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Abstract

Modelling the phenological effects of environmental drivers on mosquito abundance:
implications for West Nile virus transmission potential in the UK

by David EWING

Mosquito-borne diseases cause substantial mortality and morbidity worldwide. These im-
pacts are widely predicted to increase as temperatures warm, since mosquito biology and
disease ecology are strongly linked to environmental conditions. However, direct evidence
linking these changes to mosquito-borne disease is rare, and the ecological mechanisms that
may underpin such changes are poorly understood. I focus on West Nile virus (WNV), a
mosquito-borne arbovirus infecting avian hosts, that can spill over into humans. Outbreaks
of WNV are common in Africa, and Southern and Eastern Europe, with recent outbreaks
reported in France and Spain. There has yet to be an outbreak in the UK, but there is cur-
rent concern that passerine migratory bird species could introduce the disease northward.
However, the question remains, if WNV is introduced in the UK, can the disease establish?
I present a mechanistic environmentally-driven stage-structured host-vector mathematical
model for predicting the seasonal dynamics of WNV in current and future climates in the
UK. The model predicts that WNV is unlikely to establish in the foreseeable future, al-
though climate change is likely to increase the risk, with only extreme climate predictions
leading to possible WNV outbreaks.

Chapter 2 develops an environmentally driven, variable-delay delay differential equation
model to estimate seasonal abundance of each life stage of the WNV vector mosquito species,
Cx. pipiens. The model shows that timing and intensity of warm periods can be more influ-
ential in shaping abundance patterns than average temperatures.

Chapter 3 presents an extensive body of fieldwork, which led to a high temporal resolution
seasonal abundance dataset of each life stage of Cx. pipiens.

Chapter 4 challenges assumptions of the DDE model from Chapter 2 in light of the seasonal
abundance data collected in Chapter 3. The importance of using appropriate, high temporal
resolution input temperature datasets is displayed.

Chapter 5 extends the DDE model from Chapter 4 to explicitly model WNV transmission
cycles between vectors and avian hosts. Temperatures are predicted to be too low for WNV
transmission in the UK before the 2080s, when only the most extreme climate projections
suggest the possibility of a disease outbreak.
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2.2 Immature longevity: Relationship temperature and expected longevity (re-
ciprocal of the death rate) of immatures Madder et al. (1983b), Loetti et al.
(2011), Ciota et al. (2014), Jobling (1938), and Farid (1948). Symbols rep-
resent the data source as follows: Madder et al. (1983b) - ◻, Jobling (1938)
- ▽, Loetti et al. (2011) - +, Farid (1948) - ⊕, Ciota et al. (2014) - |. . . . . . 63

2.3 Adult vital rates: Temperature-dependent death rate of adults (a) Ciota et
al. (2014) and gonotrophic cycle (b) Madder et al. (1983b) and Vinogradova
(2000) (Symbols ◻ and ◯ respectively) fitted to data from the literature.
Values for the gonotrophic cycle rate were calculated using the ovarian mat-
uration times as stated in the literature but with 2 days added for locating a
blood meal and ovipositing Hartley et al. (2012). All data is from Cx. pipiens. 64

2.4 Temperature data from the North Kent marshes 1951-2010 was used to inves-
tigate typical values for the environmental variation parameters. Histograms
of annual fitted values of the parameters are presented (a) midrange tempera-
ture, µ, (b) amplitude of fluctuations, λ, (c) phase shift presented as +/- days
from the 1st of August (the mean date at which the peak occurred), φ, (d)
sharpness of peak, γ (higher values indicate sharper peaks). . . . . . . . . . . 69

2.5 (a) The modified cosine curve showing the effect of each parameter on the
shape of the curve: µ denotes the midrange temperature, λ is the amplitude of
seasonal fluctuations, φ is the phase shift and γ a measure of the sharpness
of the peak. (b) The abundance of adult mosquitoes through the year to
illustrate summary statistics: κ is the peak in abundance, θ is the lowest
abundance value, β is the length of the biting season and D shows the period
between the two 50% thresholds for diapause. . . . . . . . . . . . . . . . . . . 70
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2.6 Season length and timing effects on abundance: Plots (a)-(d) show the
abundance of eggs, larvae, pupae and adults for the three temperature sce-
narios shown in (e). On the adult plot, (d), the solid black line shows the
diapause induction point and the dotted lines show the diapause termination
points for each temperature regime. . . . . . . . . . . . . . . . . . . . . . . . . 73

2.7 The effect of changing temperature variables on peak seasonal abundance of
Cx. pipiens adults, κ. The axes atop figures (a-d) show the UKCIP projected
values for µ and λ for the 2020s, 2050s and 2080s with the baseline (1961-
1990) marked as BL. The white lines are contour lines. The green points on
panel (f) show abundance given projected increases in both µ and λ by the
2020s, 2050s and 2080s relative to a 1961-1990 baseline (BL) shown by the
green cross. There are no UKCIP projections available for shifts in µ or γ.
When not varied, values are held according to the UKCIP baseline values for
SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21). . . . . . . 74

2.8 The effect of changing temperature variables on minimum seasonal abun-
dance of Cx. pipiens adults, θ. The axes atop figures (a-d) show the UKCIP
projected values for µ and λ for the 2020s, 2050s and 2080s with the base-
line (1961-1990) marked as BL. The white lines are contour lines. The green
points on panel (f) show abundance given projected increases in both µ and λ
by the 2020s, 2050s and 2080s relative to a 1961-1990 baseline (BL) shown
by the green cross. There are no UKCIP projections available for shifts in
µ or γ. When not varied, values are held according to the UKCIP baseline
values for SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21). 76

2.9 The effect of changing temperature variables on the length of the biting sea-
son of Cx. pipiens females, β. The axes atop figures (a-d) show the UKCIP
projected values for µ and λ for the 2020s, 2050s and 2080s with the base-
line (1961-1990) marked as BL. The white lines are contour lines. The green
points on panel (f) show abundance given projected increases in both µ and λ
by the 2020s, 2050s and 2080s relative to a 1961-1990 baseline (BL) shown
by the green cross. There are no UKCIP projections available for shifts in
µ or γ. When not varied, values are held according to the UKCIP baseline
values for SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21). 77
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2.10 (a - c) Show the effect of a change in each of midrange temperature, µ, ampli-
tude of fluctuations, λ, phase shift, φ and sharpness, γ, on peak abundance, κ,
minimum abundance, θ and length of biting season, β, respectively. The size
of the changes shown are chosen according to the magnitude of the coeffi-
cient of variation (+/- 10.6%,11.8%,17.1% and 28.1% for midrange temper-
ature, amplitude of fluctuations, timing of peak temperature and sharpness
of summer period, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.11 (a) and (b) show percentage changes, in peak abundance, κ, and minimum
abundance, θ, respectively, in predictions from interpolation between mean
daily temperatures and from the two modified cosine waves (pink - fixed,
blue - variable). (c) shows the actual change in the length of the biting season
in moving from the interpolation between mean temperature values and the
two cosine waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Field site: Red markers show the locations of water butts 1-4. Yellow mark-
ers show the locations of adult traps 1-4. The blue marker shows the location
of the meteorological site (not present at the time the satellite image was taken). 91

3.2 Mosquito traps: One of the four water butts used as larval habitat is shown
in (a). Image (b) shows an adult trap. . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 A group of egg rafts floating on the water surface is shown in (a). Image
(b) shows an example sample of larvae and pupae. A 1st/2nd instar larva is
circled in blue, a 3rd/4th is circled in red and a pupa is circled in black. . . . 93

3.4 Immature population numbers displayed by water butt. The solid blue line
shows a 3-day moving average of abundance. The coloured bars show the
contribution of each water butt to the total immature count. In plot (a) only
egg rafts were counted, rather than individual eggs. . . . . . . . . . . . . . . . 101

3.5 Gonotrophic Cycle vs Life Cycle: Plot (a) shows the duration of the gonotrophic
cycle, as estimated by the Chapter 2 DDE model, using the air temperatures
observed at the field site. Plot (b) shows the duration of the complete Cx.

pipiens life cycle (eggs+larvae+pupae+gonotrophic cycle), estimated using
the Chapter 2 DDE model, the air temperatures recorded at the field site and
the water temperatures recorded in butt 4. In both plots the timings of the
first and second egg peaks are shown by the dotted lines. . . . . . . . . . . . . 103
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3.6 Comparison between observed and predicted pupal abundance patterns:
The red line shows the pupal abundance recorded in butt 4. The black
line shows the predicted pupal abundance including density-dependent lar-
val mortality, P̂d(t), given the observed egg abundance and water temper-
atures in butt 4 and the Chapter 2 DDE model predictions of stage dura-
tion and density-dependent survival. The red line shows the predicted pupal
abundance excluding density-dependent larval mortality, P̂i(t), given the ob-
served egg abundance and water temperatures in butt 4 and the Chapter 2
DDE model predictions of stage duration and density-independent survival.
The full process by which P̂d(t) and P̂i(t) are calculated is described in
Section 3.2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Larval Survival: The survival of the density-dependent larval stage, as es-
timated by the mechanistic model, is shown. The black line represents the
observed survival including density-dependence, while the red line shows
the predicted survival in the absence of density-dependence. The dotted line
shows the time of the final observed pupal peak. . . . . . . . . . . . . . . . . . 105

3.8 Effect of density-dependence on pupal populations: The black line repre-
sents the pupal population predicted by the DDE model, described in Chapter
2, when incorporating density-dependence, whilst the red line shows the pu-
pal abundance predicted in the absence of density-dependence. The plots are
shown on the natural log scale due to the differences in the scale of abun-
dance predictions between the two methods. . . . . . . . . . . . . . . . . . . . 106

3.9 Adult data: The blue bars show adult female Cx. pipiens catch numbers
collected by trap 1. The orange line shows a 3-day moving average of catch
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.10 A histogram and QQ-plot showing normally distributed residuals for the
quasipoisson GLM fitted to the adult catch data. . . . . . . . . . . . . . . . . . 108

3.11 ACF plot: An autocorrelation function (ACF) plot showing no evidence of
temporal autocorrelation in the residuals of the quasipoisson GLM fitted to
the adult catch data. Autocorrelation is tested at lags of up to 50 observations,
with 1 − 4 nights between observations. . . . . . . . . . . . . . . . . . . . . . . 109

3.12 Quasi-poisson GLM predictions: a plot showing a the predicted catch sizes
from the quasi-poisson GLM (Table 3.3) compared to the observed catches. . 109
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3.13 Diapause initiation: Seasonal abundance of active adult female Cx. pipiens,
as predicted by the Chapter 2 DDE model, is shown. The active population
is determined by multiplying the total predicted adult population by the pro-
portion of the population which is active at time t, ζ(t) (Equation 2.17). The
black line shows diapause initiation in September and the red shows diapause
initiation in August. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.14 A map showing the distribution of data sources on Cx. pipiens seasonaility.
The yellow marker shows the location of the Wallingford field site. The blue
markers show the locations of the field sites for which there was appropriate
data for the final analysis. The red markers show the studies which were
excluded from the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.15 Correlations between variables: Plots showing correlations between en-
vironmental variables and season timings. PP stands for photoperiod. The
r values given are the pearson correlation values. Plots are colour-coded
such that green represents environment-environment correlations, blue rep-
resents environment-phenology correlations and red represents phenology-
phenology correlations. The plot is symmetric, with data in the bottom left
and r-values in the top right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Chapter 2 model fit to data: The model predictions (red) and observed
(green) abundance of each life stage are shown. All model parameters are
defined in Table 2.1. Hourly water temperature values for butt 4 were used
alongside minimum and maximum daily air temperature values when run-
ning the model. In the adult plot the dashed line shows all adults and the
solid line excludes those in diapause by multiplying the adult abundance by
the proportion of active adults ζ(t), at time t. This simulation (and other
simulations in this Chapter) was run in the absence of the 18 month “burn-
in" period described in Section 2.2.1, to allow for comparison across model
runs with the same starting population size in the year displayed. . . . . . . . 128

4.2 Air-water temperature relationship: The relationship between water tem-
peratures measured across the four water butts monitored in Chapter 3 and
air temperatures recorded at the CEH weather station is shown. . . . . . . . . 131
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4.3 Immature development times: The DDE model predictions of the total du-
ration from egg-laying to adult emergence are shown for different water tem-
perature input scenarios. Water temperatures are for butt 1 in all cases and
minimum and maximum daily air temperature values are used for the adult
processes in all cases. The water temperatures used are as follows: Hourly
- hourly water temperature data, Minimum/Maximum - minimum and max-
imum daily water temperatures, Mean - mean daily water temperatures, Air
- minimum and maximum daily air temperatures were used as a proxy for
water temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Temperature data: (a) shows mean daily temperatures for each of the four
water butts, air temperature, and photoperiod. In (b) the lines show the differ-
ence between the DTR of the water temperature for each butt and the DTR of
the air temperature. The DTR of the air temperature is shown by the shaded
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5 Adult death rates: the red line shows the adult death rates predicted un-
der the Chapter 2 model, in the absence of the post-diapause mortality term
(only temperature dependence). The black line shows the adult death rates
predicted under the updated model, including the post-diapause mortality term.142

4.6 Predator seasonal forcing: The seasonal forcing function, R(t), is shown,
highlighting how changes to υ and χ affect the ratio of predators to larvae
throughout the season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.7 Comparison of temperature treatments: The three different water temper-
ature treatments are plotted for the first twenty days of April - hourly values
(blue), minimum/maximum values (orange) and mean daily values (green). . 145

4.8 Dipping Coverage: A diagram showing the estimated coverage of the mosquito
habitat in the water butt by the dipping procedure discussed in Section 4.3.6).
The black circles show example dipping sites. . . . . . . . . . . . . . . . . . . 147

4.9 Model fit to data: The updated model predictions (black), Chapter 2 model
predictions (red) and observed (green) abundance of each life stage are shown.
All model parameters for the updated model (black) are defined in Table 4.1
and parameters for the Chapter 2 model are defined in 2.1. Hourly water
temperature values for butt 4 were used alongside minimum and maximum
daily air temperature values in both models. In the adult plot the dashed line
shows all adults and the solid line excludes those in diapause. . . . . . . . . . 148
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4.10 Overwinter survival impacts: A comparison of the updated model pre-
dictions for abundance of each life stage for three different values of bda is
shown. High (bda = 0.003), medium (bda = 0.006) and low (bda = 0.01) refer
to the minimum adult survival rates. The high survival scenario is the base-
line value for bda given in Table 4.1. Field collected air temperature is used,
alongside water temperatures from butt 4. In the adult plot the dashed line
shows all adults and the solid line excludes those in diapause. The dotted
line in the larval plot shows the timing at which the peak predator-to-prey
ratio occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.11 Impact of post-diapause mortality rate: A comparison of the updated
model predictions for abundance of each life stage for three different val-
ues of Γ, which controls the strength of the post-diapause adult mortality
effect. Γ = 8 is the baseline value used in other model simulations. Field
collected air temperature is used, alongside water temperatures from butt 4.
In the adult plot the dashed line shows all adults and the solid line excludes
those in diapause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.12 Predation timing impacts: A comparison of the updated model predictions
for abundance of each life stage for three different values of υ, which de-
termines of the timing of the peak value in the seasonal predation function:
υ = 0 gives a 1st July peak, υ = 20 gives a 21st July peak and υ = 40 gives a
10th August peak. The “constant" line shows model results with no seasonal
variation in predators. In the baseline updated model υ = 31, corresponding
to the 1st August. Field collected air temperature is used, alongside water
temperatures from butt 4. In the adult plot the dashed line shows all adults
and the solid line excludes those in diapause. . . . . . . . . . . . . . . . . . . . 155

4.13 Predator seasonal abundance: (a) A comparison of the predator to prey
ratios, R(t), (Equation 4.11) throughout the year for different values of υ,
which determines the time at whichR(t) is maximised: υ = 0 gives a 1st July
peak, υ = 20 gives a 21st July peak and υ = 40 gives a 10th August peak.
The “constant" line shows the case where R(t) = r and there is no seasonal
forcing. (b) shows a comparison of the predator abundance throughout the
year for the same three values of υ and the “constant" case. . . . . . . . . . . 156
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4.14 Effect of predation sharpness: A comparison of the updated model predic-
tions for abundance of each life stage for three different values of χ, which
determines of the sharpness of the seasonal predation function. In the base-
line updated model χ = 2. The “constant" line shows model results with
seasonal variation in predators removed. Field collected air temperature is
used, alongside water temperatures from butt 4. In the adult plot the dashed
line shows all adults and the solid line excludes those in diapause. . . . . . . 157

4.15 Effect of predation strength: A comparison of the updated model predic-
tions for abundance of each life stage for three different values of rmax,
which denotes the number of predators present per larva, is shown. r was
varied in the range 0.0008-0.0012, as this was the range for which predation
was sufficient to regulate the population without leading to extinction. In
all other simulations the updated model uses a value of rmax = 0.001. The
“constant" line shows model results with seasonal variation in predators re-
moved. Field collected air temperature is used, alongside water temperatures
from butt 4. In the adult plot the dashed line shows all adults and the solid
line excludes those in diapause. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.16 Effects of water temperature temporal resolution in shade: A compari-
son of the updated model predictions for abundance of each life stage in butt
4 using mean daily water temperature (black), minimum and maximum daily
water temperature (blue) and hourly temperatures (red). In the adult plot the
dashed line shows all adults and the solid line excludes those in diapause. . . 161

4.17 Effects of water temperature temporal resolution in sunlight: A compar-
ison of the updated model predictions for abundance of each life stage in butt
1 using mean daily water temperature (black), minimum and maximum daily
water temperature (blue) and hourly temperatures (red). In the adult plot the
dashed line shows all adults and the solid line excludes those in diapause. . . 162

4.18 Effects of air temperature temporal resolution: A comparison of the up-
dated model predictions for abundance of each life stage using mean daily
air temperature (blue) and minimum/maximum daily air temperature (black).
The water hourly temperature values from butt 4 were used for the immature
life stages. In the adult plot the dashed line shows all adults and the solid
line excludes those in diapause. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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4.19 Effects of approximating water temperature using air temperature: A
comparison of the updated model abundance predictions for each life stage
using hourly water temperature values and daily minimum and maximum
air temperature values (black line) and using only the daily minimum and
maximum air temperature values (blue line). In the adult plot the dashed line
shows all adults and the solid line excludes those in diapause. . . . . . . . . . 165

4.20 Effects of approximating water temperature using air temperature: A
comparison of the updated model survival predictions for each life stage us-
ing hourly water temperature values and daily minimum and maximum air
temperature values (black line) and using only the daily minimum and maxi-
mum air temperature values (blue line). There is no survival curve for adults
as adults are not given a stage duration equation because there is no matura-
tion from the adult class, only death. In the adult plot the dashed line shows
all adults and the solid line excludes those in diapause. . . . . . . . . . . . . . 166

4.21 Overwinter transmission pathways flowchart: A flowchart showing the
three main overwinter disease transmission pathways: overwinter survival
of horizontally-infected adults through gonotrophic dissociation, survival of
vertically-infected diapausing individuals and survival of infected birds. . . . 175

5.1 SIR and SEIR Models: Diagram (a) shows a simple SIR model for a hy-
pothetical host and vector population. Diagram (b) shows an SEIR model,
where an exposed class has been added for the vector population. Vector-
host and host-vector transmission are the only pathways considered in both
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2 WNF weekly cases: The number of WNF neuroinvasive disease cases by
week of illness onset across the entire United States in 2007 (CDC 2007)
and across Europe in 2010 (Paz et al. 2013) is shown. . . . . . . . . . . . . . . 184

5.3 WNV transmission cycle: The diagram shows the WNV transmission cy-
cle. Cx. pipiens is highlighted in red to emphasise its role as both a main-
tenance and bridge vector of WNV. UK mosquito species’ status as either a
maintenance or bridge vector is based on the classification in Chapman et al.
(2016). Temperature will affect all vector-host and host-vector transmission
rates through its effects on the biting rate and EIP. It will also affect mosquito
seasonality through the numerous effects on mosquito vital rates discussed
previously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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5.4 Flowchart showing the model structure and highlighting the disease-related
parameters. All stages have an associated death rate, which is not displayed
here for clarity. All disease transmission processes are shown by dashed
lines, whilst life cycle processes are shown by solid lines. . . . . . . . . . . . 188

5.5 Bird dynamics: (a) shows the bird birth function, bB(t), given by Equation
5.3, with the dotted line depicting the start and end of the breeding season and
(b) showns an example annual cycle of bird abundance by solving Equation
5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.6 Field site air temperatures: The air temperatures at the Wallingford field
site in 2015 are shown. The blue line shows the lower thermal threshold at
which progression of the EIP can take place. The red line at 30 ○C repre-
sents the highest temperature at which the EIP duration was recorded in the
laboratory experiments (Reisen et al. 2006a). . . . . . . . . . . . . . . . . . . . 199

5.7 EIP rate: The EIP progression rate at a range of temperatures for Cx. tarsalis

is shown in by circles, using data from (Reisen et al. 2006a). The crosses cor-
respond to EIP estimates for Cx. pipiens (Dohm et al. 2002b; Goddard et al.
2003). The values correspond to the median EIP observed at each temperature.200

5.8 Disease predictions: The plots show time series of predicted densities of
each life stage and infection class for hourly water temperatures taken from
butt 4 and minimum and maximum daily air temperatures from Wallingford.
As in Chapter 4, the dotted lines show all adults whilst the solid lines show
only active (biting) adults. All WNV parameters are as in Table 5.2. . . . . . 208

5.9 Sensitivity analysis: Sensitivity analyses are shown for the parameters in
Table 5.2. The black lines show the percentage change in the maximum
predicted density of infectious mosquitoes at any point in the year. The
blue lines show the percentage change to the average density of infectious
mosquitoes per day during the months of April to August, which correspond
to the main active mosquito season (calculated as 1

243−91 ∫
243

91 AI(t)dt). The
dotted black line shows the baseline value assumed for the given parameter
across the other simulations. Red lines show the range of predicted values
from the literature, where a range could be determined. . . . . . . . . . . . . . 209
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5.9 Sensitivity analysis (continued): Sensitivity analyses are shown for the pa-
rameters in Table 5.2. The black lines show the percentage change in the
maximum predicted density of infectious mosquitoes at any point in the year.
The blue lines show the percentage change to the average density of infec-
tious mosquitoes per day during the months of April to August, which corre-
spond to the main active mosquito season (calculated as 1

243−91 ∫
243

91 AI(t)dt).
The dotted black line shows the baseline value assumed for the given param-
eter across the other simulations. Red lines show the range of predicted
values from the literature, where a range could be determined. . . . . . . . . . 210

5.10 Disease transmission processes: (a) shows the estimated duration of the
EIP throughout the year given the air temperatures experienced. (b) shows
the predicted biting rate throughout the year given the air temperatures ex-
perienced. The red lines show the period over which virus introduction led
to a predicted mosquito density greater than one. . . . . . . . . . . . . . . . . 213

5.11 Disease transmission processes: (a) and (b) show the mosquito MIR and
percentage of infected birds, respectively, assuming both constant and vari-
able EIP duration. (c) and (d) show the mosquito MIR and percentage of in-
fected birds, respectively, assuming both a constant gonotrophic cycle length
and a variable duration. (e) and (f) show mosquito MIR and percentage of in-
fected birds, respectively, assuming that either both the EIP and gonotrophic
cycle are constant, or both processes are variable. The dashed line shows the
end of the biting season. Virus introduction is assumed to occur on the first
of July, as this most clearly showed the differences between model runs. . . . 215

5.12 Baseline temperature profile: The baseline temperature profile (1961-1990)
from the UKCIP data is shown (MetOffice 2009). The solid lines show the
mean daily air and water temperatures, whilst the dotted lines show the upper
and lower bounds of the daily temperatures, given the diurnal temperature
range estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.13 Effect of warming scenarios: (a) shows the predicted maximum density of
infectious mosquitoes observed on a particular day under a range of warming
and introduction scenarios. (b) shows the predicted density of infectious
mosquitoes per day during the months of April to August, corresponding to
the main active mosquito season, under different warming and introduction
scenarios. (c) shows the predicted minimum infection rate (MIR), which is
the number of infectious adults per 1000 adult females. (d) shows the mean
vector-host ratio during the active mosquito season (April to September). . . 218
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5.14 Comparison of temperature inputs: The density of infectious mosquitoes
is shown under four temperature input scenarios. “Observed temperatures"
- uses the hourly water and minimum/maximum daily air temperatures ob-
served at the field site in 2015. “Observed temperatures plus warming" uses
the temperatures from the observed temperatures scenario with 2 ○C added
at all points, to give a mean temperature as predicted to occur in 2080 un-
der the medium emissions scenario. “Sinusoidal wave" captures the annual
temperature variation using a sinusoidal wave of the form shown in Equation
5.23 (µ = 11.7, λ = 6.4, φ = 31, TDTR = 9.4) fitted to the air temperature data
from the Wallingford field site in 2015. Water temperatures are then esti-
mated according to Equation 5.24. “Sinusoidal wave plus warming" uses the
sinusoidal wave described for the scenario without warming with the mean
temperature, µ, increased to 13.7 to give the mean temperature predicted by
2080 under the medium emission scenario. Each scenario is run for one year
under a sinusoidal temperature profile with the stated degree of warming be-
fore the described temperature profile is applied. The dashed lines show the
end of the mosquito biting season. Plot (a) shows infection introduction on
May 31st, whilst (b) shows infection introduction on June 30th. . . . . . . . . 220

A.1 Comparison between linear and constant histories: Simulations showing
the comparison between estimated survival, stage duration and abundance.
The solid black line shows the results using linear development and death
rate functions, whilst the dotted red line shows results under constant tem-
peratures, for t ≤ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.1 Vertical transmission modelling pathways: The two possible methods by
which to model vertical transmission are shown. (a) is the technique used in
Chapter 5, and (b) is the alternative formulation. . . . . . . . . . . . . . . . . . 243

C.1 Abundances under constant and variable predation: A comparison of the
abundances of each life stage compared to the field data assuming both con-
stant and variable predation, given the temperature conditions at the Walling-
ford field site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



xxiii

C.2 Larval survival under different temperature regimes: The figure shows
the larval survival during spring under three different temperature regimes
when seasonal forcing is applied to the predator population. The black line
represents the estimated larval survival under the observed temperature con-
ditions in butt 4 at the Wallingford field site. The dashed red line shows the
estimated larval survival when approximating those observed temperatures
by a sinusoidal wave of the form described in Section 5.5.4. The solid red
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Chapter 1

Introduction

1.1 Aims of the thesis

The main aims of the thesis are:

• To develop and validate an environmentally driven seasonal abundance model for Cx.

pipiens, a temperate mosquito vector, which accounts for changing environmental con-
ditions by explicitly incorporating variation in developmental delays of each life stage.

• To use this model to predict the possible risks of West Nile virus (WNV) introduction
and subsequent transmission within the UK.

1.2 Virus and vector background

1.2.1 Overview of vector-borne diseases

Organisms which transmit parasites and pathogens from infected to uninfected individuals
are called vectors. There are a huge range of species which act as vectors, though the most
common group are arthropods (Kalluri et al. 2007). Vectors can be split into two groups,
defined as mechanical vectors and biological vectors. Mechanical vectors transmit the in-
fectious agent without that agent being able to replicate or develop within their body. For
example, synanthropic flies have been linked to outbreaks in diarrheal diseases in urban and
rural areas of developing countries (Graczyk et al. 2001). Biological vectors take the in-
fectious agent into their system, where it replicates and develops before being passed on to
another host. Biological vectors are typically obligate blood feeders which have adapted to
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use semi-aquatic or aquatic breeding sites either in domestic settings or in peridomestic set-
tings near livestock. Examples of well known and particularly problematic biological vector
species include tsetse flies, which spread human sleeping sickness and animal trypanosomi-
asis (Brun et al. 2010) and ticks, which spread Lyme disease (Burgdorfer 1984). Perhaps
the most well known vector species are mosquitoes, which transmit a range of human and
animal diseases, including malaria (Ross 1898) and dengue fever (Bancroft 1906). These
diseases cause serious morbidity and mortality in the affected species and often come with
large associated medical, ecological and financial costs (Brownlie et al. 2006).

Mosquitoes were first implicated as a disease vector in the late 19th century when they
were found to act as vectors of the avian malaria parasite Plasmodium relictum by Ross
(1898), who allowed mosquitoes to feed first on infected birds and then uninfected birds
and showed that transmission had occurred. Shortly after this mosquitoes were also found
to vector human malaria (Grassi et al. 1899), yellow fever (Reed et al. 1900) and dengue
fever (Bancroft 1906). Since then mosquitoes have been found to act as vectors for hun-
dreds of pathogen species, 38 of which affect humans (Smith et al. 2014). To satisfactorily
incriminate a mosquito species as a vector of a pathogen one must assert a temporal and
spatial relationship between the mosquito species and disease cases, provide evidence of
direct contact between the mosquito species and the host, and provide evidence that the
mosquito species harbours the pathogen in its salivary glands (Beier 2002). Efforts to erad-
icate mosquito-borne pathogens were undertaken at a large scale in the 1950s and 1960s
through the Global Malaria Eradication Programme (GMEP). The GMEP placed a strong
focus on the implementation of mosquito eradication measures, primarily through the use
of the insecticide DDT (dichloro-diphenyl-tichloroethane) (Smith et al. 2012). However, the
programme’s rigid approach to eradication through DDT spraying meant little focus was
given to continuing research into malaria control (Najera et al. 2011). Mosquitoes were
observed to develop resistance to DDT (Gjullin and Peters 1952), which combined with nu-
merous other factors brought about the end of the GMEP in 1969. In the subsequent years
many of the diseases previously thought to be under control have expanded their range and
increased their prevalence (Gubler 1998; Zell 2004; Reiner et al. 2013). Mosquito-borne
diseases are now thought to be a major global public health concern, with the burden of
these diseases increasing substantially in many regions in recent decades (Reiner et al. 2013;
Gubler 2002).

This increase stems not only from the re-emergence of diseases previously thought to be
under control, such as Dengue (Decker 2012) but also from the geographical expansion of
diseases to new areas, as with West Nile fever (WNF) (Reisen 2013). Calculation of an R0
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value is a standard, useful technique by which the level of risk a population faces due to a
vector-borne disease can be quantified. This is the number of secondary infections caused
by introducing one infectious individual into a population which is entirely susceptible. R0

values are a standard way to assess the outbreak potential of a pathogen, with values greater
than one implying that an epidemic will take place and values below one meaning the dis-
ease will die out. A range of factors including societal, land use and habitat changes, have
been linked to changes in exposure to mosquitoes, which will influence the ratio of vectors to
humans, (Gubler 2002), the frequency with which vectors may bite humans rather than other
hosts, and consequently R0 values. In particular, unprecedented human population growth
and reduction in mosquito control have increased exposure to mosquitoes in existing en-
demic areas, whilst increased global travel has expanded the range of vector-borne diseases
(Gubler 2002). These factors combine with widespread predictions that rising temperatures
may increase mosquito development (Rueda et al. 1990; Loetti et al. 2011) and biting rates
(Wimberly et al. 2014), resulting in increases in mosquito population size (Paz and Alber-
sheim 2008; Mirski et al. 2012; Beck-Johnson et al. 2013) and increased exposure. Warming
is also expected to increase the hazard posed by mosquito populations, with higher tempera-
tures leading to reduction in the length of the extrinsic incubation period and increasing the
R0 value, as mosquitoes become infectious sooner after taking a blood meal (Reisen et al.
2006a).

Further, it is thought that changing rainfall patterns will influence the availability of larval
habitat, though the predicted effects of this are less clear and may show greater regional vari-
ability (Githeko et al. 2000). In the UK we expect to see increased mean precipitation and
increased extreme rainfall events through the winter months, though summer precipitation is
expected to decrease (Osborn and Hulme 2002; Beniston et al. 2007; Murphy et al. 2010).
This reduction in habitat during the biting season may lead to a decrease in available larval
habitat, which could reduce exposure. However, it has been shown that, in times of low rain-
fall, people will often store water in their gardens, creating mosquito habitats in urban areas,
which may increase exposure (Townroe and Callaghan 2014). This idea has been mirrored
in the variable effects precipitation has been seen to have on disease outbreaks (Morin and
Comrie 2013; Wimberly et al. 2014).

The non-linear and opposing impacts of temperature and rainfall on vector demographic rates
cause problems with attribution of climate change as a causal agent of changes in vector-
borne disease (Rogers and Randolph 2006). Consequently, detailed mathematical models
which explicitly account for environmental impacts on different vector life cycle processes
are required to attempt to tease out the effects of climate change on vector populations, and
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consequently disease dynamics.

1.2.2 West Nile virus

West Nile fever (WNF) is a mosquito-borne disease caused by West Nile virus (WNV),
which has expanded its range and public health burden over recent years and is now endemic
in areas of Europe, with reported cases in Northern Italy in a number of recent years (61 cases
in 2015, 23 cases in 2014, 69 cases in 2013) (ECDC 2016b). WNV is a flavivirus which was
originally discovered in Uganda in 1937 (Smithburn et al. 1940). WNF is symptomless in
70 − 80% of cases and presents with cold and flu-like symptoms in most symptomatic indi-
viduals, though in extreme cases (< 1%) it can result in encephalitis and death (Hart et al.
2014). Since its initial discovery, epidemics of WNF were initially very sporadic, with out-
breaks in Israel (1951-54 and 1957) and South Africa (1974) being the most notable. In the
mid-1990s, however, the epidemiology of the virus appeared to change, causing epidemics
and epizootics in humans and horses (outbreaks were reported in Romania 1996; Morocco
1996; Tunisia 1997; Italy 1998; Russia and Israel 1999; and Israel, France 2000) (Petersen
and Roehrig 2001). Moreover, these outbreaks showed a substantial increase in human dis-
ease cases (confirmed human infections in recent outbreaks: Romania, 393 cases; Russia
[Volgograd], 942 cases; Israel, 2 cases in 1999 and 417 in 2000) (Petersen and Roehrig
2001). Further, until 1999 WNV was restricted to Old World countries, however since then
WNV has spread across North America resulting in 43,937 reported cases and 1,911 re-
ported deaths in humans from 1999-2015 (Figure 1.1) (CDC 2016b). This expansion across
North America, alongside the outbreaks in Israel, was accompanied by a high mortality in the
avian population, which was previously unobserved, suggesting that a new strain of the virus
had emerged, which may be been transported from Israel to New York by air travel (Petersen
and Roehrig 2001). In Europe, cases have regularly been reported across the Mediterranean
basin and into central and eastern parts of the continent, with human cases as close to the
UK as southern France and northern Italy in 2015 and 2016 (Figure 1.2). The unexpected
but highly successful introduction and rapid spread of WNV in North America highlights
the ability of the virus to establish itself in previously uninfected areas (Reisen 2013). The
relative proximity of cases in Southern France and Northern Italy to the UK has raised some
concerns about the possible likelihood of WNV introduction and subsequent transmission,
perhaps through the arrival of infected migratory birds (Higgs et al. 2004; Bessell et al.
2014). This possibility is particularly concerning because the UK is already host to a high
abundance of the mosquito Culex pipiens, which is known to be an effective vector of WNV
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Figure 1.1: USA WNV cases: West Nile virus neuroinvasive disease incidence reported to CDC by
year, 1999-2015 (CDC 2016b).

(Golding 2013). Further, it is predicted climate change will cause increases in UK tempera-
tures in the coming years (MetOffice 2009), which may increase the ability of these vectors
to effectively transmit WNV if it were to be introduced.

The WNV transmission cycle

WNV is primarily transmitted in a cycle between a vector mosquito species and a wide va-
riety of host bird species (Komar et al. 2003), especially those in the order Passeriformes
(Reisen 2013), with the possibility that the virus can then spill over into equine and human
populations. Infected humans and equines act as dead-end hosts meaning that mosquitoes
cannot contract the virus from them, however infection can result in serious health implica-
tions for these populations (Figure 1.3). Given this, the epidemiology of WNV is primarily
driven by avian host and vector dynamics and not human dynamics, as is the case for dengue
and malaria. The virus is spread by adult female mosquitoes who first take a blood meal from
an infected bird, contracting the virus themselves. The virus then infects and replicates in the
cells of the mosquito midgut as the blood meal is being processed, after which it travels to
the salivary glands (Turell et al. 2002). Eventually, sufficient levels of the virus accumulate
in the salivary glands to allow it to be transmitted to new avian or mammalian hosts during
feeding (Turell et al. 2002). Once infected, an adult mosquito can pass the infection on to its
offspring, though rates of such vertical transmission are very low (Anderson and Main 2006).
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Figure 1.2: European WNV cases: A map showing WNV cases in Europe in recent years (ECDC
2016a).

In common with other arthropod-borne infections, males do not contribute to transmission
of the virus as they do not blood feed, instead feeding on nectar.

There are two routes by which WNV persistence between seasons via overwintering females
is believed to be achieved. The first route is through overwinter survival of infected, parous
(blood-fed) females (Andreadis et al. 2010). Whilst the majority of diapausing females are
nulliparous (not blood-fed) (Mitchell and Briegel 1989), Andreadis et al. (2010) found over
three years that the percentage of parous females in collections in April ranged from 0.9%

to 10%. This fact, combined with the fact that gonotrophic dissociation (the process of
diapause-ready females taking a blood meal) has been shown to occur in WNV vectors (El-
dridge 1966) implies that WNV persistence between seasons may occur, to varying degrees,
through both of these processes. The second route is by vertical transmission at the end of
one season, followed by horizontal transmission at the beginning of the next (Anderson and
Main 2006). Vertical transmission of WNV has been shown to occur both in the laboratory
(Dohm et al. 2002a) and naturally (Nelms et al. 2013), with estimates of the minimum filial
infection rate (MFIR) (the minimum number of mosquitoes infected with WNV per 1,000
offspring) ranging from 0.04 to 8.1 in laboratory studies (Nelms et al. 2013). This provides
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Figure 1.3: WNV transmission cycle: The diagram shows the WNV transmission cycle.

evidence for the possibility of WNV overwintering in vertically infected Cx. pipiens leading
to further spread of the virus through horizontal transmission the following spring.

For, WNV it is mosquitoes of the genus Culex which are the primary vectors in nature (Col-
pitts et al. 2012). Consequently, in order for successful introduction and transmission of
WNV into a new habitat, such as the UK, to take place a key requirement is that the habitat
either already supports, or is suitable for, the vector population.

Candidate UK vectors for WNV

Thorough reviews of potential WNV vectors in the UK are given by Higgs et al. (2004) and
Chapman et al. (2016). These studies identify thirteen mosquito species resident in the UK
which have been shown to act as vectors of WNV (Figure 1.4 highlighted in red). Whilst all
thirteen of these species have been shown to act as vectors of WNV virus, only those which
are widespread in the UK and are ornithophilic, meaning they feed on birds, are likely to
act as vectors on a national level. Six of the thirteen species meet these criteria: Anopheles

maculipennis, Culex pipiens, Coquillettidia richiardii, Ochlerotatus cantans, Ochlerotatus

punctor and Culiseta annulata. Of these species, Ochlerotatus punctor and Culiseta annu-

lata have only been shown to be laboratory-competent vectors and have not been implicated
in disease transmission worldwide (Chapman et al. 2016). The remaining four vectors all
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are likely to contribute to WNV transmission, however Cx. pipiens is widely regarded to be
main driver of WNV transmission in Europe and North America, due to its strong preference
for feeding on birds (Gubler 2002; Zeller and Schuffenecker 2004; Higgs et al. 2004; Calistri
et al. 2010; Reisen 2013). Further, it has been shown that Cx. pipiens is very common within
the UK (Golding 2013). As such, I assume that Cx. pipiens would act as the key maintenance
vector of WNV within the UK.

Whilst Cx. pipiens is likely to act as the WNV maintenance vector in an UK transmission
scenario, other vectors are likely to act as bridge vectors by which human or equine cases
may arise. In particular Anopheles maculipennis, Coquillettidia richiardii and Ochlerotatus

cantans are all known to bite mammals and therefore may contribute to transmission and
act as bridge vectors. Further, Culex modestus, which has been found in the North Kent
marshes in south-east England, is known to vector WNV and to aggressively bite humans
(Golding et al. 2012). Consequently, Cx. modestus habitats may be areas of particularly
high infection risk to humans if WNV transmission were possible within the resident bird
population. Potential changes in the climate may also expand the range of Cx. modestus

within the UK, potentially increasing the areas home to both maintenance and bridge vec-
tors. Therefore, general studies of vector abundance focussing on key maintenance vectors
are important, though it is also important that consideration is given to local variability in
mosquito population distributions to identify key risk areas.

Culex pipiens life cycle and ecology

In the case of WNV, the effective vector Culex pipiens is already widely distributed across the
UK and the entire Northern Hemisphere and has been shown to be a competent vector of the
virus in a range of temperate climates including North America (Colpitts et al. 2012), Europe
(Fros et al. 2015) and South America (Micieli et al. 2013). As with all mosquito species, the
Cx. pipiens life cycle consists of four main stages: egg, larval, pupal and adult. After taking
a blood meal, adult females Cx. pipiens lay rafts of eggs on the surface of stagnant pools
of water. Larvae hatch from these eggs within a couple of days and feed on organic matter
in the water as they develop through four larval instars. At the end of the fourth instar, the
larvae develop into pupae and emerge as new adults a few days later (Figure 1.5). This cycle
is repeated throughout the spring and summer months through approximately 3-4 genera-
tions, dependent on environmental conditions (Madder et al. 1983b), until inseminated adult
female mosquitoes enter a diapausing state to enable survival throughout the winter months
when temperatures are too cold for immature development (Wilton and Smith 1985).
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Aedes 
  aegypti 
  africanus 
  albocephalus 
  albopictus 
  albothorax 
  cinereus 
  circumluteolus 
  juppi + caballus 
  madagascarensis 
  vexans 
Aedomyia 
  africana 
Anopheles 
  atropos 
  barberi 
  brunnipes 
  coustani 
  crucians/bradleyi 
  maculipalpis 
  maculipennis 
  plumbeus 
  punctipennis 
  quadrimaculatus 
  subpictus 
  walkeri 
 
 

Coquillettidia 
  metallica 
  microannulata 
  perturbans 
  richiardii 
Culiseta 
  annulata 
  inornata 
  melanura 
Culex 
  antennatus 
  decens group 
  erraticus 
  ethiopicus 
  guiarti 
  modestus 
  neavei 
  nigripalpus 
  nigripes 
  perexiguus 
  perfuscus group 
  pipiens 
  poicillipes 
  pruina 
  quinquefasciatus 
  restuans 
  salinarus 
  scottii 
  tarsalis 
  territans 
  theileri 
  tritaeniohynchus 
  univittatus 
  vishnul group 
  weschei 
Deionocerites 
  cancer 

Ochlerotatus 
  atlanticus 
  atropalpus 
  canadensis 
  cantans 
  cantator 
  caspius 
  detritus 
  excrusians 
  japonicas 
  punctor 
  sollicitans 
  taeniorhynchus 
  triseriatus 
  trivittatus 
  tormentor 
  signifera 
Mimomyia 
  hispida 
  lacustris 
  splendens 
Psorophora 
  ciliate 
  columbiae 
  ferox 
Uranotaenia 
  sapphirina 

 

Figure 1.4: WNV vectors: All known vectors of WNV are shown, with those present in the UK
highlighted in red (Higgs et al. 2004).
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Figure 1.5: Culex pipiens life cycle: A diagram showing the Cx. pipiens life cycle. The imago is the
final and fully developed adult stage (Landscapes 2016).

Cx. pipiens is primarily ornithophilic (bird-biting). This makes Cx. pipiens a very effective
maintenance vector, as birds are the most competent host for the virus, meaning that the
mosquitoes can continue to circulate the virus within the host population (Figure 1.3) (Pe-
tersen and Roehrig 2001). However, Cx. pipiens has also been shown to feed on mammals,
including humans, meaning it can act as a bridge vector between the avian and humans pop-
ulations (Hamer et al. 2009). WNV has been shown to overwinter in temperate regions in
both Europe (Sabatino et al. 2014) and North America (Reisen 2013) following some large
epidemics, such as in Italy in 2008-2009 (Monaco et al. 2011) and in the USA in 1999-2000
(Reisen 2013). However, the relative contributions of Cx. pipiens and host bird populations
to this overwinter pathogen persistence are not clear (Calistri et al. 2010; Monaco et al. 2011),
with both birds (Hinton et al. 2015) and adult female Cx. pipiens (Nasci et al. 2001) having
been shown to act as overwintering virus reservoirs. Consequently, it is unclear whether or
how pathogen persistence may occur in the UK.
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Avian hosts

An important determinant of the extent of WNV transmission following introduction to a
new area is the structure of the bird population in that area. It is known that different bird
species vary in disease-induced death rates, recovery rates and viremia levels such that the
overall bird population will be composed of species with a range of different host compe-
tencies (Komar et al. 2003; Pérez-Ramírez et al. 2014). These factors will have a profound
effect on disease transmission. The level of viremia reached by a given host will determine
the transmission probability from host to vector with higher levels of viremia increasing
transmission rates and R0 values. Further, recovery rate of the hosts is an important pa-
rameter, with slower avian recovery rates leading to increased potential for transmission.
Finally, the avian ecology will affect the overlap between bird, mosquito and human popula-
tions, which will influence the vector-to-host ratio. The range and relative frequency of bird
species with different competencies means that the composition of the host population may
have a profound impact on disease transmission, with high abundances of highly competent
hosts leading to virus amplification and the opposite leading to dilution of the virus. These
factors mean that not only vector population dynamics, but also host dynamics, are expected
to influence disease transmission.

Komar et al. (2003) calculated reservoir competence indices for a range of North Ameri-
can bird species by combining susceptibility to infection, mean viremia levels and infection
duration (Table 1.1). This work highlighted that Passeriformes were particularly competent
hosts for WNV, with the four most competent hosts in their study all being Passeriformes.
A recent review by Pérez-Ramírez et al. (2014), drawing together a range of studies into
avian WNV infections supports this view, showing that Passeriformes are by far the most
well studied species but also appear to show the highest viremias, in general. However, it
is important to note that they also emphasise that there are exceptions to this observation,
with some Passeriformes presenting with low viremias and species from other orders show-
ing high viremias. Further, they show that the strain of the virus affects the viremia of the
host, with hosts from the same species showing different viremias when infected with differ-
ent strains. This was observed upon introduction of WNV into North America, as the virus
caused substantial mortality amongst the local bird populations, with mortality rates amongst
the American crow being particularly high (Reisen 2013). This high avian mortality in the
New World had not previously been observed in the Old World, where the virus had been
circulating for longer (McLean et al. 2001). This suggests that different species will react
very differently to WNV reaction, not only due to differences at a species level but also due
to differences in the strain of the virus and their previous exposure (Ciota and Kramer 2013).
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Common name Susceptibility Mean infectiousness Mean duration (days) Reservoir competence index
Blue Jay 1.0 0.68 3.75 2.55
Common Grackle 1.0 0.68 3 2.04
House Finch 1.0 0.32 5.5 1.76
American Crow 1.0 0.50 3.25 1.62
House Sparrow 1.0 0.53 3 1.59
Ring-billed Gull 1.0 0.28 4.5 1.26
Black-billed Magpie 1.0 0.36 3 1.08
American Robin 1.0 0.36 3 1.08
Red-winged Blackbird 1.0 0.33 3 0.99
American Kestrel 1.0 0.31 3 0.93
Great Horned Owl 1.0 0.22 4 0.88
Killdeer 1.0 0.29 3 0.87
Fish Crow 1.0 0.26 2.8 0.73
Mallard 1.0 0.16 3 0.48
European Starling 1.0 0.12 1.8 0.22
Morning Dove 1.0 0.11 1.7 0.19
Northern Flicker 1.0 0.06 1 0.06
Canada Goose 1.0 0.10 0.3 0.03
Rock Dove 1.0 0 0 0
American Coot 1.0 0 0 0
Japanese Quail 1.0 0 0 0
Northern Bobwhite 1.0 0 0 0
Ring-necked Pheasant 1.0 0 0 0
Monk Parakeet 1.0 0 0 0
Budgerigar 0.7 0 0 0

Table 1.1: Host competencies of some bird species: A table taken from Komar et al. (2003) showing reservoir competence indices for a range of North
American birds.
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One of the most likely pathways by which WNV may be introduced into the UK would be
through the arrival of infected migratory birds (Higgs et al. 2004; Bessell et al. 2014), poten-
tially leading to a disease outbreak. Firstly, for introduction to be possible the virus would
need to have a sufficiently mild impact on the bird’s fitness that it was able to successfully
complete the migration whilst infected. If the bird’s immune system were so effective at
fighting off the virus that it were no longer infectious upon arrival then clearly no transmis-
sion could take place. Further, the ecology of the resident bird population would be very
important if the virus were to be successfully introduced, as the mixture of different host
competency levels would help determine the likelihood of virus amplification or dilution
in the population. For example, Ezenwa et al. (2006) found that increasing non-passerine
species richness decreased WNV prevalence in Louisiana, USA, and Allan et al. (2009)
found that decreasing species richness across all bird species increased WNV prevalence at
both regional and national levels in the USA. However, Loss et al. (2009) found no evidence
of an effect of avian species richness on WNV transmission in Chicago, Illinois. This vari-
ability suggests that understanding the likely impact of the ecology of avian populations at
the introduction site will be a key factor in our ability to predict WNV transmission risks.
Beyond this, the resident bird population may also be very important as a possible overwinter
reservoir for the virus. It has been seen that WNV can overwinter in roosts of North Ameri-
can crows (Hinton et al. 2015). WNV is believed to have overwintered in the Mediterranean
basin in recent years, though it is currently unclear whether this overwintering was facili-
tated by the mosquito or avian population (Calistri et al. 2010; Sabatino et al. 2014), leaving
this as an area requiring further investigation. The avian population is modelled explicitly in
Chapter 5. First, in Chapters 2 - 4 I focus on the vector dynamics.

1.2.3 Environmental drivers of vector-borne disease

The mosquito life cycle (Figure 1.5), and thus the disease transmission cycle (Figure 1.3),
of all mosquito species are affected by environmental conditions in a range of ways (Table
1.2). Mosquitoes are ectothermic, meaning that their physiology is governed by temperature
(Ciota et al. 2014). The initiation and termination of the Cx. pipiens diapause process has
been shown to respond to temperature and photoperiod cues (Sanburg and Larsen 1973;
Madder et al. 1983b) and the immature stages of the life cycle are dependent on hydrological
processes to create suitable habitats. It is also believed that other processes such as humidity
may affect adult behaviour in a range of mosquito species (Lebl et al. 2013; Carrieri et al.
2014) and we know that temperature affects disease transmission processes (Hartley et al.
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Process Increasing temperature Increasing larval habitat
Immature development rate + +

Immature survival +/- +
Adult lifespan - 0

Gonotrophic cycle length - 0
EIP duration - 0
Biting rate + 0

Table 1.2: Environmental driver effects on life cycle and transmission process: The table shows
the direct effects of environmental drivers on life cycle and disease transmission processes: + signals
an increase, - signals a decrease and 0 signals no change. Secondary effects, such as the potential
for increased larval habitat to affect body size and therefore survival of emergent adults, are not
considered.

2012). All of these environmental drivers can affect the mosquito life cycle in complex,
non-linear ways, which makes understanding the impacts of environmental changes very
challenging. I develop a mathematical model which explicitly incorporates the effects of
some of these key environmental drivers on the mosquito life cycle to predict the impact
of these drivers on seasonal abundance. Below, I present an overview of the wide range
of environmental variables which impact Cx. pipiens life cycle and disease transmission
processes.

Temperature

The development rate of the immature mosquito life stages is substantially influenced by
temperature, with development from egg hatch until adult emergence of Cx. pipiens hav-
ing been shown to take between 39 days at 10 ○C and 8 days at 30 ○C (Loetti et al. 2011).
In the same study, Loetti et al. (2011) also found that immature survival ranged from 0%

at 7 ○C to 76.4% at 25 ○C, but dropped to 1.6% at 33 ○C. Similarly, it has been shown that
Cx. pipiens adult survival is strongly temperature-dependent, with expected adult longevity
ranging from approximately 10 days at 32 ○C to just over 75 days at 16 ○C (Ciota et al. 2014).
Further, adult biting behaviour is affected through the temperature-dependent progression of
the gonotrophic cycle, which is the time required for an adult to digest a blood meal and use
it for ovarian development. Madder et al. (1983b) found gonotrophic cycle lengths in Cx.

pipiens varied from 15 days at 17 ○C to 5 days at 25 ○C. This variability in adult longevity
and gonotrophic cycle length will influence both the frequency of egg-laying events and the
number of eggs laid in an individual’s lifespan. These findings also show that the effects of
temperature on population processes can also often be opposing, with increased temperatures
leading to shorter adult life spans but also causing increased egg-laying rates. Temperature
effects on the vector life cycle such as these will affect the exposure of at-risk populations
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to vectors, thus influencing the R0 value, through changes to the vector-host ratio, the biting
rate and the mortality rate of vectors.

Temperature not only affects the population dynamics of mosquito species but also influences
disease transmission processes and thus the hazard posed by vectors. The time taken for the
virus to replicate in the cells of the mosquito midgut and travel to the salivary glands at high
enough levels for the mosquito to become infectious is called the extrinsic incubation period
(EIP) and is strongly temperature-dependent. Reisen et al. (2006a) found that the EIP for Cx.

tarsalis infected with WNV ranged from approximately 30 days at 18 ○C to 6 days at 30 ○C.
This adds to the aforementioned complexity of the effects of temperature, as there is a trade
off between increasing temperatures decreasing the length of the EIP but also decreasing the
mosquito lifespan. Understanding variable effects of temperature on population and disease
processes require models which explicitly incorporate the wide range of processes at play.
By utilising functional relationships between temperature, life cycle and disease processes it
is possible to make predictions about whether or not predicted climate change will increase
WNV transmission risks in previously unaffected areas like the UK.

Photoperiod

It has been shown that temperature can also interact with photoperiod to trigger initiation and
termination of diapause in Cx. pipiens (Spielman and Wong 1973; Sanburg and Larsen 1973;
Madder et al. 1983b). This process will define the length of the mosquito biting season, thus
influencing the exposure parameters to mosquitoes. Various laboratory studies have shown
either one or both of temperature and photoperiod to be determinants of diapause behaviour.
A general trend can be established that increasing photoperiod and temperature can be ex-
pected to decrease incidences of diapause in a given population (Spielman and Wong 1973;
Sanburg and Larsen 1973; Madder et al. 1983b). However, diapause behaviour appears to be
very variable across locations, dependent on both the lineage of the Cx. pipiens population
in question and the rearing conditions of that population. For example, Spielman and Wong
(1973) found that < 5% of adult females were diapausing at 18 ○C and 14 hours 45 minutes of
sunlight for a population from Boston, Massachusetts. Madder et al. (1983b) found that 35%

of individuals entered diapause in warmer conditions of 25 ○C with equal sunlight levels, for
a population in Guelph, Ontario. However, the findings of each individual study show that,
for a fixed photoperiod, increasing temperature should lead to a decreased incidence of dia-
pause. The fact that comparing between studies shows the opposite effect implies that there
must be some underlying difference between the two Cx. pipiens populations studied. This
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geographic variation in diapause behaviour can make parametrising functions difficult with-
out existing studies on the diapause behaviour of the geographic strain in question. There
are currently no studies which draw together data from a range of locations to investigate
geographic relationships between environmental drivers and diapause behaviour.

Hydrology

The first three life stages of Cx. pipiens (egg, larval and pupal) are aqueous stages with
Cx. pipiens primarily choosing to lay their eggs in stagnant pools of water with a high
organic content, which act as a food source (Vinogradova 2000). Given this, rainfall pat-
terns combined with terrestrial hydrology will have a large impact on habitat availability and
consequently on abundance patterns (Wang et al. 2011). Decreased rainfall will lead to an
decrease in the number and size of available oviposition (egg-laying) sites, increasing the
larval density across those sites. This causes an increase in both intra- and inter-specific
competition for resources, leading to increased density-dependent mortality (Madder et al.
1983b) and an increase in development times (Alto et al. 2012). Further, droughts may lead
to a decrease in the number of predator-free oviposition sites, as Cx. pipiens are known to
be opportunistic in their egg-laying behaviour and will utilise small temporary pools such as
cow hoof prints and pools of water in discarded tyres. Predation has been shown not only to
increase larval mortality but also to increase development times as larvae use energy to avoid
predators (Beketov and Liess 2007; Fischer et al. 2012).

However, it is also important to consider that dry periods will not necessarily lead to a de-
crease in mosquito abundance because of artificial wetting events. During dry periods people
are known to increase their use of hose pipes and store water outside for their garden. This
behaviour can create perfect mosquito breeding habitat even when environmental conditions
are not good (Tran et al. 2013; Townroe and Callaghan 2014). In such cases, incidences of
WNF may actually increase as mosquito populations may become concentrated in urban ar-
eas where human activities create breeding sites (Githeko et al. 2000). This would increase
the rate at which vectors feed on humans, increasing the human biting rate, alongside in-
creasing the vector-host ratio within urban areas. Further, it has been shown that droughts
in semi-permanent wetlands, which only dry during drought years, may cause explosions in
the mosquito population the year following a drought due to the removal of predators during
the drought year (Chase and Knight 2003). In these ways it can clearly be seen that both
biotic and a range of abiotic factors will interact to influence mosquito development, vector
population size and exposure to vectors.
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Other factors affecting population and disease processes

Some statistical studies using mosquito field capture data have shown that there is a positive
relationship between relative humidity and Cx. pipiens abundance (Lebl et al. 2013; Carrieri
et al. 2014). Wind speed has been seen to influence egg-laying behaviour, with strong winds
interfering with mosquito flight and delaying oviposition (Lebl et al. 2013). However, these
relationships have not been tested or quantified in laboratory or field studies, so further re-
search would be required in order to include it in mathematical models. The source of the
blood meal taken by the adult female mosquito is also known to affect the egg raft size, with
individuals which have fed on birds generally developing larger egg rafts than those that have
fed on mammals (Vinogradova 2000). The blood meal taken may have other effects but there
is insufficient data to draw general conclusions or patterns.

1.2.4 Empirical field data collection

Mosquito trapping and surveillance programmes are key parts of disease monitoring net-
works and are also invaluable for the purpose of validating mathematical models of mosquito
abundance. At present, such programmes tend to involve running networks of adult mosquito
traps, which measure the number of host-seeking adults. Collections of the immature life
stages, which give further information about the overall pattern of seasonal abundance across
the life cycle, remain relatively rare. These programmes are well established in a number
of different countries across continental Europe (Bogojević et al. 2009; Rosà et al. 2014;
Ibanez-Justicia et al. 2015) and North America (CDC 2016a), where incidences of vector-
borne disease occur regularly. However, given that mosquitoes do not presently transmit
disease in the UK, surveillance remains minimal, though efforts have increased slightly in re-
cent years (Townroe and Callaghan 2014; Medlock and Vaux 2015; Townroe and Callaghan
2015). Public Health England operates a network of twenty adult traps for two weeks of
each month from mid-April to mid-October (PHE 2016), however these traps use a mammal
lure and so are generally not attractive to Cx. pipiens, which are ornithophilic.

As previously alluded to, both different rearing conditions and differences in the strain of
Cx. pipiens studied mean that there can be variability in life cycle response to environmental
conditions (Tauber et al. 1986; Olejnícek and Gelbic 2000; Ruybal et al. 2016). Firstly, this
means that using data collected from populations outwith the UK to parametrise my models
may lead to slightly different predictions than those obtained if we were to calculate vital
rates for UK populations directly. Secondly, it is likely that diapause behaviour in particular,
of UK mosquitoes will differ from behaviour observed in other parts of Cx. pipiens range.
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These facts highlight the importance of being able to compare model predictions from the
UK with UK seasonal abundance data. This will allow necessary adjustments to be made
to account for differences between the strains studied in the literature and those present in
the UK and will allow us to understand whether extrapolating between the two can be con-
sidered valid. By comparing UK data with seasonal abundance data from across the Cx.

pipiens range it will also be possible to correlate geographic trends in key behaviours and
events, like diapause, with factors like photoperiodic and temperature regimes and determine
whether the inferred relationships are consistent with mathematical population models.

1.3 Mosquito and disease modelling

1.3.1 Review of existing modelling approaches

Mosquito population models and disease models have typically been developed indepen-
dently of one another, rarely being combined to understand patterns of transmission. The
earliest models in the field tended to focus on disease transmission, without considering the
life cycle of the vector or host populations. After the failure of DDT to eradicate mosquito
populations due to the development of resistant genotypes, alongside the realisation of the
environmental damage caused by DDT (Najera et al. 2011), models slowly began to look
more closely at mosquito population dynamics (Reiner et al. 2013). Finally, researchers
have begun to combine vector population models with disease transmission dynamics to
make predictions about mosquito-borne disease, though these studies remain relatively rare
(Smith et al. 2014).

Disease models that neglect vector dynamics

The theory supporting mathematical models of mosquito-borne pathogen transmission is
commonly considered to have its origins in the works of Ronald Ross and George MacDon-
ald (Ross 1898, 1910; MacDonald et al. 1968), though several mathematicians contributed
to what is now considered the “Ross-MacDonald” model, which in actuality is a modelling
framework based on a set of assumptions, rather than a single defined model (Smith et al.
2012). The “Ross-MacDonald model” has been written mathematically in a wide range of
forms and is based on a simple description of the pathogen life cycle: pathogens are passed
from the mosquito to the vertebrate host through blood-feeding, they multiply within the
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vertebrate host until they reach sufficiently high densities in the hosts blood to infect a sec-
ondary mosquito, the secondary mosquito replicates the virus to transmissible levels and
infects a second host through blood feeding. This work was developed with a focus on mod-
elling malaria infections, however the same principles can be applied across the wide range
of mosquito-borne diseases.

Perhaps the most common mathematical formulation of a “Ross-MacDonald” model cen-
tres around the use of ordinary differential equations (ODEs), though examples of Ross-
MacDonald models based on delay-differential or difference equations can also be found. A
good overview of the history and development of many of these models is given by Smith
et al. (2012). The simplest Ross-MacDonald models focus on infectious mosquitoes, the
pathogen itself and the vertebrate host population. One example of such a model developed
to study malaria transmission is given in Smith and McKenzie (2004),

dX

dt
=

rate of infection
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ιBTAXA(1 −X)−
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³·µ
RX ,

dA
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= BTXAX(e−δτEIP
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−A)
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rate of infection

− δA
´¸¶
death

, (1.1)

where X denotes the proportion of infected humans, A gives the proportion of infected adult
mosquitoes, ι represents the vector to host ratio, B is the mosquito biting rate, TAX and TXA
are the mosquito-to-human and human-to-mosquito transmission rates, respectively, τEIP is
the length of the EIP, R is the recovery rate of humans and δ is the death rate of mosquitoes.

By utilising a relatively straightforward modelling framework like this it is possible to cal-
culate a range of useful metrics to help understand the epidemiology of the disease. One
such metric is the entomological innoculation rate, EIR, which gives the number of infec-
tious bites received per day by a human and is considered as a good, relative measure of
transmission intensity in a region (Kelly-Hope and McKenzie 2009)

EIR =
ιB2TXAXe−δτEIP

δ + BTXAX
. (1.2)

Another useful quantity which can be defined for this model is the vectorial capacity, Cv. The
vectorial capacity is defined as the total number of potentially infectious bites that would
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eventually arise from all mosquitoes biting a single perfectly infectious host (a host from
which all bites resulted in infection of the vector) on a single day (Brady et al. 2016)

Cv =
ιB2e−δτEIP

δ
. (1.3)

The vectorial capacity is widely used in considering mosquito control measures, as reducing
the number of potential infectious bites arising from a single infectious host would clearly
reduce the potential for disease transmission. Another closely related metric is the R0 value,
which is also used to asses control scenarios, with R0 values greater than one signifying that
a disease outbreak can be expected,

R0 =
ιδCv
R

. (1.4)

These metrics and relationships can be very useful in considering a range of different epi-
demiological scenarios. For example, one could predict the extent of an outbreak if a
pathogen was introduced to a new area, or one could investigate the effects of different
control scenarios on R0 values, and thus on the possibility of an epidemic. In the example
highlighted from Smith et al. (2004), the authors examine the relationships between EIR
and R0 values and the equilibrium infection in the human population. This information is
used to explore the effectiveness of malaria control measures.

Whilst it is a valuable tool, this classical Ross-MacDonald-style model makes a number of
simplifying assumptions about the transmission dynamics and how they are affected by the
mosquito life cycle. Some examples of this include that this model ignores seasonality in the
vector population, assuming that mosquito and human population sizes remain fixed, which
will affect the vector to host transmission rate and thus predictions of the EIR, Cv, and R0.
Further, there is no consideration of immunity or asymptomatic individuals, which will affect
transmission dynamics, meaning that humans can no longer be categorised as simply infected
or uninfected, again affecting the metrics calculated. Further, the mortality during the EIP of
the virus is included but the time delay is not. If this were to be modelled accurately then it
may affect the entire dynamics of the system. Work in the field of mosquito-borne diseases
over the last half century has centred around understanding the effects of the simplifying
assumptions of the Ross-MacDonald framework (Reiner et al. 2013). I continue this trend
by explicitly modelling the life cycle of the vector population, and in Chapter 5 the host
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population and the temperature dependence on the EIP in the vector, thus removing a great
many assumptions from the original Ross-MacDonald model.

