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Abstract 

The reuse of legacy iron and steel wastes presents opportunities for resource recovery and 
atmospheric carbon dioxide (CO2) storage. Limited documentation of these 
anthropogenically derived rocks and the natural environmental processes altering slag 
deposits resulting in ecotoxic metal leaching pose challenges to repurposing. Increasing 
interest in integrating Circular Economic (CE) approaches into waste management requires 
a comprehensive understanding of the materials and developing innovative methods to 
resolve characterisation complexities. In this study, the opportunities for legacy slag are 
explored using the two Carnforth Iron Work deposits in Warton, South Lancashire, 
England that are located on the Morecambe Bay coast and ~ 435 meters (m) inland. The 
mineralogy and trace metal content are quantified and identified using a data-driven 
unsupervised learning approach from the inland deposit (A), and the lithification 
mechanisms and mineralogic features are identified from the coastal deposit (B). 

From the inland setting deposit A, 23 sections spanning five stratigraphic horizons were 
analysed for microstructural compositional variation using scanning electron microscopy-
energy dispersive X-ray spectrometry spectrometry (SEM-EDS). These large and highly-
dimensional datasets were quantified using a semi-automated approach leveraging 
nonnegative matrix factorisation (NMF) and Hierarchical Density-Based Spatial Clustering 
of Applications with Noise (HDBSCAN), the regions were segmented into mineral phases 
and the trace metal constitutes were quantified. The variable mineralogy and metal content 
between horizons reflects contemporaneous iron and steel production and possibly early 
iron pig production. While this approach is not fully automated, the automated dimensional 
reduction and clustering is a turnkey operation for processing numerous large datasets. 
Applying the approach on specific phases (iterative phase classification (IPC)) drove the 
analysis that confirmed and revealed both the microstructures and trace Ba, Fe, and Mn 
from the model outliers and more statistically representative phases.  

At the coastal deposit B, X-Ray Diffraction (XRD) and EDS analysis of the slag and 
thermogravimetric analysis (TGA) of the cream-coloured material covering the slag shows 
lithification on the top surface and seaward side above the mean high-water mark 
(MHWM) is the result of carbonate mineralisation. This is driven by water and leached 
calcium from weathering slag minerals (i.e., gehlenite, åkermanite, pseudowollastonite) 
reacting with ingassed and hydroxylated atmospheric CO2, forming calcite with slightly to 
strongly depleted δ13C values (-6.4 ‰ to -22.7 ‰) following partial dissolved inorganic 
carbonate (DIC) equilibrium. Calcium-silicate-hydrate (CSH), a component in cement, 
precipitated and was responsible for lithifying the deposit where more frequent and 
abundant seawater washing prevents subsequent slag mineral dissolution and carbonate 
precipitation.  

The trace Ba, Fe, and Mn quantified at deposit A and the carbonate and CSH precipitation 
identified at deposit B are evidence that legacy iron and steel slag deposits can be sources 
of critical raw materials (CRM) and are prone to lithification in coastal settings. The 
iterative approach utilising machine learning provides a tool for locating hidden and non-
majority component regions, enhancing microstructural analysis. This lithification can 
draw down atmospheric CO2 and the CSH precipitation could help to slow the release of 
toxic metals, reducing the environmental contamination risk of repurposing legacy slag for 



iii 

‘hard’ protection and coastal defence. Considering how the environment affects industrial 
waste deposit evolution can elucidate the most appropriate and safest slag repurposing 
option between CRM recovery, atmospheric CO2 storage, and coastal defence.   
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1. Chapter 1: Introduction 
 
The by-products of iron and steel making present a range of opportunities that can help 
facilitate the green energy transition to meet net-zero goals. Slags are formed from 
reactions between gangue minerals, fluxes, and other possible reactants smelting in the 
furnace feed (Piatak & Ettler, 2021), representing the undesirable waste product from ore 
processing (Peng et al., 2017). Historically, slags have been reused in the construction 
industry (i.e., aggregates) but increasing interest to utilise these by-products may help in 
achieving energy transition targets (Piatak & Ettler, 2021; Riley et al., 2020) and 
contributing to Circular Economy (CE). This is demonstrated by the shift of slag-related 
research focusing on metal recovery (i.e., Gomes et al., 2016; Habib et al., 2020; Mayes et 
al., 2022; Naden, 2013; Piatak et al., 2004; Riley et al., 2020) and carbon capture and 
storage (CCS) (Bobicki et al., 2012; Doucet, 2010; Gomes et al., 2016; Huijgen et al., 
2005; MacDonald, Khudhur, et al., 2023; Mayes et al., 2022; Naden, 2013; Piatak et al., 
2004; Renforth, 2019; Riley et al., 2020; Sanna et al., 2012) from alkaline waste. Besides 
ensuring CE aspects of development, processing, and recycling yield economic benefits, 
these sustainable approaches must become commonplace in future industrial processes and 
waste management (Martins & Castro, 2020). Minimising and closing energy and material 
loops through long-lasting design, reuse, and recycling will be crucial for meeting net-zero 
goals (Geissdoerfer et al., 2017). 

Reaching the Paris Agreement goals will require quadrupling the mineral requirements for 
clean energy technologies by 2040, and global net-zero by 2050 will require six times more 
mineral inputs in 2040 than in 2021 (IEA, 2021). Furthermore, increasing estimated 
quantities of iron and steelmaking slag from between 295 and 354 megatonne (Mt) and 169 
to 254 Mt in 2017 (van Oss, 2014) to 299.4 to 354 Mt and 172 to 263 Mt in 2022 (USGS, 
2023), respectively, indicate industrial waste management must be able to handle these 
increasing volumes of material.  

1.1 Metallurgical overview 
 
The two major slag groups are ferrous, generated from iron and steel production, and non-
ferrous, generated from the recovery of base metals (e.g., Cu, Ni, Pb, Zn), which can be 
classified by the specific furnace used for metal extraction. Fe-slag is produced from blast 
furnaces (BF) (Chiang & Pan, 2017), whereas steel slags are by-products of combining 
molten iron from BFs, scrap steel, and alloys, from using either electric arc furnaces 
(EAF), basic oxygen furnaces (BOF), or ladle furnaces (LF) to make specific steel grades 
(Bobicki et al., 2012; Bonenfant et al., 2008; Brandt, 1985; De Windt et al., 2011; Piatak et 
al., 2015; Proctor et al., 2000; Wang et al., 2010). Further BF slag classification is based on 
the cooling method: air-cooled BF slag, granulated water-quenched BF slag, pelletised (air- 
and water-cooled) BF slag, and expanded or foamed air-, water-, or steam-cooled BF slag 
(Tripathy et al., 2020; Zhang et al., 2020). 

1.1.1 Ferrous slag 
 
Ferrous slag generated during iron recovery and steelmaking varies depending on the type 
of furnace used, the cooling method (Piatak et al., 2015) in addition to the starting material 
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(Proctor et al., 2000). Blast furnace slag is the by-product of pig iron production where iron 
ore, iron scraps, fluxes (i.e., lime, limestone and/or dolomite) and coke as fuel, react with 
excess oxygen to reduce the ore to molten iron (Chiang & Pan, 2017; Piatak et al., 2021). 
The liquid iron will either be cased into pig iron or used for steelmaking in an EAF, BOF 
and LF, resulting in steel slag as the by-product (Chiang & Pan, 2017; Habib et al., 2020). 
The various rates and methods used to solidify molten iron slag affect the slag properties, 
influencing future commercial use and recovery potential (Lewis, 1982; Piatak et al., 2021; 
Tripathy et al., 2020). While variations between iron and steel slag refining aim to remove 
remaining S, gases or impurities, and adjust C content, both slags may be used for similar 
purposes as the same cooling processes result in comparable properties (van Oss, 2013).  

Reporting of ferrous slag composition and mineralogy is often generalised, challenging 
efficient critical raw material (CRM) recovery method development. Additionally, 
elements such as rare earth elements (REE) and platinum group metals (PGM) included in 
CRM lists are rarely if ever reported in slags (Piatak et al., 2021), despite REE abundances 
reaching up to 420 mg kg−1 in steel slag (Douglas et al., 2012; Piatak et al., 2019; Wendling 
et al., 2010; Wendling et al., 2013) and up to 440 mg kg−1 in BF slags (Cravotta, 2005; 
Piatak et al., 2019; Wendling et al., 2013).   

1.2 Bulk chemistry 
 

1.2.1 Iron/ BF slag 
 
Ferrous slag composition dominantly comprises CaO (12.1 to 36.9 weight (wt)%) and SiO2 
(33.2 to 34.2 wt%). BF iron slag predating the twentieth century dominates the SiO2–rich 

end (>70 wt%) of the FeO–SiO2–CaO ternary diagram in Piatak et al. (2021) and may 
contain significant amounts of FeO as the result of ineffective iron recovery compared to 
that of modern BF slags. Fluxes added to improve metal recovery, olivine-bearing rocks, 
and quartzite or quartz sand generally source the Ca, Mg, and Si in slag. Gangue minerals 
in the iron ore and coke tend to source the Si, Al, and S. Pre-1900 BF slags have on 
average less than half the concentration of Ca (12.1 wt% CaO) compared to that in modern 
BF slags (36.9 wt% CaO). However, SiO2 concentrations are similar for both iron slags 
(34.2 wt% SiO2 for modern and 33.2 wt% SiO2 for pre-1900) (Piatak et al., 2021). While 
iron slag contains significantly more Al (7.7 to 12.5 wt% Al) and slightly more Mg (6.2 to 
8.2 wt% Mg) compared to that in steel slag (5.3 wt% Al and 6.3 wt% Mg), both iron and 
steel slag can have high concentrations of the trace elements Cr (9.1 to 328 mg kg-1: iron 
slag; 1988 mg kg-1 steel slag) and Mn (0.7 to 0.8 wt%: iron slag; 4.9 wt%: steel slag)  
(Piatak et al., 2021). 

1.2.2 Steel slag 
 
Similar to modern BF slag, steel slag is dominated by CaO (45 to 60 wt%) and equal or 
less FeO is usually found followed by SiO2 (10 to 15 wt%) reflecting the common use of 
limestone as a flux (Motz & Geiseler, 2001; Piatak et al., 2015, 2021; Xuequan et al., 
1999). Abundant Al2O3 (5.3 wt%), MgO (6.3 wt%), and MnO (4.9 wt%) can also be found 
in steel slag with the latter generally being the highest (Piatak et al., 2021). Free lime can 
reach 12wt% and CaO as lime or dolomitic lime can exceed 35 wt% (Yildirim & Prezzi, 
2011), as the results of fluxed rich in Ca and Mg added to the furnace to optimise slag 
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formation (Piatak et al., 2021). At legacy steelmaking sites, slag piles may be a 
combination of both BF and steel slags (Piatak et al., 2021).  

1.3 Mineralogy and petrography 
 

1.3.1 Iron slag 
 
Although the mineralogy and textures of iron slag can vary widely, minerals from the 
melilite group are the most commonly reported and often abundant regardless of the time 
of production and the cooling method (Piatak et al., 2021). Spinel-, olivine-, pyroxene-, 
melilite-group, and glasses are found in pre-1900 BF slag in addition to silicate-rich, 
feldspar, garnet, oxide, and carbonate which are from fluxes (Piatak et al., 2015, 2021). 
The solid solution of wüstite (FeO) is typically observed since BF slags have a high Fe 
oxide content (Yildirim & Prezzi, 2011). Native metals such as Cu, Fe and Pb and 
intermetallic compounds are common and may contain trace elements (i.e., Ag, As, Au, Co, 
Cd Ni, Sn, Sb: Piatak et al., 2015a). Both crystalline or glass-like textures occur in slag and 
depend on the composition and cooling method. For example, when quenched molten slag 
is cooled with high volume, high-pressure sprays of water, crystallization is prevented, and 
sand-sized amorphous vitrified fragments are generated. Amorphous phases are reported 
from both pre-1900 and modern BF slag (Butler, 1977; Piatak et al., 2021; Scott et al., 
1986). Carbonates are found in both modern and weathered/legacy ferrous slag as calcite, 
dolomite, aragonite, and vaterite (Piatak et al., 2021). Notably, CaO and SiO2 content in 
BOF slag increases with the decrease in particle size, whereas the Fe2O3 fraction decreases 
significantly (Pan et al., 2015; Zhang et al., 2011). 

1.3.2 Steel slag 
 
The common mineral phases in steel slags including larnite (Ca2SiO4), tricalcium silicate 
(Ca3SiO5), and Ca-oxide (CaO, free lime), reflect the higher CaO content compared to that 
of Fe slags (Piatak et al., 2015). Merwinite, olivine, β-C2S (2CaO·SiO2), α-C2S, C4AF 
(4CaO·Al2O3·FeO3), C2F (2CaO·Fe2O3), MgO, FeO, and C3S(3CaO·SiO2), the RO phase 
(solid solution of CaO-FeO-MnO-MgO) (Qian et al., 2002; Qian et al., 2002; Shen et al., 
2004), trace varieties of sulfides, intermediate compounds, pure metals, and calcite are also 
observed (Piatak et al., 2015). The lower silica content (21.1 wt%: steel slag; 33.2 to 34.2 
wt%: iron slag: Piatak et al. (2021)) tends to prevent steel slag from vitrifying even when 
cooled rapidly (Yildirim & Prezzi, 2011), though if quenched, Ca silicate glass would form 
(Piatak et al., 2015). 

1.4 Process evolution 
 

Variations in the physical textures, chemical composition, and mineralogy of the hundreds 
of millions of tonnes of slag produced annually can be correlated to the starting material, 
furnace used, and cooling method (Piatak et al., 2015; Piatak & Ettler, 2021; Proctor et al., 
2000). Thus, the major developments during the second half of the 19th century, especially 
in steel production should be evident in the slags and tailings (Lundén & Paulsson, 2009). 
For example, the development of the Bessemer process revolutionised the mass production 
of cheap steel in the United States (US) and Europe as the phosphorus in the pig iron could 
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be removed when chemically basic material was combined (Jones, 1920; Spoerl, 2004). 
However, with subsequent technological advances, the open hearth process allowed for 
scrap metal recycling and larger steel batch production than possible with the Bessemer 
process and ultimately dominated by the 20th century. After 1960 the basic oxygen process 
gained popularity to produce steel from Fe ore, and the EAF in the production of steel from 
scrap (Spoerl, 2004). While the continuous improvement in metallurgy processes has 
decreased the material quality of current industrial waste generated (Hudson-Edwards, 
2016), the incomplete recovery of target metals and partitioning of by-product elements 
into slag during smelting may yield a promising source of CRM preserved at historical 
deposits (Piatak & Ettler, 2021; Riley et al., 2020). 

1.5 Resource recovery 
 
As the energy sector is set to lead mineral consumption, increasing, and diversifying the 
supply must be an immediate focus for mineral security (IEA, 2021). Recycling alone will 
not make up for the discrepancy in total reserves expected to contribute to the renewable 
energy scenarios in the Intergovernmental Panel on Climate Change (IPCC) Fifth 
Assessment Report (IPCC, 2014). The growing interest and research on slags, especially at 
legacy deposits, is contributing to the limited fundamental knowledge and demonstrating 
their potential as a source for CRM recovery (Habib et al., 2020). The historical 
metallurgical processes from the 1900th to 2000th centuries were likely less efficient than 
those of today and did not target the metals that are urgently needed for low-carbon 
technologies.  

Critical metals, defined as of high economic importance and with high supply risk are 
found intrinsically in enriched rock bodies in ‘companion’ with more abundant major 
meals that have similar chemical and physical properties. However, supply risk from lower 
bulk concentrations combined with sparse ore reserve reporting on the smaller market (e.g., 
Se, Co) and more economically challenging (e.g., Cd, In, Ga, Ge, Hf) metals limits our 
understanding of critical metal abundances (Hagelüken, 2012; Mudd et al., 2017). 
Furthermore, reported usage ranges from tens to thousands of tonnes per year, with no 
globally accepted list, compromising renewable energy scenarios (Grandell et al., 2016; 
Gunn, 2014). The British Geological Survey include 26 candidate materials on the UK 
Critical Mineral List 2021 (Fig. 1) and will be used for the purpose of this study as the 
material focus is UK-based.  
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Figure 1. Assessment of 26 candidate materials potentially critical to the UK. The horizontal axis of the 
criticality matrix reflects the economic vulnerability of the UK. From Lusty et al. (2021). 

There needs to be an immediate paradigm shift regarding Earth’s finite resources and a 
focus on the material processing (Hofmann et al., 2018). Stegen (2015) dispels the 
common misconception that China is the only country with substantial REE deposits and 
draws attention to China’s near-monopoly on the processing capacity and supply chain for 
converting the elements into products (Humphries, 2013). The geographical concentration 
of production and processing on mineral supply risk is further exacerbated by geopolitical 
disruption, such as China’s export ban on REEs and Indonesia’s ban on nickel ore export 
(Reuter, 2016). 

More reserves of critical metals will need to be identified to meet the increasing demand 
for low-carbon technologies. Chukwuma et al. (2021) estimate between 490 and 640 
million tonnes of slag may have been generated in the UK since 1875 alone. Together with 
the estimated over 190 million tonnes of legacy iron and steel slag at current and former 
iron and steel workings (Riley et al., 2020), the UK could improve the resilience of their 
critical metal supply chains As such, critical metal exploration should expand to existing 
mines to identify new prospects through comprehensive characterisation of the geologic 
source (Rabe et al., 2017). Without adequate metal resources and reserves, renewable 
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energy scenarios will be unachievable and greenhouse gas emissions will continue at 
distressing rates. It is now essential to improve CRM production, recycling (Grilli et al., 
2017; Popov et al., 2021; Rizzo et al., 2020), and let CE potentially help drive the 
management and development of potentially innovative low-carbon solutions. 

1.6 Carbon capture and storage  
 
The carbon storage potential of slags is an increasingly promising opportunity. The 
drawdown and mineralisation of atmospheric CO2 by legacy waste can contribute to the 
reduction of greenhouse gases. Riley et al. (2020) estimates a cumulative CO2 capture 
potential of 57 to 138 Mt from the potential stockpiles of legacy iron and steel slag 
spanning the UK. From 10 legacy iron and steel slag sites in South Wales, (Chukwuma et 
al. (2021) estimate a CO2 uptake potential of up to 17 Mt CO2 by direct carbonation and up 
to 25 Mt CO2 through enhanced weathering, yielding a total carbonation potential between 
0 to 77 % of total carbonation potential. However, the limitation of carbonation reactions 
and management challenges for resource recovery will impact achieving these carbon 
uptake estimates. Carbonate precipitation is impacted by numerous factors including the 
source and frequency of water interaction (MacDonald et al., 2023a; Mayes et al., 2018; 
Wilson et al., 2009), mineralogy (Pullin et al., 2019), kinetic limitation (Khudhur et al., 
2022; Mayes et al., 2018), and CO2 supply (Renforth, 2019). With over one-third of legacy 
slag sites located in close proximity to designated conservation areas, and others near 
redeveloped for housing and urban cover, multifarious characterisation that informs 
resource recovery should be a priority (Riley et al., 2020). 

1.7 Research objectives 
 
This research aims to provide multifarious characterisation of legacy iron and steel slag to 
inform this industrial waste’s valorisation and opportunity potential. CRM extraction is one 
of the many opportunities offered by legacy slag. However, likely physical and chemical 
changes through time could have implications for slag reuse. Before resource recovery 
methods can be developed, a thorough understanding of the processes altering deposits is 
needed to identify extraction challenges. Using the inland (A) and coastal (B) legacy slag 
deposits at Warton in South Lancashire, England as the case study sites, the research 
objectives are addressed over two studies. Chapters 2 and 3 detail the first and second 
studies, respectively. The first study demonstrates a novel workflow that informs 
environmentally sensitive metal recovery methods by helping correlate the chemical 
compositions associated with metallurgical processing methods to those identified in slag 
deposit A. The data-driven microstructural approach that leverages unsupervised machine 
learning reveals chemical and spatial associations that are quantified to determine the slag 
mineralogy and metal content. The observed lithification of slag deposit B that cemented 
originally loose pieces of slag together that could challenge metal extraction is explored in 
the second study. The mechanisms lithifying the slag deposit are identified to understand 
how legacy slag changed over time, to identify opportunities for atmospheric CO2 storage 
and coastal defence, and to identify the challenges to slag reuse. Together, the results from 
this study provide new insights into the microstructural identification capabilities of 
machine learning for CRM recovery and characterise the lithification mechanisms that 
have implications for CCS. 
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2. Chapter 2: Uncovering the Mineralogy and Metal 
Concentrations in Metal Processing Wastes: A data-
driven microstructural approach 

 
2.1 Introduction 

 
Legacy industrial waste presents the opportunity for CRM recovery and to understand how 
the resource potential changes through time. Although recent exploration has increased 
reserves of many energy transition metals, ore quality has declined as high-quality deposits 
and the higher-quality part of previously explored deposits are being exhausted (IEA, 
2021). Growing climate risk and water stress are exposing the vulnerability of mining 
assets. Natural disasters are the third most frequent cause of mineral supply disruption, and 
the increased frequency and severity must motivate a focus on developing innovative metal 
recovery methods that are not resource-intensive and contribute to CE (Hatayama & 
Tahara, 2018; IEA, 2021).  

The increasing discussions concerning CE in Europe have inevitably involved the 
metallurgy and mineral industries (Saikia et al., 2008; Spooren et al., 2020). Popov et al. 
(2021) urge securing the supply chain by developing own mining and recycling as a 
primary solution for addressing the CRM security problem. Given the declining quality of 
ore grade for many materials (Hudson-Edwards, 2016), leveraging the relative stratigraphy 
in legacy slag deposits reflecting metallurgical processing methods and their possible 
evolution over time (Humphris & Carey, 2016) could help focus resource recovery efforts. 
However, as demonstrated in Chapter 1, slags are extremely heterogeneous at multiple 
length scales with their metal content reflecting the ore mineralogy provided by the 
sulphides (Montour, 1994), the less reactive oxide and silicate minerals, the glass phases 
(Parsons et al., 2001), and/or the steel scrap (Piatak et al., 2015). Thus, quantification 
methods used to identify CRM from these industrial wastes must be able to handle the 
complex material and identify trace metal concentrations (< 0.01 wt%).  

Scanning electron microscope (SEM) based characterisation by energy dispersive X-ray 
spectroscopy (EDS) is a widely used microanalytical technique to obtain elemental 
mapping (Goldstein et al., 2017). Microstructural analyses using EDS data is a core 
technique of characterisation as each measurement comprises all the characteristic X-ray 
peaks for the specified photon energy range (Newbury & Ritchie, 2015). However, 
commercial automatic peak identification procedures have been shown to fail at labelling 
‘problem regions’ and misidentify coincidence peaks as minor or trace element peaks, 
despite proper calibration and reasonable input rates (Newbury, 2005, 2009). This is 
especially concerning with the increasing use of EDS data for critical material 
identification. It is evident from the increasing instances of elemental misidentification that 
minor and trace constitutes that have low counts per pixel and signals just above 
background are key challenges to these automatic peak identification algorithms (Newbury, 
2005, 2007, 2009).  

