 in +WR (Wnt3A and R-spondin 1 containing human complete media)

or human depleted Media (-WR, human complete media without Wnt3A and R-spondin 1

conditioned media) (Boj et al., 2015). To establish WR (Wnt3A and R-spondin 1) independent

PDOs, organoids established and propagated in human complete media (+WR) were placed

and maintained in -WR for several passages. Due to cell death induced by -WR, the media

was refreshed every 3 days and Matrigel® was refreshed every 14 days without propagating

the cultures until WR-independent PDOs emerged. To obtain ’late-passage’ PDOs, organoids

were passaged at least 40 times in +WRmedium after establishment. Organoids were routinely

tested for the presence of mycoplasma contamination using the Mycoalert Mycoplasma Detec-

tion Kit (Lonza). For Gemcitabine treatment, VR01-O was in culture for 56 days before pellet

collection with adding 2.5 nM Gemcitabine every third day. PDO spliiting was performed

when necessary.
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2.5 Organoids metaphase spreads

The following procedure was performed by the Vincenzo Corbo Lab, Department of En-

gineering for Innovation Medicine, University of Verona, Verona, Italy. Organoids were

incubated with Colcemid (1 µg/mL, Gibco) in culture medium at 37°C, 5% CO2 overnight.

After incubation, organoids were dissociated as previously described. Briefly, single cells

were incubated in hypotonic solution (potassium chloride 0.56% and sodium citrate 0.8%) for

20 minutes at room temperature. The metaphases were then fixed in ice-cold methanol-acetic

acid (3:1), washed with methanol-acetic acid (2:1) and dropped onto adhesive slides.

2.6 DNA fluorescence in situ hybridisation

The following procedure was performed by the Vincenzo Corbo Lab, Department of Engineer-

ing for Innovation Medicine, University of Verona, Verona, Italy. DNA fluorescence in situ

hybridisation (FISH) on methanol-acetic acid-fixed nuclei was performed using the ZytoLight

SPEC MYC/CEN8 Dual Color FISH probe (ZytoVision). The probes were applied to the

slides, sealed with rubber cement and incubated in a humidified atmosphere (Thermobrite

system) at 80°C for 10 minutes to allow denaturation of the probes and DNA target. The

slides were then incubated overnight at 37°C to allow hybridisation. The rubber cement

and coverslip were then removed and the slides were washed in 2X SSC/0.3% NP40 for 15

minutes at RT and then at 72°C for two minutes. After post-hybridisation washes, slides were

counterstained with DAPI 1 µg/mL (Kreatech, Leica).

2.7 PDO and primary tissue DNA Isolation

The following procedure was performed by the Vincenzo Corbo Lab, Department of Engin-

eering for Innovation Medicine, University of Verona, Verona, Italy. Cells were incubated in

Cell Recovery Medium (Corning) for 30 minutes at 4°C to remove Matrigel® and pelleted

by 10,000g centrifugation at 4°C for 5 minutes. For tissue, sections of PDAC snap frozen

tissue were scored by a pathologist for the percentage of neoplastic cellularity and only tissue

with >20% neoplastic cellularity was used. For WGS and panel DNA sequencing, DNA was

isolated using the DNeasy Blood & Tissue Kit (Qiagen).

2.8 DNA Panel Sequencing

The following procedure was performed by the Vincenzo Corbo Lab, Department of En-

gineering for Innovation Medicine, University of Verona, Verona, Italy. The SureSelectXT

HS Target Enrichment System (Agilent) was used for library preparation. Pair-end 2x150

sequencing of the panel was performed using NextSeq 550 (Illumina). Genes present in the

panel are listed in Extended Data Table 2.
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2.9 Whole genome sequencing (WGS)

The following procedure was performed by the Vincenzo Corbo Lab, Department of En-

gineering for Innovation Medicine, University of Verona, Verona, Italy. DNA quality was

evaluated using the DNF-467 50 kb DNA Kit on a Bioanalyzer 2100 (Agilent). The library

was prepared and sequenced using the NovaSeq 6000 S4 Reagent kit v1.5 (300 cycles) at 15x

coverage, generating around 160 million reads per sample.

2.10 Circle-seq

In this thesis, two Circle-seq runs were performed with modifications in the original Circle-seq

protocol. The protocol was originally developed by Henssen et al. (2019a) and modified to fit

our samples and laboratory equipment. After the first Circle-seq run (Volume 1) the protocol

was updated based on the Volume 1 results and recommendations described in Møller (2020).

Modifications to the original protocol by Henssen et al. (2019a) are noted in the following

methods description for both Circle-seq runs.

The samples, including their passage number and their cell count which were used for

Circle-Seq are detailed in Table 2.2.

Tab. 2.2 | PDCL and PDO samples used for Circle-seq and their unique identifier (ID).

Sample ID Unique ID Passage Cell count [M]

Volume 1: PDAC PDCLs

TKCC-2.1 TKCC-2.1 45 1.30

TKCC-09 TKCC-09 40 6.30

TKCC-10 TKCC-10 25 3.37

TKCC-15-LO TKCC-15 36 7.50

TKCC-17-LO TKCC-17 30 0.79

TKCC-18 TKCC-18 28 3.28

TKCC-22 TKCC-22 34 8.85

TKCC-26 TKCC-26 47 3.74

TKCC-27-LO TKCC-27 37 0.62

PaCaDD137 PaCaDD137 31 3.02

Volume 2: 2 consecutive passages of 7 PDAC PDCLs

Mayo-4636 Mayo-4636_P1 27 3.50

Mayo-4636 Mayo-4636_P2 28 2.00

PaCaDD137 PaCaDD137_P1 32 4.80

PaCaDD137 PaCaDD137_P2 33 9.00

TKCC-2.1-LO TKCC-2.1_P1 36 3.20

TKCC-2.1-LO TKCC-2.1_P2 37 3.00

Continued on next page
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Sample ID Unique ID Passage Cell count

TKCC-09 TKCC-09_P1 46 2.40

TKCC-09 TKCC-09_P2 47 1.68

TKCC-10-LO TKCC-10_P1 28 3.80

TKCC-10-LO TKCC-10_P2 29 3.00

TKCC-15-LO TKCC-15_P1 42 6.00

TKCC-15-LO TKCC-15_P2 43 6.00

TKCC-22-LO TKCC-22_P1 35 4.80

TKCC-22-LO TKCC-22_P2 36 5.20

Volume 2: PDAC PDOs

HCM-CSHL-0080-C25-O VR01-O 29 -

HCM-CSHL-0182-C25-O VR30-O 11 -

HCM-CSHL-0600-C25-O VR19-O 16 -

HCM-CSHL-0077-C25-O VR02-O 24 -

HCM-CSHL-0084-C25-O VR06-Oa 41 -

HCM-CSHL-0084-C25-O VR06-Ob 45 -

HCM-CSHL-0089-C25-O VR23-O 41 -

Volume 2: PDAC PDOs - Gemcitabine Treatment

HCM-CSHL-0080-C25-O-GEM VR01-O-GEM 26 -

2.10.1 HMW DNA extraction

The high molecular weight (HMW) DNA of each Circle-seq sample cell pellet, stored at -80°C,

was isolated using the MagAttract HMW DNA (Qiagen). The HMW DNA extraction was

performed following the Henssen et al. (2019a) protocol. The HMW DNA extraction from

patient-derived organoids (PDOs), and PDO-derived cell lines was performed accordingly

and provided by the Corbo Lab, Department of Diagnostics and Public Health, University of

Verona, Italy.

2.10.2 Volume 1 - Linear DNA removal

To enrich the HMW DNA samples for eccDNAs, the removal of linear DNA was achieved

by digesting it with an ATP-dependent plasmid-safe DNase (Lucigen) following the Henssen

et al. (2019a) protocol. The DNase digestion was conducted daily for five consecutive days,

with 20 Units of DNase, 4 µL of a 25 mM ATP solution, and reaction buffer added each day.

After five days, the DNase was heat-inactivated at 70°C for 30 minutes. The effectiveness of

linear DNA removal and the retention of circular DNA were assessed using quantitative PCR

(qPCR) with primers targeting a chromosomal (linear) gene (HBB or COX5B, linear DNA

control) and a mitochondrial gene (MT-CO1, circular DNA control). A fold change decrease

of linear DNA content by at least 200-fold compared to circular DNA was considered as

sufficient linear DNA removal. If the fold change decrease was below 200, the DNA was
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subjected to an additional three days of treatment following the same protocol. The linear

DNA fold change decrease was calculated as followed:

∆CTHBB = CTHBB(post-DNase DNA)− CTHBB(pre-DNaseDNA)

∆CTMT-CO1 = CTMT−CO1(post-DNase DNA)− CTMT-CO1(pre-DNase DNA)

∆∆CT = ∆CTHBB −∆CTMT-CO1

FC = 2∆∆CT

2.10.3 Volume 2 - Linear DNA removal

Similarly to the procedure described in Methods Section 2.10.2, HMW DNA was subjected

to linear DNA removal by using the plasmid-safe DNase (Lucigen). The samples were

treated for a minimum of seven days with 20 and 30 Units of DNase added daily. ATP

solution and reaction buffer were added based on the recommended enzyme units provided

by the manufacturer. After seven days, the DNase was heat-inactivated, and the effectiveness

of linear DNA removal was assessed as described in Methods Section 2.10.2. If the fold

change decrease of linear DNA content was below 200, an additional two-day treatment

was performed by adding DNase, ATP, and reaction buffer. During this run, the final DNA

enriched for circular DNAs was further concentrated by reducing the initial volume three to

four fold using the using Savant™ DNA SpeedVac® DNA120 (Thermo Scientific).

2.10.4 Rolling-circle amplification

Rolling-circle amplification of the remaining DNA, enriched for circular DNA, was carried

out using a Phi29 polymerase and the Repli-G Mini Kit (Qiagen), following the protocol

described by Henssen et al. (2019a). The DNA concentration was measured using the Qubit®

2.0 Fluorometer (Invitrogen™) and the Qubit™ dsDNA BR Assay Kit (Invitrogen™). Upon

successful DNA amplification, the amplified DNA was purified using Agencourt AMPure

XP Beads (Beckman Coulter).

2.10.5 Sequencing

Approximately 500 to 550 ng of circular DNA-enriched DNA were sheared to a mean length

of around 450 bp using a M220 Focused-ultrasonicator (Covaris). Library preparation was

performed using the NEBNext® Ultra II DNA Library Prep Kit for illumina®, which involved

sequencing adapter addition and amplification. DNA Clean-up was conducted using the

Agencourt AMPure XP Beads (Beckamn Coulter). All prepared libraries were sequenced

on the illumina® NextSeq500 platform using either the NextSeq 500/550 Mid Output Kit

v2.5 (300 Cycles) (Volume 1) or the NextSeq 500/550 High Output Kit v2.5 (300 Cycles)

(Volume 2), generating approximately 10-15 million paired-end 150 bp reads per sample.
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2.11 Data processing and quality control

Raw Circle-seq data was processed using Illumina® ’bcl2fastq’ to generate paired FASTQ

files for each sample. FASTQ quality control was performed using FastQC (Andrews et al.,

2010). Adapter and low-quality bases were trimmed using ’TrimGalore’ (Krueger, 2015), with

default values, which utilises the functionality of ’cutadapt’ (Martin, 2011). After trimming,

complete adapter and low quality base removal was verified using ’FastQC’.

2.12 Sequence alignment and duplicate removal

Trimmed sequencing data was mapped to the GRCh38 reference genome using ’BWA’ (Li,

2013). Duplicate reads were marked and removed using ’PicardMarkDuplicates’ (http://broad-

institute.github.io/picard/).

2.13 EccDNA calling

’Circle-Map Readextractor’ (Prada-Luengo et al., 2019) was used to prepare mapped reads

for the identification of putative eccDNA junctions. Putative eccDNA junctions were called

using ’Circle-Map Realign’ with default values.

2.14 EccDNA filtering

Putative eccDNA junctions were filtered based on several criteria to retain only high-quality

eccDNAs. A high-quality eccDNA had a circle-score (defined by ’Circle-Map’) above 200, at

least 5 split reads covering the eccDNA junction, and an overall coverage of the full eccDNA

region of at least 80%. EccDNAs overlapping with a blacklist region defined by ’ENCODE’

were also removed (Amemiya, Kundaje & Boyle, 2019).

2.15 Visual inspection of eccDNA calls

High-quality eccDNAs and sequencing background were visually inspected using IGV (Integ-

rative Genomics Viewer) (Thorvaldsdóttir, Robinson & Mesirov, 2013) to ensure accurate

eccDNA calling and sequencing quality.

2.16 Read pileup

BigWig files were generated and normalised using ’deeptools bamCoverage’ (Ramírez et al.,

2014). Normalisation to reads per kb per million mapped reads (RPKM) was performed.

Region-specific pileups and base information was generated using ’Bigly’ (Pedersen, 2022a).

36

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


METHODS 2.17. Generating random eccDNA data sets

eccDNA
Regions

1000
Random
Data Sets

Shuffle Regions 1000x

Annotation

1000x

1

2

1000

O
bs
er
ve
d
A
nn
ot
at
io
ns

(#
)

α
=
0.
05

C
ou
nt

Annotations (#)
Fig. 2.1 | Schematic representation of the permutation test. EccDNA regions are shuffled 1,000 times and

annotated with individual genomic elements. The distribution of the number of annotations of the random data

set is then compared to the observed number of annotations in the eccDNA region. A P value below α < 0.05

is considered significant.

2.17 Generating random eccDNA data sets

To perform a permutation analysis and identify eccDNA hotspots and coldspots, 1,000 random

data sets were generated for each Circle-seq cohort. In detail, the high-quality eccDNA regions

identified by ’Circle-Map Realign’ were randomly permuted alongside their original GRCh38

chromosome, excluding regions overlapping with blacklist regions defined by ’ENCODE’

(Amemiya, Kundaje & Boyle, 2019). This was performed using ’bedtools shuffle’ (Quinlan &

Hall, 2010) and the GRCh38 genome ranges, excluding regions overlapping the ’ENCODE’

GRCh38 blacklist.

2.18 Permutation test

A permutation test was performed to identify annotations that are significantly enriched or

lacking on eccDNA. The random regions in the 1,000 random data sets and the true eccDNA

regions were annotated with various genomic elements (Methods Section 2.19). P values

were determined based on the number of random data sets with more extreme number of

annotations compared to the observed number of annotations.

2.19 EccDNA annotation

EccDNAs were annotated using all GRCh38 annotations provided by the R-package ’annotatr’

(Cavalcante & Sartor, 2017). This includes annotations of enhancers defined by ’FANTOM’

(https://fantom.gsc.riken.jp/), CpG islands, gene elements, different gene types, and repeat

elements. Furthermore, eccDNAs were also annotated with GRCh38 genes and the repeat

elements defined by ’RepeatMasker’ (https://www.repeatmasker.org/).
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2.20 EccDNA hotspot analysis

Recurrent eccDNA hotspots, coldspots, or regions of ’normal’ eccDNA numbers are identified

by shuffling the eccDNAs, identified in the three Circle-seq datasets, 1,000 times randomly

along their original chromosome disregarding ENCODE blacklist regions (Amemiya, Kundaje

& Boyle, 2019). Permutation of the eccDNAs is described in Methods Section 2.17. Sub-

sequently, the genome is divided into around 1 Mbp bins, with the true and random eccDNA

numbers counted for each Circle-seq dataset. If the number of eccDNAs in a bin exceeds the

number in all 1,000 randomly generated datasets, the bin is classified as an eccDNA ’hotspot’.

On the other hand, if fewer eccDNAs are found than in all randomly generated datasets, the

bin would be identified as an eccDNA ’coldspot’. If neither of these two conditions is met,

the bin is considered a region with a normal level of eccDNA occurrence. Recurrent eccDNA

hotspots, coldspots, and normal regions are identified as those that appear in at least two of

the three Circle-seq datasets outlined in Table 2.2. On the other hand, universal hotspots are

hotspots that are identified in each Circle-seq data set. Regions falling in chromosome X and

Y were removed prior downstream analysis.

To determine associations with specific genomic or transcriptomic features, all bins

were annotated with genomic elements (Methods Section 2.19), RNA-seq, ATAC-seq, and

methylation data. The number of each genomic element per bin was counted and compared

between bin classes. To simplify visualisation, the average counts per bin were Z-score

normalised. The median shift, for each genomic element, is calculated by subtracting the

median normalised counts of the hotspot or coldspot regions with the median normalised

counts of the normal region.

2.21 Overrepresentation analysis

Overrepresentation analysis of ’KEGG’ pathways (Kanehisa & Goto, 2000), provided by

’MSigDB’ (Liberzon et al., 2011), was performed using the R-package ’clusterProfiler’ (Yu,

2022). Gene sets with a Benjamini-Hochberg P adjusted value less than 0.1 were considered

significant.

2.22 EccDNA de novo assembly

Multi-fragment eccDNAs were de novo assembled (contigs) using ’Unicycler’ (Wick et al.,

2017) and mapped to the GRCh38 reference genome using ’Minimap2’ (Li, 2018). To retain

high-quality eccDNAs, sole eccDNA fragments that mapped to multiple regions were removed

and the minimum mapping quality was set to 60. To account for small deletions, insertions, or

mismatches within the eccDNA fragments (size < 50 bp), mapped contig fragments that were

less than 50 bp apart were merged. This step helps reconstruct and consolidate fragmented

eccDNAs, improving their representation and accuracy. The length of the mapped contigs
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was compared to the total contig length. Contigs with a deviation of more than 10% of the

total contig length were removed. This step ensures that the majority of the eccDNA sequence

aligns to the reference genome, reducing the inclusion of partially mapped or misaligned

fragments.

2.23 PDCL copy number and expression data

The PDCL copy number and expression data was obtained from Brunton et al. (2020).

2.24 ATAC-seq data analysis

The raw PDCL ATAC-seq data used in the thesis was published and provided by Brunton et al.

(2020). To process the ATAC-seq data, the pipeline nf-core/atacseq (https://nf-co.re/atacseq)

was utilised. The pipeline offers a standardised and comprehensive analysis workflow for

ATAC-seq data.

After processing, broad peaks were called using ’MACS2’ (Gaspar, 2018) and normalised

using ’DESeq2’ (Love, Huber & Anders, 2014).

2.25 ICGC PDAC data

Amplicon information from the ’PACA-CA’ and ’PACA-AU’ projects of the International

Cancer Genome Consortium (ICGC) was obtained from Kim et al. (2020). This included

a total of 142 samples, of which 81 were sequenced by PACA-CA and 61 by PACA-AU.

Additional matching clinical, copy number, mutational, and transcriptomic data were retrieved

from the ICGC database (release 28, https://dcc.icgc.org/). To focus specifically on PDAC,

only PDAC tumours with histological types ’8500/3’, ’8560/3’, ’8140/3’, ’Adenosquamous

carcinoma’ and ’Pancreatic Ductal Adenocarcinoma’ were used in the downstream analysis.

Furthermore, chromothripsis data were also obtained from Cortés-Ciriano et al. (2020). For

additional comparison with another form of pancreatic tumours, amplicon information from

the pancreatic endocrine neoplasm projects PAEN-AU (n = 38) and PAEN-IT (n = 33) was

also extracted from Kim et al. (2020).

2.26 WGS data pre-processing and alignment

The WGS data were pre-processed and aligned to the GRCh38 reference genome using

the ’nf-core/sarek’ pipeline (Garcia et al., 2020). This pipeline incorporates various tools

and steps for processing and analysing WGS data. ’Fastp’ (Chen et al., 2018) was used to

remove low-quality bases and adapters from the raw reads. ’BWA Mem’ (Li, 2013) was

employed to map the trimmed trimmed reads to the GRCh38 reference genome, provided

by the Genome Reference Consortium (https://www.ncbi.nlm.nih.gov/grc). Subsequently,
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’Picard MarkDuplicates’ was utilised to mark duplicate reads, and ’GATK BaseRecalibartor’

and ’GATK ApplyBQSR’ were employed to recalibrate the base quality scores of the reads

(McKenna et al., 2010).

2.27 Amplicon characterisation

The nf-core/circdna (version 1.0.1, https://nf-co.re/circdna) pipeline branch ’AmpliconArchi-

tect’ was used to define amplicon classes in each WGS sample. nf-core/circdna calls copy

number using ’cnvkit’ (Talevich et al., 2016) and identified amplified seeds with a copy number

greater than 4.5 for ’AmpliconArchitect’ by utilising functionality of the ’AmpliconSuite-

Pipeline’ (https://github.com/jluebeck/AmpliconSuite-pipeline). ’AmpliconArchitect’ was

run on the aligned reads and the amplified seeds to delineate the amplicon structures. The

identified amplicons were further classified into ’circular’ (ecDNA), ’linear’, ’complex’,

or ’BFB’ (amplicon with a breakage-fusion-bridge signature) using ’AmpliconClassifier’

(Luebeck et al., 2023). Both software tools, ’AmpliconArchitect’ and ’AmpliconClassifier’,

utilise reference genome data which needs to match the reference genome version used in the

alignment step. Therefore, the newly generated WGS data was analysed with the GRCh38,

and the Cancer Cell Line Encylopedia (CCLE) WGS data (Methods Section 2.32) with the

GRCh37 reference genome data.

2.28 Sample classification

Samples containing at least one circular amplicon (ecDNA) were classified as ’ecDNA-

positive’/ecDNA+’, whereas samples without ecDNA amplicons were classified as ’ecDNA-

negative’/’ecDNA–’. Based on the types of amplicons they contained, samples were further

classified into ’Circular’, ’Linear’, ’Complex’, ’BFB’, or ’no-fSCNA’ (no-focal somatic

copy number amplification detected) (Kim et al. (2020) for more information). Samples with

multiple amplicons were classified based on the amplicon with the highest priority, following

the order of Circular > BFB > Complex > Linear.

2.29 EcDNA analysis

Putative ecDNA cycle plots were generated using the cycle information obtained from ’Ampl-

iconArchitect’. The cycles were annotated using the GRCh38 gene annotation and plotted

using the ’circlize’ R-package.

2.30 RNA-seq of HCMI PDOs

RNA-seq data was generated for 14 pancreatic cancer (PC) PDOs that had matching WGS

data. The sequencing and the count matrix generation was performed by the lab of Corbo Lab,
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Department of Diagnostics and Public Health, University of Verona, Italy. Normalisation

was performed using the ’DESeq2’ function ’rlog’ (Love, Anders & Huber, 2021).

2.31 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the ’fgsea’ R-package. The

analysis utilised the Hallmark pathways database (Liberzon et al., 2015) provided by the

’msigdbr’ R-package (Dolgalev, 2022). Additionally, PDAC subtype gene signatures defined

in previous studies by Moffitt et al. (2015), Bailey et al. (2016) and Raghavan et al. (2021),

and Chan-Seng-Yue et al. (2020) were included in the analysis.

2.32 Public datasets

In addition to the ICGC PACA-CA and PACA-AU data sets, several public data sets were

acquired for the study:

Methylation profiles from 24 PDAC tissue grown as patient-derived tumour xenografts

(PDTXs) was obtained from EMBL-EBI Biostudies with the accession number E-MTAB-5571

(Lomberk et al., 2018). The profiles were originally mapped to the GRCh37 reference genome.

To integrate themwithGRCh38 aligned data, the genomic locationswere converted toGRCh38

using the ’liftOver’ tool in the ’rtracklayer’ R-package (Lawrence, Carey & Gentleman, 2021).

The hg19 (GRCh37) to hg38 (GRCh38) conversion chain was downloaded from the UCSC

Genome Browser (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/liftOver/).

RNA-seq count data of 44 PDAC PDOs was obtained from the National Cancer Institute’s

(NCI’s) Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/) (Tiriac et

al., 2018). The dataset is available under the project identifier ’ORGANOID-PANCREATIC’.

The raw counts were log-normalised using the ’DESeq2’ ’rlog’ function.

The normalised RNA-sec counts of 150 PDAC samples from The Cancer Genome Atlas

(TCGA, https://www.cancer.gov/tcga) PDAC project ’TCGA-PAAD’ were obtained from the

GDC Data Portal. The dataset is accessible under the project name ’TCGA-PAAD’. Prior to

downstream analysis, the normalised counts were log-transformed.

Ten WGS data sets from PDAC cell lines of the Cancer Cell Line Encyclopedia (CCLE)

project were downloaded from the NCBI Sequence Read Archive (SRA) under the project ID

SRP186687.

2.33 Restricted Datasets

Mutational calls for all PDOs are provided by the HCMI consortium. This dataset is embargoed

until official publication. Furthermore, identified gene mutations for certain PDOs can also
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be found on the HCMI Searchable Catalog (https://hcmi-searchable-catalog.nci.nih.gov/).

2.34 Statistical analysis

All statistical analyses were performed using R (v4.1.2). Various statistical tests were em-

ployed depending on the specific analysis requirements. A Fisher’s exact test or a chi-squared

test was used to evaluate independence between two variables. The Wilcoxon rank-sum test,

also known as the Mann Whitney U test, was utilised in two-group comparisons. The relation-

ship between quantitative variables was measured using the Pearson correlation coefficient.

Other statistical tests were conducted as described in the figures or figure captions, depending

on the specific analysis and hypothesis being tested.

2.35 Survival analysis

The Kaplan-Meier survival analysis was performed using the R-package ’survival’ and the res-

ults were visualised using the R-package ’survminer’(Therneau & Lumley, 2015; Kassambara

et al., 2017).

2.36 Molecular biology methods

2.36.1 Primer design for eccDNA candidate validation

Outward-directed primers for validating candidate eccDNA junctions were designed using

Benchling’s primer wizard (Benchling, 2023). The primer wizard utilises ’Primer3’ (Unter-

gasser et al., 2012) to identify the optimal primer pair. Primers were selected based on the

lowest penalty score generated by ’Primer3’, aiming for a PCR fragment size of 200-800 bp,

a GC content of 40-60%, a primer length of 20-25 bp, and a primer melting temperature of

58-62°C. The primer sequences are provided in Methods Table 2.6.

2.36.2 Inverse PCR targeting candidate eccDNA junctions

Inverse PCR was performed using outward-directed primers and Invitrogen™ Platinum™

Pfx DNA Polymerase (Thermo Fisher Scientific) following the manufacturer’s instructions.

The reaction conditions included an initial denaturation at 94°C for 10 minutes, followed by

35 cycles of 15 s at 95°C, 30 s at 58°C, and 60 s at 68°C, followed by 15 s at 94°C and 15

s at 68°C. The length length of the PCR products was verified by conventional agarose gel

electrophoresis using 1-2% agarose in TAE buffer. Visualisation was achieved by adding

the recommended amount of SYBR™ Safe DNA Gel Stain (Invitrogen), and a 100 bp DNA

Ladder (Invitrogen) was included as a size marker. Gel electrophoresis was conducted at

80-150 V until the dye line reached approximately 80% of the total gel length. Gel images

were acquired using a ChemiDoc™ Imaging System (Bio-Rad), and ’Fiji’ with ’ImageJ2’
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(version 2.9.0/1.53t) (Abramoff, Magalhães & Ram, 2004) was used to invert image colors,

adjust brightness, and contrast.

2.36.3 Sequencing of candidate eccDNA junctions

Sequencing was performed to verify the sequences of the amplified PCR products. Prior

sequencing, 10 µL of the PCR products were purified using a ZymocleanGel DNA recoveryKit

(Zymo Research Europe GmbH). The purified PCR products were sequenced by the Beatson

Institute for Cancer Research Molecular Technology Service on an Applied Biosystems

3130xl (16 capillary) sequencer (Fisher Scientific). The resulting sequences were aligned

to the reference sequence using the ’MUSCLE’ aligner (Edgar, 2004) implemented in the

’Unipro UGENE’ software (Okonechnikov et al., 2012).

2.37 Graphic design and illustration

Affinity Designer (version 1.10.6) was used to consolidate individual figures, enhance their

visual presentation, and generate schematic illustrations. Unless stated otherwise, all figures

and illustrations were created by myself.

2.38 Extended Data

Extended data including tables, figures, scripts, and processed data are available on an Open

Science Framework (OSF) repository. The access to the specific repository for this thesis

needs to be requested and granted by the author of this thesis. A mail detailing the request

needs to be sent to ds.danielschreyer@gmail.com.

2.39 List of software and algorithms

Tab. 2.3 | List of software and algorithms.

Software Version Source

R-Packages

annotate 1.72.0 Gentleman (2021)

annotatr 1.20.0 Cavalcante (2021)

bedtoolsr 2.30.0-1 Patwardhan et al. (2021)

Biobase 2.54.0 Gentleman et al. (2021)

biomaRt 2.50.3 Durinck and Huber (2022)

Biostrings 2.62.0 Pagès et al. (2021)

ChIPseeker 1.30.3 Yu (2021)

chromoMap 4.1.1 Anand (2022)

Continued on next page
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Software Version Source

circlize 0.4.15 Gu (2022)

clusterProfiler 4.2.2 Yu (2022)

colorblindr 0.1.0 McWhite and Wilke (2021)

colorspace 2.0-3 Ihaka et al. (2022)

ComplexHeatmap 2.10.0 Gu (2021)

DESeq2 1.34.0 Love, Anders and Huber

(2021)

DiffBind 3.4.11 Stark and Brown (2022)

dplyr 1.0.10 Wickham et al. (2022a)

fgsea 1.20.0 Korotkevich, Sukhov and Ser-

gushichev (2021)

forcats 0.5.2 Wickham (2022a)

GenomicDistributions 1.2.0 Kupkova et al. (2021)

GenomicFeatures 1.46.5 Carlson et al. (2022)

GenomicRanges 1.46.1 Aboyoun, Pagès and

Lawrence (2021)

ggalluvial 0.12.3 Brunson and Read (2020)

ggbeeswarm 0.6.0 Clarke and Sherrill-Mix

(2017)

ggbio 1.42.0 Yin, Lawrence and Cook

(2021)

ggforce 0.4.1 Pedersen (2022b)

gghighlight 0.3.3 Yutani (2022)

ggplot2 3.3.6 Wickham et al. (2022b)

ggpubr 0.4.0 Kassambara (2020)

ggrepel 0.9.1 Slowikowski (2021)

ggsci 2.9 Xiao (2018)

ggupset 0.3.0 Ahlmann-Eltze (2020)

GSEA 1.2 Subramanian, Tamayo and

Castanza (2019)

GSVA 1.42.0 Guinney and Castelo (2021)

karyoploteR 1.20.3 Gel (2022)

liftOver 1.18.0 Bioconductor Package Main-

tainer (2021)

maftools 2.10.05 Mayakonda (2022)

patchwork 1.1.2 Pedersen (2022c)

plyranges 1.14.0 Lee, Lawrence and Cook

(2021)

RColorBrewer 1.1-3 Neuwirth (2022)

Rsamtools 2.10.0 Morgan et al. (2021)

Continued on next page
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Software Version Source

stringr 1.4.1 Wickham (2022b)

StructuralVariantAnnotation 1.10.1 Cameron and Dong (2021)

survival 3.4-0 Therneau (2022)

survminer 0.4.9 Kassambara, Kosinski and

Biecek (2021)

tidyr 1.2.1 Wickham and Girlich (2022)

tidyverse 1.3.2 Wickham (2022c)

VariantAnnotation 1.40.0 Maintainer et al. (2021)

vcfR 1.13.0 Knaus and Grunwald (2022)

WGCNA 1.71 Langfelder et al. (2022)

Command Line Tools

FastQC 0.11.9 Andrews et al. (2010)

MultiQC 1.12 Ewels et al. (2016)

Trim Galore 0.6.7 Krueger (2015)

Cutadapt 4.1 Martin (2011)

BWA 0.7.17-r1188 Li (2013)

Samtools 1.15.1 Li et al. (2009)

Picard 2.26.10 http://broadinstitute.git-

hub.io/picard/

Circle-Map 1.1.4 Prada-Luengo et al. (2019)

CIRCexplorer2 2.3.8 Zhang et al. (2016)

Circle git commit: 3eb333d Kumar et al. (2017)

Unicycler 0.5.0 Wick et al. (2017)

Seqtk 1.3 Li (2012)

Minimap2 2.21 Li (2018)

CNVkit 0.9.9 Talevich et al. (2016)

PrepareAA 0.1032.2 Kim et al. (2020)

AmpliconArchitect 1.3_r1 Deshpande et al. (2019)

AmpliconClassifier 0.4.11 Kim et al. (2020)

deepTools 3.5.1 Ramírez et al. (2014)

bcl2fastq 2.19.0.316 Illumina

bedtools 2.30.0 Quinlan and Hall (2010)

R 4.1.2 https://www.r-project.org/

nf-core/atacseq 1.2.0 Patel et al. (2020)

nf-core/sarek 3.0.2 Garcia et al. (2020)

Fastp 0.23.2 Chen et al. (2018)

GATK 4.2.6.1 McKenna et al. (2010)

MACS2 2.2.7.1 Zhang et al. (2008)

Continued on next page
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Software Version Source

Stand-Alone Software

QuantStudio Design & Analysis Software 2.6.0 Thermo Fisher Scientific

2100 Expert Software B.02.09.SI725 Agilent Technologies

Affinity Designer 1.10.6 Serif

RStudio 2022.07.0 RStudio

Fiji with ImageJ2 2.9.0/1.53t Abramoff, Magalhães and

Ram (2004)

Unipro UGENE 4.4.0 Okonechnikov et al. (2012)
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2.40 List of reagents

Tab. 2.4 | List of resources.