A number of papers utilised and extended the Ross-MacDonald framework to look specif-
ically at the dynamics of WNV (Bowman et al. 2005; Liu et al. 2006; Maidana and Yang
2009; Hartley et al. 2012; Bergsman et al. 2015; Robertson and Caillouet 2016). Cruz-
Pacheco et al. (2005) develop a model where the vector and avian populations are split into
compartments according to whether they are susceptible (S), infectious (I) or recovered (R)
and vertical transmission of the virus within the vector population is allowed to occur. This
SIR-type model is consistent with the classical Ross-MacDonald framework but allows hosts
to potentially develop immunity after recovery. By using a relatively simple modelling struc-
ture it is straightforward to perform mathematical analyses on the model, allowing calcula-
tion of the R0 value,

R0 =

vector & host
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ιTAXTXAB
2

(1 − pvt)δA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

vector

(RδAδWNV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
host

)
, (1.5)

where pvt is the probability of vertical transmission, δA and δB are the adult mosquito and
bird death rates,R is the recovery rate of birds, δWNV is the WNV-induced death rate of birds
and all other parameters are as previously defined. Cruz-Pacheco et al. (2005) calculated R0

values for eight well-studied bird species and found values ranging from 3.60 to 6.97. The
authors also carry out model simulations, showing that the system exhibits damped oscilla-
tions towards an endemic equilibrium of WNV infection in the bird population. They show
that WNV prevalence is expected to become very high immediately after introduction, with
approximately 30% infection after 10 days, dependent on the bird species. Infection then
settles to an equilibrium prevalence of approximately 0.05%, again dependent on the bird
species.

The high initial levels of infection in the bird population are to be expected given the rel-
atively high R0 values reported. However, the EIP, which is a key feature of the disease
transmission cycle has been omitted in this model. Inclusion of this process would be ex-
pected to delay the peak prevalence seen in the avian population, as mosquitoes will take
longer to become infectious. Further, it could be expected to substantially reduce the R0 and
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vectorial capacity values, as was previously seen to occur in Equations 1.3 and 1.4. The clas-
sification of adults as only either infected or uninfected also ignores the physiological factors
which influence the adult behaviour, such as the completion of successive gonotrophic cy-
cles. Only adult females which have taken a blood meal and completed a gonotrophic cycle
may then be infectious when taking subsequent blood meals, which will affect the propor-
tion of infectious adults. Another key feature of this study is that it typically takes well in
excess of one year to reach the endemic equilibrium infection in the avian population, which
is clearly much longer than the scale of seasonality in environmental variables. This high-
lights that, whilst the initial dynamics upon introduction are very important, the long term
dynamics must be interpreted with caution, as seasonality in the vector and host populations
will substantially affect disease transmission. Further, the R0 values calculated do not ac-
count for temporal variation in parameters due to seasonality in drivers like temperature and
photoperiod. Many of the parameters involved in calculation of R0, such as the biting rate
and the vector-to-host ratio will be seasonal and temperature-dependent. In this case, ap-
proaches such as that presented by Charron et al. (2011), who calculate a seasonally varying
R0(t) to quantify the risks of bluetongue transmission amongst cattle by biting midges, can
be used. This allows the number of secondary infections from a single infection at time t,
given by A(t), to be calculated, giving a series of estimated R0 values if the virus were to
be introduced at each point in time throughout the season. The average seasonal risk is then
given by Rs, which is the average of A(t) over the season. The authors are able to use this
approach to examine the efficacy of different vaccination strategies.

Mosquito population models

The dependence of disease transmission processes on the mosquito life cycle means that
mosquito population models can be used to add information to disease models. Explicit
modelling of the mosquito life cycle can give more information about important features,
such as patterns of seasonal abundance or mosquito dispersal, which will influence exposure
to mosquitoes. As with disease models, ODEs are a commonly used tool for modelling the
vector life cycle because they are easily analysed and simulated (Cailly et al. 2012; Lunde
et al. 2013; Lutambi et al. 2013; Tran et al. 2013; Wang et al. 2016). One example of
this can be found in the work of Erickson et al. (2010b), who develop a stage-structured,
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temperature-forced Aedes albopictus population model using ODEs:

dE

dt
= Arep −E(ge + δe),

dL

dt
= ETe −L(gl + δl) −K0L

2,

dP

dt
= LT1 − P (gp + δp),

dAi
dt

= PTp −Ai(gi + δa),

dAG
dt

= Aiδi +Argr −AG(gG + δa),

dAr
dt

= AGδG −Ar(gr + δa),

(1.6)

where E, L and P denote the immature life stages of eggs, larvae and pupae respectively,
Ai, AG and Ar denote immature, gestating and reproducing adults, ep is the number of eggs
per oviposition, δx and gx gives the mortality and development rates of a given stage, x,
respectively, and K0 is the larval death rate. By explicitly capturing the immature stage
dynamics this model can make more informed predictions about adult mosquito abundance.
This model also captures the dynamics within the adult stage by defining adults as immature,
gestating, or ovipositing, thus giving a more realistic estimate of what proportion of adults
have the potential to be infectious. The authors calculate steady states and carry out stability
and sensitivity analyses to understand which model parameters are particularly influential
determinants of mosquito abundance. The authors found that the inclusion of seasonal-
ity, through temperature-dependence, led to substantial seasonality in the sensitivity of the
model to different parameters. They also extend their series of ODEs to a series of stochastic
differential equations (SDEs) to take into account stochasticity in the population and to com-
pare simulations with a 7-year empirical field dataset on Ae. albopictus in Texas. The model
performs well, capturing between 62.1% and 77.5% of observed non-zero data points within
its 95% confidence limit. However, the authors report that one of the main shortcomings of
their model was that the timing of seasonal peaks predicted by the model often differed from
those observed in the field. One possible reason for this phase difference between field ob-
servations and predictions is that the hatching time of the overwintering egg population may
have been poorly estimated or the development rate of one or more of the life stages may not
have represented field conditions. It is also possible that this discrepancy between timings
may stem from the fact that the model structure used does not allow the explicit inclusion
of developmental lags. This means that time spent in each class is exponentially distributed
with a constantly varying mean dependent on the temperatures experienced. When using
ODEs, developmental lags can be approximated by using the linear-chain trick, by splitting a
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given stage into multiple sub-stages so that the total stage length becomes gamma-distributed
(Wearing et al. 2004). This approach was applied in a dengue model by McLennan-Smith
and Mercer (2014), though here the authors do not account for the temperature-dependence
of the vital rates.

To explicitly incorporate stage duration when modelling vector populations, one can include
stage-structure directly within the model framework (Liu et al. 2002). This involves splitting
the population into stages corresponding to the life stages of the modelled species, under the
assumption that all individuals within a stage are functionally identical. Matrix population
modelling is a common tool by which stage-structured populations can be modelled (Caswell
2001). The general formulation is such that a population, n, of k stages, at time t, can be
defined by the stage-distribution vector, n(t), such that

n(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n1(t)

n2(t)

⋮
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⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.7)

Changes in this population through each time step are then applied using the population-
projection matrix, A, with

A =
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, (1.8)

where Fi gives the fecundity of stage i, Gi gives the probability of surviving stage i and
growing to stage i+1 and Pi gives the probability of surviving stage i. The projection matrix
can be modified depending on the dynamics of the population being modelled.

In mosquito modelling, these models inherently allow for the population to be broken down
into life stages by assigning rows in a matrix to each life stage, where individuals transition
between stages with a given probability, generally dependent on current climatic conditions
(Ahumada et al. 2004; Schaeffer et al. 2008; Yusoff et al. 2012; Lončarić and Hackenberger
2013). This modelling framework was utilised by Schaeffer et al. (2008) who modelled
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seasonal dynamics of different mosquito species of the Aedes genus, accounting for rain-
fall effects on habitat size and availability. They simulated mosquito abundances over a
year and saw slight overestimation of the population size, though the agreement between the
model and data with regards to the model’s ability to capture the trend was good. Like the
SDE approach (Erickson et al. 2010a), this approach accounts for stochasticity in popula-
tion processes well and it is relatively straightforward to simulate. However, this model was
designed to estimate mosquito abundances in the Ivory Coast, which experiences a tropical
climate and so temperature-dependencies were excluded from the model in favour of depen-
dencies on rainfall patterns.

Lončarić and Hackenberger (2013) develop climate-dependent matrix population models for
Aedes vexans and Cx. pipiens with one-day projection intervals and extend this framework
by splitting each life stage into numerous sub-stages, thus creating developmental lags. For
example, the authors split the larval stage into 26 sub-stages and on any given day allow
members of each sub-stage to either transition to the next full stage with some probability or
to transition within the existing stage to the next sub-stage. This novel approach addresses
many of the shortcomings of previous matrix population models by ensuring that the prob-
ability an individual progresses to the next life stage is dependent not only on the current
life stage and environmental conditions but also on the length of time spent in that stage.
The authors simulated this model over a three year period, comparing the simulated results
to field data, and found good agreement for Aedes vexans but not for Cx. pipiens, where
the model was prone to overestimation of annual abundance. The authors hypothesise that
this may be due to ongoing control efforts and the relative rarity of Cx. pipiens in the study
area. However, I would also suggest that the overestimation of abundance may stem from
their estimate of zero adult mortality in winter, which is inaccurate (Sulaiman and Service
1983). One shortcoming of this method is that it requires that each life stage is split into a
suitable number of sub-stages and that one must find an appropriate method by which tran-
sition probabilities for each sub-stage can be accurately defined. Defining these transition
probabilities for each stage is difficult in absence of clear biological endpoints at which to
measure. This is a very involved and cumbersome approach, particularly when the number
of life stages and sub-stages is large.

Mosquito population models are very valuable as they give important information about the
seasonality of the vector population, which will affect disease transmission through terms
like the vector-to-host ratio and the mosquito biting rate. However, without explicitly in-
corporating disease transmission processes one cannot test the likelihood that epidemic or
endemic scenarios may occur upon pathogen introduction. Given this, combined approaches
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which incorporate the mosquito life cycle, the disease transmission cycle and environmental
effects on both processes will be required.

Combined vector and disease models

Models which combine the vector life cycle with disease transmission processes are rare and
can vary massively in complexity, with the simplest extensions only taking very small steps
beyond standard disease models. At present, a common technique is to utilise ODE models,
adopting an SEIR compartmental framework. Wonham et al. (2004) extend an ODE-based
SEIR model for WNV by including a compartment for the larval mosquito population (Fig-
ure 1.6). This relatively simple extension increases the biological realism of the model, by
accounting for the development time required for offspring to join the adult class. This al-
lows more informed predictions about the adult population size to be made, giving more
information about the vector-to-host ratio. By keeping the complexity of the model structure
to a minimum and ignoring the relationship between environmental variables and life cycle
parameters, the model remains analytically tractable and the authors can calculate R0 values
and equilibrium abundances by standard techniques. However, the relative simplicity of the
model means that many of the problems faced by standard disease models are still present.
In particular, the lack of climate dependencies mean that development rates and mortalities
of the mosquito life stages, along with key disease transmission cycle parameters, such as
the biting rate and the EIP, will be inaccurate. This will be particularly true in climates where
temperature variations will be large. The authors incorporate some seasonality in the model,
though they do so by using a step function which forces the mosquito population to take
one size in summer and another in winter. This approach was taken to maintain a model
which was analytically tractable, though it is not very biologically realistic. Some informa-
tion can be gleaned about the sensitivity of disease transmission to variability in population
size, however it does not consider the causes of these population fluctuations and the joint
impacts these may have on disease transmission.

More complex ODE models which account for a wider range of mosquito life cycle and
disease transmission processes have also been developed. Erickson et al. (2010a) present a
dengue model for a dynamic Aedes albopictus population, including compartments for eggs,
larvae, pupae, immature adults, gestating adults and reproducing adults, alongside compart-
ments for susceptible, exposed, infectious and recovered humans (Figure 1.7). By incorpo-
rating this range of mosquito adult sub-stages, alongside progression between susceptible,
exposed and infectious classes, the complex vector biology is captured in much more detail
than in previous models. The authors examine the behaviour of the model over a period of
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Figure 1.6: Wonham et al. (2004) model flow chart. The notation is as given in the Wonham
et al. (2004) paper.

a year, both under constant temperature conditions and under temperatures observed in Lub-
bock, Texas. Without comparing the model to empirical field data it is not possible to draw
conclusions about whether or not the added complexity of this model leads to a more accu-
rate representation of mosquito and disease seasonality. However, the use of ODEs again
means that the stage durations for each life stage and for the EIP will be exponentially dis-
tributed, which is unlikely to be a true representation of the duration (Wearing et al. 2004).
Given this, an approach which allows a temperature-dependent delay, where all individuals
which enter the stage at time t − τ(T ) will leave at time t, where T denotes the temperature
and τ(T ) denotes the stage length, would be desirable.

1.3.2 The delay-differential equation method

Delay-differential equations (DDEs) were championed as a tool for modelling the life cycle
of insect populations by Gurney et al. (1983). The authors sought to develop a framework to
encourage an increased focus on age structure effects when studying natural populations: an
area which had previously been widely neglected due to technical difficulties in formulating
age-structured models. At the time some study had been devoted to the area, however the ex-
isting continuous-time approach developed by Sharpe and Lotka (1911) and Foerster (1959)
was sufficiently mathematically complex to discourage the majority of modellers. A discrete
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Figure 1.7: Erickson et al. (2010a) model flow chart: The notation is as given in the Erickson
et al. (2010a) paper. The model depicted contains susceptible Hs, exposed He, infectious Hi, and
recovered Hr human populations and a mosquito population with 6 life stages (eggs, V1; larvae, V2;
pupae, V3; immature adults, V4; gestating adults, V5; reproducing adults, V6). The last two adult
mosquito stages are further broken down into susceptible (V5s and V6s), exposed (V5e and V6e), and
infectious stages (V5i and V6i). All of the human populations contribute to new humans, who are
born susceptible (Hi). Only the reproducing adult mosquitoes (V6) lay eggs (V1). The lines depicting
population growth were omitted to simplify the figure
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time approach was also available, in the Leslie matrix approach, however this relied on the
partition of the population into a series of equal duration age classes, which excluded the pos-
sibility of splitting the population according to life stages, which may have variable develop-
ment (Leslie 1945, 1948). Gurney et al. (1983) develop a framework utilising key principles
from the continuous age-structured partial differential equation (PDE) framework put forth
by Sharpe and Lotka (1911) and Foerster (1959). By assuming all individuals in a particular
age class are functionally identical the authors retain the mathematical rigour of the original
von Foerster description whilst substantially reducing the complexity of the mathematical
analysis. The assumption that all individuals in a particular developmental stage are func-
tionally identical means the integro-differential equations used to describe age-structured
populations can be replaced by a set of coupled DDEs, which are much more straightfor-
ward to solve numerically. This framework is particularly appropriate for insect populations
since individuals often must develop through multiple stages, moulting many times, before
reaching maturity and the behaviours and vital rates of individuals within a stage are gen-
erally very similar. Modelling in this way results in some loss of age-distribution realism,
however it grants greater analytical and computational tractability.

Lumped age class formalism

Here I present a detailed derivation of the Gurney et al. (1983) framework by which the
population can be modelled through a series of lumped age classes, as this forms the basis of
my work. First, consider the situation where individuals are treated as having a continuous
age distribution and all individuals of age a at time t have the same per capita death and
reproduction rates given by δ(a, t) and b(a, t), respectively. The age-distribution can be
defined as

f(a, t) ≡ lim
da→0

[
no. of individuals aged between a and a + da at t

da
] . (1.9)

Changes in the age distribution as a result of deaths and ageing can then be described by the
von Foerster equation, as

Bf(a, t)

Bt
= −

Bf(a, t)

Ba
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ageing

− δ(a, t)f(a, t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

death

. (1.10)
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Considering that all newborn individuals must enter the system at age zero this must be
solved subject to the renewal condition

f(0, t) = B(t) = ∫
∞

0
f(a, t)b(a, t)da, (1.11)

where B(t) gives the number of newborns at time t, assuming that the population is closed.

Equation 1.10 can be solved using the method of characteristics. Parameterising the char-
acteristic curve by ξ and applying the chain rule to reduce the PDE to a series of ODEs
gives,

Bf

Bξ
=
Bf

Ba

Ba

Bξ
+
Bf

Bt

Bt

Bξ
= −δ(t)f, (1.12)

with,

Ba

Bξ
= 1, (1.13)

Bt

Bξ
= 1, (1.14)

Bf

Bξ
= δ(t)f. (1.15)

(1.16)

Solving Equations 1.13 and 1.14 for a and t gives

a = ξ + c1 and t = ξ + c2, c1, c2 ∈ R. (1.17)

Now determine the boundary conditions,

ξ = 0⇒ a(0) = 0, (1.18)

t(0) = c2 (1.19)
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since the starting age is zero. Hence, a(0) = ξ and t(0) = ξ + c2. Therefore,

df

dξ
= −δ(ξ)f,

f(ξ) = f(0) exp(−∫

ξ

ξ′=0
δ(ξ′)dξ′) ,

(1.20)

where ξ′ is a dummy variable. Shifting back to a and t gives

f(a, t) = f(a(0), t(0)) exp(−∫

t

t′=0
δ(t′)dt′) . (1.21)

Using the fact that a(0) = 0 and t(0) = c2 in combination with t(ξ) = ξ + c2 and a(ξ) = ξ it
follows that ξ = a and t(ξ) = a(ξ) + t(0). Hence, t(0) = t − a and the solution to Equation
1.10 can be written as

f(a, t) = f(0, t − a) exp(−∫

t

t−a
δ(t′)dt′) ,

= B(t − a)S(t − a, a),

(1.22)

where the cumulative survival probability for the population is defined as

S(t, a) ≡ Probability an individual born at time t survives to at least age a,

= exp(−∫

t+a

t
δ(x − t, x)dx) .

(1.23)

Now, consider that the population is split into n age classes, such that i = 1,2, ...,Q denotes
the ordered age class. It is assumed that all individuals within an age class are functionally
identical, such that

δ(a, t) = δi(t) ∀ai ≤ a ≤ ai+1,

b(a, t) = bi(t) ∀ai ≤ a ≤ ai+1,
(1.24)

and that transitions between classes take place at fixed ages. Consider the age of entry into
functional class i to be ai and the age of maturation into class i + 1 to occur at age ai+1. The
sub-population of class i at time t, Ni(t), is then the number of individuals in the age range
ai ≤ a ≤ ai+1,
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Ni(t) = ∫
ai+1

ai
f(a, t)da. (1.25)

Equations for Ni can be expressed in the form of the balance equation

dNi(t)

dt
= Ri(t) −Mi(t) − δi(t)Ni(t) [recruitment - maturation - deaths], (1.26)

where Ri(t) is the rate of recruitment from class i − 1 into class i at time t and Mi(t) is the
rate of maturation from class i into class i + 1 at time t. By integrating Equation 1.10 over
the interval ai ≤ a ≤ ai+1 one can arrive at expressions for Ri(t) and Mi(t) as follows

∫

ai+1

ai

Bf(a, t)da

Bt
= −∫

ai+1

ai

Bf(a, t)da

Ba
− ∫

ai+1

ai
δ(a, t)f(a, t)da,

dNi(t)

dt
= −f(ai+1, t) + f(ai, t) − δi(t)Ni(t),

Hence, Ri(t) = f(ai, t) and Mi(t) = f(ai+1, t).

(1.27)

Defining that newborns go into age class i = 1 (ai = 0), and using the assumption that birth
rates are constant within an age class (Equation 1.24), it can be seen from Equation 1.11 that

R1(t) = f(0, t) = B(t) =
Q

∑
j=1
bj ∫

ai+1

ai
f(a, t)da, (1.28)

=

Q

∑
j=1
bj(t)Nj(t). (1.29)

By substituting the solution (Equation 1.22) into the continuity equations (Equation 1.27) it
can be seen that

Ri(t) = B(t − ai)S(t − ai, ai) i = 2, ...,Q

Mi(t) = B(t − ai+1)S(t − ai+1, ai+1) i = 1, ...,Q − 1.
(1.30)

Now, define the duration of age class i to be τi ≡ ai+1−ai. The survival, Si(t) of an individual
through age class i is



Chapter 1. Introduction 33

Si(t) =

Survival of individuals born at t−ai+1 to age ai+1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

S(t − ai+1, ai+1)

S(t − ai+1, ai)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Survival of individuals born at t−ai+1 to age ai

(1.31)

to be the proportion of individuals at t − τi who survive to i + 1 at t. Using Equations 1.30
with these definitions for τi and Si(t) one can relate maturation to recruitment as follows

Mt(t)

Ri(t − τi)
=

B(t − ai+1)S(t − ai+1, ai+1)

B(t − ai − τi)S(t − ai − τi, ai)

Mt(t)

Ri(t − τi)
=

B(t − ai+1)S(t − ai+1, ai+1)

B(t − (ai + τi))S(t − (ai + τi), ai)

Mt(t)

Ri(t − τi)
=
B(t − ai+1)S(t − ai+1, ai+1)

B(t − ai+1)S(t − ai+1, ai)
= Si(t).

(1.32)

The rate of maturation out of class i at time t is simply the rate of recruitment into class i at
t− τi multiplied by the probability of survival. This allows us to rewrite the balance equation
(Equation 1.26) as

dNi(t)

dt
= Ri(t) −Ri(t − τi)Si(t) − δi(t)Ni(t), (1.33)

so instead of the PDE one can now describe population densities using a system of cou-
pled delay-differential equations. By setting the τi terms to correspond to the durations of
mosquito life stages, or disease transmission processes like the EIP, one can capture the de-
velopmental delays in the mosquito life cycle. The recruitment equations can be written
explicitly as

Ri(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
Q
j=1 bj(t)Nj(t) if i = 1,

Ri−1(t − τi−1)Si−1(t) if i = 2, ...,Q.
(1.34)

To solve the Equation 1.33 initial conditions for t = 0 and historical values for t < 0 are
required. The standard approach is to consider a system where

Ni(t) = 0 ∀i and for t ≤ 0. (1.35)
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Inoculation of the system occurs for a small time period 0 ≤ t ≤ T1 over which individuals
are added to the system. This is done by modifying the recruitment equations, such that

Ri(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

B(t) + Ii(t), if i = 1

Mi−1(t) + Ii(t), if i = 2, ...,Q
(1.36)

where Ii(t) is the rate at which individuals aged exactly ai are added to the age class at time
t and B(t) is the birth rate of individuals into the first age class. Ii(t) can be specified such
that

Ii(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ji, 0 ≤ t ≤ t1

0, otherwise
(1.37)

where Ji denotes the rate at which individuals are added to the system. The inoculation
equations can then be added into the recruitment equations to describe the system for all t,

Ri(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
Q
j=1 bj(t)Nj(t) + Ii(t), if i = 1

Ri−1(t − τi−1)Si−1(t) + Ii(t). if i = 2, ...,Q
(1.38)

In summary, we arrive at the set of delay-differential equations

dNi(t)

dt
= Ri(t) −Ri(t − τi)Si(t) − δi(t)Ni(t), (1.39)

subject to the initial conditions

Ni(t) = Ri(t) = Ii(t) = 0 −max
i

(τi) ≤ t ≤ 0, all i,

Si(0) = exp(−∫

0

−τi
δi(x))dx.

(1.40)

The first of these simply states that the system is empty in the time leading up to t = 0. The
second defines the probability of survival for class i in the period, of length its lag, leading
up to t = 0.
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As discussed by Gurney et al. (1983), the use of time delays, τi, which make the model so
well suited to modelling age structured populations, make models of this form very diffi-
cult to analyse. Whilst exceptions exist, analysis of models within this framework is often
restricted to the determination of steady states and their corresponding stability.

1.3.3 Extension to include variable delays

The work presented by Gurney et al. (1983) allows for the explicit inclusion of developmen-
tal delays in the mosquito life cycle. However, to allow these delays to be variable, dependent
on the environmental conditions experienced, one must look to the work of Nisbet and Gur-
ney (1983). This work extends the framework to allow dynamically varying stage durations.
In doing so the authors allow progression between the stages to occur as a result of a devel-
opmental process, rather than by chronological age. In the model developed by Nisbet and
Gurney (1983) this variation in stage duration is dependent on the rate of weight gain, which
is determined by the availability of food. Their approach can be extended to allow variation
as a result of a range of biotic or abiotic factors, including temperature.

Formalism for dynamically varying stage duration

I present the theory behind the Nisbet and Gurney (1983) framework and describe how the
underlying continuous age structure PDE model can be reduced to a set of DDEs. Consider
the density function f(a,m, t) defined such that f(a,m, t)dadm is the number of individuals
at time t with age in the infinitesimally range a to a + da and at a point on some arbitrary
development (or maturation) scale in the similarly small range m to m+ dm. The use of this
development scale differentiates this method from the previous age-dependent formalism, as
individuals now move between stages based on the rate of development, which may vary,
rather than purely through ageing. This gives the following balance equation to describe the
processes of ageing, development and death of individuals present in the population at time
t

Bf

Bt
= −

Bf

Ba
−

B

Bm
[gf] − δf, (a > 0) (1.41)
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in which g and δ (both functions of development, m, and age, a, at time t) represent the
development (or growth) and instantaneous per capita death rate of individuals respectively.
Equation 1.41 is solved subject to a renewal condition

f(0,m, t) = ∫
∞

a=0
∫

∞

m=0
b(a,m′,m, t)f(a,m′, t) da dm′, (1.42)

in which b(a,m′,m, t) is the per capita rate of production of offspring of development level
m at time t by individuals of development level m′ and age a. Equation 1.41 and 1.42 can
be simplified by assuming that g, b and δ are independent of age, allowing Equation 1.41 to
be recast by defining

ρ(m, t) ≡ ∫
∞

0
f(a,m, t)da. (1.43)

Integrating Equation 1.41 over all ages then gives

Bρ

Bt
= f(0,m, t) −

B

Bm
[gρ] − δρ. (1.44)

Now by assuming that all individuals are equally developed at birth,m =m1, then f(0,m, t) =
0 unless m =m1, and so Equation 1.41 can be rewritten as

Bρ

Bt
= −

B

Bm
[gρ] − δρ, (m >m1) (1.45)

where ρ(m, t)dm represents the number of individuals in the development rangem tom+dm
regardless of age. To obtain a boundary condition for Equation 1.45, simplify Equation 1.42
by assuming age-independent rates

R1(t) = ∫
∞

m1

b(m, t)ρ(m, t)dm. (1.46)

To derive a boundary condition note that the total recruitment during the infinitesimal time
interval t to t+dt is given by R1(t)dt and that these recruits will, at time t+dt be developed
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in the range m1 to m1 + dm1 where dm1 = g(m1, t)dt. Since the total number of individuals
with masses in that range is ρ(m1, t)dm1 it follows that

R1(t)dt = ρ(m1, t)dm1 = ρ(m1, t)g(m1, t)dt, (1.47)

meaning

g(m1, t)ρ(m1, t) = ∫
∞

m1

b(m, t)ρ(m, t)dm (1.48)

is the renewal condition. Therefore, an insect population with fecundity, growth, and death
rates which are mass dependent but age independent and where all recruits start with the
same mass, has dynamics completely specified by the balance equation 1.45 and the renewal
condition 1.48.

By making simplifying assumptions the PDE formulation can be reduced to a system of
structured DDEs:

• We assume that growth of the insects involves n developmental stages

m1 →m2 m2 →m3 ⋯ mn →mn+1

stage 1 stage 2 ⋯ stage n

eggs 1st instar larvae ⋯ adults

such that transitions from stage i − 1 to i occur on achieving development level mi.

• All individuals within a stage have the same instantaneous growth rates and per capita
death rates independent of mass

g(m, t) = gi(t)

δ(m, t) = δi(t)

b(m, t) = bi(t)

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

if mi ≤m ≤mi+1

• The adult population has a constant sex ratio and all females have the same fecundity.
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Define the subpopulations by

Ni(t) ≡ ∫
mi+1

mi
ρ(m, t)dm, (1.49)

which by integrating Equation 1.44 between mi and mi+1 gives Ni(t) satisfying

dNi(t)

dt
= Ri(t) −Mi(t) −Di(t). [recruitment - maturation - deaths] (1.50)

Hence, the rate of change in a particular stage is given by the rate of recruitment, minus the
maturations and deaths from that stage, where

Ri(t) = gi(t)ρ(m
+
i , t),

Mi(t) = gi(t)ρ(m
−
i , t),

Di(t) = δi(t)Ni(t),

(1.51)

with

ρ(m+
i , t) = lim

ε→0+
ρ(mi + ε, t),

ρ(m−
i , t) = lim

ε→0+
ρ(mi − ε, t),

(1.52)

with the detailed definitions of ρ required because ρ is not normally continuous across stage
boundaries. Recruitment into stages other than the first occurs solely through maturation and
so Ri(t) = Mi−1(t) if i ≠ 1 and Ri(t) = ∑

n
j=1 bj(t)Nj(t) otherwise. Obtaining an explicit

expression for the maturation rate, Mi(t), requires that the balance Equation 1.45 is solved
within the ith age class only, subject to the boundary condition in Equation 1.47 (slightly
modified to apply to the ith age class)

ρ(m+
i , t) =

Ri(t)

gi(t)
. (1.53)

To find ρ(m+
i , t), a solution of Equation 1.45 is required within developmental class i, for

which mi ≤m ≤mi+1. We find such a solution by introducing the new variable
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µ =mi + gi(t)t, (1.54)

and defining ρ′(m,µ) = ρ(m, t), δ′i(µ) = δi(t) and g′i(µ) = gi(t). Equation 1.45 can be
rewritten in terms of µ by using the chain rule to say that

Bρ

Bt
=
Bρ′

Bµ

Bµ

Bt
. (1.55)

Further, it can be see that

B

Bm
(gi(t)ρ) =

B

Bm
(g′i(µ)ρ

′(m,µ)) = g′i(µ)
Bρ′

Bm
, (1.56)

Hence, Equation 1.45 becomes

Bρ′

Bµ

Bµ

Bt
= −g′i(µ)

Bρ′

Bm
− δ′i(µ)ρ

′. (1.57)

Now, µ =mi + g′i(µ)t, so Bµ
Bt = 0 + g′i(µ). Hence, Equation 1.58 becomes

Bρ′

Bµ
= −

Bρ′

Bm
−
δ′i(µ)

g′i(µ)
ρ′ ai ≤ a ≤ ai+1 (1.58)

This equation is the standard von Foerster equation and can be solved by the method of
characteristics. Parameterise the characteristic curve by ξ so (a(ξ), µ(ξ)) is the characteristic
curve. So

Bρ′

Bξ
=
Bρ′

Bµ

Bµ

Bξ
+
Bρ′

Bm

Bm

Bξ
,

= −
δ′i(µ)

g′i(µ)
ρ,

with
Bµ

Bξ
= 1,

Bm

Bξ
= 1,

Bρ′

Bξ
= −

δ′i(µ(ξ))

g′i(µ(ξ))
ρ′.

(1.59)
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Solving the equations for µ and m it follows that

µ(ξ) = ξ + c1, m(ξ) = ξ + c2, c1, c2 ∈ R. (1.60)

Now determine the boundary conditions, for µ >m since µ ≥mi,

ξ = 0⇒m(0) =mi, (1.61)

and µ(0) gives the times of entries into class i. So c1 = mi, hence m(ξ) = ξ + mi and
µ(ξ) = ξ + c2. Therefore,

Bρ′

Bξ
= −

δ′i(µ(ξ))

g′i(µ(ξ))
ρ′,

ρ′(ξ) = ρ′(0) exp(−∫

ξ

ξ′=0

δ′i(µ(ξ
′))

g′i(µ(ξ
′))
dξ′) ,

(1.62)

where ξ′ is a dummy variable. Now, changing back to the original variables and using the
fact that dµdξ = 1⇒ dµ = dξ, gives

ρ′(m,µ) = ρ′(m(0), µ(0)) exp(−∫

µ(ξ)

µ(0)

δ′i(µ
′)

g′i(µ
′)
dµ′) , (1.63)

where µ′ is a dummy variable. Now, note that m(0) = c1 and µ(0) = c2, but µ(ξ) = ξ + c2
and m(ξ) = ξ +mi, so ξ =m(ξ) −mi. Hence, µ(0) = µ −m +mi and

ρ′(m,µ) = ρ′(mi, µ −m +mi) exp(−∫

µ

µ−m+mi

δ′i(µ
′)

g′i(µ
′)
dµ′) m ∈ (mi,mi+1). (1.64)

Now change the independent variable from µ back to t. Consider the integral,

∫

µ

µ−m+mi

δ′i(x)

g′i(x)
dx. (1.65)
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Setting x =mi +g′i(x)t
′, gives dt′ = dx

g′i(x)
. Using the fact that x = t′ and µ = t it can be shown

that

µ =mi + g
′
i(µ)t =mi + gi(t)t,

t′ =
x −mi

g′i(x)
,

So, at x = µ t′ =
m + gi(t) −mi

gi(t)
= t.

(1.66)

Now, define the term τi(m, t) to be the time taken to develop from mi to m by an individual
who is at development level m at time t. Consequently,

∫

µ

µ−m+mi

δ′i(x)

g′i(x)
dx = ∫

t

t−τi(m,t)
δi(t

′)dt′. (1.67)

Hence,

ρ(m, t) = ρ(mi, t − τi(m, t)) exp(−∫

t

t−τi(m,t))
δi(t

′)dt′) ,

=
Ri(t − τi(m, t))

gi(t − τi(m, t))
exp(−∫

t

t−τi(m,t)
δi(t

′)dt′) ,

(1.68)

is the solution to the balance equation (Equation 1.45) for developmental class i. The
through-developmental class survival can be defined by

Si(t) ≡ exp(−∫

t

t−τi(m,t)
δi(t

′)dt′) , (1.69)

and so the rate of maturation out of stage i can be expressed succinctly by

Mi(t) =
gi(t)

gi(t − τi(t))
Ri(t − τi(t))Si(t). (1.70)

Finally we require an expression for the stage durations, which are defined as the time re-
quired for development from development point mi to mi+1 and so can be deduced from the
integral constraint
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mi+1 −mi = ∫

t

t−τi(t)
gi(t

′)dt′. (1.71)

This development equation, which determines the stage duration, was not required in the
previous age-dependent formalism as progression between the stages happened at fixed time
points as the population aged, where here it requires that sufficient development has occurred.
It is also necessary to consider the history of the population for all times prior to t = 0. As
in the fixed delay case, it is assumed that the system is empty (Ni = 0) for all i and all t ≤ 0

and then inoculated with some individuals after t = 0, assuming that any inoculants are at the
minimum development level for this instar. This brings about modified recruitment equations

Ri(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
Q
j=1 bj(t)Nj(t) + Ii(t) if i = 1,

Mi−1(t) + Ii(t) if i = 2, ...,Q,
(1.72)

where Ii(t) represents the rate at which individuals are added in stage i at time t

Ii(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ji 0 ≤ t ≤ t1,

0 otherwise.
(1.73)

At present the model formalism contains a series of integro-differential equations coupled
with an integral constraint. These can be very difficult to analyse, however they can be
rewritten as DDEs in the following way. First consider differentiation of the integral equation
defining the developmental lags with respect to time, t,

mi+1 −mi = ∫

t

t−τi(t)
gi(t

′)dt′,

d

dt
(mi+1 −mi) = [gi(t

′)]
t
t−τi(t) ,

0 = gi(t) − gi(t − τi(t)) (1 −
dτi(t)

dt
) ,

1 −
dτi(t)

dt
=

gi(t)

gi(t − τi(t))
,

dτi(t)

dt
= 1 −

gi(t)

gi(t − τi(t))
.

(1.74)

It can be seen from this result that if the environment is held constant then the rate of change
of the stage duration will become zero and the system will reduce down to the constant case
previously discussed. Using this, one can compute τi(t) at all t > 0 given the value τi0 of
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the lag at t = 0 and the history (t < 0). The historical values of gi(t) can be interpreted
as the development rate of an individual introduced and allowed to feed in a non-varying
environment. In the case where conditions are constant before t = 0 the unimpeded growth
rate will be constant, gi0, and the initial lag τi0 is thus obtained from

mi+1 −mi = ∫

t

t−τi(t)
gi(t

′)dt′ = gi0τi0. (1.75)

There is also an integral in the definition of Si(t). This can also be transformed into a DDE
by taking the derivative

Si(t) = exp(−∫

t

t−τi(m,t)
δi(t

′)dt′) ,

dSi(t)

dt

1

Si(t)
= − [δi(t) − δi(t − τi(t)) (1 −

dτi(t)

dt
)] ,

dSi(t)

dt
= Si(t) [δi(t − τi(t)) (1 −

dτi(t)

dt
) − δi(t)] ,

dSi(t)

dt
= Si(t) [

gi(t)δi(t − τi(t))

gi(t − τi(t))
− δi(t)] ,

(1.76)

which can be solved subject to the initial condition

Si(t) = exp(−∫

t

t−τi0
δi(t

′)dt′) = exp(δi0τi0), (1.77)

where constant conditions are assumed for t < 0 and δi0 is the per capita death rate for a
single individual prior to t = 0.

The use of a development scale to signal progression between different stages of the life cycle
means that this approach differs from the purely age-structured model described previously.
In the case of mosquitoes, this means that development through the life stages can occur at a
rate dependent on biotic and abiotic factors such as temperature, competition and food avail-
ability, as is the case in the field, rather than progression being determined by chronological
age.
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1.3.4 Applications of the variable-delay-differential equation frame-
work

In their original paper, Nisbet and Gurney (1983) model a hypothetical insect population,
where development and survival through the immature stages is dependent on food avail-
ability. In the first example the authors present, where adults have a long expected lifetime
and a low fecundity, a rapid approach without oscillations to a steady state (Figure 1.8),
which can also be found analytically, is observed. However, altering the parameters of the
system such that adults have a shorter expected lifetime and a higher fecundity, the popula-
tion exhibits oscillatory behaviour (Figure 1.9). Oscillatory behaviour, such as this, is com-
monly observed in insect populations and is a common property of DDEs. Such oscillatory
dynamics have been well studied in a number of organisms including the Australian sheep
blowfly Lucilia cuprina (Nicholson 1954) and the Indian meal-moth Plodia interpunctella

(Gurney et al. 1983). The period of oscillations typically relates to the generation time of
the organism (Jansen et al. 1990). These oscillations can make performing stability analyses
on DDEs difficult because the characteristic equations describing the eigenvalues are often
transcendental. Further, the dependence of the various vital rate functions, such as devel-
opment and mortality rates, on environmental variables further precludes DDEs from direct
mathematical analysis. Equilibrium solution values can only be found for constant temper-
ature scenarios, which have little biological meaning for temperate mosquito species which
exhibit substantial diurnality and seasonality. Given this the computation of numerical solu-
tions of the DDEs is necessary. A discussion of how these solutions was obtained is given in
Box 1.3.4.
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Figure 1.8: Stable damselfly Example: Output from simulations of the Nisbet and Gurney (1983)
example using DDE_SOLVER. Parameters A′

max = 3, K ′
F = 1, q′ = 5 and δ′A = 2, as defined in the

original paper.
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Figure 1.9: Oscillatory damselfly Example: Output from simulations of the Nisbet and Gurney
(1983) example using DDE_SOLVER. Parameters A′

max = 3, K ′
F = 1, q′ = 500 and δ′A = 10, as

defined in the original paper.

Box 1.3.1: Obtaining numerical solutions

The mosquito population model I develop in this thesis was run using the FORTRAN
90 (F90) DDE solver DDE_SOLVER published by Thompson and Shampine (2004).
The program DDE_SOLVER is based on another FORTRAN DDE solver, DKLAG6
(Corwin et al. 1997), which uses continuously imbedded sixth-order Runge-Kutta
methods to solve state-dependent functional differential equations containing delays.
The purpose of DDE_SOLVER was to develop a FORTRAN DDE solver with an
easily accessible and understandable user interface, as FORTRAN DDE solvers are
often considered daunting to users. In developing DDE_SOLVER the authors also
made improvements to the existing DKLAG6 program, which was originally written
in FORTRAN 77 (F77), by utilising features made available by the release of F90.

The solutions to the damselfly example (shown in Figures 1.8 and 1.9) were found
using DDE_SOLVER. These solutions were compared to those published in the orig-
inal paper by Nisbet and Gurney (1983) to ensure that the solver code was performing
as expected and both solutions displayed the same qualitative behaviour. Exact agree-
ment of the numerics could not be determined because the original published work did
not contain sufficient information regarding how the system was innoculated to allow
for a direct comparison and system dynamics are sensitive to this process. However,
the equilibrium solutions obtained using DDE_SOLVER were the same as those seen
in the original paper. Further, the solutions were compared to those presented by
Kettle and Nutter (2015), who use the damselfly system as a worked example in pre-
senting “StagePop", a function for modelling stage-structured populations in R, and
agreement between the numerics was found by plotting the solution values against
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each other. Throughout the thesis I extended and built upon this base code, perform-
ing regular feasibility checks of the solutions when investigating the behaviour of my
model. The code for each Chapter of this thesis is available at Ewing et al. (2016b).

This Nisbet and Gurney (1983) framework can be used to model a wide range of popula-
tions, provided the species in question is one which develops through multiple different life
stages during its lifespan. Further, environmental factors can be allowed to influence be-
haviour in the same way as food availability did in the original example, by simply changing
the function gi(t) to reflect the species and relationship of interest. However, despite the
appropriateness of this method, DDEs with variable delays have until recently remained un-
derutilised in the modelling of insect population dynamics. One recent example of variable
delay DDEs can be seen in the work of Amarasekare and Coutinho (2013), who investigated
the effects of climate warming on the viability of generic ectothermic populations. The au-
thors used functions rooted in biomechanics to define the birth, development and death rates
of ectotherms at different temperatures. By adopting a simple, two-stage model for juveniles
and adults using the Nisbet and Gurney (1983) framework they were able to predict popu-
lation growth and decline rates in seasonally varying environments using projected climate
warming scenarios. This work showcases the generality of the DDE approach, as the authors
elected to model the broad group of all ectotherms rather than focussing specifically on one
species.

Recent work by Beck-Johnson et al. (2013) shows how the framework can be used to make
specific predictions about a particular species, as the authors investigated the effect of tem-
perature on Anopheles population dynamics and discussed the implications for disease trans-
mission. Beck-Johnson et al. (2013) was the first variable-DDE model developed for a
mosquito population. The authors split the population according to the four main mosquito
life stages (eggs, larvae, pupae and adults), though they assumed the same temperature-
dependent development and death rates for each of the immature stages. In doing this, the
authors were able to simplify the model by transforming it onto the physiological time scale.
In this way, the total immature development time fluctuated with temperature and the indi-
vidual stages accounted for a fixed proportion of this time. In doing this, the system of four
DDEs could be collapsed to a pair of DDEs corresponding to juvenile and adult develop-
ment. This study makes use of the Nisbet and Gurney (1983) framework to answer questions
about a tropical mosquito species, its equilibrium abundance, and what this may mean for
disease transmission. However, in applying the framework to a temperate species such as
Cx. pipiens, further complications arise. In temperate climates there will be increased sea-
sonal variability in environmental variables with potentially greater impacts on variability
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in mosquito populations and life cycle parameters. Beck-Johnson et al. (2013) give some
consideration to seasonality in their analysis, however the largest seasonal temperature range
they consider is 10 ○C. This is smaller than the range experienced in temperate climates
like the UK, where a temperature dataset (obtained using FetchClimate (Microsoft 2014)
and aggregating values from the UEA Climatic Research Unit (UEA 2015) and Hijmans et
al. (2005)) from the North Kent marshes from 1951-2010 found annual fluctuation in mean
daily temperatures ranged from 10 − 16 ○C, with daily temperature fluctuations increasing
this range.

For a species like Cx. pipiens one must first consider how the seasonal variation in temper-
atures will affect development and death rates and what effect this will have on population
and disease dynamics. For example, how might early or late temperature increases in spring
affect seasonal dynamics throughout the rest of the year? Most crucially, however, when con-
sidering temperate species we are confronted with the question of how best to model adult
mosquito diapause, which is not experienced by tropical mosquito species such as Anophe-

les, modelled by Beck-Johnson et al. (2013). The decreased photoperiod and temperature
throughout the winter months induce a drastic change in adult behaviour patterns, with ac-
tivity ceasing for many months. This problem has not previously been addressed using a
DDE-based model and is an interesting topic of exploration within this thesis.

Another previously unexplored question is how disease transmission dynamics can be ex-
plicitly included into a DDE-based population abundance model to capture environmen-
tal effects on vector populations and disease simultaneously. Beck-Johnson et al. (2013)
make inferences about disease transmission parameters given abundances, biting rates and
expected longevities of adult mosquitoes but do not explicitly model disease transmission. I
aim to combine both a DDE-based mosquito population model with an SEIR compartmen-
tal disease model to understand exactly how vectors and hosts may interact under variable
environmental conditions (Figure 1.10). In doing this, I hope to understand how both en-
vironmental conditions and ecological factors, such as the response of the host population
to virus infection or density-dependent regulation of mosquito populations, will influence
disease transmission. This will help assess the risks of epidemic or endemic scenarios taking
place.
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1.4 Aims and structure of the thesis

The aim of the thesis was firstly, to develop an environmentally driven seasonal abundance
model for a temperate mosquito vector, which accounts for changing environmental condi-
tions by explicitly incorporating variation in developmental delays of each stage. Secondly, I
used this model to predict the possible risks of WNV introduction and subsequent transmis-
sion potential within the UK. An extensive dataset concerning Cx. pipiens seasonal abun-
dance was collected and used to validate the model, which was then extended to explicitly
model WNV transmission.

1.4.1 Structure

Chapter 2 describes the development of a stage-structured variable-delay-differential equa-
tion model which captures the effects of temperature on key life cycle parameters of Cx. pip-

iens and produces seasonal abundance predictions given observed or simulated temperature
variables. This model is then used to predict the effects of different annual temperature pat-
terns on seasonal abundance of the mosquito, Cx. pipiens. Potential changes to the mosquito
population under predicted UK climate warming scenarios are then presented. Finally, the
impact of using simplified annual temperature patterns, based upon fitted sinusoidal curves
is investigated.

In Chapter 3, I present a dataset gathered from an extensive period of fieldwork monitoring
each life stage of Cx. pipiens populations which I carried out at the Centre for Ecology &

Hydrology in Wallingford from April to October in 2015. I discuss the insights into UK Cx.

pipiens seasonality gained from this dataset and use the data both to assess the representation
of the mosquito ecology in the existing mosquito population model and to inform on areas
in which the model could be improved. I place this information in the wider context of what
is know about seasonality of the species across Europe and North America and search for
geographical patterns in key seasonal life cycle processes that impact the timing and persis-
tence of disease transmission, such as adult diapause. Finally, I discuss how data collection
and publishing across the field could be improved to answer key ecological questions about
the abiotic and biotic factors that govern seasonal mosquito populations.

Improvements to the model in light of the empirical UK data collection, along with a full
discussion of the model performance, are presented in Chapter 4. The impacts of using air
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temperature to approximate water temperature when modelling the immature stages of tem-
perate mosquito species are also presented. Finally, I show an analysis of the importance
of the temporal resolution of temperature datasets when predicting mosquito seasonal abun-
dance.

Chapter 5 then extends the existing mathematical model, using an SEIR framework, to pre-
dict seasonal pathogen dynamics (Figure 1.10). I present a model for WNV transmission in
the UK, including both the vector and the avian host populations to investigate the effects of
different ecological and temperature scenarios on disease transmission. I highlight key trans-
mission parameters and scenarios which may lead to increased risks of disease epidemics if
WNV introduction were to occur.

Finally, in chapter 6, I present a general discussion of the thesis and its implications for
the mathematical modelling of temperate mosquito species and management of the risk of
transmission of WNV within the UK.
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Chapter 2

Modelling temperature effects on
temperate mosquito seasonal
abundance

The work presented in this chapter forms the basis of a published paper (Ewing et al. 2016a).

2.1 Introduction

Climate change is expected to affect the distribution and seasonal dynamics of mosquito
populations, with substantial implications for disease seasonality and persistence (Githeko
et al. 2000). Globally, mosquito-borne diseases are a major public health concern (Gubler
2002), and increasingly so in temperate climates, with disease caused by mosquito-borne
pathogens including West Nile (Sambri et al. 2013), Chikungunya (Grandadam et al. 2011),
Usutu (Weissenböck et al. 2002) and Toscana (Charrel et al. 2005) viruses being reported in
Europe in recent years. A range of factors including societal, land use and habitat changes,
have been linked to changes in exposure to mosquitoes, which vector these diseases (Gubler
2002). These factors combine with widespread predictions that rising temperatures may
increase mosquito population size, development rates and per host biting rate, producing in-
creases in the incidence of mosquito-borne diseases (Mirski et al. 2012). The non-linear and
opposing impacts of temperature on vector demographic rates require detailed modelling,
incorporating the various biological processes at play, if we are to understand the likely im-
pacts of climate change on vector abundance and understand the likelihood that predictions
of increased exposure to vectors will be borne out (Rogers and Randolph 2006).
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To model disease seasonality and persistence it is essential that epidemiological models are
coupled with accurate seasonal predictions of vector density (Lord 2004). This is likely to
become increasingly important in coming years, as the climate is expected to become more
variable (Jones et al. 2009). Without accurate predictions of vector density, calculations of
the basic reproduction number of the disease (R0), which describes ability of a disease to
persist in a susceptible population, will be subject to considerable error. However, many
recent epidemiological studies of vector-borne disease do not account for seasonality in vec-
tor populations (Cruz-Pacheco et al. 2005; Bowman et al. 2005; Wonham et al. 2004). In
this Chapter, I utilise a delay-differential equation (DDE) framework to explicitly model the
effects of temperature on each of the life stages of the vector population. This gives valuable
insight into how inter-annual variability in temperature may affect mosquito populations,
which will have a direct effect on disease transmission.

There is considerable evidence showing that environmental drivers have a large impact on
both the mosquito life and disease transmission cycles (Jian et al. 2014b; Lebl et al. 2013;
Almeida Costa et al. 2006). Hence, understanding these mechanisms and resulting effects
will aid predictions for vector-borne diseases. Increasing temperature is known to decrease
the length of time spent in each of the immature stages and to decrease the lifespan of adults
(Madder et al. 1983b; Loetti et al. 2011). Furthermore, the death rate of the immature stages
is strongly linked to temperature (Ciota et al. 2014; Madder et al. 1983b; Loetti et al. 2011)
and increasing temperature leads to decreases in the lengths of both the gonotrophic cycle
(the time required for location of a blood meal, embryonic development and egg-laying)
(Madder et al. 1983b; Vinogradova 2000) and the extrinsic incubation period (time between
an adult vector contracting a pathogen and becoming infectious, referred to as EIP) (Hartley
et al. 2012). With photoperiod, temperature is also believed to control the induction and
termination of diapause (Spielman and Wong 1973; Madder et al. 1983a). Overwintering
behaviour is a vital aspect of disease transmission because diapausing mosquitoes may act
as a pathogen reservoir between seasons when hosts are no longer infectious (Nasci et al.
2001). The winter survival of mosquitoes may therefore influence disease persistence and
seasonal population dynamics. Diapause, which I consider in my model, has been ignored in
previous DDE models as the focus has generally been tropical mosquito populations which
do not exhibit this behaviour (White et al. 2010; Beck-Johnson et al. 2013). Clearly tem-
perature exhibits complex and opposing effects on different parts of the mosquito life and
transmission cycles. As such, mathematical models are needed which explicitly incorporate
the impact of temperature on each life stage if we wish to understand its effect on seasonal
abundance.
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Stage-structured matrix population models allow populations to be broken down according
to their life stages, with climate dependencies on each stage included, making them a popular
tool for modelling mosquito populations (Lončarić and Hackenberger 2013; Schaeffer et al.
2008). However, in many cases, these models make the assumption that development time
for each stage is fixed (Schaeffer et al. 2008), when temperate species’ generation times at
high temperatures, can in fact exceed those observed at lower temperatures by a factor of
more than four (Loetti et al. 2011). Combined with the effects of temperature on larval sur-
vival (Loetti et al. 2011), these models may substantially under- or over-estimate population
size. One solution is to split each stage into multiple sub-stages and allow temperature to
influence transition probabilities (Lončarić and Hackenberger 2013), substantially improv-
ing upon the assumption of a fixed development time. However, this approach requires that
each life stage be split into an appropriate number of sub-stages ahead of time, whilst the
required number of sub-stages will be dependent on temperature. Further, each sub-stage
must be assigned its own transition probability, which accounts for both the current temper-
ature and the length of time already spent in the stage, which can be cumbersome. Models
based on ordinary differential equations (ODEs) also fail to account for temperature-induced
variation in stage duration, as only the current conditions influence stage duration (Erickson
et al. 2010b; Alonso et al. 2010).

Perhaps the most detailed mosquito population models previously developed are the Container-
Inhabiting Mosquito Simulation Model (CIMSiM) (Focks et al. 1993a, 1993b) and Skeeter
Buster (Magori et al. 2009), which builds on the capabilities of CIMSiM to account for spa-
tial heterogeneity, stochasticity and population genetics in the mosquito population. CIM-
SiM is a weather-driven dynamic life table simulation model for Aedes aegypti and can be
coupled with DENSiM, which models dengue transmission dynamics in human populations
based on the mosquito population dynamics output from CIMSiM. CIMSiM incorporates
temperature-dependence in the duration and survival of all life stages. Further, fecundity
is modelled as a function of pupal size, which in turn is a function of the recent history of
larval abundance, larval food, and temperature. Larval survival is not only dependent on
temperature but is also a function of food availability and fat body reserves, whilst adult
and egg survivals are determined by both temperature and humidity (Focks et al. 1993a).
These models have been shown to adequately capture Aedes aegypti and dengue dynamics
in a number of areas (Focks et al. 1993b), however the wide range of processes incorporated
means that adaptation of this model to another mosquito species is not straightforward and
that the model requires very detailed input data. In particular, CIMSiM simulates all cohorts
of a single species of Aedes mosquito over a one hectare area but requires information on
every potential breeding site in that area alongside daily inputs of maximum and minimum
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air temperature, precipitation, relative humidity and saturation deficit. Consequently, whilst
CIMSiM, DENSiM and Skeeter Buster estimate a very wide range of processes, they cannot
be readily adapted from one species to another and model results will be highly localised to
one studied location.

In contrast to life table or matrix-based approaches, one can look to work carried out by Gur-
ney et al. (1983), who advocated using a system of DDEs to model stage-structured popula-
tions. These DDEs are derived from continuous age-structured partial differential equations
(PDEs) by assuming lumped age classes, which are appropriate for many insect species with
distinct life stages (see Section 1.3.2). This formulation can then be extended as shown in
Nisbet and Gurney (1983) to allow variation in stage duration dependent on biotic or abiotic
factors (see Section 1.3.3).

The stage-structured DDE framework has recently been utilised to investigate ectotherm pop-
ulation viability under a climate warming scenario (Amarasekare and Coutinho 2013) and to
model the life cycle of Anopheles, a genus of tropical mosquito species that vector malaria
(Beck-Johnson et al. 2013). To my knowledge, the work of Beck-Johnson et al. (2013) is the
first DDE model, applied to mosquitoes, where the total length of the immature life stages
was assumed to be temperature-dependent. Beck-Johnson et al. (2013) used this model to
make inferences about the ability of Anopheles to transmit malaria, under various constant
temperature regimes. As previously alluded to, further complications arise for temperate
mosquito species due to greater fluctuation in seasonal temperatures and overwintering be-
haviour. To simplify their model, Beck-Johnson et al. (2013) also assume that all immature
life stages are affected by temperature in the same way, which allows the delay equations to
be transformed onto the physiological timescale and reduced from three separate equations
into one. My review of the literature suggests that many temperate mosquito species have
differential, temperature-driven rates of development between life stages, so I allow each
stage to have a unique relationship between temperature and vital rates.

The DDE modelling framework can be applied to any temperate mosquito species by choos-
ing parameters and vital rate curves to fit the data available for that species. I focus on
modelling Culex pipiens, the most abundant potential vector of West Nile Virus (WNV) in
the UK. WNV was chosen because it is the most significant cause of mosquito-borne disease
in temperate regions including Europe and North America (Pervanidou et al. 2014; Barzon
et al. 2013; Petersen et al. 2013).
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Temperature is often considered to be the primary driver of mosquito development (Knies
and Kingsolver 2010). By developing a stage-structured model which explicitly captures its
effects on each life stage I aim to understand how predicted seasonal temperature changes
may affect mosquito seasonality. Whilst mosquito surveillance in the UK has increased in re-
cent years (Townroe and Callaghan 2014; Medlock and Vaux 2015; Townroe and Callaghan
2015) there remains a lack of publicly available empirical field data for UK Cx. pipiens

populations, so accurate predictive modelling is needed to understand seasonal population
dynamics and how vectors may be impacted by changing climate. I address this issue by pro-
viding testable theory which may guide future laboratory or field studies and which highlight
in precisely which areas field and laboratory work is required. By carrying out a simulation
study over a range of different temperature regimes predicted for the UK, I examine the ef-
fects of both intra- and inter-annual temperature variability on mosquito seasonal abundance
to ascertain the climatic conditions that are most likely to lead to high vector abundance and
hence to potential disease outbreaks. In particular, I explore the effects of varying mean
temperature, amplitude of seasonal fluctuations, the timing of the summer and winter peri-
ods, and the sharpness of the summer season. Where possible, these changes were placed
in the context of predicted changes for the UK climate. In addition, I used a 30-year UK
temperature dataset from the North Kent marshes, a known habitat of Cx. pipiens and Cx.

modestus, to investigate sensitivity of vector populations to subtle changes in seasonal tem-
perature regimes as well as changes in mean temperature levels. The analysis highlights the
importance of the explicit incorporation of temperature and its effects on mosquito season-
ality, which will have a knock-on effect on disease transmission. Finally, by including over
winter dynamics in the model, I tested the value of the DDE approach in stage structured
modelling for understanding dynamics of temperate arthropod vectors.

2.2 Methods

2.2.1 Mathematical framework

The mosquito life cycle is composed of four main life stages: egg, larval, pupal and adult.
Adult females lay rafts of eggs on the surface of pools of water. Eggs hatch into larvae
which continue their development to become pupae. Pupae metamorphose into adults which
mate and, if female, locate a host to obtain a blood meal and eventually lay more egg rafts.
Many temperate mosquito species, including those of the genus Culex, overwinter through
inseminated adult females entering diapause. The four stages of the mosquito life cycle can
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be incorporated into a sequence of DDEs, which are solved to give the abundance of indi-
viduals in each life stage through time (Gurney et al. 1983). The general formalism of the
model is analogous to that described by Nisbet and Gurney (1983) and a full derivation was
presented in Sections 1.3.2-1.3.3. Here, I present an overview of the model framework used.
Building on the Nisbet and Gurney (1983) framework, where changes in stage duration oc-
curred due to food availability, I made the extension that variation in stage duration may
occur as a result of changes in a range abiotic environmental drivers.

The four state equations which correspond to eggs, E(t), larvae, L(t), pupae, P (t) and
adults A(t) at time t, are

dE

dt
= RE(t) −ME(t) − δE(T (t))E(t),

dL

dt
= RL(t) −ML(t) − (δL(T (t)) + δπ(L(t)))L(t),

dP

dt
= RP (t) −MP (t) − δP (T (t))P (t),

dA

dt
= RA(t) − δA(T (t))A(t),

(2.1)

where T (t) gives the temperature, δi(T (t)) (i = E,L,P,A) represents the stage-specific,
density-independent, temperature-driven, mortality rate, δπ(L(t)) represents the larval mor-
tality rate due to external predation and Ri(t) and Mi(t) represent the rate of recruitment to
and maturation from stage i respectively. It was assumed that predation is the main source
of density-dependent population regulation. The maturation equations are defined as

RE(t) = b(t)A(t),

ME(t) = RL(t) = RE(t − τE(t))SE(t)
gE(T (t))

gE(T (t − τE(t)))
,

ML(t) = RP (t) = RL(t − τL(t))SL(t)
gL(T (t))

gL(T (t − τL(t)))
,

MP (t) = RA(t) = RP (t − τP (t))SP (t)
gP (T (t))

gP (T (t − τP (t)))
,

(2.2)

with gi(T (t)) as the development rate at temperature T (t), b(t) as the egg-laying rate τi(t)
and Si(t) as the survival of individuals in stage i (i = E,L,P ) at time t respectively. Recruit-
ment into the egg stage occurs solely as a result of egg laying by adults and recruitment into
all other stages is a result of maturation of individuals from the stage before. The growth
rate, gi(T (t)), defines the speed at which individuals progress through the stage, allowing
the duration of the immature stages to vary continuously. The term gi(T (t))

gi(T (t−τi(t)) tells us how
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variation in the growth rate through time alters the stage length. If stage duration is fixed
then gi(T ) = gi(t − τi(t)). In my model, the temperature, T , varies as a function of time,
such that T = T (t). The proportion of individuals which survive from recruitment into one
class, to maturation to the next, is defined by the following sequence of DDEs,

dSE
dt

= SE(t)(
gE(T (t))δE(T (t − τE(t)))

gE(T (t − τE(t)))
− δE(T (t))) ,

dSL
dt

= SL(t) [(δπ(t − τL(t)) + δL(T (t − τL(t))))(
gL(T (t))

gL(T (t − τL(t)))
) − δπ(L(t)) − δL(T (t))] ,

dSP
dt

= SP (t)(
gP (T (t))δP (T (t − τP (t)))

gP (T (t − τP (t)))
− δP (T (t))) .

(2.3)

Lastly, the rate of change of the duration of each life stage is given by

dτi(t)

dt
= 1 −

gi(T (t))

gi(T (t − τi(t)))
. (2.4)

Here the development rate, gi(T (t)), is dependent on temperature, although the model for-
mulation is sufficiently flexible to allow a range of environmental drivers to be incorporated
simultaneously. We can then extend this idea, introduced by Nisbet and Gurney (1983), to
define an analogous delay equation for the duration of the adult gonotrophic cycle. The
gonotrophic cycle in the model is defined as the time required for an adult to locate and take
a blood meal, digest this blood meal and produce eggs, and then locate an oviposition site
and lay an egg raft. The duration of the gonotrophic cycle will directly affect the egg-laying
rate, as we divide the number of eggs in a given raft by the length of the cycle to estimate a
continuous egg-laying rate. In the field, the gonotrophic cycle length will also affect the rate
at which individuals may enter traps because it is host-seeking females which are attracted to
light traps, following emergence from the pupal stage or egg-laying (Hutchinson et al. 2007).
As with immature development, I make the extension from the original Nisbet and Gurney
(1983) framework that, rather than considering the growth from some mass, mi, to some
other mass, mi+1, we can consider the growth from some “development point", at the start of
a gonotrophic cycle to some later point, at the end of a cycle. By defining these development
points we can then follow through the same arguments as for the durations of the immature
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life stages to give

dτG(t)

dt
= 1 −

gG(T (t))

gG(T (t − τG(t)))
. (2.5)

where, G, denotes that we are concerned with the gonotrophic cycle.

In their paper, Nisbet and Gurney (1983) show the delay equation for each life stage at time,
t. However, when coding this model it becomes necessary to reference stage durations at
previous points in time by looking back through intermediate stage durations, which are
themselves variable. This is required when there are multiple stages of variable length. The
derivation of the delay which references back through two intermediate life stages is given
below i.e. this will give the duration of the egg stage the length of the pupal stage and larval
stage ago. This is the procedure required to obtain τE(t − τP (t) − τL(t − τP (t))) where
i = E, i + 1 = L and i + 2 = P . The derivations of τE(t − τL(t)) and τL(t − τP (t)) are not
presented as they reference through only one delay and so are simplified versions of this
derivation.

mi+1 −mi = ∫

t−τi+2(t)−τi+1(t−τi+2(t))

t−τi+2(t)−τi+1(t−τi+2(t))−τi(t−τi+2(t)−τi+1(t−τi+2(t)))
gi(ψ)dψ

d(mi+1 −mi)

dt
= gi(t − τi+2(t) − τi+1(t − τi+2(t))) (1 −

dτi+2(t)

dt
−
dτi+1(t − τi+1(t))

dt
)

− gi(t − τi+2(t) − τi+1(t − τi+2(t)) − τi(t − τi+2(t) − τi+1(t − τi+2(t))))

(1 −
dτi+2(t)

dt
−
dτi+1(t − τi+1(t))

dt
−
dτi(t − τi+2(t) − τi+1(t − τi+2(t)))

dt
)

(2.6)
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Since the start and end points of each life stage are fixed it follows that d(mi+1−mi)dt = 0 so

1 −
dτi+2(t)

dt
−
dτi+1(t − τi+1(t))

dt
−
dτi(t − τi+2(t) − τi+1(t − τi+2(t)))

dt

=
gi(T (t − τi+2(t) − τi+1(t − τi+2(t))))

gi(T (t − τi+2(t) − τi+1(t − τi+2(t)) − τi(t − τi+2(t) − τi+1(t − τi+2(t)))))

(1 −
dτi+2(t)

dt
−
dτi+1(t − τi+1(t))

dt
)

dτi(t − τi+2 − τi+1(t − τi+2(t)))

dt

= (1 −
dτi+2(t)

dt
−
dτi+1(t − τi+1(t))

dt
)

(1 −
gi(T (t − τi+2(t) − τi+1(t − τi+2(t))))

gi(T (t − τi+2(t) − τi+1(t − τi+2(t)) − τi(t − τi+2(t) − τi+1(t − τi+2(t)))))
)

(2.7)

Initial history and inoculation

To solve the equations from t = 0 onwards one must provide solution values for all points
where −maxi(τi) ≤ t ≤ 0. For the system of balance equations (Equation 2.1) one can state
that the system is empty, such that

E(t) = L(t) = P (t) = A(t) = 0

Ri(t) =Mi(t) = 0 −max
i

(τi) ≤ t ≤ 0, all i,
(2.8)

where i represents the stage, i = E,L,P,A. To determine initial conditions for the delay
equations (Equation 2.4) is straightforward in the case where conditions are assumed to be
constant for −maxi(τi) ≤ t ≤ 0. In all simulations it was assumed that conditions were
constant before inoculation of the system. A discussion of the implications of allowing
variable temperature conditions before t = 0 is given in Appendix A. In the constant case,
the value for the initial duration of stage i, τi0, is given as

τi0 =
1

gi0
, (2.9)
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where τi0 and gi0 are the stage duration and development rate of stage i for −maxi(τi) ≤ t ≤ 0.
Similarly, the initial value for the survival equation, Si0, (Equations 2.3) can be calculated
such that

Si0 = exp(−δi0τi0), (2.10)

where δi0 is the death rate of individuals in stage i for −maxi(τi) ≤ t ≤ 0. Since it was stated
that there were no larvae present before t = 0 there is no predation before this point.

