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Abstract  

Wind energy plays a vital role in securing a sustainable and low-carbon future, strengthening energy 

independence, enhancing economic growth, and preserving the environment. In addition to reducing climate 

change impacts, wind power is able to facilitate the development of a more resilient and sustainable energy 

system. There is one obstacle, though, that prevents its penetration into the power grid: its high variability in 

terms of wind speed fluctuations. Wind power forecasting plays a vital role in addressing the inherent 

uncertainty of wind power generation. Accurate power forecasting, while making maintenance more efficient, 

leads to profit maximisation of power traders, whether for a wind turbine or a wind farm.  

Several studies have been conducted in the past to investigate factors affecting the performance of power 

forecasting methods, and several models have also been developed. It is, however, necessary to develop a 

method that not only provides high prediction accuracy, but also provides good efficiency as well.  

This thesis explores different forecasting approaches for wind energy and uses machine learning to 

develop an accurate, efficient, and robust prediction model. First, background and literature review is presented 

which covers analysis methods, forecasting time scales, error measurement, and accuracy improvement. 

Following this, in order to provide high-quality and noise-free data for wind power forecasting, several pre-

processing techniques were investigated. Next, the research focused on fine-tuning the hyperparameters of 

machine learning models to increase forecasting accuracy and efficiency. Scikit-opt, Hyperopt, and Optuna, 

three hyperparameter optimisation techniques, are used to tune CNNs and LSTMs, two commonly used deep 

learning models. 

After analyzing the results of the previous sections, a new wind power forecasting method is proposed 

using Wavelet Packet Decomposition (WPD) models, optimised LSTM models and CNN models. After pre-

processing the raw data and removing the outliers, WPD is employed to decompose wind power time series 

into multiple subseries with different frequencies. Comparing the prediction results of all involved models 

demonstrates that the developed model improves the prediction accuracy by at least 77.4% compared to 

methods that do not use WPD. In addition, the proposed combination of optimised CNN and LSTM improves 

the forecasting accuracy by 26.25% compared to methods that use only one deep learning model to forecast all 

sub-series. In light of the success of the one step ahead forecast, different strategies of multi-step ahead 

forecasting were explored for the first time in the field of wind power forecasting. The results show that in two-

step ahead wind power forecasting, all strategies produce similar results, in both wind turbines. In all forecast 

horizons of more than two steps ahead, the MIMO approach is best when the dataset does not contain any 

outliers. In contrast, the direct approach is best when the dataset does contain outliers. It was also concluded 
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that when datasets contain outliers, wind power forecasting using recursive strategies results in the highest 

errors for forecasts over two steps.   
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Chapter 1 -  Introduction 

One of the biggest problems humanity is facing is climate change, which according to latest reports, there 

has been an increase in its intensity and rate [1]. The most important factor in the occurrence of climate change 

is the use of fossil fuels in various sectors, including transportation, construction, and most importantly, in the 

production of electricity for various applications. 

Several agreements have been made between different nations in the past years to limit global warming, 

including the Paris Agreement 2015 or the Glasgow Agreement 2021, where one of the issues and challenges is 

always the amount of pollutants produced in different countries and methods to reduce them. 

The forecasts show that even considering the improvement in energy efficiency in the various sectors, (e.g., 

transportation and heating) demanded by the regulations, by 2050, due to the growing demand for products 

and services, electricity generation needs to be increased by a factor of 2.5 [1]. 

Currently, the majority of the electricity generated in the world comes from power plants that burn fossil 

fuels. As an example, the UK, gets 42% of its electricity from gas-fired power plants. However, using this energy 

source leads to many environmental issues such as global warming and increased greenhouse gas (GHG) 

emissions [1]. 

To prevent these adverse effects, and take steps towards decarbonisation, the share of electricity produced 

from fossil fuels needs to be gradually reduced and replaced with renewable energies in a way that by the end 

of 2050 three-quarters of the total electricity is supplied from clean sources of energy. Figure 1.1 shows the trend 

of electricity production of different power plants until 2050 in the UK [2]. As demonstrated in Figure 1.1, the 

main renewable energy source considered to replace fossil fuels is wind energy, either onshore or offshore.  

 
Figure 1.1. UK grid-connected power generation by different power stations [2] 
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1.1 Wind power and obstacles against its high-scale integration 

Wind energy is the fastest-growing renewable energy with the ability to guarantee national security 

against global threats caused by the reduction of fossil fuel reserves and their price increase [1]. Building wind 

power plants does have some negative environmental effects on communities and wildlife including noise, 

visual effects, etc [1]. However, the main obstacle against the integration of wind power into the power grid 

comes from its inherent variability and unpredictability [3]. Because wind power is dependent on weather 

conditions, it can be difficult to predict how much power will be generated at any given time since wind speed 

and direction change. 

In the power grid, there must always be a balance between the electricity consumption and production. 

Otherwise, the supply of electricity will be impossible or of low quality. Variability in wind power can therefore 

cause challenges for grid stability. The provision of a high share of grid power by non-dispatchable wind energy 

makes this balance more difficult. Unless an accurate forecast of generated power is provided to the electricity 

distributor, certain measures cannot be effectively implemented. It is therefore recognised that wind power 

forecasting is essential for large-scale wind power integration [4]. 

 

1.2 Problem Statement 

The inability to provide accurate wind power prediction has various consequences. Technically, forecast 

divergence impedes the ability of transmission system operators to plan the fulfilment of demand based on the 

available power capacity. Furthermore, from an economic point of view, the uncertainty of the total wind power 

forecast leads to uncertainties in day-ahead and balancing market costs, which will bring financial losses to 

electricity providers [5]. 

The transmission system operator (TSO) is responsible for balancing the electricity production and 

consumption based on the price-quantity bids of electricity producers. In practice, if the delivery power of each 

supplier is not equal to its committed level, changes will be made in supplying electricity from TSO’s own 

facilities or purchases from other producers through bilateral contracts or power pools. The cost of these 

changes is usually covered by penalties for electricity producers who miss their obligations. Sometimes these 

penalties are so high that a large part of the production income is used to cover the costs. 

By increasing the accuracy of forecasting, these penalties can be avoided, and production costs can be 

reduced. For example, in the All-Island of Ireland electrical system, each percentage improvement in wind 

power forecast accuracy saves 0.27% of the total generation costs which equals €4.1 million [6].  

Wind power forecasting also provides the possibility of saving costs during the maintenance of wind 

turbines. Maintenance of wind turbines can sometimes take hours to several weeks. Postponing the 
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maintenance to the times when the lowest amount of energy is expected to  be produced, causes less loss in 

profits [7]. 

 

1.3 Motivation 

This project is motivated by the recent advancements in artificial intelligence (AI) and its applications in 

various aspects of working with big data and creating predictive models. Due to the importance of wind power 

forecasting, it is necessary to use these advances in the analysis and pre-processing of wind power datasets of 

wind turbines, as well as the development of accurate and efficient forecasting models. The added benefits in 

this project is having access to the SCADA data of an offshore wind turbine in Scotland which makes testing of 

the developed models possible. 

 

1.4 Objectives 

As mentioned earlier, this thesis focuses on the accurate and efficient prediction of generated power of 

wind turbines using machine learning algorithms. The efficient wind power forecasting method is an approach 

that, while providing accurate and reliable forecasts of future electricity production, minimizes computing 

resources and the time required for forecasting. The developed wind power prediction models can be used for 

regulation actions, real-time grid operations, market clearing and wind turbine control systems. 

For this purpose, various pre-processing methods including data resampling, outlier detection and 

treatment, wavelet transform and deep learning methods such as CNN, LSTM, and advanced hyperparameter 

optimisation algorithms are used to develop a novel predictive model with a high accuracy, efficiency and 

robustness of prediction for the available SCADA wind power data.  

A descriptive literature review is presented for this thesis to examine different methods of wind power 

forecasting. This is followed by the contributions presented in Chapters 3, 4, 5 and 6. 

1. The focus of chapter 3 is on examining the data received from the offshore wind turbine from the 

perspective of outlier data. In this section, after a detailed discussion about the reasons for having 

outliers, various methods for data pre-processing and outlier detection including isolation forest (IF), 

elliptic envelope (EE), and the one-class support vector machine (OCSVM), are used to detect and 

treat them.  Different outlier detection methods are examined to determine the best method that leads 

to the highest prediction accuracy. A comparison of the results will help researchers to choose the best 

outlier detection method for future studies. 

2. In chapter 4, the hyperparameter optimisation of machine learning models is investigated. In this 

chapter, after reviewing common hyperparameter tuning methods such as grid search and random 

search, three hyperparameter optimisation techniques including Scikit-opt, Optuna, and Hyperopt are 
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utilized to tune the hyperparameters of Convolutional Neural Network (CNN) and Long Short-Term 

Memory Network (LSTM) models employed for the short-term wind power forecasting of an offshore 

wind turbine in Scotland. In this section the impact of the hyperparameter optimisation methods on 

the accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean 

square error (RMSE) of the predictions and the required time to tune the models.  

3. In Chapter 5, a novel hybrid forecasting method is developed based on the wavelet packet 

decomposition [WPD], Long Short-Term Memory Network [LSTM], and Convolutional Neural 

Network [CNN] to improve the accuracy of wind power forecasting. WPD is employed to decompose 

pre-processed wind power data into sublayers with different frequencies. Sequential Model-Based 

Optimisation (SMBO) with the Tree Parzen Estimator (TPE) is then used to tune the hyper-parameters 

of LSTM and CNN, efficiently. The optimised LSTM is employed to predict the low-frequency sub-

layer that has both long-term and short-term dependencies, and CNN is used to forecast the high-

frequency sub-layers with short-term dependencies. 

4. In Chapter 6, to increase the forecast horizon of the proposed forecasting model, for the first time in 

the field of wind turbine power prediction, a comprehensive comparison of three main strategies for 

multi-step ahead prediction including the recursive, direct, and multi-input multi-output (MIMO) 

strategies are investigated. In this section, two real-world wind power datasets are used to clarify the 

best strategy. In addition, the impact of outlier presence in the accuracy of multi-step ahead predictions 

at different forecasting horizons is assessed. 

1.5 Research Contributions 

Based on the aforementioned objectives, to develop the accurate, efficient and robust wind power 

forecasting model, this thesis uses pre-processing methods to clean the dataset, deep learning models as the 

core of prediction and advanced hyperparameter optimisation algorithms to increase the accuracy and 

efficiency. As such, after assessment of different pre-processing methods, ML algorithms and hyperparameter 

tuning tools, a novel method is proposed. The contributions of this thesis can be summarised as follows: 

1. Providing an extensive literature review of wind power forecasting methods and presenting a 

flowchart as a guideline for wind power forecasting process screening, allowing the wind turbine/farm 

operators to identify the most appropriate forecasting methods based on time horizons, input features, 

computational time and error measurements, etc. The literature review includes the latest research 

conducted in the last two decades in the field of wind power forecasting, which examines various 

strategies to improve the forecasting performance. 

2. To ensure the best performance of WPD for decomposition of power time series to different subseries 

with different frequencies, sixteen mother wavelets from four widely used wavelet families in the 
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literature (Daubechies, Haar, Sym, and Coif) were selected, and their performance in prediction 

improvement of forecasting models are assessed. 

3. As opposed to grid search or random search which are time-consuming and unreliable, three advanced 

hyperparameter optimisation techniques, Scikit-opt, Hyperopt, and Optuna, are used to tune CNN 

and LSTM prediction models, for wind power forecasting. To the best of the author’s knowledge this 

is the first time that theses hyperparameter optimisation techniques are used in this field. The results 

showed that the Optuna optimisation technique using Tree-structured Parzen estimator (TPE) search 

algorithm and Expected Improvement (EI) acquisition function, has the highest efficiency for both 

CNN and LSTM models. Also, regarding the improvement of the prediction accuracy, it has been 

demonstrated that while for the CNN model, all the optimisation methods perform almost the same, 

the LSTM model optimised by the Hyperopt algorithm based on the annealing search method achieves 

the highest accuracy. 

4. A novel wind power forecasting method is proposed based on the combination of WPD, optimised 

LSTM and CNN models. In the developed WPD-LSTM-CNN model, first, the obvious outliers that 

diminish the prediction accuracy are removed and the resolution of data averaged over 10 minutes in 

order to mitigate the influence of turbulence. Next, Wavelet Packet Decomposition (WPD) is employed 

to decompose the pre-processed wind power time series into multiple sub-series with different 

frequencies. This increases the stationarity of the data, thereby enhancing the efficiency of the 

prediction models. Three tuned independent CNNs are employed for the prediction of the high-

frequency sub-series, and one optimised LSTM model is adopted to complete the forecasting of the 

low-frequency sub-layer. For the optimisation of these deep learning models, the SMBO method as a 

formalisation of Bayesian optimisation, provided in the Optuna optimisation package, is used to 

reduce the dependence on computational resources. 

5. The sensitivity of different structures of CNN and LSTM models to seed changes was investigated and 

the most resistant structure against randomness was selected for both models.  The proposed models 

not only do not require initial settings of random seeds, but also provide the highest level of accuracy, 

efficiency, and robustness for the utilised offshore wind power dataset. This level of performance in 

short-term wind power forecasting can be utilized for regulation actions, real-time grid operations, 

market clearing, and wind turbine control systems, ensuring efficient balancing of supply and demand 

in the electricity market. 

6. Based on the results of comparison between three main strategies including the recursive, direct, and 

multi-input multi-output (MIMO) strategies for multi-step ahead forecasting of two wind turbine 

datasets, it is concluded that in two-step ahead (20 min) wind power forecasting, all different strategies 

come up with almost identical results. The multi-step ahead wind power prediction with the MIMO 
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strategy performs best when the dataset contains no outlier data, and vice versa, when it contains 

outlier data, the direct strategy performs best in forecast horizons of more than two steps ahead. In the 

case of datasets containing outliers, for forecast horizons above two steps, wind power forecasting 

using the recursive strategy results in the highest error. The errors in previous wind energy forecasts, 

used to predict next steps accumulate, leading to a decrease in accuracy. 
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Chapter 2 -  Background and Literature Review 

As mentioned earlier, the power generated by wind turbines varies rapidly due to the fluctuation of wind 

speed and wind direction. It is also dependent on terrain, humidity, date and time of the day [8]. This 

continuous change makes wind power management challenging for distribution networks, where a balance is 

highly desired between the power supply and demand [9]. Therefore, one of the major reasons for wind power 

forecasting is to decrease the risk of uncertainties in wind, allowing higher penetration of wind power into the 

grid. It is also vital for better dispatch, maintenance planning, determination of required operating equipment, 

etc.  

In recent studies that have been carried out for wind power forecasting, there is no obvious evidence or 

guide to compare different predictive methods [4, 9, 10]. Therefore, it is necessary to systemically examine the 

critical methods of wind power forecasting. It is important to further compare the details of each method to 

clarify the prediction accuracy, input features, dataset specifications, size of the database and their sampling 

rate, evaluation criteria, and loss function.  

2.1 Classification of wind power forecasting methods 

Theoretically, wind power forecasting can be classified based on either time horizons or applied 

methodology [4]. Based on different time scales, the prediction can be divided into a very short-term scenario, 

for which the range of predictions is usually below 30 minutes, up to a month (long-term predictions), which 

has seen a progressive development over the past decade. On the other hand, the forecasting methods have 

benefited from the evolution of high-performance computing tools, with increasingly newer computational 

methods established. 

 

2.1.1 Prediction horizons 

Depending on different functional requirements, predictive horizons can be divided into four major time 

scales summarised in Table 2.1. The shorter the forecasting period, the more accurate the results, but less time 

to make important decisions in wind power production. Long-term forecasts can provide information on future 

wind energy, however they are typically less accurate [9, 10, 11, 12].  
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Table 2.1. Prediction horizons in wind power forecasting.  

Time horizon Range Applications 

very short-term few minutes to 30 minutes regulation actions, real-time grid operations, market 

clearing, turbine control 

short-term 30 minutes to 6 hours load dispatch planning, load intelligent decisions 

medium-term 6 hours to 1 day operational security in the electricity market, energy 

trading, on-line and off-line generating decisions 

long-term 1 day to a month reserve requirements, maintenance schedules, 

optimum operating cost, operation management 

 

2.1.2 Prediction methodologies 

According to applied methodologies, wind power forecasting models can be further divided into 

persistence methods, physical methods, and statistical methods. Their differences are located in the required 

input data, the accuracy at different time scales, and the complexity of the process.  

• Persistence methods 

In this method, which is normally used as a reference, the predicted future wind power is equal to the 

measured power in the present. This approach was commonly used to be compared with novel short-term 

forecasting methods to identify their improvements [10, 11, 12, 13]. The accuracy of this method can quickly 

deteriorate with the increment of prediction timescale [10]. Apart from being simple and economical, the main 

advantage of this method is that neither a parameter evaluation nor external variables are required [14]. 

• Physical methods 

Physical methods use detailed physical characterisations to model wind turbines/farms. This modelling 

effort is often carried out by downscaling the Numerical Weather Prediction (NWP) data, which requires a 

description of the area, such as roughness and obstacles, as well as weather forecasting data of temperature, 

pressure, etc. These variables are used in complex mathematical models that are time-consuming when it comes 

to predicting wind speed. Then, the predicted wind speed is related to the wind turbine power curve (normally 

provided by the turbine manufacturer) to forecast the wind power. This method doesn’t need to be trained with 

historical data, but it depends on physical data [12]. In recent decades, many physical methods have been 

proposed. For example, Focken et al. [15] created a physical wind power forecasting approach for time scales 

up to 48 hours ahead. The method was founded on a physical approach that received input data from a weather 

prediction model. The boundary layer, the layer of air directly influenced by friction from the ground, was first 
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shaped taking into account roughness, terrain and wake effect. Furthermore, the day-to-day change of the 

thermal stratification of the atmosphere was taken into account to estimate the wind speed at hub height [15]. 

De Felice et al. [16] used a physical model to predict the electricity demand in Italy by considering 14 months 

of hourly temperature as inputs. Comparing their proposed method with the Persistence approach using the 

mean absolute error (MAE) showed that NWP models can improve the forecasting performance, especially for 

the hottest regions. Even though this method is perhaps the best choice for medium to long-term wind power 

prediction, it is computationally complex and therefore needs considerable computing resources [17]. 

• Statistical methods 

These methods are generally based on developing the non-linear and the linear relationships between 

NWP data (such as wind speed, wind direction, and temperature) and the generated power. To define this 

statistical relationship, historical data must be used as the training data. The model is then tuned by comparing 

the model prediction and the on-line measured power. After that, the model is ready to predict using NWP 

forecast of the next few hours and the on-line measurements. This method is easy to model and inexpensive 

[18]. It is for short term periods, hence as the estimation time increases, its prediction accuracy decreases [13]. 

More specifically, statistical methods can be divided into two main sub-classifications: Time series based, and 

Neural Network (NN) established. 

Time series models  

These models, proposed by Box-Jenkins [12], apply historical data to generate a mathematical approach 

for developing the model, estimating parameters, and checking the simulation characteristics. The general form 

of the model can be described as: 

𝑋𝑡 = ∑ 𝜑𝑖

𝑝

𝑖=1

𝑋𝑡−𝑖 + 𝛼𝑡 − ∑ 𝜃𝑗

𝑞

𝑗=1

𝛼𝑡−𝑗                                                                              (1) 

while 𝜑𝑖 represents the autoregressive parameter, 𝜃𝑗 is the moving average parameter,  𝛼𝑡 is the white noise, p 

is the order of the autoregressive, q is the order of the moving average model, and 𝑋𝑡 is the forecasted wind 

power at time t. 

The entire equation (1) represents an Autoregressive Moving Average (ARMA) model, but if p is assumed 

to be zero, it will represent a moving average model (MA). Moreover, when q is assumed to be zero, it represents 

an autoregressive model (AR) [12]. Statistical methods based on this approach are easy to formulate and very 

applicable in short-term wind power forecasting [19]. They also require low computation times, but they may 

not provide adequate prediction capabilities, especially when the time series are nonstationary [20]. Table 2.2 

shows two-time series models with the specifications of their selected input features, including data size and 

sampling rate. 



 

27 

Table 2.2. Time series wind power prediction models. 

References Method Input Features Datasets Data 

Size 

Sampling 

rate 

M. Duran et 

al. 2007 [21] 

ARX wind speed Spanish wind farms 12 

months 

6 hr 

Gallego et al., 

2011 [22] 

AR model wind speed, wind 

direction 

offshore 160 MW wind farm 

of Horns Rev in Denmark 

12 

months 

10 min 

Firat et al. [23] proposed a statistical model based on independent component analysis and the AR model 

for wind speed forecasting. Using six years of hourly wind speed data of a wind farm in the Netherland, the 

authors claimed that the proposed model provided higher accuracy compared to direct forecasting methods for 

2 to 14 hours ahead. 

De Felice et al. [16] used NWP data and ARIMA models to forecast electricity demand in Italy. The 

temperature of the 14 months in the years between 2003 and 2009 was used as the main input value. Duran et 

al. [21] designed an AR model with exogenous variable (ARX) model. Using the wind speed as an exogenous 

variable, they compared the mean error of their model with persistence and traditional AR models and showed 

significant improvements in accuracy.  

Artificial Neural Networks (ANNs) 

ANNs, as one of the most commonly used methods for wind power prediction, can identify the non-linear 

relationships between input features and output data [24]. One of the reasons for the tendency to use neural 

networks is to avoid the complexity of the mechanical structure in wind turbines [25]. Typically, an ANN model 

consists of an input layer, one or more hidden layers, and an output layer, where the historical data/features 

are fed for training and testing [11]. It also consists of processing units called neurons, which are connected 

with certain weighted connections. The ANN adjusts the weight of these interconnections through the training 

process. If the desired output is known at the beginning of the process, it will be named supervised; contrarily, 

it will be called un-supervised [26]. Figure 2.1 shows a typical structure of an ANN model. 
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Figure 2.1. Typical structure of an ANN model. 

The performance of ANNs is dependent on many factors, including data pre-processing, data structure, 

learning method, connections between input & output data, etc [27]. There are more than 50 forms of ANNs, 

including multilayer perceptron (MLP) [28], wavelet neural network (WNN) [29], back-propagation neural 

network (BPNN), radial basis function neural network (RBFNN) [30], Elman neural network (ENN) [14], long-

short-term memory (LSTM) [17], and convolutional neural network (CNN) [31]. Designing an ANN model 

involves two steps: first, the selection of the proper structure of the network and specifying the direction of the 

passed information. There are two major topologies, including feed-forward for passing data in one direction 

from the input to the output layers and recurrent for mutual directions [12]. 

Table 2.3 shows a summary of the ANN models reviewed in this study. The selected input features were 

introduced along with the specifications of the wind turbine or wind farm, data size, and sampling rate. 
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Table 2.3. ANN wind power prediction models.  

References Algorithm Input Features Datasets Data Size Sampling rate 

Pelletier et al., 

2016 [32] 
MLP 

wind speed, air 

density, turbulence 

intensity, wind shear, 

and wind direction  

140 wind turbines in 

Nordic 
12 months 10 min 

Sideratos et al., 

2007 [33] 
RBFNN 

past power 

measurements, 

NWPs 

wind farm in 

Denmark including 

35 600-KW turbines 

26 months 1 min 

Bilal et al., 2018 

[28] 
MLP wind speed 

four sites on the 

northwest of Senegal. 

6 ~ 9 

months 
1 & 10 min 

Jyothi & Rao, 

2016 [34] 

Adaptive 

wavelet NN 

(AWNN) 

wind speed, air 

density, ambient 

temperature, and wind 

direction 

two wind turbines in 

North India 
15 days 10 min 

Zhao et al., 2016 

[20] 

Bidirectional 

ELM 
wind power 

onshore wind farm 

in the USA 
12 months 60 min 

De Giorgi et al., 

2011 [14] 
ENN 

wind power, wind 

speed, pressure 

temperature and 

relative humidity 

wind farm in 

southern Italy 
12 months 60 min 

Xu & Mao, 2016 

[35] 
ENN 

wind speed, wind 

direction, temperature, 

humidity, pressure 

a single 15kW wind 

turbine in a west 

wind farm in China 

6 days 15 min 

Catalao et al., 

2009 [36] 
MFNN historical data 

wind farm in 

Portugal 
4 days  

Singh et al. 2007 

[8] 
MLP 

wind speed, wind 

direction and air 

density 

Fort Davis Wind 

Farm the in Texas, 

USA 

2 months 10 min 

Chang, 2013 [37] BPNN wind power 
a wind turbine in 

Taiwan 
6 days 10 min 

Carolin & 

Fernandez, 2008 

[38] 

Feed-forward 

NN (MLP) 

wind speed, relative 

humidity, and 

generation hour 

137 wind turbines 

from seven wind 

farms located in 

Muppandal, (India) 

36 months - 
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Jyothi and Rao [34] used an AWNN for short wind power prediction. The minimum NRMSE that they 

achieved was 0.02. Bilal et al. [28] designed an MLP network to forecast the wind power of four different wind 

farms in Senegal. The main input of their model was wind speed, but they also assessed different combinations 

of input variables like wind direction, temperature, humidity and solar radiation. The results showed that, 

except wind speed, air temperature has the highest impact on improving the accuracy of the model. Regarding 

the best structure for MLP, the authors considered the Levenberg-Marquardt backpropagation algorithm as 

training the algorithm and log-sigmoid transfer as the activation function. It was concluded that the MLP with 

three hidden layers (5,7 and 8 neurons in each hidden layer) has the lowest NMSE. 