Name Catalog Number Source

Molecular Biology Reagents & Consumables

microTUBE-15 AFA Beads Screw-Cap 520145 Covaris

Microamp Fast Optical 96 Well Reaction

Plate, 0.1mL

ST0140 Thermo Scientific

MicroAmp™ Optical Adhesive Film 4360954 Applied Biosystems™

Invitrogen™ Platinum™ Pfx DNA Poly-

merase

10532693 Thermo Fisher Scientific

SYBR™ Safe DNA Gel Stain S33102 Invitrogen™

Thermo Scientific DyNAmo HS SYBR

Green qPCR Kit

F410L Thermo Scientific

Karyomax™ Colcemid™ Solution in PBS 15212012 Thermo Scientific

100 bp DNA Ladder 15628-019 Invitrogen™

Microamp Fast Optical 96 Well Reaction

Plate, 0.1mL

43-469-07 Fisher Scientific

Gel Loading Dye, Purple (6X) B7024S New England Biolabs

Agarose 15510-027 Invitrogen™

Agencourt AMPure XP beads A63880 Beckman Coulter

Cell Culture Media, Supplements, and Reagents

Phosphate Buffered Saline (PBS) Sigma-Aldrich P4417

M199 31150022 Thermo Fisher Scientific

Ham’s F-12 Nutrient Mix 21765029 Thermo Fisher Scientific

HEPES, 1M Buffer Solution 15630049 Thermo Fisher Scientific

L-Glutamine (200 mM) 25030024 Thermo Fisher Scientific

apo-Transferrin human T1147-500MG Sigma-Aldrich

Human EGF Recombinant Protein PHG0311L Thermo Fisher Scientific

Hydrocortisone 21-hemisuccinate sodium

salt

H4881 Sigma-Aldrich

Insulin, human recombinant, zinc solution 12585014 Gibco™

D-(+)-Glucose solution G8644-100ML Sigma-Aldrich

Fetal Bovine Serum, qualified, Brazil 10270106 Gibco™

3,3′,5-Triiodo-L-thyronine sodium salt T6397-100MG Sigma-Aldrich

MEM Vitamin Solution (100X) 11120037 Gibco™

O-phosphorylethanolamine P0503 Sigma-Aldrich

Penicillin-Streptomycin (10,000 U/mL) 15140122 Gibco™

Gentamicin solution G1272 Sigma-Aldrich

IMDM 21980032 Gibco™

Continued on next page
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Name Catalog Number Source

DMEM/F-12 11320-074 Gibco™

Trypsin (2.5%), no phenol red 15090046 Gibco™

DMEM, high glucose 11965092 Gibco™

Keratinocyte SFM (1X) 17005042 Gibco™

Keratinocyte-SFM Medium (Kit) with L-

glutamine, EGF, and BPE

17005075 Gibco™

Commercial Assays & Kits

Agilent DNA 1000 Kit 5067-1504 Agilent Technologies

Qubit™ dsDNA BR Assay Kit, 500 assays Q32853 Invitrogen™

NextSeq 500/550 Mid Output Kit v2.5 (300

Cycles)

20024905 Illumina

NEBNext® Ultra™ II DNA Library Prep

Kit for Illumina®

E7645S New England Biolabs

NEBNext® Multiplex Oligos for Illumina®

(Index Primers Set 1)

E7335S New England Biolabs

PlasmidSafe™ ATP-Dependent DNase E3110K Cambio

REPLI-g Mini Kit (25) 150023 Qiagen

MagAttract HMW DNA Kit (48) 67563 Qiagen

Zymoclean Gel DNA Recovery Kit (un-

capped)

D4001 Zymo Research Europe GmbH

Critical Instruments

Savant™ DNA SpeedVac® DNA120 DNA120-115 Thermo Scientific

QuantStudio™ 3 Real-Time PCR System A28567 Applied Biosystems™

ChemiDoc™ Imaging System 17001401 Bio-Rad

Applied Biosystems™ 3130xl/3100 Genetic

Analyzer 16-Capillary Array

15771816 Fisher Scientific

NextSeq500 SY-415-1001 Illumina

2100 Bioanalyzer Instrument G2939BA Agilent

M220 Focused-ultrasonicator 500295 Covaris

Incubator BD 53 9010-0081 Binder

NanoDrop 2000c Spectrophotometer ND-2000C Thermo Scientific

Qubit® 2.0 Fluorometer Q32866 Invitrogen
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2.41 Media formulation

Tab. 2.5 | Media formulation.

Name Volume Catalog Number Source

M199/F12 Media

M199 215.5 mL 31150022 Thermo Fisher Scientific

Ham’s F-12 Nutrient Mix 215.5 mL 21765029 Thermo Fisher Scientific

HEPES, 1M Buffer Solution 7.5 mL 15630049 Thermo Fisher Scientific

L-Glutamine (200 mM) 5 mL 25030024 Thermo Fisher Scientific

apo-Transferrin human 5 mL T1147-500MG Sigma-Aldrich

Human EGF Recombinant Protein 10 µL PHG0311L Thermo Fisher Scientific

Hydrocortisone 21-hemisuccinate so-

dium salt

5 µL H4881 Sigma-Aldrich

Insulin, human recombinant, zinc

solution

1 mL 12585014 Gibco™

D-(+)-Glucose solution 3 mL G8644-100ML Sigma-Aldrich

Fetal Bovine Serum, qualified, Brazil 37.5 mL 10270106 Gibco™

3,3′,5-Triiodo-L-thyronine sodium

salt

2.5 µL T6397-100MG Sigma-Aldrich

MEM Vitamin Solution (100X) 5 mL 11120037 Gibco™

O-phosphorylethanolamine 50 µL P0503 Sigma-Aldrich

Penicillin-Streptomycin (10,000

U/mL)

5 mL 15140122 Gibco™

Gentamicin solution 250 µL G1272 Sigma-Aldrich

IMDMrich Media

IMDM 389 mL 21980032 Gibco™

Fetal Bovine Serum, qualified, Brazil 100 mL 10270106 Gibco™

Penicillin-Streptomycin (10,000

U/mL)

5 mL 15140122 Gibco™

MEM Vitamin Solution (100X) 2.5 mL 11120037 Gibco™

Human EGF Recombinant Protein 10 µL PHG0311L Thermo Fisher Scientific

apo-Transferrin human 500 µL T1147-500MG Sigma-Aldrich

Insulin, human recombinant, zinc

solution

1 mL 12585014 Gibco™

Gentamicin solution 250 µL G1272 Sigma-Aldrich

Mayo Media

DMEM/F-12 450 mL 11320-074 Gibco™

Fetal Bovine Serum, qualified, Brazil 50 mL 10270106 Gibco™

L-Glutamine (200 mM) 5 mL 25030024 Thermo Fisher Scientific

Continued on next page
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Name Volume Catalog Number Source

Penicillin-Streptomycin (10,000

U/mL)

5 mL 15140122 Gibco™

Gentamicin solution 250 µL G1272 Sigma-Aldrich

Pacadd Media

DMEM, high glucose 266 mL 11965092 Gibco™

Keratinocyte-SFMMedium (Kit) with

L-glutamine, EGF, and BPE

- 17005075 Gibco™

Keratinocyte SFM (1X) 145 mL 17005042 Gibco™

Fetal Bovine Serum, qualified, Brazil 100 mL 10270106 Gibco™

Penicillin-Streptomycin (10,000

U/mL)

5 mL 15140122 Gibco™

Gentamicin solution 250 µL G1272 Sigma-Aldrich
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2.42 Primer sequences

Tab. 2.6 | Primer sequences.

Primer Name Sequence 5’ to 3’ Reference

Chromosomal DNA Removal Control

MT-CO1_F GCCCACTTCCACTATGTCCT Møller (2020)

MT-CO1_R GATTTTGGCGTAGGTTTGGTCT Møller (2020)

COX5B_F GGGGCACCATTTTCCTTGATCAT Møller (2020)

COX5B_R AGTCGCCTGCTCTTCATCAG Møller (2020)

HBB_F TATTGGTCTCCTTAAACCTGTCTTG Henssen et al. (2019a)

HBB_R CTGACACAACTGTGTTCACTAGC Henssen et al. (2019a)

Circle-seq Validation: Single-Fragment EccDNA

PaCaDD137_16_88-62_F TGACCTTGCTGAGGCCCATCCA

PaCaDD137_16_88-62_R GCTGTTATTCTCCGCTGGCGCT

TKCC-2.1_7_38-52_F TCCCTGGGGCTCCCGAAAGAAA

TKCC-2.1_7_38-52_R TTGGGACGCCCTCTGTTGTTGC

TKCC-10_9_11-09_F AGCAGGGGCCATCTGATCCCAA

TKCC-10_9_11-09_R AAGCACTGACCCGCTGCTGTTC

TKCC-15_7_97-98_F ATTTCAGCCCTGCTCAGAGCCC

TKCC-15_7_97-98_R CGTGGTGTCAGCATGGTCTGGT

TKCC-15_19_02-25_F GGTCGGTTGGAAATCCCTGGCA

TKCC-15_19_02-25_R CGCTGGGTGCCCTTTCTTTCCA

TKCC-18_5_21-80_F ACATGTGGCATGCTGGTGTGCT

TKCC-18_5_21-80_R AAGAAATGGCACTGGGGGAGCG

TKCC-22_6_99-19_F TTAGAGGCCTTGGCCAGCACCT

TKCC-22_6_99-19_R ACCCAGGCTGGAGTGCAGTGAT

TKCC-22_6_40-41_F TGGCAGCCATTCCCCATTGTCC

TKCC-22_6_40-41_R GCAACAGCGCAACAAACTATGGCA

TKCC-26_6_42-82_F AACCTCCTCGGCCTCCCAAAGT

TKCC-26_6_42-82_R TTCTGCCATCCTGGGGGTTCCA

Circle-seq Validation: Multi-Fragment EccDNA

PaCaDD137_47_87_10_F AGATTGCACGGCCAACCCACAA

PaCaDD137_47_87_10_R ACAGAGGGGAAGAGGGTGGCTT

TKCC-2_1_12_13_20_F CGTACATCCGGAAATGGAATCTGC

TKCC-2_1_12_13_20_R ACACTTGGGCTGCAGCACTGAG

TKCC-2_1_55_54_15_F TGGGGAAAGTGTGAGTGGTGCT

TKCC-2_1_55_54_15_R ACAGAGGCCAATGTGTCAGCCC

TKCC-09_13_41_18_F AAGGGGCCAGGCTCCCTCTTTT

Continued on next page
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Primer Name Sequence 5’ to 3’ Reference

TKCC-09_13_41_18_R AGTTGGCTGGTCAGGGGTTGTG

TKCC-10_73_3_58_F TGTCTGCTCCATTCGGCTGTGA

TKCC-10_73_3_58_R CCCACTGCCATTTCCCCATTCCT

TKCC-18_18_90_7_F TCTTTGGGGCCTCAGGATGGCT

TKCC-18_18_90_7_R ACAGCTCTGTGTGCCTAGGCCA

TKCC-18_40_2_99_12_F GCTCCCACTGTAGCCTCTGGAACA

TKCC-18_40_2_99_12_R ACCTGTCAACCTCCCAGAGCCA

TKCC-22_68_12_15_F AGGGTCCGCGGCTTCATTCTTG

TKCC-22_68_12_15_R ACCTCTTGCCCACAAAGAGGCT
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Chapter 3
nf-core/circdna

A Nextflow pipeline for the detection of ecDNA and eccDNA in

genomic data sets

Where is the ’any’ key?

Homer Simpson

The introduction of novel sequencing technologies has revolutionised the field towards big

data, allowing the processing of hundreds of samples simultaneously. While this transition

offers unprecedented opportunities, it also revealed new challenges that need to be addressed.

With the increase in throughput, computational power must be increased accordingly, to

facilitate a fast processing time. While most data processing software already allow CPU

parallelisation for single samples, running multiple samples in parallel is mostly not configured.

Additionally, depending on the compute, different independent processes can be run in parallel,

to accelerate processing time (Leipzig, 2017; Wratten, Wilm & Göke, 2021).

To tackle these and other challenges, different pipeline frameworks such as Nextflow (Di

Tommaso et al., 2017), BigDataScript (Cingolani, Sladek&Blanchette, 2015), and Snakemake

(Köster & Rahmann, 2012) were developed. Those function as a workflow management

system and handle software containers, software dependencies, computational resources, and

parallelisation. This creates the portability of pipelines to different computational systems

and achieves high reproducibility (Di Tommaso et al., 2017; Köster & Rahmann, 2012; Ewels

et al., 2020; Wratten, Wilm & Göke, 2021).

Open source projects created a vast library of processing and analysis pipelines. Also in

the biological framework, open source pipelines allow users from different experience levels

to process and analyse their own biological datasets (Wratten, Wilm & Göke, 2021). One
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prominent open-source initiative that built and is building pipelines for various biological

datasets is named nf-core (Ewels et al., 2020).

The nf-core pipelines are built with the Nextflow language (Di Tommaso et al., 2017) and

an integral pipeline framework that defines code structure and documentation, to enhance

readability, portability, reproducibility, and usability. Each nf-core pipeline must be open

source, thoroughly documented, peer-reviewed, built with the nf-core pipeline template,

and usable with the software management systems Docker, Singularity, and Conda (Ewels

et al., 2020). Currently, more than 50 pipelines are officially released and part of nf-core

(https://nf-co.re/). These include pipelines for the processing of diverse biological datasets

such as ATAC-seq (nf-core/atacseq), RNA-seq (nf-core/rnaseq), genome/exome sequencing

(nf-core/sarek), CHiP-seq (nf-core/chipseq). Most pipelines are under continuous development

to remove bugs or change the pipeline composition depending on the gold-standard in the

field.

While many biological datasets already have a respective nf-core pipeline, a pipeline to

identify eccDNAs from sequencing data was missing. Furthermore, the eccDNA field was

revolutionised in recent years with the release of novel algorithms and software. Therefore, I

aimed to develop a nf-core pipeline that contains the most used software for the analysis of

eccDNA from WGS, ATAC-seq, or Circle-seq data. The pipeline is aimed to bring all the

potential of Nextflow and nf-core workflows to the eccDNA field making eccDNA research

available for a broader community.

3.1 Pipeline structure

In recent years, several tools studying circular DNAs have been developed for the identification

and analysis of eccDNA junctions (Kumar et al., 2017; Prada-Luengo et al., 2019; Zhang

et al., 2016), amplified eccDNAs (ecDNAs) (Deshpande et al., 2019), or circular genomes

(Wick et al., 2017). However, each of these tools require unique input files and have diverse

software requirements. To address this issue, a pipeline was developed within the nf-core

framework, which enables easy investigation of various eccDNA research avenues.

To further enhance accessibility of eccDNA research, nf-core/circdna was developed, a

Nextflow pipeline written with the nf-core framework including tools for eccDNA research.

This pipeline, officially released as version 1.0.0 on June 1 2022, currently operates on version

1.0.4 (released on June 5 2023) and runs on Nextflow version >= 22.10.1. It comprises

five major branches, each incorporating distinct software for the identification of eccDNAs

(Figure 3.1). Included are Circle-Map (Prada-Luengo et al., 2019), CIRCexplorer2 (Zhang

et al., 2016), and Circle_finder (Kumar et al., 2017) for the detection of putative eccDNA

junctions from single-fragment eccDNAs (Figure 1.5 top right), Unicycler (Wick et al., 2017)

and Minimap2 (Li, 2018) for de novo assembly and mapping of multi-fragment eccDNAs

(Figure 1.5 bottom right), andAmpliconArchitect (Deshpande et al., 2019) for the identification
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of amplified eccDNAs (ecDNAs; Figure 1.5 left). The selection of these tools is rooted in

the widespread acceptance and frequent use within the eccDNA or circular DNA research

community.

Several other tools are included in the pipeline alongside the eccDNA detection tools,

each serving a specific purpose. The adapter sequence and low quality bases are removed

from the raw data by the trimming software ’Trim Galore’ (Krueger, 2015). ’FastQC’ carries

out quality control of the FASTQ data, and ’BWA’ indexes the reference genome and maps

the sequence data (Andrews et al., 2010; Li, 2013). And lastly, ’Picard MarkDuplicates’

marks duplicate sequences, which can be removed before eccDNA detection (http://broadin-

stitute.github.io/picard/). All tools are essential to ensure accurate input data that is usable by

the eccDNA detection tools and furthermore check sequencing and processing quality.

With this pipeline structure, the only data the user needs to supply is a sequencing dataset

and a reference genome.

3.2 Portability

Each software component within nf-core/circdna has unique dependencies, which can po-

tentially interfere with other software. To manage this, Nextflow enables the use of conda

(https://docs.conda.io/en/latest/) as well as other container environments like docker (ht-

tps://www.docker.com/) and singularity (https://sylabs.io/singularity/). These platforms

handle software dependencies and mitigate the issue of dependency conflicts. For each

process inside the pipeline, a dedicated environment is created in which the respective soft-

ware and its dependencies are installed. The creation of individual environments for each

process does not only avoid dependency conflicts, but also ensures consistent performance

across different computing systems, resulting in a highly portable pipeline.

3.3 Continuous integration testing of nf-core/circdna

Validation and robustness are two key features of developing reliable software pipelines. For

nf-core/circdna, a key method of ensuring these features is the implementation of continuous

integration (CI) tests, powered by GitHub Actions (https://github.com/features/actions). These

tests are designed to automatically verify that any code changes made inside the pipeline do

not negatively affect its performance or output.

In detail, nf-core/circdna employs two main CI tests. The first CI test verifies the func-

tionality of the ’ampliconarchitect’ branch, while the second examines functionality and the

performance with a test data of rest of the branches: Circle-Map (’circle_map_realign’ and

’circle_map_repeats’), ’unicycler’, ’circle_finder’, and ’circexplorer2’.

Generally, each CI test requires a modest test dataset containing sequencing data and its

55

https://docs.conda.io/en/latest/
https://www.docker.com/
https://www.docker.com/
https://sylabs.io/singularity/
https://github.com/features/actions


NF-CORE/CIRCDNA 3.3. Continuous integration testing of nf-core/circdna

Fig. 3.1 | nf-core/circdna Branch Overview. The pipeline contains five branches, which are named after

the eccDNA identifying tool. The pipeline uses paired-end sequencing data and needs a FASTA file from an

appropriate reference genome. Different datasets are required for different branches: The ’ampliconarchitect’

branch requires WGS data. ’circle_finder’, ’circexplorer2’, and ’circle_map’ can be used with either ATAC-seq

or Circle-seq data. And the ’unicycler’ branch is recommended to be used with Circle-seq data only. Depending

on the branch used, different outputs are generated. ’ampliconarchitect’ identifies amplified ecDNAs, ’unicycler’

de-novo aligns eccDNAs and can identify single-and multi-fragment eccDNAs, and ’circle_map’, ’circexplorer2’,

and ’circle_finder’ identify putative eccDNA junctions.

corresponding reference genome. However, the ’ampliconarchitect’ branch requires addi-

tional resources, specifically prepared reference genome data files (github.com/virajbdesh-

pande/AmpliconArchitect) and a Mosek license (mosek.com). As these resources cannot be

freely shared, they need to be individually acquired or downloaded. Therefore, the CI test for

’ampliconarchitect’ uses the ’stub’ method from Nextflow to check the correct installation

and general functionality of all software within the branch. This method generates empty files

and does not conduct a test dataset nor produce amplicon data, limiting its ability to identify

bugs within the software.
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On the other hand, the second key CI test uses simulated Circle-seq data to examine

the other branches. This dataset was simulated with ’Circle-Map Simulate’ (Prada-Luengo

et al., 2019) using the parameters ’-c 50 -N 400000 -r 150’ and the Saccharomyces cerevisiae

(R64-1-1) reference genome. This generated 200,000 simulated 150 bp paired-end FASTQ

Circle-seq data with a mean coverage of 50 reads within the eccDNA coordinates. A high

coverage is important for the ’unicycler’ branch to fully detect an eccDNA sequence. The

full test dataset is uploaded onto github (https://github.com/nf-core/test-datasets/tree/circdna)

and will be downloaded when the CI tests are executed. With the use of this dataset and the

execution of the CI test, all branches, but ’ampliconarchitect’ can be fully validated.

In summary, CI tests form a vital aspect of open source projects, essentially contributing

to keeping the integrity of the pipeline intact during continuous development by various

developers. In total, integration of these tests verify functionality, reliability, and robustness

of the nf-core/circdna, which ensures its successful application in eccDNA research.

3.4 Adapting the nf-core/circdna pipeline for user-specific

needs

3.4.1 Input data

Incorporating various branches and software into the nf-core/circdna pipeline allows users

to customise each workflow run based on the specifics of the input dataset and project

requirements. For example, the ’ampliconarchitect’ branch is designed for use with WGS

data to detect amplified ecDNAs (Deshpande et al., 2019). ’circle_map’, ’circexplorer2’, and

’circle_finder’ are optimally used with Circle-seq data, but may also work with ATAC-seq

data as indicated by Kumar et al. (2020) (Prada-Luengo et al., 2019; Zhang et al., 2016; Kumar

et al., 2020). However, the ’unicycler’ branch should strictly be used with Circle-seq data

to prevent false positives or incorrect assemblies from read originating from non-circular

regions.

3.4.2 User-friendly, yet highly customisable: The parameters of nf-

core/circdna

In an effort to allow users with varying programming skills to use nf-core/circdna, each run

requires only three parameters, ’input’, ’input_format’, and ’output’ (Table 3.1). This
will execute nf-core/circdna with default parameters on the ’circexplorer2’ branch.

While nf-core/circdna can be launched with minimal parameters, it offers over 50 cus-

tomisable parameters to fit users’ individual requirements. A critical parameter to adjust

prior to a workflow run is ’--circle_identifier’. This parameter guides the pipeline on
which branch and tool to execute, such as ’circle_map_realign’ (uses the ’Circle-Map Realign’

tool inside the ’circle_map’ branch) or ’ampliconarchitect’. Multiple branches can be run
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Tab. 3.1 | Minimal input requirements of nf-core/circdna

Parameter Description

--input comma-separated text file containing a row for each sample, listing the sample

name, and the paired-end FASTQ or BAM file paths (samplesheet).

--input_format Defines the file format of the input files. The pipeline accepts either paired-end

FASTQ or BAM files.

--output Path to the output directory in which all generated results will be stored.

simultaneously by specifying their identifiers in a comma-separated list. To illustrate the

’--circle_identifier’ can be set to ’circle_map_realign,circexplorer2’ to analyse data
through both the Circle-Map Realign and CIRCexplorer2 branches concurrently.

All pipeline parameters are detailed and explained on the nf-core website under https://nf-

co.re/circdna/1.0.4/parameters. This resource is automatically updated with every new release,

ensuring users always have access to the latest parameter documentation.

For users requiring in-depth customisation, nf-core/circdna allows for modification of

each process using a user-defined configuration file. This file details the process and any

additional parameters for the software within the process. This option further enables the user

to modify each process, even without a without a predefined customisable parameter.

3.4.3 Data format and samplesheet styles

Depending on the available data, nf-core/circdna users can choose between ’FASTQ’ or

’BAM’ input formats. It’s important to note that only paired-end sequencing data is supported

by the pipeline. If users are working with FASTQ files, users need to prepare a 3-column

comma-separated text file (samplesheet) that specifies the sample names along with the

location of the paired-end FASTQ files. The necessary column names are ’sample’, ’fastq_1’,

and ’fastq_2’. On the other hand, when BAM files are used as input, a 2-column samplesheet

is required, comprising the columns ’sample’, and ’bam’. Detailed explanations of these

columns and their content for FASTQ and BAM input formats are detailed in Table 3.2.

Tab. 3.2 | Samplesheet file column description with --input_format ’FASTQ’ and ’BAM’

Column Description

--input_format ’FASTQ’

sample User-defined sample name.

fastq_1 Full path to Illumina short read FASTQ file 1. The specified file needs to be gzipped

with the extension ’.fastq.gz’ or ’.fq.gz’.

fastq_2 Full path to Illumina short read FASTQ file 2. The specified file needs to be gzipped

with the extension ’.fastq.gz’ or ’.fq.gz’.

--input_format ’BAM’

sample User-defined sample name.

bam Full path to BAM file generated from Illumina paired-end short-read sequencing files.
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3.5 Installation and usage

Ease of installation and usage are key to ensuring accessibility of software pipelines, especially

for non-experienced users. Consequently, multiple methods for installing and executing the

nf-core/circdna pipeline have been implemented.

One way to access nf-core/circdna is via GitHub, which hosts several branches each

representing a specific state of the pipeline. Cloning the repository will download all necessary

scripts and configuration files for the pipeline execution using Nextflow (https://seqera.io/).

The pipeline is then executed using the following command ’nextflow run main.nf ...’.

Alternatively, the Nextflow or nf-core command line tool Ewels et al. (2020) can be

used. These tools automatically download and run nf-core/circdna when specified using the

following command line arguments: ’nextflow run nf-core/circdna -r 1.0.3 ...’ or ’nf-core

launch nf-core/circdna -r 1.0.3 ...’. By specifying the ’-r’ parameter, a specific version can be

downloaded; otherwise the latest stable version will be downloaded by default.

Lastly, there’s the Nextflow Tower (https://cloud.tower.nf/), a graphical user interface to

launch and monitor Nextflow pipelines.

A complete guide to installation and usage commands is available on the nf-core/circdna

website https://nf-co.re/circdna.

3.6 Output description and utility

This section discusses the output files generated by nf-core/circdna. Each pipeline run gen-

erates various output files depending on the branch, input format, and parameters specified.

This can include the generation of reports which detail the quality of the input data and the

analysis or the pipeline run. Furthermore, each branch generates individual intermediate and

final outputs that can be used for further downstream analysis. All outputs are also reported

on the nf-core/circdna website under https://nf-co.re/circdna/1.0.4/docs/output.

3.6.1 Pipeline reports and quality control

Next-generation sequencing data achieves a high accuracy in determining the read sequence.

However, factors such as sample quality, library preparation technique, and human or technical

errors can lead to a higher error rate and, consequently, to poor base accuracy (Koboldt et al.,

2010). As a result, quality control checks and reports are essential for verifying data integrity

and quality.

nf-core/circdna is designed to produce user-friendly outputs, including multiple quality

control metrics. This ensures that pre-processing steps were performed correctly and the

sequencing quality is sufficient for subsequent downstream analysis.
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FastQC, a frequently used tool for high-throughput sequencing data, is employed for

various quality parameters for FASTQ reads, including base sequencing quality, adapter

content, GC content, and duplication levels (Andrews et al., 2010). FastQC is executed

both before and after read trimming to verify the complete removal of low quality bases and

adaptors.

The mapping process and the resultant alignment file undergo quality checking using

Samtools stats (Danecek et al., 2021). This identifies and quantifies unmapped reads, mapping

quality, duplicated reads, reads properly mapped, among other parameters.

Upon completion of each quality control process, MultiQC consolidates all raw quality

control files and reports to compile a user-friendly, comprehensive report (Ewels et al., 2016).

Moreover, each pipeline run generates a report detailing the pipeline’s execution including

all its parameters, and the software versions used. This is particularly critical for ensuring

reproducibility and transparency.

3.6.2 Intermediate Files

Software pipelines are designed to concatenate multiple tools in a linear fashion. In this

structure, the output of one tool is utilised as the input for the succeeding tool. As the pipeline

progresses, intermediate files are generated, which serve as inputs for the creation of the

final output that contains relevant information for biological interpretation or subsequent

downstream analysis. However, these intermediate files might also be valuable for further

analyses not directly related to the pipeline’s objective. Therefore, it might be beneficial to

preserve these files.

nf-core/circdna is designed with user adaptability in mind and retains intermediate files

as needed. This can include, trimmed FASTQ reads, BAM files, BAM files post-duplicate

marking, or BAM files post-duplicate removal. Additionally, useful software’s generated files

are saved in their respective output folders. This facilitates the re-running of certain processes,

quality control, and additional downstream analyses.

3.6.3 EcDNA/EccDNA Information

The integral part of every nf-core pipeline is to generate output for further investigations

or analyses. For instance, the primary goal of nf-core/rnaseq (https://nf-co.re/rnaseq) is to

generate a count matrix containing gene or transcript counts per sample. Conversely, nf-

core/sarek is specialised in calling and annotating copy number alterations, SNVs, and SVs

from genomic data (Garcia et al., 2020). And the newly developed nf-core/circdna aims to

generate information about the eccDNA and ecDNA content within sequenced samples.

The five main branches of nf-core/circdna are categorised into three different functional

groups:
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1. AmpliconArchitect: This branch identifies amplified eccDNAs (ecDNAs)

2. Unicycler: This branch identifies single- and multi-fragment eccDNAs by eccDNA de

novo assembly

3. Circle_finder, Circle-Map, and CIRCexplorer2: These branches identify eccDNA

junctions

Each functional group should be reviewed and carefully selected based on the biological

and technical data at hand. For instance, Circle-seq data is optimally utilised with eccDNA

junction detection branches or the Unicycler branch, whereas WGS should only be employed

with AmpliconArchitect.

Each eccDNA junction detection branch produces a final text output file, containing the

chromosomal location of the identified putative eccDNA junctions. These files can be readily

used with programming languages like R or Python for subsequent downstream analysis.

Unicycler, in contrast, generates a FASTA file containing the sequence of de novo as-

sembled eccDNAs. To identify the eccDNA origin, the FASTA file is transformed into a

FASTQ file and analysed with Minimap2, which maps the eccDNA sequences to a reference

genome and generates a pairwise mapping format (PAF) file containing mapping information

for each identified eccDNA. Again, the output of the Unicycler branch can be analysed using

diverse programming languages.

Lastly, AmpliconArchitect produces cycles and graph files for each amplicon, which

are later used to delineate the amplicon class by AmpliconClassifier. An amplicon that is

classified as ’cyclic’, exhibits an ecDNA signature, and has no detected BFB signature is finally

classified as a circular amplicon, an ecDNA. More details about the method and the output

can be found under https://nf-co.re/circdna/1.0.4/docs/output or in the papers Deshpande et al.

(2019) and Luebeck et al. (2023) which describe the use and utility of AmpliconArchitect and

AmpliconClassifier, respectively.

In essence, nf-core/circdna aims to produce readable and user-friendly outputs for vari-

ous datasets investigated for their eccDNA information. These outputs are readily usable

for downstream analysis or biological examination and can give insights into the eccDNA

landscape of each sample.