To initiate the system, assume that some innoculation takes place at t = 0. This consists of
adding individuals at a rate I0 into the adult class over some small time interval (Murdoch
et al. 2003) such that

IA(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

I0, 0 ≤ t ≤ t1

0, otherwise
(2.11)

where IA(t) represents the rate at which adults are added to the system at time t. The number
of individuals added has not been seen to affect the behaviour of the system past the first full
year. As such, simulations were begun on the 1st of July and run for 18 months before
taking results to ensure that the predicted seasonal abundance patterns had settled to stable
annual cycles. These results where checked against results obtained with 30 months “burn-
in" period and there was no change. When using the North Kent dataset the results of the
first year were discarded to allow for this “burn-in" period, ensuring that the choice of initial
conditions did not affect results.

2.2.2 Functional forms of demographic parameters with temper-
ature

A literature review was carried out to identify and parametrise appropriate functional forms
for the relationship of development and death rates of Cx. pipiens with temperature. The
fitted parameter values for all functions are given in Table 2.1. The parameter values were
fitted using the nonlinear least squares fitting procedure in the statistical software package R
(R Core Team 2013). I took all data from Cx. pipiens pipiens, ignoring the other subspecies
Cx. pipiens restuans, Cx. pipiens torrentium and Cx. pipiens molestus, as Cx. pipiens



Chapter 2. Temperature effects on mosquito seasonal abundance 61

pipiens is very common in the UK and laboratory data is readily available on this subspecies
(Golding 2013).

Development rates

Growth rates for the immature stages were modelled using a power function, which mirrors
the form used by Beck-Johnson et al. (2013) for Anopheles and gives development rates
which increase with temperature (Figure 2.1)

gi(T (t)) =

⎧⎪⎪
⎨
⎪⎪⎩

αiT (t)βi , T (t) > ( bm
αi

)
1
βi ,

bm, otherwise .
(2.12)

Here i = E,L,P correspond to the egg, larval and pupal stages respectively. This is a biolog-
ically reasonable form to use as Cx. pipiens development rates are low at cool temperatures
and increase within the thermal development range of 10−34 ○C. Development may decrease
beyond the 34 ○C upper limit, however the death rate is so high at these temperatures that the
development rates become irrelevant in my model, as all immatures die before completing
development. Using an equivalent R-squared value for a non-linear regression, equal to the
regression sum of squares over the total sum of squares there is a good fit from the power
function for all life stages: egg (R2 = 0.87), larvae (R2 = 0.69) and pupae (R2 = 0.56).

At this stage, daily average water temperature was assumed to be equal to air temperature
due to the lack of available information on water temperatures. The functional forms were
chosen to be the same for each life stage as there was good agreement with the data, however
different forms could be chosen in other models if deemed appropriate. It was assumed
that the lower threshold of the development rate, bm, should be set to stop development
time dropping below 60 days (bm = 1

60days
−1) (Almirón and Brewer 1996)). The exact

value chosen for bm is unlikely to influence model output because only development rates
outwith predicted thermal development thresholds (approximately 10 − 34 ○C Almirón and
Brewer (1996) and Loetti et al. (2011)) are notably affected by this restriction. Beyond these
thresholds, mortality is expected to occur before development completes.

Death rates

Death rates for the immature stages were modelled using a modified Gaussian functional
form
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Figure 2.1: Immature development: The plots show curves fitted to data from the literature about
the relationship between temperature and development rate of eggs (a) Madder et al. (1983b), Becker
et al. (2010), and Jobling (1938), larvae (b) Madder et al. (1983b), Loetti et al. (2011), and Ciota et al.
(2014) and pupae (c) Rueda et al. (1990), Jobling (1938), and Vinogradova (2000). Symbols represent
the data source as follows: Madder et al. (1983b) - ◻, Becker et al. (2010) - ◇, Jobling (1938) - ▽,
Rueda et al. (1990) - ◯, Loetti et al. (2011) - +, Vinogradova (2000) - �, Ciota et al. (2014) - |.

δi(T (t)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ν0i exp((
T (t)−ν1i
ν2i

)
2
) , ν1i +

ν2i
2 ln (

bdi
ν0i

) < T (t) < ν1i −
ν2i
2 ln (

bdi
ν0i

) ,

bdi, otherwise,
(2.13)

for i = E,L,P , which leads to expected survival times following a bell-shaped curve centred
at ν1i and bounded to be greater than or equal to 1

bdi
(Figure 2.2). The choice of a modi-

fied Gaussian form again mimics that chosen by Beck-Johnson et al. (2013) for Anopheles.
Biologically, this is an appropriate functional form as it leads to high death rates beyond
the developmental thresholds of 10 ○C and 34 ○C and decreasing death rates between these
thresholds towards some central minimum value. All immature stages were assumed to
have the same temperature-dependent death rate because the vast majority of the literature
presented survival percentages from egg hatch until adult emergence. There is a lot of vari-
ability in the mortality data obtained from the literature, which is not accounted for when
fitting a function with temperature as the only explanatory variable (Figure 2.2, R2 = 0.28).
Couret et al. (2014) showed that temperature, larval diet, and density, and their interaction all
affected development rates of the immature stages of Aedes aegypti. It was shown by Lyimo
et al. (1992) that rearing temperature and larval density had a complex series of effects on
larval survival, age at pupation, and adult size of Anopheles gambiae. Colless and Chellapah
(1960) showed that increased body size led to increased egg raft size in two colonies of Ae.

aegypti and it was shown by Ishii (1963) that increased larval density slowed the develop-
ment of Cx. pipiens larvae. As such, it is not possible to capture all variability in mortality
rates using temperature as the only explanatory variable. However, the shape of this func-
tional form is supported by the physiological processes which govern mosquito development.
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This modified Gaussian function is used as an approximation for this model and the need for
inclusion of a wider range of environmental variables is considered in the discussion. With
an unbounded death rate I encountered difficulties with the DDE solver code because the
survival values became infinitesimally small. As such, an upper limit of bdi was imposed on
the death rate (Figure 2.2). This limit was chosen such that the minimum expected lifespan
was one day because all functions in the model are parametrised on a daily time scale. Upon
varying this threshold within a range of values for which the DDE solver code worked there
was no change in results, because development times are all greater than one day.
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Figure 2.2: Immature longevity: Relationship temperature and expected longevity (reciprocal of
the death rate) of immatures Madder et al. (1983b), Loetti et al. (2011), Ciota et al. (2014), Jobling
(1938), and Farid (1948). Symbols represent the data source as follows: Madder et al. (1983b) - ◻,
Jobling (1938) - ▽, Loetti et al. (2011) - +, Farid (1948) - ⊕, Ciota et al. (2014) - |.

Adult death rates were modelled using a power function which was constrained below some
threshold value (Figure 2.3 (a))

δA(T (t)) =

⎧⎪⎪
⎨
⎪⎪⎩

αAT (t)βA , T (t) > (
bda
αA

)
1
βA

bda, otherwise .
(2.14)
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This captures the fact that mosquitoes can survive for long periods of time i.e. throughout
the winter, at low temperatures and so should have a correspondingly low death rate. The
death rate then increases with increasing temperature as reported by Ciota et al. (2014). This
functional form shows a good fit to the data (R2 = 0.65). The death rate was constrained not
to drop below a base death rate of bda, otherwise diapausing adults experience essentially zero
mortality, which is unrealistic even when diapausing (Sulaiman and Service 1983; Onyeka
and Boreham 1987). This overwinter survival rate was chosen to give percentage survival
of roughly 10% depending on the length of the winter period, which falls within the range
observed by Sulaiman and Service (1983). The value chosen was also consistent with some
of the observations by Bailey et al. (1982), though they saw substantial variation between
death rates of different groups and increasing death rates as diapause progressed, which is
not incorporated here. At this stage, any relationship between humidity and adult mortality
has also not been considered.
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Figure 2.3: Adult vital rates: Temperature-dependent death rate of adults (a) Ciota et al. (2014) and
gonotrophic cycle (b) Madder et al. (1983b) and Vinogradova (2000) (Symbols ◻ and◯ respectively)
fitted to data from the literature. Values for the gonotrophic cycle rate were calculated using the
ovarian maturation times as stated in the literature but with 2 days added for locating a blood meal
and ovipositing Hartley et al. (2012). All data is from Cx. pipiens.

Predation rate

Based on information from the literature I chose to represent the larval death rate due to
predation by the Holling type II function (Marti et al. 2006; Fischer et al. 2013)
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δπ(L(t)) =
aP(t)

V + ahL(t)
. (2.15)

where a is the attack rate, h is the handling time, V is the volume of habitat and P(t) is the
number of predators at time t. I make the assumption that predator abundance is directly
proportional to larval abundance such that P(t) = rL(t) where r is the number of predators
per larva. This can be simplified and rewritten as

δπ(L(t)) =
p0L(t)

p1 +L(t)
. (2.16)

This gives a low death rate when larval density is low because the time the predator spends
searching for prey is high. As larval density increases, the search time tends to zero and the
death rate is governed by the handling time a predator needs to process each kill. This leads to
an upper bound on the number of prey which can be consumed and thus on the death rate, δπ.

In Equation 2.16, p0 gives the upper limit to which the death rate due to predation tends,
as larval density increases. The constant, p1, gives the number of larvae required for the
death rate to reach half of p0. I was unable to find parameter estimates for p0 and p1 due to
their sensitivity to predator behaviour (Onyeka 1983), habitat size, habitat type (Fischer et al.
2013) and oviposition behaviour (Angelon and Petranka 2002; Reiskind and Wilson 2004).
I therefore performed a sensitivity analysis to understand the impact of variation in these
values. This showed that seasonal abundance patterns could be quite sensitive to changes in
p0 below a certain threshold but that p1 only affected population size.

Simulations showed that variation of p1, the larval density at which the death rate due to
predation reaches half its maximum, only resulted in changes to the absolute abundance
without any effect on qualitative behaviour. The upper limit of larval death due to predation,
p0, can have a substantial effect on model behaviour. At low values of p0 predation alone
is insufficient to regulate the population, which exhibits growing oscillations year-on-year.
I assume that either such situations do not occur in wild populations or that the population
would also be regulated by larval competition at very high densities. Once p0 becomes large
enough to regulate the population a point is quickly reached where further increases only
serve to repress population size with little difference in the pattern of seasonal abundance. I
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chose to study the population for a value of p0 = 0.5 as this was large enough for regulation
but not large enough to result in unexpected extinctions.

Diapause

The proportion of active adults at any point in time, ζ(t), regulates the number of eggs laid
per female, b(t), and is dependent on both photoperiod, ψ(t), such that

ζ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1
1+exp(ωS(ξS−ψ(t))) ∶ ψ(t) increasing,

1
1+exp(ωA(ξA−ψ(t))) ∶ ψ(t) decreasing,

(2.17)

where i = S,A and ξS is the spring photoperiod threshold for which greater than 50% of
the population have left diapause (used when ψ(t) is increasing) and ξA is the opposite
threshold for the population entering diapause (used when ψ(t) is decreasing). This means
that individuals will enter and remain in diapause provided the photoperiod is below a given
threshold, the values for which were chosen to coincide with presence of Cx. pipiens in
overwintering shelters (Sulaiman and Service 1983). The effect of photoperiod on diapause
behaviour is strongly dependent on rearing conditions (Vinogradova 2000). I chose to base
my estimates on Sulaiman and Service (1983) because they carried out a UK-based study and
I was interested in predicting for the UK. Photoperiod is calculated using the CBM model
described in Forsythe et al. (1995), which is a function of latitude. For my simulations I chose
the latitude of the North Kent marshes (51 ○N) because it is a habitat for both Cx. pipiens and
Cx. modestus (Golding et al. 2012). This area may also run a higher risk of introduction than
other parts of the UK, due to possible introduction of mosquito-borne viruses through nearby
ports (Golding et al. 2012). However, the model could readily be run for another latitude in
the UK, as the data used to parametrise the functional forms is not specific to the North Kent
marshes.

Egg-laying rate

Various factors including type of blood meal (Richards et al. 2012), number of gonotrophic
cycles (Richards et al. 2012) and size of the female (Colless and Chellapah 1960; Cochrane
1972) have been shown to affect the number of eggs in a raft. For this model a constant
egg raft size of R (R = 200) was selected to coincide with the average egg raft sizes found
in the literature (Jobling 1938; Vinogradova 2000). To quantify the frequency with which
egg rafts are laid the egg raft size is divided by the length of the gonotrophic cycle, which



Chapter 2. Temperature effects on mosquito seasonal abundance 67

is temperature-dependent. The functional form of the gonotrophic cycle development was
chosen to reflect the data such that the gonotrophic cycle length increases as temperatures in-
crease within the thermal development thresholds (Madder et al. 1983b; Vinogradova 2000;
Hartley et al. 2012),

gG(T (t)) = q1/(1 + q2 exp(−q3T (t))), (2.18)

where gG(T (t)) is the rate of progression of the gonotrophic cycle at temperature T (t), with
q1, q2 and q3 as fitted constants. The functional form was shown to give a good fit to the data,
(adjusted R2 = 0.90) (Figure 2.3). The egg-laying rate per adult female per day, b(t), was
then calculated according to

b(t) =
1

2τG(t)
× ζ(t) ×R. (2.19)

where the fraction of one half accounts for the fact that only females lay eggs and a 1:1 sex
ratio is assumed (Vinogradova 2000).

2.2.3 Annual temperature variation

To determine the effect of changing seasonal temperature on mosquito populations a modi-
fied cosine wave was used to approximate the annual temperature curve for the UK (Figure
2.5 (a)),

T (t) = (µ − λ) + 2λ(
1

2
+

1

2
cos(

2π(t − φ)

365
))

γ

, (2.20)

where µ represents the annual midrange temperature, λ the amplitude of annual fluctuations,
φ the timing of the temperature peak and γ the sharpness of the summer season, which acts as
a measure of the duration of the warm period. This very flexible function allows the effects
of a wide range of different seasonal temperature profiles on mosquito seasonal abundance
to be studied. It is important to note that due to the power transformation, µ is only the
mean temperature when γ = 1. A temperature dataset (obtained using FetchClimate (Mi-
crosoft 2014) and aggregating values from the UEA Climatic Research Unit (UEA 2015)
and Hijmans et al. (2005)) from the North Kent marshes from 1951-2010 was examined to
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determine what range of parameter values could be expected at a UK site where Cx. pipiens

is prevalent. This was particularly important in determining a range of timings for the annual
peak in temperature, φ, and summer sharpness values, γ, (Figure 2.4 (c) and (d)) appropri-
ate for the UK climate. The distribution of peak temperature dates was centred around the
1st of August, so all φ values are reported as +/- days from this central point. The summer
sharpness parameter, γ, takes values in the range from 0.5 − 2.1 with small values leading
to a longer warm period and large values leading to a longer cold period (Figure 2.6 (a)).
Upon examining the correlation coefficients between these parameters there was a moderate
negative correlation between midrange and amplitude (rµλ = −0.55) i.e. years with lower
midrange temperatures tend to have a larger amplitude of temperature fluctuations. This is
observable from the opposing skews of Figure 2.4 (a) and (b) and suggests that some of the
most extreme high temperatures encountered by the model may not occur in reality, as high
midrange temperatures and large seasonal fluctuations are unlikely to occur simultaneously.
There was also a strong positive correlation between midrange temperature and sharpness of
peak (rµγ = 0.80) suggesting that more peaked summer periods are more likely to coincide
with higher temperatures across the year.

(a) (b) (c) (d)

Figure 2.4: Temperature data from the North Kent marshes 1951-2010 was used to investigate typ-
ical values for the environmental variation parameters. Histograms of annual fitted values of the
parameters are presented (a) midrange temperature, µ, (b) amplitude of fluctuations, λ, (c) phase
shift presented as +/- days from the 1st of August (the mean date at which the peak occurred), φ, (d)
sharpness of peak, γ (higher values indicate sharper peaks).

Air temperature was used in all parts of the model because information on water tempera-
tures experienced by the aquatic stages was not available. Investigations of the relationship,
and discrepancy, between air and water temperature have been carried out, primarily for
tropical habitats. However, no appropriate functional form by which to link air and water
temperatures was available. Furthermore, due to the large range of meteorological factors
at play, relations between air and water temperature often cannot be extrapolated from one
climatic region to another. The characteristics of each individual breeding site, with regards
to a range of factors including sun exposure, water volume and container insulation, will
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Figure 2.5: (a) The modified cosine curve showing the effect of each parameter on the shape of the
curve: µ denotes the midrange temperature, λ is the amplitude of seasonal fluctuations, φ is the phase
shift and γ a measure of the sharpness of the peak. (b) The abundance of adult mosquitoes through the
year to illustrate summary statistics: κ is the peak in abundance, θ is the lowest abundance value, β is
the length of the biting season and D shows the period between the two 50% thresholds for diapause.

also affect the relationship between air and water temperatures. Studies examining tem-
perate habitats are rare, though a recent study on British container-breeding mosquitoes by
Townroe and Callaghan (2014) found that water temperatures tended to slightly exceed air
temperatures, particularly in urban settings, though the difference was generally negligible
and never exceeded approximately 2 ○C at any point in the year. Due to the lack of a defined
functional relationship between the two temperatures and the infrequent periods in which
there was a substantial difference approximating all temperatures by the air temperature was
considered reasonable at this stage.

The effect of covariation of these parameters on seasonal abundance of mosquito populations
was described using three mosquito summary statistics (Figure 2.5 (b)). This discussion is
focussed around effects on adult mosquitoes, as it is adults which transmit disease. However,
example outputs for all life stages are shown in Figure 2.6. The peak adult abundance, κ,
describes the largest mosquito population on a given day in a given year, with a high κ value
signalling favourable conditions for mosquito development. Minimum abundance, θ, gives a
measure of overwinter survival with small values clearly indicating a small population sur-
viving through winter. Length of the biting season, β, defines the maximum length of time
over which the mosquitoes are potentially active in transmission, in the event of a pathogen
introduction. Initiation of the biting season occurs when more than 50% of the adult popula-
tion have left diapause and the mean daily temperature exceeds 10 ○C. The 10 ○C temperature
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threshold was chosen because predicted thermal development thresholds are approximately
10 − 34 ○C (Almirón and Brewer 1996; Loetti et al. 2011). The end of the biting season is
defined as occurring one full life cycle (time required for completion of the gonotrophic cy-
cle and egg, larval and pupal development) before adult emergence of the autumn progeny,
which are assumed not to bite before going into diapause i.e. it ends with the biting of the
late-summer adults that give rise to this autumn generation. This approximation is made
because most Cx. pipiens which overwinter, do so having developed in preparation for dia-
pause through the immature stages and do not take a blood-meal on emergence but instead
feed on nectar to increase lipid reserves (Mitchell and Briegel 1989). It is therefore assumed
that the main biting season stops the length of one cycle before these diapausing individuals
emerge. Within the biting season, the intensity of transmission will depend upon the ratio of
adult vectors to hosts which fluctuates through the season.

2.2.4 UKCIP Climate Change Projections

Temperature profiles used for the simulations were chosen to coincide with the nature of
climate warming predicted by the UK Climate Impacts Programme (UKCIP) (UKCIP 2010).
The report details three warming scenarios corresponding to low, medium and high CO2

emissions, with temperature changes by the 2020s, 2050s and 2080s reported relative to a
baseline from 1961-1990 (MetOffice 2010). I present the expected value under the medium
emissions scenario for each date range for South East England, the area with the highest
estimated risk of WNV introduction from migratory birds (Bessell et al. 2014). Predictions
under other climate warming scenarios can easily be obtained by examining the UKCIP
projections but are not presented here as I only wish to give an overview, rather than a full
region-by-region analysis accounting for a range of emissions scenarios.

2.2.5 Exploring sinusoidal temperature approximation

Many studies incorporate seasonal forcing of either parasite transmission (Altizer et al. 2006)
or vector abundance (Smith et al. 2004; McLennan-Smith and Mercer 2014) through the use
of a sinusoidal wave. Indeed, this analysis of how changing temperature affects seasonal
abundance of temperate mosquitoes relies on the approximation of the annual temperature
profile by a modified cosine wave. I wished to explore how this approximation may affect
predictions of vector abundance and to understand the effects on population parameters of
incorporating inter-annual variation in seasonal forcing. I compared results obtained when
interpolating between mean daily temperature data points to those found using the modi-
fied cosine approximation, both incorporating and excluding variability between years. The
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model was run for the full 1961-1990 baseline period (with the results from 1961 discarded
to allow the equations to stabilise) interpolating between the mean daily temperature values
in the North Kent marshes (Microsoft 2014). The model was then run 29 further times with
each year replaced by the best fitting modified cosine wave for that year. Finally, 29 more
runs were carried out with each year’s daily temperature series replaced by a modified cosine
wave which had been fitted to the full baseline time series simultaneously.

2.3 Results

An analysis of the effects of changing the temperature parameters on the mosquito summary
statistics - maximum abundance, minimum abundance and length of biting season - was
carried out to understand how different temperature regimes affected seasonal abundance.
These results were also placed into the context of potential changes to the UK climate using
the UKCIP predictions. A sensitivity analysis was then carried out to clarify which of the
temperature parameters were expected to be the most influential drivers of mosquito abun-
dance. Finally, the impacts of including intra- and inter-annual variability in temperature on
mosquito seasonal abundance were examined, to help understand its potential influence on
epidemiological models.

2.3.1 Maximum abundance (κ)

The effects of changing the temperature profile on maximum abundance, κ, are shown in
Figure 2.7. In all cases increasing midrange annual temperature, µ, leads to an increase
in maximum abundance, κ (Figure 2.7 (a,b,f)). Similarly, increased amplitude of seasonal
temperature fluctuations, λ, consistently leads to increased maximum abundance (Figure 2.7
(c,d,f)). All cases also show that maximum abundance increases as the peak temperature
shifts later in the year (φ increases) within the studied range (Figure 2.7 (a,c,e)). In all cases
the model shows high population growth late in the season, leading to a peak in adult abun-
dance in mid-October. This is because decreasing larval numbers at the end of the year
cause a release of density-dependence, resulting in higher larval survival, increased pupal
numbers (Figure 2.6 (c)) and consequently high adult abundance. This effect would not
be captured by host-seeking trapping methods as the emergent adults are programmed for
diapause (Mitchell and Briegel 1989). Sulaiman and Service (1983) observed mosquitoes
entering diapause throughout October in some years, lending some support to this hypothe-
sis.
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Figure 2.6: Season length and timing effects on abundance: Plots (a)-(d) show the abundance of
eggs, larvae, pupae and adults for the three temperature scenarios shown in (e). On the adult plot,
(d), the solid black line shows the diapause induction point and the dotted lines show the diapause
termination points for each temperature regime.

Finally, for a given midrange annual temperature, amplitude of seasonal fluctuations or tim-
ing of peak temperature, decreased sharpness of the summer season (smaller values of γ),
leading to longer periods of high temperature, gives larger maximum abundance (Figure
2.7 (b,d)). However, when sharpness of the summer season, γ, and amplitude, λ, are co-
varied, more sharply peaked temperature functions can lead to the larger abundances, even
when mean annual temperatures are lower (Figure 2.6 & 2.7 (e)). In Figure 2.6, the high-
est abundance is shown by the blue line, despite the fact that it has the lowest mean annual
temperature (mean temperatures are blue= 9.2 ○C, red= 10.3 ○C, black= 11.7 ○C).

2.3.2 Minimum abundance (θ)

The effect of environmental conditions on spring starting population size, θ, are shown in
Figure 2.8. As with peak abundance, increasing annual midrange temperature or amplitude
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Peak Abundance (κ)

(a) (b)

(c) (d)

(e) (f)

Figure 2.7: The effect of changing temperature variables on peak seasonal abundance of Cx. pipiens
adults, κ. The axes atop figures (a-d) show the UKCIP projected values for µ and λ for the 2020s,
2050s and 2080s with the baseline (1961-1990) marked as BL. The white lines are contour lines. The
green points on panel (f) show abundance given projected increases in both µ and λ by the 2020s,
2050s and 2080s relative to a 1961-1990 baseline (BL) shown by the green cross. There are no
UKCIP projections available for shifts in µ or γ. When not varied, values are held according to the
UKCIP baseline values for SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21).
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of fluctuations always led to increased spring population, due to a combination of increased
population growth in summer and decreased mortality over shorter winters (Figure 2.8 (a-
d,f)). In co-varying midrange and peak temperature timing, the effects of changing peak time
were relatively small and difficult to discern in comparison to those of increasing midrange
but generally appeared to be negligible (Figure 2.8 (a)). When varying timing of peak tem-
perature with amplitude increased spring populations were visible as amplitude increased
and the temperature peak moved later in the year (Figure 2.8 (c)). Similarly, varying peak
temperature timing with summer sharpness suggested that later temperature peaks tended
to lead to larger spring populations (Figure 2.8 (e)). A trade-off between slightly earlier
peak temperatures minimising the winter duration and slightly later peaks leading to larger
summer populations is observable. Interestingly, conditions which led to higher summer
abundance did not necessarily lead to a higher number of through-winter survivals. This
was particularly evident in examining the relationship between timing of peak temperature
and duration of high temperatures as lengthening summer, and correspondingly shortening
winter, led to larger spring populations in some cases, whilst also giving smaller summer
populations (Figure 2.7 (c) and 2.8 (c)).

2.3.3 Length of biting season (β)

The effect of environmental conditions on the length of the biting season, β, was investigated
(Figure 2.9). All four temperature parameters can affect the biting season, provided either
the termination or onset of diapause is governed by temperature, via cooler spring or autumn
period, rather than via a photoperiodic queue. When photoperiod determines both the start
and end of diapause, temperature has a negligible role in determining the length of biting
season. Amplitude of seasonal fluctuations was seen to have a smaller effect on the biting
season than the other parameters because it had the least potential to affect the duration
over which the temperature exceeded 10 ○C (Figure 2.9 (c,d,f)). Increasing the midrange
temperature led to notably longer seasons when the 10 ○C temperature threshold occurred
within the range of the photoperiod thresholds (Figure 2.8 (a,b,f)). This can be seen in
the divides between the yellow regions (governed by photoperiod) and the darker regions
(governed at least partly by temperature). Shifting the peak temperature later in the year
led to a decreased length of biting season because the onset of the season is delayed by low
temperatures and the end of the season remains governed by photoperiod for the entire range
explored (Figure 2.8 (a,c,e)). Decreasing the sharpness of the temperature peak consistently
led to longer biting seasons because the 10 ○C thresholds move apart and development times
generally decrease (Figure 2.8 (b,d,e)).
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Minimum Abundance (θ)

(a) (b)

(c) (d)

(e) (f)

Figure 2.8: The effect of changing temperature variables on minimum seasonal abundance of Cx.
pipiens adults, θ. The axes atop figures (a-d) show the UKCIP projected values for µ and λ for the
2020s, 2050s and 2080s with the baseline (1961-1990) marked as BL. The white lines are contour
lines. The green points on panel (f) show abundance given projected increases in both µ and λ by the
2020s, 2050s and 2080s relative to a 1961-1990 baseline (BL) shown by the green cross. There are
no UKCIP projections available for shifts in µ or γ. When not varied, values are held according to
the UKCIP baseline values for SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21).
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Length of biting season (β)

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: The effect of changing temperature variables on the length of the biting season of Cx.
pipiens females, β. The axes atop figures (a-d) show the UKCIP projected values for µ and λ for the
2020s, 2050s and 2080s with the baseline (1961-1990) marked as BL. The white lines are contour
lines. The green points on panel (f) show abundance given projected increases in both µ and λ by the
2020s, 2050s and 2080s relative to a 1961-1990 baseline (BL) shown by the green cross. There are
no UKCIP projections available for shifts in µ or γ. When not varied, values are held according to
the UKCIP baseline values for SE England (µ = 10.3 ○C, λ = 6.3 ○C, φ = +1.4 days and γ = 1.21).



Chapter 2. Temperature effects on mosquito seasonal abundance 78

2.3.4 Sensitivity Analysis

A sensitivity analysis was carried out to understand the effects of changes within the expected
range of variability for each of the four parameters of the modified cosine wave (Figure 2.10).
The coefficient of variation was calculated for each of the four temperature parameters ac-
cording to the data from the North Kent marshes and the parameters were varied accord-
ingly. The plots clearly show that peak mosquito abundance is most sensitive to changes in
midrange of the annual temperature, µ. This is as expected because both development and
survival of larvae increase rapidly with rising temperatures, relative to those currently expe-
rienced in the UK. Further, an increase in midrange temperature has a larger effect than an
equivalent decrease because development rates are concave upwards (Figure 2.1). The effect
of amplitude, λ, mirrors that of midrange, µ, but is less marked because this change does not
result in as large an increase in summer temperatures and diapausing mosquitoes experience
less sensitivity to small temperature changes. The effect of peak temperature timing, φ, is
sensitive to which date the shift is relative to. However, in this instance shifting the timing
of the peak temperature (a shift of approximately +/-6 days) affects peak mosquito abun-
dance on a similar scale to varying amplitude within its range of variation. Sharpness of the
summer season γ, has quite a substantial effect on peak abundance and, akin to the observa-
tions with temperature midrange, lengthening the summer period has a greater impact than
an equivalent shortening.

The effects of midrange, amplitude and sharpness on spring population size, θ, mimic their
effects on peak abundance, as κ and θ are highly correlated (rp = 0.968). Timing of peak
temperature, φ, is slightly more influential in determination of post-winter population size
than on peak abundance because it has a notable effect on the length of the biting season.
This is because earlier peak temperatures tend to lead to an earlier biting season start date
but the termination of the season occurs as a result of photoperiod. Biting season is affected
almost equally by an increase in midrange temperature or by a lengthening of the summer
season, though decreasing the midrange temperature has a larger impact than an equivalent
shortening of the season. Both amplitude and timing of peak temperature have quite small
effects on the length of the biting season, producing changes of about 5% or lower. Again, the
peak abundance κ and the length of the biting season, β, are strongly correlated (rp = 0.854).
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Figure 2.10: (a - c) Show the effect of a change in each of midrange temperature, µ, amplitude
of fluctuations, λ, phase shift, φ and sharpness, γ, on peak abundance, κ, minimum abundance, θ
and length of biting season, β, respectively. The size of the changes shown are chosen according
to the magnitude of the coefficient of variation (+/- 10.6%,11.8%,17.1% and 28.1% for midrange
temperature, amplitude of fluctuations, timing of peak temperature and sharpness of summer period,
respectively).

2.3.5 Exploring modified cosine temperature approximation

The mosquito summary statistics (maximum abundance, κ, minimum abundance, θ, and
length of biting season, β) were calculated for each year, interpolating between exact tem-
perature values and using cosine waves which either included or excluded inter-annual vari-
ability (Figure 2.11 (a-c)). It is clear from Figure 2.11 (a) that the cosine wave incorporating
inter-annual variability generally predicts a peak abundance, κ, closer to that estimated using
the interpolation method than the cosine wave which is fixed across the years. The obser-
vation is supported by the fact that the mean absolute percentage difference between the
interpolation prediction and the modified cosine prediction is 8.6% (95% CI (5.5%,11.6%))
when inter-annual variability is included and 14.7% (95% CI (11.0%,18.5%) when excluded.
A Wilcoxon signed ranks test shows that this difference is statistically significant (p = 0.006).
The differences in minimum abundance, θ, estimation are less pronounced with an average
mean absolute difference of 6.7% (95% CI (5.3%,8.1%)) when incorporating inter-annual
variability and 8.8% (95% CI (6.6%,11.0%)) in the fixed case, which was not found to be
statistically significant (p=0.066). When comparing the length of the biting season for the
three methods it is clear that the interpolation method leads to greater predictions for the
length of the biting season. This is because, when the true temperature values are smoothed
over by fitting a cosine wave, the date at which the season begins is pushed later. There
was no statistically significant difference found between the estimated lengths of the biting
season for the two cosine waves (p=0.915). The residual sum of squares for each cosine
fit was not found to be linked with the magnitude of the changes between the interpolation
predictions and those from the modified cosine waves. Similarly there was no statistical evi-
dence of a link between any of the individual modified cosine parameters and the percentage
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Figure 2.11: (a) and (b) show percentage changes, in peak abundance, κ, and minimum abundance,
θ, respectively, in predictions from interpolation between mean daily temperatures and from the two
modified cosine waves (pink - fixed, blue - variable). (c) shows the actual change in the length of the
biting season in moving from the interpolation between mean temperature values and the two cosine
waves.

changes in abundance.

2.4 Discussion

Whilst it has long been understood that a range of environmental drivers, including tempera-
ture, have a large impact on mosquito physiology and thus on development, recruitment and
death rates (Couret et al. 2014; Ciota et al. 2014; Lyimo et al. 1992), the effect of changing
climate on seasonal dynamics has been unclear (Semenza and Menne 2009). Development
of a mechanistic model which explicitly incorporates the effects of temperature on each of
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the mosquito life stages takes important steps towards understanding how predicted warming
can be expected to influence seasonal population abundance of temperate mosquitoes. The
model supports expectations that increased temperatures could lead to substantial increases
in mosquito numbers and estimates that, given predicted increases in both mean annual tem-
perature and amplitude of seasonal temperature fluctuations for the UK, Cx. pipiens abun-
dance will increase in coming years. The results also indicate that even small changes in
seasonal temperature, in particular mean annual temperature, could lead to sizeable changes
in mosquito seasonal abundance and phenology (Mirski et al. 2012). This sensitivity high-
lights the need for detailed incorporation of the effects of environment on vector dynamics
in epidemiological modelling. In interpreting these findings, it is important to be aware that
hydrological processes, such as the effects of rainfall and humidity on adult and larval sur-
vival, have not been incorporated into the model. Inclusion of these processes will be crucial
to fully understand vector seasonality, as high temperatures in temperate climates often lead
to lower humidity and rainfall, which could counteract the positive effects of temperature on
abundance.

These results show that the size, both of peak mosquito populations and of populations sur-
viving over winter, will increase with increasing amplitude of seasonal temperature fluctu-
ation. One may have expected that, with increasing amplitude causing both higher summer
temperatures and cooler winters (when annual mean temperature remains fixed), effects on
peak vector abundance would trade-off against one another. This trade-off is not observed
because the model is much more sensitive to temperature changes in the summer months
than through the winter. This is partly because there is little empirical data on responses
of mosquitoes to cold temperatures, though diapausing mosquitoes are believed to be rela-
tively insensitive to temperatures changes within the region of 0 to 10 ○C, which is typical
for the UK winter. Extreme cold and very low relative humidities have been shown to drasti-
cally increase mortality in diapausing Cx. pipiens (Rinehart et al. 2006) but these effects are
not included in our model (Equation 2.14) because adults typically overwinter in protective
shelters and are therefore likely to be buffered against extreme temperatures and humidities.
This buffering was seen in populations of Cx. pipiens, which thrive through much of Rus-
sia, where external temperatures ranged from −22 to −4 ○C whilst temperatures in diapause
shelters ranged from −11 to −1.1 ○C (Vinogradova 2000). It is rare for temperatures cold
enough to induce exceptionally high mortality rates to occur in the UK (3 consecutive days
below −5 ○C in (Rinehart et al. 2006)). However, even subtle effects of low temperature on
overwinter survival have altered disease persistence in the US (Wimberly et al. 2014). Very
low temperatures may be limiting for key transmission processes, though further research is
required to improve understanding, and allow parameterisation, of these processes.
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The model also shows that a “late" summer, where temperatures peak in mid-to-late August,
leads to a larger peak mosquito abundance than an “early" summer, with peak temperatures
in July. I expect this is due to the peak temperature aligning with the development of a larger
number of mosquitoes, since abundance in the model steadily increases through the sum-
mer months. Further, it was observed that maximum temperatures and the timing of these
temperature peaks can be more influential in determining mosquito abundances than mean
annual temperatures (Figure 2.6). This is an important finding as it is often assumed that
predicted increases to mean annual temperature will cause increases in mosquito population
size. Whilst this is likely to be true, this result suggests that periods of extreme high tempera-
tures may cause more severe increases to mosquito population size than general temperature
increases spread across an entire season.

Many standard approaches model seasonality using sinusoidal seasonal forcing to describe
parasite transmission and thus fail to capture daily and inter-annual variability (Altizer et
al. 2006). Here, seasonal abundance predictions using an interpolation between mean daily
temperatures were compared with a series of annually fitted modified cosine waves, and
a series of cosine waves ignoring inter-annual variability. This highlighted that mosquito
populations can be very sensitive to small changes in the seasonal temperature profile. The
results obtained using the observed daily temperatures more closely mimic the results when
incorporating inter-annual variability in cosine curve parameters than when excluding such
variability (Figure 2.11 (a)). This finding is crucial because current climate projections for
the UK suggest that inter-annual variability in weather patterns will increase in coming years
(Jones et al. 2009). No evidence was found that failure to either capture temperatures at a
daily scale or to include inter-annual variability would lead to systematic over- or under-
prediction of seasonal abundance. This contrasts with what may be expected from Jensen’s
inequality (Jensen 1906), which would suggest that smoothing through the points with a
cosine wave would result in overestimate development times. Given these results it seems
that the approximation of a modified cosine can still be reasonable for a simulation-based
experiment, as presented here, because it shows the response to environmental changes in a
clear way and does not appear to show bias in results. Indeed, such approaches are necessary
to understand the impacts of specific seasonal temperature characteristics, such as late sum-
mers or particularly short summers, as these effects can be difficult to tease out when using
observed temperature values. This technique is also useful for forecasting future changes,
when precise daily variability in temperatures will be unknown but predictions of how an-
nual means and timings of peak temperatures may shift are available. However, when using
the modified cosine wave, estimates of peak mosquito abundance may regularly differ from
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those one would obtain interpolating between mean daily temperature values by as much as
20% and these margins of error should be considered in the formulation of any transmission
model that uses these values as input.

Rainfall patterns are likely to have a direct effect on the number and size of larval habitats,
which will affect larval density. Many studies have shown that intra-specific competition, as
well as predation, impacts larval development and death rates (Alto et al. 2012; Loetti et al.
2011; Peters and Barbosa 1977; Beketov and Liess 2007), with recent work showing that the
interaction between temperature and competition may strongly influence seasonal dynam-
ics (Amarasekare and Coutinho 2014). These impacts will be strongly linked to hydrology
and can be included in models using a variety of functional forms discussed by White et
al. (2011). The importance of such processes on seasonal abundance was clearly displayed
by Morin and Comrie (2013), who showed that both abundance and timing of biting sea-
son of Cx. quinquefasciatus across the Southern United States was strongly latitude- and
longitude-dependent, due to the interaction of temperature and rainfall throughout the sea-
son. The model results indicate that population growth is strongly affected by the assumption
of a fixed larval habitat, as increased larval density in midsummer causes population growth
to level off, due to predation rates approaching their maximum, before increasing again in
the latter part of the season, particularly when there is a long summer (Figure 2.6 (d) black
line). As larval numbers dwindle in the late summer months, density decreases and larval
survival increases again, leading to a late season abundance increase. In the field, due to
contraction of breeding sites as they dry out over the summer, the crash in larval survival
due to predation, and in future extensions of the model competition, may continue into the
late summer period. However, human creation of larval habitats, such as people storing wa-
ter butts in their gardens or using hosepipes, may also be key when considering abundance
of Cx. pipiens in the UK, due to the decreased dependence on rainfall for larval habitat
through the drier months, particularly in urban settings (Townroe and Callaghan 2014). To
account for these effects a similar approach to that taken by Tran et al. (2013) could be taken
where larval habitat was composed of both permanent and temporary reservoirs. For these
reasons, in the future hydrological processes must be explicitly incorporated into the model
if understanding of how changing climate may influence seasonal abundance of temperate
mosquitoes is to be improved.

This work shows that DDEs can be an effective and flexible tool in modelling mosquito
seasonal dynamics. To develop and refine this work, advancements must be made in three
key areas of research. Firstly, understanding of how predation on larvae and competition
between larvae interact to regulate population size must be improved, as these areas have, to
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date, been studied in isolation of one another (Quiroz-martinez and Rodriguez-Castro 2007;
Madder et al. 1983b; Agnew et al. 2000; Alto et al. 2012). Secondly, humidity has been
shown to have an effect on mosquito populations (Lebl et al. 2013; Carrieri et al. 2014),
however the impacts on individual mosquitoes are poorly understood, which restricts model
parametrisation. Finally, the interaction between temperature and photoperiod and its effect
on diapause behaviour are strongly dependent on region and rearing conditions (Tauber et
al. 1986) and whilst numerous investigations have been carried out to understand these pro-
cesses in Cx. pipiens populations in Russia and surrounding countries (Vinogradova 2000)
and in North America (Spielman 2001; Bailey et al. 1982; Madder et al. 1983a; Sanburg and
Larsen 1973), this work remains to be done for European populations.

Vector-borne disease models can only be effective if the estimates of vector density, required
as inputs, are accurate (Lord 2004). The extrinsic incubation period (EIP) of a pathogen,
mosquito biting rate and vector competence may all vary substantially with temperature
(Ciota and Kramer 2013), meaning the identification of periods where peaks in vector abun-
dance may overlap with high biting rates and short EIPs will be crucial in determining trans-
mission risk. My model predicts these timings given environmental conditions and shows
that vector abundance and phenology are highly variable, which could interact positively or
negatively with disease dynamics, causing sporadic disease outbreaks. By explicitly mod-
elling the vector population in all its life stages and incorporating the effects of environmental
variability on the vector life cycle, I have developed a tool which can be used in tandem with
existing epidemiological models to improve seasonal predictions of vector-borne disease
transmission, using R0 models like that presented by Hartemink et al. (2011). Recent studies
investigating the risk of WNV introduction or spread, such as Bessell et al. (2014), have been
forced to make the assumption that mosquito populations are fixed, without accounting for
the effects of environment on mosquito seasonality and behaviour. By coupling predictions
of seasonal vector abundance with these epidemiological models, one could substantially
improve model predictions and our understanding of disease transmission risks (this idea is
explored in detail in Chapter 5). In particular, by applying a 1:1 sex ratio and including di-
apause dynamics in our model, one can specifically estimate the population of host-seeking
females, which is the key subset of adults required by epidemiological models. Further-
more, age-dependent (Bellan 2010) or infection-status dependent mortality, or behavioural
alteration of adults (Alto et al. 2014; Ciota and Kramer 2013; Ciota et al. 2013) have been
shown to be very influential in models of mosquito-borne disease transmission and control
(Bellan 2010), and these effects could be incorporated in this model. By explicitly including
the effects of temperature on vector seasonal dynamics, I have developed a tool which can
be combined with our understanding of pathogen transmission to improve predictions on the
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risk of disease transmission and spread.
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Chapter 3

Cx. pipiens seasonal abundance
data collection

3.1 Introduction

Multiple interacting ecological processes underpin seasonal dynamics of insect vectors. Den-
sity-independent effects, in particular temperature, can influence a range of processes in in-
sects, including development, fecundity and mortality (Brown et al. 2004). Temperature
can often have opposing impacts on population dynamics, with high temperature having a
negative effect on adult survival (Andreadis et al. 2014) but a positive effect on immature
development (Ciota et al. 2014). Density-dependent effects, such as intra-specific competi-
tion, can also impact population dynamics and patterns of abundance, as limited access to
food or other resources has been shown to induce multiyear population cycles, or chaotic be-
haviour (Klomp 1964). Inter-specific interactions, which are also density-dependent, such a
predator-prey interactions or competition between species can have similar affects on insect
phenology (Connell 1983; Schoener 1983). The relative roles of these processes remain un-
certain in most insect vector systems, hampering our ability to predict transmission seasons
and persistence between years. Due to the complexities associated with modelling multiple
such drivers, most model systems still focus on single drivers. However, to capture insect
population dynamics accurately, it is often necessary to incorporate both density-dependent
and density-independent processes (Bewick 2016), as in Chapter 2.

Density-dependence has been shown to limit population sizes in numerous ways, including
through competition for food resources and both conspecific and heterospecific predation.
This regulation can cause a range of abundance patterns, including stable states, population
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cycles and chaotic behaviour (Sinclair and Pech 1996). Understanding the relative contribu-
tions of density-dependent and density-independent factors on mosquito abundance is crucial
because different life stages inhabit different ecological niches. Consequently, vector con-
trol measures either target the larval stage, which is known to be density-dependent (Alto
et al. 2012), or the adult stage, where evidence of density-dependence is scarce (Smith et al.
2013), with important impacts on control efficacy. Understanding the relative contributions
of these biotic, density-dependent processes, when presented alongside abiotic processes,
requires that models incorporate both factors (Benton et al. 2006). Such approaches are be-
coming more common, with a mark-release-recapture field study by Nowicki et al. (2009)
monitoring butterfly abundance trends at a 2.9 hectare site in northern Italy showing that
density-dependence appeared to be significantly more influential than abiotic factors. Tam-
burini et al. (2013) showed, using a long term dataset, whilst summer temperature and rainfall
significantly affected population growth rate of an alpine moth species, density-dependence
was the most important factor in determining population dynamics. Chaves et al. (2012)
showed that population dynamics of the mosquito, Aedes aegypti, exhibited both substantial
density-dependent regulation and sensitivity to temperature and rainfall.

In the case of Cx. pipiens, low temperature over the winter months creates conditions unsuit-
able for development and survival of immature mosquitoes, causing a cessation of breeding
activity as adults enter a diapausing state (Denlinger and Armbruster 2014). During the ac-
tive mosquito season, both adult and immature population dynamics are strongly driven by
temperature (Bisanzio et al. 2011; Mulatti et al. 2014; Rosà et al. 2014), which influences
immature development rates (Loetti et al. 2011), survival of all stages (Ciota et al. 2014)
and consequently abundances of each life stage. Further, inter- and intra-specific competi-
tion (Madder et al. 1983b; Costanzo et al. 2005; Ruybal et al. 2016) and predation (Onyeka
1983; Mogi and Okazawa 1990) have been observed to affect development and survival
of the larval stage of Cx. pipiens in laboratory and field studies, across its geographical
range. Statistical models have also used these mechanisms to successfully explain regula-
tion of population sizes during the biting season (Costanzo et al. 2005; Mulatti et al. 2014).
Substantial uncertainty remains around the relative contributions of density-dependent and
density-independent factors to abundance patterns in field populations.

Diapause is a mechanism widely used by insect species to survive adverse seasons (Sim
and Denlinger 2013). Diapause behaviour is highly variable across mosquito species, de-
pendent on the environmental conditions faced. Many tropical mosquito species may not
diapause, when conditions remain favourable for development all year round. Temperate
species, however, have adapted a range of strategies to survive poor winter conditions, with
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diapause occurring in different life stages for different species (Denlinger and Armbruster
2014).

Mosquito dispersal to different habitats has resulted in evolution of variability in diapause
behaviour within species. For example, Lounibos et al. (2003) show that Aedes albopictus

does not diapause in tropical regions but does in response to low photoperiods in temperate
climates. Consequently, expansion of Ae. albopictus across the USA has led to diapause
incidence being positively correlated with latitude due to differences in photoperiods ex-
perienced. This correlation is consistent with findings across a range of mosquito species
where the length of the growing season declines as one moves north, leading to earlier di-
apause induction due to the earlier arrival of winter at more northerly locations (Denlinger
and Armbruster 2014). The decline in growing season length at more northerly locations
has been shown to lead to a decreased voltinism (number of generations in a year) in in-
sect species (Zeuss et al. 2017), which will affect opportunities for disease transmission in
vectors. These results have been reflected in Cx. pipiens populations, for which diapause in-
duction has been shown to occur in response to low photoperiods (Sanburg and Larsen 1973;
Madder et al. 1983b; Spielman 2001), with relatively low rates of diapause at more southerly
locations (Nelms et al. 2013). There is some evidence that higher temperatures may also de-
lay diapause induction (Sanburg and Larsen 1973; Madder et al. 1983b; Spielman 2001) and
bring forward diapause termination (Ciota et al. 2011) in Cx. pipiens, however these effects
are believed to be secondary to photoperiod (Sim and Denlinger 2013; Denlinger and Arm-
bruster 2014). A clear understanding of diapause induction and termination queues is central
to our ability to predict mosquito biting and disease transmission seasons (Armbruster 2016),
as well as pathogen persistence overwinter (Nelms et al. 2013).

A recent review paper by Reiner et al. (2013) highlights that 82% of mechanistic models of
mosquito-borne pathogen transmission between 1970-2010 either did not use data, or used
data to estimate only one or two parameters (Nmodels = 388). This marriage of mechanis-
tic models and field data is crucial in capturing and understanding interacting ecological
processes and their implications for population dynamics (Bewick 2016). Such attempts to
combine mechanistic models of mosquito dynamics with data have become more popular
in recent years. Jian et al. (2014b) investigate the relative importance of biotic and abiotic
processes in determining population size of Cx. pipiens in Northern Italy. Alongside impor-
tant abiotic factors such as temperature, daylight hours and soil moisture, the authors find
significant density dependence at a time scale related to the length of larval development.
These findings are echoed by those of Marini et al. (2016), who find that observed inter-
seasonal abundance patterns can largely be explained by different temperatures and larval
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carrying capacities, which the authors estimate by applying maximum likelihood methods
to 12 years of field capture data. As larval carrying capacity will directly affect density-
dependent processes, this finding again suggests that inclusion of density-dependent and
density-independent processes will be key.

As previously discussed, mosquitoes are known to show geographic variability in diapause
initiation and termination, in response to shorter growing seasons at increasing latitudes
(Denlinger and Armbruster 2014). To determine how aspects of mosquito phenology, in-
cluding diapause, may vary in response to different environmental drivers experienced across
their range, analyses incorporating the range of environmental conditions experienced across
their geographic range are required. Such analyses have been used to understand the effect
of environmental queues on continental-scale avian migration phenology using weather data
and citizen science bird data (Kelly et al. 2016). In insect populations, Zeuss et al. (2017)
showed that voltinism decreased with increasing latitude in lepidopterans and odonates across
Europe. On smaller scales, variations in phenology of Culicoides have been attributed to land
cover and climatic variables in Scotland (Searle et al. 2013). In Spain the environmental fac-
tors underlying the spatial variability of appearance of the honey bee have been investigated
(Gordo et al. 2010), revealing a strong link between temperature and latitude, and emer-
gence dates. Given sufficient data of a high temporal resolution and enough sampling effort
at the start and end of the vector season it would be possible to conduct similar analyses for
mosquito species. Such analysis would improve understanding of how environmental factors
drive phenology across the range.

To improve understanding of these key processes affecting population dynamics and to fur-
ther develop the mathematical model, presented in Chapter 2, by identifying aspects of sea-
sonal abundance which were captured particularly well or poorly, an extensive period of
fieldwork was taken. I monitored abundances of all Cx. pipiens life stages in the field at a
high temporal resolution to determine:

1. What roles do density-dependent and abiotic factors play in the regulation of abun-
dance patterns in the field? Are the relative importances of these biotic and abiotic
factors consistent across the season?

2. What are the observed diapause induction and termination times for a UK population
of Cx. pipiens? Can patterns in diapause timings across Cx. pipiens geographical
range be predicted from environmental variables?

3. How does the voltinism of UK field populations of Cx. pipiens compare to Cx. pipiens
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in other parts of its range? Are the patterns of abundance consistent across all life
stages?

4. Given the temperatures observed in the field, does the mathematical model, presented
in Chapter 2, accurately predict seasonal abundance in each life stage?

I discuss the answers to questions 1-3 in this Chapter and perform a full comparison of the
model with the observed field data to answer question 4 in Chapter 4. In the latter part of this
Chapter, this data is then discussed in the context of the wider range of Cx. pipiens seasonal
abundance data found across the literature, to determine if geographical patterns in diapause
behaviour can be predicted from environmental drivers.

3.2 Methods

3.2.1 Field data collection

Intensive sampling of adult and immature mosquitoes was carried out from the 2nd of March
until the 2nd of October, 2015. The start date coincided with the first full week in March,
a minimum of one month earlier than previous UK fieldwork start dates (Hutchinson et al.
2007; Townroe and Callaghan 2014; Townroe and Callaghan 2015) and was chosen to ensure
that the start of the Cx. pipiens season would be captured by my field data. Collections
were stopped at the beginning of October in response to five consecutive sampling occasions
where no eggs or adults were observed. Ending sampling in October is consistent with
other UK monitoring programmes (Hutchinson et al. 2007; Townroe and Callaghan 2014;
Townroe and Callaghan 2015). The field study was carried out on the grounds at the Centre
for Ecology & Hydrology (CEH) site in Wallingford (51 ○ 36’ 9.0144” N, 1 ○ 6’ 45.7344” W)
(Figure 3.1).

3.2.2 Immature sampling

Immature Cx. pipiens were monitored using four 450 litre circular water butts (Figure 3.2(a))
placed at the locations shown in Figure 3.1. Butts number 1 and 2 were placed in exposed
locations with some cover from bushes on the north side but all other sides open and no
overhanging vegetation. These butts received direct sunlight throughout the majority of the
day. Butt number 3 was more sheltered with no overhanging vegetation but cover on the
north and west sides and direct sunlight until late afternoon or early evening dependent on
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Figure 3.1: Field site: Red markers show the locations of water butts 1-4. Yellow markers show
the locations of adult traps 1-4. The blue marker shows the location of the meteorological site (not
present at the time the satellite image was taken).

(a) (b)

Figure 3.2: Mosquito traps: One of the four water butts used as larval habitat is shown in (a). Image
(b) shows an adult trap.

the time of year. Butt number 4 was sheltered under a tree and only received direct sunlight
in the morning. Consequently, the four butts were subjected to different biotic and abiotic
environments. All butts were located within 20 yards of each other. In January the butts were
filled with clean water, which was then infused with hay by suspending 2kg of hay in a net
bag in each butt. The hay infusion was used because adult female Cx. pipiens are known to
favour breeding sites with a high organic content and hay infusions have been shown to be
effective attractants (Tate and Vincent 1933; Jobling 1938; Vinogradova 2000). The bags of
hay were left in the butts until the end of March and then removed for ease of sampling to
avoid the larvae hiding in the hay bags. A HOBO temperature logger, floating on the surface
of the water, was set to record surface water temperature at hourly intervals in each butt, as
Cx. pipiens spend most time at the surface (Yee et al. 2004).
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The number of egg rafts in each butt was counted at 10am on Mondays, Wednesdays and Fri-
days, allowing abundance changes to be tracked at a high temporal resolution. Samples were
taken from the 2nd of March until the 5th of October 2015, by which time six consecutive
sampling occasions showed zero egg rafts (Figure 3.3 (a)) (note that in three weeks only two
counts were made due to logistical issues). On each sampling occasion, after the egg rafts
were counted a 500ml dip was taken from each of the north, south, east and west edges of
each water butt using the standard dipping procedure (described in Additional File 2 of Fill-
inger et al. (2008)). No dips were taken from the middle of the butt as both larvae and pupae
were observed to congregate at the edges. The dips were transferred into one or more white
plastic trays for counting (Figure 3.3 (b)). When numbers were less than approximately 20,
numbers of 1st/2nd instar larvae, 3rd/4th instar larvae, and pupae were counted in the field
at the time of collection. In most cases this was not possible due to the large number of indi-
viduals in each sample, so photographs were taken of the contents of each tray. The samples
were then counted manually on the computer using Microsoft Paint. The validity of counting
from photos was checked by comparing direct counts from the tray with counts from photos
on the first two days of sampling. Image recognition software could not be reliably used to
count the larvae both due to the poor contrast between the water colour and the larvae, and to
the inability to distinguish between different larval instars and life stages. All samples were
returned to the water butts after photographing to prevent removal effects from one catch
to the next. Twenty 4th instar larvae were taken from each water butt (when abundances
were high enough that the number removed was a small proportion of the total population)
monthly for morphological identification to species level (Becker et al. 2003). Those 4th
instar larvae taken for identification were examined by microscopy in the laboratory using
the identification keys in Becker et al. (2003). Larvae were killed prior to examination by
submersion in boiling water. Identification of earlier instars is not possible because they are
morphologically indistinguishable from larvae from a number of other species (Becker et al.
2003).

3.2.3 Adult sampling and identification

To sample the adult population four John W. Hock Miniature Downdraft Blacklight (UV)
traps (also referred to as CDC light traps) (Figure 3.2 (b)) were run nightly from the 14th
of April until the 2nd of October, when there had been 5 consecutive empty collections, in
the yellow locations indicated on Figure 3.1. The traps were baited with dry ice to attract
female adult mosquitoes and were run 4 times a week overnight from Monday to Thursday
throughout the year (though seven nights were missed due to logistical issues). These traps
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(a) (b)

Figure 3.3: A group of egg rafts floating on the water surface is shown in (a). Image (b) shows an
example sample of larvae and pupae. A 1st/2nd instar larva is circled in blue, a 3rd/4th is circled in
red and a pupa is circled in black.

are widely used in sampling adult Cx. pipiens as they are relatively inexpensive and reli-
able, and have been shown to be effective in attracting Cx. pipiens (Lee and Rowley 2000;
Hutchinson et al. 2007; Loss et al. 2009; Ciota et al. 2011; Kemenesi et al. 2014; Montarsi
et al. 2015). Adult trapping started later than immature trapping due to logistical issues with
the supply of dry ice. Trap 1 was hung amongst some trees adjacent to the water butts and
traps 2 to 4 were hung in the tree line at the side of an adjacent field used to graze cattle
at distances of approximately 80m, 140m and 200m from the water butts (Figure 3.1). The
traps were run from 1700 each day until 0900 the following morning, as Cx. pipiens biting is
known to peak just after sunset and during sunrise (Meillon et al. 1967). Adults were placed
in the freezer immediately after collection and left for at least one hour before identification.
All mosquitoes caught were identified to species level by microscopy in the laboratory using
the identification keys in Becker et al. (2003) and the number of females of each species
was recorded. Males were not recorded as they do not blood feed or contribute to disease
spread and so are not present in substantial numbers in the traps. Minimum and maximum
daily ambient air temperature, cumulative daily rainfall, daily sunlight hours and mean daily
wind speed were recorded throughout the sampling period at a CEH weather station in the
adjacent field.

3.2.4 Analysis of field data from the CEH Wallingford site

Relationship between adult abundance, month and daily meteorology

A quasi-poisson GLM (Nelder and Wedderburn 1972; Wooldridge 1999) was fitted to the
daily abundance of adult female Cx. pipiens to determine which environmental variables
were key determinants of adult catch on a particular day and to determine when adult catch
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size was observed to decrease late in the season as a result of diapause induction. A quasi-
poisson model was chosen because the poisson distribution is appropriate for count data but
the data was found to be overdispersed (dispersion parameter 3.35). The explanatory vari-
ables included were; rainfall in the 24 hours prior to collection, sunlight hours, mean wind
speed, maximum and minimum air temperature in the 24 hours prior to collection, cumula-
tive rainfall in the three weeks prior to collection and average maximum air temperature in
the three weeks prior to collection. Three weeks was chosen because this is the estimated
time from egg hatch to adult abundance at 15 ○C (Loetti et al. 2011), which is the mean water
temperature across the summer of the butt with the highest immature abundance. Finally,
month of the year was included as a factor variable to account for changes in the population
size throughout the season.

In particular, it was hypothesised that

• Rainfall variables will have a positive impact on abundance due to increased habitat
availability (Wang et al. 2011; Mulatti et al. 2014).

• Positive impacts of air temperature, such as increased biting and immature develop-
ment rates (Loetti et al. 2011), will outweigh potential negative impacts, such as de-
creased adult longevity (Ciota et al. 2014), leading to increased catch sizes .

• Month of the year would affect catch size as the mosquito population size would in-
crease throughout the biting season, before decreasing in autumn as adult females enter
diapause.

Variable selection was carried out using a variant of the Akaike information criterion (AIC)
(Akaike 1973), the quasi-AICc (qAICc). QAICc values were calculated using the dredge
function in R (Barton 2016), which fits models containing all possible combinations of the
explanatory variables and ranks those models by qAICc and the model with the lowest qAICc
was chosen. The qAICc is a version of the AIC, a commonly used model selection tool,
which is appropriate for overdispersed count data when the sample size is small (Anderson
et al. 1994). The qAICc was selected because the sample size was relatively small, with the
number of samples per parameter below 40. A quasi-AIC was required because the quasi-
poisson GLM was fitted. The model residuals were tested for normality and for temporal
autocorrelation at lags of up to 50 observations, which includes the predicted egg-laying to
adult emergence times for any water temperatures observed during the active season.
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The role of developmental processes and mortality rates in explaining imma-
ture abundance patterns

Sampling each of the immature life stages in water butts allowed me to assess the rela-
tive contributions of biotic and abiotic processes to Cx. pipiens development and survival.
Predictions of density-dependent larval survival were obtained by solving Equation 2.3 for
SL(t), given the hourly water temperatures experienced in butt 4 at the field site. Density-
independent larval survival was calculated in the same way, with δπ(t), the larval mortality
due to predation, set to zero. Similarly, predictions of larval stage duration were obtained by
solving Equation 2.4 for τL(t), using hourly temperatures from butt 4. The resulting outputs
are time series giving larval survival and stage duration at all times through the year. Pre-
dicted pupal abundance at time t, P̂j(t), was generated using my field observations of egg
abundance, E(t), with the model predictions for generation time and survival, such that

P̂j(t) = E(t − τL(t))SL(t), (3.1)

where j = d, i correspond to using density-dependent and density-independent larval mortal-
ity respectively. These predicted pupal abundances, P̂j(t), were compared against my field
observations of pupal abundance, P (t). In this way, the accuracy of predicted stage duration
(τL(t)) and survival (SL(t)) through the larval stage was tested. By generating predictions
of pupal abundance using both density-dependent and density-independent survival, it was
also possible to assess the relative contribution of both mortality sources to abundance pat-
terns. The field-observed and predicted pupal abundances were scaled by their maximum
value, due to the unknown difference between egg and pupal detectability and the variability
in egg raft sizes. Due to the required scaling of observed and predicted abundances, it was
not possible to assess the magnitude of survival estimates. However, patterns of variation in
survival through the season could be assessed.

The detectability of each life stage determines the probability that an individual of that stage
would appear in a field sample. Detectability of egg rafts was assumed to be very high
because they float on the surface of the water and are immobile, making them easy to see
and count. Both larvae and pupae have been shown to effectively evade predators, suggesting
they may be able to avoid the dipper (Awasthi et al. 2012). Increased buoyancy of pupae
means that they spend more time at the water surface than earlier instars suggesting they
may have a higher detection probability that larval stages (Futami et al. 2008; Awasthi et al.
2012). Crucially, it was assumed that relative detectability of each stage remained constant
across the season, meaning that detectability may only affect total estimated population size
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and not observed patterns of abundance. Given this assumption, patterns of survival through
the season could be interpreted, despite uncertainty in absolute survival values.

3.2.5 Continental scale patterns in Cx. pipiens phenology based
on existing literature

To investigate the ability of environmental variables to predict geographical trends in di-
apause behaviour I exhaustively searched the literature for existing Cx. pipiens datasets.
I searched the first twenty pages of Google scholar and Web of Science results using the
search terms “Culex pipiens seasonal abundance", “Culex pipiens dataset", “Culex pipiens

monitoring", “Culex pipiens trapping", “Culex pipiens activity patterns" and “Culex pipiens

diapause timing". Using this information I compiled a database of 44 studies with infor-
mation regarding; which life stages were monitored, study length (in years), the number of
regions for which data was presented, the temporal resolution of the dataset, the location of
the study, the elevation of the study site, the dates on which Cx. pipiens was first recorded
and last recorded, and the date of the highest recorded abundance. I restricted my search
to include only studies monitoring adult female abundance. The possible effects of adult
population size on diapause timings were not considered due to the range of different trap-
ping procedures used across studies. It is known that differences in trap type and trap height
can have substantial impacts on catch sizes and consequently on population size predictions
(Anderson et al. 2004; Hutchinson et al. 2007).

Studies were then considered for inclusion in the analyses according to the following criteria:

• Only studies presenting adult capture data were included in the analyses, to maintain
consistency in results and in response to the low number of studies monitoring imma-
ture stages.

• Only the European and North American studies were included in the analyses due to
the substantially different latitude and climate in South Korea and the Middle East
(where Cx. pipiens have been found to remain active all year round (personal commu-
nication with Dr. Laor Orshan)).

• I removed those studies which presented abundance at a monthly timescale from my
analysis, as the accurate estimation of season start and end dates was impossible at
such a coarse temporal resolution.

• Studies which used traps spread over a large area (>10km between sites) were ex-
cluded, unless the data was presented for each trapping location individually, as there
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was no way to determine temperatures or timings at individual sites, which are likely
to show geographic variability.

Nine datapoints remained for the analysis of continental scale relationships between phe-
nology and environment. Air temperature data for each study area was found using Fetch
Climate (Microsoft 2014) (query date: 16/01/2017), with average daily air temperatures for
the studied years at each trapping site queried. Fetch Climate is a geotemporal informa-
tion retrieval service which gives data about a range of environmental variables by searching
a range of data sets and selecting the most appropriate by minimising uncertainty in the
dataset, as described in Grechka et al. (2016). By supplying Fetch Climate with a query
date it is possible to ensure reproducibility of results as the temperature datasets provided
will be those deemed most appropriate on the query date. The accumulated degree days
were calculated for each remaining site by subtracting 10 ○C (the lower thermal development
threshold (Almirón and Brewer 1996; Loetti et al. 2011)) from each average daily air tem-
perature and taking the sum of the positive values from the 1st of January until the end of
April, each trapping year. The end of April was chosen as the majority of studies across Cx.

pipiens range suggest that diapause emergence occurs in May, though varies geographically.
In cases where mosquito counts were presented as either cumulative values or averages over
a number of years, I took the average degree days across those years. For each site spring
and autumn photoperiod measures were calculated by determining the day of the year upon
which the photoperiod moved above 14 hours and the day upon which the photoperiod de-
creased below 13 hours respectively, as these were the estimates of season start and end
photoperiods used in the model in Chapter 2.