Similar signal characterisation and identification challenges to transmission electron 
microscope (TEM) of regions with variable phases occurring at different depths in the 
beam path (Jany et al., 2017) resulting in mixed signals (Rossouw et al., 2015) also affect 
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EDS data. While the interaction volume depth used for EDS mapping is roughly 1 μm 
(micron) (Tominaga et al., 2021), overlapping peaks from trace concentrations of small 
features that are spatially sparsely distributed in the dataset can contribute to mis- and 
incomplete identification. However, as datasets grow in size and complexity, using 
multivariate statical analysis (MSA) during processing is shown to reveal the most relevant 
information from microscopy and diffraction methods. MSA applications range from 
reducing data dimensionality (Duran et al., 2023; Georget et al., 2022; Martineau et al., 
2019), isolating ‘latent’ variables (Keenan, 2009), unmixing signals from nanostructures 
(Jany et al., 2017), and enhancing the efficiency and accuracy of phase identification (Teng 
& Gauvin, 2020) to producing mineral phase distribution maps (Rossouw et al., 2015). 
Applying machine learning to geologic characterisation may allow for faster and more 
accurate pattern extraction (Rizzo et al., 2020) with reduced overall human intervention.  

Many scanning electron-based automated mineralogy (SEM-AM) software packages (i.e., 
Mineral Liberation Analysis (MLA), Quantitative Evaluation of Material by Scanning 
Electron Microscopy (QEMSCAN), Tescan Integrated Mineral Analyzer (TIMA-X)) 
developed to characterise ore and mineral processing products (Schulz et al., 2020) are 
largely supervised machine learning methods that compare spectra to a labelled reference. 
While these techniques are promising, for novel applications, including artificial materials 
such as slags given the versatility for resolving chemical zonation, phase relationships, 
intra-particle details, full particle size, and geometries (Schulz et al., 2020), they require 
the user to know or assume what the phases present are. This presents the opportunity for 
significantly misfitting data as anthropogenic minerals lack robust databases. Furthermore, 
the element and mineral spectral maps produced by SEM-AM are semi-quantitative, 
limiting their utility for metal abundance estimations. Thus, characterisation methods that 
are developed for CRM recovery from anthropogenic material must be capable of handling 
these challenges and producing quantitative mineral maps. In this study, the capabilities of 
using a data-driven unsupervised machine learning approach were explored to identify the 
mineral phases, possible trace metal concentrations, and relative stratigraphy from a legacy 
slag deposit, aimed at informing resource potential and environmentally sensitive recovery 
methods. 

2.2 Materials and methods 
 

2.2.1 Site location 
 
Remnants of the iron and steel produced by Carnforth Iron Works in South Lancashire, 
England are evident as slag banks on the southern edge of the Warton Saltmarsh and as a 
slag heap approximately 435 m inland. The iron works opened in 1864 producing solely 
haematite (Bessemer) iron pig, but at peak production, five blast furnaces and two 
Bessemer converters (established 1871: LCC (2006)) ran for steelmaking (Harris, 1960; 
Riden & Owen, 1995; Taylor, 2013). The steel plant closed in 1890 and was demolished by 
1898 (LCC, 2006). However, iron works continued by the renamed Carnforth Hematite 
Iron Company Ltd using two blast furnaces from 1889 until closure in 1929 (LCC, 2006; 
Riden & Owen, 1995). The slag heap (Fig. 2) is underlaid by a raised tidal flat comprising 
clay, silt and glaciofluvial deposits of sand and gravel, and overlies the Urswick Limestone 
Formation (Taylor, 2013). 
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Figure 2. A) Location of sampling site in South Lancashire, England. B) Field photograph showing the inland 

slag deposit with the stratigraphic horizons and sampling locations outlined; 0.3 m blue tote bag for scale. 

2.2.2 Optical microscopy and SEM-EDS data acquisition 
 
Slag samples from the surface of the inland heap were collected across five vertical 
stratigraphic heights (Fig. 2B) from distinct layers. Stitched optical microscopy images of 
polished thin sections using a Zeiss Axio Imager M2 at 10x magnification in plain 
polarised reflected light informed SEM-EDS analysis (Fig. S1 to S5). Backscatter Electron 
(BSE) imaging and EDS chemical mapping were performed on the polished thin sections 
with a ~20 nm conductive carbon layer using a Zeiss Sigma variable pressure field-
emission-gun SEM (VP-FEG SEM) equipped with a BSE detector and an Oxford 
Instruments Ultimax 170 mm2 EDS detector at the Geoanalytical Electron and Microscopy 
and Spectroscopy (GEMS) facility at the School of Geographical and Earth Sciences, 
University of Glasgow. Twenty-three regions were identified from petrographic analysis to 
represent the range of microstructures and textures in the five stratigraphic horizons (W24, 
W25, W26, W27, W28). The various textures include slag clast matrix with and without 
pores, reaction rims occurring with (TM) and without (T) metal grains, and metal-
dominated microstructures (M). The EDS maps collected from the twenty-three regions 
were analysed with Oxford Instrument AZtec ® 4.3 and AZtec ® Flex software. When 
multiple data tiles were acquired for a single region they were stitched and montaged into a 
single file.  

It has been shown that high-count EDS spectra (five million or more counts per pixels 
(cpp)) can be used to match Wavelength-dispersive X-ray spectroscopy (WDS) 
measurements even with severe peak interference for major and minor constituents 
(Ritchie et al., 2012). However, achieving higher cpp it is at the expense of reduced 
spectral resolution, impacting the spectral data quality. Therefore, the SEM and EDS 
settings used for data collection (Table 1) aimed at collecting at least 800 cpp, limiting 
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possible surface damage and drift by the instrument, and completion within a reasonable 
time. An accelerating voltage of 20 keV, aperture size of 60 and 120 micrometre (μm), 
dwell time between 25 to 30 μs, process time of 3, frame count of 100, and working 
distance of 8.0, and 8.1 millimetre (mm) were used to collect the EDS data spanning 2048 
energy channels. 

Table 1. SEM and EDS settings used for data collection. 

Sample SEM settings 

Stratigraphic 
horizon Region 

Accelerating 
voltage 
(keV) 

Aperture size 
(μm) 

Dwell time 
(μs) 

Energy 
channels 

W28 

T1 20 120 30 2048 
M1 20 120 30 2048 

T2M2 20 120 30 2048 
T3M3 20 120 30 2048 

W27 

T1M1 20 120 30 2048 
T2M2 20 120 30 2048 

M3 20 120 30 2048 
M4 20 120 30 2048 

W26 

T1 20 60 25 2048 
T3 20 60 25 2048 
T4 20 60 25 2048 

T5M2 20 60 25 2048 
T6.1 20 60 25 2048 

T6.2M3 20 60 25 2048 
M4 20 60 25 2048 

W25 
T1 20 120 30 2048 
M1 20 120 30 2048 
M2 20 120 30 2048 

W24 

T1 20 60 25 2048 
T2 20 60 25 2048 
M1 20 60 25 2048 

T3M2 20 60 25 2048 
T4 20 60 25 2048 

 

  



2 11 
 

Sample SEM settings 

Stratigraphic 
horizon Region Process Time Frame count 

Working 
distance 

(mm) 
Magnification 

W28 

T1 3 100 8.1 700 
M1 3 100 8.1 700 

T2M2 3 100 8.1 700 
T3M3 3 100 8.1 700 

W27 

T1M1 3 100 8.1 700 
T2M2 3 100 8.1 700 

M3 3 100 8.1 700 
M4 3 100 8.1 700 

W26 

T1 3 100 8 700 
T3 3 100 8 700 
T4 3 100 8 700 

T5M2 3 100 8 700 
T6.1 3 100 8 600 

T6.2M3 3 100 8 600 
M4 3 100 8 600 

W25 
T1 3 100 8.1 700 
M1 3 100 8.1 700 
M2 3 100 8.1 700 

W24 

T1 3 100 8 700 
T2 3 100 8 700 
M1 3 100 8 650 

T3M2 3 100 8 700 
T4 3 100 8 700 
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Sample EDS Map  

Stratigraphic 
horizon Region 

File 
size 

(byte) 

Resolution 
width 
(pix)  

Resolution 
height 
(pix) 

Width 
(μm) 

Height 
(μm) Total count 

W28 

T1 186 512 384 416 312 2.3x108 
M1 186 512 384 416 312 3.3x108 

T2M2 186 587 785 792 591 4.2x108 
T3M3 186 512 384 416 312 2x108 

W27 

T1M1 186 972 729 790 592 8.9x108 
T2M2 186 972 729 790 592 9.8x108 

M3 186 584 631 785 587 4.5x108 
M4 186 512 384 416 312 3.2x108 

W26 

T1 186 512 384 416 312 2x108 
T3 186 512 384 416 312 1.7x108 
T4 186 512 384 416 312 1.6x108 

T5M2 186 512 384 416 312 1.2x108 
T6.1 186 981 720 797 585 5.2x108 

T6.2M3 186 512 384 485 364 1.4x108 
M4 186 512 384 485 364 1.7x108 

W25 
T1 186 512 384 416 312 2.8x108 
M1 186 511 729 415 592 4.6x108 
M2 186 397 1068 423 868 6.3x108 

W24 

T1 186 512 384 416 312 2x108 
T2 186 960 725 786 589 4.8x108 
M1 186 929 1059 851 929 4.9x108 

T3M2 186 512 384 416 312 1.4x108 
T4 186 1873 386 1520 314 4.x108 
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Sample EDS 
Map EDS Image 

Stratigraphic 
horizon Region 

Counts 
per 

pixel 

Resolution 
width (pix) 

Resolution 
height 
(pix) 

Area 
(pix) 

Pixel 
size 
(μm) 

Width 
(μm) 

W28 

T1 1162 1024 768 786432 0.406 416 
M1 1676 1024 768 786432 0.406 416 

T2M2 922 1950 1454 2835300 0.406 792 
T3M3 1036 1024 768 786432 0.406 416 

W27 

T1M1 1253 1945 1459 2837755 0.406 790 
T2M2 1387 1945 1459 2837755 0.406 790 

M3 1222 1932 1444 2789808 0.406 785 
M4 1644 1024 768 786432 0.406 416 

W26 

T1 1007 1024 768 786432 0.406 416 
T3 869 1024 768 786432 0.8125 416 
T4 839 1024 768 786432 0.8125 416 

T5M2 635 512 384 196608 0.8125 416 
T6.1 751 1962 1440 2825280 0.406 797 

T6.2M3 697 512 384 196608 0.94792 485 
M4 844 512 384 196608 0.947 485 

W25 
T1 1427 1024 768 786432 0.406 416 
M1 1230 1024 1459 1494016 0.406 416 
M2 1479 1043 2136 2227848 0.406 423 

W24 

T1 1030 512 384 196608 0.8125 416 
T2 691 1934 1450 2804300 0.406 786 
M1 499 2125 1944 4131000 0.4375 851 

T3M2 713 512 384 196608 0.8125 416 
T4 810 773 3747 2896431 0.406 1520 

 

 

Figure 3. Analytical approach workflow. EDS spectral data is collected and pre-processed. The 
dimensionality of the data is reduced and the resulting components are clustered. The outliers or segmented 

regions may be isolated and the full approach reiterated. 

2.2.3 Pre-processing 
 
The energy axis of the raw EDS maps must be calibrated and any potential edge artefacts 
removed. For visualisation purposes, cropping and reshaping the BSE images to the same x 
and y dimensions as the calibrated EDS maps improve the interpretability of cluster phase 
maps when underlain. EDS does not obey Gaussian statistics as the quality of a spectral 
peak is a function of the dwell time on a single pixel. Instead, EDS data obey Poisson 
statistics where variation results from counting errors. To account for these errors, a 
Poisson noise scaling was applied (Keenan & Kotula, 2004). The porous nature of slag is 
accounted for by creating a pore space mask that excludes these regions that provide no 
mineralogic or elemental information of the sample. The pore space mask was created by 
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manually thresholding the corresponding BSE image of a given sample (Khudhur et al., 
2024).  

2.2.4 Dimensional reduction 
 
Each energy channel of the X-ray spectra represents a single experimental dimension. With 
over 1000 dimensions per measurement, each EDS map becomes a dense collection of 
measurements. To simplify this problem, a variety of dimensional reduction tools are 
explored, including Principal Component Analysis (PCA), Non-negative matrix 
factorisation (NMF), and Factor Analysis (FA). The quality and interpretability of these 
algorithms were investigated on the W24 and W26 samples. The dimensional reduction 
step reduces the EDS phase analysis to a smaller set of dimensions that are now 
representative of the mineralogy. It is also crucial for the subsequent clustering step to 
avoid suffering the ‘Curse of Dimensionality’ (Duran et al., 2023) due to the exponentially 
increasing volume of data space from additional components. NMF was used to reduce the 
dimensionality of the spectral data from the remaining three horizons (W25, W27, W28), 
and the resulting NMF components from all horizons were clustered.  

The unique constraints of each algorithm yield reduced components representing the 
original data in different forms. For example, besides reducing noise, the resulting 
principal component vectors of PCA maintain high variance through an orthogonal 
transformation (Wilkinson et al., 2019). While PCA has been used to directly distinguish 
particles with different morphologies and recover chemical compositions in EDS maps 
(Genga et al., 2012; Saghi et al., 2016), the principal component vectors are not physically 
interpretable because of the orthogonality constraint (Potapov, 2016). Conversely, the 
resulting statistically independent unmixed components from using NMF directly represent 
the original data structure (de La Peña et al., 2011). Unlike PCA, NMF only allows 
additive combinations and prevents subtraction in the matrix factors, resulting in 
nonnegativity components (Lee & Seung, 1999). It is from these components that Teng & 
Gauvin (2020) determined NMF is more suitable for EDS mapping of samples with rare 
earth-bearing minerals due to the smaller signal reduction compared to that from PCA. 
Smaragdis et al. (2014) note the NMF components correspond well to the mineral phases 
and components from the original data, and Jany et al. (2017) even successfully recovered 
the quantitative composition and nanostructures of metal alloy nanowires using a machine 
learning NMF-based processing. Alternatively, FA focuses on explaining the correlation 
within the data structure. Using the ‘VARIMAX solution’ which applies a rotation on the 
orthogonal vectors derived from PCA can benefit segmentation as it seeks single basic 
vectors that represent the spectral data (Wilkinson et al., 2019). 

The appropriate number of components to reduce the EDS data was determined 
qualitatively using the scree test of the eigenvalues (Duran et al., 2023; Jany et al., 2017) in 
the HyperSpy library (de la Pẽna et al., 2023) and cross-referencing against the noise in the 
factor spectra and loading maps EDS data (Fig. 4).  
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Figure 4. Dimensional reduction of region W26_T5M2 through NMF. A) BSE image. B) Chemical signature 
of each NMF factor. C-G) NMF loadings showing the regions where the components 1-6 are present in the 

sample. Pixel brightness demonstrates a stronger contribution of the spectra described by the NMF 
component. 
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Clustering is commonly used to answer questions related to the underlying structures in 
data but it suffers from central limitations where all data becomes equidistant when the 
data space becomes greater than 10 (i.e. large numbers of correlated measurements) (Koch, 
2013). Thus, to identify the mineral phases and determine their quantitative compositions 
from the original high dimensional EDS data (2048 channels/dimensions), the clustering 
algorithm, Hierarchical Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN) was used. The components identified from preliminary NMF analysis were 
used to form a reduced dimensional space and then were clustered. Without prior 
knowledge of the data structure required in flat clustering (i.e., number of clusters), 
hierarchical clustering splits the data into smaller subsets until each consists of one object. 
The capability of HDBSCAN to determine the optimal number of clusters, identify clusters 
with a range in point densities (Campello et al., 2013; Campello et al., 2015; McInnes et 
al., 2017) and that are nested (Sander et al., 2003) resolves challenges from limited domain 
knowledge of legacy wastes, enabling mineral phases with varying concentrations or that 
formed from solid solution to be identified. Furthermore, HDBSCAN is capable of 
separating outlier data points using the Global-Local Outlier Scores from Hierarchies 
(GLOSH) algorithm by effectively and efficiently computing GLOSH scores from the 
HDBSCAN hierarchy based on statistical interpretation, unsupervised (Campello et al., 
2015).  

NMF was determined as the superior dimensional reduction algorithm for this data to 
cluster on. The non-negative constrains of NMF that results in components directly 
representing the sample is preferred given the aim of this study is to correlate the chemical 
data to the microstructure that they are associated with. The complete approach comprising 
pre-processing, dimensional reduction using only NMF, and clustering was performed on 
the spectral data from regions spanning the remaining stratigraphic horizons (W25, W27, 
W28). Based on the mineral phases where trace metals were identified from the first 
iteration on horizons W24 and W26, the regions analysed from horizons W25, W27, and 
W28 focus on: 1) where phases with high contrasting densities on the BSE image occurred 
together; and 2) where higher density grains less than 1000 μm localised around the edge 
of pore space. 

2.2.5 Standardless Quantification and Stoichiometric Mineral Phase 
Calculations    

 
Using HyperSpy (de la Pẽna et al., 2023), summed spectra of the hard cluster assignments 
were exported and the standardless quantification peak-to-background method (P/B-ZAF) 
using Bruker ESPRIT software was performed. Elements with > 0.45 wt% (above 
background which serves as the detection limit for the method) identified from both the 
auto-ID function and by manual selection were included in the stoichiometric mineral 
calculations which follow Appendix 1 in Deer et al. (2013) and used to label the mineral 
phase maps. Calculated mineral phases that did not correspond to those reported in iron 
and steel slag were named based on their chemical composition. 

2.2.6 Iterative Phase Classification 
 
Clusters from the mapped regions representing either > 30 % of the pixels of the EDS map, 
a mineral phase (total image pixels – surface deviation mask pixels) or that were identified 
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from visual inspection despite some clusters comprising <30 % of the EDS map pixels or 
the phase pixels (W28_M1, W26_T3, W26_T5M2), were used as a mask of the raw data 
for iterative phase calculation (IPC) on specific phases. These new isolated spectral 
datasets were pre-processed, dimensionally reduced using NMF, and clustered with 
HDBSCAN to create hard cluster assignments. The standardless quantification and mineral 
phase calculation approach described above were subsequently reapplied to these iterated 
clusters. Through the process of IPC, minor phases and solid solutions are identified. 

2.3 Results 
2.3.1 First Iteration  
2.3.1.1 Dimensional reduction and clustering 

 
Using the approach outlined above, the mineral phases represented in the five stratigraphic 
horizons of slag we identified and quantified, in addition to trace concentrations of metals. 
The clustering using HDBSCAN resulted in between four to seven, four to eight, three to 
nine, three to seven, and four to seven clusters in the regions from W28, W27, W26, W,25, 
and W24, respectively. Outliers range from 0.21 % (W27_T1) of the segmented mineral 
phase (EDS map pixels – mask pixels) pixels to 72.60 % (W24_T1) with averages of 20.78 
%, 23.7 %, 15.29 %, 33.00%, and 39.06 % for W28, W27, W26, W25, and W24, 
respectively. When the outliers represent either > 30 % of the EDS map pixels or > 30 % of 
the segmented mineral phase pixels, IPC was applied to investigate possible 
microstructures that were over segmented. The outliers represent > 30 % of the pixels in 
both the EDS map and the segmented mineral phases for five regions, whereas they 
comprise < 30 % of the pixels in both the EDS map and mineral phases for thirteen 
regions.  

The average cpp of the phase maps ranges from 499 (W24_M1) to 1676 (W28_M1) with 
averages of 1253, 1007, 806, 1378, and 749 for W28, W27, W26, W,25, and W24, 
respectively. Of the 12 regions with cpp exceeding 1000, five record outliers with > 30 % 
of both the EDS map pixels and the segmented mineral phase pixels (W28_T1, 
W27_T2M2, W25_T1, W25_M1, W24_T1), and five with outliers < 30 % of both the EDS 
map pixels and the segmented mineral phase pixels (W28_T3M3, W27_T1M1, W27_M4, 
W26_T1, W24_M2).   

2.3.1.2 Quantification and identification  
 
Various mineral phases are represented in the five stratigraphic horizons (Table 2 to 24). 
The mineral abundances are calculated as the percentage of the segmented mineral phase. 
The table symbols are defined as: - = low quantification results; * = mineral phase with 
IPC applied. 

  



2 18 
 

Table 2. Mineral phases and chemical formulas for sample W28_T1. 

Mineral Chemical composition Mineral abundance (%) 
Wollastonite  Ca0.6Si1.1O3  1 
Ca-oxide  CaO  10 
Ca-Si-S  CaSi0.5S1.2O4  23 
Ca-Si  Ca3.5Si0.2O4  21 
Ca-Mg-Si-S*  Ca2.9Mg1.6SiS0.3O7  45 

Iterative Phase Classification 
Ca-oxide  CaO  6 
Ca-Al-Fe-Si-S  CaAl0.3Fe0.1Si1.3S0.5O5   59 
Ca-Al-Fe-Si-S  CaAl0.7Fe0.7Si1.5S0.5O7   35 

Symbol: * = mineral phase with IPC applied 

Table 3. Mineral phases and chemical formulas for sample W28_M1. 

Mineral Chemical composition Mineral abundance (%) 
Anorthite  CaAl1.5Si2O8   2 
Fe-oxide  FeO  17 
Pyrite  FeS2  2 
Fe-S Fe 0.9S 0.1O  43 
Fe-oxide  FeO  25 
Fe-oxide* Fe2O3  11 

Iterative Phase Classification 
Fe-oxide  Fe2O3  3 
Fe-S  Fe1.8S0.2O3  82 
Ca-Al-Fe-Si-S  Ca0.2Al0.2Fe2Si0.6S0.7O5   15 

Symbol: * = mineral phase with IPC applied 

Table 4. Mineral phases and chemical formulas for sample W28_T2M2. 

Mineral Chemical composition Mineral abundance (%) 
Fe-oxide  FeO  4 
Fe-oxide  Fe2O3  4 
Anhydrite  CaSO4  1 
Melilite  Ca1.3Al1.8Si1.3O7  3 

-  - 
Ca-oxide  CaO  56 
Melilite*  Ca2(Mg0.2Al0.6)Si1.4O7   32 

Iterative Phase Classification 
Ca-Si-S  Ca0.8Si0.2S1.3O4  1 
Ca-Al-Si-S  Ca2Al0.1Si0.6S0.3O4  22 
Melilite  Ca1.7(Mg0.2Al0.7)Si1.5O7   77 

Symbol: - = Low quantification results; * = mineral phase with IPC applied. 
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Table 5. Mineral phases and chemical formulas for sample W28_T3M3. 