3.7 Results

To test the performance of all nf-core/circdna branches, the Circle-seq dataset (Volume 1)

of eight PDAC patient-derived cell lines (PDCLs), and two publicly available datasets were

analysed. The branch AmpliconArchitect was tested by using WGS datasets of a total of

five cell lines. The four other main branches, Circle_finder, Circle-Map, Unicycler, and
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CIRCexplorer2 were tested with our own Circle-seq data generated from eight PDAC PDCLs.

3.7.1 AmpliconArchitect branch identifies ecDNAs

To verify the functionality of the AmpliconArchitect branch, WGS FASTQ files from five

commonly used cell lines was analysed. These datasets were chosen based on their known

presence or absence of ecDNAs. The datasets included low-pass WGS data of four cell lines,

COLO205, GBM39, OVCAR8, and PC3, which were previously published and analysed

by Turner et al. (2017) under the NCBI Sequence Read Archive (SRA) accession number

’PRJNA338012’. Additionally, the WGS data of COLO320DM, a commonly used cell line

in ecDNA research, was acquired from SRA under the accession number ’PRJNA506071’

analysed and published by Wu et al. (2019).

In this test, nf-core/circdna version 1.0.4 was used with the branch ’ampliconarchitect’ and

the five WGS datasets. The final output was generated by AmpliconClassifier summarising

the classified amplicons, which were identified in each sample:

Tab. 3.3 | Classified amplicons identified by the ’ampliconarchitect’ branch of five commonly used cell

lines. The amplicons are classified into ’ecDNA’, ’Linear’, ’Complex’, and ’BFB’ based on their structure. All

amplicons identified in a cell line are enumerated (N). Oncogenes identified on an amplicon are depicted.

N Class Location Oncogenes

COLO205

1 Linear chr6:37851801-42907499 CCND3, GLO1,

TFEB

2 Linear chr6:51269024-56333928

3 Linear chr6:63307927-63957117, chr6:63958453-65312798 PTP4A1

4 Linear chr6:65362739-67555799

5 Linear chr6:133087500-133947841, chr6:133948586-138114599 AHI1,MYB, SGK1,

TNFAIP3

6 Linear chr9:117204900-118360499

7 Linear chr12:124425303-124735303

COLO320DM

1 BFB chr2:126394061-126917181, chr2:126919696-128339386 ERCC3

2 Complex chr2:130184981-130197365, chr2:130199814-130459369,

chr2:131372603-131372825, chr2:131488950-131489308

3 ecDNA chr8:126425747-127997818, chr8:129265936-129274477,

chr6:371964-374266

MYC, PVT1

4 Linear chr13:72303005-73503002 DIS3, KLF5

5 Linear chr16:32287679-32359704

GBM39

1 ecDNA chr7:54763279-55127269, chr7:55155020-56049370 EGFR

Continued on next page
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N Class Location Oncogenes

OVCAR8

1 Linear chr5:14125441-15870492, chr5:97786598-97807181 TRIO

2 Linear chr8:109388988-109478987

PC3

1 Linear chr1:171434357-173851884, chr1:199654128-200439123,

chr1:200734119-201584114

2 Linear chr5:148663641-149388637

3 ecDNA chr8:111334757-111348272, chr8:118555462-118566017,

chr8:119051678-119054057, chr8:121853389-121954292,

chr8:122774690-122776268, chr8:130455524-130855582,

chr8:132851686-132892345, chr8:133661572-133786290,

chr8:137238950-137273896, chr8:138244840-138547408,

chr8:139324742-139366500, chr8:139587901-139636511,

chr8:141195337-141237974, chr8:141238340-141277958

4 Linear chr10:33014920-33599919, chr10:37849322-38049667

5 Linear chr10:36569911-37769910

6 Linear chr10:48855370-51315371

7 Linear chr10:61105383-63685385

8 Linear chr10:65305397-71065499, chr10:72748800-79521899,

chr10:79799400-80227499

PRF1, SIRT1

9 Linear chr12:27859522-28184520

10 Linear chr12:28554510-29584496

11 Linear chr19:58242603-58607612 TRIM28

As expected, COLO205 and OVCAR8, which have no known ecDNAs, contained only

chromosomal amplicons classified as ’linear’ (Turner et al., 2017). In contrast, in COLO320

and GBM39, both of which have been reported to contain ecDNAs, the previously reported

MYC-ecDNA and EGFR-ecDNA has been identified, respectively, alongside other chromo-

somal amplicons (Turner et al., 2017; Wu et al., 2019).

Interestingly, while an ecDNA has been detected for PC3, which has been reported to

contain aMYC-ecDNA, the chromosomal fragment carrying theMYC gene could not been

identified on this ecDNA. An ecDNA carrying regions from chromosome eight around the

MYC locus has been discovered, but theMYC region was not included. This unexpected result

could be due to the limitations of low-pass WGS in detecting ecDNAs or fully describing

their structure. Indeed, the maintainers of AmpliconArchitect recommend using WGS data

with a coverage of at least 5x, while Turner et al. (2017) used a median coverage of 1.19x.

This may have not been sufficient for accurate ecDNA detection.

In conclusion, this analysis demonstrates that the ’ampliconarchitect’ branch, used within

the nf-core/circdna pipeline version 1.0.4 with default parameters, is capable of identifying
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and classifying amplicons from WGS data. The data processing is incorporated by util-

ising the tools AmpliconArchitect and AmpliconClassifier, which use copy number calls

from cnvkit and delineate the amplicon structure (Deshpande et al., 2019; Luebeck et al.,

2023; Talevich et al., 2016). Notably, this branch identified two ecDNAs that have been

characterised in multiple previous studies (Turner et al., 2017; Wu et al., 2019; Hung et

al., 2021). Additionally, the ’ampliconarchitect’ branch can generate all necessary output

files for downstream analysis, including detailed amplicon structures and the amplicon class

(Table 3.3). Moreover, by default, the branch saves intermediate files generated during the

process by default, providing a resource for further investigation A detailed information

about the output can be found in the output documentation on the nf-core/circdna website

(https://nf-co.re/circdna/1.0.4/docs/output/).

3.7.2 Single-fragment eccDNA identification

The three branches ’circle_finder’, ’circexplorer2’, and ’circle_map_realign’ were tested using

Circle-seq data of eight PDAC PDCLs, which are used for eccDNA junction identification.

The nf-core/circdna pipeline was executed with default values, generating three distinct files,

one for each branch, containing eccDNA information. After pipeline execution, the eccDNA

information was further processed by removing eccDNAs, whose eccDNA junction was

supported by fewer than five reads. The remaining eccDNAs that passed the filtering are

counted and visualised for each branch.

Each branch successfully identified eccDNAs, albeit in varying quantities (Figure 3.2).

Circle_finder detected approximately 46,500 eccDNAs, while ’CIRCexplorer2’ and ’Circle-

Map Realign’ both identified roughly 75,000. This underlines that each branch’s capacity to

independently detect eccDNAs is dependent on the branch of choice, the biological query,

and the software selected.

Fig. 3.2 | Number of eccDNAs identified in the three nf-core/circdna branches identifying putative eccDNA

junctions.

The generated output can be subsequently analysed with programming languages such as

’R’ or ’Python’. The role of nf-core/circdna is confined to process sequencing data to generate

eccDNA information, but does not perform any secondary analyses.

In summary, this basic run demonstrates the capability of these three nf-core/circdna
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branches in processing sequencing data and detecting eccDNAs.

3.7.3 Multi-fragment eccDNA identification

Single-fragment eccDNAs are simple eccDNAs generated from one specific fragment and

locus of the chromosomes. However, the eccDNA landscape is much more complex and

eccDNAs can comprise multiple different chromosomal fragments from one or multiple

chromosomes (Kim et al., 2020; Deshpande et al., 2019). Identifying multi-fragment eccDNAs

is key to identify the full eccDNA landscape. However, current methods are not adapted

to identify eccDNAs from multiple chromosomal regions, but are optimised for identifying

putative eccDNA junctions (Prada-Luengo et al., 2019; Kumar et al., 2020).

To discover eccDNAs from multiple chromosomes, the eccDNA-specific sequencing tech-

nique, Circle-seq, needs to be utilised as other sequencing methods are also generating reads

from chromosomal regions, impeding the eccDNA identification process. With sequencing

data enriched for eccDNA reads, de novo assembly algorithms can reconstruct the complete

eccDNA sequence, which can then be aligned to a reference genome to determine the eccDNA

origin.

Within nf-core/circdna this process is implemented using Unicycler (Wick et al., 2017) and

Minimap2 (Li, 2018) included in the ’unicycler’ branch. To test this experimental eccDNA

identification procedure, the branch was used with the Circle-seq Volume 1 dataset. Then,

the mapped de novo assembled eccDNA sequences were filtered based on several criteria to

identify high-quality eccDNAs (Methods Section 2.22).

Running the Circle-seq dataset revealed more than 25,000 (26,582) de novo assembled

eccDNAs. The majority of those were defined as originating from one single chromosomal

fragment (22,371 of 26,582; 84.2%). However, also multi-fragment eccDNAs were identified

with 12.6% having two fragments and 3.21% containing three or more fragments from different

parts of the chromosome.

Fig. 3.3 | Number of unique single-or multi-fragment eccDNAs identified using the ’Unicycler’ branch of

nf-core/circdna. The total number (left) and the number of eccDNAs per sample (right) are divided into the

number of fragments of each eccDNA. Three or more than three fragments were grouped into 3+.

In summary, the nf-core/circdna branch ’unicycler’ can identify single- and multi-fragment
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eccDNAs using the software Unicycler in combination with Minimap2. Further validation of

this technique and branch is described in the Results Chapter 5.

3.8 Conclusion & discussion

The nf-core/circdna pipeline, utilising Nextflow and the nf-core framework, facilitates sequen-

cing data analysis for eccDNA content. The pipeline is accessible from the nf-core website and

GitHub, and supports multiple branches. Documentation for the pipeline is comprehensive,

easing its application and modification to meet specific needs.

Leveraging Nextflow’s domain-specific language has led to optimisation for ease of use,

accuracy, speed, and adaptability (Ewels et al., 2020; Di Tommaso et al., 2017). While

nf-core/circdna offers a comprehensive framework for detecting eccDNA, user expertise and

input are still critical for optimal use. Additional processing and parameter modifications

may be necessary to ensure accuracy, taking into consideration biological hypotheses and

data. The pipeline provides a convenient method for researchers with diverse expertise to

conduct eccDNA identification. At present, nf-core/circdna is optimised for analysing short

read sequencing data. Nevertheless, with the growing usage of long read sequencing data for

eccDNA research, relevant adaptations will need to be implemented in the pipeline framework

in the future.

The nf-core guidelines impose stringent guidelines on the functionality of nf-core/circdna

(Ewels et al., 2020). nf-core/circdna has been evaluated using WGS and Circle-seq data,

and all software tools meet the necessary standards for effortless deployment across various

computational systems.

The current version of nf-core/circdna (1.0.4) undergoes consistent refinement and main-

tenance. nf-core pipelines uphold elevated standards for reproducibility, improvement, and

compliance with optimum procedures (Ewels et al., 2020). With nf-core/circdna, it is anti-

cipated that research on eccDNA will be more widely accessible, facilitating advancements

towards a thorough comprehension of patients’ genomics. Furthermore, nf-core/circdna con-

tributes to the extensive collection of analytical pipelines being developed for various types

of biological data.
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Chapter 4
Investigating ecDNAs in PDAC

In biology, nothing is clear, everything

is too complicated, everything is a mess,

and just when you think you understand

something, you peel off a layer and find

deeper complications beneath. Nature is

anything but simple.

Richard Preston

The pancreatic ductal adenocarcinoma (PDAC) genomic landscape is intricate, marked by

a limited number of highly prevalent driver gene mutations and an array of infrequent ones.

In addition, copy number alterations, which lead to the deletion or amplification of cancer

driver genes, play a significant role in PDAC. Copy number increases primarily affect onco-

genes, leading to elevated activation of oncogene-specific pathways. In PDAC, many of the

recurrently amplified oncogenes, including KRAS, MYC, CDK6, MET, or GATA6, control

cell-cycle, subtype state, apoptosis, genomic instability, all of which can drive PDAC pro-

gression (Waddell et al., 2015; Chan-Seng-Yue et al., 2020; Maddipati et al., 2022; Lomberk

et al., 2018).

Extrachromosomal circular DNAs (ecDNAs) are important players in the mechanism of

oncogene amplification. Unlike normal chromosomes, ecDNAs lack a centromere, resulting

in random inheritance during the cell cycle. This process can drive amplifications and intra-

tumour heterogeneity, leading to tumour progression or drug resistances (Kim et al., 2020;

Hung et al., 2021; Nathanson et al., 2014; Yi et al., 2022). While ecDNAs have been identified

in almost all types of cancer, including pancreatic cancer (PC), further research on ecDNAs

in PDAC is limited (Kim et al., 2020; Notta et al., 2016).

To address this gap of knowledge, the primary aim of this study is to characterise and

describe the occurrence, associations, and potential implications of ecDNAs in PDAC. Through
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expanding our comprehension of the complex genomics of this disease, these findings may

prove beneficial for PDAC patients.

The study integrated PDAC amplicon information retrieved from Kim et al. (2020) with

clinical, mutational, and transcriptomic data from the ICGC projects PACA-CA and PACA-

AU. Additionally, WGS and RNA-seq data from PDAC patient-derived organoids (PDOs)

were analysed. These PDOs were generated by the Vincenzo Corbo lab, University of Verona,

in collaboration with the Human Cancer Model Initiative (HCMI). Post-characterisation,

selected PDOs were subjected to media condition changes to investigate the involvement of

ecDNAs in adaptation mechanisms, offering insights into the role of ecDNAs in adaptation

mechanisms. And lastly, I also analysed WGS data from PDAC cell lines published by the

Cancer Cell Line Encyclopedia (CCLE) to identify their use in ecDNA research.

4.1 Study samples

In order to investigate the specific characteristics of ecDNAs in PDAC, I obtained and analysed

the amplicon data from the ICGC PC samples, as reported by Kim et al. (2020). The study

methodically identified and categorised the amplicons for each WGS sample from the TCGA

and ICGC. Samples containing circular amplicons (ecDNAs) were categorised as ’Circular’

or ’ecDNA+’. However, it is worth noting that the study did not differentiate between the

different types of PC (Kim et al., 2020).

ICGC PC projects classify samples based on the specific pancreas cancer of interest. For

instance, ’PACA’ projects primarily include PDAC tumours, while ’PAEN’ projects contain

pancreatic cancer endocrine neoplasms (PAEN) tumours. By dividing all PC tumour samples

into their respective sub-projects, PACA and PAEN, and investigating the amplicon content,

a slightly higher, but non-significant (Fisher’s exact test, P value = 0.51), ecDNA+ frequency

was identified in the in the tumours of the PACA project (13.4%) compared to the PAEN

tumours (9.9%, Figure 4.1a). This finding underscores the prevalence in PDAC tumours and

sets the basis for a more detailed examination of ecDNAs in PDAC.

The two ICGC PACA projects, PACA-CA and PACA-AU, comprise samples from various

PC types with a focus on PDAC. To ascertain characteristics specific to PDAC, histologically

identifiable non-PDAC samples were excluded prior further analysis (Figure 4.1b andMethods

Section 2.25). Out of the initial 142 PC tumours in the PACA projects, 127 were classified as

PDAC and employed for further study. These 127 PDAC samples primarily originated from

early-stage primary tumour tissues with varying degrees of tumour purity, ranging from 0.18

to 0.99 (Figure 4.1c,f,g).

The HCMI aims to generate up to 1,000 PDO models from different types of cancer. In

collaboration with the HCMI, the lab of Vincenzo Corbo at the University of Verona, produced

PC PDOs. In short, PC PDOs were created by mechanically fragmenting the collected
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Fig. 4.1 | ICGC and HCMI sample overview. a, The ICGC pancreas cancer projects Pancreatic Cancer (PACA)

and Pancreatic Cancer Endocrine neoplasms (PAEN) analysed by Kim et al. (2020) and their ecDNA+ and

ecDNA– sample frequency. b, The ICGC PACA samples grouped into PDAC and non-PDAC depending on

tumour histology type (Methods Section 2.25). c, Purity levels of PDAC tumours analysed in ICGC PACA-AU

and PACA-CA. d, Schematic overview of project strategy to generate tumour sequencing data. e, WGS samples

analysed from the HCMI cohort. f, Specimen origin by project type. g, Comparison of tumour stage in the

two project groups. Stage known or assignable for 39/41 HCMI PDOs and 74/127 ICGC primary tumours. e,

Matching RNA-seq data available for the HCMI PDOs and the ICGC PDAC samples.

tumour specimen and then embedding it in Matrigel. After organoid establishment and

selective outgrowth of cancer organoids, the PC PDOs comprise a heterogeneous population

of neoplastic cells (Boj et al., 2015; Seino et al., 2018). For a comprehensive genomic analysis,

encompassing the identification of amplicons, including ecDNAs, a collection of 41 PC PDOs

and four PDO-matching primary tumours underwent WGS (Figure 4.1e). To note, these PC

PDOs were primarily established from PDAC and will be referred to as PDAC PDOs hereafter

(Extended Data Table 1).

The sequencing coverage in the HCMI WGS data averaged approximately 15x for each

sample, which is sufficient for copy number and amplicon analysis. No matching normal

samples were simultaneously sequenced. The PDOs were generated from tissue biopsies of

PDAC primary tumours (n = 38) and lymph node metastases (n = 3), and they were sequenced

after successful establishment (Figure 4.1f). Compared to the PDAC tumours in ICGC, a

notable proportion of HCMI tumours, which were the source of PDOs, were found in advanced

stages of the disease (Figure 4.1g).

To identify ecDNAs and other amplicons, the nf-core/circdna pipeline was utilised, incor-

porating the functions of AmpliconArchitect and AmpliconClassifier (Results Chapter 3). Full

amplicon information was generated for the sequenced HCMI samples, enabling comprehens-
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ive downstream analysis. However, the ICGC PDAC data only provided accurate information

regarding amplicon types and numbers in each sample. The identification of ecDNA content

was not feasible using the published data by Kim et al. (2020). Hence, differing analyses were

conducted on the respective datasets depending on the available information.

Numerous studies analysing the ICGC datasets have been published, and many findings

are publicly accessible on the ICGC data portal (dcc.icgc.org/). This included RNA-seq,

clinical, and mutational data. Here, matching RNA-seq data was available of 50 ICGC PACA-

CA samples, while the PACA-AU dataset lacked matching WGS and RNA-seq samples. In

addition, RNA-seq was performed on 14 HCMI PDOs (Figure 4.1h).

As previously mentioned, the HCMI WGS data was generated without normal samples,

which are essential for distinguishing germline single nucleotide polymorphisms (SNPs) or

mutations from somatic mutations. For this reason, the newly generated WGS data was not

utilised for mutational calling. Instead, mutational calls for all PDOs are provided by the

HCMI consortium, who performed genomic sequencing on the corresponding PDOs along

with their matching normals. This dataset was available for analysis but under embargo until

official publication. To bypass publication restrictions, the PDOs underwent re-sequencing.

Only the mutational calls from the original HCMI data were utilised. All other analyses were

carried out on the WGS data generated by the Corbo Lab.

4.2 EcDNAs are common in PDAC

Recent revolutionary studies have identified ecDNAs in almost all cancer types, indicating

that ecDNAs are a common feature in cancer genomes (Turner et al., 2017; Kim et al., 2020).

The collective analysis of PC revealed that more than 10% of PC tumours contain ecDNAs

(Kim et al., 2020). To identify the PDAC-specific occurrence, the samples in the ICGC and

HCMI datasets were classified based on their amplicon types as ’Circular’, ’BFB’, ’Complex’

or ’Heavily-rearranged’, and ’Linear’. Circular amplicons are ecDNA-based amplicons that

form one or more circular structures. BFB amplicons refer to amplicons with a BFB signature.

Complex amplicons contain distal or interchromosomal segments, while linear amplicons

relate to focal amplifications. For samples with multiple amplicons, the classification was

based on the amplicon with the highest priority. Priority was defined as follows: Circular

> BFB > Complex/Heavily-rearranged > Linear. Samples containing no amplicons were

classified as having no focal somatic copy number amplification (No-fSCNA), as originally

defined by Kim et al. (2020).

Analysis of the ICGC data revealed that 14.2% of PDAC primary tumours contain ecDNA

(Figure 4.2a). This is a slightly higher frequency compared to the overall PACA cohort,

which included non-PDAC samples (14.2% vs. 13.4%). The HCMI PDOs exhibited an even

higher frequency of ecDNA, with almost 30% of the PDAC PDOs (12 out of 41, 29.27%)

containing at least one ecDNA. In contrast, the frequency of samples with no identified
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amplicons (No-fSCNA) is comparable between the ICGC and HCMI PDAC samples (26.83%

vs. 33.9%).

Fig. 4.2 | Amplicon and sample classification of ICGC primary and HCMI PDO samples. a, HCMI PDO

and ICGC primary tumour sample classifications based on their amplicon types (Methods Section 2.28). Samples

without any amplicon are termed No-fSCNA (no focal somatic copy number amplification detected). Sample

and amplicon classification for ICGC primary tumours was obtained from Kim et al. (2020). Samples with a

detected circular amplicon were classified as ecDNA+, all other samples were termed ecDNA–. b, Number of

amplicons per sample in the HCMI cohort (left). Number of amplicons per amplicon type in the HCMI PDO

and ICGC samples (right).

A closer look at the amplicon landscape within the ICGC cohort revealed a significant

prevalence of linear amplicons (Figure 4.2b). Similarly, the HCMI PDOs showed a high

frequency of linear amplicons (n = 17, 31.4% of all amplicons). However, in contrast to the

ICGC primary tumours, the HCMI PDOs also present an abundance of circular amplicons (n

= 17).

This comparison of the different amplicon classes in the ICGC and HCMI cohorts revealed

a substantial discrepancy between the amplicon types identified. It is noteworthy that the

methodology for amplicon classification by AmpliconClassifier has changed between the

legacy version (Kim et al., 2020) and the version used in the HCMI analysis (Luebeck et al.,

2023). However, it remains uncertain whether these changes significantly affect amplicon

classes called, and no considerable differences are expected between ecDNA calling in the

old and new versions.

Tumour purity plays an important role in somatic mutation and copy number calling (Xu

et al., 2014; Zare et al., 2017; Alioto et al., 2015). PDOs are purely neoplastic cells and

achieve high levels of tumour purity, making them an ideal tool for identifying cancer-specific

features (Seino et al., 2018). In contrast, primary tumours are a complex mixture of normal and

71



ECDNAS IN PDAC 4.3. EcDNAs are retained in PDAC PDOs

cancer cells. Consequently, primary tumours exhibit varying degrees of purity, as observed in

the ICGC PDAC primary tumour dataset, potentially affecting copy number calling methods,

structural variation (SV) detection, and amplicon determination (Figure 4.1c) (Carter et al.,

2012). Therefore, the observed amplicon differences between the ICGC dataset and the HCMI

PDOs could also be explained by a higher tumour cell purity in the PDOs that allow a more

accurate amplicon determination.

Furthermore, as described in Results Section 4.1, the tumour stage of the HCMI PDAC

cohort differs significantly from that of the ICGC cohort. In the study by Luebeck et al.

(2023), an association between ecDNAs and late stage disease was identified in oesophageal

adenocarcinoma. Accordingly, I investigated whether a similar association would be observed

in PDAC by integrating tumour stage and ecDNA occurrence. However, no such association

was found (Figure 4.3) (Luebeck et al., 2023).

Fig. 4.3 | No association between PDAC stage and ecDNA presence. EcDNA presence is not significantly

associated with tumour stage (P value = 3.51e-01, chi-squared test, two sided) in the HCMI PDO and ICGC

samples. The tumour stage, as defined by the AJCC staging system, was obtained from the clinical information

of the PDAC tumours. To simplify, the tumour stage was broadly categorised into a four stage classification

without dividing into the tumour stage subcategories.

These findings from the analysis of the HCMI PDOs and the ICGC primary tumours

suggest that ecDNAs may be more prevalent than originally believed. Moreover, circular

amplicons make up a considerable portion of all amplicons in the HCMI PDOs, hinting at the

possibility of ecDNAs serving as a huge driver for oncogene amplifications in PDAC.

4.3 EcDNAs are retained in PDAC PDOs

In cancer research, model systems are critical for representing specific disease aspects. While

primary tumour analysis is the most accurate method in reflecting the cancer genotype and

phenotype, PDAC PDOs have been shown to closely mimic the genomic and transcriptomic

landscape (Tuveson & Clevers, 2019; Tiriac et al., 2018; Nam et al., 2022). This characteristic

makes PDOs ideal for functional genomic studies. While other cancer model systems, such as

patient-derived neurospheres or cell lines, have been used previously to investigate the roles

of ecDNAs in multiple cancer types, ecDNAs, to my knowledge, have not yet been detected

or analysed in PDOs (Nathanson et al., 2014; Wu et al., 2019; Turner et al., 2017).

The foregoing analysis revealed that ecDNAs are prevalent in PDAC PDOs. To establish

whether these ecDNAs stem from the primary tumours, a comparative analysis of the WGS

72



ECDNAS IN PDAC 4.3. EcDNAs are retained in PDAC PDOs

data was carried out on the four patients with corresponding primary tumours and PDOs.

Fig. 4.4 | Retention and possible evolution of MYC-ecDNAs in PDAC PDOs. a, Circos plot displays the

amplicon regions that were identified in the primary tumours and their corresponding PDOs in four patients.

Although PDOs exhibit a greater number of amplicon regions, they are still able to retain the same amplicon

regions as the matching primary tumour. b, EcDNA status in both the primary tumour and matching PDOs. c,

Retention and potential evolution ofMYC-ecDNAs in primary tumour and PDO of the two ecDNA+ patients

(VR01, VR06).

The analysis uncovered that the amplicons identified in the primary tumours were also

identifiable in the PDOs (Figure 4.4a). Specifically, three of four primary tumours contained

similar amplicon regions as those found in the PDOs. Remarkably, the PDOs exhibited a
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larger number of amplicons when compared to their corresponding primary tumours. This

suggests that the pure neoplastic nature of the PDOs might provide a more comprehensive

view of the genomic landscape compared to primary tumours, which generally contain a

mixture of neoplastic and non-neoplastic cells.

Additionally, the ecDNA-positivity in the primary tumours was retained in the corres-

ponding PDOs. Two of the four primary tumours (VR01-P and VR06-P) were identified to

be ecDNA+, while the other two, VR09-P and VR23-P, either contained a BFB amplicon or

no amplicon (Figure 4.4b and Figure 4.3b). This indicates that the ecDNA status is likely

conserved during PDO establishment from the primary tumour.

Of significance, both patients with ecDNAs carried a MYC-bearing ecDNA (Figure 4.4c).

The amplicon structure and landscape are entirely overlapping in VR01-P and VR01-O,

emphasising the correlation between these ecDNAs and indicating that the VR01-P ecDNA

was retained in VR01-O. In contrast, VR06-P and VR06 exhibited distinct amplicon structures.

Despite their similar gene content, includingMYC, the SV and ecDNA composition are vastly

different. When comparing the amplicon similarities using AmpliconClassifier (Luebeck

et al., 2023), no significant relationship was observed (P value = 0.12, Similarity Score =

0.265, Table 4.1). Therefore, it is unclear whether both MYC-ecDNAs are related. In a study

by Shoshani et al. (2021), ecDNA evolution was noted under selection pressure, which might

explain the structural evolution of the MYC-ecDNA during the PDO establishment. However,

the available evidence is limited and further analysis and research is needed to identify ecDNA

evolution and the actual relationship.

Tab. 4.1 | Statistical examination ofMYC-ecDNA similarities identified in the VR01 and VR06 primary

tumour and PDO.

Primary Tumour PDO Similarity Score P value

VR01-P VR01-O 0.527 0.013

VR06-P VR06-O 0.265 0.123

Taking together, despite the absence of a significant similarity between the MYC-ecDNA

in VR06-P and VR06-O, it is suggested that the PDOs reflect the amplicon landscape of PDAC

primary tumours, and also retain their ecDNA characteristics. These findings underline the

potential of PDOs as a representative model system to studying the role of ecDNA in PDAC.

4.4 The amplicon landscape of PDAC PDOs

Comprehending the genomic landscape of PDAC is pivotal for tailoring personalised thera-

peutic approaches (Pishvaian et al., 2020). To improve our understanding of the genomic

complexity and identify potential targetable alterations, we analysed the amplicon heterogen-

eity and landscape, specifically the ecDNA landscape, in the PDAC PDOs (Figure 4.2).

The analysis included 41 PDOs, with a diverse set of amplicons (Figure 4.2a,b). Of the 41
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Fig. 4.5 | Amplicon landscape of PDAC PDOs. Genome-wide distribution of amplicons by amplicon class

in the HCMI PDOs (n = 41). The amplicons were counted for each 5 Mbp bin and are shown as the total

number of PDOs containing a given amplicon class. Recurrent or PDAC driver genes are highlighted. Selected

putative ecDNAs (circular amplicons), their structure and gene content are displayed above the genome plot. To

improve readability, only cancer driver genes defined in the allOnco gene database are plotted for the VR06-O

chr17-ecDNA, the VR53-O chr6-ecDNA, and the VR11-O chr1-ecDNA. The number of PDOs with an amplicon

of the respective class is denoted by n below each amplicon class title.

PDOs, 30 had amplicons, with 16 of these containing multiple amplicons (Figure 4.2b). Over-

all, 54 amplicons were identified, exhibiting an extensive genomic distribution (Figure 4.5).

The most common cancer driver gene found on amplicons was CCND3 (n = 4) a well-

known activator of the cell cycle in PDAC (Radulovich et al., 2010). Furthermore, one of the

four amplicons containing CCND3 was also classified as circular, revealing a CCND3-bearing

ecDNA. Recurrent PDAC driver genes were less frequent, observed in a maximum of two
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PDOs, indicating a remarkably diverse amplicon landscape in PDAC.

Twelve ecDNA+ samples were identified, containing a total of 17 circular amplicons.

MYC was found on ecDNAs in two separate PDOs. Two PDOs from a single patient (VR11)

were found to contain the BCL9 gene, one originating from a primary tumour (VR11-O)

and the other from a lymph node metastasis (VR11-LNO). While additionally, CCND3 and

ERBB2 were each present on a single ecDNA.

Upon examining the putative structure of the MYC-ecDNAs in PDOs VR01-O and VR06-

O, it was observed that while ecDNAs may contain similar genes, they consist of diverse

genomic fragments. The chromosomal breakpoints that give rise to ecDNA formation appear

to be randomly distributed and do not display any specific patterns. However, recent research

discovered that the contents of ecDNA are non-random and overwhelmingly consist of cancer-

specific driver genes – a conclusion that this analysis of PDAC PDOs further supports (Kim

et al., 2020; Luebeck et al., 2023). Moreover, the putative structure of BCL9-ecDNAs of

VR11-O and VR11-LNO appears to have slight differences. However, a subsequent analysis

will be conducted to scrutinise both amplicons for any similarities or differences to determine

the likelihood of a shared origin.

In brief, these findings underline the potential significance of ecDNAs in PDAC by

amplifying PDAC-specific cancer driver genes, such as MYC, ERBB2, and CCND3. The

ecDNA landscape heterogeneity in PDAC hints that ecDNAs may have diverse roles that are

possibly impacted by the particular cancer genes they comprise. This emphasises the potential

necessity for detecting and determining ecDNA content for personalised therapeutic strategies

for PDAC.