Using this data from the literature, I investigated the following expectations about the effects
of photoperiod and air temperature on diapause timings:

• Higher latitudes, with the spring photoperiod threshold being passed earlier in the
year, were expected to exhibit earlier diapause termination (Denlinger and Armbruster
2014).

• Similarly, passing the autumn photoperiod threshold earlier in the year was expected
to cause earlier diapause induction (Denlinger and Armbruster 2014).

• Particularly high accumulated degree days was anticipated to lead to earlier diapause
termination (Ciota et al. 2011).
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An exploratory correlation analysis of this data, to examine collinearity between environ-
mental variables and the season start, season end, season length and peak abundance timings,
was carried out by calculating Pearson’s correlation values. Multiple linear regressions, as-
suming a gaussian error distribution, were also fitted, with accumulated degree days, the
photoperiod thresholds and elevation included as independent variables and the phenology
metrics as dependent variables. Only the season start date model satisfied model assump-
tions.

3.3 Results

3.3.1 Analysis of data collected at CEH Wallingford field site

Species composition of adult and immature mosquito communities

Only the adult trap (trap 1) next to the water butts reliably caught Cx. pipiens (trap 1 averaged
4.96 ± 6.42 mosquitoes per night, traps 2-4 averaged 0.36 ± 0.84 mosquitoes per night), so I
only presented catch data from trap 1. A possible reason that traps 2-4 showed substantially
lower catch sizes is their increased distance from the breeding site (Figure 3.1). Immature
Cx. pipiens were not evenly distributed between the four water butts. In the initial immature
population peak in April, the population was spread quite evenly between the four butts (Fig-
ures 3.4a-3.4d). After this initial peak in abundance, the population becomes concentrated
in butt 4, with the vast majority of eggs laid there.

Adult trap 1 caught a total of 481 mosquitoes over the trapping period with 452 Cx. pipiens

(94.0%), 26 Culiseta annulata (5.4%), 2 Anopheles maculipennis (0.4%) and 1 Aedes genic-

ulatus (0.2%). Over the course of the sampling I performed morphological identification on
300 4th instar larvae from across the 4 water butts, all of which were Cx. pipiens. Since all
final instar larvae identified were Cx. pipiens it was assumed that earlier instars were also
Cx. pipiens. Given that C. annulata and Cx. pipiens favour similar larval habitats (Medlock
et al. 2005) it is possible that there were also some C. annulata larvae present in the butts.
However, as none appeared in the 4th instar larval samples and they accounted for only 5.4%

of the adult catch it is unlikely that the seasonal abundance patterns of Cx. pipiens will be
impacted significantly by co-occurrence with low populations of C. annulata.
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Seasonality in immature stages

The egg data shows two clear generational peaks in late April and late June (Figure 3.4a).
A similar pattern is observed in 1st/2nd instar larvae, with the peaks occurring a few days
after the peaks in egg abundance (Figure 3.4b). The 1st/2nd instar larvae also show signs of
a small third peak in August. The time series for 3rd/4th instar larvae and pupae both clearly
show three peaks in abundance through the year, with a third peak in late August/September
which is not obvious in the earlier life stages (Figures 3.4c-3.4d).
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(a) Egg data: First recorded on 6th of April and last recorded on 21st of September.
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(b) 1st and 2nd larval instar data: First recorded on 15th of April and last recorded on 5th of
October.
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(c) 3rd and 4th larval instar data: First recorded on 17th of April and last recorded on 5th of
October.
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(d) Pupal data: First recorded on 24th of April and last recorded on 5th of October.

Figure 3.4: Immature population numbers displayed by water butt. The solid blue line shows a 3-day
moving average of abundance. The coloured bars show the contribution of each water butt to the total
immature count. In plot (a) only egg rafts were counted, rather than individual eggs.

I hypothesise that the gap in time between the early-season and mid-season immature peaks
is caused by the time required for egg-to-adult development of the first spring generation,
rather than the duration of the adult gonotrophic cycle causing a delay between egg-laying
events of adult females that had overwintered. It has been shown that survival throughout
the winter months has a negative consequence on adult fitness, resulting in weakened adult
mosquitoes (Hahn and Denlinger 2007), which could result in adult females dying immedi-
ately after egg-laying. This is supported by high numbers of dead adult Cx. pipiens which
were observed floating on the surface of the water butts in the early part of the season. Mor-
tality of post-diapause females after laying one egg raft would explain the approximate 2
month delay between the first and second immature peaks (Figures 3.4a-3.4d), as this delay
would stem from the time required for the spring generation to complete devleopment. Es-
timates of the stage durations calculated by the Chapter 2 DDE model, using field observed
water temperatures, suggest that the time required for development through all life stages in
the spring is 40 − 70 days (Figure 3.5 b). This time delay coincides with the duration be-
tween the first and second egg peaks in the data (Figure 3.4a). The time between egg peaks
cannot be explained by the time required for adults to locate a blood meal and complete a
gonotrophic cycle between egg-laying events. Figure 3.5 (a), shows that the gonotrophic
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cycle is estimated to take less than 20 days for the spring air temperatures experienced in the
field, whilst the time delay between egg peaks is approximately two months.

The final peak in pupae is very large in comparison to the number of eggs present. This
is clear from the fact that, unlike in the first two pupal peaks, there is no discernible peak
in egg abundance corresponding to the final pupal peak (Figures 3.4a & 3.4d). Using the
observed egg abundance and the mathematical model predictions of larval development time
and larval survival including density-dependence, as described in Section 3.2.4, it was possi-
ble to estimate the pupal abundances, for comparison with the field data (Figure 3.6). Figure
3.6 shows that, in the final generation, the larval stage duration predicted using the model is
longer than that observed in the field, as the final model-predicted peak (black line) occurs
after the peak observed in the field (red line). This leads to a mismatch in timings of the
peaks between using the generation time from the model and observed data (black and red
lines respectively). However, at other points in the season, the development and survival
from egg to pupa can be well explained by the predictions of stage duration and survival, as
included in the mathematical model. Further, the relative sizes of the predicted and observed
peaks match well throughout the season when density-dependence is included.

The relatively large pupal peak at the end of the season can be considered to occur as a result
of a reduction in the density-dependent mortality rate due to predation, particularly as the
predictions ignoring predation do not capture the final peak whilst those including predation
do (Figure 3.6 black line and blue line, respectively). As the larval population size in the
water butts dwindles, the number of predators decreases in response to the reduction in prey
number, leading to a slight increase in larval survival and a relatively large pupal peak (Figure
3.7). The impact of density-dependence on survival is particularly evident when comparing
simulations carried out by the DDE model described in Chapter 2, both including and ex-
cluding density-dependence. Figure 3.8 shows that exclusion of density-dependence leads
to continuously increasing pupal population size through the year, as density-independent
mortality is insufficient to regulate population size.

Adult data from CEH Wallingford traps

The adult data shows less defined generations than the immature data (Figure 3.9) with a
small peak early in the season upon emergence from diapause, followed by a drop in num-
bers before a general increase throughout late May and June. High numbers are sustained
throughout July before catch sizes decrease again throughout August. There is evidence
from the data that adult activity reaches a small peak in April, immediately after diapause
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Figure 3.5: Gonotrophic Cycle vs Life Cycle: Plot (a) shows the duration of the gonotrophic cycle,
as estimated by the Chapter 2 DDE model, using the air temperatures observed at the field site. Plot
(b) shows the duration of the complete Cx. pipiens life cycle (eggs+larvae+pupae+gonotrophic cycle),
estimated using the Chapter 2 DDE model, the air temperatures recorded at the field site and the water
temperatures recorded in butt 4. In both plots the timings of the first and second egg peaks are shown
by the dotted lines.
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Figure 3.6: Comparison between observed and predicted pupal abundance patterns: The red
line shows the pupal abundance recorded in butt 4. The black line shows the predicted pupal abun-
dance including density-dependent larval mortality, P̂d(t), given the observed egg abundance and
water temperatures in butt 4 and the Chapter 2 DDE model predictions of stage duration and density-
dependent survival. The red line shows the predicted pupal abundance excluding density-dependent
larval mortality, P̂i(t), given the observed egg abundance and water temperatures in butt 4 and the
Chapter 2 DDE model predictions of stage duration and density-independent survival. The full pro-
cess by which P̂d(t) and P̂i(t) are calculated is described in Section 3.2.4.
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Figure 3.7: Larval Survival: The survival of the density-dependent larval stage, as estimated by
the mechanistic model, is shown. The black line represents the observed survival including density-
dependence, while the red line shows the predicted survival in the absence of density-dependence.
The dotted line shows the time of the final observed pupal peak.

emergence, before dying back again until late-May and June. This feature is mirrored in the
immature data (Figure 3.4a-3.4d) which also shows a strong peak in eggs laid in late April
followed by a period of low abundance until late-May into June.

Considering environmental predictors of patterns in adult abundance, the difference between
the QAICc value of the selected model and the intercept-only model (which includes no
environmental predictors) was 108.13, showing substantial improvements over the intercept-
only model. Table 3.1 shows the three models with the lowest QAICc. The top model
was chosen because it had the lowest QAICc and incorporates fewer parameters than the
next best option. In this final GLM, month of the year was a highly significant predictor of
catch size (Table 3.2). Maximum air temperature in the 24 hours prior to collection and the
quadratic air temperature terms were also significant at the 5% level, though the difference
in QAICc between models including and excluding the quadratic air temperature term was
very small. The model coefficients are shown in Table 3.3, which shows that increasing air
temperature increases the expected catch size over the study period. The model assumptions
were checked by examining the residuals for temporal autocorrelation and normality and
there was no sign that either assumption was violated (Figures 3.10-3.11). The explanatory
variables were checked for collinearity (correlation between two explanatory variables) by
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Figure 3.8: Effect of density-dependence on pupal populations: The black line represents the
pupal population predicted by the DDE model, described in Chapter 2, when incorporating density-
dependence, whilst the red line shows the pupal abundance predicted in the absence of density-
dependence. The plots are shown on the natural log scale due to the differences in the scale of
abundance predictions between the two methods.
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Figure 3.9: Adult data: The blue bars show adult female Cx. pipiens catch numbers collected by
trap 1. The orange line shows a 3-day moving average of catch numbers.
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Variables logLik QAICc delta
Month + Max Temp + Max Temp2 -252.042 164.4 0.00
Month + Max Temp.+ Max Temp2 + Min Temp -248.428 164.9 0.50
Month + Max Temp -258.863 165.8 1.36
Intercept only -476.722 272.5 108.13

Table 3.1: Model selection: The three models with the best QAICc are shown, alongside the intercept
only model.

Df Sum Sq F value Pr(>F)
Max air temperature (24h) 1 19.722 5.8839 0.01728
Month 6 148.514 7.3849 1.928 × 10−6

Quadratic max air temperature (24h) 1 13.642 4.0700 0.04663
Residuals 90 301.666

Table 3.2: ANOVA applied to quasipoisson GLM: An ANOVA showing the variance explained
and p-value for each of the variables included in the quasipoisson GLM.

calculating the variance inflation factors (VIFs) and none of the variables included in the
final GLM showed signs of collinearity (month of the year and average daily maximum air
temperature in the 2 weeks prior to collection showed moderate collinearity but average daily
maximum air temperature was not included in the final model). The fit of the quasi-Poisson
GLM model to the adult catch data can be seen in Figure 3.12. A pseudo R-squared value
was calculated for the quasi-poisson GLM by taking one minus the residual deviance over
the null deviance and the model was seen to have good explanatory power (R2 = 0.616).

The pairs of months of the year between which significant differences in adult female catch
size were found at the 5% level are shown in Table 3.4. Catch sizes were significantly higher
in July than in August, having accounted for environmental conditions. I propose that this is
indicative of diapause initiation in adult females occurring in August because diapausing fe-
males will not be caught by the host-seeking traps (Engler et al. 2013; Madder et al. 1983a).
This is supported by Figure 3.13, which shows the adult abundance predicted by the Chap-
ter 2 DDE model, for the temperatures experienced in the field experiment. Low immature
survival in the middle of the season (Figure 3.7) is not thought to be sufficient to explain
the drop in adult numbers throughout August (Figure 3.13 black line). However, diapause
initiation during August would explain this drop in catch sizes (Figure 3.13 red line).
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Coefficient Estimate Standard Error t value Pr(>|t|)
Intercept -4.4923 2.2510 -1.996 0.0490
August -0.1569 0.4338 -0.362 0.7185
July 0.8189 0.4000 2.047 0.0435 *
June 0.5756 0.4050 1.421 0.1587
May -0.5201 0.5639 -0.922 0.3589
October -2.9636 1.8637 -1.590 0.1153
September -1.8477 0.7314 -2.526 0.0133 *
Max Temp 0.4536 0.1973 2.299 0.0238 *
Quadratic Max Temp -0.0079 0.0041 -1.923 0.0577 .

Table 3.3: Regression coefficients quasi-poisson GLM: A summary of the regression coefficients
for the quasi-poisson GLM of environmental variables on daily catch of adult female Cx. pipiens.

Hypothesis Estimate Standard Error z value Pr(>|z|)
Jul-Aug=0 0.9758 0.2752 3.545 0.00553
Sep-Jul=0 -2.6667 0.678 -3.933 0.00116
Sep-Jun=0 -2.4233 0.6804 -3.561 0.00479

Table 3.4: Tukey tests: The Tukey highest significant difference test (Tukey 1949) highlighting
which means which are significant at the 5% level, showing between which months there is a signifi-
cant difference in predicted catch size.
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Figure 3.10: A histogram and QQ-plot showing normally distributed residuals for the quasipoisson
GLM fitted to the adult catch data.
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Figure 3.11: ACF plot: An autocorrelation function (ACF) plot showing no evidence of temporal
autocorrelation in the residuals of the quasipoisson GLM fitted to the adult catch data. Autocorrelation
is tested at lags of up to 50 observations, with 1 − 4 nights between observations.
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Figure 3.12: Quasi-poisson GLM predictions: a plot showing a the predicted catch sizes from the
quasi-poisson GLM (Table 3.3) compared to the observed catches.
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Figure 3.13: Diapause initiation: Seasonal abundance of active adult female Cx. pipiens, as pre-
dicted by the Chapter 2 DDE model, is shown. The active population is determined by multiplying
the total predicted adult population by the proportion of the population which is active at time t, ζ(t)
(Equation 2.17). The black line shows diapause initiation in September and the red shows diapause
initiation in August.
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3.3.2 Analysis of Cx. pipiens meta-analysis data

Patterns in European and North American Cx. pipiens phenology

In total I found 44 papers which described a Cx. pipiens seasonal abundance dataset (Table
3.5), at the locations shown in Figure 3.14). In 20 cases the data was presented at a monthly
resolution, meaning the start and end dates for each season could not be interpreted clearly.
In these cases, it was not made clear within the paper whether first and last recorded non-zero
catches were the first and last nights of trapping, or whether trapping had extended beyond
these dates. This is an important distinction because mosquitoes caught on the first night of
trapping would imply that the season had likely begun prior to trapping starting. Removing
those studies presenting data at a monthly resolution (n = 20), amalgamating data over a
large geographic area (> 10km between traps) (n = 30) or sampling only non-adult stages
(n = 9), left only 9 abundance profiles meeting all criteria required for inclusion in the anal-
yses.



C
hapter3.

C
x.pipiens

seasonalabundance
data

collection
112

Paper Life stage(s) No. sites Combined
over

>10km

No. years Combined
over years

Resolution Location Included

Helbing et al. (2015) Adult 14 Yes 31 Yes Daily USA No
Madder et al. (1983b) Adult 1 No 1.5 No Weekly Canada Yes
Balenghien et al. (2006) Adult 2 No 1 No Weekly France Yes
Anderson et al. (2004) Adult 1 No 1.5 No Weekly USA Yes
Wang et al. (2011) Adult 1 Yes 8 No Weekly Canada No
Chaskopoulou et al. (2013) Adult 28 Yes 1 No Weekly Greece No
Rosà et al. (2014) Adult 44 Yes 11 Yes Weekly Italy No
Carrieri et al. (2014) Adult 16 Yes 14 Yes Weekly Italy No
Jian et al. (2014b) Adult 15 Yes 1 No Weekly Italy No
Andreadis et al. (2001) Adult 148 Yes 1 No Weekly USA No
Geery and Holub (1989) Adult 40 Yes 1 No Weekly USA No
Bogojević et al. (2009) Adult 1 No 10 Yes Bi-monthly Croatia Yes
Votýpka et al. (2008) Adult 1 No 3 Yes Bi-monthly USA No
Ponçon et al. (2007b) Adult 2 No 1 No Bi-monthly France Yes
Montarsi et al. (2015) Adult 1 No 1 No Bi-monthly Italy Yes
Bolling et al. (2009) Adult 20 Yes 2 Yes Bi-monthly USA No
Dehghan et al. (2011) Adult 2 Yes 1 No Monthly Iran No
Orshan et al. (2008) Adult 1 Yes 5 Yes Monthly Israel No
Bisanzio et al. (2011) Adult 36 Yes 7 No Monthly Italy No
Toma et al. (2008) Adult 14 Yes 5 Yes Monthly Italy No
Kim et al. (2003) Adult 29 Yes 2 Yes Monthly Korea No
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Paper Life stage(s) No. sites Combined
over

>10km

No. years Combined
over years

Resolution Location Included

Kim et al. (2007) Adult 29 Yes 1 No Monthly Korea No
Kim et al. (2009) Adult 19 Yes 1 No Monthly Korea No
Kim et al. (2010) Adult 19 Yes 1 No Monthly Korea No
Ventim et al. (2012) Adult 4 No 1 No Monthly Portugal No
Kemenesi et al. (2014) Adult 13 Yes 1 No Monthly Serbia No
Schaffner and Mathis (2013) Adult 2 Yes 2 Yes Monthly Switzerland No
Alten et al. (2000) Adult 4 Yes 1 No Monthly Turkey No
Gündüz et al. (2009) Adult 7 Yes 1 No Monthly Turkey No
Barker et al. (2010) Adult NA Yes 10 Yes Monthly USA No
Bolling et al. (2007) Adult 14 Yes 2 Yes Monthly USA No
Costanzo et al. (2005) Adult 5 Yes 1 No Monthly USA No
Ibanez-Justicia et al. (2015) Adult 778 Yes 4 Yes Sporadic Netherlands No
Townroe and Callaghan (2015) Adult 110 Yes 1 No Sporadic UK No
Becker and Ludwig (1983) All NA Yes NA NA Unknown Germany No
Madder et al. (1983b) Egg 1 No 2 No Daily Canada No
Jackson and Paulson (2006) Egg 9 Yes 2 No Weekly USA No
Lampman et al. (2006) Egg 16 No 11 No Bi-monthly USA No
Madder et al. (1980) Egg/Adult 1 No 1 No Weekly Canada No
Lalubin et al. (2013) Egg/Adult 1 No 2 No Monthly Switzerland No
Spielman (2001) Larvae 2 No 1 No Weekly USA No
Rydzanicz and Lonc (2003) Larvae 12 No 3 Yes Monthly Poland No



C
hapter3.

C
x.pipiens

seasonalabundance
data

collection
114

Paper Life stage(s) No. sites Combined
over

>10km

No. years Combined
over years

Resolution Location Included

Aldemir et al. (2009) Larvae 31 Yes 2 No Monthly Turkey No
Townroe and Callaghan (2014) Larvae/Pupae 20 Yes 2 Yes Monthly UK No

Table 3.5: Cx. pipiens seasonal abundance datasets: The study by Votýpka et al. (2008) was not included, despite meeting the other criteria, due to a late
start to trapping.
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Figure 3.14: A map showing the distribution of data sources on Cx. pipiens seasonaility. The yellow marker shows the location of the Wallingford field
site. The blue markers show the locations of the field sites for which there was appropriate data for the final analysis. The red markers show the studies
which were excluded from the analysis.
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Coefficient Estimate Standard Error t value Pr(>|t|)
Intercept -209.03 102.6563 -2.036 0.0973
Spring Photoperiod 2.98 0.88307 3.370 0.0199
Degree days -0.29 0.18293 -1.606 0.1692
Elevation 0.09 0.03956 2.267 0.0728

Table 3.6: Regression coefficients for season start: A summary of the regression coefficients for
the model of environmental variables on season start date.

A multiple linear regression was fitted to understand any relationships between the observed
season start dates and environmental conditions (Table 3.6). The model assumptions were
checked and the assumptions of independence, normal residuals, constant error variance and
linearity were satisfied. The model R2 value showed that the linear model explained the
majority of the variation in the meta-analysis data (R2 = 0.824). These results suggest that
the timing at which the spring photoperiod threshold is passed appears the most likely driver
of diapause termination, with diapause termination occurring earlier in locations where day
length is high early in the year. Consequently, more northerly populations will be expected
to exit diapause earlier in the year, as has been shown for other species (Denlinger and Arm-
bruster 2014).

None of the environmental variables included were found to have a relationship with the tim-
ing of peak abundance, as the intercept-only model had the lowest AIC. Statistical models
investigating season length and season end dates were unreliable due to violation of model
assumptions. Figure 3.15 shows that timing of the mid-season abundance peak is well cor-
related with the timing of the season start but poorly correlated with the timing of the season
end. This supports the notion that the end of the season may be less predictable than the start
because, as more egg cohorts accumulate, generations will overlap as they will develop and
survive at different rates.

3.4 Discussion

3.4.1 Implications of the UK fieldwork observations on Cx. pipi-
ens phenology

The field data collected shows strong generational peaks in the immature life stages, accom-
panied by a more gradual build-up of adults through the biting season (Figures 3.4a-3.9).
Figure 3.4d shows that three distinct immature generations were observed throughout the
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Figure 3.15: Correlations between variables: Plots showing correlations between environmental
variables and season timings. PP stands for photoperiod. The r values given are the pearson correla-
tion values. Plots are colour-coded such that green represents environment-environment correlations,
blue represents environment-phenology correlations and red represents phenology-phenology corre-
lations. The plot is symmetric, with data in the bottom left and r-values in the top right.
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season. Zeuss et al. (2017) showed that voltinism across a range of 943 insect (lepidopteran
and odonate) populations decreased with increasing latitude in the northern hemisphere, in
response to decreased growing seasons. This is reflected in the fact that Madder et al. (1983b)
observed one more generation of Cx. pipiens than was observed at CEH Wallingford, at a
latitude 8 ○ south of my field site. These patterns of abundance in the immature stages can
be well explained by the estimates of larval stage duration and survival from the mathemat-
ical model (Figure 3.6). In particular, regulation of the larval population through predation
appears to be high in the middle of the active season, though a decrease in predator num-
bers late in the year may lead to an increase in the size of the diapausing population (Figure
3.7). By tracking adult abundance at a high temporal resolution, further information about
Cx. pipiens diapause timings was obtained, with diapause induction occurring in August in
the field. Further similar studies, across the geographical distribution of Cx. pipiens, are re-
quired to increase the range of environmental conditions in which phenological patterns are
measured, allowing for more robust inferences about the influence of environmental varia-
tion on patterns of abundance and diapause behaviours.

The autumn pupal peak, in late August/early September, is likely to be due to the fact that
the reduction of egg-laying by adults leads to a clearing of the egg and larval stages, with
low abundance during late July and early August. This reduction in the larval population is
believed to cause a drop in predator numbers, as in classical predator-prey systems (Lotka
1925; Volterra 1926), causing an increase in larval survival and pupal population size at the
end of the season. The hypothesis of a decreased predator population is supported by obser-
vations made whilst conducting the fieldwork, that predator numbers appeared to decrease
in the late part of the mosquito active season. Further, Figure 3.6 shows that the pupal abun-
dance can be well estimated using the observed egg abundance and the model estimates of
stage duration and survival. This lends support to the idea that the autumn pupal population
peak can be explained by a reduction in the predator population size and a corresponding
increase in larval survival, as predicted in the mathematical model. The mathematical model
appears to underestimate the development rate of the final generation (Figure 3.6). Density-
dependence is known to affect development rates as well as survival (Madder et al. 1983b),
so it is likely that this discrepancy between model predictions and field observations is due
to decreased density-dependence leading to faster development in the autumn generation.

The influence of density-dependence suggests that population size and abundance patterns
may be strongly regulated by breeding habitat availability. This importance of density-
dependence can be seen in Figure 3.8, where predictions of the pupal population can be
seen to steadily increase in the absence of density-dependence. The comparison in Figure
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3.8 highlights the impact of density-dependence on survival, however numerous studies have
shown that density-dependence also influences development rates (Couret et al. 2014), adult
body size (Madder et al. 1983b; Alto et al. 2012; Muriu et al. 2013) and population sizes
(Jian et al. 2014b) across a range of mosquito species and breeding sites. The increase in
pupal numbers observed in the field data has not led to an obvious increase in adult catch
sizes, as this final generation of pupae would be programmed for diapause, meaning they
would not appear in traps (Mitchell and Briegel 1989). However, this increased population
of diapausing adults may influence population size in the following season.

Monitoring populations in water butts means that catch size for each immature stage on a
particular day is not generally dependent on environmental conditions at that time but rather
on the number of eggs laid a certain time ago and the development rates and survival since
then. The number of eggs laid a given time ago was unknown, as only the total abundance
of egg rafts was counted on each day. This means that there is substantial temporal autocor-
relation in the immature abundance data (Figures 3.4a-3.4d). This autocorrelation was not
observed in the adult samples (Figure 3.11), likely because adults can disperse over a much
wider area. I had intended to analyse the patterns of abundance in each water butt alongside
the observed water temperatures to determine generation times and survival values based on
observed peaks in the data. However, the tendency of adults to oviposit almost exclusively
in butt 4, after the initial population peak, meant that such an analysis was not possible due
to the lack of data across the butts.

Several factors may explain why the strong generational peaks observed in the immature
stages are not evident in the adult time series. Firstly, female mosquitoes developing late
in the year are programmed to mate and enter diapause upon emergence rather than seeking
a blood meal (Mitchell and Briegel 1989). This means they are not caught by adult traps
that target host-seeking individuals. Consequently, the adult population produced by the
late summer pupal peak would not be visible in the trap data. A further contributing factor
is likely to be the increased longevity of the adult stage, when compared to the immature
stages. This means that adults of different generations can overlap and are more likely to
do so later in the season. Adult longevity depends on the air temperatures experienced, sim-
ilarly to immature development, however the adult lifespan is substantially longer than the
time required for development through the immature stages, for both Cx. pipiens and Aedes

albopictus (Alto and Juliano 2001; Loetti et al. 2011; Brady et al. 2013; Ciota et al. 2014).
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My finding that generational peaks are much less clear in adult population data than in im-
mature population data has several potential biological explanations. According to both
laboratory observations and my model predictions, the adult stage of Cx. pipiens lasts over
twice as long as the immature stage on average. Ciota et al. (2014) estimate the mean adult
lifespan ranges from approximately 75 days at 16 ○C to 25 days at 28 ○C (errors not given).
This is more than twice the development time from egg hatch to adult emergence estimated
by Loetti et al. (2011) at similar temperatures, with development time of 21.6(±1.6) days at
15 ○C and 8(±1) days at 30 ○C. The relatively long adult lifespan leads to considerable over-
lap in cohorts of adults arising from batches of eggs laid by different females, particularly in
the middle to the end of the adult season (i.e. 2nd and 3rd generation individuals per year).
Each of these adult cohorts develops and survives at different rates depending on the fluc-
tuating environmental conditions to which they have been subjected during their lifetimes.
This blurring of generational peaks generally observed in adult Cx. pipiens datasets is further
exacerbated by the fact that adults only visit the traps when host seeking (roughly one twen-
tieth to one tenth of their lifetime depending on air temperature effects on the reproductive
cycle (Hartley et al. 2012)) and will disperse following emergence. By contrast, immatures
are being sampled in a closed system in which they are present until death or emergence.

The immature population was evenly distributed between the four water butts in the initial
peak, after which adult females preferred to oviposit in butt 4 (Figure 3.4a-3.4d). I hy-
pothesise that after the initial peak had cleared, butt 4 became the favoured butt because it
was observed to maintain a higher organic content, which Cx. pipiens are known to favour
(Vinogradova 2000). Butt 4 was seen to host a high concentration of rat-tailed maggots
which are an indicator species for water with a high organic content (Campbell 1939), butt 3
was colonised by duckweed which is known to repel Cx. pipiens (Eid et al. 1992) and butts
1-3 all hosted may fly larvae which are indicator species of clean water (Campbell 1939).
It was also observed that the mean surface temperature of butt 4 was 2 ○C cooler than butts
1 and 2 and 1.2 ○C cooler than butt 3 across the summer. This temperature difference was
due to the fact that butt 4 experienced the smallest amount of direct sunlight, whilst butts 1
and 2 experienced the most. The possibility that occasional damagingly high temperatures
in butts 1-3 could also explain the difference in Cx. pipiens populations between the butts is
explored in detail in Chapter 4.

Adult catch sizes from my traps were significantly larger in July than in August (Table 3.3).
This implies that either the total size of the population is smaller in August than July or a
decreased proportion of the population is host-seeking in August, as adults are preparing for
diapause and the traps catch only host-seeking adults. Figure 3.13 shows that high larval
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mortality in the summer months (Figure 3.7) could not explain this drop, however diapause
initiation in August did. Sulaiman and Service (1983) and Onyeka and Boreham (1987), who
counted adults resting in overwinter shelters, observed the majority of mosquitoes arriving
at shelters during September, rather than August. I propose that this apparent mismatch in
timings is due to the fact that Cx. pipiens are known to cease blood-feeding and commence
nectar feeding to build up fat reserves in preparation for diapause (Mitchell and Briegel 1989;
Robich and Denlinger 2005). Mitchell and Briegel 1989 showed that mosquitoes which had
fed on sugar for 7 − 10 days prior to hibernation survived for 6 months with 50% mortality,
whereas those which had blood-fed before being placed in hibernation reached 50% mortality
within 20 days. As the traps only attract host-seeking females, no nectar-feeding individuals
will appear either in our data or in diapause shelters. This time spent nectar-feeding, com-
bined with the results shown in Figure 3.9 would support initiation of diapause in August,
with appearance in shelters occurring in September, as observed by Sulaiman and Service
(1983) and Onyeka and Boreham (1987).

Some studies have shown that rainfall appears to influence population size through habitat
availability (Wang et al. 2011; Mulatti et al. 2014). Others have shown a lack of rainfall
dependence, in cases where breeding habitat is provided by other means, such as irrigation
(Jian et al. 2014b). Wimberly et al. (2014) showed that the impacts of precipitation on
WNV cases exhibited substantial geographic variability, dependent on local hydrology. The
analysis of the adult field data suggested that rainfall did not affect the catch sizes of Cx.

pipiens and should be excluded from the final model. This finding is likely a product of the
field set-up, as there was a stable amount of larval habitat provided by the four water butts.
Further, one may also have expected that high wind speeds would have interfered with Cx.

pipiens flight causing a reduction in catch sizes (Meillon et al. 1967). I believe that this
was not observed due to the relatively small sample size and the low wind speeds observed
(maximum observed daily average wind speed was 10mph).

3.4.2 Geographical trends in Cx. pipiens dynamics observed
from current literature

National scale geographical patterns in phenology of a range of insect species, have been
explained by environmental drivers in recent studies (Gordo et al. 2010; Searle et al. 2013;
Ernst and Buddle 2015). Gordo et al. (2010) found that air temperature and altitudinal gra-
dients explained most of the spatial variability in the emergence times of bee populations in
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Spain. In analysing the relationship between available Cx. pipiens data from across its ge-
ographical range the objective was to determine whether geographical patterns in diapause
behaviour could be predicted using environmental variables. In doing so, I found some
evidence that quantifiable relationships may exist, particularly between photoperiod and di-
apause termination. However, this analysis must be interpreted with caution as it contains
only 9 data points, meaning it will be underpowered to detect relationships between environ-
mental variables and season start timings. Further, 9 data points is insufficient to represent
the full range of environmental variables across Cx. pipiens range.

It has been shown for a range of temperate mosquitoes that diapause termination and initi-
ation generally occur earlier in the year at higher latitudes, in response to shorter growing
seasons (Denlinger and Armbruster 2014; Lounibos et al. 2003). Cx. pipiens has a wide
range, spanning the entire holarctic (Vinogradova 2000), meaning populations across its dis-
tribution will be expected to diapause in response to different photoperiod and temperature
queues. This is reflected in the fact that populations in California have shown low rates of di-
apause during winter (Nelms et al. 2013), whilst those in more northerly regions diapause for
several months of the year (Madder et al. 1983a; Spielman 2001). Temperature has also been
shown to influence diapause incidence in laboratory (Sanburg and Larsen 1973; Madder et
al. 1983b) and field populations (Ciota et al. 2011), though photoperiod is believed to be the
primary driver (Denlinger and Armbruster 2014). If Cx. pipiens diapause behaviours could
be predicted from environmental drivers then this would allow for improved predictions of
seasonal abundance. By improving knowledge of geographical trends in Cx. pipiens dia-
pause timings, voltinism and its potential impacts on disease transmission across the species
range could be better understood.

I found some evidence that Cx. pipiens emergence may occur earlier in the year at higher
latitudes (Table 3.6). No evidence of air temperature or elevation effects were found in my
study. The lack of any relationship between air temperature and season start dates across the
Cx. pipiens range may stem from the fact that photoperiod is believed to be the dominant
driver of diapause behaviour, making temperature effects more difficult to detect (Sim and
Denlinger 2013; Denlinger and Armbruster 2014). Further, the prohibitively small sample
size means that the statistical analysis will be underpowered to detect relationships between
environmental variables and diapause termination. There was no evidence of a relationship
between any environmental variables and diapause induction or peak abundance in my study,
as the small sample size led to the assumptions of the multiple linear regression being vio-
lated. The range of elevations represented in the data, in particular, were very restricted,
varying from 0.1-332.8m, where only the maximum observation exceded 90m.
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In carrying out and interpreting these analyses it is important to emphasise that access to
data of sufficient temporal resolution is very limited. Mosquito surveillance programmes are
often restrained by available resources, meaning that trapping efforts are focussed at the cen-
tre of the biting and pathogen transmission seasons. This is reflected in European Centre for
Disease Control (ECDC) surveillance guidelines which suggest that to understand presence,
distribution, abundance or seasonal activity of native mosquito species, trapping should be
carried out twice per month (Schaffner et al. 2014). Of those studies found to report on sea-
sonal abundance of adult Cx. pipiens, the data was most frequently presented as cumulative
monthly totals (Table 3.5). Without access to the raw data, this does not allow for an accurate
estimate of season start or end date, as the time within the month at which Cx. pipiens was
first or last recorded is unknown. In my analyses, I chose to include bi-monthly data due to
the small sample size collected, however data at a weekly or daily time scale would be more
appropriate for an analysis of this type. Further, data is often presented cumulatively over a
large geographical area. In the absence of data for each individual trapping location it is not
possible to determine environmental effects on diapause timings.

Further, studies often do not report the start and end dates of their trapping procedures, or
do not start trapping until well into the mosquito season. The lack of information about
trapping start and end dates means that it is unclear whether the first or last recorded date of
Cx. pipiens capture was also the first or last night of trapping. This information is important
because the presence of Cx. pipiens on the first or last trapping occasion would suggest that
the mosquito season extends beyond the recorded dates. In absence of this information it
was necessary either to exclude the data or to assume that the first or last recorded capture
signals the start or end of the active season. This problem could be solved by authors pro-
viding more detailed information about the trapping schedule of the studies. Without access
to the original dataset, accurately estimating season end point can also be difficult because,
whilst there may be incidents of Cx. pipiens captures late in the year, the vast majority of the
population may have entered diapause shelters long before the last capture. Access to data
of a high temporal resolution would be required to make more informed estimates about the
rate at which the population enters diapause and around which point in time this entry into
diapause is centred.
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A centralised database pooling together collected datasets from a wide range of vector re-
searchers with a minimum required temporal resolution of observations and standardised re-
porting of key metrics such as first and last date of recorded adult females would allow ques-
tions regarding environmental drivers’ effects on species phenology across a large range to be
answered. Historically, pathogens and vectors have been sparsely recorded, with recording
generally restricted to only presence/absence data (Purse and Golding 2015). However, large
scale projects to bring together knowledge on vector seasonality from a wide spatial range
are now being proposed and implemented. Rund and Martinez (2017) propose a roadmap
for a US National Vector Surveillance System, which would bring together data from ∼ 1000

US mosquito control agencies and would report findings in a standardized way. This data
would allow researchers to answer key questions on a wide range of topics related to vectors
and vector-borne disease. Hoekman et al. (2016) describe a new project from the National
Ecological Observatory Network to monitor mosquito populations across a broad geograph-
ical range of 60 sites across 20 ecoclimatic regions in the USA for the next 30 years. These
initiatives would allow geographic patterns in mosquito phenology to be examined and un-
derstood, improving model parameterisation and giving valuable insights into disease trans-
mission risks. Similar initiatives are beginning to be put into place across Europe to inform
on differences between phenologies across the two continents (ECDC 2017), however such
programmes remain in their infancy.
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Chapter 4

Understanding how biotic and
abiotic factors interact with life cycle
behaviour to produce adult mosquito
phenology: insights from combining
models and empirical data

4.1 Introduction

In studying mosquito-borne disease models developed in 1970-2010, Reiner et al. (2013)
found that 82% of models either did not use empirical field or laboratory data, or combined
the model with such data to estimate only one or two model parameters (Nmodels = 388). Fur-
ther, less than 4.5% of all models explicitly modelled both aquatic and adult mosquito stages,
whilst allowing seasonal abundance to vary either sinusoidally or based on a pattern derived
from field data. In recent years, increases in the volume of field data available, increased
computational power, and advances in ecological and statistical modelling techniques have
led to a shift towards more reliance on data and less reliance on theoretical model frame-
works (Luo 2011). This trend has been reflected in vector-borne disease research, where
initial work focussed on the analysis of mathematical models of malaria transmission in the
early and mid-1900s (Smith et al. 2012). Recently a greater emphasis has been placed on
the importance of the direct use of empirical field data to develop and inform mechanistic
(Barker et al. 2013) and statistical models (Wimberly et al. 2014), particularly large com-
puter simulation models such as CIMSiM and Skeeter Buster (Focks et al. 1993a, 1993b,
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1995; Magori et al. 2009).

Species distribution models, which use data to assess climatic impacts on Cx. pipiens popu-
lations or WNV outbreaks have become increasingly popular in recent years (Mulatti et al.
2014; Rosà et al. 2014; Wimberly et al. 2014; Jian et al. 2014b; Montarsi et al. 2015). These
models have identified a number of key drivers linked to Cx. pipiens phenology and WNV
outbreaks, such as temperature and habitat availability. In particular, these models highlight
the spatial variability and interactions of climatic factors on abundance measures and the
probability of outbreaks (Wimberly et al. 2014). However, whilst instances are becoming
more common (Barker et al. 2013; Lončarić and Hackenberger 2013; Marini et al. 2016),
the expensive and time-consuming nature of collecting mosquito abundance data across nu-
merous locations means the majority of mechanistic models investigating Cx. pipiens or
WNV are not challenged with empirical field data (Wonham et al. 2004; Bowman et al.
2005; Cruz-Pacheco et al. 2005; Liu et al. 2006; Bergsman et al. 2015; Marini et al. 2017).
Some recent models have begun to address this knowledge gap. Marini et al. (2016) devel-
oped a temperature- and density-dependent ODE model to predict abundance of Cx. pipiens

populations, which the authors validated against adult female capture data from Northern
Italy. The results were promising, as more than 90% of the weekly trap records lie within the
2.5-97.5% quantiles of the model predictions. Pawelek et al. (2014) develop a model, val-
idated against capture data from South Carolina, to assess the efficacy of control strategies
applied to Cx. pipiens populations.

Accurate seasonal predictions of vector density are essential, if vector population models
are to be coupled with epidemiological models with confidence (Lord 2004). Calculations
of important disease transmission metrics, such as R0 values, rely on accurate estimation of
parameters such as vector-to-host ratios and adult longevity (Rogers and Randolph 2006).
By challenging mechanistic models of vector seasonality with data, key model shortcomings
can be identified for further development, or confidence in the model can be built before
using it to make policy decisions.

Figure 4.1 shows that the DDE model developed in Chapter 2 does not accurately capture all
features of the Cx. pipiens seasonal abundance data collected in Chapter 3. In Section 3.3.1,
it was shown that the model estimates of larval stage duration and survival captured field-
observed rates well (Figure 3.6). However, when comparing Chapter 2 model estimates of
abundance of all life stages with the Chapter 3 data, the active mosquito season is predicted
to both start and end later in the season than was observed in the data. Further, there are
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clear peaks observable in the abundance data that are not present in the model predictions,
which increase more steadily throughout the season (Figure 4.1). Given these discrepan-
cies between the model predictions and the data, I revisit some of the assumptions made in
Chapter 2 and incorporate additional complexities in the model, in order to better capture the
observed seasonal dynamics.

4.1.1 Diapause dynamics

The analysis of the data collected in Chapter 3 found that diapause initiation in the monitored
Cx. pipiens population occurred in August. This contrasts with the model parameterisation
in Chapter 2 (Equation 2.17), where diapause initiation was centred around a photoperiod
corresponding to the 10th of September at the field site. Figure 4.1 highlights this mismatch
in timings as Chapter 2 model predictions of abundance, of all life stages, exceed the abun-
dances observed in the data in September. In Chapter 2, the September photoperiod value
was chosen to reflect the fact that UK mosquitoes have been observed to enter diapause shel-
ters throughout the month of September (Sulaiman and Service 1983). The discrepancy in
timings with the field data stems from the fact that adult female Cx. pipiens emerging pro-
grammed for diapause, have been shown to feed on nectar in advance of entering diapause
shelters (Mitchell and Briegel 1989). Consequently, appearance in shelters is not a reliable
signal of diapause induction.

Further, in the field study, eggs were first observed on the 6th of April, however in Chapter 2
(Equation 2.17) diapause termination in spring was set to occur at a photoperiod correspond-
ing to the 17th of April (Figure 4.1). The spring photoperiod value was chosen as an average
to reflect the fact mosquitoes were observed to exit diapause shelters throughout the entirety
of April and into May (Sulaiman and Service 1983). However, the field data suggest that
those eggs which emerge very early in the season may be particularly influential due to the
abundance of predator- and competition-free habitat.

Changing the diapause initiation and termination times resulted in an increase to the length
of the diapause period, requiring that the overwinter mortality rate be reduced to give similar
adult mosquito survival. Further, overwinter survival of temperate mosquitoes may affect
both pathogen persistence and seasonal patterns of the abundance the following year. Es-
timates of Cx. pipiens overwinter survival from the literature show substantial variability
between sites and years: 2− 60% (Sulaiman and Service 1983), 35% (Onyeka and Boreham
1987), 3−60% (Bailey et al. 1982). This variability may stem from a range of factors such as
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Figure 4.1: Chapter 2 model fit to data: The model predictions (red) and observed (green) abun-
dance of each life stage are shown. All model parameters are defined in Table 2.1. Hourly water
temperature values for butt 4 were used alongside minimum and maximum daily air temperature
values when running the model. In the adult plot the dashed line shows all adults and the solid line
excludes those in diapause by multiplying the adult abundance by the proportion of active adults ζ(t),
at time t. This simulation (and other simulations in this Chapter) was run in the absence of the 18
month “burn-in" period described in Section 2.2.1, to allow for comparison across model runs with
the same starting population size in the year displayed.
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the level of predation experienced, possible fungal infection in the population (Service 1969)
and the temperatures and humidity in diapause shelters (Rinehart et al. 2006).

The seasonal abundance data shown in Figure 4.1 also displays a clear drop in adult activity
immediately after depositing the first egg raft of the season. Surviving winter demands 80%

of a female’s fat reserves on average (Onyeka and Boreham 1987). This loss of fat reserves
has been shown to impact on reproductive fitness, with egg raft sizes laid by females in
summer being 61% larger than those laid immediately following diapause (Madder et al.
1983b). I hypothesise that this drop in adult activity corresponds to high mortality of adults
immediately after overwintering and laying an egg raft. When carrying out the fieldwork,
support was given to this theory, as a large number of dead Cx. pipiens adults were seen
floating on the surface of the oviposition sites only in the early part of the mosquito active
season. As discussed in Section 3.4.1, the dip in activity could not be explained by adults
undergoing a gonotrophic cycle, as the delay between periods of activity was too long. This
process of post-oviposition mortality was not modelled in Chapter 2 and will be included in
the new model presented in this chapter.

4.1.2 Synchronicity of predator and mosquito populations

Cx. pipiens is opportunistic in its egg-laying behaviour, regularly ovipositing in a variety
of breeding sites such as small (Vezzani and Albicocco 2009) and large container habitats
(Yee et al. 2004) and natural water bodies, including temporary pools and permanent ponds
(Vinogradova 2000). The wide range of different habitats utilised for immature development
means that Cx. pipiens are thought to be most at risk from a range of generalist predators
(Juliano 2007). In Southern England a very wide range of species have been shown to act
as mosquito larval predators (Medlock and Snow 2008), including dragonfly and damselfly
nymphs, predatory beetle larvae (Onyeka 1983), ditch shrimp and numerous fish species
(Golding et al. 2015). In the fieldwork detailed in Chapter 3 both beetle larvae and mayfly
larvae, which are known predators of mosquito larvae (Medlock and Snow 2008), were ob-
served in the water butts. It has been shown for a wide range of mosquito larval predators
that a Holling type II function accurately describes consumptive behaviour (Onyeka 1983;
Marti et al. 2006; Fischer et al. 2013). However, different predators will consume different
volumes and may be active over different parts of the year (Onyeka 1983).

In Chapter 2, I assumed that the predator population size was a fixed proportion of the larval
population size at all points of the year. However, the wide range of generalist predators
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of Cx. pipiens larvae means that mismatch in timings between predators and mosquitoes
may occur if mosquito larvae are relatively unimportant prey resources of certain predator
species at certain locations. Further, it is possible that climate impacts may have differential
effects on the prey and predator populations, which may cause misaligned timings of the
populations’ active seasons. Classical predator-prey systems have shown that, in the case of
specialist predators, predator numbers peak slightly after the peak in prey numbers (Billard
1977), rather than at the same time as in Chapter 2. Consequently, in this Chapter I relax
the assumptions of the Chapter 2 model by allowing the ratio of predators to prey to change
through the year.

4.1.3 Impact of temperature data resolution on model predic-
tions

A wide range of insect species’ life cycles are composed of multiple stages that occur in
different environments (Resh and Cardé 2009). For example, the immature life stages of
mosquitoes, damselflies, dragonflies and hoverflies all live in aqueous environments, whilst
the adult life stage is airborne. The pre-adult stages of midges live in semi-aquatic sub-
strates, such as moist soil and cow pats (Walker 2001). This shift in environment during
the species’ life cycle means that development is dependent on different environmental vari-
ables at different times. Pre-adult development of midges is dependent on moisture levels
and soil temperature (Searle et al. 2014), whilst pre-adult development of insects with aque-
ous immature stages is dependent on water temperature. Despite this, many models of insect
seasonality approximate temperatures of aquatic and semi-aquatic life stages by air temper-
ature (Shaman et al. 2006; Wang et al. 2011; Cailly et al. 2012; Beck-Johnson et al. 2013;
Tran et al. 2013; Lončarić and Hackenberger 2013; Searle et al. 2014; Marini et al. 2016).

It has recently been shown in a tropical mosquito habitat that using air temperatures as a
proxy for water temperatures can result in substantial over- or under-estimation of mosquito
abundance (Paaijmans et al. 2010). Observed air and water temperatures in the field experi-
ment, detailed in Chapter 3, regularly differed by more than 3 ○C, as shown by the relation-
ship in Figure 4.2. Therefore, it is expected that the impacts of the temperature difference
on mosquito development and survival, and consequently abundance, may be large. Specif-
ically, development rates will be underestimated (Equation 2.12), however the effect on sur-
vival will depend on the temperatures experienced (Equation 2.13) (Loetti et al. 2011). The
profound effects of using air temperature as a proxy for water temperature when estimating
immature stage durations are shown in Figure 4.3, where the total estimated duration of all
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Figure 4.2: Air-water temperature relationship: The relationship between water temperatures
measured across the four water butts monitored in Chapter 3 and air temperatures recorded at the
CEH weather station is shown.

immature stages differs by up to two weeks, dependent on the temperature used in the model.

The use of air temperature when modelling aqueous life stages stems from the fact that water
temperatures are less readily available than air temperatures and there is not a straightforward
relationship between the two across the range of mosquito habitats. Exposure to direct sun-
light will increase water temperatures in small water bodies, larger water bodies will heat
and cool more slowly than smaller ones and both artificial and natural containers will have a
range of different thermodynamic properties (Preud’homme and Stefan 1992). This is made
clear by the range of temperatures shown in Figures 4.2 and 4.4, where the recorded wa-
ter temperatures showed substantial variability across four water butts, which were of equal
size and differed only in terms of sun and wind exposure (mean temperatures were: butt 1
= 17.2 ○C, butt 2 = 17.2 ○C, butt 3 = 16.4 ○C, butt 4 = 15.2 ○C for April to September). These
water temperatures also differ substantially from the air temperatures taken in the adjacent
field (mean air temperature was 13.6 ○C for April to September). Water temperatures were
not available for the Chapter 2 simulations, however the data collection in Chapter 3 means
that they can be included in this Chapter.

Outwith the issue of using water temperature versus air temperature, many studies into
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mosquito population dynamics have considered constant temperatures, or mean daily tem-
peratures, however it has recently been shown that diurnal temperature range can have a large
impact on mosquito life history traits and on the ability of mosquitoes to transmit disease
(Paaijmans et al. 2010). Specifically, Lambrechts et al. 2011 showed in a laboratory study
that, Aedes aegypti died more quickly and were less susceptible to virus infection when ex-
posed to larger diurnal temperature range, around the same mean temperature. Similarly, a
laboratory experiment by Carrington et al. 2013 found that, with a mean daily temperature of
26 ○C, a large diurnal temperature range (18 ○C) extended immature development, lowered
larval survival and reduced reproductive output of Ae. aegypti, a tropical mosquito species.
Brady et al. (2013) included diurnal temperature range when modelling adult survival of Ae.

aegypti and Ae. albopictus in both laboratory and field settings, however diurnal temperature
range remains widely neglected in models of temperate mosquito dynamics.

During the fieldwork, the immature mosquito population was observed to be congregated
almost exclusively in one of the four water butts (butt 4) in the summer and autumn months.
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This butt was observed to be the coolest of the four, whilst temperatures in the other three
butts reached highs of approximately 36 ○C, which is a damagingly high temperature for Cx.

pipiens larvae (Loetti et al. 2011). Further, due to decreased sun exposure, butt 4 showed
a smaller diurnal temperature range (Figure 4.4 (b)) than was observed in butts 1-3. These
differences in temporal resolution of temperature inputs will affect calculation of vital rates,
like development, as shown in Figure 4.3. Hence, I aimed to understand if these higher
water temperatures were likely to induce a high mortality rate in butt 1, explaining the much
smaller mosquito population found throughout the summer.

4.2 Aims

In response to the Chapter 2 model failing to capture the diapause timings and patterns of
abundance observed in the field data (Figure 4.1), I update the model to reflect the observa-
tions discussed in Section 4.1.1. I then run simulations to understand the effects of seasonally
varying predation (Section 4.1.2) and the effects of using different temporal resolutions of
temperature input data (Section 4.1.3). The aims of these updates and consequent simula-
tions are as follows:

1. Diapause timing: The timings of entry to and exit from diapause were not well cap-
tured by the Chapter 2 model. I update the model parameters governing diapause
initiation and termination in light of the new data collected in Chapter 3 and discuss
the implications of these changes on the model fit to data.

2. Adult overwinter survival: The updates to diapause timings, and the consequent
increase to the duration of the overwinter period, required that the adult overwinter
mortality rate be reduced. I update and investigate the effects of varying the minimum
adult death rate, which acts over winter, on the ability to capture patterns of seasonal
abundance.

3. Post-diapause mortality: I hypothesise that old, post-diapause females experience
an increased mortality due to the negative costs which diapause can exert on fitness.
I introduce a seasonal adult death rate term which acts immediately after emergent
females complete egg-laying in the spring and examine the impact of this term on the
ability of the model to accurately predict field data.

4. Seasonal variation in predation: Changes in synchronicity between the mosquito
and predator populations are likely to impact seasonal abundance patterns. I explore
the effects of variable predator numbers by subjecting the predator population to si-
nusoidal seasonal forcing. I compare this scenario with a constant predation scenario,
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Figure 4.4: Temperature data: (a) shows mean daily temperatures for each of the four water butts,
air temperature, and photoperiod. In (b) the lines show the difference between the DTR of the water
temperature for each butt and the DTR of the air temperature. The DTR of the air temperature is
shown by the shaded area.
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where predator numbers remain directly proportional to larval numbers without sea-
sonal forcing, as in Chapter 2.

5. The effects of the temporal resolution of temperature input data on model predictions
are studied.

5.1. Water temperature temporal resolution: Diurnal temperature range has been
shown to affect mosquito vital rates (Lambrechts et al. 2011; Carrington et al.
2013). The impacts of including fine resolution daily temperature variables are
examined, using hourly temperature measurements taken for two of the four wa-
ter butts (butts 1 and 4). These results are compared with those observed when
using mean temperatures, and minimum and maximum daily temperatures, to
understand the effects on abundance predictions of including diurnal water tem-
perature range.

5.2. Water butt temperature comparisons: Damagingly high temperatures for im-
mature mosquito development were observed to occur in butts 1-3. I investigate
whether these higher temperatures, and often larger diurnal temperature ranges,
would lead to increased mortality, explaining the substantially smaller number of
mosquitoes seen in these butts (beyond the initial spring population peak) com-
pared to butt 4.

5.3. Air temperature temporal resolution: As with water temperatures above, I
investigate the effects of both including and excluding diurnal temperature range
in air temperature and compare the effects on abundance predictions.

5.4. Air temperature as a proxy for water temperature: Models of mosquito sea-
sonality often use air temperature as a proxy for water temperatures (Cailly et al.
2012; Tran et al. 2013; Lončarić and Hackenberger 2013). The implications for
seasonal abundance of approximating water temperatures with air temperatures
are explored.

4.3 Methods

I will now recap the DDE model described in detail in Chapter 2, followed by those func-
tional forms which are unchanged. Afterwards I will discuss in detail those functional forms
which have been changed, or for which the parameterisation has been updated in light of the
field data. With the availability of water temperature collected in the field study, I now use
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T (t) to refer to water temperature for immature aquatic processes and air temperature for
adult processes.

4.3.1 Modelling framework

Here I present a brief recap of the mosquito model framework, discussed in detail in Chapter
2. The four state equations which correspond to eggs, E(t), larvae, L(t), pupae, P (t) and
adults A(t) at time t, are

dE

dt
= RE(t) −ME(t) − δE(T (t))E(t),

dL

dt
= RL(t) −ML(t) − (δL(T (t)) + δπ(L(t)))L(t),

dP

dt
= RP (t) −MP (t) − δP (T (t))P (t),

dA

dt
= RA(t) − δA(T (t))A(t),

(4.1)

where δi(T (t)) (i = E,L,P,A) represents the stage-specific, density-independent, temperature-
driven, mortality rate, δπ(L(t)) represents the larval mortality rate due to external predation
and Ri(t) and Mi(t) represent the rate of recruitment into and maturation out of stage i,
respectively. The maturation equations are defined by

RE(t) = b(t)A(t),

ME(t) = RL(t) = RE(t − τE(t))SE(t)
gE(T (t))

gE(T (t − τE(t)))
,

ML(t) = RP (t) = RL(t − τL(t))SL(t)
gL(T (t))

gL(T (t − τL(t)))
,

MP (t) = RA(t) = RP (t − τP (t))SP (t)
gP (T (t))

gP (T (t − τP (t)))
,

(4.2)

with b(t) as the egg-laying rate at time t, τi(t) and Si(t) as the stage duration and survival
of individuals in stage i (i = E,L,P ) at time t respectively and gi(T (t)) as the development
rate of individuals in stage i at temperature T (t). The proportion of individuals which sur-
vive from recruitment into one class, to maturation to the next, is defined by the following
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sequence of DDEs,

dSE
dt

=SE(t)(
gE(T (t))δE(T (t − τE(t)))

gE(T (t − τE(t)))
− δE(T (t))) ,

dSL
dt

=SL(t)[(δπ(t − τL(t)) + δL(T (t − τL(t))))(
gL(T (t))

gL(T (t − τL(t)))
)

− δπ(L(t)) − δL(T (t))],

dSP
dt

=SP (t)(
gP (T (t))δP (T (t − τP (t)))

gP (T (t − τP (t)))
− δP (T (t))) .

(4.3)

The rate of change of the duration of the three immature life stages and the gonotrophic cycle
are given by

dτi(t)

dt
= 1 −

gi(T (t))

gi(T (t − τi(t)))
, (4.4)

where i = E,L,P,G. Here the development rate, gi(T (t)), is dependent on temperature.

4.3.2 Inoculation and history

The inoculation and history processes remain unchanged from those used in Section 2.2.1.
For historical values, t < 0, it was assumed that temperatures were constant and equal to the
first temperature observation corresponding t = 0. The adult population was inoculated on
the 1st of January 2015 with 5000 individuals. Simulations were carried out over 12 months,
with no “burn-in" period, as was used in Chapter 2, to understand the effects of model or
temperature inputs on the first season, rather than the combined effects over multiple seasons.
This allowed the effects of changes within a season to be studied using a common population
size at the start of that season.

4.3.3 Recap of unchanged functional forms and parameterisa-
tions

I briefly recap those functional forms that are unchanged from Chapter 2.
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Development rates

Growth rates for the immature stages were modelled using a power function,

gi(T (t)) =

⎧⎪⎪
⎨
⎪⎪⎩

αiT (t)ηi , T (t) > ( bm
αi

)
1
ηi ,

bm, otherwise .
(4.5)

Here i = E,L,P correspond to the egg, larval and pupal stages respectively, with αi and ηi
as parameters fitted to data.

Immature death rate

Death rates for the immature stages were modelled using a modified Gaussian functional
form

δi(T (t)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ν0i exp((
T (t)−ν1i
ν2i

)
2
) , ν1i +

ν2i
2 ln (

bdi
ν0i

) < T (t) < ν1i −
ν2i
2 ln (

bdi
ν0i

) ,

bdi, otherwise,
(4.6)

for i = E,L,P , which leads to expected survival times following a bell-shaped curve centred
at ν1i and bounded to be greater than or equal to 1

bdi
.

Egg-laying rate and gonotrophic cycle

The functional form of the gonotrophic cycle development is given by

gG(T (t)) = q1/(1 + q2 exp(−q3T (t))), (4.7)

where gG(t) is the rate of progression of the gonotrophic cycle at time t, with q1, q2 and q3
as fitted constants. The egg-laying rate, b(t), was then calculated according to

b(t) =
ζ(t)R

2τG(t)
, (4.8)
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where R = 200 is the average egg raft size from the literature (Jobling 1938; Vinogradova
2000) and ζ(t) is the proportion of adults which are non-diapausing.

4.3.4 New and updated functional forms and parameterisations

Now I discuss cases where model assumptions have been updated in light of new data col-
lected in Chapter 3. Changes to parameters are discussed in the order they were applied
to the model. The full list of parameter values used in this Chapter, with new or updated
parameter values highlighted in red, is presented in Table 4.1.

Diapause initiation and termination

Figure 4.1 shows that the model presented in Chapter 2 does not capture the start and end
dates of the active mosquito season well. The proportion of active adults at any point in time,
ζ(t), is dependent on photoperiod, ψ(t), such that

ζ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1
1+exp(ωS(ξS−ψ(t))) ∶ ψ(t) increasing,

1
1+exp(ωA(ξA−ψ(t))) ∶ ψ(t) decreasing,

(4.9)

where ξS is the spring photoperiod threshold for which greater than 50% of the population
becomes active and ξA is the opposite threshold for when 50% of the population enters dia-
pause. The constant parameters ωS and ωA define the rate with which the transition between
diapausing and active states occurs. The quasi-poisson GLM fitted to the adult capture data
in Section 3.3.1 showed that diapause occurred in August, while the Chapter 2 estimate as-
sumed diapause initiation in September. Consequently, the photoperiod threshold, ξA, was
updated to 15 hours, which occurs exactly one month earlier in the season than the previous
estimate from Chapter 2. The rate at which mosquitoes enter diapause, ωA, was also de-
creased to give a more gradual transition between active and diapausing adults (Table 4.1),
reflecting the observation that diapause initiation appears to be less synchronous than termi-
nation (Figure 4.1). In the field study, eggs were observed to appear on the 6th of April, so
the 50% photoperiod threshold was moved to early April (ξS = 13.7) rather than late April.

During- and post-diapause adult death rate

Motivated by the field observations, I hypothesise that old, post-diapause females experience
an increased mortality due to the negative costs which diapause can exert on fitness (Section



Chapter 4. Phenological impacts of life cycle behaviour, biotic and abiotic factors 140
Pa

ra
m

et
er

D
efi

ni
tio

n
V

al
ue

E
qn

R
ef

er
en

ce
α
E

Fi
tp

ar
am

et
er

in
eg

g
m

at
ur

at
io

n
2.

20
×

10
−3

4.
5

Fi
gu

re
2.

1
(a

)
β
E

Fi
tp

ar
am

et
er

in
eg

g
m

at
ur

at
io

n
1.

77
4.

5
Fi

gu
re

2.
1

(a
)

α
L

Fi
tp

ar
am

et
er

in
la

rv
al

m
at

ur
at

io
n

3.
15
×

10
−3

4.
5

Fi
gu

re
2.

1
(b

)
β
L

Fi
tp

ar
am

et
er

in
la

rv
al

m
at

ur
at

io
n

1.
12

4.
5

Fi
gu

re
2.

1
(b

)
α
P

Fi
tp

ar
am

et
er

in
pu

pa
lm

at
ur

at
io

n
7.

11
×

10
−4

4.
5

Fi
gu

re
2.

1
(c

)
β
P

Fi
tp

ar
am

et
er

in
pu

pa
lm

at
ur

at
io

n
1.

89
4.

5
Fi

gu
re

2.
1

(c
)

µ
0
E
,µ

0
L

,µ
0
P

B
as

el
in

e
im

m
at

ur
e

de
at

h
ra

te
0.

01
57

4.
6

Fi
gu

re
2.

2
(a

)
µ
1
E
,µ

1
E

,µ
1
P

O
pt

im
um

te
m

pe
ra

tu
re

fo
ri

m
m

at
ur

e
su

rv
iv

al
20
.5

4.
6

Fi
gu

re
2.

2
(a

)

µ
2
E
,µ

2
E

,µ
2
P

W
id

th
pa

ra
m

et
er

fo
ri

m
m

at
ur

e
de

at
h

ra
te

7
4.

6
E

st
im

at
ed

fr
om

la
bo

ra
to

ry
da

ta
α
A

Fi
tp

ar
am

et
er

in
ad

ul
td

ea
th

2.
17
×

10
−8

2.
14

C
io

ta
et

al
.(

20
14

)
β
A

Fi
tp

ar
am

et
er

in
ad

ul
td

ea
th

4.
48

2.
14

C
io

ta
et

al
.(

20
14

)
b m

B
as

el
in

e
m

at
ur

at
io

n
ra

te
1 6
0

4.
5

A
lm

ir
ón

an
d

B
re

w
er

(1
99

6)
an

d
L

oe
tti

et
al

.(
20

11
)

b d
i

T
hr

es
ho

ld
im

m
at

ur
e

de
at

h
ra

te
1

4.
6

Ti
m

e-
sc

al
e

of
m

od
el

b d
a

B
as

el
in

e
ad

ul
td

ea
th

ra
te

0.
00

3
2.

14
Su

la
im

an
an

d
Se

rv
ic

e
(1

98
3)

,O
ny

ek
a

an
d

B
or

eh
am

(1
98

7)
,

an
d

B
ai

le
y

et
al

.(
19

82
)

a
A

tta
ck

ra
te

of
pr

ed
at

or
s

1
4.

11
Fr

om
si

m
ul

at
io

n
h

H
an

dl
in

g
tim

e
of

pr
ed

at
or

s
0.

00
2

4.
11

Fr
om

si
m

ul
at

io
n

r
M

ax
no

.o
fp

re
da

to
rs

pe
rl

ar
va

0.
00

1
4.

12
Fr

om
si

m
ul

at
io

n
V

Vo
lu

m
e

of
la

rv
al

ha
bi

ta
t

20
l

4.
11

B
y

ca
lc

ul
at

io
n

R
E

gg
ra

ft
si

ze
20

0
2.

19
V

in
og

ra
do

va
(2

00
0)

q 1
G

on
ot

ro
ph

ic
cy

cl
e

fit
pa

ra
m

et
er

0.
20

2
4.

7
Fi

gu
re

2.
3

(b
)

q 2
G

on
ot

ro
ph

ic
cy

cl
e

fit
pa

ra
m

et
er

74
.5

4.
7

Fi
gu

re
2.

3
(b

)
q 3

G
on

ot
ro

ph
ic

cy
cl

e
fit

pa
ra

m
et

er
0.

24
6

4.
7

Fi
gu

re
2.

3
(b

)
ξ S

Sp
ri

ng
di

ap
au

se
th

re
sh

ol
d

13
.7

4.
9

Fr
om

fie
ld

w
or

k
ξ A

A
ut

um
n

di
ap

au
se

th
re

sh
ol

d
15

4.
9

Fr
om

fie
ld

w
or

k
ω
S

Sp
ri

ng
di

ap
au

se
tr

an
si

tio
n

5
4.

9
Fr

om
fie

ld
w

or
k

ω
A

A
ut

um
n

di
ap

au
se

tr
an

si
tio

n
3.

5
4.

9
Fr

om
fie

ld
w

or
k

Γ
Po

st
-d

ia
pa

us
e

m
or

ta
lit

y
m

ul
t.

8
2.

14
Fr

om
si

m
ul

at
io

n
σ
2

Po
st

-d
ia

pa
us

e
m

or
ta

lit
y

du
ra

tio
n

4
2.