Xu and Mao [35] used ENN to study a single 15kW wind turbine on a west wind farm of China. Using 

input variables of wind speed, wind direction, humidity and temperature, the authors presented acceptable 

accuracy, particularly after the application of the particle swarm optimisation algorithm. 

In another investigation, Chang [37] developed a model based on BPNN for 10 min ahead wind power 

prediction. The historical wind power data of a wind turbine in Taiwan were used to verify the efficiency of 

this method. The results showed that the proposed neural network could predict wind power easily with an 

average absolute error of 0.278%.  

• Hybrid approach 

Combinations of different forecasting methods, such as ANNs and fuzzy logic models, are called hybrid 

approaches [31]. The main aim of hybrid approach is to retain the merits of each technique and improve the 

overall accuracy. A combination may not always lead to a better result, compared to the constituent models. 

However, it has been demonstrated that there are fewer risks in most of the situations [12]. Many hybrid 

methods have been proposed based on the combination of different models. Table 2.4 shows the reviewed 

hybrid methods carried out in this study, including input features for training models, specifications of the used 

dataset, database size, and sampling rate. What is clear is that although combining different methods improves 

the overall performance, on the other hand, it complicates the model and increases the required computation 

time. Hence, it is vital to obtain a balance between accuracy and efficiency. A number of these methods are 

introduced and evaluated in more details in the following section. 
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Table 2.4. Hybrid wind power prediction (part 1).  

References Method Input Features Datasets 
Data 

Size 

Sampling 

rate 

Du et al. 2019 

[39] 

ICEEMDAN, MOMFO, 

Wavelet NN 
wind power ? ? ? 

Shahid et al. 

2021 [40] 
GA, LSTM wind power ? ? ? 

Wang et al. 

2018 [41] 
MODA, ELNN Wind speed ? ? ? 

Kisvari et al. 

2021 [42] 
IF, GRU, LSTM wind power ? ? ? 

Hong et al. 

2019 [31] 
CNN, RBFNN, DGF wind power 

historical power data 

of a wind farm in 

Taiwan 

12 

months 
60 min 

Lin et al., 

2020 [43] 

Isolation Forest (IF), 

deep learning NN 

wind speed, nacelle 

orientation, yaw error, 

blade pitch angle, and 

ambient temperature 

SCADA data of a wind 

turbine in Scotland 

12 

months 
1 s 

Zhang et al., 

2019 [17] 

LSTM, Gaussian 

Mixture Model 

(GMM) 

wind speed 
a wind farm of 123 

units in north China 

3 

months 
15 min 

Marcos et al. 

2017 [44] 

Kalman filter, 

statistical regression 

or power curve 

NWP data 
Palmas and RN05 

wind farms in Brazil 

7 and 

12 

months 

10 min 

Wang et al., 

2018 [41] 

ELM optimised by 

MODA 
wind speed 

two observation sites 

in Penglai, China 
37 days 10 min 

Shetty et al., 

2016 [45] 

RBFNN, PSO in 

optimising and ELM 

in training 

wind speed, wind 

direction, blade pitch 

angle, density, rotor speed 

SCADA of a 1.5 MW 

horizontal wind 

turbine 

6 

months 
10 min 

De Giorgi et 

al., 2011 [14] 

Elman and MLP 

network 

wind power, wind speed, 

pressure, temperature, 

humidity 

wind farm in southern 

Italy 

12 

months 
60 min 

De Giorgi et 

al., 2011 [14] 

Wavelet 

decomposition and 

Elman network 

wind power, wind speed, 

pressure, temperature and 

relative humidity 

wind farm in southern 

Italy 

12 

months 
60 min 
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Table 2.5. Hybrid wind power prediction (part2). 

References Method Input Features Datasets 
Data 

Size 

Sampling 

rate 

Liu et al., 

2017 [46] 

BPNN, RBFNN and 

LSSVM 

wind speed, wind 

direction, and temperature 

at the wind turbine hub 

height 

16 MW wind farm 

located in Sichuan, 

China 

2 

months 
15 min 

Zhao et al., 

2012 [47] 

Kalman filter and 

MFNN 

wind speed, direction, 

temperature, pressure, 

humidity 

power data from SCADA 

an outermost domain 

which covers the 

eastern half of China 

12 

months 
6 hr 

Lin and Liu 

2020 [43] 

IF 

feed-forward NN 

wind speed, blade pitch 

angle, temperature, yaw 

error and nacelle 

orientation 

7 MW wind turbine in 

Scotland owned by the 

ORE Catapult 

12 

months 
1 s 

Peng et al., 

2013 [48] 

Physical model and 

ANN 

wind speed, wind 

direction, temperature 

50 MW wind farm 

with 40 wind turbines 

in China 

3 

months 
10 min 

 

Hong and Rioflorido [31] proposed a hybrid 24 hour-ahead wind power prediction model based on CNN. 

Different operations in CNN, such as convolution, pooling, and kernel, were used to pull out the input features. 

The defined features were then fed to an RBFNN, implementing the Double Gaussian Function (DGF) as an 

activation function. The authors also used Adaptive Moment Estimation (ADAM) to further improve CNN and 

RBFNN. Using one-year historical power data from a wind farm in Taiwan, the proposed approach provided 

the best performance compared with other method. The authors also concluded that the application of DGF in 

the RBFNN generated better results than conventional RBFNN with a Gaussian function. 

Lin et al. [43]  implemented the isolation forest (IF) technique along with deep learning neural network to 

detect outliers for more accurate wind power forecasting. The isolation forest method works by constructing 

random decision trees that isolate observations, effectively identifying outliers as those requiring fewer splits to 

isolate. Wind speed, wind direction, air temperature etc. were extracted from a SCADA dataset of an offshore 

wind turbine to be used as inputs while employing wind power as the output in the predictive model. 

Comparison results showed that IF is a more effective method of providing accurate forecasting, especially 

when the investigated data does not follow a normal distribution. In another paper [25], the authors critically 

evaluated eleven features from a 7MW wind turbine in Scotland, including four wind speeds at different 



 

33 

heights, average blade pitch angle, three measured pitch angles for three blades, ambient temperature, yaw 

error, and nacelle orientation. The results revealed that the blade pitch angle had the greatest effect on the 

performance of the prediction model, even more than wind speed and wind shear. On the contrary, wind 

direction and air density contributed the least, which allowed their elimination for reducing computational 

time. Zhang et al. [17] used the LSTM network to predict wind power production of a wind farm in China. 

Three-month wind speed data from NWP were used as inputs, and the produced wind power was treated as 

output. The authors compared their model with RBF, wavelet, DBN, BP and ELMAN. The results showed that 

the proposed model improved the accuracy of forecasting, although its operating time was longer than the 

others. The performance of the model was found to strongly depend on the wind speed. In high speeds, the 

wavelet provided better performance, while the other methods provided better prediction capability in lower 

speed areas. In high wind speeds, the wavelet method likely provided better performance due to its ability to 

effectively capture and analyse the transient, localized variations in the wind speed data. The uncertainty of the 

forecasted power was assessed by three different methods, including mixture density neural network (MDN), 

relative vector machine (RVM) and Gaussian Mixture Model (GMM). The results showed that the GMM gave 

the best performance. 

Marcos et al. [44] used a combination of a physical and a statistical model. The input data were atmospheric 

global-scale forecasts, which were provided by the Global Forecasting System (GFS) [44]. A Brazilian NWP 

model (BRAMS) was also used to refine the atmospheric global-scale forecasts by using physical considerations 

regarding the terrain, such as vegetation cover, soil texture etc. Afterwards, a systematic error correction filter 

with the capability of learning the dynamic behaviour of wind data was used to reduce the biases of the 

forecasted wind. Following the elimination of the biases, two main methods were used for wind power 

forecasting, the manufacture’s power curve and regression equations, which were derived from wind 

measurements and generated power data from SCADA systems. For generating polynomial regressions, the 

observed one-year data of wind and power were considered using four equations: linear, quadratic, quadratic 

considering previous power outputs, and cubic. Comparing these four equations with statistical indices such 

as RMSE showed that the cubic regression provides the best results. As other factors can also influence the 

power output, such as air density, wake effect, orography etc., a Kalman filter was used to eliminate systematic 

errors from the conversion model. Finally, it was concluded that using a Kalman filter decreased the RMSE 

value and increased the values of ACC and NSC, all representing better forecasting. 

Zhao et al. [20] proposed a bidirectional model for 1 ~ 6 hour-ahead wind power forecasting. In their model, 

the forecasted power from the forward model was used as the input for the optimisation algorithm of the 

backward model. By comparing the difference between the forwarding and backward results, the authors were 

able to provide the final forecasting. Eight months’ worth of hourly measured wind power of an American 

wind farm were used for training, while another four months were used for further evaluation. Comparing the 
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evaluation criteria of this model with the forward, backward, and persistence methods showed that it 

outperformed the others. 

Liu at al. [46] combined three different prediction models including BPNN, RBFNN, and the Least Square 

Support Vector Machine (LSSVM) by an adaptive neuro-fuzzy inference system (ANFIS) for 48 hour-ahead 

wind power forecasting. As the first step, a Pearson Correlation Coefficient (PCC) based method was used to 

eliminate outliers. Sixty-day datasets of a wind farm in China, containing wind speed, wind direction, 

temperature and generated power, were used as inputs to train the three methods. The evaluation of the 

proposed hybrid model showed that it outperformed the three individual forecasting models and can predict 

with remarkable accuracy improvement. Zhao et al. [47] used a Kalman filter to decrease the systematic errors 

of wind speed generated from a weather research and forecasting model. The model was used with wind 

direction, temperature, and humidity as input variables for a multilayer feed-forward neural network to 

forecast a day-ahead wind power. The results showed that filtering the raw speed and application of MFNN 

can decrease the NRMSE from 17.81% to 16.47%. 

 

2.2 Factors to compare different methods 

Methods of estimating wind power can be compared through various parameters, such as accuracy, input 

features, computational time, etc., presented in Tables 2.2 for time series models, Table 2.3 for ANN models, 

and Table 2.4 for hybrid methods. Local features, such as temperature, and humidity are highly dependent on 

the selected regions, directly affecting the output power. The different forecasting methods have been evaluated 

based on various criteria, these criteria are examined in Table 2.5 (time series models), Table 2.6 (ANN models), 

and Table 2.7 (hybrid models), where the metric obtained from each reviewed article are summarised.  

 

Table 2.6. Performance evaluation in time series wind power prediction models 

References Algorithm 
Evaluation 

Criteria 

Evaluation 

Value 

Evaluation 

Unit 
Results 

Duran et al., 

2007 [21] 
ARX ME 34.6-63.2 - 

Accuracy improvement was 

found in comparison with the 

persistence method and 

conventional AR models. 

Gallego et 

al., 2011 [22] 
AR NRMSE 3.93 - 

local measurement of both 

wind speed and direction 

improves the forecasting 

performance 
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Table 2.7. Performance evaluation in ANN wind power prediction models (part 1) 

References 
Algorithm 

Evaluation 

Criteria 

Evaluation 

Value 

Evaluation 

Unit 
Results 

Pelletier et 

al., 2016 [32] 
MLP MAE 15.3-15.9 kW 

multi-stage ANN with 6 

inputs performed better than 

parametric, non-parametric 

and discrete models 

Sideratos et 

al., 2007 [33]  
RBFNN 

NMAE 

NRMSE 

5-14 

20 

% 

% 

effectively predicted for 1-48 h 

ahead 

performed better than the 

persistence method 

Bilal et al., 

2018 [28] 
MLP 

NMSE 

NMAE 

SNMAE 

R (fitting 

rate) 

3.51 

14.85 

25.7 

0.98 

% 

% 

- 

% 

wind speed + temperature as 

input is better than only wind 

speed. 

Considering all variables 

improve performance 

Jyothi & Rao, 

2016 [34] 
AWNN NRMSE 0.1647 

- 

 

The minimum NRMSE 

showed that WNN performs 

well. 

Zhao et al., 

2016 [20] 

Bidirection

al ELM 

NMBE 

NMAE 

NRMSE 

-0.53 

16.61 

21.27 

% 

% 

% 

lower values of NMAE and 

NRMSE showed that 

bidirectional performed better 

than forward, backward and 

persistence method. 

De Giorgi et 

al., 2011 [14] 
ENN NAAE 

15 

12.5 

% 

% 

among the different NWPs 

data, pressure, and 

temperature had the highest 

positive impact. The hybrid 

method performed better than 

other methods especially in 

long term forecast (24 h) 

Xu & Mao, 

2016 [35] 
ENN 

MSE 

MAE 

16.55 

10.52 

% 

% 

application of particle swarm 

optimisation algorithm 

improves the 

performance/accuracy 
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Table 2.8. Performance evaluation in ANN wind power prediction models (part 2) 

References 
Algorithm 

Evaluation 

Criteria 

Evaluation 

Value 

Evaluation 

Unit 
Results 

Catalao et 

al., 2009 [36] 

MFNN 

(trained by 

LM 

algorithm) 

MAPE 7.26 % 

performed better than 

Persistence method in less 

than 5 seconds of computing 

time. 

Singh et al., 

2007 [8] 
MLP 

percentage 

difference 
0.303-1.082 % 

better results than traditional 

methods 

Chang, 2013 

[37] 
BPNN AAE 0.278 % 

the proposed model can 

predict win power easily and 

correctly 

Carolin & 

Fernandez, 

2008 [38] 

feed 

forward 

NN (MLP) 

RMSE 8.06 % 
helpful model for energy 

planners 

 

 

Table 2.9. Performance evaluation in hybrid wind power prediction models (part 1) 

References Method 
Evaluation 

Criteria 

Evaluation 

Value 

Evaluation 

Unit 
Results 

Hong et al., 

2019 [31] 

CNN, 

RBFNN, 

DGF 

R2 

RMSE 

NMSE 

MAPE 

0.92 

76.97 

2.75 

5.048 

- 

% 

% 

% 

best performance rather than 

CNN-RBFNN and CNN-MFNN 

(lower RMSE, NMSE, MAPE and 

higher R2) 

Lin et al., 

2020 [43] 

IF, deep 

learning 

NN 

MSE 0.003 
- 

 

using IF for outlier detection 

instead of Elliptic envelope 

increased the performance 

Zhang et al., 

2019 [17] 

LSTM, 

GMM 
RMSE 6.37 % 

the accuracy of LSTM was higher 

than RBF, wavelet, DBN, BP and 

ELMAN. 

GMM was better in analysing the 

uncertainty of the prediction than 

MDN and RVM. 

Marcos et al., 

2017 [44] 

Kalman 

filter, 

statistical 

regressio

n or 

power 

curve 

MBE 

RMSE 

4.32 

101.11 
kW 

using Kalman filter decreased the 

RMSE and increased the ACC 

and NSC, all represent better 

forecasting 
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Table 2.10. Performance evaluation in hybrid wind power prediction models (part 2) 

References Method 
Evaluation 

Criteria 

Evaluation 

Value 

Evaluation 

Unit 
Results 

Wang et al., 

2018 [41] 

ELM 

optimise

d by 

MODA 

AE 

MAE 

RMSE 

NMSE 

MAPE 

19.05 

77.67 

107.96 

0.0001 

0.9824 

MW 

MW 

MW 

- 

% 

- 

 

Shetty et al., 

2016 [45] 

RBFNN, 

PSO in 

optimisin

g and 

ELM in 

training 

MSE 
0.0003 

 

- 

 

ELM as a learning algorithm 

makes the learning process 

quicker. 

De Giorgi et 

al., 2011 [14] 

Elman 

and MLP 

network 

based on 

historical 

data and 

NWP 

NAAE 10.98 % 
among the different NWPs data, 

pressure and temperature had 

the highest positive impact. The 

hybrid method performed better 

than other methods especially in 

long term forecast (24 h) 
De Giorgi et 

al., 2011 [14] 

Wavelet 

decompo

sition 

and 

Elman 

network 

NAAE 15.5 % 

Liu et al., 

2017 [46] 

BPNN, 

RBFNN 

and 

LSSVM 

MAPE 

NMAE 

NRMSE 

6.7-27.4 

1.01-6.35 

2.37-9.45 

% 

% 

% 

the combined model performed 

better than all three individual 

models 

Zhao et al., 

2012 [47] 

Kalman 

filter, 

MFNN 

NRMSE 16.47 % 

NRMSE value improved from 

17.81% to 16.47%, by using a 

Kalman filter. 

Lin and Liu, 

2020 [43] 

IF, feed-

forward 

neural 

network 

RMSE 

MAE 

R-square 

MSLE 

EVS 

517.33 

374.41 

0.91 

0.29 

0.91 

- 

- 

- 

- 

- 

blade pitch angle had the greatest 

effect on the performance of the 

prediction model even more than 

wind speed and wind shear. 

Peng et al., 

2013 [48] 

Physical 

+ ANN 

MAE 

RMSE 

760 

2.01 

kW 

% 

combining physical and statistical 

prediction techniques rather than 

the application of ANN 

improved accuracy. 

 

2.2.1 Accuracy 

The accuracy of wind power forecasting is the most important factor for comparing different predictive 

methods, which can be determined by evaluating certain metrics. Typically, levels are provided for these 

evaluation factors in different systems, based on which it can be ensured that the model has enough accuracy. 

For example, in some references, it has been mentioned that the rate of RMSE should be within 10% of the 
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installed capacity for most of the models. In China, State Grid Corporation defined a value of 20% for the 

maximum acceptable RMSE for short term wind power forecasting and 15% for the forecasted value of 4 hour-

ahead [17]. Methods with higher RMSE do not provide the required performance. In Ireland, the system 

managers (EirGrid and SONI) require a target accuracy of 6% ~ 8% [18].  

 

2.2.2 Efficiency (Computational time)  

Forecasting computational time (time required for training/learning) is considered as a significant factor 

for selection of proper prediction models, especially for short term forecasting. It is also useful to understand 

whether it can be applied in real-time. For example, the proposed approach by Marcos et al. [44], which needed 

about 60 ~ 70 min computational time for each 72 hour NWP model simulation, was demonstrated that it could 

be used in real-time for power system operation. The computational time depends on the used methods, 

required accuracy, volume and sampling rate of input data, computing power etc. It also relies on the training 

algorithm. For instance, as Zhao et al. [20] discussed, Extreme Learning Machine (ELM) with a feed-forward 

neural network performed faster than networks based on the backpropagation algorithm. 

Singh et al. [8] showed that the training and testing of two-month input data with 10 min sampling rate 

for the proposed MLP network could be finished in 30 min on a Pentium 150 MHz computer. The authors also 

claimed that using a separate neural network for each turbine rather than the wind farm guarantees fast training 

because the size and complexity of the network will be minimised. Another benefit of this scheme is that the 

separate models will not be affected by the off-line turbines. 

Lin and Liu [25], in an effort to reduce the computational time, removed minor influencer features in the 

proposed model, including air temperature, nacelle orientation, and yaw error. Even though this reduction 

resulted in a small savings in processing time (0.77 min) for a single wind turbine, the saved simulation time 

can be considered worthwhile when taking into account a typical wind farm comprising of more than 100 

turbines. 

 

2.3 Performance evaluation in wind power forecasting 

To assess the performance of the wind power forecasting methods, there are several statistical metrics 

which can show deviations of the forecasted from the measured wind power. The statistical description of how 

the evaluation criteria were chosen in the prior research is outlined in Figure 2.2, which is based on the 

information from Table 2.5, 2.6 and 2.7. As reflected in Figure 2.2, the majority of studies consider a number of 

evaluation criteria such as RMSE, NRMSE, MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage 
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Error). In the following sections, the types of techniques used for the accuracy assessment of wind power 

forecasting methods are discussed in detail. 

 

Figure 2.2. Statistical description of chosen evaluation criteria in the prior research 

 

2.3.1 Error measurements 

The most common error measurements that evaluate performance by specifying the degree of similarity 

between forecasted and measured data are [49]: 

• Normalised error 

𝐸𝑖(𝑙) = 𝑃𝑁(𝑖, 𝑙) − 𝑇𝑁(𝑖, 𝑙)                                                                                (2) 

where i = hour of the predicted data, 𝑙  = time horizon, 𝑇𝑁(𝑖, 𝑙) is the forecasted power, 𝑃𝑁(𝑖, 𝑙) is the target 

measured power and M is the total number of predicted data described in Eq (3) and Eq (4). 

𝑇𝑁(𝑖, 𝑙)  =
𝑇(𝑖, 𝑙)

Max𝑖=1
𝑀 (𝑃(𝑖, 𝑙))

                                                                               (3) 

𝑃𝑁(𝑖, 𝑙) =
𝑃(𝑖, 𝑙)

Max𝑖=1
𝑀 (𝑃(𝑖, 𝑙))

                                                                               (4) 

 

• Normalised mean bias error (NMBE) 

The normalised mean bias error shows the difference between the average forecasted and observed wind 

power. The value shows if the method over-estimates (NMBE > 0) or under-estimates (NMBE < 0). This 

statistical metric displays systematic errors instead of the forecasting method’s capability [20]. This statistical 

index doesn’t offer enough information about the accuracy of the forecasting method when it is used by only 

itself. The NBME can be calculated from Eq (5). 
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NMBE (𝑙) = (
1

𝑀
∑ 𝐸𝑖

𝑀

𝑖=1

(𝑙)) × 100                                                                     (5) 

• Normalised mean absolute error (NMAE) 

One of the most common wind power prediction performance indexes is normalised mean absolute error 

[17]. It provides more precise random and systematic error analysing. The NMAE can be calculated from Eq 

(6). 

NMAE(𝑙) = (
1

𝑀
∑|𝐸𝑖 (𝑙)|

𝑀

𝑖=1

) × 100                                                                    (6) 

• Normalised root mean square error (NRMSE) 

This is another widely used accuracy checking parameter. Similar to NMAE, NRMSE shows both random 

and systematic errors. Higher values of NRMSE indicate deviations, while successful forecasts show lower 

values of NRMSE. It should also be mentioned that a large gap between NMAE and NRMSE for the results of 

a method indicates that the predicted values are extremely spread from the measures data [20]. The NRMSE 

can be calculated from Eq (7). 

𝑁𝑅𝑀𝑆𝐸(𝑙) = √
1

𝑀
∑ (𝐸𝑖 (𝑙))2

𝑀

𝑖=1
× 100                                                               (7) 

• Mean squared logarithmic error (MSLE) 

The MSLE is a risk metric according to the expected value of the squared logarithmic error and can be 

expressed as: 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑(log𝑒(1 + (𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘) − log𝑒 (1 + (𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑘
))2

𝑛−1

𝑘=0

                      (8) 

in this equation, n is the number of data points, (𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘is the measured value of the kth data point from the 

SCADA database and (𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
𝑘

 is the predicted wind power of the kth data point from deep learning 

modelling. 

• R-square (R2) 

This coefficient of determination shows the variance of the prediction from the measured data. The 

maximum possible value of the R2 is 1.0, while negative values indicate worse prediction. It can be defined as: 

𝑅2 = 1 −
∑ [(𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑘
− (𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘]

2
𝑛
𝑘=1

∑ [(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘 −
1
𝑛

∑ (𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘
𝑛
𝑘=1 ]

2
𝑛
𝑘=1

                                                  (9) 

• Explained variance score (EVS) 
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Explained variation estimates the proportion to which a forecasting model scores for the dispersion of a 

specified dataset. For the best prediction, the value of EVS is 1.0, while lower scores represent worse prediction 

[25]. The EVS is defined by Eq (10): 

𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟{𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}

𝑉𝑎𝑟{𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑}
                                                                (10) 

• Median absolute error (MAE) 

MAE is a risk metric according to the expected value of the absolute error. It is a non-negative floating-

point, and its best value is 0. MAE is defined as: 

𝑀𝐴𝐸 =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |(𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑖 − (𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

                                                  (11) 

Where 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured value from the SCADA database, and 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑is the predicted wind 

power from deep learning modelling. 

2.3.2 The amplitude and phase error 

The amplitude error shows if the predicted power is overestimated or underestimated, but the phase error 

is a result of a timing shift between forecasted and real data (Figure 2.3). With these two types of errors, the 

standard deviation error (SDE) can be defined [20]: 

𝑆𝐷𝐸 = √
1

𝑀 − 1
∑ (𝐸𝑖(𝑙) − 𝐸𝑖̂(𝑙))

2𝑀

𝑖=1
                                                                   (12) 

𝑆𝐷𝐸2 = 𝑆𝐷𝑏𝑖𝑎𝑠
2 + 𝐷𝐼𝑆𝑃2                                                                                (13) 

here the 𝐸𝑖̂ is the mean normalised error, 𝑆𝐷𝑏𝑖𝑎𝑠 is amplitude error, and DISP is the phase error. 

 

Figure 2.3. Amplitude and phase errors of wind power forecasting 
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2.3.3 Statistical error distribution 

Error distribution can be investigated by two statistical metrics: the skewness (SKEW) and the Kurtosis 

(KURT). The SKEW is an estimate of the symmetry of the distribution. If it is near zero, the distribution is 

symmetric, but negative or positive values shows the distribution is inclined to the left or the right respectively. 