4.5 Distinct transcriptomic profiles in ecDNA+ tumours and

PDOs

Studies have indicated that ecDNA is linked to aggressiveness, enhanced proliferation, and

an unfavourable prognosis for patients (Kim et al., 2020; Koche et al., 2020). Given these

connections, this sections aims to elucidate the biological mechanisms associated with ecDNA+

PDAC tumours and PDOs, respectively. For this, an integrative transcriptomic analysis was

conducted using matching RNA-seq data. The ICGC dataset included 50 primary tumours with

amplicon information and corresponding transcriptomic data, of which seven were identified

as ecDNA+ and 43 as ecDNA–. Additionally, RNA-seq was performed on 14 of the HCMI

PDOs, seven of which were classified as ecDNA+ and seven as ecDNA–.
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4.5.1 EcDNAs are associated with a Basal-like signature in PDAC tu-

mours

Presently, PDAC is divided into two to five subtypes by various bulk tumour subtyping

schemes (Bailey et al., 2016; Moffitt et al., 2015; Chan-Seng-Yue et al., 2020; Collisson et al.,

2011; Raghavan et al., 2021; Puleo et al., 2018; Collisson et al., 2019). However, despite

the existence of diverse subtypes, these schemes generally classify PDAC tumours into two

broad subtypes. One subtype, called ’Classical’ or ’Pancreatic Progenitor’ is associated with

the the activation of pancreatic lineage genes and a favourable patient outcome. The other

subtype, termed ’Basal’ or ’Squamous’, is linked to poor patient outcomes, and the activation

of epithelial-to-mesenchymal transition (EMT), MYC, and proliferation pathways (Bailey

et al., 2016; Collisson et al., 2019).

Fig. 4.6 | EcDNAs are associated with a Basal/Squamous signature in PDAC tumours. Barplot displaying

gene set enrichment analysis results of subtype gene signatures in ecDNA+ (ICGC: n = 7, HCMI: n = 7) and

ecDNA– (ICGC: n = 43, HCMI: n = 7). Significant association (P value < 0.05) is displayed in orange. Subtype

gene signatures are defined by Bailey et al. (2016), Chan-Seng-Yue et al. (2020), Collisson et al. (2011) and

Raghavan et al. (2021), and Moffitt et al. (2015). The Chan-Seng-Yue et al. (2020) signatures are termed based

on their expression in specific subtypes: Classical A (Signature 1), Classical B (Signature 6), Basal-like A

(Signature 2), Basal-like B/Hybrid (Signature 10) (Chan-Seng-Yue et al., 2020).

To determine whether a PDAC subtype correlates with ecDNA+ samples, a transcriptomic

analysis was conducted on the ICGC primary tumours and the HCMI PDOs. This comprised

of a differential expression analysis between ecDNA+ and ecDNA– primary tumours and

HCMI PDOs, revealing deregulated genes between the different states (Extended Data Table

4). Following this, a gene set enrichment analysis was conducted using various subtyping

gene set signatures with the objective of unveiling subtype associations.
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In the ICGC dataset, tumours positive for ecDNAs exhibited notable correlations with the

Squamous subtype of the Bailey classification and the Basal-like A subtype of the Chan-Seng-

Yue signatures (Figure 4.6). While other Basal gene signatures, such as Quasi-mesenchymal or

Basal-like, showed enrichment, their activation was not established as statistically significant

(P value < 0.05). In contrast, tumours lacking ecDNA revealed significant enrichment for

gene signatures associated with the Classical subtypes (Pancreatic Progenitor, Classical,

scClassical). This suggests that ecDNA+ tumours are associated with a Basal phenotype,

whereas ecDNA– tumours exhibit characteristics of Classical gene signatures.

However, an equivalent analysis of the HCMI PDOs failed to establish a comparable

correlation (Figure 4.6). Only the Classical B subtyping was found to be enriched in ecDNA+

PDOs, which contradicts the results from primary tumours. Additionally, an enrichment of

the Squamous subtype was observed in ecDNA+ PDOs, but no significant association was

found.

PDAC PDOs often shift from their Basal subtype to a more Classical phenotype due

to the presence of growth factors and chemokines in the organoid media (Raghavan et al.,

2021). These utilisation of such additives, which are necessary for prolonged growth, seems

to impact the transcriptomic composition of PDOs (Boj et al., 2015; Raghavan et al., 2021).

Furthermore, while early-passage analysis might recapitulate the primary disease subtype,

extended propagation leads to the expression of Classical gene programmes (Tiriac et al.,

2018; Raghavan et al., 2021). Sequencing of the HCMI PDOs was carried out at various

passage levels, meaning the subtyping accuracy may have been compromised (Extended Data

Table 6).

In summary, these findings demonstrate a link between ecDNA+ PDAC primary tumours

and Basal/Squamous gene signatures, which are recognised to align with increased tumour

aggressiveness and poor patient outcomes (Collisson et al., 2019; Bailey et al., 2016). While

the PDO analysis yielded no comparable connections, the inadequacy of the PDO RNA-seq

data may have impeded subtype analysis. Therefore, it is not possible to definitively exclude

an association between the Basal subtype and ecDNA+ tumours. Nevertheless, more research

is required to validate this association, using additional datasets generated, ideally, from

PDAC primary tumours.

4.5.2 Differential transcriptomic signatures in ecDNA+ PDAC tumours

and PDOs

Transcriptomic profiling has uncovered diverse biological processes that impact the growth

and progression of PDAC tumours (Bailey et al., 2016; Peng et al., 2019). However, the

connection between ecDNAs and distinct biological programs in the context of PDAC remains

unexplored. Therefore, a gene set enrichment analysis was conducted on the transcriptomic

data of the ICGC PDAC primary tumours and the HCMI PDOs, with the aim of identifying
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active gene programmes described in the Hallmark gene sets (Liberzon et al., 2015).

Fig. 4.7 | Hallmark pathway activation in ecDNA+ and ecDNA– PDAC tumours and PDOs. Hallmark

pathway gene set enrichment analysis compares ecDNA+ and ecDNA– samples within ICGC primary tumours

(n = 50, right) and HCMI PDOs (n = 14, left). Significantly enriched pathways (HCMI: P value < 0.05, ICGC:

adjusted P value < 0.05) for both groups are displayed. For the ICGC data, the P values were adjusted using the

Benjamini-Hochberg method to highlight highly significant pathways.

The analysis of the primary tumours in the ICGC data revealed upregulation of cell cycle

pathways, E2F targets, G2M checkpoints, and MYC targets in ecDNA+ tumours (Figure 4.7,

Extended Data Table 4). This trend of increased MYC activity was also significantly evident

(P value < 0.05) in ecDNA+ PDOs.

Interestingly, primary tumours that are ecDNA+ display a downregulation of innate

immune pathways, including TNFA signalling via NF-ΚB (genes regulated by NF-ΚB in

response to TNF) or IL6 JAK STAT3 signalling (genes upregulated by IL6 via STAT3)

(Kumari et al., 2016; Dolcet et al., 2005). This finding is consistent with a pan-cancer study

that linked ecDNA presence with reduced immune activity (Wu et al., 2022b). Thus, the

findings indicate that immune activity may also be inhibited in ecDNA+ PDAC tumours.

The P53 pathway, which is integral to the DNA repair system, was upregulated in ecDNA–

compared to ecDNA+ tumours. However, it was also found that a higher TP53 mutation

frequency was observed in ecDNA+ tumours (85.7%, 6 out of 7) compared to ecDNA–

tumours (55.8%, 24 out of 43). However, TP53 downregulation in ecDNA+ tumours cannot

be excluded, as no significant association between TP53 inactivation and ecDNA positivity

was found in this subset of samples (P value = 0.219, Figure 4.8). This, together with the

activation of pathways involved in proliferation (namely E2F targets, MYC targets, and G2M

checkpoint) in ecDNA+ tumours, could potentially exacerbate replication stress and result in

extensive DNA damage (Macheret & Halazonetis, 2015).

This analysis concludes that several gene programmes are linked to ecDNA+ and ecDNA–

PDAC samples. Most notably, MYC targets were enriched in ecDNA+ tumours and PDOs

suggesting a link between ecDNA-positivity and MYC activation. Alongside with the down-

regulation of innate immune pathways and the activation of cell proliferation pathways,

ecDNA+ PDAC tumours might exhibit higher proliferation rates and enhanced metastatic

potential in PDAC (Maddipati et al., 2022; Malumbres & Barbacid, 2009; Hagerling, Casbon

& Werb, 2015). Of note, the P values resulting from the PDO analysis were not adjusted for
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Fig. 4.8 | TP53 inactivation in ecDNA+ and ecDNA– ICGC tumours with transcriptomic data. P values

were calculated using two-sided Fisher’s exact test.

multiple testing since no pathways were found to be significantly enriched (P adjusted value

< 0.05) after adjustment. Consequently, to ensure their validity, the PDO analysis should only

be evaluated in conjunction with the primary tumour analysis.

4.6 Presence of ecDNA in PDAC is linked to genomic in-

stability

Cancer genomes with genomic instability exhibit high mutation rates, complex genomic

rearrangements, and unique transcriptomic profiles (Negrini, Gorgoulis & Halazonetis, 2010;

Shoshani et al., 2021; Carter et al., 2006). The occurrence of ecDNA has been linked to

several genomic instability characteristics, such as chromothripsis or BFB cycles (Shoshani

et al., 2021; Kim et al., 2020). Moreover, a recent study conducted by Luebeck et al. (2023)

found that whole-genome duplications and TP53 alterations are associated with ecDNA+

oesophageal cancer, although a definite link in PDAC remains to be established.

The transcriptomic analysis of ecDNA+ and ecDNA– PDAC tumours revealed a downreg-

ulation of the TP53 pathway in ecDNA+ PDAC tumours, suggesting that genomic instability

may play a role in ecDNA formation in PDAC. To identify its role, several analyses were

conducted using WGS and RNA-seq data from the ICGC PDAC primary tumours and the

HCMI PDAC PDOs.

4.6.1 Mutational landscape defining ecDNA+ and ecDNA– PDAC

The genetic mutations defining cancer tumours provide insights into altered biological pro-

cesses. PDAC typically exhibits the recurrence of four key driver genes, KRAS, TP53, SMAD4,

and CDKN2A, and a long tail of infrequent gene alterations (Waddell et al., 2015).

Upon comparing the mutational landscape of ecDNA+ and ecDNA– tumours and PDOs

(Figure 4.9a), it was found that all recurrent PDAC driver genes, except for TP53 (P value =

0.00574, Fisher’s exact test, Figure 4.9b), had a non-significant different alteration frequency

(P value > 0.05, Fisher’s exact test). In ecDNA– PDAC, TP53 was found to be mutated in
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Fig. 4.9 | Overview of key PDAC gene alterations in ecDNA+ and ecDNA– tumours and PDOs. a, Oncoplot

displaying recurrent alterations identified in each sample of the HCMI PDOs and the ICGC PACA-CA and

PACA-AU primary tumours. The samples are divided by ecDNA status. The proportion of altered genes in

ecDNA– and ecDNA+ samples are shown on the right. b, TP53 was identified to be significantly altered in

ecDNA+ tumours and PDOs compared to ecDNA– tumours and PDOs. The P value was calculated using a

Fisher’s exact test.

60.1% (83 of 138), while in ecDNA+ PDAC, it had an alteration frequency of 86.7% (26 of

30). Notably, all PDOs with ecDNA+ exhibited TP53 mutations. This provides evidence for

a link between TP53 mutation and ecDNA occurrence in PDAC and supports the evidence

identified in oesophageal cancer (Luebeck et al., 2023).

4.6.2 EcDNA+ tumours are associated with an unstable genome

SV detection offers a reliable method for measuring genomic instability and identifying un-

stable genomes (Waddell et al., 2015). Chromothripsis, a complex shattering of chromosomes,

is a second metric for genomic instability that is frequent in PDAC and has also been linked

with ecDNA formation in cancer (Cortés-Ciriano et al., 2020; Shoshani et al., 2021). The

notable pan-cancer study, conducted by Kim et al. (2020), has discovered that around 36%

of ecDNAs display a chromothripsis signature, surpassing the prevalence of all the other

amplicon types.

To establish whether there exists a correlation between ecDNA presence and either chro-

mothripsis or SV abundance, a comprehensive analysis was performed using ICGC amplicon

data, chromothripsis data from (Cortés-Ciriano et al., 2020), and SV data from the ICGC

database (release 28, https://dcc.icgc.org/).

Interestingly, PDAC tumours harbouring ecDNA were significantly impacted by high

confidence chromothripsis events (Figure 4.10a). Specifically, 68% of ecDNA+ samples

were affected by at least one high confidence chromothripsis event, the highest proportion

as compared to other sample classes. Compared to samples lacking amplicons (No-fSCNA)

and samples containing solely linear amplicons (Linear), a significantly greater proportion of

ecDNA+ PDAC tumours (circular) were affected by chromothripsis events (No-fSCNA: P =

4.85×10-5, Linear: P = 0.0292). Despite slightly missing significance (P = 0.0502) when
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compared to samples classified as Complex, there is also a similar trend present.

This analysis explored the correlation between chromothripsis-affected samples and the

presence of ecDNA. However, it is unclear if an observed chromothripsis event contributed to

the formation of the respective ecDNAs in the sample. Due to the limitations of the available

datasets, precise integration of the chromosomal location of the chromothripsis event and the

ecDNA was not feasible.

Fig. 4.10 | EcDNA presence is associated with chromothripsis events and an abundance of SVs. a, Barplot

displaying the proportion of samples with high-confidence chromothripsis events, organised by sample class.

A pairwise Fisher’s exact test was performed to compare the statistical significance among each sample class.

Circular samples (ecDNA+ tumours) serving as the reference. P values are displayed above each sample class

compared against the reference, with significant results (P value < 0.05) highlighted in orange. b, Comparison

of the total number of SVs identified in each sample grouped by sample class. Statistical significance was

evaluated using a Student’s t-tests. a & b, BFB samples were excluded due to low sample size (n = 4). Only

samples with available chromothripsis or SV information are included. No-fSCNA, No focal somatic copy

number amplification detected.

Patterns and SV numbers can define distinct genomic subtypes. Notably, a high number of

SVs are linked with unstable PDAC genomes (Waddell et al., 2015). Analysing the integration

of SV and amplicon data for ICGC primary tumours confirmed that PDAC tumours, which

contain ecDNAs (Circular), have the highest total number of SVs compared to the other three

sample classes, No-fSCNA, Linear, and Complex. Significance was found in Circular vs

Linear (P = 0.0071) and Circular vs No-fSCNA (P = 0.044). Similarly to the results of the

chromothripsis analysis, a similar trend was observed between Circular and Complex samples,

but the statistical significance was slightly missed (P = 0.12).

Overall, although statistical significance was lacking in comparisons between Circular

and Complex samples, the analyses demonstrate an association between ecDNA presence and

significant genomic instability in PDAC. In general, chromothripsis and high numbers of SVs

were more frequent in ecDNA+ PDAC. These results emphasise the relationship between

genomic instability and the tendency for ecDNA creation in PDAC tumours.

4.6.3 EcDNA-positivity is associated with whole-genome duplications

Polyploidy is a common event in cancer, linked to genomic instability, TP53 mutation, or

cell cycle disruption (Bielski et al., 2018). Previous analysis has demonstrated the association

between ecDNA occurrence and TP53 mutation as well as the link to genomic instability in
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ecDNA+ samples. Therefore, a subsequent analysis investigating the tumour ploidy, partic-

ularly the whole-genome duplication status, was performed. For the primary tumours, the

whole-genome duplication status was obtained from the ICGC data portal (dcc.icgc.org/) and

the HCMI PDO whole-genome duplication status was predicted through the utilisation of AM-

BER, COBALT, and PURPLE in tumour-only mode (github.com/hartwigmedical/hmftools).

Fig. 4.11 | Whole-genome duplication status in ecDNA+ and ecDNA– samples. P values were calculated

using two-sided Fisher’s exact test. n equals the number of samples in each group.

Whole-genome duplications were prominently enriched in ecDNA+ samples (Figure 4.11).

Enrichment was observed with statistical significance in the ICGC dataset (P = 0.00328), with

the HCMI PDOs demonstrating a similar trend, albeit without achieving statistical significance

(P = 0.05224), likely due to the smaller sample size. Notably, half of ecDNA+ PDAC PDOs

had undergone whole-genome duplication. Combining both PDAC datasets, a significant

association (P = 8.2×10-5, Fisher’s exact test) is observed between ecDNA-positivity and
whole-genome duplication, indicating that whole-genome duplication is commonly associated

with ecDNA+ PDAC.

4.6.4 Transcriptomic chromosomal instability signature is enriched in

ecDNA+ PDAC

Previous analyses have focused on genomic features that highlight the presence of genomic

instability. However, transcriptomic data can also be used to determine genomic instability,

particularly chromosomal instability. Carter et al. (2006) identified a transcriptomic signature

consisting of 70 genes (CIN70 signature), which is highly expressed in tumours with high

chromosomal instability scores. This signature has the capability to predict both chromosomal

instability and a sub-optimal outcome (Carter et al., 2006). Here, I used the matching tran-

scriptomic data from the HCMI PDOs and the ICGC primary tumours and conducted gene

set enrichment analysis with the CIN70 signature, to identify a link between chromosomal

instability and ecDNA-positivity.

The gene set enrichment analysis has shown, in both datasets, a significant enrichment of

the CIN70 signature in ecDNA+ tumours (P = 5.52×10-5) and PDOs (P = 0.025, Figure 4.12).

With this transcriptomic analysis, the previous results are further supported highlighting the

link between diverse genomic instability characteristics and the presence of ecDNA. Overall,
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Fig. 4.12 | Chromosomal instability signature is enriched in ecDNA+ tumours and PDOs. The transcriptomic

chromosomal instability signature CIN70 (Carter et al., 2006) was used for a gene set enrichment analysis of the

ecDNA+ and ecDNA– ICGC primary tumours (left, n = 50) and HCMI PDOs (right, n = 14).

it has been established that PDAC tumours with an unstable genome are more prone to carry

ecDNAs than tumours with a stable genome.

4.7 The role of ecDNAs in oncogene amplification and ex-

pression

It is evident that ecDNAs possess a distinct topological structure and can accumulate through

uneven segregation during the cell cycle. As a result, genes found on ecDNAs are expressed

to a massive extent (Wu et al., 2019; Kim et al., 2020; Yi et al., 2022). Additionally, it has

been identified that oncogenes are highly enriched on ecDNAs in cancer cells (Luebeck et al.,

2023). To investigate the possible association between ecDNAs and amplified oncogene

expression and copy number levels in PDAC, an integrative analysis with copy number and

RNA-seq data performed. For the copy number analysis, the entire PDO cohort was utilised.

Conversely, the expression analysis was limited to the 14 PDOs that underwent RNA-seq.

Fig. 4.13 | Copy number and transcription of extrachromosomal and chromosomal amplified oncogenes.

Comparative analysis of copy number levels (a) and expression levels (b) of oncogenes identified within Circular

amplicons (ecDNAs) and other types of somatic copy number amplifications (Other SCNA: BFB, Complex, and

Linear amplicons). Amplicons were identified using AmpliconArchitect (Deshpande et al., 2019). Statistical

significance was evaluated using a Wilcoxon Rank Sum Test. a, 41 samples; b, 14 samples

A total of 69 oncogenes, from the ONGene database (Liu, Sun & Zhao, 2017), were

found to be located on ecDNAs (Figure 4.13). In line with previous studies, these 69 ecDNA-
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based oncogenes had significantly higher copy number levels compared to the 54 oncogenes

identified on chromosomal amplicons (Kim et al., 2020; Luebeck et al., 2023). Increased

copy number levels generally suggest an elevation in transcription. Moreover, ecDNAs have

been linked with increasingly accessible chromatin compared to chromosomal DNA (Wu

et al., 2019). However, a significant association was not observed between ecDNAs and an

increased transcription (P = 0.16). While the heightened copy number levels likely influence

transcription in PDAC, this could not be conclusively confirmed with the existing dataset. To

fully comprehend the mechanisms in PDAC, RNA-seq analysis of all PDOs is required to

increase the sample size, or a further dataset must be utilised. However, this was not within

the scope of this thesis.

4.8 Copy number alterations in ecDNA+ PDAC samples

Copy number alterations, which involve increasing or decreasing gene copy levels, impact

gene expression and consequently the cancer biology. In PDAC, gene amplifications or

deletions in important drivers can promote tumour progression and are correlated with early

onset and late-stage disease (Hu et al., 2021; Chan-Seng-Yue et al., 2020). While the PDAC

copy number landscape is already deciphered, we know little about copy number alterations in

ecDNA+ tumours (Jones et al., 2008; Waddell et al., 2015). Thus, to investigate copy number

alterations in PDAC, copy number information and ecDNA status has been integrated and

analysed.

A Fisher’s exact test was conducted to determine which genes are significantly amplified

or deleted in ecDNA+ or ecDNA– tumours and PDOs. Whilst the frequency of amplifications

(copy number ≥ 3) and deletions (copy number ≤ 1) in specific regions appears relatively

similar between ecDNA+ and ecDNA–PDOs, ecDNA+ PDOs exhibit heightened gain in

regions on the p arm of chromosome 6 and the q arm of chromosome 7 (Figure 4.14 top). These

regions contain the oncogenes and cell cycle promoters CCND3 (P = 0.0053, 5/12 ecDNA+

vs. 1/29 ecDNA–) and CDK6 (P = 0.05, 4/12 ecDNA+ vs. 2/29 ecDNA–). In contrast, a

region positioned on the p arm of chromosome 9 shows a considerably high frequency of

copy number loss in ecDNA+ PDOs. This region includes the tumour suppressor and cell

cycle inhibitor CDKN2A (P = 0.0026, 10/12 ecDNA+ vs. 14/29 ecDNA–).

After conducting the same analysis on the ICGC PDAC tumours, there were notable

discrepancies in the copy number gain and loss landscape when compared to the HCMI PDOs

(Figure 4.14 bottom). In general, the copy number loss frequencies in ecDNA+ and ecDNA–

tumours was vastly similar. In comparison, the ecDNA+ tumours exhibit strong enrichment

of copy number gains compared to ecDNA– tumours. Specifically, this analysis showed

high copy number gain frequency ofMYC (P = 0.00156) in ecDNA+ (14 of 17) compared

to ecDNA– primary tumours (44 of 108). Additionally, CDK6 has also been observed to be

significantly amplified in ecDNA+ tumours (P = 0.049, 9/17 ecDNA+ vs. 30/108 ecDNA–).

85



ECDNAS IN PDAC 4.9. EcDNA selection and evolution during PDO adaptation

Fig. 4.14 | Genomic overview of copy number gains and losses in ecDNA+ and ecDNA– tumours and

PDOs. Copy number gain and loss frequency of ecDNA+ (PDOs: n = 12; ICGC: n = 17) and ecDNA– (PDOs:

n = 29; ICGC: n = 108) samples. The genome is divided and visualised in 10 Mbp bins. The frequency is

calculated based on samples having either loss or gain segments inside a bin divided by the total number of

samples. Altered PDAC drivers (P < 0.05, Fisher’s exact test) between ecDNA+ and ecDNA– samples are

labelled. PDO copy number loss: copy number ≤ 1; PDO copy number gain: copy number ≥ 3. ICGC copy

number calls were downloaded from the ICGC Data Portal (Zhang et al., 2019b).

In conclusion, the presence of ecDNAs in PDAC samples correlates with distinct patterns

of copy number alterations. Notably, genes such asMYC, CCND3, and CDK6 are particularly

amplified in ecDNA+ samples, suggesting a potential role in tumour aggressiveness and

cell cycle activation. Conversely, the loss of CDKN2A in ecDNA+ PDOs may suggest a

mechanism for evading cell cycle control. Therefore, it appears that cell cycle regulation is

altered in ecDNA+, which may provide insights into the formation of ecDNAs by cell cycle

and DNA damage repair deregulation.

4.9 EcDNA selection and evolution during PDO adaptation

Gene amplifications have been implicated in cancer cell drug resistance, impacting targeted

therapy. EcDNA elements, specifically, are dynamically regulated in cancer cells (Nathanson
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et al., 2014). Nathanson et al. (2014) demonstrated that multiple glioblastomas, identified

by an EGFR-vIII mutation situated on an ecDNA, can regulate their EGFR-vIII copies by

increasing or decreasing ecDNA levels respectively during treatment with tyrosine kinase

inhibitor drugs, and after discontinuing treatment. This dynamic regulation can be driven by

the uneven segregation during cell division and the resulting acquired cell fitness (Yi et al.,

2022; Nathanson et al., 2014).

To explore the dynamic regulation of ecDNAs, we sought to examine how MYC-ecDNA

bearing PDOs respond to microenvironmental stressors. By removing Wnt3a and R-spondin

1 (WR) from the PDO growth media, we exploited the known dependency of PDAC PDOs on

WNT signalling to create an artificial selection pressure (Boj et al., 2015; Seino et al., 2018).

MYC, a known target gene of the Wnt pathway, is presumed to be a crucial regulator for

PDO survival under such stress conditions (Hao et al., 2019; Rennoll & Yochum, 2015). The

previous analysis identified two MYC-ecDNA+ PDOs (VR01-O, VR06-O). These two PDOs,

in addition with fourMYC-ecDNA– PDOs, including three PDOs with intra-chromosomal

MYC amplification (VR02, VR20, VR23, Figure 4.15) and one with normalMYC copy levels

(VR29), were artificially stressed by WR removal from the normal media.

Fig. 4.15 | Overview of gene mutations and copy number alterations in the Verona PDOs. Oncoplot of

mutations and copy number alterations in the HCMI organoids. Copy number alterations of gain (copy number

≥ 3) and loss (copy number ≤ 1) are displayed as dots. A Fisher’s exact test was performed to compare the

frequency of alteration in ecDNA– vs. ecDNA+ PDOs. P values below 0.1 are displayed and significant P
values (< 0.05) are highlighted in orange.

After the withdrawal of WR, three PDOs, specifically VR02-O, VR20-O, and, VR29-O,

died quickly, whereas the remaining three, VR01-O, VR06-O, and VR23-O, adapted to the

environmental changes over an extended period (Figure 4.16).

By investigating the genomic landscape of the adapted PDOs, specifically their amplicon

landscape, it was observed thatMYC-ecDNA levels had significantly increased after adaptation

to the -WRmedia. This was evident in bothMYC-ecDNA PDOs, VR01-O and VR06-O, which

increased their MYC copy number levels by at least four-fold in two biological replicates

(Figure 4.17). Importantly, this rise in copy number coincided with an increase in MYC

transcription (Figure 4.19a).

In contrast, the bulk MYC copy number levels of VR23-O did not change during and after
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Fig. 4.16 | Adaptation and propagation of six PDOs grown in -WR media. Growth curve of MYC-ecDNA+

(n = 2) and MYC-ecDNA– (n = 4) PDOs in -WR media. Culture growth is represented as number of domes (50

μl Matrigel/dome). Antonia Malinova and Elena Fiorini, Vincenzo Corbo Lab, University of Verona, conducted

the experiment and generated the graph.

Fig. 4.17 |MYC-ecDNA amplification and evolution during adaptation to environmental changes. Genomic

overview of copy number calls, ecDNA structural variations, and read coverage shows high similarities between

theMYC-ecDNA prior adaptation (+WR) and after adaptation process to the human complete media without

Wnt3a and R-spondin 1 (-WR) of two MYC-ecDNA containing PDOs VR01-O and VR06-O. MYC copy levels

are massively increased after adaptation in both -WR replicates of both PDOs (-WRa and -WRb) in comparison

to the parental line (+WR). In contrary, MYC copy number levels are not affected of VR23-O in both -WR

replicates.
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adaptation. The transcriptomic analysis of VR23-WRa also did not uncover an increase in

MYC expression, indicating that the adaptation of VR23-O is not influenced by MYC activity

(Figure 4.18a). Moreover, no additional genomic alterations have been detected in driver

genes or WNT pathway genes (Figure 4.18b). This finding is consistent in both VR01-O and

VR06-O analyses, indicating that the amplification of theMYC-ecDNA and the consequent

increase in MYC transcription drives the adaptation process in both PDOs.

Fig. 4.18 | MYC expression in and genomic analysis of parental and adapted (-WR) PDOs. a, MYC

expression analysis of two biological replicates (a, b) of the parental lines and adapted lines (-WRa and -WRb) of

VR01-O, VR06-O, and VR23-O. The gene expression values are normalised and log2-transformed. b, Genomic

alterations in cancer driver and WNT pathway genes in parental (+WR) and adapted (-WR) PDOs. No additional

alteration in adapted lines has been identified.

A thorough examination of the ecDNA structure of VR01-O and VR06-O revealed large

structural differences. TheMYC gene was present entirely on both ecDNAs, but the constituent

genomic segments and joining breakpoints differed substantially (Figure 4.17). Interestingly,

despite having a lower initial bulk copy number of MYC, VR06-O-WR PDOs demonstrated

a greaterMYC transcriptional activity than the VR01-O-WR PDOs, suggesting a diverging

effect of MYC copy number on the two PDOs (Figure 4.19a).

Fig. 4.19 | Genomic and transcriptomic analysis ofMYC expression in VR01 and VR06. a, Correlation

analysis ofMYC expression and copy number levels in VR01-O and VR06-O parental PDOs (a, b) and -WR

adapted PDOs (-WRa, -WRb). b, Genomic view of the VR06-O MYC-ecDNA segments and the location of

MYC and PVT1 regions. The absence of the PVT1 starting region on the MYC-ecDNA is shown with an orange

arrow.

PVT1 co-amplification and transcription are crucial factors in MYC transcription and

tumourigenesis (Tseng et al., 2014). Moreover, it has been shown that enhancer elements in

the PVT1 site can enhanceMYC transcription when the PVT1 promoter is absent, implying

that the PVT1 promoter has a tumour suppressive effect (Cho et al., 2018). Therefore, a more
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detailed view of the loci was generated. In the VR06-OMYC-ecDNA of both parental and

the adapted lines, the starting region of PVT1, comprising the promoter, is truncated and not

located on the ecDNA, suggesting that the tumour suppressive role of the PVT1 promoter

is diminished and the enhancer elements inside the PVT1 gene are directly promotingMYC

transcription (Figure 4.19b) (Cho et al., 2018). In contrast, the full gene is present on the

MYC-ecDNA in VR01-O (Figure 4.5). Therefore, the phenomenon observed in VR06-O may

be the reason for the increasedMYC transcription in VR06-O, despite its lowerMYC copy

number levels compared to VR01-O.

Comparing the parental and adaptedMYC-ecDNAs in a PDO line, revealed significant

similarities in their genomic structure and ecDNA breakpoints. However, VR01-WRb had

a divergent structure from the baseline, indicating ecDNA evolution during the adaptation

process (Figure 4.17). Despite the similarities in breakpoints between VR01-WRb and its

parental line, the modified ecDNA structure of VR01-WRb lacks a distinct genomic locus

comprising TMEM75 and parts of PVT1 (Figure 4.20a). The absence of TMEM75 directly

impacted the transcription in VR01-WRb. While the genes present on ecDNA showed similar

levels of expression in both -WR replicates, the expression of TMEM75 was entirely absent

in VR01-WRb (Figure 4.20b). Therefore, this transcriptomic analysis confirms the genomic

structure of the alteredMYC-ecDNA. It is worth noting that despite a significant fraction of

the PVT1 gene being absent, the expression of PVT1 was largely unaffected. Furthermore,

a slight increase in MYC expression is observed in VR01-WRb compared to VR01-WRa,

despite the lowerMYC copy number levels (Figure 4.19a). Therefore, the evolved ecDNA

structure might further enhanceMYC transcription, which is independent of theMYC copy

number levels.

Fig. 4.20 | Evolution ofMYC-ecDNA in VR01-WRb. a, Genomic structure of the MYC-ecDNA identified in

VR01-WRb. The ecDNA segments are coloured in grey and the location of the genesMYC, PVT1, and TMEM75

are displayed. TMEM75 and a large proportion of the PVT1 gene are absent on the ecDNA. b, Expression of

genes present or absent on VR01-WRa and VR01-WRbMYC-ecDNA. TMEM75 was identified to be present

on VR01-WRa ecDNA, but absent on VR01-WRb ecDNA. The gene expression values are normalised and

log2-transformed.