Mineral Chemical composition Mineral abundance (%) 
Fe-oxide  FeO  5 
Anorthite  Ca1.2Al2.3Si1.6O8  6 
Ca-Al-Si-S  Ca3Al0.4Si2S0.1O8  64 
Ca-Al-Fe-Si  CaAlFe0.4Si2O7 2 

 

Table 6. Mineral phases and chemical formulas for sample W27_T1M1. 

Mineral Chemical composition Mineral abundance (%) 
Quartz  SiO2  3 
Ca-Al-Si-S  CaAl0.3Si0.4S1.2O4  3 
Fe-Si  Fe0.7Si0.1O  42 
Ca-Al-Si  Ca0.8Al2Si0.6O5  3 
Ca-Al-Si-S  CaAl1.2Si2.3S0.3O8   3 
Melilite  Ca1.5(Mg0.2Al0.8)(Si0.4Al0.6)SiO7  4 
Ca-Al-Fe-Si-S  Ca2.8Al0.2Fe0.1Si0.6S0.4O5  38 
Ca-Al-Mg-Fe-Si-S  CaAl0.7Mg0.1Fe0.5SiO5   4 

 

Table 7. Mineral phases and chemical formulas for sample W27_T2M2. 

Mineral Chemical composition Mineral abundance (%) 
Calcio-wüstite  Ca0.3Fe0.7O   11 
Wollastonite  Ca0.9Si0.9O3   1 
Quartz  SiO2  1 
Ca-oxide  Ca0.8O   6 
Anorthite  Ca1.3Al1.5Si2O8   28 
Quartz  SiO2   2 
Ca-Al-Mg-Fe-Si*  CaAl0.6Mg0.3Fe0.6Si2O7   51 

Iterative Phase Classification 
Fe-Si-S  Fe0.5Si0.1S2.8O5  1 
Ca-Al-Mg-Fe-Si  CaAl0.6Mg0.3Fe0.6Si2O7  97 
Ca-Al-Mg-Fe-Si-S  Ca0.5Al0.3Mg0.2FeSi1.1S1.6O7 2 

Symbol: * = mineral phase with IPC applied 
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Table 8. Mineral phases and chemical formulas for sample W27_M3. 

Mineral Chemical composition Mineral abundance (%) 
Fe-oxide  Fe0.9O   10 

-   - 
Fe-oxide  Fe1.9O3   53 

-   - 
Ca-Fe-Si-S  Ca0.2Fe2.1Si0.2S0.1O4   36 

Symbol: - = Low quantification results 

Table 9. Mineral phases and chemical formulas for sample W27_M4. 

Mineral Chemical composition Mineral abundance (%) 
Native Fe  Fe  28 
Native Fe  Fe  68 
Pyrite  FeS2  1 
Fe-Si-S  Fe2Si1.3SO6 3 

 

Table 10. Mineral phases and chemical formulas for sample W26_T1. 

Mineral Chemical composition Mineral abundance (%) 
Melilite  Ca1.8Al1Si1.6O7  1 
Ca-Al-Si-S  Ca2Al0.4SiS2.1O8  8 
Melilite*  Ca1.4Al0.7Si1.5SO7  91 

Iterative Phase Classification 
Melilite  Ca1.6(Mg0.2Al0.8)(Al0.6Si0.4)SiO7   31 
Melilite  Ca2(Mg0.1Al0.5)Si1.9O7   13 
Melilite  Ca1.7(Mg0.1Al0.9)Si1.7O7   56 

Symbol: * = mineral phase with IPC applied 

Table 11. Mineral phases and chemical formulas for sample W26_T3. 

Mineral Chemical composition Mineral abundance (%) 
Ca-Al-Si-S  Ca0.4Al0.1Si2.6S0.1O6  1 
Melilite  Ca2(Mg0.1Al0.9)Si1.7O7  73 
Ca-Al-Si-S  Ca0.9Al0.2Si0.6SO4  23 
Ca-Al-Si-S  Ca0.9Al0.2Si0.3S1.4O4  1 
Ca-Al-Si-S  CaSi1.4Al0.3S1.1O5  2 
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Table 12. Mineral phases and chemical formulas for sample W26_T4. 

Mineral Chemical composition Mineral abundance (%) 
Quartz  SiO2  1 
Olivine  (Fe0.6Ca0.5)Si1.2O4  1 
Ca-Al-Mg-Si-S*  Ca2Al0.9Mg0.1Si1.5S0.3O7  97 
Ca-Al-Mg-Fe-Si-S  CaAl0.4Mg0.1Fe0.1Si2.2S0.5O7  1 

Iterative Phase Classification 
Ca-Al-Si-S  Ca0.9Al0.2Si0.7S0.9O4  1 
Ca-Al-Mg-Si  CaAl0.4Mg0.5Si1.4O5  1 
Melilite  Ca1.5(Mg0.1Al0.9)(Al0.3Si0.7)SiO7  57 
Ca-Al-Si-S  Ca2.2Al0.2Si0.7S0.6O5  30 
Melilite  Ca1.7(Mg0.2Al0.7)Si1.6O7 11 

Symbol: * = mineral phase with IPC applied 

Table 13. Mineral phases and chemical formulas for sample W26_T5M2. 

Mineral Chemical composition Mineral abundance (%) 
Ca-Al-Fe-Si  Ca0.1Al0.8Fe0.2Si1.1O4   1 
Quartz  SiO2  6 
Quartz  SiO2  4 
Ca-Al-Mg-Fe-Si*  Ca0.9Al0.3Mg0.2Fe2.3SiO6   64 
Olivine  (Fe1.7Ca0.2)SiO4  7 
Ca-Al-Fe-Si  CaAl0.5FeSi2O7  18 

Iterative Phase Classification 
Ca-Al-Fe-Si  Ca2Al0.2Fe0.3Si0.6O4  8 
Ca-Al-Mg-Mn-Fe-Si  Ca0.5Al0.2Mg0.1Mn0.1Fe1.5Si0.7O5  19 
Ca-Al-Fe-Si  Ca0.3Al0.2Fe2.2Si0.5O4  20 
Ca-Al-Mg-Mn-Fe-Si-S  CaAl0.3Mg0.2Mn0.1Fe2.2Si S0.1O6 53 

Symbol: * = mineral phase with IPC applied 
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Table 14. Mineral phases and chemical formulas for sample W26_T6.1. 

Mineral Chemical composition Mineral abundance (%) 
Ca-Al-Si-S  CaAl0.2Si0.6S1.9O6  1 
Calcite  CaCO3  38 
Ca-Al-Si  Ca1.3Al0.3Si2O6   1 
Ca-Al-Mg-Si  Ca0.9Mg0.3Al0.4Si2.6O7  1 
Melilite  Ca1.5(Mg0.2Al0.8)(Si0.5Al0.5)Si1.1O7   21 
Melilite*  Ca1.6(Mg0.2Al0.6)Si1.8O7   38 

Iterative Phase Classification 
Ca-Si-S  Ca0.8Si2S0.1O5  1 
Ca-Al-Si-S  Ca1.9Al0.1Si0.9S0.1O4  1 
Ca-Al-Mg-Si  CaAl0.6Mg0.2Si2O6  60 
Ca-Al-Si-S  CaAl0.3SiS0.3O4 38 

Symbol: * = mineral phase with IPC applied 

Table 15. Mineral phases and chemical formulas for sample W26_T6.2M3. 

Mineral Chemical composition Mineral abundance (%) 
Olivine  (Fe1.6Ca0.4)(Si0.7Al0.3)O4   1 
Quartz  SiO2  11 
Olivine  (Ca1.1Mg0.4)Si1.2O4   1 
Monticellite  Ca1.6Mg0.7Si0.6O4  1 
Ca-Al-Mg-Si  Ca0.5Al0.5Mg0.6Si2O6   1 
Wollastonite  Ca0.7Mg0.3SiO3   1 
Calcite  CaCO3  25 
Melilite  Ca1.4(Mg0.2Al1.3)Si1.6O7  20 
Melilite*  Ca1.3(Mg0.2Al0.8)Si1.9Al0.1O7  39 

Iterative Phase Classification 
Quartz  SiO2   1 
Ca-Al-Mg-Fe-Si  CaAl0.8Mg0.2Fe0.3Si1.7O6   87 
Ca-Al-Mg-Fe-Si  Ca0.9AlMg0.2Fe0.6Si2.2O8   12 

Symbol: * = mineral phase with IPC applied 

Table 16. Mineral phases and chemical formulas for sample W26_M4. 

Mineral Chemical composition Mineral abundance (%) 
Calcio-wüstite  Ca0.1Fe0.5O  2 
Melilite  Ca2(Mg0.1Al0.7)Si1.7O7  59 
Ca-Al-Si-S  Ca0.8Al0.1Si0.3S1.6O4  1 
Ca-Al-Si-S  Ca0.8Al0.2Si0.4S1.6O4  1 
Calcite  CaCO3  30 
Ca-Al-Fe-Si-S  CaAl0.2Fe0.1Si0.7S0.7O4 7 
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Table 17. Mineral phases and chemical formulas for sample W25_T1. 

Mineral Chemical composition Mineral abundance (%) 
Ca-oxide  CaO  47 
Larnite  Ca2.2Si0.8O4  1 
Ca-oxide*  Ca0.8O  52 

Iterative Phase Classification 
Quartz  SiO2  1 
Melilite  Ca1.6(Mg0.1Al0.9)Si1.6O7  98 
Ca-Al-Fe-Si-S  Ca0.5Al0.3Fe0.1Si2SO4    

Symbol: * = mineral phase with IPC applied 

Table 18. Mineral phases and chemical formulas for sample W25_M1. 

Mineral Chemical composition Mineral abundance (%) 
Quartz  SiO2  3 
Ca-oxide  Ca0.8O   52 
Ca-oxide  Ca0.9O  5 
Ca-oxide  CaO  2 
Ca-Si*  Ca0.7Si0.1O  38 

Iterative Phase Classification 
Melilite  Ca1.6(Mg0.2Al0.8)(Al0.8Si0.2)(Si1.2)O7   21 
Ca-Al-Fe-Si  Ca2Al0.2Fe0.4Si0.6O4  1 
Melilite  Ca1.9(Mg0.1Al0.9)(Al0.1Si0.9)Si0.6O7   77 

Symbol: - = Low quantification results; * = mineral phase with IPC applied 

Table 19. Mineral phases and chemical formulas for sample W25_M2. 

Mineral Chemical composition Mineral abundance (%) 
Fe-oxide  Fe0.9O   59 
Ca-Si-S  Ca1.1Si0.1S2.4O5  1 
Anorthite  Ca1.5Al1.4Si2O8  2 
Ca-oxide  Ca0.9O   29 
Ca-Al-Fe-Si-S  Ca2Al0.7Fe0.1Si1.7S0.8O8   9 
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Table 20. Mineral phases and chemical formulas for sample W24_T1. 

Mineral Chemical composition Mineral abundance (%) 
Melilite  Ca2(Mg0.1Al0.9)(Al0.6Si0.4)SiO7  21 
Melilite  Ca2(Mg0.1Al0.7)Si2O7  1 
Rankinite  Ca2.3Si2O7   6 
Melilite*  Ca2.3(Mg0.1Al0.8)Si1.7O7  72 

Iterative Phase Classification 
Ca-Al-Mg-Mn-Si  Ca1.2AlMg0.1Si1.1O5   1 
Melilite  Ca2(Mg0.1Al0.8)Si1.7O7   57 
Melilite  Ca1.8(Mg0.1Al0.9)Si1.8O7   42 

Symbol: * = mineral phase with IPC applied 

Table 21. Mineral phases and chemical formulas for sample W24_T2. 

Mineral Chemical composition Mineral abundance (%) 
Rankinite  Ca3(Al0.6Si1.4)O7  1 
Tricalcium silicate  Ca3.5Si0.6O5  39 
Ca-Si  Ca0.1Si0.9O2  5 
Melilite  Ca1.5(Al0.8)(Al0.3Si0.7)SiO7  13 
Melilite*  Ca1.3(Al0.7)Si2.2O7   42 

Iterative Phase Classification 
Calcite  CaCO3  1 
Ca-Al-Mg-Si  Ca1.2Al0.6Mg0.2Si2O7   80 
Melilite  Ca1.6(Mg0.2Al0.7)Si2O7   19 

Symbol: * = mineral phase with IPC applied 

Table 22. Mineral phases and chemical formulas for sample W24_M1. 

Mineral Chemical composition Mineral abundance (%) 
Melilite  Ca1.4(Mg0.1A0.9)(AlSi)O7   5 
Quartz  SiO2  1 
Fe-oxide  Fe1.7O3   6 
Melilite  Ca1.9(Mg0.1Al0.6)Si1.4O7  18 
Tricalcium silicate  Ca2.6Si0.9O5  53 
Melilite  Ca1.7(Mg 0.2Al0.7)Si1.7O7 17 
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Table 23. Mineral phases and chemical formulas for sample W24_T3M2. 

Mineral Chemical composition Mineral abundance (%) 
Ca-Fe-Si  Ca0.1Fe0.6Si0.1O   3 
Ca-Al-Si  Ca1.5Al0.5Si2.1O7   1 
Melilite  Ca1.3(Mg0.2Al0.8)(AlSi)SiO7   15 
Ca-Al-Fe-Si  CaAlFeSi3O10  1 
Ca-Al-Si  Ca2Al0.3Si0.6O4   40 
Ca-Al-Si  Ca1.7Al0.4Si0.7O4  1 
Melilite*  Ca1.7(Mg0.09Al0.8)Si1.7O7   39 

Iterative Phase Classification 
Ca-Al-Fe-Si  Ca0.1Al0.1Fe1.7Si0.2O4  1 
Melilite  Ca1.6(Mg0.1Al0.9)Si1.8O7   96 
Ca-Al-Mg-Fe-Si  CaAl0.7Mg0.1Fe1.2Si2O8 3 

Symbol: * = mineral phase with IPC applied. 

Table 24. Mineral phases and chemical formulas for sample W24_T4. 

Mineral Chemical composition Mineral abundance (%) 
Fe-oxide  Fe1.7O3   7 
Melilite  Ca2(Mg0.1Al0.8)Si1.6O7   24 
Ca-Al-Si  Ca2Al0.9Si2O6  1 
Ca-Al-Si  Ca0.5AlSi2O6  2 
Melilite  Ca1.3(Mg0.3Al0.7)(Al0.1Si1.9)O7   30 
Tricalcium silicate  Ca2.6Si0.9O5  26 
Melilite  Ca1.6(Mg0.3Al0.7)(Al0.2Si0.8)SiO7   10 

 

Melilite is the dominant phase, followed by a Ca-Al-Si-S phase, Fe-oxide, quartz, and Ca-
oxide in all samples. Regions from horizon W24 comprise mostly melilite with some Ca-
Al-Si, Ca-rich silicates (e.g., tricalcium silicate, larnite, rankinite), quartz, calcite, oxides 
(CaFeO, FeO, Fe2O3), and other non-conforming phases (Ca-Si, Ca-Fe-Si, Ca-Al-Mg-Si, 
Ca-Al-Fe-Si, Ca-Al-Mg-Mn-Si, and Ca-Al-Mg-Mn-Fe-Si). Whereas, horizon W25 has 
more Ca-oxide and quartz and less melilite with olivine, anorthite, Ca-Si-S, Ca-Al-Si-S, 
and Ca-Al-Fe-Si-S phases. Mostly Ca-Al-Si-S, melilite and quartz comprise regions from 
horizon W26 with olivine, calcite, Ca-Al-Mg-Si, Ca-Al-Mg-Fe-Si, some calcio-wüstite, 
wollastonite, monticellite, anhydrite, Ca-Al-Fe-Si, Ca-Al-Fe-Si-S, Ca-Al-Mg-Si-S, and Ca-
Al-Mg-Fe-Si-S. Quartz, Fe-oxide, Fe-Si-S, Ca-Al-Mg-Fe-Si, and native Fe occur more 
often in regions from horizon W27 and melilite, wollastonite, anorthite, pyrite, tricalcium 
silicate, calcio-wüstite, Ca-oxide, Ca-Fe-Si-S, and Ca-Al-Mg-Fe-Si-S once. Horizon W28 
comprises the most phases (19) of mostly Fe-oxide, melilite, Ca-oxide, anorthite, Ca-Al-Si-
S, Ca-Al-Fe-Si-S and some Fe-S, Ca-Si-S, wollastonite, rankinite, anhydrite, calcite, 
quartz, pyrite, Ca-Si, Ca-Al-Si, Ca-Mg-Si-S, and Ca-Al-Mg-Fe-Si-S.  

The results from the standardless quantification of the EDS data show more metals at 
higher concentrations are found in the three lower stratigraphic horizons (Table 25). 
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Table 25. Metal concentrations (ppm) quantified in legacy slag. 

Sample  W28  W27  W26  W25  W24  

  ppm 2σ 
(ppm) ppm 2σ 

(ppm) ppm 2σ 
(ppm) ppm 2σ 

(ppm) ppm 2σ 
(ppm) 

Ba  40 4  ND -  ND - 110 - 
140 

20, 
24 30 4 

Fe  1020 -
1290  

63, 
114 

120 - 
980 

50, 
40 240 18 90 - 

780 
 ND - 

Mn  40 10 20 - 
80 

10, 
12 

60 - 
180 

14, 
16 20 - 90 15, 

10 10 - 230 8, 14 

Ti   ND - 20 8 50 -
120 

10, 
18  ND - 40 8 

Zn   ND  -   ND - 30 8   ND - ND   - 
Nd = not detected 

Mn content ranges from 10 ppm to 190 ppm and occurs with decreasing frequency in non-
conforming phases, melilite group, Fe-oxide, anorthite, quartz, calcio-wüstite, wollastonite, 
and larnite. Ti was identified ranging from 17 ppm to 120 ppm and is associated with 
melilite and non-conforming phases. Zn was detected at a concentration of 30 ppm 
associated with olivine. Fe occurs as a major component in minerals as well as trace metal 
in other minerals throughout the deposit, and occasionally as native Fe nuggets. Notable 
metal concentration trends include generally increasing Mn down the stratigraphic height 
of the deposit and the highest abundance of Mn in horizon W24. 

2.3.1.2.1 Horizon W28 
 
The mineral phases from W28_T1 (Fig. 5 and Table 2) and W28_T3M3 (Fig. 6 and Table 
5) are Ca-rich compared to those from W28_T2M2 (Fig. 7 and Table 4) and W28_M1 (Fig. 
8 and Table 3) which are Fe-dominant.  
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Figure 5.  Region W28_T1. A) BSE image. B) Mineral phase map of wollastonite (dark blue), Ca-oxide 
(green), Ca3.5Si0.2O4 (brown), Ca3.5Si0.2O4 (grey), and Ca2.9Mg1.6SiS0.3O7 (light blue). C) IPC mineral phase 

map on the Ca-Mg-Si-S (light blue) in B. Ca-oxide (dark blue) and Ca-Al-Fe-Si-S (Ca2.9Mg1.6SiS0.3O7: brown; 
CaAl0.7Fe0.7Si1.5S0.5O7: light blue). Symbol: * = mineral phase with IPC applied. 

 
Figure 6. Region W28_T3M3. A) BSE image. B) Mineral phase map of Fe-oxide (dark blue), anorthite (red), 

Ca3Al0.4Si2S0.1O8 (pink), and CaAlFe0.4Si2O7 (light blue). 
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Figure 7. Region W28_T2M2. A) BSE images. B) Mineral phase map of Fe-oxide (FeO: dark blue; Fe2O3: 
orange), anhydrite (red), melilite (Ca1.3Al1.8Si1.3O7: brown; Ca2(Mg0.2Al0.6)Si1.4O7: light blue), and Ca-oxide 
(yellow). C) IPC mineral phase map on the melilite (light blue) in B. Ca0.8Si0.2S1.3O4 (dark blue), Ca-Al-Si-S 
(brown), and melilite (light blue) with 40 ppm Ba and 1020 ppm Fe. Symbol: - = low quantification results; * 

= mineral phase with IPC applied. 
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Figure 8. Region W28_M1. A) BSE image. B) Mineral phase map of anorthite (dark blue) with 40 ppm Mn 
and 1290 ppm Fe, Fe-oxide (FeO: green) with trace Mn, Fe-S (pink), Fe-oxide (FeO: yellow; Fe2O3: light 

blue), and pyrite (purple). C) IPC mineral phase map on the Fe-oxide (light blue) in B. Fe-oxide (Fe2O3: dark 
blue), Fe1.8S0.2O3 (brown), and Ca0.2Al0.2Fe2Si0.6S0.7O5 (light blue). Symbol: * = mineral phase with IPC 

applied. 

Trace Mn (40 ppm) localises in grains of anorthite within the matrix which is surrounded 
by Fe-oxide (W28_M1). Applying the IPC on the outlier phases from W28_T1 (Ca-Mg-Si-
S) and W28_M1 (Fe-oxide) confirms rare metals are not present, whereas Ba (40 ppm) and 
Fe (1020 ppm) are revealed for W28_T2M2.  

2.3.1.2.2 Horizon W27 
 
Trace Ti (20 ppm) localises in Ca-Al-Si-S in pore space. The outlier Ca-Al-Mg-Fe-Si-S 
phase of region W27_T1M1 surrounds Ca-Al-Si-S, fills pores in the matrix, and forms 
phase boundaries that include 60 ppm of Mn (Fig. 9 and Table 6). 
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Figure 9. Region W27_T1M1. A) BSE image. B) Mineral phase map of quartz (dark blue), Ca-Al-Si-S 
(CaAl0.3Si0.4S1.2O4: orange with 120 ppm Ti; CaAl1.2Si2.3S0.3O8: brown), Fe0.7Si0.1O (green), Ca0.8Al2Si0.6O5 
(purple), melilite (grey), Ca2.8Al0.2Fe0.1Si0.6S0.4O5 (yellow), and CaAl0.7Mg0.1Fe0.5SiO5 (light blue) with 60 

ppm Mn. 

Region W27_T2M2 contains Mn and Fe in wollastonite (40 ppm and 980 ppm, 
respectively) and anorthite (70 ppm and 120 ppm, respectively) which are surrounded by 
calcio-wüstite that ranges in composition (Fig. 10 and Table 7). 