On the other hand, the KURT explains the degree of the distribution peak and shows the distribution of the 

data rather than a normal distribution [49]. These parameters are expressed in Eq (14) and Eq (15): 

𝑆𝐾𝐸𝑊 =
𝑀

(𝑀 − 1)(𝑀 − 2)
∑ (

𝐸𝑖 − 𝐸𝑖̂

𝑆𝐷
)

3𝑀

𝑖=1

                                                        (14) 

𝐾𝑈𝑅𝑇 = {
𝑀(𝑀 − 1)

(𝑀 − 1)(𝑀 − 2)(𝑀 − 3)
∑(

𝐸𝑖 − 𝐸𝑖̂

𝑆𝐷
)4

𝑀

𝑖=1

} ×
3(𝑀 − 1)2

(𝑀 − 2)(𝑀 − 3)
                             (15) 

 

2.4 Enhancement of predictive accuracy 

Almost all current modelling efforts to predict wind power generation are aimed at forecasting errors. 

These efforts have led to various enhancements, which are summarised below.  

2.4.1 Kalman filtering 

Since the accuracy of NWP data has a significant effect on the accuracy of wind power prediction, one 

method to improve its performance is to reduce the uncertainty of NWPs. For this purpose, the Kalman filtering 

algorithm is often used to eliminate systematic errors. The Kalman filter, as a group of mathematical equations, 

presents the optimal estimation by merging last weighted observations to mitigate related biases. This method 

can easily adapt to any change in observations and does not need a long series of basic information. 

In a research by Louka et al. [50], Kalman filtering was applied to improve the input data for the model 

that predicted wind power. The results showed that Kalman filtered wind information improved the model for 

long-term forecasting. These results also showed that, instead of spending money for high-resolution 

applications (< 6 km), a combined more moderate NWP resolution and a flexible statistical technique of Kalman 

filter can be used to provide more accurate results. Marcos et al. [44] used a Kalman filter twice in their 

forecasting model for a wind farm in Brazil. The first implementation of the Kalman filter was for wind speed 

forecasting error, while, in the second application, the goal was eliminating the systematic errors of the wind 

speed to wind power conversion model. The latter, in particular, was due to the impact of other variables on 

the generated power, such as roughness, air density, and wake effect. The results showed a clear reduction in 

RMAE after the application of the Kalman filter. 
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2.4.2 Outlier detection 

Outliers of SCADA data, which can lead to the inaccuracy of wind power prediction, are usually caused 

by non-calibration of sensors or degradation over time [51]. As a technique of improving the model accuracy, 

detection and elimination of these outliers have been investigated in previous studies. Yang et al. [52] used an 

algorithm for pre-processing SCADA data for CM quality enhancement after examining the influencing factors 

of a wind turbine, including structural integrity and turbulence. Manobel et al. [53] applied a Gaussian Process 

(GP) for detecting and removing outliers from SCADA data, where RMSE was improved by 25% in comparison 

with standard forecasting methods. Besides, Lin et al. [30, 36] used IF to deal with outliers to increase accuracy. 

The results showed that pre-processing the SCADA data leads to more accurate forecasting.  

 

2.4.3 Optimal combinations 

By combining different NWP data and prediction methods, individual benefits can be merged. This 

combination also reduces the negative effect of errors on each technique in certain situations. In the explanation 

section of the hybrid methods in section 2.1.2, references were made to several compounds of different 

approaches and their effect on increasing efficiency. In this section, the optimal combination of NWP data will 

be discussed. 

Vaccaro et al. [54] designed an adaptive framework for wind power forecasting based on a combination of 

different data sources. The novel part of their investigation was a flexible supervised learning system called the 

Lazy Learning algorithm, which combined meteorological data from different sources. This algorithm was able 

to be continuously updated. Using 12 months of wind speed observations of a generator site in Italy, the authors 

assessed the forecasting data by MAE and Mean Square Error (MSE). The results showed that the proposed 

model outperformed local atmospheric models in wind power prediction. Peng et al. [55] showed that 

combining physical and statistical forecasting techniques can improve the accuracy after evaluating a proposed 

ANN model. The authors achieved an 80% reduction in RMSE. In another study, Lange and Focken [56] 

presented in details the benefits of the combination of NWP models in a German weather service. 

 

2.4.4 Input parameters  

To establish the most efficient wind power prediction model, the next critical factor is the selection of the best 

input features from the system [14]. This selection is extremely important in increasing the accuracy of the 

predicting models. As shown in Table 2.2 ~ 2.4, wind speed is the most used input variable for wind power 

forecasting. This is because the wind power is proportional to the cube of wind speed according to the Eq. 16 

[57], where 𝜌 is air density, R is radius of the wind turbine blades, 𝐶𝑝 is power coefficient and 𝑢 is wind speed. 
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P =
1

2
𝜌𝜋𝑅2𝐶𝑝𝑢3                                                                                         (16) 

Zhang et al. [17] considered wind power data of three wind farms in North China in their investigations. 

The results showed that wind speed, among all the NWP data, is the most important influencing parameter in 

terms of accuracy. The authors displayed this fact by comparing the forecasting results of two high accuracy 

wind speed data of wind farms #10 & #16 with wind farm #58. The authors also noted that the performance of 

the forecasting method in very sensitive to the change in the location of the wind turbines, because of the change 

in the wake effect, topography, and shadow effect. 

Wind direction is another factor that influences power generation. Considering the current design of a 

wind turbine, turbines are allowed to face into the wind during the time of operation [25].  Singh et al. [8] 

showed that wind speed and wind direction were the two most influential  factors on wind power prediction 

through their MLP prediction model.  

Lin and Liu [25] identified that wind speed, wind direction, temperature, and humidity had been the most 

used input features through their reviewed literature. They proposed a novel hybrid model, using wind speed 

in different heights, blade pitch angle, temperature, yaw error, and nacelle orientation as input features. Blade 

pitch angle was used because it plays a vital role in the adjustment of the blades to obtain safe power generation. 

After discussing the effect of air density on wind power (according to Eq. 16), the authors demonstrated that 

air density itself depends on air temperature, air pressure and relative humidity.  Figure 2.4 gives a view of 

how different input features were used in the reviewed literature. As can be seen, apart from wind speed, other 

variables like temperature, wind direction, relative humidity and air pressure are also often used.  

Choosing the correct type of input features for a wind energy prediction model is critical to its 

performance. This has led to various research into input selection, data processing, as well as combining 

different input information to increase the accuracy of the models. As discussed, wind speed is the most 

significant parameter for wind power prediction. However, additional parameters have also been used to 

consider the benefits of atmospheric data etc. Giorgi et al. [14] investigated the impact of numerical weather 

parameters on the performance of a wind farm power prediction, such as daily wind speed, pressure, relative 

humidity and ambient temperature. The authors designed eight different forecasting models with a variety of 

combinations of different ANNs and numerical weather parameters. The assessment of those models by 

normalised mean absolute percentage error (NMAPE) revealed that, apart from the clear importance of the 

predicted wind velocity, the pressure and temperature bring the highest influence on the prediction model 

among other NWPs parameters. Furthermore, Lange et al. [58] included the predicted wind speed at 100 m 

height in their investigations. The results showed that the prediction errors (RMSE) decreased by more than 

20%. 
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Figure 2.4. Statistics of used input features in the reviewed literature 

In another investigation, Velazquez et al. [59] assessed the influence of three input variables for ANN 

models, including wind speed, wind power density, and power output. It was concluded that considering the 

wind direction as an input will lead to a decrease in forecasting error (MARE). 

The results of the research from Bilal et al. [28] on input and output data of four different sites in Senegal 

showed that higher rates of the standard deviation of wind velocity could lead to lower average fitting rate for 

prediction. The authors also proved that considering other climatic variables such as temperature, humidity, 

and solar radiation can lead to an improvement of 0.3% in accuracy. They also showed that using wind direction 

improved the fitting rate of their method’s prediction by 0.25%. 

Apart from the effect of the type of input data on accuracy and performance of wind power prediction 

models, the data period, as well as the sampling rate, is also important. The short period of data cannot provide 

sufficient information for training refined prediction models. On the other hand, when the period is long, it will 

not be representative for the current state of the wind farm. Recent investigations have shown that the older 

part of the long data will lead to distortions in the prediction [21]. Duran et al. [21] used different training 

periods from 3 months to 2.5 years to assess the training period on the prediction accuracy. The results showed 

that, although data with a period longer than one year have similar accuracies, the results of the case of 2.5 

years is worse than two years. The reason for the distortion in the prediction caused by the influence of the 

older part of the data. Among the cases with lower than one year periods, the shortest period had the least 

accuracy. 
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2.4.5 Hyperparameter optimisation 

One of the most important ways to increase the accuracy of machine learning methods is the appropriate 

selection of their hyperparameters [3]. Hyperparameters are parameters that govern the behaviour of the 

learning algorithm and influence its performance on new data. Unlike model parameters, hyperparameters are 

not directly learned from the training data but can be inferred through methods such as maximum likelihood 

estimation or learned using techniques like Reversible Jump MCMC. Hyperparameters determine how the 

algorithm behaves and how it generalises to new data and how well it is trained.  

Hyperparameters can be tuned manually, however this takes a lot of time. As a result, grid and random 

search methods are widely used to set up a network of hyper-parameters and then run the train, predict, and 

evaluate cycle automatically [60]. Nevertheless, without considering the past evaluated hyper-parameters, 

these tuning methods are relatively inefficient as they spend a significant amount of time evaluating improper 

hyper-parameters, i.e., the inaccurate selection of activation functions of deep learning models. Bayesian model-

based methods in contrast, through evaluation of hyper-parameters that appear more promising, can find better 

hyper-parameters in less time [61]. Bayesian model-based methods have been used in the literature for 

hyperparameter optimisation of ML models. For example, for detecting network intrusion, Masum et al. [62] 

used Bayesian optimisation to find the best hyperparameters for deep neural networks. In the field of wind 

power forecasting, Zha et al. [63] utilised the Tree-structured Parzen Estimator (TPE) algorithm to obtain the 

best hyperparameters of the temporal convolution network (TCN), but they did not compare the optimisation 

performance of the applied algorithm with other optimisation methods. In another study, Hanifi et al.[3] used 

the TPE search method to optimise the LSTM model for wind power prediction. Although in the comparison 

of the accuracy and efficiency of the proposed method with the conventional grid search method, the authors 

proved the better optimisation performance of the TPE, they did not investigate other smart and advanced 

hyperparameter tuning methods.  

 

2.4.6 Data decomposition 

Signal processing methods such as data decomposition, data denoising, or data feature selection can 

improve the accuracy of power forecasting methods. All decomposition-based forecasting models published in 

the literature use the same framework. In this framework, the original non-stationary time series is decomposed 

into stationary sub-series. Afterwards, independent forecasting models are used to predict each sub-series. 

Finally, all predictions are added together to form the final forecast. Independent forecasting of each sub-series 

can efficiently enhance the prediction accuracy [64]. Decomposition is also effective when frequency is 

considered. Due to the subseries' concentrated frequency bands, predictors only need to focus on a single band, 
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and forecasting becomes easier. Several researchers have used data decomposition to improve wind 

speed/power forecasting models in the past few years, some of which are highlighted below. 

Su et al. [65] decomposed the wind speed data into four low-frequency and four high-frequency 

components by WPD. Then the four high-frequency components were decomposed into 60 intrinsic mode 

functions (IMFs) through ensemble empirical mode decomposition (EEMD). These components were then fed 

to individual LSTM models with yaw error and rotor speed data. The power prediction results of the proposed 

approach showed an improvement in accuracy. However, the effect of the direct application of the wind power 

dataset for prediction was not investigated. Zu et al. [66] used WPD to decompose wind power time series into 

three levels. The gained sub-series were fed to a gated recurrent unit (GRU), and the predictions were 

reconstructed to obtain the results. Experimental results showed that the proposed WPD-GRU-SELU model 

had a higher prediction accuracy than other Recurrent Neural Network (RNN) models. In another research, 

Mujeeb et al. [67] combined the Wavelet Packet Transform (WPT) method and Deep convolutional neural 

network (DCNN) to predict the day-ahead hourly wind power of ISO New England’s wind farm. However, 

the authors did not attempt to forecast the sub-series with different independent methods. In addition to WPD, 

other wavelet transform methods have recently been used in the field of wind power prediction. For example, 

Azimi et al. [68], with a combination of the K-means clustering method with discrete wavelet transform (DWT) 

and multilayer perceptron neural network (MLPNN), improved the wind power forecasting accuracy of the 

National Renewable Energy Laboratory (NREL). Shi et al. [69] employed variational mode decomposition 

(VMD) and LSTM to provide hourly predictions of day-ahead wind power of a Chinese wind farm. In another 

study, Liu et al. [70] combined empirical mode decomposition (EMD), LSTM and Elman neural network (ENN) 

to develop a hybrid model and obtained satisfactory results for multi-step ahead wind speed predictions. To 

obtain better forecasting results, some researchers use error correction mechanisms through application of the 

double decomposition methods. For example, Ma et al. [71] used this decomposition approach with the LSTM 

model and obtained a better prediction performance of the proposed model compared to models without 

double decomposition. 

 

2.4.7 Statistical downscaling 

Statistical downscaling to increase the quality of NWP data is used to improve wind power forecasting. 

NWPs are usually provided for a wider area than the wind farm location while by statistical downscaling 

higher-resolution computations can be employed to estimate wind speeds at the wind turbine location. Power 

predictions with this downscaled NWP have higher accuracy. Al-Yahyai et al. [72] showed the impact of this 

factor by discussing the reduction of the prediction error as a result of higher resolution. The authors proved 

that the increment of the model’s resolution to 7 km, significantly enhances the accuracy of wind speed 

estimations.  
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Chapter 3 -  Data Pre-processing 

Pre-processing in the context of wind power prediction refers to the steps involved in preparing and 

transforming raw wind data before feeding it into a predictive model. The goal is to improve the quality and 

relevance of the data, remove noise or outliers, and extract features that can improve the accuracy of wind 

power forecasts. Pre-processing techniques vary depending on the characteristics of the data and the 

requirements of the prediction model. A description of the wind power data used in this thesis is presented in 

this section, followed by a discussion of the pre-processing methods employed. 

3.1 Wind power dataset 

The source SCADA data used in this research are measured at a 1 Hz frequency from the Levenmouth 

Demonstration Turbine (LDT). This offshore wind turbine is located just 50 m from the coast at Leven, a seaside 

town in Fife, Scotland [73]. The wind turbine was acquired by the Offshore Renewable Energy (ORE) Catapult 

in 2015, while its construction was completed by Samsung in October 2013 [74]. 

ORE Catapult’s wind turbine is a three-bladed upwind turbine installed on a jacket structure [42]. The 

turbine is rated to work at 7 MW, but to decrease the noise, it is limited to operating at the highest power of 6.5 

MW [73]. The turbine’s rotor diameter is 171.2 m, and its hub height is 110.6 m. Each blade of the turbine 

measures 83.5 m and weighs 30 tons. The defined cut-in speed is 3.5 m/s, which means its electricity generation 

will start when wind speeds reach this value. The turbine will shut down if the wind blows too hard (roughly 

25 m/s) to prevent equipment damage. Its operating temperature is between −10 °C to +25 °C, and it has been 

designed to work for 25 years [75]. Figure 3.1 shows the configuration and main parameters of the LDT. 

 

Figure 3.1. Main parameters and schematic of Levenmouth wind turbine [35]. 



 

49 

3.2 Feature Selection 

This study used the SCADA datasets for five months, from 1st of January 2019 to 31th of May 2019, at a 1 

Hz frequency (with one-second intervals). Each timestamp in the time-series data includes 574 different 

observations, including the generated power, wind speed at different levels, blade pitch angle, nacelle 

orientation, etc. At the beginning of the data processing, a feature selection was carried out to decrease the size 

of the dataset to reduce the computation time by excluding unnecessary variables. All variables except the time 

stamp, wind speed, and active power were removed at this stage, which were not necessary in the ARIMA and 

univariate LSTM and CNN forecasting methods. Keeping the wind speed variable was vital, as it verified the 

accuracy of the generated power. For example, failure to generate power when high wind speeds were recorded 

was recognised as a stop in power generation due to reasons such as maintenance. After removing the 

redundant information, observations of wind speed and active power were plotted as shown in Figure 3.2a and 

3.2b. The histograms of this dataset for wind speed and active power are presented in Figure 3.3a, 3.3b, and 

Table 3.1 shows their statistical descriptions. 

  
(a) (b) 

Figure 3.2. Wind speed observations (a), wind active power observations (b). 

Wind speed Active power 

  
(a) (b) 

Figure 3.3. Histogram of wind speed (a) and active power (b). 
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Table 3.1. Statistical descriptions of the SCADA datasets. 

 Active Power, kW Wind Speed, m/s 

Count 1.0 ×  107 1.0 ×  107 

Mean 1.8 ×  103 7.6 

Standard deviation 2.3 ×  103 3.9 

Minimum −1.2 ×  102 −3.3 ×  10−2 

25% of values −6 4.7 

Medium 5.9 ×  102 7.1 

75% of values 3.2 ×  103 1 

Maximum 7.2 ×  103 3.2 

 

3.3 Obvious Outlier Removal 

An initial assessment of Figure 3.2b highlights that a large part of the recorded generated power at the end 

of this time-series (May 2019) is equal to zero. Usually, the generated power of a turbine can be zero when no 

wind is blowing. However, the evaluation of Figure 3.2a shows a continuous wind blowing with fluctuations 

similar to previous months. Therefore, it is speculated that the turbine was out of action during this period. 

Based on this assumption, it was decided that this month (May 2019) should be removed from the dataset. The 

time-series after this omission was reduced to four months, from 1 January 2019 to 30 April 2019. A closer look 

at the active power, as shown in Figure 3.4, revealed another error in the SCADA data, namely the existence of 

negative values. Negative values do not represent any practical meaning in wind power generation. Shen et al. 

[76] believe that these values represent time stamps when turbine blades do not rotate, but the turbine’s control 

system requires electricity [76]. These values need to be eliminated along with the corresponding parameters 

of the same timestamp for better forecasting results [42]. Since the elimination of these negative values disrupts 

the time continuity of the time-series, and can possibly lead to errors in wind power prediction, at this stage it 

was decided to create and assess three types of datasets based on different actions against negative values.  

The three pre-processing methods against the negative values are: 

1) Total elimination of negative values without any substitution; 

2) Replacement of negative values with the average amount of power in the whole 4-month period; 

3) Replacement of negative values with positive values of power at the nearest timestamp. 
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Figure 3.4. Wind power observations (only power values under 1000 kW are shown). The dotted red line 

indicates the power value of zero (the boundary of negative/positive values). 

3.4 Resampling 

The effect of wind turbulence as one of the obstacles to increasing the wind energy penetration into the 

energy market is more significant in horizontal axis wind turbines [43]. This is because the wind speed and 

direction change rapidly after hitting swept blade rotors. Therefore, the wind speed measurements by installed 

anemometers are not equal to the speed of the wind flow hitting the turbine blades [42]. These differences, 

which lead to a decrease in the correlation between the measured wind speed and the output power, and then 

scattering of the power curve, can be resolved by averaging the samples of both wind power and wind speed 

in a reasonable average period [42]. The SCADA data for this study was recorded with a 1 Hz frequency; as a 

result, it was possible to create multiple averaged sets for removing the mentioned obstacle. The maximum 

sampling rate used for wind speed and power forecasting in the literature is 10 min [7]. This is equivalent to an 

average time that the international standard for power performance measurements of electricity-producing 

wind turbines (IEC 61400-12-1) establish a max sample rate of 10 min for large wind turbines [77]. Based on the 

IEC 61400-12-1 and the reviewed literature, the data presented here was averaged for each 10 min of data 

collection. Figure 3.5a and 3.5b show the wind power curves for the original and 10 min resampled data. 

  
(a) (b) 

Figure 3.5. Wind power curves: (a) original 1s data, and (b) 10 min resampled data. 
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3.5 Outlier Detection and Treatment 

Outliers in a dataset are specific data points that are different or far from most other regular data points, 

often due to variability in the data or measurement errors [78]. These anomalies can arise from various sources, 

including sensor malfunctions, data entry errors, or rare events. Undetected or improperly treated anomalies 

can adversely affect wind power forecasting applications, leading to biases with high prediction errors [78]. 

Proper identification and management of outliers are crucial to ensuring the robustness and accuracy of 

forecasting models. 

There are various reasons for having outliers among wind turbine and wind farm measurements, 

including wind turbine downtime [76], data transmission, processing or management failure [79], data 

acquisition failure [80], electromagnetic disturbance [76], wind turbine control system fault (such as the pitch 

control system fault) [81], damage of the blades or the existence of ice or dust [82], shading effect of 

neighbouring turbines, and fluctuation of air density [83] to name a few. 

Figure 3.6 shows four different types of anomalies in the current SCADA data. Category A points have 

negative, zero, or low values of generated power during speeds larger than the cut-in speed [42]. The leading 

causes of these outliers are incorrect wind power measurements, wind turbine failure, and unexpected 

maintenance. Wind speed sensors and communication errors cause category B outliers. The mid-curve outliers 

(category C) represent power values lower than ideal—this is caused by the down-rating of the wind turbine 

and data acquisition. Outliers in category D are scattered irregular points due to faulty sensors exacerbated 

during harsh weather conditions [76]. 

There are different methods for anomaly detection in machine learning, such as Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), Isolation Forest (IF), local outlier factor, and Elliptic 

Envelope (EE). In this study, three common methods for wind power forecasting are investigated. EE outlier 

detection method assumes a multivariate Gaussian distribution underlines most of the data. Observations that 

deviate significantly from this assumed Gaussian distribution are considered outliers [43]. IF, which is an 

unsupervised learning algorithm, recognises anomalies by isolating them in the data. This algorithm works 

based on two main features of anomalies, that they are few and different. It operates by recursively partitioning 

the data space using randomly selected features and split values. Anomalies, which are few and different, 

require fewer partitions to be isolated compared to normal data points. This results in a shorter path length in 

the tree structure used by the Isolation Forest, effectively distinguishing anomalies from regular data points. Its 

efficiency and capability to handle high-dimensional data make Isolation Forest a robust method for detecting 

outliers. The One-Class Support Vector Machine (OCSVM) is a common unsupervised learning algorithm for 

outlier detection, assuming rare anomalies create a boundary for most data, and considering data points out of 

the boundary as outliers [84]. OCSVM works by mapping input data into a high-dimensional feature space 
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using a kernel function and then finding the optimal hyperplane that best separates the normal data points 

from the origin. The algorithm maximizes the margin between the data points and the hyperplane, effectively 

creating a decision boundary. Data points lying outside this boundary are identified as anomalies. This method 

is particularly effective for datasets with complex distributions, where the definition of normal and anomalous 

data is not straightforward. This method of outlier detection and treatment is selected as the third method. 

 

Figure 3.6. Observed anomalies coupled with the power curve of the 1 Hz original data. (A) Low power 

output in high wind speeds in turbine failure cases; (B) Outliers due to the wind speed sensor and 

communication errors; (C) Power outputs less than the rated power as a result of the turbine’s down-rating; 

(D) Scattered outliers caused by sensor malfunctions or noise in signal processing. 

3.6 Prediction models  

In this work, various forecasting methods have been used in different sections including Linear Regression 

(LR), Random Forest (RF), ARIMA, Feed Forward Neural Network (FFNN) to deep learning methods including 

CNN and LSTM. In this section, the three methods of ARIMA, LSTM and CNN are explained in detail. 

3.6.1 ARIMA 

The standard approach of the Box–Jenkins method [85] was used for the ARIMA model development. The 

ARIMA model is a widely used set of statistical models for analysing and predicting time-series data [86]. This 

model can be expressed as [87]: 

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ +  𝜙𝑝𝑋𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ −  𝜃𝑞𝑒𝑡−𝑞                 (17) 
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while 𝜙𝑡 and 𝜃𝑡 are coefficients, p, q, and d are the lag number of observations in the model, the order of moving 

average, and the degree of difference, respectively. Degree of difference (d) values greater than 0 imply that the 

data has been nonstationary but has become stationary after some degree of difference. 

The ARIMA model combines the AR, moving average (MA), and the Integrated (I) components, where the 

Integrated component represents the substitution of the data with the difference between its values and the 

preceding values [88]. The forecasting accuracy of the ARIMA model depends on selecting the most appropriate 

combination of p, d, and q. Normally, for small data sets, the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) can be used to determine which AR or MA component should be selected in 

the ARIMA model [89]. These two factors, which can be graphically plotted, are widely used elements in 

analysing and predicting time-series. They highlight the correlation between an observation and the 

observations’ value at prior time steps. 

 The difference between the ACF and PACF lies in how they measure relationships between time series 

observations. ACF considers the correlation between observations at different time lags, considering all 

intervening correlations. In contrast, PACF measures the direct correlation between observations at two time 

steps, effectively removing the influence of the intermediate observations. This means that PACF isolates the 

impact of each lag by controlling for the correlations of the shorter lags, providing a clearer view of the direct 

relationships between observations separated by various lags. Figures 3.7a and 3.7b show the observations’ 

ACF and PACF plots for wind power. An appropriate ARIMA model can be selected based on the explanations 

in Table 3.2 [90]. The value of d (degree of difference) depends on the number of differencing operations needed 

to transform the time series data into a stationary form. Stationarity implies that the statistical properties of the 

time series, such as the mean and variance, remain constant over time. If the original time series data exhibit 

trends or other non-stationary behaviours, differencing helps to remove these trends by subtracting the 

previous observation from the current observation. This process is repeated until the resulting time series shows 

no significant trends, indicating that stationarity has been achieved.  