14
Fr

om
si

m
ul

at
io

n
D

80
%

di
ap

au
se

ex
it

th
re

sh
ol

d
da

y
of

ye
ar

10
9

2.
14

Fr
om

fie
ld

w
or

k
υ

Pr
ed

at
io

n
tim

in
g

pa
ra

m
et

er
31

4.
12

Fr
om

si
m

ul
at

io
n

χ
Pr

ed
at

io
n

sh
ar

pn
es

s
pa

ra
m

et
er

2
4.

12
Fr

om
si

m
ul

at
io

n
ϕ

L
at

itu
de

51
.6

L
at

itu
de

of
W

al
lin

gf
or

d
fie

ld
si

te

Ta
bl

e
4.

1:
Pa

ra
m

et
er

va
lu

es
us

ed
fo

rr
un

ni
ng

th
e

m
od

el
w

ith
ch

an
ge

s
fr

om
th

e
pr

ev
io

us
ch

ap
te

rs
in

re
d.



Chapter 4. Phenological impacts of life cycle behaviour, biotic and abiotic factors 141

4.2 point 3) (Hahn and Denlinger 2007). The functional form for the adult death rate, δA(t),
has been modified to incorporate an additional post-diapause death term, which is supported
by the decreased adult abundances observed in May, following the initial peak in abundances
upon diapause emergence (Figure 4.1). This term was added to the existing Gaussian func-
tion from Chapter 2 (Equation 2.13). It can be seen from Figure 4.5, which compares the
adult death rate with and without the additional mortality, that the additional term only has
an affect in the post-diapause phase of the year. The updated adult death rate function is
given by

δA(t, T (t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

old
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

αAT (t)ηA +

new process

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(
Γ

√
2πσ2

exp(−
(t − τG(t) −D)2

2σ2
)), T (t) > (

bda
αA

)
1
ηA

bda
´¸¶

updated parameter

, otherwise .

(4.10)

Here αA and ηA are constants fitted to data from the literature regarding the temperature
dependence of adult longevity, as in Section 2.2.2. Γ is a scaling parameter defining the
strength of the post-diapause mortality effect, σ2 controls the length of time over which
this post-diapause mortality acts and D is the day of the year on which an arbitrary threshold
value (80%) of adults have exited diapause. The death rate was constrained not to drop below
a base death rate of bda, which determines the mortality of diapausing females. The shift in
the diapause thresholds, previously discussed, increased the length of the overwinter period,
meaning that a reduced bda was required to give a similar overwinter survival percentage to
that used in Chapter 2 (bda = 0.01 to bda = 0.003) (Bailey et al. 1982; Onyeka and Boreham
1987). The value for Γ was chosen such that the post-diapause death rate was sufficient to
wipe out the adult population. In Section 4.4.2 it is shown that the value chosen is sufficient
to kill off the population, with further increases to Γ having negligible effect on abundance
patterns. The mortality duration parameter, σ2, was chosen to maximise the correlation
between the adult field data and the model-predicted adult abundance by increasing σ2 in
increments of 0.1 and choosing the strongest correlation. The diapause exit parameter, D,
was chosen to coincide with the end of the first adult abundance peak in the field data, when
it was assumed that the majority of the population had left diapause.
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Figure 4.5: Adult death rates: the red line shows the adult death rates predicted under the Chapter
2 model, in the absence of the post-diapause mortality term (only temperature dependence). The
black line shows the adult death rates predicted under the updated model, including the post-diapause
mortality term.
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Seasonally varying predation

The strength of seasonal predation is affected by the ratio of predators to prey, the attack rate
of predators and the predators’ handling time. The three parameters have high uncertainty, as
attack rates and handling times will vary greatly between predator species (Quiroz-martinez
and Rodriguez-Castro 2007) and the ratio of predators to prey will vary seasonally, by lo-
cation, and by species (Medlock and Snow 2008). Similar to mosquito development and
survival, predator attack rates and handling times may also be affected by temperature. I
investigate the effects on seasonal abundance of altering the maximum number of predators
per larva, r. As in Section 2.2.2, the larval death rate due to predation is given by the Holling
type II function (Marti et al. 2006; Fischer et al. 2013)

δπ(L(t)) =
aP(t)

V + ahL(t)
. (4.11)

where a is the attack rate, h is the handling time, V is the volume of habitat and P(t) is
the predator density at time t. In Section 2.2.2 it was assumed that P(t) = rL(t), such that
the predator density was equal to a constant proportion of the larval density. Now I make
the extension that the proportion of predators to larvae, r, varies seasonally. This allows the
effects of varying the synchronicity of predator and mosquito populations to be investigated.
Consequently, r is replaced by r(t) and predator density is related to larval density, according
to

P(t) =R(t)L(t) = rmax (
1

2
+

1

2
sin

2π(t − υ)

365
)

χ

L(t), (4.12)

where r(t) is the number of predators per larva at time t, rmax is the maximum number
of predators per larva, υ defines the time at which the predation peak occurs and χ defines
the time period over which predation is high, as displayed in Figure 4.6. I assume a fixed
volume of larval habitat for simplicity. As larvae are believed to experience predation by
generalist predators, I run simulations to investigate the effect of moving the predation peak
either earlier or later in the year.
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Figure 4.6: Predator seasonal forcing: The seasonal forcing function,R(t), is shown, highlighting
how changes to υ and χ affect the ratio of predators to larvae throughout the season.

4.3.5 Air and water temperature temporal resolutions

One of my objectives was to understand whether including diurnal temperature variability
substantially influenced model results. Further, I investigated whether including diurnal tem-
perature variability would be accurately capture seasonal abundance patterns or if increasing
temporal resolution by including the hourly measurements substantially improved accuracy.
To understand the effects of temporal resolution of water temperature data on seasonal abun-
dance, I considered three scenarios where I used mean daily, minimum and maximum daily,
and hourly temperature values. Figure 4.7 shows the temperature profiles created under these
three different temporal resolution scenarios for the first 20 days of April at the field site in
2015, highlighting that using mean daily temperatures results in large differences between
actual and estimated temperatures throughout the day. In considering air temperature, only
mean daily and minimum and maximum daily resolutions were considered, as hourly tem-
perature measurements were not available:

• Mean daily values - Diurnal temperature variability was ignored by interpolating be-
tween mean daily temperature values, obtained by taking the mean of the hourly mea-
surements recorded for each day. These mean daily values were assumed to be spaced
exactly 24 hours apart and to occur at noon in all cases.



Chapter 4. Phenological impacts of life cycle behaviour, biotic and abiotic factors 145

 

0

5

10

15

20

25

30

01/04/2015 00:00 11/04/2015 00:00

Te
m

p
er

at
u

re
 (

C
el

si
u

s)

Date and Time

Comparison of Temperature Treatments

Hourly Minimum/Maximum Mean

Figure 4.7: Comparison of temperature treatments: The three different water temperature treat-
ments are plotted for the first twenty days of April - hourly values (blue), minimum/maximum values
(orange) and mean daily values (green).

• Minimum and maximum values - Diurnal temperature variability was included by
linearly interpolating between minimum and maximum daily temperature values, which
were assumed to occur at midnight and noon.

• Hourly temperature values - Hourly temperature measurements were used, with lin-
ear interpolation between each measurement.

The effects of including or excluding diurnal temperature variability were investigated by
comparing the observed abundance trends from the model with the trends from the field data.
I present results using temperatures from both butt 1 and butt 4 separately because butt 1 was
in direct sunlight and therefore reached temperatures potentially damaging for Cx. pipiens,
unlike butt 4 which was cooler. Simulations accounting for the range of temperatures across
the four water butts by splitting the immature equations to account for the four temperature
profiles were not run because mosquitoes were observed to congregate in butt 4 beyond the
spring abundance peak (Figure 3.4a-3.4d).
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4.3.6 Comparing model predictions with data

A full description of the data collection procedure and fieldwork findings is given in Chapter
3. References to the updated model in future sections refer to the model described in this
Section (Section 4.3). Simulations using this updated model were run using a set of base-
line parameter values, listed in Table 4.1, unless explicitly stated otherwise. In the updated
model, all vital rates related to processes ongoing in the immature aquatic stages (eggs, lar-
vae and pupae) were estimated using hourly water temperature values from butt 4, unless
otherwise stated. I used temperature recordings from butt 4 and compared updated model
output for the pre-adult life stages to this butt, since other water butts did not contain suf-
ficient numbers of individuals to inform seasonal patterns of abundance. Adult processes,
such as development of the gonotrophic cycle, were governed by air temperature, for which
I used recordings of the minimum and maximum daily temperature, unless otherwise stated.

Comparing model output to the collected data required estimation of both the usable volume
of larval habitat in a water butt and the detection probability for larvae, pupae and adults, to
allow scaling of the model output to the field data. The dipping set up is shown in Figure
4.8. It was estimated that 20% of the population in each water butt was sampled on each
sampling occasion, given the following observations and assumptions:

1. Mosquito larvae were seen to use the outer 11cm of the 1.3m diameter water butts.
This gave a usable surface area of 0.411m2 per water butt.

2. Larvae were assumed to use the top 5cm of the water, giving a useful volume of 20

litres per butt.

3. The dipper was 11cm in diameter, meaning 4 dips gave a coverage of 17.67%, which
was rounded up to 20% to account for the suction effect created by the dipper.

It was estimated that 0.5% of the adult population was caught by the light trap each night,
based on the following assumptions:

1. A 1:1 sex ratio within the population (Vinogradova 2000), meaning that 50% of the
total population could be included in the data because only females were recorded.

2. The gonotrophic cycle length was assumed to be 10 days, which corresponds to a
temperature of 17.4 ○C (Hartley et al. 2012), which was a commonly observed air
temperature at the field site (Figure 4.4). This left only 10% of females host-seeking
on a given night.
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Unused area

Figure 4.8: Dipping Coverage: A diagram showing the estimated coverage of the mosquito habitat
in the water butt by the dipping procedure discussed in Section 4.3.6). The black circles show example
dipping sites.

3. Traps were assumed to catch 10% of all active mosquitoes on a given night (Silva et al.
2005).

4.4 Results

In this section I present a comparison of the updated model, using the baseline parameter
values in Table 4.1, and the Chapter 2 model, using the parameter values in Table 2.1, along-
side the fieldwork data collected (Figure 4.9). After making a general comparison of these
models I discuss the effects of varying the new parameters of the updated model.

4.4.1 Comparison of updated and previous models

A very distinctive feature of the empirical field data is that there is a clear double-peak in
both egg and larval numbers, with the first peak in late-April and the second in June. The
updated model captures the presence of the double peak in egg numbers, whilst the Chapter
2 model shows a steady increase in numbers throughout the season (Figure 4.9). The ability
of the updated model to capture this double peak stems from the inclusion of the extra post-
diapause mortality rate, which will be discussed fully in Section 4.4.2. However, whilst the
updated model predicts the start of the initial peak well, the end of the first peak is predicted
to occur later in the model than in the data. The temporal correlation between the updated
model and the egg data across the season (Pearson’s rp = 0.31) is higher than that observed
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Figure 4.9: Model fit to data: The updated model predictions (black), Chapter 2 model predictions
(red) and observed (green) abundance of each life stage are shown. All model parameters for the
updated model (black) are defined in Table 4.1 and parameters for the Chapter 2 model are defined in
2.1. Hourly water temperature values for butt 4 were used alongside minimum and maximum daily
air temperature values in both models. In the adult plot the dashed line shows all adults and the solid
line excludes those in diapause.
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under the Chapter 2 model (rp = −0.04).

The updated model also predicts a longer summer peak than was observed in the data, with
high egg and larval abundance continuing on throughout July, until mid-to-late August (Fig-
ure 4.9). However, the temporal correlation between the updated model and the larval data
(rp = 0.33) is still better than that observed using the Chapter 2 model (rp = 0.07). The
prolonged summer peak suggests that the egg-laying rate was lower than predicted by the
model through this time period.

In the pupal data there are three clear peaks occurring in early May, late June and early
September (Figure 4.9). As discussed in Section 3.3.1, this third peak in pupae is believed to
stem from a release in density-dependence, causing improved survival at the end of the sea-
son. These three pupal peaks are replicated in the updated model predictions (rp = 0.14) but
not in the Chapter 2 model predictions (rp = 0.08), though the temporal correlation between
the updated model and data only shows slight improvement. The length of the first two pupal
peaks is slightly greater in the fieldwork data than in the updated model predictions (Figure
4.9).

Figure 4.9 shows that the updated model fits the adult data well, with the timings of exit from
and entry to diapause matching up with the data, giving good temporal correlation across the
season (rp = 0.57). The Chapter 2 model does not capture the season termination point well,
with the population remaining active throughout late August (rp = 0.15). Further, the season
start in the Chapter 2 model appears to be too late, leading to a slower increase in the egg
population. Again, there is a clear double peak in the field observed adult abundance, which
is captured by incorporating the high post-diapause death rate in the updated model, but not
captured in the previous model. The data shows substantially more daily variability in adult
abundance than either model, however this is because the catch probability of the sampling
method will be strongly influenced by weather conditions, whereas the model assumes a
fixed catch probability. Given the observed data and the model predictions, the updated
model correctly predicts that the bulk of female mosquito biting activity would occur in June
and July, with a low biting rate in April, May and August.
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4.4.2 Diapause dynamics

Mosquito overwinter survival effects on abundance patterns

Given the increase to the length of the overwinter season, the updated model was run for
a range of updated values of bda, which denotes the minimum adult death rate (other pa-
rameter values are the baseline values in Table 4.1). This allowed the effects of variation in
overwinter survival on our ability to capture observed abundance patterns to be understood.
Simulations were run for values of bda from 0.003 to 0.01, corresponding to overwinter sur-
vival from 50% to 10%, consistent with the range of values in the literature (Bailey et al.
1982; Sulaiman and Service 1983; Onyeka and Boreham 1987). The field data is shown
alongside the model simulations for reference (Figure 4.10). With only one year of capture
data it is not possible to make accurate predictions about overwinter survival at the field
site. Consequently, only comparisons between the parameter sets are discussed. I carried
out simulations at regular intervals across the full range of parameter values. In each case
I illustrate three model runs, corresponding to the minimum, central and maximum values,
rather than using summary statistics, as in Chapter 2, as the other values within the range
show consistent results. This approach better displays the abundance patterns throughout the
season.

The results in Figure 4.10 show that increasing overwinter survival leads to increases in the
abundance of all life stages, with the peak active adult population size increasing by approxi-
mately one third from low (10%) to high (50%) overwinter survival. In pupae, this increased
abundance is most clearly seen in the initial population peak, whereas in the other stages the
population is increased throughout the year. When overwinter survival is high, increases in
the adult population upon diapause emergence lead to high egg and larval abundances early
in the year. The inclusion of seasonally varying predation (Figure 4.10) means that density-
dependent larval mortality is low at this time, so pupal numbers increase substantially. Later
in the year, higher predation means that increases in the larval population are offset by in-
creases in density-dependent mortality. Therefore, the predicted number of pupae does not
increase late in the season. Nonetheless, increased spring population size, due to increased
overwinter survival, causes an increase in the adult population throughout the entire year.
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Figure 4.10: Overwinter survival impacts: A comparison of the updated model predictions for
abundance of each life stage for three different values of bda is shown. High (bda = 0.003), medium
(bda = 0.006) and low (bda = 0.01) refer to the minimum adult survival rates. The high survival
scenario is the baseline value for bda given in Table 4.1. Field collected air temperature is used,
alongside water temperatures from butt 4. In the adult plot the dashed line shows all adults and the
solid line excludes those in diapause. The dotted line in the larval plot shows the timing at which the
peak predator-to-prey ratio occurs.
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Impacts of post-diapause mortality on seasonal abundance dynamics and
transmission season

Figure 4.11 demonstrates the updated model simulated for three different values of Γ, which
determines the strength of the post-oviposition mortality rate (Equation 4.10) (other param-
eter values are the baseline values in Table 4.1). The double-peak in spring and summer
across all life stages, shown in the fieldwork data, is only captured when including this post-
diapause mortality (Figure 4.11, Γ = 8,16). If post-diapause mortality is removed by setting
Γ to zero then environmental conditions alone do not provide the drop in mosquito abun-
dance observed. This provides support for the hypothesis of high post-diapause mortality
of aged females. Figure 4.11 shows that inclusion of this death rate has a large impact on
population size, suggesting an approximately 40% decrease in the peak annual abundance of
active adults when this death rate is included, such that complete mortality of the adult stage
occurs. Once post-diapause adult mortality is included, increasing the strength of the mor-
tality rate beyond the arbitrary chosen value (Γ = 8) has little effect on population dynamics
(Figure 4.11). Decreasing Γ leads to a gradual transition between the black line and the red
(Figure 4.11). However, given the assumption made that the added mortality rate acts on all
post-diapause adult females, there is no rationale for choosing a death rate which will result
in mortality of only some proportion of the surviving population.

D determines the proportion of adults which exit diapause and lay a full egg raft before the
post-diapause mortality occurs (Equation 4.10). The relatively synchronous exit of adults
from diapause means that choosing values of D corresponding to 70%-90% of the popu-
lation becoming active and laying an egg raft only varies the timing of the post-diapause
mortality by 5 days. Consquently, simulations changing the parameter D within a sensible
range are not shown, as the impact on results is negligible.

The parameter σ2 determines the duration over which the post-diapause mortality acted
(Equation 4.10). Values larger than the baseline (σ2 = 4) were not considered, as this led
to a wider period of high mortality than observed in Figure 4.11, resulting in mortality of
emergent adults, which is unrealistic. Decreasing σ2, causing a delay in the onset of the high
mortality period, led to greater overestimation of the duration of the spring population peak
by the updated model.
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Figure 4.11: Impact of post-diapause mortality rate: A comparison of the updated model predic-
tions for abundance of each life stage for three different values of Γ, which controls the strength of
the post-diapause adult mortality effect. Γ = 8 is the baseline value used in other model simulations.
Field collected air temperature is used, alongside water temperatures from butt 4. In the adult plot the
dashed line shows all adults and the solid line excludes those in diapause.
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4.4.3 Effects of variation in predator abundance and timing

Variations in the relative sizes of larval and predator populations may have substantial im-
plications on larval mortality and consequently on abundance patterns across all life stages.
Simulations simultaneously varying all combinations of two of the three predation param-
eters in the updated model (υ, χ and r) at small intervals (1,0.1 and 0.00005 respectively)
across the full range were carried out. As previously, results are presented for the minimum,
central and maximum values of the parameter range, for each parameter, as further results
within the studied range were consistent with those shown. I compare each of the scenarios
incorporating variable predator populations against a constant where predator density was
assumed to be a constant proportion of larval density, with no additional seasonality, as in
Chapter 2.

Synchronicity between predator and mosquito populations

The timing of the peak predator-to-prey ratio, determined by υ, corresponds to the 1st of
August in the updated model. To explore the sensitivity of abundance patterns to the timing
of predation, I then varied this timing between the 1st of July and 10th August (Figure 4.12).
All other parameter values were as in Table 4.1. The red line, showing the latest peak in
predator-to-prey ratio, appears to overestimate pupal abundance early in the year, and con-
sequently abundance of the other stages from late May onwards. The simulations where the
maximum predator-to-prey ratio occurs in early or late July (υ = 0,20), or where predator-
to-prey ratio does not vary seasonally, show similar abundance profiles. Figure 4.12 shows
that moving the effects of predation later in the year leads to very large abundance increases
in the egg and larval stages from early summer until autumn. This is because survival is
significantly improved in the initial generation, as can be seen by the large differences in the
initial pupal peaks. Increased numbers of pupae lead to more adults by the end of May, which
then proceed to lay more eggs. This causes the large number of eggs and larvae throughout
the months of June and July. The late peak in predation results in a fivefold increase in the
maximum abundance of host-seeking adults when compared to the earliest predation peak.

Shifting the predation curve in the updated model earlier in the year increases the predation
experienced by the spring population peak (Figure 4.13). This leads to a smaller pupal peak
in the spring and a larger pupal peak at the end of the year (Figure 4.12). This late pupal
peak can have profound influences on the diapausing mosquito population. For example, the
maximum active adult abundance under early predation (Figure 4.12, black line) is about two
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Figure 4.12: Predation timing impacts: A comparison of the updated model predictions for abun-
dance of each life stage for three different values of υ, which determines of the timing of the peak
value in the seasonal predation function: υ = 0 gives a 1st July peak, υ = 20 gives a 21st July peak and
υ = 40 gives a 10th August peak. The “constant" line shows model results with no seasonal variation
in predators. In the baseline updated model υ = 31, corresponding to the 1st August. Field collected
air temperature is used, alongside water temperatures from butt 4. In the adult plot the dashed line
shows all adults and the solid line excludes those in diapause.
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Figure 4.13: Predator seasonal abundance: (a) A comparison of the predator to prey ratios, R(t),
(Equation 4.11) throughout the year for different values of υ, which determines the time at which
R(t) is maximised: υ = 0 gives a 1st July peak, υ = 20 gives a 21st July peak and υ = 40 gives a 10th
August peak. The “constant" line shows the case where R(t) = r and there is no seasonal forcing.
(b) shows a comparison of the predator abundance throughout the year for the same three values of υ
and the “constant" case.

thirds of the maximum active abundance under mid-season predation (Figure 4.12, blue line).
However, under early predation, the diapausing population is approximately 25% larger than
that under mid-season predation (Figure 4.12). If predator numbers are very high in the early
part of the season and then decline, possibly in response to reduced numbers of prey as in
classical systems, then we may see a very large overwintering mosquito population. This
could lead to high mosquito abundance in the early part of the following year, with the im-
plications discussed in Section 4.4.2.

The duration over which the period of high predation acts, determined by the sharpness, was
also examined using the updated model. I altered the sharpness of the predation function
by changing the parameter, χ, which denotes the power to which the sinusoidal function is
raised (Equation 4.12 and Figure 4.6). Decreasing the period over which predation acts led
to increases in the population size early in the year (Figure 4.14), similar to those observed
when we shifted the predation peak later in the year (Figure 4.12). Results are similar be-
cause increasing the sharpness delays the onset of the higher predation period, decreasing
predator numbers during the initial population peak (Figure 4.13). Increasing sharpness has
little effect on abundance later in the season because adults start entering diapause before the
effects of decreased predation are felt. Consequently, simulations with high sharpness show
increased larval survival in the initial generation. This translates to increases in the adult
population in late May and therefore increases in eggs and larvae following this.
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Figure 4.14: Effect of predation sharpness: A comparison of the updated model predictions for
abundance of each life stage for three different values of χ, which determines of the sharpness of
the seasonal predation function. In the baseline updated model χ = 2. The “constant" line shows
model results with seasonal variation in predators removed. Field collected air temperature is used,
alongside water temperatures from butt 4. In the adult plot the dashed line shows all adults and the
solid line excludes those in diapause.
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Predation strength impacts

Increasing the number of predators per larva, rmax, in the updated model, led to decreases in
the abundance of each life stage, as expected (Figure 4.15). The low predation case (black
line) appears to overestimate abundance and the reduced density-dependence causes the final
two pupal abundance peaks to merge. The simulation with no seasonality in predation (or-
ange line) does not capture the relative sizes of peaks in abundance well, as the mid-season
abundance is smaller than the spring abundance.

As the strength of predation increases the second population peak is substantially reduced in
size, which leads to more pronounced peaks in abundance of the pupal stage than observed
under low predation. As predation has been assumed to exhibit sinusoidal seasonal forcing,
altering the strength of predation has much larger implications for the second peak in popula-
tion abundance than for the early season peak. Upon removing the seasonality in predation,
it can be seen that the abundance of all mosquito life stages decreases throughout the year, as
this is equivalent to assuming the maximum value of rmax at all times in the year (Equation
4.12).

4.4.4 Effects of temperature treatment

The updated model was run using the baseline parameter values (Table 4.1) for a range of
different temperature input data scenarios, to understand the impacts of both temperature data
temporal resolution and using air temperature as a proxy for water temperature on abundance
predictions.

Impacts of temporal resolution of temperature data

Comparing predictions from the updated model using hourly, minimum/maximum and mean
daily water temperature values for butt 4, Figure 4.16 shows an approximate 30% increase
in peak active adult abundance when using mean daily temperatures, as opposed to mini-
mum/maximum or hourly temperatures. Using mean daily water temperatures leads to an
overestimation of abundance, when compared with the field data. Simulations using mean
temperatures, show a much larger initial pupal peak than those simulations at a higher tempo-
ral resolution. This larger pupal peak leads to a greater number of adults later in the season,
causing increased egg and pupal numbers. These increases to egg and larval numbers after
the initial peak are less strongly reflected in pupal numbers due to the increased density-
dependent predation. There are no substantial differences between the abundance patterns
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Figure 4.15: Effect of predation strength: A comparison of the updated model predictions for
abundance of each life stage for three different values of rmax, which denotes the number of predators
present per larva, is shown. r was varied in the range 0.0008-0.0012, as this was the range for
which predation was sufficient to regulate the population without leading to extinction. In all other
simulations the updated model uses a value of rmax = 0.001. The “constant" line shows model results
with seasonal variation in predators removed. Field collected air temperature is used, alongside water
temperatures from butt 4. In the adult plot the dashed line shows all adults and the solid line excludes
those in diapause.
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observed using minimum/maximum or hourly measures, as the small difference between the
two temperature profiles results in a negligible impact on vital rates in this case.

The updated model was also run using the hourly water temperature values observed for butt
1 to understand if the higher temperatures observed explained the low numbers of larvae
present. Figure 4.17 shows that for butt 1 there were substantial differences in abundance es-
timates under the three different temporal resolution temperature datasets. Using mean daily
temperatures gave an approximate fourfold increase in the active adult peak abundance when
compared to using minimums and maximums. Using daily minimum and maximum temper-
ature, in turn predicted an approximately 50% increase in peak abundance when compared
to using hourly temperature measurements. The predicted presence of a large mosquito pop-
ulation throughout the active season shows that the higher temperatures in butt 1 were not
high enough to induce a sufficiently high immature death rate to explain the disappearance
of Cx. pipiens from butts 1-3. As such, the strong preference for butt 4 seen in the data is
more likely to be due to higher food availability than to avoidance of warmer habitats.

When investigating the effects of temporal resolution of air temperature (using butt 4 water
temperatures for the immature stages), the differences in model predictions using minimum/-
maximum and mean daily temperature were small for all life stages (Figure 4.18) with only
slightly higher abundance predictions when using mean temperatures (< 1% difference in
peak active adult abundance). Interestingly, Figure 4.4 (b) shows that diurnal temperature
variability is often larger in air temperature than in butt 4 water temperature. However, ex-
clusion of diurnal temperature variability in butt 4 led to the predicted peak in the active adult
mosquito population doubling in size (Figure 4.16).

Consequences of using air temperature as a proxy for water temperature

Using air temperature as a proxy for water temperature resulted in population extinction
under the updated model, strongly contrasting with the field observations and model pre-
dictions when water temperature was included (Figure 4.19 (a)). Extinction occurs because
water temperatures were consistently higher than air temperatures, particularly in the early
months of April and May (Figure 4.4 (a)). This led to shorter development times and higher
survival when incorporating water temperature than in the air-temperature-only model (Fig-
ure 4.20). In the air-temperature-only model, the first batch of eggs laid after winter were
unable to complete development and the population became extinct by the beginning of May.



Chapter 4. Phenological impacts of life cycle behaviour, biotic and abiotic factors 161

0
50

0
10

00
15

00
20

00

Cx . p i p i ens   Eggs

Month

A
bu

nd
an

ce

Jan Mar May Jul Sep Nov
0

10
00

0
30

00
0

Cx . p i p i ens   Larvae

Month

A
bu

nd
an

ce

Jan Mar May Jul Sep Nov

0
20

0
40

0
60

0
80

0

Cx . p i p i ens   Pupae

Month

A
bu

nd
an

ce

Jan Mar May Jul Sep Nov

0
20

40
60

80

Cx . p i p i ens   Adults

Month

A
bu

nd
an

ce

Jan Mar May Jul Sep Nov

Mean
Min/Max
Hourly
Data

Figure 4.16: Effects of water temperature temporal resolution in shade: A comparison of the up-
dated model predictions for abundance of each life stage in butt 4 using mean daily water temperature
(black), minimum and maximum daily water temperature (blue) and hourly temperatures (red). In the
adult plot the dashed line shows all adults and the solid line excludes those in diapause.
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Figure 4.17: Effects of water temperature temporal resolution in sunlight: A comparison of
the updated model predictions for abundance of each life stage in butt 1 using mean daily water
temperature (black), minimum and maximum daily water temperature (blue) and hourly temperatures
(red). In the adult plot the dashed line shows all adults and the solid line excludes those in diapause.
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Figure 4.18: Effects of air temperature temporal resolution: A comparison of the updated model
predictions for abundance of each life stage using mean daily air temperature (blue) and minimum/-
maximum daily air temperature (black). The water hourly temperature values from butt 4 were used
for the immature life stages. In the adult plot the dashed line shows all adults and the solid line
excludes those in diapause.
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Note that larval survival only increases in the air-temperature-only model after the larval pop-
ulation has become extinct (Figure 4.19), causing a release of density-dependence (Figure
4.20).

4.4.5 Mosquito overwinter survival effects on pathogen persis-
tence

The number of females which survive the winter period will have a large impact on the
probability of pathogen persistence between seasons (see Section 1.2.2). The possibility of
pathogen persistence between seasons through vertical transmission will be strongly depen-
dent on the minimum filial infection rate (MFIR), which gives the number of infected off-
spring produced per 1000 eggs laid by an infected parent. The MFIR values were calculated
as

MFIR =
1000

AFpI
, (4.13)

where AF is the number of adult females at the end of winter and pI is the prevalence of
infection in the population. Using predictions for AF obtained from the updated model,
the required MFIR for pathogen persistence can be calculated. I used a value of pI = 1%

based on infection rates observed in field populations of Cx. pipiens in two different studies:
Anderson et al. (2004) found 0.56% and 1.84% infection in two successive seasons in Con-
necticut and Hamer et al. (2009) found 1.8%, 0.74% and 0.81% infection in three successive
seasons in Illinois. Running the updated model until stable annual population cycles had
been reached (from year 2 of simulations onwards), the female population surviving to the
end of winter, AF , was 325, 992 and 2148 adult mosquitoes for minimum (10%), medium
(30%) and maximum (50%) overwinter survival respectively. Given these abundance esti-
mates and an estimate of 1% WNV prevalence, the required MFIR for disease persistence
between seasons would be 307.2, 100.8 and 46.6, for minimum, medium and maximum sur-
vival respectively. The range of MFIR estimates from the literature (0.04-8.1) show that the
field population was too small for virus persistence to be predicted for any of the tested over-
winter survival scenarios and the climatic conditions experienced in 2015 at our study site.

If the prevalence of WNV in the population were to increase to 5.8% in the high survival
scenario, then persistence would be expected at an MFIR of 8.1. Infection prevalences as
high as 20.8% have been observed in Cx. pipiens field populations (Savage et al. 2006). In
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Figure 4.19: Effects of approximating water temperature using air temperature: A compari-
son of the updated model abundance predictions for each life stage using hourly water temperature
values and daily minimum and maximum air temperature values (black line) and using only the daily
minimum and maximum air temperature values (blue line). In the adult plot the dashed line shows all
adults and the solid line excludes those in diapause.
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Figure 4.20: Effects of approximating water temperature using air temperature: A comparison
of the updated model survival predictions for each life stage using hourly water temperature values
and daily minimum and maximum air temperature values (black line) and using only the daily mini-
mum and maximum air temperature values (blue line). There is no survival curve for adults as adults
are not given a stage duration equation because there is no maturation from the adult class, only death.
In the adult plot the dashed line shows all adults and the solid line excludes those in diapause.
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the low survival scenario, prevalence of 38.0% would be required for persistence at an 8.1

MFIR, which seems unplausible. Persistence at the lower MFIR of 0.04 is not expected under
any WNV prevalence or survival rate for this system. Increasing the amount of larval habitat
to 375000 litres would be sufficient for pathogen persistence in the low (10%) overwinter
survival scenario, with the lowest MFIR estimate of 0.04. This is an area equivalent to 18750

of the water butts used, given a depth of 5cm.

4.4.6 Conclusions

Here I present a brief summary of the conclusions of the investigations introduced in Section
4.2

1. Diapause timing: Bringing forward the diapause initiation and termination thresholds
in the updated model gave better agreement with the data (rp = 0.57 for adults) than
was observed under the Chapter 2 model (rp = 0.15 for adults) (Figure 4.9).

2. Adult overwinter survival: Simulations showed that overwinter survival can have
profound impacts on seasonal abundance the following year, with peak active adult
population size showing an approximate one third increase from the low to high sur-
vival scenarios (Figure 4.10).

3. Post-diapause mortality: Inclusion of the post-diapause adult mortality rate resulted
in a better fit of the model predictions to the field data than was possible under the
Chapter 2 model (Figure 4.11), which was not able to capture the peaks in the data
(Figure 4.1).

4. Seasonal variation in predation: The timing of seasonal predation affected both the
abundance patterns within a given year and the diapausing population, leading to im-
plications for abundance in the following season (Figure 4.12).

5. The effects of the temporal resolution of temperature input data on model predictions
were as follows.

5.1. Water temperature temporal resolution: In water butt 1, where temperatures
were generally highest, abundance predictions increased with decreasing tem-
poral resolution of temperature data (Figure 4.17). In water butt 4, where tem-
peratures were generally lower, abundance predictions were highest when using
mean temperatures, however there was negligible difference between hourly and
minimum and maximum daily temperatures (Figure 4.16).
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5.2. Water butt temperature comparisons: Higher temperatures in butt 1 were not
observed to cause prohibitively high immature mortality, with abundance predic-
tions in butt 1 exceeding those in butt 4 (Figure 4.17). Thus, the concentration of
immatures in butt 4 could not be explained by avoidance of lethal temperatures
in butts 1-3.

5.3. Air temperature temporal resolution: Inclusion of diurnal temperature range
of air temperature had negligible effects on abundance (Figure 4.18).

5.4. Air temperature as a proxy for water temperature: Approximating water tem-
perature by air temperature led to population extinction for the system studied
(Figure 4.19).

6. Probability of pathogen persistence: Pathogen persistence between seasons was not
predicted to occur for the a population of the size observed in the field experiment.

4.5 Discussion

4.5.1 Relationship between abiotic factors, diapause timings and
abundance patterns

The timing of diapause induction and termination will determine the length of the biting
and pathogen transmission seasons, the overwinter survival of adults, and the likelihood of
pathogen persistence between seasons (Lord 2004; Denlinger and Armbruster 2014). Having
collected the fieldwork data I revised the model such that diapause termination occurred in
early April and induction is centred around early August. These updated diapause thresholds
gave improved agreement with the data, when compared with the predictions from Chapter
2 (Figure 4.9).

The sparsity of field studies investigating Cx. pipiens diapause behaviour, combined with the
known geographic variability in response to diapause cues, means that photoperiod alone was
considered to initiate and terminate diapause (Sim and Denlinger 2013; Denlinger and Arm-
bruster 2014). However, more long term, spatially replicated mosquito seasonal abundance
studies would increase power to detect and parameterise predicted effects of both tempera-
ture and photoperiod (Sanburg and Larsen 1973; Madder et al. 1983a; Spielman 2001) on
diapause behaviour in Cx. pipiens. To understand diapause entry, this could involve combin-
ing adult catch data with studies monitoring populations in diapause shelters, as in Sulaiman
and Service (1983), over a number of years to further our understanding of how photoperiod
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and temperature interact to determine the end of the biting season and the start of mosquito
diapause. Field studies pairing catch data with monitoring of overwinter shelters could be
combined with laboratory studies, akin to those carried out in North America (Eldridge 1966;
Sanburg and Larsen 1973; Spielman 2001), to further our knowledge of how environmental
variables influence diapause entry.

The fact that the start of each abundance peak, with the exception of the autumn pupal peak,
is well captured by the updated model across the life stages supports the finding in Chapter
3 that the temperature-dependent development rates have been captured well in the updated
model. However, the end of the spring population peak is predicted to occur later in the
updated model than in the data (Figure 4.9). The longer spring abundance peak observed
in the updated model across the stages is most likely to stem from an overestimate of the
gonotrophic cycle length in the early part of the season. The timing of the post-diapause
mortality is dependent on the diapause exit time and the predicted length of the gonotrophic
cycle (Equation 4.10). Given that the start of the peak is captured well, the timing of dia-
pause termination seems likely to be accurate. It is most likely that overestimation of the
gonotrophic cycle length would lead to a later mortality of adults, causing a longer initial
period of egg-laying and a subsequent lengthening of the initial peak in abundance of each
life stage, when compared with the field data.

The summer peak in the egg and larval populations is predicted by the updated model to be
substantially longer than was observed in the field data (Figure 4.9). To explain this discrep-
ancy in peak duration, it is useful to look at the results of the quasi-Poisson GLM fitted in
Section 3.3.1, which predict a drop in adult catch sizes in early July (Figure 3.12), meaning
that fewer host-seeking adults were predicted late in the season. However, in the updated
model, high levels of egg-laying, leading to high larval abundance, are observed. Egg-laying
and larval abundance in the data, show stronger generational peaks and a decreased egg pop-
ulation in mid-to-late July and early August. One possibility is that, because the study system
was not closed, mosquitoes may have selected other oviposition sites outwith the study sys-
tem. This would cause a drop in the number of Cx. pipiens observed at our field site, which
would not be reflected in the model. Another possible reason for the discrepancy between
the observed and predicted egg numbers is that the model assumes egg-laying is spread out
over the length of the gonotrophic cycle (Equation 2.19), whilst in reality eggs should be
laid in pulses at the end of each cycle (Vinogradova 2000; Lardeux et al. 2008). This pulsed
egg-laying behaviour may explain the sharper generational peaks observed in the field data.
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To allow egg-laying behaviour to occur only at the end of each cycle in the model, the adult
stage would need to be divided into sub-stages according to the adult’s current physiological
state. This substantially increases the complexity of the model because each gonotrophic
cycle would require two stages, one for cycle processes excluding egg-laying and a second
for egg-laying. The single adult stage must therefore be split into a number of stages equal
to twice the number of gonotrophic cycles a female can complete in her lifetime, which is
temperature-dependent. This process of incorporating a series of nested delays, described in
Section 2.2.1, is exceedingly cumbersome in this extended case. For these reasons, and to
allow extension to explicitly include disease in Chapter 5, extension to multiple adult stages
was not implemented here. However, splitting of the adult stage to better capture egg-laying
would be a worthwhile future model development.

4.5.2 Effects of seasonally varying predation on mosquito abun-
dance

In Section 3.3.1 it was shown that patterns of immature abundance were only captured when
density-dependent mortality was included in the larval stage (Figure 3.6). Intra- and inter-
specific competition are both density-dependent processes which have been shown to af-
fect larval mortality and development time of many mosquito species (Costanzo et al. 2005;
Legros et al. 2009). However predation has often been seen to act as the main source of pop-
ulation regulation in Culex mosquitoes (Rajagopalan et al. 1976; Menon and Rajagopalan
1981; Mogi and Okazawa 1990). Due to the wide range of breeding sites utilised by Cx. pip-

iens (Vinogradova 2000), Cx. pipiens larvae are believed to be most at risk from a range of
generalist predators (Juliano 2007). These predators will exhibit a wide range of consump-
tive abilities and show a range of seasonal abundance patterns, which may be independent
on larval population size (Onyeka 1983). Further, it is possible that climate impacts may
have differential effects on the prey and predator populations, which may cause misaligned
timings of the populations’ active seasons. Finally, predators have been suggested as al-
ternatives to insecticide treatments in vector control programmes (Lord 2007; Shaalan and
Canyon 2009), meaning that the implementation of the control strategy will determine sea-
sonal variation in larval predation.

The inclusion of seasonal variation in predation was found to have a profound effect on abun-
dance patterns in the year upon which the predation acted. Further, when predation occurred
in the early part of the year, increased larval survival late in the season led to large diapausing
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populations, with implications for abundance in the following season (Figure 4.12). Inclu-
sion of seasonal variation in the number of predators per larva improved agreement with field
data, when compared to the original model (Figures 4.14-4.15). These results suggest that
the coincidence of predators and mosquito emergence may be an important factor in regu-
lation of the mosquito population in a given year. However, intraspecific competition for
resources may also play an important role in population regulation in the absence of preda-
tors and should be considered in future studies. It is also evident that predators are important
across the whole season, with predators in the early months affecting the active population
that year and predation in the later months affecting the following year. By including variable
predation dynamics in the model, it would be possible to use the model to predict the efficacy
of using predators in mosquito control and to assess the best methods of implementation of
particular control measures.

4.5.3 Temperature impacts on seasonal abundance

Recent studies have highlighted the effects of diurnal temperature variation on mosquitoes.
Aedes aegypti have exhibited extended immature development, lower larval survival, reduced
reproductive output, increased adult mortality and decreased susceptibility to virus infection
when exposed to diurnal temperatures variations, rather than constant temperatures (Lam-
brechts et al. 2011; Carrington et al. 2013). I observed that the updated model predicted
higher abundances in each life stage when lower resolution butt 1 water temperature mea-
surements were used as inputs (Figures 4.17). Inclusion of temporal resolution in water
temperatures was observed to be more influential than including diurnal temperature vari-
ability in air temperatures (Figure 4.18). These findings are based on the assumption that
temperatures experienced at all times throughout the day will have equal effects on mosquito
vital rates. To my knowledge, no studies have investigated changes in immature mosquito
behaviour throughout the day. However, adult mosquitoes of different species are known to
be most active during specific periods of the day (Rund et al. 2016), meaning that temper-
atures at these times may be more influential. The finding that aquatic temperatures appear
to be more influential, likely stems from the fact that the immature population is substan-
tially larger in size than the adult population, as mid-season egg-to-adult survival is below
1%. Consequently, a small change to water temperatures affects a large proportion of the
population and has substantial implications for abundance. This highlights the importance
of explicitly modelling each mosquito life stage, as the immature stages are seen to be very
sensitive to small changes in conditions.
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Failing to account for water diurnal temperature variability may not always lead to higher
abundance estimates, as it does in this case. The effect of including diurnal temperature vari-
ability will depend on the full range of temperatures experienced by the population. In habi-
tats where water temperatures within a day regularly exceed the upper temperature threshold
for immature survival one would expect accounting for diurnal temperature variability may
reduce abundance predictions if it causes the population to endure damagingly high tem-
peratures (Colinet et al. 2014). It is likely that UK mosquito populations are well adapted
to current local temperature variability. However, temperatures in butt 1 were observed to
exceed thermal development thresholds at some points in the year at the field site. Climate
change predictions state that UK temperatures are likely to rise in the coming years (UKCIP
2010). Consequently, it is important that we understand the potential impacts of temper-
atures outwith the range typically experienced by UK mosquito populations at present, as
potentially damaging temperatures for mosquito development may occur more frequently.
Damaging temperatures would not be captured by analyses studying mean temperatures,
such as in Chapter 2, meaning that inclusion of diurnal temperature variability in mosquito
abundance models will be important in determining the effects of shorter periods of particu-
larly high temperature.

The temporal resolution of input air temperatures was seen to have a negligible effect on
abundance predictions (Figure 4.18). In the model, the adult stage is less sensitive to temper-
ature fluctuations around the low-to-medium temperature range than the immature stages.
Temperatures at the field site tend to be in this low-to-medium range (10 − 20 ○C) (Figure
4.4). However, the effects of temperatures in this range on adult activity have not been well
studied, meaning the model is not sensitive to changes in this region. Further laboratory
and field studies would be needed to allow for more accurate parametrisation of adult rate
functions, specifically at lower thermal limits. This would inform on whether the lack of
sensitivity is a consequence of model parameterisation or of mosquito biology.

The vast majority of both statistical (Wang et al. 2011; Mulatti et al. 2014; Jian et al. 2014b)
and mechanistic (Shaman et al. 2006; Cailly et al. 2012; Beck-Johnson et al. 2013; Tran
et al. 2013; Lončarić and Hackenberger 2013; Marini et al. 2016) vector and disease models,
which incorporate environmental drivers, only consider air temperature for both immature
and adult development. This can lead to erroneous results, as water temperatures are of-
ten warmer than surrounding air temperatures (Figure 4.4), leading to an increased rate of
immature mosquito development. I showed that using air temperature as a proxy for wa-
ter temperature in the updated model led to erroneous seasonal abundance predictions, with
population extinction falsely predicted when using only air temperatures for all life stages
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(Figure 4.19). Consequently, underestimation of temperatures, and thus development rates
and survival, appears to be particularly problematic in temperate regions, like the UK, where
temperatures are often close to the lower boundary of the mosquito thermal development
range.

The ability to convert air temperatures to water temperatures is a major roadblock, with
water temperatures being dependent on a wide range of variables such as water body size,
wind and sun exposure, and whether the container is natural or artificial. Paaijmans and
Heusinkveld (2008) have developed a model to predict diurnal water temperature dynamics
in shallow tropical water pools using common weather data (air temperature, air humidity,
wind speed and cloud cover). Further, recent work by Asare et al. (2016) attempts to predict
water temperatures across a peri-urban area in Ghana using only minimum and maximum air
temperatures, with some success. However, this work studies temperatures in three identical
ditches, and Cx. pipiens are known to be opportunistic when ovipositing, meaning the range
of sites for which temperatures must be estimated would be much larger. Developments of
this type for the full range of temperate mosquito habitats should be a priority if we wish to
accurately model mosquito populations.

Failing to account for the discrepancy between air and water temperatures will not always
result in differences in predictions as stark as those seen here, where using air temperature
as a proxy for water temperature resulted in a prediction of extinction. This work focusses
on a temperate climate where the temperature is often only slightly higher than the lower
temperature threshold for mosquito development. At the boundary of the mosquito thermal
development thresholds, a small discrepancy between air and water temperatures can mean
air temperatures act as poor predictors of immature survival. Figure 4.4 (a) shows that the
mean air temperature at the field site regularly dropped below the lower thermal threshold
for development of Cx. pipiens (10 ○C) in the spring (Almirón and Brewer 1996; Loetti et al.
2011). Water temperatures are consistently above this threshold and higher than ambient
air temperatures, once diapause emergence has occurred. Consequently, failing to account
for warmer water temperatures can have large impacts on predictions of mosquito seasonal
abundance. This is particularly true in locations where temperatures fluctuate around thermal
development thresholds. Models should explicitly include or estimate water temperature,
alongside diurnal variability in water temperatures, to combat these issues.
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4.5.4 Mosquito overwinter survival effects on pathogen persis-
tence

Overwinter survival will have a direct impact on the probability of WNV persistence between
seasons (Nelms et al. 2013). Further, winter mortality of adults will affect spring population
size, which may influence population dynamics in the following season (Lord 2004). Esti-
mates of overwinter survival of diapausing mosquitoes show substantial variability between
sites and years, with published survival estimates ranging from 2% to 60% (Bailey et al.
1982; Sulaiman and Service 1983; Onyeka and Boreham 1987). However, the underlying
causes of this variability are not clear. Model simulations showed that overwinter survival of
adult females impacts abundance patterns throughout the following season and not only in
the spring, as may be expected (Figure 4.10). Whilst overwinter survival appears to be par-
ticularly influential in determining population and pathogen dynamics, the effect of winter
temperature on survival of diapausing adult females of temperate mosquito species has not
received much attention. Consequently, lab and field studies investigating this should be a
priority.

There are three main pathways by which WNV persistence between seasons is believed
to be possible: overwinter infection in the host avian population (Calzolari et al. 2013),
gonotrophic dissociation, where the ovaries of a blood-fed female remain undeveloped allow-
ing it to successfully overwinter (Eldridge 1966), and vertical transmission from an infected
parent to a diapausing offspring followed by horizontal transmission from that offspring the
following season (Anderson and Main 2006) (Figure 4.21).

Eldridge (1966) showed that gonotrophic dissociation occurred in Cx. pipiens when individ-
uals were reared at sufficiently low temperatures and photoperiods (< 12 hours and < 15 ○C

for a laboratory colony from Indiana). The findings of Eldridge (1966) imply that approx-
imately 30% of adults emerging in the final pupal peak of the field population, observed in
mid-September, may exhibit gonotrophic dissociation, given the temperatures experienced.
Consequently, 30% of the adult female population may be able to facilitate pathogen persis-
tence through gonotrophic dissociation if they were to feed on an infected individual. The
exact values published by Eldridge (1966) may not be appropriate given that their experi-
ment used a Cx. pipiens colony from West Lafayette, Indiana, which is located at a latitude
10 ○ south of the UK field site and in a different eco-climatic zone. However, the fact that
gonotrophic dissociation has been shown to occur in Cx. pipiens suggests that it may act as
a pathway by which pathogen persistence could occur in the UK.
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Figure 4.21: Overwinter transmission pathways flowchart: A flowchart showing the three
main overwinter disease transmission pathways: overwinter survival of horizontally-infected adults
through gonotrophic dissociation, survival of vertically-infected diapausing individuals and survival
of infected birds.

Vertical transmission is the other mechanism by which diapausing females may act as an
overwinter reservoir for WNV (Nelms et al. 2013). In Section 4.4.5 it was shown that, given
sufficient larval habitat, pathogen persistence between seasons by this route may be possible,
assuming large enough MFIR and pre-diapause infection prevalence. Consequently, the hy-
pothesis that overwintering females only survive long enough to complete one gonotrophic
cycle after diapause emergence becomes particularly important. The restriction to one blood
meal means that pathogen persistence would require transfer from the surviving, vertically-
infected female mosquitoes to the hosts to take place in this one blood-feeding instance.
Alternatively, further vertical transmission would need to occur between adult females and
their egg rafts in the early season. The low prevalence of vertical transmission, with esti-
mates of the MFIR from laboratory studies in the range 0.04− 8.1 (Nelms et al. 2013), make
this highly unlikely. The probability of two successive instances of vertical transmission
would be expected to fall in the range (1.6 × 10−9 − 6.561 × 10−5). Therefore, early-season
transmission of the virus from vectors to hosts will be particularly important in determining
the risks of pathogen persistence.

Post-diapause mortality of adult females has not been included in seasonal abundance mod-
els for other temperate mosquito species. It was shown that the model incorporating this
added mortality was better able to capture the seasonal abundance patterns in the field data
(Figure 4.11). Not only will this term affect pathogen persistence between seasons, the added
mortality also has implications for our understanding of the mosquito biting season. Mortal-
ity of post-dipause females will increase variability in biting intensity in the early part of the
transmission season. Biting rates will briefly increase immediately following diapause exit,



Chapter 4. Phenological impacts of life cycle behaviour, biotic and abiotic factors 176

before decreasing again until emergence of the first spring generation. Without this post-
diapause mortality rate the adult population would steadily increase and any drop in biting
intensity caused by this high post-diapause mortality would not be captured.
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Chapter 5

Impacts of current and future
temperatures on UK WNV
transmission

5.1 Introduction

Recent decades have seen dramatic expansions in the global distributions of a number of
vector-borne diseases (Jones et al. 2008). These include outbreaks of chikungunya fever in
Italy (Angelini et al. 2007), dengue fever in France (Succo et al. 2016), zika virus in south
and central America (Fauci and Morens 2016), the introduction of Bluetongue virus into
southern and then northern Europe (Carpenter et al. 2009) and WNV in North America and
the Mediterranean basin (Reisen 2013; Sambri et al. 2013). These diseases have resulted in
severe economic losses and substantial human morbidity and mortality (Wilder-Smith et al.
2017). Understanding the factors responsible for these changing distributions and predicting
future spread has become an important issue in global health research (Campbell-Lendrum
et al. 2015). Numerous studies have detected strong links between climatic factors and the
seasonality in disease outbreaks (Altizer et al. 2006; Mirski et al. 2012). Understanding the
relationship between fluctuating environmental conditions and disease outbreaks requires
that knowledge of climatic effects on vectors and disease transmission processes be explic-
itly linked (Lord 2004).

In Europe, WNV has become endemic in areas of the Mediterranean basin (Barzon et al.
2012; Sabatino et al. 2014), with reported human cases as close to the UK as southern France
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and northern Italy in 2015 and 2016 (Figure 1.2). Further, the unexpected but highly success-
ful introduction and rapid spread of WNV in North America highlights the ability of the virus
to establish itself in previously uninfected areas (Reisen 2013). Semenza et al. (2016) predict
expansion of current European WNV transmission areas between now and 2050 in response
to climate warming, using a correlative model linking environmental variables to presence
or absence of disease within European regions. In addition, Paz et al. (2013) observed that
temperatures above seasonal averages in summer acted as precursors to WNF outbreaks in
humans, particularly at northerly latitudes. It is predicted that climate change will cause
increases in UK temperatures in the coming years (MetOffice 2009), potentially increasing
the ability of these vectors to transmit WNV if it were to be introduced. These findings,
combined with the proximity of cases in Southern France and Northern Italy, have caused
concern about the possibility of WNV outbreaks in the UK, particularly because the UK is
home to a high abundance of effective vectors, in Cx. pipiens (Golding 2013), and numerous
susceptible bird species migrate to the UK from Southern France, where WNV outbreaks
have occurred (Paz et al. 2013; Bessell et al. 2014). In order to predict transmission of WNV
under predicted climate scenarios, we must understand the underlying relationships between
vector ecology, disease transmission and environmental conditions.

Correlative statistical models have shown relationships between a wide range of environ-
mental variables and outbreaks of vector-borne disease, however these results often show
regional variability. For example, studies of regional variation in WNV outbreaks in the
USA have shown that, whilst warmer temperatures consistently increased human infection
rates, precipitation levels could have either positive or negative effects on disease cases de-
pendent on the local conditions (Landesman et al. 2007; Wimberly et al. 2014). Similar
patterns have been found in population models of WNV vectors, with higher temperatures
consistently increasing population size and biting rates, whilst rainfall effects are variable
(Mulatti et al. 2014; Rosà et al. 2014). These models are valuable tools by which environ-
mental variables influencing the vector life and disease transmission cycles can be detected.
However, because climatic conditions may have opposing impacts on disease cycle and vec-
tor life parameters, models that integrate such processes to predict overall impacts on disease
transmission are required.

Most epidemiological systems use a compartmental approach, such as the susceptible-infecti-
ous-recovered/removed (SIR) framework, in which the host population is categorized ac-
cording to infection status as either susceptible, infectious, or recovered/removed (Kermack
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and McKendrick 1927; Wearing et al. 2005). This allows calculation of the R0 value (Equa-
tion 1.5), which gives the number of secondary infections arising from introducing an infec-
tious individual into a population of entirely susceptible individuals (Wonham et al. 2004;
Cruz-Pacheco et al. 2005; Bowman et al. 2005; Rogers and Randolph 2006). This idea can
be extended for vector-borne diseases, such that the vector population is split into suscepti-
ble and infectious compartments, as shown in (Figure 5.1 (a)). A common extension within
vector-borne disease models is to include an additional exposed (but not yet infectious) vec-
tor class (susceptible-exposed-infectious-recovered/removed (SEIR) models) to account for
the temperature-dependent extrinsic incubation period (EIP) of the vector (Wearing et al.
2005), as in Figure 5.1 (b). For mosquito-borne disease models, the EIP is the time required
for the virus to replicate within the mosquito and to reach the salivary glands (Anderson et al.
2008). Once this has happened the mosquito becomes infectious and the virus may be passed
on during the taking of a blood meal. The specific calculation of the R0 value will depend
on the assumptions of a given model but an example is given by

R0 =
ιTmbTbmB2 exp(−δτEIP )

δR
, (5.1)

where ι is the vector-host ratio, Tmb and Tbm are the vector-host and host-vector transmission
coefficients, B and δ are the vector biting and death rates, τEIP is the duration of the EIP and
R is the host recovery rate (Rogers and Randolph 2006).

This R0 equation (Equation 5.1) highlights the importance of vector dynamics and season-
ality on disease transmission; the vector-host ratio, ι, will fluctuate depending on environ-
mental effects on the size of the mosquito population (Altizer et al. 2006). Further, mosquito
biting rates, mathcalB, and death rates, δ, are known to increase with increasing tempera-
ture, whilst the duration of the EIP, τEIP , will decrease with increasing temperature (Reisen
et al. 2006a; Ciota et al. 2014). However, traditionally R0 values can only be calculated at
population equilibrium, meaning that most models only capture behaviour for a specific set
of environmental conditions (Wonham et al. 2004; Cruz-Pacheco et al. 2005; Bowman et al.
2005).

SEIR models are most typically expressed using a series of ODEs, where each ODE defines
one compartment of the model (Wonham et al. 2004; Bowman et al. 2005; Cruz-Pacheco
et al. 2005; Rubel et al. 2008; Erickson et al. 2010a; Charron et al. 2011; Bergsman et al.
2015; Robertson and Caillouet 2016). One of the fundamental assumptions of such models
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is that the rate at which individuals leave each class is exponentially distributed and inde-
pendent of the time already spent there. Consequently, the exposed vector population begins
to become infectious immediately, contrasting with laboratory observations that there is a
delay between taking an infected blood meal and becoming infectious (Reisen et al. 2006a).
Hartemink et al. (2015) compared estimates of R0 when approximating the exposed period
by an exponential distribution and when assuming a fixed duration for the exposed period,
and showed that assuming an exponential distribution resulted in overestimation of R0 val-
ues.
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Figure 5.1: SIR and SEIR Models: Diagram (a) shows a simple SIR model for a hypothetical host
and vector population. Diagram (b) shows an SEIR model, where an exposed class has been added
for the vector population. Vector-host and host-vector transmission are the only pathways considered
in both cases.

It is clear from Equation 5.1 and Figure 5.1, which shows diagrams of SIR and SEIR-type
models, that seasonality in the vector population will affect R0 values and disease trans-
mission, through changes to the vector-host ratio, ι. However, historically, the majority of
epidemiological models do not explicitly incorporate vector seasonality. A recent review
paper by Reiner et al. (2013) found that 61% of mathematical models of mosquito-borne
pathogen transmission published between 1970 and 2010, which included at least one equa-
tion of mosquito dynamics, held the mosquito population size constant. Further, only 12%
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of all models explicitly modelled the aquatic stage of the mosquito population, whilst 7% of
all models included density-dependence in the aquatic stage. Recently, Evans et al. (2013)
argued for increased complexity in models when making predictions about real ecological
systems. The authors argue that, to understand which processes have the greatest effects
on model predictions, models must incorporate the full range of relevant ecological pro-
cesses to allow thorough testing. Intra- and inter-species interactions and climatic effects
are important determinants of mosquito phenology (Bewick 2016), as shown in Chapters
2-4. Consequently, the direct integration of mosquito population models that incorporate
this range of biotic and abiotic processes, into epidemiological models, is expected to im-
prove predictions regarding mosquito-borne disease (Smith et al. 2014). This integration is
particularly important in planning and implementing control measures to guard against dis-
ease outbreaks, as these often target a particular stage of the mosquito life cycle (Lord 2007).

In line with the wider vector-borne disease research, the majority of epidemiological mod-
els for WNV adopt an SIR or SEIR framework, with each compartment most commonly
described by an ODE. This is highlighted in Table 5.1, which lists dynamical mathemati-
cal WNV models developed since 2000. WNV-induced mortality in bird populations, avian
recovery rates from infection and variable transmission rates between vector and host are
regularly included in disease models. However, seasonality in the mosquito and bird popula-
tions remain largely neglected in disease models, which will impact R0 predictions through
assumptions made about vector-host ratios. Further, none of the dynamical WNV models
include vector diapause, meaning that predictions across multiple seasons would only be
valid in southerly regions where diapause incidence may be low, as in Hartley et al. (2012).
Whilst half of the models shown include an exposed vector stage, only two models incorpo-
rate temperature-dependence in the EIP duration and all models assume the exposed vector
stage is exponentially distributed (Table 5.1). This will influence R0 predictions and subse-
quent disease transmission, as previously discussed. Use of DDEs facilitates removal of the
assumption of exponentially distributed stage durations, as stage durations can be of fixed
lengths or may vary with temperature. Only one model utilises DDEs to capture the vector
dynamics (Fan et al. 2010), showing that inclusion of mosquito developmental delays in-
fluences both the mosquito abundance and the number of transmission peaks within a year.
However, the Fan et al. (2010) DDE model does not include seasonal forcing in the vector
population and ignores the EIP.

Most WNV models ignore temperature-dependence in disease transmission and mosquito
life cycle processes, such as biting rates and virus incubation rates, making the assump-
tion that these processes occur at constant rates (Lord and Day 2001; Wonham et al. 2004;
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Process 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Prop
Seasonality, V ✓ × ✓ × × × × × × × ✓ × × × 3 ✓

Seasonality, H ✓ × × × × × × × × × × × × × 1 ✓

Immature dynamics, V × × ✓ × × × × × × ✓ ✓ ✓ × × 4 ✓

Density-dependence, V × × × × × × × × × × ✓ ✓ × ✓ 3 ✓

Exposed class, V ✓ ✓ ✓ × × × ✓ × × × ✓ ✓ ✓ × 7 ✓

EIP temp-dependence, V ✓ × × - - - × - - - ✓ × × - 2 ✓

EIP distribution, V Exp Exp - - - - Exp - - Exp Exp Exp Exp - - Step
Trans probabilities, VH ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13 ✓

Range of competencies, H ✓ × × × × × × × × × ✓ × ✓ ✓ 4 ✓

Biting preference, V ✓ × × × × × × × × × × × ✓ ✓ 3 ×

Host-host transmission, H × × × × × × ✓ × × × ✓ × × ✓ 3 ✓

WNV-induced mortality, H ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13 ✓

Recovery from WNV, H ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ × 10 ✓

Loss of immunity, H × × × - × - - × × × × × ✓ - 1 ×

Vertical transmission, V × ✓ × × ✓ × × ✓ ✓ ✓ ✓ × × ✓ 7 ✓

Diapause, V × × × × × × × × × × × × × × 0 ✓

Spatial structure × × × × × ✓ × × ✓ × × × × × 2 ×

Human compartment × ✓ × ✓ × × × × × × × ✓ × × 3 ×

Model structure ODE Diff ODE ODE ODE ODE ODE Diff PDE DDE ODE ODE ODE ODE - DDE
Total 9 4 6 3 4 3 4 4 5 5 11 7 7 7 - 13

Table 5.1: Dynamical mathematical WNV models: A table showing the features which are included and excluded from a range of dynamical mathematical
models of WNV transmission, where each column represents a published model. “Diff" stands for a discrete-time difference model, “Exp" stands for an
exponential distribution, “Step" represents an exposed period where the stage duration is a fixed time for all individuals and “Prop" represents the model
proposed in this Chapter. The proposed model is the model presented in this Chapter. 1 - Lord and Day (2001), 2 - Thomas and Urena (2001), 3 - Wonham
et al. (2004), 4 - Bowman et al. (2005), 5 - Cruz-Pacheco et al. (2005), 6 - Liu et al. (2006), 7 - Hartemink et al. (2007), 8 - Jang (2007), 9 - Maidana and
Yang (2009), 10 - Fan et al. (2010), 11 - Hartley et al. (2012), 12 - Pawelek et al. (2014), 13 - Bergsman et al. (2015), 14 - Marini et al. (2017).
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Cruz-Pacheco et al. 2005; Durand et al. 2010; Pawelek et al. 2014; Bergsman et al. 2015).
However, the compounding effects of these processes make predicting the influence of tem-
perature on disease transmission difficult, highlighting the need for models which can explic-
itly incorporate temperature relationships. In this Chapter, I extend my existing Cx. pipiens

model to explicitly incorporate temperature-dependence in a wide range of WNV transmis-
sion dynamics (Table 5.1). This model is twinned with a compartmental model for host avian
dynamics. In this way, environmental conditions act as drivers of not only seasonality in the
vector population, but also seasonality in disease transmission. Using this model, I intend to
answer the following key epidemiological questions:

1. If WNV were to be introduced to Southern England how likely is it that an outbreak
would occur under average climate conditions?

2. Which parameters are the most influential in determining WNV transmission?

3. How will predicted warming in the UK alter transmission potential of WNV?

In the next section, prior to outlining the model, I set out the key features of the ecology of
the WNV system that underpin the model design and application.

5.1.1 Host and vector ecology

Temperature-induced seasonality in vector abundance, alongside the effects of temperature
on pathogen replication in vectors means that patterns of WNV transmission exhibit strong
seasonality in temperate regions (Altizer et al. 2006). Figure 5.2 demonstrates this effect in
human WNV cases in both the USA and Europe throughout 2007 and 2010, respectively,
with incidences peaking throughout August and September. This mimics observed season-
ality in Cx. pipiens abundance in North America, which has been seen to reach maximum
abundances in late summer and autumn (Madder et al. 1983b; Lampman et al. 2006; Jackson
and Paulson 2006). The profound impact of environmental conditions on mosquito popula-
tions, and likely impacts on disease transmission, mean that inclusion of seasonal environ-
mental forcing is expected to affect prediction and management of potential WNV outbreaks.

WNV is sustained through a transmission cycle between mosquitoes and birds, with humans
and equines acting as dead-end hosts, which may experience morbidity and mortality (Figure
5.3). Cx. pipiens are primarily a maintenance vector for the virus, as they are ornithophilic,
and consequently are effective at circulating the virus within the reservoir bird population
(Hamer et al. 2009). However, Cx. pipiens will also bite mammals when they are a highly
abundant food source relative to birds, meaning that they can act as a bridge vector to the
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Figure 5.2: WNF weekly cases: The number of WNF neuroinvasive disease cases by week of illness
onset across the entire United States in 2007 (CDC 2007) and across Europe in 2010 (Paz et al. 2013)
is shown.

human population (Hamer et al. 2009). In some areas, Cx. modestus are also likely to act
as bridge vectors as they are aggressively mammophilic. Cx. modestus was detected in the
North Kent marshes in 2010 (Golding et al. 2012) and has been recorded more widely across
South East England in recent years (Medlock et al. 2014; Vaux et al. 2015). Several other
potential WNV vectors have been found within the UK (Chapman et al. 2016), however Cx.

pipiens is widely regarded to be the main driver of WNV transmission in Europe and North
America, due to its strong preference for feeding on birds (Gubler 2002; Zeller and Schuffe-
necker 2004; Higgs et al. 2004; Calistri et al. 2010; Reisen 2013). Given this, the seasonal
abundance model for Cx. pipiens developed in the previous chapters forms a good basis for
a WNV model within the UK. WNV infection has been shown to vary across bird species,
with different species exhibiting different disease-induced death rates, viremia levels and re-
covery rates (which will affect the duration over which viremia remains high) (Table 1.1)
(Komar et al. 2003; Pérez-Ramírez et al. 2014). Passeriformes have been observed to act
as particularly competent hosts of WNV, though there is considerable variability between
orders in levels of viremia (Komar et al. 2003).