In summary, our research sheds light on the dynamic nature of ecDNAs and their potential

contribution to cell adaptation and resistance. Specifically, PDOs carrying MYC-ecDNA

showed significant adaptability to environmental stressors, as evidenced by substantial amp-

lification ofMYC-ecDNAs and a corresponding surge inMYC transcription following WR

removal. Conversely, the lack of a MYC-ecDNA, a MYC copy number increase, or additional
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driver alterations in VR23-O suggests the presence of an alternative adaptation mechanism,

which could not directly be uncovered by WGS or RNA-seq data analysis. Interestingly,

the structural variations withinMYC-ecDNAs, including the lack of the PVT1 promoter in

VR06-O and an evolved ecDNA structure in VR01-WRb, seem to influence the transcriptional

activity of MYC. This implies a complicated interplay between the ecDNA-based gene ampli-

fication, the intrinsic ecDNA structure, and the ecDNA-based gene-enhancer interactions to

facilitate adaptation in challenging environments.

4.10 Circle-seq validatesMYC-ecDNA

Validating computational analyses is essential for the biological interpretation of the results and

for future research. EcDNAs can be detected through the high-throughput WGS method and

are typically confirmed by performing fluorescence in situ hybridisation (FISH) on metaphase

cells, or Circle-seq. Therefore, to confirm the identified MYC-ecDNAs, Circle-seq and FISH

were carried out on VR01-O and VR06-O. To note, FISH has been performed by the Vincenzo

Corbo Lab, University of Verona.

Increased Circle-seq coverage has been found near the MYC locus within the ecDNA

region detected via WGS analysis in VR01-O (Figure 4.21a). Additionally, only minimal

Circle-seq coverage is observed outside the ecDNA region, verifying the circularity and

presence of theMYC-ecDNA in VR01-O. It also demonstrates that this technique is applicable

in PDAC PDOs to validate and detect large ecDNAs. Additionally, FISH on VR01-O also

demonstrated the extrachromosomal nature of MYC (Figure 4.21b). Interestingly, in VR01-O,

multiple MYC FISH probes were identified that clustered together, suggesting either ecDNA

hubs or multiple MYC genes on the same ecDNA. However, based on the WGS data analysis,

a clear delineation of the ecDNA structure cannot be made and a potential VR01-O MYC-

ecDNA, identified by AmpliconArchitect, has only oneMYC copy (Figure 4.5). Therefore,

this could suggest thatMYC-ecDNA hubs are formed. However, ecDNA hubs are currently

highly debated and more research on VR01-O is needed (Zhu et al., 2021; Purshouse et al.,

2022).

In contrast, two Circle-seq samples of VR06-O did not exhibit an increase of Circle-seq

reads in and around the MYC locus, suggesting its absence (Figure 4.21c). It appears that

VR06-O did not aMYC-ecDNA during DNA extraction, which was carried out at passages

41 and 45. Upon examiningMYC FISH images revealed that the of VR06-O cells collected

during the later passages (passage number > 40) do not contain MYC-ecDNAs in contrast

to those collected during earlier passages of VR06-O (Figure 4.21b,d). This suggests that

the MYC-ecDNA might have only be present in the primary tumour and early passages of

VR06-O and was lost after continuous PDO passaging. This absence of the MYC-ecDNA is

also validated by the Circle-seq analysis (Figure 4.21a). Unfortunately, Circle-seq was not

carried out on early-passage VR06-O.
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Fig. 4.21 | Circle-seq coverage confirms VR01-O MYC-ecDNA. a, Visualisation of copy number levels,

ecDNA structural variations and coverage of WGS and Circle-seq reads around the MYC locus of the MYC-

ecDNA containing VR01-O. b, Representative FISH images validating the presence of MYC-ecDNA in the

VR01-O and VR06-O PDO. c, Circle-seq coverage of late-passage (P41 & P45) VR06-O. No coverage increase

observed in or aroundMYC locus. d, Representative FISH image of a late-passage VR06-O (passage number

≥ 40) validating the absence of aMYC-ecDNA. b & d FISH has been performed by the Vincenzo Corbo Lab,

University of Verona, Italy.

In conclusion, our validation efforts emphasise on the robustness of high-throughput

WGS in detecting ecDNAs, as both Circle-seq and FISH successfully verified the presence of

MYC-ecDNAs in VR01-O. Furthermore, Circle-seq emerged as a valuable tool for confirming

large ecDNAs in PDAC PDOs. Intriguingly, the absence of MYC-ecDNAs in later passages

of VR06-O suggests a dynamic nature of ecDNAs during PDO passaging. This highlights the

importance of temporal monitoring and multimodal validation for ecDNA studies, as their

presence or absence may have significant implications in the context of tumour evolution and

treatment response.

4.11 EcDNAs are maintained in metastatic PDOs

Our cohort consisted of 41 distinct PDOs, some of which were derived from the same patients

but from different tissue types. Biopsies from the primary tumour and lymph node metastasis

were taken from two patients, namely VR11 and VR23, and organoids were successfully

established. The amplicon analysis revealed the presence of various amplicons across all four

PDOs. VR23-O and VR23-LNO harboured one complex and one linear amplicon, respect-

ively. VR11-O and VR11-LNO each contained two circular amplicons and an additional
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chromosomal amplicon. The chromosomal amplicon of VR11-LNO was classified as BFB,

while the VR11-O amplicon was classified as complex. With the two circular amplicons

depicted by VR11-O and VR11-LNO an opportunity arose to perform a comparative analysis

on common origin and structure of these ecDNA containing amplicons. The presence of two

circular amplicons in VR11-O and VR11-LNO provided the chance to carry out a comparative

analysis of the common origin and structure of ecDNA-containing amplicons.

Tab. 4.2 | Amplicon similarity examination of the two circular amplicons identified in both VR11 PDOs.

Similarity score and its P values are calculated based on the amplicon regions and breakpoint overlap (Method

described in Luebeck et al. (2023)).

VR11-O VR11-LNO Similarity Score P value

Amplicon 1 Amplicon 1 0.735 0.001

Amplicon 3 Amplicon 3 0.999 < 0.001

A significant level of similarity was observed between both ecDNA amplicons of VR11-O

and VR11-LNO by performing an amplicon similarity analysis (Table 4.2). The genomic

structure of the amplicons also indicates similar copy number levels and genomic breakpoints

(Figure 4.22). AmpliconArchitect is unable to fully distinguish the ecDNA structure and

produces many possible ecDNA structures that may coexist or combine to create larger

ecDNAs. For each amplicon one putative structure is presented alongside its genomic view.

Here, large similarities can be observed in the gene and ecDNA composition between the

matching VR11-O and VR11-LNO amplicons (Figure 4.22). It appears that the lymph node

metastasis preserved the ecDNA amplicon from the initial tumour and the cells carrying these

ecDNAs separated from the primary tumour and formed the respective metastasis in the lymph

node.

4.12 Prognostic implications of ecDNA presence

A comprehensive pan-cancer study has previously established that patients diagnosed with

tumours that contain ecDNAs have, on average, significantly shorter survival periods compared

to patients with tumours containing chromosomal amplicons or no amplicons at all Kim et al.

(2020). This analysis included close to 30 cancer types, including tumours of the pancreas.

Although a general association between ecDNA-positivity and poor outcome was established,

survival times were not compared for individual cancer types. Therefore, I examined the

ecDNA status and survival time of 56 and 71 patients, respectively, from the ICGC PACA-AU

and PACA-AU cohort (Kim et al., 2020).

Firstly, the two PDAC cohorts were analysed separately, showing contradictory results.

The ecDNA+ patients who were part of the ICGC PACA-AU cohort displayed a significantly

shorter survival time, in comparison to their ecDNA– counterparts (P = 0.022). Conversely,

no significance was found amongst patients from the PACA-CA cohort (P = 0.68). To

increase statistical power, both cohorts were also collectively analysed, which resulted in no

significant association (P = 0.067) between the presence of ecDNAs and a worse outcome.
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Fig. 4.22 | Large similarity between ecDNA amplicons of VR11-O and VR11-LNO. Amplicon genomic

overview shows copy number, coverage, structural variations and oncogene content. The genomic overview is

generated by AmpliconArchitect (Deshpande et al., 2019). One putative ecDNA structures of each amplicon is

displayed next to the amplicon genomic overview. Cancer driver genes located on the putative ecDNAs are

labelled.

These uncertain findings fail to validate any association between a worse outcome and ecDNA

in PDAC. However, it should be noted that the total number of patients with ecDNAs may

be insufficient to provide a comprehensive evaluation. Therefore, additional investigations

involving larger sample sizes are necessary for further analysis.
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Fig. 4.23 | Kaplan-Meyer survival analysis of ecDNA+ and ecDNA– PDAC tumours. The ICGC primary

tumours from PACA-AU and PACA-CA cohorts were individually and collectively analysed for their survival

time. The survival curves were compared using the log-rank test.

4.13 Investigating ecDNAs in PDAC cell lines

Although PDOs are recognised as superior in recapitulating phenotypic and genetic features

compared to tumour-derived cell lines, they present logical challenges such as higher main-

tenance costs and an increased cultivation difficulty. In contrast, cell lines offer ease of

maintenance and scalability, which might be valuable for ecDNA research in PDAC (Drost &

Clevers, 2018).

Our WGS analysis demonstrated that ecDNAs are widespread in PDOs and correspond

with ecDNAs present in matching primary tumours. Many studies on ecDNA focus on known

ecDNA+ cell lines (Turner et al., 2017; Hung et al., 2021; Wu et al., 2019). However, to my

knowledge, there have been no studies on ecDNA+ PDAC cell lines, which are both readily

available and frequently researched. Therefore, I aimed to characterise frequently utilised

PDAC cell lines using accessible WGS data from the CCLE. Additionally, three cell lines

from three PDOs, of the Verona HCMI cohort, were established. Among the three PDOs, two

were ecDNA+. These newly established cell lines were also subjected to WGS and amplicon

analysis. Thus, this allows for a direct comparison of the ecDNA landscape within the PDOs

and the corresponding PDO-derived cell lines.

4.13.1 Commonly used PDAC cell lines lack ecDNAs

The CCLE encompasses ten PDAC cell lines that underwent WGS as part of the project

number PRJNA523380 (Table A.1). This dataset was analysed using the nf-core/circdna

pipeline, with the tools AmpliconArchitect (Deshpande et al., 2019) and AmpliconClassifier

(Luebeck et al., 2023), to identify amplicons, including ecDNAs, and their corresponding

amplicon class. All amplicons and their respective class identified in the ten PDAC cell lines

are detailed in the Table 4.3.

Unfortunately, the analysis showed that none of the 10 PDAC cell lines contain ecDNAs
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Tab. 4.3 | PDAC CCLE cell lines and their respective number of amplicons per amplicon class identified.

Cell Line ID Amplicon Class Count

Capan-1 Linear 3

DAN-G Linear 14

HPAC – –

MIA PaCa-2 Linear 1

PA-TU-8988T Linear 3

Panc 03.27 Linear 1

Panc 10.05 Linear 1

PANC-1 Linear 1

SUIT-2 Linear 3

SW 1990 Linear 3

that can be detected by WGS data analysis. In particular, only linear amplicons were detected,

while other chromosomal amplifications such as Complex or BFB amplicons were not detected.

These findings illustrate that the widely used PDAC cell lines do not possess ecDNAs,

suggesting their unsuitability for ecDNA research. It is worth noting that while finalising

the thesis a repository was published describing the CCLE amplicon landscape (https://ampl-

iconrepository.org/). This repository described the identification of ecDNAs in two PDAC

cell lines, SUIT-2 and DAN-G, when using the same ecDNA detection tools. Consequently,

the difference between the two methodologies requires further assessment. Furthermore,

this might also reveal the presence of ecDNA+ PDAC cell lines commonly used in research.

However, it first needs to be established why the same tools classify the amplicons differently.

4.13.2 Retention of ecDNAs in PDO-derived cell lines

To examine the amplicon landscape of the PDO-derived cell lines (VR02-2D, VR06-2D, and

VR23-2D), WGS was performed and the amplicons and their classes was determined using

the nf-core/circdna pipeline in a similar manner as described for the WGS PDO analysis.

To explore the persistence of ecDNAs in the PDO-derived cell lines, I conducted a

comparison of the ecDNA regions identified through WGS analysis of both the PDOs and

their corresponding cell lines (Figure 4.24). The results demonstrated the presence of all

ecDNA regions identified in the PDO as well as additional ecDNA regions exclusively detected

in 2D, indicating a minor shift in the ecDNA profiles between the PDO and the PDO-derived

cell line. Importantly, concordant regions were identified in VR02 and VR06, both with

existing ecDNAs in their PDOs. It remains unclear whether these potential ecDNAs still

exist in the PDO but are undetected because of the copy number thresholds implemented for

amplicon detection. Importantly, the two ecDNAs carrying the PDAC drivers, namely ERBB2

and MYC, that were identified in VR06-O are also found in VR06-2D.

Considering the potential genomic rearrangements and evolution of ecDNAs during en-

vironmental changes, an in-depth analysis of the MYC-ecDNA of VR06-O and VR06-2D

was performed (Shoshani et al., 2021). The investigation revealed that VR06-2D conserved
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Fig. 4.24 | EcDNA landscape of PDOs with matching PDO-derived cell lines. Cell lines were derived from

three PDOs, namely VR02-O, VR06-O, and VR23-O. Circos plot showing the identified ecDNA regions in

either the the PDO (O) or the PDO-derived cell line (2D). No ecDNA was detected for VR23-O.

Fig. 4.25 | MYC ecDNA is retained in PDO-derived cell line. a, Copy number and coverage view of the MYC

locus. EcDNA forming SVs are displayed in the middle section. The mean coverage is calculated for 10 kb bins.

b, Putative structure of the MYC-ecDNA from VR06-O and the VR06-O-derived cell line VR06-2D.

MYC-ecDNA during and after establishment, maintaining a similar structure and breakpoints

as its parent PDO (Figure 4.25a,b). Notably, The MYC copy number levels experienced a sig-

nificant surge from 11 to 49 copies, indicating an extensive amplification of theMYC-bearing
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ecDNA in VR06-2D. This suggests a potent selection pressure favouring high MYC-ecDNA

amplification in VR06-2D. Copy number calling from bulk WGS presents the mean copy

number of all sequenced cells. Given that PDOs may exhibit a broader cell heterogeneity

compared to cell lines, copy number levels can be influenced and result in decreased amp-

lification levels (Drost & Clevers, 2018). However, PDO heterogeneity was not evaluated

and it is unclear whether this has an effect or the MYC copy number increase is driven by the

altered cultivation conditions.

In summary, the PDO-derived cell lines VR02-2D and VR06-2D have retained ecDNAs

from their respective PDOs. As PDOs display considerable heterogeneity and require sub-

stantial time and resources, generating cell lines from PDOs provides an attractive avenue for

studying ecDNAs while also reducing costs and workload (Drost & Clevers, 2018; D’Agosto

et al., 2019).

4.14 Discussion

The amplification of oncogenes situated on ecDNAs is a crucial factor promoting tumour

evolution, allowing the tumour to adapt to challenging events, including drug treatment. The

investigation and characterisation of ecDNAs can uncover possible resistance mechanisms,

providing opportunities for a better personalised therapy (Nathanson et al., 2014; Wu et al.,

2022a). Furthermore, ecDNA has been associated with unfavourable patient outcomes and

tumour progression, highlighting the need to enhance our understanding of these entities (Kim

et al., 2020; Luebeck et al., 2023). As research on the relationship between ecDNAs and PDAC

is currently lacking, I conducted a comprehensive analysis of the genomic and transcriptomic

profile of ecDNA+ tumours and PDOs. The analysis showed that ecDNAs are widespread in

PDAC, and the ecDNA presence is linked to genomic instability, TP53 inactivation, and a

Squamous signature. Moreover, we discovered indications that ecDNA crucially contributes

to adaptation mechanisms in response to environmental pressures. As PDAC maintains one of

the poorest survival rates amongst cancer patients, obtaining a comprehensive understanding

of its underlying genomics is crucial (Neoptolemos et al., 2023; Siegel et al., 2023).

An initial study identified that PDAC exhibited low levels of ecDNA, with a proportion of

approximately 14%, indicating its affiliation with cancer types with a low ecDNA incidence

rate (Kim et al., 2020). Our PDO analysis found that ecDNAs can occur in PDAC at an

increased rate of nearly 30%. Consequently, PDAC could be found among the cancer types

with elevated ecDNA frequency (Kim et al., 2020). The ecDNA landscape in PDAC comprises

common PDAC oncogenes, including MYC, CCND3, or ERBB2. This investigation proposes

that often amplified drivers in PDAC may potentially reside on ecDNAs instead of the

chromosomes. The implications of this discovery could significantly impact the understanding

of the PDAC tumour biology and patient outcomes (Waddell et al., 2015; Kim et al., 2020).

However, several ecDNAs identified in the PDOs did not exhibit any overlap with PDAC-

specific oncogenes. This suggests that some ecDNAs may have a separate role from oncogene
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amplification (Wu et al., 2022a).

Accurately replicating the primary disease is essential for experimental work (Tiriac et al.,

2018; Drost & Clevers, 2018). Through our use of PDOs and matched primary tissue, we

have shown that PDOs retain ecDNAs from primary tumours and can replicate the ecDNA

landscape. This suggests that utilising model systems is a feasible method to replicate the

ecDNA spectrum of primary PDAC. Previous research by deCarvalho et al. (2018) has also

revealed comparable results in neurospheres originated from glioblastomas. While there were

some variances between the ecDNA profiles of the PDOs and their related primary tumours,

it is unclear whether these outcomes were influenced by factors such as sample collection

and data analysis methods, given the ecDNA detection AmpliconArchitect’s stringent copy

number cutoff for amplicon determination. It is plausible that ecDNA detection is more

attainable in purely neoplastic organoids as opposed to primary tumours, wherein a significant

fraction of stromal cells are present (Deshpande et al., 2019; Kim et al., 2020; Tiriac et al.,

2018; Chu et al., 2007).

Our findings provide compelling evidence of a correlation between ecDNA+ PDAC, TP53

alterations, and genomic instability. This study provides support for research on ecDNAs in

Barrett’s oesophagus, as it linked ecDNA+ with altered TP53 and polyploidy. The research

proposed that inactivated TP53, combined with genomic instability, facilitates ecDNA forma-

tion (Luebeck et al., 2023). Therefore, it is hypothesised that unstable PDAC genomes are

more prone to harbouring ecDNAs, by increasing the chance of ecDNA formation, which then

potentially can indicate adaptability to drug treatment or environmental changes (Shoshani

et al., 2021).

While a study spanning multiple types of cancer has established the association between

the presence of ecDNA and poor outcomes, such correlation has not yet been confirmed in

our analysis in the case of PDAC specifically (Kim et al., 2020). While patient outcomes

play a significant role in determining the relevance of genomic traits, they cannot be the sole

determinant. Various subtypes have been identified in PDAC that define cancer phenotypes

and drug tolerance (Bailey et al., 2016; Collisson et al., 2019; Raghavan et al., 2021). Analysis

of primary PDAC tumours has identified a correlation between the presence of ecDNA and

gene signatures of the Squamous subtype. This subtype is linked with TP53 alterations and

activation of the MYC pathway, associations that we also identified in ecDNA+ tumours

(Bailey et al., 2016). Squamous tumours are characterised by high proliferation rates and

generally have a poor prognosis for patients. These features were also previously identified in

ecDNA+ cancers (Bailey et al., 2016; Kim et al., 2020). It is currently unclear if ecDNAs and

their related genes play a role in the aggressiveness of PDAC, but it is likely that the biology

of Squamous tumours favours ecDNA formation.

Targeted therapy resistance presents a challenge for individuals with cancer (Vogelstein et

al., 2013). Recent studies have recognised ecDNAs as a crucial mediator of treatment resistance

99



ECDNAS IN PDAC 4.14. Discussion

in cancer (Nathanson et al., 2014; Lange et al., 2022). In our analysis, when challengingMYC-

ecDNA PDOs by removingWR, a significant amplification ofMYC and consequent activation

ofMYC gene transcription was observed. While the massive amplification influencedMYC

transcription in -WR PDOs,MYC levels also appear to rely on other factors, such as the general

ecDNA structure. In one PDO, theMYC-ecDNA contained a truncated PVT1, which could

have potentially boostedMYC transcription by enabling contact between enhancers within

PVT1 and theMYC promoter (Cho et al., 2018). Moreover, a structural evolution of an ecDNA

has been observed in VR01-WRb that could have been driven by the applied selection pressure

in the -WR conditions. The underlying mechanism responsible for the ecDNA evolution is

still uncertain. Shoshani et al. (2021) suggested that chromothripsis initiates the evolution of

ecDNA, but this hypothesis was not evaluated, and only slight modifications in the evolved

ecDNA were detected. Our research highlights the significance of ecDNAs for PDAC cells

subjected to selection pressure. Directly targeting ecDNAs may be necessary for treating cells

that harbour such ecDNAs to prevent their adaptation.

The potential to improve patient outcomes through targeted therapy is widely recognised,

and genomic and transcriptomic biomarkers are employed to define the necessary therapeutic

approaches for better patient response (Neoptolemos et al., 2023). EcDNA may act as a

biomarker for therapeutic tolerance of tumours as the abundance of ecDNA can rapidly

fluctuate due to its random segregation during the cell cycle and the selection pressure applied

to the cells (Nathanson et al., 2014; Lange et al., 2022). Our observations in PDAC PDOs

showed that ecDNAs are not synthesised de novo under selection pressure and the absence of

an adaptation mechanism led to rapid cell death. Although de novo formation of ecDNAs has

been observed in some cases, it was noted that cells can adapt more easily when the relevant

genes are already present on the ecDNAs (Singer et al., 2000). Thus, the use of ecDNAs

as a biomarker must be viewed in the context of the genes that they contain. Acquisition of

resistances is plausible when ecDNAs already bear resistance genes.

In conclusion, I conducted a primary comprehensive examination of ecDNAs in PDAC.

EcDNAs, a common source of high-level amplifications in PDAC, comprise numerous PDAC

driver genes that can potentially alter tumour biology. The complete analysis revealed that

genomic instability, TP53 mutations, and Squamous transcriptomic profiles are associated

with ecDNA+ tumours. We were also able to demonstrate that applying specific selection

pressures toMYC-ecDNAs highlights their role in driving adaptation and suggests the potential

of ecDNAs to facilitate the tumour’s adaptation to challenging environmental pressures.
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Chapter 5
Investigating the eccDNA landscape in

PDAC

I cannot think of a single field in biology

or medicine in which we can claim

genuine understanding, and it seems to

me the more we learn about living

creatures, especially ourselves, the

stranger life becomes.

Lewis Thomas

EcDNAs can be observed using microscopy techniques as well as diverse sequencing methods

(Turner et al., 2017; Yi et al., 2022; Kumar et al., 2020). However, detecting smaller and non-

amplified eccDNAs is more difficult. Recently, Circle-seq has been used in eccDNA studies

as a technique for enriching eccDNAs and concurrently removing linear DNAs from extracted

DNA before sequencing. These studies have characterised the eccDNA landscape in human

somatic and cancer cells, defining general eccDNA characteristics (Møller, 2020; Møller et al.,

2018a; Koche et al., 2020; Wang et al., 2021). While the broad eccDNA characterisations

have had a crucial impact on our understanding of these features, the roles of eccDNAs and

characteristics in individual cancer types remain unclear. EccDNAs have yet to be studied in

PDAC and a comprehensive overview of the eccDNAs identified in this disease is lacking.

Therefore, this study aims to investigate the prevalence of eccDNAs in PDAC and their

genomic characteristics utilising sequencing data generated through the Circle-seq method.

The analysis utilises several newly generated datasets from PDAC model systems, including

patient-derived cell lines (PDCLs) and patient-derived organoids (PDOs). Computational

analysis is undertaken to identify high-quality eccDNAs from sequencing data in order to

determine the eccDNA landscape and its genomic characteristics in PDAC. The resulting data

allows for a comprehensive comparison to other studies and cancer types, which may reveal
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PDAC-related and common eccDNA characteristics.

5.1 Establishing Circle-seq

Next-generation sequencing (NGS) is shaping cancer genomics and transcriptomics. Due to

advances in technology, throughput is massively increased and cost decreased in recent years.

Multiple protocols have been established to sequence and characterise the eccDNA landscape

in eukaryotic cells. These include DNA extraction, digestion of linear/chromosomal DNA

with an ATP-dependent circular DNA-safe exonuclease, and amplification of the remaining

circular DNA by rolling-circle amplification (RCA) using the bacteriophage phi29 DNA

polymerase. Additionally, some protocols propose the removal of mitochondrial DNA by

using additional restriction enzymes, linearising the mitochondrial DNA. Linear mitochondrial

DNA will then also be digested by a circular DNA-safe exonuclease. To ensure high removal

efficiency of linear DNA, exonuclease digestion is usually performed over multiple days and

additional exonuclease, ATP, and buffer is added throughout the period Møller et al. (2015),

Møller (2020) and Koche et al. (2020).

Møller et al. (2015) adapted previous protocols for eukaryote plasmid DNA isolation to

isolate and sequence eccDNA from yeast. To specifically isolate eccDNA, a column-based

plasmid isolation kit was used. Henssen et al. (2019a), on the other hand, used the Qiagen

high-molecular weight DNA extraction kit, to ensure extraction of large eccDNAs. The HMW

DNA extraction kit is optimised to isolate also DNA with up-to a few hundred kbp lengths.

Therefore, In our study, the DNA extraction was performed by the MagAttract HMW DNA

Kit (Qiagen) to retain large circular DNAs in our samples.

To create additional DNA ends for exonuclease digestion, Møller et al. (2015) treated the

purified DNA with the rare-cutting endonuclease NotI. Henssen et al. (2019b) suggest the

usage of of the rare-cutting endonuclease MssI/PmeI to linearise mitochondrial DNA. The use

of endonucleases improves the linear DNA removal by exonuclease digestion, however, also a

rarely cutting endonuclease can fragment circular DNA (Koche et al., 2020). Large eccDNAs,

which have the potential to contain and amplify cancer-specific oncogenes, have a higher

chance of containing a restriction enzyme cut site. This would lead to endonuclease cleavage

of the eccDNA, generating a linearised DNA, which is further digested in the subsequent

exonuclease step. Therefore, some eccDNAs could not be identified by Circle-seq, when

including an endonuclease step. Based on this, I decided to not not digest the DNA using

restriction enzymes and use the unprocessed extracted DNA for exonuclease digestion.

The Circle-seq procedure in detail: Linear DNA removal was performed as described by

Henssen et al. (2019a) for 5-7 consecutive days, adding 20 Units of DNA exonuclease enzyme,

4 µL ATP (25 mM), and reaction buffer. Linear DNA degradation was then confirmed

using quantitative PCR and primers amplifying the mitochondrial gene MT-CO1 and the

chromosomal gene HBB(Figure 5.1 b). To validate the primer bindings and the linear DNA
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removal, agarose gel electrophoresis confirmed the absence of chromosomal DNA after the

exonuclease digestion and the presence of circular DNA (Figure 5.1 a). Despite the initial

study by Koche et al. (2020) which used the Henssen et al. (2019a) protocol and reported a

1010-fold removal of linear DNA, low amounts of linear/chromosomal DNA still remained in

most samples. To achieve a high enrichment of circular DNA in our samples, samples were

further processed if a 200 fold-change (FC) reduction of linear DNA compared to circular

DNA was achieved. The FC decrease of linear DNA in a sample was calculated as described

in Methods Section 2.10.2.

If the FC threshold was not achieved during the 5-day DNase digestion, the process was

repeated or 2 additional days of DNase digestion were added following the same procedure as

the first five days.

Fig. 5.1 | Circular DNA-safe DNase greatly reduces chromosomal DNA content. a, Agarose gel with PCR

fragments amplified using theMT-CO1 and HBB primer pairs before and after DNase digestion of TKCC-22

HMW DNA. The schema on the left-hand side depicts the ladder sizes and the expected band heights for the

MT-CO1 (114 bp) and HBB (173 bp) fragment. b, Quantitative PCR (qPCR) results of DNA and DNase-digested

DNA of six PDCLs with linear DNA control HBB, and circular DNA control MT-CO1. a & b, The HMW DNA

was treated for five days with a circular DNA-safe DNase. Each sample was run in three technical replicates.

The bar represents the mean of the three replicates. H2O was used in a no template control.

After removing linear DNA successfully, RCA was carried out on the remaining DNA.

Moreover, a few samples were utilised to evaluate eccDNA enrichment after RCA (Figure 5.2).

RCA resulted in lower CT values for all samples, confirming the amplification of circular

DNA. Furthermore, two out of three samples showed a high HBB CT value or HBB was not

identified, indicating that the linear DNA was not amplified significantly during the RCA

process. One sample, PaCaDD137, exhibited an elevated CT value for HBB subsequent

to RCA, and therefore, was discontinued. Overall, a significant degree of variability was

observed in the removal of linear DNA and amplification of circular DNA (data not shown).

Samples that demonstrated unusual outcomes, for example those retaining excessive amounts

of linear DNA, were discontinued and the Circle-seq procedure was repeated.

Around 500 ng of the purified, quality-controlled, and circular DNA-enriched samples

were fragmented by the M220 Focused-ultrasonicator (Covaris). The final libraries were

designed for paired-end sequencing, totalling 300 cycles per read and producing reads with

a 150 bp length. To optimise read information, a mean fragment size of 350 to 450 bp
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Fig. 5.2 | Circular DNA is amplified after rolling-circle amplification. Efficacy of rolling-circle amplification

was tested on DNase-digested DNA of three PDCLs. Quantitative PCR (qPCR) was performed on 5-day

DNase-treated DNA prior (DNase-digested DNA) and post rolling-circle amplification (RCA DNA) with linear

DNA control HBB, and circular DNA control MT-CO1. Each sample was run in three technical replicates. The

bar represents the mean of the three replicates. H2O was used in a no template control

was determined. The shearing time was adjusted for the desired fragment time using the

microTUBE-15 AFA Beads Screw-Cap and the M220 sonicator. A uniform fragmentation to

between 350 and 450 bp was attained through a fragmentation period of approximately 46 s

in our initial Circle-seq run (Figure 5.3).

Fig. 5.3 | Bioanalyzer verifies DNA fragmentation size. Agilent DNA 1000 Bioanalyzer (Agilent Technologies)

run shows distribution of DNA fragments after a shearing time of 46 s with the M220 sonicator (Covaris) and

the microTUBE-15 AFA Beads Screw-Cap (Covaris). Fragmentation test was performed with four PDCL DNA

samples enriched for circular DNA. Fragmentation time was adjusted to have increased DNA fragment quantity

between 300 and 500 bp and a mean peak size between 350 and 450 bp. The Bioanalyzer output was generated

using the 2100 Expert software (Agilent Technologies, version B.02.09.SI725).

Tab. 5.1 | Mean fragment sizes after fragmentation of circular DNA enriched samples. Fragmentation was

performed for 46 s with the M220 sonicator (Covaris) and the microTUBE-15 AFA Beads Screw-Cap (Covaris).