  
(a) (b) 
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Figure 3.7. ACF (a) and PACF (b) plots for generated power of LDT. The blue points represent the value of 

autocorrelation and partial autocorrelation of different time lags. 

Table 3.2. ACF and PACF application for statistical model selection. 

Model Autocorrelation Partial Autocorrelation 

AR (p) Tails off gradually Cuts off after p lags 

MA(q) Cuts off after q lags Tails off gradually 

ARMA (p, q) Tails off gradually Tails off gradually 

 

The ARIMA model forecasting steps after resampling and outlier treatment can be seen in Figure 3.8. The 

first step is assessing the stationarity of the time-series. Stationarity is one of the assumptions during time-series 

modelling, which shows the consistency of the summary statistics of the observations. 

When a time-series is stationary, it means that the statistical properties of the time-series (such as mean, 

variance, and autocorrelation) do not change over time. This property can be violated by having any trend, 

seasonality, and other time-dependent structures. There are two main methods for the stationarity assessment 

of time-series: the visualisation approach and the augmented Dickey–Fuller (ADF) test. The visualisation 

method uses graphs to show whether the standard deviation changes over time. On the other hand, the ADF 

method is a statistical significance test used for the ARIMA model. It compares the p-value of the test statistic 

with the critical values to perform hypothesis testing. The null hypothesis (H0) is that the time series has a unit 

root (non-stationary), and the alternative hypothesis (H1) is that the time series does not have a unit root 

(stationary). This test clarifies the stationarity of the data at different levels of confidence by determining 

whether a unit root is present in the time series, thus indicating if differencing is required. 

Regarding the data used in this study, due to the high number of observations and wide dispersion, 

checking stationarity through visualization is not that accurate. Therefore, in this study, the ADF method was 

used. 

The ADF test’s execution provides a p-value which, by comparing it with a threshold (such as 5% or 1%), 

can identify the stationarity of the data. In this step, nonstationary data in this step needs to be changed to 

stationary by methods such as differencing, which involves subtracting the previous observation from the 

current observation. After ensuring the time-series is stationary, a persistence method, which uses the most 

recent observation as the forecast for the next period, is created as a baseline. Then, through a detailed grid 

search, the best values of p, d and q hyperparameters for the ARIMA forecasting for each pre-processed data 

were found. The last step is ARIMA forecasting and comparing its error with the error of the persistence 

method. 
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Figure 3.8. Flowchart of ARIMA wind power forecasting models. 

 

3.6.2 Long Short-Term Memory (LSTM) 

Deep learning prediction models have transformed various fields by leveraging large datasets to make 

precise predictions. These models use complex neural network architectures to learn features and patterns from 

data. Recurrent Neural Networks (RNNs), a type of deep learning model, are particularly effective for tasks 

involving sequential data. RNN has a high ability to represent all dynamics, meaning they can effectively 

capture and model the complex temporal dependencies and patterns within sequences. However, its 

effectiveness is affected by the limitations of the learning process.  

The main limitation of gradient-based methods that use backpropagation in RNN models is their path 

integral time-dependence on assigned weights. This means that the gradients calculated during training can 

become very small or very large as they are propagated back through many time steps. This issue, known as 

the vanishing or exploding gradient problem, can hinder the model's ability to learn long-term dependencies 

and effectively update the weights. As a result, RNNs can struggle to capture and retain information over long 

sequences, impacting their performance on tasks requiring memory of distant events [17]. When the time lag 

between the input signal and the target signal increases to more than 5–10 time steps, the normal RNN loses 

the learning ability, meaning it can no longer effectively capture and utilize the information from earlier time 

steps to predict future values. This occurs because the gradients used to update the network’s weights during 

backpropagation either vanish or explode. Vanishing gradients cause the model to stop learning as the weight 

updates become negligibly small, while exploding gradients cause the model to become unstable with 
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excessively large weight updates. This error elimination raises the question of whether normal RNNs can show 

practical benefits for feed-forward networks. To address this problem, the LSTM has been developed based on 

memory cells. The LSTM consists of a recurrently attached linear unit known as the constant error carousel 

(CEC). CECs, by keeping the local error backflow constant —meaning they ensure that the error signal remains 

steady and does not diminish as it is propagated back through time—, mitigate the gradient’s vanishing 

problem [42]. CECs can be trained by adjusting both the back-propagation over time and the real-time recurrent 

learning algorithm [91].  

 

Figure 3.9. Typical structure of the LSTM. 

Figure 3.9 shows the typical structure of the LSTM. As can be seen, there are three gate units in a basic 

LSTM cell, which includes the input, output, and forget gates. The gate activation vectors of 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡 for 

input, output, and forget gates, respectively, are calculated in Equations (18)–(20). 

𝑖𝑡 =  𝜎𝑙(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                                                                    (18) 

𝑜𝑡 =  𝜎𝑙(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                                                                   (19) 
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𝑓𝑡 =  𝜎𝑙(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                                                                   (20) 

In these equations, 𝑊𝑖 , 𝑊𝑜 , 𝑊𝑓  𝑈𝑖 , 𝑈𝑜 , and 𝑈𝑓  represent the assigned weight matrices, and 𝑏𝑖 , 𝑏𝑜 , and 𝑏𝑓 

represent the biase vectors in conjunction with relevant activation functions 𝜎𝑙. In addition, 𝑥𝑡 is the neuron 

input at time step t, and the cell state vector at time step t − 1 is ℎ𝑡−1. As shown in Equation (21), the next 

evaluated value of the state 𝑆̃𝑡 can be calculated based on the relevant activation function 𝜎𝑠. 

𝑆̃𝑡 =  𝜎𝑠(𝑊𝑠𝑥𝑡 + 𝑈𝑠ℎ𝑡−1 + 𝑏𝑠)                                                             (21) 

In Equation (22), the newly assessed value of 𝑆̃𝑡 and the prior cell state 𝑆𝑡−1 are used to calculate the cell state 

𝑆𝑡, which by itself will be used with the output gate control signal 𝑜𝑡  and the activation function 𝜎𝑙ℎ to obtain 

the overall output ℎ𝑡 according to Equation (23). 

𝑆𝑡  =  𝑓𝑡  ⃘ 𝑆𝑡−1 + 𝑖𝑡  ⃘𝑆̃𝑡                                                                       (22) 

ℎ𝑡  =  𝑜𝑡  ⃘𝜎𝑙ℎ (𝑆𝑡)                                                                           (23) 

As evident from Equations (22) and (23), the output ℎ𝑡 is dependent on the state 𝑆𝑡 of the LSTM cell and 

the activation function 𝜎𝑙ℎ that is usually tanh (x). The state 𝑆𝑡 depends on the state of the prior step  𝑆𝑡−1 as well 

as the new value of the state 𝑆̃𝑡. 

The function of the LSTM model can be concluded as: 

• Input gate (𝑖𝑡) controls the extent to which 𝑆̃𝑡 flows into the memory. 

• Output gate (𝑜𝑡) regulates the extent to which 𝑆𝑡 gives to the output (ht). 

• Forget gate (𝑓𝑡) controls the extent to which  𝑆𝑡−1 (i.e., previous state) is kept in the memory. 

Specifying the best LSTM model for wind power forecasting requires the determination of the neural 

network’s best combination of hyperparameters. LSTMs have five main hyperparameters, which consists of 

including the number of lag observations as inputs of the model, the quantity of LSTM units for the hidden 

layer, the model exposure frequency to the entire training dataset, the number of samples inside an epoch in 

each weight updating, and finally, the used difference order for making nonstationary data stationary. 

 

3.6.3 Convolutional Neural Network (CNN) 

CNN is a particular type of NNs that uses a mathematical function called convolution instead of general matrix 

multiplication. The basic structure of a CNN model is shown in figure 3.10 This deep learning model like any 

feed-forward neural network (FFNN) consist of three main layers including input layer, hidden layers, and 

output layer. The hidden layer is where the convolution function is performed based on a dot product of the 

convolution kernel with the matrix of its input layer. The convolution process can be presented as follows: 

ℎ𝑖𝑗
𝑘 = 𝑓((𝑊𝑘 ⊗ 𝑥)𝑖𝑗 + 𝑏𝑘)                                                                              (24) 



 

59 

where f, x and b represent the activation function, the vector of input series and the vector of bias, respectively 

and 𝑊𝑘 denotes the connected kernel weights to the kth feature map. In this equation, ⊗ symbol indicates the 

convolution function, and the common activation function f is the Rectified Linear Unit (ReLU). Following the 

convolution operation on the input matrix of each convolution layer, a feature map is created as the input of 

the next layer.  

 

 
Figure 3.10. Basic architecture of a CNN model 

The convolution layer in a CNN is followed by the pooling layer, which performs a non-linear down-sampling 

operation. The pooling layer reduces the spatial dimensions (width and height) of the data representation, while 

maintaining the depth. This non-linear down-sampling can take different forms, such as max pooling, which 

selects the maximum value from each region of the feature map, or average pooling, which computes the 

average value of each region. 

The main purpose of applying the pooling layer is to gradually decrease the size of the data representation, 

thereby reducing the number of parameters and computations in the network. This helps in controlling 

overfitting by making the model more generalized and less sensitive to the exact position of features in the 

input data. By down-sampling the feature maps, the pooling layer also makes the network invariant to small 

translations and distortions, contributing to the robustness of the CNN. 
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CNN can effectively extract the hidden non-linear dependencies of time series through automatic creation 

of filters [92]. As a result, it has been widely used for time series based predictions [31], [93], [94]. The CNN 

model in this study consists of two convolutional layers. It can also have up to four fully connected dense layers. 

The channel number of each convolution layer and the quantity of the dense layers is suggested by the 

hyperparameter optimisation algorithm. Similarly, these hyperparameters were also optimized for the LSTM 

model, ensuring that both network architectures are well-tuned for the specific task at hand. The impact of pre-

processing on wind power forecasting accuracy is examined using ARIMA and LSTM models to determine the 

most efficient way to deal with outliers. The ARIMA model is applied as a forecasting model because of its 

short response time and ability to capture the correlations in time series. On the other hand, the LSTM is used 

to take advantage of its ability to learn non-static features from nonlinear sequential data automatically. These 

two models have been used many times in past research to predict wind power or speed. 

 

3.7 Results for comparison of different pre-processing methods 

This research employs packages and subroutines written in Python to implement the proposed pre-

processing algorithms. A PC with Intel Core i5–7300 32.6GHz CPU and 8 GB RAM (without any GPU 

processing) is used to run the experiments. Three outlier detection methods, described in the previous sections, 

are used to detect and remove the outliers of the resampled dataset. The results of these treatments are provided 

in Figures 3.11 to 3.13. As can be seen, there are differences between different methods in detecting observations 

as outliers. For example, OCSVM (Figure 3.13) is not able to detect and remove the mid-curve outliers (category 

C in Figure 3.6) representing the power values lower than ideal. 

  

(a) (b) 

Figure 3.11. Elliptic envelope application for outlier detection and treatment (a) before outlier treatment and (b) after 

outlier treatment 
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(a) (b) 
 

Figure 3.12. Isolation Forest application for outlier detection and treatment (a) before outlier treatment and (b) after 

outlier treatment application for outlier detection and treatment 

 

  

(a) (b) 
  

 

Figure 3.13. OCSVM application for outlier detection and treatment (a) before outlier treatment and (b) 

after outlier treatment 

Six different pre-processing methods based on applying three different outlier detection methods and three 

approaches against the negative power values are considered (Table 3.3). Different cases of pre-processed data 

are fed to two commonly used forecasting models, ARIMA and LSTM. The grid search method, which is a 

systematic way of working through multiple combinations of parameter tunes, is applied for the 

hyperparameter tuning. It involves specifying a range of values for each hyperparameter and exhaustively 

evaluating every possible combination to identify the optimal set. Table 3.4 shows the selected hyperparameters 

for the ARIMA and LSTM models. As discussed in previous sections, the considered hyperparameters for the 

ARIMA model are ppp (order of the autoregressive model), qqq (order of the moving average model), and ddd 

(degree of differencing). For the LSTM model, the assessed hyperparameters include the number of lag 

observations, number of LSTM units, exposure frequency, number of samples per epoch, and differencing 
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order. As expected, the values of the hyperparameters vary depending on the different employed pre-

processing methods (Table 3.3). 

 

Table 3.3. best ARIMA and LSTM hyperparameters resulted from the grid search  

Case 

data 
Pre-processing approach 

ARIMA 

hyperparameters 

LSTM 

hyperparameters 

Case 1 Negatives replaced by mean *; Outliers not removed (2, 0, 1) (3, 100, 100, 150, 0) 

Case 2 
Negatives replaced by nearest positive value; Outliers not 

removed 
(1, 1, 1) (6, 100, 150, 150, 0) 

Case 3 Negatives removed; Outliers not removed (1, 0, 2) (3, 100, 150, 150, 0) 

Case 4 Negatives removed; Outliers removed by EE method (1, 1, 3) (3, 100, 100, 150, 0) 

Case 5 Negatives removed; Outliers removed by IF method (3, 1, 1) (3, 150, 150, 150, 0) 

Case 6 Negatives removed; Outliers removed by OCSVM method (1, 1, 3) (3, 150, 150, 150, 0) 

*: mean value has been calculated after removing negative values 

After selecting the best ARIMA and LSTM prediction methods, both models were trained by the first 95% 

of the dataset (as training data) to make predictions for the remaining 5% of the dataset. The predicted values 

were compared with the measured values to determine the RMSE of each forecasting process. Table 3.4 

provides the RMSE values of ARIMA, LSTM, and persistence methods. 

 

Table 3.4. RMSE values of Persistence, ARIMA and LSTM models for six different treated case data 

 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Negative values Mean1 Nearest Positive2 Removed Removed Removed Removed 

Outliers 
Not 

removed 
Not removed 

Not 

removed 

EE 

removed 

IF 

removed 

OCSVM 

removed 

Persistence 636.3 720.5 830.5 512.7 509 566 

ARIMA 622.8 713 813 505.3 503.3 559 

LSTM 626 695.8 785 501.5 497.5 550.6 

 

Comparing the RMSE values of all three models from Table 3.4 for case data 1, 2, and 3 clarifies that the 

complete elimination of negative values (without any replacement) will lead to worse forecasting. The highest 

RMSE value of case 3 means that removing the negative values will decrease the forecasting accuracy. One of 

the reasons for this performance drop can be attributed to the creation of discontinuities in the dataset. 

                                                      

1 Replaced by mean value calculated after removing negative values 
2 Replaced by nearest positive value 
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Regarding the best specific value to be used instead of negatives, a comparison of case data 1 and 2 proves 

that replacing negative values with average wind power values has a better impact than replacing them with 

the nearest (neighbour) positive value. Replacing negative values with average values can lead to 15% 

forecasting improvement for ARIMA and 11% improvement for the LSTM models. 

The results from Table 3.4 also highlight the importance of dealing with outliers in wind power forecasting. 

Cases 4, 5, and 6, representing the outlier removed data, show significant enhancement of accuracy compared 

to the other cases without any action against the anomalies. Comparing the error levels of case data 3 with cases 

4, 5, and 6 (for both ARIMA and LSTM models), shows 30% to 38% forecasting improvement by elimination of 

the outliers either by IF, EE, or one-class SVM outlier detection methods. 

Assessment of RMSE values of cases 4, 5, and 6 shows that IF and EE outlier detection methods outperform 

the OCSVM method. An elliptic envelope can improve forecasting performance by up to 9.61% and 8.92% 

compared to OCSVM for ARIMA and LSTM methods, respectively. This performance enhancement can reach 

9.96% and 9.64% for ARIMA and LSTM by applying the isolation forest. 

As shown in Table 3.4, ARIMA and LSTM methods for all treated case have better performances compared 

to the persistence methods. This is understandable if one remembers that in the persistence method only one 

preceding step data is used for forecasting, whilst ARIMA and LSTM models consider a more extensive range 

of prior data. 

It is also clear that LSTM performs better than ARIMA for almost all approaches against negative values 

and outliers. This is believed to be due to the fact that LSTMs are better equipped to learn both short-term and 

long-term correlations. Additionally, LSTMs can capture the nonlinear dependencies between features more 

effectively due to their architecture, which allows them to model complex, non-linear relationships and 

interactions in the data. 
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Chapter 4 -  Hyperparameter optimisation of Deep Learning Models 

4.1 Introduction 

Over the last decade, various methods have been developed to forecast wind power [7]. One of the most 

common prediction methods in this field, are machine learning (ML) algorithms. ML algorithms are 

mathematical functions that represent the relationship between different aspects of data. These algorithms, 

which spend a significant amount of time training from data, must be configured before training by setting 

some variables known as parameters and hyperparameters [95].  

Parameters, such as the weight at each neuron in a Neural Network (NN), are intrinsic to the model 

equation and can be determined while the algorithm is being trained. But the hyperparameters, in contrast, are 

not directly learned by the learning algorithm. They are specified outside of the training procedure and their 

role is to control the capacity of the models and increase their flexibility to fit the data. This means that 

hyperparameters, like learning rate, number of layers, or number of units in each layer, can be adjusted to allow 

the model to better capture the underlying patterns in the data, handle varying levels of complexity, and adapt 

to different types of datasets. A correct choice of hyperparameters is important to prevent overfitting and 

improve the generalization of the algorithm. 

Hyperparameters have a large impact on the performance of the learning algorithms and their values vary 

depending on the specific problem domain where the algorithm is used. As a result, they need to be optimised 

for each dataset [62]. The process of finding the best hyperparameters for a given dataset is called 

hyperparameter optimisation or hyperparameter tuning. Hyperparameter tuning consists of defining the 

hyperparameter space, a method for sampling candidate hyperparameters, and a metric that is required to be 

minimised or maximised. Since it is not possible to define a formula to find the hyperparameters, different 

combinations of hyperparameters need to be tried and the model performance evaluated at each stage. But the 

critical step is to determine how many different hyperparameter combinations are going to be tested. 

Intuitively, the higher the number of hyperparameter combinations, the greater the chance of obtaining a better 

performing model. At the same time, this leads to greater computational cost, because we will end up training 

a large number of models simultaneously. It is also important to determine which hyperparameters have a 

greater effect on the performance of the ML models. [95].  

The hyperparameters of simple ML models, such as linear models or tree-based algorithms, can be 

estimated manually through iterative trial and error. This approach can be very challenging for users who do 

not have enough professional background and practical experience. To overcome the disadvantages of manual 

search, automatic search algorithms such as grid search and random search have been proposed.  

Grid search does an exhaustive search through training the ML model with all possible combinations of 

hyperparameters. Then, after evaluating the performance of the model based on a predefined metric, it 
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identifies hyperparameters that achieve the best performance [96]. This search method is used extensively in 

the literature. For example in the developed wind speed prediction model by Zhou et al. [97], the 

hyperparameters of support vector regression (SVR) were selected by grid search. In another research, Kisvari 

et al. [42] applied the grid search to tune the hyperparameters of the Gated Recurrent Unit (GRU) and LSTM 

models. Although this method automatically handles the optimisation process, for more complex models such 

as NNs, it quickly loses its efficiency by increasing the number of hyperparameters and widening the range of 

their values [96]. Because in these cases the training of the models becomes very costly both in time and required 

computing facilities, trying all combinations of hyperparameters is not an option. 

Random search, on the other hand, tries random combinations of a range of values to increase the efficiency 

in a high-dimensional space. Bergstra et al. [98] showed that random search has a much higher efficiency, 

especially in a high-dimensional space. Nonetheless, in the random selection of combinations, there is the 

possibility of not considering the best combination, especially in complex models [61]. In both random and grid 

search methods, all the candidate points are generated upfront and evaluated in parallel, and once all 

evaluations are done, the best hyperparameters will be selected. Selecting and evaluating candidates without 

considering the past evaluated hyperparameters leads to the inefficiency of these methods, because 

considerable time is spent evaluating inappropriate hyperparameters. As a result, there is a demand for smarter 

tunning methods that achieve higher accuracy and efficiency by considering the results of the previously 

assessed hyperparameters.  

Sequential model-based optimisation (SMBO) which is also known as Bayesian optimisation, is an effective 

algorithm for solving the optimisation problem of functions with high-dimensional space [95]. In sequential 

search, several hyperparameters are selected and after evaluation of their quality, where to sample next will be 

decided. SMBO methods have been used in the literature for hyperparameter optimisation of ML models. For 

example, Masum et al. [62] used Bayesian optimisation to estimate the best hyperparameters for deep neural 

networks for detecting network intrusion. In the field of wind power forecasting, Zha et al. [63] utilised a Tree-

structured Parzen Estimator (TPE) algorithm to estimate the best hyperparameters of the temporal convolution 

network (TCN), but they did not compare the optimisation performance of the applied algorithm with other 

optimisation methods. In another study, the TPE search method is used to optimise the LSTM model for wind 

power prediction [3]. Although in comparing the accuracy and efficiency of the proposed method with the 

conventional grid search method, the authors proved the better optimization performance of the TPE in terms 

of its ability to search a wider range of hyperparameters simultaneously, they did not investigate other smart 

and advanced hyperparameter tuning methods. 

Three hyperparameter optimisation algorithms including Scikit-opt, Hyperopt, and Optuna are 

investigated and their performance in the hyperparameter optimisation of deep learning models are assessed. 
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These algorithms are the most common and optimal algorithms used in similar researches. CNN and LSTM 

deep learning methods are selected for time series-based predictions. These models can solve various prediction 

issues with short-term and long-term dependencies and it is useful to study ways by which their performance 

can be improved. The accuracy and calculation time of CNN and LSTM models are compared on power data 

from a real offshore wind turbine. This comparison of advanced hyperparameter optimisation techniques has 

not been investigated in the literature. 

As previously mentioned, in sequential search methods, several hyperparameters are selected and after 

evaluating their quality, the next sampling location is decided. The goal of sequential search is to make fewer 

evaluations of the models with various hyperparameters and evaluate only those that have the most promising 

candidate hyperparameter. The trade-off here is between less ML model training time and the time to estimate 

where to sample next. Hence, this model is the preferred option when the evaluation procedure (training the 

model and evaluating its performance) takes longer than the process of evaluating where to sample next. 

Sequential models integrate sample information with previous information about the unknown function 

to achieve posterior information about the function distribution. This posterior information is then used to 

determine the location of the optimal performance. Bayesian optimization is an effective sequential method that 

can solve the optimization problem of unknown functions because it efficiently balances exploration and 

exploitation. It uses prior knowledge and updates its beliefs based on new data, which allows it to make 

informed decisions about where to sample next. This results in a more efficient search for the global optimum, 

especially when dealing with complex, high-dimensional, or expensive-to-evaluate functions. 

 

4.2 Bayesian optimisation 

Bayesian optimisation is a sequential tool for optimisation of functions that do not presume any functional 

forms [99]. In Bayesian optimisation, contrary to the grid or random search, the results of past evaluations are 

employed for building a probabilistic model that maps hyperparameters to the probability of a score in the 

objective function. In this way, the optimisation process is more efficient as the next set of hyperparameters are 

selected in an informed manner. This efficiency comes from considering promising hyperparameters in past 

results which make fewer calls to the objective function. During optimisation, the aim is finding the maximum 

value of an unknown objective function f: 

𝑥∗ =  arg max
𝑥∈𝜒

𝑓(𝑥)                                                                                        (25)  

where 𝜒 is the search space of hyperparameters, x.  

In Bayesian optimisation f is treated as a random function and a prior is placed over it. The prior captures the 

behaviour of the objective function f, meaning it represents our initial beliefs about the function's properties 
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before any data is observed. These properties might include smoothness, periodicity, or other structural 

characteristics inferred from domain knowledge or assumptions. Following the collection of the function 

evaluations, the prior is updated to build the posterior distribution over the objective function. The posterior 

distribution is then used to construct an acquisition function to determine the next query point. 

As can be seen in this optimisation process two functions are required, a function that acts as the prior of the 

optimisation functions, and a posterior function which is an acquisition function that determines where to 

sample next. The prior function can be estimated by Gaussian processes or other algorithms such as TPE or RF. 

On the other hand, EI or Upper Confidence Bound (UCB) can be used as the acquisition functions.  

Some of these functions and their performance are discussed in the following sections. 

 

4.2.1 Gaussian process (GP) 

The Gaussian process f(x), as a popular probabilistic model with strong analytic tractability, is used to 

describe a distribution over functions. A Gaussian process presumes that each finite subset of a group of 

random variables follows a multivariate normal distribution with a mean and a covariance function: 

𝑚(𝑥) = 𝐸[𝑓(𝑥)]                                                                                       (26) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]                                                          (27) 

based on these functions, the Gaussian process can be written as: 

𝑓(𝑥) = 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                                                                             (28) 

Usually, the mean function of the Gaussian process is assumed to be zero but for calculation of the 

covariance function k, the widely used exponential square function defined by equation (29) can be:  

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
1

2
‖𝑥𝑖 − 𝑥𝑗‖

2
)                                                                  (29) 

where 𝑥𝑖 and 𝑥𝑗 depict the ith and jth samples (pairs of input values and their corresponding function values), 

respectively. When 𝑥𝑖 and 𝑥𝑗 move away from each other, which shows a weak correlation, the value of the 

covariance function (k) approaches 0. Otherwise, there is a strong correlation and the value of k approaches 1. 