 

 

Figure 10. Region W27_T2M2. A) BSE image. B) Mineral phase map of calcio-wüstite (dark blue), 
wollastonite (orange) with 40 ppm Mn and 980 ppm Fe, quartz (red and yellow), Ca-oxide (brown), anorthite 

(pink) with 70 ppm Mn and 120 ppm Fe, and CaAl0.7Mg0.1Fe0.5SiO5 (light blue) with 60 ppm Mn. C) IPC 
mineral phase map on the Ca-Al-Mg-Fe-Si (light blue) in B. Fe0.5Si0.1S2.8O5 (dark blue) with 20 ppm Mn, 

CaAl0.6Mg0.3Fe0.6Si2O7 (brown), and Ca0.5Al0.3Mg0.2FeSi1.1S1.6O7 (light blue). Symbol: * = mineral phase with 
IPC applied. 
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Mn is found throughout W27_T2M2 except for in the interior of the reaction rim. In region 
W27_M3, Mn localises in Fe-oxides (40 ppm to 80 ppm) near pores of the slag and in Ca-
Fe-Si-S (30 ppm) (Fig. 11 and Table 8), while no trace metals were identified in W27_M4 
(Fig. 12 and Table 9). 

 

Figure 11. Region W27_M3. A) BSE image. B) Mineral phase map of Fe-oxide (Fe0.9O: dark blue; Fe1.9O3: 
brown) with between 40 ppm to 80 ppm Mn and Ca0.2Fe2.1Si0.2S0.1O4 (light blue) with 30 ppm Mn. Symbol: - 

= low quantification results. 

 

Figure 12. Region W27_M4. A) BSE image. B) Mineral phase map of native Fe (dark blue). Native Fe (red) 
with trace Ca, pyrite (pink), and Fe2Si1.3SO6 (light blue). 

 Reiterating the Ca-Al-Mg-Fe-Si outlier phase from region W27_T2M2 containing 60 ppm 
of Mn confirms the presence of the trace metals that were identified from the preliminary 
clustering.  

2.3.1.2.3 Horizon W26 
 
In region W26_T3, 120 ppm of Ti in grains of Ca-Al-Si-S localising in pore space and 
within both the melilite and another slightly compositionally different Ca-Al-Si-S phase 
(Fig. 13 and Table 11).  

 

 

 



2 32 
 

 

Figure 13. Region W26_T3. A) BSE image. B) Mineral phase map of Ca-Al-Si-S (Ca0.4Al0.1Si2.6S0.1O6: dark 
blue; Ca0.9Al0.2Si0.6SO4: brown; Ca0.9Al0.2Si0.3S1.4O4: grey; CaSi1.4Al0.3S1.1O5: light blue with 120 ppm Ti) and 

melilite (green). 

Preliminary clustering on W26_T1 did not reveal trace Fe (150 ppm) and Mn (130 ppm) 
that were identified from reiterating on the outliers resulting in three compositionally 
variable melilite phases displaying exsolution textures (Fig. 14 and Table 10). 

 

Figure 14.  Region W26_T1. A) BSE image. B) Mineral phase map of melilite (Ca1.8Al1Si1.6O7: dark blue; 
Ca1.4Al0.7Si1.5SO7: light blue) and Ca2Al0.4SiS2.1O8 (brown). C) IPC mineral phase map on the melilite (dark 

blue) in B. Three compositionally variable melilite (Ca1.6(Mg0.2Al0.8)(Al0.6Si0.4)SiO7: dark blue; 
Ca2(Mg0.1Al0.5)Si1.9O7: brown; Ca1.7(Mg0.1Al0.9)Si1.7O7: light blue with 130 ppm Mn) Symbol: * = mineral 

phase with IPC applied. 

Conversely, in region W26_T6.1 where Ti was detected in outliers, Ti was not found after 
the IPC. The Ti localising within a Ca-Al-Si phase and melilite are associated with melilite 
within the matrix and surrounding the exterior of the slag that is exposed to pore space 
(Fig.15 and Table 14).  



2 33 
 

 

Figure 15. Region W26_T6.1. A) BSE image. B) Mineral phase map of CaAl0.2Si0.6S1.9O6 (dark blue), calcite 
(green), Ca1.3Al0.3Si2O6 (purple) with 51.47 ppm Ti, Ca0.9Mg0.3Al0.4Si2.6O7 (pink), melilite 

((Ca1.5(Mg0.2Al0.8)(Si0.5Al0.5)Si1.1O7: yellow; Ca1.6(Mg0.2Al0.6)Si1.8O7: light blue with 60 ppm Ti). C) IPC 
mineral phase map on melilite (light blue) in B. Ca0.8Si2S0.1O5 (dark blue), Ca-Al-Si-S (Ca1.9Al0.1Si0.9S0.1O4: 

red; CaAl0.3SiS0.3O4: light blue), and CaAl0.6Mg0.2Si2O6 (pink). Symbol: * = mineral phase with IPC applied.  

Mn occurs in region W26_T5M2 in a Ca-Al-Mg-Fe-Si (180 ppm) and a Ca-Al-Fe-Si (60 
ppm) phase (Fig. 16 and Table 13). 
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Figure 16. Region W26_T5M2. A) BSE image. B) Mineral phase map of Ca-Al-Fe-Si (Ca0.1Al0.8Fe0.2Si1.1O4: 
dark blue with 60 ppm Mn; CaAl0.5FeSi2O7: light blue, quartz (green and purple), Ca0.9Al0.3Mg0.2Fe2.3SiO6 

(pink) with 175.41 ppm Mn, and olivine (yellow). C) IPC mineral phase map on Ca-Al-Mg-Fe-Si (pink) in B. 
Ca-Al-Fe-Si (Ca2Al0.2Fe0.3Si0.6O4: dark blue; Ca0.3Al0.2Fe2.2Si0.5O4: pink), Ca0.5Al0.2Mg0.1Mn0.1Fe1.5Si0.7O5 
(red), and Ca0.5Al0.2Mg0.1Mn0.1Fe1.5Si0.7 S0.1O5 (light blue). Symbol: * = mineral phase with IPC applied. 

In region W26_T6.2M3, olivine and monticellite are associated with 30 ppm Zn and 240 
ppm Fe, respectively. Calcite forms a reaction rim around melilite that displays an 
exsolution texture (Fig. 17 and Table 15).  
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Figure 17. Region W26_T6.2M3. A) BSE image. B) Mineral phase map of olivine ((Fe1.6Ca0.4)(Si0.7Al0.3)O4: 
dark blue with 30 ppm Zn; (Ca1.1Mg0.4)Si1.2O4: green), quartz (orange), monticellite (salmon) with 240 ppm 
Fe, Ca0.5Al0.5Mg0.6Si2O6 (brown), wollastonite (pink), calcite (grey), and melilite (Ca1.4(Mg0.2Al1.3)Si1.6O7: 
yellow;  Ca1.3(Mg0.2Al0.8)Si1.9Al0.1O7: light blue). C) IPC mineral phase map on melilite (light blue) in B. 

Quartz (dark blue), Ca-Al-Mg-Fe-Si (CaAl0.8Mg0.2Fe0.3Si1.7O6: brown; Ca0.9AlMg0.2Fe0.6Si2.2O8: light 
blue). Symbol: * = mineral phase with IPC applied. 

No trace metals were found localising in regions W26_T4 (Fig. 18 and Table 12) and 
W26_M4 (Fig. 19 and Table 16). 
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Figure 18. Region W26_T4. A) BSE image. B) Mineral phase map of quartz (dark blue), olivine (red), 
Ca2Al0.9Mg0.1Si1.5S0.3O7 (pink), and CaAl0.4Mg0.1Fe0.1Si2.2S0.5O7 (light blue). C) IPC mineral phase map on the 

Ca-Al-Mg-Si-S (pink) in B. Ca-Al-Si-S (Ca0.9Al0.2Si0.7S0.9O4: dark blue; Ca2.2Al0.2Si0.7S0.6O5: grey), Ca-Al-
Mg-Si-S (green), and melilite (Ca1.5(Mg0.1Al0.9)(Al0.3Si0.7)SiO7: brown; Ca1.7(Mg0.2Al0.7)Si1.6O7: light blue). 

Symbol: * = mineral phase with IPC applied. 

 
 

Figure 19. Region W26_M4. A) BSE image. B) Mineral phase map of calcio-wüstite (dark blue), melilite 
(green), Ca-Al-Si-S (Ca0.8Al0.1Si0.3S1.6O4: purple; Ca0.8Al0.2Si0.4S1.6O4: pink), calcite (yellow), and 

CaAl0.2Fe0.1Si0.7S0.7O4 (light blue). 

2.3.1.2.4 Horizon W25 
 
Regions W25_T1 and W25_M1 are dominantly CaO with larnite occurring in the former 
(Fig. 20 and Table 17), and quartz and a Ca-Si phase in the latter (Fig. 21 and Table 18).  
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Figure 20. Region W25_T1. A) BSE image. B) Mineral phase map of Ca-oxide (CaO: light blue; Ca0.8O: dark 
blue with 140 ppm Ba), and larnite (brown) with 90 ppm Mn. C) IPC mineral phase map on Ca-oxide (dark 
blue) in B. Quartz (light blue), melilite (brown) with 20 ppm Mn, and Ca0.5Al0.3Fe0.1Si2SO4 (dark blue) with 

110 ppm Ba. Symbol: * = mineral phase with IPC applied. 



2 38 
 

 

Figure 21. Region W25_M1. A) BSE image. B) Mineral phase map of quartz (dark blue), Ca-oxide (Ca0.8O: 
brown; Ca0.9O: pink; CaO: yellow), and Ca0.7Si0.1O (light blue) with 230 ppm Fe. C) IPC mineral phase map 

on Ca-Si (light blue) in B. Melilite (Ca1.6(Mg0.2Al0.8)(Al0.8Si0.2)(Si1.2)O7: light blue with 30 ppm Mn; 
Ca1.9(Mg0.1Al0.9)(Al0.1Si0.9)Si0.6O7: dark blue with 780.64 ppm Fe and 140 ppm Ba), and Ca2Al0.2Fe0.4Si0.6O4 

(brown). Symbol: - = low quantification results; * = mineral phase with IPC applied. 

Larnite includes 90 ppm Mn in W25_T1 and the outlier cluster quantified as Ca-oxide is 
associated with 140 ppm Ba. Both Fe-oxide and anorthite in region W25_M2 contain Mn 
(80 ppm and 80 ppm, respectively). Appling the IPC on the outliers from regions W25_T1 
and W25_M1 reveals Mn (20 ppm) in melilite and Ba (110 ppm) in a Ca-Al-Fe-Si-S phase 
in the former, and Fe (780 ppm) in melilite, Mn (20 ppm to 60 ppm) in melilite and a Ca-
Al-Fe-Si phase, and Ba (140 ppm) in melilite in the latter. Region W25_M2 includes Ca-
oxide with 90 ppm Fe, trace Mn localising with nuggets of Fe (80 ppm) that are exposed to 
pore space and are associated with needles of anorthite (80 ppm) (Fig. 22 and Table 19). 
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Figure 22. Region W25_M2. A) BSE image. B) Mineral phase map of Fe-oxide (Fe0.9O: dark blue) with 80 
ppm Mn, Ca1.1Si0.1S2.4O5 (green), anorthite (brown) with 80 ppm Mn, Ca-oxide (grey) with 90 ppm Fe, and 

Ca2Al0.7Fe0.1Si1.7S0.8O8 (light blue). 

2.3.1.2.5 Horizon W24 
 
Melilite dominates regions in horizon W24, followed by Ca-Si silicates (larnite, rankinite, 
tricalcium silicate). In both W24_T1 (Fig. 23 and Table 20) and W24_T2 (Fig. 24 and 
Table 21), the outliers comprising melilite revealed trace Mn (up to 40 ppm and up to 50 
ppm, respectively) that was not detected from the preliminary clustering.  
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Figure 23. Region W24_T1. A) BSE image. B) Mineral phase map of melilite 
(Ca2(Mg0.1Al0.9)(Al0.6Si0.4)SiO7: dark blue; Ca2(Mg0.1Al0.7)Si2O7: red; Ca2.3(Mg0.1Al0.8)Si1.7O7: light blue) and 
rankinite (pink). C) IPC mineral phase map on melilite (light blue) in B. Ca1.2AlMg0.1Mn0.1Si1.1O5 (dark blue) 
with 30 ppm Mn, and melilite (Ca2(Mg0.1Al0.8)Si1.7O7: brown; Ca1.8(Mg0.1Al0.9)Si1.8O7: light blue) with up to 

40 ppm Mn. Symbol: * = mineral phase with IPC applied. 
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Figure 24. Region W24_T2. A) BSE image. B) Mineral phase map of rankinite (dark blue), tricalcium silicate 
(green), Ca0.1Si0.9O2 (brown), and melilite (Ca1.5(Al0.8)(Al0.3Si0.7)SiO7: grey; Ca1.3(Al0.7)Si2.2O7: light blue). C) 
IPC mineral phase map on melilite (light blue) in B. Calcite (dark blue), Ca1.2Al0.6Mg0.2Si2O7 (brown) with 50 

ppm Mn, and melilite (light blue) with up to 40 ppm Mn. Symbol: * = mineral phase with IPC applied. 

While region W24_M1 is dominantly pore space (84.66 % of pixels of EDS map), the 
highest Mn (230 ppm) content is associated with Fe-oxide within the pore space that is 
surrounded by grains of tricalcium silicate (Fig. 25 and Table 22).  

 

Figure 25. Region W24_M1. A) BSE image. B) Mineral phase map of melilite (Ca1.4(Mg0.1A0.9)(AlSi)O7: 
dark blue; Ca1.9(Mg0.1Al0.6)Si1.4O7: pink; Ca1.7(Mg 0.2Al0.7)Si1.7O7: light blue), quartz (green), Fe-oxide 

(purple) with 230 ppm Mn, and tricalcium silicate (yellow). 
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The Ca-Fe-Si phase in W24_T3M2 associated with Mn (190 ppm) localises around higher 
Al regions or is surrounded by a Ca-Al-Si phase that is exposed to pore space (Fig. 26 and 
Table 23).  

 
 
Figure 26. Region W24_T3M2. A) BSE image. B) Mineral phase map of Ca-Fe-Si (dark blue) with 190 ppm 
Mn, melilite (red) with 40 ppm Mn, melilite (light blue) with 90 ppm Mn, Ca-Al-Fe-Si (light blue), Ca-Al-Si 

(Ca1.5Al0.5Si2.1O7: orange; Ca2Al0.3Si0.6O4: pink; Ca1.7Al0.4Si0.7O4: yellow). C) IPC mineral phase map on 
melilite (light blue) in B. Ca0.1Al0.1Fe1.7Si0.2O4 (dark blue) 160 ppm Mn, CaAl0.7Mg0.1Fe1.2Si2O8 (light blue), 
and melilite (Ca1.6(Mg0.1Al0.9)Si1.8O7: brown) with 10 ppm Mn. Symbol: * = mineral phase with IPC applied. 

 

Applying the IPC on the W24_T3M2 outliers revealed phases of Ca-Al-Fe-Si, melilite with 
10 ppm Mn, and Ca-Al-Mg-Mn-Fe-Si with 160 ppm Mn. In W24_T4, Ti (40 ppm) is 
associated with melilite in the slag matrix, Mn (10 ppm) is associated with Fe-oxide in 
close proximity to the clast edge, and Ba (30 ppm) is associated with the melilite outlier 
phase (Fig. 27 and Table 24). 
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Figure 27. Region W24_T4. A) BSE image. B) Mineral phase map of Fe-oxide (Fe1.7O3: dark blue) with 10 
ppm Mn, melilite (Ca2(Mg0.1Al0.8)Si1.6O7: orange with 40 ppm Ti; Ca1.3(Mg0.3Al0.7)(Al0.1Si1.9)O7: pink; 

Ca1.6(Mg0.3Al0.7)(Al0.2Si0.8)SiO7: light blue with 30 ppm Ba), Ca-Al-Si (Ca2Al0.9Si2O6: red; Ca0.5AlSi2O6: 
brown), and tricalcium silicate (yellow). Symbol: * = mineral phase with IPC applied. 

2.3.1.2.6 Microstructures and mineral associations 
 
Melilite often dominates the matrix and varies in composition, evident as exsolution 
textures or discrete homogeneous regions. Quartz grains usually within the melilite matrix 
are found within tricalcium silicate (W24_M1: Fig. 25) or in pores near slag clast edges 
(W26_T3: Fig. 13; W26_T4: Fig.18; W26_T5M2:16). Calcite can comprise reaction rims 
around slag clasts growing needle structures into the pore space (W26_M4: Fig. 19; 
W26_T6.1: Fig. 15; W26_T6.2M3: Fig. 17). Wollastonite occurs with Fe-oxides 
(W27_T2M2: Fig. 10; W28_T1: Fig. 5) or is associated with melilite (W26_T6.1: Fig. 15). 
Larnite is found within CaO (W25_T1: Fig. 20). Olivine grains occur with clasts of quartz 
and are surrounded by a rim of calcite (W26_T6.2M3: Fig. 17). Monticellite occurs with 
clasts of olivine and is surrounded by a rim of calcite (W26_T6.2M3: Fig. 17). Tricalcium 
silicate matrix displaying exsolution texture (W24_T4: Fig. 27), occurring as remnants of 
clasts (W24_M1: Fi. 25) and forming reaction rims (W24_T2: Fig. 24) are associated with 
quartz and melilite. Within the melilite matrix (W24_T1: Fig. 23) semi-round clusters of 
rankinite grains occur and can dominate with increasing porosity and grains of quartz and 
CaO. Anorthite can comprise the matrix (W25_M2: Fig. 22; W27_T2M2: Fig. 10). Ca-
oxide forms within the matrix (W28_T1: Fig. 5; W28_T2M2: Fig. 7; W25_T1: Fig. 20; 
W25_M1: Fig. 21), as a reaction rim with needle structures growing into a pore (W28_T1: 
Fig. 5), and as clasts with slightly varying composition (W25_M1: Fig. 21). The Fe-oxide 
FeO displays exsolution texture (W27_M4: Fig. 12) and zoning (W27_M4: Fig. 12) in 
addition to forming nuggets within cracks (W27_T1M1: Fig. 9) and isolated in pore space 
(W28_T2M2: Fig. 7). Fe2O3 mineralisation resembling a melted state and can be 
association with a CaO reaction rim. The Ca-Fe oxide calcio-wüstite can form a rim around 
melilite (W24_T3M2: Fig. 26), as grains in the pore space near a calcite reaction rim 
(W26_M4: Fig. 19), and surround anorthite matrix sharing a similar cracking texture to 
FeO (W27_T2M2: Fig. 10). Pyrite occurs with both zoned FeO (W27_M4: Fig. 12) and 
where fractures in those grains have been filled (W28_M1: Fig. 8). Anhydrite occurs in the 
melilite matrix forming needle structures (W26_T3: Fig. 13). Occasionally, the 
stoichiometric calculations did not yield mineral phase formulas previously reported in iron 
or steel slag. Horizon 26 had the most non-conforming phases.   
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2.3.2 Iterative Phase Classification 
 
Results from applying the IPC on select mineral phases and outliers were variable and are 
categorised as: 1) IPC revealing trace metal (s) that were not identified in the preliminary 
clustering  (Ba, Fe: W28_T2M2; Mn: W26_T1; Mn: W25_T1; Ba, Mn: W25_M1; Mn: 
W24_T1; Mn: W24_T2); 2) IPC not revealing metals that were identified from the 
preliminary clustering (Ti: W26_T6.1); 3) IPC confirming no trace metals (W28_T1, 
W28_M1, W26_T4); 4) IPC confirming trace metals identified from the preliminary 
clustering (Mn: W27_T2M2; Mn: W26_T5M2).  

‘Coincidence peaks’ were detected at In Lβ1(3.487 keV) and Sn Lα1 (3.443 keV) in 14 
phase spectra produced from both the first iteration and the IPC steps. High resolution BSE 
imaging (5 to 15 keV) and point analysis in Aztec that did not reveal the trace metals 
support this incorrect signal binning.  

2.4 Discussion 
 
Common quantification methods (i.e., MLA, QEMSCAN) require considerable domain 
knowledge of samples for accurate results. Instead, the IPC workflow that leverages 
unsupervised machine learning enables quick and reproducible results by modifying the 
simple parameters of each algorithm. The abundances of trace Ba, Fe, Mn, and Ti and 37 
mineral phases were quantified from the five stratigraphic horizons. This was done without 
a comprehensive list of the possible slag mineral phases that the user would need and use 
to populate the input mineral library for mineral calculation and identification by MLA 
(Fandrich et al., 2007). The data-driven approach that leverages the density of 
measurements made helps users decide where to perform more detailed analysis. It does 
this by requiring IPC analysis based on statistical properties of each phase, rather than 
subjective and error-prone details in BSE images.  

2.4.1 Dimensional reduction and clustering  
 
Applying a dimensional reduction and clustering algorithm on the EDS data provides a 
chemical correlation of the segmented mineral phases to the physical microstructures of the 
samples. Subsequent standardless quantification and stoichiometric mineral phase 
calculations of the clustered NMF components reflect even the slightly variable 
compositions evident in the contrasting densities in the associated BSE image (e.g., 
W28_T1: Fig. 5 and Table 2; W26: Fig. 14 and Table 10; W26_T6.1: Fig. 15 and Table 
14). This is attributed to the non-negative constraint of NMF that forces clustering in 
positive dataspace which directly represents microstructures in the samples. The 
normalised intensity spectra of the six NMF components in Figure 4 represent the reduced 
EDS data into components directly associated with the various microstructures evident in 
the BSE. Jany et al. (2017) and Teng and Gauvin (2020) used NMF compared to PCA for 
phase identification, which included rare earth metals, and found NMF more effective due 
to the smaller signal reduction. These findings are relevant for choosing which dimensional 
reduction algorithm to use in this study that has a similar aim of trace metal identification. 
It is worth considering that without the non-negative constraint defining NMF, reducing 
data dimensionality using PCA allows components to occupy more dimensional space and 
subsequent clustering could reflect more of the spectral data variance. However, with the 
focus of this research on developing an optimised method for quantifying slag mineralogy 
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and metal concentrations and identifying the microstructures where the trace constitutes are 
localising, representing the data variance in maximised data space is not worth 
compromising the direct physical representation NMF components have to the sample. 
PCA is frequently applied to reduce noise prior to spectral data processing (Lucas et al., 
2013; Teng & Gauvin, 2020), especially when the abstract nature of the loading does not 
interfere with further interpretation such as mineral phase characterisation. This suggests 
PCA might be the more appropriate choice for studies that do not require detailed 
microstructural information. Therefore, NMF is the more suitable choice for this study as it 
can handle overlapping signals in microstructural data, allowing it to directly represent the 
physical microstructures of the slag. 
 
Applying HDBSCAN enabled the identification of mineral phases with slight 
compositional variation. The phase maps from all regions except two (W28_T3M3 and 
W25_M2) depict separate clusters with the same elemental components but with varying 
quantities. This segmentation between mineral phase members occurs in silicates (melilite, 
Ca-Al-Fe-Si-S, Ca-Al-Si-S, Ca-Al-Fe-Si, Ca-Al-Fe-Si, Ca-Al-Mg-Fe-Si, Ca-Al-Si) and 
oxides (Ca, Fe). Wilkinson et al. (2019) recognised image segmentation from clustering 
strongly influences mineral phase identification and quantification. As such, the 
combination of using HDBSCAN that can identify clusters with varying densities or that 
are nested and manipulating the ‘min_cluster_size’ and ‘min_samples’ hyperparameters to 
optimise the image segmentation are inferred to explain the identification of slight 
chemical variation in the mineral phases. Computing the number of pixels comprising each 
mineral phase following the first clustering attempt provided a reference point to test 
alternative parameter values and combinations. The range of the number of clusters 
identified and the percentages of outliers can be attributed to the heterogeneous nature of 
slag (e.g., ore rock, fluxes, scrap metal). 