PDCL Mean Fragment Size in bp (50 - 950 bp Region)

TKCC-09 380

TKCC-15 371

TKCC-18 375

TKCC-22 375

After successful fragmentation, the fragmented DNA was prepared for sequencing using

the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina (New England Biolabs) and
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Fig. 5.4 | Validation of Circle-seq library preparation. Library preparation success was validated using

the 2100 Bioanalyzer and the Agilent DNA 1000 Kit (Agilent Technologies). Fragmentation of circular

DNA-enriched DNA was performed using the M220 sonicator (Covaris) with the microTUBE-15 AFA Beads

Screw-Cap (Covaris). The fragmentation time was 46 s for each sample. 1 µL of sample was loaded onto the

Bioanalyzer. Library preparation success was evaluated based on DNA concentration and a shift of around

100-150 bp to the original fragment size due to adapter and index addition.

the appropriate library preparation protocol. Size selection was not performed on the final

libraries due to the large amount of DNA lost in the process (Figure B.1). The final libraries

were PCR amplified for a total of 4 cycles and quality checked on the Bioanalyzer. A shift

of approximately 100-150 bp from the original fragmentation size to the final library size

was expected due to the addition of sequencing adapters and indexes. Two samples were

tested before and after library preparation and validated the success of the library preparation

(Figure 5.4). All other libraries were quality checked after completion of library preparation

and showed similar fragment sizes and expected distribution (Figure B.2). In summary, the

original circle-seq protocols from Henssen et al. (2019a), Møller et al. (2015) or Møller (2020)

were carefully reviewed to adapt the Henssen et al. (2019a) to our samples and resources.

Overall, the circle-seq protocol achieved a high enrichment of circular DNA in our samples

and generated good quality libraries suitable for NGS.

5.2 Circle-seq on 8 PDAC PDCLs

The described protocol adaptation resulted in high quality libraries suitable for NGS. The

adapted protocol was subsequently utilised to generate libraries from a total of eight PDAC

PDCLs (PaCaDD137, TKCC-2.1, TKCC-09, TKCC-10, TKCC-15, TKCC-18, TKCC-22,

TKCC-26). Briefly, HMW DNA was extracted and digested with plasmid-safe DNase for

five days. The remaining DNA was then amplified using RCA. Approximately 500 ng of

amplified DNA was sheared to a fragment size of approximately 450 bp, which was then used

for library preparation and NGS.

Quality controls were performed after DNase digestion and library preparation to ensure

the quality of the DNA. Linear DNA removal was verified by qPCR (Table 5.2).

The final libraries containing DNA fragments enriched for eccDNAwere sequenced. Qual-
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Tab. 5.2 | Fold change decrease of linear DNA compared to circular DNA after DNase digestion of HMW

DNA of 8 PDAC PDCLs.

PDCL Passage Linear DNA Decrease (FC)

PaCaDD137 31 2418.7

TKCC-2.1 45 1082.4

TKCC-09 40 Linear DNA not detected

TKCC-10 25 7696.6

TKCC-15 36 Linear DNA not detected

TKCC-18 28 Linear DNA not detected

TKCC-22 34 2435.5

TKCC-26 47 4067.7

ity control was performed using FastQC for each sample after sequencing. The nf-core/cir-

cdna pipeline was then used to align and trim the sequencing data. Within nf-core/circdna

Circle-Map Realign or Unicycler and Minimap2 were utilised used to call eccDNAs. The

ultimate outcome includes tables with information on eccDNA and alignment data of the reads

(Extended Data Table 5). To validate the sequencing data’s quality and the enrichment of

eccDNAs, I utilised the Integrative Genomics Viewer (IGV), a tool that visualises genomics

data (Thorvaldsdóttir, Robinson & Mesirov, 2013).

Fig. 5.5 | Representative genomic overview of mapped Circle-seq reads. The figure represents a representative

overview of TKCC-15 Circle-seq reads mapped to the GRCh38 reference genome. The view displays two

eccDNA at the start and the end of the view with discordant reads (green) representing the eccDNA fusion. The

middle part is mostly empty showcasing most chromosomal DNA was removed prior sequencing.

A genomic representation of TKCC-15 Circle-seq reads has been presented in Figure 5.5,

showing the significant removal of chromosomal/linear DNA and the abundance of eccDNA

reads. Nevertheless, filtering thresholds are required to recognise high-quality eccDNAs

and differentiate them from tandem duplications, as some background reads are still being

identified.
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5.3 Retention of high quality eccDNAs

The identification of putative eccDNA junctions from short-read sequencing data is usually

necessary for detecting eccDNAs accurately (Møller et al., 2015; Prada-Luengo et al., 2019;

Kumar et al., 2020). Here, I employed Circle-Map Realign to identify these eccDNA junctions

from our Circle-seq datasets. EccDNA junctions are typically detected using data from reads

that map discordantly and suggest the presence of circular DNA. However, such a signal can

also be produced by tandem duplications, which are not distinguishable by eccDNA detection

tools. To address this issue, a stringent filtering procedure was implemented, which aimed to

exclude eccDNA junctions that lack sufficient quality and certainty (Figure 5.6 and Methods

Section 2.14). This included, quality, coverage, and ENCODE blacklist region filtering.

Fig. 5.6 | Sequential filtering steps to discern high-quality eccDNAs. a, The first filtering step focused on

eccDNA quality metrics, retaining eccDNAs with a circle-score above 200 and at least five split reads supporting

the eccDNA junction (n = 57,049). b, The subsequent filtering step eliminated eccDNAs that were inadequately

covered (less than 80%) by Circle-seq reads. c, The final filtering step considered blacklist regions as defined by

ENCODE, discarding any eccDNAs that intersected with these blacklisted areas (Amemiya, Kundaje & Boyle,

2019).

Through these three filtering stages, the initial dataset of around 150,000 putative ec-

cDNA junctions was reduced to 56,092 high-quality eccDNAs used for downstream analysis

(Figure 5.6).

5.4 EccDNAs in PDAC PDCLs: Size distribution and origin

from gene-rich chromosomes

In this Circle-seq study, a total of 56,092 high-quality eccDNAs were identified which

covered 4.1% (125,646,252 bp) of the human genome. These eccDNAs originated from all

chromosomes (Figure 5.7b). Their size distribution was notably variable, ranging from a few

bp to up to 90 kbp, suggesting that large ecDNAs with a length of more than 100 kbp are

not prevalent in these eight PDAC PDCLs. Notably, there were several prominent peaks,

specifically around sizes of 350, 700, 1000, and 1050 bp (Figure 5.7c). The average size of

2,323 bp of all eccDNAs is in accordance to the mean eccDNA size identified in neuroblastoma

tumours (2,403 bp, Koche et al. (2020)) suggesting similar median sizes between different

tumour types, whereas shorter sizes can be expected in normal tissue (Møller et al., 2018a).

Furthermore, investigating the number of eccDNAs per chromosome revealed that long
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Fig. 5.7 | Characteristics of high-quality eccDNAs in eight PDAC PDCLs. a, Representation of the number

and size distribution of high-quality eccDNAs discerned in the 9 PDAC PDCLs. b, Genome overview displaying

the distribution of the high-quality eccDNAs, wherein the genome is divided into 100 kbp segments. The most

concentrated segment contained 21 eccDNAs. c, Size distribution of all high-quality eccDNAs. d, Correlation

plot displaying the number of eccDNAs per chromosome against the length of the chromosome. d, Correlation

plot delineating the relationship between the number of eccDNAs and the density of coding genes per Mb. c &

d, Correlation was assessed using the Pearson method. Chromosome Y was removed prior analysis.

and gene-rich chromosomes generate the most eccDNAs (Figure 5.7d,e). Notably, this

phenomenon was previously observed in healthy human somatic tissue (Møller et al., 2018a).

The propensities of longer chromosomes to generate more eccDNAs could be attributed to

the higher susceptibility of longer chromosomes to DNA damage, due to the increase in

size, compared to their shorter counterparts. Conversely, gene-dense chromosomes might

contribute to more eccDNAs due to their increased transcriptional activity, which is widely

postulated as one of the main drivers of eccDNA formation (Møller et al., 2018a; Hull et al.,

2019; Dillon et al., 2015).

5.5 EccDNA origins: Ties with gene expression and chro-

matin accessibility

EccDNAs are omnipresent across the genome, but are enriched for specific genomic features

(Møller et al., 2018a). While their miniature size mostly prevents them from encompassing

whole genes, they often contain partial genes, which also might be transcriptionally active
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(Koche et al., 2020; Paulsen et al., 2019). Additionally, transcription is thought to be a main

mechanisms of eccDNA formation. Interestingly, eccDNAs tend to contain a higher GC

content compared to their neighbouring regions and are marked with active histone marks, a

further sign of transcriptional activity in proximity to the eccDNA origin (Dillon et al., 2015;

Shibata et al., 2012; Kudla et al., 2006).

As most of these PDCLs have previously been characterised for their chromatin accessibil-

ity (Brunton et al., 2020) and gene expression levels (Dreyer et al., 2021), a novel approach of

integrating Circle-seq with RNA-seq and ATAC-seq data can strengthen the relation between

active transcription and open chromatin to eccDNA formation. ATAC-seq is a genomic tech-

nique used to assess chromatin accessibility. It uses a hyperactive Tn5 transposase to cut open

nucleosome-free regions of the genome and simultaneously insert sequencing adapters. This

key step not only marks the accessible DNA fragments, but also prepares them for subsequent

amplification and sequencing. The analysis of the sequencing data provides crucial insights

into the open chromatin landscape of the sample (Buenrostro et al., 2013).

Fig. 5.8 | Genomic overview of selected eccDNAs with matching ATAC-seq data. One eccDNA from

the PDCL TKCC-15 (top) and one from TKCC-22 (top) were selected to display the overlap to the matching

ATAC-seq data. Broad ATAC-seq peaks were identified within an eccDNA region and in proximity to the

eccDNA junction. The ATAC-seq data was previously generated by Brunton et al. (2020).

To get an overview of the eccDNAs and the corresponding ATAC-seq data, a genomic

view was generated of two eccDNAs with matching ATAC-seq data and their identified

peaks. The two cases examined showed peaks overlapping with the eccDNA region, but

also additional peaks adjacent to the eccDNA junctions (Figure 5.8). This showed that some

eccDNAs can overlap with ATAC-seq peaks and have peaks in proximity to eccDNA junctions.

These single genomic views can provide a deeper insight into how eccDNAs are formed and

where chromatin is accessible within or around eccDNA origins. However, a more detailed

investigation of the location of ATAC-seq peaks in the vicinity of eccDNA junctions was not

performed. Instead, a genome-wide analysis was performed to investigate whether, in general,

increased open chromatin is associated with eccDNA regions compared to non-eccDNA,

chromosomal (chr) regions.
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Performing a genome-wide matching of the the ATAC-seq with the eccDNA data re-

vealed an association between elevated chromatin accessibility and the origins of eccDNA

(Figure 5.9a). A majority of the samples (6 of 7) indicated that ATAC-seq peaks overlapping

with eccDNAs had a higher weight compared to non-eccDNA overlapping peaks (chrDNA),

suggesting that regions described by a more accessible chromatin are more prone to generate

eccDNAs.

Fig. 5.9 | EccDNAs originate from genes with elevated expression and regions with high increased accessib-

ility. a, Simplified boxplot displaying 25% and 75% normalised peak weight range (line) and the median (point).

EccDNA regions were integrated with ATAC-seq data of seven PDAC PDCLs published by Brunton et al.

(2020). Peaks inside an eccDNA were annotated as ’eccDNA’ and peaks not included inside an eccDNA were

annotated as chromosomal DNA (chrDNA). b, Boxplot showing the comparison of normalised gene expression

values of genes overlapping with an eccDNAs (eccDNA) and genes without eccDNA overlap (chrDNA). Gene

expression data of seven PDAC PDCLs was available from Dreyer et al. (2021). c, Violin plot displaying copy

number levels of eccDNA overlapping (eccDNA) and non-overlapping genes (chrDNA). The mean copy number

level is displayed as a red dot. a, b, & c, Statistical difference was assessed using a Wilcoxon-rank sum test. P
values for all samples were additionally adjusted using the Benjamini-Hochberg method. Significant association

(P value or P adjusted < 0.05) is displayed in orange.
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Nevertheless, while the chromatin of ecDNA is considerably more accessible compared to

its chromosomal counterpart, the increased chromatin accessibility of small eccDNAs remains

ambiguous. These findings do not suggest a more open chromatin in eccDNAs as the ATAC-

seq data does not directly match to the Circle-seq data and eccDNAs have been established to

be highly variable in individual cells (Wu et al., 2019; Møller et al., 2018a). However, the

analysis can suggest that eccDNA-generating regions have a more open chromatin structure

compared to regions in the genome that are sparsely generating eccDNAs.

In order to determine the consequence of open chromatin on gene transcription, ATAC-seq

peaks are usually annotated by the nearest regulatory elements or genes (Yan et al., 2020).

Consequently, the analysis suggests that the open chromatin structure from chromosomal

regions generating eccDNAs is transcriptionally active. This suggestion is further evaluated

by analysing the available RNA-seq data of seven PDAC PDCLs. Interestingly, genes that

overlapped with an eccDNA had an increased expression relative to those that did not intersect

with an eccDNA (Figure 5.9b). To note, almost all of the eccDNAs did not incorporate a full

gene region, but contain only parts of genes (Figure 5.12a). Therefore, it is not expected that

these eccDNAs drive the expression of the incorporated genes. In contrast, this comparison

suggests that parts of genes with heightened transcriptional activity are more likely to be

located on eccDNAs.

Furthermore, an increase in the copy number levels of genes tied to eccDNA origin was

uncovered (Figure 5.9c). This reinforces the association between transcriptional activity and

eccDNA formation.

To further refine the specific genes associated with eccDNA origin, a pathway overrepres-

entation analysis leveraging the KEGG pathways was performed (Figure 5.10). This pathway

analysis identified that genes from PDAC- and cancer-related pathways are significantly

enriched to be overlapping with eccDNAs (Biankin et al., 2012; Kanehisa & Goto, 2000; Yu

& Hung, 2000).

Fig. 5.10 | EccDNAs originate from PDAC and cancer related pathway genes. Overrepresentation analysis

results of the genes overlapping an eccDNA in the KEGG pathways. Pathways are sorted based on the P adjust

value with the gene count for each pathway displayed in the respective dot. Statistical analysis was performed

using a hypergeometric test with P values adjusted using the Benjamini-Hochberg method. The 10 pathways

with the lowest P adjusted value are displayed.

In sum, these findings underscore the intricate ties between eccDNAs, gene expression,
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and chromatin accessibility. This underscores earlier findings of eccDNA hotspots at regions

with active transcription and open chromatin and underpin the genomic specificities of the

eccDNA origin.

5.6 Specific genomic features are enriched on eccDNAs

The previous analysis established that the eccDNAs present in PDAC PDCLs arise from all

parts of the genome, with a particular enrichment in gene-dense chromosomes, and in region

with actively transcribed genes and open chromatin marks. In order to delve deeper into the

composition of these eccDNAs, various genomic elements have been used for annotation.

The annotation of eccDNAwith genomic features indicates that the proportion of eccDNAs

containing specific genomic features is relatively stable across all samples, as shown in

Figure 5.11a. However, the sample TKCC-09 deviated from this trend by exhibiting a higher

proportion of the majority of genomic features. Specifically, gene elements and individual

repeat elements display a significant overrepresentation in TKCC-09 compared to the other

seven samples. It is noteworthy that TKCC-09 displayed the largest average eccDNA size,

potentially elevating the probability of containing specific genomic elements (Figure 5.7a).

Excluding TKCC-09, the seven remaining PDAC PDCLs exhibited similar proportions,

indicating a uniform distribution of genomic elements on eccDNAs.

Diving into the annotated eccDNA genomic features, a strikingly high proportion of

eccDNAs are annotated with at least one repetitive element (around 90% of eccDNAs, Fig-

ure 5.11a). The most abundant repetitive elements are short-interspersed nuclear elements

(SINEs) which are prevalent on more than 60% of all eccDNAs. Furthermore, over half of

the identified eccDNAs encompass gene regions, predominantly from protein-coding genes.

However, considering the prevalence of all these genomic elements, in the human genome, is

vital for a comprehensive understanding of common eccDNA origins.

To fully assess whether specific genomic elements are enriched or absent on eccDNAs,

a permutation test was utilised with randomised eccDNA datasets. In this approach, 1,000

random datasets were generated by shuffling the locations of all high-quality eccDNA regions

on their respective chromosome, creating a total of 56,092,000 random eccDNAs spread

across 1,000 datasets (Methods Section 2.18 or Figure 5.11b). Subsequent annotations of both

random datasets and the actual eccDNAs with genomic elements facilitated the basis for the

statistical permutation test.

The permutation analyses underscored that eccDNAs are not random features, but encom-

pass distinct genomic elements (Figure 5.11c). Repeat elements are significantly represented

on eccDNAs. Given that up to 69% of the human genome consists of repetitive elements, an

abundance of repetitive elements on eccDNAs is anticipated (Koning et al., 2011). Yet, eccD-

NAs exhibited a significant increased number of repeat element annotations compared to their
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Fig. 5.11 | EccDNAs contain specific genomic features. a, Genomic feature abundance is similar between the

eight PDAC PDCLs. b, Schematic illustration of permutation test performed to compare the number of expected

and observed annotations of each genomic feature. To identify the expected number of annotations, a 1000

random datasets were generated and annotated. c, Dumbbell plot displaying difference between expected and

observed number of annotations for diverse genomic features. d, Example permutation test of the three genomic

features: genes, SINEs, and enhancers. c & d, P values are calculated through the permutation test performed

for each genomic feature. ***: P value < 0.001, **: P value < 0.01.

randomised counterparts. Among the repeat elements, SINEs and long-interspersed nuclear

elements (LINEs) were the most abundant elements identified on eccDNAs. Interestingly,

SINEs were more abundant on eccDNAs, whereas LINEs were comparatively rarer. This

hinted the potential roles of specific repeats in the eccDNA genesis or their location inside

and close to eccDNA formation hotspots.

Moreover, genes and their respective elements exhibit significant overlap with eccDNAs.

In contrast, intergenic regions are markedly underrepresented. Dividing genes into the three

gene types, protein-coding, long non-coding RNA (lncRNA), and microRNA (miRNA), an

enrichment is observed for all. These observations underline the specificity of eccDNA

biogenesis within genes.

A recent study showed that nuclear ecDNAs are mobile and can enhance gene expres-

sion if they harbour super-enhancers (Zhu et al., 2021). These super-enhancers, when on

ecDNAs, can interact with regions distant from their original chromosomal region to form
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transcriptional hubs and activate gene expression. Our analysis revealed that enhancers are

also enriched on smaller eccDNAs in the PDAC PDCLs, a feature observed similarly in

ecDNAs (Figure 5.11c,d) (Zhu et al., 2021). This suggests that even smaller eccDNAs might

be shaping the tumour transcription by encompassing enhancers. Nonetheless, additional

experiments are paramount to confirm this hypothesis.

In summary, eccDNAs are not random, but arise from specific genomic elements. Most

genomic elements depicted are overrepresented on eccDNAs than randomly expected, which

highlights the predominant origins of eccDNAs. This includes gene regions, enhancer ele-

ments, and SINE elements, advancing our understanding of the origin and the overlap of

eccDNAs in cancer cells (Dillon et al., 2015).

5.7 Genes are rarely fully incorporated on eccDNAs

EccDNAs were identified in neuroblastoma as short, non-amplified fragments that mostly

contain partial genes. Additionally, if a gene is fully incorporated, it does not exhibit increased

expression (Koche et al., 2020). Given these characteristics, I investigated whether we observe

similar eccDNA features in our PDAC PDCLs.

Unsurprisingly, eccDNAs mostly contain partial genes, and only a minor fraction of

eccDNAs did harbour the full gene locus. Out of all these genes that are fully residing on

eccDNAs (n = 215), 84 encoded for a protein and 98 encoded for a miRNA. Within these

genes, 12 were identified to be cancer driver genes based on the allOnco cancer driver list

(Figure 5.12b,e,f, www.bushmanlab.org). Although none of these genes were found to be

major drivers of PC, they have been shown to play roles in other types of cancer (Waddell et al.,

2015). For instance, in lung cancer cells, the miRNA MIR23A is regulating TGF-β-induced

epithelial-mesenchymal transition (Cao et al., 2012). MIR27A regulates immune response and

chemoresistance, while PF4 can promote lung cancer growth (Zhang et al., 2019a; Xie et al.,

2014; Pucci et al., 2016). It is unclear whether these cancer driver genes located on eccDNAs

also impact PDAC, and further research is needed. However, with their presence on eccDNAs

the dynamic regulation of their copy number levels is provided which can impact the activity

of these oncogenes (Yi et al., 2022).

In order to evaluate any increases in copy number levels and expression on genes residing

on eccDNAs, we compared the expression and copy number levels of these genes to the

non-eccDNA genes. The analysis found no evidence of increased expression or copy number

levels for genes found on eccDNAs (Figure 5.12c,d). This highlights the contrast between

eccDNAs and ecDNAs, with ecDNAs playing a significant role in amplifying and expressing

oncogenes, while eccDNAs have minimal impact on gene transcription or copy numbers.

These findings highlight the distinct characteristics of eccDNAs in PDAC PDCLs, espe-

cially when compared to ecDNAs, which often drive oncogene amplification and expression.
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Fig. 5.12 | EccDNAs in PDAC rarely contain full genes. a, Fraction of eccDNAs containing full genes, partial

genes, or intergenic regions. b, Fraction of full genes residing on eccDNAs grouped into their gene type. c,

Relative normalised gene expression (Z-Score) of genes fully on eccDNAs (eccDNA) and others (chrDNA).

d, Copy number levels of genes fully located on eccDNAs compared to genes not completely on eccDNAs

(chrDNA). c & d, Statistical comparison was performed using a Wilcoxon-rank sum test. e, Cancer driver genes

from the allOnco list (www.bushmanlab.org) completely residing on eccDNAs. f, Representative figure of an

eccDNA fully incorporating a complete gene locus identified by Circle-seq. Here, TAC1 is incorporated in a

TKCC-15 eccDNA.

5.8 Identification of multi-fragment eccDNAs

Standard tools for eccDNA identification, optimised for short-read sequencing data, are

effective in identifying single-fragment eccDNAs (Prada-Luengo et al., 2019; Kumar et al.,

2020). However, these tools are limited in their ability to uncover multi-fragment eccDNAs,

which constitute approximately 11% of all eccDNAs (Wang et al., 2021). While short-read

sequencing data is sub-optimal for identifying multi-fragment eccDNAs, a work-around using

de novo assembly and long-read alignment is thought to be able to generate this information.
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Here, I utilised the functionality of Unicycler (Wick et al., 2017), which assembles short-read

sequences de novo to identify circular structures. Unicycler is commonly used for bacterial

genomes, but, due to the circular structure of eccDNAs, it is potentially useful for eccDNA

detection. Following the de novo assembly, identified eccDNA sequences are mapped to the

GRCh38 reference genome using Minimap2 (Li, 2018) to determine their genomic origin.

Both, Unicycler and Minimap2, are incorporated into the nf-core/circdna pipeline within the

’unicycler’ branch.

This section evaluates this approach for a more comprehensive identification of eccDNAs

and characterises the multi-fragment eccDNAs to provide a complete overview within the

PDAC PDCLs.

5.8.1 Identification of high-quality de novo assembled eccDNAs

Given the novelty of using a de novo assembly approach, with short-read sequencing data, for

identifying multi-fragment eccDNAs, a stringent quality filtering process was implemented.

This process encompassed multiple filtering steps: read mapping quality filtering, blacklist

region filtering, chromosome filtering, and mapping length filtering. In detail, quality filtering

removes all reads that did not map with the highest mapping quality (mapping quality = 60) to

the reference genome, blacklist filtering removed eccDNAs overlapping with blacklist regions

defined by ENCODE (Amemiya, Kundaje & Boyle, 2019), chromosome filtering discarded

eccDNAs mapped to unplaced or unlocalised scaffolds, and mapping length filtering was

evaluated by comparing the length of the mapped reads to their actual read length, ensuring

that the majority of each read are mapped accurately to the genome (Figure 5.13).

After applying these filters, a reduction of 25.6% in the number of identified eccDNAs

has been observed. The initial count of 29,116 unique eccDNAs, identified via Unicycler and

mapped with Minimap2, was reduced to 21,660 that passed all filtering criteria (Figure 5.13e).

The most eccDNAs were removed based on the discrepancy between the read and the mapped

length (Figure 5.13d). Although other filters led to fewer exclusions, their implementation

was still important to retain high-quality eccDNAs.

In summary, the implementation of stringent quality control measures effectively filtered

out low-quality eccDNAs, reducing the initial set from 29,116 to 21,660. These high-quality

eccDNAs, which survived multiple levels of scrutiny, serve as a robust dataset for subsequent

analyses aimed at deciphering their potential roles and origins.

5.8.2 Multi-fragment eccDNAs in PDAC PDCLs

Out of the 21,660 high-quality de novo assembled eccDNAs from eight PDAC PDCLs, 89.73%

were found to originate from a single genomic fragment, revealing that around 10% of the

eccDNAs harbour two or more fragments (multi-fragment eccDNAs, Figure 5.14a). Similar

proportions were determined by Wang et al. (2021), using long-read sequencing, suggesting
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Fig. 5.13 | Unicycler eccDNA filtering steps. a, Exclusion of reads with a mapping quality below 60. b, Pie

plot showing proportion of eccDNAs overlapping with an ENCODE blacklist region (Amemiya, Kundaje &

Boyle, 2019). c, EccDNAs mapping to chromosomes or unlocalised/unplaced scaffolds. d, Comparison between

Unicycler-generated read length and actual length mapped to chromosomes, with a cutoff discrepancy of more

than 2%. e, Number of eccDNAs retained at each filtering step. The final count is highlighted in bold.

that using the combination of Unicycler and Minimap2 can identify multi-fragment eccDNAs.

Notably, longer eccDNAs were more likely to consist of multiple fragments (Figure 5.14b,c).

This suggests that larger eccDNAs may be composite structures, assembled from multiple

genomic fragments (Figure 4.5).

Fig. 5.14 | Large eccDNAs are comprised of multiple fragments. a, Pie chart showing the proportion of the

number of fragments of the high-quality eccDNAs identified with Unicycler. b, Length difference of eccDNAs

with single- or multiple fragments. Pairwise statistical comparison was performed using a Wilcoxon-rank sum

test. c, Correlation analysis of the number of eccDNA fragments compared to their length. Correlation was

assessed using the Pearson method.

Investigation of eccDNAs identified by Unicycler and subsequently mapped by Minimap2

showed extensive coverage by Circle-seq reads (Figure 5.15). Notably, certain single-fragment

eccDNAs, which were revealed by de novo assembly using Unicycler, could also be independ-

ently verified by Circle-Map Realign. This lends credibility to the methodology employed.

However, when it comes to multi-fragment eccDNAs, these were not detected by Circle-Map

Realign or failed to meet the necessary filtering criteria (Figure 5.6). This highlights the
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potential advantage of a combinatorial approach using both, de novo assembly and eccDNA

junction identification, to capture a more diverse set of eccDNAs.

Fig. 5.15 | Read alignment views of eccDNAs identified by Unicycler. IGV figures are generated of represent-

ative single-fragment (top) and two-fragment eccDNAs (bottom) identified by Unicycler (citrus) in the TKCC-15

PDCL. As a reference single-fragment eccDNAs identified by Circle-Map Realign are depicted (lagoon).
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Fig. 5.16 | Most de novo assembled single-fragment eccDNAs are validated by Circle-Map. Overlap of

high-quality eccDNAs identified by Circle-Map (n = 56,092) and single-fragment de novo assembled eccDNAs

identified by Unicycler (n = 19,435). The bars depict if an eccDNA was identified by both eccDNA callers

(overlap > 95%). Only around a quarter of eccDNAs identified by Circle-Map are also identified by Unicycler.

However, most eccDNAs identified by Unicycler are also found in the Circle-Map dataset.

While Unicycler-guided de novo assembly successfully identified multi-fragment eccD-

NAs some limitations were evident (Figure 5.15 bottom). First, smaller eccDNAs (below

1,000 bp) are not reported by Unicycler. Therefore, only larger eccDNAs are identified.

Second, the computational intensity of de novo assembly restricts the application to low-

coverage Circle-seq data and smaller eccDNAs (data not shown). Third, eccDNAs with

regions not covered by Circle-seq reads may be incompletely assembled and subsequently

missed. In this study, short-read sequencing data was used to identify eccDNAs from various

origins. However, third generation long-read sequencing technology could provide a more

comprehensive understanding of both single- and multi-fragment eccDNAs (Wang et al.,

2021).

Nevertheless, while this approach might be limited by certain aspects, around 10% of

eccDNAs were identified to be comprised of multiple fragments in these PDAC PDCLs.

Additionally, multi-fragment eccDNAs also show increased sizes compared to eccDNAs

made out of one genomic fragment.

5.9 Computational validation of de novo assembly approach

for eccDNA identification

The identification of eccDNAs via de novo assembly generated findings that were consistent

with those of Circle-Map Realign, a tool commonly used for detecting eccDNA junctions in

Circle-seq data (Figure 5.15) (Prada-Luengo et al., 2019). To further evaluate the efficacy of

de novo assembly in identifying eccDNAs, a comparative analysis was conducted between the

two methods, focusing on single-fragment eccDNAs due to limitations in eccDNA junction

detection tools in identifying multi-fragment eccDNAs. As de novo assembly and subsequent

mapping does not always identify the correct eccDNA junction, a method was chosen that

compares the complete regions of the de novo assembled eccDNAs to the eccDNA regions

identified via eccDNA junction detection. An overlap of at least 95% was declared to be

sufficient for both eccDNA calling methods to depict the same eccDNA.

The 56,092 high-quality eccDNAs, identified by Circle-Map Realign, were compared
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to the 19,435 high-quality single-fragment de novo assembled eccDNAs (Unicycler). The

results indicate a considerable difference between the two methods. Nearly 75% of eccDNAs

identified by Circle-Map Realign were not captured by de novo assembly (Figure 5.16 left).

One plausible explanation could be the minimum sequence length of 1,000 bp imposed by

Unicycler. However, it is noteworthy that around 83% of single-fragment de novo assembled

eccDNAs are also identified by Circle-Map Realign.

In summary, although de novo assembly covers a portion of the single-fragment eccDNA

landscape, it provides the complete eccDNA structure. This cannot be accomplished solely

through eccDNA junction detection tools, which solely detect the eccDNA junction. Notably,

the use of this method allows for complete validation of single-fragment eccDNAs or the

identification of their entire structures. Moreover, the accuracy of identifying single-fragment

eccDNAs assembled de novo is confirmed in over 80% of cases. Therefore, combining

de novo assembly with eccDNA junction detection methods enhances both the accuracy

and comprehensiveness of eccDNA identification, particularly with the ability to identify

multi-fragment eccDNAs.

5.10 Validation of Circle-seq results

The Circle-seq analysis identified thousands of eccDNAs across eight PDAC PDCLs varying

in size, genomic origin, and chromosomal content. While Circle-seq is a prominent and

commonly used method to study the eccDNA landscape, an experimental validation of the

results is recommended (Koche et al., 2020; Kumar et al., 2017; Møller et al., 2015; Møller

et al., 2018a). This validation can be performed by multiple methods such as inverse PCR,

Sanger sequencing, DAPI imaging, or FISH imaging (Kumar et al., 2020; Møller, 2020;

Koche et al., 2020; Turner et al., 2017). Since standard imaging methods do not have the

required resolution for smaller eccDNAs (< 100 kbp) and their content, I selected inverse

PCR and subsequent Sanger sequencing to validate some of the eccDNAs that were identified

in the PDCLs (Figure 5.17a).

In total, I selected 17 eccDNA candidates: nine single-fragment eccDNAs identified

by Circle-Map Realign (C) and eight multi-fragment eccDNAs identified by Unicycler (U).

These candidates were chosen for their size, content, complexity, and PDCL of origin. For

each PDCL, at least one eccDNA was aimed to be validated. The complete list of chosen

eccDNAs is detailed in Table B.1. Among these eccDNA candidates, some encompassed full

protein-coding genes or miRNAs, which could be actively transcribed in the cells.