To determine the posterior distribution of f(x), certain steps must be taken. First, a sample of t observations is 

taken as the training set 𝐷1:𝑡 = {𝑥𝑛, 𝑓𝑛}𝑛=1
𝑡 , 𝑓𝑛 = 𝑓(𝑥𝑛). Based on the assumption that the values of the function f 

are drawn in line with the multivariate normal distribution 𝑓~𝑁(0, 𝚱), where 

𝚱 = [

𝑘(𝑥1, 𝑥1)

𝑘(𝑥2, 𝑥1)
𝑘(𝑥1, 𝑥2)

𝑘(𝑥2, 𝑥2)

…
…

𝑘(𝑥1, 𝑥𝑡)

𝑘(𝑥2, 𝑥𝑡)
⋮

𝑘(𝑥𝑡 , 𝑥1)
⋮

𝑘(𝑥𝑡 , 𝑥2)
⋱
…

⋮
𝑘(𝑥𝑡 , 𝑥𝑡)

]                                                               (30) 

while all elements inside the matrix 𝚱  are calculated using equation (29) which represents the degree of 

correlation between two samples. Then, the new sample 𝑓𝑡+1 = 𝑓(𝑥𝑡+1) can be calculated based on the function 
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f. Considering the assumption of the Gaussian process, the value of the function 𝑓𝑡+1 plus 𝐟1:𝑡 in the training set 

follows the t+1 dimensional normal distribution: 

[
𝐟1:𝑡

𝑓𝑡+1
] ~𝑁 (0, [

𝚱 𝒌
𝒌𝑇 𝑘(𝑋𝑡+1, 𝑋𝑡+1)

])                                                                      (31) 

where 𝐟1:𝑡 = [𝑓1, 𝑓2, . . . , 𝑓𝑡]𝑇 and: 

𝐤 = [𝑘(𝑋𝑡+1, 𝑋1)𝑘(𝑋𝑡+1, 𝑋2). . . 𝑘(𝑋𝑡+1, 𝑋𝑡)]                                                               (32) 

afterwards, based on the principle of joint Gaussian distribution, the prediction of the target 

𝑓𝑡+1~𝑁(𝜇𝑡+1, 𝜎𝑡+1
2 ) can be given by: 

𝜇𝑡+1(𝑋𝑡+1) = 𝐤𝑇𝐊−1𝐟1:𝑡                                                                               (33) 

𝜎𝑡+1
2 (𝑋𝑡+1) = −𝐤𝑇𝐊−1 +  𝑘(𝑋𝑡+1, 𝑋𝑡+1)                                                                (34)                                                   

Finally, the posterior distribution of the objective function over all possible values of 𝑓𝑡+1is obtained and the 

entire regression model based on the Gaussian process is completed. 

 

4.2.2 Acquisition function 

After finding the posterior distribution of the objective function, the next challenge is to know how to 

search for the next points which derivates the maximum of the function f. In Bayesian optimisation, the 

acquisition function is used to achieve this goal. Assuming that the high value of the acquisition function 

corresponds to the large value for the objective function f, maximizing the acquisition function will maximise 

the objective function f. 

The common acquisition functions that are used in Bayesian optimisation include the probability of 

improvement (PI) and EI functions. Function PI tries to search around the current optimum sample to find 

points that may exceed the current optimum value. This function can be described as: 

𝑃𝐼(𝑥) = 𝜙 (
𝜇(𝑥)−𝑓(𝑥+)

𝜎(𝑥)
)                                                                              (35)                                                                     

where 𝜙  represents the cumulative distribution function of the standard Gaussian distribution. μ(x) is the 

predicted mean of the objective function at point x, f(x+) is the value of the current best observed point (the 

highest known value of the objective function) and σ(x) is the predicted standard deviation of the objective 

function at point x. 

 As evident, the main drawback of the PI acquisition function is that it selects samples only from regions close 

to the current optimal solution (exploration). Therefore, the possible better points that are far away from the 

local optimal points may not be investigated [96]. 

To solve the problem of falling into the local optimum solution, the EI acquisition function is employed [100]. 

The EI function, while exploring the region of the current optimum value, calculates the expected improvement 

of the new point. The expectation here refers to the mean of the potential improvements, weighted by their 
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probabilities. If the improvement value is less than the desired value after running the algorithm, it will be 

assumed that the current optimal point is the best solution available in that area, and therefore the algorithm 

searches for the optimal point in other parts of the domain (exploration).  

The difference between the function value at the new selected point and the current optimal value is called the 

degree of improvement I. If the value of the function at the new point is lower than the current optimal value, 

the improvement function is considered 0: 

𝐼(𝑥) = 𝑚𝑎𝑥{0, 𝑓𝑡+1(𝑥) − 𝑓(𝑥+)}                                                               (36) 

where t+1 refers to the next time step or iteration in the optimization process, indicating the function value at 

the newly selected point. Based on the assumption that the distribution of the function value at the new 

sampling point (𝑓𝑡+1(𝑥))  obeys the normal distribution with mean 𝜇(𝑥)  and standard deviation 𝜎2(𝑥), the 

random variable I obeys the normal distribution too with the mean 𝜇(𝑥) − 𝑓(𝑥+) and standard deviation 𝜎2(𝑥). 

Equation (37) shows the probability density of I: 

𝑓(𝐼) =
1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥)−𝑓(𝑥+)−𝐼)
2

2𝜎2(𝑥)
) , 𝐼 ≥ 0.                                                (37)  

Now, the EI can be defined as: 

𝐸(𝐼) = ∫ 𝐼 𝑓(𝐼)d𝐼
∞

∞

= ∫ 𝐼 
1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥) − 𝑓(𝑥+) − 𝐼)2

2𝜎2(𝑥)
) d𝐼 = 𝜎(𝑥)[𝑍𝜙(𝑍) + 𝜑(𝑍)]

𝐼=∞

𝐼=0

     (38) 

 

where 𝜑 is the probability density function of the standard normal distribution and: 

𝑍 =
𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
                                                                                    (39) 

 

As can be seen from these equations (36-39) the EI can be calculated from 𝜎, 𝜇 and the current optimal point 

𝑓(𝑥+). 

In this study, the EI function is used as the acquisition function for all hyperparameter optimization techniques 

since it can address the exploration and exploitation trade-off. It does this by balancing the potential for 

discovering new, optimal points (exploration) with the need to refine known high-performing areas 

(exploitation). The EI function calculates the expected improvement at each candidate point, which incorporates 

both the predicted mean and uncertainty (variance) of the model. This means that points with high uncertainty 

and those expected to perform well are both considered, ensuring a thorough search of the parameter space 

without getting stuck in local optima. [62]. The EI function is proven to have a strong theoretical guarantee [101] 

and empirical effectiveness [102]. 

 

4.2.3 Tree-structured Parzen Estimator (TPE) 

In cases of hyperparameter optimisation with higher dimensions and a small fitness evaluation budget, an 

alternative to the GP approach is required. In GP, the aim was to approximate f(x) or the probability of score 
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given the hyperparameter (𝑃(𝑦|𝑥)). This is done by using marginal probabilities, including the probability of 

each hyperparameter and the probability of the hyperparameters given the score, p(x/y): 

𝑃(𝑦|𝑥) =
𝑃(𝑥|𝑦) × 𝑃(𝑦)

𝑃(𝑥)
                                                                           (40) 

where y is the score f(x) and x represent the hyperparameters. 

But in TPE, instead of approximating the left side of equation (40), the probability of hyperparameters 

given the score that is obtained when sampling some of the values of the hyperparameters, 𝑃(𝑥|𝑦)  is 

approximated. This conditional probability (𝑃(𝑥|𝑦)) is approximated using two different functions: function 

ℓ(𝑥) for the cases where the performance is smaller than a certain value of performance, and the function 

𝑔(𝑥) for cases where the performance is bigger than the certain value of performance: 

𝑃(𝑥|𝑦) ≃ {
ℓ(𝑥)          if   y < 𝑦∗

𝑔(𝑥)          if   y ≥ 𝑦∗                                                                       (41) 

these two densities of l(x) and g(x) will then be used in the EI function, and after some derivations will end 

up at equation (42). This expected improvement can determine where to sample the next for hyperparameters. 

𝐸𝐼𝑦∗(𝑥) ∝ (𝛾 +
𝑔(𝑥)

ℓ(𝑥) 
(1 − 𝛾))

−1

                                                                (42) 

The benefits of TPE include its ability to efficiently handle high-dimensional hyperparameter spaces and 

small evaluation budgets by focusing on regions of the search space that are more promising. TPE dynamically 

balances exploration and exploitation by modelling the probability of hyperparameters given their 

performance, allowing it to concentrate sampling on hyperparameter values that are more likely to yield better 

performance. This results in more efficient optimization compared to traditional GP-based methods, especially 

in complex and high-dimensional settings. Additionally, TPE's ability to separately model good and bad 

performance regions help in better navigating the hyperparameter space and avoiding poor-performing areas. 

 

4.3 Optimisation algorithms 

4.3.1 Scikit optimise (GP-EI) 

Scikit optimise is an open-source Python package that can perform various forms of Bayesian optimisation. 

It implements several search algorithms including Bayesian optimisation with gaussian processes (through the 

gp_minimize function), Bayesian optimisation with random forest (through the forest_minimize function), and 

Bayesian optimisation with Gradient Boosting Trees (through the gbrt_minimize function).  

To perform the optimisation, the first step is to define the objective function that needs to be minimised. 

The objective function usually takes the ML model and the hyperparameters and outputs a performance metric. 



 

71 

Scikit optimise comes with a built-in module to create hyperparameter spaces to sample from. The samples can 

be integers, reals, and categories. In addition, a variety of acquisition functions are available to choose from 

including the EI, PI and Lower Confidence Bound (LCB).  

It is important to mention that the Lower Confidence Bound (LCB) acquisition function is a strategy used 

in Bayesian optimization to balance exploration and exploitation. LCB selects the next sampling point by 

considering both the mean prediction and the uncertainty of the prediction. It typically involves a trade-off 

parameter that adjusts the emphasis on exploring uncertain areas versus exploiting areas with known good 

performance. This helps in efficiently searching the hyperparameter space by ensuring that regions with high 

uncertainty are adequately explored, potentially discovering better hyperparameters. 

In this project the Scikit optimise is implemented to use Bayesian optimisation with GP as the surrogate. 

To this end, the gp_minimize package is imported and the RMSEs of two prediction models (CNN and LSTM) 

were defined as the objective function. Then the hyperparameter space is defined as well as the initial number 

of points at which to evaluate the objective function before starting to guide the Bayesian optimisation search. 

As mentioned earlier in this study the EI is used due to its capability of exploration and exploitation to guide 

the search in Bayesian optimisation. 

 

4.3.2 Optuna (TPE-EI) 

As a second tuning method in this study, the Optuna optimisation package with its define-by-run design 

is employed. Optuna is a recently developed optimisation algorithm [103] that has been successfully used to 

tune the hyperparameters of LSTM model for wind power prediction [3]. The selection of Optuna as one of the 

advanced optimisation algorithms in this research is based on three specific features, define-by-run context, 

efficient sampling, and ease of setup. The define-by-run context enables the dynamic building of the search 

space. This means that the search space can be constructed and modified on-the-fly during the optimization 

process, allowing for more flexible and adaptive tuning strategies. Unlike traditional static search space 

definitions, define-by-run allows for conditional parameter sampling and complex search space structures that 

can adapt based on intermediate results and feedback during the optimization run. This dynamic nature 

facilitates a more tailored and efficient exploration of the hyperparameter space, ultimately leading to better 

optimization outcomes. 

In the optimisation process, different hyperparameter combinations are considered as input to maximise 

a function and respond a validation score as an output. The objective function formulates the search space 

dynamically through interacting with the trial object [104]. This means that the search space can be adjusted 

during the optimization process based on the outcomes of previous trials. Efficient sampling of Optuna allows 

handling of both types of sampling, relational sampling to benefit the parameters correlations, and independent 
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sampling to consider each sample separately [104]. Relational sampling considers the dependencies and 

interactions between different hyperparameters. Another advantage of Optuna is its easy setup, which allows 

it to be used for a variety of tasks, from lightweight experiments performed through interactive interfaces to 

heavyweight distributed computing [103]. There are various features in Optuna that need to be set up. Sampler, 

as the hyperparameter search algorithm, can be selected among different options including the basic ones such 

as grid search, random search and CMA-ES. CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is an 

advanced evolutionary algorithm that adapts the covariance matrix of the sampling distribution to guide the 

search towards optimal solutions, making it particularly effective for complex, high-dimensional optimization 

problems. In this work the TPE algorithm is used to consider each hyperparameter independently. The next 

option is the pruner that stops testing trials that do not offer promising performances. The default pruner which 

is used in this study is the Median Pruner, which stops trials that perform worse than the median of completed 

trials. However, other pruners such as the Percentile Pruner, which stops trials that fall below a certain 

performance percentile; Successive Halving, which repeatedly halves the number of trials by discarding the 

lower-performing half; Hyperband, which allocates resources dynamically based on performance; and 

Threshold Pruner, which stops trials that do not meet a predefined performance threshold, are also available. 

It is also necessary to set the direction of the tuning process, which indicates whether we want to minimise or 

maximise the objective function. As mentioned earlier, the aim of this study is to minimise the RMSE value of 

the wind power forecasting. As a result, the minimise direction is selected. Further details of the optimisation 

by this package can be found in [103].  

 

4.3.3 Hyperopt (Annealing-EI) 

Hyperopt is a python library that enables implementing Bayesian optimisation. Hyperopt has already been 

applied for hyperparameter optimisation of deep neural networks and convolutional neural networks [61]. 

Hyperopt provides three search algorithms: random search (rand.suggest), annealing (which is another 

sequential mode-based optimisation with the gaussian process alternative in order to be able to sample nested 

hyper parameters), and TPE. In this thesis, the annealing search method is selected to compare its performance 

with the TPE search method used in the Optuna package and the GP search method used in the Scikit optimise 

algorithm. 

 

4.4 Results of comparison of different hyperparameter optimisation methods 

The same SCADA data used in chapter 3 is employed here to carry out the comparison of the hyper 

parameter optimisation techniques. During the pre-processing stage, the negative wind power values within 

the dataset were replaced with zeros based on the recommendations issued in [76]. In addition to diminishing 
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the negative impact of wind turbulence on the correlation between the generated wind power and measured 

wind speed, the time series resolution averaged 10 minutes in coordination with the approved average time by 

the international standard for power performance measurements of electricity-producing wind turbines (IEC 

61400-12-1) [77]. The dataset was then divided into two parts, the first 90% for training, and the rest 10% for 

testing both CNN and LSTM deep learning models, which were optimised by various hyperparameter 

optimisation techniques. 

The search spaces for hyperparameters of the CNN and LSTM models for all three optimisation methods are 

determined according to Table 4.1. Considering the mentioned ranges of values for the different 

hyperparameters, this results in more than 2000 million hyperparameter combinations for CNN models, and 

more than 38 million combinations for LSTM models.  

Table 4.1. search space for hyperparameters of the CNN and LSTM models 

CNN Model  LSTM Model 

Hyperparameter Search Space  Hyperparameter Search Space 

     

Units of first conv. Layer 30, 31, …, 130  Units (neurons) of first LSTM Layer 10, …, 100 

Units of second conv. Layer 30, 31, …, 130  Number of dense layers 1, 2, 3, 4 

Number of dense layers 1, 2, 3, 4  Units (neurons) in dense layer 10, 11, …, 100 

Units (neurons) in dense layer 10, 11, …, 100  Activation function Sigmoid, tanh, ReLU 

Activation function Sigmoid, tanh, ReLU  Loss function MAE, MSE 

Loss function MAE, MSE  Optimiser ADAM, Adadelta 

Optimiser ADAM, Adadelta  Epochs 50, 51, …, 150 

Epochs 50, 51, …, 100    

To carry out all the simulations and experiments, the Python programming language with Scikit-opt, 

Optuna, Hyperopt packages, and Scikit-learn libraries are employed on a PC with Intel Core™ i7–11850H 

2.5GHz CPU and 16GB RAM (without GPU processing). In addition, for better investigation of the performance 

of the various hyper parameter optimisation and forecasting models, similar parameters were set for all selected 

models; for example, the selected time lag (input layer length) was set at 10 in all simulations.  

 

4.4.1 Optimisation by Scikit-optimise algorithm 

As the first optimisation method in this research, the Scikit optimise is implemented. To utilise 

optimisation in this algorithm, except for defining the hyperparameter space, other parameters must be defined. 

These parameters include the objective function, the initial number of points at which to evaluate the objective 

function before starting to guide the Bayesian optimisation search, the acquisition function, and the number of 

times that we want to sample the hyper parameter space subsequently. The Gaussian process is selected as the 

search method and EI as the acquisition function. The RMSE values of the wind power predictions by 
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forecasting models which were built with selected hyperparameters are considered as the objective function. 

Scikit optimise algorithm for tuning the CNN model was launched for 300 tests. The best ten hyperparameter 

combinations with the least RMSE values are obtained according to Table 4.2 while the entire optimisation 

process took approximately 455 minutes. As can be seen in Table 4.2, the minimum RMSE value of 533.74 is 

obtained for trial number 204 with shown values for different hyperparameters. 

 

Table 4.2. Best hyperparameter combinations of CNN model found by Scikit-Optimise 

Rate 
Trial 

number 

Units 

of first 

conv. 

layer 

Units of 

second 

conv. 

layer 

No. of 

dense 

layers 

No. of 

dense 

units 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 204 87 89 4 100 ReLU MAE ADAM 104 553.74 

2 219 128 12 4 100 ReLU MAE ADAM 101 560.29 

3 210 128 12 4 100 ReLU MAE ADAM 104 562.66 

4 257 128 12 1 100 ReLU MAE ADAM 132 566.65 

5 217 128 12 4 100 ReLU MAE ADAM 101 569.20 

6 88 12 12 4 100 ReLU MAE ADAM 87 569.57 

7 230 128 31 2 100 ReLU MAE ADAM 98 572.18 

8 138 12 91 4 100 ReLU MAE ADAM 89 572.47 

9 162 12 104 4 100 ReLU MAE ADAM 88 572.52 

10 78 128 128 4 100 ReLU MAE ADAM 90 572.57 

The Scikit optimise optimisation method with similar settings is also used to tune the LSTM prediction 

model. In this case, the entire tuning process for 300 trials took approximately 1740 minutes and a minimum 

RMSE value of 549.07 was obtained for trial number 146 with shown values for different hyperparameters. 

Table 4.3 shows the best ten hyperparameter combinations for the LSTM model that lead to the lowest RMSE 

values.  

As can be seen from Tables 4.2 and 4.3, the values of some of the hyperparameters such as the activation 

function, loss function, and optimiser are equal for all proposed hyperparameter combinations. This shows that 

the optimisation algorithm has quickly reached a level of certainty regarding these parameters. On the other 

hand, for other hyperparameters such as the units of convolution layers, small changes can be seen until 

reaching the optimum value. 
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Table 4.3. Best hyperparameter combinations of LSTM model found by Scikit-Optimise 

Rate 
Trial 

number 

Units 

of first 

LSTM 

layer 

dense 

layers 

Units of 

dense 

layer 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 146 61 1 68 ReLU MSE ADAM 150 549.07 

2 177 27 1 10 ReLU MSE ADAM 150 549.37 

3 260 42 1 59 ReLU MSE ADAM 150 549.74 

4 26 12 4 100 ReLU MAE ADAM 149 549.94 

5 298 100 4 10 ReLU MSE ADAM 74 551.75 

6 85 54 1 29 ReLU MSE ADAM 150 551.99 

7 39 100 1 100 ReLU MSE ADAM 150 552.31 

8 279 100 4 100 ReLU MSE ADAM 58 552.48 

9 203 50 1 67 ReLU MSE ADAM 150 553.02 

10 219 75 1 42 ReLU MAE ADAM 50 554.33 

 

4.4.2 Optimisation by Optuna  

As the second tuning method in this study, the Optuna optimisation package with its define-by-run design 

is investigated. There are some features in the Optuna optimisation package that need to be tuned. Sampler, as 

the hyperparameter search algorithm, can be selected among different methods including the basic ones such 

as grid search, random search and CMA-ES. In this study the default search algorithm, TPE, is used. TPE can 

model the underlying objective function and its uncertainty. This modelling allows it to make informed 

decisions, meaning it uses existing data to predict and select the most promising hyperparameters for future 

trials, thus enhancing the efficiency and effectiveness of the search process. The next option is the pruner that 

stops testing trials that are not offering promising performances. The median pruner performs when the trial’s 

best intermediate result is poorer than the median of the intermediate results of former trials. It is also necessary 

to set the direction of the tuning process, which indicates whether we want to minimize or maximize the 

objective function. As previously mentioned, the aim of this study is to minimize the RMSE value of the wind 

power forecasting. More details of the optimisation process of this package can be found in [103]. 

The same hyperparameter spaces considered for scikit optimise, are used again. For the CNN model, the 

minimum RMSE value of 553.66 is obtained for trial number 269 after about 492 minutes and regarding the 

LSTM model, the minimum RMSE value of 538.14 is obtained for trial number 91 after about 456 minutes. These 

shows that for both CNN and LSTM models, the best hyperparameter combinations can be found in a similar 
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amount of time. Tables 4.4 and 4.5 show the best ten hyperparameter combinations for CNN and LSTM models, 

found by the Optuna algorithm, respectively. 

 

Table 4.4. Best hyperparameter combinations of CNN model found by Optuna 

Rate 
Trial 

number 

Units 

of first 

conv. 

layer 

Units of 

second 

conv. 

layer 

No. of 

dense 

layers 

No. of 

dense 

units 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 269 108 80 3 45 ReLU MAE ADAM 86 553.66 

2 203 113 82 3 44 ReLU MAE ADAM 84 560.9 

3 97 72 32 3 47 ReLU MSE ADAM 95 561.73 

4 175 119 66 3 43 ReLU MAE ADAM 78 567.36 

5 228 119 78 3 39 ReLU MAE ADAM 84 570.45 

6 205 114 81 3 44 ReLU MAE ADAM 83 572.98 

7 227 119 77 3 40 ReLU MAE ADAM 84 573.19 

8 156 71 69 3 43 ReLU MAE ADAM 77 573.36 

9 77 83 62 3 46 ReLU MAE ADAM 94 574.49 

10 160 81 66 3 38 ReLU MAE ADAM 81 575.24 

 

Table 4.5. Best hyperparameter combinations of LSTM model found by Optuna 

Rate 
Trial 

number 

Units 

of 

LSTM 

layer 

No. of 

dense 

layers 

No. of 

dense 

units 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 91 45 3 60 ReLU MSE ADAM 128 538.14 

2 123 43 2 61 ReLU MSE ADAM 124 541.04 

3 81 34 2 73 ReLU MSE ADAM 125 542.27 

4 272 46 2 59 ReLU MSE ADAM 120 542.34 

5 255 42 2 59 ReLU MSE ADAM 108 542.39 

6 69 37 1 54 ReLU MSE ADAM 104 543.49 

7 82 37 2 73 ReLU MSE ADAM 127 545.09 

8 248 50 2 63 ReLU MSE ADAM 105 545.44 

9 241 42 2 61 ReLU MSE ADAM 103 546.29 

10 258 52 2 63 ReLU MSE ADAM 123 547.53 
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As evident from Tables 4.4 and 4.5, the values of two hyperparameters, namely the Activation function 

and optimiser, are equal for all the ten best combinations of CNN and LSTM models.  While the best loss 

function selected in the ten most accurate hyperparameter combinations of the LSTM model is the mean square 

error (MSE), the results of experiments show that the value of this hyperparameter in the CNN model can be 

both the MSE and the mean absolute error (MAE). 

 

4.4.3 Hyperopt 

Hyperopt is the third hyperparameter optimisation algorithm employed in this research. In the Hyperopt 

algorithm, first the configuration space is defined and then the fmin driver is used to determine the direction of 

the optimisation. Hyperopt provides three search algorithms including the random search (rand.suggest), 

annealing, and the TPE. Annealing is another GP alternative SMBO model with the capability of sampling the 

nested hyper parameters. In this study the annealing search method is selected to compare its performance with 

the TPE search method in the Optuna algorithm and the GP search method in Scikit optimise. 

The best ten hyperparameter combinations of the CNN and LSTM models found by Hyperopt are shown 

in Tables 4.6 and 4.7. For the CNN model, the minimum RMSE value of 556.57 was obtained for trial number 

203 after approximately 368 minutes. Regarding the LSTM model, the minimum RMSE value of 532.59 was 

obtained for trial number 236 after approximately 892 minutes. 