Traditional segmentation methods requiring labels would not be capable of resolving the 
complex slag mineralogy found in this study. Alternatives to mineral phase segmentation 
by clustering including converting elemental f-ratio maps into phase maps to decomposed 
EDS spectra (Teng & Gauvin, 2020), and directly loading the dimensional reduction 
components into the Bruker ESPRIT software (Jany et al., 2017) could improve 
segmentation. However, the previously stated benefits of using a hierarchical, density-
based clustering algorithm would be compromised. Furthermore, optimisation of the 
mineral phase identification that leverages multiple statistically robust algorithms to 
process the data and drive the analysis of significant microstructures and trace metals 
would not be possible. While it is outside the scope of this research, steps to optimise 
clustering such as the hyper-parameter described by Parker and Barnard (2019) that 
recognises the characteristics expected of successful clustering, could be integrated into 
future workflows. The success of clustering the NMF components with minimal manual 
inspection to reveal slight compositional variation in addition to trace metals from big data 
sets provides valuable insight for optimising unsupervised learning approaches aimed at 
material characterisation. 

2.4.2 Iterative Phase Classification 
 
More specific mineralogic and chemical compositions were identified from the 15 regions 
that IPC was applied to, including six where trace metal (s) not identified in the 
preliminary clustering were revealed. This included Ba (40 ppm to 140 ppm) in melilite, Fe 
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(780 ppm to 1020 ppm) in melilite, and Mn (10 ppm to 130 ppm) in Ca-Al-Mg-Si, Ca-Al-
Fe-Si, Fe-Si-S, and melilite. The more precise mineral phase segmentation and trace metal 
localisation from IPC provide a chemical and spatial association that helped to distinguish 
the five stratigraphic horizons. In letting the percentage of pixels of the outliers or another 
cluster from the EDS map (>30%) dictate which cluster to apply IPC, higher 
microstructural detail was recovered. As such, the results from applying unsupervised 
learning methods to highly dimensional data can be used to develop data controls. The 
traditional quantification methods previously listed lack this optimisation capabilities that 
enabled easily tailored data-driven analysis of the Warton slag deposit A. The more specific 
compositional distinction between samples that not only revealed trace metal which would 
have been missed, but also helped to associate the metallurgical process responsible for the 
slag, demonstrates unsupervised learning can resolve the challenges of not knowing a 
priori the representative constitutes (Kotula et al., 2006).  

Some textural variations evident on the BSE images that were not segmented even after 
IPC could reflect the limitations of the algorithms. Using a specific BSE contrast and 
brightness calibration to standardise BSE image grey scale could provide an additional 
differentiation criterion for chemical composition identification of minerals that 
crystallisation as solid solutions resulting in similar-looking spectra (Schulz et al., 2020). 

2.4.3 Quantification 
 
The mineral phases and trace metals identified in this study are dominantly consistent with 
those reported in both modern and legacy iron and steel slag (Piatak et al., 2021). Ba (140 
ppm), Fe (90 ppm to 1300 ppm), Mn (10 ppm to 230 ppm), Ti (20 ppm to 120 ppm), and 
Zn (30.28 ppm) from the preliminary clustering and Ba, Fe, and Mn from IPC differentiate 
the stratigraphic horizons and demonstrate CRM localises in this legacy slag deposit (Table 
26). 

Table 26. Summary of trace element abundances quantified (ppm) from the Warton slag deposit B and 
compiled by Piatak et al. (2021). 

  This study Piatak et al. (2021)  

Metal 
(ppm) 

Preliminary 
Clustering IPC Modern 

BF 
Pre-1900 

BF 

Steel and 
Legacy 

sites 

Ba 140 40 - 140 417 579 415 

Fe 90 - 1300 120 - 780 26000 339000 196000 

Mn 10 - 230 20 8000 7000 49000 

Ti 20 - 120 ND 7000 5000 6000 
Zn 30 ND 67.7 15.4 650 

ND = not detected 

The chemical compositions of mineral phases that did not conform to those previously 
identified are likely the result of the slag cooling. Similar to the spectral artefact produced 
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from a Si-Kα sum peak during the attempted detection of low levels of Sn in a SiO2 matrix 
(Hurban, 2003), ‘coincidence peaks’ resulted from the pulse-pile up of Si Kα X-rays in 
nine phase spectra, appearing as In Kβ X-rays. These spectral artefacts identified prior to 
the final quantification and mineral calculations highlight the importance of optimising 
SEM settings to achieve the best EDS data quantification and avoid misplaced EDS events 
that distort spectral results (Newbury & Ritchie, 2013). 

2.4.4 Resource recovery 
 
The quantification results confirm that both iron and steel slags are represented in the 
deposit from the different slag horizon compositions which is inferred as the result of 
metallurgical processes evolution. Olivine, anorthite, more frequent melilite, and higher 
Fe-oxide content typical of iron slags, suggest the horizons W24, W26, and W28 are 
associated with pre-1900 iron recovery. Separating the iron slags are two horizons, W25 
and W27, with lower Fe-oxide and higher Ca-oxide content, characteristic of steel slag and 
reflects the use of Ca-rich fluxes that improve slag formation (Piatak et al., 2021). Thus, it 
is inferred that the inland legacy deposit A represents the simultaneous iron and 
steelmaking at the Carnforth Iron Works from the quantification results. While iron and 
steel production are confirmed at Carnforth, historic documentation does not specify which 
metallurgical process is responsible for which deposit (Harris, 1960; Riden & Owen, 1995; 
Taylor, 2013). Higher Al2O3, MgO, and trace metal content in the stratigraphically lowest 
horizon could be evidence of the early Bessemer iron pig production which likely would 
have been less efficient at metal recovery.  

 The quantified rare metal content of Ba, Fe, Mn, and Ti in the slag deposit is lower 
compared to that reported by Piatak et al. (2021) from pre-1900 BF (439 ppm to 539 ppm 
less of Ba; 337,700  ppm to 3378,910 ppm less of Fe; 6,770 ppm to 6,990 ppm less of Mn; 
4,880 ppm to 4,980 ppm less of Ti), and steel and legacy slag sites (275 ppm to 375 ppm 
for Ba; 194,700 ppm to 195,910 ppm less of Fe; 48,770 ppm to 48,990 ppm less of Mn; 
5,880 ppm to 5,980 ppm less of Ti) (Table 26). The quantified Zn content is 14.6 ppm 
higher than that reported from pre-1900 BF and 620 ppm lower than that reported from 
steel and legacy slag sites (Piatak et al., 2021) (Table 26). However, compared to the metal 
abundances from the horizons W25 and W27, the relatively higher Mn and Ti quantified in 
horizon W26 (at most 80 ppm to 150 ppm more Mn; at most 100 ppm more Ti) and the 
relatively higher Mn quantified in horizon W24 (at most 150 ppm more) associated with 
the iron slag, differentiate the two types of slag (Table 26). 

The 37 studies that Piatak et al. (2021) compiled to summarise the chemical composition of 
pre-1900 BF, modern BF, steel, and legacy slag, used a variety of techniques including 
XRD, X-ray fluorescence spectroscopy (XRF), laser ablation inductively coupled plasma 
mass spectrometry (LA-ICP-MS), and inductively coupled plasma-atomic emission 
spectrometry (ICP-AES). While these four analytical methods can be used for element 
identification and quantification, they have limitations and lack the capabilities of the 
approach detailed in this study. The presented method bypasses pre-existing mineral 
libraries used by XRD for data comparison (M. Lee, 2017). Instead, the standardless 
quantification and stoichiometric calculations applied to the clusters enabled the 
quantification and identification of unreported mineral phases and trace Ba, Fe, and Mn. 
Furthermore, as a result of using SEM-EDS to collect the data instead of the more 
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destructive ICP-AES (Murray et al., 2000), and using NMF to process the spectral data, the 
quantified metals are spatially associated with the mineral phase that they localise in, and 
to the host microstructures. This facilitated the microstructural analysis to determine that 
Ba, Fe, Mn, Ti, and Zn dominantly localise in reactive phases in close proximity to pores 
(melilite: Fig. 7; Ca-Al-Si-S: Fig. 9; anorthite, Ca-Al-Mg-Fe-Si, Ca-oxide: Fig. 10; Fe-
oxide: Fig. 11; melilite: Fig. 14; melilite, Ca-Al-Si: Fig. 15; Ca-Al-Fe-Si: Fig. 16; Ca-
oxide, larnite: Fig. 20; Ca-Si, melilite: Fig. 21; Fe-oxide, Ca-oxide: Fig. 22; Ca-Al-Mg-Si, 
melilite: Fig. 24; Fe-oxide: Fig. 25; Ca-Fe-Si, Ca-Al-Mg-Mn-Fe-Si, melilite: Fig. 26; Fe-
oxide, melilite: Fig. 27). Even though XRF and LA-ICP-MS can quantify elemental 
compositions while preserving spatial correlation to the host mineral phase (Durrant, 1999; 
Sharma, 2012), it cannot identify mineral phase as the method presented in the study does 
by clustering and performing stoichiometric mineral composition calculations. 

The influence of ‘Biogeochemical Weathering’ (Potysz et al., 2018) which may cause the 
release of metals from the slag deposit in the environment would impact the potential CRM 
recovery estimates. Analysing a combination of drill core and samples from the surface of 
the deposit and with increasing depth into the horizon could be used to account for 
‘Biogeochemical Weathering’ impacts. Thus, providing more precise metal content 
estimates for legacy slag deposits.   

The smaller concentrations of Ba, Fe, Mn, and Ti (Table 25) compared to those that are 
typically found in pre-1900 BF, steel, and legacy slag sites make non-bio 
hydrometallurgical processing impractical for resource recovery from this deposit as this 
method is favoured for higher concentrations of recoverable metals (Habib et al., 2020). 
Alternatively, biohydrometallurgical processing which uses microorganisms to dissolve 
metals from their mineral sources is an environmentally friendly alternative to 
conventional recovery methods since it produces smaller quantities of waste (Brandl & 
Faramarzi, 2006; J. Lee & Pandey, 2012) and has lower energy and landfill space demands 
(Habib et al., 2020). The reactive phases previously listed offer more surface reaction 
potential and allow access for reactive fluids to grain boundaries (Librandi et al., 2019; 
Postma, 1993; Shen & Forssberg, 2003). Notably, bioleaching with Mn solubilising 
microorganisms has been shown to recover Mn from lean grade ores (Ghosh et al., 2016; 
Panda et al., 2015; Srichandan et al., 2013). Thus, the findings of this study, determined by 
identifying trace metal localisation and the potential for bioleaching with the data-driven 
microstructural approach, support the viability of extracting the revealed trace metals with 
bioleaching. Employing bioleaching on the industrial scale could reduce treatment 
expenses for slags with lower metal concentrations (Solisio & Lodi, 2002). Furthermore, 
by linking the metallurgical processes to the slag composition and metal content, metal 
recovery from legacy industrial waste deposits could be improved. This could facilitate the 
development of more precise resource recovery methods with lower energy demands, 
environmental impact, and costs, ultimately promoting the integration of CE practices into 
industrial waste management.  

2.5 Conclusion 
 
The data-driven unsupervised machine learning approach outlined in this study was used to 
quantify and identify the mineral phases and trace metal content from a legacy iron and 
steel slag deposit. Using dimensional reduction and clustering enables efficient processing 
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of many high-dimensional spectral datasets. The chemical composition of the mineral 
phases identified by the standardless quantification and the stochiometric mineral 
calculations is associated with the microstructures where they are localising. Using 
unsupervised learning methods (1. NMF, 2. HDBSCAN, 3. IPC) for quantification 
decreases human-dependent data processing and the need for substantial domain 
knowledge of samples. NMF is more suitable for identifying the mineralogy and the trace 
metal content as directly represents the physical microstructures of the slag. Application of 
the IPC step improves the accuracy of trace metal identification. From both confirming the 
presence of Ba, Fe, and Mn found from preliminary clustering, and revealing Ba, Fe, and 
Mn that was not initially identified, the capabilities of this approach to drive further 
analysis and act as data control are demonstrated.   

Identification of the multiple metallurgical processes represented in the legacy slag 
deposits allowed for the recommendation of more precise and environmentally sensitive 
metal recovery methods. The less energy-intense bioleaching approach that shows promise 
is suggested to help release Mn from iron production slags due to Mn concentrating in 
mineral phases in close proximity to pores and reaction rims, facilitating bioleaching 
solutions’ access. 

By leveraging highly dimensional spatially and chemically correlated datasets, the metal 
content can be quantified to inform the potential for CRM recovery from legacy industrial 
wastes. This insight can then be used to optimise slag repurposing and resource recovery 
methods, ultimately integrating CE principles into industrial waste management.  
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3. Chapter 3: Heterogeneous lithification across a legacy 
coastal slag bank: the creation of new sedimentary rock 
from anthropogenic material 

 
3.1 Introduction 

 
Artificial ground is a defining characteristic of the Anthropocene resulting from humans 
acting as geological agents in landscape evolution (Cooper et al., 2018; Price et al., 2011;  
Wilkinson, 2005). Heterogenous in nature, artificial ground ranging from spoil heaps from 
deep mining to furnace slag and waste tips (Price et al., 2011) contributed more than 316 
gigatonne (Gt) of sediment in 2015, greatly surpassing the annual sediment supply by 
major rivers to oceans (more than 24 times) (Cooper et al., 2018). Population growth, a 
wider range of minerals being exploited, and technological advancements are increasing 
the volume of anthropogenic sediment (Cooper et al., 2018).  

As well as being significant in terms of volume, artificial ground deposits also pose a range 
of challenges (e.g., toxic metal contamination: Hobson et al. (2017)) but also many 
opportunities. Slag generated from the smelting of ore, coke, and fluxes to be casted into 
pig iron or used for steel making can be reused due to its high stability and ability to 
neutralise acidity (Ahmedzade & Sengoz, 2009; Huijgen et al., 2005; Piatak & Ettler, 
2021). The world iron and steel slag production in 2022 is estimated between 299 and 354 
Mt and between 172 and 263 Mt (USGS, 2023), respectively and may increase to 2.2 and 
0.7 Gt/yr-1 by 2100 (Pullin et al., 2019). The significant quantities of waste produced 
during the Industrial Revolution in the UK could be used in Circular Economic practices 
for sustainable action (Branca et al., 2020). Possible resource recovery (Gomes et al., 2016; 
Habib et al., 2020) from the estimated 490 to 640 million tonnes of slag generated in the 
UK since 1875 (Renforth et al., 2011) would reduce the extraction of new raw materials 
(Bianco & Porisiensi, 2016). Mineral carbonation as a form of greenhouse gas removal 
(Sanna et al., 2014) mimicking natural weathering processes (Doucet, 2010; Gomes et al., 
2016; Huijgen et al., 2005) has been applied to alkaline iron and steel slags (Eloneva et al., 
2008; Huijgen et al., 2005; Huijgen & Comans, 2006; Pan et al., 2012). The passive in-situ 
storage of atmospheric CO2 documented in legacy slag-dominated artificial ground 
(MacDonald, et al., 2023a; MacDonald,, et al., 2023b; Mayes et al., 2018; Pullin et al., 
2019) aids in the removal of greenhouse gasses. Considering over 190 million tonnes of 
legacy iron and steel slag exist at current and former workings across the UK (Riley et al., 
2020), and the increasing volumes of artificial ground in general (Cooper et al., 2018), it is 
necessary to understand the processes altering these materials.    

Given this range of potential opportunities which artificial ground may offer, it is important 
to understand how processes such as lithification (MacDonald, et al., 2023a) affect their 
physical and mechanical properties. As the preservation of artificial ground is contingent 
on its ability to endure the transformative and erosional effects of nature and humans (Price 
et al., 2011), the degree of lithification of the typically loose and unconsolidated material 
will yield variable chemical and physical changes (MacDonald, et al., 2023a). Instead, 
most studies investigating the long-term fate of legacy slag deposits are focused on the 
carbon capture potential (Chukwuma et al., 2021), emplacement method (Pullin et al., 
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2019), drainage waters (Mayes et al., 2018), and the surrounding environment (Yi et al., 
2012).  

Lithification of a slag deposit by calcite precipitation from ingassed atmospheric CO2 
reacting with dissolved Ca from the slag has been documented at a small inland legacy slag 
deposit at Glengarnock, Scotland (MacDonald, et al., 2023a). However, in the UK, 
volumetrically the majority of legacy slag is located in coastal settings (Riley et al., 2020), 
where more chemically complex interactions with seawater will occur. This study 
documents the mechanisms driving the lithification of a coastal legacy slag-dominated 
artificial ground deposit through X-Ray Diffraction (XRD), EDS, thermogravimetric 
analysis (TGA), and stable Carbon and Oxygen isotope analysis. We present new insight 
into the influences natural weathering processes and various water sources have on the 
lithification of artificial ground, which will inform future repurposing (Renforth, 2019) 

3.2 Materials and methods 
 
Slag samples were collected in a transect orthogonal to the sea across the Warton slag heap 
in South Lancashire, England (54.129483°, -2.80018°: Fig. 28) where iron and steel works 
were active from 1864 to 1929 (LCC, 2006; Riden & Owen, 1995).   

 

Figure 28. A) Location of sampling site in South Lancashire, England. B) Field photograph showing the 
lithified nature of the seaward side of the approximately 10 m thick deposit; 1.82 m height person for scale. 
C) Field photograph showing lithified vertical succession through the lower part of the seaward side of the 

deposit, where samples W5-W9 were obtained from. 
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Historical accounts suggest the slag was piled to form sea embarkments and has continued 
to prevent extensive erosion at the Warton Saltmarsh (Harwood & Scott, 1999; Skelcher, 
2014). All samples appear to be made of particles or clasts of grey slag with a cream-
colored material between that vigorously effervesces when in contact with diluted 
hydrochloric acid. Samples W5, W6, W7, W8, and W9 (Fig. 28B, C and S1A-E) were 
collected below the mean high watermark (MHWM) in the intertidal zone and below 
where W13 was collected (Fig. S1F). Sample W15 (Fig. S1G) is from above the MHWM 
in a zone washed by seawater during storms, whereas W18 (Fig. S1H) dominantly 
experiences rainfall on the top surface of the deposit. Sample W20 (Fig. S1I) is 
topographically lower and from the eastern side of the deposit, where inland the Warton 
Saltmarsh contributes more saline water to rainwater puddles where W23 was collected 
(Fig. S1J).   

Samples were cut using a cool-water diamond saw, pulverised with an agate mortar and 
pestle, and passed through a 53 μm sieved for TGA and XRD analysis. Cream-coloured 
material from between slag clasts (hypothesised to be a carbonate mineral) was drilled for 
stable C and O isotope analysis.  

Thermogravimetric analysis was conducted using an SDT Q600 (TA Instruments, USA) 
under Ar atmosphere at 100ml/min with a 10° C per minute heating rate from 0 °C to 
1000°C at the School of Chemistry. The weight loss at decomposition temperatures for slag 
components was determined using the modified Thermogravimetric analysis - derivative 
TGA-DTG interpretation (Chiang & Pan, 2017) to quantify carbonate content (Table S1).     

Sample mineralogy was identified by XRD on a Malvern Panalytical Empyrean with 
PIXcel3D-Medipix3 1x1 detector using Cu Kα radiation (wavelength 1.541874 (Å)) at the 
School of Chemistry, University of Glasgow. Data collection was collected in Bragg-
Brentano reflection geometry 5-80° 2θ, with a step size 0.0131°. Phase identification was 
performed with reference to the Crystallographic Open Database.    

δ13C and δ18O values, to determine the source of CO2 in the powdered cream-coloured 
material, were acquired using an Isoprime 100 mass spectrometer at the School of 
Geographical and Earth Sciences, University of Glasgow. The drilled powder was acidified 
using phosphoric acid (≥1.90 SG) and heated for 1 hour at 60 °C on an Elementar 
GasBench. Triplicates of the sample were run and the average reported with 1 standard 
deviation except for W6 as the carbonate content was below the detection level. The 
reference standards NBS-18 and IAEA-603 were used and reported values were calibrated 
to Vienna-Pe De Belemnite (V-PDB). The secondary standard IA-RO22 (Iso-Analytical 
Ltd.) was used to calibrate linearity for more depleted values of δ13C and δ18O. The 
analytical uncertainty for the δ13C and δ18O analysis (0.10 and 0.1 per mille ‰, 
respectively), was determined from IAEA-603 (n=39) measurements during the analytical 
bath. 

Polished thin sections with a ~20 nm conductive carbon layer from selected samples were 
imaged and mapped by SEM-EDS analysis using a Zeiss Sigma VP-FEG SEM equipped 
with a BSE detector and an Oxford Instruments Ultimax 170 mm2 EDS detector at the 
GEMS facility at the School of Geographical and Earth Sciences, University of Glasgow. 
EDS mapping was conducted with an accelerating voltage of 20 keV, in a high vacuum 
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using high current mode, with a working distance of 8.0 mm, and an aperture of 60 μm. 
EDS maps that were acquired and processed using Oxford Instrument AZtec ® 4.3 and 
AZtec ® Flex software have had the AZtec ® Trumap function applied which resolves 
element peak overlap and removes artefacts and background.   

3.3 Results 
 
Visual inspection during fieldwork indicates the seaward side of the deposit comprising a 
sloping bank experiencing sea washing has more cream-coloured material covering the 
slag than on the top of the heap. Gehlenite (Ca2Al2SiO7) and/or åkermanite (Ca2MgSi2O7) 
(end-members of the melilite solid solution) were identified by XRD analysis (Table 27) in 
all but one (W6) of the ten samples, with other common slag phases such as larnite 
(Ca2SiO4) and pseudowollastonite (CaSiO3) occurring in a smaller number of samples. The 
CSH minerals thaumasite Ca3Si(OH)6(CO3)(SO4)·12H2O) and jouravskite 
(Ca3Mn4+(SO4)(CO3)(OH)6·12H2O) occur in several samples, while all except for one 
(W6) sample contain carbonate minerals (dominantly calcite (CaCO3) but occasionally 
aragonite and vaterite).    

Table 27. Mineral phases identified by XRD of slag from South Lancashire, England. Symbols: * = detected; 
- = not detected. 