For each candidate, outward-pointing primers were designed to amplify an individual

eccDNA junction (Table 2.6). Outward-pointing primers used in an inverse PCR are usually

employed to identify circular nucleic acids (Su et al., 2021; Kumar et al., 2020; Zhao et al.,

2019). In linear/chromosomal DNA, these primers face away from each other; however, in a

circular DNA, they can amplify a specific junction. While tandem duplications can create
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Fig. 5.17 | Inverse PCR validates Circle-seq results. a, Experimental set-up of Circle-seq validation. Candidate

single-fragment eccDNAs identified using Circle-Map (C) and multi-fragment eccDNAs identified using Uni-

cycler (U) were validated using inverse PCR and subsequent Sanger sequencing of the PCR fragment. Inverse

PCR uses inverse-directed primers to amplify the eccDNA junction. b, Agarose gel electrophoresis of PCR

fragments of single- and multi-fragment eccDNA candidates. The correct band size of candidates showing

multiple bands is highlighted with a red arrow. MT-CO1 and HBB were used as controls for the circular DNA

and linear DNA level in the prepared DNA, respectively. Optimal bands of the 100 bp ladder and the two

controls are displayed on the left side.

similar structures, which will be amplified by inverse PCR, our DNA preparation process

minimised chromosomal DNA, and thereby reducing the chances of false positives. The

expected fragment size for each candidate is detailed in Table 5.3.

A previous analysis confirmed the selective removal of linear DNA and retention of

circular DNA prior to sequencing (Figure 5.1 and Table 5.2). Additionally, in most inverse
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PCR experiments, controls for circular DNA (MT-CO1) and linear DNA (HBB) were added

to validate the DNA preparation process. In all PCR experiments, for each PDCL, the same

Circle-seq prepared DNA was used which was also subjected to sequencing.

Overall, inverse PCR validated 16 of 17 candidate eccDNAs, as evidenced by clear bands

at expected sizes (Figure 5.17b). One candidate (TKCC-22 C2) yielded no PCR amplification

with the designed primers. The positive control, amplifying MT-CO1, was also present in all

DNA samples. In contrast, HBB was absent verifying that chromosomal DNA was largely

reduced before the PCR procedure.

To verify the junction sequences, all PCR products underwent purification and Sanger

sequencing. 13 of these 16 validated eccDNAs showed high sequence similarity to their

respective origin in the human reference genome (Figure 5.18). The remaining three failed

quality control or did not match the reference sequence. To investigate the sequence simil-

arities, the first 25 bp upstream and downstream of each eccDNA junction sequence (top)

and compared to the matching reference genome sequence (bottom). Minor alterations were

observed near the junctions, potentially due to insertions, deletions, or single nucleotide

variations (SNVs). The source of these alterations could not be determined as germline

sequence data were unavailable. However, despite the observed alterations, the validated junc-

tions closely resembled the reference sequence. These results corroborate the computational

identification of the eccDNA candidates by Circle-Map Realign and Unicycler.

Fig. 5.18 | Sanger sequencing of eccDNA junctions confirms Circle-seq results. High concordance between

sequence of the eccDNA candidate fragments amplified by inverse PCR (top) and the respective reference

genome sequence (bottom). Concordant bases are highlighted in blue and base mismatches in grey. 25 bp

upstream and downstream to the eccDNA junction are displayed for each candidate. Only sequences of candidates

are displayed that were successfully sequenced and matched the reference genome with a high percentage.

Validation is key to ensure the accuracy of these methods, but can only be performed

in a low throughput setting. Here, I chose some of the largest eccDNAs present, including

some containing cancer-specific oncogenes. The full validation process was successful in

approximately 76.5% (13/17) of the chosen candidates, but the inverse PCR, which already

confirmed the existence of the eccDNA junction, was successful in all but one candidate

(94.1%; 16/17). Further investigation is necessary, why the inverse PCR for TKCC-22 C2

failed. Given that PCR efficiency largely hinges on primer design (Dieffenbach, Lowe,

Dveksler et al., 1993), a new primer set may help validate this particular eccDNA.
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Tab. 5.3 | EccDNA candidates used for validation.

PDCL ID
Expected PCR

Fragment Size

PCR

Validation

Junction

Sequencing

Single-Fragment EccDNA identified by Circle-Map Realign (C)

PaCaDD137 C1 508 3 7

TKCC-2.1 C1 442 3 3

TKCC-10 C1 778 3 3

TKCC-15 C1 449 3 3

TKCC-15 C2 285 3 3

TKCC-18 C1 757 3 3

TKCC-22 C1 657 3 3

TKCC-22 C2 643 7 7

TKCC-26 C1 693 3 7

Multi-Fragment EccDNA identified by Unicycler (U)

PaCaDD137 U1 303 3 3

TKCC-2.1 U1 579 3 3

TKCC-2.1 U2 657 3 3

TKCC-09 U1 704 3 7

TKCC-10 U1 542 3 3

TKCC-18 U1 874 3 3

TKCC-18 U2 719 3 3

TKCC-22 U1 354 3 3

On the other hand, Sanger sequencing was successful in 13 of the 16 validated candidates.

This shortfall could be attributed to the PCR DNA purification method employed. Rather than

purifying the DNA directly from the agarose gel, the full PCR products were purified using

the Zymoclean Gel DNA Recovery Kit (Zymo Research Europe GmbH). While this approach

removed primers, unwanted PCR fragments were not eliminated. This issue became evident

as Sanger sequencing failed for two of candidates with multiple gel bands (PaCaDD137

C1, TKCC-26 C1; Figure 5.17b), suggesting that multiple sequences could have led to the

sequencing failure. Only one candidate, TKCC-09 U1, showed a clear gel band yet failed

sequencing, necessitating additional investigation.

In summary, both inverse PCR and Sanger sequencing verified the existence and the

computational analysis of most candidate eccDNA junctions (Table 5.3). This supports

the validity of eccDNA identification methods applied to the generated Circle-seq data and

underscores the importance of these methods in accurate eccDNA identification.

5.11 The retention of eccDNAs in PDAC PDCLs

The replication and distribution of large, amplified ecDNAs during the cell cycle are well-

characterised (Yi et al., 2022). However, the fate of smaller eccDNAs remains unclear.

Previous work on leukocytes from the same patient found minimal eccDNA overlap even

within these genetically identical cells (Møller et al., 2018a). Contrarily, eccDNAs in yeast

(Saccharomyces cerevisiae) were found to often contain autonomously replicating sequences
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suggesting eccDNA replication is possible during the cell cycle (Møller et al., 2015). Addition-

ally, some evidence points to the sharing of eccDNAs across individual esophageal squamous

cell carcinoma specimen of different individuals (Sun et al., 2021). Therefore, replication and

retention of smaller eccDNAs, with most having only a few hundred or thousand bps, remains

to be ambiguous. To dissect the retention and replication of small eccDNAs in PDAC PDCLs,

two distinct methodologies were employed.

Fig. 5.19 | Graphical description of Circle-seq set-up from two consecutive passages of PDAC PDCLs.

PDAC PDCLs are cultivated until a confluency of around 70-80% is reached. 2/3 of the cells are collected

for DNA extraction and the remaining 1/3 is transferred into a new flask and supplied with new media. After

70-80% confluency is reached, again, cells are collected from the second passage and DNA is extracted. The

extracted DNA of both passages is then prepared following the Circle-seq protocol, to enrich the circular DNA

content. In short, the linear DNA is removed by circular DNA-safe DNase and the circular DNA is amplified by

rolling-circle amplification using the Phi29 polymerase. Afterwards, the remaining DNA is sequenced using

paired-end NGS.

First, a subset of validated candidate eccDNA junctions, identified by Circle-seq, were

aimed to be validated in DNA extracted from a different passage of the same PDCL. Here, the

DNA from a different passage was prepared similarly to the Circle-seq DNA, and both DNA

samples were subjected to inverse PCR. For the second method, Circle-seq data were generated

from seven PDAC PDCLs across two consecutive passages each. A schematic outline of

the experimental set-up is provided in Figure 5.19. In short, the PDCLs are cultivated until

70-80% confluency and subsequently split with a 1:3 ratio into a fresh flask. The rest of the

cells that are not used for splitting and are subjected to DNA extraction and Circle-seq. When

the second passage reaches 70-80% confluency, the cells are harvested and their DNA is

extracted for Circle-seq. This methodology generates Circle-seq datasets from cells that are

highly related to each other. In both methods, a passage is defined as a transfer of a fraction

of the cells into a new cell culture flask.

5.11.1 Candidate eccDNA junctions are not present across different

passages

To validate the retention of candidate eccDNA junctions, seven candidates from three PDCLs,

PaCaDD137, TKCC-2.1, and TKCC-22, were examined using inverse PCR (Møller et al.,

2015). Although eccDNA junctions were validated in the Circle-seq DNA, none were detected

in DNA from earlier or later passages of the same PDCLs (Figure 5.20). This absence was

observed even in cases where DNA was extracted from consecutive passages (PaCaDD137,
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TKCC-22), negating the influence of prolonged cultivation time. Notably, the DNA prepara-

tion technique has worked as expected detailed in the retention of circular DNA (MT-CO1

presence) and linear DNA removal (HBB absence).

Fig. 5.20 | Validation failure of eccDNA junctions in different passages. Inverse PCR and subsequent agarose

gel electrophoresis was performed on a total of seven eccDNA candidate junctions from three individual PDCLs.

EccDNA junction was identified in the DNA used for sequencing (left in each gel image; marked with ’Circle-

seq’), but was absent in the DNA extracted and enriched for circular DNA from a different passage (right-hand

side of each gel image). The corresponding passage number is given below the PDCL name. MT-CO1 and HBB

were used as controls for the circular DNA and linear DNA level in the prepared DNA, respectively. Optimal

bands of the 100 bp ladder and the two controls are displayed on the left side.

Generally, these preliminary data indicate a lack of eccDNA retention. However, the

low-throughput nature of this study limits the generalisability of the findings. Therefore, a

high-throughput approach was undertaken to determine if eccDNAs are retained in the PDAC

PDCLs.

5.11.2 Circle-seq of two consecutive passages of 7 PDAC PDCLs

As the initial Circle-seq run generated high quality sequences and an initial overview of the

eccDNA landscape in PDAC PDCLs. To further expand on open questions, validate some

initial findings, and identify eccDNA retention rate, a second Circle-seq dataset was generated.

This dataset contained a total of 14 Circle-seq samples from seven PDCLs (2 samples for

each PDCL). These samples, extracted from consecutive cell culture passages, were chosen

to mitigate potential genetic drift and other long-term culturing effects, in accordance with

established guidelines (Hughes et al., 2007; Maitra et al., 2005; Wenger et al., 2004). This

approach was also chosen by the variable behaviour of eccDNAs and the uncertainty of

eccDNA replication and retention mechanisms (Møller et al., 2018a).

For this Circle-seq study, each PDCL was cultured until reaching 70-80% confluency

before being split in a 1/3 ratio, resulting in 1/3 of the cells transferred into a new flask and 2/3

of the cells available for DNA extraction (Figure 5.19). The extracted DNA of all 14 samples

was then subjected to the adjusted Henssen et al. (2019a) Circle-seq protocol described in

Methods Section 2.10. This protocol was further adjusted for optimal linear DNA removal,

by increasing the DNase digestion time to seven days with additional adding of 3 µL DNase
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(30 units), 6 µL ATP (25 mM), and 0.9 µL 10x reaction buffer every 24 hours. Following

the extended DNase digestion, a fold change removal of at least 200 fold was achieved for

each sample, with a median fold change reduction of 1,785.50 (Table 5.4). After further

DNA processing and library preparation detailed in Methods Section 2.10 the DNA was then

sequenced via NextSeq500, generating around 15 million paired-end reads per sample.

Data processing was carried out using nf-core/circdna (v 1.0.1) and its ’circle_map_realign’

branch, which facilitated eccDNA junction identification.

Tab. 5.4 | Fold change decrease of linear DNA compared to circular DNA after DNase digestion of two

consecutive passages of seven PDAC PDCLs.

PDCL Passage # ID Linear DNA Decrease (FC)

Mayo-4636 27 P1 1995.0

Mayo-4636 28 P2 224.0

PaCaDD137 32 P1 939.0

PaCaDD137 33 P2 644.0

TKCC-2.1 36 P1 13158.0

TKCC-2.1 37 P2 1923.0

TKCC-09 46 P1 1498.0

TKCC-09 47 P2 1262.0

TKCC-10 28 P1 2762.0

TKCC-10 29 P2 287.0

TKCC-15 42 P1 2112.0

TKCC-15 43 P2 6426.0

TKCC-22 35 P1 3791.0

TKCC-22 36 P2 1648.0

5.11.3 EccDNA Landscape of two consecutive passages

Stringent quality controls (Methods Section 2.14) yielded 93,967 unique eccDNAs across the

14 samples. This number is comprised out of 53,853 and 40,114 unique eccDNAs identified

in passage 1 (P1) and passage 2 (P2) PDCLs, respectively (Figure 5.21a). A unique eccDNA

is defined as an eccDNA with a unique eccDNA junction in an individual sample. The most

eccDNAs were identified in TKCC-15, which had a total of 25,657 different eccDNAs, 18,895

in P1 and 6,762 in P2. The least were identified in TKCC-09, which had a total number of

6,025 unique eccDNAs. Interestingly, the initial Circle-seq analysis also identified the most

eccDNAs in TKCC-15 and the least in TKCC-09, suggesting that the number of eccDNAs is

dependent on the cell line and the underlying genomics.

By comparing P1 and P2 for each PDCL, the distribution of unique eccDNAs varied

considerably across individual PDCLs, highlighting their inherent variability of eccDNA

presence in these cell lines (Figure 5.21b). Specifically, TKCC-10 or TKCC-22 exhibited a

relatively balanced distribution of eccDNAs across both passages. In contrast, approximately
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75% of the total eccDNAs were found in P1 for both PaCaDD137 (73.2%) and TKCC-

15 (73.6%), whereas 68.5% were observed in P2 of TKCC-09. To identify eccDNAs that

Fig. 5.21 | EccDNA abundance in two consecutive passages of seven PDAC PDCLs. a, Number of unique

eccDNAs in both passages (P1 & P2) of each PDCL. b, Proportion of eccDNAs identified in each passage per

PDCL. c, Proportion of eccDNAs identified in passage 1 (P1), passage 2 (P2), or in both passages of a PDCL. d,

Table displaying and characterising the seven eccDNAs that were shared in both passages of a PDCL.

exist in both passages of a PDCL, all eccDNAs were compared based on their individual

junctions. Only eccDNAs sharing the exact same junction start and end counted. Interestingly,

a minuscule fraction (less than 0.01%) of eccDNAs were shared between the two passages of

each PDCL. This is deflected by the more than 90,000 individual eccDNAs identified and the

seven eccDNAs which are shared in P1 and P2 of an individual PDCL (Figure 5.21c). This

suggests that eccDNAs are not typically propagated through cell generations but are likely

generated de novo and lost during cell cycle progression.

Although Circle-seq offers a snapshot of a large cell population, it is plausible that an

increase in sequencing depth might yield additional common eccDNAs between passages.

However, the likelihood of a significant increase in shared eccDNAs remains minimal as a

high number of eccDNAs is likely already identified at the current sequencing depth (Møller

et al., 2015).

Of the seven shared eccDNAs, two arose in TKCC-09, three in TKCC-15, one in TKCC-

2.1 and one in TKCC-22 (Figure 5.21d). In contrast, none were shared in both passages of

Mayo-4636, PaCaDD137, and TKCC-10. Most shared eccDNAs were short (6 of 7; < 500

bp) and localised in an intron or intergenic regions (7 of 7), which leave their functional role
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ambiguous. Therefore it is unclear whether they serve a purpose in the PDCL biology or are

just a byproduct of DNA damage or apoptosis (Wang et al., 2021).

Taken together, the comparative analysis of both passages of the seven PDCLs revealed

that almost all eccDNAs are unique in an individual passage suggesting that they are not

replicated and passed to the following generations, but are lost, expelled, or eliminated rapidly

during cell progression.

5.11.4 Shared eccDNAs are identified in other PDCLs

Based on the previous analysis, seven eccDNAs are shared between P1 and P2 of individual

PDCLs. Interestingly, two eccDNAs, ’chr13:94318633-94318746’ and ’chr2:174242141-

174242376’, were identified to be shared in more than one PDCL (Figure 5.21d). Similarly,

by further investigating the shared eccDNAs, multiple of these were also found in other

PDCLs (Table 5.5). This suggests a potential commonality in the genomic breakpoints leading

to the formation of eccDNAs. Such commonalities contrasts with existing literature for

ecDNAs, which largely describes eccDNA breakpoints as random occurrences (Kim et al.,

2020). However, similar eccDNAs might be shared between individuals (Sun et al., 2021).

Tab. 5.5 | PDCL passage shared eccDNAs that are also identified in other PDCLs.

PDCL Passage EccDNA Region

Mayo-4636 P1 chr13:94318633-94318746

TKCC-10 P1 chr13:94318633-94318746

TKCC-2.1 P2 chr13:94318633-94318746

TKCC-22 P2 chr13:94318633-94318746

Mayo-4636 P2 chr2:174242141-174242376

PaCaDD137 P2 chr2:174242141-174242376

TKCC-15 P1 chr2:174242141-174242376

TKCC-10 P2 chr3:12441872-12442227

Although random eccDNA formation does have a tendency to occur in transcriptionally

active regions or regions with a high GC content (Shibata et al., 2012; Møller et al., 2018a).

This introduces the possibility of hotspots within the genome where eccDNA formation is

more likely and consequently leading to the shared eccDNAs observed. However, additional

validation is necessary in these cases, using inverse PCR or other methodologies. These

occurrences may also result from issues with sequence mapping or eccDNA detection.

5.11.5 EcDNAs are replicated and retained during passaging and Gem-

citabine treatment

The previous analysis revealed that the majority of eccDNA are not retained during cell line

passaging. However, ecDNAs are driving tumour development and tumour adaptation by

replication and random segregation (Yi et al., 2022; Kim et al., 2020). Therefore, unlike

smaller eccDNAs, large ecDNAs might be differently regulated. To investigate if ecDNAs
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alter their structure or disappear during cell passaging or treatment, a PDO, with an existing

MYC-ecDNA, was examined under normal conditions (VR01-O) and under Gemcitabine

treatment (VR01-O-GEM). Here, both samples were subjected to Circle-seq to identify the full

eccDNA landscape. Additionally, the passage numbers of these PDOs differed; Gemcitabine

treatment began at passage 26, while the original PDOwas sequenced at passage 29. Therefore,

multiple passages are between those sample states, which enables an assessment of the impact

of propagation and treatment on ecDNA structure and presence.

Fig. 5.22 |MYC-ecDNA is retained in VR01-O during Gemcitabine treatment and passaging. a, Proportion

of eccDNAs categorised as unique to either VR01-O or VR01-O-GEM, or shared between both. b, Distribution

of sizes for eccDNAs found in both VR01-O and VR01-O-GEM, represented in bp. c, Circle-seq coverage view

focusing on the MYC locus on chromosome 8. A specific region, chr8:127400971-128318232, shared between

VR01-O and VR01-O-GEM is highlighted in red. The position of theMYC gene is marked by a dashed line.

The Y-axis represents the mean sequence coverage calculated in 20 kbp bins.

EccDNA junction analysis in both PDO samples revealed a substantial number of eccDNAs

(Figure 5.22a). Compared to PDCLs, VR01-O and VR01-O-GEM had at least three times

as many eccDNA junctions to any PDCL (Figure 5.21a). In total, 121,732 eccDNAs were

identified in both PDOs - 64,167 in VR01-O-GEM and 57,565 in VR01-O. Out of the large

number of eccDNAs identified in both samples, only 32 were common in both. This highlights

that, like in the PDAC PDCLs, most eccDNAs are not retained during PDO propagation.

Again, almost all shared eccDNAs have a size of less than 5,000 bp (Figure 5.22b).

Interestingly, the only shared eccDNA with a length greater than 5,000 was identified to be an

ecDNA containing MYC. This ecDNA had a length of 917,262 bp and showed similar Circle-

seq coverage distributions in both VR01-O and VR01-O-GEM, revealing that the ecDNA

breakpoints did not differ and the same ecDNA is identified in both samples (Figure 5.22).

EarlierWGS data analysis revealed that theVR01-OMYC-ecDNA ismost likely comprised

of multiple chromosomal fragments and encompasses a wider region (Figure 4.21a). However,

due to the limitations of the used eccDNA detection software, the complete structure can not

be identified using Circle-seq. This shows that secondary validation methods need to be used

to fully validate a complete structure of an eccDNA.

In summary, the data shows that larger eccDNAs, which are also detectable by other

techniques like FISH or WGS, are retained and replicated during extended passaging and are

also not eliminated by Gemcitabine treatment. In contrast, shorter eccDNAs appear to be
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transient.

5.12 EccDNA-formation hotspots in PDAC

The genesis of eccDNA is heavily debated. Some argue for the significance of eccDNA

hotspots, while others describe their random occurrence (Wang et al., 2021; Koche et al.,

2020; Møller et al., 2015; Møller et al., 2018a). Our previous analysis has shown that the

identified eccDNAs in our PDAC PDCLs did not follow a random distribution but carried

or overlapped specific genome elements. Furthermore, it seems that they are also associated

with increased chromatin accessibility or transcriptional activity. While eccDNAs are mostly

too small to carry full genes, their existence might still have an effect on cancer biology.

Therefore, identifying specific hotspots of increased eccDNA formation is of vast importance

for the eccDNA field.

While, mostly two Circle-seq datasets were examined in the previous Circle-seq analyses, a

third dataset originated from seven PDAC patient-derived organoid (PDO) samples, collected

from six individual PDAC PDOs, was generated in the volume 2 Circle-seq study (Table 2.2).

These three distinct datasets provide a unique opportunity to investigate the occurrence of

eccDNA-formation hotspots across different PDAC models.

5.12.1 Identification of common eccDNA hotspots

To explore eccDNA hotspots in PDAC, an integrative analysis was performed of the three

Circle-seq dataset comprised of eight PDCLs, seven PDCLs across two consecutive passages

(7 PDCLs x 2 Passages), and seven PDOs. EccDNA ’hotspots’, ’coldspots’, and regions with

’normal’ eccDNA abundance were identified using a permutation-based method. Specifically,

the eccDNA regions for each dataset were randomly permuted alongside their original chro-

mosomes. This permutation was performed 1,000 times generating a 1,000 datasets containing

random eccDNA origins for each Circle-seq dataset. Subsequently, the genome was divided

into approximately 1 Mbp bins and the number of eccDNAs and random eccDNAs in each

bin was counted. Bins with more eccDNA counts compared the random datasets (P value <

0.001) were classified as ’hotspots’. Conversely, bins with fewer eccDNAs were classified as

’coldspots’ (P value < 0.001). Bins with comparable counts (P value > 0.001) to the random

datasets were designated as ’normal’ regions. For more details on the methodology refer to

Methods Section 2.20.

With this analysis, over 300 hotspots and coldspots were identified across the three Circle-

seq datasets (Figure 5.23a,b). Despite variability between the datasets, many regions appeared

as either hotspots or coldspots in multiple datasets. However, only six hotspots were identified

in all three datasets (consensus eccDNA hotspots), showing that eccDNA hotspots may vary

between the analysed cells, the underlying model system, or are data specific. In contrast,

coldspots showed considerable overlap, particularly in the acrocentric chromosomes 13 and
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Fig. 5.23 | EccDNA Hotspot identification in the three Circle-seq datasets. a, EccDNA hotspots, coldspots,

and normal regions were identified based on the number of eccDNAs in a 1 Mbp region compared to random

generated datasets (Methods Section 2.20). The 1 Mbp bins are coloured based on their region class and located

based on their genomic location. The three Circle-seq datasets are individually visualised (see figure legend).

b, Venn diagram showing the overlap of coldspot (blue), normal (beige), and hotspot (red) regions in all three

datasets.

22 and centromeric regions. This shows that eccDNA hotspots might be variable, but eccDNA

coldspots can be universally identified, suggesting common regions where eccDNA formation

is absent.

While only a few hotspots are identified in all three Circle-seq datasets, many are identified

in at least two of those. To further expand on different eccDNA regions and their characteristics,

recurrent hotspots, coldspots, and normal regions are further analysed which occur in at least

two Circle-seq datasets. This generated a list of common regions containing 95 coldspots,

2,715 normal regions, and 61 hotspots (Figure 5.23b and Figure 5.24).
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Fig. 5.24 | Genomic view of common eccDNA hotspots, coldspots, and normal regions. A common region

(hotspot, coldspot, or normal) is defined as being identified twice in the three Circle-seq datasets, 8 PDCLs, 7

PDCLs x 2 Passages, and 7 PDOs.

5.12.2 Common eccDNA hotspots are gene-dense and located in specific

genomic regions

The analysis of the common eccDNA hotspots and coldspots revealed patterns in their distri-

butions, indicating that these regions are not randomly spread across the genome (Figure 5.24).

Instead, a further computational analysis shows that eccDNA hotspots are located preferen-

tially in Giemsa-negative (gneg) stained regions of the genome and are found in proximity to

chromosome ends (telomeres) (Figure 5.25a,b). Giemsa-negative areas, contrary to Giemsa-

positive bands (gpos), are gene-rich and associated with increased transcriptional activity

(Grewal & Jia, 2007; Sumner, 1982; Fungtammasan et al., 2012; Laird et al., 1987; Furey &

Haussler, 2003). With regards to the eccDNA coldspots, these regions are dispersed through-

out the chromosomes, but show an increase in or around centromeres (Figure 5.25b). In

addition, a large proportion of coldspots overlap with Giemsa-positive regions, especially

regions with the darkest Giemsa staining bands, gpos100 or gpos75. These findings under-

score the non-random nature of eccDNA hotspots and association with specific genomic

characteristics such as the location in sites of active transcription.

Further analysis of these regions revealed significant correlations between eccDNA hot-

spots and specific genomic elements. A comparison to the normal regions and their abundance

of genomic features revealed that eccDNA hotspots and coldspots displayed opposing associ-

ations with genomic feature. While hotspots were enriched with almost all genomic elements

analysed, coldspots are sparsely populated by those (Figure 5.25c). In particular, coldspots

are gene-sparse, and have low abundance of repeat elements and enhancer sequences. This

scarcity is consistent with their proximity to centromeres or their association with heterochro-

matin as those regions are defined as gene-sparse and low of other genomic features (Sumner,

1982; Grady et al., 1992; Miga, 2020).

In contrast, eccDNA hotspots demonstrate a significant enrichment of various genomic
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Fig. 5.25 | Common eccDNAs hotspots contain specific genomic elements. a, Cytoband staining patterns

at common regions. gneg, Giemsa-negative; gpos, Giemsa-positive. b, Density plot of relative distances to

chromosome ends or centromeres of common regions. A Kolmogorov-Smirnov test was used to calculate a

significant difference between the distributions identified in the hotspots (red) and coldspots (blue) compared to

the normal regions (beige). c, Median shift of the normalised counts of specific genomic features within hotspots

and coldspots compared to normal regions. Statistical significance is assessed via Wilcoxon rank-sum tests, with

P values adjusted by the Benjamini-Hochberg method.

elements. Notably, hotspots exhibit a high gene density for all three gene types, protein-coding,

miRNAs, and lncRNAs. Similarly, all individual gene elements are enriched in eccDNA

hotspots. Furthermore there is a modest enrichment of genomic repeat elements in eccDNA

hotspots compared to normal regions. Upon further examination, the sub-classification of

repeat elements reveals a strong enrichment of SINEs. Interestingly, the other three repeat

subclasses, namely LINEs, long-terminal repeats (LTRs), and simple repeats, appear to be

slightly less prevalent on eccDNA hotspots compared to normal regions (Figure 5.25d). Lastly,

eccDNA hotspots show a massive enrichment for CpG islands and enhancers.

In conclusion, these findings provide evidence that eccDNA hotspots exhibit a high density

of diverse genomic elements and are predominantly located in regions of open chromatin.

These observations align with previous studies, which identified Giemsa-negative regions

as having the highest gene, CpG and SINE density (Furey & Haussler, 2003; Gilbert et al.,

2004).

5.12.3 EccDNA hotspots are associated with increased gene expression

and chromatin accessibility

Basic annotation of eccDNA hotspots with genomic properties revealed the association

with open chromatin regions and specific genomic elements. Giemsa-negative regions are

considered to be gene-dense with an increased transcriptional activity (Furey & Haussler,
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2003; Morrison & Thakur, 2021). An eccDNA study by Dillon et al. (2015) also noted that

small eccDNAs (microDNAs) abundance might be linked to transcription and transcriptional

activity (Dillon et al., 2015). To identify if the eccDNAs hotspots are also associated with

increased gene expression, an integration with gene expression data of three PC datasets

was performed. These three datasets were chosen based on the model system (Brunton et al.

(2020), n = 48) and the large cohorts (TCGA PAAD, n = 150; ICGC PACA-AU, n = 269),

which display the extensive transcriptomic landscape of PC.

Across all three analysed datasets, a consistent pattern emerged regarding the gene expres-

sion levels in relation to eccDNA hotspots, coldspots and normal regions. Specifically, the

coldspot regions consistently exhibited significantly lower average gene expression compared

to normal and hotspots regions, supporting that eccDNAs are mainly coming from regions

with active transcription (Figure 5.26). In contrast, eccDNA hotspots exhibited significantly

increased gene expression in the TCGA and ICGC dataset. However, in the dataset by Brunton

et al. (2020), comprised of 48 PDAC PDCLs, including some also used for Circle-seq, a signi-

ficant difference in gene expression was not observed. Despite the discrepancy, the overall

trend of a near step-wise increase of gene expression from coldspots, over normal regions,

and ultimately to hotspots was consistently observed in all three datasets. These findings

underscore the strong association between the abundance of eccDNAs and transcriptionally

active genomic regions.

Open chromatin is associated with increased chromatin accessibility for transcription

factors, facilitating the activation and initiation of transcription factors (Klemm, Shipony &

Greenleaf, 2019). To investigate the epigenetic characteristics and chromatin accessibility of

the identified common regions, additional analysis was performed using ATAC-seq data of 9

PDAC PDCLs and methylation profiles from 24 PDAC patient-derived tumour xenografts.

Consistent with the gene expression analysis, a similar step-wise increase is observed in

the chromatin accessibility and methylation score across the coldspots, normal regions, and

hotspots (Figure 5.26). Coldspots exhibited the lowest values, while hotspots displayed the

highest. The ATAC-seq analysis provided the further support for the association between

eccDNA hotspots and increased chromatin accessibility, reinforcing our previous findings.

This suggests that regions with higher eccDNA abundance are defined by a more accessible

chromatin, potentially facilitating the transcriptional activity of genes.

In contrast, the analysis of the methylation profiles revealed that hotspots also display

increased methylation levels at CpG islands, genes, and enhancer sites. Notably, hypermethyl-

ation of CpG islands is often associated with gene silencing (Bird, 2002). Therefore, an inverse

association between methylation and gene expression would be expected. Unfortunately, the

RNA-seq data for the 24 patient-derived xenografts analysed by Lomberk et al. (2018) was

not openly available. Therefore, it is unclear whether the increased methylation levels did

indeed affect gene expression or if the data would support earlier findings showing increased
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Fig. 5.26 | Increased gene expression and chromatin accessibility in common eccDNA hotspots. a, The

common eccDNA coldspots, normal regions, and hotspots were integrated with gene expression data from the

TCGA PAAD (n = 150), ICGC PACA-AU (n = 269), and the Brunton et al. (2020) PDAC PDCL (n = 48)

data. b, Epigenomic characteristics at the different regions was assessed using the ATAC-seq dataset of PDAC

PDCLs (n = 9, two biological replicates each, Brunton et al. (2020)) and PDAC methylation profiling data (n =

27, Lomberk et al. (2018)). a & b, Statistical analysis was performed using a Wilcoxon-rank sum test.

transcription at eccDNA hotspots. These findings raise intriguing questions about the func-

tional implications of increased methylation at eccDNA hotspots. Further investigation is

needed to support or refuse these observations.