 

Table 4.6. Best hyperparameter combinations of CNN model found by Hyperopt 

Rate 
Trial 

number 

Units 

of first 

conv. 

layer 

Units of 

second 

conv. 

layer 

No. of 

dense 

layers 

No. of 

dense 

units 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 203 105 33 2 21 ReLU MSE ADAM 80 556.57 

2 237 105 33 2 58 ReLU MAE ADAM 80 567.44 

3 270 105 33 2 21 ReLU MSE ADAM 80 567.88 

4 204 105 33 2 58 ReLU MAE ADAM 80 569.32 

5 200 105 33 2 21 ReLU MAE ADAM 80 571.45 

6 257 105 33 2 21 ReLU MAE ADAM 80 571.72 

7 172 105 33 2 21 ReLU MAE ADAM 80 571.85 

8 285 105 34 2 14 ReLU MAE ADAM 80 572.39 

9 220 105 33 2 21 ReLU MAE ADAM 80 573.22 

10 66 105 33 1 21 ReLU MAE ADAM 80 574.06 
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Table 4.7. Best hyperparameter combinations of LSTM model found by Hyperopt 

Rate 
Trial 

number 

Units 

of 

LSTM 

layer 

No. of 

dense 

layers 

No. of 

dense 

units 

Activation 

function 

Loss 

function 

optimiser Epochs RMSE 

1 236 52 2 60 ReLU MSE ADAM 99 532.59 

2 96 52 2 60 ReLU MSE ADAM 99 541.23 

3 195 52 2 60 ReLU MSE ADAM 99 541.76 

4 237 52 2 97 ReLU MSE ADAM 99 541.83 

5 35 52 2 60 ReLU MSE ADAM 99 542.32 

6 244 52 2 60 ReLU MSE ADAM 99 543.59 

7 266 52 2 60 ReLU MSE ADAM 99 544.18 

8 14 52 2 60 ReLU MSE ADAM 66 546.58 

9 154 66 2 60 ReLU MSE ADAM 99 547.82 

10 213 52 1 60 ReLU MSE ADAM 99 547.92 

 

4.4.4 Comparison of the hyperparameter optimisation algorithms 

By comparing the prediction accuracy of prediction models whose structures (hyperparameters) are 

proposed by optimisation methods, the tuning methods can be compared. The processing speed is another 

factor in determining the performance of the optimisation methods. Table 4.8 shows the performance of the 

prediction models tuned by the three optimisation techniques, both in processing time and accuracy.  

 

Table 4.8. The RMSE and processing time of the prediction models tuned in different method 

Optimisation methods RMSE (kW) 
Calculation time 

(minutes) 

Algorithm Search method CNN LSTM CNN LSTM 

Scikit-Opt GP 553.74 539.64 455 600 

Optuna TPE 553.66 538.14 492 456 

Hyperopt Annealing 556.57 532.59 368 892 
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(a) (b) 
Figure 4.1. RMSE (a) and calculation time (b) of the CNN and LSTM tuned by various optimisation methods 

Considering the calculated RMSE values in Table 4.8 and figure 4.1(a), the first point that can be recognised is 

that the LSTM model is a better choice than the CNN for short term wind power prediction. This is believed to 

be due to the capability of the LSTM model in learning both long-term and short-term dependencies. On the 

other hand, while the prediction accuracy of different structures of the CNN model, proposed by different 

optimisation methods are very similar, the LSTM model optimised by the Hyperopt algorithm based on the 

annealing search method results in the highest accuracy. In terms of prediction accuracy, the Optuna 

optimisation method ranks second after the Hyperopt algorithm.  

Based on the comparison of the required time for calculations/simulations in each optimisation in Table 4.8 and 

the figure 4.1(b), it can be concluded that the Optuna optimisation algorithm using the TPE search method and 

EI acquisition function, has the best efficiency for both CNN and LSTM models. Figure 4.2 shows the prediction 

results of three individual LSTM prediction models tuned by the various optimisation methods. As can be in 

this figure, when the wind power generation encounters abrupt changes, the LSTM model optimised by 

Hyperopt and Optuna algorithms have better prediction performance than the LSTM model optimised by Scikit 

optimise. 
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Figure 4.2. Wind power predictions of LSTM models optimised by three different optimisation algorithms 

 

4.4.5 Randomness impact on the optimisation performance 

As previously mentioned earlier, most ANNs have randomness in their training process. Randomness can 

have different reasons, the most important of which is the random initialisation of weights and biases in NNs. 

Different initialisation of weights causes changes in the training results that make the networks unstable and 

unreliable. An unstable network is one whose performance varies significantly with each training run due to 

the different starting points in the parameter space. This instability can lead to inconsistent and unpredictable 

performance, making it challenging to assess the true capability of the model. As a result, to improve the 

performance of the prediction models and achieve consistent results, it is necessary to predict this randomness. 

In this context, predicting randomness means controlling or accounting for the inherent variability in the 

training process. In ML, for prediction of randomness the seed concept is used. Seed allows for the prediction 

of the randomness and makes the results reproducible [105]. Defining a specific seed value before training 

ensures consistent results of ANNs. 

In this study, to investigate the impact of random initialisation on the accuracy of deep learning models, 

an experiment is carried out consisting of one hundred trials of CNN model predictions with different seeds 

but constant hyperparameters. As can be seen in the figure 4.3 and Table 4.9, the RMSE values of the predictions 

vary from 570.4 to 631.7 with an average value of 595.9 and standard deviation of 13.78. It is evident that the 

changes in random initialisation, while all other variables are constant, do have an impact on the prediction 

accuracy of the forecasting models. 
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Figure 4.3. Histogram of RMSE values of CNN model with different seeds 

Table 4.9. The statistical description of RMSE prediction results with different seeds 

RMSEs of the CNN prediction model 

Counts of trials 100 

Average of RMSEs 595.96 

Standard deviation 13.78 

Minimum RMSE 570.45 

Maximum RMSE 631.73 

This means that without considering a wider range of random seeds, it is difficult to trust the performance 

of a specific deep learning model. In other words, various initialisations are required to see the robustness of 

the prediction model. In order to investigate the impact of the randomness feature of NNs on the accuracy of 

the deep learning models built by the best hyperparameter combinations, 10 different random seeds [123, 951, 

375, 435, 599, 54, 602, 325, 691, 36] are used for the best found hyperparameter combinations of the CNN and 

LSTM deep leaning models to find the structure which is less sensitive to the randomness.  

Table 4.10 shows the RMSE values related to the predictions made by the CNN models based on the 10 

best hyperparameter combinations and 10 different random seeds. For a better analysis of the test results 

presented in Table 4.10, the RMSE values are plotted in figure 4.4. In addition, the distribution of RMSE values 

for each hyperparameter combination are shown in figure 4.5. 
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Table 4.10. RMSE values of different hyperparameter combinations of CNN model with different seeds 

Seeds H.C 1 H.C 2 H.C 3 H.C 4 H.C 5 H.C 6 H.C 7 H.C 8 H.C 9 H.C 10 

R.S 1 123 582.05 592.06 621.04 596.58 587.33 594.24 597.20 623.10 584.03 605.28 

R.S 2 951 581.68 598.74 590.73 596.52 581.34 612.38 612.04 582.82 581.25 599.65 

R.S 3 375 590.17 619.76 594.03 617.20 579.50 582.82 607.01 566.11 588.17 575.05 

R.S 4 435 569.66 596.19 595.14 614.82 586.07 636.65 610.35 585.86 602.05 625.39 

R.S 5 599 597.98 592.18 623.40 590.01 593.39 573.66 596.64 574.51 572.42 620.09 

R.S 6 54 597.95 564.98 682.69 616.43 584.56 582.11 592.07 575.23 588.85 596.86 

R.S 7 602 596.23 613.62 610.71 601.07 607.69 595.51 606.02 591.19 583.16 602.35 

R.S 8 325 587.22 594.58 617.99 621.27 629.48 584.02 604.10 596.17 587.38 584.62 

R.S 9 691 582.61 591.89 636.24 578.85 592.06 595.31 617.61 587.37 581.86 590.43 

R.S 10 36 598.92 592.02 609.06 591.16 592.17 602.31 583.57 604.86 595.76 593.70 

Averages 588.45 595.60 618.10 602.39 593.36 595.90 602.66 588.72 586.49 599.34 

STD 9.60 14.56 26.94 14.26 14.97 18.18 10.25 16.48 8.17 15.19 

 

 
Figure 4.4. Comparison of RMSE Across Different Hyperparameter Combinations and Seeds for CNN Model 



 

83 

 
Figure 4.5. Average and standard deviations of RMSE values for different hyperparameter combination of CNN model 

As evident from Table 4.10 and figures 4.4 and 4.5, considering all the set seed values, combination number 

9 has the best performance, as it has the least average and standard deviation values of RMSEs. In other words, 

a CNN model built based on the hyperparameter of combination number 9 will be less sensitive to the 

randomness feature of NNs. A similar experiment/simulation was carried out for the LSTM prediction model. 

In a similar manner, Table 4.11 shows the RMSE values related to the predictions made by the LSTM models 

based on the 10 best hyperparameter combinations and 10 different random seeds. Figure 4.6 shows the RMSE 

values for different hyperparameter combinations and figure 4.7 demonstrates distribution of RMSE values for 

each hyperparameter combination. 

Table 4.11. RMSE values of different hyperparameter combinations of LSTM model with different seeds 

Seeds H.C 1 H.C 2 H.C 3 H.C 4 H.C 5 H.C 6 H.C 7 H.C 8 H.C 9 H.C 10 

R.S 1 123 565.41 670.06 553.7 560.58 580.36 558.4 549.45 577.62 681.99 574.64 

R.S 2 951 565.62 558.31 562.39 591.9 567.04 550.72 567.53 555.90 556.53 573.81 

R.S 3 375 565.64 571.43 565.93 565.04 571.15 590.16 556.83 577.39 556.23 586.87 

R.S 4 435 545.13 562.01 569.52 562.27 566.86 587.41 581.36 572.37 571.77 576.19 

R.S 5 599 575.46 573.69 564.41 569.04 575.63 573.44 578.02 563.22 601.12 700.64 

R.S 6 54 713.16 559.72 547.07 573.1 571.66 563.3 595.56 576.98 560.43 581.04 

R.S 7 602 585.11 582.99 574.58 590.25 583.1 568.11 590.65 558.49 559.33 572.58 

R.S 8 325 560.84 550.14 580.14 563.89 599.04 569.42 558.06 587.30 595.30 589.38 

R.S 9 691 563.77 566.52 565.97 563.51 546.47 568.94 568.75 554.34 573.16 568.38 

R.S 10 36 572.29 574.24 587.55 550.10 562.65 581.54 576.65 576.86 559.29 614.30 

Averages 581.24 581.24 567.13 568.97 572.4 571.14 572.29 570.05 581.52 593.78 

STD 47.49 47.49 11.85 13.07 13.85 12.46 14.95 11.23 38.77 39.78 
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Figure 4.6. Comparison of RMSE Across Different Hyperparameter Combinations and Seeds for LSTM Model 

 

Figure 4.7. Average and standard deviations of RMSE values for different hyperparameter combination of LSTM model 

As noticed from Table 4.11 and figures 4.6 and 4.7, considering all the set seed values, combination number 

3 has the best performance, as it has the least average and standard deviation values of RMSEs. In other words, 

an LSTM model based on the hyperparameter of combination number 3 will be less sensitive to the randomness 

feature of NNs. To assess the robustness of the LSTM model based on the third hyperparameter combinations, 

an experiment is caried out in which two LSTM models based on the hyperparameter combination sets 1 and 3 

were utilised for wind power prediction. In this experiment, no seed value is set to see the performance of the 

proposed structures. As can be seen from figure 4.8, the forecasting model, which was built with the third 

hyperparameter combination, is more accurate.  Better forecasting performance is clearly visible especially in 
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higher wind power values, such as for example between hours 15:00 and 18:00 on 26th of April (figure 4.9) and 

during times when the wind power production experiences sudden changes.  

   

 
Figure 4.8. wind power prediction of LSTM model built by two different hyperparameter combinations 

 
Figure 4.9. wind power prediction of LSTM model built by two different hyperparameter combinations between hours 

14:00 and 19:00 of 26th of April 

  



 

86 

Chapter 5 -  WPD-CNN-LSTM prediction model 

5.1 Introduction 

In this chapter, a novel hybrid forecasting model is presented for 10-minutes-ahead wind power 

forecasting of an offshore wind turbine in Scotland. The proposed model is based on applying WPD, optimised 

CNN and LSTM models without inputing future weather forecasting data. The proposed model is applicable 

when a complex non-linear relationship between the variables exists in the wind power time series data. The 

originality (novelty) of this part of the research lies in investigating the combined performance of WPD and 

sequential model-based optimised (SMBO) CNN and LSTM models for short-term offshore wind power 

forecasting. WPD can decompose the original time series data into different sub-series with different 

frequencies. CNN and LSTM with different performance in learning short-term and long-term dependencies 

can extract linear and non-linear relations from historical wind power data to make an accurate prediction. As 

discussed in chapter 2, hybrid wind power prediction methods combine different methods to utilise their 

unique merits and improve the overall prediction accuracy. Table 5.1 presents the improvement of prediction 

performance of some proposed hybrid methods in recent years. What is clear is that although combining 

different methods improves overall performance, on the other hand it complicates the model and increases the 

required computation time. Hence, it is vital to obtain a balance between accuracy and efficiency. 

  Table 5.1. Hybrid wind power prediction models 

Combined model Year Inputs Accuracy improvement Features 

ICEEMDAN, MOMFO, 

Wavelet NN [39] 
2020 wind power 

62.38% improvement in MAPE 

compared to wavelet NN 

A robust hybrid method with 

appropriate accuracy and stability 

LSTM, GMM [17] 2019 wind speed 
Up to 4.96% RMSE improvement 

over traditional methods 

LSTM used for prediction and 

GMM for uncertainty description 

CNN, RBFNN, DGF 

[31] 
2019 wind power 

accurate than traditional models for 

24 h-ahead wind power prediction 

the novel double Gaussian 

function (DGF) employed for 

RBFNN 

GA, LSTM [40] 2021 wind power 
Up to 30% accuracy improvement 

compared to existing methods 

GA application for LSTM window 

size and neurons number 

optimisation 

BPNN, RBFNN, 

LSSVM [46] 
2017 

wind speed & 

direction, temp. 

Significant improvement in 

accuracy. 

Pearson correlation coefficient 

(PCC) is used to improve the 

mapping accuracy 

MODA, ELNN [41] 2018 Wind speed 
43.96% MAPE reductions compared 

to comparison models 

MODA application for ELNN 

optimisation 

IF, GRU, LSTM [42] 2021 wind power 
IF filtering improved forecasting 

performance by over 92%. 

A robust model with less 

sensitivity to noise in SCADA data 
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In chapter 4 it was discussed that the optimisation of hyperparameters can enhance prediction accuracy. 

It was also highlighted that instead of manual tuning, grid search, or random search that are relatively 

inefficient, SMBO methods can be used. It was demonstrated that these methods, by systematically evaluating 

hyperparameters that show greater potential based on recent research findings, can more efficiently converge 

on optimal hyperparameters. This approach not only reduces the time required to find the best 

hyperparameters but also improves the overall performance of the model by focusing computational resources 

on the most promising configurations [61]. Using these methods can increase the accuracy and efficiency of the 

prediction models. 

Another method that can effectively improve the accuracy of power prediction methods is signal 

processing methods such as data decomposition, data noise removal, or data feature selection. All 

decomposition-based forecasting models published in the literature use the same framework. In this 

framework, the original non-stationary time series is decomposed into stationary sub-series. Independent 

forecasting models are then used to predict each sub-series. Finally, all predictions are added together to form 

the final forecast. Independent forecasting of each sub-series can efficiently enhance the prediction accuracy 

[64]. 

Su et al. [65] decomposed the wind speed data into four low-frequency and four high-frequency 

components by WPD. Then the four high-frequency components were decomposed into 60 intrinsic mode 

functions (IMFs) through ensemble empirical mode decomposition (EEMD). These components were then fed 

to individual LSTM models with yaw error and rotor speed data. The power prediction results of the proposed 

approach showed an improvement in accuracy. However, the effect of the direct application of the wind power 

dataset for prediction was not investigated. Zu et al. [66] used WPD to decompose wind power time series into 

three levels. The gained sub-series were fed to a gated recurrent unit (GRU), and the predictions were 

reconstructed to obtain the results. Experimental results showed that the proposed WPD-GRU-SELU model has 

a higher prediction accuracy than other recurrent neural network (RNN) models. In another research, Mujeeb 

et al. [67] combined wavelet packet transform (WPT) and deep convolutional neural network (DCNN) to 

predict the day-ahead hourly wind power of ISO New England’s wind farm, however, the authors did not 

attempt to forecast the sub-series with different independent methods. In addition to WPD, other wavelet 

transform methods have recently been used in the field of wind power prediction. For example, Azimi et al. 

[68], with a combination of the K-means clustering method with discrete wavelet transform (DWT) and 

multilayer perceptron neural network (MLPNN), improved the wind power forecasting accuracy of the 

National Renewable Energy Laboratory (NREL). Shi et al. [69] employed variational mode decomposition 

(VMD) and LSTM to provide hourly predictions of day-ahead wind power of a Chinese wind farm. In another 

study, Liu et al. [70] combined empirical mode decomposition (EMD), LSTM, and Elman neural network (ENN) 

to develop a hybrid model, obtaining lower RMSE values in multi-step wind speed predictions compared to 
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each model used individually. To obtain better forecasting results, some researchers use error correction 

mechanisms through application of the double decomposition methods. Double decomposition refers to a 

process that involves breaking down the data into two separate components to address different aspects of 

variability or error. For example, Ma et al. [71] used this decomposition approach with the LSTM model and 

proved the better prediction performance of the proposed model compared to models without double 

decomposition. 

5.2 Methodology 

The framework of the proposed WPD-LSTM-CNN model is demonstrated in figure 5.1, and the entire 

process is depicted in the following steps: 

Step 1) The raw SCADA data of an offshore wind turbine are pre-processed by removing the obvious outliers, 

imputing the missing data, and resampling. The detail of the pre-processing part is described in Chapter 3, 

section 3.3 and 3.4. 

Step 2) WPD decomposes the pre-processed wind power time series into several approximations and detail 

coefficients (sub-series). The detail of the decomposition method is described in Chapter 2, section 2.4.6. 

Step 3) The optimised CNN with surrogate optimisation method is used to predict the high-frequency sub-

layers obtained from the WPD. Details and structure of this method are provided in Chapter 2, section 2.2. 

Step 4) The LSTM is tuned and employed for predicting the low-frequency sub-layer with details described in 

Chapter 2, section 2.3. 

Step 5) After the prediction of each sub-layer, the final forecasting result is generated by summing all the 

predictions of the sub-layers. The result is compared with models including RF, FFNN, CNN, LSTM, WPD-

LSTM and WPD-CNN to evaluate the forecasting performance of the developed method. 
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Figure 5.1. Diagram of the applied methodology 

5.2.1 Wavelet Packet Decomposition (WPD) 

As a signal processing method, WPD is an efficient mathematical solution for decomposing signals into 

approximation and detail components with different time frequencies [106]. Decomposing signals into 

approximation and detail components means breaking down the original signal into parts that capture different 

aspects of the signal's information: approximation components capture the overall trend (low-frequency 

components), while detail components capture finer, transient features (high-frequency components). WPD 

uses low-pass and high-pass filters to achieve this decomposition. The approximate coefficient, obtained by 

applying a low-pass filter, contains the low-frequency part of the signal and represents the long-term 

dependencies, essentially summarizing the overall trend of the signal. On the other hand, the detail coefficients, 

gained by applying a high-pass filter, include high-frequency components and depict the short-term 

dependencies, capturing the signal's fine details and rapid changes [107]. In contrast to the wavelet 

decomposition process in which only the approximation coefficients are decomposed, in WPD, the detail 

coefficients can also be decomposed [93]. As a result, it can contribute to higher accuracies in signal analysis 

than normal wavelet transforms methods. In addition, through decomposition by WPD, the high-frequency 

component of the signal can have a better resolution [108]. 

There are two types of WPDs: discrete wavelet transform and continuous wavelet transform. Continuous 

wavelet transform for a signal f(t) can be described as: 
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𝐶𝑊𝑇𝑓(𝑎, 𝑏) = 〈𝑓(𝑡), Ψ𝑎,𝑏(𝑡)〉 = ∫ 𝑓(𝑡)Ψ ∗ ((𝑡 − 𝑏) 𝑎⁄ ) √𝑎𝑑𝑡⁄
+∞

−∞

                                          (43) 

where 𝛹(𝑡) denotes the selected mother wavelet function, a and b are the scale and translation coefficients, 

respectively, and * indicates the complex conjugate. The scale and translation coefficient in discrete wavelet 

transform can be explained by: 

{𝑎 =  2𝑗   
𝑏 =  𝑘2𝑗

                                                                                                (44) 

where j and k are scale and translation factors, respectively, the following equations can illustrate the 

decomposition process of WPD: 

{
 𝑃𝑗

2𝑖−1(𝑡) = 𝐻𝑃𝑗−1
𝑖 (𝑡)

𝑃𝑗
2𝑖(𝑡) = 𝐺𝑃𝑗−1

𝑖 (𝑡)   
                                                                                  (45) 

where t is the time index,  𝑃𝑗
𝑖 represents the i-wavelet packet for level j and H and G are the low- and high-pass 

filters. 

and the reconstruction process can be described as follows: 

𝑃𝑗
𝑖(𝑡) = 𝐻 ∗ 𝑃𝑗+1

2𝑖−1(𝑡) + 𝐺 ∗ 𝑃𝑗+1
2𝑖 (𝑡)                                                                      (46) 

The reconstruction process involves combining the decomposed components to recreate the original 

signal. Specifically, the approximate and detail coefficients obtained from the decomposition process are passed 

through their respective inverse filters (conjugates of H and G) and then summed. This process effectively 

rebuilds the original signal from its decomposed parts, ensuring that both the low-frequency (long-term trends) 

and high-frequency (short-term details) information are accurately preserved and integrated. 

The performance of WPD is highly dependent on the selected mother wavelet and the chosen level of 

decomposition. According to the literature, the normal decomposition level is in the range of 2 to 4 for time 

series prediction models [109]. In this work, the 2-level framework of WPD is employed with the schematic 

diagram shown in figure 5.2. 

In addition, various mother wavelets are examined due to the impact of the mother wavelet on the 

decomposition performance and prediction accuracy. In this study, sixteen wavelets from four widely used 

wavelet families in the literature (Daubechies, Haar, Sym, and Coif) were selected [106, 107, 109], and their 

performance in prediction improvement of forecasting models, including LR, RF, FFNN and LSTM are 

assessed. 
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Figure 5.2. Schematic diagram of WPD with two layers. 

Table 5.2 and Figure 5.3 show the RMSE values of wind power forecasts based on the application of 

different mother wavelets. The forecasting models used are linear regression, random forest, feed-forward 

neural network (NN), and LSTM. These models were trained using 90 percent of the data as training data, and 

the RMSE of predictions is shown for the remaining 10 percent of the data. As can be seen, the Daubechies 

wavelets of order 5 have the best performance (least prediction error) and are therefore selected as the mother 

wavelet in this study. These four different models were chosen to leverage their unique strengths: linear 

regression for its simplicity and interpretability, random forest for its robustness and ability to handle non-

linear relationships, feed-forward NN for its capability to model complex patterns, and LSTM for its proficiency 

in capturing temporal dependencies in sequential data. 

The corresponding decomposition result of the application of WPD for the wind power time series used 

in this research is shown in figure 5.4. The upper graph in the figure represents the wind power time-series 

before decomposition and the next four graphs show four sub-series obtained after decomposition. 

 

Table 5.2. RMSE values of wind power forecast based on the application of different mother wavelets  

Model db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 haar sym2 sym5 sym8 coif1 coif5 

LR 795 788 783 784 712 799 804 804 799 795 774 788 801 803 786 803 

RF 799 755 735 722 687 710 714 713 711 704 722 757 730 734 729 719 

FFNN 822 773 757 732 686 737 730 753 750 764 754 774 765 768 757 761 

LSTM 812 764 746 722 690 723 717 733 730 728 746 765 747 751 743 740 
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Figure 5.3. Prediction performance of forecasting models based on decomposition with different mother wavelets 

 
Figure 5.4. Wavelet packet decomposition result of wind power time series 

To improve the decomposition, leading to more accurate predictions, this research employs the single 

branch reconstruction method. This technique is crucial during the process of reconstructing each component 

of the final decomposition back to the original level. The single branch reconstruction method operates by 

considering the values of other components at the same level as zero while reconstructing each individual 

component. This means that when one component is being reconstructed, all other components are temporarily 

disregarded (set to zero). By isolating each component in this way, the reconstruction process can more 

accurately capture the individual characteristics of each component, reducing interference from other 

components and thereby enhancing the overall prediction accuracy. This method ensures that each 

component's unique contribution to the original signal or data is more precisely understood and accounted for, 

ultimately leading to better predictive performance [93]. 
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High-frequency components of wind power time series have short-term dependencies, while low-

frequency components have long-term dependencies. Detection of short-term dependencies in high-frequency 

components is possible with fully connected layers, and calculations are performed faster than LSTM recurrent 

layer [92]. Therefore, this thesis selects the CNN model to predict the high-frequency sublayers. On the other 

hand, the LSTM recurrent layer, which can better sequentially process the temporal data with long-term 

dependencies, is used for predicting the low-frequency sub-series.  