Sample W5 W6 W7 W8 W9 W13 W15 W18 W20 W23 
Gh * - * * * * * * * * 
Ak * - * * * - * * - * 
Cal - - * * * * * * * * 
Arg * - - - * - - - - - 
Vtr - - * * - - - - * - 
Qtz * - - - - * - * - - 
SiO2 - * - - - - - - - - 
Rnk - - - - - * - - - * 
Lrn - - * - - - - - - - 
Fa - * - - - - - - - - 

Wus - * - - - - - - - - 
Lws - * - - - - - - - - 

Jouravskite * * * * - - * - - - 
Thaumasite * * - - - - * - - - 
Ettringite - - - - - - - - * - 

Pseudo-
wollastonite - - - * * * - - * - 

 

There was some correlation between mineralogy and the location of the sample along the 
transect from the seaward side to the landward side. Notably, samples W5 and W6 from the 
intertidal zone containing thaumasite and jouravskite do not occur with calcite. Gehlenite 
and åkermanite are absent in W6 and fayalite (Fe2+2SiO4), wüestite (FeO), and lawsonite 
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(CaAl2(Si2O7)(OH)2·H2O) are associated with the elevated thaumasite and jouravskite 
content. The Ca-rich silicates pseudowollastonite and rankinite (Ca3Si2O7) occurring 
around the MHWM (W13) are not present in samples from the top of the slag bank (W18).  

Different regions of the deposit show variable textures and spatial distribution of elements 
within microstructures in the multi-element EDS maps from the SEM analysis (Fig. 29).  

 

Figure 29. SEM analysis of microstructures. A) EDS map (orange = Ca; purple = Si; blue = Mg; red = Al; 
green = Fe) showing calcite cement lithifying slag clasts together. Weathered slag is Ca-poor where there is 

Si-rich exsolution texture. B) BSE image showing fibrous needle structures between slag clasts. C) EDS map 
of the same area as B showing the Si-rich CSH cement lithifying slag clasts together. 

The slag dominantly comprises clasts often displaying exsolution textures where the Si-
rich portions can vary in size (50 μm to 750 μm) and concentration. The finer-grained Si-
rich regions are associated with weathered slag that is Ca-poor and more porous (Fig. 
29A). The material cementing clasts together differ in size, shape, texture, and proportions 
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of Ca and Si. The cement from below storm wave base (W17) is Ca-rich, varies in 
thickness from ~10 μm to ~ 175 μm, and forms an amorphous-shaped network that 
surrounds the slag clasts (Fig. 29A). The cement from the intertidal zone (W1) is Si-rich 
and forms fine fibrous needles that both fill pores and surrounds Ca-rich rims on the 
exterior of clasts (Fig. 29B, C).  

Thermogravimetric analysis of the slag samples recorded weight loss spanning 628 °C to 
759 °C with carbonate content reaching 16.2 wt% on the top of the bank (W18) and 
decreased towards the seaward side to 0.6 wt% in sample W5 (Fig. 30).  

 

Figure 30. Carbonate content of the slag samples and δ13C values of the cream- coloured material from TGA 
and stable isotope analysis, respectively. No δ13C data for W6. 

 
Weight loss exceeding 105 °C associated with the expulsion of surface water up to 200 °C, 
and the dehydration of crystalline water from weight loss between 400 °C to 500 °C, 
corroborates the presence of the CSH in samples W5 and W6. Carbon and oxygen isotopic 
analysis of the powdered cream-coloured material between and around the slag clasts gave 
δ13C values between -6.4 ‰ and -22.7 ‰ and δ18O between -4.2 ‰ and -11.3 ‰ (Fig. 30). 
There is a correlation between samples with more depleted (-22.6 ‰: W7) δ13C values in 
closer proximity to the sea, whereas samples from the top of the slag bank (farther from the 
sea) were less depleted (-6.4 ‰: W18). The sample from within a puddle on the saltmarsh 
side of the deposit (W23) is similarly depleted to that of those exposed to seawater during 
storms (W15).  

3.4 Discussion 
 
Similar material found lithifying rock-like masses of slag that is associated with the 
Glengarnock Steelworks in North Ayrshire, Scotland is dominated by calcite (MacDonald 
et al., 2023a). Calcium from the edges of the slag clasts sourcing the calcite cement is 
leached by water (MacDonald et al., 2023a; Mayes et al., 2018) from the Kilbirnie Loch (a 
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freshwater lake) as in Equation 1 (Equation 1: Mayes et al., 2018; Pullin et al., 2019), 
where the slag forms approximately a quarter of the lake shoreline.  

 Ca2SiO4 + 4H2O ⇌ 2Ca2+ + 4H4SiO4 + 4OH-                        (1)
                                   

As the lake water is driving calcite precipitation, the fluctuating level allowed for leached 
Ca to react with temporarily isolated highly alkaline water that was pooling on the rough 
surface of the slag heap, promoting the ingassing and hydroxylation of atmospheric CO2. 
The strongly negative δ13C value recorded at Glengarnock (-20.05±0.23 ‰) supports the 
interpretation that the calcite cement comprises atmospheric CO2 and that there was minor 
dissolved inorganic carbon (DIC) equilibration in the pooled water prior to calcite 
precipitation (MacDonald et al., 2023a). While the stockpiled slag from Glengarnock is in 
an inland lake, most legacy iron and steel slags in the UK were deposited in coastal settings 
(Riley et al., 2020) such as Warton, where the mechanisms and drivers of lithification may 
be more complex.  

3.4.1 Mechanisms of lithification 
 

3.4.1.1 Calcite cement precipitation 
 
The cream-coloured material covering the slag heap and found cementing clasts together 
results from lithification mechanisms that are driven by Ca leaching and water 
(MacDonald et al., 2023a). While Ca leaching from the edge of slag grains is the 
mechanism for sourcing Ca for the calcite cement (MacDonald et al., 2023a) across the 
three distinct regions of the slag bank (Fig. 31), it is impacted by conditions that vary 
across the width of the deposit.  

 

Figure 31. Conceptual model of the mechanism lithifying slag-dominated artificial ground. A) Rainwater 
facilitating melilite dissolution drive carbonation precipitation. B) Rain and seawater facilitate more Ca-rich 

phase (i.e., pseudowollastonite, rankinite) dissolution by buffering the rising pH. C) Seawater driving 
secondary CSH precipitation where erosion is undercutting the deposit.  

The source of Ca is dependent on the solubility of the minerals comprising the slag 
(Huijgen et al., 2005), thus affecting the mechanisms of lithification. Samples from the top 
of the slag bank (Fig. 31A) are dominated by melilite group end-members gehlenite and 
åkermanite with the cement material recording 15.08 wt% calcite. On the seaward side 
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(Fig. 31B and C), additional Ca-rich phases (i.e., pseudowollastonite, rankinite: Ca3Si2O7) 
were detected and the calcite content in the cement reaches 10.9 wt% (W13). Notably, as 
calcite content in the cement decreases westerly along the transect with increasing 
proximity to the sea, the δ13C values become more depleted except for W5 (Fig. 31 and 
32).  

 

Figure 32. δ13C and δ18O values from this study (blue circles) and analogous studies (Falk et al., 2016; 
Renforth et al., 2009); partial DIC equilibrium (blue arrow) and recrystallisation (green arrow) trends and 

hydroxylation fields from (Falk et al., 2016). The error bars are smaller than the data point symbol size where 
they are not visible. Modified from (MacDonald et al., 2023b). 

Together, these results suggest the influence of environmental parameters are larger drivers 
than the mineralogy for the calcite precipitation lithifying the slag deposit.   

3.4.1.1.1 pH 
 
The carbonation of the slag surface is controlled by the diffusion of Ca through the solid 
matrix to the surface, implying mineral solubility will affect the secondary precipitation of 
carbonate cement (Huijgen et al., 2005). Due to the crystal structure, the dissolution of 
gehlenite and åkermanite is generally slower at higher pH values (gehlenite at pH 7 and pH 
10 and åkermanite at pH 7: Engström et al., 2013). Combined with the larger driving force 
for Ca dissolution compared to that of Mg at neutral to alkaline pH (Engström et al., 2013), 
rainwater would drive Ca leaching and increase the alkalinity (Fig. 31A and Equation 1). 
Similar to at Glengarnock, pooling rainwater could get caught on the rough surface of the 
slag heap (MacDonald et al., 2023a), refresh the water and slow the increasing pH. This 
would explain the higher calcite content (15.08 wt%) from the top of the slag bank. 
However, calcite precipitating from a stream draining a slag heap at Consett, U.K. with a 
pH of >11, attributed to the ingassing and hydroxylating of atmospheric CO2, demonstrates 
sufficient Ca was released from the slag for carbonate mineralisation (Mayes et al., 2018).  

As demonstrated in Equation 1, the leached Ca2+ increases water alkalinity, promoting the 
ingassing of atmospheric CO2 into solution where it is hydroxylated and precipitated as 
solid calcium carbonate (Equations 2 and 3) (MacDonald et al., 2023a; Mayes et al., 2018). 
This calcium carbonate cement lithifies the slag clasts.   
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CO2 (g) ⇌ CO2 (aq) + H2O (l) ⇌ HCO- (aq) + H+ ⇌ CO32- (aq) + 2H+           (2)
                           

2Ca2+ + 2HCO- (aq) ⇌ CaCO3 (s) + H2O (l) + CO2 (aq)             (3) 

3.4.1.1.2 Seawater 
 
More frequent and abundant seawater introducing Mg2+ on the seaside of the deposit (Fig. 
30A, B), especially around the MHWM, acts as a buffer (Equation 4: Miki et al., 2004) to 
the rising pH from slag dissolution (Equation 1).  

CaO (s) + H2O +Mg2 (aq) ⇌ Ca2+ (seawater) + Mg(OH)2 (s)            (4)         

These more neutral conditions would facilitate faster Ca dissolution from gehlenite and 
åkermanite (Engström et al., 2013) enabling more carbonate to precipitate. The EDS map 
(Fig. 30A) indicates that Ca leaching from the edge of slag clasts is precipitating to form 
the calcite cement. Furthermore, when more available Ca can continuously dissolve and 
react with ingassed CO2, more atmospheric CO2 can be captured and stored in the 
carbonate cement (Equations 2 and 3) as evident in the low δ13C values (-11.4 ‰ to -22.7 
‰: W7, W8, W9) from the seaward side of the slag bank (Fig. 31B).  

3.4.1.1.3 Atmospheric CO2 input 
 
The range of δ13C values from the two regions of the slag bank (Fig. 30A, B) where calcite 
cement is lithifying the deposit indicate multiple processes are affecting the isotope 
composition. Given there is minimal vegetation on the slag deposit and the calcite 
precipitation is in situ, there is little to no scope for biogenic carbon input; therefore, the 
carbon was most likely atmospheric CO2 and was ingassed and hydroxylated prior to 
calcite precipitation. The low δ13C values of -18.5 ‰ and -14.1 ‰ (W9 and W20, 
respectively) falling within the range of partial dissolved inorganic carbon (DIC) 
equilibrium (Fig. 31) from calcites in a hyperalkaline setting of springs in the Semail 
ophiolite in Oman (Falk et al., 2016), similar to the carbonated slag with hydroxylated 
atmospheric CO2 from Glengarnock (-20.05 ± 0.23 ‰: MacDonald et al., 2023a).  

Hydroxylation and instant calcite precipitation would yield δ13C values between -25 ‰ to -
27.5 ‰ (Dietzel et al., 1992; Falk et al., 2016; Renforth et al., 2009) suggesting the DIC 
remained in solution long enough for gradual DIC equilibrium to proceed, resulting in the 
more intermediate isotopic composition (Falk et al., 2016). The slightly less depleted δ13C 
values ranging from -14.13 ‰ to -6.42 ‰ could reflect calcite with DIC δ13C values that 
were closer to equilibrium values following precipitation, then recrystallised with 
hydroxylated atmospheric CO2 (Falk et al., 2016). Therefore, the δ13C values from the 
calcite cement lithifying the slag at Warton are interpreted to reflect the ingassing and 
hydroxylation of atmospheric CO2 where partial DIC equilibrium occurred prior to initial 
calcite cement precipitation, followed by some subsequent calcite recrystallisation in some 
samples.  
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3.4.1.2 Calcium-Silicate-Hydrate cement precipitation 
 
Similar cream coloured material found covering the slag heap in the intertidal zone (Fig. 
S1A) resembling the secondary calcite cement is inferred to be comprised dominantly of 
CSH. The samples with the CSH phases jouravskite and thaumasite (W5 and W6) recorded 
more weight loss over 50°C to 200°C during TGA analysis corresponding to CSH 
decomposition (Haha et al., 2011; Jiang et al., 2018; Pane & Hansen, 2005) compared to 
that from calcium carbonate which decomposes at 600 °C to 750 °C (Chiang & Pan, 2017). 
The sulphur in the CSH minerals could have been sourced from the original ore rock, 
inclusions in melilites commonly found in blast furnace slag (Pullin et al., 2019; Scott et 
al., 1986), or from dissolved species in seawater (Gregor et al., 1988). The same drivers 
that impact the calcite cement described above are likely affecting the CSH cement 
similarly. The associated phases pseudowollastonite and larnite would be contributing Ca 
leached by seawater, however, only slightly lower δ13C values (-8.02 ‰) from the calcalitic 
component of the cement suggest the CSH phases are affecting subsequent calcite 
precipitation. 

3.4.1.2.1 Surface Reaction 
 
The Ca dissolved from the slag minerals that is from and/or diffuses to the slag surface 
(Huijgen et al., 2005) must have sufficient surface area to be able to precipitate (Ragipani 
et al., 2019). In this study, we found CSH preferentially precipitates over calcite in the 
intertidal zone (Fig. 31C). The BSE and EDS map shows the Si-rich fibrous needles, 
indicative of the presence of CSH, surrounding slag clasts with Ca-rich rims are cementing 
the clasts together (Fig. 30B, C). The CSH acts as a Ca sink for ions that would have been 
used to form carbonates (Béarat et al., 2006) and reduces the permeability of the slag 
(Pullin et al., 2019). A hydration front between secondary CSH surrounding a Ca-, Si-, and 
S-depleted inner alteration layer where the most reactive phases (i.e., larnite) were absent 
indicates water diffusion is limited in carbonated slag (Pullin et al., 2019). Without 
sufficient water to drive the leaching of Ca (MacDonald et al., 2023a) following CSH 
formation that is reducing exposed slag, subsequent calcite cement precipitation is unlikely. 
Similar weathering documented in a basic oxygen furnace slag with larnite dissolution and 
CSH precipitation (Hobson et al., 2017) supports secondary CSH precipitation as the 
mechanism lithifying the heap in the intertidal zone.  

3.4.1.2.2 Atmospheric CO2 input 
  
The δ13C values from calcite in samples with CSH fall outside the range of values from 
samples located on the top of the deposit, except for that from W18. Calcite is a minor 
component in these samples with CSH from the intertidal zone. Recrystallisation of the 
CSH comprising ingassed and hydroxylated atmospheric CO2 that underwent partial DIC 
equilibrium could explain the deviation of calcite δ13C values from the hydroxylation end-
member (-25 ‰: Dietzel et al. (1992)).   

3.4.2 Implication 
 
 The lithification mechanisms documented in this study are driven by the two 
compositionally distinct regions of the slag bank. With increasing volumes of artificial 
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ground produced annually (Cooper et al., 2018), understanding how it interacts with the 
environment following deposition will inform repurposing capabilities and possible 
remediation measures. The composition of artificial ground will continue to change 
alongside the technological advancements that now allow modern extraction techniques to 
exploit lower quality resources (Cooper et al., 2018). Historic accounts claiming the slag 
bank has prevented coastal erosion of the Warton Saltmarsh support the use of slag for 
‘hard’ protection and coastal defence once lithified (Pranzini & Williams, 2013; Riley et 
al., 2020). Slag replacement in Portland cement has been found to reduce the degradation 
from sulphate attack by reducing the cement permeability (McGrath & Hooton, 1997) as a 
result of the dense microstructures of slag (Brown et al., 2003). Cement with a higher slag 
content was found to be more effective at reducing sulphate attack due to shallow ettringite 
formation (Brown et al., 2003). While the CSH documented in this study has been 
attributed to improve the durability of steel slag building material (Lizarazo-Marriaga et 
al., 2011; Zhang et al., 2011), the physical integrity of cement is often compromised from 
ettringite and thaumasite formation (Mehta, 1983; Shi et al., 2012). The expansion and 
cracking from secondary ettringite (Mehta, 1983; Tian & Cohen, 2000), cement 
degradation in marine environments attributed to thaumasite formation (Irassar et al., 
2003), and decreased strength in concrete with ettringite and thaumasite (Shi et al., 2012; 
Tian & Cohen, 2000) highlight the importance of understanding how lithified slag of 
varying compositions evolves in the presence of seawater.  

The mechanisms responsible for the lithification of slag-dominated artificial ground 
present the opportunity to remove atmospheric CO2. Using the reported density range 
minimum of BF (1150 to 1440 kg/m3) and maximum of BOF (1600 to 1760 kg/m3) slag 
(Lee, 1974) and the average percentage of carbonate of the total sample mass (7.95 %), the 
estimated carbon sequestration potential is 38,694 to 59,218 t of CO2. Even with less 
carbonate precipitation where the slag is more frequently washed by seawater, more 
atmospheric CO2 is drawn down and mineralised. However, as a result of the armouring 
effect from CSH precipitation and the resulting reduction in surface reaction (Ragipani et 
al., 2019) limiting slag mineral dissolution and available Ca, additional sources of Ca and 
agitation to restore the surface reaction is necessary for subsequent CO2 mineralisation. 
Calculation of the CO2 capture potential of lithified slag-dominated artificial ground must 
consider how secondary precipitates affect the total extent and rate of carbonation (Hobson 
et al., 2017) in field-size situations spanning various environments and time scales. 
Additionally, experiments determining the impact mineralogy has on atmospheric CO2 
capture could further elucidate the processes responsible for the variable δ13C values that 
deviate from the hydroxylation end member.   

Nevertheless, the cream-coloured material covering the slag bank identified as secondary 
CSH may mitigate one of the challenges posed by artificial ground. The dissolution of slag 
minerals comprising potentially toxic elements such as V and Cr (Mayes et al., 2018) is 
limited by the armouring effect from CSH formation. Even though the tetrahedral Si site of 
dicalcium silicate can accommodate V(V), the presence of V(V) in secondary CSH 
suggests the released vanadate was reincorporated (Hobson et al., 2017). Furthermore, the 
long-term release of Cr from steel slag and other alkaline wastes in similar open systems 
controlled by the solubility of secondary CSH release tends to be in stable forms. The 
incorporation of Cr(III) into CSH during leaching experiments prevented oxidation in the 
solid slag matrix (De Windt et al., 2011). Therefore, the lithification of slag-dominated 
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artificial ground by secondary CSH precipitation may prevent the release of toxic metals at 
ambient conditions. 

3.5 Conclusions 
 
This study identifies the mechanisms lithifying a coastal legacy iron and steel slag deposit 
in South Lancashire, England. Compositionally diverse (identified by XRD) slag samples 
spanning the width of the deposit are lithified by cream-coloured material with variable 
calcite content (confirmed by TGA) and a range of δ13C values.   

Where rainfall drove the dissolution of gehlenite and åkermanite by facilitating the 
leaching Ca, more atmospheric CO2 mineralised in the calcite cement that is lithifying the 
top of the deposit. Comparatively, where there are more Ca-rich phases that are washed by 
seawater on the seaward side of the deposit above the MHWM, there is less calcite but 
records more depleted δ13C values. Secondary CSH covering and lithifying the deposit 
below the mean low-water mark inhibit further mineral dissolution and carbonation, 
potentially limiting the release of toxic metals.     

Given the mineralogic and external environmental parameters influencing the mechanisms 
of lithification, the results shown here suggest opportunities for slag valorisation. The 
repurposing and management of slag-dominated artificial ground could be optimised to 
facilitate in-situ atmospheric CO2 capture by mineralization. 
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4. Chapter 4: Conclusion 
4.1 Metal recovery potential 

4.1.1 Slag characterisation and quantification 
 
Deeper investigation and detailed characterisation of slags needed to guide resource 
recovery greatly benefit from using statistically robust machine learning analytical 
methods. The spatial and chemical correlation gained from processing SEM-EDS data with 
a dimensional reduction and clustering algorithm enables the pinpointing of trace elements. 
By averaging large numbers of pixels, weaker signals are amplified above spectral 
background, facilitating the identification and quantification of trace metals that are 
challenged by alternative methods. NMF is more suited than PCA for analysing historic 
slag due to the non-negative constraint of the algorithm that directly links revealed trace 
metals such as Ba, Fe, and Mn found in this study, to the host phase segmented by 
clustering, and the physical microstructures of the sample. Uncertainties due to analysing 
spectral data of historic slags are easily overcome by applying these unsupervised learning 
approaches. Using IPC which allows the data to guide the analysis, revealed phases and 
trace Ba, Fe, and Mn that were not segmented and identified during the preliminary 
dimensional reduction and clustering. This higher detailed characterisation improved the 
accuracy of the data-driven approach and helped to confirm that iron and steel production 
are represented in the Warton slag deposit A from the variable slag composition and metal 
concentrations. Stratigraphic analysis revealed olivine, anorthite, more frequent melilite, 
and higher Fe-oxide content in horizons W24, W26, and W28, and lower Fe-oxide and 
higher Ca-oxide content in horizons W25 and W27, indicating the metallurgical process 
evolution from solely iron production to combined iron and steel production. This suggests 
co-deposition rather than separate disposal based on process which has implications for 
both metal recovery methods and the application of the most suitable techniques. 

4.1.2 Recovery method 
 
Elevated Mn found in close proximity to pores in both the iron and steel slag horizons 
during compositional and microstructural analysis inform the recommendation of 
bioleaching for metal recovery. The reactive phases (anorthite, Ca-oxide, Ca-Si, Ca-Al-Si, 
Ca-Fe-Si, Ca-Al-Fe-Si, Ca-Al-Mg-Si, Ca-Al-Si-S, Ca-Al-Mg-Fe-Si, Ca-Al-Mg-Mn-Fe-Si, 
Fe-oxide, larnite, and melilite) and the larger surface reaction potential allow for Mn 
solubilising microorganism containing fluid to interact with the slag, facilitating the release 
of the metal. This demonstrates that the approach can be used to suggest less-energy 
demanding recovery methods which could help to determine the feasibility of CRM 
recovery from legacy slag. Therefore, it will be necessary to associate structures from the 
deposit to the micro- and nanoscale with the identified trace metal concentrations for 
various types of slags.  