Taking together, the integrative analysis revealed distinct characteristics associated with

eccDNA coldspots and hotspots. Coldspots were found to be associated with low transcrip-

tional activity and a condensed chromatin state. In contrast, hotspots exhibited high gene

expression levels and an open chromatin structure. These findings align with previous research

by Møller et al. (2018a), which identified a correlation between increased transcription of

specific genes and the abundant occurrence of eccDNAs. Collectively, these findings en-

hance our understanding about the occurrence of eccDNA hotspots, highlighting the frequent

occurrence of eccDNAs in regions of active transcription and open chromatin.

5.12.4 Consensus eccDNA-formation hotspots

The comprehensive eccDNA hotspot and eccDNA origin analysis revealed that eccDNAs

predominantly arise in regions characterised by active transcription and open chromatin

architecture. In the hotspot analysis, recurrent eccDNA hotspots, coldspots, and normal

regions were identified. However, only six of the more than 60 recurrent eccDNA hotspots

are identified hotspots in all three distinct Circle-seq datasets (consensus eccDNA hotspots,
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Figure 5.27). Those six are located on chromosome 3, 7, 8, 12, 13, and 18 (Table 5.6). Many

genes were identified to be located within these hotspots, with some of them having cancer

driver properties. However, it is unclear why those hotspots were universally identified as no

significant difference has been found in the number of genomic features compared to recurrent

hotspots (Table B.2).

Tab. 5.6 | Genes identified within consensus eccDNA hotspots. Cancer driver genes from the allOnco list

(www.bushmanlab.org) are highlighted in bold.

Hotspot Genes

chr3:194289588-195291080 ACAP2-IT1, ATP13A3, CPN2, FAM43A, GP5, LINC00884,

LINC00887, LINC01968, LINC01972, LRRC15, LSG1, MIR3137,

RN7SL36P, RNU6-1101P, RNU6-25P, RPL23AP93, TMEM44,

TMEM44-AS1, XXYLT1, XXYLT1-AS1, XXYLT1-AS2

chr7:47102269-48104444 C7orf57, C7orf65, C7orf69, HUS1, LINC00525, LINC01447,

PKD1L1, SUN3, TNS3

chr8:127121426-128122381 CASC11, CASC8, CCAT2, MIR1204, MIR1205, MIR1206,

MIR1207,MYC, POU5F1B, RNU4-25P, RNVU1-32, TMEM75

chr12:2004141-3006210 CACNA1C-AS1, CACNA1C-AS2, CACNA1C-AS3, CACNA1C-

AS4, CACNA1C-IT1, CACNA1C-IT2, CACNA1C-IT3, CBX3P4,

FKBP4, FOXM1, IQSEC3P1, ITFG2, ITFG2-AS1, ITFG2-AS1,

LINC02371, NRIP2, RHNO1, RNU6-1315P, RPL23AP14, TEX52,

TULP3

chr13:110351545-111354739 ANKRD10, ANKRD10-IT1, ARHGEF7, ARHGEF7-AS1, AR-

HGEF7-AS2, ARHGEF7-IT1, CARS2, COL4A2-AS1, COL4A2-

AS2, ING1, LINC00368, LINC00431, LINC00567, NAXD,

PARP1P1, PRECSIT, RAB20, RPL21P107, TEX29

chr18:8037329-9041994 AKR1B1P6, COP1P1, GACAT2, MTCL1, RAB12, RN7SL50P,

RPS4XP19, THEMIS3P, TOMM20P3

5.12.5 MYC is located inside a consensus eccDNA hotspot

An in-depth investigation of the hotspots and their gene contents revealed thatMYC is located

within one of these consensus eccDNA hotspots (Figure 5.27). None of the remaining five

hotspots contained any other known PDAC driver genes.

MYC is an important driver of PDAC progression, regulating many aspects of PDAC

biology (Sodir et al., 2020; Maddipati et al., 2022). Our analysis added that MYC is also

recurrently amplified on ecDNAs in PDAC PDOs and in their respective primary tumours. A

focused examination of chromosome 8 revealed that theMYC locus and its adjacent region

collectively harboured 566 eccDNAs, vastly exceeding eccDNA counts in other regions of

the chromosome (Figure 5.28a). Interestingly, the upstream region to the MYC eccDNA

hotspot contained the second most eccDNAs (n = 267), indicating a localised increase in

eccDNA formation around theMYC locus (Figure 5.28b). In contrast to these two regions,

other regions on chromosome 8 mostly display only modest numbers of eccDNAs.
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Fig. 5.27 | Consensus eccDNA hotspots highlight the MYC locus. Genomic view of EccDNA hotspots,

coldspots, and normal regions universally identified across all three Circle-seq. Regions that showed dissimilar

region class in the three Circle-seq datasets are absent. TheMYC locus is focused revealing its location inside an

eccDNA hotspots.

Fig. 5.28 | EccDNA abundance on Chromosome 8. a, Z-score normalised eccDNA counts of all three Circle-

seq datasets on chromosome 8. Low z-score values define low eccDNA levels and high values define high

eccDNA levels in a distinct dataset. Z-scores were calculated for each dataset individually and simplified for

display. The original graphs containing the accurate legends are visible in Figure B.3. b, Total number of

eccDNAs identified in all three Circle-seq datasets. a & b, The number of eccDNAs are counted in a 1 Mbp

bin similar to the eccDNA hotspot analysis. c, EccDNA locations in and around MYC locus. Regional view of

eccDNA hotspots containing MYC and all the eccDNAs identified in the three distinct Circle-seq datasets. MYC

location is highlighted with a dashed line.

Further scrutiny of the MYC eccDNA hotspot revealed that large proportion of eccDNAs

were identified in the seven PDOs (Figure 5.28c). Notably, the most eccDNAs are also

identified in the seven PDOs dataset, which could influence the number of eccDNAs in this

locus (Figure B.4). While MYC is located inside the named eccDNA hotspots, only a few

eccDNAs directly overlap with the completeMYC gene. One prominentMYC-comprising

eccDNA is identified in VR01-O, which is described earlier. Other eccDNAs are located
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around the MYC gene or comprise only MYC gene elements.

To summarise, MYC is not only recurrently identified on ecDNAs in various cancer

types and in our PDAC PDOs, it also is located inside an eccDNA hotspot which comprises

plenty of eccDNAs with various sizes (Kim et al., 2020; Hung et al., 2021). This suggests

that the formation of eccDNAs and the uprising of ecDNAs might be associated. While the

characteristics of eccDNAs are largely different, it is debated whether small eccDNAs can give

rise to large ecDNAs by steadily incorporating chromosomal fragments or other eccDNAs

(Schimke et al., 1986; Carroll et al., 1988). While ecDNAs are rarely identified in our PDAC

samples, the eccDNA abundance around theMYC locus could be an indicator to the role of

MYC and its surrounding genes in eccDNA formation in PDAC by impediment of replication

forks (Watanabe et al., 2017). In a study by Koche et al. (2020), neuroblastoma tumours were

investigated andMYCN ecDNAs were recurrently identified. Additional Circle-seq studies

verified the MYCN ecDNAs, but also uncovered the eccDNA landscape of the neuroblastoma

tumours. While the eccDNAs spread throughout the genome, a major number of those are

located around MYCN, which is recurrently amplified in neuroblastoma (Koche et al., 2020;

Huang & Weiss, 2013). This suggests that eccDNA formation hotspots might be cancer-type

specific and might be located around common sites of ecDNA origin.

5.13 Discussion

For decades, large amplified eccDNAs (ecDNAs) have been studied and are well-understood

in their role of influencing the cancer biology. Most roles are based on the genomic content

of the eccDNAs, but smaller eccDNAs may not not contain any gene elements, and it is

unclear how they can influence the cancer biology (Carroll et al., 1988; Cowell, 1982; Wu

et al., 2019; Kim et al., 2020; Ling et al., 2021; Wu et al., 2022a; Møller et al., 2018a). Also

significant differences are reported between eccDNA and ecDNA landscapes. The former

can be present in healthy and cancerous cells, while the latter is mostly found in cancer cells

(Kim et al., 2020; Møller et al., 2018a; Koche et al., 2020; Paulsen et al., 2018). In our

investigation utilising several Circle-seq datasets, it emerged that eccDNAs are abundantly

present in PDAC model systems and originate non-randomly, contradicting the results of

random biogenesis via cell apoptosis (Wang et al., 2021). The initial Circle-seq analysis,

comprising eight PDAC PDCLs, demonstrated the detectability of eccDNAs in every PDAC

PDCL in differing degrees. TKCC-15 exhibited the most, while TKCC-09 exhibited the

least eccDNAs within the first dataset. This finding was further supported by the second

Circle-seq investigation of seven PDAC PDCLs, which included two consecutive passages

each. The results indicate that the amount of eccDNAs in a sample may be influenced by the

genomic background, as eccDNAs are produced by various forms of DNA damage. It is likely

that unstable genomes produce more eccDNAs, highlighting the potential to utilise eccDNA

abundance as a biomarker (Cohen, Regev & Lavi, 1997; Paulsen et al., 2021). However, the

study has limitations as genomic data integration was not performed, which leaves room for
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further research. Additionally, in some instances, there was a significant variation in eccDNA

levels between passages in the PDAC PDCLs. Therefore, it may be essential to increase the

sample size and conduct future eccDNA characterisation with multiple biological replicates

to consider the variability.

In accordance with a study in neuroblastoma, Circle-seq analysis identified thousands

of eccDNAs, which are mostly small, and do not typically contain complete genes (Koche

et al., 2020). Additionally, their size distribution strongly overlaps with a study on eccDNAs

as an apoptotic byproduct (Wang et al., 2021). The study by Wang et al. (2021) revealed

that eccDNAs originate randomly from all parts of the genome. However, our results show

that the eccDNAs are not completely random as specific genomic elements are prominently

enriched on eccDNAs. Although apoptosis could be a contributing factor to the formation of

certain eccDNAs, complete random biogenesis is not observed in the PDAC PDCLs.

Notably, some of the genes identified on eccDNAs possess cancer-driving properties.

Therefore, elevated transcription of those, resulting from eccDNA-based amplification, could

promote tumour progression. Functional small regulatory RNAs that can modulate gene

expression were found to be expressed by incomplete genes on eccDNA (Paulsen et al., 2019).

As such, eccDNAs lacking complete genes also hold potential to impact PDAC biology.

However, a definitive conclusion about their influence cannot be drawn from the present data.

Carrying complete genes, particularly cancer-specific oncogenes, is a defining character-

istic of ecDNAs (Luebeck et al., 2023; Kim et al., 2020). These ecDNAs are typically over

100 kbp in length, significantly amplified, and present in a large proportion of cancerous cells

(Turner et al., 2017; Yi et al., 2022). However, no ecDNAs with ecDNA-like properties were

identified in the PDCLs of PDAC. Analysis of an ecDNA-carrying PDO (VR01-O) demon-

strated that Circle-seq has the ability to identify ecDNAs. This suggests that ecDNAs either

do not exist in the PDAC PDCLs, or they are too complex to be detected using the current

methods. EcDNAs have the ability to create complex structures that integrate fragments from

distal regions. However, the techniques applied can only detect single-fragment eccDNAs

or fully covered multi-fragment eccDNAs (Koche et al., 2020; Shoshani et al., 2021). WGS

been demonstrated to be an optimal data type for the analysis of ecDNA. The PDAC PDCLs

utilised in this investigation were previously subjected to WGS and are accessible for analysis

if desired (Dreyer et al., 2021). Nonetheless, in this dissertation, the data was not obtained nor

examined, thereby presenting an opportunity for the further identification of ecDNA-carrying

models.

As multi-fragment ecDNAs can have complex structures that do not always consist of

a single DNA fragment, a novel approach was employed to detect them from short-read

sequencing data (Wang et al., 2021; Møller et al., 2018a; Koche et al., 2020). According

to a recent study using long-read sequencing, the de novo assembly of eccDNA has shown

that about 10% of eccDNA come from multiple fragments, which is also supported by our
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findings (Wang et al., 2021). Furthermore, our results show that multi-fragment eccDNA

have larger sizes than single-fragment eccDNA, emphasising the need to identify complex

eccDNA. This methodology can be employed to achieve a more comprehensive understanding

of the eccDNA landscape, thereby potentially revealing additional gene-containing eccDNA.

Nevertheless, de novo assembly is restricted by the computational resources required and its

reliance on the uninterrupted coverage of an eccDNA. During the Circle-seq procedure, larger

eccDNAs exhibited lower levels of amplification in comparison to their smaller counterparts.

This phenomenon can be attributed to the bias of the phi29 amplification towards small and

more abundant eccDNAs (Norman et al., 2014). As a result, it remains unclear whether high

coverage sequencing can guarantee accurate identification of all eccDNAs. Alternative tools,

such as AmpliconArchitect (Deshpande et al., 2019) and the recently developed Circlehunter

(Yang et al., 2023), may be a superior choice, in the long term, as they can identify regions

with enriched sequencing reads and connect eccDNA regions by utilising split and discordant

reads. Nevertheless, these tools are not optimised for smaller eccDNAs and Circle-seq data.

To address these issues, the use of long-read sequencing data is preferred for eccDNA research.

This approach allows for the detection of eccDNA origins, complex structures, complete

sequences, and eccDNA breakpoints (Li et al., 2023; Wanchai et al., 2022; Koche et al., 2020;

Wang et al., 2021).

This investigation of different PDAC model systems demonstrated that practically every

part of the genome can add to the formation of eccDNAs. These eccDNAs do not arise

randomly but mainly stem from eccDNA hotspots, which are typically found surrounding

genes and close to chromosome ends. The hotspots contain a high abundance of genes,

SINEs, and CpG islands, and are enriched with enhancers (Figure 5.29). Furthermore, they

demonstrate an open chromatin and are active transcription sites. Much of this has already

been identified in other cells, both normal and cancerous (Møller et al., 2015; Møller et al.,

2018a; Koche et al., 2020; Dillon et al., 2015). The emerging pattern of eccDNA biogenesis

suggests an association with increased transcription, based on multiple analyses. This finding

supports the hypothesis that active transcription may lead to increased DNA damage caused

by elevated recombination rates or R-loop formation. R-loops are hybrids made of DNA and

RNA and expose single-stranded DNA. However, R-loop formation is particularly prevalent

at 5’ and 3’ untranslated regions (UTR), which are similarly enriched on extrachromosomal

circular DNA (eccDNA) as other genic elements (Thomas & Rothstein, 1989; Skourti-Stathaki

& Proudfoot, 2014; Dillon et al., 2015). Transcription-based R-loop formation may lead

to the biogenesis of eccDNA, although it is unlikely to be the sole contributor. Shibata

et al. (2012) observed a distinct enrichment of the 5’UTR of microDNAs, which could be

generated by DNA-RNA hybrids (Shibata et al., 2012). Therefore, microDNAs smaller than

500 bp may differ in their genomic origins from larger eccDNAs and should be investigated

further. In yeast, it has been discovered that an increase in gene transcription leads to a rise in

double-strand break formation and a subsequent increase in eccDNA accumulation around

the gene’s location (Hull et al., 2019). The analysis of eccDNA contents has revealed that
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Fig. 5.29 | Identified genomic characteristics associated with eccDNAs and eccDNA formation hotspots.

Schematic representation of genomic elements and characteristics identified within eccDNA hotspots or overlap-

ping with eccDNAs.

transcriptionally active genes, including cancer-driver genes, and open chromatin regions

are enriched on eccDNAs. This implies that transcription is a major factor driving eccDNA

formation in the PDAC PDCLs. However, the mechanism underlying formation of eccDNAs

remains unclear, thus necessitating further investigation.

The hotspot analysis showed that theMYC locus is identified in an eccDNA hotspot across

all three Circle-seq datasets. The MYC gene has recurrently been discovered on ecDNAs,

occurring in two of twelve ecDNA-positive PDOs, and is implicated in shaping tumour

biology. MYC is a crucial driver of PDAC associated with the Squamous subtype and the

formation of metastases. Its significance in the progression of PDAC cannot be overstated

(Sodir et al., 2020; Bailey et al., 2016; Maddipati et al., 2022). Building on previous research

in neuroblastoma, it appears that theMYCN locus featured significant eccDNA coverage in

neuroblastoma, leading to the hypothesis that there may be cancer-type-specific eccDNA

formation hotspots associated with the cancer gene expression (Koche et al., 2020). This may

reveal the reason for the formation of ecDNAs containing drug resistance genes inside cells

when exposed to drugs: increased transcription of drug resistance genes induces ecDNA and

eccDNA formation (Kaufman, Brown & Schimke, 1979; Singer et al., 2000).

EcDNAs replicate and are inherited by the daughter cells during the cell cycle (Yi et al.,

2022). It remains unclear whether the replication and separation characteristics are shared

among all eccDNAs, particularly smaller ones. Assumptions about the role of eccDNAs,

including their ability to transcribe miRNAs or express gene fragments, are based on the notion

that eccDNAs are stable, transcribable over an extended period, and present in numerous

tumour cells (Paulsen et al., 2019). In our second Circle-seq study examining two successive

passages of seven PDAC PDCLs, it was determined that nearly all eccDNAs were not replic-

ated and transmitted to their daughter cells. Although it was anticipated that many cells in both

passages were genetically related due to their seeding at low confluency, resulting in strong

genetic ties, the ecDNA profiles differed significantly between the first and second passage

of each cell line. A study conducted by Møller et al. (2018a) found low eccDNA overlap

between leukocyte populations from the same individual. This suggested that the constant

turnover of leukocytes leads to the elimination of existing eccDNAs. Our analysis now adds
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that the eccDNA landscape is influenced by constant turnover due to the low general stability

of eccDNAs or the absence of eccDNA replication in combination with the formation of

novel eccDNAs. After analysing the VR01-O PDOs in-depth, it is apparent that ecDNAs are

retained and their retention can be confirmed through Circle-seq. Hence, the chosen method

does not seem to significantly affect the eccDNA landscape. These findings provide fresh

insights into the retention rate of eccDNAs, but do not explore the mechanisms involved in

their removal. Several mechanisms may be involved, including the reintegration of eccDNAs

into the genome, excision and degradation within the cytoplasm, complete excision from the

cell, or degradation in micronuclei (Nathanson et al., 2014; Shimizu, Shimura & Tanaka,

2000; Kumar et al., 2017; Paulsen et al., 2018). It is likely that multiple processes are at play,

but further research is necessary.

The clinical implications of eccDNAs remain largely unknownwhen disregarding ecDNAs.

The immunostimulatory effect of eccDNAs is observed upon their recognition by the cGAS-

STING pathway, which activates innate immune pathways (Wang et al., 2021). However,

our findings do not reveal the location of the eccDNAs required for suggesting the activation

of cGAS. Nonetheless, some PDCLs showcase an abundance of eccDNAs, which may be

released into the cytoplasm to stimulate the activation of the cGAS-STING pathway, leading

to an increase in immune activity. This finding presents a potential avenue for immunotherapy

(Wang et al., 2021). Pancreatic cancer (PC) is known to be an immune cold tumour and hence

has shown poor response to immune checkpoint inhibitors. A high tumour mutational burden

is indicative of an improved response to immunotherapy (Cattolico, Bailey & Barry, 2022;

Samstein et al., 2019). EccDNA formation due to DNA damage may render tumours that

are rich in eccDNA more sensitive to immunotherapy (Paulsen et al., 2021). However, my

discoveries do not uncover if eccDNAs are actually released or are degraded in the nucleus.

Therefore, it is uncertain whether eccDNA abundance contributes to innate immune activation

or whether other factors are involved. Nevertheless, additional characterisation of the eccDNA

landscape, combined with clinical data integration, could yield new insights into its usability

for personalised medicine.

To summarise, eccDNAs are typically small entities in PDAC, containing mainly specific

gene elements rather than complete genes. The characteristics of eccDNAs in PDAC signific-

antly overlap with other cancer types, including their formation hotspots and their content.

Nonetheless, this research proposes a straightforward association between active transcription

and open chromatin with eccDNA formation. As the low retention rate of eccDNAs becomes

evident, it is suggested that eccDNAs are primarily byproducts of various biological processes

and do not directly affect cancer biology. However, many avenues of eccDNA research are

yet to be investigated.

In conclusion, it is evident that this study on eccDNAs in PDAC merely addresses the

surface of the potential analyses to identify their characteristic features and roles. Nonetheless,

my analysis revealed a number of distinctive features of eccDNAs that raise new questions,

142



ECCDNAS IN PDAC 5.13. Discussion

which can be tackled by integrating existing datasets or generating novel data. Additionally,

laboratory research can provide further understanding of the function of eccDNA abundance

in activating the immune system or transcribing genetic elements. Within the intricate field of

PDAC, eccDNAs may prove to be a crucial piece of the puzzle towards better personalised

therapies.
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Chapter 6
Conclusion

If you thought that science was certain -

well, that is just an error on your part.

Richard P. Feynman

Three central aspects of eccDNA research were investigated in this thesis. The first results

chapter covered the processing of high-throughput sequencing data into eccDNA information.

The second chapter investigated large and amplified eccDNA in PDAC, its characteristics,

associations, and its implications for cell adaptation. Finally, the third chapter delved into the

complex world of smaller and highly abundant eccDNAs in PDAC model systems.

nf-core/circdna

nf-core/circdna has laid the foundation for the ecDNA and eccDNA chapters by providing

a reproducible, scalable and adaptable workflow. Based on the structure of the pipeline,

each dataset in an analysis was treated equally. nf-core/circdna is adaptable when analysing

different datasets, performing ecDNA detection using WGS data or eccDNA detection when

dealing with Circle-seq data. It also handles quality control for the initial quality check,

providing the user with all the necessary information to make an assessment of the eccDNA

calling and raw sequencing quality. Using a pipeline to process sequencing data increases the

integrity and reproducibility of research, as all parameters used and modifications made can be

easily checked. In comparison, running all the included software individually is more prone

to human error as each dataset has to be handled in the same way. Therefore, nf-core/circdna

can provide peace of mind to the user.

A number of verification steps have been undertaken in the thesis and incorporated into

the pipeline to identify the correct installation, use and output of the pipeline. Each branch

can be activated by adjusting the workflow parameters, and the inclusion of other parameters

makes the pipeline highly adaptable. The pipeline is extensively documented on the nf-core

website (https://nf-co.re/circdna) to enable users to understand and run the pipeline with their
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own datasets.

Overall, nf-core/circdna follows best practice recommendations in workflow development

and provides a state-of-the-art pipeline for processing sequencing data to identify eccDNAs.

This pipeline will help to broaden the availability of eccDNA research to the scientific

community and aims to increase the knowledge of eccDNAs in cancer. However, as current

software is updated or new software and algorithms are developed, and with the rise of long-

read sequencing technologies in eccDNA research, this pipeline will require constant updates.

Therefore, the journey of nf-core/circdna continues.

EcDNAs in PDAC

The central questions of the ecDNA study in PDAC were to determine prevalence, potential

associations with genomic or transcriptomic characteristics, and the potential role of ecDNAs.

As little was known about ecDNAs in PDAC, a baseline characterisation was undertaken to

investigate multiple avenues. My analysis using publicly available datasets, datasets generated

by collaborators at the University of Verona, and self-generated datasets revealed that ecDNAs

are abundant in PDAC and may play an important role in PDAC biology, progression, or

adaptation.

The results, which highlight genomic instability and the Basal-like subtype in association

with ecDNA occurrence, may provide potential avenues for therapeutic intervention. The

identification of ecDNAs as biomarkers may indicate potential drug tolerance mechanisms

or a potential worse patient outcome. The WR study highlighted the dynamic nature of

ecDNA abundance, which can be influenced by external factors by increasing or decreasing

selection pressure on cells. While these results were obtained in model systems in a specific

environment, analogue environments can exist in patients. Therefore, our results suggest the

potential use of ecDNAs as a cell adaptation mechanism to changing environments.

Overall, the comprehensive ecDNA study improves our understanding of these features in

PDAC. As a tumour type, PDAC is under-represented in ecDNA research and it has become

clear that ecDNAs may be a common instance in PDAC. However, further research with

larger patient cohorts is needed to evaluate the potential role of ecDNAs as biomarkers, as

actionable targets or to assess therapeutic resistance.

EccDNAs in PDAC

Small abundant eccDNAs, unlike large amplified ecDNAs, are still a mystery with many po-

tential roles. My eccDNA study using PDAC model systems has improved our understanding

of two specific eccDNA characteristics - their origin and maintenance - which were important

aims of my PhD. The eccDNAs identified do not appear to arise randomly, but from regions

of high transcription and open chromatin. They are also unlikely to be maintained and are

thought to be byproducts of transcription or DNA damage.
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However, much remains unknown about eccDNAs, such as the actual process of their

biogenesis, which DNA repair proteins are involved, or how they are lost or deleted. In

my analysis, each of the PDAC models was characterised for the presence of eccDNAs and

their potential abundance. In future studies, these results can be used to further refine our

understanding of eccDNA abundance in relation to biological processes such as immune

activation. If eccDNA abundance can be linked to specific processes, a potential use of

eccDNAs as biomarkers is conceivable. However, it is clear that our knowledge of eccDNA is

still sparse and the study of larger cohorts and the use of novel technologies such as long-read

sequencing are advisable for further studies.

Summary

In conclusion, this work lays the foundation for further ecDNA and eccDNA research in

PDAC by characterising model systems and patient tumours. This scientific groundwork is

necessary for a comprehensive understanding of circular DNA landscapes in order to identify

novel potential hypotheses for roles and their use in personalised medicine. In conjunction

with nf-core/circdna, the work of this thesis significantly advances the field of eccDNA by

advancing the understanding of these features and enabling a wider proportion of the scientific

community to study eccDNAs with their own datasets.
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Appendix A
Investigating ecDNAs in PDAC

Tab. A.1 | CCLE PDAC cell lines with available WGS data. The cell lines are divided into their site of origin.

SRR Number Cell Line ID Cellosaurus ID

Primary tumour

SRR8639156 HPAC CVCL_3517

SRR8652122 MIA PaCa-2 CVCL_0428

SRR8670730 Panc 10.05 CVCL_1639

SRR8670731 Panc 03.27 CVCL_1635

SRR8670712 SW 1990 CVCL_1723

SRR8670733 PANC-1 CVCL_0480

SRR8788980 DAN-G CVCL_0243

Metastasis

SRR8639189 Capan-1 CVCL_0237

SRR8670709 SUIT-2 CVCL_3172

SRR8670732 PA-TU-8988T CVCL_1847
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Appendix B
Investigating the eccDNA landscape in

PDAC

Fig. B.1 | Size selection is associated with huge DNA loss. Size selection test was performed using circular DNA

enriched TKCC-2.1 DNA after it was sheared with the M220 sonicator (Covaris) and the microTUBE-15 AFA

Beads Screw-Cap (Covaris) for 42 s to achieve an average fragment size of around 400 bp (Before Size Selection).

Two size selection procedures were tested to achieve an approximate insert size of around 350-400 bp or 400-500

bp using AMPure XP beads and following the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®

recommendations. Size selected DNA was further concentrated for 15 minutes at medium temperature using

the Savant™ DNA SpeedVac® DNA120. After all liquid evaporated, DNA was re-eluted in 2 µL DNase-free

H2O. 1 µL of sample was loaded onto the DNA 1000 chip (Agilent Technologies) and analysed using the 2100

Bioanalyzer.

Validation of Circle-Seq Results
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Fig. B.2 | Validation of library preparation success of 10 Circle-seq samples. Libraries were prepared from

circular DNA-enriched DNA of 10 PDCLs and validated with the Bioanalyzer (Agilent Technologies).

Tab. B.1 | EccDNA candidates, their chromosomal origin, and their content used for validation.

Cell Line ID Region Genes

Single-Fragment EccDNA identified by Circle-Map Realign (C)

PaCaDD137 C1 chr16:2090088-2090462 MIR1225

TKCC-2.1 C1 chr7:27161438-27170652 MIR196B

TKCC-10 C1 chr9:87720511-87733809 CTSL

TKCC-15 C1 chr19:13832602-13836825 MIR23A, MIR24-2, MIR27A

TKCC-15 C2 chr7:97730297-97740998 TAC1

TKCC-18 C1 chr5:148298021-148318280 SPINK7

TKCC-22 C1 chr6:52778540-52811441 GSTA1

TKCC-22 C2 chr6:44240699-44255619 MIR4647, HSP90AB1

TKCC-26 C1 chr6:90308442-90317382 MIR4464

Continued on next page
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Cell Line ID Region Genes

Multi-Fragment EccDNA identified by Unicycler (U)

PaCaDD137 U1 chr5:169556621-169557065,

chr7:139719221-139721147,

chr8:119130626-119142276

TKCC-2.1 U1 chr12:16282570-16292115,

chr14:30369567-30374559,

chr17:22126759-22134110,

chr5:153417975-153423954

TKCC-2.1 U2 chr10:94869957-94870934,

chr14:59803683-59803815,

chr16:60316909-60317024, chr2:48544104-

48544607

TKCC-09 U1 chr12:19708289-19709090,

chr12:19709154-19727404,

chr12:44398192-44403419

RNU1-146P

TKCC-10 U1 chr14:51560143-51560448,

chr14:60296852-60298009,

chr3:107668746-107686036

TKCC-18 U1 chr3:34301581-34301976, chr3:42360873-

42361024, chr3:67239278-67262414

TKCC-18 U2 chr13:81493392-81503331,

chr13:81503405-81507562,

chr13:85523839-85526761

TKCC-22 U1 chr10:106313147-106313257,

chr17:22078210-22078662,

chr3:162988384-162988652,

chr5:29160358-29178465
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Fig. B.3 | EccDNA abundance on chromosome 8. Z-score normalised eccDNA abundance on chromosome 8

of all three Circle-seq data sets. Each data set contains its own legend below its respective plot.

Fig. B.4 | EccDNA abundance and sizes in each sample of the three Circle-seq data sets.
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Tab. B.2 |Wilcoxon-rank sum test results of number of genomic elements identified in the common hotspots

compared to universal eccDNA hotspots. A common eccDNA hotspot is identified in two Circle-seq data

sets, whereas a universal hotspot is identified in all three. P values were adjusted using the Benjamini-Hochberg

method.

Genomic Feature Statistic P value P adjusted

Intergenic 250.5 0.039 0.748

hAT 243.5 0.056 0.748

TcMar-Mariner 94.5 0.0874 0.748

RTE-X 97.5 0.102 0.748

enhancers fantom 97 0.102 0.748

protein coding 229.5 0.12 0.754285714

cpg islands 224 0.156 0.754769231

cpg shores 223 0.164 0.754769231

lncrna gencode 110.5 0.19 0.754769231

cpg shelves 219 0.195 0.754769231

cpg inter 214 0.239 0.754769231

hAT-Blackjack 118 0.258 0.754769231

exons 121 0.292 0.754769231

intronexonboundaries 121 0.292 0.754769231

TcMar-Tigger 122 0.303 0.754769231

introns 122 0.303 0.754769231

exonintronboundaries 124 0.327 0.754769231

1to5kb 130 0.403 0.754769231

3UTRs 200 0.403 0.754769231

firstexons 130 0.403 0.754769231

promoters 130 0.403 0.754769231

Simple repeat 199 0.417 0.754769231

Gypsy 131.5 0.42 0.754769231

repeats 197.5 0.438 0.754769231

SINE 197 0.446 0.754769231

MIR 195.5 0.467 0.761037037

LTR 137.5 0.513 0.80262069

L2 191.5 0.529 0.80262069

5UTRs 188 0.586 0.8591

hAT-Tip100 186.5 0.61 0.8591

ERVL 185.5 0.628 0.8591

ERV1 146 0.654 0.8591

ERVL-MaLR 148 0.689 0.8591

CR1 151.5 0.753 0.8591

Low complexity 178.5 0.753 0.8591

DNA 152 0.762 0.8591

L1 152.5 0.771 0.8591

Genes 177 0.78 0.8591

hAT-Charlie 153 0.781 0.8591

cds 173 0.856 0.918634146

Unknown 169.5 0.92 0.963809524

LINE 168.5 0.942 0.963906977

Alu 166 0.99 0.99
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