Vector-host transmission, is believed to be the most common transmission pathway (Komar
et al. 2003) and occurs either when an infectious mosquito bites a susceptible bird or when
a susceptible mosquito bites an infected bird (Figure 5.3). When bitten by an infectious
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Figure 5.3: WNV transmission cycle: The diagram shows the WNV transmission cycle. Cx. pipiens
is highlighted in red to emphasise its role as both a maintenance and bridge vector of WNV. UK
mosquito species’ status as either a maintenance or bridge vector is based on the classification in
Chapman et al. (2016). Temperature will affect all vector-host and host-vector transmission rates
through its effects on the biting rate and EIP. It will also affect mosquito seasonality through the
numerous effects on mosquito vital rates discussed previously.

mosquito, a susceptible bird is assumed to become infectious immediately because the viral
incubation time in birds is short, with high viremia typically detected the day after infec-
tion (Komar et al. 2003). If a susceptible mosquito bites an infected bird, however, then the
mosquito will only become infectious to others once it has undergone the EIP. The impact
of temperature on the WNV EIP can be large (Reisen et al. 2006a; Reisen 2013), with the
duration of the EIP of WNV for Cx. tarsalis taking from under ten days at high tempera-
tures (> 25 ○C) to over twenty days at lower temperatures (< 20 ○C) (Reisen et al. 2006a).
Temperature will also influence disease transmission rates through its effect on the length
of the gonotrophic cycle, and thus the biting rate. Increasing temperatures will decrease the
gonotrophic cycle, causing the biting rate to increase (Hartley et al. 2012). Increases in the
biting rate mean that mosquitoes will take more blood meals and the opportunities for the
virus to be spread will increase substantially (Equation 5.1).

Birds also play a vital role as a mechanism by which the virus can be introduced to new ar-
eas, through migration of infected individuals (Dusek et al. 2009; Bessell et al. 2014). Such
introduction to the UK could occur through infected birds returning from winter habitats.
For successful introduction to occur, the virus must have a sufficiently mild impact on the
bird’s fitness to allow migration to be completed. However, the host must also maintain a
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high enough viremia that host-vector transmission is possible upon arrival. The timing and
location of introduction of infected birds are also expected to be important drivers of trans-
mission potential. Arrival of the infected hosts must occur during the vector biting season, to
allow horizontal transmission to occur. Further, the composition of the bird population at the
arrival site will affect subsequent amplification or dilution of the virus. Bessell et al. (2014)
showed that at least one infected migratory bird was expected to reach the UK in 88% of
years where a WNV outbreak occurred in the Camargue (a hotspot for both migratory bird
and vector activity in Southern France). Across all years during which an outbreak occurred
in the Camargue, a median of 2 infected birds were expected to arrive (95% CI = 0,6) with
a total of 2.17 days of active infection remaining. If a WNV outbreak were to occur further
north in France, the risk of introduction would increase substantially (Bessell et al. 2014).
Once introduction has occurred, the resident bird population could become infected and act
as an overwinter reservoir (Dawson et al. 2007), or the virus may overwinter in the mosquito
population (Nelms et al. 2013).

Alternative WNV transmission pathways are host-host and vector-vector transmission. Host-
host transmission is thought to be possible through faecal shedding at communal roost sites
(Dawson et al. 2007; Hinton et al. 2015), predation (Garmendia et al. 2000), or scavenging of
infectious carcasses (Komar et al. 2003). This is believed to occur at lower rates than vector-
host transmission but may still contribute to disease spread (Komar et al. 2003). Hartemink
et al. (2007) found that host-host transmission had more profound impacts on calculated R0

values than vertical transmission in vectors. In particular, host-host transmission may be
an important pathway by which the virus could overwinter in resident bird populations when
mosquito populations are not active (Dawson et al. 2007). Finally, vertical transmission from
infected adult mosquitoes to their offspring has been shown to occur in WNV-infected Cx.

pipiens at low rates (0.04-8.1 infected adults per 1000 eggs) (Dohm et al. 2002a; Anderson
and Main 2006; Nelms et al. 2013). It is likely that vertical transmission would be dwarfed
by vector-host transmission cycles during the biting season (Komar et al. 2003) but it would
certainly be a key process mediating disease persistence between years if WNV were to suc-
cessfully overwinter in diapausing adult mosquitoes (Anderson and Main 2006; Andreadis
et al. 2010).

5.2 Methods: Mathematical framework

The extension made to the Cx. pipiens population model in this Chapter is that the adult stage
is split into three separate stages, to explicitly model susceptible, exposed and infectious
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adults, using the SEIR framework as shown in Figure 5.4. All vector life cycle functional
forms are as described in the updated model in Chapter 4 (Section 4.3), with the exception
of density-dependent mortality due to predation, which is assumed not to experience sea-
sonal forcing, as discussed in Appendix C. The assumption that predator abundance remains
a constant proportion of larval abundance throughout the year ensures that population size
is regulated during spring under climate warming scenarios, when temperature conditions
become favourable for mosquito development. In the absence of disease, the exposed and
infectious adult stages will remain empty and the model framework will collapse back to
that described in Chapter 4. The extended mosquito population model is linked with a bird
population, which is split according to the SIR framework, such that birds are either sus-
ceptible, infectious or recovered stages. I model recovered birds, rather than removed birds,
because recovered birds develop immunity and can still be bitten by mosquitoes, acting as
incompetent hosts within the population. The bird population exhibits seasonality through a
seasonally varying birth rate, which restricts births to occur in spring and summer. Disease
transmission between the vector and host populations occurs through infectious mosquitoes
feeding on susceptible birds and susceptible mosquitoes feeding on infectious birds (Figure
5.4). Disease transmission within the host population can also occur through host to host
transmission and in the vector population through vertical transmission. I first describe the
seasonal dynamics of the bird population (Section 5.2.1). I then give a detailed description
of how the system of DDEs used to describe mosquito dynamics has been updated to include
disease transmission (Section 5.2.2). Finally, I describe the disease transmission processes
within the bird population (Section 5.2.3). For simplicity, I do not explicitly model the hu-
man population. Instead I use the density of infectious adult mosquitoes and the minimum
infection rate (MIR), which is the number of infectious mosquitoes per 1000 adult females,
to infer the relative risk of human infection.

5.2.1 Host seasonality and migration

The bird population is modelled using a system of ODEs, which describe the dynamics of
susceptible, infectious and recovered birds through time. Stage-structure was not included
in the bird dynamics due to the wide range of species which will be involved in WNV trans-
mission (Komar et al. 2003). The wide range of species means that attempting to explicitly
capture the dynamics of the full range of host species was deemed too complex for this
study. Instead I perform an exploratory analysis, modelling a general trend of bird season-
ality throughout the season. In doing so, the following assumptions about avian population
dynamics were made:
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Figure 5.4: Flowchart showing the model structure and highlighting the disease-related parameters. All stages have an associated death rate, which is not
displayed here for clarity. All disease transmission processes are shown by dashed lines, whilst life cycle processes are shown by solid lines.
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• In temperate latitudes birds generally only breed in spring and summer (Crick et al.
1993), so births were assumed to occur seasonally during these months.

• There is evidence of slight seasonal mortality patterns in British bird populations, with
mortality peaking during the breeding season (Dobson 1987). It was assumed that
density-independent bird mortality occurred at a constant rate and any seasonality in
mortality was due to density-dependent mortality in the breeding season (Sæther et al.
2016).

• It has been shown that survival of fledglings is strongly regulated by density-dependent
competition for resources across a range of bird populations (Sæther et al. 2016). I as-
sume that density-dependent mortality, due to competition for resources, occurs during
the breeding season when the number of fledglings is high. Density-dependence was
not considered to influence the birth rate as density-dependent survival has been shown
to have a much greater impact on bird dynamics than fecundity, when populations are
at carrying capacity in the mid-to-late summer (Sæther et al. 2016).

• Bird migration to and from the UK will influence seasonal patterns of abundance of
various bird species and consequently the overall avian abundance (Newton 2007).
However, attempting to explicitly model these processes would greatly increase the
complexity of the model. Consequently, I make the simplifying assumption that the
arrival and departure of migratory birds does not influence patterns of seasonal abun-
dance but will act as a mechanism by which infection can be introduced.

The total bird population, in the absence of infection, NB(t), can be described by a single
ODE,

dNB

dt
= bB(t)NB(t) − (δB + h(t)NB(t))NB(t), (5.2)

such that bB(t) is the avian birth rate, δB, is the density-independent death rate of uninfected
birds and h(t) is the density-dependent avian death rate. The solution of this ODE, for the
parameter values described in Section 5.2.1, is shown in Figure 5.5 (b).

Avian birth and death rates

Births were assumed to occur seasonally according to a periodic Gaussian function (Figure
5.5 (a)). This functional form has been used to accurately capture seasonal birth pulses in a
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range of mammal species by Peel et al. (2014), though there is no reason why, given appro-
priate parameterisation, the function would not be appropriate for describing bird dynamics.
The function is given by

bB(t) =
1

2
kB exp(−sB (cos(

πt + φB
365

))

2

) . (5.3)

Here kB(= 0.15 days−1) is a scaling factor proportional to the annual per capita birth rate,
φB(= 50 days) gives the timing of the birth pulse, sB(= 10) controls the duration of the birth
pulse and the factor of 1

2 reflects that only female birds lay eggs (assuming a 1:1 sex ratio
in the bird population). Figure 5.5 (a) shows the avian birth function, bB(t). Parameters
were chosen to reflect the breeding season observed in UK house sparrow populations, as
house sparrows are the most common UK bird species (RSPB 2017) and a competent host
for WNV (Komar et al. 2003). This parameterisation gives a breeding season running from
April to August, with ten eggs laid per female bird in this time (Figure 5.5 (a)), which is
common for sparrow populations (RSPB 2017).

Given the assumption that there is no seasonality in density-independent death rates, a con-
stant death rate, δB(= 6.85 × 10−4 day−1), corresponding to the house sparrow’s expected
lifespan of 4 years, was assumed. I assume that density-dependent mortality, h(t), due to
competition for resources, occurs during the breeding season (Figure 5.5 (a)) when the num-
ber of fledglings is high, such that h(t) =

b(t)
K , where K is the carrying capacity of the

population. In the population model, bird and mosquito abundances are assumed to be inde-
pendent of one another. Consequently, the vector-to-host ratio is assumed in advance, via a
carrying capacity for the bird population. The determination of the vector-host ratio is dis-
cussed in detail in Section 5.3.2. Given this parameterisation, an example of the annual bird
population cycle without infection is shown in Figure 5.5 (b).

5.2.2 Vector seasonality and disease transmission dynamics

In extending the Cx. pipiens population model in Chapter 4 to explicitly include disease
transmission processes it was necessary to make a number of assumptions regarding the
effects of infection on the vector population and the biting process:

• Infection with mosquito-borne diseases, such as malaria and dengue, has been shown
to alter fitness and behaviour in a range of mosquito species, primarily through sur-
vival, fecundity, host location, and probing behaviour (Maier and Seitz 1987; Maciel-
de-Freitas et al. 2011). However, the effects of WNV infection on mosquito fitness
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Figure 5.5: Bird dynamics: (a) shows the bird birth function, bB(t), given by Equation 5.3, with
the dotted line depicting the start and end of the breeding season and (b) showns an example annual
cycle of bird abundance by solving Equation 5.2.

have not been well studied (Coffey and Reisen 2016), making quantification of any
such relationships problematic. Consequently, WNV infection is assumed not to in-
fluence the vital rates or behaviour of mosquitoes. This means that egg-laying rates,
gonotrophic cycle length (and consequently biting rates), adult mortality, and survival
and development of vertically infected immatures are unaffected by infection status.

• Infectious mosquitoes were not able to recover from WNV infection (Kilpatrick et al.
2007).

• Host-frequency-dependent transmission is assumed, meaning that the biting rate by
vectors is constant across host densities, and the biting rate experienced by hosts in-
creases with vector density. This is consistent with the majority of WNV models, as
mosquitoes are expected to bite once per gonotrophic cycle regardless of host densities
(Wonham et al. 2006).

• Laboratory studies have not uncovered a relationship between larval rearing tempera-
ture and WNV infection, dissemination or transmission rates in Cx. tarsalis (Dodson
et al. 2012). Further, no evidence has been shown to suggest a relationship between
ambient temperature and either host-vector or vector-host transmission probabilities,
which is thought to be dependent on viremia levels in the infectious host or vector (Ko-
mar et al. 2003; Kilpatrick et al. 2007). Consequently, it is assumed that transmission
probability is independent of temperature.

• Vertical transmission has been shown to occur in Cx. pipiens infected with WNV
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(Nelms et al. 2013) and is assumed to occur from infectious mosquitoes to their off-
spring with probability pvt.

Given these assumptions it is possible to extend the Cx. pipiens population abundance model
from Chapter 4 to include disease transmission by splitting the adult stage into susceptible,
exposed and infectious individuals. The state equations corresponding to eggs, E(t), lar-
vae, L(t), pupae, P (t), susceptible, AS(t), exposed, AE(t), and infectious, AI(t), adult
mosquitoes are given by

dE

dt
= RE(t) −ME(t) − δE(T (t))E(t),

dL

dt
= RL(t) −ML(t) − (δL(T (t)) + δπ(L(t)))L(t),

dP

dt
= RP (t) −MP (t) − δP (T (t))P (t),

dAS
dt

= RAS(t) −ΠAS(t) − δA(T (t))AS(t),

dAE
dt

= RAE(t) −MAE(t) − δA(T (t))AE(t),

dAI
dt

= RAI(t) − δA(T (t))AI(t)

(5.4)

where δi(T (t)) (i = E,L,P,A) represents the stage-specific, density-independent, temperature-
driven, mortality rate, δπ(L(t)) represents the larval mortality rate due to external predation,
Ri(t) and Mi(t) represent the rate of recruitment to and maturation from stage i respec-
tively, and ΠAS(t) gives the rate of transition of susceptible to exposed vectors. Transition
from susceptible to exposed adult vectors occurs instantaneously upon biting an infectious
host, rather than after a defined time period, hence the distinction between transition and
maturation. In the absence of disease, the exposed and infectious stages would be zero, as
would transition from susceptible adults to exposed adults, ΠAS(t). Consequently, the Equa-
tion 5.4 would be unchanged from Chapter 4 (Equation 4.1). The recruitment and maturation
equations for the immature stages are defined as

RE(t) = bA(t)(AS(t) +AE(t) +AI(t)),

ME(t) = RL(t) = RE(t − τE(t))SE(t)
gE(T (t))

gE(T (t − τE(t)))
,

ML(t) = RP (t) = RL(t − τL(t))SL(t)
gL(T (t))

gL(T (t − τL(t)))
,

MP (t) = RP (t − τP (t))SP (t)
gP (T (t))

gP (T (t − τP (t)))

(5.5)
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with bA(t) as the egg-laying rate of adults in each adult stage at time t, τi(t) and Si(t) as
the stage duration and survival of individuals in stage i (i = E,L,P ) at time t respectively
and gi(T (t)) as the development rate of individuals in stage i at temperature T (t). Given
the assumption that the adult egg-laying rate is unaffected by infection status (Coffey and
Reisen 2016), and the fact that both infected and uninfected individuals are grouped into
the same immature classes (Figure 5.4), RE(t) can be calculated using the total number of
adults across the infection classes and the egg-laying rate (Appendix B). The proportion of
individuals which survive from recruitment into one immature class, to maturation to the
next, is defined by the following system of DDEs (unchanged from Equation 4.3),

dSE
dt

= SE(t)(
gE(T (t))δE(T (t − τE(t)))

gE(T (t − τE(t)))
− δE(T (t))) ,

dSL
dt

= SL(t)[(δπ(t − τL(t)) + δL(T (t − τL(t))))(
gL(T (t))

gL(T (t − τL(t)))
)

− δπ(L(t)) − δL(T (t))],

dSP
dt

= SP (t)(
gP (T (t))δP (T (t − τP (t)))

gP (T (t − τP (t)))
− δP (T (t))) .

(5.6)

The rate of change of the duration of the three immature life stages is given by

dτi(t)

dt
= 1 −

gi(T (t))

gi(T (t − τi(t)))
. (5.7)

where i = E,L,P . Here the development rate, gi(T (t)), is dependent on temperature. The
development of the gonotrophic cycle is given by,

dτG(t)

dt
= 1 −

gG(T (t))

gG(T (t − τG(t)))
, (5.8)

where G denotes that we are concerned with the gonotrophic cycle.

Using the same approach as was used to define the gonotrophic cycle length, one can define
an analogous delay differential equation for the duration of the extrinsic incubation period.
The EIP is defined as the length of time between a mosquito contracting the virus by tak-
ing an infected blood meal and the mosquito becoming infectious itself. One can consider
the growth from some “development point", di, when the susceptible mosquito becomes ex-
posed by taking an infected blood meal, to some later point, di+1 when the exposed mosquito
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becomes infectious. By defining these development points one can then follow through the
same arguments as for the durations of the immature life stages and the gonotrophic cycle to
give

dτAE
dt

= 1 −
gAE(T (t))

gAE(T (t − τAE(t)))
, (5.9)

where, gAE(T (t)) gives the rate of progression of the EIP and τAE(t) refers to the duration
of the EIP at temperature T (t) and time t respectively.

The survival of adult mosquitoes through the exposed class can be defined analogously to
the survival through the egg and pupal classes, as there is no density-dependent mortality in
adult stages, giving

dSAE
dt

= SAE(t)(
gAE(T (t))δA(T (t − τAE(t)))

gAE(T (t − τAE(t)))
− δA(T (t))) . (5.10)

The recruitment, maturation and transition equations for the adult mosquito stages can now
be defined. Firstly, recruits into susceptible adults are given by

RAS(t) =MP (t)(1 − V(t)), (5.11)

where, (1 − V(t)) gives the proportion of emergent adult mosquitoes which are not infected
through vertical transmission from their parents, at time t. The proportion of vertically in-
fected emergent adults at time t, V(t), is given by the proportion of emergent adults whose
parents were infectious, multiplied by the probability of vertical transmission (Nelms et al.
2013),

V(t) =
AI(t − τI(t))

NV (t − τI(t))
pvt, (5.12)

where pvt is the probability of vertical transmission from parent to child, NV (t)(= AS(t) +

AE(t) +AI(t)) is the total number of adults vectors across all infection states at time t and
τI(t) is the time required for development through all immature stages,

τI(t) = τP (t) + τL(t − τP (t)) + τE(t − τP (t) − τL(t − τP (t))). (5.13)
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It is shown in Appendix B that modelling vertical transmission in this way is equivalent to in-
cluding a new set of immature stages for vertically infected individuals, given the assumption
that infection status does not affect immature development or survival, as previously stated
(Coffey and Reisen 2016). Given that recruitment into the exposed vector class, RAE(t),
can only occur by taking a blood meal from an infectious host, and that host-frequency-
dependent transmission is assumed, the rate of transition out of susceptible mosquitoes is
equal to the rate of recruitment into exposed mosquitoes, such that

ΠAS(t) = RAE(t) = B(t)AS(t)
TBMIB(t)

NB(t)
. (5.14)

Here B(t) is the per capita mosquito biting rate at time, t, such that B(t) = 1
2τG(t) , as adult

females bite once per gonotrophic cycle. The total number of birds at time t is given by
NB(t). Birds are considered to be susceptible, infectious or recovered at any given point in
time, such that such that NB(t) = SB(t)+ IB(t)+RB(t) where SB(t), IB(t) and RB(t) are
the number of susceptible, infectious birds and recovered birds, respectively. The transmis-
sion probability from infected birds to susceptible mosquitoes is given by TBM .

Maturation from the exposed vector class occurs upon completion of the EIP and is given
by the recruits into the exposed stage the length of the EIP, τAE(t), ago, multiplied by the
survival of exposed adults, SAE(t), and a term reflecting changes in the stage duration, as
observed for the immature stages (Equation 5.5),

MAE(t) = RAE(t − τAE(t))SAE(t)
gAE(T (t))

gAE(T (t − τAE(t)))
. (5.15)

Finally, recruitment into infectious adult vectors is given by

RAI(t) =MAE(t) +MP (t)V(t), (5.16)

such that recruits are comprised of maturations from the exposed stage plus the number of
newly emergent adults which are vertically infected from their parents.
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These terms can be combined to give the following set of equations for the adult infection
dynamics,

dAS
dt

=

emergent uninfected pupae

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

MP (t)(1 − V(t)) −

host-to-vector transmission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B(t)AS(t)
TBMIB(t)

NB(t)
−

death
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

δA(t, T (t))AS(t),

dAE
dt

=

host-to-vector transmission
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B(t)AS(t)
TBMIB(t)

NB(t)
−

maturation of exposed mosquitoes
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RAE(t − τAE(t))SAE(t)
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−

death
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δA(t, T (t))AE(t),

dAI
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=

maturation of exposed mosquitoes
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RAE(t − τAE(t))SAE(t)
gAE(t)

gAE(t − τAE(t))
+

emergent infected pupae

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

MP (t)V(t) −

death
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

δA(t, T (t))AI(t) .

(5.17)

5.2.3 Host SIR model

The bird population can be split into susceptible, infectious and recovered birds, using the
SIR framework first described in Kermack and McKendrick (1927). A system of ODEs
is used to describe the bird population, with stage transitions which occur instantaneously
upon biting, due to the short time period required for birds to develop high viremia, as pre-
viously discussed (Section 5.2.1). The host competencies of these species is unknown in
many cases due to the lack of research into WNV infection in resident UK bird populations.
Consequently, I model the bird population as a single species, taking values for transmis-
sion processes which correspond to average reported values across many species. Avian
transmission processes are modelled subject to the following assumptions

• Bird species which act as hosts of WNV typically exhibit high viremia within a day of
contracting the virus (Komar et al. 2003). No studies have investigated the spread of
the virus within birds at a time scale of less than one day. Given this, and the speed
with which birds have been shown to become infectious, I assume that infection of
birds happens instantaneously, meaning that an exposed period was not required for
the bird population. Infectious birds then recover at a constant rate, R.

• Recovered birds have been shown to develop WNV antibodies (Gibbs et al. 2005;
Gibbs et al. 2006; Nemeth et al. 2009) and therefore are assumed to be immune to
WNV and will not become infectious if bitten by an infectious vector.



Chapter 5. Impacts of current and future temperatures on UK WNV transmission 197

• McKee et al. (2015) showed that WNV antibodies decay in free-ranging birds, with an
average period of 2 years. Given that I only investigate results in the year immediately
following WNV introduction, any possible loss of immunity in subsequent seasons is
ignored.

• Gibbs et al. (2005) showed that maternal antibodies were present for the first few
weeks of rock pigeons lives. However, the short duration of these antibodies presence
combined with the lack of age-structure in the modelled avian population means that I
assume WNV immunity cannot be inherited within bird populations.

• Host-host transmission (Komar et al. 2003) is assumed to occur between infectious
and susceptible birds.

• WNV infection is known to result in increased mortality in certain bird species (Komar
et al. 2003). Consequently, a WNV-induced death rate is assumed to affect infectious
birds.

• Mosquitoes are known to be more attracted to malaria-infected birds than uninfected
birds (Cornet et al. 2013). However, similar studies investigating WNV infection are
yet to be carried out. As such, mosquitoes are assumed to feed on each infection
class of bird according to its relative abundance in the bird population, independent of
infection status.

• The ability of birds to act as hosts of WNV has been shown to vary across species
(Komar et al. 2003). For simplicity, I assume that all birds are equally competent hosts
of WNV and conduct a sensitivity analysis on this competence level.

• In absence of data allowing quantification of any effects of WNV infection on ability
to compete for resources I assume that density-dependent mortality affects all infection
classes of birds equally.

Given these assumptions, the rate of change of susceptible birds at time t is given by

dSB(t)

dt
=

births
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

bB(t)NB(t)−

vector-to-host transmission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B(t)TMBAI(t)
SB(t)

NB(t)
−

host-host transmission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

phh
IB(t)SB(t)

NB(t)

− (δB − h(t)NB(t))SB(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

death

,

(5.18)

where phh is the host-host transmission rate and TMB is the transmission probability when
an infected mosquito bites a susceptible bird. All births enter the susceptible stage because
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of the assumption that newborns could not inherit WNV immunity from their parents. The
infectious bird population is described by

dIB(t)

dt
=

vector-to-host transmission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B(t)TMBAI(t)
SB(t)

NB(t)
+

host-host transmission
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

phh
IB(t)SB(t)

NB(t)
−

death
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(δB + δWNV − h(t)NB(t))IB(t)

−RIB(t)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

recovery

,

(5.19)

where R gives the rate of recovery of WNV-infected birds and δWNV gives the rate of death
due to WNV. Finally, the recovered bird population is modelled by

dRB(t)

dt
=

recovery

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ

RIB(t)−

death
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(δB − h(t)NB(t))RB(t) .
(5.20)

5.3 Methods: Vector and WNV functional forms and

parametrisation

5.3.1 Mosquito functional forms and parametrisation

All vector life cycle functional forms are as described in the updated model in Chapter 4
(Section 4.3), with the exception of density-dependent mortality due to predation, which is
assumed not to experience seasonal forcing, as discussed in Appendix C. Only the functional
form for the EIP has not been defined previously.

Extrinsic incubation period (EIP)

The EIP is the time required for the virus to replicate in the mosquito to a level where
mosquitoes become infectious. This time period is strongly dependent on temperature, with
higher temperatures leading to shorter EIPs (Dohm et al. 2002b; Reisen et al. 2006a). The
majority of WNV models which incorporate an exposed stage in the vector population as-
sume a fixed duration for the EIP (Table 5.1). Temperatures in the UK show fluctuations
which include values both within and outwith the range for which incubation of the virus is
possible (Figure 5.6). Consequently, it is likely that intra-annual temperature variation will
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Figure 5.6: Field site air temperatures: The air temperatures at the Wallingford field site in 2015
are shown. The blue line shows the lower thermal threshold at which progression of the EIP can
take place. The red line at 30 ○C represents the highest temperature at which the EIP duration was
recorded in the laboratory experiments (Reisen et al. 2006a).

be an important determinant of transmission potential throughout the season.

Many studies compare vector competence across mosquito species by investigating the pro-
portion of exposed mosquitoes which have become infectious after a given time (Jupp and
McIntosh 1970; Jupp 1976; Turell et al. 2001; Sardelis et al. 2001; Tiawsirisup et al. 2004;
Turell et al. 2005; Erickson et al. 2006), rather than intensively studying transmission for one
species. Consequently, these studies typically compare competencies by examining the dif-
ference in infection prevalence across species held for a fixed time at one fixed temperature.
Such studies allow for estimation of vector-host transmission probabilities at fixed tempera-
tures but do not enable parameterisation of a temperature-EIP relationship. The relationship
between temperature and WNV EIP duration has been studied relatively infrequently across
a small number of mosquito species (Cornel et al. 1993; Dohm et al. 2002b; Reisen et al.
2006a). The most extensive such study, in terms of the range of temperatures examined
and the sampled number of mosquitoes at each temperature, was carried out by Reisen et
al. (2006a). The authors examined incubation times in Cx. tarsalis at 10,14,18,22,26 and
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Figure 5.7: EIP rate: The EIP progression rate at a range of temperatures for Cx. tarsalis is shown
in by circles, using data from (Reisen et al. 2006a). The crosses correspond to EIP estimates for Cx.
pipiens (Dohm et al. 2002b; Goddard et al. 2003). The values correspond to the median EIP observed
at each temperature.

30 ○C, finding that the rate of incubation increased linearly with temperature according to

gAE(T (t)) =

⎧⎪⎪
⎨
⎪⎪⎩

αXT (t) − βX ∶ T (t) ≥ 14.35 ○C,

0 ∶ T (t) < 14.35 ○C,
(5.21)

where αX and βX are fitted constants (Figure 5.7).

Figure 5.7 shows that the EIP calculated for Cx. pipiens (Dohm et al. 2002b; Goddard et al.
2003) at three temperatures gives good agreement with the Cx. tarsalis data. Dohm et al.
(2002b) also show that Cx. pipiens can complete the EIP at lower temperatures of 18 ○C and
20 ○C, however the authors’ laboratory experiment did not track the population for sufficient
time at these temperatures to provide an estimate of the EIP which was suitable for compar-
ison with the Cx. tarsalis data. Since Cx. tarsalis shares its North American range with Cx.

pipiens, both species have been shown to exhibit similar EIPs at similar temperatures, and
there is a lack of appropriate Cx. pipiens data, I assume that the published temperature-EIP
relationship for Cx. tarsalis can be used in this case.
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I make a slight modification to the linear relationship in Equation 5.21, such that

gAE(T (t)) =

⎧⎪⎪
⎨
⎪⎪⎩

αXT (t) − βX ∶ T (t) ≥ 14.89 ○C,

0.005 ∶ T (t) < 14.89 ○C,
(5.22)

thus constraining the rate of EIP progression not to drop below 0.005 to avoid dividing by
zero when calculating the stage duration (Equation 5.9). The lower bound of 0.005 results
in an EIP of 200 days at low temperatures, which will not affect transmission within a single
season. EIP duration above 30 ○C has not been measured in the laboratory. Consequently,
I assume a continuation of the stated linear relationship at temperatures above 30 ○C. This
is unlikely to affect results due to the rarity of temperatures exceeding this threshold in the
UK (Figure 5.6) and the high mosquito adult mortality rate at temperatures above 30 ○C

(Equation 4.10).

5.3.2 WNV transmission parameters and processes

The full set of WNV transmission parameter values used in the model, alongside the ranges
observed in the literature are presented in Table 5.2. In the subsections below I present a
discussion of the parameter values given in Table 5.2.

Process Parameter Value Range Source
Vector-host transmission TMB 0.88 0.86 − 0.88 1-2
Host-vector transmission TBM 0.4 0-0.68 3

Host-host transmission (day−1) phh 0.33 - 3-4
Vertical transmission pvt 0.004 0.00004 − 0.0081 5-9

Recovery (day−1) R 0.25 0.18 − 1 3
WNV mortality (day−1) δWNV 0.16 0.11 − 0.22 3

Vector-to-host ratio ι ∼ 5 0.8-8.9 3,11,15
No. of infected migrants Minf 2 0 − 50 12

Infection arrival date tarr 31st May 1st Mar - 31 May 13

EIP parameters (degrees−1 day−1)
αX 0.0092 - 14
βX 0.132 - 14

Table 5.2: Transmission parameters: A table showing the values taken for the various disease
transmission processes, alongside the range of these parameters found in the literature. Sources: 1
- Turell et al. (2000), 2 - Turell et al. (2001), 3 - Komar et al. (2003), 4 - McLean et al. (2001), 5
- Nelms et al. (2013), 6 - Anderson and Main (2006), 7 - Anderson et al. (2008), 8 - Dohm et al.
(2002a), 9 - Reisen et al. (2006b), 10 - McKee et al. (2015), 11 - Cruz-Pacheco et al. (2005), 12 -
Bessell et al. (2014), 13 - BTO (2017), 14 - Reisen et al. (2006a), 15 - Durand et al. (2010).
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Vector-host ratios

Vector-host ratios are often overlooked in WNV models due to difficulties in their estima-
tion, with half of the models in Table 5.1 making no reference to the choice of vector-host
ratio or choosing arbitrary values which are not grounded in field data. Other models jus-
tify their choice of vector-host ratio by referencing previous modelling studies (Maidana and
Yang 2009; Marini et al. 2017), which based their values on laboratory experiments that are
unlikely to be representative of field conditions (Cruz-Pacheco et al. 2005). This leads to a
wide range of vector host ratios being used across WNV models, with those studies detailed
in Table 5.1 using values in the range of 0.33-5000 vectors per host. However, these values
are often not well supported by field observations.

Durand et al. (2010) estimated vector-host ratios at a European site and at both dry and wet
sites in Africa, using observed seroprevalence data in bird populations. The authors assumed
that the numbers of tested and seropositive birds arose from a binomial process, such that
maximisation of the log-likelihood of this data, given estimated transmission parameters,
could enable estimation of the relative sizes of both populations in the field. It was found that
the estimated vector-host ratio was highest for the dry African site (14.1,95% CI: 7.5–26.5)
and lowest for the European site (2.6,95% CI: 0.8–8.9), with the range of estimates across
all sites as 0.8-26.5.

The majority of WNV models do not incorporate seasonality in the vector or host populations
(Table 5.1), meaning that the vector-host ratio can be considered as static. In reality, by in-
cluding the effects of seasonality on population sizes, particularly in vectors, the vector-host
ratio will show intra- and inter-annual fluctuations. I choose the avian carrying capacity such
that the vector-host ratio is approximately 5 at the peak in mosquito abundance, given the
conditions at the Wallingford field site. Given the variation in mosquito abundance through-
out the season, this means that vector-host ratio is approximately 2.5 at the start of the biting
season, though this value is dependent on the parameter values chosen. These values corre-
spond with the estimated range of vector-host ratios for the European site studied by Durand
et al. (2010). I perform a sensitivity analysis on vector-host ratios from 0 to 20 to understand
the effects of varying the vector-host ratio on abundance of infectious mosquitoes (Section
5.5.2).
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WNV transmission pathways

Mosquito to bird transmission probability, TMB, has been shown to take values in the range
0.86-0.88 in the literature (Turell et al. 2000; Turell et al. 2001). I chose to use a baseline
value of 0.88, presented in Turell et al. (2001), as the sample size in this study was over twice
the sample size in Turell et al. (2000), which presented a very similar estimate of 0.86.

Komar et al. (2003) found in a laboratory study that the host competence, which gives the
transmission probability from an infectious bird to a susceptible host, TBM , varied in the
range 0-0.68 across 25 bird species. I choose a baseline value of 0.4 as this fits well with the
observed transmission rates for many of the studied bird species.

Rates of host-host transmission may vary by bird species, however relatively few studies have
quantified transmission rates (Dawson et al. 2007; Hinton et al. 2015). The baseline host-host
transmission rate was taken as the reported contact transmission rate in crows (phh = 0.33)
after Hartemink et al. (2007).

Vertical transmission of WNV from infected adult female mosquitoes to their offspring has
been shown to occur in Cx. pipiens at low rates (0.04-8.1 infected adults per 1000 eggs)
(Dohm et al. 2002a; Anderson and Main 2006; Reisen et al. 2006b; Anderson et al. 2008;
Nelms et al. 2013). Consequently, I assume vertical transmission occurs at a low rate, given
in Table 5.2.

Host WNV recovery and mortality rates

There is some evidence that more highly competent hosts of the virus may recover more
slowly from infection, due to the increased viremia levels in their system (Komar et al.
2003). However, recorded mean recovery times rarely exceed 4 days for the most competent
species, so I took the conservative baseline estimate that all species recovered in line with
the rate observed in highly competent species.

Komar et al. (2003) observed mean time periods from infection to death ranging from 4.5

to 9 days across eight bird species following infection from WNV. I choose a baseline value
corresponding to a mean longevity of 6 days after infection, as this was the most commonly
observed time of death.
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Arrival of WNV in the population

WNV is assumed to be introduced to the bird population through the arrival of infected mi-
gratory birds, as discussed in Bessell et al. (2014). Given the complexities of modelling
migration across a wide range of bird species, I make the simplifying assumption that the
arrival and departure of migratory birds does not influence patterns of seasonal abundance of
the total bird population. Given this, the arrival of WNV in the model occurs as a result of a
perturbation to the system, where the number of infectious birds arriving,Minf , is added to
the infectious bird class, IB(t), at some time, tarr. The number of infectious birds arriving,
M, is taken from the findings of Bessell et al. (2014), who simulated the arrival of WNV-
infected birds in the UK following outbreaks in different regions of France. These infectious
individuals are added to the system using the event finder and change function in the DDE
solver code (Thompson and Shampine 2004). The range of these values is given in Table 5.2.
Infectious birds are assumed to arrive between the 1st of March and the 31st of May, based
on data from the British Trust for Ornithology (BTO 2017). I chose the latest anticipated
arrival time of May 31st as the baseline value to ensure that infection arrival occurred after
adult emergence of the first spring generation. I assume that only one introduction will occur
within a given year. I carry out a detailed investigation of the effect of the infection arrival
time on disease transmission.

As previously discussed in Section 5.2.3, I assume that mosquitoes bite each infection class
of bird according to the relative abundance of that infection class in the population. Con-
sequently, the total size of the bird population to which the infectious individuals are added
will affect the initial prevalence of infection in the bird population and the rate of disease
transmission immediately following virus introduction. In field conditions, the size of the
total bird population at the introduction site will be variable, dependent on the destination of
the infected birds, which will depend on the species of the infected migrants. Therefore, a
sensitivity analysis investigating the effect of infection rate in the bird population, at the time
of virus introduction, Pinf , was conducted.

5.3.3 Proportion of infectious mosquitoes versus infectious mos-
quito density

Infection in the vector population is commonly presented either as the MIR or as the density
of infectious mosquitoes within a given region. The density of infectious mosquitoes is the
more informative measure when considering a specific region, for which one has confidence
in the estimate of the total mosquito population size or density. In such cases, by considering
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the density of infectious individuals, it is possible to understand the number of infectious
bites which are expected to occur in a given time period and to predict the risk to humans.
However, in the case where considerations are not being made about a specific region, or
where information about mosquito habitat in that region is lacking, the total population size
or density will not be well known. In this case, the MIR may be the more appropriate mea-
sure of infection risk to humans because it will not be influenced by uncertain estimates of
population size.

The presence and volume of larval breeding sites will vary substantially both temporally and
geographically across the UK. The number and size of breeding sites in a given area will sub-
stantially influence the model estimates of mosquito population size and therefore density of
infectious mosquitoes. Further, changes in the population size induced by variation in breed-
ing site availability will affect vector-host ratios. In order to estimate infectious mosquito
density it would be necessary to determine and include the volume of larval habitat for the
region in question. I make the simplifying assumption of a closed system, where the only
breeding habitat available is provided by one water butt, as used in the fieldwork. Given a
flight range of 1.25km for Cx. pipiens (Ciota et al. 2012; Hamer et al. 2014), this corresponds
to the expected number of infectious mosquitoes per 5km2. This allows comparisons to be
drawn between simulations and the relative sizes of infectious populations to be determined.
I also present results using the MIR, for comparison with observed infection rates across the
Cx. pipiens range.

5.4 Methods: Model history and initial conditions

The inoculation and history processes remain unchanged from those used in Section 4.3.2.
For historical values, t < 0, it was assumed that temperatures were constant and equal to
the first temperature observation corresponding t = 0. The adult mosquito population was
inoculated on the 1st of January 2015 with 5000 individuals. Simulations were run over two
years, with infection introduced and results studied for the second year. This allowed effects
of each temperature regime to be studied once the population had settled to a size determined
by the predicted temperature conditions.

5.4.1 Aims and simulation plan

I now carry out four groups of simulations to investigate potential transmission risks of WNV
in the UK under different scenarios. In all cases, I use the parameter values specified in
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Tables 4.1 and 5.2 and the highest resolution water and air temperatures experienced at the
CEH Wallingford field site in 2015, unless otherwise stated.

1. WNV transmission predictions for CEH Wallingford temperature conditions: I
present the WNV transmission dynamics following an introduction of WNV (on May
31st) given temperature conditions measured at the Wallingford field site in 2015. In
doing so, I explore whether or not disease transmission is thought to be possible under
current UK field conditions.

2. Sensitivity of disease transmission to WNV transmission parameters: I investigate
the sensitivity of infectious vector density to changes in disease transmission parame-
ters by varying the parameters within their estimated ranges, as given in Table 5.2. I
relate the magnitude of the changes in infectious mosquito density to the uncertainty
in estimation of each parameter. The changes to infectious mosquito density are quan-
tified by examining the changes in both the peak density of infectious mosquitoes on
a given day and the average density of infectious mosquitoes per day during the biting
season. This allowed me to understand if any possible predicted WNV outbreaks were
strongly dependent on estimated values of particular transmission parameters. In do-
ing this I place particular emphasis on the effect of timing of introduction of the virus
on subsequent transmission.

3. Contributions of EIP duration and biting rate to WNV transmission: I investigate
the relative contributions of the EIP duration and the biting rate to potential WNV
transmission (Figure 5.11) and explore the effects of the common model assumption
that these processes can be approximated using constant values. I do this by holding
each of these processes constant at a commonly used value from the literature in turn
and running simulations as described above. I investigate the effects of these parame-
ters on the percentage of birds which are infectious and the MIR in vectors.

4. Potential WNV transmission under warming scenarios: Finally, I investigate warm-
ing scenarios to understand the predicted impacts of anticipated temperature increases
on the likelihood that WNV will be established in the UK between now and the 2080s.
I consider the effects of climate warming alongside the effects of varying the time of
introduction of WNV.
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5.5 Results

5.5.1 WNV transmission predictions for temperature conditions
measured at the Wallingford field site

Figure 5.8 shows the full time series for the density of each mosquito life stage and each
mosquito and avian infection class. Figure 5.8 (a)-(d) shows that mosquito seasonal abun-
dance patterns are not substantially changed from the disease-free case (Figure C.1), as the
predicted density of exposed and infectious mosquitoes is well below 1 throughout the full
year (Figure 5.8 (e)-(f)). Similarly, seasonal abundance of susceptible birds (Figure 5.8 (g)
shows negligible difference to the pattern of abundance in the absence of infection (Figure
5.5 (b)). Infectious birds show a small peak in abundance at the introduction time (Figure
5.8 (h)), however these infectious birds quickly recover or die, leaving low rates of infec-
tion in the bird population. I predict that an outbreak of WNV would not be possible at the
Wallingford field site if WNV were to be introduced at the end of May.

5.5.2 Sensitivity analysis of WNV-related parameters

I conducted a sensitivity analysis, following WNV introduction at the end of May, to quantify
the influence exerted by each of the WNV transmission parameters in Table 5.2 on infectious
mosquito density. I investigated if the prediction that WNV outbreaks would not occur at the
Wallingford field site would be altered by changing any of these transmission parameters
within their known ranges. All simulations are run according to the procedure and using pa-
rameter values described in Sections 5.4 and 5.4.1, with only the parameter of interest varied
in each case.

The infectious mosquito density was more sensitive to the probability of host-vector trans-
mission, TBM , across the parameter range studied than the probability of vector-host trans-
mission, TMB (Figure 5.9 (a)-(b)). The range of values of vector-host transmission from
the literature was very small (0.86-0.88 Table 5.2) but, even considering values outwith this
range (0.6−1), increasing transmission led to small increases in infectious mosquito density.
Conversely, host-vector transmission probabilities are known to be very variable (Komar et
al. 2003) and increasing or decreasing values within the stated range (0−0.68) leads to corre-
sponding increases or decreases in infectious mosquito density of ±100%. It is unlikely that
values as extreme as 0 or 0.68 would occur in nature because these values would correspond
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Figure 5.8: Disease predictions: The plots show time series of predicted densities of each life stage
and infection class for hourly water temperatures taken from butt 4 and minimum and maximum daily
air temperatures from Wallingford. As in Chapter 4, the dotted lines show all adults whilst the solid
lines show only active (biting) adults. All WNV parameters are as in Table 5.2.

to populations composed entirely of incompetent or highly competent hosts, respectively.
However, the average competence of field populations are likely to vary within the stated
range.

Host-host transmission, phh, was shown to be a much more influential determinant of disease
transmission than vertical transmission between mosquitoes (Figure 5.9 (c)-(d)), supporting
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Figure 5.9: Sensitivity analysis: Sensitivity analyses are shown for the parameters in Table 5.2. The
black lines show the percentage change in the maximum predicted density of infectious mosquitoes
at any point in the year. The blue lines show the percentage change to the average density of infec-
tious mosquitoes per day during the months of April to August, which correspond to the main active
mosquito season (calculated as 1

243−91 ∫
243
91 AI(t)dt). The dotted black line shows the baseline value

assumed for the given parameter across the other simulations. Red lines show the range of predicted
values from the literature, where a range could be determined.
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Figure 5.9: Sensitivity analysis (continued): Sensitivity analyses are shown for the parameters in
Table 5.2. The black lines show the percentage change in the maximum predicted density of infectious
mosquitoes at any point in the year. The blue lines show the percentage change to the average density
of infectious mosquitoes per day during the months of April to August, which correspond to the main
active mosquito season (calculated as 1

243−91 ∫
243
91 AI(t)dt). The dotted black line shows the baseline

value assumed for the given parameter across the other simulations. Red lines show the range of
predicted values from the literature, where a range could be determined.



Chapter 5. Impacts of current and future temperatures on UK WNV transmission 211

the findings of Hartemink et al. (2007). Vertical transmission was observed to have almost no
effect on transmission within a given season, due to the very low rates observed. Host-host
transmission had a very large impact on disease transmission within a season, with small in-
creases to the baseline value inducing large increases in infectious mosquito density (Figure
5.9 (c)). However, it is likely that field host-host transmission rates will be lower than the
baseline value, rather than higher, because the current value was taken from crows, which
are known to be strongly affected by WNV infection (Komar et al. 2003). When considering
the full range of potential hosts, host-host transmission is therefore thought likely to be lower
than was observed for crows.

The host recovery rate,R, was shown to strongly influence the density of infectious mosquito-
es (Figure 5.9 (e)). Even small increases to the duration of infection in hosts led to steep
increases to the density of infectious mosquitoes. Increasing the duration of infection from 4

days to 5.5 days led to an approximate 200% increase in infectious mosquito density, whilst
reducing this duration to 2 days reduced infectious mosquito density by approximately 70%.
The likelihood of observing an average recovery rate as low as 0.18 (giving a recovery time
of 5.5 days) across the host population is very low, as this recovery rate corresponds to the
lowest observed rate across 25 bird species studied by Komar et al. (2003). As such, a 200%

increase in infectious mosquito density is very unlikely.

The WNV-induced death rate, δWNV , showed similar effects on infectious mosquito density
to the recovery rate (Figure 5.9 (f)), as decreasing the death rate increased the duration for
which infectious birds will survive to transmit the virus. Values for the WNV-induced death
rate from the literature suggest that the lowest recorded death rates would approximately
double infectious mosquito density, whilst the highest recorded estimates would approxi-
mately half this density.

Increasing the vector-host ratio from the baseline value was seen to approximately linearly
increase both the peak and the daily infectious mosquito density after a threshold value of
10 (Figure 5.9 (g)). Reductions to the size of the peak in vector infection, upon decreasing
vector-host ratio, tailed off at lower values because due to the very low rates of infection
in the mosquito population. Within the range of vector-host ratios found by Durand et al.
(2010) for a European site, the vector-host ratio had little effect on infectious mosquito den-
sity due to the very low rates of infection in the population.

The proportion of the bird population which is comprised of infectious individuals at the time
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of introduction, Pinf , which will be influenced by the number of infectious arrivals,Minf ,
and the size of the resident population, will have a large effect on outbreak potential (Figure
5.9 (h)). Decreasing Pinf from the baseline value of 0.25% led to an approximately linear
decrease in infectious mosquito density. Doubling Pinf increased the infectious mosquito
density by nearly 100%, however it seems unlikely that such high values would be observed
in the field. Bessell et al. (2014) predict that, given a WNV outbreak in the Camargue, the
most likely number of infectious birds to arrive is two per year. Assuming that both birds
migrate to the same area, this high prevalence of infection would require that infectious mi-
grants made up 0.5% of the total bird population at the introduction site. Given this, Pinf
values at the lower end of the studied values appear to be more likely.

The EIP function parameters, αχ, and βχ, were both shown to have moderate impacts on
infectious mosquito density, with changes in the chosen range leading to changes of at most
±50% (Figure 5.9 (i)-(j)).

Finally, Figure 5.9 (k) shows that the peak annual density of infectious mosquitoes is very
sensitive to the timing of arrival of infection. Shifting the arrival time before the baseline
value of the 31st of May quickly led to nearly 100% reduction in infectious mosquito den-
sities due to the post-diapause mortality killing of the exposed mosquitoes. When infec-
tion arrived before mortality of the post-diapause adult females and the emergence of the
spring generation, the virus died out very quickly (Figure 5.9 (k)). This occurred because
the mosquitoes which fed on the infectious birds did not survive long enough to become in-
fectious and were wiped out by the post-diapause mortality. Infectious mosquito population
size steadily increased when introduction moved from early May to mid-July, as introduc-
tion then occurred when temperatures were warmer and vector-host ratios were higher. After
mid-July, introduction led to decreasing infectious mosquito populations because the win-
dow of time during which transmission could occur before mosquitoes entered diapause was
short.

With the exception of the timing of WNV introduction, the most influential parameters inves-
tigated above result in changes of within the range of −100% to +200%. Given the very low
predicted prevalence of infection at the field site, infectious mosquito densities above one are
not expected even at the most extreme ends of these parameter ranges. Even considering the
very large effects of the timing of WNV introduction (Figure 5.9 (k)), infectious mosquito
densities are predicted to remain below one for introduction at any point of the year.
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5.5.3 How is WNV transmission suppressed under the current
observed field conditions?

The increased prevalence of infection in the mosquito population when infectious individuals
are added to the model later in the year (Figure 5.9 (k)) stems from the warmer conditions at
this point. The increased disease transmission when infection arrives in summer, instead of
spring, implies that the higher temperatures may increase disease transmission through one
or more of the following processes:

1. Increased temperature in the summer months decreases the length of the EIP (Figure
5.10 (a)), increasing the number of infectious mosquitoes.

2. Increased temperature increases the mosquito biting rate (Figure 5.10 (b)), leading to
increased rates of virus transmission between mosquitoes and birds.

3. The increased vector-host ratio in summer means that infectious birds are bitten more
often, increasing transmission.
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Figure 5.10: Disease transmission processes: (a) shows the estimated duration of the EIP through-
out the year given the air temperatures experienced. (b) shows the predicted biting rate throughout
the year given the air temperatures experienced. The red lines show the period over which virus
introduction led to a predicted mosquito density greater than one.

Figure 5.10 (a) shows that the predicted duration of the EIP is very long (> 100 days) until
June. This contrasts with values used in other WNV models for Europe and North America,
where the duration of the EIP is generally assumed to be 1-2 weeks (Wonham et al. 2004;
Durand et al. 2010; Pawelek et al. 2014; Bergsman et al. 2015). This difference in EIP du-
ration occurs because my model allows the EIP to vary in response to temperature, where
more traditional models assume a fixed EIP corresponding to average temperatures above
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those observed in the UK (Wonham et al. 2004; Durand et al. 2010; Pawelek et al. 2014;
Bergsman et al. 2015). Given the assumed relationship between the temperature and EIP, an
EIP of 1-2 weeks would require temperatures of 22-30 ○C. Similarly, my model predicts a
mosquito biting rate below 0.06 before June, whereas WNV models commonly take values
in the range 0.125-0.25 at all points in the year (Lord and Day 2001; Cruz-Pacheco et al.
2005; Durand et al. 2010). Based on the relationship between temperature and gonotrophic
cycle length used, biting rates within this common range would require temperatures above
20 ○C. The temperatures required to reach biting rates and EIP durations typically used by
WNV models are common in areas of Europe and North American where WNV currently
circulates, however they exceed those observed at the UK field site in spring. This causes a
large mismatch between the predicted duration of the EIP in the UK when compared with
models tuned to areas where WNV is currently transmitted.

I ran a number of simulations to understand the relative contributions of the EIP duration and
the biting rate to WNV transmission (Figure 5.11), as described in Sections 5.4 and 5.4.1.
By including the temperature dependencies of these processes in turn, I aimed to understand
if the lack of disease transmission in the UK could be attributed to low temperatures causing
prohibitively low biting rates or long EIPs.

Figure 5.11 (a) shows that holding the EIP constant at 10 days (Wonham et al. 2004; Pawelek
et al. 2014; Bergsman et al. 2015) led to a small increase in MIR, when compared to the
temperature-dependent case. Fixing the gonotrophic cycle length at 4 days (and consequently
the biting rate at 0.25) (Durand et al. 2010) caused a similar increase in MIR, though this
occurred later in the year due to the longer estimate of the EIP (Figure 5.11 (c)). Holding
both the biting rate and EIP constant increased the MIR substantially, leading to the largest
prediction from any scenario. Removing the temperature-dependence from both processes
led to a substantially increased MIR, with the MIR approaching 1.5 by the end of the biting
season (Figure 5.11 (e)). The profiles of infectious bird densities shown in Figures 5.11 (b),
(d) and (f) parallel the mosquito MIR findings in terms of which simulations lead to more or
less infection in the population. These findings demonstrate the importance of explicitly in-
corporating the temperature-dependence of disease transmission processes, by highlighting
that the assumption of constant transmission rates results in an overestimation of transmis-
sion. Further, it can be seen that the low biting rate and long EIP brought about by the cooler
spring weather would act to suppress virus transmission at the field site. The magnitude of
these effects will vary throughout a season, dependent on the timing of introduction of the
virus.
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Figure 5.11: Disease transmission processes: (a) and (b) show the mosquito MIR and percentage of
infected birds, respectively, assuming both constant and variable EIP duration. (c) and (d) show the
mosquito MIR and percentage of infected birds, respectively, assuming both a constant gonotrophic
cycle length and a variable duration. (e) and (f) show mosquito MIR and percentage of infected birds,
respectively, assuming that either both the EIP and gonotrophic cycle are constant, or both processes
are variable. The dashed line shows the end of the biting season. Virus introduction is assumed to
occur on the first of July, as this most clearly showed the differences between model runs.
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5.5.4 Implications of predicted warming scenarios on WNV trans-
mission

UK temperatures are predicted to increase between now and 2080, with the median estimate
of warming expected to be in the range of 3 ○C to 4.9 ○C increase in annual average tem-
perature, dependent on emission of greenhouse gases (MetOffice 2009). In Chapter 2 it was
shown that projected warming would increase mosquito population sizes in the UK. To un-
derstand the effects of predicted warming scenarios on WNV transmission potential, I use a
sinusoidal wave, similar to that used in Chapter 2, to describe average seasonal temperature
profiles and to allow UK Climate Impacts Programme (UKCIP) warming scenarios (MetOf-
fice 2009) to be investigated. These warming scenarios predict changes to the UK climate,
relative to a baseline measured from 1961-1990, under a range of different emission scenar-
ios. With the exception of the use of the sinusoidal temperature function, all simulations are
run according to the methods set out in Sections 5.4.1 and 5.4.

Methods: Temperature inputs and their effects on vector-host ratios

Before discussing the predicted mosquito densities under climate warming scenarios it is
necessary to briefly return to the methods, to explain the temperature profiles used. I build
upon the temperature function used in Chapter 2 (Equation 2.20) by including diurnal tem-
perature range and estimating water temperatures using observed air temperatures and the
relationship presented in Section 4.1.3. The air temperature function, including DTR, is
given by

Tair(t) = µ + λ cos(
2π(t − φ)

365
) −

TDTR
2

cos(2πt), (5.23)

where µ(= 9.8 ○C) is the annual mean temperature, λ(= 6.4 ○C) is the amplitude of seasonal
temperature fluctuations, φ(= 28.9 days) determines the timing of the annual peak temper-
ature and TDTR gives the diurnal temperature range. The diurnal temperature range was
calculated as 9.4 ○C, by calculating the average DTR across the range of temperatures ob-
served at the field site. Values for µ, λ and φ where calculated from the UKCIP baseline
values (MetOffice 2009). The water temperature can then be calculated from the simulated
air temperature using

Twater(t) = 0.9491Tair(t) + 3.9174, (5.24)
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Figure 5.12: Baseline temperature profile: The baseline temperature profile (1961-1990) from
the UKCIP data is shown (MetOffice 2009). The solid lines show the mean daily air and water
temperatures, whilst the dotted lines show the upper and lower bounds of the daily temperatures,
given the diurnal temperature range estimated.

as observed in the field experiment detailed in Chapter 3 and shown in Figure 4.2. The
baseline temperature profiles for both water and air temperature are shown in Figure 5.12.
Warming scenarios are then implemented by increasing the mean air temperature, µ (Equa-
tion 5.23), in line with predictions from the UK Climate Impacts Programme (MetOffice
2009).

Warming scenario effects on WNV transmission

I investigated disease transmission under various degrees of warming and allowing for intro-
duction of the virus at a range of times throughout the year. Figure 5.13 (a) and (b) show that
under the 1961-1990 baseline temperatures (Figure 5.12) WNV outbreaks are not thought
to be possible regardless of the introduction time because infectious mosquito densities are
below one at all points of the year. Further, when WNV introduction occurs before the end
of May (the latest expected arrival time of migratory birds), the MIR remains below 0.05,
which is lower than is typically observed during WNV outbreaks (Engler et al. 2013).
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(a) (b)

(c) (d)

Figure 5.13: Effect of warming scenarios: (a) shows the predicted maximum density of infectious
mosquitoes observed on a particular day under a range of warming and introduction scenarios. (b)
shows the predicted density of infectious mosquitoes per day during the months of April to August,
corresponding to the main active mosquito season, under different warming and introduction scenar-
ios. (c) shows the predicted minimum infection rate (MIR), which is the number of infectious adults
per 1000 adult females. (d) shows the mean vector-host ratio during the active mosquito season (April
to September).

The UKCIP projections for 2020 under low, medium and high emission scenarios predict
warming of 1.5 − 1.7 ○C above the baseline temperature. These temperatures give predic-
tions of less than 1 infectious mosquito per day for virus introduction at any time of year
(Figure 5.13 (b)), whilst the peak density of infectious mosquitoes only exceeds one when
virus introduction occurs in July (Figure 5.13 (a)). These predictions show good agreement
with those obtained under the conditions at the Wallingford field site in 2015 (Figure 5.8),
for which the mean temperature at the field site in 2015 was 1.9 ○C higher than the baseline
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mean, whilst the amplitude, λ, was unchanged and the peak, φ occurred 2 days later.

UKCIP projections for 2080 estimate the increase in mean summer temperatures as 3 ○C,
3.9 ○C and 4.9 ○C under low, medium and high emission scenarios, respectively. Under the
low emissions scenario, predictions of infectious mosquito density remain low even with
WNV introduction at times of highest risk, with daily infectious mosquito density below 0.5

and low MIR values of approximately 0-0.2 throughout the year (Figure 5.13 (b) and (c)).
The medium emission scenario predicts slightly higher infectious mosquito densities, how-
ever average infectious mosquito density is still below one and MIR values remain between
0 and 0.25 (Figure 5.13 (a) and (b)). Finally, under the high emission scenario, the average
infectious mosquito density reaches 2.5 for some introduction times and the peak in infec-
tious mosquito density approaches 20. Under this high emission scenario, MIR values reach
0.45, which is consistent with the lower range of values observed in WNV transmission areas
(Engler et al. 2013).

Comparing the results given by this sinusoidal temperature approximation and the results
obtained when using observed temperature values it becomes clear that intra-annual temper-
ature fluctuations will also be influential. Figure 5.14 considers the MIR values when using
the temperatures observed at the Wallingford field site, with a fixed temperature increase
applied, giving a mean air temperature equal to that predicted under the 2080 high emissions
scenario. This profile is compared with a sinusoidal approximation based on the observed
Wallingford temperatures with an air temperature increase in line with predicted warming
applied. Water temperature increases are applied according to the water-air temperature re-
lationship in Equation 5.24. When using a sinusoidal approximation with the same annual
mean, amplitude, and centred at the same time of year, the predicted peak MIR more than
doubles if compared with the case using observed temperatures at the field site, regardless of
warming, when infection arrives at the end of May (Figure 5.14 (a)). However, when virus
introduction occurs on June 30th, the MIR values under the two methods in the absence of
warming are almost identical, whilst the MIR values under warming were almost equal when
infection was introduced in May (Figure 5.14).

This difference in MIR values dependent on infection introduction time highlights that the
exact temperature conditions at the time of introduction may be particularly influential deter-
minants of subsequent transmission. Consequently, periods of extreme warm temperatures
are likely to be accompanied by an increased WNV risk were introduction to occur. This
finding echoes the results of Chapter 2, where it was found that predictions of mosquito
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Figure 5.14: Comparison of temperature inputs: The density of infectious mosquitoes is shown
under four temperature input scenarios. “Observed temperatures" - uses the hourly water and min-
imum/maximum daily air temperatures observed at the field site in 2015. “Observed temperatures
plus warming" uses the temperatures from the observed temperatures scenario with 2 ○C added at
all points, to give a mean temperature as predicted to occur in 2080 under the medium emissions
scenario. “Sinusoidal wave" captures the annual temperature variation using a sinusoidal wave of the
form shown in Equation 5.23 (µ = 11.7, λ = 6.4, φ = 31, TDTR = 9.4) fitted to the air temperature data
from the Wallingford field site in 2015. Water temperatures are then estimated according to Equation
5.24. “Sinusoidal wave plus warming" uses the sinusoidal wave described for the scenario without
warming with the mean temperature, µ, increased to 13.7 to give the mean temperature predicted by
2080 under the medium emission scenario. Each scenario is run for one year under a sinusoidal tem-
perature profile with the stated degree of warming before the described temperature profile is applied.
The dashed lines show the end of the mosquito biting season. Plot (a) shows infection introduction
on May 31st, whilst (b) shows infection introduction on June 30th.

population abundance often differed substantially when using observed field temperatures as
opposed to sinusoidal approximations (Figure 2.11). This discrepancy occurs because, by
using sinusoidal approximations we are considering an average, meaning that intra-annual,
daily and diurnal temperature fluctuations around this average will affect the rates of disease
transmission processes.

5.6 Discussion

I predict that current UK temperatures are too low for WNV transmission cycles to be estab-
lished, as biting rates are insufficient and the virus replication time in mosquitoes is too long
(Figure 5.11). Predicted increases to UK temperatures in the coming years will increase the
transmission ability of WNV, with predicted MIR values by 2080 under the high emissions
scenario reaching the lower range of MIR values typically observed during WNV outbreaks
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in other regions (Figure 5.14). However, the probability of WNV outbreaks is likely to be
dependent on the effects of climate warming on biting season duration, with increases to the
duration of the mosquito biting season increasing the predicted risks of outbreaks in Autumn
(Figure 5.14). Further, inter- and intra- annual temperature fluctuations around predicted
seasonal averages may affect the probability and extent of WNV outbreaks, as shown by
Figure 5.14. The findings that WNV outbreaks are unlikely in the UK given predicted cli-
mate warming support those of Semenza et al. (2016), who recently predicted that WNV
would not reach Northern Europe by 2050.

Minimum infection rates (MIR values) have been studied across a range of WNV endemic
areas in both North America (Kulasekera et al. 2001; Bernard et al. 2001; Anderson et al.
2004; Bolling et al. 2007), and Europe (Engler et al. 2013; Kemenesi et al. 2014). Such
studies give valuable information on the levels of infection required in mosquito populations
for spill-over to humans to be possible. Kulasekera et al. (2001), Bernard et al. (2001) and
Anderson et al. (2004) studied WNV outbreaks in the Eastern USA during 2001 to 2003,
finding that human cases typically occurred in areas where the Cx. pipiens MIRs ranged
from 5-16, though one case was observed under an MIR of 0.16 (Bernard et al. 2001). In
Colorado human cases were observed at MIRs of 8.7 and 1.37 in consecutive seasons, though
the first outbreak was more severe. In Europe, Kemenesi et al. (2014) observed an MIR of
1.61 (95% CI: 0.7-3.1) in Serbia during 2013, during which time 300 human cases of WNV
were detected. Further, national and regional Italian studies predict an MIR of 4.16 over
2008 to 2012, when numerous WNV outbreaks occurred, and human WNV cases have been
observed in Spain, where the MIR has been estimated at 0.27 (Engler et al. 2013). These
findings suggest that under the highest warming scenarios MIRs may reach the lower limits
of the range of MIR values within which spill-over to humans has occurred in other regions
(Figure 5.13 (c)). However, the most typical MIR values observed during WNV outbreaks
(MIR > 1) exceed those predicted for the UK climate.

In many of the presented simulations, it can be seen that the predicted peak in infection oc-
curs after the end of the current biting season due to the time required for exposed mosquitoes
to become infectious (Figure 5.11 and 5.14). However, these simulations do not account for
the likely effects of climate warming on season length, as the diapause induction time in
the model occurs purely as a result of photoperiod decrease and is not sensitive to temper-
ature. It is likely that under increased temperatures, mosquito active seasons will increase
in duration (Bale and Hayward 2010), such that biting will continue later in the season. In
such scenarios, mosquitoes would be likely to bite into the month of September, as is cur-
rently commonly observed in the Mediterranean basin (Rosà et al. 2014). This will have
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implications for mosquito population sizes, as the active season will be longer and energetic
demands of diapause will decrease, and for potential disease transmission.

Many vector-borne disease transmission models make the simplifying assumption that pro-
cesses which are temperature-dependent, such as the biting rate or EIP, can be approximated
by constant rates (Lord and Day 2001; Wonham et al. 2004; Cruz-Pacheco et al. 2005; Du-
rand et al. 2010; Pawelek et al. 2014; Bergsman et al. 2015). This assumption of constant
rates makes model analysis more straightforward, however in fluctuating thermal environ-
ments assuming constant rates may do a poor job of capturing disease transmission cycles.
By comparing model predictions under commonly used constant values for biting rates and
EIP durations, I was able to understand the effects of including or excluding temperature-
dependence in disease transmission processes. Figure 5.11 shows that using constant rates
led to very large increases in the mosquito MIR, when compared with temperature-dependent
rates. In fact, given the observed mean air temperature of 13.6 ○C between April and Septem-
ber at the Wallingford field site one would predict that EIP completion would be impossible
(Equation 5.22), whilst Figure 5.10 (a) shows that EIP completion should occur in 20-30

days during July, given observed temperatures. These findings highlight the importance of
understanding and quantifying the temperature-dependence of the adult mosquito life cycle
and transmission processes, which is an area which has received relatively little attention
(Section 5.3.1).