4.2 Lithification mechanisms 
 
Legacy iron and steel slags are promising waste materials that can be reused for positive 
climate action if understood and managed properly. This work ultimately provides insight 
into the opportunities for atmospheric CO2 storage and CRM recovery from legacy iron 
and steel slag deposits. While natural environmental processes result in the lithification of 
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these anthropogenically derived rocks, variable atmospheric CO2 content occurs across the 
deposit in the cream-coloured material cementing the slag. The interactions between 
compositionally variable weathering slag and fresh water and seawater water facilitate 
lithification by multiple mechanisms. Even though lithification by secondary CSH inhibits 
future carbonate mineralisation from seawater washing that recorded the most depleted 
δ13C values, the weathering product could limit the release of toxic metals.  

4.3 Future investigation 
 
The heterogeneous nature of the Warton slag including variable metal content of horizons 
in the inland deposit and various types of lithifications across the coastal deposit have 
implications for reuse opportunities. Sampling from the interior of the inland deposit could 
reveal metal concentrations that more closely represent the slag composition just after 
deposition. After testing the recommended metal recovery method, a comparison between 
the metal content and the microstructures from this study would help to inform how 
biochemical weathering impacts metal mobilisation from the deposit to the microscale. 
Additional LA-ICP-MS analysis could help to verify the metal concentrations determined 
by the outlined approach. Spectral artefacts that challenge accurate data interpretation 
could be limited from evaluating how different combinations of process times and dwell 
times affect the cpp, thus the cluster spectral resolution. This would benefit higher-
resolution imaging and mapping to more precisely locate micro- to nanoscale metal 
structures.  

Further research characterising slag deposits in coastal and non-coastal settings would 
improve the understanding of how the depositional setting impacts lithification as well as 
atmospheric CO2 storage. Identifying and describing the lithification processes of deposits 
from different ages with a series of samples will address unknowns regarding the long-term 
potential of these wastes. This would also contribute to the limited understanding of 
historic slag deposit evolution. Combined with detailed microstructural analysis (SEM-
EDS), the outlined areas for further investigation would help in determining which type of 
repurposing would be the most effective and informative for method development. 
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Appendices 

Appendix A: additional tables 

Table S1. Carbonate content quantified from TGA using the modified TGA-DTG interpretation (Chaing and 
Pan, 2017). 

Sample  T1  Tm  T2  Weight loss 
(%) 

Weight loss 
(mg) 

JM21_W5A   619  636.5  654  1.25  0.10  

JM21_W5B   630  645.5  661  1.1  0.12  

JM21_W5C   719  757  795  0.8  0.05  
JM21_W5 
Average  656  679.67  703.33  1.05  0.09  

JM21_W6A   641  659.5  678  1.35  0.29  

JM21_W6B  681  729  777  0.25  0.04  
JM21_W6C   709  735  761  1.5  0.25  

JM21_W6 
Average  677  707.83  738.67  1.03  0.20  

JM21_W7A   619  637  655  1.8  0.08  

JM21_W7B   651  669.5  688  2.25  0.35  

JM21_W7C  630  652  674  1.75  0.20  

JM21_W7 
Average  633.33  652.83  672.33  1.93  0.21  

JM21_W8A   642  659  676  2  0.25  

JM21_W8B   643  661  679  1.5  0.30  

JM21_W8C   600  644  688  3.25  0.38  

JM21_W8 
Average  628.33  654.67  681  2.25  0.31  

JM21_W9A   666  701.5  737  8.25  1.92  

JM21_W9B   671  703  735  8.65  1.84  

JM21_W9C   670  694  718  5.75  1.11  

JM21_W9 
Average  669  699.5  730  7.55  1.62  
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Sample  T1  Tm  T2  Weight loss 
(%) 

Weight loss 
(mg) 

JM21_W13A   681  716  751  11.24  2.37  

JM21_W13B   673  711  749  12  2.46  

JM21_W13C  678  704.5  731  9.5  2.01  
JM21_W13 

Average  677.33  710.50  743.67  10.91  2.28  

JM21_W15A   679  704  729  5.75  0.83  

JM21_W15B  687  714  741  11.625  1.35  
JM21_W15C  672  696.5  721  8.625  0.64  
JM21_W15 

Average  679.33  704.83  730.33  8.67  0.94  

JM21_W18A   703  732  761  13.7  1.78  

JM21_W18B   689  722.5  756  16.05  1.48  

JM21_W18C   695  727  759  15.5  1.82  

JM21_W18 
Average  695.67  727.17  758.67  15.08  1.69  

JM21_W20A  681  705.5  730  6.2  0.66  

JM21_W20B   653  693.5  729  4.75  0.65  

JM21_W20C   708  734.5  761  10  1.58  

JM21_W20 
Average  680.67  711.17  740  6.98  0.96  

JM21_W23A  670  699.5  729  9.2  1.60  

JM21_W23B   679  712  745  11.5  2.10  

JM21_W23C   663  695.5  728  9.05  2.86  

JM21_W23 
Average  670.67  702.33  734  9.92  2.19  
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Table S2. Mineral phase identified in each stratigraphic horizon in the legacy iron and steel slag. 

Mineral W28 W27 W26 W25 W24 

Mll *****^^ * ********^^^^^ ^^^ **************^^^^ 

Wo * * *   

Rnk *    * 
Lrn    * * 
Mtc   *   

Anh *  *   

An *** *  *  

Ol   ****   

Cal *  **  ^ 
Qtz * ** *****^^^^ *^ * 
Py * *    

Tricalcium 
silicate 

 *  ^ ** 

Calcio-wüstite  * *   
Ca-oxide ***^ *  ******  

Fe-oxide *********^^ **  * ** 

Ca-Si *   * * 
Fe-S *^^     

Ca-Al-Si *  *  **** 
Ca-Si-S *^  ^ *  

Ca-Fe-Si     * 
Fe-Si-S  *^    

Ca-Al-Mg-Si   **^  *^ 
Ca-Al-Fe-Si *  **  ^ 

Ca-Al-Si-S ***^  ********^^^^ *  

Ca-Fe-Si-S  *    

Ca-Mg-Si-S *     

Ca-Al-Mg-Fe-Si  *^ *^^   

Ca-Al-Mg-Mn-Si     ^ 

Ca-Al-Fe-Si-S *^^^^  * ^  

Ca-Al-Mg-Si-S   *   

Ca-Al-Mg-Mn-
Fe-Si 

    ^ 

Ca-Al-Mg-Fe-Si-
S * ^ *   

Native Fe  **    

Symbols: * = identified from preliminary clustering; ^ = identified from IPC on a mineral 
phase. 
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Appendix B: additional figures 

 

Figure S1. Sample locations of the coastal (B) legacy slag deposit. A) W5. B) W6. C) W7. D) W8. E) W9. F) 
W13. G) W15. H) W18. I) W20. J) W23. 
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Figure S2. Stitched optical microscopy image of the polished thin section representing horizon W24 at 10x 
magnification in plain polarised reflected light. 

 

Figure S3. Stitched optical microscopy image of the polished thin section representing horizon W25 at 10x 
magnification in plain polarised reflected light. 
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Figure S4. Stitched optical microscopy image of the polished thin section representing horizon W26 at 10x 
magnification in plain polarised reflected light. 

 

Figure S5. Stitched optical microscopy image of the polished thin section representing horizon W27 at 10x 
magnification in plain polarised reflected light. 
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Figure S6. Stitched optical microscopy image of the polished thin section representing horizon W28 at 10x 
magnification in plain polarised reflected light. 
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Appendix C: Python code for the unsupervised machine learning approach



import os 
import scipy 
import hyperspy.api as hs 
import numpy as np 
import h5py 
import pandas as pd 
import seaborn as sns 
import skimage.io as io 
import hdbscan 

import matplotlib.pyplot as plt 
import matplotlib.patches as patches 
from matplotlib import cm 

import sklearn as skl 
import sklearn.cluster as cluster 
from sklearn.decomposition import PCA, NMF 

import skimage as ski 
import skimage.morphology as mph 
from skimage import measure 

os.chdir('Your:File/Path') 

def h5printR(item, leading = ''): 
    for key in item: 
        if isinstance(item[key], h5py.Dataset): 
            print(leading + key + ': ' + str(item[key].shape)) 
        else: 
            print(leading + key) 
            h5printR(item[key], leading + '  ') 

# Print structure of a `.h5` file             
def h5print(filename): 
    with h5py.File(filename, 'r') as h: 
        print(filename) 
        h5printR(h, '  ') 

def add_xrl_labels(data_array, amplitude_thresh, ax, elements_list, colors_list,  
                   scale, offset): 
    
    ele_dic = hs.material.elements.as_dictionary()  # call element dictionary from 
                                                        #hyperspy library 
    ofs = offset/scale 
    
    for e_idx in range(0, len(elements_list)): 
        # find peak position of element 
        peak_ka = round((ele_dic[elements_list[e_idx]]['Atomic_properties'] 
                         ['Xray_lines']['Ka']['energy (keV)']/scale)-ofs) 

        # if element peak exceeds upper or lower threshold 
        if data_array[peak_ka] > amplitude_thresh*data_array.max() or  
        data_array[peak_ka] < amplitude_thresh*data_array.min(): 
            # draw vline of Ka peak 
            ax.vlines(x = peak_ka, ymin = 0, ymax = data_array[peak_ka], 
                      color = e_colors[e_idx]) 
            
            # draw vline of Kb peak 
            if 'Kb' in ele_dic[elements_list[e_idx]]['Atomic_properties'] \ 
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            ['Xray_lines']:                  
                peak_kb = round((ele_dic[elements_list[e_idx]]['Atomic_properties'] 
                                 ['Xray_lines']['Kb']['energy (keV)']/scale)-ofs) 
                ax.vlines(x = peak_kb, ymin = 0, ymax = data_array[peak_kb],  
                          color = e_colors[e_idx]) 
            # draw vline of La peak         
            if 'La' in ele_dic[elements_list[e_idx]]['Atomic_properties'] \  
            ['Xray_lines']:                   
                peak_la = round((ele_dic[elements_list[e_idx]]['Atomic_properties'] 
                                 ['Xray_lines']['La']['energy (keV)']/scale)-ofs) 
                ax.vlines(x = peak_la, ymin = 0, ymax = data_array[peak_la],  
                          color = e_colors[e_idx]) 
            # draw vline of Ll peak         
            if 'Ll' in ele_dic[elements_list[e_idx]]['Atomic_properties'] \ 
            ['Xray_lines']:                   
                peak_ll = round((ele_dic[elements_list[e_idx]]['Atomic_properties'] 
                                 ['Xray_lines']['Ll']['energy (keV)']/scale)-ofs) 
                ax.vlines(x = peak_ll, ymin = 0, ymax = data_array[peak_ll],  
                          color = e_colors[e_idx]) 
            # draw vline of Ln peak         
            if 'Ln' in ele_dic[elements_list[e_idx]]['Atomic_properties']\ 
            ['Xray_lines']:                   
                peak_ln = round((ele_dic[elements_list[e_idx]]['Atomic_properties'] 
                                 ['Xray_lines']['Ln']['energy (keV)']/scale)-ofs) 
                ax.vlines(x = peak_ln, ymin = 0, ymax = data_array[peak_ln],  
                          color = e_colors[e_idx]) 
             
            # place peak name and bounding box for positive peaks 
            #Ka peaks 
            if data_array[peak_ka] > 0: 
                ax.text(x = peak_ka, y = data_array[peak_ka]+(0.05*data_array.max()), 
                        s = elements[e_idx], ha = 'center', 
                        color = 'black') 
                rect_height = (data_array.max() - data_array.min())*0.04 
                e_rect = patches.Rectangle(xy = (peak_ka-30, data_array[peak_ka]+ 
                                                 (0.05*data_array.max())), 
                                           color = e_colors[e_idx], width = 60, 
                                           height = rect_height+(0.5*rect_height)) 
                ax.add_patch(e_rect) 
                 
            if data_array[peak_ka] < 0: 
                ax.text(x = peak_ka, y = data_array[peak_ka]+(0.05*data_array.max()), 
                        s = elements[e_idx], ha = 'center', 
                        color = 'black') 
                rect_height = (data_array.max() - data_array.min())*0.04 
                e_rect = patches.Rectangle(xy = (peak_ka-30, data_array[peak_ka]+ 
                                                 (0.05*data_array.max())), 
                                           color = e_colors[e_idx], width = 60,  
                                           height = rect_height+(0.5*rect_height)) 
                ax.add_patch(e_rect) 

def poisson_noise_norm(signal): 
    """normalises hyperspy style signal for poissonian noise. based on [Keenan2004]. 
     
    Parameters 
    ----------' 
    signal - a hyperspy data stack 
     
    Returns 
    ------- 
    normalised Signal in a vector format 
        The decomposition loadings, as a Signal with same dimension as the original  
        navigation dimensions. 
    data_factor_signals : tuple of Signals 
     

In [4]:

Robbin Hilderman
73



    """ 
    # retreive original data shape 
    y, x, e = signal.data.shape 
     
    print('inital mean=', signal.data.mean(),' inital max =', signal.data.max(), 
          ' inital min=', signal.data.min()) 
    with signal.unfolded():  
            # The rest of the code assumes that the first data axis 
            # is the navigation axis. We transpose the data if that 
            # is not the case 
            #navigation_shapes = np.asarray(signal.axes_manager.navigation_shape) \ 
                #.squeeze()  
            # array with x & y size 
            #signal_shape = signal.axes_manager.signal_shape # value equal to  
                #number of energy channels 
             
            if signal.axes_manager[0].index_in_array == 0: 
                 
                dc = signal.data.copy() 
            else: 
                dc = signal.data.T.copy() 
              
            # make sure dc is correct data type for scaling 
            dc = dc.astype('float64') 
             
            aG = dc[:, :].sum(1).squeeze() 
            bH = dc[:, :].sum(0).squeeze() 
            #print(aG,bH) 
            root_aG = np.sqrt(aG)[:, np.newaxis] 
            root_bH = np.sqrt(bH)[np.newaxis, :] 

            # We ignore numpy's warning when the result of an 
            # operation produces nans - instead we set 0/0 = 0 
             
            with np.errstate(divide="ignore", invalid="ignore"): 
                # this is quation 8 of (Keenan & Kotula, 2004) 
                dc[:, :] /= root_aG * root_bH 
                dc[:, :] = np.nan_to_num(dc[:, :])  
             
             
    print(dc.shape) 
    print('scaled mean=',dc.mean(),' scaled max =',dc.max(),' scaled min=',dc.min()) 
             
    # convert dc array shape ((y*x), energy_channels) into d_norm  
        #(y, x, energy_channels) 
    d_norm = dc.reshape(y, x, e) 
             
    # convert d_norm numpy array into hyperspy EDSSEMSpectrum 
    s_norm = hs.signals.EDSSEMSpectrum(d_norm) 
    # copy metadata and axes_manager from original signal 
    s_norm.metadata = signal.metadata 
    s_norm.axes_manager = signal.axes_manager 

    return s_norm, d_norm, dc   # return the hyperspy object s_norm, numpy array  
                                    #d_norm (y,x,energy)  
                                # and vectorised numpy array dc (y*x,energy) 

def flatten_masked_array(im, mask): 
    """Flatten an image array containing NaN values, or excluding False values  
    from mask. 
     
    Parameters 
    ----------     
    im - an np array that requires masking (shape = (y, x, ...)) 
    mask - a binary boolean array (shape = (y, x)), True = data to be included  
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    in vect 
                      False = NaN values excluded from vect 
     
    Returns: 
    -------- 
    vect - a flattened array from im, excluding NaN values  
        (shape = ((y*x)-(number of NaN)), ...) 
    """ 
     
    # for 2D images 
    if len(im.shape) == 2: 
        vect = np.empty([]) 
        vect = np.vstack(im[mask == 1]) 
    # for EDS spectral images 
    elif len(im.shape) == 3: 
        vect = np.empty([]) 
        vect = np.vstack(im[mask == 1, :]) 
     
    return vect 

def reconstruct_masked_image(arr, mask, im_shape): 
    """Reconstruct an image from a flattened array to contain masked NaN values. 

    Parameters 
    ---------- 
    arr - a flattened array, excluding NaN values from mask  
    (shape = ((y*x)-(number of NaN)), ...) 
    mask - a binary boolean array (shape = (y, x)), True = data belonging to arr,  
    False = NaN values excluded from arr 
    im_shape - tuple of desired image shape (e.g. (y, x, e)) 

    Returns: 
    -------- 
    im - an image array (shape = (y, x, ...)), containing NaN values where  
    (mask == False) 
    """ 

    # for 2D images 
    if len(im_shape) == 2: 
        # find desired image shape 
        y_pix = im_shape[0] 
        x_pix = im_shape[1] 

        # create empty NaN array 
        im = np.zeros((y_pix, x_pix)) 
        im[:] = np.nan 

        # replace True values on mask array with the data from the flattened array 
        index = 0 
        for i in range(0, y_pix): 
            for j in range(0, x_pix): 
                if mask[i,j] == 1: 
                    im[i,j] = arr[index] 
                    index += 1 

    # for EDS spectral images 
    elif len(im_shape) == 3:
        # find desired image shape 
        y_pix = im_shape[0] 
        x_pix = im_shape[1] 
        e_len = im_shape[2] 

        # create empty NaN array 
        im = np.zeros((y_pix, x_pix, e_len)) 
        im[:] = np.nan 
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        # replace True values on mask array with the data from the flattened array 
        index = 0 
        for i in range(0, y_pix): 
            for j in range(0, x_pix): 
                if mask[i,j] == 1: 
                    im[i,j,:] = arr[index] 
                    index += 1 

    return im 

def poisson_scale_mask(data): 
    """normalises numpy array signal for poissonian noise. based on [Keenan2004]_. 
     
    Parameters 
    ----------' 
    data - a numpy array 
     
    Returns 
    ------- 
    normalised Signal in a vector format 
        The decomposition loadings, as a Signal with same dimension as the original  
        navigation dimensions. 
    data_factor_signals : tuple of Signals 
     
    """ 
    # retreive original data shape 
    n, e = data.shape 
     
    print('inital mean=', data.mean(),' inital max =', data.max(),' inital min=',  
          data.min()) 

    dc = np.copy(data) 
     
    # make sure dc is correct data type for scaling 
    dc = dc.astype('float64') 

    aG = dc[:, :].sum(1) 
    bH = dc[:, :].sum(0) 
    #print(aG,bH) 
    root_aG = np.sqrt(aG)[:, np.newaxis] 
    root_bH = np.sqrt(bH)[np.newaxis, :] 

    # We ignore numpy's warning when the result of an 
    # operation produces nans - instead we set 0/0 = 0 
    with np.errstate(divide = "ignore", invalid = "ignore"): 
        # this is quation 8 of (Keenan & Kotula, 2004) 
        dc[:, :] /= root_aG * root_bH 
        dc[:, :] = np.nan_to_num(dc[:, :])  

             
    print(dc.shape) 
    print('scaled mean=',dc.mean(),' scaled max =',dc.max(),' scaled min=',dc.min()) 

    return dc   # return the hyperspy object s_norm, numpy array d_norm (y,x,energy) 
                                # and vectorised numpy array dc (y*x,energy) 

def plt_phasemap(labelled_im, bse_im = None, scale = 1, mpl_cmap = None,  
                 legend_labels = None, phasemap_title = ''): 
    """Plot a phase map with scale 
     
    """ 
    # create figure to the correct size for document 
    plt.figure(figsize = (7.51181*2,5.51181*2)) 
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    if type(bse_im) == np.ndarray: 
        # plot the labels map as pcolormesh to get best quality image 
        plt.imshow(bse_im, cmap ='gray') 
        im = plt.pcolormesh(labelled_im, cmap = mpl_cmap, alpha = 1) 
     
    else: 
        im = plt.imshow(labelled_im, cmap = mpl_cmap) 

    # add additional plot parameters: title, no x/y ticks, colorbar 
    plt.title(phasemap_title) 
    plt.tick_params(axis = 'both',which = 'both',bottom = False,top = False, 
                    left = False,right = False,labelbottom = False, 
                    labelleft = False) 
    plt.colorbar() 

file = h5py.File('/Volumes/Tobisha/Warten_use_13_4_2023/h5oina/Warten_use_12_4_2023  
                 'Specimen 1 W26_T5M2 Site 1 W26_T5M2_EDS.h5oina','r') 

energy_scale = file['1']['EDS']['Header']['Channel Width'][0] 
energy_offset = file['1']['EDS']['Header']['Start Channel'][0] 

x_pix = file['1']['EDS']['Header']['X Cells'][0] 
x_scale = file['1']['EDS']['Header']['X Step'][0] 

y_pix = file['1']['EDS']['Header']['Y Cells'][0] 
y_scale = file['1']['EDS']['Header']['Y Step'][0] 

total_map_pixels = file['1']['EDS']['Header']['X Cells'][0]*file['1']['EDS'] \ 
    ['Header']['Y Cells'][0] 
print(total_map_pixels) 

peaks_list = list(file['1']['EDS']['Data']['Window Integral']) 
print(peaks_list) 

196608 
['Al Kα1', 'C Kα1,2', 'Ca Kα1', 'Cl Kα1', 'Fe Kα1', 'K Kα1', 'Mg Kα1,2', 'Mn Kα1', 'O 
Kα1', 'P Kα1', 'S Kα1', 'Si Kα1', 'Ti Kα1'] 

raw_map = hs.load('/Volumes/Tobisha/W26/W26_T5M2/W26_T5M2_EDS_Data.rpl') \ 
    .transpose(navigation_axes=(1,2)) 
raw_map = hs.signals.EDSTEMSpectrum(raw_map) 
raw_map.plot() 
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print(raw_map.data.shape) 

(384, 512, 2048) 

# Create a new list to store the extracted elements 
elements_list = []  

# Iterate over each element in the peaks_list 
for peak in peaks_list:      
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# Split the element based on space and retrieve the first part     
    element = peak.split()[0]    
    elements_list.append(element) 
     
print(elements_list) 

['Al', 'C', 'Ca', 'Cl', 'Fe', 'K', 'Mg', 'Mn', 'O', 'P', 'S', 'Si', 'Ti'] 

raw_map.axes_manager[0].name = 'X' 
raw_map.axes_manager['X'].units = 'um' 
raw_map.axes_manager['X'].scale = x_scale 
raw_map.axes_manager[1].name = 'Y' 
raw_map.axes_manager['Y'].units = 'um' 
raw_map.axes_manager['Y'].scale = y_scale 

raw_map.axes_manager[2].name = 'Energy' 
raw_map.axes_manager['Energy'].units = 'keV' 
raw_map.axes_manager['Energy'].scale = (energy_scale/1000) 
raw_map.axes_manager['Energy'].offset = (energy_offset/1000) 

raw_map.metadata.Acquisition_instrument.TEM.beam_energy = file['1']['EDS']['Header'] 
    ['Beam Voltage'][0] 
raw_map.axes_manager 

raw_map.plot() 
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#Crop x-axis if necessary 
raw_map.crop(axis = 'X',  start = 0, end = 972) 

#Crop y-axis if nevessary 
raw_map.crop(axis = 'Y', start = 0, end = 728) 

print(raw_map.data.shape) 