5.3 Results of comparison of the developed model with other prediction models 

In order to investigate the prediction performance of the proposed method, the SCADA data of the Leven 

mouth Demonstration Turbine (LDT) which was processed in Chapter 3 and 4 is divided into four equal 

experimental parts, each including 4200 samples. Each model is trained using the training set (samples 1-3800) 

to learn the patterns and relationships within the data. The training process involves optimizing the model 

parameters to minimize prediction errors on the training set. Once trained, the models' performances are 

evaluated on the testing set (samples 3801-4200) to assess their ability to generalize and accurately predict 

unseen data. Figure 5.5 shows these four power time series, and Table 5.3 provides their statistical descriptions. 

For comparison, seven wind power forecasting models, including the RF, FFNN, CNN model, LSTM model, 

WPD-FFNN model, WPD-CNN model, WPD-LSTM model, and the proposed WPD-CNN-LSTM model were 

selected. 

To better investigate the forecasting performance of the various models, all selected models have similar 

parameters; for example, the selected time lag (input layer length) was set at 10 for all of them. The values of 

MAE, MSE, RMSE and R-square of all prediction models for the four datasets are shown in Tables 5.4 and 5.5. 

 

Table 5.3. Statistical descriptions of the wind power data 

Data Mean Min Max Standard Derivation 

Dataset 1 1794.2 0 6566.9 2167.8 

Dataset 2 2029.7 0 6567.5 2316.3 

Dataset 3 1372.4 0 6569.6 2040.3 

Dataset 4 2121.3 0 6551.2 2349.9 
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Figure 5.5. Four sets of 10-min averaged wind power time series 

 

Table 5.4. Performance comparison between WPD-CNN-LSTM and other models for datasets 1 and 2 

Comparison 

models 

Dataset 1 Dataset 2 

MSE RMSE MAE R-square MSE RMSE MAE R-square 

RF 350741.8 592.2 405.8 0.836 177039.3 420.8 190.5 0.73 

FFNN 329902.1 574.3 402 0.846 140227.3 374.4 158.9 0.786 

CNN 309210.7 556.1 392.1 0.856 144140.7 379.6 167.1 0.78 

LSTM 300599.8 548.3 386.2 0.858 142455.1 377.4 208.1 0.783 

WPD-FFNN 28240.2 168 118.5 0.987 9741.4 98.6 48.3 0.985 

WPD-CNN 16890.39 129.9 99.88 0.8937 6970.04 83.5 44.66 0.891 

WPD-LSTM 16844.8 129.7 95.3 0.992 6348.4 79.6 46.1 0.99 

WPD-CNN-LSTM 15354.9 123.9 90.8 0.993 6336.4 79.6 40.6 0.99 

 

Figure 5.6 shows the prediction results of all forecasting models for the last day of the dataset 1, and figure 

5.7 shows the same forecast for only two hours of the last day. 
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Table 5.5. Performance comparison between WPD-CNN-LSTM and other models for the datasets 3 and 4 

Comparison 

models 

Dataset 3 Dataset 4 

MSE RMSE MAE R-square MSE RMSE MAE R-square 

RF 1303094 1141.5 636.5 0.741 287230.2 535.9 300.8 0.914 

FFNN 1297934.5 1139.2 667.3 0.741 254659.1 504.6 269.8 0.923 

CNN 1249351.3 1117.7 658.3 0.751 241560.7 491.5 269.1 0.928 

LSTM 1181880.9 1087.1 631 0.769 235092.6 484.9 272.6 0.929 

WPD-FFNN 66242.6 257.3 172.2 0.986 16465.3 128.3 72.1 0.995 

WPD-CNN 44450.1 210.8 148.2 0.991 13064.04 114.3 71.39 0.8964 

WPD-LSTM 46707.87 216.1 161.37 0.8919 11220.9 105.9 64.7 0.997 

WPD-CNN-LSTM 42461.7 206.1 146.7 0.991 11876.4 108.9 64.9 0.996 

 

 
Figure 5.6. Forecasting results of the involved models for dataset 1 

As can be seen from Tables 5.4 and 5.5 and figures 5.6 and 5.7, when the wind power generation encounters 

abrupt changes, the methods that use WPD to decompose the data have a better prediction performance than 

the other methods. Figure 5.8-5.11 show the forecasting results of the proposed WPD-LSTM-CNN model for 

datasets 1 to 4, respectively. 
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Figure 5.7. Forecasting results of the involved models for two hours of dataset 1 

 
Figure 5.8. wind power forecasting with the proposed WPD-LSTM-CNN model for data set #1 

 
Figure 5.9. wind power forecasting with the proposed WPD-LSTM-CNN model for data set #2 
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Figure 5.10. wind power forecasting with the proposed WPD-LSTM-CNN model for data set #3 

 
Figure 5.11. wind power forecasting with the proposed WPD-LSTM-CNN model for data set #4 

Based on figures 5.8 to 5.11 and Tables 5.4 and 5.5, the following conclusions are drawn: 

1) Comparing the prediction performance of the FFNN, CNN and LSTM models with WPD-FFNN, 

WPD-CNN and WPD-LSTM models, respectively, the significant impact of WPD on improving the 

prediction capability is evident; 

2) The developed WPD-CNN-LSTM model has the highest prediction precision among all the models 

which are considered here; 

3) A combination of two optimised deep learning methods, CNN, and LSTM, for the prediction of 

different sub-series increases the forecasting accuracy compared to forecasting all sub-series with only 

one of them; 

For further assessment of the forecasting performance of the proposed hybrid model, the PMSE, PRMSE, PMAE of the 

trial tests are used to provide a comparative analysis between the WPD-LSTM-CNN model and other 
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forecasting models. Table 5.6 provides a comparative analysis between the proposed model and other involved 

forecasting models for the four experimental tests, respectively. 

Table 5.6. Promoting percentages of the involved forecasting models by the WPD-CNN-LSTM model 

Promoting percentages Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average 

PRMSE (%)      

RF 79.08% 81.08% 81.94% 80.24% 80.59% 

FFNN 78.43% 78.74% 81.91% 79.01% 79.52% 

CNN 77.72% 79.03% 81.56% 78.45% 79.19% 

LSTM 77.40% 78.91% 81.04% 78.16% 78.88% 

WPD-FFNN 26.25% 19.27% 19.90% 17.46% 20.72% 

WPD-CNN 4.62% 4.67% 2.23% 7.35% 4.72% 

WPD-LSTM 4.47% 0.09% 4.63% 2.75% 2.99% 

PMSE (%)      

RF 95.62% 96.42% 96.74% 96.09% 96.22% 

FFNN 95.35% 95.48% 96.73% 95.59% 95.79% 

CNN 95.03% 95.60% 96.60% 95.35% 95.65% 

LSTM 94.89% 95.55% 96.41% 95.23% 95.52% 

WPD-FFNN 45.63% 34.95% 35.90% 31.85% 37.08% 

WPD-CNN 9.09% 9.09% 4.47% 14.11% 9.19% 

WPD-LSTM 8.84% 0.19% 9.09% 5.52% 5.91% 

PMAE (%)      

RF 77.62% 78.69% 76.95% 78.49% 77.94% 

FFNN 77.41% 74.45% 78.02% 76.02% 76.47% 

CNN 76.84% 75.70% 77.72% 75.96% 76.55% 

LSTM 76.49% 80.49% 76.75% 76.27% 77.50% 

WPD-FFNN 23.38% 15.94% 14.81% 10.26% 16.10% 

WPD-CNN 9.09% 9.09% 1.01% 9.38% 7.14% 

WPD-LSTM 4.72% 11.93% 9.09% 0.31% 6.51% 

 

Based on the reported promoting percentages in Table 5.6, it can be recognised that: 

1) The developed WPD-LSTM-CNN is the most accurate short-term forecasting model for wind power 

time series among all evaluated models; 
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2) The WPD-LSTM-CNN model outperforms all forecasting models based on the use of non-decomposed 

data. For example, in experimental dataset 1, the RMSE value of the WPD-LSTM-CNN model, 

compared to models RF, FFNN, CNN and LSTM, was reduced by 79.08%, 78.43%, 77.72% and 77.4%, 

respectively, and the MAE value of the proposed model for the same experimental dataset, compared 

to models RF, FFNN, CNN and LSTM was reduced by 77.62%, 77.41%, 76.84% and 76.49%, respectively; 

3) Comparing the proposed model with other decomposed-based models, as shown in Table 5.6, the 

WPD-LSTM-CNN model outperforms the WPD-FFNN model. For example, in experimental dataset 2, 

the RMSE values of the developed model are reduced by 19.27%, the MSE value is reduced by 34.95%, 

and the MAE level is reduced by 15.94% compared to the WPD-FFNN; 

4)  The developed model can also outperform the WPD-CNN model. As can be seen from the evaluation 

criteria of the experimental dataset 3, for example, the RMSE, MSE and MAE values of the WPD-LSTM-

CNN model, compared to the WPD-CNN, are reduced by 2.23%, 4.47% and 1.01%, respectively. 

5) The WPD-LSTM-CNN can also outperform the WPD-LSTM model. For example, in experimental 

dataset 4, the RMSE, MSE and MAE values of the WPD-CNN-LSTM model, compared to the WPD-

LSTM, are decreased by 2.75%, 5.52% and 0.31%, respectively. 
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Chapter 6 -  Multi-step ahead prediction  

6.1 Introduction 

One-step ahead prediction of wind power has been investigated in several studies, but the results of these 

investigations do not provide sufficient assurance for the controllability of wind power systems. Up until this 

point in the thesis, we have also focused on one-step-ahead predictions. However, by increasing the prediction 

horizon and analysis of power production for the coming hours, the penetration increment of wind energy into 

the power grid will be facilitated [110]. 

Accurate multi-step ahead wind power prediction is a growing field of interest as it brings several 

advantages [7]. For example, by accurately predicting the generated power of the day-ahead, an efficient energy 

trading strategy can be scheduled [111]. In addition, accurate multi-step ahead forecasting leads to improved 

system stability, meaning that the power grid can better handle fluctuations in wind power generation, 

reducing the risk of outages and ensuring a consistent supply of electricity. This improved stability allows for 

better planning for the operation and maintenance of wind turbines. Furthermore, it enables a balance between 

production and demand [112]. Multi-step ahead forecasting tasks are more challenging compared to one-step 

ahead forecasting since they must deal with several complications, including the accumulation of prediction 

errors of previous steps, lack of information, and the reduction of accuracy. Therefore, regardless of the selected 

model for forecasting, choosing the appropriate modelling strategy for multi-step ahead forecasting is an 

important issue for research and practical applications [113].  

The most used strategies in the literature for multi-step ahead forecasting of wind speed or wind power 

are categorised into three main approaches: the recursive or iterated, direct, and multiple-input multiple-output 

(MIMO) strategies. Table 6.1 shows several applications of these strategies, conducted in recent years for multi-

step ahead wind speed/power forecasting. The application of these strategies can be seen in several research 

conducted in the past few years in Table 6.1. 

In the recursive strategy, a one-step ahead prediction model is used to predict one step ahead. Then the 

predicted values are used as input data to predict the next step and this process continues until the desired 

horizon is reached. Using previous predictions to predict the next step makes this strategy susceptible to error 

accumulation [125].  
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Table 6.1. Application of different strategies for multi-step ahead wind power/speed forecasting 

Literature Year Predicted 

feature 

Simulation 

strategy 

Highlights of the prediction process 

Y. Fu et al. [114] 2021 Wind power Recursive 1 step to 4 step prediction, based on RNN, LSTM or GRU 

J. Wang et al. [115] 2018 Wind speed Recursive Application of VMD and Kullback-Leibler divergence to 

extract optimal features. 

Y. Huang et al. 

[116] 

2019 Wind speed Recursive An integration of EEMD, LSTM and GRNN 

Z. Liang et al. 

[117] 

2016 Wind power Recursive One step and multi-step ahead prediction based on 

error forecast correction 

H. Liu et al. [118] 2018 Wind speed Recursive A combination of Empirical wavelet transforms and 

RNNs  

H. Liu et al. [119] 2010 Wind 

speed/power 

Recursive An integration of WT and LSTM 

X. Shi et al. [69] 2018 Wind power Recursive / 

direct 

(Recursive and direct prediction based on VMD and 

LSTM 

Y. Li et al. [120] 2018 Wind speed Direct An integration of EWT, LSTM, RELM and IEWT 

H. Liu et al. [121] 2018 Wind speed Direct A combination of WPD, CNN and CNNLSTM  

H. Liu et al. [122] 2018 Wind speed Direct A hybrid method based on WPD, EMD and ELM 

Z. Wu et al. [123] 2010 Wind power MIMO Secondary decomposition and non-agnostic uncertainty 

sampling-active learning-sample selection strategy 

L. Xiao et al. [110] 2017 Wind speed MIMO based on decomposing algorithms and modified neural 

networks 

Meng et al. [124] 2016 Wind speed MIMO Up to 5 h prediction using WPD and NNs trained by 

crisscross optimisation algorithm 
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This strategy has been used in several studies to predict wind power or wind speed. Fu et al. [114] 

employed this strategy to create a hybrid model based on the application of LSTM and GRU to predict wind 

power for up to four steps (2-hours) ahead. The results of their experiments showed that the prediction error 

increases with the increment of the prediction horizon. In another study, Liang et al. [117] used the recursive 

strategy for one step and multi-step ahead wind power forecasting of a wind farm in China, based on 

application of support vector machine (SVM) and extreme learning machine (ELM). They showed the superior 

prediction performance of their proposed model compared with other predictive models. Nonetheless, it was 

found that the accuracy of all models decreases with the increment of forecasting steps. Liu et al. [119] applied 

the recursive strategy for five and ten steps (50 to 100 minutes) ahead predictions of both wind speed and wind 

power. The results of their experiments showed that the prediction error almost doubled with the increment of 

the prediction horizon from 5 to 10.  

In contrast to the recursive strategy, which uses a single model for forecasting, in the direct strategy, a separate 

model is built for each forecasting horizon and only previous real observations are used as input data. Although 

the probability of accumulation of errors in this strategy is reduced, the need to create multiple models for each 

forecasting horizon reduces the efficiency of the strategy [113]. Li et al. [120] employed the direct strategy for 

one to five steps ahead wind speed forecasting of a wind farm using a hybrid model combining the Empirical 

Wavelet Transform (EWT), the LSTM, and the regularised extreme learning machine (RELM). Although in their 

research, the proposed method was compared with other methods, the effect of increasing the prediction 

horizon on the prediction accuracy was not investigated. In another project, Liu et al. [121] used the direct 

approach for one to three steps ahead wind speed prediction and noted the prediction error rise with increment 

of the prediction horizon but again, the effect of the selected strategy on the accuracy of multi-step ahead 

prediction was not investigated.  

To address the drawbacks of previous approaches, the MIMO strategy was proposed by Taieb et al. [126]. 

In this strategy, unlike previous strategies, the forecast value in each single step, instead of a scalar quantity, is 

a vector of future values whose length equals the forecast horizon. The MIMO strategy is used in several studies. 

For example, Wu et al. [123] used the MIMO strategy in a hybrid method based on secondary decomposition-

model selection for two and three steps ahead wind power forecasting of a wind turbine in Belgium. Xiao et al. 

[110] used the MIMO strategy in a wind speed forecasting model based on decomposition algorithms and NNs. 

It was found that with the increase of the forecasting horizon, the prediction error increased, as expected. The 

effect of the chosen strategy on the prediction performance was not investigated in this research either. 

The three afore mentioned strategies (direct, MIMO, and recursive) have been used separately in the 

literature, and to the best of the author’s knowledge, no researcher has used all three simultaneously, especially 

in the field of wind power or wind speed forecasting. Therefore, it has not been possible to determine which 



 

103 

strategy is the best approach for wind power prediction. Hence, the main contribution of this chapter is to 

present a thorough comparison of the existing strategies for multi-step ahead wind power forecasting.  

All experimental comparisons within this thesis are performed on two wind power time series datasets 

that were pre-processed with the same method. In addition, the LSTM deep learning model is selected as the 

prediction tool in all experiments, as the aim of this study is not to make a comparison of pre-processing or ML 

methods, but rather to demonstrate the impact of the forecasting strategy on the prediction performance for a 

given dataset and prediction algorithm.  

Finally, the Optuna hyperparameter optimisation algorithm, is used in this section to tune the 

hyperparameters of the LSTM model. The Optuna optimisation algorithm, based on the TPE search method 

and EI acquisition function, has been successfully applied in previous chapters [3]. Using the Optuna 

hyperparameter optimization algorithm, enhances the performance of the prediction models by selecting an 

effective hyperparameter combination [3]. 

The proposed procedure is demonstrated in Figure 6.1, beginning with the selection of three needed 

features including the time stamps, wind power, and wind speed from raw SCADA data of two wind turbines, 

one in Scotland and the other in Turkey. Using the IF outlier detection method, the anomalies are removed with 

the aim of improving the prediction accuracy. After finishing the data pre-processing step, supervised training 

and test data are provided through three different strategies for multi-step ahead forecasting. Afterwards, 

LSTM models are tunned using the hyperparameter optimisation algorithm to reach the highest possible 

prediction accuracy in the defined domain of hyperparameters. Finally, the resulting prediction performances 

of the various strategies are compared to select the best strategy.  
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Figure 6.1. Diagram of the applied methodology 

6.2 Wind power dataset 

In this section two real wind power datasets are used for the comparison between the different strategies 

of multi-step ahead wind power forecasting, namely an offshore wind turbine in Scotland and a wind turbine 

in Turkey [3, 42]. Figure  6.2 shows the power-speed curve of these two wind turbines, Table 6.2 demonstrates 

the statistical description, and figure 6.3 shows the histogram of their generated power. Two-month period 

from 1st March 2019 to 30th April 2019 of the first turbine in Scotland and a two-month period from 1st 

September 2018 to 31st October 2018 of a Turkish wind turbine is selected for training and testing all multi-step 

ahead forecasting models in all strategies.  

 

  

(a) (b) 
Figure 6.2. wind power-wind speed curve of (a) wind turbine 1 in Scotland and (b) wind turbine 2 in Turkey 
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Table 6.2. The statistical description of generated wind power of two wind turbines 

 
Wind turbine 1 

(Scotland), kW 

Wind turbine 2 

(Turkey), kW 

Count 8352 8083 

Mean 1756.87 1418.77 

Standard deviation 2234.58 1263.72 

Minimum 0 0 

25% 0 211.39 

Medium 470.88 1077.54 

75% 3241.19 2574.52 

Maximum 6569.58 3604.58 

 

  

(a) (b) 
Figure 6.3. Histograms of wind power of (a) wind turbine 1 in Scotland, and (b) wind turbine 2 in Turkey 

As evident from figure 6.2, both wind turbine datasets have some outliers. Regardless of the reason for 

these anomalies, it is necessary to remove them in order to have an accurate prediction. A variety of outlier 

detection methods are available such as GP based methods. The IF method has been used based on its satisfying 

performance in chapter 3 and similar work [3]. The detected outliers of the two wind turbines with the IF 

method are shown in Figures 6.4 and 6.5. These detected anomalies are removed from the datasets. 
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(a) (b) 
Figure 6.4. Outlier detection and treatment for wind turbine 1 in Scotland, (a) detected outliers in red, (b) 

outlier removed data 

 

  

(a) (b) 
Figure 6.5. Outlier detection and treatment for wind turbine 2 in Turkey, (a) detected outliers in red, (b) 

outlier removed data 

6.3 Strategies for multi-step ahead wind power forecasting 

A multi-step ahead time series forecasting can be defined as a prediction of the next H>1 (𝑦𝑁+1, …, 𝑦𝑁+𝐻) 

values based on the N number of present and prior observations. In this study, three widely used strategies in 

multi-step ahead wind power forecasting including recursive, direct, and MIMO strategy are briefly discussed 

and then used for two steps to six steps ahead forecasting of two wind turbines in Europe.  

Throughout this section, the notation f is used to denote the functional dependency between the past and 

future observations, T represents the number of past observations considered to predict future values, and w 

represents the error or noise of the prediction. 
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6.3.1 Method 1: recursive strategy 

As previously mentioned, in the recurrent strategy, a one-step ahead prediction model is trained and used 

for one-step ahead prediction, i.e., 

𝑦̂𝑡+1  = 𝑓(𝑦𝑡 , … , 𝑦𝑡−𝑇+1) + 𝑤                                                                       (46) 

The recursive strategy is shown schematically in figure 6.6. For the prediction of further steps, the first 

predicted step is considered as part of the input data to predict the next step. This process of using the 

predictions as part of the input data to predict the next step continues until the entire forecast horizon is 

achieved. Considering 𝑓 as the one-step ahead prediction model, the predictions of each step can be defined as: 

𝑦̂𝑁+𝐻  =  {

𝑓(𝑦𝑁, … , 𝑦𝑁−𝑇+1)                                                             𝑖𝑓 𝐻 = 1

𝑓(𝑦̂𝑁+𝐻−1, … , 𝑦̂𝑁+1, 𝑦𝑁, … , 𝑦𝑁−𝑇+𝐻)             𝑖𝑓 𝐻 ∈  {2, … , 𝑇}

𝑓(𝑦̂𝑁+𝐻−1, … , 𝑦̂𝑁+𝐻−𝑇)                            𝑖𝑓 𝐻 ∈  {𝑇 + 1, … , 𝐻}

                                             (47) 

 

The existing noise in the wind power time series and errors of predictions in each step decreases the 

performance of the recursive strategy in multi-step forecasting, especially when the forecasting horizon H 

exceeds the dimension of the past observations T considered to predict future values.  

 

Figure 6.6. Schematic of recursive strategy for multi-step ahead forecasting (3-step ahead in this case) 

6.3.2 Method 2: Direct strategy 

In the direct strategy, for each forecast horizon, an independent model is required, and therefore, 

independently trained models are needed for the number of required forecasting horizons. The prediction of 

each step in this strategy can be obtained from the equation (48): 
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𝑦̂𝑁+𝐻  = 𝑓𝐻(𝑦𝑁, … , 𝑦𝑁−𝑇+1)                                                                       (48) 

 

where 𝑓𝐻  denotes the prediction model for forecast horizon H. Figure 6.7 shows a schematic of the direct 

strategy for a 3-step ahead prediction. As can be seen in this figure, the prediction model is trained based on 

the dependencies between the input data length T and the measurements of the next third steps. The schematic 

shown in Figure 6.7 illustrates the trained predicting model, which can be used only for three-step ahead 

forecasting. 

 

 

Figure 6.7. Schematic of direct strategy for multi-step ahead forecasting (3-step ahead in this case) 

The main advantage of using the direct strategy is the non-accumulation of errors as a result of not using 

previous predictions to predict the next steps. However, training a model to predict the H step independently 

and without considering other steps, eliminates the possibility of considering simple dependencies such as 

linear correlations between input, target, and intermediate variables which can affect the prediction accuracy. 

In addition, a lot of time is spent on creating and training independent models for each forecast horizon, which 

leads to a decrease in the efficiency of the strategy. 

6.3.3 Method 3: Multi-input multi-output (MIMO) strategy  

In the MIMO strategy, as previously mentioned, the forecast value in each single step, is a vector instead 

of a scalar quantity. The vector of future values is returned in one step by a muti-output model 𝐹̂ where: 

 [𝑦̂𝑡+𝐻, … , 𝑦𝑡+1]  = 𝐹̂(𝑦𝑁, … , 𝑦𝑁−𝑇+1)                                                                       (49) 

In contrast to the direct strategy, the MIMO strategy uses only one model for all forecast horizons and 

considers all the intermediate steps between the input data and the H step ahead. In this case, the stochastic 
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dependencies between future values will be preserved. Figure 6.8 shows an example of using the MIMO 

strategy for a forecast with three output steps. In this strategy, after performing the prediction, step H will be 

selected as the desired prediction step. 

 

 
Figure 6.8. Schematic of MIMO strategy for multi-step ahead forecasting (3-step ahead in this case) 

6.4 Results of comparison of different strategies for multi-step ahead prediction 

6.4.1 Hyperparameter optimisation of different forecasting approaches 

The search space of the hyperparameters of the LSTM model for all muti-step ahead predictions in all 

strategies is defined according to Table 6.3. Using the provided ranges of values for different hyperparameters, 

leads to approximately 28 million combinations of hyperparameters for the LSTM models.  

Table 6.3. search space for hyperparameters of the LSTM models 

Hyperparameter Search Space 

Units (neurons) of first LSTM Layer 10, …, 50 

Number of dense layers 1, 2, 3, 4 

Units (neurons) in dense layer 10, 11, …, 300 

Activation function Sigmoid, tanh, ReLU 

Loss function MAE, MSE 

Optimiser ADAM, Adadelta 

Epochs 50, 51, …, 100 

For simulation of all multi-step ahead prediction strategies, the Python programming language with a 

variety of packages and libraries including Numpy, Pandas, Matplotlib, and Scikit-learn are employed on a PC 

with Intel Core™ i7–11850H 2.5GHz CPU and 16GB RAM. Search and pruning process is performed by Optuna 



 

110 

optimisation algorithm to find the best hyperparameters of LSTM models used in different strategies and 

different wind turbine datasets. The best combination of hyperparameters in this research are those that give 

the minimum value of RMSE. Tables 6.4 to 6.7 show the values of the hyperparameters for 2-step to 6-step 

ahead forecasting for both wind turbines. 