In assuming that environmental conditions remain constant, most traditional WNV models
also assume that the vector population size remains fixed (Table 5.1). Holding conditions
constant allows these models to calculate R0 values and assess disease risks analytically
(Wonham et al. 2004; Bowman et al. 2005; Cruz-Pacheco et al. 2005). However, the fact that
environmental conditions will fluctuate means that the inferences drawn may only be valid
under the chosen equilibrium conditions and erroneous under field conditions. My findings
highlight that the size of the vector population is highly variable throughout the season (Fig-
ure 5.8) and that increases to the vector-host ratio will approximately linearly increase the
predicted peak infectious mosquito density, provided temperatures are such that virus trans-
mission is possible (Figure 5.9 (g)). This highlights that inclusion of vector seasonality, in
addition to temperature-dependence of disease transmission processes, can have a large im-
pact on predictions of disease risk, particularly when seasonal thermal fluctuations are large.

In my analysis I do not directly explore the likelihood of WNV overwintering in UK mosquito
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populations. To estimate the risks of WNV successfully overwintering in UK mosquito pop-
ulations, better understanding of virus overwintering processes, such as vertical transmis-
sion and gonotrophic dissociation (Eldridge 1966; Nelms et al. 2013) would be required.
Separate laboratory studies have drawn contrasting conclusions regarding the occurrence of
gonotrophic dissociation (the ability of blood-fed mosquitoes to enter diapause) in Cx. pip-

iens, dependent on rearing conditions and blood meal availability (Eldridge 1966; Eldridge
and Bailey 1979; Mitchell 1983; Mitchell and Briegel 1989). The occurrence of the peak
in infectious mosquito density after the initiation of diapause suggests that if gonotrophic
dissociation were to occur in nature, this would strongly influence potential virus persis-
tence between seasons as horizontally infected mosquitoes may be able to survive overwin-
ter. However, it is generally believed that instances of gonotrophic dissociation in nature
will be rare (Sanburg and Larsen 1973; Washino 1977). As discussed in Chapter 4, vertical
transmission rates in Cx. pipiens have only been studied for laboratory colonies in the USA
(Eldridge 1966; Nelms et al. 2013).

Vertical transmission and possible gonotrophic dissociation could be included in the model
by further splitting the adult stage, such that horizontally infected and uninfected/vertically
infected adults experience different levels of mortality, as horizontally infected adults show
higher diapause mortality rates than those which are not blood fed (Mitchell and Briegel
1989). Further, the possible effects of climate warming on diapause induction and termina-
tion times may influence the size of the infectious mosquito population at the beginning of
winter (Figure 5.14). Bird population dynamics are also likely to affect the probability of
virus persistence, as bird migration may alter infection proportions in the host population.
The geographical origin of migratory birds, alongside climate change effects in the source
areas of these migrants will also affect the likelihood and magnitude virus introduction to the
UK. Further, birds are thought to act as potential overwinter reservoirs of WNV in some areas
(Dawson et al. 2007; Hinton et al. 2015). However, given the low rates of WNV predicted in
the mosquito population (Figure 5.13 (c)), and the low rates at which vertical transmission
and gonotrophic dissociation occur (Eldridge 1966; Nelms et al. 2013), virus overwintering
in UK populations appears to be unlikely.

Throughout this Chapter, the arrival of infected migratory birds has been considered to be
the most likely pathway by which WNV may be introduced to the UK (Higgs et al. 2004;
Bessell et al. 2014). Introduction by this route would be thought to be possible in the months
of March to May, given the documented arrival times of migratory birds (BTO 2017). Intro-
duction before the emergence of the first spring mosquito generation led to the virus dying
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out almost immediately, whilst introduction from early May until mid July led to progres-
sively larger infectious adult mosquito populations. Virus introduction through transport of
mosquitoes is typically believed to occur through accidental shipping of eggs and larvae, as
has occurred in Aedes albopictus (Tatem et al. 2006). However, this pathway seems unlikely
for WNV, since it is adult mosquitoes which diapause. Further, ports and planes tend to be
disinfected and remote from UK mosquito breeding habitat. Alternatively, it is possible that
WNV could be introduced through movement of infected livestock (Tatem et al. 2006). In
this case, pathogen introduction could occur at any point throughout the year. The time of
introduction of the virus was found to have a profound effect on subsequent transmission
potential and the likelihood of an outbreak (Figure 5.9 (k)), as has previously been observed
in Scotland in the midge-borne virus Schmallenberg (Bessell et al. 2013).

The avian ecology at a WNV introduction site is believed to profoundly influence disease
transmission dynamics due to the range of responses elicited to infection across bird species
(Komar et al. 2003; Reisen 2013). In conducting the sensitivity analysis, it was observed
that many of the avian infection parameters appeared to be highly influential determinants
of disease transmission. Specifically, host-vector and host-host transmission, avian recov-
ery and WNV-induced mortality rates, and the initial proportion of infected individuals in
the avian population were all observed to influence infected mosquito population size by as
much as 100% within the parameter range considered (Figure 5.9). Consequently, future
model extensions should attempt to address this variability by including the range of avian
host competencies.

A small proportion of existing WNV models attempt to incorporate a range of host compe-
tencies by splitting the host population into 2 − 3 different competency classes (Table 5.1).
Marini et al. (2017) found that inter-specific competition between hosts, alongside vector
feeding preferences for particular host species, can strongly influence pathogen invasion, the
probability of an epidemic, and subsequent transmission rates. Exploratory analyses, such as
that presented by Marini et al. (2017) are valuable in highlighting the potential effects of host
ecology on WNV transmission. However, to draw inferences about disease risk in particular
regions a great deal of information on local ecology is required.

In my model I make a number of simplifying assumptions about the host population, which
may affect WNV outbreak potential and transmission cycles and should be investigated in
future model extensions:

• All birds are assumed to have equal host competencies and to respond in the same
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manner to WNV infection, when in reality hosts show a wide variety of responses
(Komar et al. 2003). Splitting the host population into competency classes, as in previ-
ous studies (Hartley et al. 2012; Bergsman et al. 2015) would improve understanding
of the effects of local avian ecology on WNV transmission cycles. To determine risks
for specific regions of the UK it would be necessary to understand the relative abun-
dances of the bird species in those regions, as well as their host competencies for WNV.
No studies investigating WNV infection across UK species have been carried out, so
current data will only be available for species present in other WNV endemic areas
(Komar et al. 2003; Pérez-Ramírez et al. 2014).

• Density-dependent avian mortality was assumed to affect all birds equally. However,
some species are adversely affected by WNV infection and show reduced fitness (Ko-
mar et al. 2003), meaning that density-dependent mortality may be increased in infec-
tious hosts, as they may be less able to compete for resources. However, experimental
studies allowing quantification of this effect have not yet been carried out, causing
problems in parameterisation of mathematical models.

• The effects of migration on seasonal patterns of avian population abundance were ex-
cluded from my model. Given the large number of migratory bird species (BTO 2017)
migration would be very difficult to incorporate on a large scale. However, more lo-
calised analyses could use estimates of migration times alongside estimates of relative
sizes of the migratory and resident bird populations to understand migration effects
on WNV transmission. This would also improve estimates of the proportion of hosts
which are infectious at the time of WNV introduction, which was shown to be influ-
ential in determining transmission (Figure 5.9 (h)).

In response to dispersal of bird populations and seasonal decline in bird abundances, Cx.

pipiens has been shown to exhibit a feeding switch from its preferred avian hosts to humans
in the late summer and early autumn (Kilpatrick et al. 2006). Vector-borne disease models
and WNV models which look directly at control measures also often attempt to relate dis-
ease risk more directly to humans by including a human compartment into SIR frameworks
(Bowman et al. 2005; Pawelek et al. 2014). By incorporating a human compartment in this
way, it would be possible to investigate the effects of the host switch from birds to humans
late in the year on potential human WNV cases. A human compartment would also provide
a more direct measure of disease risk than using infectious mosquito density as a proxy.
However, this extension faces difficulties similar to those faced when attempting to capture
the avian ecology. In particular, including humans requires that human landing rates, which
will be dependent on vector-host-human ratios, are accurately estimated. Like vector-host
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ratios, estimates of landing rates will be subject to substantial uncertainty and geographic
variability.

In summary, the model predicts that a WNV outbreak is currently unlikely given tempera-
tures in the UK. Considering predicted UK climate warming scenarios leads to increases in
predicted densities of infectious mosquitoes, with MIR values reaching 0.45 following intro-
duction under temperatures predicted by the 2080s high emission scenario. However, values
are not predicted to reach levels most typically observed during WNV outbreaks elsewhere
in Europe and North America (Engler et al. 2013). Traditional methods of assuming constant
viral incubation times, mosquito biting rates and population sizes, based on existing WNV
transmission regions, will lead to vast overestimates of outbreak probability or spill-over into
human populations. Assuming constant temperatures based on UK averages is expected to
result in underestimation of the risks of future disease outbreaks. Further model develop-
ment, explicitly incorporating avian ecology and the range of host competencies across bird
species is required to improve predictions of disease transmission following virus introduc-
tion.
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Chapter 6

Discussion

The following general discussion recapitulates the content and principal findings of the the-
sis, discusses some relevant issues and draws overall conclusions.

6.1 Recapitulation

Chapter 2 developed a variable-delay DDE model to estimate seasonal abundance of each
life stage of Cx. pipiens, given temperature and photoperiod conditions experienced. The
model uses data from published laboratory and field experiments to parameterise relation-
ships between temperature and mosquito vital rates. This relaxes the common assumption
of fixed mosquito generation times and immature survival by allowing development rates
and mortality to fluctuate in response to changes in thermal conditions. Predictions were
then made about the response of mosquito populations to a range of different seasonal tem-
perature profiles, highlighting that the timing and intensity of warm periods can be more
influential in shaping abundance patterns than average temperatures.

There is a dearth of studies which monitor the various life stages of Cx. pipiens in the field,
which means that model predictions are often not compared to field data, potentially leading
to spurious conclusions. Chapter 3 presents an extensive field study to collect a high tempo-
ral resolution seasonal abundance dataset of each life stage of Cx. pipiens. This dataset was
used to validate the model-estimated development rates of immature mosquito life stages and
to assess the relative contributions of density-dependent and density-independent mortality
to larval survival. The collected field data was then compared with empirical phenology data
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from across the Cx. pipiens range in an attempt to identify geographical patterns in phenol-
ogy.

Chapter 4 challenged assumptions of the DDE model from Chapter 2 in light of the sea-
sonal abundance data collected in Chapter 3, leading to reparameterisation of the diapause
process and inclusion of mortality in post-diapause adults. The implications of assuming air
temperatures to be equal to water temperatures in mosquito models were investigated, re-
vealing that, for the field conditions measured, this assumption led to erroneous predictions
of population extinction, as water temperatures were typically higher than air temperatures.
Further, inclusion of diurnal temperature range in input data substantially reduced abundance
estimates across all mosquito life stages indicating that simple approximations of seasonal
average conditions commonly used in models are likely to substantially over-estimate UK
mosquito abundance and vector host ratios.

Chapter 5 extended the DDE model from Chapter 4 to explicitly model WNV transmission
cycles between mosquito vectors and avian hosts. The disease model predicts that the current
climate in the South of England is too cold to permit WNV outbreaks. Predicted warming in
the UK in coming decades will increase the transmission potential of WNV, with predicted
average temperatures under a high emissions scenario leading to MIR values at the lower
end of those observed in other WNV transmission regions.

6.2 Main findings

I will now discuss the findings of the thesis with respect to the aims set out at the beginning
of Chapter 1. The first stated aim of the thesis was:

To develop and validate an environmentally driven seasonal abundance model
for Cx. pipiens, a temperate mosquito vector, which accounts for changing en-
vironmental conditions by explicitly incorporating variation in developmental
delays of each life stage.

Many vector-borne disease models make simplifying assumptions about vector seasonal-
ity (Reiner et al. 2013), as such assumptions make models more tractable for mathematical
analysis. However, this stands in contrast to a large body of literature detailing how en-
vironmental conditions, in particular temperature, affect mosquito vital rates (Couret et al.
2014; Ciota et al. 2014) and consequently vector and disease seasonality (Lord 2004; Altizer
et al. 2006; Cruz-Pacheco et al. 2009). By using a DDE framework with variable delays,
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I was able to explicitly include the effects of temperature on development and survival of
each immature stage of the Cx. pipiens life cycle, thus allowing the effects of fluctuating
temperatures on mosquito generation times and abundance patterns to be explored. In doing
so, I found that intra- and inter-annual temperature fluctuations had large impacts on patterns
of seasonal abundance. Direct incorporation of temperature effects also allowed me to study
the impact of climate warming scenarios, with increases to mean temperatures or amplitude
of seasonal temperature fluctuations both predicted to increase mosquito population sizes in
the UK.

I chose to parameterise my DDE model using data from Cx. pipiens, as it is believed to be
the primary vector of WNV across Europe and North America (Gubler 2002; Calistri et al.
2010; Reisen 2013). Whilst laboratory studies examining the relationship between tempera-
ture and Cx. pipiens vital rates are relatively common, high temporal resolution (sub-weekly)
field collected seasonal abundance datasets are rare and are not typically publically available
(Chapter 3, Table 3.5). In analysing a 9-year daily time series of Aedes vexans and Culiseta

melanura in North Carolina, it was recently highlighted by Jian et al. (2014a) that observa-
tions of adult mosquito populations should be based on a sub-weekly sampling frequency to
separate the effects of a varying mosquito activity from actual changes in the abundance of
the underlying population. I made multiple collections of each Cx. pipiens life stage each
week throughout 2015 to enable model validation and to improve understanding of environ-
mental effects on species phenology at short time scales. This furthered our knowledge of
season start and end dates for UK Cx. pipiens, allowed model-predicted development and
mortality rates to be validated against field data and enabled the effects of diurnal tempera-
ture variation and temperature differences between micro-habitats to be studied.

The second aim stated at the outset of this thesis was:

To use this model to predict the possible risks of West Nile virus (WNV) intro-
duction and subsequent transmission within the UK.

WNV outbreaks have occurred in recent years in various parts of the Mediterranean basin
(Engler et al. 2013; Sabatino et al. 2014), whilst WNV has become endemic in the USA since
introduction in 1999 (Reisen 2013). This has prompted concern that WNV outbreaks may
occur in the UK if the virus were to be introduced. Previous studies discussing risks of WNV
introduction to, or transmission within, the UK have focussed primarily on the likelihood of
virus introduction (Bessell et al. 2014) or presence of potential WNV vectors within the UK
(Higgs et al. 2004; Golding et al. 2012; Vaux et al. 2015; Chapman et al. 2016). These
studies found that known WNV vectors were present across many parts of the UK and that
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WNV introduction through avian migration was possible, albeit at low levels (Bessell et al.
2014). However, no studies have modelled hypothetical transmission of WNV under the UK
climate, to understand the risks of outbreaks occurring following virus introduction. The ex-
tent of seasonal temperature fluctuations in the UK, alongside the fact that temperatures are
too low for incubation of the virus in mosquitoes for most of the year (Reisen et al. 2006a),
means that any disease model would need to explicitly incorporate temperature-dependence
of virus transmission processes.

Having extended the temperature-dependent seasonal abundance model to explicitly incor-
porate disease transmission, I predict that WNV outbreaks will not be possible under current
UK temperature conditions. Average temperatures predicted for the South of England by
the 2080s, under a high emissions scenario, result in MIR values consistent with the lowest
values observed in other WNV transmission regions (Engler et al. 2013). The likelihood
of disease transmission was most dependent on the timing of virus introduction, with in-
troduction in the summer leading to the highest risk of transmission due to relatively high
vector host ratios and biting rates and low EIPs. Host-host transmission, host recovery rate
and WNV-induced death rates in hosts were all also observed to be particularly influential
drivers of disease transmission. Consequently, improving understanding of the effects of
WNV infection in UK bird species remains an important area of further research if predic-
tions regarding potential transmission in the UK are to be improved.

6.3 Future mathematical model developments

Estimating transmission of vector-borne diseases is made particularly challenging by the
wide range of processes affecting host, vector and pathogen dynamics, many of which will
be climate-dependent (Tabachnick 2010). This complexity means that simplifying assump-
tions typically have to be made about some processes. Here, I identify three key simplifying
assumptions made during this thesis and discuss future research directions which could ad-
dress these simplifications.

6.3.1 Effects of hydrology on mosquito seasonal abundance

The availability of immature breeding sites is an important determinant of development rates,
larval survival, adult fitness, vector population size and vector competence, as previously dis-
cussed (Higgs et al. 2005; Alto et al. 2008; Reiskind and Lounibos 2009; Loetti et al. 2011;
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Couret et al. 2014). This importance of the larval stage is reflected in the emphasis of lar-
val source management as a mosquito control measure (Gu et al. 2006; Fillinger et al. 2008;
Smith et al. 2013). However, the effects of larval habitat size are more difficult to account for
in mathematical models than those of temperature, due to the relative lack of available data
on breeding site presence and size, and direct human influences on local ecology through irri-
gation and water storage (Shaman et al. 2010). This difficulty is compounded when studying
a mosquito species, like Cx. pipiens, which exhibits opportunistic egg-laying behaviour by
utilising a very wide range of natural and man-made breeding sites (Vinogradova 2000). UK
climate predictions state that summer precipitation is expected to decrease in coming years
(Osborn and Hulme 2002; Beniston et al. 2007; Murphy et al. 2010). However, using only
environmental variables, such as precipitation, to estimate breeding site availability fails to
account for the full range of Cx. pipiens breeding sites (Vinogradova 2000; Townroe and
Callaghan 2014). Finally, whilst periods of low rainfall may decrease vector-host ratios,
droughts have been shown to bring vectors and hosts into close contact at breeding sites,
leading to amplification of vector-borne diseases in some instances (Shaman et al. 2005,
2010).

When considering the effects of hydrology on patterns of mosquito abundance, future model
extensions should include density-dependent mortality due to competition in the larval stage.
Larval mortality of various mosquito species, including Cx. pipiens has been shown to in-
crease under increasing larval densities in laboratory and semi-field conditions (Madder et al.
1983b; Legros et al. 2009; Alto et al. 2012; Couret et al. 2014). Though less well-studied,
inter-specific competition for resources has also been shown to affect larval population sizes
in Cx. pipiens (Duquesne et al. 2011). Similarly, the larvae of many mosquito species, in-
cluding Cx. pipiens, have been shown to suffer substantial mortality through inter-specific
predation both under laboratory and field conditions (Mogi and Okazawa 1990; Marti et
al. 2006; Quiroz-martinez and Rodriguez-Castro 2007; Fischer et al. 2012, 2013). How-
ever, parameterisation of these different density-dependent mortality sources is very difficult.
Mortality due to intra-specific competition for nutrients between larvae will be strongly de-
pendent on the amount of nutrients available in the breeding habitat, which will vary across
all habitats, with particular variation between natural and man-made habitats (Alto et al.
2012; Vinogradova 2000). Similarly, mortality due to predation will depend on the number
and species of predators in each breeding site, which will be changeable across the range of
breeding habitats (Medlock and Snow 2008). No studies currently investigate the interaction
between predation and competition to understand the relative contributions of these two pro-
cesses to total larval mortality.



Chapter 6. Discussion 232

In Chapter 5 and Appendix C, it was observed that, given sufficiently high temperatures,
seasonal predation was insufficient to regulate mosquito population size, if predator numbers
were low during any part of the active mosquito season. This led to rapidly increasing vector
abundance under warming scenarios, causing unrealistically high vector-host ratios and large
predicted MIR values (Figure C.3). To resolve this issue, I reverted to the original model for-
mulation in Chapter 2, such that the strength of predation was assumed to remain constant
throughout the season. This resulted in slight decreases to the correlation values between
the egg, larval and adult model predictions and the field data (Appendix C), however MIR
values remained in line with those calculated for field sites (Figure 5.13). In reality, when
predator numbers are low and temperatures are adequate for development, it is likely that
density-dependent competition for resources between larvae would regulate the population
size. Consequently, in the model where predator numbers vary seasonally, larval competi-
tion would be required to prevent unrealistically high larval densities, unless temperatures
are cold enough to regulate the larval population. Further, incorporating variable breeding
habitat volume and availability is also likely to affect the strength of competition. Increas-
ing the size and number of breeding sites is likely to decrease mortality due to predation,
as predators will spend more time searching for prey and rainfall may produce temporary,
predator-free habitats. Similarly, increasing larval habitat is likely to decrease competition,
though the extent of any change to mortality may depend on whether or not it is accompanied
by an equivalent change in nutritional content at the breeding site i.e. diluting the existing
food source in a larger pool of water may not reduce the mortality due to competition. As
it appears likely that both predation and competition will be important pathways by which
mosquito populations are regulated under changing climate, future models should attempt
to incorporate both processes. Such efforts would be aided by further laboratory and field
studies investigating the contributions of both processes to total larval mortality.

Valdez et al. (2017) recently developed a model to predict the effects of precipitation on
Culex mosquito population dynamics, which begins to address some of these issues. In par-
ticular, the authors investigate the effects of the number of rainy days and the mean monthly
precipitation on the maximum yearly abundance of Cx. quinquefasciatus. In the model
presented, population dynamics of the mosquito are affected through the dependence of the
egg-laying rate on the amount of habitat available. Visually, the model appears to capture the
pattern of seasonality in adult female catch data from Cordoba, Spain, though no quantitative
goodness of fit measure is given. The authors assume that immature development and death
rates take constant values over the season, however the model formulation presented is such
that the predicted amount of habitat could be used to estimate density-dependent mortality
and development rates. Coupling a rainfall model such as this, with the mosquito abundance
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and disease model presented in this thesis, would allow for the combined effects of pre-
cipitation, temperature and photoperiod on mosquito abundance, and consequently disease
transmission, to be studied.

The complexity of both natural and human influences on mosquito breeding sites means
that, whilst exploratory analyses can be carried out to investigate effects of changing rain-
fall patterns on abundance and disease patterns, the results will still be subject to caveats
regarding human behaviours. Humans will influence local hydrology by artificially creating
larval habitat through water storage and irrigation (Townroe and Callaghan 2014; Carrieri
et al. 2014). Further, hydrology will affect how people use the landscape and consequently
their exposure to infected mosquitoes, as has been observed in Southern France (Ponçon et
al. 2007a; Linard et al. 2009). Consequently, when looking to make more detailed predic-
tions about a specific site or region, the mosquito abundance and disease transmission model
should be coupled with a hydrological model for that region (Bomblies et al. 2008; Soti et al.
2012; Montosi et al. 2012). Such an extension could be applied to this model for a particular
area of the UK, given appropriate hydrological data, by simply using the volume of habitat
specified by the hydrological model.

6.3.2 Modelling of adult life cycle processes

In Chapter 4, I showed that the model predicted a longer period of high egg-laying activity
than was shown in the data (Figure 4.9) and I hypothesised that this was due to the assump-
tion of a constant egg-laying rate. To address this, the adult stage could be split into multiple
stages corresponding firstly to adults taking a blood meal and developing eggs, and sec-
ondly to adults ovipositing. The time required to develop eggs is known to be temperature-
dependent (Reisen et al. 2006a; Lardeux et al. 2008), meaning egg development could be
assigned a variable delay, similar to the immature stages. However, the incorporation of this
delay becomes an issue when the model is extended to include disease transmission. When
including disease, adults must progress through both the time delay associated with locating
a blood meal and developing eggs, and the time delay corresponding to the EIP. The pro-
cess of tracking both of these processes at once can be thought of like using two countdown
timers with a shared reset trigger. Once one of these stages has been completed, the individ-
ual moves to another life stage, resetting both timers. The act of resetting both timers means
that the time required to finish the incomplete stage is now unknown. Consequently, either
the EIP or ovarian development, but not both, can be explicitly modelled at one point in time,
using current methodology. I could not find a satisfactory solution to this problem during the
course of the thesis, however this would be an interesting topic for future research.
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6.3.3 Avian ecology

Avian ecology and community composition is known to have profound impacts on WNV
transmission cycles (Jourdain et al. 2007; Reisen 2013) due to the wide range of responses
different species exhibit to WNV infection (Komar et al. 2003). Different bird species de-
velop different levels of viremia in their systems, affecting WNV-induced mortality rates,
recovery rates and transmission probabilities, as discussed in Chapter 5. Further, the partic-
ular strain of WNV can have a large impact on the response of hosts to infection (Reisen
2013). It has been observed that the strain of WNV introduced in the New World in 1999
(NY99) has had much more severe effects on avian populations than WNV outbreaks in the
Mediterranean basin over the last 20 years (Reisen 2013). Further, recovered birds are known
to develop WNV antibodies in response to infection, meaning that transmission is likely to
be repressed in areas where outbreaks have recently occurred (McKee et al. 2015).

The model presented in Chapter 5 assumes that all birds are equally susceptible to WNV and
exhibit the same response upon infection. A first step to relaxing these assumptions would
be to split the host population into multiple classes according to their host competence, in a
manner similar to Hartley et al. (2012), such that the effects of avian ecology could be better
explored. In addition to this extension to the model, further experimental work investigating
the host competence of a range of UK bird species, which remain poorly studied (Komar et
al. 2003), would aid in parameterising such models. With this information, the model could
be tuned to predicted likely WNV introduction sites, such as those presented by Bessell et al.
(2014), to improve predictions of transmission risk at these locations.

6.4 Application of the DDE model to predict disease

transmission outwith the UK

The parameterisation of mosquito vital rates was carried out using data from field and labora-
tory experiments from across Europe and North America, with only estimates of the diapause
initiation and termination timings coming specifically from UK data. To extend the model
and predict WNV transmission across more of Europe would therefore be possible, pro-
vided that information regarding geographical variation in diapause timings and hydrology
could be determined. Potential methods allowing the effects of precipitation on Cx. pipiens

abundance to be incorporated were discussed in Section 6.3.1. In Chapter 3, I discussed
the shortcomings of existing datasets with regards to our ability to determine any possible
geographical patterns in Cx. pipiens diapause timings. With improved information on the
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combined effects of temperature and photoperiod on Cx. pipiens season start and end dates,
it would be possible to apply and validate the mosquito model over a much larger geographi-
cal range. This could then be used to develop hypotheses or make predictions about potential
WNV transmission, dependent on knowledge about avian community structure and ecology.

Such an extension would require that potential geographic variability in a range of climate
variables be well understood. To capture the hydrology over such a broad area, perhaps the
most appropriate starting point would be to use a model which uses precipitation to estimate
larval habitat volume, such as the model by Valdez et al. (2017) previously discussed. Such
a model has the advantage of being able to incorporate predicted future changes to rainfall
levels in a relatively straightforward manner. However, this approach would not be able to
account for human impacts on local hydrology through irrigation or other artificial wetting
processes. Capturing human impacts would be best achieved by using a more detailed hy-
drological model, relying on remote sensing of hydrological data from the study location, as
has been done to map Anopheles hyrcanus populations in Southern France (Tran et al. 2008).

Geographic variability in temperature will also drive patterns of mosquito seasonal abun-
dance and disease transmission. Clearly temperatures will vary across Europe, not only in
terms of average temperature but in terms of the seasonal temperature profile experienced
(Stainforth et al. 2013). In Chapter 2, it was shown that the timing and duration of periods of
high or low temperature could be important determinants of mosquito abundance. Land use
can also have potentially important effects on temperature, with the urban heat island effect
(causing increased temperatures in urban areas) having been observed to increase tempera-
tures in US cities by an average of 4.3 ○C in summer months, though this effect is reduced in
winter (Imhoff et al. 2010). This urban heat island effect has been associated with increased
Cx. pipiens populations in urban, as opposed to rural, locations in the UK (Townroe and
Callaghan 2014). Moreover, diurnal temperature range will vary across space, (Lauritsen
and Rogers 2012), and in response to land cover (Scheitlin and Dixon 2010). Finally, in
Chapter 4 it was shown that, as observed across many insect species, using temperature data
which is reflective of the micro-habitat used by different life stages is important in deter-
mining accurate predictions (Bryant and Shreeve 2002). This variability in environmental
conditions across Europe is expected to influence mosquito seasonality and consequently
potential disease transmission, as highlighted in this thesis.

It would also be possible to extend the seasonal abundance model, both within the UK and
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potentially across Europe, to assess the potential transmission risks of other diseases trans-
mitted by Cx. pipiens. Cx. pipiens has been shown to act as a competent vector for other
virus including Usutu virus (USUV) (Fros et al. 2015), Rift Valley fever virus (Amraoui et
al. 2012) and St. Louis encephalitis (Reisen et al. 2005). In particular, Fros et al. (2015)
recently showed that North-western Cx. pipiens were more competent vectors of USUV
than WNV at high temperatures of 28 ○C, whilst there was no significant difference between
vector competency for the two viruses at lower temperatures. To extend the model to assess
USUV risks would not require any changes to be made to the underlying seasonal abundance
model, since Cx. pipiens is the vector in both cases. Further, USUV also circulates within
avian hosts. Consequently, adaptation to model USUV would rely solely on the availability
of appropriate data to parameterise disease transmission processes, such as vector viral in-
cubation times, transmission probabilities between vector and host, host-host transmission
probability etc.

The DDE model framework presented here could also be adapted to model another mosquito
species by reparameterising the vital rate functions and transmission processes, provided suf-
ficient data was available. At present, DDEs with variable delays are very sparsely used
within the vector-borne disease modelling community due to the relative complexity of
DDEs as a modelling tool, when compared with other methods, and the requirement for em-
pirical data to parameterise mosquito vital rates. To my knowledge, the only other mosquito
model utilising a variable DDE framework is that developed for Anopheles by Beck-Johnson
et al. (2013). However, as shown in this thesis, DDEs can be a valuable tool by which the
population dynamics of insects species with multiple life stages in fluctuating thermal en-
vironments can be captured. A logical extension of the presented Cx. pipiens-WNV model
would be to attempt to capture and include the seasonal dynamics of Cx. modestus, which
has been implicated as a likely WNV bridge vector due to its preference for feeding on mam-
mals (Ponçon et al. 2007a; Balenghien et al. 2008), and has recently been recorded in areas
of South-east England (Golding et al. 2012; Medlock et al. 2014). However, empirical data
for Cx. modestus remains scarce, so further laboratory and field studies investigating Cx.

modestus vital rates and diapause behaviours would be required. Nonetheless, it is hoped
that this model could be used as a template which could be adapted such that other modellers
or ecologists may be able to take advantage of the features afforded by the DDE framework.
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6.5 Summary

In this thesis I have used empirical data on Cx. pipiens vital rates and vectorial capacity
to develop a novel mathematical model of WNV transmission that explicitly incorporates
environmental effects on vector and disease seasonal dynamics. Vital rates and patterns of
seasonal abundance predicted by the model were validated against a high temporal resolution
dataset tracking each Cx. pipiens life stage. Under current UK climate projections, I predict
that UK mosquito population sizes will steadily increase, though inter- and intra-annual vari-
ability will have profound effects on mosquito population sizes within a given year. Current
temperatures remain too low for WNV outbreaks following a potential introduction to be
likely. However, predicted average temperatures by 2080 under a high emissions scenario
are expected to facilitate MIR values coinciding with the lowest recorded values observed
during WNV outbreaks in other regions.
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Appendix A

Determination of initial history with
varying conditions

Here I present a discussion of the implications of assuming a constant environment for t ≤ 0

when determining initial conditions and historical values. First I present the case where it is
assumed that the environment is constant, before going on to present the variable case.

A.1 Constant case

Recall from Chapter 1 that the survival through an arbitrary stage i to be given by

Si(t) = exp(−∫

t

t−τi(t)
δi(t

′)dt′) , (A.1)

which can be differentiated to give

dSi(t)

dt
= Si(t)(

gi(t)δi(t − τi(t))

gi(t − τi(t))
− δi(t)) . (A.2)

An expression for the stage duration, τi(t), can be determined by considering the time re-
quired to transition from development point mi to point mi+1
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mi+1 −mi = ∫

t

t−τi(t)
gi(t

′)dt′, (A.3)

which can be differentiated to give

dτi(t)

dt
= 1 −

gi(t)

gi(t − τi(t))
. (A.4)

This gives an equation which defines the lags τi(t) for which we can compute τi(t) at all
times t > 0 if we know the value, τi(0) = τi0, of the lag at time t = 0. This is relatively
straightforward in the case where we assume constant conditions for t ≤ 0, as gi(t) can be
written as the constant, gi, giving

mi+1 −mi = ∫

t

t−τi0
gidt

′ = gi0τi0. (A.5)

Using the fact that gi is expressed as the fraction of stage i completed, gives that

τi0 =
1

gi0
, (A.6)

where gi0 is the development rate of individuals in stage i at time t = 0. Similarly, by
assuming constant temperatures for t ≤ 0, δi(t) becomes δi and an initial condition for the
survival equation can be determined, such that

Si0 = exp(−∫

t

t−τi0
δidt

′) = exp(−δi0τi0). (A.7)

A.2 Linearly changing conditions

Now consider the case where conditions are not constant for t ≤ 0. In this case gi(t) and δi(t)
cannot be simplified to constants for t ≤ 0. Examining Equation A.2 reveals that solutions
to the survival equation may be possible through separation of variables, given a solution for
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τi(t). To find a solution for τi0, consider a the case where the temperature function for t ≤ 0

can be approximated by a linear function, such that T (t) = ct + d. The development rate
function will be a power function, as in the Cx. pipiens model used. Substituting this into
Equation A.3 and solving gives

mi+1 −mi = ∫

t

t−τi(t)
α(ct′ + d)βdt′

= [
α(ct′ + d)β+1

c(β + 1)
]

t

t−τi(t)

1 =
α(ct + d)β+1

c(β + 1)
−
α(c(t − τi(t) + d)β+1

c(β + 1)
.

(A.8)

Setting t = 0 and rearranging gives

τi0 =
d

c
−

1

c
(dβ+1 −

c(β + 1)

α
)

1
β+1

. (A.9)

To calculate an initial survival value, Si0, use the death rate function from the Cx. pipiens

model. Density-dependence will not be a factor here as L(t) = 0 for t ≤ 0. Therefore,
survival can be calculated as

Si(t) = exp(−∫

t

t−τi(t)
ν0i exp((

ct′ + d − ν1i
ν2i

)

2

)dt′) , (A.10)

= [exp(−
ν0iν2i

√
π

2c
erfi(

ct′ + d − ν1i
ν2i

))]

t

t−τi(t)
, (A.11)

Si(t) = exp(−
ν0iν2i

√
π

2c
[erfi(

c(t − τi(t)) + d − ν1i
ν2i

) − erfi(
ct + d − ν1i

ν2i
)]) . (A.12)

Setting t = 0, Si(0) = Si0 can be written as

Si0 = exp(−
ν0iν2i

√
π

2c
[erfi(

−cτi0 + d − ν1i
ν2i

) − erfi(
d − ν1i
ν2i

)]) . (A.13)

into which one can substitute the value of τi0 to calculate survival. So, for the case where
temperature is allowed to vary linearly for t ≤ 0 one can find initial values.



Appendix A. Determination of initial history with varying conditions 241

A.3 Is the linear approximation an improvement over

the constant case

In Chapter 2, simulations are run using a modified cosine curve (Section 2.2.3) to determine
the effects of different seasonal temperature profiles on Cx. pipiens abundance. To determine
the effect of assuming constant historical temperature conditions, the temperature function,
which is sinusoidal for t > 0, was approximated by a linear function for t ≤ 0, such that
T (t) = ct + d, and matched at t = 0. Further simulations were run under the assumption of
constant temperatures for t ≤ 0 and the results were compared to determine if there was an
appreciable difference in outcome of the two methods (Figure A.1).

It is clear from Figure A.1 that the DDE solutions quickly converge to the same values in
both cases. Simulations estimating the effects of different sinusoidal temperature curves on
seasonal abundance are reported after a “burn-in" period of 18 months. Given this, one can
have confidence that the assumption of constant temperatures for t ≤ 0 does not substantially
affect results when compared to the scenario where the temperature for t ≤ 0 is given by the
sinusoidal wave.
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Figure A.1: Comparison between linear and constant histories: Simulations showing the com-
parison between estimated survival, stage duration and abundance. The solid black line shows the
results using linear development and death rate functions, whilst the dotted red line shows results
under constant temperatures, for t ≤ 0.
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Appendix B

Vertical transmission: infection in
immature stages

Given that infection status is not thought to influence immature vital rates, the disease model
in Chapter 5 was formulated such that immature individuals were not split by infection sta-
tus. As such the mosquito dynamics resembled Figure B.1 (a) rather than Figure B.1 (b),
where there are separate immature stages dependent on infection status.

Adult 
Mosquitoes

Eggs Larvae Pupae

Infectious 
Mosquitoes

Susceptible
Mosquitoes

Exposed 
Mosquitoes

𝑉(𝑡)

1 − 𝑉(𝑡)

Mosquito egg-laying,
𝑏𝑀(𝑡)

Adult 
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Infectious 
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1 − 𝑝𝑣𝑡

Figure B.1: Vertical transmission modelling pathways: The two possible methods by which to
model vertical transmission are shown. (a) is the technique used in Chapter 5, and (b) is the alternative
formulation.



Appendix B. Vertical transmission: infection in immature stages 244

It is possible to show that, given the assumption that infection status does not affect develop-
ment or survival of immature mosquitoes, the two methods are equivalent. The assumption
that infection status does not influence development or mortality means that all growth rates,
gi(T (t)), stage durations, τi(t), and survival terms, Si(t), for i = E,L,P can be used for
both infectious and uninfectious stages. Consider recruitment into infected adults, given as
maturation from the exposed class, plus a proportion, V(t), of emergent pupae (Equation
5.16 in the main text),

RAI(t) =MAE(t) +MP (t)V(t). (B.1)

Using the definition of V(t), given in Equation 5.12, the recruitment into the infectious adult
stage can be written as

RAI(t) =MP (t)V(t) +MAE(t)

=
MP (t)AI(t − τI(t))pvt

NV (t − τI(t))
+MAE(t).

(B.2)

Now using the definition for MP (t) it can be shown that

RAI(t) =(bA(t − τI(t))NV (t − τI(t))SI(t)gI(T (t)))(
AI(t − τI(t))pvt
NV (t − τI(t))

) +MAE(t)

=bA(t − τI(t))AI(t − τI(t))pvtSI(t)gI(T (t)) +MAE(t)

=MPI(t) +MAE(t)

(B.3)

where MPI is the maturation rate out of infected pupae in the split model (Figure B.1 (b))
and gI(T (t)) is given by,

gI(T (t)) =
gP (T (t))

gP (T (t − τP (t)))

gL(T (t − τP (t)))

gL(T (t − τP (t) − τL(t − τP (t))))

gE(T (t − τP (t) − τL(t − τP (t))))

gE(T (t − τP (t) − τL(t − τP (t)) − τE(t − τP (t) − τL(t − τP (t)))))
,

(B.4)

for brevity. Consequently, the rate of recruitment into the infectious adult class is equivalent
in both methods, as the rate of maturation from the infectious pupal class in the split model
equals the proportion of maturation assigned to the infectious class in the combined model.
Similarly, it can be shown, using the result from above, that the rate of recruitment into the
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susceptible adult class is the same in both models. Starting from the rate of recruitment into
the susceptible adult class in the main text (Equation 5.11),

RAS(t) =MP (t)(1 − V(t)), (B.5)

it can be shown that

RAS(t) =MP (t)(1 − V(t))

=MP (t) −MP (t)V(t)

=MP (t) −MPI(t)

=MPS(t).

(B.6)

This shows that recruitment into susceptible adults is given by maturation from susceptible
pupae in the split model and an equivalent proportion of the total pupal population in the
combined model.
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Appendix C

Seasonally forced predation under
warming scenarios

In Chapter 4, seasonal forcing in the predator population was added to the model to account
for observations at the field site that predator numbers increased throughout the season. Sim-
ulations were run to understand the effects of this seasonal variation in the relative numbers
of predators to prey (Figures 4.12-4.15). Figure C.1 shows that inclusion of seasonal vari-
ation in the ratio of predators to larvae improved the ability of the model to capture the
observed relative peak sizes in the egg, larval and adult stages, though in the pupal stage the
constant predation case performs better. This is reflected in the Pearson’s correlation values
between model predictions and data, with correlation changes of +0.07 for eggs, +0.06 for
larvae, −0.07 for pupae, and +0.17 for adults, when including seasonality in predation.

Whilst investigating warming scenarios in Chapter 5, it was observed that the inclusion of
seasonal variation in predator numbers led to unexpectedly large increases in mosquito abun-
dance in the early part of the year, when predator numbers were low. Under predicted UKCIP
warming scenarios, higher temperatures create favourable mosquito development conditions
early in the year. These favourable conditions, coupled with relatively low rates of density-
dependent mortality through predation, mean that larval survival is high early and population
sizes are not regulated in the early part of the season. Figure C.2 shows that, under the warm-
ing scenario, larval survival in the months of April and May increases substantially. Whilst
increased temperatures are likely to decrease temperature-dependent larval mortality, these
effects can be expected to be mitigated, to some extent, by increased density-dependent mor-
tality. However, the relative lack of predators early in the season when seasonal forcing is
included means that, under warming scenarios, the mosquito abundance increases rapidly
leading to unrealistically high larval densities in the early part of the year and excessively
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Figure C.1: Abundances under constant and variable predation: A comparison of the abundances
of each life stage compared to the field data assuming both constant and variable predation, given the
temperature conditions at the Wallingford field site.
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Figure C.2: Larval survival under different temperature regimes: The figure shows the larval
survival during spring under three different temperature regimes when seasonal forcing is applied to
the predator population. The black line represents the estimated larval survival under the observed
temperature conditions in butt 4 at the Wallingford field site. The dashed red line shows the estimated
larval survival when approximating those observed temperatures by a sinusoidal wave of the form
described in Section 5.5.4. The solid red line shows larval survival using a sinusoidal wave fitted to
the same data, with a 5 ○C temperature increase applied.

high vector-host ratios (Figure C.3 (d)). These high vector host ratios led to very high esti-
mates of disease transmission (Figure C.3 (a)-(c)).

To resolve this issue it was assumed that the number of predators would remain directly
proportional to the number of larvae throughout the year, as in Chapter 2. This assumption
ensures that density-dependent mortality acts all year round to regulate mosquito population
sizes. Figure C.4 shows that by assuming predator numbers remain directly proportional to
larval numbers throughout the year, estimates of larval survival from mid-April onwards,
when the mosquito active season begins, are reduced and fall more directly in line with cur-
rent observations. These findings are reflected in Figure C.5, which shows that assuming
seasonal variation in predation, in conjunction with a warming scenario, results in a more
than hundredfold increase in abundance of each life stage when compared with the constant
predation case. By comparison, in the absence of warming, estimates under seasonally vary-
ing predation exceed those under constant predation by a factor of 2-3. A discussion of
alternative methods by which to incorporate seasonal predation and increased temperatures
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(a) (b)

(c) (d)

Figure C.3: Effect of warming scenarios: (a) shows the predicted maximum density of infectious
mosquitoes observed on a particular day under a range of warming and introduction scenarios. (b)
shows the predicted density of infectious mosquitoes per day during the months of April to August,
corresponding to the main active mosquito season, under different warming and introduction scenar-
ios. (c) shows the predicted minimum infection rate (MIR), which is the number of infectious adults
per 1000 adult females. (d) shows the mean vector-host ratio during the active mosquito season (April
to August).

is presented in Section 6.3.1.
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Figure C.4: Larval survival under different temperature regimes: The figure shows the larval
survival during spring under three different temperature regimes in the absence of seasonal forcing
of predator populations. The black line represents the estimated larval survival under the observed
temperature conditions in butt 4 at the Wallingford field site. The dashed red line shows the estimated
larval survival when approximating those observed temperatures by a sinusoidal wave of the form
described in Section 5.5.4. The solid red line shows larval survival using a sinusoidal wave fitted to
the same data, with a 5 ○C temperature increase applied.
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Figure C.5: Abundances under constant and variable predation with warming: A comparison of
the log abundances of each life stage compared to the field data assuming both constant and variable
predation, given 5 ○C warming above UKCIP baseline levels. Log abundances are presented due to
the large difference in population size between the constant and variable predation cases.
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Appendix D

Fortran Code

D.1 Chapter 2 DDE Code

MODULE define_DDEs

IMPLICIT NONE

! S e t number o f e q u a t i o n s , d e l a y s and e v e n t f u n c t i o n s
INTEGER , PARAMETER : : NEQN=13 ,NLAGS=6 ,NEF=6
! S e t egg r a f t s i z e , t e m p e r a t u r e v a r i a b l e s and p r e d a t i o n

p a r a m e t e r s
DOUBLE PRECISION : : MAXEGG
DOUBLE PRECISION : : M, PHASE ,POWER, A, PI =3.1415927D0
DOUBLE PRECISION : : B1 , B2

CONTAINS

SUBROUTINE DDES( T , Y, Z ,DY)

DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y,DY
DOUBLE PRECISION , DIMENSION(NEQN,NLAGS) : : Z
INTENT ( IN ) : : T , Y, Z
INTENT (OUT) : : DY

! D ef in e l o c a l v a r i a b l e s
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DOUBLE PRECISION : : TEMPnow , TEMPE, TEMPL, TEMPP, TEMPEL,
TEMPLP, TEMPELP

DOUBLE PRECISION : : BIRTHnow , BIRTHE , BIRTHEL , BIRTHELP
DOUBLE PRECISION : : EGGMATnow,EGGMATE,EGGMATL,EGGMATEL,

EGGMATLP,EGGMATELP
DOUBLE PRECISION : : LARMATnow,LARMATL,LARMATP,LARMATLP
DOUBLE PRECISION : : PPnow , PPE , PPEL , PPELP
DOUBLE PRECISION : : REt , RLt , RPt , RAt , MEt , MLt , MPt , DEt , DLt ,

DPt , DAt
DOUBLE PRECISION : : dEdt , dLdt , dPdt , dAdt , dSEdt , dSLdt , dSPdt

, dDEdt , dDLdt , dDELdt , dDPdt , dDLPdt , dDELPdt
DOUBLE PRECISION : : E , LAR, PUP ,ADU, SE , SL , SP , DE, DL, DP , DLP ,

DELP
DOUBLE PRECISION : : INOC
DOUBLE PRECISION : : DEATHeggnow , DEATHeggE , DEATHlarnow ,

DEATHlarL , DEATHpupnow , DEATHpupP , DEATHadunow
DOUBLE PRECISION : : PUPMATnow, PUPMATP, GONOTROPHICnow,

GONOTROPHICE, GONOTROPHICEL, GONOTROPHICELP
DOUBLE PRECISION : : DIAPAUSEnow , DIAPAUSEE , DIAPAUSEEL ,

DIAPAUSEELP

! S e t i n o c u l a t i o n
INOC = INOCCULATE( T )

! S e t s o l u t i o n v a l u e s
E = Y( 1 )
LAR = Y( 2 )
PUP = Y( 3 )
ADU = Y( 4 )
SE = Y( 5 )
SL = Y( 6 )
SP = Y( 7 )
DE = Y( 8 )
DL = Y( 9 )
DP = Y( 1 0 )
DLP = Y( 1 2 )
DELP = Y( 1 3 )
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! S e t t e m p e r a t u r e v a l u e s a t i m p o r t a n t t ime p o i n t s
TEMPnow = TEMP( T )
TEMPE = TEMP( T−DE)
TEMPL = TEMP( T−DL)
TEMPP = TEMP( T−DP)
TEMPEL = TEMP( T−DL−Z ( 8 , 4 ) )
TEMPELP = TEMP( T−DP−Z ( 9 , 6 )−Z ( 8 , 5 ) )
TEMPLP = TEMP( T−DP−Z ( 9 , 6 ) )

! S e t p h o t o p e r i o d v a l u e s a t i m p o r t a n t t ime p o i n t s
PPnow = DAYLIGHT( T )
PPE = DAYLIGHT( T−DE)
PPEL = DAYLIGHT( T−DL−Z ( 8 , 4 ) )
PPELP = DAYLIGHT( T−DP−Z ( 9 , 6 )−Z ( 8 , 5 ) )

! S e t g o n o t r o p h i c c y c l e v a l u e s v a l u e s a t i m p o r t a n t t ime
p o i n t s

GONOTROPHICnow = GONOTROPHIC(TEMPnow)
GONOTROPHICE = GONOTROPHIC(TEMPE)
GONOTROPHICEL = GONOTROPHIC(TEMPEL)
GONOTROPHICELP = GONOTROPHIC(TEMPELP)

! S e t d i a p a u s e and b i r t h r a t e v a l u e s a t i m p o r t a n t t ime
p o i n t s

IF (DAYLIGHT( T ) > DAYLIGHT( T−1) ) THEN
DIAPAUSEnow = DIAPAUSE_SPRING ( PPnow )
DIAPAUSEE = DIAPAUSE_SPRING ( PPE )
DIAPAUSEEL = DIAPAUSE_SPRING ( PPEL )
DIAPAUSEELP = DIAPAUSE_SPRING ( PPELP )
BIRTHnow = BIRTH ( DIAPAUSEnow , GONOTROPHICnow, Adu , T )
BIRTHE = BIRTH (DIAPAUSEE , GONOTROPHICE, Adu , T )
BIRTHEL = BIRTH (DIAPAUSEEL , GONOTROPHICEL, Adu , T )
BIRTHELP = BIRTH (DIAPAUSEELP , GONOTROPHICELP, Adu , T )

ELSE
DIAPAUSEnow = DIAPAUSE_AUTUMN( PPnow )
DIAPAUSEE = DIAPAUSE_AUTUMN( PPE )
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DIAPAUSEEL = DIAPAUSE_AUTUMN( PPEL )
DIAPAUSEELP = DIAPAUSE_AUTUMN( PPELP )
BIRTHnow = BIRTH ( DIAPAUSEnow , GONOTROPHICnow, Adu , T )
BIRTHE = BIRTH (DIAPAUSEE , GONOTROPHICE, Adu , T )
BIRTHEL = BIRTH (DIAPAUSEEL , GONOTROPHICEL, Adu , T )
BIRTHELP = BIRTH (DIAPAUSEELP , GONOTROPHICELP, Adu , T )

END IF

! S e t d e a t h r a t e s a t i m p o r t a n t t ime p o i n t s
DEATHeggnow = DEATHegg (TEMPnow)
DEATHeggE = DEATHegg (TEMPE)
DEATHlarnow = DEATHlar (TEMPnow)
DEATHlarL = DEATHlar (TEMPL)
DEATHpupnow = DEATHpup(TEMPnow)
DEATHpupP = DEATHpup(TEMPP)
DEATHadunow = DEATHadu (TEMPnow)

! S e t deve lopment r a t e s a t i m p o r t a n t t ime p o i n t s
LARMATnow = LARMATURATION(TEMPnow)
LARMATL = LARMATURATION(TEMPL)
LARMATP = LARMATURATION(TEMPP)
LARMATLP = LARMATURATION(TEMPLP)

EGGMATnow = EGGMATURATION(TEMPnow)
EGGMATE = EGGMATURATION(TEMPE)
EGGMATL = EGGMATURATION(TEMPL)
EGGMATEL = EGGMATURATION(TEMPEL)
EGGMATLP = EGGMATURATION(TEMPLP)
EGGMATELP = EGGMATURATION(TEMPELP)

PUPMATnow = PUPMATURATION(TEMPnow)
PUPMATP = PUPMATURATION(TEMPP)

! D ef in e s t a g e d u r a t i o n e q u a t i o n s
dDEdt = 1D0 − EGGMATnow/EGGMATE
dDLdt = 1D0 − LARMATnow/LARMATL
dDPdt = 1D0 − PUPMATnow/PUPMATP



Appendix D. Fortran Code 256

dDELdt = (1D0 − dDLdt ) * (1D0 − EGGMATL/EGGMATEL)
dDLPdt = (1D0 − dDPdt ) * (1D0 − LARMATP/LARMATLP)
dDELPdt = (1D0 − dDPdt − dDLPdt ) * (1D0 − EGGMATLP/

EGGMATELP)

! D ef in e r e c r u i m e n t r a t e s
REt = BIRTHnow * ADU
RLt = BIRTHE * Z ( 4 , 1 ) * SE * EGGMATnow/EGGMATE
RPt = BIRTHEL * Z ( 4 , 2 ) * Z ( 5 , 4 ) * SL * LARMATnow/LARMATL

* (1D0 − dDELdt )
RAt = BIRTHELP * Z ( 4 , 3 ) * Z ( 5 , 5 ) * Z ( 6 , 6 ) * SP *

PUPMATnow/PUPMATP * (1D0 − dDLPdt ) * (1D0 − dDELPdt ) +
INOC

! D ef in e m a t u r a t i o n r a t e s
MEt = RLt
MLt = RPt
MPt = BIRTHELP * Z ( 4 , 3 ) * Z ( 5 , 5 ) * Z ( 6 , 6 ) * SP *

PUPMATnow/PUPMATP * (1D0 − dDLPdt ) * (1D0 − dDELPdt )

! D e f in e d e a t h r a t e s
DEt = DEATHeggnow * E
DLt = ( B1*LAR / ( B2+LAR) + DEATHlarnow ) * LAR
DPt = DEATHpupnow * PUP
DAt = DEATHadunow * ADU

! B u i l d DDEs
dEdt = REt − MEt − DEt
dLdt = RLt − MLt − DLt
dPdt = RPt − MPt − DPt
dAdt = RAt − DAt

dSEdt = SE * ( (EGGMATnow * DEATHeggE / EGGMATE) −

DEATHeggnow )
dSLdt = SL * ( ( ( B1*Z ( 2 , 4 ) / ( B2+Z ( 2 , 4 ) ) ) + DEATHlarL ) *

(1−dDLdt ) − ( B1*LAR / ( B2+LAR) ) − DEATHlarnow )
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dSPdt = SP * ( ( PUPMATnow * DEATHpupP / PUPMATP) −

DEATHpupnow )

! D e r i v a t i v e s f o r t h e i n t e g r a t o r :
DY = ( / dEdt , dLdt , dPdt , dAdt , dSEdt , dSLdt , dSPdt ,

dDEdt , dDLdt , dDPdt , dDELdt , dDLPdt , dDELPdt / )

RETURN
END SUBROUTINE DDES

SUBROUTINE BETA( T , Y,BVAL)

DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y
DOUBLE PRECISION , DIMENSION(NLAGS) : : BVAL
INTENT ( IN ) : : T ,Y
INTENT (OUT) : : BVAL

! S e t t ime d e l a y s
! T − Eggdelay ( T )
BVAL( 1 ) = T−Y( 8 )
! T − L a r d e l a y ( T ) − Eggdelay ( T−L a r d e l a y ( T ) )
BVAL( 2 ) = T−Y( 9 )−Y( 1 1 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) ) − Eggdelay ( T−

Pupde lay ( T )−L a r d e l a y ( T−Pupde lay ( T ) ) )
BVAL( 3 ) = T−Y( 1 0 )−Y( 1 2 )−Y( 1 3 )
! T − L a r d e l a y ( T )
BVAL( 4 ) = T−Y( 9 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) )
BVAL( 5 ) = T−Y( 1 0 )−Y( 1 2 )
! T − Pupde lay ( T )
BVAL( 6 ) = T−Y( 1 0 )

RETURN
END SUBROUTINE BETA
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SUBROUTINE HISTORY( T ,Y)
DOUBLE PRECISION : : T , TEMPhist , TEMPhistL , TEMPhistP ,

TEMPhistLP
DOUBLE PRECISION , DIMENSION(2*NEQN) : : Y
INTENT ( IN ) : : T
INTENT (OUT) : : Y

! S e t h i s t o r i c a l v a l u e s f o r each e q u a t i o n
TEMPhist = TEMP( T )

Y( 1 ) = 0D0
Y( 2 ) = 0D0
Y( 3 ) = 0D0
Y( 4 ) = 0D0

Y( 8 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 9 ) = 1D0 /LARMATURATION( TEMPhist )
Y( 1 0 ) = 1D0 /PUPMATURATION( TEMPhist )

Y( 5 ) = EXP(−DEATHegg ( TEMPhist ) * (1D0 /EGGMATURATION(
TEMPhist ) ) )

Y( 6 ) = EXP(−DEATHlar ( TEMPhist ) * (1D0 /LARMATURATION(
TEMPhist ) ) )

Y( 7 ) = EXP(−DEATHpup( TEMPhist ) * (1D0 /PUPMATURATION(
TEMPhist ) ) )

TEMPhistL = TEMP( T−Y( 9 ) )
TEMPhistP = TEMP( T−Y( 1 0 ) )

Y( 1 1 ) = 1D0 /EGGMATURATION( TEMPhistL )
Y( 1 2 ) = 1D0 /LARMATURATION( TEMPhistP )

TEMPhistLP = TEMP( T−Y( 1 0 )−Y( 1 2 ) )

Y( 1 3 ) = 1D0 /EGGMATURATION( TEMPhistLP )

RETURN
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END SUBROUTINE HISTORY

SUBROUTINE EF ( T , Y,DY, Z ,G)

DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y,DY
DOUBLE PRECISION , DIMENSION(NEQN,NLAGS) : : Z
DOUBLE PRECISION , DIMENSION(NEF) : : G
INTENT ( IN ) : : T , Y,DY, Z
INTENT (OUT) : : G

! Event f u n c t i o n s t o l o c a t e peaks , t r o u g h s e t c .
G( 1 ) = DY( 4 )
G( 2 ) = 14D0 − DAYLIGHT( T )
G( 3 ) = 13D0 − DAYLIGHT( T )
G( 4 ) = 10D0 − TEMP( T )
G( 5 ) = 10D0 − TEMP( T )
G( 6 ) = DY( 6 )

RETURN
END SUBROUTINE EF

DOUBLE PRECISION FUNCTION INOCCULATE( T )

DOUBLE PRECISION : : T

! I n o c u l a t e t h e sys tem
IF ( T < 1D0 .AND. T > 0D0 ) THEN

INOCCULATE = 12000D0
ELSE

INOCCULATE = 0D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION TEMP( T )
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DOUBLE PRECISION : : T

! D ef in e t e m p e r a t u r e f u n c t i o n s
TEMP = (M−A) + A * 2 * ( 0 . 5 D0 * (1D0 + COS(2D0 * Pi * ( T−

PHASE) / 365D0 ) ) ) **POWER
IF ( T<0D0 ) THEN

TEMP = (M−A) + A * 2 * ( 0 . 5 D0 * (1D0 + COS(2D0 * Pi *
(0D0−PHASE) / 365D0 ) ) ) **POWER

END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DAYLIGHT( T )

DOUBLE PRECISION : : T , EPS ,NUM,DEN
REAL, PARAMETER : : P i = 3 .1415927D0 , L = 51D0

! D ef in e p h o t o p e r i o d v a l u e s
EPS = ASIN ( 0 . 3 9 7 9 5 D0 * COS( 0 . 2 1 6 3 1 0 8D0 + 2 * ATAN

( 0 . 9 6 7 1 3 9 6D0 * TAN( 0 . 0 0 8 6 0 D0 * ( T−3 .5D0 ) ) ) ) )
NUM = SIN ( 0 . 8 3 3 3 D0* Pi /180D0 ) + ( SIN ( L* Pi /180D0 ) * SIN ( EPS

) )
DEN = COS( L* Pi /180D0 ) * COS( EPS )
DAYLIGHT = 24D0 − (24D0 / P i ) * ACOS(NUM / DEN)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_SPRING ( PP )

DOUBLE PRECISION : : PP

! S e t s p r i n g d i a p a u s e t h r e s h o l d
DIAPAUSE_SPRING = 1D0 / (1D0 + EXP(5D0*(14D0−PP ) ) )
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RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_AUTUMN( PP )

DOUBLE PRECISION : : PP

! S e t autumn d i a p a u s e t h r e s h o l d
DIAPAUSE_AUTUMN = 1D0 / (1D0 + EXP(5D0*(13D0−PP ) ) )

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION BIRTH (DIAPAUSE , GONOTROPHICtime ,
Adu , T )

DOUBLE PRECISION : : GONOTROPHICtime , EGGRAFT, Adu , T ,
DIAPAUSE

! S e t b i r t h r a t e
EGGRAFT = DIAPAUSE*MAXEGG* 0 . 5D0
BIRTH = EGGRAFT/ GONOTROPHICtime

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION GONOTROPHIC(TEMP)

DOUBLE PRECISION : : TEMP, GONOTROPHICRATE
DOUBLE PRECISION : : KG=0.2024D0 ,QG=74.48D0 ,BG=0.2456D0

! C a l c u l a t e g o n o t r o p h i c c y c l e l e n g t h
IF (TEMP < 0D0 ) THEN

GONOTROPHICRATE = 0 .0333D0
ELSE

GONOTROPHICRATE = KG / (1+QG*EXP(−BG*TEMP) )
END IF
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IF (GONOTROPHICRATE < 0 .0333D0 ) THEN
GONOTROPHICRATE = 0 .0333D0

END IF
GONOTROPHIC = 1 /GONOTROPHICRATE

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHegg (TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! C a l c u l a t e egg d e a t h r a t e
DEATHegg = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHegg > 1D0 ) THEN

DEATHegg = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHlar (TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! C a l c u l a t e l a r v a l d e a t h r a t e
DEATHlar = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHlar > 1D0 ) THEN

DEATHlar = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHpup(TEMP)
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DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20.5D0 , U5=7D0

! C a l c u l a t e p u p a l d e a t h r a t e
DEATHpup = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF (DEATHpup > 1D0 ) THEN

DEATHpup = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHadu (TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=2.166D−8 ,BETA=4.483D0

! C a l c u l a t e a d u l t d e a t h r a t e
DEATHadu = ALPHA*(TEMP**BETA)
IF ( DEATHadu < 0 . 0 1D0 ) THEN

DEATHadu = 0 . 0 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION EGGMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0022D0 , BETA=1.77D0

! C a l c u l a t e egg deve lopment r a t e
IF (TEMP < 0D0 ) THEN

EGGMATURATION = 0.016667D0
ELSE
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EGGMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (EGGMATURATION < 0.016667D0 ) THEN

EGGMATURATION = 0.016667D0
END IF

RETURN

END FUNCTION

DOUBLE PRECISION FUNCTION LARMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.00315D0 , BETA=1.12D0

! C a l c u l a t e l a r v a l deve lopment r a t e
IF (TEMP < 0D0 ) THEN

LARMATURATION = 0.016667D0
ELSE

LARMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (LARMATURATION < 0.016667D0 ) THEN

LARMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION PUPMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0007109D0 , BETA=1.8865648D0

! C a l c u l a t e p u p a l deve lopment r a t e
IF (TEMP < 0D0 ) THEN

PUPMATURATION = 0.016667D0
ELSE
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PUPMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (PUPMATURATION < 0.016667D0 ) THEN

PUPMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

END MODULE define_DDEs

!******************************************************************

PROGRAM c h a p t e r 2 m o d e l

USE define_DDEs
USE DDE_SOLVER_M

IMPLICIT NONE

INTEGER : : I , J ! Loca l v a r i a b l e s

INTEGER , DIMENSION ( 3 ) : : NVAR = ( / NEQN, NLAGS, NEF / )

! S e t l e n g t h o f s o l u t i o n and o u t p u t p o i n t s
INTEGER , PARAMETER : : NOUT=913D0
DOUBLE PRECISION , PARAMETER : : T0=0D0 , TFINAL=912D0
DOUBLE PRECISION , DIMENSION(NOUT) : : TSPAN= &
( / ( T0 +( I −1) * ( ( TFINAL − T0 ) / ( NOUT−1) ) , I =1 ,NOUT) / )

TYPE(DDE_SOL) : : SOL
TYPE(DDE_OPTS) : : OPTS

DOUBLE PRECISION : : MAXDELAY = 200D0
CHARACTER ( l e n =90) : : f i l e n a m e
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! O p t i o n s f o r t h e DDE s o l v e r
OPTS = DDE_SET(RE=1D−11 ,AE=1D−20 ,MAX_STEPS=1000000000 ,

MAX_DELAY=MAXDELAY, TRIM_FREQUENCY=10000 ,DIRECTION = ( /
0 , −1 ,1 , −1 ,1 ,0 / ) )

! Run t h e DDE s o l v e r
SOL = DDE_SOLVER(NVAR, DDES, BETA, HISTORY , TSPAN , EVENT_FCN=EF ,

OPTIONS=OPTS)

! Was t h e s o l v e r s u c c e s s f u l ?
IF (SOL%FLAG == 0) THEN

! Outpu t s o l u t i o n s
WRITE( f i l e n a m e , ’ ( " f i l e n a m e . d a t " ) ’ )
OPEN( u n i t =11 , f i l e = f i l e n a m e )
DO I = 1 ,SOL%NPTS

WRITE( UNIT=11 ,FMT= ’(16 E14 . 5 E3 ) ’ ) SOL%T ( I ) , ( SOL%Y( I , J )
, J =1 ,NEQN)

END DO
CLOSE( 1 1 )

ELSE
PRINT * , ’ Abnormal r e t u r n from DDE_SOLVER wi th FLAG = ’ ,&
SOL%FLAG

END IF

STOP
END PROGRAM c h a p t e r 2 m o d e l

D.2 Chapter 4 DDE Code

MODULE define_DDEs

IMPLICIT NONE

! S e t number o f e q u a t i o n s , d e l a y s and e v e n t f u n c t i o n s
INTEGER , PARAMETER : : NEQN=14 ,NLAGS=6 ,NEF=3
! S e t l e n g t h o f t e m p e r a t u r e d a t a s e t s
INTEGER , PARAMETER : : TEMPNwater = 17520 , TEMPNair = 1460
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INTEGER : : K
DOUBLE PRECISION : : PI =3.1415927D0
! S e t p r e d a t i o n p a r a m e t e r s and egg r a f t s i z e
DOUBLE PRECISION : : densa , dens r , densh , UPS , SHP ,MAXEGG
! S e t t ime p o i n t s f o r t e m p e r a t u r e v a l u e s
do ub l e p r e c i s i o n , DIMENSION( TEMPNwater ) : : Xtempwater= ( / (

K/ 2 4D0 , K=1 , TEMPNwater ) / )
do ub l e p r e c i s i o n , DIMENSION( TEMPNair ) : : Xtempai r = ( / (K/ 2

D0 , K=1 , TEMPNair ) / )

CONTAINS

SUBROUTINE DDES( T , Y, Z ,DY)

! S e t v a r i a b l e s f o r DDE s o l v e r
DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y,DY
DOUBLE PRECISION , DIMENSION(NEQN,NLAGS) : : Z
INTENT ( IN ) : : T , Y, Z
INTENT (OUT) : : DY
INTEGER : : K, L
! S e t v a l u e s used i n e x t r a c t i n g t e m p e r a t u r e d a t a and

i n t e r p o l a t i n g between v a l u e s
DOUBLE PRECISION : : ytempp1 = 1D0 , ytemppn = 1D0
DOUBLE PRECISION , DIMENSION( TEMPNwater ) : : water temp ,

wa te r t emp2
DOUBLE PRECISION , DIMENSION( TEMPNair ) : : a i r t e m p ,

a i r t e m p 2

! D ef in e v a r i a b l e names
DOUBLE PRECISION : : TEMPnowair , TEMPGCair
DOUBLE PRECISION : : TEMPnowwater , TEMPEwater , TEMPLwater ,

TEMPPwater , TEMPELwater , TEMPLPwater , TEMPELPwater
DOUBLE PRECISION : : BIRTHnow , BIRTHE , BIRTHEL , BIRTHELP
DOUBLE PRECISION : : EGGMATnow,EGGMATE,EGGMATL,EGGMATEL,

EGGMATLP,EGGMATELP
DOUBLE PRECISION : : LARMATnow,LARMATL,LARMATP,LARMATLP
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DOUBLE PRECISION : : REt , RLt , RPt , RAt , MEt , MLt , MPt , DEt , DLt ,
DPt , DAt

DOUBLE PRECISION : : dEdt , dLdt , dPdt , dAdt , dSEdt , dSLdt , dSPdt
, dDEdt , dDLdt , dDELdt , dDPdt , dDLPdt , dDELPdt , dGCdt

DOUBLE PRECISION : : E , LAR, PUP ,ADU, SE , SL , SP , DE, DL, DP ,GC
DOUBLE PRECISION : : INOC
DOUBLE PRECISION : : DEATHeggnow , DEATHeggE , DEATHlarnow ,

DEATHlarL , DEATHpupnow , DEATHpupP , DEATHadunow
DOUBLE PRECISION : : PUPMATnow,PUPMATP
DOUBLE PRECISION : : DIAPAUSEE , DIAPAUSEEL , DIAPAUSEELP ,

DIAPAUSEnow
DOUBLE PRECISION : : PPnow , PPE , PPEL , PPELP
DOUBLE PRECISION : : GCnow ,GCC

! Read i n t e m p e r a t u r e d a t a
OPEN ( UNIT=7 , FILE =" B u t t 4 h o u r l y t e m p s −w i n t e r s t a r t − t w o y e a r s

. c sv " , STATUS="OLD" , ACTION="READ" )
READ( 7 , * )
DO K = 1 , TEMPNwater

READ ( 7 , * ) wa te r t emp (K)
END DO
CLOSE ( 7 )

OPEN ( UNIT=7 , FILE =" Airminmaxmets i t e −w i n t e r s t a r t − t w o y e a r s
. c sv " , STATUS="OLD" , ACTION="READ" )

READ( 7 , * )
DO L = 1 , TEMPNair

READ ( 7 , * ) a i r t e m p ( L )
END DO
CLOSE ( 7 )

! I n t e r p o l a t e between t e m p e r a t u r e v a l u e s u s i n g s p l i n e
CALL c u b i c _ s p l i n e _ a i r ( x t empa i r , a i r t e m p , TEMPnair ,

ytempp1 , ytemppn , a i r t e m p 2 )
CALL c u b i c _ s p l i n e _ w a t e r ( x tempwater , water temp , TEMPnwater

, ytempp1 , ytemppn , wate r t emp2 )
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! Give names t o r e s p o n s e s o f sys tem of e q u a t i o n s
E = Y( 1 )
LAR = Y( 2 )
PUP = Y( 3 )
ADU = Y( 4 )
SE = Y( 5 )
SL = Y( 6 )
SP = Y( 7 )
DE = Y( 8 )
DL = Y( 9 )
DP = Y( 1 0 )
GC = Y( 1 4 )

! E x t r a c t t e m p e r a t u r e v a l u e s a t v a r i o u s t ime p o i n t s
TEMPnowwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T )
TEMPnowair = s p l i n t ( x t empa i r , a i r t e m p , a i r t emp2 , TEMPnair , T )
TEMPEwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DE)
TEMPLwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DL)
TEMPPwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DP)
TEMPELwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DL−Z ( 8 , 4 ) )
TEMPELPwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DP−Z ( 9 , 6 )−Z ( 8 , 5 ) )
TEMPLPwater = s p l i n t ( x tempwater , water temp , water temp2 ,

TEMPnwater , T−DP−Z ( 9 , 6 ) )
TEMPGCair = s p l i n t ( x t empa i r , a i r t e m p , a i r t emp2 , TEMPnair , T−

GC)

! D ef in e t e m p e r a t u r e v a l u e s f o r t ime p o i n t s b e f o r e T=0
IF ( ( T−DE) . LE . 0 ) THEN

TEMPEwater = 5D0
END IF
IF ( ( T−DL) . LE . 0 ) THEN
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TEMPLwater = 5D0
END IF
IF ( ( T−DP) . LE . 0 ) THEN

TEMPPwater = 5D0
END IF
IF ( ( T−DL−Z ( 8 , 4 ) ) . LE . 0 ) THEN

TEMPELwater = 5D0
END IF
IF ( ( T−DP−Z ( 9 , 6 )−Z ( 8 , 5 ) ) . LE . 0 ) THEN

TEMPELPwater = 5D0
END IF
IF ( ( T−DP−Z ( 9 , 6 ) ) . LE . 0 ) THEN

TEMPLPwater = 5D0
END IF
IF ( ( T−GC) . LE . 0 ) THEN

TEMPGCair = 5D0
END IF

! C a l c u l a t e p h o t o p e r i o d v a l u e s f o r a r a n g e o f t ime p o i n t s
PPnow = DAYLIGHT( T )
PPE = DAYLIGHT( T−DE)
PPEL = DAYLIGHT( T−DL−Z ( 8 , 4 ) )
PPELP = DAYLIGHT( T−DP−Z ( 9 , 6 )−Z ( 8 , 5 ) )

! C a l c u l a t e g o n o t r o p h i c c y c l e l e n g t h f o r v a r i o u s t ime
p o i n t s

GCnow = GONOTROPHIC( TEMPnowair )
GCC = GONOTROPHIC( TEMPGCair )

! C a l c u l a t e d i a p a u s e p e r c e n t a g e f o r g i v e n p h o t o p e r i o d
v a l u e s .