(384, 512, 2048) 

bse = io.imread('/Volumes/Tobisha/W26/W26_T5M2/W26_T5M2_BSE.tif') 
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print(bse.shape) 

(768, 1024) 

#Crop the BSE 
bse = bse[0:1454,0:1944] 
print(bse.shape) 

(1454, 1944) 

#Check to see if the bse is 2x the size of the raw data 
bse_ds = ski.measure.block_reduce(bse, block_size = (2,2)) 
print(bse_ds.shape) 
print(raw_map.data.shape) 

(384, 512) 
(384, 512, 2048) 

#Check raw map before saving  
raw_map.sum(axis = (0,1)).plot() 

raw_map.save('W26_T6.2M3_HR_EDS_data_raw_calib_RH_G16.hspy') 

# Calibrated hs  
s_calib = hs.load('/Volumes/Tobisha/W26/W26_T5M2/W26_T5M2_EDS_data_raw_calib_RH.hspy'

y, x, e = s_calib.data.shape 

offset = s_calib.axes_manager[0].offset 
scale = s_calib.axes_manager[0].scale 

# BSE 
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bse = io.imread('/Volumes/Tobisha/W27/W27_T2M2/BSE.tiff')
bse_ds = ski.measure.block_reduce(bse, block_size = (2,2)) 

# Poisson normalised vector 
#d_vect = np.load('/Volumes/Tobisha/W24/W24_M1/poisson_vect.npy') 

# Pore mask 
mask = np.load('/Volumes/Tobisha/W26/W26_T5M2/mask.npy') 

# Poisson scaled mask data 
d_msk_norm = np.load('/Volumes/Tobisha/W26/W26_T5M2/poisson_vect_pore_mask.npy') 

#NMF components 
compz = np.load('/Volumes/Tobisha/W26/W26_T5M2/NMF/NMF.npy', allow_pickle = True) 

#Set colors labels and elements to be labeled 
elements = ['Si', 'Ca', 'Al', 'S', 'C', 'O', 'Cl', 'Fe', 'K', 'Cr', 'Na','Mg', 'Al',  
            'P', 'Sc', 'Ti', 'V','Mn', 'Co', 'Ni', 'Cu', 'Ga', 'Ge','Br','Rb','Sr',  
            'Nb','Mo'] 

e_colors = ['red', 'brown', 'darkred', 'tomato', 'salmon', 'indianred','orangered',  
            'darkorange', 'chocolate', 'sandybrown', 'peru', 'navajowhite', 'wheat', 
            'bisque', 'khaki', 'lightyellow', 'yellow', 'greenyellow', 'olive', 
            'olivedrab','honeydew', 'limegreen', 'mediumseagreen', 'springgreen',  
            'forestgreen', 'darkgreen', 'aquamarine', 'turquoise'] 

#Check that the energy axis is calibration  
s_calib.axes_manager 

counts = s_calib.data.sum(axis = (0,1,2)) 
print(f'total map counts: {counts}') 
cpp = counts/(y*x) 
print(f'counts per pixel: {cpp}') 

total map counts: 124833225 
counts per pixel: 634.9346160888672 

s_calib.sum(axis=(0,1)).plot(True) 

WARNING:hyperspy._signals.eds:No elements defined, set them with `add_elements` 
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fig, (ax1,ax2) = plt.subplots(1,2) 

ax1.imshow(bse_ds, cmap = 'gray') 
ax2.hist(bse_ds.reshape(bse_ds.shape[0]*bse_ds.shape[1]), bins = 2**8) 
ax2.set_box_aspect(bse_ds.shape[0]/bse_ds.shape[1]) 
ax2.set_ylim((0, 8000)) 
ax2.set_xlim((0, 2**16)) 

(0.0, 65536.0)

thresh_value = 20000 
print(thresh_value) 

20000 

mask = np.ones((384, 512)) 
mask[bse_ds<=thresh_value] = 0 

plt.figure() 
plt.imshow(mask) 
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<matplotlib.image.AxesImage at 0x1d19ea990>

# save mask 
np.save('mask.npy', mask) 

d_msk = flatten_masked_array(s_calib.data, mask) 
d_im = reconstruct_masked_image(d_msk, mask, (y,x,e)) 
d_msk_norm = poisson_scale_mask(d_msk) 

inital mean= 0.38371133422194326  inital max = 105  inital min= 0 
(88223, 2048) 
scaled mean= 5.0241918037074754e-05  scaled max = 0.019702760155977515  scaled min= 0.
0 

plt.plot(d_msk.sum(0), color = 'r', label = 'Poisson of mask') 

[<matplotlib.lines.Line2D at 0x1d1aa9750>]
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plt.figure() 
plt.imshow(bse, cmap = 'gray') 
plt.pcolormesh(d_im.sum(axis = 2), cmap = 'gray') 
plt.gca().set_box_aspect(384/512) 

plt.figure(figsize = (16,6)) 
plt.plot(d_msk_norm.sum(0), color = 'r', label = 'Poisson of mask') 
plt.plot(d_norm.sum((0,1)), color = 'black', linestyle = 'dashed',  
         label = 'Poisson of raw') 
plt.legend() 

<matplotlib.legend.Legend at 0x1d1aa3cd0>
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# save masked poisson scaled data 
np.save('poisson_vect_pore_mask_.npy', d_msk_norm) 
d_msk_norm.shape 

(106215, 2048)

s_calib.change_dtype('float32') 
s_calib 

<EDSTEMSpectrum, title: , dimensions: (512, 384|2048)>

s_calib.decomposition(normalize_poissonian_noise = True, algorithm = 'SVD',  
                      output_dimension = 15) 

Decomposition info: 
  normalize_poissonian_noise=True 
  algorithm=SVD 
  output_dimension=15 
  centre=None 

s_calib.plot_explained_variance_ratio(log = True,vline = True) 

<Axes: title={'center': '\nPCA Scree Plot'}, xlabel='Principal component index', yla
bel='Proportion of variance'>

In [48]:

Out[48]:

In [40]:

Out[40]:

In [41]:

In [42]:

Out[42]:
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forpca = d_msk_norm 

pca = skl.decomposition.PCA(n_components = 5)  
pca.fit(forpca) 

f = plt.figure(figsize = (7,5))  
plt.plot(np.cumsum(pca.explained_variance_ratio_)) 
plt.xlabel('number of components')  
plt.ylabel('cumulative explained variance') 
compz = pca.transform(forpca) 

In [43]:
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#Plot the PCA components on the BSE image 
compz_im = reconstruct_masked_image(compz, mask, (y, x, 5)) 

for i in range(0,5): 
    plt.figure() 
    plt.title(f'PCA{i+1}') 
    plt.imshow(bse_ds, cmap = 'gray')            
    plt.pcolormesh(compz_im[:,:,i]) 
    plt.colorbar() 

In [106…
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# Run NMF with the number of components that describe the data well from the PCA  
    # Scree plot and from qualitatitly  
# checking the noise of the component factors and loadings 
fornmf = d_msk_norm 

nmf = NMF(n_components = 5)  
nmf.fit(fornmf) 
compz = nmf.transform(fornmf)  

/Users/robbinhilderman/opt/anaconda3/envs/hspy_environment/lib/python3.11/site-package
s/sklearn/decomposition/_nmf.py:1665: ConvergenceWarning: Maximum number of iterations 
200 reached. Increase it to improve convergence. 
 warnings.warn( 

# Save the NMF components 

In [49]:

In [37]:
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np.save('E:/W26/W26_T6.2M3/High_Resolution/compz', arr = compz, allow_pickle = True) 

# Plot the NMF components on the BSE 
compz_im = reconstruct_masked_image(compz, mask, (y, x, 5)) 

for i in range(0,5): 
    plt.figure() 
    plt.title(f'NMF{i+1}') 
    plt.imshow(bse_ds, cmap = 'gray')            
    plt.pcolormesh(compz_im[:,:,i], cmap = 'viridis') 
    plt.colorbar() 

In [51]:
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nmf_loads = nmf.components_ 

# Plot the NMF component loadings 
%matplotlib inline 
scale = s_calib.axes_manager[2].scale  
offset = s_calib.axes_manager[2].offset  
ofs = offset/scale  

fig, axs = plt.subplots(5, 1) 
fig.xlim =[0-ofs , 2048-ofs]  
x_label = np.arange(0, 21, 2)  
x_ticks = (x_label/scale) - ofs  
fig.subplots_adjust(hspace = 0)  

axs[0].plot(nmf_loads[0], linewidth = 1)  
axs[0].set_yticks([])  
axs[0].spines['bottom'].set_visible(False)  
axs[0].set_xlim(0-ofs,2048)  

axs[1].plot(nmf_loads[1], linewidth=1)  
axs[1].set_yticks([])  
axs[1].spines['top'].set_visible(False)  
axs[1].spines['bottom'].set_visible(False)  
axs[1].set_xlim(0-ofs,2048)  

axs[2].plot(nmf_loads[2], linewidth=1)  
axs[2].set_yticks([])  
axs[2].spines['top'].set_visible(False)  
axs[2].spines['bottom'].set_visible(False)  
axs[2].set_xlim(0-ofs,2048)  

axs[3].plot(nmf_loads[3], linewidth=1)  
axs[3].set_yticks([])  
axs[3].spines['top'].set_visible(False)  
axs[3].spines['bottom'].set_visible(False)  
axs[3].set_xlim(0-ofs,2048)  

axs[4].plot(nmf_loads[4], linewidth=1)  
axs[4].set_yticks([])  
axs[4].spines['top'].set_visible(False)  
axs[4].spines['bottom'].set_visible(False)  

In [52]:

In [57]:
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axs[4].set_xlim(0-ofs,2048)   

plt.show() 
#plt.savefig(f'NMF Factors_new', dpi = 600) 

clust = hdbscan.HDBSCAN(min_cluster_size = 100,min_samples = 150, 
                        prediction_data = True)  
clust.fit(compz) 

# Hard cluster label for each data point, including outlier cluster of '-1' 
labels = clust.labels_ 
print(labels.shape) 

# Total number of clusters, inclusive of 'outliers' cluster 
n_cluster = len(set(labels)) 
print('Number of clusters:',str(n_cluster)) 

# Assign the largest cluster number as outlier cluster 
labels[np.where(labels == -1)[0]] = n_cluster-1  

(88223,) 
Number of clusters: 6 

# calculate % of cluster 9 assigned as outliers 
n_outliers = 0 
for i in range(0,int(compz.shape[0])): 
    if labels[i] == n_cluster-1: 
        n_outliers+= 1 
print('Percent outliers: '+str((n_outliers/compz.shape[0])*100)) 

Percent outliers: 18.658399737030027 

# reconstruct hard cluster assignments 
label_map = reconstruct_masked_image(arr = labels, mask = mask, im_shape = (y, x)) 

In [60]:

In [61]:

In [64]:
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# create binary segmentations per cluster 
labels_seg = [] 
labels_spec = [] 
clus_count = [] 
zero_count = [] 

for i in range(0, n_cluster): 
     
    labels_seg.append(np.zeros((y, x))) 
    labels_seg[i][label_map==i] = 1 
    labels_spec.append(s_calib.data[label_map==i, :].sum(axis = (0))) 
     
    plt.figure() 
    plt.imshow(bse_ds, cmap='binary_r') 
    plt.imshow(labels_seg[i],cmap = 'binary_r') 
    plt.title(f'cluster {i+1}') 
     
    clus_count.append(labels_seg[i].sum()) 
    zero_count.append((labels_seg[i]==0).sum()) 
    print(clus_count[i]==((y*x)-zero_count[i])) 
     
     
labels_seg = np.asarray(labels_seg) 
print(labels_seg.shape) 
print(clus_count) 

True 
True 
True 
True 
True 
True 
(6, 384, 512) 
[795.0, 4813.0, 3190.0, 57500.0, 5464.0, 16461.0] 
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#Save any cluster of interest to do reiterate 
np.save('COI_P4_spec', arr = labels_seg[3], allow_pickle = True) 

#Plot the phase map 
plt_phasemap(label_map, bse_im = bse_ds, scale = s_calib.axes_manager[0].scale,  
             mpl_cmap = 'tab20', phasemap_title = 'phasemap') 

In [ ]:

In [65]:
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# Create summed spectra as % of total counts per cluster 
clus_spec = [] 

for i in range(0,n_cluster):     
    clus_spec.append((s_calib.data[labels_seg[i] == 1,:]).sum(axis = 0)) 

# Plot each spectra to explore  
c_idx = 0 
for spec in clus_spec: 
    plt.figure() 
    plt.imshow(labels_seg[c_idx]) 
    plt.title(f'Cluster {c_idx+1}') 
    c_idx+= 1 

In [74]:

In [97]:
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# Plot the spectra of each cluster 
%matplotlib inline 

c_idx = 0 
for spec in clus_spec: 
    plt.figure() 
    plt.plot(spec, c = 'firebrick') 
    plt.xlim(right = 1000) 
    plt.xlim(left = 0)  
    plt.title(f'Cluster {c_idx}') 

  
    add_xrl_labels(data_array = spec, amplitude_thresh = 0.03,  

In [ ]:
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            ax = plt.gca(), elements_list = elements, colors_list = e_colors,  
                   scale = s_calib.axes_manager[2].scale,  
            offset = s_calib.axes_manager[2].offset) 
     
    #plt.savefig(f'Cluster {c_idx}') 
    c_idx+=1 

for i in range(0, n_cluster): 
  
    COI = flatten_masked_array(s_calib.data, labels_seg[i]) 
    clus_spec = hs.signals.Signal1D(COI.sum(0)) 
    clus_spec.set_signal_type("EDS_SEM")
    clus_spec.change_dtype('float32') 
    clus_spec.axes_manager[0].name = 'E' 
    clus_spec.axes_manager[0].offset = s_calib.axes_manager['Energy'].offset 
    clus_spec.axes_manager[0].scale = s_calib.axes_manager['Energy'].scale 
    clus_spec.axes_manager[0].units = s_calib.axes_manager['Energy'].units 
    to_spx(clus_spec, f_name = f'Cluster{i+1}') 
    clus_spec.save(f'W28_T2M2_2_NMF8_cluster{i+1}', extension = 'msa', format = 'XY') 

COI_clus = np.load('/Volumes/Tobisha/W26/W26_T5M2/NMF/COI_P4/COI_P4_cluster_BI.npy') 
print(COI_clus.shape) 
plt.figure() 
plt.imshow(COI_clus) 

(384, 512) 
<matplotlib.image.AxesImage at 0x1d0ba9250>

In [ ]:

In [79]:

Out[79]:
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COI = flatten_masked_array(s_calib.data, COI_clus) 
COI_im = reconstruct_masked_image(COI, COI_clus, (y, x, e)) 
COI_norm = poisson_scale_mask(COI) 

inital mean= 0.38006088  inital max = 41.0  inital min= 0.0 
(57500, 2048) 
scaled mean= 6.349569151535403e-05  scaled max = 0.022750787759664506  scaled min= 0.0 

np.save('/Volumes/Tobisha/W27/W27_T2M2/NMF', arr = COI_norm, allow_pickle = True) 

# Use the same number of components as indicated by the PCA scree plot 
fornmf = COI_norm

nmf = NMF(n_components = 5)  
nmf.fit(fornmf) 
compz_COI = nmf.transform(fornmf)  

/Users/robbinhilderman/opt/anaconda3/envs/hspy_environment/lib/python3.11/site-package
s/sklearn/decomposition/_nmf.py:1665: ConvergenceWarning: Maximum number of iterations 
200 reached. Increase it to improve convergence. 
 warnings.warn( 

# Save the COI NMF components 
np.save('compz_COI', 'E:/W26/W26_T5M2/NMF/COI_P4', allow_pickle = True) 

# Plot the NMF component factors 
compz_im_COI = reconstruct_masked_image(compz_COI, noise_clus, (y, x, 5)) 
%matplotlib inline 
for i in range(0,5): 
    plt.figure() 
    plt.title(f'NMF_COI{i+1}') 
    plt.imshow(bse_ds, cmap = 'gray')            
    plt.pcolormesh(compz_im_COI[:,:,i]) 

In [80]:

In [23]:

In [81]:

In [180…

In [115…
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nmf_loads_COI = nmf.components_ 

# Plot the NMF component loadings 
%matplotlib inline 
scale = s_calib.axes_manager[2].scale  
offset = s_calib.axes_manager[2].offset  
ofs = offset/scale  

fig, axs = plt.subplots(5, 1) 
fig.xlim =[0-ofs , 2048-ofs]  
x_label = np.arange(0, 21, 2)  
x_ticks = (x_label/scale) - ofs  
fig.subplots_adjust(hspace = 0)  

axs[0].plot(nmf_loads_COI[0], linewidth = 1)  
axs[0].set_yticks([])  
axs[0].spines['bottom'].set_visible(False)  
axs[0].set_xlim(0-ofs,2048)  

axs[1].plot(nmf_loads_COI[1], linewidth=1)  
axs[1].set_yticks([])  
axs[1].spines['top'].set_visible(False)  
axs[1].spines['bottom'].set_visible(False)  
axs[1].set_xlim(0-ofs,2048)  

axs[2].plot(nmf_loads_COI[2], linewidth=1)  
axs[2].set_yticks([])  
axs[2].spines['top'].set_visible(False)  
axs[2].spines['bottom'].set_visible(False)  
axs[2].set_xlim(0-ofs,2048)  

axs[3].plot(nmf_loads_COI[3], linewidth=1)  
axs[3].set_yticks([])  
axs[3].spines['top'].set_visible(False)  
axs[3].spines['bottom'].set_visible(False)  
axs[3].set_xlim(0-ofs,2048)  

axs[4].plot(nmf_loads_COI[4], linewidth=1)  

In [84]:

In [86]:
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axs[4].set_yticks([])  
axs[4].spines['top'].set_visible(False)  
axs[4].spines['bottom'].set_visible(False)  
axs[4].set_xlim(0-ofs,2048)   

plt.show() 
#plt.savefig(f'NMF Factors_new', dpi = 600) 

clust = hdbscan.HDBSCAN(min_cluster_size = 500,min_samples = 100, 
                        prediction_data = True) 
clust.fit(compz_COI) 

# Hard cluster label for each data point, including outlier cluster of '-1' 
labels_COI = clust.labels_ 
print(labels_COI.shape) 

# Total number of clusters, inclusive of 'outliers' cluster 
n_cluster = len(set(labels_COI)) 
print('Number of clusters:',str(n_cluster)) 

# Assign the largest cluster number as outlier cluster 
labels_COI[np.where(labels_COI == -1)[0]] = n_cluster-1  

(57500,) 
Number of clusters: 4 

# Save COI cluster labels  
np.save('E:/W26/W26_T5M2/NMF/COI_P4/P4_HDBSCAN', arr = labels_COI,  
        allow_pickle = True) 

# reconstruct hard cluster assignments 
label_map_COI = reconstruct_masked_image(arr = labels_COI, mask = noise_clus,  
                                         im_shape = (y, x)) 
# create binary segmentations per cluster 
labels_COI_seg = [] 
labels_COI_spec = [] 
clus_COI_count = [] 
zero_COI_count = [] 

In [87]:

In [252…

In [88]:
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for i in range(0, n_cluster): 
     
    labels_COI_seg.append(np.zeros((y, x))) 
    labels_COI_seg[i][label_map_COI == i] = 1
    labels_spec.append(s_calib.data[label_map_COI == i, :].sum(axis = (0))) 
     
    plt.figure() 
    #plt.imshow(bse_ds, cmap='binary_r') 
    plt.imshow(labels_COI_seg[i],cmap='binary_r') 
    plt.title(f'cluster {i+1}') 
     
    clus_COI_count.append(labels_COI_seg[i].sum()) 
    zero_COI_count.append((labels_COI_seg[i] == 0).sum()) 
    print(clus_COI_count[i] == ((y*x)-zero_COI_count[i])) 
     
     
labels_COI_seg = np.asarray(labels_COI_seg) 
print(labels_COI_seg.shape) 
print(clus_COI_count) 

True 
True 
True 
True 
(4, 384, 512) 
[4722.0, 10606.0, 11544.0, 30628.0] 
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# Plot the phase map 
plt_phasemap(label_map_COI, bse_im = bse_ds, scale = s_calib.axes_manager[0].scale,  
             mpl_cmap = 'tab20', phasemap_title = 'phasemap_COI_4') 

In [89]:
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# create summed COI spectra as % of total counts per cluster 
clus_COI_spec = [] 

for i in range(0,n_cluster):     
    clus_COI_spec.append((s_calib.data[labels_COI_seg[i] == 1,:]).sum(axis = 0)) 

# Plot each spectra to explore  
c_idx = 0 
for spec in clus_COI_spec: 
    plt.figure() 
    plt.imshow(labels_COI_seg[c_idx]) 
    plt.title(f'P4_Cluster {c_idx+1}') 
    c_idx+=1 

In [90]:

In [94]:
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# Plot the spectra of each cluster 
c_idx = 0 
for spec in clus_COI_spec: 
    plt.figure() 
    plt.plot(spec, c = 'firebrick') 
    plt.xlim(right = 1000) 
    plt.xlim(left = 0)  
    plt.title(f'Cluster {c_idx}') 
     
    xtick_labels = np.arange(0, 21, 2) # create a range from 0 to max kV(+1),  
                                            #and step of 2kV (tick labels) 
    xticks = xtick_labels/scale - (offset/scale) # get tick label positions in  
                                                    #channels 
     
    ax = plt.gca() 
    ax.set_xticks(xticks) 
    ax.set_xticklabels(xtick_labels) 
         
    add_xrl_labels(data_array = spec, amplitude_thresh = 0.04,  
            ax = plt.gca(), elements_list = elements, colors_list = e_colors, 
                   scale = s_calib.axes_manager[2].scale,  
            offset = s_calib.axes_manager[2].offset) 
     
    #plt.savefig(f'COI_Cluster {c_idx}') 
     
    c_idx+=1 

for i in range(0, n_cluster): 
  
    COI = flatten_masked_array(s_calib.data, labels_COI_seg[i]) 
    clus_COI_spec = hs.signals.Signal1D(COI.sum(0)) 
    clus_COI_spec.set_signal_type("EDS_SEM") 
    clus_COI_spec.change_dtype('float32') 
    clus_COI_spec.axes_manager[0].name = 'E' 
    clus_COI_spec.axes_manager[0].offset = s_calib.axes_manager['Energy'].offset 
    clus_COI_spec.axes_manager[0].scale = s_calib.axes_manager['Energy'].scale 

In [ ]:

In [ ]:
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    clus_COI_spec.axes_manager[0].units = s_calib.axes_manager['Energy'].units 
    to_spx(clus_COI_spec, f_name = f'COI_Cluster{i+1}') 
    clus_COI_spec.save(f'W26_T6.2M3_COI_P5_COI_cluster{i+1}', extension = 'msa',  
                       format = 'XY') 
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