Table 6.4. Best hyperparameter combinations of LSTM models in different 2-step ahead prediction strategies 

Wind 

turbine 

Prediction 

Strategy 

LSTM 

units 

dense 

layers 

Dense layer 

units 

Activation 

function 

Loss 

function 

optimiser Epochs 

WT1 

(Scotland) 

MIMO 26 4 211 ReLU MAE ADAM 86 

Direct 30 3 295 ReLU MAE ADAM 100 

Recursive 27 3 49 ReLU MSE ADAM 61 

WT2 

(Turkey) 

MIMO 42 3 194 ReLU MAE ADAM 100 

Direct 30 3 125 ReLU MAE ADAM 61 

Recursive 18 4 283 ReLU MSE ADAM 87 

 

Table 6.5. Best hyperparameter combinations of LSTM models in different 3-step ahead prediction strategies 

Wind 

turbine 

Prediction 

Strategy 

LSTM 

units 

dense 

layers 

Dense layer 

units 

Activation 

function 

Loss 

function 

optimiser Epochs 

WT1 

(Scotland) 

MIMO 17 2 179 ReLU MAE ADAM 79 

Direct 21 4 105 ReLU MAE ADAM 62 

Recursive 14 3 61 ReLU MSE ADAM 85 

WT2 

(Turkey) 

MIMO 29 1 224 ReLU MAE ADAM 51 

Direct 43 4 149 ReLU MAE ADAM 99 

Recursive 29 3 79 ReLU MSE ADAM 95 

 

Table 6.6. Best hyperparameter combinations of LSTM models in different 4-step ahead prediction strategies 

Wind 

turbine 

Prediction 

Strategy 

LSTM 

units 

dense 

layers 

Dense layer 

units 

Activation 

function 

Loss 

function 

optimiser Epochs 

WT1 

(Scotland) 

MIMO 27 2 136 ReLU MAE ADAM 77 

Direct 30 3 239 ReLU MAE ADAM 76 

Recursive 11 2 270 ReLU MSE ADAM 80 

WT2 

(Turkey) 

MIMO 33 2 252 ReLU MAE ADAM 77 

Direct 28 3 135 ReLU MAE ADAM 68 

Recursive 46 1 73 ReLU MSE ADAM 100 
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Table 6.7. Best hyperparameter combinations of LSTM models in different 5-step ahead prediction strategies 

Wind 

turbine 

Prediction 

Strategy 

LSTM 

units 

dense 

layers 

Dense layer 

units 

Activation 

function 

Loss 

function 

optimiser Epochs 

WT1 

(Scotland) 

MIMO 15 3 116 ReLU MAE ADAM 50 

Direct 10 4 206 ReLU MAE ADAM 82 

Recursive 28 2 81 ReLU MAE ADAM 69 

WT2 

(Turkey) 

MIMO 12 3 214 ReLU MAE ADAM 80 

Direct 17 2 290 ReLU MAE ADAM 92 

Recursive 34 4 282 ReLU MSE ADAM 82 

 

Table 6.8. Best hyperparameter combinations of LSTM models in different 6-step ahead prediction strategies 

Wind 

turbine 

Prediction 

Strategy 

LSTM 

units 

dense 

layers 

Dense layer 

units 

Activation 

function 

Loss 

function 

optimiser Epochs 

WT1 

(Scotland) 

MIMO 20 2 178 ReLU MAE ADAM 57 

Direct 26 1 69 ReLU MAE ADAM 68 

Recursive 18 3 167 ReLU MAE ADAM 98 

WT2 

(Turkey) 

MIMO 41 4 32 ReLU MAE ADAM 96 

Direct 14 4 34 ReLU MAE ADAM 99 

Recursive 40 2 289 ReLU MAE ADAM 99 

 

6.4.2 Comparison of different multi-step ahead forecasting strategies 

The prediction results of the multi-step ahead forecasting strategies are assessed and compared in order to 

identify the strategy which results into the highest accuracy for wind power forecasting. Five forecast horizons, 

from two-step to six-step ahead are selected. Since the resolution of both time series equals 10 minutes, the two-

step to six-step ahead forecasts imply wind power prediction over the next 20 to 60 minutes. This range of time 

periods provide the possibility of fixing small defects, planning electricity distribution, and detecting wind 

turbine faults. 

To evaluate the prediction performance of the employed hybrid wind power forecasting model based on 

IF, LSTM, and Optuna optimisation algorithm, for the datasets used in this research, a one-step ahead prediction 

is performed first. The results of these predictions for the two wind turbines are provided in Figures 6.9 and 

6.10. 
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Figure 6.9. One-step ahead wind power predictions of Wind turbine1 (Scotland) 

 
Figure 6.10. One-step ahead wind power predictions of Wind turbine 2 (Turkey) 

The evaluation criteria of these forecasts including MSE, RMSE, MAE, and R-square are shown in Table 

6.9. Comparing the evaluation parameters of the two turbines indicates the better performance of the employed 

hybrid model for the SCADA data of the second wind turbine, located in Turkey. Although it is not appropriate 

to compare the prediction performance of a model on two different datasets, two reasons can be given for the 

superior performance of the employed hybrid model for the SCADA data of the second wind turbine in Turkey. 

Firstly, as it was clear in Figures 6.4 and 6.5 in Section 6.2, the first time series dataset (wind turbine 1) contains 

more outliers than the second dataset (wind turbine 2). Even after the outlier treatment step using the IF outlier 

detection method, some of the outliers such as the zero power values at high wind speeds remain in the data 

and decrease the prediction accuracy. Secondly, the generated power range of wind turbine 1 is higher than 
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that of wind turbine 2, as shown in Figure 6.3 and Table 6.2, and therefore, the minimal forecasting errors can 

have a negative impact on the values of obtained evaluation criteria.  

 

Table 6.9. Prediction performance of LSTM model for one-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 

(Scotland) 

Wind turbine 2 

(Turkey) 

MSE 309,130.89 36,922.7 

RMSE 555.99 192.15 

MAE 308.48 112.1 

R-square 0.916 0.955 

 

After the initial evaluation of the developed hybrid model in this research for one-step ahead wind power 

forecasting, different strategies of multi-step ahead forecasting were examined and compared for five forecast 

horizons: 2, 3, 4, 5 and 6-step ahead. First, for 2-step ahead forecasting, three LSTM models, one for each strategy 

are built based on the hyperparameter combinations found by the Optuna optimisation algorithm (see Table 

32). The values of MSE, RMSE, MAE and R-square for these forecasts are shown in Table 6.10. 

 

Table 6.10. Prediction performance of different strategies for 2-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 (Scotland) Wind turbine 2 (Turkey) 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MSE 582268.70 579772.77 585570.52 88726.07 90468.77 86415.44 

RMSE 763.06 761.43 765.22 297.87 300.78 293.965 

MAE 431.04 425.61 433.26 172.84 171.64 167.53 

R-square 0.843 0.843 0.859 0.900 0.879 0.890 

 

The prediction performance of different strategies for 2-step ahead wind power forecasting is presented in 

Figure 6.11. As evident from this figure and Table 6.10, in 2-step ahead forecasting, both wind turbines show 

almost identical predictions using the different strategies. This means that the application of different strategies 

to find dependencies between the previous steps and the two forward steps has no effect on improving the 

prediction accuracy.  
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(a) (b) 

  

(c) (d) 
Figure 6.11. Comparison of prediction performance of different strategies for of 2-step ahead prediction, (a) 

MSE, (b) RMSE, (c) MAE, (d) R-square 

A similar process was conducted for other forecasting horizons. Three LSTM models, one for each strategy 

are built based on the best hyperparameter combinations shown in Tables 6.5 to 6.8 for three-step to six-step 

ahead wind power forecasting. 

The prediction results of different strategies for the third step of wind power forecasting are shown in 

Figure 6.12 and 6.13 for wind turbine 1 and 2, respectively. In addition, the values of MSE, RMSE, MAE and R-

square for the predictions of this time horizon are shown in Table 6.11. 
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Figure 6.12. 3-step ahead wind power predictions of WT1 (Scotland) in three different strategies 

 
Figure 6.13. 3-step ahead wind power predictions of WT2 (Turkey) in three different strategies 

Table 6.11. Prediction performance of different strategies for 3-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 (Scotland) Wind turbine 2 (Turkey) 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MSE 873,059.66 828,668.33 1,149,838.2 144,129.9 149,329.8 132,684.3 

RMSE 934.38 910.31 1,072.31 379.64 386.43 364.26 

MAE 528.69 527.32 627.67 218.79 231.59 210.59 

R-square 0.769 0.751 0.700 0.827 0.827 0.812 
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Figure 6.14 compares the prediction performance of different strategies in 3-step ahead wind power 

forecasting. As evident from this figure and Table 6.11, in wind turbine 1, the direct strategy results in the 

highest prediction performance compared to other strategies, while the recursive strategy has the weakest 

performance and higher prediction errors. On the other hand, in wind turbine 2, the recursive strategy proves 

to be the best prediction strategy, while the direct strategy has the lowest performance and shows higher 

prediction errors. 

 

  

(a) (b) 

  

(c) (d) 
Figure 6.14. Comparison of prediction performance of different strategies for of 3-step ahead prediction, (a) 

MSE, (b) RMSE, (c) MAE, (d) R-square 

Tables 6.12 and 6.13 show the results of the tests to determine forecasting performance for different 

strategies in forecast horizons 4 and 5. Both turbines showed the highest prediction error when using the 

recursive strategy for these two horizons. 
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Table 6.12. Prediction performance of different strategies for 4-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 (Scotland) Wind turbine 2 (Turkey) 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MSE 1,115,557.8 1,099,817.9 1,444,275.9 181,134 182,143.2 201,020.6 

RMSE 1,056.19 1,048.72 1,201.78 425.59 426.78 448.35 

MAE 635.51 624.81 739.17 252.88 252.69 262.28 

R-square 0.657 0.676 0.576 0.777 0.767 0.626 

Table 6.13. Prediction performance of different strategies for 5-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 (Scotland) Wind turbine 2 (Turkey) 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MSE 1,374,991.1 1,342,568.3 1473549.06 216,021.6 232,704.5 278,660.6 

RMSE 1,172.6 1,158.69 1213.89 464.78 482.39 527.88 

MAE 710.44 714.48 713.4 275.73 293.27 312.06 

R-square 0.655 0.611 0.534 0.718 0.722 0.558 

 

Similar experiments were conducted to investigate the performance of MIMO, direct and Recursive 

strategies for 6-step ahead forecasting. The same training and testing datasets are used, and LSTM models were 

built based on the hyperparameter combinations proposed by Optuna optimisation algorithm in Table 6.8. Then 

the 6-step ahead predictions are made in three different strategies. The results of these predictions are shown 

in Figure 6.15 and 6.16 for wind turbine 1 and 2, respectively. In addition, the values of MSE, RMSE, MAE and 

R-square of these predictions are shown in Table 6.14. 
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Figure 6.15. 6-step ahead wind power predictions of WT2 (Turkey) in three different strategies 

 
Figure 6.16. 6-step ahead wind power predictions of WT2 (Turkey) in three different strategies 

Table 6.14. Prediction performance of different strategies for 6-step ahead prediction 

Evaluation 

criteria 

Wind turbine 1 (Scotland) Wind turbine 2 (Turkey) 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MIMO 

strategy 

Direct 

strategy 

Recursive 

strategy 

MSE 1,714,249 1,618,416.4 2,066,069 256,446.9 270,165.5 361,449.4 

RMSE 1,309.29 1,272.17 1437.38 506.41 519.77 601.21 

MAE 784.69 770.69 906.93 305.59 315.14 347.30 

R-square 0.466 0.57 0.59 0.675 0.685 0.389 
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Figure 6.17 shows the 6-step ahead forecasting performance of the utilised models for the three different 

strategies. According to the figure, the recursive strategy gives the weakest results for both wind turbines. 

Similarly, to the previous forecasting horizon, this one also shows accumulating errors as a result of the 

application of predictions made previously. As for the most appropriate strategy, the experiments show that 

the direct strategy for wind turbine 1 and the MIMO strategy for wind turbine 2 perform the best. 

 

  

(a) (b) 

  

(c) (d) 
Figure 6.17. Comparison of prediction performance of different strategies for of 6-step ahead wind power 

forecasting, (a) MSE, (b) RMSE, (c) MAE, and (d) R-square 

A more detailed analysis of the impact of different strategies in different forecasting horizons is shown in 

Figures 6.18(a) and 6.18(b) for turbines 1 and 2, respectively. According to the findings, even though different 

forecasting strategies do not have a significant impact on forecast accuracy in two-step ahead wind power 

forecasting, differences in forecasting performance can be observed as the forecasting horizon increases. 

In the case of wind turbine 1, for all forecast horizons higher than two steps, wind power prediction using 

the recursive strategy results in the highest error. This is due to the negative effects of errors in wind power 

prediction for the previous steps. The negative effect becomes more pronounced when there are more outliers 
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in the dataset. Apart from the recursive strategy, the direct strategy performs better than the MIMO strategy in 

wind turbine 1. 

 

  

(a) (b) 
Figure 6.18. multi-step ahead prediction performance of different strategies for wind turbine 1 in Scotland (a), 

and wind turbine 2 in Turkey (b) 

Based on the comparison of different multi-step-ahead forecasting strategies for the second turbine (where 

the power time series contains fewer anomalies than the first turbine dataset), the recursive strategy performs 

the best in two and three-step ahead wind power forecasts. It means that using the predictions made in the 

previous steps as input data can improve the prediction accuracy for these two forecast horizons when the data 

is clean. However, when the forecasting horizon is extended to four, five, and six steps, the forecasting errors 

increase and the performance of multi-step ahead forecasting is reduced. 

Compared to the first turbine, the second turbine performs differently under direct and MIMO strategies 

in terms of multi-step ahead predictions. In contrast to the first turbine, the application of the MIMO strategy 

for multi-step ahead forecasting on all forecast horizons has a superior performance compared to the direct 

option for the second turbine. Consequently, if the data is clean, multi-step ahead forecasting using the MIMO 

strategy, in which several inputs relate to several outputs, will improve the accuracy. 
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Chapter 7 -  Conclusion, Future Trends and Open Issues  

In this section, the conclusion of the thesis is discussed, as well as future trends for the thesis, in which a 

conclusion is drawn for all the cases that were examined. 

7.1 Conclusion 

In light of the importance of accurate wind power forecasting for wind energy management, increasing 

the penetration of wind power into the power grid, and improving maintenance efficiency, artificial 

intelligence-based solutions, are needed to improve the accuracy and efficiency of forecasting. 

There are various parameters that must be considered to optimise forecasting methods. It begins with 

checking raw data for patterns and dependencies, identifying and removing outlier data, and then providing 

an appropriate ML algorithm, adjusting it, and sometimes combining multiple methods to increase accuracy, 

efficiency, and robustness. 

Data received from different wind turbines/farms usually display different patterns and dependencies 

between variables. It is therefore necessary to examine them separately. For several reasons, this data contains 

outliers, which may contribute to errors in power predictions if not corrected. On the other hand, there are 

many ML methods that are being developed and it is challenging to identify a method that is capable of 

detecting and learning linear, non-linear, short-term and long-term dependencies in data. Once the model is 

developed, it should be able to predict power within a short timeframe. Accordingly, this thesis covers some 

applications of ML algorithms that are used to create a time series-base wind power forecasting model. 

Based on the study of past research, it can be concluded that physical methods, which offer good 

performance at medium to long-term prediction, are complex and need considerable computing resources. On 

the other hand, statistical methods, which perform better in short to medium term periods, are easy to be 

modelled and inexpensive. Combination of these two major methods with their merits led to the promising 

hybrid methods. It was also revealed that wind speed, temperature, wind direction, relative humidity and air 

pressure were the most often used input features in reviewed studies. Also, the one-year period and the 

sampling rate of 10 min were the most common features used for input data.  

Using SCADA data from an offshore wind turbine, the data was pre-processed to remove outliers and 

negative values to help determine the best pre-processing method. The results confirmed that replacing 

negative values with average power values has the most positive effect on prediction accuracy. Furthermore, 

comparisons between several data items showed a significant effect of outlier treatment methods on 

performance prediction. The results showed that the removal of outliers with the isolation forest method 

improves the prediction accuracy compared to the ellipse coverage and OCSVM methods. 
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In the next step of the research, the focus has been on fine-tuning the hyperparameters of ML models to 

increase the accuracy and efficiency of forecasting. As opposed to grid search or random search which are time-

consuming and unreliable, three hyperparameter optimisation techniques, Scikit-opt, Hyperopt, and Optuna, 

are used to tune CNN and LSTM prediction models, two widely used deep learning models. The results showed 

that the Optuna optimisation technique using TPE search algorithm and EI acquisition function, has the highest 

efficiency for both CNN and LSTM models. Regarding the improvement of the prediction accuracy, it has been 

demonstrated that while for the CNN model, all the optimisation methods perform almost the same, the LSTM 

model optimised by the Hyperopt algorithm based on the annealing search method achieves the highest 

accuracy. In addition, in this research, the sensitivity of different structures of CNN and LSTM models to seed 

changes was investigated and the most resistant structure against randomness was selected for both models.  

The proposed models provides the highest level of accuracy, efficiency, and robustness for the utilised offshore 

wind power dataset. This level of performance for short term wind power forecast can be used for regulation 

actions, real-time grid operations, market clearing and wind turbine control systems. 

A novel wind power forecasting method is proposed based on the combination of WPD, optimised LSTM 

and CNN models. In the developed WPD-LSTM-CNN model, first, the obvious outliers that diminish the 

prediction accuracy, are removed and the resolution of data averaged over 10 minutes in order to mitigate the 

influence of turbulence. After an assessment of various mother wavelets and selection of the db5 mother 

wavelet, resulting in the best performance, WPD is employed to decompose the pre-processed wind power 

time series into several sub-series with different frequencies. The appropriate decomposition of signals into 

several sub-series increases the stationary of data and thus makes the prediction models more efficient. Three 

tuned independent CNNs are employed for the prediction of the high-frequency sub-series, and one optimised 

LSTM model is adopted to complete the forecasting of the low-frequency sub-layer. For the optimisation of 

these deep learning models, the SMBO method as a formalisation of Bayesian optimisation, provided in the 

Optuna optimisation package, is used to reduce the dependence on computational resources. 

For the prediction performance assessment of the proposed model, various forecasting models were 

employed, including the RF model, FFNN model, CNN model, LSTM model, WPD-FFNN model, WPD-CNN 

model, and WPD-LSTM model. Based on the prediction results for four different datasets it is observed that 

WPD, through extracting the hidden features of the signals, can effectively improve the prediction performance 

of the forecasting models. This improvement is more pronounced during time steps when the wind power 

encounters abrupt changes. Considering the four different datasets, using WPD improved the average accuracy 

of the FFNN, CNN and LSTM models, by 74.10%, 78.13% and 78.38%, respectively.  

It is also observed that the optimised CNN and LSTM models have good performance in learning the short-

term and long-term dependencies of the wind power time series. Using SMBO methods for hyper-parameter 
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selection of these deep learning models, instead of commonly used methods such as grid and random search, 

increases the prediction accuracy and efficiency. Using the CNN model increases the forecasting accuracy by 

6.56% and 1.57% on average compared to the RF and FFNN models, respectively. Likewise, the application of 

the LSTM model improves the prediction accuracy by an average of 8% and 3.05% compared to the RF and 

FFNN models, respectively.  

Furthermore, the simultaneous application of the CNN and LSTM models to predict the approximation 

and detail components, instead of using only one of these models to predict both components, was shown to 

improve the prediction performance. The results of the simulations have shown that this approach leads to an 

improvement in accuracy of up to 11.93% and 14.11%, compared to the application of only the CNN and LSTM 

models, respectively.  

Since forecasting wind power over several steps into the future is challenging due to decreasing 

dependency between past and future variables, several strategies were evaluated to identify the most useful 

strategy for wind power multi-step ahead prediction. Three strategies including the recursive, direct, and multi-

input multi-output (MIMO) strategies are investigated on two wind turbine datasets of two turbines in Turkey 

and Scotland. For all strategies and forecast horizons considered, the followings are applied: (i) a hybrid 

prediction method based on application of the Isolation Forest for outlier detection and removal, (ii) long short-

term memory (LSTM) for prediction, and (iii) a new hyperparameter optimisation algorithm for tuning of the 

LSTM model. Based on the results of the experiments, it was concluded that in two-step ahead (20 min) wind 

power forecasting, all different strategies come up with almost identical results. The multi-step ahead wind 

power prediction with the MIMO strategy performs best when the dataset contains no outlier data, and vice 

versa, when it contains outlier data, the direct strategy performs best in forecast horizons of more than two 

steps ahead. In the case of datasets containing outliers, for forecast horizons above two steps, wind power 

forecasting using the recursive strategy results in the highest error. The errors in previous wind energy 

forecasts, used to predict next steps accumulate, leading to a decrease in accuracy.  

Given the comprehensive analysis and findings presented, my approach to deploying an optimal wind 

power forecasting solution would involve leveraging a hybrid method that integrates both physical and 

statistical models. Initially, I would pre-process the data to remove outliers using the IF method, ensuring the 

data's accuracy and consistency. Next, I would employ a combination of WPD to enhance data stationarity and 

deep learning models, specifically optimized CNN and LSTM networks. For hyperparameter optimization of 

the CNN and LSTM models, my suggestion would be to apply the Optuna algorithm, prioritizing the TPE 

search and EI acquisition function to fine-tune the models efficiently. For multi-step ahead predictions, I would 

adopt the MIMO strategy, especially when dealing with clean datasets, to mitigate error accumulation over 

extended forecast horizons.  
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7.2 Future trends in wind power forecasting 

Wind power forecasting has great potential for advancement and improvement in the future. Continuous 

innovation of technology and data analysis techniques is expected to make wind power forecasting more 

accurate, reliable, and efficient.  

Advances in data analysis techniques can improve the performance of forecasting models by combining 

large volumes of historical weather data, real-time meteorological observations, wind turbine sensor data, and 

grid data. In addition, advanced analytics can continuously update and refine forecasting models by 

assimilating real-time data through ingesting real-time data from weather satellites, radars and in-situ sensors. 

With the assimilation of real-time data, more accurate forecasting models are ensured, even with changes in 

weather conditions. 

In addition, future research should comprehensively examine the data lifecycle in wind power forecasting 

models. It is crucial to determine optimal data periods and sampling rates, as older data may distort predictions 

by failing to accurately represent the current state of the wind farm. Further analysis is required to develop 

strategies for dynamically updating training datasets, ensuring that the most relevant and current data are 

utilized. This approach will enhance the accuracy and reliability of predictive models, ultimately improving 

wind power forecasting. 

The Internet of Things (IoT) devices and sensors are becoming more prevalent in wind farms. These 

devices can collect real-time data on wind speed, direction, temperature, and other relevant parameters. By 

integrating this big data with forecasting models, operators can continuously update and refine predictions, 

improving the overall accuracy of wind power forecasts. 

Further research is still needed to combine multiple forecasting methods to enhance wind force forecasting 

accuracy. Numerical weather forecasting models, statistical models, machine learning algorithms, and even 

human expertise can be combined. With the combination of these different approaches, wind power forecasts 

can benefit from different perspectives and provide more accurate predictions. 

Future developments in ML algorithms will improve the performance of models in many ways. ML 

techniques, such as feature selection algorithms, can automatically identify the most relevant features from 

large sets of input data. This helps in selecting the key weather variables and other factors that have the most 

significant impact on wind power generation, leading to more accurate forecasts. Next-generation of ML 

algorithms, such as transformer models and graph neural networks (GNNs), will better capture the complex 

and nonlinear relationships between variables. More efficient learning and modelling of these intricate 

relationships will result in more accurate predictions. 
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ML algorithms excel at capturing nonlinear relationships between variables. In wind power forecasting, 

there are often complex interactions between weather parameters (e.g., wind speed, temperature, humidity) 

and power output. ML models, such as neural networks or support vector machines, can effectively learn and 

model these nonlinear relationships, resulting in more accurate predictions. It is also important understanding 

and leveraging the lifecycle of data is paramount. Future work should focus on optimizing each stage of the 

data lifecycle, from data collection and pre-processing to model training and real-time application. By 

enhancing the quality and consistency of data throughout its lifecycle, we can improve the accuracy and 

reliability of AI-driven forecasts. 

In general, wind power forecasting holds great potential for the future. More accurate and reliable wind 

power predictions will be available as a result of advances in data analytics, weather modeling, computing 

technologies, and integration with energy systems. As a result of these improvements, wind farm operators, 

energy grid managers, and market participants will be able to better plan, optimise, and integrate wind power 

into a broader energy landscape. 

It is also required to point out that in this thesis, the methodology used for splitting data into training and 

testing sets involves using the same testing set to both select hyperparameters and assess the model's 

performance on new data. This approach conflicts with the standard practice in the machine-learning 

community, which typically involves splitting data into training, testing, and validation sets. Training data is 

used for parameter optimization, testing data for hyperparameter selection, and validation data to assess model 

performance. Additionally, a 90%-10% split is used for training-testing purposes throughout the work, which 

goes against common practices where cross-validation is typically used to analyse model performance. Future 

work should address these issues by implementing a more robust data splitting strategy that includes separate 

validation sets and by employing cross-validation techniques. This will provide a fair assessment of model 

performance and ensure that hyperparameter selection does not bias the evaluation, leading to more reliable and 

accurate forecasting models.  
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