! Use t h e s e d i a p a u s e p e r c e n t a g e s t o c a l u c l a t e b i r t h r a t e s
.

! Do t h i s f o r bo th s p r i n g and autumn d i a p a u s e t h r e s h o l d s .
IF (DAYLIGHT( T ) > DAYLIGHT( T−1) ) THEN

DIAPAUSEnow = DIAPAUSE_SPRING ( PPnow )
DIAPAUSEE = DIAPAUSE_SPRING ( PPE )
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DIAPAUSEEL = DIAPAUSE_SPRING ( PPEL )
DIAPAUSEELP = DIAPAUSE_SPRING ( PPELP )
BIRTHnow = BIRTH ( DIAPAUSEnow ,GC)
BIRTHE = BIRTH (DIAPAUSEE , Z ( 1 4 , 1 ) )
BIRTHEL = BIRTH (DIAPAUSEEL , Z ( 1 4 , 2 ) )
BIRTHELP = BIRTH (DIAPAUSEELP , Z ( 1 4 , 3 ) )

ELSE
DIAPAUSEnow = DIAPAUSE_AUTUMN( PPnow )
DIAPAUSEE = DIAPAUSE_AUTUMN( PPE )
DIAPAUSEEL = DIAPAUSE_AUTUMN( PPEL )
DIAPAUSEELP = DIAPAUSE_AUTUMN( PPELP )
BIRTHnow = BIRTH ( DIAPAUSEnow ,GC)
BIRTHE = BIRTH (DIAPAUSEE , Z ( 1 4 , 1 ) )
BIRTHEL = BIRTH (DIAPAUSEEL , Z ( 1 4 , 2 ) )
BIRTHELP = BIRTH (DIAPAUSEELP , Z ( 1 4 , 3 ) )

END IF

! C a l c u l a t e d e a t h r a t e s f o r each l i f e s t a g e
DEATHeggnow = DEATHegg ( TEMPnowwater )
DEATHeggE = DEATHegg ( TEMPEwater )

DEATHlarnow = DEATHlar ( TEMPnowwater )
DEATHlarL = DEATHlar ( TEMPLwater )

DEATHpupnow = DEATHpup( TEMPnowwater )
DEATHpupP = DEATHpup( TEMPPwater )

DEATHadunow = DEATHadu ( TEMPnowair , GC, T )

! C a l c u l a t e deve lopment r a t e s f o r t h e immature s t a g e s
LARMATnow = LARMATURATION( TEMPnowwater )
LARMATL = LARMATURATION( TEMPLwater )
LARMATP = LARMATURATION( TEMPPwater )
LARMATLP = LARMATURATION( TEMPLPwater )

EGGMATnow = EGGMATURATION( TEMPnowwater )
EGGMATE = EGGMATURATION( TEMPEwater )
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EGGMATL = EGGMATURATION( TEMPLwater )
EGGMATEL = EGGMATURATION( TEMPELwater )
EGGMATLP = EGGMATURATION( TEMPLPwater )
EGGMATELP = EGGMATURATION( TEMPELPwater )

PUPMATnow = PUPMATURATION( TEMPnowwater )
PUPMATP = PUPMATURATION( TEMPPwater )

! I n n o c u l a t e t h e sys tem wi th a g i v e n number o f a d u l t s .
INOC = INOCCULATE( T )

! Delay d i f f e r e n t i a l e q u a t i o n s f o r immature s t a g e
d u r a t i o n s

dDEdt = 1D0 − EGGMATnow/EGGMATE
dDLdt = 1D0 − LARMATnow/LARMATL
dDPdt = 1D0 − PUPMATnow/PUPMATP

! Delay d i f f e r e n t i a l e q u a t i o n f o r g o n o t r o p h i c c y c l e
d u r a t i o n

dGCdt = 1D0 − GCnow /GCC

! Delay d i f f e r e n t i a l e q u a t i o n s f o r s t a g e d u r a t i o n s
r e f e r e n c e d back t h r o u g h p r e v i o u s s t a g e s

dDELdt = (1D0 − dDLdt ) * (1D0 − EGGMATL/EGGMATEL)
dDLPdt = (1D0 − dDPdt ) * (1D0 − LARMATP/LARMATLP)
dDELPdt = (1D0 − dDPdt − dDLPdt ) * (1D0 − EGGMATLP/

EGGMATELP)

! R e c r u i t m e n t e q u a t i o n s f o r each s t a g e
REt = BIRTHnow * ADU
RLt = BIRTHE * Z ( 4 , 1 ) * SE * EGGMATnow/EGGMATE
RPt = BIRTHEL * Z ( 4 , 2 ) * Z ( 5 , 4 ) * SL * LARMATnow/LARMATL

* EGGMATL/EGGMATEL
RAt = BIRTHELP * Z ( 4 , 3 ) * Z ( 5 , 5 ) * Z ( 6 , 6 ) * SP *

PUPMATnow/PUPMATP * LARMATP/LARMATLP * EGGMATLP/
EGGMATELP + INOC
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! M a t u r a t i o n e q u a t i o n s f o r each s t a g e
MEt = RLt
MLt = RPt
MPt = BIRTHELP * Z ( 4 , 3 ) * Z ( 5 , 5 ) * Z ( 6 , 6 ) * SP *

PUPMATnow/PUPMATP * LARMATP/LARMATLP * EGGMATLP/
EGGMATELP

! Death e q u a t i o n s f o r each s t a g e
DEt = DEATHeggnow * E
DLt = ( densa * d e n s r * ( ( ( 1 D0+COS(2D0* PI * (T−182.5D0−UPS) /365

D0 ) ) / 2 D0 ) **SHP) *LAR/ ( 2 0 D0+ densh *LAR) +DEATHlarnow ) *LAR
DPt = DEATHpupnow * PUP
DAt = DEATHadunow * ADU

! Ba lance e q u a t i o n s f o r each l i f e s t a g e
dEdt = REt − MEt − DEt
dLdt = RLt − MLt − DLt
dPdt = RPt − MPt − DPt
dAdt = RAt − DAt

! S u r v i v a l e q u a t i o n s f o r t h e immature s t a g e s
dSEdt = SE * ( (EGGMATnow * DEATHeggE / EGGMATE) −

DEATHeggnow )
dSLdt =SL * ( ( ( densa * d e n s r * ( ( ( 1 D0+COS(2D0* PI * (T−DL−182.5D0−

UPS) /365D0 ) ) / 2 D0 ) **SHP) *Z ( 2 , 4 ) / ( 2 0 D0+ densh *Z ( 2 , 4 ) ) ) +
DEATHlarL ) * (1−dDLdt ) − ( densa * d e n s r * ( ( ( 1 D0+COS(2D0*
PI * (T−182.5D0−UPS) /365D0 ) ) / 2 D0 ) **SHP) *LAR / (20D0+
densh *LAR) ) − DEATHlarnow )

dSPdt = SP * ( ( PUPMATnow * DEATHpupP / PUPMATP) −

DEATHpupnow )

! D e r i v a t i v e s f o r t h e i n t e g r a t o r :
DY = ( / dEdt , dLdt , dPdt , dAdt , dSEdt , dSLdt , dSPdt ,

dDEdt , dDLdt , dDPdt , dDELdt , dDLPdt , dDELPdt , dGCdt / )

RETURN
END SUBROUTINE DDES
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SUBROUTINE BETA( T , Y,BVAL)

DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y
DOUBLE PRECISION , DIMENSION(NLAGS) : : BVAL
INTENT ( IN ) : : T ,Y
INTENT (OUT) : : BVAL

! S e t t h e d e l a y v a l u e s
! T − Eggdelay ( T )
BVAL( 1 ) = T−Y( 8 )
! T − L a r d e l a y ( T ) − Eggdelay ( T−L a r d e l a y ( T ) )
BVAL( 2 ) = T−Y( 9 )−Y( 1 1 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) ) − Eggdelay ( T−

Pupde lay ( T )−L a r d e l a y ( T−Pupde lay ( T ) ) )
BVAL( 3 ) = T−Y( 1 0 )−Y( 1 2 )−Y( 1 3 )
! T − L a r d e l a y ( T )
BVAL( 4 ) = T−Y( 9 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) )
BVAL( 5 ) = T−Y( 1 0 )−Y( 1 2 )
! T − Pupde lay ( T )
BVAL( 6 ) = T−Y( 1 0 )

RETURN
END SUBROUTINE BETA

SUBROUTINE HISTORY( T ,Y)
DOUBLE PRECISION : : T , TEMPhist
DOUBLE PRECISION , DIMENSION(2*NEQN) : : Y
INTENT ( IN ) : : T
INTENT (OUT) : : Y

! S e t t h e t e m p e r a t u r e s f o r T < 0
TEMPhist = 5D0

! S e t h i s t o r i c a l v a l u e s f o r a l l s t a g e s t o be z e r o
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Y( 1 ) = 0D0
Y( 2 ) = 0D0
Y( 3 ) = 0D0
Y( 4 ) = 0D0

! C a l c u l a t e h i s t o r i c a l s u r v i v a l r a t e s based on
t e m p e r a t u r e

Y( 5 ) = EXP(−DEATHegg ( TEMPhist ) * (1D0 /EGGMATURATION(
TEMPhist ) ) )

Y( 6 ) = EXP(−DEATHlar ( TEMPhist ) * (1D0 /LARMATURATION(
TEMPhist ) ) )

Y( 7 ) = EXP(−DEATHpup( TEMPhist ) * (1D0 /PUPMATURATION(
TEMPhist ) ) )

! C a l c u l a t e h i s t o r i c a l deve lopment r a t e s based on
t e m p e r a t u r e

Y( 8 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 9 ) = 1D0 /LARMATURATION( TEMPhist )
Y( 1 0 ) = 1D0 /PUPMATURATION( TEMPhist )
Y( 1 1 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 1 2 ) = 1D0 /LARMATURATION( TEMPhist )
Y( 1 3 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 1 4 ) = 1D0 /GONOTROPHIC( TEMPhist )

RETURN
END SUBROUTINE HISTORY

SUBROUTINE c u b i c _ s p l i n e _ a i r ( x , a i r t e m p , n , a i r t empp1 , a i r t emppn
, a i r t e m p 2 )

INTEGER n ,NMAX
do ub le p r e c i s i o n a i r t empp1 , a i r t emppn , x ( n ) , a i r t e m p ( n ) ,

a i r t e m p 2 ( n )
PARAMETER (NMAX=1460)

! Code t a k e n from NUMERICAL RECIPES IN FORTRAN 7 7 : THE ART
OF SCIENTIFIC COMPUTING ( ISBN 0−521−43064−X)
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! Given a r r a y s x ( 1 : n ) and y ( 1 : n ) c o n t a i n i n g a t a b u l a t e d
f u n c t i o n , i . e . , y i = f ( x i ) , w i th

! x1 < x2 < : : : < xN , and g i v e n v a l u e s yp1 and ypn f o r t h e
f i r s t d e r i v a t i v e o f t h e i n t e r p o l a t i n g

! f u n c t i o n a t p o i n t s 1 and n , r e s p e c t i v e l y , t h i s r o u t i n e
r e t u r n s an a r r a y y2 ( 1 : n ) o f

! l e n g t h n which c o n t a i n s t h e second d e r i v a t i v e s o f t h e
i n t e r p o l a t i n g f u n c t i o n a t t h e t a b u l a t e d

! p o i n t s x i . I f yp1 and / o r ypn a r e e q u a l t o 1 / 1030 or
l a r g e r , t h e r o u t i n e i s s i g n a l e d t o s e t

! t h e c o r r e s p o n d i n g boundary c o n d i t i o n f o r a n a t u r a l
s p l i n e , w i th z e r o second d e r i v a t i v e on

! t h a t boundary .

! P a r a m e t e r : NMAX i s t h e l a r g e s t a n t i c i p a t e d v a l u e o f n .
INTEGER i , k
DOUBLE PRECISION p , qn , s i g , un , u (NMAX)
IF ( a i r t e m p p 1 . GT . . 9 9 E30 ) THEN

a i r t e m p 2 ( 1 ) =0 . ! \ n a t u r a l "
u ( 1 ) =0 .

ELSE ! o r e l s e t o have a s p e c i f i e d f i r s t d e r i v a t i v e .
a i r t e m p 2 ( 1 ) =−0.5
u ( 1 ) = ( 3 . / ( x ( 2 )−x ( 1 ) ) ) * ( ( a i r t e m p ( 2 )− a i r t e m p ( 1 ) ) / ( x ( 2 )−x

( 1 ) )− a i r t e m p p 1 )
END IF
DO i =2 , n−1

! Th i s i s t h e d e c o m p o s i t i o n loop of t h e t r i d i a g o n a l
! a l g o r i t h m . y2 and u a r e used f o r t e m p o r a r y
! s t o r a g e o f t h e decomposed f a c t o r s .
s i g =( x ( i )−x ( i −1) ) / ( x ( i +1)−x ( i −1) )
p= s i g * a i r t e m p 2 ( i −1) +2 .
a i r t e m p 2 ( i ) =( s i g −1 . ) / p
u ( i ) = ( 6 . * ( ( a i r t e m p ( i +1)− a i r t e m p ( i ) ) / ( x ( i +1)−x ( i ) ) −(

a i r t e m p ( i )− a i r t e m p ( i −1) ) / ( x ( i )−x ( i −1) ) ) / ( x ( i +1)−x (
i −1) )− s i g *u ( i −1) ) / p

END DO
IF ( a i r t e m p p n . g t . . 9 9 e30 ) THEN
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qn =0 . ! \ n a t u r a l "
un =0 .

ELSE
qn =0 .5
un = ( 3 . / ( x ( n )−x ( n−1) ) ) * ( a i r t emppn −( a i r t e m p ( n )− a i r t e m p ( n

−1) ) / ( x ( n )−x ( n−1) ) )
ENDIF
a i r t e m p 2 ( n ) =( un−qn*u ( n−1) ) / ( qn* a i r t e m p 2 ( n−1) + 1 . )
DO k=n−1 ,1 , −1

a i r t e m p 2 ( k ) = a i r t e m p 2 ( k ) * a i r t e m p 2 ( k +1)+u ( k )
END DO

RETURN
END SUBROUTINE

SUBROUTINE c u b i c _ s p l i n e _ w a t e r ( x , water temp , n , water tempp1 ,
water temppn , wate r t emp2 )

INTEGER : : n ,NMAX
DOUBLE PRECISION : : water tempp1 , water temppn , x ( n ) ,

wa te r t emp ( n ) , wa te r t emp2 ( n )
PARAMETER (NMAX=131400)

! Code t a k e n from NUMERICAL RECIPES IN FORTRAN 7 7 : THE
ART OF SCIENTIFIC COMPUTING ( ISBN 0−521−43064−X)

! Given a r r a y s x ( 1 : n ) and y ( 1 : n ) c o n t a i n i n g a t a b u l a t e d
f u n c t i o n , i . e . , y i = f ( x i ) , w i th

! x1 < x2 < : : : < xN , and g i v e n v a l u e s yp1 and ypn f o r
t h e f i r s t d e r i v a t i v e o f t h e i n t e r p o l a t i n g

! f u n c t i o n a t p o i n t s 1 and n , r e s p e c t i v e l y , t h i s r o u t i n e
r e t u r n s an a r r a y y2 ( 1 : n ) o f

! l e n g t h n which c o n t a i n s t h e second d e r i v a t i v e s o f t h e
i n t e r p o l a t i n g f u n c t i o n a t t h e t a b u l a t e d

! p o i n t s x i . I f yp1 and / o r ypn a r e e q u a l t o 1 / 1030 or
l a r g e r , t h e r o u t i n e i s s i g n a l e d t o s e t

! t h e c o r r e s p o n d i n g boundary c o n d i t i o n f o r a n a t u r a l
s p l i n e , w i th z e r o second d e r i v a t i v e on
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! t h a t boundary .

! P a r a m e t e r : NMAX i s t h e l a r g e s t a n t i c i p a t e d v a l u e o f n .
INTEGER : : i , k
DOUBLE PRECISION : : p , qn , s i g , un , u (NMAX)
IF ( wate r tempp1 . g t . . 9 9 e30 ) THEN

wate r t emp2 ( 1 ) =0 . ! \ n a t u r a l "
u ( 1 ) =0 .

ELSE ! o r e l s e t o have a s p e c i f i e d f i r s t d e r i v a t i v e .
wa te r t emp2 ( 1 ) =−0.5
u ( 1 ) = ( 3 . / ( x ( 2 )−x ( 1 ) ) ) * ( ( wa te r t emp ( 2 )−wate r t emp ( 1 ) ) / ( x

( 2 )−x ( 1 ) )−water tempp1 )
END IF
DO i =2 , n−1

s i g =( x ( i )−x ( i −1) ) / ( x ( i +1)−x ( i −1) )
p= s i g * wate r t emp2 ( i −1) +2 .
wa te r t emp2 ( i ) =( s i g −1 . ) / p
u ( i ) = ( 6 . * ( ( wa te r t emp ( i +1)−wate r t emp ( i ) ) / ( x ( i +1)−x ( i ) )

−( wa te r t emp ( i )−wate r t emp ( i −1) ) / ( x ( i )−x ( i −1) ) ) / ( x ( i
+1)−x ( i −1) )− s i g *u ( i −1) ) / p

END DO
IF ( wate r temppn . g t . . 9 9 e30 ) THEN

qn =0 . ! \ n a t u r a l "
un =0 .

ELSE ! o r e l s e t o have a s p e c i f i e d f i r s t d e r i v a t i v e .
qn =0 .5
un = ( 3 . / ( x ( n )−x ( n−1) ) ) * ( water temppn −( wa te r t emp ( n )−

wate r t emp ( n−1) ) / ( x ( n )−x ( n−1) ) )
END IF

wate r t emp2 ( n ) =( un−qn*u ( n−1) ) / ( qn* wate r t emp2 ( n−1) + 1 . )
DO k=n−1 ,1 , −1 ! Th i s i s t h e b a c k s u b s t i t u t i o n loop of t h e

t r i d i a g o n a l a l g o r i t h m .
wate r t emp2 ( k ) = wate r t emp2 ( k ) * wate r t emp2 ( k +1)+u ( k )

END DO

RETURN
END SUBROUTINE
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DOUBLE PRECISION FUNCTION SPLINT ( xa , ytempa , ytemp2a , tempn , x
)

INTEGER tempn
DOUBLE PRECISION xa ( tempn ) , ytemp2a ( tempn ) , ytempa ( tempn )
DOUBLE PRECISION x
! Given t h e a r r a y s xa ( 1 : n ) and ya ( 1 : n ) o f l e n g t h n , which

t a b u l a t e a f u n c t i o n ( wi th t h e
! x a i ’ s i n o r d e r ) , and g i v e n t h e a r r a y y2a ( 1 : n ) , which i s

t h e o u t p u t from s p l i n e above ,
! and g i v e n a v a l u e o f x , t h i s r o u t i n e r e t u r n s a cub ic −

s p l i n e i n t e r p o l a t e d v a l u e y .
INTEGER k , khi , k l o
DOUBLE PRECISION a1 , b , h1

!We w i l l f i n d t h e r i g h t p l a c e i n t h e t a b l e by means o f
b i s e c t i o n .

! Th i s i s o p t i m a l i f s e q u e n t i a l c a l l s t o t h i s r o u t i n e a r e
a t random

! v a l u e s o f x . I f s e q u e n t i a l c a l l s a r e i n o r d e r , and
c l o s e l y

! spaced , one would do b e t t e r t o s t o r e p r e v i o u s v a l u e s o f
! k l o and k h i and t e s t i f t h e y remain a p p r o p r i a t e on t h e
! n e x t c a l l .

k l o =1
k h i =tempn
DO

IF ( khi −k l o . l e . 1 ) EXIT
k =( k h i + k l o ) / 2
IF ( xa ( k ) . g t . x ) t h e n

k h i =k
ELSE

k l o =k
END IF

END DO
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h1=xa ( k h i )−xa ( k l o )
IF ( h1 . eq . 0 ) PAUSE ’ bad xa i n p u t i n s p l i n t ’
a1 =( xa ( k h i )−x ) / h1
b =( x−xa ( k l o ) ) / h1
IF ( x . l e . 0 ) t h e n

s p l i n t =0 .1 d0
ELSE

s p l i n t =a1 * ytempa ( k l o ) +b* ytempa ( k h i ) + ( ( a1 **3− a1 ) *
ytemp2a ( k l o ) +( b**3−b ) * ytemp2a ( k h i ) ) * ( h1 **2) / 6 .

END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION INOCCULATE( T )

DOUBLE PRECISION : : T

! S e t i n o c u l a t i o n v a l u e
IF ( T < 1D0 .AND. T > 0D0 ) THEN

INOCCULATE = 5000D0
ELSE

INOCCULATE = 0D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DAYLIGHT( T )

DOUBLE PRECISION : : T , EPS ,NUM,DEN
REAL, PARAMETER : : P i = 3 .1415927D0 , L = 5 1 . 6D0

! C a l c u l a t e p h o t o p e r i o d f o r t ime , T
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EPS = ASIN ( 0 . 3 9 7 9 5 D0 * COS( 0 . 2 1 6 3 1 0 8D0 + 2 * ATAN
( 0 . 9 6 7 1 3 9 6D0 * TAN( 0 . 0 0 8 6 0 D0 * ( T−185.5D0 ) ) ) ) )

NUM = SIN ( 0 . 8 3 3 3 D0* Pi /180D0 ) + ( SIN ( L* Pi /180D0 ) * SIN ( EPS
) )

DEN = COS( L* Pi /180D0 ) * COS( EPS )
DAYLIGHT = 24D0 − (24D0 / P i ) * ACOS(NUM / DEN)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_SPRING ( PP )

DOUBLE PRECISION : : PP

! S e t s p r i n g d i a p a u s e t h r e s h o l d
DIAPAUSE_SPRING = 1D0 / (1D0 + EXP(5D0 * ( 1 3 . 7 D0−PP ) ) )

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_AUTUMN( PP )

DOUBLE PRECISION : : PP

! S e t autumn d i a p a u s e t h r e s h o l d
DIAPAUSE_AUTUMN = 1D0 / (1D0 + EXP ( 3 . 5 D0*(15D0−PP ) ) )

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION BIRTH (DIAPAUSE , GONOTROPHICtime )

DOUBLE PRECISION : : GONOTROPHICtime , EGGRAFT, DIAPAUSE

! S e t b i r t h r a t e
EGGRAFT = DIAPAUSE*MAXEGG* 0 . 5D0
BIRTH = EGGRAFT/ GONOTROPHICtime
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RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION GONOTROPHIC(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : KG=0.2024D0 ,QG=74.48D0 ,BG=0.2456D0

! S e t g o n o t r o p h i c c y c l e r a t e
IF (TEMP < 0D0 ) THEN

GONOTROPHIC = 0 .0333D0
ELSE

GONOTROPHIC = KG / (1+QG*EXP(−BG*TEMP) )
END IF
IF (GONOTROPHIC < 0 .0333D0 ) THEN

GONOTROPHIC = 0 .0333D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHegg (TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! S e t d e a t h r a t e o f eggs
DEATHegg = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHegg > 1D0 ) THEN

DEATHegg = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHlar (TEMP)
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DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20.5D0 , U5=7D0

! S e t d e a t h r a t e o f l a r v a e
DEATHlar = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHlar > 1D0 ) THEN

DEATHlar = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHpup(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! S e t d e a t h r a t e o f pupae
DEATHpup = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF (DEATHpup > 1D0 ) THEN

DEATHpup = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHadu (TEMP, GONOTROPHICtime , T )

DOUBLE PRECISION : : TEMP, GONOTROPHICtime , T
DOUBLE PRECISION : : ALPHA=2.166D−8 ,BETA=4.483D0 , PI

=3.1415927D0 , MULTIPLIER=8D0 , SIGMASQ=4D0

! S e t a d u l t d e a t h r a t e
IF (TEMP < 0D0 ) THEN

DEATHadu = 0 .003D0
ELSE
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DEATHadu = ALPHA*(TEMP**BETA)
END IF
IF ( DEATHadu < 0 .003D0 ) THEN

DEATHadu = 0 .003D0
END IF
DEATHadu = DEATHadu + ( MULTIPLIER / SQRT(SIGMASQ*2D0* PI ) ) *

EXP(( −1D0 / ( SIGMASQ*2D0 ) ) * (MOD( T, 3 6 5D0 )−
GONOTROPHICtime−109D0 ) **2)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION EGGMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0022D0 , BETA=1.77D0

! S e t egg deve lopment r a t e
IF (TEMP < 0D0 ) THEN

EGGMATURATION = 0.016667D0
ELSE

EGGMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (EGGMATURATION < 0.016667D0 ) THEN

EGGMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION LARMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.00315D0 , BETA=1.12D0

! S e t l a r v a l deve lopment r a t e
IF (TEMP < 0D0 ) THEN
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LARMATURATION = 0.016667D0
ELSE

LARMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (LARMATURATION < 0.016667D0 ) THEN

LARMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION PUPMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0007109D0 , BETA=1.8865648D0

! S e t p u p a l deve lopment r a t e
IF (TEMP < 0D0 ) THEN

PUPMATURATION = 0.016667D0
ELSE

PUPMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (PUPMATURATION < 0.016667D0 ) THEN

PUPMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

END MODULE define_DDEs

!******************************************************************

PROGRAM c h a p t e r _ 4 _ m o d e l

USE define_DDEs
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USE DDE_SOLVER_M

IMPLICIT NONE

INTEGER : : I , J ! Loca l v a r i a b l e s

INTEGER , DIMENSION ( 3 ) : : NVAR = ( / NEQN, NLAGS, NEF / )

! S e t l e n g t h o f s o l u t i o n and o u t p u t p o i n t s
INTEGER , PARAMETER : : NOUT=551D0
DOUBLE PRECISION , PARAMETER : : T0=0D0 , TFINAL=550D0
DOUBLE PRECISION , DIMENSION(NOUT) : : TSPAN= &
( / ( T0 +( I −1) * ( ( TFINAL − T0 ) / ( NOUT−1) ) , I =1 ,NOUT) / )

TYPE(DDE_SOL) : : SOL
TYPE(DDE_OPTS) : : OPTS

! S e t l e n g t h o f maximum d e l a y
DOUBLE PRECISION : : MAXDELAY = 200D0
CHARACTER ( l e n =90) : : f i l e n a m e

! S e t o p t i o n s f o r DDE s o l v e r
OPTS = DDE_SET(RE=1D−5 ,AE=1D−5 ,MAX_STEPS=100000000 ,

MAX_DELAY=MAXDELAY, TRIM_FREQUENCY=10000)

! C a l l DDE s o l v e r code
SOL = DDE_SOLVER(NVAR, DDES, BETA, HISTORY , TSPAN , OPTIONS=OPTS)

! Was t h e s o l v e r s u c c e s s f u l ?
IF (SOL%FLAG == 0) THEN

! Outpu t s o l u t i o n v a l u e s
WRITE( f i l e n a m e , ’ ( " f i l e n a m e . d a t " ) ’ )
OPEN( u n i t =11 , f i l e = f i l e n a m e )
DO I = 1 ,SOL%NPTS

WRITE( UNIT=11 ,FMT= ’(16 E14 . 5 E3 ) ’ ) SOL%T ( I ) , ( SOL%Y( I , J ) ,
J =1 ,NEQN)

END DO
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CLOSE( 1 1 )
ELSE

PRINT * , ’ Abnormal r e t u r n from DDE_SOLVER wi th FLAG =
’ ,&

SOL%FLAG
END IF

STOP
END PROGRAM c h a p t e r _ 4 _ m o d e l

D.3 Chapter 5 DDE Code

MODULE define_DDEs

IMPLICIT NONE

! S e t number o f e q u a t i o n s , d e l a y s and e v e n t f u n c t i o n s
INTEGER , PARAMETER : : NEQN=21 ,NLAGS=7 ,NEF=1
INTEGER : : K
DOUBLE PRECISION : : PI =3.1415927D0
! S e t p a r a m e t e r v a l u e s f o r p r e d a t i o n and egg r a f t s i z e
DOUBLE PRECISION : : densa , dens r , densh , UPS , SHP ,VOL,MAXEGG
! S e t WNV t r a n s m i s s i o n p a r a m e t e r s
DOUBLE PRECISION : : DEATHbird =0.000685D0 , DEATHbirdWNV=0.167

D0
DOUBLE PRECISION : : RECOVERY=0.25D0 ,PHH=0.33D0 , VERTICAL

=0.004D0
DOUBLE PRECISION : : tranMB =0.88D0 , tranBM =0.4D0 ,CAR=400D0 ,

INOCB=2D0
DOUBLE PRECISION : : M=9.8D0 ,A=6.4D0 , PHASE=28.9D0 ,DTR=9.4D0 ,

WARM=0D0 , INOCT=151D0

CONTAINS

SUBROUTINE DDES( T , Y, Z ,DY)

! P a r a m e t e r s f o r DDE s o l v e r
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DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y,DY
DOUBLE PRECISION , DIMENSION(NEQN,NLAGS) : : Z
INTENT ( IN ) : : T , Y, Z
INTENT (OUT) : : DY

! D ef in e v a r i a b l e names
DOUBLE PRECISION : : TEMPnowair , TEMPGCair , TEMPEIPair ,

TEMPEair , TEMPLair , TEMPPair , TEMPELair , TEMPLPair ,
TEMPELPair

DOUBLE PRECISION : : TEMPnowwater , TEMPEwater , TEMPLwater ,
TEMPPwater , TEMPELwater , TEMPLPwater , TEMPELPwater

DOUBLE PRECISION : : BIRTHnow , BIRTHE , BIRTHEL , BIRTHELP ,
BIRTHbird

DOUBLE PRECISION : : EGGMATnow,EGGMATE,EGGMATL,EGGMATEL,
EGGMATLP,EGGMATELP

DOUBLE PRECISION : : LARMATnow,LARMATL,LARMATP,LARMATLP
DOUBLE PRECISION : : REt , RLt , RPt , RSAt , REAt , RIAt , MEt , MLt ,

MPt , MSAt , MEAt , DEt , DLt , DPt , DSAt , DEAt , DIAt
DOUBLE PRECISION : : dEdt , dLdt , dPdt , dSAdt , dEAdt , dIAdt ,

dSEdt , dSLdt , dSPdt , dDEdt , dDLdt , dDELdt , dDPdt , dDLPdt ,
dDELPdt , dGCdt

DOUBLE PRECISION : : dSBdt , dIBdt , dRBdt , dEIPdt , dSEAdt
DOUBLE PRECISION : : E , LAR, PUP , SA , EA, IA , SE , SL , SP , DE, DL, DP ,

GC, EIP , SEA , NB, SB , IB , RB, NBEIP
DOUBLE PRECISION : : INOCM, BITINGnow , BITINGEIP
DOUBLE PRECISION : : DEATHeggnow , DEATHeggE , DEATHlarnow ,

DEATHlarL , DEATHpupnow , DEATHpupP , DEATHadunow ,
DEATHaduEIP

DOUBLE PRECISION : : PUPMATnow,PUPMATP
DOUBLE PRECISION : : DIAPAUSEE , DIAPAUSEEL , DIAPAUSEELP ,

DIAPAUSEnow , DIAPAUSEEIP
DOUBLE PRECISION : : PPnow , PPE , PPEL , PPELP , PPEIP
DOUBLE PRECISION : : GCnow ,GCC, EIPnow , E I P d e l a y

! Give names t o r e s p o n s e s o f sys tem of e q u a t i o n s
E = Y( 1 )
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LAR = Y( 2 )
PUP = Y( 3 )
SA = Y( 4 )
EA = Y( 5 )
IA = Y( 6 )
SE = Y( 7 )
SL = Y( 8 )
SP = Y( 9 )
SEA = Y( 1 0 )
DE = Y( 1 1 )
DL = Y( 1 2 )
DP = Y( 1 3 )
GC = Y( 1 7 )
EIP = Y( 1 8 )
SB = Y( 1 9 )
IB = Y( 2 0 )
RB = Y( 2 1 )
NB = (SB+IB+RB)
NBEIP = Z ( 1 9 , 7 ) +Z ( 2 0 , 7 ) +Z ( 2 1 , 7 )

! E x t r a c t t e m p e r a t u r e v a l u e s a t v a r i o u s t ime p o i n t s
TEMPnowair = TEMPAIR( T )
TEMPnowwater = TEMPWATER( T , TEMPnowair )

TEMPEair = TEMPAIR( T−DE)
TEMPEwater = TEMPWATER( T−DE, TEMPEair )

TEMPLair = TEMPAIR( T−DL)
TEMPLwater = TEMPWATER( T−DL, TEMPLair )

TEMPPair = TEMPAIR( T−DP)
TEMPPwater = TEMPWATER( T−DP , TEMPPair )

TEMPELair = TEMPAIR( T−DL−Z ( 1 1 , 4 ) )
TEMPELwater = TEMPWATER( T−DL−Z ( 1 1 , 4 ) , TEMPELair )

TEMPELPair = TEMPAIR( T−DP−Z ( 1 2 , 6 )−Z ( 1 1 , 5 ) )
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TEMPELPwater = TEMPWATER( T−DP−Z ( 1 2 , 6 )−Z ( 1 1 , 5 ) , TEMPELPair )

TEMPLPair = TEMPAIR( T−DP−Z ( 1 2 , 6 ) )
TEMPLPwater = TEMPWATER( T−DP−Z ( 1 2 , 6 ) , TEMPLPair )

TEMPGCair = TEMPAIR( T−GC)
TEMPEIPair = TEMPAIR( T−EIP )

! C a l c u l a t e p h o t o p e r i o d v a l u e s f o r a r a n g e o f t ime p o i n t s
PPnow = DAYLIGHT( T )
PPE = DAYLIGHT( T−DE)
PPEL = DAYLIGHT( T−DL−Z ( 1 1 , 4 ) )
PPELP = DAYLIGHT( T−DP−Z ( 1 2 , 6 )−Z ( 1 1 , 5 ) )
PPEIP = DAYLIGHT( T−EIP )

! C a l c u l a t e g o n o t r o p h i c c y c l e l e n g t h f o r v a r i o u s t ime
p o i n t s

GCnow = GONOTROPHIC( TEMPnowair )
GCC = GONOTROPHIC( TEMPGCair )

EIPnow = EXTRINSIC_INCUBATION ( TEMPnowair )
E I P d e l a y = EXTRINSIC_INCUBATION ( TEMPEIPair )

! C a l c u l a t e d i a p a u s e p e r c e n t a g e f o r g i v e n p h o t o p e r i o d
v a l u e s .

! Use t h e s e d i a p a u s e p e r c e n t a g e s t o c a l u c l a t e b i r t h r a t e s
.

! Do t h i s f o r bo th s p r i n g and autumn d i a p a u s e t h r e s h o l d s .
IF (DAYLIGHT( T ) > DAYLIGHT( T−1) ) THEN

DIAPAUSEnow = DIAPAUSE_SPRING ( PPnow )
DIAPAUSEE = DIAPAUSE_SPRING ( PPE )
DIAPAUSEEL = DIAPAUSE_SPRING ( PPEL )
DIAPAUSEELP = DIAPAUSE_SPRING ( PPELP )
DIAPAUSEEIP = DIAPAUSE_SPRING ( PPEIP )
BIRTHnow = BIRTH ( DIAPAUSEnow ,GC)
BIRTHE = BIRTH (DIAPAUSEE , Z ( 1 7 , 1 ) )
BIRTHEL = BIRTH (DIAPAUSEEL , Z ( 1 7 , 2 ) )
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BIRTHELP = BIRTH (DIAPAUSEELP , Z ( 1 7 , 3 ) )
ELSE

DIAPAUSEnow = DIAPAUSE_AUTUMN( PPnow )
DIAPAUSEE = DIAPAUSE_AUTUMN( PPE )
DIAPAUSEEL = DIAPAUSE_AUTUMN( PPEL )
DIAPAUSEELP = DIAPAUSE_AUTUMN( PPELP )
DIAPAUSEEIP = DIAPAUSE_AUTUMN( PPEIP )
BIRTHnow = BIRTH ( DIAPAUSEnow ,GC)
BIRTHE = BIRTH (DIAPAUSEE , Z ( 1 7 , 1 ) )
BIRTHEL = BIRTH (DIAPAUSEEL , Z ( 1 7 , 2 ) )
BIRTHELP = BIRTH (DIAPAUSEELP , Z ( 1 7 , 3 ) )

END IF

! C a l c u l a t e d e a t h r a t e s f o r each l i f e s t a g e
DEATHeggnow = DEATHegg ( TEMPnowwater )
DEATHeggE = DEATHegg ( TEMPEwater )

DEATHlarnow = DEATHlar ( TEMPnowwater )
DEATHlarL = DEATHlar ( TEMPLwater )

DEATHpupnow = DEATHpup( TEMPnowwater )
DEATHpupP = DEATHpup( TEMPPwater )

DEATHadunow = DEATHadu ( TEMPnowair , GC, T )
DEATHaduEIP = DEATHadu ( TEMPEIPair , Z ( 1 7 , 7 ) ,T−EIP )

BIRTHbird = BIRD_BIRTH_FUNC ( T )

! C a l c u l a t e deve lopment r a t e s f o r t h e immature s t a g e s
LARMATnow = LARMATURATION( TEMPnowwater )
LARMATL = LARMATURATION( TEMPLwater )
LARMATP = LARMATURATION( TEMPPwater )
LARMATLP = LARMATURATION( TEMPLPwater )

EGGMATnow = EGGMATURATION( TEMPnowwater )
EGGMATE = EGGMATURATION( TEMPEwater )
EGGMATL = EGGMATURATION( TEMPLwater )
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EGGMATEL = EGGMATURATION( TEMPELwater )
EGGMATLP = EGGMATURATION( TEMPLPwater )
EGGMATELP = EGGMATURATION( TEMPELPwater )

PUPMATnow = PUPMATURATION( TEMPnowwater )
PUPMATP = PUPMATURATION( TEMPPwater )

BITINGnow = 0 . 5 D0*DIAPAUSEnow*GONOTROPHIC( TEMPnowair )
BITINGEIP = 0 . 5 D0*DIAPAUSEEIP*GONOTROPHIC( TEMPEIPair )

! I n n o c u l a t e t h e sys tem wi th a g i v e n number o f a d u l t s .
INOCM = INOCCULATEM( T )

! Delay d i f f e r e n t i a l e q u a t i o n s f o r immature s t a g e
d u r a t i o n s

dDEdt = 1D0 − EGGMATnow/EGGMATE
dDLdt = 1D0 − LARMATnow/LARMATL
dDPdt = 1D0 − PUPMATnow/PUPMATP

! Delay d i f f e r e n t i a l e q u a t i o n f o r g o n o t r o p h i c c y c l e
d u r a t i o n

dGCdt = 1D0 − GCnow /GCC
dEIPdt = 1D0 − EIPnow / E I P d e l a y

! Delay d i f f e r e n t i a l e q u a t i o n s f o r s t a g e d u r a t i o n s
r e f e r e n c e d back t h r o u g h p r e v i o u s s t a g e s

dDELdt = (1D0 − dDLdt ) * (1D0 − EGGMATL/EGGMATEL)
dDLPdt = (1D0 − dDPdt ) * (1D0 − LARMATP/LARMATLP)
dDELPdt = (1D0 − dDPdt − dDLPdt ) * (1D0 − EGGMATLP/

EGGMATELP)

! R e c r u i t m e n t e q u a t i o n s f o r each s t a g e
REt = BIRTHnow * (SA + EA + IA )
RLt = BIRTHE * ( Z ( 4 , 1 ) +Z ( 5 , 1 ) +Z ( 6 , 1 ) ) * SE * EGGMATnow/

EGGMATE
RPt = BIRTHEL * ( Z ( 4 , 2 ) +Z ( 5 , 2 ) +Z ( 6 , 2 ) ) * Z ( 7 , 4 ) * SL *

LARMATnow/LARMATL * EGGMATL/EGGMATEL
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RSAt = BIRTHELP * ( Z ( 4 , 3 ) +Z ( 5 , 3 ) +Z ( 6 , 3 ) * (1D0−VERTICAL
) ) * Z ( 7 , 5 ) * Z ( 8 , 6 ) * SP * PUPMATnow/PUPMATP *
LARMATP/LARMATLP * EGGMATLP/EGGMATELP + INOCM

REAt = BITINGnow * SA * ( tranBM * IB ) / NB

RIAt = BITINGEIP * Z ( 4 , 7 ) * SEA * EIPnow / E I P d e l a y * (
tranBM * Z ( 2 0 , 7 ) ) / NBEIP + BIRTHELP * Z ( 6 , 3 ) *
VERTICAL * Z ( 7 , 5 ) * Z ( 8 , 6 ) * SP * PUPMATnow/PUPMATP *
LARMATP/LARMATLP * EGGMATLP/EGGMATELP

! M a t u r a t i o n e q u a t i o n s f o r each s t a g e
MEt = RLt
MLt = RPt
MPt = BIRTHELP * Z ( 4 , 3 ) * Z ( 7 , 5 ) * Z ( 8 , 6 ) * SP *

PUPMATnow/PUPMATP * LARMATP/LARMATLP * EGGMATLP/
EGGMATELP

MSAt = REAt
MEAt = BITINGEIP * Z ( 4 , 7 ) * SEA * EIPnow / E I P d e l a y * (

tranBM * Z ( 2 0 , 7 ) ) / NBEIP

! Death e q u a t i o n s f o r each s t a g e
DEt = DEATHeggnow * E
DLt = ( densa * d e n s r * ( ( ( 1 D0+COS(2D0* PI * (T−182.5D0−UPS) /365

D0 ) ) / 2 D0 ) **SHP) *LAR / ( VOL+ densh *LAR) +DEATHlarnow ) *LAR
DPt = DEATHpupnow * PUP
DSAt = DEATHadunow * SA
DEAt = DEATHadunow * EA
DIAt = DEATHadunow * IA

! Ba lance e q u a t i o n s f o r each l i f e s t a g e
dEdt = REt − MEt − DEt
dLdt = RLt − MLt − DLt
dPdt = RPt − MPt − DPt

dSAdt = RSAt − MSAt − DSAt
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dEAdt = REAt − MEAt − DEAt
dIAdt = RIAt − DIAt

dSBdt = BIRTHbird * NB − BITINGnow * tranMB * IA * SB /
NB − PHH * IB * SB / NB − ( DEATHbird + BIRTHbird *NB/
CAR) * SB

dIBdt = BITINGnow*tranMB*IA*SB /NB + PHH*IB*SB /NB − (
DEATHbird+DEATHbirdWNV+BIRTHbird *NB/CAR) *IB − RECOVERY

*IB

dRBdt = RECOVERY * IB − ( DEATHbird + BIRTHbird *NB/CAR) *
RB

! S u r v i v a l e q u a t i o n s f o r t h e immature s t a g e s
dSEdt = SE * ( (EGGMATnow * DEATHeggE / EGGMATE) −

DEATHeggnow )
dSLdt =SL * ( ( ( densa * d e n s r * ( ( ( 1 D0+COS(2D0* PI * (T−DL−182.5D0−

UPS) /365D0 ) ) / 2 D0 ) **SHP) *Z ( 2 , 4 ) / ( VOL+ densh *Z ( 2 , 4 ) ) ) +
DEATHlarL ) * (1−dDLdt ) − ( densa * d e n s r * ( ( ( 1 D0+COS(2D0*
PI * (T−182.5D0−UPS) /365D0 ) ) / 2 D0 ) **SHP) *LAR / (VOL+ densh

*LAR) ) − DEATHlarnow )
dSPdt = SP * ( ( PUPMATnow * DEATHpupP / PUPMATP) −

DEATHpupnow )
dSEAdt = SEA * ( ( EIPnow * DEATHaduEIP / E I P d e l a y ) −

DEATHadunow )

! D e r i v a t i v e s f o r t h e i n t e g r a t o r :
DY = ( / dEdt , dLdt , dPdt , dSAdt , dEAdt , dIAdt , dSEdt ,

dSLdt , dSPdt , dSEAdt , dDEdt , dDLdt , dDPdt , dDELdt ,
dDLPdt , dDELPdt , dGCdt , dEIPdt , dSBdt , dIBdt , dRBdt / )

RETURN
END SUBROUTINE DDES

SUBROUTINE BETA( T , Y,BVAL)
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DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y
DOUBLE PRECISION , DIMENSION(NLAGS) : : BVAL
INTENT ( IN ) : : T ,Y
INTENT (OUT) : : BVAL

! S e t t h e d e l a y v a l u e s
! T − Eggdelay ( T )
BVAL( 1 ) = T−Y( 1 1 )
! T − L a r d e l a y ( T ) − Eggdelay ( T−L a r d e l a y ( T ) )
BVAL( 2 ) = T−Y( 1 2 )−Y( 1 4 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) ) − Eggdelay ( T−

Pupde lay ( T )−L a r d e l a y ( T−Pupde lay ( T ) ) )
BVAL( 3 ) = T−Y( 1 3 )−Y( 1 5 )−Y( 1 6 )
! T − L a r d e l a y ( T )
BVAL( 4 ) = T−Y( 1 2 )
! T − Pupde lay ( T ) − L a r d e l a y ( T−Pupde lay ( T ) )
BVAL( 5 ) = T−Y( 1 3 )−Y( 1 5 )
! T − Pupde lay ( T )
BVAL( 6 ) = T−Y( 1 3 )
! T − E I P d e l a y ( T )
BVAL( 7 ) = T−Y( 1 8 )

RETURN
END SUBROUTINE BETA

SUBROUTINE HISTORY( T ,Y)
DOUBLE PRECISION : : T , TEMPhist , TEMPhis t a i r
DOUBLE PRECISION , DIMENSION(2*NEQN) : : Y
INTENT ( IN ) : : T
INTENT (OUT) : : Y

! S e t t h e t e m p e r a t u r e s f o r T < 0
TEMPhis t a i r = TEMPAIR( T )
TEMPhist = TEMPWATER( T , TEMPhis t a i r )

! S e t h i s t o r i c a l v a l u e s f o r a l l s t a g e s t o be z e r o
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Y( 1 ) = 0D0
Y( 2 ) = 0D0
Y( 3 ) = 0D0
Y( 4 ) = 0D0
Y( 5 ) = 0D0
Y( 6 ) = 0D0

! C a l c u l a t e h i s t o r i c a l s u r v i v a l r a t e s based on
t e m p e r a t u r e

Y( 7 ) = EXP(−DEATHegg ( TEMPhist ) * (1D0 /EGGMATURATION(
TEMPhist ) ) )

Y( 8 ) = EXP(−DEATHlar ( TEMPhist ) * (1D0 /LARMATURATION(
TEMPhist ) ) )

Y( 9 ) = EXP(−DEATHpup( TEMPhist ) * (1D0 /PUPMATURATION(
TEMPhist ) ) )

! C a l c u l a t e h i s t o r i c a l deve lopment r a t e s based on
t e m p e r a t u r e

Y( 1 1 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 1 2 ) = 1D0 /LARMATURATION( TEMPhist )
Y( 1 3 ) = 1D0 /PUPMATURATION( TEMPhist )
Y( 1 4 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 1 5 ) = 1D0 /LARMATURATION( TEMPhist )
Y( 1 6 ) = 1D0 /EGGMATURATION( TEMPhist )
Y( 1 7 ) = 1D0 /GONOTROPHIC( TEMPhis t a i r )

Y( 1 0 ) = EXP(−DEATHadu ( TEMPhis ta i r ,Y( 1 7 ) ,T ) *(1D0 /
EXTRINSIC_INCUBATION ( TEMPhis t a i r ) ) )

! S e t h i s t o r i c a l EIP
Y( 1 8 ) = 1D0 / EXTRINSIC_INCUBATION ( TEMPhis t a i r )

! S e t h i s t o r i c a l v a l u e s f o r b i r d s t o z e r o
Y( 1 9 ) = 0 .875D0*CAR
Y( 2 0 ) = 0D0
Y( 2 1 ) = 0D0
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RETURN
END SUBROUTINE HISTORY

SUBROUTINE EF ( T , Y,DY, Z ,G)

DOUBLE PRECISION : : T
DOUBLE PRECISION , DIMENSION(NEQN) : : Y,DY
DOUBLE PRECISION , DIMENSION(NEQN,NLAGS) : : Z
DOUBLE PRECISION , DIMENSION(NEF) : : G
INTENT ( IN ) : : T , Y,DY, Z
INTENT (OUT) : : G

! S e t e v e n t s a s t u r n i n g p o i n t s i n a d u l t t ime s e r i e s and
d i a p a u s e e n t r y / e x i t

G( 1 ) = T−INOCT

RETURN
END SUBROUTINE EF

SUBROUTINE CHNG(NEVENT, TEVENT, YEVENT,DYEVENT, HINIT ,
DIRECTION , ISTERMINAL , QUIT )

! F u n c t i o n t o change a f l a g so t h a t t h e DDE model w i l l
! be e v a l u a t e d i n s u b r o u t i n e DDES i n s t e a d of t h e ODE model .

INTEGER : : NEVENT
INTEGER , DIMENSION(NEF) : : DIRECTION
DOUBLE PRECISION : : TEVENT, HINIT
DOUBLE PRECISION , DIMENSION(NEQN) : : YEVENT,DYEVENT
LOGICAL : : QUIT
LOGICAL , DIMENSION(NEF) : : ISTERMINAL
INTENT ( IN ) : : NEVENT, TEVENT
INTENT (INOUT) : : YEVENT,DYEVENT, HINIT , DIRECTION ,

ISTERMINAL , QUIT

YEVENT( 2 0 ) = 0 .0025D0*CAR
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RETURN
END SUBROUTINE CHNG

DOUBLE PRECISION FUNCTION TEMPAIR( T )

DOUBLE PRECISION : : T

! C a l c u l a t e a i r t e m p e r a t u r e f o r t ime , T
TEMPAIR = M + A * COS(2D0 * Pi * ( T−PHASE−1 8 2 . 5 ) / 365D0 )

− DTR/ 2 * COS(2D0* Pi * T ) + WARM
IF ( T<0D0 ) THEN

TEMPAIR = M + A * COS(2D0 * Pi * (0D0−PHASE−1 8 2 . 5 ) /
365D0 ) − DTR/ 2 * COS(2D0* Pi * 0D0 ) + WARM

END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION TEMPWATER( T , AIRTEMP)

DOUBLE PRECISION : : T , AIRTEMP

! C a l c u l a t e w a t e r t e m p e r a t u r e f o r t ime , T
TEMPWATER = 0 .9505D0*AIRTEMP + 3 .8887D0

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION INOCCULATEM( T )

DOUBLE PRECISION : : T

! S e t i n o c u l a t i o n v a l u e
IF ( T < 1D0 .AND. T > 0D0 ) THEN

INOCCULATEM = 5000D0
ELSE

INOCCULATEM = 0D0
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END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DAYLIGHT( T )

DOUBLE PRECISION : : T , EPS ,NUM,DEN
REAL, PARAMETER : : P i = 3 .1415927D0 , L = 51D0

! C a l c u l a t e p h o t p e r i o d v a l u e
EPS = ASIN ( 0 . 3 9 7 9 5 D0 * COS( 0 . 2 1 6 3 1 0 8D0 + 2 * ATAN

( 0 . 9 6 7 1 3 9 6D0 * TAN( 0 . 0 0 8 6 0 D0 * ( T−185.5D0 ) ) ) ) )
NUM = SIN ( 0 . 8 3 3 3 D0* Pi /180D0 ) + ( SIN ( L* Pi /180D0 ) * SIN ( EPS

) )
DEN = COS( L* Pi /180D0 ) * COS( EPS )
DAYLIGHT = 24D0 − (24D0 / P i ) * ACOS(NUM / DEN)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_SPRING ( PP )

DOUBLE PRECISION : : PP

! S e t s p r i n g p h o t o p e r i o d t h r e s h o l d
DIAPAUSE_SPRING = 1D0 / (1D0 + EXP(5D0 * ( 1 3 . 7 D0−PP ) ) )

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DIAPAUSE_AUTUMN( PP )

DOUBLE PRECISION : : PP

! S e t autumn p h o t o p e r i o d t h r e s h o l d
DIAPAUSE_AUTUMN = 1D0 / (1D0 + EXP ( 3 . 5 D0*(15D0−PP ) ) )
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RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION BIRTH (DIAPAUSE , GONOTROPHICtime )

DOUBLE PRECISION : : GONOTROPHICtime , EGGRAFT, DIAPAUSE

! S e t b i r t h r a t e f o r m o s q u i t o e s
EGGRAFT = DIAPAUSE*MAXEGG* 0 . 5D0
BIRTH = EGGRAFT/ GONOTROPHICtime

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION BIRD_BIRTH_FUNC ( T )

DOUBLE PRECISION : : T
DOUBLE PRECISION : : K_BIRD=0.15D0 , PHI_BIRD=50D0 , S_BIRD=10

D0

! S e t b i r t h r a t e f o r b i r d s
BIRD_BIRTH_FUNC = 0 . 5 D0 * K_BIRD * EXP(−S_BIRD * (COS ( ( PI

*T+PHI_BIRD ) /365D0 ) ) **2)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION GONOTROPHIC(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : KG=0.2024D0 ,QG=74.48D0 ,BG=0.2456D0

! S e t g o n o t r o p h i c c y c l e r a t e
IF (TEMP < 0D0 ) THEN

GONOTROPHIC = 0 .0333D0
ELSE
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GONOTROPHIC = KG / (1+QG*EXP(−BG*TEMP) )
END IF
IF (GONOTROPHIC < 0 .0333D0 ) THEN

GONOTROPHIC = 0 .0333D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION EXTRINSIC_INCUBATION (TEMP)

DOUBLE PRECISION : : TEMP

! S e t EIP deve lopment r a t e
EXTRINSIC_INCUBATION = 0.0092D0 * TEMP − 0 .132D0
IF ( EXTRINSIC_INCUBATION . LE . 0 .005D0 ) THEN

EXTRINSIC_INCUBATION = 0 .005D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHegg (TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! C a l c u l a t e egg d e a t h r a t e
DEATHegg = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHegg > 1D0 ) THEN

DEATHegg = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHlar (TEMP)
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DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20.5D0 , U5=7D0

! C a l c u l a t e l a r v a l d e a t h r a t e
DEATHlar = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF ( DEATHlar > 1D0 ) THEN

DEATHlar = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHpup(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : U3=0.0157D0 , U4=20 .5D0 , U5=7D0

! C a l c u l a t e p u p a l d e a t h r a t e
DEATHpup = U3 * EXP ( ( ( TEMP−U4 ) / U5 ) **2)
IF (DEATHpup > 1D0 ) THEN

DEATHpup = 1D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION DEATHadu (TEMP, GONOTROPHICtime , T )

DOUBLE PRECISION : : TEMP, GONOTROPHICtime , T
DOUBLE PRECISION : : ALPHA=2.166D−8 ,BETA=4.483D0 , PI

=3.1415927D0 , MULTIPLIER=8D0 , SIGMASQ=4D0

! C a l c u l a t e a d u l t d e a t h r a t e
IF (TEMP < 0D0 ) THEN

DEATHadu = 0 .003D0
ELSE
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DEATHadu = ALPHA*(TEMP**BETA)
END IF
IF ( DEATHadu < 0 .003D0 ) THEN

DEATHadu = 0 .003D0
END IF
DEATHadu = DEATHadu + ( MULTIPLIER / SQRT(SIGMASQ*2D0* PI ) ) *

EXP(( −1D0 / ( SIGMASQ*2D0 ) ) * (MOD( T, 3 6 5D0 )−
GONOTROPHICtime−109D0 ) **2)

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION EGGMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0022D0 , BETA=1.77D0

! C a l c u l a t e egg deve lopment r a t e
IF (TEMP < 0D0 ) THEN

EGGMATURATION = 0.016667D0
ELSE

EGGMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (EGGMATURATION < 0.016667D0 ) THEN

EGGMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION LARMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.00315D0 , BETA=1.12D0

! C a l c u l a t e l a r v a l deve lopment r a t e
IF (TEMP < 0D0 ) THEN
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LARMATURATION = 0.016667D0
ELSE

LARMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (LARMATURATION < 0.016667D0 ) THEN

LARMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION PUPMATURATION(TEMP)

DOUBLE PRECISION : : TEMP
DOUBLE PRECISION : : ALPHA=0.0007109D0 , BETA=1.8865648D0

! C a l c u l a t e p u p a l m a t u r a t i o n r a t e
IF (TEMP < 0D0 ) THEN

PUPMATURATION = 0.016667D0
ELSE

PUPMATURATION = ALPHA*(TEMP**BETA)
END IF
IF (PUPMATURATION < 0.016667D0 ) THEN

PUPMATURATION = 0.016667D0
END IF

RETURN
END FUNCTION

END MODULE define_DDEs

!******************************************************************

PROGRAM c h a p t e r _ 5 _ m o d e l

USE define_DDEs
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USE DDE_SOLVER_M

IMPLICIT NONE

INTEGER : : I , J ! Loca l v a r i a b l e s

INTEGER , DIMENSION ( 3 ) : : NVAR = ( / NEQN, NLAGS, NEF / )

! S e t l e n g t h o f s o l u t i o n and o u t p u t p o i n t s
INTEGER , PARAMETER : : NOUT=366D0
DOUBLE PRECISION , PARAMETER : : T0=0D0 , TFINAL=365D0
DOUBLE PRECISION , DIMENSION(NOUT) : : TSPAN= ( / ( T0 +( I −1) * ( (

TFINAL − T0 ) / ( NOUT−1) ) , I =1 ,NOUT) / )

TYPE(DDE_SOL) : : SOL
TYPE(DDE_OPTS) : : OPTS

! S e t l e n g t h o f maximum d e l a y
DOUBLE PRECISION : : MAXDELAY = 200D0

! S e t o p t i o n s f o r DDE s o l v e r
OPTS = DDE_SET(RE=1D−5 ,AE=1D−5 ,MAX_STEPS=100000000 ,

MAX_DELAY=MAXDELAY, TRIM_FREQUENCY=10000)

! Run DDE s o l v e r code
SOL = DDE_SOLVER(NVAR, DDES, BETA, HISTORY , TSPAN , EVENT_FCN=EF ,

CHANGE_FCN=CHNG, OPTIONS=OPTS)

! Was t h e s o l v e r s u c c e s s f u l ?
IF (SOL%FLAG == 0) THEN

! Outpu t r e s u l t s
OPEN( UNIT=10 , FILE = ’ f i l e n a m e . da t ’ )
DO I = 1 ,SOL%NPTS

WRITE( UNIT=10 ,FMT= ’(28 E14 . 5 E3 ) ’ ) INOCT , WARM, SOL%T ( I )
, ( SOL%Y( I , J ) , J =1 ,NEQN)

END DO
CLOSE( 1 0 )
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ELSE
PRINT * , ’ Abnormal r e t u r n from DDE_SOLVER wi th FLAG = ’ ,&
SOL%FLAG

END IF

STOP
END PROGRAM c h a p t e r _ 5 _ m o d e l
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